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PREFACE

‘Communication Systems’ is a core subject for all Electronics and Communication Engineering 

(ECE) students at the undergraduate level. In most Indian universities, it is generally in the third 

year of a four-year undergraduate programme that the subject is taught. It is covered in two 

semesters—analog communication is taught first, and digital communication thereafter. In keeping 

with the course trend, the content that makes up communication systems has been spread over two 

stand-alone texts, one on Analog communication and the other on Digital Communication. Both are 

designed to serve as comprehensive textbooks at the undergraduate level and cover the respective 

courses as taught in most Indian universities.

I had the privilege of teaching one-semester courses on analog communication as well as digital 

communication at NIT Tiruchirapalli (formerly REC) for several years and also for a few years at colleges 

affiliated to Osmania University, Hyderabad and Karnataka University, Dharwar. The present book, Analog 

Communication, has evolved out of the lecture notes prepared while teaching those courses.

A subject like analog communication systems can be treated at different levels. At one end, it may 

be dealt with in a purely theoretical way, while at the other end, it may be discussed at the circuit level.  

I have, in this book, adopted an approach, which I feel, is best suited at the undergraduate level—a 

suitable mix of theory and circuit diagrams. Concepts are clearly explained using simple and lucid 

language; mathematical analysis has been used wherever it was found necessary, and the results and 

their implications have been clearly explained. The block-diagram approach has been used to explain 

the operation of systems, and circuit diagrams have been used wherever necessary.

Linear system theory, spectral analysis, probability and random processes are some of the essential 

pre-requisites for a course on analog communication. In most of the universities, these are covered 

through separate one-semester courses on ‘Signals and Systems’ and ‘Probability and Random 

Processes’. However, for the sake of completeness and for ready reference, ‘Signals, Transforms and 

Spectral Analysis’, ‘Signal Transmission through Systems’ and ‘Probability and Random Processes’ 

have been covered in this book in a review-like approach, by devoting one chapter separately to each 

one of them.

Scope of the Book

The contents of the book have been so designed that the book covers, almost fully, the prescribed syllabus for 

a one-semester course on analog communication of almost all Indian universities. Further, three full chapters 

have been devoted to cover the topics that provide the necessary background to the reader who might not have 

been exposed to those topics earlier.

The book will therefore be useful for

 (i)  All engineering undergraduate students specializing in Electronics and Communication Engineering, 

or Electrical and Electronics Engineering, or Electronics and Instrumentation Engineering, or 

Computer Science and Engineering

 (ii) All candidates preparing for IETE examinations

 (iii) All candidates preparing for Institution of Engineers (India) examinations

 (iv) All those preparing for GATE and similar competitive examinations

 (v) Practicing engineers, as a reference
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Chapter Organization

Chapter 1 gives a brief history of the evolution of communication systems and an overview of analog 

communication systems together with characteristics of various types of communication channels and their 

modeling. Signal analysis, transforms and spectral analysis are reviewed in Chapter 2. Chapter 3 discusses 

the topics of linear system theory and the transmission of signals through systems, in a review like fashion. 

AM, DSB-SC, SSB-SC and VSB methods of modulation, time-domain and frequency-domain representation 

of these modulated signals, their methods of generation and detection as well as fields of application are 

discussed in detail in Chapter 4. Chapter 5 discusses the time and frequency-domain representation, 

methods of generation and detection and fields of application of frequency and phase-modulated signals.

Transmitters and receivers, their types, specifications, principles of operation, and operational 

characteristics have been discussed in Chapter 6. A review of probability theory and random processes 

is presented in Chapter 7. Chapter 8 discusses various sources of noise, their spectral characteristics and 

techniques for noise calculations in active and passive circuits. Performance of AM, DSB-SC, SSB-SC and 

FM communication systems in the presence of noise, and comparison of these systems on the basis of their 

noise performance, have been presented along with certain techniques for reducing the effect of noise on 

the performance of FM systems, in Chapter 9. In the last chapter, i.e., Chapter 10, various analog pulse 

modulation systems like PAM, PDM and PPM, have been presented along with their noise performance.

Appendix A is dedicated to MATLAB problems and examples. Appendix B gives useful mathematical 

identities and formulae and Appendix C gives values of commonly used physical and mathematical constants. 

Appendix D provides a table of Hilbert transform pairs; and Appendix E gives tables of Fourier transform 

properties and pairs. Appendix F presents tables of error function.

How to use the Book

The book can serve as a good textbook for a one-semester course on ‘Analog Communication’. Those who 

have had good exposure to signals and systems, probability theory and random processes through a full-

fledged one-semester course for each, may revisit chapters 2, 3 and 7 and refresh the concepts. For the others, 

these chapters, together with the books recommended for reference at the end of these chapters, lay a solid 

foundation for a proper understanding of the material presented in the remaining chapters.

Salient Features

From the pedagogical point of view, several useful features have been used in this book. These include

 1.  Clear explanation of concepts using easily understandable simple language and style

 2. Focused coverage of Transmitters and Receivers

 3. In-depth discussion on noise and noise performance of AM and FM systems

 4. Inclusion of relevant MATLAB examples

 5.  About 165 worked-out examples, carefully selected to reinforce the understanding of concepts and 

to illustrate the way the tools developed can be used for solving problems

 6. Clearly stated learning objectives at the beginning of each chapter to guide and motivate the student

 7.  Summary at the end of each chapter to reinforce the learning objectives and summarize the concepts

 8.  A large number of appropriately selected problems at the end of each chapter, close to 150, to 

enable the student apply the techniques learned

 9.  Review Questions at the end of each chapter, totaling over 190, to test the student’s understanding 

of the key concepts

 10.  Objective Questions and Multiple Choice Questions (with key) at the end of each chapter, 

numbering over 360, to drill in the concepts and tools

Web Supplements

The text is accompanied by a wealth of web supplements and may be accessed at https://www.mhhe.com/rao/ac
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In this chapter, 
the student,
Ø becomes familiar with the history 

of evolution of modern electrical 
communications

Ø identifies the basic elements of an 
analog communication system and 
understands the functions performed 
by each of them

Ø understands the characteristics and 
limitations of various communication 
channels

Ø comes to know the way different 
communication channels are modeled

1
HISTORICAL PERSPECTIVE

1.1

Various forms of communication like the telephone, 

television, radio, FAX, e-mail, etc., have all become 

an integral part of our daily lives and we dread 

to imagine what our lives would be like without 

them. The history of the development of electrical 

communications over the last hundred and fifty years 

makes for a really interesting reading.

The era of electrical communications began with 

the successful commissioning, in 1844, of the first 

telegraphic link between Washington and Baltimore, 

by Samuel Morse. The telegraph code, invented by 

him and subsequently named after him as the ‘Morse 

Code’, consisting of different combinations of dots 

and dashes for representing the various letters of the 

English alphabet, is indeed a remarkable invention 

and reveals his inventive genius. It is a variable-

length code in which the most frequently occurring 

letters of the English alphabet are assigned codes of 

shortest length—for example, the letter ‘e’ which 

occurs most frequently, is represented by simply 

a dot.

The invention of the telephone by Alexander 

Graham Bell in 1870 marked the beginning of the era 

of telephone communication. Although it had to be only 

over short distances in the beginning, subsequently 

the availability of vacuum triodes for amplification 

of the telephone signal at regular intervals made it 

possible to have long distance telephony. While the 

invention of the electromechanical Strowger switches 

led to the establishment of the ‘automatic exchanges’, 

which did not need any operators for establishing 

connection between the initiator of a call and the 

called party, the invention of the ‘transistor’ paved 

Introduction



2 Analog Communication

the way for replacement of the Strowger switches by ‘Solid-state Switches’ which are faster and also 

more reliable as they do not have any moving parts.

There has been a remarkable progress in telephone communication, especially with the advent of 

wireless communication. Further, because of the availability of communication satellites (from 1965 

onwards) and optical fibres, it has become possible to simultaneously transmit an extremely large number 

of telephone conversations over very long distances. Wireless communication also give rise to ‘wireless 

telegraphy’ for long-distance transmission of telegraph signals.

That wireless communication over long distances using electromagnetic waves is possible, became evident 

after Marconi demonstrated, in 1901, the transmission of electromagnetic waves over a distance of about 

2500 km. With the invention of the vacuum triode by De Forest in 1906 and AM super heterodyne radio receiver 

by Armstrong during the first world war, AM radio broadcasting became firmly established. Subsequently, 

around 1930, Armstrong invented ‘frequency modulation’ and FM radio broadcasting also started.

Zworykin of the United States of America demonstrated the first ‘television system’ in 1929 and 

commercial TV broadcasting was started a few years later.

During the last three decades, there has been a tremendous growth in communications. Launching of 

the first communication satellite, ‘Early Bird’, in 1965, marked the beginning of commercial satellite 

communications. Optical fibres which can support extremely large bandwidths are increasingly being used 

for high-speed transmission of voice, data and video. Cellular mobile communication is enabling us to 

communicate instantly with anyone anywhere in the world. Besides, personal communications, providing 

various types of services—voice, video and data—are being made available.

AN OVERVIEW OF COMMUNICATION SYSTEMS
1.2

Communication systems may be broadly divided into two types—analog communication systems and digital 

communication systems. In analog communication systems, the information to be transmitted is in the 

form of an analog signal—a continuous-time waveform. In digital communication systems, the message, or 

information to be transmitted is digital in form. It may be noted here that in digital communication systems, 

even though the message is in digital form, the transmitted signal may still be an analog waveform, as 

we may use a sinusoid of one frequency to represent the binary signal 1 of the message and a sinusoid 

of a different frequency to represent the binary 0 of the message signal. The message signal fed to the 

transmitter may be in digital form either because the source has produced it in that form, or an analog 

waveform produced by the information source might have been sampled and encoded to put it in digital 

form before transmission. We shall discuss the analog communication systems in this book.

1.2.1 Analog Communication Systems—An Overview

Any analog communication system basically consists of a source, a transmitter, a channel and a receiver, 

as shown in Fig. 1.1.

Information
Source

Transducer
(sending end)

Transmitter

Destination
(user)

Transducer
(receiving end)

Receiver

Channel

Fig. 1.1 Basic elements of an analog communication system
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The information source produces information, which may be in the form of speech, or music, or 

possibly images. Since the output from the source of information is not an electrical signal, a suitable 

transducer is to be used to convert the information into an electrical signal so that the transmitter can 

handle it. If the source produces speech or music, the required transducer may be simply a microphone. 

For an image, it may take the form of a video camera that scans it and produces an electrical signal.

Transmitter The job of the transmitter is to put this information-bearing electrical signal (message) 

into a form suitable for transmission over the channel. Generally, the message signal is made to 

modulate a high-frequency sinusoidal signal (generated in the transmitter), called the carrier. Modulation 

is a process by which one of the three characteristic parameters—amplitude, frequency and phase—of 

the carrier signal, is made to vary in accordance with the variations in the amplitude of the message 

signal. The message is thus carried by the carrier wave in the form of variations in its amplitude, 

frequency or phase. It therefore amounts to translating the low-frequency message signal along the 

frequency scale. The resulting modulation is called ‘amplitude modulation’ if carrier amplitude is the 

parameter which is varied; ‘frequency modulation’ if the carrier frequency is the parameter which is 

varied; and ‘phase modulation’, if the carrier phase is the parameter which is varied. Through the 

frequency translation resulting from the modulation process, two things are achieved. Since the size 

of an antenna has to be at least, about 0.1 l for it to act as an efficient radiator of electromagnetic 

waves, it now becomes possible to have an antenna of reasonable size to radiate the modulated signal 

which has high-frequency components only. Secondly, by using carrier signals of different frequencies 

for different transmitters, it would be possible to transmit several message signals simultaneously over 

the same physical channel, i.e., say, freespace, without these signals interfering with each other. This 

process is called multiplexing. The transmitter not only translates the message into an appropriate 

high-frequency band, it also sees to it that the power of the modulated signal which is ultimately fed 

to the antenna, is at an appropriate level.

Channel The channel carries the output signal of the transmitter to the receiver. This output signal of 

the transmitter may have frequencies ranging from extremely low frequencies as those used in submarine 

communications to optical frequencies (typically 1015 Hz) as those used in optical communication systems. 

The bandwidths used may range from a few tens of Hertz to several hundreds of mega Hertz. The 

channel may take a variety of forms depending upon the frequency and the bandwidth of the signal and 

the application. It may be just a pair of twisted copper wires, a coaxial cable, a waveguide, an optical 

fibre, atmosphere and free space, or ocean water (as in the case of underwater communication systems). 

It may also be a combination of some of these.

During the course of its travel through the channel, the signal may be distorted and attenuated. 

Distortion can arise due to inadequate bandwidth of the channel. Attenuation in the channel may be 

attributed to signal spreading and absorption in the case of electromagnetic waves propagating in the 

atmosphere or free space, and to losses in the case of twisted wires, coaxial cables and optical fibres. 

Attenuation depends upon frequency, path length and the medium of propagation, and can be quite high. 

For instance, for satellite communication, the total attenuation (uplink and downlink together) is typically 

of the order of about 200 db. During its transmission through the channel, the signal may be corrupted 

by additive noise. This noise may be thermal noise arising from the resistors and the electron devices 

in the front-end of the receiver. It can also be due to natural phenomenon like lightning discharges 

during thunderstorms, or may be due to man-made disturbances like automobile ignition, etc. Further, 

the received signal may also exhibit ‘fading’ (wide fluctuations in its amplitude) due to multipath effects. 

These multipath effects arise in a situation wherein a signal reaches the receiver by travelling via more 

than one path, taking different propagation times for the different paths. In some channels, the channel 

characteristics may vary significantly with time. In such cases adaptive equalization techniques may have 

to be resorted to.
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Receiver The primary job of the receiver is to recover the message signal from the transmitted signal 

received by it through the channel. Because of the attenuation caused by passage through the channel, 

the received signal is generally very weak. So the receiver amplifies the received signal, and in case it is 

a modulated signal, it demodulates it. Because of the distortion suffered by the transmitted signal during 

its passage through the channel and because of the noise and interfering signals that have been added 

on to it, the demodulated signal at the output of the receiver will not be an exact replica of the message 

signal fed to the transmitter. The receiver may also contain circuitry intended to improve the signal-to-

noise ratio by filtering and noise suppression. An appropriate transducer at the receiving end converts 

the electrical signal from the output of the receiver into a form suitable for the user at the destination. 

If the original message that was transmitted was speech or music, this receiving-end transducer would 

be just a loudspeaker.

ELECTROMAGNETIC SPECTRUM,  
RANGES AND APPLICATION AREAS

1.3

The available electromagnetic spectrum may be conveniently divided into ten ranges. Depending upon 

the available propagation modes and their characteristics for each range of frequencies, any given range 

of frequencies is useful for certain specific types of communication. The ranges, their nomenclature and 

application areas are summarized in Table 1.1.

Table 1.1 Ranges of spectrum, nomenclature and application areas

S.No. Frequency range Name given Applications

1 30 Hz – 300 Hz Extremely low frequencies (ELF) Underwater communications

2 300 Hz – 3.0 kHz Voice Frequency (VF) Telephone

3 3.0 kHz – 30 kHz Very Low Frequencies (VLF) Navigation

4 30 kHz – 300 kHz Low Frequency (LF) Radio navigation

5 300 kHz – 3 MHz Medium Frequencies (MF) AM radio broadcasting

6 3 MHz – 30 MHz High Frequencies (HF) AM, Amateur radio, mobile

7 30 MHz – 300 MHz Very High Frequencies (VHF) TV, FM, mobile communications

8 300 MHz – 3 GHz Ultra High Frequencies (UHF) TV, Radar, satellite communications

9 3 GHz – 30 GHz Super High Frequencies (SHF) Terrestrial microwave and satellite 

communications

10 105 GHz - 106 GHz Optical Frequencies (OF) Optical communications

CHANNEL TYPES, CHARACTERISTICS AND MODELLING
1.4

Communication channels may take a variety of forms. In certain communication systems, we may provide 

a physical connection between the transmitter and receiver say, using a transmission line; in some others, 

no such physical connectivity may exist. Based on this, we may broadly classify communication channels 

into the following two types.

 (i) Wire-line channels

 (ii) Wireless channels
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1.4.1 Wire-line Channels

Wire-line channels may make use of twisted pairs of wires, co-axial cables, optical fibres, or a combination 

of some of these.

Twisted-pair wires are extensively used for connecting telephone subscribers to the local exchange; 

and provide a modest bandwidth of a few hundred kilo Hertz. However, they suffer from cross-talk 

interference and induced additive noise. Co-axial cables, on the other hand, are used for carrying signals 

of frequencies ranging from a few hundred kilo Hertz to about one giga-Hertz. Solid dielectric-filled, 

flexible co-axial cables typically provide a bandwidth of several megahertz and give an attenuation of 

approximately 200 db per 100 metres at 1 GHz. Co-axial cables are relatively immune to cross-talk 

interference and additive induced noise.

Waveguides are typically used at frequencies ranging from about 1 GHz up to several hundreds 

of gigahertz and can support large bandwidths of the order of a few GHz. Attenuation depends upon 

frequency, length, material used and the internal coating, if any. Rectangular copper waveguides of 

25.4 mm ¥ 12.7 mm cross-section provide a typical attenuation of 0.11 dB per metre at 10 GHz. They are 

immune to interference and induced additive noise. However, they are very expensive and are therefore 

used only for very short lengths.

An optical fibre consists of a central core surrounded by another layer, called the ‘cladding’. Both the 

core and cladding are made of silica while the ‘jacket’, which in turn surrounds the cladding and protects it, 

is made of a plastic. The core carries electromagnetic waves at optical frequencies of the order of 1014 Hz 

and these waves are confined to the core by total internal reflection. Optical fibres support extremely 

large bandwidths—almost 10% of the centre frequency, amounting to nearly 1013 Hz. Modern optical 

fibres provide very little attenuation, of the order of 0.2 dB/km. They have lot of advantages—immunity 

to interferences and induced noises, small size and light weight, flexibility and ruggedness. Further, since 

they are made out of pure silica glass, for which sand is the raw material, they are potentially low-cost 

wideband transmission lines.

1.4.2 Wireless Channels

They are primarily of two types.

 (i) Underwater acoustic channels

 (ii) Wireless electromagnetic channels

Underwater Acoustic Channels Because of the good conductivity of sea water, electromagnetic waves 

get very much attenuated within a short distance. The skin depth for sea water at 10 kHz being about 2 to 

3 metres, electromagnetic waves even at 10 kHz get attenuated to (1/e) of their value within 2 to 3 metres. 

However, acoustic waves at that frequency can propagate up to even several hundreds of kilometres. That 

is why, sonars (underwater counterpart of radars) and all underwater communication systems make use of 

acoustic waves. These channels, however, are characterized by high levels of noise. This noise is partly 

contributed by the movement of underwater living organisms like fish, etc., and partly by distant shipping, 

cavitation, etc. Further, ocean bottom reflections and reflections from the air–ocean interface at the top, 

create multipath effects and fading. In addition, these channels are highly time-varying. Nevertheless, 

reliable narrow-band digital data transmission is possible even over long distances.

Wireless Electromagnetic Channels We know that for an antenna to act as an efficient radiator of 

electromagnetic waves, its physical size should be at least of the order of l/10. Going by this rule of 

thumb, we find that even at the highest frequency in the band 30 Hz to 3 kHz, the minimum antenna 

size required turns out to be 10 km since l equals 100 km at that frequency. As it is impossible to have 

an antenna of that size, the use of 30 Hz–3 kHz band is ruled out.
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Once radiated by the transmitting antenna, by which mode the electromagnetic waves will travel, will 

depend on their frequency.

(i) 3 kHz–30 kHz At these very low frequencies and low frequencies, the wavelengths are such that the 

ionosphere and the earth’s surface effectively act as a waveguide and guide these waves with very little 

attenuation around the earth. Thus, these frequency bands are useful for navigational purposes. Low-speed 

digital data requiring only a narrow bandwidth, can be transmitted.

(ii) 300 kHz–3 MHz Waves in this frequency range are called medium frequency waves and the most 

dominant mode of propagation for these waves is by what is called the ground wave propagation. This 

nomenclature comes about from the fact that these waves propagate along the surface of the earth, almost 

gliding over the earth’s surface. Hence, these waves must necessarily be vertically polarized, since the 

horizontal component, if any, of the wave’s electric field gets short-circuited by the earth’s surface. The 

vertical electric field component induces charges on the earth’s surface and these charges move along 

with the wave, thus creating induced currents in the earth’s surface. The flow of these induced currents 

results in power loss owing to the finite conductivity of the earth. This power loss has to be supplied by 

the electromagnetic wave only and therefore, it gets weakened as it propagates. Sommerfield has shown 

that when the earth’s surface is assumed to be flat, the ground-wave field strength is given by

 Ground-wave field strength E A
E

d
d

= Ê
ËÁ

ˆ
¯̃

0  (1.1)

where,

d is the distance from the transmitting antenna

A is a factor that takes into account the ground losses and depends in a complex way upon the 

conductivity, the dielectric constant of the earth, the frequency of the wave and the distance from 

the transmitting antenna

E0 is the field strength at a unit distance from the transmitting antenna

As the curvature of the earth can be totally ignored up to distances of

 l
f

( )km

MHz

=
80

3
 (1.2)

where, fMHz is the frequency in megahertz, Eq. (1.1) is reasonably accurate up to distances of d = 2l. 

It should also be noted that the waves follow the curvature of the earth to some extent because of 

diffraction.

Medium waves are used for AM radio broadcasting. Man-made noise and atmospheric noise limit the 

primary service area of these broadcasting stations to 150 to 200 km. During night time, however, due 

to disappearance of the D-layer (of the ionosphere) which absorbs frequencies below about 3 MHz, these 

waves propagate to longer distances partly by the sky-wave mode, using the F-layer.

(iii) 3 MHz–30 MHz This range of frequencies is referred to as the high-frequency band (HF band). At 

these frequencies the ground-wave attenuates rapidly. The dominant mode of propagation for waves in 

this band is by what is called as the sky-wave, i.e., by bending of the rays back to the earth by the layers 

of the ionosphere through a process of refraction.

The ionosphere is a region surrounding the earth at a height ranging from 60 km to 400 km from 

the earth’s surface, where the earth’s atmosphere is partly ionized due to solar radiations and consists of 

free electrons, ions and gas molecules. Local maxima of the electron density in this region result in the 

formation of layers as shown in Fig. 1.2.
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The typical day-time structure of the ionosphere is 

shown in this figure. During night time, however, due 

to the absence of the ionizing radiations from the sun, 

the electron densities will, in general, be less and the F1 

and F2 layers merge to form a single F-layer. Further, 

the D-layer disappears, so that only the E and F layers 

exist. In addition to this diurnal variation, there is a 

long-term variation of the ionospheric electronic densities 

associated with the 11-year sun-spot cycle.

The ionized regions will have dielectric constant and 

refractive index values different from those of free space. 

The frequency, electron density and refractive index, are 

related as

 n k
N

f
= = -1

81

2
 (1.3)

where,

n = refractive index

k = dielectric constant relative to that of free space

N = number of electron per cubic centimeter

F = frequency in kHz

Note that when f  2 < 81N, the refractive index becomes imaginary and the medium will not be able to 

transmit a wave having such a frequency; it will be highly attenuated—similar to what happens in a 

wave-guide when the frequency is below the cutoff frequency.

The difference in the refractive index between the free space and the ionized region makes an incident 

ray to change its direction as per Snell’s law:

 nsin sinf f=
0
 (1.4)

where, f0 is the angle of incidence at the free-space-ionosphere interface and f is the angle of the ray 

path at some point Q in the ionized medium. At the point R,

 n = sinf
0

 (1.5)
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Fig. 1.3 An incident ray returning back to the earth
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since f0 is 90∞ at that point. If f0 = 0 as it would be for vertical incidence, reflection can take place only 

if n = 0 at some point. That is, the wave penetrates the ionosphere till that point is reached, where the 

electron density reaches the value

 N
f

=
81

2
 (1.6)

If N corresponds to the maximum electron-density of any layer, waves with the corresponding frequency 

fc, if incident vertically on that layer, will not return back to earth—they will penetrate through the 

ionosphere. Waves of frequency lower than fc for the layer, will return back to earth whatever may be 

their angle of incidence. Further, waves of frequency greater than fc can return back to earth only if the 

angle of incidence is large, i.e., when the ray is incident at a grazing angle.

The above discussion leads to the concept of ‘skip distance’. It can easily be seen that for a transmitter 

operating at a certain frequency, there is a certain minimum distance below which no sky wave can be 

received. This minimum distance is called the skip distance at that frequency. Putting it in a different 

way, we may say that for a given transmitter–receiver distance, there is a particular maximum frequency, 

called the ‘Maximum Usable Frequency’ (MUF), above which the receiver cannot receive any sky-wave 

emanating from that transmitter.

When a ray gets reflected from the ionosphere once and reaches the earth, it is said to have made 

one ‘hop’. The maximum single-hop distances are of the order of 2000 and 4000 km when the E and 

F-layers respectively are considered. Still longer distances may be covered if ‘multi-hop’ transmission 

is considered.

Attenuation of a wave propagating in the sky-wave mode occurs mainly because of two effects—

spreading of the wavefront with distance and energy absorption from the wave during its passage through 

the ionosphere, especially the D-layer region. Electron density in the D-region is high during day time 

and very low during night time. Further, it has been found that the D-layer absorption per unit distance is 

inversely proportional to the square of the wave frequency. Thus, ionospheric absorption will be negligible 

during night time at all frequencies, while in the day time, it increases as the frequency is reduced down 

to the order of about 1 MHz. Thus, during the night time a sky-wave of good intensity is obtained due 

to reflection from the E-layer.

Further, at these frequencies, atmospheric noise and man-made noise do not cause much disturbance. 

Thus, this band is used for A.M. broadcasting, amateur radio and mobile communication.

 (iv) Above 30 MHz At frequencies above 30 MHz, the ground-wave attenuates to negligible levels in 

a very short distance and the ionosphere cannot reflect the waves back to the earth. However, waves 

at these frequencies can propagate by a mode variously known as ‘Line-of-Sight (LOS) mode’, ‘space-

wave mode’, and ‘tropospheric propagation mode’; the last name arising out of the fact that these waves 

propagate through the lowest layer of the earth’s atmosphere, known as the ‘troposphere’.

This type of propagation takes place between elevated transmitting and receiving antennas, AT and 

AR, as shown in Fig. 1.4.

The signal picked up by the receiving antenna has generally two components—one, the direct component 

R1 and the other, a ground-reflected component, R2. Here, for simplicity, the earth’s surface is considered 

to be flat.

For a given d, the distance between the transmitting and receiving antennas, if hT and hR are not too 

large, the difference in the path lengths of the direct ray R1 and the ground-reflected ray R2 will not 

be much and so the signal strengths of these two components will be almost equal. However, they will 

differ in phase. This phase difference is partly due to the difference in path lengths and partly due to the 

phase-shift suffered by the ground reflected ray due to the reflection at the earth’s surface. Hence, when 

we add these two components vectorially, they may interfere constructively to give a large intensity value, 
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or they may interfere destructively so as to give a very low value. A simple analysis, with the earth’s 

surface assumed flat, yields a received signal field strength given by

 E
E

d

h h

d
r

T R= Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

2 2
0

sin
p

l
 (1.7)

where,

E0 =  field intensity at a unit distance from the transmitting antenna, (the value of this depends upon 

the radiated power and the directive gain of the transmitting antenna)

d = transmitter-to-receiver distance

l = wavelength of the transmitted wave

hT, hR = heights of the transmitting and receiving antennas above the ground

Note: Distances, heights and l are all to be in the same units.

A plot of Er (in dB) vs d, using Eq. (1.7), is shown in Fig. 1.5.

From this figure, it is clear that the received signal strength varies appreciably with distance from the 

transmitting antenna, taking a number of maximum and minimum values. This causes signal fading in 

the case of mobile communication.

Till now, for simplicity, we have been considering the earth’s surface to be flat. When we take into 

account the curvature of the earth’s surface, several new issues crop up.

(1)  For given height hT and hR of the transmitting and receiving antennas, there is a limit imposed on 

the range (i.e., distance dh between the antennas) for terrestrial communication because of radio 

horizon.

AT

hT

d

R
1

R
2

AR

hR

Fig. 1.4 Basic Space-wave propagation model with a flat earth
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 d
h
=

Max. distance between

transmitting and receiving antennass
km

Ï
Ì
Ô

ÓÔ
= +È

Î
˘
˚17 17h h

T R
 (1.8)

where hT and hR are in metres, and dh is in km.

Since the refractive index of the atmosphere decreases with height due to decrease of atmospheric 

pressure, radio waves in the troposphere are bent towards the earth. Because of this the radio 

horizon is farther by about 30% than the horizon as seen by the eye.

(2)  Equation (1.7), valid for the flat-earth case, may still be used, but with hT and hR in it replaced 

by ¢h
T

 and ¢h
R

 respectively, where ¢h
T

 and ¢h
R

 are the effective heights as shown in Fig. 1.6(b).

(3) The number of maxima and minima, as well as their locations (in Fig. 1.5) will change.

(4)  Because of the curvature of the earth, the ground-reflected wave will not be a plane wave. This 

results in the received signal being slightly weaker than in the flat-earth case.

(a)

(b)

Radio horizon Shadow zone

h T h
R

Tangent to
earth’s surface 

at 0

hT́ hŔ

h T
h
R

o

Fig. 1.6  (a) Radio horizon and shadow zone (b) Effective heights of the antennas when earth’s 
curvature is considered

(5)   If the distance between the transmitting and receiving antennas is quite large, i.e., much greater than the 

radio horizon, the receiving antenna may be in the shadow region (see Fig. 1.6(a)) and may not be able 

to receive either the direct ray, or the ground-reflected ray, unless it is of considerable height. Generally, 

however, because of diffraction some signal strength will be available even in the shadow region.

VHF and UHF bands, forming the lower-end of this range of frequencies being considered, are useful for 

FM broadcasting, TV and mobile communications. As the propagation is by LOS, earth’s curvature makes it 

necessary to keep the antennas for FM and TV broadcasting at considerable heights so as to get a reasonable 

coverage area of at least 40 to 50 km Atmospheric noise and man-made noise do not cause any problems at 

these frequencies; but the thermal noise, originating from electronics of the receiver front-end causes some 

disturbance. Multipath and absorption due to rain are the other issues to be taken care of. Frequencies in the 

microwave frequency range (3 GHz to 30 GHz) are used for terrestrial microwave relay links and for satellite 

links. The main problem at these frequencies is the heavy transmission loss due to absorption by rain and fog.

Channel Modeling The foregoing classification of communication channels is based entirely on the physical 

nature of the transmission medium. However, in the analysis and design of communication systems, it will be 

necessary to model the channel as a system and incorporate into that model as many details of the electrical 

behaviour of the channel as possible, so as to make it represent the actual situation as accurately as possible, 

subject, of course, to the constraints imposed by consideration of mathematical tractability etc. Hence, from 
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the point of view of modeling, it may be more convenient and appropriate to classify the channels as linear 

and non-linear channels, time-invariant and time-varying channels, and bandwidth-limited and power-limited 

channels, as these characteristics can easily be incorporated into the system used for modeling the channel.

Viewing the various commonly used channels in the light of the above, we find that the telephone 

channel is linear but bandwidth limited (bandwidth limited because, at any given time, it has to be shared 

by a very large number of users): the satellite channel is power limited; the mobile communication channel 

is time-varying and that the optical fibre channel is time-invariant. Thus, most of the commonly used 

communication channels can be generally represented by one of the following three models.

(i) Additive Gaussian Noise Channel

Channel

s(t) r(t)

n(t)

=as(t) +n(t)

a

Fig. 1.7 Additive Gaussian noise channel

A channel model that is most extensively used is the additive Gaussian channel which portrays the 

channel as one which, as shown in Fig. 1.7, simply attenuates the signal by a factor a(0 < a < 1), and 

introduces ‘additive noise’, which itself is modeled as Gaussian

 r t s t n t( ) ( ) ( )= +a  (1.9)

The model is extremely simple and can be used to represent a large number of physical channels, and 

hence it is very widely used.

(ii) Bandwidth-limited Linear Channel As pointed out earlier, certain channels like the telephone channel, 

are linear, but bandwidth limited. Such channels may be modeled as shown in Fig. 1.8.

Linear Filter
h(t)

s(t) r(t)

n(t)
Channel

Fig. 1.8 Bandwidth-limited linear channel

These channels are time-invariant and so the filter shown in Fig. 1.8 is an LTI system with an impulse 

response function, h(t). Thus,

 

r t s t h t n t

s t h d n t

( ) ( ) ( ) ( )

( ) ( ) ( )

= * +

= - +Ú t t t  (1.10)
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(iii) Linear Time-Variant Channels Channels like the underwater acoustic channels, some mobile 

communication channels and ionospheric scatter channels, in which the transmitted signal reaches the 

receiver through more than one path, and where these path lengths are varying with time, have, what is 

generally termed as ‘time-varying’ multipath propagation. Such channels are modeled using a time-varying 

system, as shown in Fig. 1.9.

Linear time-varying
system h(t : t)

s(t) r(t)

n(t)
Channel

Fig. 1.9 Linear time-variant channel

In this model, h(t : t) is the impulse response function of the time-variant linear system and represents 

the output at time t, of the system which is at rest, when an impulse of unit strength is applied to it as 

input at time (t - t). Thus,

 r t h t s t d n t( ) ( : ) ( ) ( )= - +Ú t t t  (1.11)
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On going through this 
chapter, the student will 
be able to
Ø determine the class to which a given 

signal belongs

Ø mathematically and graphically 
represent some commonly used signals

Ø determine the effect of certain 
time-domain operations like shifting, 
compressing and expanding of a 
given signal

Ø expand a given periodic signal in 
terms of its complex exponential and 
trigonometric Fourier series and sketch 
its magnitude and phase spectra

Ø find the auto-correlation of a given 
signal, or the cross-correlation and 
convolution of two given signals

Ø determine the magnitude and 
phase spectra of any given Fourier 
transformable signal

Ø determine the energy spectral density 
of any given energy signal, or the 
power spectral density of any given 
power signal

Ø apply Hilbert transform techniques 
to determine the lowpass equivalent 
signal (or, system) for any given 
bandpass signal (or, system)

2
INTRODUCTION

2.1

Communication, in general, involves transfer or 
transmission of a message/information from a 
source to a destination. This message may take a 
variety of forms—it may be an acoustic signal as in 
the case of speech, or may be a spatial distribution 
of brightness, as in the case of a still monochrome 
picture. Whatever may be its original form, it is 
converted into an electrical signal (a variation of 
electrical voltage with respect to time) by the use of 
appropriate instrumentation—a microphone in the 
case of the speech signal and a video camera in the 
case of the picture. We shall therefore assume that 
our signals are all electrical signals and that they 
are single-valued functions of time. Again, these 
signals may be either deterministic, or random. 
We shall consider random signals later; for now, 
we shall confine our attention to only deterministic 
signals.

While dealing with signals, the entity which is of 
paramount importance to a communication engineer 
is its frequency content. Deterministic signals may be 
classified as periodic signals and aperiodic or non-
periodic signals. Fourier series expansion provides 
information on the spectral content of a periodic 
signal and the Fourier transform provides this 
information in the case of a non-periodic signal. We 
shall be discussing these in this chapter.

As we are going to see in the next chapter, an 
important class of systems, called the Linear Time-
Invariant (LTI) systems, possess the property that 
a system belonging to this class is completely 
characterized by (or described by) a single function 
of time, called the impulse response function of the 
system. We find that the output y(t) of an LTI system 

Signals, Transforms 
and Spectral Analysis
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with an impulse response function h(t), to an input signal x(t), is given by the ‘Convolution of x(t) with 
h(t)’. Thus, ‘convolution’, which is an operation between two signals, plays a key role in the analysis of 
systems. We shall discuss this ‘convolution’ operation in some detail, in this chapter.

‘Correlation’ between two signals, x(t) and y(t), gives a measure of the degree of similarity between 
the two signals. Correlation operation is widely used in communication engineering to detect the presence 
of a ‘known signal’ in a given received signal. This correlation operation is again closely related to the 
convolution operation and correlation too will be discussed in this chapter.

Two important classes of signals are the energy signals and the power signals. Energy signals possess 
finite energy, while power signals possess finite average power. One important aspect of these signals, 
which is of interest to a communication engineer, is the way the energy/power of the signal is distributed 
with respect to frequency. Thus, we discuss about the ‘Energy Spectral Density’ (ESD) of the energy 
signals and the ‘Power Spectral Density’ (PSD) of the power signal; and see how these are related to 
the Auto-correlation Function (ACF) of the energy signal or the power signal, as the case may be. We 
also examine how the ESD of an energy signal, or the PSD of a power signal gets modified during its 
passage through an LTI system.

Hilbert transform is very useful in the study of communication engineering, as it plays a key role 
in the representation of a single sideband suppressed carrier modulated signal, in the representation of 
bandpass signals and in the analysis of bandpass systems. Hence, we briefly discuss this transform, its 
properties and applications.

It should be noted that the reader is assumed to have had a prior exposure to all the topics covered 
in this chapter. Hence, they are not covered in a very exhaustive fashion; instead, they are presented in 
a review-like fashion, presenting all the essential details. For a detailed discussion, the interested reader 
may refer to the references given.

SIGNALS
2.2

All of us certainly have an intuitive idea of what a signal is, since signals play such an important role in 
our daily lives. When we speak, an acoustic signal, called speech, emanates and it is a function of the single 
independent variable, time. Similarly, when we look at a monochrome still image, the signal that we get from 
it is a variation of brightness or light intensity, I, from point to point. In other words, we have a signal here 
which is a function of two independent variables i.e., x and y coordinates, since I is a function of x and y.

Thus, we may generalize the above and say that a signal is a single-valued function of one or more 
independent variables and carries some information.

(a)

x(t)

0 t

… …

(c)

x(t)
A x(t)=

0 t

0    otherwise

A; T1£ t£T2

T1 T2
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x(t)
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–T –T/2 T/2 T t0

(d)

x(t)

t0

=x(t)
0   otherwise

eat; t>0

Fig. 2.1 Examples of continuous-time signals
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2.2.1 Types of Signals

(a) Continuous-time Signals and Discrete-time Signals A signal is said to be a continuous-time signal, 
if its value is defined at all instants of time. Here, we must realize that this definition has nothing to do 
with mathematical continuity of the waveform of a signal. Thus, even a rectangular waveform, which 
has discontinuities at regular intervals, is also a continuous-time signal, if the value of the waveform is 
defined even at all the discontinuities.

Discrete-time signals, on the other hand, are defined only at 
a discrete set of points in time. For example, if we record the 
temperature at a particular place every day at say 5 a.m., the data 
so recorded, represents a discrete-time signal, which is shown in 
Fig. 2.2.

It should be noted that the temperature between two successive 
values of n is not zero; it is not known. Here, the parameter 
representing time, namely n, takes only integer values; i.e., time 
is discretized. It should, however, be noted that the amplitude is 
not discretized and it can take a continuum of values.

(b) Periodic and Non-periodic Signals A continuous-time signal, x(t), is said to be periodic in time if

 x(t) = x(t + mT ) (2.1)

for any t and any integer m. The smallest positive value of the constant T, satisfying the above relation, 
is called the fundamental period of the periodic signal x(t).

Any continuous-time signal not satisfying Eq. (2.1) is said to be non-periodic.

(c) Energy and Power Signals Let x(t) be a current signal. Let this current be flowing through 
a resistance of R ohms. Then the instantaneous power delivered by the signal is x2(t).R. If x(t) 
is a voltage signal, the instantaneous power delivered is given by x2(t)/R watts. If we make the 
value of R equal to 1 ohm, irrespective of whether x(t) is a voltage signal or current signal, the 
instantaneous power is simply x2(t) and this depends only on the signal. Hence, we define the power 
(instantaneous) associated with a signal x(t) as simply x2(t). In case x(t) is not purely real then the 
power is represented by |x(t)|2.

Thus, the total energy of a continuous-time signal x(t) whether real valued, or complex-valued, is 
given by

 E x t dt
T

T

T

=
-
ÚLt ( )

2
 (2.2)

Similarly the average power of x(t) is given by

 P
T

x t dt
T

T

T

av Lt=
-
Ú

1

2

2
( )  (2.3)

Definitions

1. A signal whose total energy is finite and non-zero, is called an energy signal. If E is the energy, 
0 < E .

2. A signal whose average power is finite and non-zero is called a power signal. If Pav is the average 
power, 0 < Pav .

x(n)

1 2 3 4 5 n

Temp in °C

Fig. 2.2 A discrete-time signal
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Note

1. Obviously, since the averaging is done over the infinite time interval t , and the energy of 
the signal is finite, an energy signal will have an average power which is zero.

2. Since the average power is finite and the averaging is done over the infinite time interval t , 
a power signal will have infinite energy.

3. Signals with a ‘finite’ or ‘asymptotically finite’ duration in time, such as the ones given below, are 
energy signals.

(a) x t
A t T

( )
;

;
=

£Ï
Ì
Ó

   

    otherwise0

(b) x t Ae aa t( ) ;= >
-      0

4. In general, all periodic signals are power signals. (But every power signal need not be a periodic signal.)
5. Every signal need not be either an energy signal or a power signal. A signal may be neither a power 

signal nor an energy signal.

Example: x t e tt( ) ;= -
-5      

Check whether x(t) = 
Ae for t

for t

t- >

<

Ï
Ì
Ô

ÓÔ

0

0 0

 is an energy 

signal or a power signal.

Example 2.1
x(t)

A

Ae–t

0 t

Fig. 2.3 x(t) = Ae-t

E A e dt A e dt
A

e
A

t t t= = =
-

=- - -Ú Ú2 2

0

2 2

0

2

2

0

2

2 2
   

which is finite. Hence x(t) is an energy signal.

Is x(t) = cos 2p f0t an energy signal, or a power signal?
Example 2.2

The average power, Pav for this signal is given by

P
T

x t dt

T
f t dt

T

T
T

T

T
T

T

T

av =

=

-

-

Ú

Ú

Lt

Lt Lt

1

2

1

2
2

1

4

2

2
0

( )

cos ( ) (p 11 4

1

4

1

4
4

0

0

+

= +

-

- -

Ú

Ú Ú

cos )

cos

p

p

f t dt

T
dt

T
f tdt

T

T

T
T

T

T
T

T

Lt Lt

But the second integral is zero and so

P
T

T
T

av
Lt= ¥

1

4
2

1

2
=
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(d) Deterministic Signals and Random Signals A signal whose value at any instant of time, t , 
is known a priori, is called a deterministic signal. For example, x(t) = 10 cos 200 pt is a deterministic 
signal since its value at any instant of time t , can be determined.

As against this, there are some signals, which are random in nature, i.e., their values cannot be 
determined or predicted. Noise signals are examples of such signals. We will be discussing in detail 
about such signals in Chapter 8.

UNIT STEP AND UNIT IMPULSE FUNCTIONS
2.3

(a) The unit step function, denoted by u(t), is defined by the following:

 u t

t

t

( )D
1 0

0 0

 for 

 for 

≥

<

Ï
Ì
Ô

ÓÔ
 (2.4)

u(t) is diagrammatically represented as shown in Fig. 2.4. It is 
obvious that any signal x(t), when multiplied by u(t), retains 
without any change, only that part of x(t) pertaining to non-
negative values of time and the portion of the signal x(t) 
corresponding to negative values of time, is reduced to zero.

2.3.1 The Unit Impulse Function: d(t)

This is not a function in the usual sense. In fact, it comes under the category of ‘generalized functions’, 
or ‘distributions’, and is defined by the following.

 x t t dt
x x t t

t

t

t( ) ( )
( ) ( )

;

d

1

2 0 0

0

0
2

Ú =
= < <

Ï

Ì
Ô

Ó
Ô

=
if

    otherwise

1t  (2.5)

where x(t) is any function which is continuous at least at t = 0.
Using the above definition, we can derive a number of important properties of the unit impulse 

function.

Property 1 The area under a unit impulse function is equal to one.

Proof Let x(t) =1, this function is continuous at all points including t = 0.
Let t1 =  and t2 = . Then

1 1. ( )d t dtÚ = fi  the area under d(t) = 1.

This implies that the area under the unit impulse function is equal to one.

Property 2 The width of d (t) along the time axis is zero.

Proof 1 1

0

0

. ( ) .d t dt =
-Œ

+Œ

Ú  Now let Œ Æ 0. However small Œ may become, since the range of integration, -Œ < t < Œ 

includes t = 0, the area under the unit impulse function still continues to be unity’. Hence, d (t) has zero 
width along the time axis, around t = 0.

u(t)

t0

1

Fig. 2.4 A unit step function
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We may thus visualize d (t) as being located at t = 0, having an area 
of 1 under it and occupying zero width along the time axis. Because of 
this, in diagrams, it is generally represented as shown in Fig. 2.5. The 
1 marked at the arrowhead indicates that it is a unit impulse and that 
it has a strength (area) of one.

Since d (t) represents a unit impulse occurring at t = 0, using the usual 
notation, we represent a unit impulse located at t = t by d (t - t).

Property 3 (Sampling Property) From Eq. (2.5), we may now say that if a function x(t) is continuous 
at t = t, then

x t t dt x t x

t

t

t

( ) ( ) ( ) ( )d t t
t

- = =Ú
=

1

2

for any t1 and t2 such that the interval t1 to t2 includes t = t.
But,

x t dt x t dt x

t

t

t

t

( ) ( ) ( ) ( ) ( )t d t t d t t- = - =Ú Ú
1

2

1

2

Therefore, x t t dt x t dt

t

t

t

t

( ) ( ) ( ) ( )d t t d t- = -Ú Ú
1

2

1

2

for any x(t) which is continuous at t = t and for any t1 and t2, provided their interval includes t = t. Thus, 
we conclude

 x t t x t( ) ( ) ( ) ( )d t t d t- = -  (2.6)

From the above figure it is clear that when d(t - t) multiplies the function x(t) which is continuous at 
t = t, it just takes the sample of x(t) at t = t where the impulse is located, and produces an impulse of 
strength x(t) located at t = t.

For this reason, the above property represented by Eq. (2.6) is called the ‘sampling property’ of an 
impulse function.

Property 4 This property, called the ‘replication property’ of an impulse function, states that if a 
function x(t) is convolved with d (t - t), a unit impulse located at t = t, then the function x(t) gets shifted 
by t seconds and we get x(t - t).

This is discussed in more detail and proved in Section 2.5 under properties of convolution.
Because of properties 1 and 2 above, the unit impulse function, d (t), is usually visualized as the 

limiting case of a rectangular pulse xD(t) of amplitude 1/D and time duration D when the parameter D is 
allowed to tend to zero, as shown in Fig. 2.7. Note that the area under the rectangle remains equal to 
1 even while D Æ 0.

x(t) d(t– t) x(t)d(t– t)

X =
1

0 t 0 tt= t t= t0 t

x(t)

t

Fig. 2.6 A diagrammatic representation of Eq. (2.6)

d(t)

1

0 t

Fig. 2.5 A unit impulse
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xD(t)

3/D

Area = 1

3/2D

Area = 1

1/D

Area = 1

–D/2 –D/3 –D/6 D/6 D/3 D/2 t 0

Fig. 2.7 Unit impulse as limiting case of a rectangular pulse

2.3.2 Relation Between u(t) and d(t)

There is an interesting and useful relationship between the unit impulse function and the unit step function. 
Consider

x t d

t

( ) ( )= Ú d l l

Since the right-hand side of the above represents the area under the unit impulse function from  
up to time t, if t < 0, the area will be zero. But if t ≥ 0, the area is equal 1. Hence

x t

t o

t

( ) =
≥

<

Ï
Ì
Ô

ÓÔ

1

0 0

 for 

 for 

But this is precisely how we have defined u(t).

\ u t d

t

( ) ( )= Ú d l l  (2.7)

and 
d

dt
u t t( ) ( )= d  (2.8)

2.3.3 Some Simple Operations on Signals

Continuous-time signals may be subjected to several types of operations. These include addition and 
subtraction of signals, multiplication of signal by a constant, multiplication of two signals, convolution 
of two signals (discussed in Sec. 2.5), differentiation and integration of signal, shifting in time, and 
compressing/expanding a signal in time. Here, we shall briefly discuss only the last two—shifting in time 
and compression/expansion in time.

(a) Shifting in Time Consider a continuous-time signal x(t). Now consider the signal x(t - t0). At t = t1, 
the function x(t) takes the value x(t1). The function x(t - t0) too takes that value x(t1) when its argument 
takes the value t1, i.e., when t - t0 = t1, or when t = t0 + t1. Thus, whatever happens to the signal x(t) at 
t = t1 happens to the signal x(t - t0) only at t = t0 + t1; i.e., after a delay of t0 sec (if t0 > 0).

Thus, if t0 > 0, x(t - t0) is a time-delayed version of x(t) and x(t + t0) is a time advanced version of x(t).
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x(t)

A

0 T t

x(t– t1)

A

0 t1 T+ t1 t

x(t+ t1)

A

–t1 0 T – t1 t

Fig. 2.8  (a) x(t) (b) For t1 > 0, x(t - t1) is obtained by shifting x(t) to the right by t1 seconds (c) x(t + t1) is 
obtained by shifting x(t) to the left by t1 seconds if t1 > 0

(b) Compressing/Expanding a Signal in Time (Time Scaling) Advancing the same arguments as above, 
it can be shown that if x(t) is a continuous-time signal, then x(at) represents a time-compressed version 
of x(t) if a is a positive number greater than 1 and a time-expanded version of x(t), if a is a positive 
number less than 1.

x(t)

A

0 0 0

T

t

A

T/2 t t

x(2t)

A

2T

x(0.5t)

Fig. 2.9 (a) x(t) (b) x(2t), a compressed version of x(t) and (c) x(0.5t), an expanded version of x(t)

Quite often, we will be performing time-shifting as well as time-scaling of a signal. For example, 
consider x(t) and x(2t - 3). Then, to obtain x(2t - 3) form x(t), we should note that we have to do time-
shifting first and then only do the time-scaling. This is because

x t x t x t x t
t t

( ) ( ) ( ) ( )
( )Æ - Æ

= - - = -

3
3 3 2 3and  

t 2t

whereas,

x t x t x t x t x t
t t t t

( ) ( ) ( ) ( ) ( )
( )Æ Æ -

= = - π -
2 3

2 2 2 6 2 3and

x(t)

1

0 2 t

1

0 3 5 t

x(t– 3)

1

0 3/2 5/2 t

x(2t – 3)

Fig. 2.10 (a) x(t) (b) x(t - 3) (c) x(2t - 3)

CONTINUOUS-TIME FOURIER SERIES
2.4

We had stated that a signal is a single-valued function of time and that the spectral content or frequency 
content of periodic signals can be obtained using Fourier series expansion of the signals.

As will become clear later, Fourier series expansion of a signal x(t), is nothing but an orthogonal 
expansion of the signal using what is called a ‘complete set’ of orthogonal functions. That is, we 
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express the signal as a linear combination of the members of a complete set of orthogonal functions, 
as follows:

 x(t) = c1  f1(t) + c2  f2(t) + c3  f3(t) + … (2.9)

where fi(t) Œ S, a complete set of orthogonal functions, and ci’s are constants.
As the reader must have noticed, there is a similarity between this and the way we express a vector A 

in Euclidian space in terms of its components along the three orthogonal axes, X, Y and Z.

 A = x i + y j + z k (2.10)

Z

z
A

B

x C

0 X

y

D
Y

Fig. 2.11 Vector OA and its components along X, Y and Z directions

where i, j and k are respectively the unit vectors along X, Y and Z and x, y and z are the coordinates of 
A along X, Y and Z respectively.

But then, what exactly do we mean by saying that two functions, or signals are orthogonal. For this 
purpose let us examine the similarity or analogy between signals and vectors a little more deeply.

2.4.1 Analogy between Signals and Vectors

We know that the dot product of two vectors A and B is a scalar and is given by

 A.B = |A| |B| cos q (2.11)

where, q is the angle between A and B and |A| and |B| are the magnitudes respectively of A and B.

\ Component of A along B = |A| cos q = 
A.B

B

B
2

È

Î
Í

˘

˚
˙  (2.12)

And component of B along A = |B| cos q = 
A.B

A

A
2

È

Î
Í

˘

˚
˙  (2.13)

 (i) Further, if A and B are orthogonal, q = p/2 and hence,

 A.B = |A| |B| cos p/2 = 0 (2.14)

 (ii) Coversly if A.B = 0 (2.15)
it implies that A and B are orthogonal vectors
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We now use Eq. (2.15) and say that two distinct functions, f1(t) and f2(t) are orthogonal to each other 
over an interval t1 to t2 if

 f t f t dt

t

t

1 2

1

2

0( ) ( )Ú =  (2.16)

If both f1(t) and f2(t) are purely real valued. In general, if they are complex-valued, they are defined 
to be orthogonal over t1 to t2 if

 f t f t dt

t

t

1 2

1

2

0( ) ( )*Ú =  (2.17)

where f
2
* (t) denotes the complex conjugate of f2(t).

Thus, a set S of functions fi(t), i = 1, 2,… is said to be forming a set of orthogonal functions over the 
interval t1 to t2 if

 f t f t dt
i j

k if i j
i j

t

t

i

( ) ( )
;

;

*

1

2 0

Ú =
π

=

Ï
Ì
Ô

ÓÔ

            

        
 (2.18)

and
This set S is said to be a complete set of orthogonal functions over the interval t1 to t2 if any function 

x(t) defined over t1 to t2 can be expressed, without any error, as a linear combination of the memebrs 
of the set S.

Let x(t) = c1 f1(t) + c2 f2(t) + … +ci  fi(t) + … + cn  fn(t) (2.19)

where fi(t), i = 1 to n are mutually orthogonal ‘non-zero functions’. What we mean by saying that fi(t) is 
a non-zero function over the interval t1 to t2, is that

| ( ) |f t dti

t

t

2

1

2

0 Ú π

Multiplying by fi
* (t) on both sides, and integrating over t1 to t2,

x t f t dt c f t f t dt c f t f t di

t

t

i

t
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i

t

t
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2

1

2

1 1 2 2Ú Ú Ú= + tt c f t dt c f t f t dti i

t

t

n n i

t

t

+ + +Ú Ú... | ( ) | ( ) ( )*2
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2

1

2

Since fi(t), i = 1 to n are orthogonal, only one term, viz.,

c f t dti i

t

t

| ( ) |2

1

2

 Ú  will be non-zero on the RHS of the the above equation

\  ( )  x t f t dt c f t dti

t

t

i i

t

t

( ) | ( ) |*Ú Ú=

1

2

1

2

2
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Since fi(t) is a non-zero function over t1 to t2, we may write

 c

x t f t dt

f t dt

i

i

t

t

i

t

t
=

*Ú

Ú

( ) ( )

| ( ) |

1

2

1

2

2

 (2.20)

In Eq. (2.19), since ci fi (t) is the component of x(t) along the signal fi(t), we may now write

 component of ( ) along the signal ( )x t f t

x t f t dt

i

i

t

t

=

*Ú ( ) ( )

1

2

|| ( ) |
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 (2.21)

In Eq. (2.18), if

     ( ) 
     

     
f t f t dt

for i j

for i ji j

t

t

( ) *Ú =
π
={

1

2
0

1
 (2.22)

then the set of functions is referred to as a set of orthonormal functions; and incase it is complete in the 
sense that any arbitary x(t) defined over t1 to t2 can be expressed as a linear combination of the elements 
of this set, it is a complete set of orthonormal functions.
Note: To get a set of orthonormal functions gi(t)’s from a set of orthogonal functions, fi(t)’s, we normalize 
each function as follows.

 g t
f t

f t dt

i
i

i

t

t
( )

( )

| ( ) |

/
D

2

1 2

1

2

Ú
È

Î

Í
Í

˘

˚

˙
˙

 (2.23)

2.4.2 Some Complete Sets of Orthogonal Functions

1. The set of functions, x t en

j nt

T( ) =
2p

, n = 0, ±1, ±2,…, forms a complete set of orthogonal functions 

over the interval -
T

2
 to +

T

2
.

2. The set of functions

1 2 2
2

2 2
2

2

0 0

0 0 0

T T
t

T
t

T
t

T
t

, cos , cos ,....

sin , sin ,....

w w

w w w
p

with D
TT

,

forms a complete set of orthonormal functions over the interval -
T

2
 to +

T

2
.
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3. The set of Legendre polynomials, Pn(t), n = 0, 1, 2,…, where,

P t
n

d

dt
t

n n

n

n

n( )
!

( )= -D
1

2
12

forms a complete set of orthogonal functions.
Note: Expansion of a signal x(t) using a complete set of orthogonal functions, is called the generalized 
Fourier series representation of the signal x(t).

THE COMPLEX-EXPONENTIAL FOURIER SERIES
2.5

The expansion of a signal x(t) using the exponential functions

x t en

j nt

T( ) =
2p

, n = 0, ±1, ±2,…

is called the complex-exponential Fourier series expansion of x(t).
Before proceeding further, we shall first show that this set of complex-exponential functions, is an 

orthogonal set over the interval -
T

2
 to +

T

2
. For this, referring to Eq. (2.18), we have to show that
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Since m and n are both integers, and m π n, (m - n) will also be an integer, say k and k π 0.

      e dt e dt
T

j k
e

j
T

m n t

T

T
j
T

kt

T

T
j
T

kt
2

2

2 2

2

2 2

2

p p p

p

( )

/

/

/

/
-

- -
Ú Ú= =

--T

T

/

/

2

2

    = -[ ] = Ê
ËÁ

ˆ
¯̃
=-T

j k
e e T

k

k
j k j k

2
0

p

p

p
p p

sin
 since k is an integer and k π 0.

 (ii) Assume m = n. Then m - n = 0 and hence
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Thus, x t en

j
T
nt

( ) =
2p

, n = 0, ±1, ±2,…, form a set of orthogonal functions and if we normalize them by 

multiplying each of them by 1/ T , the resultant functions will be forming a set of orthonormal functions 

over the interval -
T

2
 to +

T

2
. It can be shown that these sets are complete sets.

Since xn(t), n = 0, ±1, ±2,…, form a complete set of orthogonal functions over the interval -
T

2
 to +

T

2
, 

it should be possible to express any signal x(t) over the interval -
T

2
 to +

T

2
 as a linear combination of 

these complex exponential functions. Hence, we may write
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where, f
T

0

1
    D .

That is, the expansion of x(t) using this complete set of orthogonal functions will be valid only over 

the interval -
T

2
 to +

T

2
.

However, if x(t) is periodic with a period T, the expansion will be valid for all time. Hence, we write
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Now, to determine the constants cn, n = 0, ±1, ±2,…, which are called the complex-exponential Fourier 
series coefficients of x(t), we use Eq. (2.20) and write
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We may summarise the foregoing and state that if x(t) is a periodic signal with period T, it can be 
represented by the complex-exponential Fourier series expansion as

where 
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 (2.27)

If x(t) is not periodic, then the above expansion is valid only over the interval -
T

2
 to +

T

2
.

From Eq. (2.27), it is clear that cn’s, are in general, complex numbers. Thus, we may write

 c c en n
j n= q  (2.28)

where |cn| is the magnitude of cn and qn is the angle of cn.
A plot of |cn| vs n or nf0, is called the amplitude spectrum of the signal x(t) and a plot of qn vs n or 

nf0 is called the phase spectrum of x(t). The reason for calling these as amplitude spectrum and phase 
spectrum may be understood from the following.

A close look at Eq. (2.27) reveals that the Fourier series expasion of a periodic signal x(t) expresses it 
as a linear combination of an infinite number of complex exponentials with frequencies 0, ± f1, ± f2, ± f3, 
etc. Thus, it involves terms representing the dc component (zero frequency), the fundamental frequency 
component, the second harmonic frequency component and the other harmonic frequency components. 
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That is it consists of all the frequency components present in x(t) and hence is called its ‘spectrum’; 
and this spectrum of the periodic signal, x(t), is a discrete spectrum, as it contains only certain discrete 
frequencies the zero frequency, the fundamental frequency f0 and the other harmonic frequencies.

In Eq. (2.27), if we substitute for cn using Eq. (2.28), we get 

 x t c e f
T

tn
j nf t

n

n( ) | | ; ;( )= -+

=-

Â 2
0

0
1

p q              D  (2.29)

Thus, |cn| represents the magnitude of the complex-exponential having a frequency of nf0, while qn 
represents its initial phase (corresponding to t = 0). That is why a plot of |cn| vs n (or nf0) is called the 
magnitude spectrum of x(t), while a plot of qn vs n (or nf0) is called the phase spectrum of x(t).

Thus, the spectrum of a continuous-time periodic signal is a discrete one.

Determine the complex-exponential Fourier series expansion of the periodic 
signal shown.
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Fig. 2.12 Signal of Example 2.3
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The complex-exponential Fourier series expansion for the given signal may be written as
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For n = 0; c
A

0 =
p

For n = 1, the second term reduces to zero but the first term takes the form of zero divided by zero. 
Hence applying L’Hospital’s rule to the first term, we get

 c
A

j
1

4
=

For n = -1, the first term takes the value zero but the second term takes the form of zero by zero. 
Applying L’Hospital’s rule to the second term, we get
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j
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Hence, the complex exponential Fourier series expansion of the given waveform is
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x(t) is a periodic signal and is shown in Fig. 2.13. Find its complex exponential 
Fourier series expansion and plot its magnitude and phase spectra.

x(t)

A
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Fig. 2.13 Signal of Example 2.4

Example 2.4
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For the purpose of plotting the magnitude and phase spectra of x(t), we shall assume A = p. The 
magnitude and phase spectra are plotted in Figs. 2.14 and 2.15 respectively.
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Fig. 2.14 Magnitude spectrum
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Fig. 2.15 Phase spectrum
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Properties of Complex-Exponetial Fourier Series Coefficients We now give a list of important theorems 
and properties of the complex-exponential Fourier series coefficients (CEFSC’s), cn’s. The reader is 
expected to work out the proofs.

1. If x(t) and y(t) are two periodic signals with the same fundamental period, and if their CEFSC’s 
are represented respectively by c c

n
x

n

y
  and  , then the signal z(t) = ax(t) + by(t) will have CEFSC’s 

given by

 c ac bcn
z

n
x

n
y

= +  (2.30)

This is called the linearity theorem.
2. If x(t) is a periodic signal with fundamental frequency f0 and if y t x t t( ) ( )    D - 0  then

 c e cn
y j nf t

n
x

=
- 2

0 0
p  (2.31)

This is called the time-shift theorem.
3. If x(t) is a periodic signal with fundamental frequency f0 and if y t e x tj kf t( ) . ( )=

- 2 0p  then

 c cn
y

n k
x

=
-

 (2.32)

This is called the frequency-shift theorem.
4. x(t) and y(t) are periodic signals with the same fundamental period T, and if z(t) = x(t)*y(t) = 

x t y d( ) ( )-Ú t t t  then

 c T c cn
z

n
x

n
y

= ◊ ◊  (2.33)

This is called the convolution theorem.
5. (t) and y(t) are periodic signals with the same fundamental period T, and if z(t) = x(t) y(t) then

 c c c c cn
z

n
x

n
y

k
x

n k
y

k

= * = ◊ -

=-

Â  (2.34)

This is called the multiplication theorem or, the modulation theorem.

6. If x(t) is a periodic signal with fundamental frequency f0 and if y t
d

dt
x t( ) ( )=  then

 c j nf cn
y

n
x= 2

0
p  (2.35)

This is known as the differentiation theorem.
7. If x(t) is a periodic signal with fundamental frequency f0 and if y(t) = x(at), i.e., y(t) is a time-scaled 

version of x(t) then

 c c
n

y

n
x=  (2.36)

This is known as the scaling theorem. The above result implies that while the spacing between 
the spectral components is changed (i.e., it is now af0 instead of f0), the amplitudes of these spectral 
components remain unchanged.
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 8. Let x(t) be a periodic signal with cn’s as its CEFSC’s. Then

 Average power of ( )x t
T

x t dt c

T

T

n
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= =
- =-
Ú Â

1 2

2

2
2

( )

/

/

 (2.37)

This is called Parseval’s theorem pertaining to the complex-exponential Fourier series. Since 

the average power of c en
j nf t2

0
p  is equal to c

n

2
, Eq. (2.37) merely states that the average power 

of a periodic signal is equal to the sum of the average powers of its orthogonal components.
 9. If a periodic signal x(t) is real valued and its CEFSC’s are represented by cn’s then

 c c x t
n n-

*
= , if ( ) is real valued  (2.38)

where the * indicates complex-conjugation.
10.  If a periodic signal x(t) with cn’s, as its CEFSC’s is real valued and even with respect to t, then 

cn’s are also real and are even with respect to n.

 cn’s are real c-n = cn, if x(t) is real an even  (2.39)

11.  If a periodic signal x(t) with cn’s, as its CEFSC’s, is real valued and has odd symmetry with respect 
to t, then cn’s are purely imaginary and have odd symmetry with respect to n.

 cn’s purely imaginary c-n = c*
n, = -cn, if x(t) is real and odd  (2.40)

TRIGONOMETRIC FOURIER SERIES 2.6

The expansion of a signal x(t) using the complete set of orthonormal functions
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TT

is referred to as the trigonometric Fourier series expansion of x(t).
Before proceeding further, we shall first show that the above set is an orthonormal set over the interval 

-
T

2
 to +

T

2
. For this we make use of Eq. (2.22).

(i) First we shall show that all these functions have unit norm, i.e., that they have been normalized.
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Further, 2 1
0
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/ sin
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T n t dt

T

T

w( ) =
-
Ú

Thus, we find that all these functions have been normalized.
(ii) We will now show that any two distinct functions in the above set are orthogonal to each other, For 
this, using Eq. (2.22), we find that
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Thus, the above set of functions is a set of mutually orthogonal functions. Further, since it is a complete 
set, we should be able to express any function x(t) as a linear combination of these orthonormal functions. 
We may therefore write
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Making use of Eq. (2.20) and noting that all the functions of the set are normalized, i.e., that in Eq. (2.20)
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If we now define
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Using the above Eq. (2.41) may now be written as
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If, however, x(t) is periodic with a period T then the above expansion of x(t) is valid for all time, so 
that we may write
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where,

a
T

x t dt

T

T

0

2

2
1

=
-
Ú ( )

/

/

 

 a
T

x t n tdt
n

T

T

=
-
Ú

2

2

2

( ) cos

/

/

 0w  (2.50)

b
T

x t n tdt
n

T

T

=
-
Ú

2

2

2

( )

/

/

 sin 0w

2.6.1 Trigonometric and Complex-Exponential Fourier Series

The Trigonometric Fourier series and the complex-exponential Fourier series are related.
For the CEFS, we had,
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x t a a n t b n t
n

n

n

n

( ) cos sin= + +

= =

Â Â0 0

1

0

1

w w



Signals, Transforms and Spectral Analysis 33

where,
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2.6.2 Symmetries of x(t) and Computation of Fourier Series

When the periodic signal x(t) possesses certain symmetries, the computation of its Fourier series coefficients 
gets considerably simplified, as stated below.

 (i)  The trigonometric Fourier series of a periodic signal x(t) with even symmetry will consist only 
of cosinusoids; i.e., bn = 0 for all n.

 (ii)  The trigonometric Fourier series of a periodic signal x(t) with odd symmetry will consist only of 
sinusoids; i.e., an = 0 for all n.

 (iii) A periodic function x(t) with period T is said to be having rotational, or, half-wave symmetry, if

x t T x t( / ) ( )± = -2  for all t

All periodic signals with half-wave symmetry will have only odd harmonic components in their Fourier 
series expansion. (Prove this)

2.6.3 Dirichlet's Conditions for Existence and Convergence of Fourier Series

From our discussion so far on Fourier series, it might appear that every periodic function can be expanded 
in the form of a Fourier series. However, this is not true.

We say that for a given x(t), a Fourier series exists provided cn is finite for all n; i.e., c
n

.
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it follows that for the Fourier series to exist, x(t) must satisfy the condition

 x t dt

T

T

( )

/

/

 

-
Ú

2

2

 (2.52)

The above condition for the existance of Fourier series is called the weak Dirichlet’s condition.
It should however, be noted that existance of Fourier series doesn’t guarantee their convergence at all 

points and that for convergence, the following conditions, known as strong Dirichlet’s conditions must 
be satisfied.

 (i) x(t) must be finite at all points.
 (ii) x(t) must have only a finite number of maxima and minima in one period.
 (iii)  x(t) can have only a finite number of discontinuities and the discontinuities, if any, must be finite 

discontinuities.
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Find the trigonometric and complex-
exponential Fourier series of the periodic signal shown in Fig. 2.16.

Example 2.5
x(t)
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Fig. 2.16 Signal of Example 2.5
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(a) Trigonometric Fourier Series
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(b) Complex-exponential Fourier Series
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For the periodic signal shown in Fig. 2.17, 
determine the complex-exponential and trigonometric Fourier 
series.

Example 2.6
x(q)

A

0 2p qp

Fig. 2.17 Signal of Example 2.6
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To find the trigonometric Fourier series,
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since x(q) has even symmetry, bn = 0 for all n.
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CONVOLUTION AND CORRELATION OF SIGNALS
2.7

Before we proceed further with the various Fourier transform theorems, it is necessary for us to discuss 
in some detail, about two important operations—convolution and correlation of two signals. A study of 
convolution of two signals is important because we deal mostly with linear time-invariant systems and 
these systems produce an output signal by convolving the input signal with their own impulse response. 
Similarly, correlation operation assumes importance because the correlation operation performed on a pair 
of signals, reveals the degree of similarity between the two signals. It is an operation which is widely 
used in communication engineering and radars.
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2.7.1 Convolution

The convolution of two continuous-time signals x(t) and y(t), represented by the notation x(t)* y(t) is 
given by

 z t x t y t x y t d( ) ( ) ( ) ( ) ( )= * = -Ú t t t  (2.53)

By a change of variable, the above integral, generally referred to as the convolution integral, may 
also be written as

 z t x t y t x t y d( ) ( ) ( ) ( ) ( )= * = -Ú t t t  (2.54)

In Eqs (2.53) and (2.54), t is a dummy variable; and since the integration is performed for all values 
of t, the result of integration is a function only of t, and is denoted as z(t).

Properties of Convolution
 (i) Commutative Property

x t y t y t x t( ) ( ) ( ) ( )* = *

 (ii) Associative Property

[ ( ) ( )] ( ) ( ) [ ( ) ( )]x t y t z t x t y t z t* * = * *

 (iii) Distributive Property

x t y t z t x t y t x t z t( ) [ ( ) ( )] ( ) ( ) ( ) ( )* + = * + *

 (iv) Linearity Property  If x(t)*y(t) = w(t), x(t)*z(t) = r(t), and if a and b are any two arbitrary 
constants, then

x t ay t bz t aw t br t( ) [ ( ) ( )] ( ) ( )* + = +

 (v) x t t x t( ) ( ) ( )* - = -d t t … [Replication property of d (t)]

As we know, d (t - t) is a unit impulse function located at t = t. This property tells us that when x(t) is 
convolved with a unit impulse located at t = t, the function x(t) is shifted by t sec. (to the right, if t > 0)

Proof We know that x t y t x y t d( ) ( ) ( ) ( )* = -Ú l l l

\ x t t x t d( ) ( ) ( ) ( )* - = - -Úd t l d t l l

But we know from the defining equation of a delta-function, that the above integral is simply equal 
to x(t - t). [see equation]

This is a very useful result and is used quite often.
 (vi)  If z(t) = x(t)*y(t), then & & &z t x t y t x t y t( ) ( ) ( ) ( ) ( )= * = * . This may easily be proved using the 

‘differentiation theorem of Fourier transform’, which we are going to discuss a little later.
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Given x(t) = 5 cos t and y(t) = 2e-|t|, find x(t)*y(t).
Example 2.7

Let z t x t y t( ) ( ) ( )= *

\ z t x y t d( ) ( ) ( )= -Ú t t t

But, y t e t( ) | |
=

-2  so that y t e
e t

e t

t

t

t
( ) | |

( )
- = =
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Ï
Ì
Ô- -

-

- -
t

t

t
t

t

t
2

2

2

       for  

   for  ÓÓÔ

\ z t e d e d

t t

t

t

t

t

( ) ( cos ) ( cos )

cos sin

( ) ( )= +

= +[

- - -Ú Ú5 2 5 2

5

t t t tt t

]]+ -[ ] = -5 10cos sin cos ;t t t t       

2.7.2 Correlation between two Continuous-time Energy Signals

Correlation is an operation between two signals and it gives us the degree of similarity between the two 
signals. In Section 2.4, Eq. (2.21) we had shown that the component of x(t) along the signal y(t), may 
be written as

 

y t x t dt

y t dt

y t
t

t

t

t

*Ú

Ú

◊

( ) ( )

| ( ) |

( )1

2

1

2

2

 (2.55)

Note: In case x(t) and y(t) are real valued signals, the complex-conjugation, represented by * in the above 
equations, may be ignored.

If the two energy signals, x(t) and y(t) are such that

 y t x t dt

t

t

*Ú =( ) ( )

1

2

0  (2.56)

we say that the two signals are orthogonal to each other and there is no similarity between them in the 
interval t1 to t2. But, we are generally interested in their similarity over the entire interval from  to  
and therefore, we may think of using the following integral:

 x t y t dt( ) ( )*Ú  (2.57)

But there is a problem in straightway using the above equation. To 
understand this problem, consider x(t) and y(t) shown in the following 
figures, i.e., Figs 2.18 and 2.19. The two signals are exactly identical, 
except that y(t) is a time-delayed version of x(t).

If we straightaway apply Eq. (2.57) to them, the integral reduces to zero forcing us to conclude that 
there is no similarity between them! But we know that they are exactly similar, but for the time-delay.

A

2 t0

Fig. 2.18 Signal x(t)
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Hence, to overcome the above problem, let us introduce a sliding, or 
lag, parameter, t, and modify the Eq. (2.57) as follows.

 x t y t dt( ) ( )* -Ú t  (2.58)

Since the integration is performed over the entire range of values of t, the above integral yields a 
function of only t, the lag parameter. Hence, let us write

 R x t y t dtxy ( ) ( ) ( )t t= -*Ú  (2.59)

t has been called as the sliding parameter, or lag parameter because, if t > 0, as t increases, y(t) slides 
along the time axis to the right; and if t < 0, as t increases, y(t) slides to the left. Thus, in Eq. (2.59) we 
are keeping x(t) fixed and sliding y(t) and for each value of the sliding parameter t, we are finding out 
the area under the product of x(t) and the shifted y(t). Obviously, Rxy(t) takes a maximum value when the 
shifted version of y(t) has maximum overlap with x(t). For the x(t) and y(t) shown in Figs 2.18 and 2.19, 
this happens when t = -6.

By putting (t - t) = l, Eq. (2.59) may be re-written as,

 R x t y t dtxy ( ) ( ) ( )t t= + *Ú  (2.60)

Here, Rxy(t) is called the cross-correlation between the signals x(t) and y(t), for a lag of t sec. If x(t) 
and y(t), have some similarity as in the case of the signal shown in Figs 2.18 and 2.19, then Rxy(t) will 
be non-zero at least for some values of lag parameter t. If however Rxy(t) is zero for all values of t, it 
means that x(t) and y(t), have no similarity and we say that the two signals have no correlation, or, that 
they are un-correlated.

2.7.3 Symmetry Properties of Cross-Correlation

From Eq. (2.60), if x(t) and y(t), are complex-valued signals,

 R x t y t dtxy ( ) ( ) ( )t t= + *Ú  (2.61)

Replacing t by -t in Eq. (2.60), we have

R x t y t dt

x t y t dt

R y t x

xy

yx

( ) ( ) ( )

( ) ( )

( ) ( )

- = -

= +

= +

*

*

*

Ú

Ú

t t

t

t t (( )t dtÚ

 (2.62)

But (2.63)

A

8 t60

Fig. 2.19 Signal y(t)



Signals, Transforms and Spectral Analysis 39

Comparing Eq. (2.62) with Eq. (2.63), we find that

 R Ryx xy( ) ( )t t= -
*    for complex-valued signals  (2.64)

In case the two signals are real valued, it is clear that

 R Ryx xy( ) ( )t t= -    for real valued signals  (2.65)

When y(t) is the same as x(t), the correlation is of a signal x(t) with itself and therefore it is called 
as ‘Auto-correlation’ and denoted by Rxx(t) or simply Rx(t). Thus

 

R x t x t dt

x t x t dt

xx
( ) ( ) ( )

( ) ( )

t t

t

= -

= +

¸

˝

Ô
ÔÔ

˛

Ô
Ô

Ú

Ú          
ÔÔ

  if    is  real valuedx t( )  (2.66)

and,

 

R x t x t dt

x t x t dt

x

xx
( ) ( ) ( )

( ) ( )

t t

t

= -

= +

¸

˝

Ô
ÔÔ

˛

Ô
Ô
Ô

*

*

Ú

Ú

  if  (( )t  is complex valued  (2.67)

From the above, we find that

 R R
xx xx

( ) ( )- =t t if ( ) is realx t  (2.68)

and R R
xx xx

( ) ( )- =
*t t if ( ) is complexx t  (2.69)

Thus, if x(t) is real valued, its auto-correlation function has even symmetry. But if x(t) is complex-
valued, then its auto-correlation function has Hermitian symmetry.

Another important property of the auto-correlation is

 R R
xx xx
( ) ( ) ;0 0> t t π  (2.70)

(for a rigorous proof, refer to Ref. 6)
Equation (2.70) says that the auto-correlation of a signal x(t) takes the maximum value for zero lag. 

This is obvious, since the overlap between x(t) and x(t + t) is maximum when t = 0. Further in that case, 
Rxx(0) represents the energy of the signal x(t).

2.7.4 Correlation between two Continuous-time Power Signals

The discussion so far was confined to correlation of continuous-time energy signals. But periodic signals 
of the deterministic type and random signals are not energy signals—they are power signals. Since the 
energy of these signals over an infinite time interval is not finite it would be more appropriate to define 
the cross-correlation of two power signals, x(t) and y(t), as
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 R
T

x t y t dtxy
T

T

T

( ) ( ) ( )

/

/

t t    LimD *

-

-Ú
1

2

2

 (2.71)

and auto-correlation of x(t) as

 R
T

x t x t dt
xx

T
T

T

( ) ( ) ( )

/

/

t t    LimD *

-

-Ú
1

2

2

 (2.72)

However, in the case of power signals that are periodic deterministic signals, the average over an 
infinite interval and average over one period will be the same. Hence, if x(t) and y(t) are periodic with 
period T0, we may write:

 R
T

x t y t dtxy

T

T

( ) ( ) ( )

/

/

t t  = -*

-
Ú

1

0 2

2

0

0

 (2.73)

 R
T

x t x t dt
xx

T

T

( ) ( ) ( )

/

/

t t  = -*

-
Ú

1

0 2

2

0

0

 (2.74)

Remark: Since x(t) and y(t) both have a period T0, the integrands of Eqs (2.73) and (2.74) are also 
periodic with period T0. Thus, auto-correlation of a periodic signal, and cross-correlation of two periodic 
signals with the same period, will be periodic with the same period.

Find Rxx(t) if x t e u tt( ) ( )=
- .

Example 2.8
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Combining the two results, we may write

R e
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( ) | |t t

=
-

1
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If x t A t( ) cos( )= +w q0 , find Rxx(t).

Example 2.9

R
T

A t t dt
xx

T

T

( ) cos( ) cos[ ( ) ]

/

/

t w q w t q= + - +
-
Ú

1

0

2
0 0

2

2

0

0

 

Put f = w0t + q

R
A

T
d

A

xx
( ) . cos [cos cos sin sin ]t

w
w t w t

p

p q

p q

= +

=

- +

+

Ú
2

0 0
0 0

2

1

4

f f f f 

ccos ( cos ) sin sinw t
p

w t

p q

p q

p q

p q

0

2

0

2

1 2
4

2+ +

=

- +

+

- +

+

Ú Úf f f fd
A

d

A
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\ If x(t) is periodic with a period of T
0

0

2
=

Ê
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ˆ

¯̃
p

w

, we find that Rxx(t) is periodic in t with the same period T0.

THE CONTINUOUS-TIME FOURIER TRANSFORM 2.8

In the last few sections we have developed the continuous-time Fourier series as an orthogonal expansion 
and found that the complex-exponential Fourier series and the trigonometric Fourier series provide a 
powerful tool for determining the spectra of continuous-time periodic signals. Fourier series expansion, 
being inherently periodic in nature, does not provide an appropriate tool for the expansion of aperiodic, 
i.e., non-periodic signals. This is because, it gives the true representation of the aperiodic signal only for 
the interval over which the Fourier series expansion of the signal is made; outside this interval, it just 
repeats, even though the signal doesn’t.

Consider a periodic signal x(t) with a period T = 1/f0. We know that in the limiting case as T tends 
to infinity, the periodic signal x(t) becomes an aperiodic signal. Also, as the spectral lines in the discrete 
spectrum of the periodic signal with period T will be f0 Hz apart where f0 = 1/T, as T tends to infinity, 
while the signal itself becomes non-periodic, its spectrum becomes a continuous one. We shall proceed 
on these lines and derive the continuous-time Fourier transform as a limiting case of the Fourier series.

For the periodic signal, x(t), we have the Fourier series expansion:

 x t c e t f
T

n
jn t

n

( ) ; ; ,= -

=-

Â w0
0

1
              D  (2.75)

where, c
T

x t e dtn
jn t

T

T

= -

-
Ú

1
0

2

2

( ) ,

/

/

w   (2.76)

Now, as T Æ , w0 Æ dw, an infinitesimally small quantity so that nw0 becomes a continuous variable, 
which we shall represent by w. Then from the right-hand side of Eq. (2.76), it is clear that cn becomes 
a function of w. Hence, representing cn as cn(w), we may re-write Eq. (2.76) as

 Tc x t e dtn
j t( ) ( )w w= -Ú   (2.77)
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Since the RHS (and therefore the LHS too) of Eq. (2.77) is a function only of w (since we are 
integrating for all values of time), let us write the LHS simply as X(w). Then

 X x t e dtj t( ) ( )w w     D -Ú  (2.78)

Further, from Eq. (2.53), it follows that

 x t
T

Tc en
j t( ) ( )=

=-

Â
1

w w

w

 (2.79)

However,
1

2 2 2

0 0

T

d
T= Æ

w

p

w

p

w

p

and as

 x t X e d tj t( ) ( ) ;= -Ú
1

2p
w w

w   (2.80)

Equation (2.78) is called the Fourier transform equation and it transforms the time function x(t) into 
X(w), a function of the variable w (or f  ). On the same lines, Eq. (2.80), which enables us to get back the 
time function x(t) from the frequency function X(w), is called the ‘Inverse Fourier transform’ equation. 
x(t) is called the ‘inverse Fourier transform’ of X(w). Together they are said to be forming a ‘Fourier 
transform pair’. Their relationship is symbolically represented using the following notation.

x t X f
F T

( ) ( )
.

¨ Æææ

or, X f x t( ) [ ( )]= F ,

and x t X f( ) [ ( )]=
-F 1

For convenience, we use the frequency variable f instead of w in Eqs (2.78) and (2.80) and write the 
Fourier and Inverse Fourier transforms respectively as follows:

 X f x t e dtj f t( ) ( )= -Ú 2p     (2.81)

and

 x t X f e dfj f t( ) ( )= Ú 2p     (2.82)

Note: There is a unique relationship between the signal x(t) and its Fourier transform, or spectrum X(    f    ). 
For a given x(t) there is one and only one X(    f    ) and for a given X(    f    ), there is one and only one x(t).

2.8.1 Existence and Convergence of a Fourier Transform

The Fourier transform X(    f    ) of a time function x(t) is said to exist if X(    f    ) is finite,
i.e., if |X(    f    )| .

Since X f x t e dtj f t( ) ( )= -Ú 2p    
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we have,

X f x t e dt x t e dt

e

j f t j f t

j f t

( ) ( ) ( )= £

=

- -

-

Ú Ú2 2

2 1

p p

p

    

  

  

annd x t e x t ej f t j f t( ) ( ) ,- -=2 2p p    Since 

it follows that

 x t dt( )Ú  (2.83)

is the condition required to be satisfied for |X(    f    )| to be finite. Thus, Eq. (2.83) represents the condition to 
be satisfied for the existence of the Fourier transform of x(t). It may however, be noted that this condition 
is a sufficient condition and not a necessary condition. This is because, as we shall be seeing later, if we 
are prepared to allow ‘singularity’ functions, then it is possible to derive the Fourier transforms of even 
functions like the Unit-step, the sinusoid etc. which are definitely not absolutely integrable (as required, 
according to Eq. (2.83).

The Fourier transform integral given by Eq. (2.81) and the inverse Fourier transform integral given 
by Eq. (2.82) may not converge for all functions x(t) and X(    f    ) respectively. As a detailed analysis of 
the convergence of these integrals is beyond the scope of this book, we simply state here that if a non-
periodic signal x(t) satisfies the Dirichlet’s conditions, then the point-wise convergence of the integral

     X f e dfj f t( ) 2pÚ

is guarenteed for all values of t except those corresponding to discontinuties. The Dirichlet’s conditions 
are the following:

(a) x(t) should be absolutely integrable.
(b) x(t) should have only a finite number of maxima and minima in any finite interval of time.
(c) In any finite interval of time, the number of discontinuties of x(t) should be finite.
(d) Discontinuties of x(t), if any, should be finite discontinuties.

Most of the signals that we come across satisfy all the above conditions, except possibly the first 
one. However, as mentioned earlier, even if a signal x(t) is not absolutely integrable, we can still Fourier 
transform it by permitting impulse functions. However, Fourier transforms of these signals do not converge.

2.8.2 Some Simple Properties of Fourier Transform

We now give, without proof, a list of some simple, but very useful, properties of the Fourier transform. 
The reader is urged to work out the proof using Eqs (2.81) and (2.82).

1. X(0) is equal to the area under x(t). This is because X f x t e dtj f t( ) ( )= -Ú 2p   

\ X x t dt( ) ( )0 = Ú  = area under the signal x(t).

2.  The Fourier transform X(    f    ) is, in general, a complex-valued function of frequency, even if the 
signal x(t), is a real valued one.

3. If x(t) is real valued, then its Fourier transform X(    f    ), has Hermitian symmetry. That is

 X f X f X f X f( ) ( ) ( ) ( )- = – - = -–while  (2.84)
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This says that if x(t) is real valued, the magnitude of X(    f    ) will have even symmetry while the 
phase of X(    f    ) will have odd symmetry.

4. (a) If the signal x(t) has even symmetry then its Fourier transform X(    f    ) is given by

 X f x t tdt( ) ( ) cos= Ú2
0

w  (2.85)

(b) If the signal x(t) has odd symmetry then its Fourier transform X(    f    ) is given by

 X f j x t tdt( ) ( )sin= - Ú2

0

w  (2.86)

2.8.3 Magnitude and Phase Spectra of Signals

As pointed out in property-1 above, X(    f    ), the Fourier spectrum of a signal x(t) is, in general, a complex-
valued function of frequency. Hence, it will have a magnitude |X(    f    )| and phase –X(    f    ), both of which are 
functions of frequency. For any signal x(t), a plot of |X(    f    )| vs f is called the magnitude spectrum and a 
plot of –X(    f    ) vs f is called the phase spectrum.

We illustrate these concepts through the following example.

x t

A t

otherwise

( )
;

;
=

£Ï
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       /2
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0

Determine and plot the magnitude and phase spectra of x(t).

Example 2.10

The given signal is a rectangular pulse and its plot is as shown in Fig. 2.20.
This being a commonly used signal, it is given a special symbol.

x t A t A t( ) ( / ) ( / )= ’ t t    or      rect

A in the above notation indicates that the rectangular pulse has an 
amplitude A; t indicates that the rectangular pulse is in time-domain 
and t indicates that the rectangular pulse has a total width of t along 
the time axis.
Note: In this notation, it is always understood that the rectangular 

pulse is symmetrically situated with respect to the time origin, i.e., it 
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Fig. 2.20 A rectangular pulse
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If we define 
sinpl

pl
l      sincD

We have

 X f A t A f( ) ( / )= [ ] =F P t t t sinc  (2.87)

Plots of the magnitude and phase spectra of the signal x(t) are shown in the following Figs 2.21(a) 
and 2.21(b) respectively.

|X(f)|
At

–5/t –4/t –3/t –2/t –1/t 0 1/t 2/t 3/t 4/t 5/t f

Fig. 2.21(a) Magnitude spectrum of AP(t/t)

–X(f)

+180°

1/t 2/t 3/t 4/t 5/t 6/t

–6/t –5/t –4/t –3/t –2/t –1/t 0 f

–180°

Fig. 2.21(b) Phase spectrum of AP(t/t)

In this example, X(    f    ) which is equal to At sinc ft, is a purely real valued-function. However, this 
function changes its sign whenever the frequency f equals ±1/t, ±2/t, ±3/t. This change of sign is 
interpreted as a phase shift of 180∞. Actually one need not distinguish between + 180∞ phase shift and 
-180∞ phase shift. But, in Fig. 2.19(a) we have deliberately shown the +180∞ and -180∞ separately in order 
to emphasize the fact that X(    f    ) must have Hermitian symmetry, (i.e., magnitude spectrum should have 
even symmetry, and phase spectrum should have odd symmetry), since the given x(t) is purely-real valued.

2.8.4 Physical Meaning of X(f ) in Relation to the Signal x(t)

We shall now explore the physical meaning of the function X(    f    ) in relation to the signal x(t). This we do 
by an appropriate physical interpretation of what the Parseval’s theorem tells us. So, we shall first state 
and prove this theorem and then attempt to examine the significance of the function X(    f    ).

Parseval’s Theorem This theorem is also known as Rayleigh’s theorem pertaining to the Fourier 
transform. It states that

If signals x(t) and y(t) have Fourier Transforms X(    f    ) and Y(    f    ) respectively, then

x t y t dt X f Y f df( ) ( ) ( ) ( )Ú Ú=

Where, the over bar is used for representing complex-conjugate.

Proof Since Y(    f    ) is the Fourier Transform of y(t), we have:

y t Y f Y f e dfj ft( ) [ ( )] ( )= = ÚF -1 2p
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\ y t Y f e df

x t y t dt x t Y f e df

j ft

j ft

( ) ( )

( ) ( ) ( ) ( )

=

=

-

-

Ú

Ú Ú

2

2

p

p
ÈÈ

Î
Í
Í

˘

˚
˙
˙

Ú dtHence,

Interchanging the order of the integrations in the RHS of the above, we get

x t y t dt Y f x t e dt df

Y f X

j ft( ) ( ) ( ) ( )

( ). (

-Ú ÚÚ=
È

Î
Í
Í

˘

˚
˙
˙

=

2p

ff df)Ú

Thus, x t y t dt X f Y f df( ) ( ) ( ) ( )Ú Ú=  (2.88)

This is the general form of Parseval’s theorem pertaining to the Fourier transform. A special form of 
this is obtained when y(t) is the same as x(t). In that case, Eq. (2.88) becomes:

 | ( ) | ( )x t dt X f df2 2

Ú Ú=  (2.89)

In the above equation, we know that the LHS represents the energy E of the signal x(t). Hence, 
Eq. (2.89) tells us that the function |X(    f    )|2 when integrated for all frequencies, equals E. In other words, 
|X(    f    )|2 denotes the energy density of the signal with respect to the frequency, at the frequency f. Hence, 
if we consider a specific frequency, f0, and take a unit interval of frequency centered on f0, then |X(  f0)|

2 
represents the energy possessed by the signal in that unit interval frequency band around f0. The 
function |X(    f    )|2 thus shows how the energy of the signal x(t) is distributed with respect to frequency. 
Equation (2.89) further tells us that the energy of a signal may be calculated either, in the time domain 
or in the frequency domain by using the RHS of the equation.

If the signal x(t) = Ae-t/Tu(t) is given as input to an ideal lowpass filter whose 
cut-off frequency is fc = 1/2pT, what percentage of the energy of x(t) will be available at the output 
of the filter?

Example 2.11

We have to first find the spectrum of X(    f    ) of the signal x(t). For this we note:

X f Ae u t e dt A e dt

X f
AT

j

t T j ft

j fT t

T( ) ( )

( )

/

( )

= =

=
+

- - -
+

Ú Ú2

1 2

0

1

p
p

22 1 4

2
2 2

2 2 2p pfT
X f

A T

f T
and ( ) =

+

Putting 2p f T = tan q in the above and noting that df = (1/2pT) sec2q dq, we have,
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E x t
A T

f T
df

A T

x = =
+

=

ÚTotal energy in the signal ( )
2 2

2 2 2

2

1 4p

22 2
2

2 2

p
q

p

p Ê
ËÁ

ˆ
¯̃

=
-
Ú

/

/

d
A T

Now, when the signal x(t) is applied as input to a lowpass filter with f
Tc = 1

2p , the filter passes 

on to the output side only those frequency components of x(t) which lie from -fc to + fc. Hence, from 
Eq. (2.67) we know that the energy contained in the signal at the output of the filter is given by

E
A T

d
A T

f
T

f
T

0

2

1
2

1
2 2

2 4
= Ê

ËÁ
ˆ
¯̃

=
=-

=-

Ú
p

q

p

p

( )

( )

Thus, the percentage of the signal energy available at the output of the filter is given by p, where,

p
E

E

A T

A Tx

= ¥ = ¥ =
0

2

2
100

4

2
100 50%

( / )

( / )
%

2.8.5 Fourier Transform Theorems

The Fourier transform theorems which we are going to discuss now will be very useful in finding the 
Fourier transforms of some complicated signals in terms of the Fourier transforms of simpler signals.

(a)  Linearity Theorem Fourier transform is linear in the sense that it obeys the superposition and 
homogeneity principles.

If x(t) and y(t) are continuous-time signals with X(    f    ) and Y(    f    ) respectively as their Fourier 
transforms, and if a and b are any two arbitrary constants, then

 F a b a bx t y t X f Y f( ) ( ) ( ) ( )+[ ] = +  (2.90)

The proof of this theorem is trivial and left as an exercise to the reader.

(b)  Time-delay Theorem This theorem gives us the Fourier transform of x(t - t), the time-delayed 
version of a x(t) in terms of X(    f    ), the Fourier transform of x(t). It says that:

If x t X f x t X f e
FT FT j f( ) ( ) ( ) ( )¨ Æææ - ¨ Æææ

-Then, t
p t2

Proof X f x t e dtj ft( ) ( )= -Ú 2p

\ F [ ( )] ( )x t x t e dtj ft- = - -Út t
p2

Putting t t t t dt dt- = = + =t t¢ ¢ ¢, and

\ F [ ( )] ( )

( )

( )x t x t e dt

x t e dt

j f t

j ft

- =

=
È

Î
Í

- +

-

Ú

Ú

t
p t

p

¢ ¢

¢ ¢

¢

¢

2

2

ÍÍ

˘

˚
˙
˙

=- -e X f ej f j f2 2p t p t( )
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\ x t X f e
F T j f( ) ( )
.

- ¨ Æææ
-

t
p t2  (2.91)

Note: Since X f e X fj f( ) ( )-

=
2p t , it follows that shifting of a signal along the time axis changes only 

the phase spectrum but not the magnitude spectrum.

(c)  Modulation Theorem As mentioned earlier in Chapter 1, a message signal, x(t), is made to 
modulate a high-frequency sinusoidal carrier signal of frequency fc in order to facilitate its 
transmission over long distances. One easy way of accomplishing this modulation is by multiplying 
the carrier signal with x(t).

This theorem states that if  x t X f
F T

( ) ( )
.

¨ Æææ  then,

x t e X f fj f t F T
c

c( ) ( )
.2p

¨ Æææ -

Proof

F [ ( ) ] { ( ) }

( ) ( )

x t e x t e e dt

x t e

j f t j f t j ft

j f f t

c c

c

2 2 2

2

p p p

p

=

=

-

- -

Ú

-
Ú = -dt X f fc( )

\ x t e X f fj f t
c

c( ) ( )2p
= -  (2.92)

Equation (2.92) tells us that the spectrum of x t e j f tc( ) 2p  is just a frequency-shifted version of the 
spectrum of x(t) itself. Suppose x(t) is a low-frequency signal having frequency components from 0 to 
W Hz. Let its spectrum be X(    f    ) as shown in Fig. 2.22(a). The actual 
shape of X(    f    ) assumed here has no particular significance. However, 
since x(t) is a real valued signal, as per Eq. (2.84), X(    f    ) must have a 
magnitude which has even symmetry. The spectrum of x t e j tc( ) w , as 
given by Eq. (2.92), is plotted in Fig. 2.22(b).

In practice, we have to have a carrier signal which is real valued. So, 
instead of the complex-exponential signal, x t e j f tc( ) 2p  of frequency fc, 
let us use cos2p f tc  which is a real valued signal.

From Eq. (2.92), we may write

x t e X f fj t F T
c

c( ) ( )
.w

¨ Æææ -

\ x t e X f fj t F T
c

c( ) ( )
.

-
¨ Æææ +

w

Adding these two and invoking the linearity property 
of the Fourier transform, we get

\ x t t X f f X f fc
F T

c c( ) cos ( ) ( )
.

w ¨ Æææ - + +[ ]
1

2
 (2.93)

Hence, the spectrum of x(t) coswct, the modulated signal, would appear as shown in Fig. (2.23).
It may be noted that whereas the spectrum of x(t) cos wct is having even symmetry, that of x t e j tc( ) w  

does not have even symmetry. This is because, while x(t) cos wct is a real valued function, x t e j tc( ) w  is not.

X(f)
1

–w 0 w f

Fig. 2.22(a) Spectrum of x(t)

F [x(t)ejwct]
1

0 fc–w fc fc+w f

Fig. 2.22(b) Spectrum of x t ej tc( ) w
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0

0.5

F [x(t) coswct]

–fc–w –fc –fc+w fc–w fc fc+w f

Fig. 2.23 Spectrum of x(t) coswct

(d)  Scaling Theorem This theorem deals with the effect on the spectrum of a signal when the signal 
is subjected to time-scaling, i.e., compression or expansion in time. In Section 2.2 of this chapter, 
while dealing with operations on signals, with reference to the time-scaling operation, we had 
observed that for a constant a, the signal x(at) represents a time compressed version of x(t) if the 
constant a > 1 and a time-expanded version of 0 < a < 1.

This theorem states that if x t X f
F T

( ) ( )
.

¨ Æææ  then

x at
a
X f a

F T
( ) ( / )

.
¨ Æææ

1

Proof First, let a > 0.
Putting t ¢ = at, we have, dt ¢ = a dt

\ F [ ( )] ( ) ( / )( / )x at
a

x t e dt
a

X f aj f a t= ¢ ¢ =- ¢Ú
1 1

2p

Now consider the case of a < 0.
Putting t ¢ = at, we have, dt ¢ = a dt

F [ ( )] ( )

| |
( )

( / )

( /

x at
a

x t e dt

a
x t e

j f a t

j f

=

= ¢

-

-

Ú

Ú

1

1

2

2

¢ ¢¢p

p aa t dt
a
X f a)

| |
( / )¢ ¢ =

1

Combining the two cases, we may say

 x at
a
X f a

F T
( ) ( / )

.
¨ Æææ

1
 (2.94)

Remarks

1.  For a > 1, x(at) represents a time-compressed version of the signal x(t); but X(f/a) represents a 
spectrum that has been expanded in frequency. Hence, compressing a signal in time results in an 
expansion of its spectrum.

2.  For 0 < a < 1, x(at) represents a signal that is expanded in time. But X(f/a) represents a frequency 
compressed version of the spectrum. Hence expansion of a signal in time results in a compression 
of its spectrum.

3.  Since compression in time leads to expansion in frequency, and vice versa, a signal can not be 
compressed/expanded simultaneously in time as well as in frequency.
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4. If a < 0, there will be lateral inversion of the spectrum accompanied by compression or expansion, 
depending upon whether |a| is greater than or less than unity.

Most of the readers would have experienced the manifestation of the above result in practice. A male 
voice recorded at some speed, would sound like a female voice if it is played back at a much higher 
speed; and a female voice recorded at some speed, would sound like a male voice, when played back 
at a much lower speed.

(e)  Duality Theorem This theorem enables us to write down the spectra of certain signals just by 
inspection, as illustrated in Example 2.12.

It states that if X(    f    ) is the Fourier transform of a signal, x(t), the Fourier transform of X(t) is 
given by x(-f    ).

Proof

X f x t e dtj ft( ) ( )= -Ú 2p

Interchanging t and f,

X t x f e dfj ft( ) ( )= -Ú 2p

Now, putting f  ¢ = -f

X t x f e df x f e df x fj f t j f t( ) ( ) ( ) [ (= - - ¢ ¢ = - ¢ ¢ = -¢¢ ¢ -Ú Ú2 2 1p p F ))]

\ X t x f
F T

( ) ( )
◊ ◊

¨ Æææ -  (2.95)

(f)  Convolution Theorem This theorem tells us that the Fourier transform converts a time-domain 
convolution into a multiplication operation in the frequency domain. As it is much easier to compute 
a multiplication as compared to a convolution, this theorem enables us to use the Fourier transform 
to advantage in the computation of the output signal of a linear time-invariant (LTI) system, since 
in these systems, the output signal is the convolution of the input signal with the impulse response, 
h(t), of the system.

Statement Let x t X f y t Y f
F T F T

( ) ( ) , ( ) ( )
◊ ◊ ◊ ◊

¨ Æææ ¨ Æææ  and z(t) = x(t)*y(t) ; / : / , where * denotes 
convolution operation, then this theorem states that

Z f z t X f Y f( ) ( ) ( ) ( )= [ ] = ◊F

Proof

Z f z t e dt x y t d ej f t j f( ) ( ) ( ) ( )= = -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

- -Ú Ú2 2p pl l l     

  

t

j f t

dt

x y t e dt d-

Ú

ÚÚ= -
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
( ) ( )l l lp2
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=

=

-Ú x Y f e d

Y

j f( ) ( )l lp l2   (by applying Time-delay theorem)

(( ) ( ) ( ). ( )f x e d Y f X fj fl lp l-Ú =2   

\ Z f Y f X f z t x t y t( ) ( ). ( ) ( ) ( ) ( )= = *   if   (2.96)

(g)  Multiplication Theorem This theorem tells us that a time-domain product of two signals will be 
converted by the Fourier transform into the frequency-domain convolution of the Fourier transforms 
of the two signals.

It states that if x t X f y t Y f
FT FT

( ) ( ) , ( ) ( )¨ Æææ ¨ Æææ  and if z(t) = x(t) · y(t), then Z(    f    ) = X(    f    ) * Y(    f    )

Proof

Z f z t z t e dtj ft( ) [ ( )] ( )= = -ÚF 2p

But z t x t y t( ) ( ). ( )=

\ Z f x t y t e dtj f t( ) ( ). ( )= { } -Ú 2p   

Now, writing y(t) as the inverse Fourier transform of Y(l), where l is a dummy frequency 
parameter,

Z f x t Y e d e dt

Y x t e

j t j f t

j

( ) ( ) ( )

( ) [ ( )

= { }

=

-Ú l l

l

p l p

p l

2 2

2

    

   tt j f te dt d] -ÚÚ
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
   2p l

Now, using the modulation theorem, we may write

Z f Y X f d X f Y f( ) ( ) ( ) ( ) * ( )= - =Ú l l l

\ Z f X f Y f z t x t y t( ) ( ) ( ) ( ) ( ). ( )= * =  if   (2.97)

Determine the energy contained in the signal x(t) = 20 sinc 10t.
Example 2.12

We shall solve the problem by making use of Parseval’s theorem. Earlier, we had seen (see Eq. 2.87) that

AP(t/t)´At sinc ft
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Now, At sinc ft is a frequency function and t is a fixed time interval. We may, in order to use the 
duality theorem, write the corresponding time function as AWsinc Wt, by replacing the fixed time interval 
t (of At sinc ft) by a fixed frequency interval, W, and by replacing the frequency variable f, by the time 
variable, t.
\ let 20 sinc 10t = AW sinc Wt

Thus AW = 20 and W = 10 \ A = 2
We know from the duality theorem that

AW sinc Wt ´AP(-f/w) = AP(f/w)

Hence 20 10 2 10sinc t f X f
FT

¨ Æææ =P( / ) ( )

This X(    f    ) is a rectangular pulse in frequency domain with an amplitude of 2 and base width of 10.
\ applying Parseval’s theorem,

E x t dt X f df

df

x = =

= = ¥ =
-

ÚÚ

Ú

( ) ( )
2 2

2

5

5

2 4 10 40 units

Find the Fourier transform of x t
t t

otherwise
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Ì
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2

1

2

0

Example 2.13

We can solve it either by using the defining equation of the Fourier transform, or by using the convolution 
theorem.

 (i) By using the defining equation of Fourier transform

X f x t e dt t ft j ft dtj ft( ) ( ) cos [cos sin ]

c

/

/

= = -

=

-

-
Ú Ú2
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2 2p p p p
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/
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Ú Ú2 2

1 2
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1 2

1 2

In the above, the second integral is zero since cos pt is even while sin 2pft is odd.
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Fig. 2.24 FT of x(t)
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 (ii) Using the convolution theorem of Fourier transform
The given x(t) is shown in Fig. 2.25. As is clear from the figure, 
x(t) may be viewed as the product of a signal x1(t) = cos pt; < 
t  and a window function w(t) = p(t/1) which has a value of 
1 for | t | £ ½ and zero outside.

\ x t t t( ) cos ( )= ◊p w

Hence, X f t W f( ) [cos ] ( )= *F p

But F [cos ]
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p d d

d

t f f
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ˆ
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ËÁ
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(Reeplication property of an impulse)
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(h)  Differentiation-in-time Theorem This theorem enables us to straightaway write down the Fourier 
transform of the derivative of a signal in terms of the Fourier transform of the signal itself.

It states that if x t X f
FT

( ) ( )¨ Æææ  then &x t j f X f( ) ( )= 2p  

Proof

 x t X f X f e df

dx t

dt

d

dt
X f e

j f t

j f

( ) [ ( )] ( )

( )
( )

= =

=

- Ú

Ú

F 1 2

2

p

p

  

     t j f tdf j fX f e df
È

Î
Í
Í

˘

˚
˙
˙
= { }Ú 2 2p p( )

 (2.98)

\  (2.99)

Comparing Eqs (2.98) with (2.99), we have

 &x t j f X f( ) ( )   = 2p  (2.100)

n iterations of the above process yields

 
d

dt
x t j f X f

n

n

F T n( ) ( ) ( )   
◊ ◊

¨ Æææ ◊2p  (2.101)

Remarks

 (i)  Here, it must be noted that even if x(t) is of finite energy and so is Fourier transformable, there 
is no guarantee that its derivatives will also be Fourier transformable.

 (ii)  The phase spectrum of &x t( ) is obtained by adding 90∞ to the phase spectrum of x(t) at all 
frequencies.

 (iii)  Multiplication of X(    f    ) by 2p f clearly shows that differentiation accentuates high frequencies.

Pertaining to Fourier transforms, an integration theorem also exists. But we can discuss it only a little later.

x(t)

w(t)

cos p t 

–1/2 0 1/2 t

Fig. 2.25 The given x(t)
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 (i)  Differentiation-in-frequency Theorem This theorem can be considered as the dual of the 
differentiaion-in-time theorem and it states that:

If X(    f    ) is the Fourier transform of x(t), then the inverse Fourier transform of 
d

df
X f( ) is given 

by -j2pt x(t)
Proof

\ 

X f x t e dt

d

df
X f x t

d

df
e dt x t

j ft

j ft

( ) ( )

( ) ( ) [ ] ( )(

=

= =

-

-

Ú

Ú

2

2

p

p --{ } -Ú j t e dtj ft2 2p p

Comparing the LHS’s and RHS’s of the above two equations, we may state that

 -( ) ¨ Æææj t x t
d

df
X f

F T
2p ( ) ( )

.
 (2.102)

2.8.6 Fourier Transforms using Impulses

We shall now derive the Fourier transforms of certain functions like the sine and cosine, the unit-step 
and signum function, etc., which are not absolutely integrable. This we do by using impulses.

 (i) Spectrum of an Impulse Function

F [ ( )] ( )d d pt t e dtj ft= -Ú 2

Here, e-j2pft is a complex-valued function of time which is continuous. Hence, from Eq. (2.5) 
of Section 2.1, i.e., the defining equation for a unit-impulse function, we find that

e t dt ej ft j ft

t

- -

=
Ú = =2 2

0
1p pd ( )    

Hence, F [ ( )]d t = 1  (2.103)

Equation (2.103) tells us that the spectrum of a unit impulse 
function d (t) consists of all frequency components from 

f  and that it has a value of unity at all frequencies, as 
shown in Fig. 2.26.

 (ii)  Fourier Transform of x(t) = 1 Applying duality theorem to the 
transform given by Eq. (2.103), we get

F [ ] ( ) ( )1 = - =d df f  = Unit impulse in the frequency domain

\ 1
F T

f
◊ ◊

¨ Æææ d ( )  (2.104)

Since d ( )t
F T◊ ◊

¨ Æææ 1, if we apply the time-delay theorem, we get

 d t p t( )t e
F T j f

- ¨ Æææ
- 

◊ ◊ 2  (2.105)

D(f)
1

0 f

Fig. 2.26 Spectrum of a unit 
impulse function in time, d (t)
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 (iii) Transform of ej f t2
0

p  From modulation theorem, we know that

x t e X f f
j f t F T

( ) ( )
.2

0

0p
◊

¨ Æææ -

In the above, if we take x(t) to be equal to 1,

 e f fj f t F T2
0

0p d 
◊ ◊

¨ Æææ -( )  (2.106)

 (iv) Transformer of cos 2pf0t We have noted that,

e f f

e f f

j f t F T

j f t F T

2
0

2
0

0

0

p

p

d

d

◊ ◊

◊ ◊

¨ Æææ -

¨ Æææ +
-

( )

( )

Combining the two and invoking the linearity theorem,

 cos ( ) ( )
.

2
1

2
0 0 0p d df t f f f f

F T
¨ Æææ - + +[ ]  (2.107)

The spectrum of cos 2pf0t, as given Eq. (2.107) is shown in 
Fig. 2.27.

 (v) Transform of the Signum Function The signum function in time, denoted by sgn(t), is defined as

 sgn( )t
t
t

=
>

- <{1 0

1 0

if   

if   
 (2.108)

We shall derive the Fourier transform of the signum function 
by making use of the differentiation theorem.

From Fig. 2.28, we find that

d

dt
t t[sgn( )] ( )= 2d

Therefore, from the differentiation theorem,

F F
d

dt
t j f t j fS fsgn( ) sgn( ) ( )

È

ÎÍ
˘

˚̇
= = [ ] =2 2 2p p

where, we have used S(    f    ) to denote the FT of sgn(t)

\ S f
j f

( ) =
1

p
 (2.109)

Note that at f = 0 the Fourier transform of sgn(t) appears to become infinitely large and therefore 
indeterminate, as per Eq. (2.109). However, noting that sgn(t) is an odd function of time and that the 
area under it must be zero, and recalling the result (see some simple properties of the Fourier transform) 
that X(0) must be equal to the area under x(t), we remove the indeterminacy at f = 0 by stipulating that 
S(    f    ) = 0 at f = 0. Thus,

 Sgn  
   

         

( )
;

;

.
t j f

f

o f

F T¨ Æææ
π

=

Ï

Ì
Ô

ÓÔ

1
0

0

p  (2.110)

X(f)
½ ½

–f0 0 f0 f

Fig. 2.27 Spectrum of cos 2pf0t

sgn(t)
+1

0 t

–1

Fig. 2.28 A signum function
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 (vi) Transform of u(t) From Fig. 2.28, it is clear that

i.e., 

1 2

1

2
1

+ =

= +

sgn( ) ( )

( ) [ sgn( )]

t u t

u t t  (2.111)

Now taking Fourier transform on both sides, noting that the FT of 1 is d (    f    ) and invoking the 
linearity theorem of the Fourier transform,

u t U f f
j f

F T
( ) ( ) ( )

.
¨ Æææ = +

È

Î
Í

˘

˚
˙

1

2

1
d

p

\ U f f
j f

( ) ( )= +
È

Î
Í

˘

˚
˙

1

2

1
d

p
 (2.112)

   Integration Theorem of Fourier Transform Now that we have derived the Fourier transform of 
a unit step function, we are in a position to discuss the integration theorem.

This theorem states that if

y t x d

Y f X f f
X f

j f

t

( ) ( ) ,

( ) ( ) ( )
( )

=

= +
È

Î
Í

˘

˚
˙

Ú t t

d
p

then

1

2

Proof Consider x(t) * u(t). This is given by,

x t u t x u t d( ) * ( ) ( ) ( )= -Ú t t t

But u t

t

t

( )- =
<

>

Ï
Ì
Ô

ÓÔ
t

t

t

1

0

for

for

\ x t u t x d y t

t

( ) * ( ) ( ) ( )= =Ú t t

\ Y f X f U f X f f
X f

j f
( ) ( ). ( ) ( ) ( )

( )
= = +

È

Î
Í

˘

˚
˙

1

2
d

p
 (from Eq. 2.112)

Making use of the sampling property of the impulse function, we have

X f f X f( ) ( ) ( ) ( )d d= 0

Hence,

x d X f
X f

j f

t
F T

( ) ( ) ( )
( ).

t t d
p

Ú ¨ Æææ +
È

Î
Í

˘

˚
˙

1

2
0
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Find the Fourier transform of the signal x(t) shown in Fig. 2.29 (a).

x(t)
x� (t)

x��(t)
1

–2 –1
0 1 2 t

–1

(a) (b) (c)

–2
–1

–1 –1

0 1

1

2 t

2
1

–2 1
–1 2 t

–1
–2

Fig. 2.29 (a) x(t), (b) &x t( ), and (c) &&x t( )

Example 2.14

We shall use the differentiation theorem of Fourier transform to find the F.T. of x(t).
From Fig. 2.29(c), we find that

d x t

dt
x t t t t t

2

2
2 2 1 2 1 2

( )
( ) ( ) ( ) ( ) ( )= = - + + + - - + -&& d d d d

But, from the differentiation theorem of Fourier transform, we know that if

x t X f
F T

( ) ( )
.

¨ Æææ . Then

& &&x t j fX f x t f X f
F T F T

( ) ( ) ( ) ( )
. .

¨ Æææ ¨ Æææ -2 4 2 2p pand

Hence, F - + + + - - + -[ ] = -d d d d p( ) ( ) ( ) ( ) ( )t t t t f X f2 2 1 2 1 2 4 2 2

But, the LHS of the above is

= - + - +

= -( ) -

- -

-

e e e e

f X f e e

j f j f j f j f

j f j f

4 4 4 4

2 2 4 4

2 2

4

p p p p

p pp

    

( ) 22

2 4 4 2

1

2
4 2

2 2

2 2

e e

j f j f

X f
j f

f

j f j fp p

p p

p
p

-( )

= -

=
-

-

-

sin sin

( ) [sin sinn ]2p f

\

\

Find the signal f(t) if its Fourier transform F(w) is as shown in Figs 2.30(a) 
and 2.30(b).

q (w) =–F(w)

+p/2

0 w

–p/2

Fig. 2.30 (b) q(w)

|F(w)|
p

w

–w 0 w

Fig. 2.30 (a) F(w)

Example 2.15
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We know that

F F e j( ) | ( ) | ( )w w q w=

Here, |F(w)| = p for | w | £ W and q w

p w

p w
( )

/

/
=

<

- >

Ï
Ì
Ô

ÓÔ

2 0

2 0

     for   

    for   

The inverse Fourier transform of F(w), say, f(t), is given by

f t F e dj ft( ) ( )= Ú
1

2
2

p

w w
p

1

2

2

0

2

p

p w p w
p w p we e d e e dj

w

j t j

o

w

t/ /. .

-

-Ú Ú+
È

Î
Í
Í

˘

˚
˙
˙

  

On simplification, this gives

f t
Wt

t
( )

cos
=

-È

ÎÍ
˘

˚̇

1

If x t X f
F T

( ) ( ),
.

¨ Ææ  find the Fourier transforms of the following signals in terms 
of X(    f    ).

(a) x t ejt( )- 2  (b) x(1 - t) (c) x
t

2

2-Ê
ËÁ

ˆ
¯̃

Example 2.16

(a) Let x t x t e jt
1 2( ) ( )= - . Then x t X f e

F T j f( ) ( )
.

- ¨ Æææ
-2 4p  and x t x t e j t

1
2 1 22( ) ( ) ( / )

= -
p p

\  x t X f e
F T j f

1

4
1

2
1

2
( )

. ( )
¨ Æææ -Ê

ËÁ
ˆ
¯̃

- -

p

p
p  (from modulation theorem)

(b) Let x t x t2 1( ) ( )= - . Now, x t X f
F T

( ) ( )
.

¨ Æææ . Hence,

x t X f x t X f e
F T F T j f( ) ( ) ( ) ( )
. .

- ¨ Æææ - - + ¨ Æææ - -and 1 2p  (Time-delay theorem) (from scaling theorem)

(c) Let x t x
t

3
2

2( ) = -Ê
ËÁ

ˆ
¯̃

. Since x t X f
F T

( ) ( )
.

¨ Æææ ,

From time-delay theorem we have x t X f e
F T j f( ) ( )
.

- ¨ Æææ
-2 4p

And from scaling theorem, x
t

X f e
F T j f

2
2 2 2 8-Ê

ËÁ
ˆ
¯̃
¨ Æææ -.

( ) p

Find the Fourier transform of x t

t

( ) =
+

Ê
ËÁ

ˆ
¯̃

1

1 2
.

Example 2.17
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We know that e
f

t F T
- ¨ Æææ

+

| | . 2

1 4 2 2p

Now, applying duality theorem,

2

1 4 2 2+

¨ Æææ -

p t
e

F T f. | |

If we let y t
t

y at
t

x t( ) ( ) ( )=

+

=

+

=
2

1 4

2

1
2

2 2 2p
and

y at
a t t

a a

( ) =
+

=

+

= =

2

1 4

2

1

4 1
1

2

2 2 2 2

2 2

p

p
p

and

\ If Y f e X f y at
a

Y f af( ) , ( ) ( ) ( / )| |= = [ ] =-     2
1

F

\ 2 2 2X f Y f( ) ( )= p p  \ X f e( ) | |
=

-

p
w

ENERGY SPECTRAL DENSITY AND POWER SPECTRAL DENSITY
2.9

2.9.1 Relationship Between Convolution and Correlation

There is a close resemblance between convolution and correlation operations. In view of this, we shall 
examine the relationship between the two. For this purpose, consider two signals, x(t) and y(t).

Correlation: R x t y t dtxy ( ) ( ) ( )t t= -Ú  (2.113)

Convolution: z t x t y t x y t d( ) ( ) ( ) ( ) ( )= * = -Ú t t t  (2.114)

If we now define \ * - = -Úw t x t y t x y t d( ) ( ) ( ) ( ) ( )    D t t t  (2.115)

Then, replacing the dummy variable t in Eq. (2.115) by u, we have,

 w t x u y u t du( ) ( ) ( )= -Ú  (2.116)

In the cross-correlation Eq. (2.113), if t is replaced by u,

 R x u y u duxy ( ) ( ) ( )t t= -Ú  (2.117)

A comparison of Eqs (2.116) and (2.117) reveals that

 R x t y t txy ( ) [ ( ) ( )]t t= * -
Æ

 (2.118)
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and R x t x t
txx

( ) [ ( ) ( )]t t= * -
Æ

 (2.119)

We had earlier seen that the Fourier transform provides a very powerful tool for the computation of 
convolution. From the above equations, it is clear that it can as well be used for the computation of 
correlation too.
Note: Since we are replacing y(t) by y(-t) in the convolution in order to get the cross-correlation, if y(t) 
has even symmetry with respect to t, the two operations of convolution and correlation become one and 
the same.

2.9.2 Energy Spectral Density

Consider two energy signals x(t) and y(t). Let z(t) = x(t) * y(t) and let their cross-correlation for a lag t 
be Rxy(t). Then,

Since z t x t y t

Z f X f Y f

( ) ( ) ( )

( ) ( ). ( )

= *

=

 (2.120)

 (2.121)

Then, from Eq. (2.118), we know that

 F F FR x t y txy ( ) [ ( )]. [ ( )]tÈ
Î

˘
˚ = -  (2.122)

i.e., F [ ( )] ( ). ( ) ( )R X f Y f S fxy xyt         = - D  (2.123)

In a similar manner, we have

 F [ ( )] ( ) ( ). ( )R S f Y f X fyx yxt     D = -  (2.124)

\ if Rxx(t) is the auto-correlation function of x(t), then

 F [ ( )] ( ). ( ) | ( ) |R X f X f X fxx t  = - =
2  (2.125)

But, from Parseval’s theorem for Fourier transform, we know that (refer to Eq. 2.89) |X(    f    )|2 represents 
the energy density of x(t) with respect to frequency and is called the ‘Energy Spectral Density’ (ESD). It 
shows how the energy of x(t) is distributed with respect to frequency, and is denoted by Sxx(    f    ).

\ F [ ( )] ( ) | ( ) |R S f X fxx xxt   = = 2  (2.126)

The above equation tells us that for an energy signal, x(t), its auto-correlation function Rxx(t) and its 
energy spectral density (ESD) denoted by Sxx(    f    ), are a Fourier transform pair.

i.e., R S fxx
F T

xx( ) ( )
.

t ¨ Æææ  (2.127)

This relationship is generally referred to as the auto-correlation theorem and may be derived directly 
as follows.

F R R e d x t x t dt exx xx
j f j f( ) ( ) ( ) ( )t t t t
p t p t[ ] = = -[ ]- -Ú Ú2 2ÚÚ

Ú Ú= ◊ -- - -

d

x t e dt x t e dj ft j f t

t

t t
p p t( ) ( ) ( )2 2
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putting l = (t - t)

F R x t e dt x e d

X f X f

xx
j ft j f( ) ( ) . ( )

( ). (

( )t l tp p l[ ] =

= -

- - -Ú Ú2 2

)) | ( ) | ( )= =X f S fxx
2

Since R S fxx
F T

xx( ) ( )
.

t ¨ Æææ , we have,

S f e df Rxx
j f

xx( ) ( )Ú =2p t
t

Putting t = 0 on both sides of the above equation

Rxx(0) = ACF for zero lag = S f dfxx ( )Ú

  = Area under the energy spectral density function

  = Energy of x(t).

\ Rxx(0) = Energy of x(t), an energy signal  (2.128)

2.9.3 Power Spectral Density

In the foregoing, we have considered energy signals which have a finite amount of energy over t ; 
and we have shown that the Fourier transform of the auto-correlation of such signals gives the energy 
spectral density.

Now, we shall consider signals that do not have a finite energy over the interval t . Periodic 
signals and random signals come under this category. Since we cannot talk about the Fourier transforms 
of such signals, if x(t) is a deterministic power signal, let us take a segment of it of duration T seconds. 
This segment will have a finite amount of energy. Specifically, let

 x t
x t t T

T
( )

( ) | | /

;
      

  for  

    otherwise
D

£Ï
Ì
Ó

2

0
 (2.129)

Thus, xT (t) is a finite energy signal and hence, is Fourier transformable.

Let x t X fT
F T

T( ) ( )
.

¨ Æææ  (2.130)

We know that | ( ) |X fT
2  represents the ESD of the signal xT (t). Since the duration of the signal xT (t) 

is T seconds, we may define the average power spectral density of xT (t) as

 P f
X f

T
x x

T

T T
( )

( )
=

2

 (2.131)

and the average power spectral density of x(t) as

 P f
X f

T
xx

T

T( )
( )=

È

Î
Í

˘

˚
˙Lt

2

 (2.132)

Recalling (from Eq. 2.72) that the auto-correlation function of a real valued power signal has been defined as

R
T

x t x t dt
xx

T
T

T

( ) ( ) ( )

/

/

t t= -
-
ÚLt

1

2

2



62 Analog Communication

and taking the Fourier transform of the above on both sides,

F F

F

R
T

x t x t dt

T
x

xx
T

T

T

T
T

( ) ( ) ( )

(

/

/

t t[ ] = -
È

Î
Í
Í

˘

˚
˙
˙

=

-
ÚLt

Lt

1

1

2

2

tt x t dt

T
x t x t dt

T

T
T T

) ( )

( ) ( )

-
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í
Í

˘

˚
˙
˙

= -
-

Ú t

tLt
1
F Ú

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í
Í

˘

˚
˙
˙
= È

Î
˘
˚

=
È

Lt

Lt

T
x x

T

T

T
R

X f

T

T T

1

2

F ( )

( )

t

ÎÎ

Í
Í

˘

˚

˙
˙
= P fxx ( ) (from Eq. 2.132)

\ power spectral density of a power signal is the Fourier transform of the auto-correlation of the signal.

 R P fxx
F T

xx( ) ( )t
◊ ◊

¨ Æææ  (2.133)

Find the ACF and ESD of the signal x t e u tt( ) ( )=
- .

Example 2.18

We know, from Eq. (2.119) that

R x t x t

t
xx

( ) [ ( ) ( )]t
t

= * -

Æ

\ S f X f X f X fxx ( ) ( ). ( ) | ( ) |= - =
2

But X f x t x t e dt e dt
j

j t j t( ) ( ) ( ) ( )= [ ] = = =
+

- - +Ú ÚF w w

w
1

0

1

1

\ X f S fxx( ) ( )
2

2

1

1
=

+

=

w
, the ESD of x(t).

Thus, R S f exx xx( ) ( ) | |
t

w

t= [ ] =
+

È

ÎÍ
˘

˚̇
=- - -F F1 1

2

1

1

1

2

Find the ACF and ESD of the signal x t A t T( ) ( / )= ’ 2 .

Example 2.19

R x t x t dt
xx

( ) ( ) ( )t t= -Ú

and, R x t x t

t
xx

( ) [ ( ) ( )]t
t

= * -

Æ
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Since x(t) has even symmetry,

R x t x t t

S f x t x t X f A T

xx

xx

( ) [ ( ) ( )]

( ) ( ) ( ) | ( ) |

t t= * Æ

= *[ ] = =F 2 2 24  sincc  

 sinc  

2

2

( )

( ) ( )

2

4 2 21 2 2 2

fT

R f A T fT A Txx = [ ] = -ÈÎ ˘̊-F t

\

\

Rxx(t) may however be determined directly as

R x t x t dt A dt A T
xx

T

T

( ) ( ) ( ) ( )t t
t

= * - = = -
- +

Ú Ú 2 2 2

However, since x(t) is real valued, Rxx(t) must have even symmetry 
with respect to t.

\ R A T
xx
( ) ( | |)t t= -

2 2

Hence, Rxx(t) is a triangular waveform as shown in Fig. 2.32.

Properties of Power Spectral Density 

 (i) Pxx(    f    ) of a signal is always non-negative, since

P f
X f

T
xx

T

T( )
( )=

È

Î
Í

˘

˚
˙Lt

2

 (ii) Pxx(    f    ) is the Fourier transform of Rxx(t)

 (iii) The total area under the PSD curve of a signal equals the average power of the signal.

Since \ R P f P f e dfxx xx xx
j f( ) ( ) ( )t
p t= [ ] =- Ú F 1 2

\ R P f dfxx xx( ) ( )0 = =Ú area under the PSD curve.

But, R
T

x t x t dt
xx

T

T

( ) ( ) ( )

/

/

t t= -
-
Ú

1

0 2

2

0

0

 

\ R
T

x t dt
xx

T

T

( ) ( )

/

/

0
1

0

2

2

2

0

0

=
-
Ú   = Av. power of x(t).

\   P f dfxx ( )Ú  = Average power Pav of x(t).

 (iv)  The power spectral density of a real valued power signal x(t) is an even function of frequency, 

i.e., Pxx(-f    ) = Pxx(    f    ), if x(t) is real valued.

Proof We know that for a real valued power signal x(t)

| ( ) | ( ) |

( ) ( ) ( )

X f X f

P f
X f

T

X f

T

T T

xx
T

T

T

T

- =

- = -È

Î
Í

˘

˚
˙ =

È

Î
ÍLt Lt

2 2 ˘̆

˚
˙ = P fxx ( )

Thus, Pxx(    f    ) is an even function of frequency.

x(t) x(t+t)

A

t

T–T T+t–T+t 0

Fig. 2.31 x(t) of Example 2.19

R
xx
(t)

2A2T

–2T 2T t0

Fig. 2.32 Rxx(t) of AP(t/2T)
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Output ESD and PSD of LTI Systems An LTI system is characterized by its impulse response function, 
h(t), in the sense that for any given input signal x(t), the output signal y(t) is given by

y t x t h t( ) ( ) ( )= *

Taking F·T· on both sides, we have:

Y f X f H f( ) ( ) ( )= ◊

This equation clearly shows that the spectrum of the input signal gets modified during its passage 
through the LTI system. We shall now examine the way the ESD of the output signal is related to the 
ESD of the input signal x(t), when x(t) is an energy signal. We shall also examine how the PSD of the 
output signal is related to the PSD of the input signal when the input signal is a power signal.

Relation Between Input and Output ESDs Let x(t) be an energy signal. From Eq. (2.135), we have,

Y f X f H f X f H f( ) ( ) ( ) ( ) ( )
2 2 2 2

= ◊ = ◊

But, we know that |Y(    f    )|2 and |X(    f    )|2 represent, respectively, the ESD’s of output and input signals.

\ Y f S f X f H f S f H fyy xx( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2

= = ◊ = ◊

Hence, S f H f S fyy xx( ) ( ) ( )= ◊

2
 (2.136)

Relation Between Input and Output PSDs Let us now assume that the input signal x(t), is a power 
signal. Also, let

 x t w t x t
T
( ) ( ) ( )= ◊  (2.137)

where, w(t) is a rectangular window function defined by

 w t
t T

( )
| |

=
£{10

  for  
    otherwise

 (2.138)

Then, we know that

P f
X f

T
xx

T

T( )
( )=

È

Î
Í

˘

˚
˙Lt

2

where, X f x tT T( ) ( )= [ ]F

and that P f
Y f

T
yy

T

T( )
( )=

È

Î
Í

˘

˚
˙Lt

2

In the above equation, Y f H f X fT T( ) ( ) ( )= ◊

Then, it follows from the above expression for Pxx(    f    ) and Pyy(    f    ), that

 P f H f P fyy xx( ) ( ) ( )= ◊

2
 (2.139)

x(t) = e-t/t u(t) is applied as input to an L-section highpass RC filter with a time 
constant of t seconds. Find the ESD of the output of the filter. Express the output signal energy as 
a percentage of the input signal energy.

Example 2.20



Signals, Transforms and Spectral Analysis 65

Transfer function H(    f    ) of the RC filter is

H f
j fRC

j fRC

j

j
RC

H f

( )

( )

=

+

=

+

=

=

+

2

1 2 1

1

2
2 2

2 2

p

p

wt

wt

w t

w t

since t

\

\ if input energy spectral density is Sxx(    f    ), and output ESD is 
Syy(    f    ), then

S f S fyy xx( ) ( )=

+

◊
w t

w t

2 2

2 21

But S f X f X f e u t e dt
j

xx
t j t( ) ( ) , ( ) ( )/= = =

+
- -Ú

2

1
where t w

t

wt

\ X f E X f df dx( ) ( )
2

2

2 2
2

2

2 21

1

2 1
=

+
= =

+Ú Ú
t

w t p

t

w t

wand

Putting wt q w t q w
t

q q= + = =tan , sec sec        and    1
1

2 2 2 2d d

\ Ex = energy in the input signal = =
-

+

Ú
t

p t
q

t

p

p
2

2

2

2

1

2
/

/

 d

S f X f H fxx ( ) ( ) ( )
( )

= =

+

2 2
2 4

2 2 21

w t

w t

\ Ey = total energy at the output of the filter = Ú S f dfxx ( )

=
+Ú

1

2 1

2 4

2 2 2
p

w t

w t

w

( )
d

Substituting tanq for wt and performing the above integration, we get Ey = t/4

\ 
E

E

y

x

¥ = ¥ =100
4

2
100 50%

/

/
%

t

t

The signal x t t( ) cos= ¥( )10 4 103p   is 
given as input to an L-section lowpass RC filter having 3 dB 
cutoff frequency of 103 Hz. Determine and sketch the output 
PSD.

Example 2.21
R

C y(t)x(t)

Fig. 2.34 An L-section RC lowpass filter

First, let us find Pxx(    f    ), i.e., the PSD of the input signal. But

P f Rxx xx( ) ( )= [ ]F t

x(t) y(t)R

C

Fig. 2.33 An L-section highpass RC filter
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Now to find Rxx(t):

R
T

A t t dt
xx

T

T

( ) cos( ) cos ( )

/

/

t w q w t q= + - +[ ]
-
Ú

1

0

2
0 0

2

2

0

0

Putting f = w0t + q and performing the above integration, we get

R
A

t
xx
( ) cos cos( )t w p t= = ¥

2

0

2
3

2

10

2
4 10

\ P f f f f fxx ( ) cos( ) ( ) ( )= ¥[ ] = - + +[ ]F 50 4 10 253
0 0p t d d

where, f
0

32 10= ¥ Hz

Therefore, P f H f P f H f f f f fyy xx( ) ( ) ( ) ( ) ( ) ( )= ◊ = ◊ - + +[ ]
2 2

0 025 d d

But H f
j RC

( ) =
+

1

1 w

| ( ) |H f
R C

2
2 2 2

1

1
=

+w

Since 3 dB frequency for an RC lowpass filter =
1

2pRC

\ 

1

2
10

1

4 10

25

1
1

4 10

3 2 2
2 6

2
2 6

0

p p

w
p

d

RC
R C

P f f fyy

= \ =
¥

=
+

¥
Ê
ËÁ

ˆ
¯̃

- +( ) ( ) dd

d d

( )

( ) ( )

f f

f f f f

+[ ]

= - + +[ ]

0

0 05 (from sampling property of dellta functions)

where, f0 = 2 ¥ 103 Hz

HILBERT TRANSFORM
2.10

Hilbert transform is different from the other transforms like the Fourier transform in the sense that Hilbert 
transforming a signal x(t) does not bring about a change of domain. ˆ( )x t , the Hilbert transform of x(t), 
is also a time signal, just like x(t). Hilbert transforming a signal x(t) produces only a phase shift of 
-90∞ for all the frequency components of x(t). This property of the Hilbert transform makes it extremely 
useful—in the representation of bandpass signals, especially the single sideband modulated signals; the 
bandpass-to-lowpass transformation of signals and systems and in the implementation of certain modulator 
circuits like the phase-shift modulators.

2.10.1 Definition and Frequency-domain Interpretation

The Hilbert transform, ˆ( )x t , of a signal x(t), is defined as the signal obtained by convolving x(t) with 1/(pt).

\ ˆ( ) ( )x t x t

t

  D *
1

p
 (2.140)

Pyy(f)

5 5

–f0 0 f0
= 2 ×1 03Hz

f

Fig. 2.35 A sketch of Pyy( f )
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i.e.,      

- -

ˆ( )
( )

( )

( )
x t

x

t
d

x t
d=

-
=

-
Ú Ú

t

p t

t
t

pt

t  (2.141)

Note:

1. This definition of Hilbert transform is applicable to all signals that are Fourier transformable.
2. Since all applications of Hilbert transform are concerned with real valued signals, we shall henceforth 

assume that x(t) is real valued.

The effect on x(t), of Hilbert transforming it, is best understood in the frequency domain. Taking the 
Fourier transform on both sides of Eq. (2.140), and denoting the Fourier transform of ˆ( )x t  as ˆ ( ),X f  we have

ˆ ( ) ( )X f X f
t

= ◊
È

ÎÍ
˘

˚̇
F

1

p

From Eq. (2.110), we have

 sgn( )
.

t
j f

F T
¨ Æææ

1

p
 (2.142)

Hence, from duality theorem of Fourier transforms,

1

j t
f f

p
= - = -sgn( ) sgn( ) , since sgn(    f    ) is an odd function of f.

\ 
1

p  
    

t
j f

F T.
sgn( )¨ Æææ -  (2.143)

Going back to Eq. (2.142), we therefore have

 X f j f X f
Ÿ

= -( ) sgn( ) ( ) (2.144)

But sgn( )f
f

f
=

>

- <

Ï
Ì
Ô

ÓÔ

1 0

1 0

     for   

  for     

\ 
ˆ ( )

( )

X f

X f

j f

j f
=

- >

<

Ï
Ì
Ô

ÓÔ

  for    

    for    

0

0
 (2.145)

Since ˆ ( )X f  is the spectrum of ˆ( )x t  while X(    f    ) is the spectrum of x(t), it follows from Eq. (2.145) 
that the effect of Hilbert transforming a signal x(t) is merely to give a phase shift of -90∞ to all of 
the positive frequency components of x(t) and a phase shift of +90∞ to all of its negative frequency 
components. Further, since

|-j| = |  j| = 1

we have,

 ˆ ( ) ( )X f X f=  (2.146)

i.e., a Hilbert transform does not alter the magnitude spectrum.

From Eq. (2.140), it is clear that we may visualize the Hilbert transform ˆ( )x t  of a signal x(t) to be 
the output of linear time-invariant system with an impulse response function
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 h t
t

( ) =
1

p
,  (2.147)

and whose input signal is x(t). Such an LTI system, called as the Hilbert 
Transformer, will have a transfer function H(    f    ) given by

 H f
X f

X f
j f

j f

j f
( )

( )

( )
sgn( )= = - =

- >

<

Ï
Ì
Ô

ÓÔ

   for   

     for   

0

0
 (2.148)

–H(f)

–p/2

p/2

00

(b)(a)

ff

|H(f)|

Fig. 2.37 (a) Magnitude response of a Hilbert transformer (b) Phase response of a Hilbert transformer

2.10.2 Properties of Hilbert Transform

(1) Hilbert transform does not change the domain of a signal.
(2) Hilbert transform does not alter the amplitude spectrum of a signal.

(3) Ifx t x t
H.T

( ) ( )¨ Æææ ˆ , then x̂ t x t
H.T

( ) ( )¨ Æææ - = ˆ̂x t( ) .

Proof ˆ( ) ( ) ( ).
.

x t j f X f
F T

¨ Æææ -  Sgn 

Hence ˆ̂( ) { ( )}{ ( )} ( )
.

x t j f j f X f
F T

¨ Æææ - - Sgn  Sgn 

\ F x t f X f X fˆ̂( ) sgn ( ) ( ) ( )È
Î

˘
˚

= - ◊ = -2

\ ˆ̂( ) ( )x t x t= -  

(4) A signal and its Hilbert transform are orthogonal to each other.

i.e., x t x t dt( ) ( )Ú = 0

Proof of the above property is left as an exercise to the reader (see Example 2.21).
Remark: From the -90∞ phase-shift property of Hilbert transform, it follows that

 (i) sin cos
.

w w
0 0
t t

H T
¨ Æææ -  (2.149)

 (ii) cos sin
.

w w
0 0
t t

H T
¨ Æææ  (2.150)

(5)  If x(t) is a lowpass signal and y(t) is a highpass signal, and if their spectra are non-overlapping 

then

 ˆ ( ) ( ) ( ) ˆ( )yx t y t x t y t= ◊  (2.151)

LTI
h(t) = 1/(p t)

x(t) x(t)^

Fig. 2.36 A Hilbert transformer
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This property is extremely useful in communication engineering and may be proved as follows:
Proof Let z t x t y t( ) ( ) ( )= ◊

Taking the Fourier transform of the above on both sides,

Z f X f Y f X Y f d( ) ( ) ( ) ( ) ( )= * = -Ú l l l

\ ˆ( ) ˆ( ) sgn( ) ( )

( ) ( )sgn( )

Z f z t j f Z f

j X Y f f d

= [ ] = -

= - -Ú

F

l l l

Hence ˆ( ) ˆ( ) ( ) ( )sgn( )z t Z f j X Y f f e d df

j

j ft= È
Î

˘
˚ = - -

= -

- Ú ÚF 1 2l l lp

-

-Ú Ú ◊ -X e Y f e f dfdj t j f t( ) ( ) sgn( )( )l l lpl p l2 2  (2.152)

Here, x(t) is a lowpass signal, bandlimited to say, W Hz, Hence the range of values of l for which 
X(l) is non-zero, are |l| £ W. But, y(t), being a highpass signal, the range of values of f for which Y(    f    ) 
is non-zero are typically |f | >>W. Hence, in the integral on the RHS of Eq. (2.152), we will be interested 
in small values of the variable l and only very large values of the variable f. Hence (  f - l) in it may 
be replaced by f` without any error (as the spectra of x(t) and y(t) are non-overlapping) and we may 
re-write Eq. (2.152) as

ˆ( ) ( ) ( ) [ sgn( )]

( )

z t X e Y f e j f df d

X e

j t j ft

j

= ◊ -

=

Ú Ú l l

l

pl p2 2   

22 2pl plt j ftd Y f e j f df

x t y t

Ú Ú◊ -

= ◊

( ) [ sgn( )]

( ) ˆ( )

  

Hence, if x(t) is a lowpass signal and y(t) is highpass signal, and if their spectra are non-overlapping, 
then

ˆ ( ) ( ) ( ) ˆ( )yx t y t x t y t= ◊

2.10.3 Analytic Signal or Pre-envelope

If x(t) is a real valued signal, its analytic signal or pre-envelope is defined as

 ˆ ( ) ( ) ˆ( )xx t x t jx t
+

+    D  (2.153)

The analytic signal, or, the pre-envelope of x(t) is thus a complex-valued signal, with x(t) itself as 
its real part and the Hilbert transform of x(t), as its imaginary part. It plays an important role in the 
representation of bandpass signals and in the analysis of bandpass systems.

The importance of the analytic signal stems from the nature of its spectrum. If we take the Fourier 
transform of both sides of Eq. (2.153) and denote the Fourier transform of x+(t) by X+(    f    ), we have

X f X f j j f X f+ = + -[ ]( ) ( ) sgn( ) ( )
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|X(f)| 2

|X+(f)|

1

–w 0 w f 0 w f 

Fig. 2.38 (a) Magnitude spectrum of x(t); (b) Magnitude spectrum of x+(t)

2.10.4 Complex-envelope Representation of Bandpass Signals

A bandpass signal is one whose spectrum is non-negligible only in a band of frequencies, occupying a 
width of say 2W Hz around a certain frequency fc called the centre frequency with W << fc. We come 
across bandpass signals quite frequently in communication engineering. For example, a typical double 
sideband amplitude modulated audio broadcast signal occupies a bandwidth of about 10 kHz centered 
around a carrier frequency of say a few megahertz.

Consider a real-valued bandpass signal with amplitude spectrum as shown in Fig. 2.39(a). The 
amplitude spectrum of the pre-envelope of x(t) is shown in Fig. 2.39(b). If the pre-envelope signal x(t) 

2W

0
(a)

2W

|X(f)|

–fc fc f

–W W
(c)
0 f

~
X(f)

(b)

2
2W

0 fc f

|X+(f)|

Fig. 2.39  (a) Amplitude spectrum of the bandpass signal x(t) (b) Amplitude spectrum of pre-envelope of x(t) 
(c) Amplitude spectrum of complex envelope of x(t)
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is x(t), then shifting its spectrum to the left along the frequency scale by an amount of fc is equivalent 
to multiplying x+(t) by e j f tc- 2p  (from the modulation theorem of FT). That is,

if %X f X f fc( ) ( )= +
+

 (2.155)

then %x t x t e j f tc( ) ( )=
+

- 2p  (2.156)

Hence, x t x t e j f tc
+

=( ) ( )%

2p  (2.157)

Now, since ˆ ( ) ( ) ˆ( )xx t x t jx t
+

= + , we have,

 x t x t x t e j f tc( ) Re[ ( )] Re[ ( ) ]= =
+

%

2p  (2.158)

Because of Eq. (2.158), %x t( ) is called the complex-envelope of the bandpass signal x(t). Note that 
while x(t) is bandpass signal, its complex-envelope %x t( ) is a complex-valued lowpass signal. The reason 
for calling this lowpass signal, %x t( ) as the complex-envelope of real valued bandpass signal, x(t) is as 
follows. Suppose

 x t a t t t
c

( ) ( ) cos[ ( )]= +w q  (2.159)

where a(t) and q(t) are real valued lowpass signals. Then, we may write

 x t a t t t a t e ec
j t j tc( ) ( ) cos[ ( )] Re ( ) ( )= + = { }ÈÎ ˘̊w q q w  (2.160)

In Eq. (2.160), a t e j t( ) ( )q{ } is obviously the complex envelope with e j tcw  being the complex carrier. 
A comparison of Eqs (2.158) and (2.160) reveals that

 %x t a t e j t( ) ( ) ( )= q  (2.161)

The complex-envelope representation of a bandpass signal is a very convenient tool that is widely used 
in the representation of radar and sonar signals as well as in the analysis of bandpass systems.

2.10.5 In-phase and Quadrature Component Representation

Using complex-envelope, we shall now derive the ‘in-phase and quadrature component’ representation of 
a real-valued bandpass signal x(t) with centre frequency fc. Let %x t( ) be the complex-envelope of x(t). 
Since %x t( ) is complex-valued function, let

 %x t x t jx tI Q( ) ( ) ( )= +  (2.162)

Since %x t( ) is a lowpass signal of bandwidth, say, W, xI(t) and xQ(t) are also lowpass signals of the 
same bandwidth W, but are real valued. From Eq. (2.158), we have

x t x t e x t jx t t j tj t
I Q c c

c( ) Re ( ) Re ( ) ( ) cos sin= ÈÎ ˘̊ = +{ } +{ }È
Î

˘
˚%

w w w

\  x t x t t x t tI c Q c( ) ( ) cos ( )sin= -w w  (2.163)

This representation of the bandpass signal x(t), is called the canonical representation of x(t). The 
lowpass real valued signal, xI(t) is called the ‘in-phase’ component of the bandpass signal x(t), while the 
real valued lowpass signal, xQ(t), is called the ‘quadrature’ component of the bandpass signal, x(t). This 
is because, while xI(t) multiplies cos wct, xQ(t) multiplies sin wct which is in phase quadrature with the 
carrier signal cos wct.

As the reader might have noticed, in the foregoing discussion, we have used three different representations 
of the real valued bandpass signal, x(t), with centre frequency fc. These different representations are
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 x t a t t t

x t x t e x t

x t

c

j tc

( ) ( ) cos ( )

( ) Re ( ) Re ( )

( )

= +[ ]
= ÈÎ ˘̊ = [ ]
=

+

w q

w
%

xx t t x t tI c Q c( ) cos ( )sinw w-

 (2.164)

  (2.165)

and  (2.166)

The entities used in these three representations are obviously related. By expanding RHS of Eq. (2.164) 
and comparing with RHS of Eq. (2.166), we get

 
x t a t t

x t a t t

I

Q

( ) ( ) cos ( )

( ) ( )sin ( )

=

=

¸
˝
Ô

Ǫ̂

q

q
 (2.167)

By writing cos ( )w q
c
t t+[ ] of Eq. (2.164) as Re ( )e j t tcw q+{ }[ ] and comparing with RHS of Eq. (2.165), 

we get

 %x t a t e j t( ) ( ) ( )= =Complex Envelope q  (2.168)

so that a t x t( ) ( )= %  (2.169)

Further, from Eq. (2.157), we have

x t e x t x t e

x t x t a t

j f tc
+

+

= - =

= =

( ) Pr ( )

( ) ( ) ( )

Envelope of ( ) %

%

2p

  (2.170)

Also, from Eq. (2.167), we have

 a t x t x tI Q( ) ( ) ( )
/

= +È
Î

˘
˚

2 2
1 2

 (2.171)

and q( ) tan
( )

( )
t

x t

x t

Q

I

=
È

Î
Í

˘

˚
˙-1  (2.172)

2.10.6 Lowpass Representation of Bandpass Systems

We have, in the previous section, defined a bandpass signal as one whose spectrum is non-negligible in 
a band of frequencies of width, say, 2W, centered on a frequency, say, fc.

A linear, time-invariant bandpass system is one which accepts an input signal, x(t), processes it in 
some manner, depending upon its impulse response function, h(t), and gives a bandpass signal y(t), as the 
output signal. However, in practice, the input signal given to a bandpass system is generally a bandpass 
signal which is such that the passband of the bandpass system and the spectrum of the bandpass input 
signal are both centered on the same centre frequency, fc. The bandwidth of the passband of the system 
is generally designed to be the same or slightly less than the bandwidth of the input bandpass signal, 
in order to prevent the out-of-band noise from entering the system along with the desired signal. For 
convenience in mathematical analysis, we shall, however, assume that they are equal.

In the analysis of bandpass linear time-invariant systems, our interest is invariably to determine the 
output signal for a given input bandpass signal. As we know, for LTI systems, the output signal can be 
determined by convolving the given input signal with the impulse response function of the system. But, 
convolution of bandpass signals is a very tedious process.

We have seen that the concept of the complex-envelope of a bandpass signal is useful as it permits us 
to conveniently use a lowpass representation for a bandpass signal. Hence, if we can extend that concept 
for lowpass description of bandpass systems too, we can considerably simplify the analysis of bandpass 



Signals, Transforms and Spectral Analysis 73

systems, since we can then treat them as lowpass systems and insert the carrier signal in the end result. 
In this connection, we first note that the impulse response function, h(t), of a bandpass system is also a 
bandpass signal, since it is, after all, the output signal of the bandpass system under certain conditions, for 
a certain input signal (a unit impulse function). Thus, the input signal, x(t), the impulse response function, 
h(t), and the output signal, y(t) are all bandpass signals centered on the same centre frequency fc, and 
having the same bandwidth. Hence, we can represent each one of them in terms of its complex-envelope.
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 (2.173)

 (2.174)

and

  (2.175)

In the above equations, * is used to denote complex conjugation. We know that for an LTI system,

y t x t h t x t h d( ) ( ) ( ) ( ) ( )= * = -Ú t t t

Substituting in this equation for x(t) and h(t) by using Eqs (2.173) and (2.174), we get

y t x t e x t e h ej f t j f tc c( ) ( ) ( ) ( )( ) ( )= - + -{ }- * - -Ú
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2 2
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 (2.176)

The integrand of the last integral contains terms with factors like e j fc- 4p t  and e j fc4p t , which are of 
very high-frequency. However, %x( )t  as well as %h( )t  which are multiplying them, are low-frequency 
signals. Hence when this integrand is integrated for all values of t from  to , the integral will be 
almost zero.
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Thus, we find that Eq. (2.176) may be written as

 y t x t h d x t h d e( ) ( ) ( ) ( ) ( )
*

= - + -{ }
È

Î
Í
Í

˘

˚
˙
˙

Ú Ú
1

4

1

4
%

%

%

%

t t t t t t
jj f tc2p  (2.177)

If we now define

 % %

%y t x t h d( ) ( ) ( )= -Ú
1

2
t t t  (2.178)

 y t y t e y t e y t ej f t j f t j f tc c c( ) ( ) ( ) Re ( )*= +ÈÎ ˘̊ = ÈÎ ˘̊-
1

2
2 2 2

% % %

p p p  (2.179)

Equation (2.179) therefore tells us that %y t( ) , defined as in Eq. (2.178) is the complex-envelope of the 
output signal y(t), and is given by

 % %

%

%

%y t x t h d x t h t( ) ( ) ( ) ( ) ( )= - = *ÈÎ ˘̊Ú
1

2

1

2
t t t  (2.180)

Equation (2.180) gives us a lowpass interpretation of the bandpass system’s response to an input 
bandpass signal. It says that

Bandpass LTI
System

h(t)

x(t)

= x(t)*h(t)

(a)

~y(t) =Re[y(t)ej2pfct]

~=Re[x(t)ej2pfct]

x(t)

(b)

y(t) =½[x(t) +h(t)]~ ~ ~~ Equivalent Lowpass
LTI System

h(t)

Fig. 2.40  (a) Bandpass LTI system with impulse response h(t) (b) Equivalent lowpass LTI system with 
complex-valued impulse response, h(t)

Thus, for a bandpass LTI system with passband centre frequency fc and impulse response h(t), the 
procedure for determining the output y(t) for a specified bandpass input signal x(t) having a spectrum 
with centre frequency of its bandwidth equal to fc, using the equivalent lowpass LTI system, is as follows.

(a)  Replace the bandpass LTI system with impulse response h(t) by an equivalent lowpass LTI system 
having a complex-valued impulse response, %h t( )  related to h(t) by

 h t h t e j f tc( ) Re[ ( ) ]= % 2p  (2.181)

(b)  Replace the bandpass input signal x(t) by a lowpass input signal %x t( ), the complex-envelope of 
x(t), and related to x(t) by

 x t x t e j f tc( ) Re[ ( ) ]= %

2p  (2.182)

(c)  Determine %y t( ) , the complex envelope of the output bandpass signal y(t), by convolving %x t( ) and 
%h t( )  and using the relation

 % %

%y t x t h t( ) ( ) ( )= *ÈÎ ˘̊
1

2
 (2.183)
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(d) Finally, determine y(t) from its complex-envelope using the relation

 y t y t e j f tc( ) Re[ ( ) ]= %

2p  (2.184)

If x(t) is an energy signal, show that x(t) and x t$( )  are orthogonal to each other 
over the interval t .

Example 2.22

To show that x(t) and ˆ( )x t  are orthogonal over t  we have to prove that

x t x t dt( ) ( )Ú = 0

From the generalized Parseval’s theorem of FT (see Eq. 2.88), we have

x t y t dt X f Y f df( ) ( ) ( ) ( )Ú Ú=

where, the overbar indicates complex-conjugation.
If x(t) is real valued, ˆ( )x t  is also real valued since it is after all obtained by convolving x(t) with 1/(pt).

\ ˆ ( ) ˆ( ) ( ) ˆ( ) ( ) ( )

( ) sgn

x x t x t dt x t x t dt X f X f df

X f j

Ú Ú Ú= =

=

µ

(( ) ( ) sgn( ) ( )f X f df j f X f dfÈ
Î

˘
˚ =Ú Ú 

2

However, since sgn (    f    ) is an odd function of f, while X f( )
2
 is an even function of f, the integrand 

in the last integral is odd and hence the integral is zero.

\ ( ) ˆ( )x t x t dtÚ = 0

Find the Hilbert transform of the rectangular pulse x t A t( ) ( / )= P t .

0 t/2–t/2

A
x(t)

x(t)^

x(t)^

t

Fig. 2.42 Signal x(t) and its Hilbert transform

1/pl

x(–l+ t)

1/pl

A

t+ t/2t– t/2 l

Fig. 2.41 Convolution of x(t) with 1/(p t)

Example 2.23
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\ 

ˆ( ) ( )
( )

ˆ( ) lo

/

/

x t x t
t

A
t

d

A d

x t
A

t

t

= * =
-

=

=

-

+

Ú

Ú

1

1

2

2

p

t

pl
l

pl
l

p

t

t

P

gg
/

/
e

t

t

+

-

È

Î
Í

˘

˚
˙

t

t

2

2

Figure 2.39 shows x(t) and its Hilbert transform ˆ( )x t . Note that ˆ( )x t  goes to  and  at the two 
points of discontinuity of the signal x(t).

Given a signal x t A t T t
c

( ) ( / )cos( ),= +P w q  find (i) its analytic signal (ii) spectrum 
of its analytic signal, (iii) complex envelope, and (iv) the natural envelope, a(t). Assume that fcT >> 1.

Example 2.24

ˆ( ) ( / )sin( )x t A t T t
c

= +P w q  (from Eq. (2.151)

 (i) Analytic signal or Pre-envelope of x(t)

= = + = + + +[ ]

=

+x t x t jx t A t T t j t

A t T

c c( ) ( ) ( ) ( / ) cos( ) sin( )

( / )

P

P

w q w q

eei tc( )w q+

 (ii) X f
ATe f f T fj

c

+ =
- >

( )
) ;qsinc (

                              

0

0 ;; 0f <

Ï
Ì
Ô

ÓÔ

 (iii) %x t( ) =  complex envelope of x(t) = x t e j f tc
+

-( ) 2p

 = A t T e jP( / ) q

 (iv) Natural envelope of x(t), i.e., a t x t A t T( ) ( ) ( / )= =% P .

SUMMARY

1. A signal is a single-valued function of one or more variables and carries some information.
2. A continuous-time signal is one whose value is defined at all instants of time, e.g., a sine wave.
3. A discrete-time signal is one whose values are defined only at a discrete set of points in time, e.g., 

a sequence of numbers representing the temperature at a fixed time, taken on a daily basis.
4. A signal x(t) is said to be periodic in time with a period T if x(t + mT) = x(t) for any t and any integer m.
5. A signal whose total energy is finite and non-zero, is called an energy signal, e.g., a rectangular pulse 

of finite duration: x t Ae t T( ) | |/
=

-

6. A signal whose average power is finite and non-zero, is called a power signal, e.g., a sine wave.
7. (a) A unit impulse function is defined by d(t) and is defined by the following:

x t t dt

x t t

t

t

( ) ( )
( )

1

2 0 0

0

1 2

Ú =
< <Ï

Ì
Ô

ÓÔ
d

   if  

    otherwise

and where x(t) is any function which is continuous at least at t = 0.
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(b) Properties
 (i) Area under a unit impulse function is one.
 (ii) Width (along the time axis) of an impulse function is zero.
 (iii) If x(t) is continuous at t = t then

x t t x t( ) ( ) ( ) ( )d t t d t- = -  (Sampling property)

 8. u t d
d

dt
u t t

t

( ) ( ) ( ) ( )= =Ú d l l dand

 9. If x(t) is a periodic signal with a period T = 1/f0 then x(t) can be written as:

x t c e tn
j nf t

n

( ) ;= -

=-

Â 2 0p    

where, cn’s are called the complex-exponential Fourier series coefficients and are given by

c
T

x t e dtn
j nf t

T

T

= -

-
Ú

1
2

2

2

0( )

/

/

p

Note: cn’s are in general complex numbers, even if x(t) is a real valued function.
10. (i)  If c c en n

j n= q , a plot of |cn| vs n (or nf0) is called the magnitude spectrum of x(t) and a plot of 
qn vs n (or nf0) is called the phase spectrum of x(t).

 (ii)  The magnitude spectrum as well as the phase spectrum of a periodic continuous-time signal, are 
discrete.

11. (a) If x(t) is periodic in t with a period t = 1/f0, then

x t a a n t b n t t
n

n

n

n

( ) cos sin ;= + + -

= =

Â Â0 0

1

0

1

w w

where,

a
T

x t dt a
T

x t n tdt

T

T

n

T

T

0

2

2

2

2
1 2

= =
- -
Ú Ú( ) ; ( ) cos

/

/

/

/

  0w

and b
T

x t n tdt
n

T

T

=
-
Ú

2

2

2

( )

/

/

 sin 0w

a0, an’s and bn’s are called trigonometric Fourier series coefficients of x(t).
(b)  For an x(t) which has even symmetry, all bn’s are zero. For a x(t) which has odd

symmetry, all an’s are zero. For a x(t) which is symmetry about the time axis, a0 = 0.
12. (a)  Weak Dirichlet’s condition For a Fourier series to exist, a periodic function with period T must 

satisfy the condition

x t dt

T

T

( )

/

/

 

-
Ú

2

2

(b)  Strong Dirichlet’s condition The following conditions must be satisfied for the Fourier series of 
a periodic function x(t) to converge.
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 (i) x(t) must be finite at all points.
 (ii) x(t) must have a finite number of maximum and minimum in one period.
 (iii)  x(t) can have only a finite number of discontinuities and the discontinuities, if any, must be 

finite discontinuities.
13. The convolution of two continuous-time signals, x(t) and y(t), is given by

z t x t y t x y t d x t y d( ) ( ) ( ) ( ) ( ) ( ) ( )= * = - = -Ú Út t t t t t

14. The correlation Rxy(t) between two continuous-time energy signals is given by

R x t y t dt x t y t dtxy ( ) ( ) ( ) ( ) ( )t t t= - = +* *Ú Ú

15. The correlation between two continuous-time power signals is given by

R
T

x t y t dt
T

x t y txy

T

T

T

T

( ) ( ) ( ) ( ) ( )

/

/

/

/

t t t  = - = +*

-

*

-
Ú

1 1

0 2

2

0 20

0

0

0 22

Ú dt

16. The auto-correlation of a periodic signal x(t) with period T0 is given by:

R
T

x t x t dt
xx

T

T

( ) ( ) ( )

/

/

t t  = -*

-
Ú

1

0 2

2

0

0

17. Fourier transform

Fourier transform of x(t) = X f x t e dtj f t( ) ( )          = -Ú 2p

Inverse Fourier transform of X f x t X f e dfj f t( ) ( ) ( )= = Ú          2p

18. (a) Condition for the existence of the FT of x(t)   x t dt( )Ú

(b) Dirichlet’s conditions for convergence of FT and IFT
 (i) x(t) should be absolutely integrable.
 (ii) x(t) should have only a finite number of maxima and minima in any finite interval of time.
 (iii) In any finite interval of time, the number of discontinuties of x(t) should be finite.
 (iv) Discontinuties of x(t), if any, should be finite discontinuties.
19. Properties of Fourier transform

 (i) If x t X f
F T

( ) ( )
.

¨ Æææ , then X x t dt( ) ( )0 = Ú  = Area under x(t)

 (ii) X(    f    ) is in general, a complex function of frequency, even if x(t) is a real valued function.
 (iii) If x(t) is real valued, X(    f    ) will have Hermitian symmetry.
20.  A plot of |X(    f    )| vs f is called the magnitude spectrum of x(t). A plot of –X(    f    ) vs f is called the 

phase spectrum of x(t).
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21. Fourier transform theorems

 (i) | ( ) | ( )x t dt X f df2 2

Ú Ú= = Energy of  x(t) : Parseval’s Theorem

 (ii) a b a bx t y t X f Y f
F T

( ) ( ) ( ) ( )
.

+[ ]¨ Æææ +  : Linearity Theorem

 (iii) x t X f e
F T j f( ) ( )
.

- ¨ Æææ
-

t
p t2  : Time-delay Theorem

 (iv) x t e X f fj f t F T
c

c( ) ( ).
.2p

¨ Æææ -  : Modulation Theorem

 (v) x at
a
X f a

F T
( ) ( / )

.
¨ Æææ

1
 : Scaling Theorem

 (vi) X t x f
F T

( ) ( )
.

¨ Æææ -  : Duality Theorem

 (vii) If    then   z t x t y t Z f Y f X f( ) ( ) ( ), ( ) ( ). ( )= * =  : Convolution Theorem

 (viii) If    then z t x t y t Z f X f Y f( ) ( ). ( ), ( ) ( ) ( )= = *  : Multiplication Theorem

 (ix) &x t j fX f
F T

( ) ( )
.

¨ Æææ 2p   : Differentiation in time Theorem

 (x) - ¨ Æææj t x t
d

df
X f

F T
2p  ( ) ( )

.
 : Differentiation in Frequency Theorem

 (xi) x d X f
X f

j f

t
F T

( ) ( ) ( )
( ).

t t d
p

Ú ¨ Æææ +
È

Î
Í

˘

˚
˙

1

2
0  : Integration Theorem.

22. Relationship between convolution and correlation

R x t x t
xx t

( ) ( ) ( )t
t

= * -[ ]
Æ

23.  If x(t) is an energy signal, its energy spectral density (ESD) is given by the FT of its auto-correlation 
function

      R S fxx
F T

xx( ) ( )
.

t ¨ Æææ

 and Rxx(0) = energy of x(t) = S f dfxx ( )Ú

24. The power spectral density (PSD) of a power signal, x(t) is the FT of its ACF.

R
T

x t x t dt
xx

T
T

T

( ) ( ) ( )

/

/

t t= -
-
ÚLt

1

2

2

 = ACF of x(t)

and Pxx(    f    ) = PSD of x(t) = F[Rxx(t)]
25. Properties of PSD
 (i) Pxx(    f    ), the PSD of a signal x(t), is always non-negative.
 (ii) Pxx(    f    ) is the Fourier transform of Rxx(t)
 (iii) The total area under the PSD curve of a signal equals the average power of the signal.
 (iv) PSD of a real valued power signal, x(t), is an even function of frequency.
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26. Relationship between input and output spectral densities of an LTI system:

 (i) ESD: S f H f S fyy xx( ) ( ) ( )= ◊

2

 (ii) PSD: P f H f P fyy xx( ) ( ) ( )= ◊

2

27. (a) Hilbert Transform: ̂ ( ) ˆ( ) ( )
.

xx t x t x t
t

F T
¨ Æææ = *  

1

p

(b) Properties of Hilbert transform
 (i) Hilbert transform does not change the domain of a signal.
 (ii) Hilbert transform does not alter the amplitude spectrum of a signal.

 (iii) If ̂ ( ) ˆ( )
.

xx t x t
H T

¨ Æææ , then ˆ( ) ( ). ˆ̂ ( )
.

x t x t x x t
H T

¨ Æææ - \ = -   .

 (iv) A signal and its Hilbert transform are Orthogonal to each other.
28. (a)  Analytic Signal If x(t) is a real valued signal, its analytic signal, or pre-envelope is defined as 

ˆ ( ) ( ) ˆ( )xx t x t jx t
+

+    D

(b) Spectrum of analytic signal is X f
X f f

f
+ =

>

<

Ï
Ì
Ô

ÓÔ
( )

( )2 0

0 0

   for   

           for    

29. Different Representations of Bandpass Signals
 (i)  x t a t t t

c
( ) ( ) cos[ ( )],= +w q  where a(t) and q(t) are lowpass signals—Envelope and phase 

representation
 (ii) x t x t t x t tI c Q c( ) ( ) cos ( )sin= -w w : xI(t) and xQ(t) are In-phase and Quadrature lowpass signals.

  Here, a t x t x tI Q( ) ( ) ( )= +
2 2

  and q( ) tan
( )

( )
t

x t

x t

Q

I

=
È

Î
Í

˘

˚
˙-1

 (iii) x t x t e x tj f tc( ) Re ( ) Re ( )= È
Î

˘
˚ = [ ]+%

2p

  where, %x t( ) = complex envelope of x t a t e j t( ) ( ) ( )= q

30. Equivalent lowpass system for a bandpass system

If: 

Bandpass LTI
System
h(t)

x(t)

= x(t) +h(t)

(a)

~
y(t) =Re[y(t)ej2pfct]

~=Re[x(t)ej2pfct]

x(t)

(b)

y(t) = ½[x(t) +h(t)]~ ~ ~~ Equivalent Lowpass
LTI System

h(t)
Then:
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REVIEW QUESTIONS

 1. Define and give an example for each of the following:
(a) Continuous-time signals (b) Discrete-time signals

 2. Define and give an example for each of the following:
(a) Energy signals (b) Power signals

 3. Determine the values of the following integrals:

(a) d ( )t dt

t

t

-
=-

=

Ú 4

3

3

  (b) e t dtt

t

t

-

=-

=

-Ú 5

2

2

1d ( )

 4. When do you say that the two signals x(t) and y(t) are orthogonal and orthonormal?
 5. What is meant by a complete set of orthonormal functions? Give an example of such a set of functions.
 6. State and explain Dirichlet’s conditions for convergence of Fourier series.
 7. Write down the complex-exponential Fourier series expansion of the signal x(t) = 5 cos 10pt.
 8. If X(    f    ), the Fourier transform of x(t), has Hermitian symmetry, comment on the nature of x(t).
 9. Write down the Fourier transform of x(t) = 5 sin (w0t + q).
10. If X(    f    ) is the Fourier transform of x(t), what does |x(    f    )|2 represent in relation to the signal x(t)?
11. Sketch the magnitude and phase spectra of the signal x(t) = 20 sin (50pt + 45∞).
12.  Explain the usefulness of the convolution theorem of Fourier transform in determining the convolution 

of two continuous-time signals.
13.  Explain, graphically, the difference between convolution and correlation of two continuous-time 

signals.
14.  Show that the ACF of two real valued continuous-time signals is an even function of t, the lag 

parameter.
15.  Show that the power spectral density of a power signal, x(t), is the Fourier transform of its auto-

correlation function.
16.  Derive the relation between the output signal and input signal power spectral densities of an LTI 

system.
17. Sketch the magnitude and phase responses of a Hilbert transformer.

18. Show that ˆ̂( ) ( )x t x t= - .

19. Define the ‘analytic signal’ of a real valued signal x(t).
20. Define and explain the significance of the ‘Complex Envelope’ of a real valued bandpass signal x(t).
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FILL IN THE BLANKS

 1. Energy signals are those having __________ energy and __________ average power.
 2. Power signals are those having __________ energy and __________ average power.
 3. x t e tt( ) ,| |

= -
-  is an example of a ______ signal (energy/power).

 4. u(t) is ________ signal (energy/power).
 5. Area under the signal 5d (t - 3) is _____________.

 6. The value of e t dtj tw d

-
Ú
5

5

( )  is ___________.

 7. The relationship between d (t) and u(t) is ___________.
 8.  If a periodic signal x(t) is purely real valued, then its complex-exponential Fourier series coefficients 

will have ________ symmetry.
 9. The spectrum of a continuous-time periodic signal is __________ (continuous/discrete).

10. If x t c
F S

n
x( )

.
¨ Æææ  then x t

F S
( )

.
- ¨ Æææt  ___________.

11. If x t c
F S

n
x( )

.
¨ Æææ  then e x tj kf t F S2 0p ( )

.
¨ Æææ  _________.

12. A periodic signal x(t) is said to have half-wave symmetry (or rotational symmetry) if x(t) = ________.
13.  If a periodic signal x(t) possesses half-wave symmetry, then its spectrum will have only _________. 

(even/odd) harmonics.
14. The Fourier transform of a continuous-time signal x(t) exists if _____________.
15. When a signal is shifted in time, its _____________ spectrum alone changes.

16. If x t X f
F T

( ) ( )
.

¨ Æææ  then |X(    f    )|2 represents _______ of x(t) with respect to frequency, at a frequency f.

17. If the phase spectrum of x(t) is q (    f    ), the phase spectrum of the signal x(t - t0) is __________.
18. Convolution is a ___________ (linear/non-linear) operation.
19. x(t) * d(t - t) = ___________.
20. For real valued signals, Ryx(t) = __________.
21. For complex-valued signals, Ryx(t) = __________.
22. Rxx(t) £ ________ for any t.
23. For an energy signal, Rxx(0) represents the ___________ of the signal x(t).
24. The area under the PSD curve is equal to ______ of the signal.
25. The area under the ACF curve of a power signal is equal to the _________ value of its PSD.

26. If ˆ ( ) ˆ( )
.

xx t x t
H T

¨ Æææ  then ˆ( )x t =  ______* ______.

27. If ̂ ( ) ˆ( )
.

xx t x t
H T

¨ Æææ  then ˆ ( )X f  = ___________.

28. For a Hilbert transformer, the impulse response is ______________.
29. If x+(t) is the pre-envelope of a real valued signal x(t), X+(    f    ) = 0 for ____________.
30.  A bandpass signal x t a t t t

c
( ) ( ) cos ( )= +[ ]w q . Then, in terms of a(t) and q (t), the in-phase and 

quadrature component representation of x(t) is given by ____________.

PROBLEMS

 1.  Determine whether the following continuous-time signals are periodic or aperiodic. If they are 
periodic, determine their fundamental period.
(a) x(t) = cos 3t (b) x t e j t( ) = w0  (c) x(t) = cos2 10pt
(d) x(t) = sin2 100pt + sin 200pt (e) x(t) = cos tu(t) (    f    ) x(t) = sin 3t + cos pt
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 2.  If x(t) is as shown in Fig. P-2.1, sketch and label each of the 
following signals.
(a) x(t - 3)  (b) x(2t)
(c) x(t/2)  (d) x(-2t)
(e) x(3t - 2)

 3.  Which of the following signals are power signals, and which of 
them are energy signals? Are there some signals which are neither 
power signals nor energy signals? In each case, justify your answer. 
For power/energy signals, find the average power or the total 
energy, whichever is appropriate.
(a) ( ) ( )2 3- -e u tt  (b) e j tw0  (c) u t u t( ) ( )- - -2 4

(d) e u tt-2 ( )   (e) e t-5  (    f    ) e
t

t- +Ê
ËÁ

ˆ
¯̃

P
( )1

6

(g) te u tt- -2 1( )

 4. The signal x(t) given by

x t

t t

( )
cos ;

;

=
+[ ] - £ £

1

2
1

0

w p w p      

                             otherwise

Ï

Ì
Ô

Ó
Ô

  is called the raised cosine pulse; and is sketched in Fig. P-2.2. 
Determine the total energy of this signal.

 5. For the signal x(t) shown in Fig. P-2.3(a), determine the following using

t

x(t)

2

1

0 1 2–2 –1

Fig. P-2.3(a)

y(t)

0 1

1

–1 t

Fig. P-2.3(b)

(a) A representation in terms of shifted versions of u(t)
(b) A representation in terms of the rectangular pulse y(t) and its scaled and shifted versions

 6. Functions f1(t), f2(t) and f3(t) are as shown in Fig. P-2.4 (a), (b) and (c).

0

f1(t)

(a)

½–½

1
t

f2(t)

(b)

½–½

1

0

–1

t

f3(t)

(c)

½–½ –¼ ¼

1

0

–1

Fig. P-2.4

 (i)  Show that the functions f1(t), f2(t) and f3(t) are orthogonal over the interval (-1/2, 1/2)
 (ii)  If the signal x(t) = 2sin 2pt is expanded in terms of these functions, find the integral squared 

error of such a representation of x(t).

x(t)

3

2

1

0 1 2 3 t–3 –2 –1

Fig. P-2.1

0p p wt

x(t)
1.0

Fig. P-2.2
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 7. A signal x(t) is as shown in Fig. P-2.5.
Show that x(t) is orthogonal to the signals cos t, cos 2t, cos 3t, …, 
cos nt for all integer values of n, n π 0, over the interval (0, 2p).

 8.  x1(t), x2(t),…, xn(t) are n mutually orthogonal signals defined over 
the interval (-T, T). If a signal y(t) is defined as

y t x ti

i

n

( ) ( )D

=

Â
1

show that the energy of the signal y(t) over (-T, T) is equal to the sum of the energies of xi(t)s, i = 1 to n.

 9. Signal x t

t t

( )
;

;
=

£ £Ï
Ì
Ô

ÓÔ

0 1

0 elsewhere

Expand x(t) over the interval (0,1) by
 a. trigonometric Fourier series
 b. Complex exponential Fourier series
10. Expand the periodic function x(q) shown in Fig. P-2.6 using Trigonometric Fourier series.

A

–p

–2p 2p q–p/2

x(q)

p/20

–A

–3p/2 3p/2

p

Fig. P-2.6

11.  Expand the periodic waveform x(t) shown in Fig. P-2.7 by complex exponential as well as 
trigonometric Fourier series.

–2T 2T
T

t–D/2

A

x(t)

D/2

D

–T 0

Fig. P-2.7

12.  For the periodic waveform shown in Fig. P-2.8, determine the complex exponential and trigonometric 
Fourier series expansions.

A cos 100p t

–9 –7 –5 –3 –1 1 3 5  7 9 t

Fig. P-2.8

x(t)

1

p 2p t

–1

0

1

Fig. P-2.5
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13.  Express the signal x(t) = 2 + sin w0t + 3cos(w0t + p/4) + 2cos2w0t as the sum of complex exponentials 
and plot its magnitude and phase spectra.

14.  (a)  xn(t) = e j2pnt/T, where n takes all integer values from  to . Show that the functions xn(t)s 
are orthogonal over any interval of T seconds. Are they also orthonormal?

(b)  Are the functions sin nw0t and cosmw0t orthogonal over the interval (0,T), where w0 = 2p/T? Are 
they orthonormal? If they are not, normalize them.

15.  In Section 2.6, we stated that a periodic signal x(t) having rotational, or, half-wave symmetry will 
have only odd harmonics. Prove that statement. Also prove the converse of it; i.e., if a periodic 
signal x(t) with period T has only odd harmonic components, then it has half-wave symmetry, so 
that x(t - T/2) = -x(t) for any t.

16. Find the Fourier transforms of the following signals:
 (i) x t e u tt( ) ( )= -

-3 2

 (ii) x t e t( ) | |
=

-2

 (iii) x t te u tt( ) ( )=
-2 2

 (iv) x(t) shown in Fig. P-2.9
 (v) x t j t t u t( ) exp ( ) ( ) ( )= - - -{ }ÈÎ ˘̊ -2 1 1 1p
17.  Find the signal x(t) whose Fourier transform X(    f    ) is given in 

(i) Fig. P-2.10(a) (ii) Fig. P-2.10 (b)

|X(f)| –X(f)

1 p/2

–1 0 1 f –1 0 f 

p/2

Fig. P-2.10(a)

|X(f)|

–X(f)
1 p/2

1

–1 0 1 f –1 0 f 

–p/2

Fig. P-2.10(b)

18. Use Parseval’s theorem to calculate the energy in the signalx t t( ) = 4 40sinc .

19.   Calculate the energy contained in the signal in problem 18 for | |f £
3

2p
. Express it as a percentage 

of the total energy of the signal.
20. Find the convolution of x t t( ) ( / )= 5 4P  with y t t( ) ( / )= 5 4P .
21.  Find the Fourier transform of z(t) = 100Ÿ(t/8) where 100Ÿ(t/8) is a triangular pulse symmetrical about 

the t = 0 axis and having a peak amplitude of 100 and a total base width of 8 secs. (Hint: Use the 
result of Problem 20 and the convolution theorem of Fourier transform).

x(t)

1

–2
0 2 t

–1 

Fig. P-2.9
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22.  Given that X(    f    ) is the Fourier transform of x(t), find the Fourier transforms of the following
 (i) y t x t( ) ( )= -2 3 2

 (ii) y t x
t

e j t( ) ( )= -

2
1 200p

 (iii) y t x t( ) ( )= -1 2

23. Find the Fourier transforms of the signals shown in Fig. P-2.11(a) to (e).

x(t) x(t)

x(t)

x(t)

x(t)

1 2 1

–1

0 1

(a) (b)

(d) (e)

(c)

2 t 0 2 4 t 0 1 t

–1

2
1

1

–2 –1 0 1 2 t 0 1 3 4 t

Fig. P-2.11

24. Find x(t) if its Fourier transform X(    f    ) is given by

(a) X f
j f

j f
( )

( )
=

+

2

1 2 2

p

p
 (b) X f( )

sin
=
2 2

2

w

w
 

(c) X f
f

j f
( )

( )
=

+

È

Î
Í

˘

˚
˙5

4

1 2

sinc 

p
 (d) 

X(f) 2

1

–2 –1 0 1 2 f 

Fig. P-2.12 of problem (d)

25.  If the signal shown in Figs P-2.11(a), (b) and (d) of Problem 23 are multiplied by cos 50pt, determine 
and sketch the magnitudes of the Fourier transforms of the resulting 
signals.

26. Determine the Fourier transform of the x(t) shown in Fig. P-2.13.
(a) By applying time-domain differentiation theorem.
(b)  By identifying x(t) as having been obtained by the convolution 

of p(t/T) with itself and scaling down the magnitude by T and 
then applying convolution theorem.

x(t)
1

–T 0 T t

Fig. P-2.13
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27. Find Rxy(t) given that x(t) = 3cosw0t and y(t) = 2cosw0t.
28.  Determine the ACF Rxx(t) for the signal x(t) of Fig. P-2.14. Take its FT and determine its power 

spectral density.
29. Find the cross-correlation Rxy(t) of the periodic signals x(t) and y(t) shown in Figs P-2.14 and 2.15.

x(t)
1

0 T/2 T 2T t–T –T/2

Fig. P-2.14

y(t)
1

T/2
–T –T/2 0 T t

–1

Fig. P-2.15

30.  Find the ACF Rxx(t) and energy spectral density, Sxx(    f    ) of the 
rectangular pulse shown in Fig. P-2.16.

31.  Determine the transfer function of an LTI system T if the system 
is to give as its output the cross-correlation between the input x(t) 
and the function z(t) given by

z t

e t

t

t

( ) =
<

>

Ï
Ì
Ô

ÓÔ

10 0

0 0

2 for  

for   

32. For the signals shown in Fig. P-2.17 determine the following.
(a) x t y t( ) ( )*   (b) Rxy(t)  (c) x t z t( ) ( )*
(d) Rxz(t)  (e) x t w t( ) ( )*   (f ) Rxw(t)
(g) y t z t( ) ( )*   (h) Ryz(t)  (i) y t w t( ) ( )*
(j) Ryw(t)   (k) z t w t( ) ( )*   (l) Rzw(t)

x(t) z(t)
2

1

0–2 2 t –1 0 1 t

y(t) w(t)
2

1

–1 –2 –1 1 2

0 1 t 0 t

–1 –1
2

Fig. P-2.17

33.  Find the power spectral density of x(t) = 10 cos 20pt. What will be 
the power spectral density of 10 sin 20 pt?

34.  Referring to Fig. P-2.18, determine (a) Ryy(t), (b) Ryx(t) in terms 
of Rxx(t)

x(t)

A

–T/2 0 T/2 t

Fig. P-2.16

x(t) y(t)
h(t)

LTI

Fig. P-2.18
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35. The power spectral density of a certain signal is given by

P f
f

xx ( ) =
+

4

4 4 2 2p

What is the r.m.s value of the signal?
36.  White noise is defined as the noise for which the power spectral 

density is constant, as shown in Fig. P-2.19, What is the auto-
correlation function of this noise? If such a noise is passed 
through an ideal lowpass filter with a passband gain of 1, and 
cutoff frequency of 500 Hz, at what intervals should we take 
samples of the output of the LPF if the output samples are to be 
uncorrelated?

37. If x(t) = (1/t) sin t, show that ˆ( ) ( / )( cos )x t t t= -1 1

38.  x t1( )  and x t2 ( )  are two narrowband signals centered on the same carrier frequency, fc. If 
x3 (t) = x1(t) + x2(t), show that % % %x t x t x t3 1 2( ) ( ) ( )= + where %x t

i
( )  is the complex envelope of x1(t).

39.  Find the Hilbert transforms of the following signals and show in each case that the signal and its 
transform are orthogonal.
(a) x t t( ) sin= w0

(b) x t t t( ) cos .cos= ¥5 60 6p p10  4

40.  X(    f    ) shown in Fig. P-2.20 is the Fourier transform of a signal x(t) and is real. Determine and sketch 
the spectrum of each of the following signals.

(a) ˆ ( ) ( ) ˆ( )xy t x t jx t= +[ ]
1

2

(b) ̂ ( ) ( ) ˆ( )xz t x t jx t e j f tc= +[ ] 2p  where, fc >> W

(c) ̂ ( ) ( ) ˆ( )xw t x t jx t e j f tc= -[ ] - 2p  where, fc >> W

41. Sketch the signals:
(a) x t t t( ) ( ) cos= 200 200 2 104sinc p

(b) ˆ ( ) ( ) ˆ( )xy t x t jx t= +[ ] where x(t) is as given in part (a)

(c) Determine %x t( ), the complex envelope of x(t) and sketch its spectrum.

MULTIPLE CHOICE QUESTIONS

1. The fundamental period T, of a periodic continuous-time signal x(t), is
(a) the smallest positive constant satisfying the relation x(t) = x(t + mT) for every t and any integer m
(b) the positive constant satisfying the relation x(t) = x(t + mT) for every t and any integer m
(c) the largest positive constant satisfying the relation x(t) = x(t + mT) for ant t and any integer m
(d) the smallest positive integer satisfying the relation x(t) = x(t + mT) for any t and any m

2. The value of cos ( )

/

/

w d w w

p

p

t d

-
Ú
4

4

 is

(a) 0 (b) p/2 (c) 2  (d) 1
3. e u tt- ( )  is

(a) an energy signal  (b) a power signal
(c) neither an energy signal nor a power signal (d) none of the above

Pww(f)

K

0 f

Fig. P-2.19

|X(f)|A

B

–W 0 W f 

Fig. P-2.20
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 4. x t

t

t( )

;

=

£ £

- £ £

Ï

Ì
Ô

Ó

1 5 10

1 10 15

0

     for   

  for  

    otherwise
ÔÔ

. Then x(t) can be expressed as:

(a) u t u t u t( ) ( ) ( )+ - + + +5 2 10 15   (b) u t u t u t( ) ( ) ( )- - - + -5 10 15

(c) u t u t u t( ) ( ) ( )- - - + -5 2 10 2 15   (d) u t u t u t( ) ( ) ( )- - - + -5 2 10 15

 5. The average power of the periodic signal c en
j nf t2

0
p  is

(a) c
n

2  (b) c
n

2  (c) c
n

2
 (d) c en

j nf t2 4
0

p

 6. Parseval’s theorem pertaining to Fourier series states that
(a)  the signal x(t) is equal to the sum of its components along each of the basis functions, e j nf t2 0p , 

n = 0, ±1, ±2,…
(b)  the average power of x(t) is equal to the sum of the average powers of its components along 

each of the basis functions, e j nf t2
0

p , n = 0, ±1, ±2,…
(c)  the energy of the signal x(t) is equal to the sum of the energies of its components along each 

of the basis functions, e j nf t2
0

p , n = 0, ±1, ±2,…
(d)  energy of the signal may be obtained in the time-domain or from the frequency domain

 7.  If x t c e t f
T

n
j nf t

n

( ) ;= -

=-

Â 2
0

0

1
p          and   D  where T is the fundamental period of the 

periodic signal, x(t), which is purely real valued, then
(a) c c

n n
= -

-

 (b) c c
n n
=

-

 (c) c c
n n-

=
*  (d) c c

n n
= -

*

 8.  A periodic signal with fundamental period T, is said to possess ‘rotational symmetry’, or ‘half-wave 
symmetry’, if
(a) x(t + T/2) = x(t) for any t (b) x(t ± T/2) = - x(t) for any t
(c) x(t - T/2) = x(t) for any t (d) x(t + T/2) = x(t - T/2) for any t

 9. The Fourier series of a periodic signal x(t) with period T will not converge if
(a) |x(t)| is not finite at all values of t
(b) x(t) has more than one maxima in one period T
(c) x(t) is not continuous at all points
(d) x(t) is not a band-limited signal

10. The Fourier series expansion of the periodic signal x t f t( ) sin= 2 0p can have
(a) only odd harmonics, i.e., components with frequency nf0 where n is odd
(b) no dc component
(c) only even harmonics, i.e., components with frequency nf0 where n is even
(d) both even and odd harmonics of the frequency f0

11.  In the discrete spectrum of the periodic signal x(t) shown in the figure, the harmonic component 
having zero amplitude is

x(t)

A
t t t

| |
–T –t/2 0 t/2 T t

T = 10 seconds, t = 0.2 seconds

(a) fifth   (b) tenth (c) fiftieth (d) twentieth
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12. Strictly speaking, one of the following signals is not Fourier transformable—which one?
(a) e-|t| (b) rect(t/t) (c) tr(t/t) (d) sin w0t

13. If the signal x(t) is real valued and its Fourier transform is X(    f    ) then
(a) X(    f    ) is real valued (b) |X(    f    )| = |X(-f)|
(c) X(    f    ) has even symmetry (d) X(    f    ) has odd symmetry

14. If x(t) = 10 rect (t/2), the zero-frequency value of its spectrum is given by
(a) 10 (b) 5 (c) 2 (d) 20

15. Shifting a time signal along the time axis causes
(a) a change in the amplitude spectrum
(b) a change in both amplitude and phase spectrum
(c) a change only in the phase spectrum
(d) no change in amplitude as well as phase spectrum

16. If x(t) = 10 sinc 5t, the energy contained in the signal is
(a) 100 (b) 50 (c) 10 (d) 20

17. If y t x t t( ) ( ) ( )D * -d t , Y(    f    ) is given by
(a) X f e j f( ) + 2p t  (b) X f e j f( ) - 2p t

(c) X f f fc c( ) /-    where  D1 t  (d) it is not Fourier transformable
18. The Fourier transform of t sinc10 t is equal to

(a) 
1

20
10

j
f

p
P( / )[ ] (c) 

f
f

20
10

p
P( / )[ ]

(b) 
1

20
5 5

j
f f

p
d d( ) ( )+ - -[ ] (d) 

j
f f

20
5 5

p
d d( ) ( )+ - -[ ]

19. If y(t) = x(2-t), Y(    f    ) is given by
(a) X f e j f( )- - 4p  (b) X f e j f( ) - 4p

(c) X f e j f( )- 4p   (d) X f e j f( ) 4p

20. The Fourier transform of e u tat ( )-  is

(a) 
1

a j- w
 (b) 

1

- +a jw
 (c) 

1

a j+ w
 (d) 

-
-

1

a jw

21. x t t( ) = 10 2sinc  and y t t( ) cos= 200p . The spectrum z(    f    ) if z t x t y t( ) ( ) ( )D ◊  is given by

(a) 10 2 100 2 100sinc sinc( ) ( )f f- + +[ ]  (b) 5
100

2

100

2
P P

( ) ( )f f+Ê
ËÁ

ˆ
¯̃
+

-Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

(c) 10
200

2

200

2
P P

( ) ( )f f+Ê
ËÁ

ˆ
¯̃
+

-Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙  (d) 5

200

2

200

2
P P

( ) ( )f f+Ê
ËÁ

ˆ
¯̃
+

-Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

22.  It is possible to compute the cross-correlation Rxy(t) between two signals x(t) and y(t) directly from 
their convolution provided
(a) x(t) has even symmetry (b) x(t) has odd symmetry
(c) y(t) has odd symmetry (d) y(t) has even symmetry

23. If x t t( ) ( / )= 10 10P , Sxx(    f    ) is
(a) a sinc function (b) a triangular function
(c) a sinc -square function (d) a rectangular function

24. x t t( ) ( / )= 5 10P , the maximum value of Rxx(t) is
(a) 250 (b) 50 (c) 500 (d) 25

25. x t t( ) ( / )= 10 10P , the maximum value of Sxx(0) is
(a) 100 (b) 1000 (c) 500 (d) 5000
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26. x t t( ) ( / )= 10 10P . The total area under the Sxx(    f    ) curve is
(a) 1000 (b) 500 (c) 100 (d) 10000

27.  The signal e u tt- ( )  is applied as input to an L-section RC lowpass filter with time-constant equal to 1. 
The energy spectral density at the output of the filter at the 3-db cutoff frequency of the filter is
(a) 1 (b) 0.5 (c) 0.25 (d) 1.5

28. If x t x t
H T

( ) ( )
.

¨ Æææ , then their Fourier transforms are related as
(a) ˆ ( ) sgn( ) ( )X f j f X f=  (b) ˆ ( ) sgn( ) ( )X f j f X f= -

(c) ˆ ( ) sgn( ) ( )X f j f X f= -  (d) ˆ ( ) sgn( ) ( )X f j f X f= -

29. If ̂ ( ) ˆ( )
.

xx t x t
H T

¨ Æææ ; ˆ ( ) [ ˆ( )]X f x t= F , and ˆ ( ) ˆ ( ) ˆ( )X f X f e j f= q  then,

(a) ˆ ( ) ( )X f X f= -  (b) ˆ ( ) ( )X f X f=

(c) ˆ ( ) ( )X f X f=  and ˆ( )q f = 90∞ (d) ˆ ( ) ( )X f X f=  and ˆ( )q f = -90°

30. ˆ ( ) ˆ( )
.

xx t x t
H T

¨ Æææ , then ˆ̂( )x t  equals

(a) -x(t) (b) x(t) (c) x t( ) (d) x(-t)
31. cos .cos ( )20 2000p p     t t x tD . Then ˆ( )x t  is

(a) sin .sin20 2000p p  t t  (b) sin .cos20 2000p p  t t

(c) cos .sin20 2000p p  t t  (d) None of the above

32.  If x+(t) is the analytic signal corresponding to the real valued signal x(t), and if X f x t+ += [ ]( ) ( ) ,F  
then X+(    f     )u(-f     ) is given by
(a) 0 (b) 2X(    f    ) (c) 2X(-f    ) (d) none of the above

33. If ̂ ( ) ˆ( )
.

xx t x t
H T

¨ Æææ  and ˆ ( ) ˆ( ) ( )xy t x t jx t  D - , then Y(    f    )u(-f) is
(a) 0 (b) 2X(    f    ) (c) -2X(    f    ) (d) none of the above

34.  If %x t( ) is the complex-envelope of a real valued bandpass signal x(t) and if %x t x t jx t( ) ( ) ( )= +1 2  then 
x(t) is given by
(a) x t t x t t

c c1 2( )sin ( ) cosw w-  (b) x t t x t t
c c1 2( ) cos ( )sinw w+

(c) x t t jx t tc c1 2( ) cos ( )sinw w-  (d) x t t x t t
c c1 2( ) cos ( )sinw w-

35.  If x(t), a real valued bandpass signal is given by x t t t( ) ( cos )cos[ / ]= +10 20 20000 4p p p . Then the 
magnitude of its analytic signal x+(t) is
(a) 10 20cos p t  (b) 10 (c) 10 20sin p t  (d) 5

Key to Multiple Choice Questions
 1. (a)  2. (d)  3. (a)  4. (d)  5. (c)  6. (b)
 7. (c)  8. (b)  9. (a) 10. (c) 11. (c) 12. (d)
13. (b) 14. (d) 15. (c) 16. (d) 17. (b) 18. (d)
19. (a) 20. (a) 21. (b) 22. (d) 23. (c) 24. (a)
25. (d) 26. (a) 27. (c) 28. (b) 29. (d) 30. (a)
31. (c) 32. (a) 33. (c) 34. (d) 35. (a)



In this chapter, 
the student
Ø understands the meaning and 

significance of the terms ‘linearity’, 
‘time-invariance’, as applied to systems

Ø realizes that any LTI system is 
completely characterized by its impulse 
response or its transfer function

Ø learns to determine the impulse 
response, transfer function and step 
response of an LTI system given its 
electrical equivalent circuit and also 
comment on its stability

Ø will understand the conditions for 
distortionless transmission of a signal 
through an LTI system

Ø can determine, by applying Paley–
Wiener criterion, whether a given 
transfer function is physically 
realizable or not

Ø understands the relationship between 
the bandwidth of an LTI system and 
the minimum rise time of any pulse 
output from that system

INTRODUCTION
3.1

In the previous chapter we had discussed about the 
classification of signals and the representation of 
periodic signals in terms of their discrete spectra using 
Fourier series, and aperiodic ones in terms of their 
continuous spectra by using the Fourier transform. In 
this chapter, we will be presenting a brief review of 
the theory of linear time-invariant systems, as these 
play an important role in communication engineering.

In the discussion on signal transmission through 
systems, one important topic that merits serious 
consideration is ‘distortionless transmission of a 
signal through a linear time-invariant system’. As 
we are going to see, two conditions are to be satisfied 
by an LTI system for distortionless transmission of 
a signal through it. These conditions are that the 
system should have the same magnitude of gain 
for all frequencies and the phase-shift introduced 
by the system must be proportional to frequency; 
i.e., it should have a flat magnitude response and 
a linear phase response over the entire frequency 
range from  to . However, no practical system 
can satisfy these two conditions over the entire 
frequency range from  to . Further, as we 
had seen in the last chapter, most of the signals, 
periodic or aperiodic, that we encounter in practice, 
will have their spectra extending from  to  
of frequency, although most of their energy/average 
power, may be concentrated only over a certain finite 
band of frequencies. The foregoing facts throw up 
the very pertinent question: How should we define 
signal bandwidth and system bandwidth? It also 
underscores the need for an interpretation of the 
conditions for distortionless transmission in terms of 

3 Signal Transmission 
through Systems
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signal bandwidth and system bandwidth. In this chapter, we will be discussing these aspects as well as 
the distortion suffered by pulse-like signals with very sharp leading and trailing edges when such signals 
are transmitted through channels with inadequate bandwidth (at the high-frequency side).

REVIEW OF LTI SYSTEM THEORY
3.2

We may define a system as an entity which acts on one or more inputs, or excitations, and produces 
one or more responses, or outputs. We shall, however, confine our attention to single-input, single-output 

systems only.
A system is generally represented diagrammatically as shown in Fig. 3.1(a) or (b)

T

x(t) y(t)

(b)

Input signal Output signal

x(t) y(t)

(a)

T

Fig. 3.1 Diagrammatic representation of a system

Systems may be broadly classified into

 (a) Continuous-time systems
 (b) Discrete-time systems

Continuous-time systems take a continuous-time signal as input and produce another continuous-signal 
as output. Discrete-time systems, similarly, take a discrete-time signal as input, act upon it and produce 
another discrete-time signal as output. Each of these, in turn, may be further classified into the following 
types:

 (i) Static (i.e., memory-less) or dynamic (with memory)
 (ii) Linear or non-linear
 (iii) Time-varying or Time-invariant

3.2.1 Static and Dynamic Systems

A system is said to be static, memory-less, or instantaneous, if its present output is determined entirely 

by the present input only.
As an example, we may consider a continuous-time system with input-output relationship given by 

an algebraic equation such as

y(t) = Ax(t) + B

where A and B are constants. Among electrical systems, all purely resistive networks, however complicated 
they may be, are ‘static systems’ only.

Definition A system is said to be dynamic, or a ‘system with memory’, if its present output depends for 

its value not only on the present input, but also on some past inputs.
As an example consider a system represented by the differential equation

RC
dy t

dt
y t x t

( )
( ) ( )+ =

The value of y(t) is dependent on the value of x(t) not only at the instant t, but also on the initial 

conditions. It is the energy storage element C, the voltage across which cannot change instantaneously, 
that makes this circuit a dynamic system.
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Remark As a generalization, we may say that static systems have their input–output relation described by 
algebraic equations while dynamic systems have their input–output relation described through differential 
equations. Also, all purely resistive networks are static systems whereas those with energy storage elements 
like inductors and capacitors, are dynamic systems.

3.2.2 Linear and Non-Linear Systems

Definition A continuous-time dynamic system is said to be ‘at rest’ or in the ‘ground state’, if all of 

its energy storage elements are devoid of any stored energy.
Let T be a continuous-time system which is at rest. Let an input signal x1(t) given to T result in an 

output signal y1(t); and an input x2(t) result in an output of y2(t). Then the system T is said to be linear, 

if for any pair of arbitrary constants a1 and a2, an input of a1x1(t) + a2 x2(t) given to the system T results 

in an output of a1 y1(t) + a2 y2(t).
Any continuous-time system not satisfying the above condition is said to be a non-linear system.

Remark: A linear system should basically satisfy the properties of superposition and homogeneity. The 
above definition takes care of both these.

3.2.3 Time Varying and Time-Invariant Systems

Time invariance is the property of a system which makes the behaviour of the system independent of time.

Definition Let y(t) be the response of a continuous-time system T to an arbitrary input signal x(t). 

The system T is said to be time-invariant, or ‘fixed’, if for any value of the real constant, t, it gives a 

response of y(t - t) for an input of x(t - t).
If this condition is not satisfied, T is said to be a time-varying system.

A certain continuous-time system, is described by the following input–output 
relation y(t) = x(2t)
Is this system 

 (i) Static or dynamic?
 (ii) Linear or nonlinear?
 (iii) Fixed or time-varying?

Justify your answers.

Example 3.1

 (i)  Since y(t) = x(2t), the output, at any instant of time t1 depends for its value on the present input 
for t1 = 0, on future values of input for t1 > 0 and on past values of input for t1 < 0. Hence, the 
system is not static.

 (ii) x t x t
T

( ) ( )æ Ææ 2

\ x t x t y t x t x t y t

a x t a x

T T

1 1 1 2 2 2

1 1 2 2

2 2( ) ( ) ( ) ( ) ( ) ( )

( ) (

æ Ææ = æ Ææ =

+

and

tt a x t a x t

a y t a y t

T
) ( ) ( )

( ) ( )

[ ]æ Ææ +[ ]

= +

1 1 2 2

1 1 2 2

2 2Then

\ it is a linear system.
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 (iii) x t x t y t
T

( ) ( ) ( )æ Ææ =2

\ x t x t y t

y t x t

T
( ) ( ) ( )

( ) ( )

- æ Ææ - π -

- = -

t t t

t t

2

2 2

   since 

\ the system is not time-invariant.

Show that an ideal differentiator with input x(t) and output y(t) related by 
y t

dx t

dt
( )

( )
,=  is a linear time-invariant system.

Example 3.2

We are given that  x t y t
dx t

dt

T
( ) ( )

( )
æ Ææ =

Hence, if  x t y t y t
dx t

dt

T
1 1 1

1( ) ( ) ( )
( )

æ Ææ = then 

and if x t y t y t
dx t

dt

T
2 2 2

2( ) ( ), ( )
( )

æ Ææ = then 

also, if a x t a x t1 1 2 2( ) ( )+[ ] is given as the input,

a x t a x t y t
d

dt
a x t a x t a

dx tT
1 1 2 2 1 1 2 2 1

1( ) ( ) ( ) ( ) ( )
(

+È
Î

˘
˚ æ Ææ = +È

Î
˘
˚ =

)) ( )

dt
a

dx t

dt
+ 2

2

\ y t a y t a y t( ) ( ) ( )= +1 1 2 2

Hence, the system T, i.e., the ideal differentiator, is a linear system.
To show that it is time-invariant, consider

x t x t1( ) ( )= -t

Then x t y t
dx t

dt

T
1 1( ) ( )

( )
æ Ææ =

-t

Put t - t = l \ dt = dl and 
dx t

dt

dx

d
y y t

( ) ( )
( ) ( )

-

= = = -

t l

l
l t

\ the ideal differentiator is time-invariant.

3.2.4 Causality

A system is said to be a ‘causal system’ or a ‘non-anticipatory system’ if its output at any instant of 

time depends for its value only on the input at that instant and the previous instants but not on the input 

at future instants.
This means that a causal system is one which cannot anticipate what the future values of input would 

be and respond to those inputs now itself.

Thus, all physically realizable real-time systems must be causal.
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Note: Henceforth we shall be discussing only about linear time-invariant systems, i.e., LTI systems. 
Hence, unless otherwise specified, whenever we use the term ‘system’ it should be understood that we 
are referring only to a Linear Time-Invariant (LTI) system.

3.2.5 Impulse Response, h(t), of an LTI System

Definition The impulse response, h(t), of an LTI system is defined 
as the response of the system to a unit impulse given to it as input, 
when the system is in ground state.

Impulse Response Characterization of an LTI System

p(t)

–D/2 D/2

1/D

0 t0

x(t)

x(D) x(2D)

x(kD)
D

X(t)
~

D

D

2D–2D –D 3D 4D kD t

Fig. 3.3 (a) Signal x(t) and its approximation (b) Rectangular pulse p(t)

In Fig. 3.3(a), x(t) is some arbitrary continuous-time signal and %x (t) is its approximation. It is clear 
that %x t( ) approaches x(t) as D tends to zero. Referring to the above two figures, we may write

 %x t x k p t k
k

( ) ( ) ( )= -

=-

Â D D D  (3.2)

 x t x t x k p t k
k

( ) ( ) ( ) ( )= = -
È

Î
Í

˘

˚
˙

Æ Æ
=-
Âlim lim

D D
D D D

0 0
%  (3.3)

But,

Lt
DÆ

=
0

p t t( ) ( ),d  a unit impulse located at t = 0.

Further, kD becomes a continuous variable, say t, as D Æ 0. Also, D itself may be represented by dt. 

\ x t t t d( ) ( ) ( ) ( )= = -
Æ

-
Úlim

D
t

0
%x x t d t  (3.4)

Let us now give this signal x(t) as input to an LTI system T in ground state and with impulse response 
h(t). Then, we know that

x t y t T x t
T

( ) ( ) [ ( )]æ Ææ =

TQ1

x(t) = d(t) L.T.I System
(in ground state)

y(t) =h(t)

Fig. 3.2  Impulse response of a 
system
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\ y t T x t d x T t d

x h

( ) ( ) ( ) ( ) [ ( )]

( ) (

= -
È

Î
Í
Í

˘

˚
˙
˙

= -

=

Ú Ú t d t t t d t t

t tt d-Ú t t)

  y t x t h t x h t d x t h d( ) ( ) * ( ) ( ) ( ) ( ) ( )= = - = -Ú Út t t t t t  (3.5)

The integrals in Eq. (3.5) are called ‘convolution integrals’, or the ‘superposition integrals’.
From Eq. (3.5), we find that a knowledge of h(t), the impulse response of the system T, would enable 

us to calculate the output, y(t), of the system for any given input signal, x(t). Hence, we say that an LTI 

system is completely characterized by its impulse response function h(t).

Causality and Impulse Response Let T be an LTI system 
which is in ground state. Let a unit impulse function, d(t) be 
applied to T as input t = 0.

\ for t < 0, x(t) = 0 and because the system is in ground state, 
the output y(t), which we know, is h(t), must be zero for all 
t < 0, since the system, being causal, cannot produce an output 
in anticipation of an input which is going to be applied at t = 0. 
At t = 0, the unit impulse is applied and therefore for t ≥ 0, the 
output, h(t), need not be zero.

 \ For a causal LTI system, h(t) = 0 for t < 0.  (3.6)

In the light of Eq. (3.6), the convolution integrals, for a causal LTI system, can be written as

 y t x t h d x h t d

t

( ) ( ) ( ) ( ) ( )= - = -Ú Út t t t t t

0

 (3.7)

Step Response of an LTI System The step response, g(t), of an LTI system T, is defined as the response 

of T to a unit-step function applied as input to T at t = 0, with the system T in ground state.
Since d(t) and u(t) are related as

u t d

t

( ) ( )= Ú d l l

It follows that for an LTI system, the step response and impulse response are related through the 
following equation

 g t h d h t
dg t

dt

t

( ) ( ) ( )
( )

= \ =Ú l l  (3.8)

x(t) Causal LTI System
in ground state

y(t)

h(t)
x(t) = d(t)

T
t0

Fig. 3.4  Impulse response of a causal 
system
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An R-C lowpass filter is shown in Fig. 3.5. Find 
its impulse response and step response.

R

Cx(t) y(t)i(t)

Fig. 3.5 R-C lowpass filter

Example 3.3

Since i t C
dy t

dt
( )

( )
,=  we may write the mesh equation as:

RC
dy t

dt
y t x t

( )
( ) ( )+ =

Let us first find the impulse response and then make use of Eq. (3.8) to find g(t).
To find the impulse response h(t), put x(t) = d(t) in the above differential equation and assume the 

system to be in ground state (see definition of h(t)). Then taking the Laplace Transform on both sides 
of the differential equation, we get

RC sY s y Y s t( ) ( ) ( )-[ ]+ = >-0 1 0      for     

\ Y s
RC

s RC
( )

/

/
=

+

1

1

Now, taking the inverse Laplace transform of the above,

y t
function

( ) =
Response of the system to a unit impulse

 when  the system in ground state

¸
˝
˛

Ï
Ì
Ó

= = -h t
RC

e u tt RC( ) . ( )./
1

To find the step response, we note that

g t h d
RC

e u d

RC
e d e

t

RC

t

Rc

t

( ) ( ) ( )/

/

= =

= -

-

- -

Ú Ú

Ú

l l l l

l

l

l

    
1

1
1

0

tt RC u t/ ( )[ ]   

Alternatively, we may determine g(t) by putting x(t) = u(t) in the differential equation of the system, 
and solving it assuming the initial condition to be zero. Once g(t) is obtained, we can differentiate it 
with respect to time to get h(t).

0
(b)

t

g(t)

1

0
(a)

t

h(t)

1/RC

Fig. 3.6 (a) Impulse response and (b) Step-response of an R-C lowpass filter
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The impulse response and the step response of the given lowpass R-C filter are plotted in Figs 3.6(a) 
and (b) respectively.

A particular LTI system has h(t) = e -2t u(t). Determine its output signal y(t) 
corresponding to an input signal x(t) = u(t).

Example 3.4

y t x t h t e u t u t dt( ) ( ) ( ) ( ) ( )= * = --Ú 2

0

t t

since u(t) = 0 for t < 0 and u(t - t) = 0 for t > t

y t e d e et

t

t

t

t( ) = = - = -( )- -

=

-Ú 2

0

2

0

2
1

2

1

2
1t

t

If x(t) and y(t) are as shown in Fig. 3.7(a) and Fig. 3.7(b) determine graphically, 
the signal z(t) = x(t) * y(t).

x(t)

A

0 T1 t

Fig. 3.7 (a) x(t)

y(t)

B

0 tT1

Fig. 3.7 (b) y(t)

Example 3.5

x(t)

A

0 tT1

Fig. 3.8 (a) x(t)

 y(–t)

B

–T2 0 t

Fig. 3.8 (b) y(-t)

x(t)
y(t– t)

A
B

Moves to the right
as t increases

–T2 + t 0 T1 t t

Fig. 3.8 (c) x(t), y(t - t)

z(t)

T1AB

0 T1 T2 T1+T2 t

Fig. 3.8 (d) z(t)

z t x y t d( ) ( ) ( )= -Ú t t t  = area under the product of x(t) and y(t - t) for t.
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From Fig. 3.8(c) the following points are evident:

 (i) When t £ 0, the product of x(t) and y(t - t) is zero, as there is no overlap of the two.
 (ii)  As t increases beyond zero, the overlap and hence the area under the product increases linearly 

with t. This continues till t = T1; and at this value of t, the area under the product, i.e., z(t), takes 
the maximum value equal to ABT1.

 (iii)  As t increases beyond T1, the overlap area and hence z(t) will remain constant till t = T2. When 
this value is reached, the left-side edge of y(t - t) coincides with the y-axis, and any further 
increase in t beyond t = T2 will make the overlap area to linearly decrease with time.

 (iv)  When t reaches the value T1 + T2, the left side edge of y(t - t) coincides with the right-side edge x(t) . 
Hence the overlap area and hence z(t) becomes zero and remain at the at that value for all t > (T1 + T2).

 (v)  Signal z(t) will have a trapezoidal shape in this case, the height of the trapezium being ABT1 
(since T1 < T2). The total base width of the trapezium = T1 + T2.

 (vi)  In case T1 = T2 = T, z(t) will have a triangular waveform with height equal to ABT and base width 
equal to 2T.

The input x(t) and the corresponding output y(t) of a causal LTI system T are 
as shown in Fig. 3.9(a) and (b) respectively. Find the impulse response function h(t) of the system.

(a)

x(t)

2

0 3

(b)

y(t)

0 3

–3

Fig. 3.9 (a) Input x(t) (b) Output y(t)

Example 3.6

We know that for an LTI system, if  x n y n
T

( ) ( )æ Ææ , then  & &x n y n
T

( ) ( )æ Ææ

In this problem, x t u t( ) ( ).= -2 3  Therefore, &x t t( ) ( ).= -2 3d

Since the system T is causal and since y(t) is increasing linearly with time from t = 3 with a gradient of 1,

&y t u t( ) ( )= - 3

\ 2d ( ) ( )t u t
T

- æ Ææ -3 3

or d ( ) ( )t u t
T
æ Ææ

1

2
 (Q system is LTI)

\ impulse response function h(t) = 
1

2
u(t).

3.2.6 Stability

One important way of defining stability of a system, is in terms of the ‘Bounded-Input, 
Bounded-Output’ stability criterion or the BIBO criterion.
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A signal x(t) is said to be a bounded signal, bound to a value M, where M is a finite real positive 
number, provided the magnitude of x(t) never exceeds M; i.e., provided |x(t)| £ M for all ‘t’,  < t < .

Criterion The BIBO stability criterion says that a system T is stable if every bounded input given to it 

results in an output signal which is also bounded.
Using the above criterion, we shall now derive the conditions required to be satisfied by an LTI system 

with impulse response h(t), if it is to be stable in the BIBO sense.

Theorem 3.1 An LTI system T with impulse response h(t), is stable in the BIBO sense iff h(t), is 

absolutely integrable.

i.e., iff h t dt   | ( ) |Ú

Proof (i)  The forward implication which states that system T is stable if its impulse response function 
is absolutely integrable.

Let x(t) be any arbitrary bounded signal, bound to M, a positive finite real number. Let 
x(t) be given as input to T. Then we know that y(t), the output is given by

y t x t h d( ) ( ) ( )= -Ú t t t

\ y t x t h d x t h d( ) ( ) ( ) ( ) ( )= - £ -Ú Út t t t t t     

But x t h d x t h d( ) ( ) ( ) ( )- = -Ú Út t t t t t

Since the maximum possible value of |x(t - t)| for any t, is M, we may write:

x t h d M h d( ) ( ) ( )- £Ú Út t t t t       

\ y t M h d( ) ( )£ Ú t t

Since M is finite and the integral of the absolute value of h(t) is also given to be finite, it follows that 
|y(t)| is always less than or equal to some finite positive real number. Hence a bounded signal is obtained 
as the output for any arbitrary bounded input signal.

Hence, T is stable in the BIBO sense.
(ii)  The reverse implication states that an LTI system T with impulse response h(t) cannot be stable in 

the BIBO sense if h(t) is not absolutely integrable.
To prove this, we choose a particular x(t) which is known to be a bounded signal, give it as input 

to T and show that if h(t) is not absolutely integrable, then the resulting output signal y(t) cannot be a 
bounded signal; i.e., that T cannot be a stable system in the BIBO sense.

Consider

 x

if h

if h

if h

( )

( )

( )

( )

t

t

t

t

=

- >

- - <

- =

Ï

Ì
Ô

Ó
Ô

1 0

1 0

0 0

      

   

     

 (3.9)
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Since |x(t)| is either 1 or zero, x(t) is obviously a bounded signal, bound to a value 1. When it is given 
as input to T, the output is given by

 y t x h t d( ) ( ) ( )= -Ú t t t  

\ y x h d h d( ) ( ) ( ) ( )0 = - = -Ú Út t t t t  from Eq. (3.9)

\ y h d h d( ) ( ) ( )0 = - =Ú Út t t t

But 

h d( )t t

-
Ú is not finite (given)

\ y(0) is not finite. \ y(t) is not a bounded signal even though x(t) is. Hence, T is not stable. 

\ An LTI system with impulse response h(t) is stable in the BIBO sense iff h t dt( )Ú

Examine the stability of the 
system shown in Fig. 3.10.

Example 3.7
L= 1/6 H

R

= 1/5Wx(t)
C

1F
i1(t) i2(t) y(t)

Fig. 3.10 System for Example 3.7

By writing down Kirchhoff’s mesh equations for the two loops, and eliminating i1(t) and i2(t), we get 
the differential equation as

LC
d y t

dt

L

R

dy t

dt
y t x t

2

2

( ) ( )
( ) ( )+ + =

To examine the BIBO stability, we have to first find h(t), of the system. So, let us replace x(t) by 
d(t) in the above differential equation, take the Laplace transform on both sides and assume zero initial 
conditions.

LC s Y s sy y
Ls

R
Y s

L

R
y Y s

Y s LCs
L

R

2

2

0 0 0 1( ) ( ) ( ) ( ) ( ) ( )

( )

- -[ ]+ - + =

+

- - -&

ss +
È

ÎÍ
˘

˚̇
=1 1i.e.,
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\ Y s

LCs
L

R
s s s

s s

s s

( ) =

+ +

=

+ +

=

+ +

=
-

+

+

+

1

1

1

1

6

5

6
1

6

5 6

6

3

6

2

2 2
2

Now, taking the inverse Laplace transform on both sides,

y t h t e e u tt t( ) ( ) ( )= = -[ ]- -6 2 3  

\ h t dt e e dt e e dtt t t t( ) - - - -Ú Ú Ú= - = -( ) =      6 6 12 3

0

2 3

0

\ h t dt( )Ú  is finite and the given system is stable in the BIBO sense.

3.2.7 Eigensignals of a System

Suppose we give a sinusoidal signal of some frequency as input to a linear amplifier. The output signal 
is also a sinusoidal signal of the same frequency, but perhaps with an amplitude and phase different 
from those of the input signal. But suppose we now give a rectangular waveform, or any non-sinusoidal 
waveform as the input signal and observe the output waveform. We find that the output waveform is 
not exactly similar in shape to the input waveform — the leading and trailing edges will not be vertical 
and there will be a droop in the tops of the pulses. Why was the output waveform having exactly the 
same shape as the input waveform when the input was a sinusoidal signal, and not when the input was 
a rectangular waveform? The answer is that a sinusoidal signal of any frequency is an ‘eigensignal’ of 
the linear amplifier, while the rectangular waveform signal is not.

Definition An eigensignal of a system T is a signal, which when given as input to the system T, gives 

rise to an output signal which is essentially the same as the input signal except for a change in the 

amplitude and possibly a shift in time.

Complex Exponentials as Eigensignals of LTI Systems Consider a stable LTI system T, with an impulse 
response h(t). Since the system is stable, its h(t) is absolutely integrable and therefore, has a Fourier 
transform. Now, assume that a complex exponential signal

x t e j t( ) ,= w0

where, w0 may be any real number, is given as input to the LTI system T. Let the corresponding output 
signal be y(t).

Then, y t x t h d e h dj t( ) ( ) ( ) ( )( )= - = -Ú Út t t t t
w t0

\ y t e h e d e H fj t j j t

f f
( ) ( ) ( ) ,= =-

=Úw w t w
t t0 0 0

0

 (3.10)

where H f h t( ) ( )= [ ]F , and is called the ‘transfer function’, or, ‘frequency response function’ of the 
system T. H(f0) which is the value of the complex-valued frequency function H(    f    ) at the frequency f0, 
the input signal frequency, is in general, a complex number.
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Thus, from Eq. (3.10), we find that when the complex exponential of some arbitrary frequency f0 is 
given as input to an LTI system with some h(t), which of course is absolutely integrable so as to make 
T stable, but otherwise arbitrary, the output is equal to a complex number H(f0) times the input signal.

Hence a complex exponential of any frequency is an eigensignal of any LTI system

Once e j tw0  is known to be an eigensignal, it is an easy matter to prove that all sinusoids, whatever 
may be their frequency, are eigensignals of all LTI systems.

Transfer Function of an LTI System If the input and output signal waveforms are of the same shape, 
but their amplitudes are different, it makes sense to take the ratio of output to input and this ratio, which 
yields a complex number in general, may be called as the complex gain of the system. From Eq. (3.10) 
we may write:

 
y t

x t
H f

x t e j t

( )

( )
( )

( )=
=

w0
0  (3.11)

H(f0) thus represents the complex gain of the system at the frequency f0. Thus H(  f  ) is the complex 
gain as a function of frequency and is therefore called the ‘frequency response function’ or ‘transfer 

function’ of the system. Since H(    f    ) is in general, complex, we may write:

 H f H f e j f( ) ( ) ( )= q  (3.12)

In Eq. (3.12), |H(    f    )| represents the magnitude of the gain of the system as a function of frequency, 
while q (    f    ) represents the phase shift (introduced by the system) as a function of frequency.

Hence, a plot of |H(    f    )| vs f is called the magnitude response of the system, and a plot of q (    f    ) vs f 
is called the phase response of the system.

For the LTI system described by the differential equation

dy t

dt
y t x t

( )
( ) ( )+ =6

Determine the impulse response function and plot the magnitude and phase responses.

Example 3.8

Taking the Laplace transform on both sides with x(t) equal to d(t) and all initial conditions as zero, 
we get

sY s Y s X s

Y s s Y s
s

h t y t e u tt

( ) ( ) ( )

( )[ ] ( )

( ) ( ) ( )

+ = =

+ = \ =
+

= = \-

6 1

6 1
1

6

6 HH f
j f

H f
f

f
f

( )

( ) ( ) tan tan

=
+

=
+

= - Ê
ËÁ

ˆ
¯̃
= -- -

1

6 2

1

36 4

2

62 2

1 1

p

p

q
p

and
pp

3
f

Ê
ËÁ

ˆ
¯̃

The magnitude and phase responses are as shown in Fig. 3.11(a) and (b) respectively.
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Fig. 3.11 (a) Magnitude response (b) Phase response

f

q(f)

5 6 7 8 9 10–7–8–9–10 4321–5–6 –4 –3 –2 –1 0

90°

60°

30°

–30°

–60°

–90°

|H(f)|

0.167

f5–5 4–4 3–3 2–2 1–1 0

SIGNAL TRANSMISSION THROUGH LTI SYSTEMS
3.3

In this section, we shall discuss two specific aspects of transmission of a signal through an LTI system: 
(i) un-distorted transmission of a signal through an LTI system, and (ii) Filtering action of LTI systems. By 
undistorted transmission, we mean that the signal, during its passage through the system, does not suffer 
any distortion, except possibly a change in its amplitude and a time-delay. By filtering we mean changing 
of the spectrum of the input signal in some desired manner by passing the signal through an LTI system.

3.3.1 Distortionless Transmission through an LTI System

From our discussion on eigensignals in the previous section, it should not be concluded that only an 
eigensignal can pass through an LTI system without distortion. While an eigensignal can pass through 
any LTI system without distortion, any signal can pass through an LTI system without distortion provided 

the system satisfies certain conditions. We will now see what those conditions are.
As stated earlier, in distortionless transmission, the shape of output signal waveform is exactly the 

same as that of the input signal except possibly for a change in its amplitude and some time-delay. 
Hence, for such systems

 y t Ax t( ) ( )= -t  (3.13)

In the above equation, A represents the amplification (or attenuation) and t represents the time-delay. 
Taking the Fourier transform on both sides of Eq. (3.13), we get

 Y f AX f e j f( ) ( )=
- 2p t  (3.14)

But we know that y t x t h t( ) ( ) ( )= *

and hence Y f X f H f( ) ( ) ( )= ◊

or, 
Y f

X f
H f

( )

( )
( )= = Transfer function of the system

\ from Eq. (3.14), we have,

 
Y f

X f
H f Ae j f

( )

( )
( )= =

- 2p t  (3.15)
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From Eq. (3.15), it follows that for a distortionless transmission system

 (a) The amplification/attenuation, given by |H(    f    )|, is a constant, independent of frequency
 (b) The phase-shift, or phase-delay, given by q (    f    ) = –H(    f    ) = -2pft, is proportional to frequency

From the above, it follows that the magnitude response and phase response of a distortionless 
transmission system (LTI) can be depicted as shown in Figs 3.12(a) and (b) respectively.

|H(f)|

A

0 f

(a)

slope=–2pt
q(f) =–H(f)

0
f

(b)

Fig. 3.12 (a) Magnitude response (b) Phase response of a distortionless transmission system

However, no physical system can have a constant gain and a linear phase response for all frequencies. 
A physical system may, however, fulfill the above two requirements, at least approximately, over some 
range of frequencies—the gain may fall and the phase response may not be linear, outside this range of 
frequencies.

No practical signal can extend in time from minus infinity to plus infinity. All practical signals must 
have only finite duration. This implies that their spectrum must extend from minus infinity of frequency 
to plus infinity of frequency. Although a signal may have its frequency components extending from  
to , fortunately, the amplitude of these frequency components become insignificantly small beyond 
some frequency. In other words, most of the energy of the signal is contained in some finite bandwidth.

From the foregoing discussion, we realize that gain of a system falling outside some range of 
frequencies, and spectrum of a signal too becoming insignificant beyond some frequency, underscore 
the need for defining terms like ‘system bandwidth’ and ‘signal bandwidth’, and then re-interpret the 
conditions for distortionless transmission of a signal through an LTI system in terms of these two.

Signal Bandwidth Even if the spectrum of a signal extends theoretically upto infinity, we define its 
bandwidth as the width of only that part of its spectrum which contains some specified percentage 
(say 95%) of the total energy of the signal. Note that 
eventhough we generally draw a two-sided spectrum (in 
which the frequency refers to the frequency of a complex 
exponential and not of a co-sinusoid), the bandwidth is 
always specified in terms of positive frequency only, i.e., 
frequency of co-sinusoids. These concepts are illustrated 
in Fig. 3.13. 

Thus, for the signal whose magnitude spectrum is shown 
in Fig. 3.10, f0 is called the signal bandwidth, since

X f df

X f df

f

f

( )

( )

.

2

2

0

0

0 95
-
Ú

Ú

=

|X(f)|

–f0 f00 f

Fig. 3.13  Two-sided spectrum of an arbitrary 
signal, the bandwidth of which is 
specified as f0 Hz
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System Bandwidth As stated earlier, for any physical system, the magnitude response characteristic 
cannot be absolutely flat for all frequencies because of the ever-present parasitic capacitances across 
the output terminals, which tend to reduce the gain of the system at very high frequencies. Figure 3.14 
shows the frequency response of a system. Theoretically, this response extends up to infinite frequency, 
as the response is going down to zero only asymptotically. Note that the gain takes a maximum value 
and is fairly constant over a certain frequency range, and falls off on either side. One way of defining 
the system bandwidth in such a case is to identify the frequency range over which the frequency response 
does not fall below 0.707 of the maximum value and call it as the system bandwidth. In Fig. 3.14 it is 
the frequency range from fl to fh. This bandwidth (fh - fl), is called as the half-power bandwidth, or the 
3-db bandwidth.

|H(f)|
Am

0.707Am

0 fhfl f1 f2 f

Fig. 3.14 Frequency response characteristic of a system and the spectrum of an input signal

In Fig. 3.14 the signal bandwidth f1 to f2 lies within the system bandwidth, fl to fh. Thus, all the 
significant frequency components of the signal experience almost the same gain, as the frequency 
response characteristic of the system is fairly flat from f1 to f2. Hence, in so far as this signal is 
concerned, there will be almost distortionless transmission of it through this system, provided the phase 
response of the system is linear over the range of frequencies of interest, i.e., f1 to f2. In so far as the 
linear phase response requirement is concerned it can be shown that this imposes a constraint on the 
system that its h(t) must be symmetrical about t = t, the time-delay introduced by the system and that 
h(t) must be maximum at t = t.

An LTI system is a distortionless transmission system with gain A which is 
independent of frequency and with a constant time-delay t. Show that its h(t) must be symmetrical 
about t = t and that it has the maximum value at that point.

Example 3.9

Since T is a distortionless transmission system, we know that its transfer function can be written down as

H f H f e Aej f j f( ) ( )= =
- -2 2p t p t

Taking the inverse Fourier transform on both sides,

h t Ae e dfj f j f t( ) .= -Ú 2 2p t p  

= = +- - - - - -Ú Ú ÚA e df A e df A e dfj f t j f t j f t2 2

0

2

0

p t p t p t( ) ( ) ( )

= +- - -Ú ÚA e df A e dfj f t j f t2

0

2

0

p t p t( ) ( )



108 Analog Communication

If we put t = t + t1 where, t1 is an arbitrary real number,

h t A ft df
t t

( ) cos
= +

= Ú
t

p

1

2 2 1

0

Similarly h t A ft df
t t

( ) cos
= -

= Ú
t

p

1

2 2 1

0

\ h t h t
t t t t

( ) ( )
( ) ( )= + = -

=

t t1 1

Thus, h(t) has even symmetry about t = t. Also, since

h t A f t df( ) cos ( )= -Ú2 2p t

and since cos 2pf(t - t) = cos 0 = 1 for t = t, h(t) takes the maximum value at t = t.

3.3.2 Filtering Action of LTI Systems

A filter is a system which is specifically designed to modify the spectrum of any input signal in 
some desired manner. A properly designed LTI system can work as a filter, as may be seen from the 
following.

Let T be an LTI system with impulse response, h(t). Let x(t) be given as input signal to T and let the 
corresponding output signal be y(t). Then, we know that

y t x t h t( ) ( ) ( )= *

where, * denotes linear convolution operation. Taking Fourier transform of the above on both sides,

 Y f X f H f( ) ( ) ( )= ◊  (3.16)

Thus, the spectrum X(  f  ) of the input signal is modified by the transfer function H(  f  ) of the system 
to give us the spectrum Y(  f  ), of the output signal y(t). From Eq. (3.16) we may write

 Y f e X f e H f ej f j f j fy x H( ) ( ) ( )( ) ( ) ( )q q q
= ◊  (3.17)

\ Y f X f H f( ) ( ) ( )= ◊  (3.18)

and q q qy x Hf f f( ) ( ) ( )= +  (3.19)

Equations (3.18) and (3.19) show respectively, how the transfer function of the system modifies 
magnitude spectrum and the phase spectrum of the input signal. It must, however, be noted that |H(  f  )| 
and qH(  f  ) of a stable, causal LTI system cannot be specified independently, as the real and imaginary 
parts of H(  f  ) of such a system are Hilbert transforms of each other.

Ideal Filters Applications arise, quite often, wherein we will be interested in transmitting not the 
entire spectrum of a signal, but only certain frequency band/bands in it. We make use of filters for 
this purpose. 

The bands of frequencies transmitted through a filter without any appreciable attenuation are called 
the passbands and the bands of frequencies which are highly attenuated, are called the stopbands of the 
filter. Depending on the type of filter, there may be one or more passbands and stopbands.
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A filter which transmits, without any attenuation, all frequencies of the input signal that are less than 
a certain frequency, called the cutoff frequency and rejects all frequencies above it, is called a lowpass 

filter. A filter whose stopband is below a certain cutoff frequency and its passband above that frequency, 
is called a highpass filter. Other types of filters which are of interest are the bandpass filter, which passes 
a certain specified band of frequencies from say fl to f2 and rejects all other frequencies, and the band-

stop or band-rejection filter which eliminates all frequencies within a certain specified band and passes 
all other frequencies.

Ideal Lowpass Filter Consider an ideal lowpass filter with a passband gain A, passband width B Hz and 
a linear phase response with a slope of -2pt. Then its transfer function is

 H f A f B e j f( ) ( / )= ’ -2 2p t  (3.20)

Taking the inverse Fourier transform, we get its impulse response function as

 h(t) = 2AB sinc 2B(t - t) (3.21)

The magnitude response, phase response and impulse response functions of this ideal LPF are shown 
in Fig. 3.15.

|H(f)|

B0

A

–B f

Fig. 3.15(a)  Magnitude response of 
an ideal LPF

Slope=–2pt

–B B f

q(f)

Fig. 3.15(b)  Phase response of an 
ideal LPF

h(t)

2AB

t – (1/B)

t– (1/2B)t– (3/2B) t+ (1/2B) t+ (1/B)t

t

Fig. 3.15(c) Impulse response h(t) of an ideal LPF

Highpass Filter Consider an ideal high pass filter with 
passband gain A, cutoff frequency fc and time-delay 
t0 second. Its transfer function may be written as

 H f H f e j f( ) ( ) ( )= q  (3.22)

where H f A f fc( ) ( / )= - ’[ ]1 2  (3.23)

and q p( )f ft= -2 0  (3.24)

The magnitude response and phase response of this 
Ideal HPF are shown in Fig. 3.16.

H(f) q(f)

A

–fc
0 fc f

Fig. 3.16  Magnitude and phase response of an 
ideal HPF
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Find the impulse response hHP(t) of an ideal highpass filter with a passband gain 
of A, cutoff frequency of fc Hz and a linear phase response with a slope of -2pt0.

Example 3.10

The transfer function H(  f  ) of an ideal HPF, we may write as

H f H f e j f( ) ( ) ( )= q

where, H f A f fc( ) ( / )= -[ ]1 2P

and q p( )f t f= -2 0

\ h t H f A A f f ec
j t f( ) [ ( )] ( /= = -[ ]{ }- - -F F1 1 22 0P p

= -ÈÎ ˘̊- - -F 1 2 20 02Ae A f f ej t f
c

j t fp pP( /

= ÈÎ ˘̊- [ ]* ÈÎ ˘̊- - - - -A e A f f ej t f
c

j t fF F F1 2 1 1 20 02p pP( / )

= - - [ ]* -A t t A f f t t tc cd d( ) ) ( )0 02 2sinc 

 h t A t t Af f t tc( ) ( ) ( )= - - -d 0 02 2sinc 

Since the sinc function extends in time from  to , the ideal HPF is also not a causal system and 
hence, is not physically realizable.

hHP(t)

Impulse of strength A

0 t0 t

t0–1/2fc t0+1/2fc
–2Afc sinc 2f(t–t0)

2Afc

Fig. 3.17 Impulse response of an ideal highpass filter of passband gain A and cutoff frequency fc

Ideal Bandpass Filter Consider an ideal bandpass filter with passband from fl to f2, passband gain A 
and a time delay t0 second.

Let (  f2 - f1) = B Hz and f f f
1 2 0

2=

Then H(  f  ) of the ideal BPF may be written down as

H f H f e j f( ) ( ) ( )= q

where, H f A f f B A f f B( ) ( ) / ( ) /= ’ +[ ]+ ’ -[ ]0 0  (3.25)

and q p( )f ft= -2 0  (3.26)

Taking the inverse Fourier transform of H(  f  ), we get 

 h t AB B t t f t t( ) ( ) cos ( )= -[ ] -2 20 0 0sinc p  (3.27)

The magnitude and phase responses of this ideal BPF are shown in Fig. 3.18(a) while its impulse 
response function is shown in Fig. 3.18(b).
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|H(f)| q(f)
A

–f2 –f1 0 f1 f2 f

Fig. 3.18(a)  Magnitude and phase 
response of the Ideal BPF

hBPF(t)
1/f0

2AB sinc B(t–t0)

2AB

t0–1/2B t0+1/2B t

–2AB sinc B(t–t0)

t0

Fig. 3.18(b) Impulse response of an ideal BPF

Determine the impulse response function, h(t) of an ideal BPF with passband 
gain of A and passband bandwidth of B Hz centered on f0 Hz and having a linear phase response.

Example 3.11

We have f2 - f1 = B Hz and f1 f2 = f0.
We may write

H f H f e j f( ) ( ) ( )= q

where H f A f f A f f( ) ( ) ( )= +[ ]+ -[ ]P P0 0/B /B

and q p( )f ft= -2 0

Here, (-2pt0 is the gradient of the linear phase response)

\ h t A f f B A f f B e j ft( ) ( ) / ( ) /= +{ }+ -{ }ÈÎ ˘̊{ }-F 1- P P0 0
2 0p

= +{ } + -{ }ÈÎ ˘̊- -F 1- A f f B e A f f B ej ft j ftP P( ) / ( ) /0
2

0
20 0p p

= { } * - + { } * --A B Bt e t t A B Bt e t tj ft j ft( ( ) ( ( )sinc sinc 2
0

2
0

0 0p pd d

= - + -- - -A B B t t e B B t t ej f t t j f t t[ ( )] [ ( )]( ) ( )sinc sinc 0
2

0
20 0 0 0p p{{ }

= - -2 20 0 0AB B t t f t tsinc ( )]cos ( )p

Like the ideal LPF and ideal HPF, the ideal BPF too is non-causal and hence not physically realizable.
Note: It may be noted that the impulse response functions of all these ideal filters have sinc functions in 
them. Hence, their h(t)’s extend from t  to t . Thus, h(0) π 0, for t < 0 for all these filters and 
hence they are non-causal and cannot be physically realized.

PALEY–WIENER CRITERION FOR PHYSICAL REALIZABILITY
3.4

Till now, we have been discussing the question of physically realizability of an LTI system only in terms 
of its impulse response function, h(t), being equal to zero for all negative values of time, i.e., in the 
time-domain. But, we will generally be facing the problem of determining the physical realizability, or 
otherwise, of an LTI system, given its transfer function, as in the case of filters.
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Paley–Wiener criterion can be used to test whether a system, with a given magnitude response, |H(  f  )| 
is physically realizable or not. It states that a square integrable magnitude response function |H(  f  )| is 
physically realizable if

 
| log | ( ) ||e H f

f
df

1 2+Ú  (3.28)

From this, it is clear that any magnitude response which is equal to zero continuously over a range of 
frequencies, cannot be realized physically since | log | ( ) ||e H f  becomes infinitely large for such a case. 
It may be noted that every ideal filter, LPF or HPF or BPF or BSF, has its magnitude response staying 
at zero values over a certain continuous range of frequencies, i.e., over the entire stop bands. Hence, 
they are not physically realizable.

Further, Eq. (3.28) suggests that the magnitude response of a physically realizable system cannot rise 
or fall suddenly, as is the case with all the ideal filters. Suppose, for instance, that

H f Ae f( ) = -[ ]

The magnitude response is decreasing here at a rate corresponding to an exponential order. From 
Eq. (3.28), we find that this magnitude response does not violate the Paley–Wiener criterion and so is 
physically realizable. But suppose

H f Ae f( ) = -
2

The rate of change of the response, in this case, is more than the exponential order; and we find that 
when this magnitude response is substituted in Eq. (3.28), it violates the Paley–Wiener criterion and 
therefore it is not causal, i.e., it is not physically realizable.

Thus, this criterion enables us to determine directly, without going into the time-domain, whether a 
given magnitude response function is physically realizable or not.

SYSTEM BANDWIDTH AND RISE TIME
3.5

Whenever pulses with steep leading and trailing edges are transmitted through let us say, a cable, or a pair 
of wires, we find that the pulses obtained at the receiving end will have leading and trailing edges with 
finite slopes. The steepness of say, the leading edge, is expressed in terms of what is called the rise-time, 
which is the time taken by the pulse to rise from 10% of its final value to 90% of its final value. Thus, 
even though the input pulses may have zero rise-time, the output pulses have a non-zero, finite rise-time. 
This is due to the fact that while a pulse with very steep leading and trailing edges has considerable high-
frequency components, the cable or pair of wires used for transmission, has poor magnitude response at 
those high frequencies; that is, the poor bandwidth of the cable or transmission lines, is responsible for 
the non-zero rise-time of the output pulses. We shall therefore examine the relationship between bandwidth 
and rise-time. For this purpose, we shall model the leading edge of the input pulse by a unit-step function 
and the cable or transmission line by a lowpass filter, say, a first-order RC lowpass filter, or an ideal LPF.

Find the relation between bandwidth 
and the rise-time of a pulse in the case of the first-order R-C 
lowpass filter shown in Fig. 3.19.

Example 3.12

x(t) y(t)c

R

Fig. 3.19 First-order R-C lowpass filter
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The differential equation is 

RC
dy t

dt
y t x t

( )
( ) ( )+ =

Taking Fourier transform on both sides, we get

 
Y f

X f
H f

j fRC

( )

( )
( )= =

+

1

1 2p
 (3.29)

In Example 3.3, we have shown that the unit-step response, g(t) of the system, is given by

 g t e u tt RC( ) ( ) ( )/
= -

-1  (3.30)

|H(f)|

1

1/√2

0 fc=B f

Fig. 3.20  Magnitude response of a 
first-order RC lowpass filter

t1t2
tr0

0.1

0.9

g(t)

1

t

Fig. 3.21  Unit-step response of a first-order 
RC lowpass filter

The 3db frequency fc of this filter is such that

H f
f fc

( )
=

=
1

2

This gives f B
RC

c = =
1

2p
 \ =RC

B

1

2p

Substituting this for RC in Eq. (3.30) we get 

 g t e u tBt( ) ( ) ( )= -
-1 2p  (3.31)

Referring to Fig. 3.21,

 g t e
t t

Bt( ) ( ) .
=

-

= - =

1

11 0 92p  (3.32)

 g t e
t t

Bt( ) ( ) .
=

-

= - =

2

21 0 12p  (3.33)

From Eq. (3.32) and (3.33), we have

e eBt Bt- -

= =
2 2

1 20 1 0 9p p. .and

\ e B t t2 1 2 0 9p ( ) .-

=

Taking logarithm to the base e on both sides,

( )
log

.
.t t t

B Br

e

1 2

9

6 28
0 35

- = = = =Rise time
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Thus,

 t
B

r
=

0 35.
 for a first order RC lowpass filter  (3.34)

Rise Time with an Ideal LPF We will now model the cable or transmission line as an ideal LPF with 
cutoff frequency B Hz. Let the magnitude response be as shown in Fig. 3.22.

Without loss of generality, we shall further assume that the time-delay t, of the ideal LPF is zero. 
Then, from Eq. (3.21), we have

 h t B Bt( ) = 2 2sinc  (3.35)

The step-response g(t) is given by

 g(t) = =Ú Úh d B B d

t t

( )l l l l2 2 sinc   (3.36)

Put t = 2Bl we get,

 g t d d

Bt

( ) = +Ú Úsinc  sinc  

0 2

t t t t

- 0

 (3.37)

But, sinc  sinc  

0

t t t td dÚ Ú= =
0

1

2
   (3.38)

The other integral in Eq. (3.37) has to be evaluated numerically or by referring to the table of ‘sine 
integral function’, Si(q), where

 Si
x

x
dx( )

sin
q

q

      D
0

Ú  (3.39)

Since

sinc     t
pt

pt

D
sin

Putting x = pt, we get

 Si
x

x
dx d( )

sin
/

q p t t

q q p

      sinc  

0

D
0

Ú Ú=  (3.40)

A plot of the above sine integral function, Si(q), is given in Fig. 3.23.
From Eq. (3.39), we have

 
1

p
q t t

q p

Si d( )

/

= Ú sinc  

0

 (3.41)

Now, reverting to Eq. (3.37), and recalling that our interest is in evaluating g(t),

 g t d Si

Bt

( ) ( )= + = +Ú
1

2

1

2

1
2

sinc  

0

t t
p

q  (3.42)

1

0 f

|H(f)|

B–B

Fig. 3.22  Magnitude response of an 
ideal LPF
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–3p 3p–5p/2 5p/2–3p/2 3p/2–p/2

–1/4B

1/4B

0

–1/2B

1/2B

–3/4B

3/4B

–1/B

1/B t

p/2

p/2

p/2

Si(q)

Æ q–p p–2p 2p

Fig. 3.23 The sine integral function

\ putting 
q

p
= 2Bt , we have

 t
B

=
q

p2
 (3.43)

Using Eq. (3.42) and Eq. (3.43), we plot g(t) vs t; and 
this is shown in Fig. 3.24.

Now, let us find the slope of g(t) at t = 0. From 
Eq. (3.42),

 
d

dt
g t

d

dt
d B

t

Bt

t
( )

= =
= +

È

Î
Í
Í

˘

˚
˙
˙

=Ú
0

2

0

1

2
2sinc  

0

t t  (3.44)

Approximating the portion of g(t) between g(t) = 0 to g(t) = 1 to a straight line, we find the slope of 

this to be 2B. Hence, the time taken to increase from g(t) = 0 to g(t) = 1 is 1
2B( ) .

Thus, the time required by g(t) to increase from a value of 0.1 to 0.9, which is the rise time tr, is given by

t
B B

r
@ @

0 8

2

0 4. .

\ t
B

r
=

0 4.
 for an ideal LPF of bandwidth B Hz  (3.45)

SUMMARY

 1.  A system may be defined as an entity which acts on one or more inputs (or excitations) and produces 
one or more responses.

Input Signal Single input-single
Output System T

Output Signal

x(t) y(t)

T

x(t) y(t)

 2.  Continuous-time systems These are defined as those systems which take continuous-time signals 
as input and produce continuous-time signals as output.

g(t)

1

0.5

–1/2B 0 1/2B 2/2B 3/2B 2/B t

Fig. 3.24 Response of an ideal LPF to a unit step
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 3.  Discrete-time systems It takes a discrete-time signals as input and produces another discrete-time 
signal as output.

 4.  Static systems A system is said to be static or memoryless, or instantaneous, if its present output is 
determined entirely by its present input only. Static systems have their input-output relation described 
by algebraic equations.

 5.  Dynamic systems A system is said to be dynamic, or with memory, if its present output depends 
for its value not only on the present input, but also on some past inputs. Dynamic systems have 
their input-output relation described by different equations.

 6.  Linear and non-linear systems Let T be a continuous-time system which is at rest (i.e., all its 
energy storage elements are devoid of any stored energy). Let an input signal x1(t) given to T result 
in an output signal y1(t); and an input x2(t) result in an output y2(t). Then the system T is said to 
be linear if for any pair of arbitrary constants a1 and a2, an input of [a1x1(t)

+ a2x2(t)] given to the 
system T results in an output of [a1y1(t)

+ a2y2(t)]. A continuous-time system not satisfying the above 
condition is said to be ‘non-linear’.

 7.  Time-invariant and Time-varying systems Let x t y t
T

( ) ( )æ Ææ . Then T is said to be a time-invariant 
system if for any real number t, x t y t

T
( ) ( )- æ Ææ -t t . If this condition is not satisfied, the system 

is said to be time-varying.
 8.  Causal systems A system is said to be a ‘causal system’, or a ‘non-anticipatory’ system, if its output 

at any instant of time depends for its value only on the input at that instant and some previous 
instants, but not on the input at future instants.

 All physically realizable real-time systems must be causal.
 9.  Impulse response, h(t) of an LTI system The impulse response, h(t), of an LTI system is the 

response of the system to a unit impulse given to it as input when it (the system) is at rest.
10.  Complete characterization of an LTI system The h(t) of an LTI system completely characterizes 

the system in the sense that a knowledge of h(t) enables us to determine the response of the system 
for any arbitrary specified input.

y t x t h t x h t d x t h d( ) ( ) ( ) ( ) ( ) ( ) ( )= * = - = -Ú Út t t t t t

 These integrals are known as convolution integrals.
11.   h(t) of a causal system For a causal LTI system, h(t) = 0 for t < 0.
12.  Relation between step response and impulse response

If g(t) is unit step response, then h t
dg t

dt
( )

( )
=

13.  Bounded signal A signal, x(t), is said to be a bounded signal, bound to a value M, where M is a 
positive real number, provided the magnitude of x(t) never exceeds M.

14.  BIBO stability criterion A system T is stable in the bounded-input, bounded-output sense, provided 
every bounded input given to it results in an output signal that also bounded.

15.  BIBO stability theorem An LTI system T is stable in the BIBO sense iff its impulse response, h(t) 

is absolutely integrable, i.e., if and only if h t dt( )Ú .

16.  Eigensignals of an LTI system An eigensignal of a system T is a signal, which, when given as 
input to the system, gives rise to an output signal which is essentially the same as the input signal 
except for a change in the amplitude and possibly a shift in time. For an LTI system, a complex 
exponential of any frequency is an eigensignal.
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17.  Transfer function or frequency response of an LTI system The transfer function, or the frequency 
response, H(  f  ) of an LTI system is the Fourier transform of its impulses response. It is the ratio 
of the output to the input of the LTI system when the input is the eigensignal exp(j2pft).

18.  Magnitude and phase responses of a system
 A plot of |H(  f  )| vs frequency is called the magnitude response.
 A plot of –H(  f  ) vs frequency is called the phase response.
19.  For any real system, magnitude response will have even symmetry and the phase response will have 

odd symmetry.
20.  Condition for distortionless transmission For distortionless transmission through LTI system, the 

system’s magnitude response, |H(  f  )| should be a constant, independent of frequency and its phase 
response q (  f  ) = –H(  f  ) should be proportional to frequency.

21.  Ideal lowpass filter For an ideal LPF with passband gain A, passband bandwidth B and a 
linear phase response with a slope of -2pt, impulse response h t AB B t( ) ( )= -2 2sinc t  and 
H f A f B e j f( ) ( / )= -P 2 2p t .

22.  Ideal bandpass filter For an ideal BPF with passband from f1 to f2, passband gain A and a time-
delay t0 sec,

H f A f f B A f f B f ft( ) [( ) / ] [( ) / ]; ( )= + + - = -P P0 0 02q p

 and h t AB B t t f t t( ) sin ( ) cos ( )= -[ ] -2 20 0 0c p

23.  Paley–Wiener criterion It permits us to determine the physical realizability, or otherwise of an LTI 
system directly from the transfer function H(  f  ) of the system.

 It says that an LTI system with a given |H(  f  )| which is square-integrable, is physically realizable if

log ( )

( )

e H f

f
df

1 2+Ú

24.  Rise-time and bandwidth (i) For a first-order R-C lowpass filter, Rise time t
B

r
=

0 35.
 where, B is 

its half-power bandwidth.

 (ii) For an ideal LPF of bandwidth B Hz, the rise time t
B

r
=

0 4.
.
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REVIEW QUESTIONS

1.  Define the terms: ‘static system’ and ‘dynamic system’. Give one example for each of these.
2.  How do you define ‘linearity property’ of a system?
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 3.  The input-output relationship of a system is as shown in Fig. RQ-1.
 (a) Is this system linear? Justify your answer.
 (b) Is this system static or dynamic? Why?

 4.  The impulse response of a certain system is h t A
t T

T
( )

/
=

-Ê
ËÁ

ˆ
¯̃

P
2

. 

Is this system static or dynamic? Why? What is the input–output 
relationship for the system?

 5.  Define the ‘time-invariance’ property of a continuous-time system? 
Give examples of a time-varying system.

 6.  Define the terms: (a) Impulse response (b) Causality, as applied to systems.
 7.  What is the relationship between ‘impulse response’ and ‘step response’ of an LTI system?
 8.  What is the condition on the impulse response of an LTI system for the system to be stable in the 

BIBO sense?
 9.  Define the terms: ‘eigensignal’ and ‘transfer function’ of a stable LTI system.
10.  State the two conditions required to be satisfied by an LTI system for an input signal to pass through 

it without any distortion?
11.  Why are the ideal LPF, HPF and BPF not physically realizable?

PROBLEMS

1.  Determine whether the following systems with the given input–output relationship are linear or non-
linear, static or dynamic, time-invariant or time-varying and causal or non-causal.
(a) y t x t( ) ( )= + 5   (b) y t x t( ) ( )= +2 3   (c) y t x t( ) ( )= 2

(d) y(t)

2

0 1 3 5 t

x(t)

2

0 2 t

  (e) y t x t( ) | ( ) |=

(f ) y t x d

t

( ) ( )= Ú l l   (g) y t
d

dt
x t( ) ( )=  

(h) y t x t( ) ( )= +5 2 3   (i) y t x te( ) log | ( ) |=

 2.  Determine whether the following systems are static or dynamic, linear or non-linear, time-invariant 
or time-varying, causal or non-causal.

(a) 2 4 6 3
dy t

dt
y t x t

( )
( ) ( )+ + =  (b) 3 10 2

dy t

dt
y t x t

( )
( ) ( )+ =

(c) 2 4
dy t

dt
ty t x t

( )
( ) ( )+ =  (d) 5 2 32

dy t

dt
y t x t

( )
( ) ( )+ =

 3.  Show that an ideal integrator is an LTI system.
 4.  Obtain the impulse response and the transfer function H(  f  ) of the following system. Plot its 

magnitude response.
 5.  Find the impulse responses of the systems given in Problems 2(a) and 2(b).
 6.  The input x(t) and the corresponding output y(t) of a causal LTI system T are as shown in Fig. P-3.2. 

Find the impulse response function h(t) of the system.

x(t)

y(t)

–1 0

1

Fig. RQ-1

+
x(t) Delay by

T sec

0.5

y(t)

Fig. P-3.1
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x(t)

2

0 3

(a) Input x(t)

t

y(t)

(b) Output y(t)
–3

t0 3

Fig. P-3.2

 7.  An LTI system has an impulse response of e t u tt- cos( ) ( )100p . Determine the output of the system 
for an input of x t t u t( ) cos( ) ( )= 100p .

 8.  Show that a sinusoid/cosinusoid of any frequency is an eigensignal of any LTI system.
 9.  An LTI system has an impulse response h t e u tt( ) ( )=

- . For an input x t t( ) ( / )= 10 4P , determine the 
output.

10.  Find the frequency response, H(  f  ), of the system described by

d y t

dt

d y t

dt

dy t

dt
y t x t

3

3

2

2
0 5 0 75 2

( )
.

( )
.

( )
( ) ( )+ + + =

11.  For the system shown in Fig. P-3.3, find the frequency response.
12.  The impulse response of a system is h t e u tt( ) ( )=

-10 3 . Find 

and plot the response of the system to an input x t
t

( ) .=
-Ê

ËÁ
ˆ
¯̃

P
1

2

13.  Complete the derivation leading to the result given by 
Eq. (3.21).

14.  Complete the derivation leading to the result given by 
Eq. (3.25).

15.  Complete the derivation leading to the result given by Eq. (3.27).

OBJECTIVE TYPE QUESTIONS

Fill in the blanks

 1.  Dynamic systems are systems having ____________________.
 2.  Electrical systems made up of purely resistive networks are ____________.
 3.  The input–output relationship of static systems of the continuous-time type is described by 

____________________ equations.
 4.  For continuous-time type dynamic systems, the input-output relationship is described by 

__________________ equations.
 5.  A continuous-time type dynamic systems is said to be in ‘ground state’ or ‘at rest’, if 

______________________.
 6.  A system is said to be linear if it satisfies the __________ and _________ properties.
 7.  For a causal system, the value of the present output depends only on the _________ and _________ inputs.
 8.  All physically realizable systems must be ____________.
 9.  A continuous-time LTI system is completely characterized by its ________________.
10.  Two LTI systems with impulse responses h1(t) and h2(t) are connected in cascade. Impulse response 

of the overall system is ________________.

x(t) 1F y(t)0.5W

1H

Fig. P-3.3
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11.  Two LTI systems with impulse responses h1(t) and h2(t) are connected in parallel. Impulse response 
of the overall system is ________________.

12.  The relation between the step-response g(t) and the impulse response h(t) of an LTI system is given 
by h(t) = ____________________.

13.  For a causal CT system, h(t) should satisfy the condition ___________________.
14.  A CT signal x(t) is said to be a bounded signal if __________________.
15.  The BI-BO criterion for stability is ________________.
16.  For an LTI system, the condition on h(t) for the system to be stable in the BI-BO sense, is 

_________________.
17.  The meaning of ‘eigensignal of a system’, is _________________.
18.  _______________, ______________ are the eigensignals of LTI systems.
19.  Frequency response function of an LTI system is the _____________ of its impulse response.
20.  When the input signal to an LTI system is an eigensignal at a frequency w0, the ratio of the output 

signal to input signal gives _________________.
21.  The conditions for distortionless transmission of signals through an LTI system, are (i) ______________ 

(ii) _______________.
22.  For the phase response of an LTI system with an impulse response h(t), to be linear, h(t) should be 

symmetrical about ______________, where ______________ is the _____________ introduced by 
the system. Also h(t) has to have a maximum value at _____________ .

23.  The impulse response of an ideal LPF is a __________________ function.
24.  Paley–Wiener criterion for physical realizability of a square-integrable magnitude response |H(  f  )| 

is _______________.
25.  The rise time depends on __________ of the system and is __________ proportional to it.

MULTIPLE CHOICE QUESTIONS

1.  (Choose the incorrect answer). A system composed of purely resistive networks is
(a) dynamic (b) linear (c) time-invariant (d) static

2.  The system with y(t) = x(3t) is
(a) static (b) linear (c) fixed (d) causal

3.  The LTI system with h t e tt( ) ,= -
- , is 

(a) causal and stable (b) causal and unstable
(c) non-causal and stable (d) non-causal and unstable

4.  An LTI system has h(t) = 5d (t - 2)
(a) It is unstable.   (b) It is delayer.
(c) It amplifies and delays the input signal. (d) It samples the input signal.

5.  Two LTI systems with impulse responses h1(t) and h2(t) are connected in series (cascade), the impulse 
response of the overall system is

(a) h t h t1 2( ) ( )+  (b) 
h t h t

h t h t

1 2

1 2

( ) ( )

( ) ( )+
 (c) h t h t1 2( ) ( )*  (d) h t h t1 2( ) ( )◊

6.  When two LTI systems with impulses responses h1(t) and h2(t) are connected in parallel, the impulse 
response of the overall system is

(a) h t h t1 2( ) ( )+  (b) 
h t h t

h t h t

1 2

1 2

( ) ( )

( ) ( )+
 (c) h t h t1 2( ) ( )*  (d) h t h t1 2( ) ( )◊
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 7.  x t A u t u t x t B u t u t x t x t1 2 1 210 5( ) ( ) ( ) ( ) ( ) ( ) . ( ) ( )= - -[ ] = - -[ ] *and  is a

(a) triangular pulse (b) rectangular pulse
(c) trapezoidal pulse (d) sinc pulse

 8.  x t A u t u t x t B u t u t x t x t1 2 1 25 5( ) ( ) ( ) ( ) ( ) ( ) . ( ) ( )= - -[ ] = - -[ ] *and is a

(a) triangular pulse (b) rectangular pulse
(c) trapezoidal pulse (d) sinc pulse

 9.  The transfer function H(  f  ) of the R-C lowpass filter shown in the figure, is given by

(a) 
1

1 2+ j fRCp
  (b) 

1

1 2

/ RC

j fRC+ p

(c) 
1

1 2- j fRCp
  (d) j fRC2p

10.  The 3-db cutoff frequency for the filter of MCQ 9 is

(a) 
1

RC
 (b) RC (c) 

1

2pRC
 (d) none of the above

11.  Two continuous-time LTI systems, each with an impulse response function h t
at

at
( )

sin ( )
= , are 

connected in cascade. Then, the impulse response of the overall system is:

(a) k
at

at

sin( )
   (b) k

at

at

sin( )È

Î
Í

˘

˚
˙

2

(c) 
sinbt

bt
, with b not necessarily equal to a (d) None of the above

12.  If * denotes convolution operation and overbar denotes complex-conjugation, the relation 

y t x x t d( ) ( ) ( )= +Ú t t t  can be expressed as:

(a) x t x t( ) ( )*  (b) x t x t( ) ( )* -  (c) x t x t( ) ( )- * -  (d) none of the above

13.  A signal x t t t( ) sin( ) / ( )= [ ]p p
2
 is passed through an LTI system with impulse response 

h t t t( ) sin( )/( )= 2p p . The output, y(t), of the system is:
(a) x(t)  (b) cannot be of the form of x(t)
(c) of the form of a sinc pulse (d) none of the above

14.  When the input to an LTI system is a unit step function, the output is a bounded signal. Which of 
the following inferences is correct?
(a) The system is not necessarily stable. (b) The system is not definitely stable.
(c) The system is definitely unstable. (d) None of the above.

15.  Signal transmission through an LTI system cannot be distortion less unless
(a) |H(  f  )| is constant for all frequencies and phase-shift is proportional to frequency
(b)  |H(  f  )| remains constant and phase-shift is proportional to frequency at least over the signal 

bandwidth
(c) |H(  f  )| and phase-shift are both independent of frequency
(d) |H(  f  )| and phase-shift are both proportional to frequency

R

C y(t)x(t)
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16.  An LTI system has a gain independent of frequency and produces a time-delay of t sec for all 
frequencies. Which of the following statements is true?
(a) It produces phase distortion.
(b) Its phase-shift vs frequency relationship is linear.
(c) It produces a constant phase-shift for all frequencies.
(d) None of the above.

17.  An LTI system with flat magnitude response, is producing a constant time-delay of t sec for all 
frequencies. If h(t) is the impulse response of the system,
(a) h(t) takes a maximum value at t = t/2 (b) h(t) takes a minimum value at t = t/2
(c) h(t) takes a maximum value at t = t (d) h(t) takes a minimum value at t = t.

18.  The signal, x(t) = 10sinc 20t is applied as the input signal to an LTI system. The minimum bandwidth 
over which the gain of the system should be constant and the phase-response should be linear, for 
distortionless transmission of the signal, is 
(a) 5 Hz  (b) 10 Hz (c) 20 Hz (d) none of the above

19.  The impulse response, h(t) of an ideal LPF having transfer function H f A f B e j f( ) ( / )= -P 2 2p t , is 
given by
(a) A B tsinc2 ( )- t  (b) 2AB B tsin ( )c - t

(c) AB B tsinc2 ( )- t  (d) B B tsinc2 ( )- t

20.  For a first-order R-C lowpass filter with 3-db bandwidth of B Hz, the 10% to 90% rise-time is given by

(a) 
0 35.

B
  (b) 

2 5.

B
 (c) 

4 5.

B
 (d) 

3 5.

B

21.  For an ideal LPF of bandwidth B Hz, the 10% to 100% rise-time is given approximately by

(a) 
3 5.

B
  (b) 

2 5.

B
 (c) 

4 0.

B
 (d) 

0 40.

B

Key to Multiple Choice Questions
 1. (a)  2. (b)  3. (d)  4. (b)  5. (c)  6. (a)
 7. (c)  8. (a)  9. (a) 10. (c) 11. (a) 12. (b)
13. (a) 14. (a) 15. (b) 16. (b) 17. (c) 18. (b)
19. (c) 20. (a) 21. (d)



After going through this 
chapter, the student 
will be
Ø able to form a clear idea of the 

meaning of ‘modulation’ and the 
need for it

Ø able to give the time-domain 
representation, spectrum, and the 
methods of generation and detection 
of AM signals

Ø familiar with the operation of an 
envelope detector, the types of 
distortions it can give rise to and the 
reason behind each type of distortion

Ø able to give the time and frequency-
domain representation as well as the 
methods of generation and coherent 
detection of DSB-SC signals, and SSB-
SC and VSB signals

4
INTRODUCTION

4.1

Communication basically involves transmission of 

information from one point to another. The information-

bearing signals which are to be transmitted may be 

speech, music or images, etc. These signals cannot 

be transmitted directly and need some preprocessing. 

This preprocessing needed for making them suitable 

for transmission, is called modulation. The need for 

modulation arises because of several reasons.

4.1.1 Need for Modulation

(i) Antenna Size Long-distance communication 

takes place invariably by the propagation of 

electromagnetic waves through the atmosphere, 

or free space. This requires efficient radiation 

of electromagnetic waves from an antenna. The 

information-bearing signals like speech, etc., are 

basically low-frequency signals. For instance, a speech 

signal may typically have frequency components from 

a few hundred hertz up to a maximum of 10 kHz. 

We know that for an antenna to efficiently radiate 

a signal fed to it, the physical size of the antenna 

has to be at least of the order of 0.1 l, where l is 

the wavelength of the signal fed to it. Even if we 

consider the highest frequency component of speech, 

viz., 10 kHz, the minimum length required for the 

antenna works out to be 3 km, which is definitely 

not practical. Hence, we have to raise the frequency 

of the information-bearing signal (speech) to a level 

at which an antenna of reasonable size can efficiently 

radiate it. This process of translating a low-frequency 

information-bearing signal to a high-frequency slot is 

referred to as modulation. Modulation is necessary 

Amplitude 
Modulation
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not only from the point of view of having an antenna of reasonable size to radiate the modulated signal. 

It is essential because of various other reasons too, as noted below.

(ii) Selecting the Desired Signal Consider a high-frequency carrier modulated by a low-frequency 

information-bearing signal, say, a speech signal, being radiated by a transmitting antenna. The receiving 

antenna may be tuned to that particular carrier frequency so that the desired speech signal only is 

received and all other modulated signals reaching the receiving antenna are rejected. But, if there is no 

modulation and if we assume that several transmitting stations are simultaneously radiating a number of 

different speech signals, since all speech signals occupy the same spectrum, how are we going to select 

one particular speech signal in which we are interested and reject all the others?

(iii) Multiplexing Multiplexing is the technique used for transmitting several information-bearing signals 

simultaneously over the same physical channel. The modulation process makes it possible to multiplex 

several message signals and transmit them simultaneously by using different carrier frequencies for the 

various message signals.

(iv) Hardware Problem The modulation process enables us to avoid many hardware problems which 

would be encountered if there were to be no modulation.

Having seen the need for modulation, we shall now try to clearly understand what this modulation 

process consists of. The modulation process consists of varying any one of the parameters of a high-

frequency sinusoidal signal, called the carrier signal, in accordance with the variations in the amplitude 

of the message signal. In general, a sinusoidal carrier wave may be represented by

 c t A f tc c( ) cos( )= +2p q  (4.1)

There are three parameters associated with the carrier signal: Ac, the amplitude; fc, the frequency; 

and q, the phase. Depending on which one of these parameters is varied in the modulation process in 

accordance with the amplitude of the message signal, the modulation is called amplitude modulation, 

frequency modulation, or phase modulation. Since the rate of change of the phase represents frequency, 

phase modulation and frequency modulation are closely related and are together called ‘angle modulation’.

AMPLITUDE MODULATION
4.2

First, let us clearly state the terminology and the notation that is widely used in literature and adopted 

here. The message signal which is used for modulating the carrier signal is called the modulating signal, 

or the ‘message signal’ and is denoted by x(t). The signal that results after the modulation process, is 

referred to as the modulated signal and is denoted by xc(t). The carrier signal is denoted by c(t).

Amplitude modulation is the earliest and one of the most widely used types of modulation. Its main 

virtue is the simplicity of its implementation.

Definition Amplitude Modulation (AM) is that type of modulation in which the amplitude of the 

carrier is changed from instant to instant in such a way that at any instant of time, the change in the 

peak amplitude of the carrier from its unmodulated value is directly proportional to the instantaneous 

amplitude of the modulating signal.

4.2.1 Time-domain Description

Let x(t) be the modulating signal with a peak amplitude of say Am. We shall, for convenience, assume 

here that x(t) has been so normalized that |x(t)| £ 1. Then, from the above definition and Eq. (4.1), the 

amplitude modulated signal may be expressed as

where 

x t A t

A A A x t

c c

c m

( ) cos( )

( )

= +

= +

w q
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Here, Ac is the peak amplitude of the unmodulated carrier, Am is the peak amplitude of the modulating 

signal and x(t) is the normalized modulating signal, i.e., |x(t)| £ 1.

Let m
A

A

m

c

   D

Then, A A A x t A mx t
c m c

= + = +[ ]( ) ( )1

Hence,

x t A mx t t
c c c
( ) ( ) cos( )= +[ ] +1 w q

A
c
(1 +m)

A
c
(1 –m)

A
c

–A
c

0

(b) Modulated signal with m= 0.5

–A
c
(1 +m)

A
c
(1 +m)

A
c

A
c

–A
c

0
t

Unmodulated carrier
since x(t) = 0 here

Unmodulated carrier
since x(t) = 0 here

(c) Modulated signal with m= 1

A(1 +m)

0
t

c

Envelope goes
negative

Phase
 re

vers
al

(d) Over-modulated signal with m= 1.2

A
m

t

(a) Modulating signal x(t) = sin w
m
t

Fig. 4.1 Amplitude modulation with different values of m
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Without loss of generality, we may take q = 0 so that

 x t A mx t t
c c c
( ) ( ) cos= +[ ]1 w  (4.2)

where, m is called the modulation index or the depth of modulation and is defined as the ratio of peak 

amplitude of the modulating signal to the peak amplitude of the unmodulated carrier. It is a constant 

and is such that 0 £ m £ 1. Instead of being expressed as a fraction, the depth of modulation may also be 

expressed as a percentage. Since |x(t)| £ 1, if m > 1 then [1 + mx(t)] can become negative near the negative 

peaks of x(t) and it results in a situation called over modulation. Over modulation is always to be avoided 

since, as we are going to see later, it leads to a distorted version of the message after the demodulation 

in the receiver. Hence the restriction that the modulation index m should always be between 0 and 1.

In Eq. (4.2), the factor Ac[1 + mx(t)] is the peak amplitude of the modulated carrier wave, or the 

amplitude of the envelope at the instant t. The change from the unmodulated peak value is Acmx(t) which 

is proportional to x(t).

4.2.2 Single-frequency Message Signal

For simplicity, let us assume for a moment that our message signal x(t) is a single frequency signal given by

 x t t fm m m( ) cos ;= =w w p             2  (4.3)

Then, from Eq. (4.2), we get the modulated signal as

x t A m t t

A t mA t t

c c m c

c c c c m

( ) cos cos

cos cos cos

= +[ ]

= + ◊

1 w w

w w w

 \ x t A t mA t mA t
c c c c c m c c m
( ) cos cos( ) cos( )= + + + -w w w w w

1

2

1

2
 (4.4)

Thus, when the carrier signal of frequency fc is amplitude modulated by a modulating signal of 

frequency fm, the modulated signal has three frequency components—the carrier frequency component 

represented in Eq. (4.4) by the first term, i.e., Ac cos wct, the upper side-frequency component having 

a frequency of (  fc + fm) and represented in Eq. (4.4) by the second term, i.e., 
1

2
mA t

c c m
cos( ) ;w w+  and 

the lower side-frequency component having a frequency of (  fc - fm) and represented by the third term, 

i.e., 
1

2
mA t

c c m
cos( ) .w w-  They are called upper and lower side 

frequencies because they are on either side of the carrier 

frequency component and displaced from it by the same interval 

of frequency, i.e., fm.

Equation (4.4) permits us to draw a phasor diagram for the 

AM signal when the modulating signal is a single-tone. This 

phasor diagram is shown in Fig. 4.2.

As the carrier component has a frequency of fc, if we consider 

the phasor corresponding to this component as our reference, 

the upper side-frequency component having an amplitude of 
mA

c

2
 and a frequency of (  fc + fm) will appear to be rotating at a frequency of fm in the counter-clockwise 

direction, with respect to the carrier phasor. The lower side-frequency component having an amplitude of 
1

2
mA

c
 and a frequency of (  fc - fm) will appear to be rotating in the clockwise direction at a frequency of 

fm, with respect to the carrier phasor.

Ac

fm

fm
mAc
2

mAc
2

Fig. 4.2 Phasor diagram of a single-tone 
modulated AM signal
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From Eq. (4.4), we may also obtain the amount of power in the carrier component and in each of the 

side-frequency components. We have

Power in the carrier component = 
1

2

2A
c

 = say Pc

Power in the upper side-frequency component = 
1

8

2 2m A
c

Power in the lower side-frequency component = 
1

8

2 2m A
c

 \ total power in the AM signal = P P
m

T c
= +

È

Î
Í

˘

˚
˙1

2

2

 (4.5)

Remark: Equation (4.5) tells us that for a single-tone amplitude modulated signal, even with a modulation 

index of m = 1, the maximum possible value, the carrier component constitutes two-thirds of the total power 

in the modulated signal. As the carrier component does not carry any information and as the message, or the 

information-bearing signal x(t), which in this case has been assumed to be cos wmt, can be completely recovered 

from any one of the two side-frequency components, this part of the power in the AM signal is a waste. The 

carrier only helps in carrying the message, but is ultimately rejected in the receiver after the message is recovered. 

Hence, it is preferable to reduce or even eliminate the power in the carrier component of the modulated signal.

If instead of a single tone, the message signal x(t) consists of several frequency components, say fm1, 

fm2, fm3, each one of these will produce a corresponding upper side-frequency component and a lower side-

frequency component. Thus, in addition to the carrier component A t
c c
cosw , there will be three upper side-

frequency components 
1

2

1

2

1

2
1 1 2 2 3 3m A f f m A f f m A f fc c m c c m c c mcos( ), cos( ) cos( )+ + +and  and three lower 

side-frequency components 
1

2

1

2

1

2
1 1 2 2 3 3m A f f m A f f m A f fc c m c c m c c mcos( ), cos( ) cos( ).- - -and  Here, m1, 

m2 and m3 represent the modulation indices for the three components and their values depend on the 

amplitudes of the frequency components with frequencies fm1, fm2 and fm3 relative to the carrier amplitude 

Ac. The overall modulation index m of such an x(t) is then given by (refer Eq. 4.5)

 m m m m= + +
1
2

2
2

3
2  (4.6)

A sinusoidal carrier signal of 5 V peak amplitude and 100 kHz frequency is 
amplitude modulated by a 5 kHz signal of peak amplitude of 3 V. What is the modulation index? 
Draw the two-sided spectrum of the modulated signal.

Example 4.1

x t A m t t

mx t t

t m x t

c c m c

c

c

( ) cos cos

( ) cos

cos ( )c

= +[ ]

= +[ ]

= +

1

5 1

5 5

w w

w

w oosw
c
t

\ Ac = 5 and 5m = 3 since |x(t)| £ 1 \ m = 3/5 = 0.6

The side-frequencies are

( ), ( ); ( ) ( )- - - + - +f f f f f f f fc m c m c m c mand

i.e., -105 kHz, -95 kHz; 95 kHz and 105 kHz.

0

0.750.75

2.5 2.5

–fc+fm fc+fm

0.75 0.75

–fc–fm fc–fm–fc fc

|Xc(f)|

f

Fig. 4.3 Spectrum of AM signal of Example 4.1 
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The relationship between the message x(t), carrier c(t) and the AM signal xc(t), is diagrammatically 

illustrated in Fig. 4.4. For the purpose of this figure, it is assumed that x(t) = sin wmt. Time-domain as 

well as frequency-domain representations are given for all the signals.

Am

t

xc(t)

Carrier
C(t) = Accos wct

Â

m

–fm fm
f0

x(t)

1/2 1/2

|X(f)|

–fc fc0 f

|C(f)|Ac

2
Ac

2

Ac

2
Ac

2
mAc
4

mAc
4

mAc
4

mAc
4

0–fc+ fm fc+ fm–fc– fm fc– fm–fc fc

|Xc(f)|

f

Ac

Ac

t0

Ac

Ac(1 +m)

Ac(1 –m)

t

Fig. 4.4 Amplitude modulation: Waveforms and Spectra of message, carrier and modulated original

A carrier wave of 10 MHz  frequency and peak value of 10 V is amplitude modulated 
by a 5 kHz sine-wave of 6 V amplitude. Determine the modulation index and draw the one-sided 
spectrum of the modulated wave. (University Question)

Example 4.2

Peak value of the modulating signal = Am = 6 V

Peak value of the carrier signal = Ac = 10 V

Modulation index = m = 
A

A

m

c

= =
6

10
0 6.

The AM signal may be represented as

x t A m t t
c c m c
( ) cos cos= +[ ]1 w w

where, Ac = 10 V, m = 0.6, wm = 2pfm = 2p ¥ 5 ¥ 103 rad/s and

wm = 2pfc = 2p ¥ 10 ¥ 106 rad/s

xc(t) may therefore be written in an expanded form as

x t A t mA t t

A t mA

c c c c c m

c c c c m

( ) cos (cos .cos )

cos cos( )

= +

= + +

w w w

w w w
1

2
tt mA t

c c m
+ -
1

2
cos( )w w
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Thus, xc(t) is made up of 3 frequency components – 

the carrier component having a frequency of 10 MHz and 

a peak amplitude Ac of 10 V, an upper side-frequency 

component having a frequency of (10 MHz + 5 kHz) 

and a peak amplitude of 0.3 ¥ 10 = 3 V, and a lower 

side-frequency component with a frequency of 

(10 MHz - 5 kHz) and an amplitude of 3 V. Thus, 

the one-sided spectrum is as shown in Fig. 4.5.

4.2.3 Frequency-domain Description

As the next step, if we consider a modulating signal x(t) which has 

its spectrum extending from 0 Hz to fm Hz, then instead of side-

frequencies, we have to deal with side-bands—an upper side-band 

(USB) extending from fc to (  fc + fm) Hz and a lower side-band (LSB) 

extending from (  fc - fm) Hz to fc Hz. Let the message signal, x(t), 

have an amplitude spectrum as shown in Fig. 4.6.

From Eq. (4.2), we have

 

x t A mx t t

A t mA x t t

c c c

c c c c

( ) ( ) cos

cos ( )cos

= +[ ]

= +

1 w

w w  (4.7)

Since cos ( ) ( ) ,
.

w d dc
F T

c ct f f f f¨ Æææ + + -[ ]
1

2

taking the FT of Eq. (4.7) on both sides,

 X f
A

f f f f
mA

X f f X f fc
c

c c
c

c c( ) ( ) ( ) ( ) ( )= + + -[ ]+ - + +[ ]
2 2

d d  (4.8)

Here, we have made use of the FT pair

x t t X f f X f fc
F T

c c( ) cos ( ) ( )
.

w ¨ Æææ - + +[ ]
1

2

A plot of Xc(  f  ), the spectrum of the amplitude modulated signal xc(t) is as shown in Fig. 4.7.

[Note that X(  f - fc) is X(  f  ) shifted to the right by fc and X(  f + fc) is X(  f  ) shifted to the left by fc].

|Xc(f)|

m Ac/2 m Ac/2

USB LSB LSB USB

–fc– fm fc– fm–fc fc–fc+ fm fc+ fm0 f

Ac

2 d(f+ fc)
Ac

2 d(f– fc)

Fig. 4.7 Amplitude spectrum of an AM signal

Thus, if the maximum frequency component in the message, x(t), is fm, the amplitude-modulated signal 

has a bandwidth of 2fm. Transmitters in audio broadcasting radio stations employing AM handle audio 

frequencies up to about 5 kHz. Thus, two such stations whose service areas have an overlap, must have 

a separation of at least 10 kHz in their carrier frequencies.

10 =Ac

10 MHz
(10 MHz + 5 kHz)

(10 MHz – 5 kHz)
0 f

mAc
2

= 3
mAc
2

3 =

|Xc(f)|

Fig. 4.5  One-sided spectrum of AM signal of 
Example 4.2

|X(f)|

–fm 0

1

fm f

Fig. 4.6  Amplitude spectrum of 
the message signal x(t)
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Thus,

 Bandwidth of AM signal = 2W  (4.9)

where, W Hz is the highest frequency component in x(t), the message signal.

A carrier, amplitude modulated to a depth of 50% by a sinusoid, produces side-
frequencies of 5.005 MHz and 4.995 MHz. The amplitude of each side frequency is 40 V. Find the 
frequency and amplitude of the carrier signal.

Example 4.3

Upper side-frequency = fc + fm = 5005 kHz

Lower side-frequency = fc - fm = 4995 kHz

Adding these two, 2fc = 10,000 kHz \ fc = 5000 kHz = 5 MHz

If carrier is Ac cos wct, m is the modulation index and fm is the modulating signal frequency, we can 

write the AM signal as

x t A m t t

A t
mA

t
mA

c c m c

c c

c

c m

c

( ) [ cos ]cos

cos cos( ) cos

= +

= + + +

1

2 2

w w

w w w (( )w w
c m

t-

\ side-frequency amplitude = 
mA

c

2
40= , \ Ac = 80/m = 80/0.5 = 160 V

Hence, the carrier amplitude is 160 V and its frequency is 5 MHz.

If all AM broadcasting stations handle audio frequencies of up to 5 kHz, how many 
AM broadcasting stations can be accommodated from 1 MHz to 1.5 MHz of the medium-wave band?

Example 4.4

We know that the bandwidth occupied by an AM signal is equal to twice the highest audio frequency 

in its modulating signal.

\ bandwidth required for each station = 2 ¥ 5 kHz = 10 kHz

Bandwidth available = 1.5 MHz - 1.0 MHz = 500 kHz

\ number of stations that can be accommodated = 500/10 = 50.

4.2.4 Carrier and Sideband Components of Power in an AM Signal

From Eq. (4.2), the average power in an amplitude-modulated signal, xc(t), is given by

x t A mx t
c c
2 2 21

2
1( ) ( )= +{ }È

Î
˘
˚

where, the symbol <z> is used to represent the average value of z.

\ x t A m x t A m A x t
c c c c
2 2 2 2 2

1

2
2( ) ( ) ( )= + +ÈÎ ˘̊

Assuming x t( ) = 0 , which is quite justifiable, since the dc component of the x(t) is anyhow blocked 

by a capacitor in the detector stage of the receiver,

 x t x t A m A x t
c c c c
2 2 2 2 2

1

2
( ) ( ) ( )= = +ÈÎ ˘̊ Average power of  (4.10)
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In the above equation, 
1

2

2A
c

 represents the carrier component of power and

 
1

2
2 2 2m A x t

c
( )  = Average total sideband power (4.11)

Since x(t) has been assumed to have been normalized so that |x(t)| £ 1, the maximum average power in 

x(t), i.e., the maximum value of x t2 ( ) , can be unity. The maximum possible sideband power is therefore 

obtained by putting m = 1 and x t2 ( )  = 1. This works out to 
1

2

2A
c

.

Thus, the average power of the AM signal under the above conditions of m = 1 and x t2( )  = 1 is given by

 x t A A x t
c c c
2 2 2 2

1

2

1

2
1( ) ( )= + = for m=1 and  (4.12)

where, the first term is the average power of the carrier component, and the second term is the maximum 

possible value of the average total power of the two sidebands.

Thus, even when the sideband average power is maximized, the carrier power constitutes 50% of the 

total average power of an AM signal. If the modulating signal is a single-tone, its average power x t2 ( )  

is only ½ and in that case, the maximum value of the average power in the sidebands obtained by putting 

m = 1 in RHS OF Eq. (4.10), is

 x t A A x t
c

x t

c c
2 2 2 2

1

2

1

4
1( ) ( )

( )single-tone 

 for= + =m=1 and  (4.12a)

Hence, in this case, as already shown earlier, the carrier component of power constitutes as much as 

66.6% of the total average power of the AM signal.

The carrier component does not carry any information. Only the sidebands carry the message 

information. In fact, as mentioned earlier, the message can be recovered from just one sideband. From 

the foregoing, it is clear that amplitude modulation suffers from the following two disadvantages.

Disadvantages of AM
(1)  At least 50% of the transmitted power is the carrier power and it is a waste since carrier component 

does not carry any information. So it is wasteful in power.

(2)  While one sideband with a bandwidth of fm is enough to recover the message, AM transmits the 

carrier plus both the sidebands, occupying a bandwidth of 2fm. Thus, it is wasteful in bandwidth too.

When an unmodulated carrier alone is transmitted, the antenna current is 
9 amperes. When sinusoidal modulation is present, the antenna current is found to be 11 amperes. 
What is the percentage of modulation used?

Example 4.5

From Eq. (4.5), we have

P P
m

T c
= +

È

Î
Í

˘

˚
˙1

2

2

We have PT = 112 ¥ r and Pc = 92 ¥ r, where r is the radiation resistance of the antenna.

\ 
P

P

m

m

T

C

= = +

=
-Ê

ËÁ
ˆ
¯̃

= =

11

9
1

2

2
121 81

81

80

81
0 994

2

2

2

.\
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It is found that a radio transmitter is radiating a total power of 100 kW. When 
the modulation index is 0.8, what is the carrier power being radiated by the transmitter? What is 
the sideband power?

Example 4.6

P P
T c

= ¥ = +
È

ÎÍ
˘

˚̇
100 10 1

0 64

2

3
.

\ P
c
=

¥
=

100 10

1 32
75 8

3

.
. kW

\ the carrier power being radiated = 75.8 kW

The total sideband power radiated = (100 - 75.8) kW = 24.2 kW.

A certain transmitter (AM) is radiating 132 kW when a certain audio sine wave is 
modulating it to a depth of 80% and 150 kW when a second sinusoidal audio wave also modulates 
it simultaneously. What is the depth of modulation for the second audio wave?

Example 4.7

P P P
T c c
1

1
0 64

2
1 32 132= +

È

ÎÍ
˘

˚̇
= =

.
. kW

\ Pc = 100 kW

Let the modulation index of the second sinusoid be m.

\ P
m

T
2

150 10 100 10 1 0 32
2

3 3

2

= ¥ = ¥ + +
È

Î
Í

˘

˚
˙.

\ 50 10 100 10 0 32
2

3 3

2

¥ = ¥ +
È

Î
Í

˘

˚
˙.

m

\ ( )50 32 10 50 103 2 3
- ¥ = ¥ ¥m

or m2
18

50
0 36 0 6= Ê

ËÁ
ˆ
¯̃
= =. .\m

Determine the overall percentage of modulation in the above example when both 
the sinusoidal audio signals are simultaneously modulating the carrier.

Example 4.8

m m m= + = + =
1
2

2
2 0 64 0 36 1. .

\ overall percentage of modulation = 100%

An AM transmitter of 1 kW power is fully modulated. Calculate the power 
transmitted, if it is transmitted as SSB. (JNTU Sep. 2007)

Example 4.9
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When fully modulated, the total power of an AM signal is

P P
m

P P
T c c c

= +
È

Î
Í

˘

˚
˙ = +

È

ÎÍ
˘

˚̇
= =1

2
1
1

2

3

2
1

2

kW

where, Pc is the average power of the unmodulated carrier.

\ carrier component of power in the AM signal = Pc = 2/3 kW.

Total sideband power in the AM signal (with 100% modulation) = 1
2

3

1

3
-Ê

ËÁ
ˆ
¯̃

=kW kW

\ power in each sideband = 
1

6
kW

It is this amount of power which will be transmitted if a single sideband is transmitted.

An AM transmitter has an unmodulated carrier power of 10 kW. It can be 
modulated by a sinusoidal modulating voltage to a maximum depth of 40%, without overloading. If 
the maximum modulation index is reduced to 30%, what is the extent up to which the unmodulated 
carrier power can be increased without overloading?

Example 4.10

It is given that the unmodulated carrier power = Pc = 10 kW

Max. depth of modulation without overloading = 40% \ m1 = 0.4

Total power in the AM signal = P P
m

T C
= +

È

Î
Í

˘

˚
˙ = ¥ =1

2
10 1 08 10 8

1
2

4 . .  kW

\ to avoid overloading, we have to see that the total power in the AM signal does not exceed 10.8 kW.

When the percentage of modulation is 30%, m2 = 0.3

Now, let P
C
1  be the maximum unmodulated carrier power that would make the total power in the AM 

signal reach the value 10.8 kW.

\ P P P
T C C

= ¥ = +
È

Î
Í

˘

˚
˙ =10 8 10 1

0 3

2
1 0453 1

2
1.

( . )
.

\ P
C
1

310 8 10

1 045
10 33=

¥

=

.

.
. kW

Hence, with a modulation index of 0.3, the unmodulated carrier power can be increased up to 10.33 kW 

without overloading.

Calculate the percentage power saving when the carrier and one of the sidebands 
are suppressed in an AM wave modulated to a depth of (i) 100%, and (ii) 50%.
 (JNTU, May 2007)

Example 4.11

Since nothing has been mentioned about the modulating signal waveform, let us assume that it is 

sinusoidal. Then if PT is the total power in the AM signal and Pc is the power in the carrier, we know that

P P
m

T c
= +

È

Î
Í

˘

˚
˙1

2

2

, when the carrier and both the sidebands are transmitted.
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If the carrier and one sideband are suppressed, the total power is

P P
m

T c
¢ =

2

4

\ % saving in power = 
100( )P P

P

T T

T

-
¢

=

+
È

Î
Í

˘

˚
˙ -

Ï
Ì
Ó

¸
˝
˛

+
È

Î
Í

˘

˚
˙

=

+100 1
2 4

1
2

100 1

2 2

2

P
m

P
m

P
m

c c

c

          

mm

m

2

2

4

1
2

È

Î
Í

˘

˚
˙

+
È

Î
Í

˘

˚
˙

 (i) When m = 1 corresponding to 100% modulation,

% saving in power =
+

+

È

ÎÍ
˘

˚̇
=100

1 1 4

1 1 2
83 3

/

/
. %

 (ii) When m = 0.5 corresponding to 50% modulation,

% saving in power =
+( )

+( )
=

1 0 25 4

1 0 25 2
94 4

. /

. /
. %

Determine the maximum power efficiency of an AM modulator.
Example 4.12

Power efficiency of an AM modulator is given by

h =
Total power in the information bearing sidebands

Total powwer in the modulated signal

We know that for AM, P P
m

T c
= +

È

Î
Í

˘

˚
˙1

2

2

 for single-tone modulation

= +ÍÎ ˙̊P m xc 1 2 2  for a general modulating signal x(t)

\ h =

+

=

+

P m x

P m x

m x

m x

c

c

2 2

2 2

2 2

2 21 1[ ]
,

where x2  is the average power in the message signal and 0 £ m £ 1.

h =

+

=

+

m x

m x

m x

2 2

2 2

2 2

1

1

1
1

 (since m x
2 2  = 0 is ruled out.)

\ h
max

min

=
+ Ê
ËÁ

ˆ
¯̃

1

1
1

1

2 2

2 2

m x

m x

now  takes minimum value

when m x
2 2 takes the maximum value. mmax = 1 and x

max
2  = 1 since |x(t)| £ 1

\ h
max

.=

+

=
1

1 1
0 5
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4.2.5 Effect of Over Modulation

A diode detector, or an envelope detector (which is extensively used in all AM broadcast receivers) as 

we will be seeing later, tries to extract the envelope from an amplitude-modulated wave. As the envelope 

follows the variations in the amplitude of the modulating signal, when the dc component is subtracted or 

removed from the envelope signal, ideally the modulating signal is obtained [see Fig. 4.1(a) and Eq. (4.2)]. 

All this is true only when the envelope of the modulated signal truly follows the variation in amplitude 

of the modulating signal; i.e., as long as the modulation index is between 0 and 1. However, when the 

modulation index exceeds 1, i.e., under over-modulated conditions, as can be seen from Fig. 4.1(c), near 

the negative peak of the modulating signal, the envelope does not follow the variations of the amplitude 

of the modulating signal. Hence, under these conditions, the output of the envelope detector gives a 

distorted version of the modulating signal. Therefore, over-modulation should always be avoided. It may 

also be noted from the Fig. 4.1(c) that when over modulation takes place, the recovered signal from the 

detector will be the |e(t)| where e(t) is the envelope of the modulated signal.

In the following discussion, we have assumed, as we did while drawing Fig. 4.1, that the modulating 

signal is a single tone. In practice, it will never be a tone signal. When it is some complex waveform 

signal, the amplitude-modulated signal will be as shown in Fig. 4.8.

A
cmax

A
cmin

t

A
c

Fig. 4.8 Modulated signal when the modulating signal is some complex waveform

In a case like this, we define two indices of modulation:

 (i) The positive peak modulation index D    

A A

A

c c

c

max

-

 (ii) The negative peak modulation index D    

A A

A

c c

c

-
min

In the above, Ac represents the peak amplitude of the unmodulated carrier wave, Ac max represents the maximum 

value and Ac min represents the minimum value of the peak amplitude of the carrier wave with modulation.

4.2.6 Measurement of Modulation Index

A straightforward method of measuring the percentage of modulation is to observe the modulated 

waveform on the screen of an oscilloscope by applying the amplitude modulated signal to the Y-deflection 

circuit of the scope. If it is sinusoidal modulation, a measurement of Ac max and Ac min (see Fig. 4.6) will 

give us the value of percentage of modulation as

Modulation percentage = 
A A

A A

c c

c c

max min

max min

%
-

+

¥100

However, there is an alternative method, known as the trapezoid method for determining the modulation 

index. It is a better method as it reveals distortions, if any, in the modulation process and is also applicable 
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for complex modulating signals. The method involves connecting the modulated signal to the vertical 

deflection circuit and the modulating signal to the horizontal deflecting circuit. If care is taken to preserve 

their correct phases, we get a trapezoid displayed on the screen of the oscilloscope. Some of the possible 

shapes of the display are shown in Fig. 4.9.

E2
E1

DisplayTime-domain waveform Remarks

m= (E1 – E2)/(E1 + E2)
0 <m< 1 and there is 

no distortion

m= 1 and there is 
no distortion

Over modulation;
no non-linearity
in modulation

process

Carrier drive for the
modulated amplifier is

too large;
distortion present

Too small carrier drive 
for the modulated

amplifier;
distortion present

Fig. 4.9 Trapezoidal patterns under different conditions

An AM (double sideband 
plus full carrier) signal waveform is as shown in 
Fig.4.10. Determine modulation index m. Write 
down the expression for the modulated signal, the 
total power, carrier power and sideband power.

Example 4.13
100V

–100V

60V

–60V

0

Fig. 4.10 Signal for Example 4.13

 (i) A m A

A m

A A m
A

A

c c

c

m c

m

c

1 100 2 160

1 60

100 20 0 25

+[ ] = =

-[ ] =

= - = = =

\

\ \ .
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 (ii) x t A mx t t

t t

c c c

m c

( ) ( ) cos

. cos cos

= +[ ]

= +[ ]

1

80 1 0 25

w

w w

 (iii) P A
c c
= = ¥ =

1

2

1

2
6400 32002 watts

\ P
T

= + Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙
= + =3200 1

1

4
2 3200

3200

32
3300

2

/ W

\ sideband power = 100 W

A modulating signal consists of a symmetrical triangular wave having zero dc 
component and a peak-to-peak voltage of 12 V. It is used to amplitude modulate a carrier of 10 V peak 
voltage. Calculate the modulation index and the ratio of the side-lengths (L1/L2) of the corresponding 
trapezoidal pattern. (University Question)
A sketch of the modulated signal is shown in Fig. 4.11.

6V=A
m

16V=Amax

10V=A
c

4V=Amin

8V= L2
32 = L1

A
m

6V

t

Fig. 4.11 Modulated Signal

Example 4.14

Modulation index m
A A

A A
=

-

+

=
-

+

= =
max min

max min

.
16 4

16 4

12

20
0 6

\ 

L A A

L A A

L

L

c m

c m

1

2

1

2

2 16 2 32

2 2 10 6 8

32

8
4

= + = ¥ =

= - = - =

= =

( )

( ) ( )
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4.2.7 Generation of AM

There are a variety of methods available for generating amplitude-modulated signals. However, amplitude 

modulators may be classified into the following types, depending on the technique used:

 (i) Modulators using non-linear devices

 (ii) Modulators using product devices

 (iii) Modulators using switching devices

4.2.8 Modulators Using Non-linear Devices (Square-law Modulators)

Let a device have a non-linear relation between its input and output which can be represented by

 e a a e a eout in in= + +0 1 2
2 ,  (4.13)

where, the constants a0, a1, a2 depend on the shape of the input–output characteristic of the device. 

Suppose we make

 e t x t E t
c cin ( ) ( ) cos= + w  (4.14)

where, x(t) is the modulating signal with |x(t)| £ 1; and Ec cos wct is the carrier signal.

Substituting for ein(t) in Eq. (4.13) using Eq. (4.14), we get

e t a
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a x t a x t
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c c

c cout ( ) ( ) ( ) cos= +
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1 2
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ˆ
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( ) cos  w

In the above, the first term is a dc term which can always be suppressed by using a coupling capacitor. 

The second term a1x(t) + a2x
2(t) is a low-frequency term having frequency components near those of the 

modulating signal. The third term is a very high-frequency term which is at twice the carrier frequency. 

The last term a E
a

a
x t t

c c1
2

1

1
2

+
Ê

ËÁ
ˆ

¯̃

È

Î
Í

˘

˚
˙( ) cos  w  is the amplitude-modulated signal (see Eq. 4.2) and so is the 

useful term. To separate out this and reject the second and third terms, we need to simply use a bandpass 

filter centered on fc and having a bandwidth equal to twice that of the modulating signal x(t).

A modulator of this type may easily be realized by making use of the non-linear relation between the 

gate voltage and the drain current of an FET as shown in Fig. 4.12.

Carrier signal

Modulating
signal

x(t)

xc(t)
AM signalEc coswct

Fig. 4.12 A square-law amplitude modulator

In the above modulator, the tank circuit connected between the drain and source is tuned to the 

carrier frequency fc and it is ensured that it has a reasonably low Q to give a bandwidth that is twice 

the modulating signal bandwidth. At the same time, the Q will be large enough to satisfactorily reject 

the modulating signal component as well as the components having frequencies that are multiples 

of the carrier frequency. The method of separation of the useful last term of eout from the rest can 

perhaps be better understood by going into the frequency domain. For this, let us take the Fourier 

transform of eout(t).
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A sketch of Eout(  f  ) is shown in Fig. 4.13.

E2
c

4
Eout(f)

d(f + 2fc)
E2

c

4
d(f – 2fc)

E2
c

2
d(f )

a1Ec

2
d(f + fc)

a1Ec

2
d(f – fc)

a2Ec X(f + fc) a2Ec X(f – fc)
a1 X(f )

a2 [X(f )*X(f )]

a0 +

f

2fcfc + wfcfc – w–fc + w–fc–fc – w–2fc w–w–2w 0

BPF response

2w

Fig. 4.13 Spectrum of eout(t) of the square-law modulator

4.2.9 Modulators Using Product Devices

These are based on Eq. (4.2) which states that an amplitude-modulated signal is given by

x t A mx t t

A t mA x t t

c c c

c c c c

( ) ( ) cos

cos ( )cos

= +[ ]

= +

1 w

w w

The amplitude-modulated signal xc(t), can therefore be obtained from an arrangement as shown in Fig. 4.14.

mx(t) and Ac cos wct are multiplied in the analog signal multiplier and then Ac cos wct is added to it to 

obtain xc(t). The analog signal multiplier, or the product device used here, can easily be realized using 

what is generally referred to as the ‘variable transconductance 

multiplier’, which is a differential amplifier in which the gain, 

which depends upon the transconductance of the transistor, is 

varied in accordance with one of the signals to be multiplied, by 

allowing it to control the total emitter current of the differential 

amplifier. Thus, when the other signal to be multiplied is 

applied to the differential amplifier input, its differential output 

will be proportional to the product of the two signals. The adder 

part of Fig. 4.14 may of course be realized using an op-amp.

4.2.10 Modulators Using Switching Devices

These modulators make use of a switch, which may be a diode or a transistor. This switch allows current 

to flow through the load (a tank circuit tuned to the carrier frequency) in the form of truncated sinusoidal 

pulses occurring at regular intervals of (1/fc), where fc is the carrier frequency. If these current pulses are 

made to vary with the amplitude of the modulating signal, it is possible to get an amplitude-modulated 

wave across the load.

Switching Modulator Using a Diode If we assume that

 (i) the forward resistance of the diode is extremely small compared to RL

and

 (ii) |x(t)| £ 1 and Ac > > 1

x
c
(t)

+

+

mx(t) A
c
cosw

c
t

Fig. 4.14  Block diagram of a product 
modulator
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then we may state that

 v t

v t A t

A t

i c c

c c

0

0

0
( )

( ) cos

cos
=

>

<

  whenever  

   otherwise  (

w

w 00)

Ï
Ì
Ô
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 (4.16)

Since

 v t x t A t
i c c
( ) ( ) cos= + w  (4.17)

it means that

 v t v t g t x t A t g ti c c0 ( ) ( ) ( ) ( ) cos ( )= = +[ ]w  (4.18)

where, g(t) is a gate waveform with a period T0 = (1/fc) as shown in Fig. 4.17.

g(t)

1 1 1

–T0 –3T0/4 –T0/4 0 T0/4 3T0/4 T0 t

Fig. 4.17 The periodic gate waveform g(t)

The periodic gate waveform of Fig. 4.17 may be expanded using trigonometric Fourier series.

Let g t a a n t b n tn c

n

n c

n

( ) cos sin= + +

= =

Â Â0

1 1

w w

Then, we know that a0 = ½ since g(t) has an amplitude of 1 with a duty cycle of 0.5. Further, bn = 0 

for all n because of the even symmetry of g(t). Also,

Carrier wave

x(t), the
modulating signal

v

t

I

t

Fig. 4.16 Diode switching modulator working principle

x(t)

(tank circuit resistance at
resonance)

c(t) =
Accoswct

vi(t)
vo(t)RL

Fig. 4.15 A switching modulator using a diode
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Substituting in Eq. (4.18) for g(t) using Eq. (4.19) and for vi(t) using Eq. (4.17), and rejecting the 

constant terms and terms involving only the modulating signal frequencies as well as 2fc and above 

(since the tank circuit constituting the load is tuned to fc and has a bandwidth of 2W, where W is the 

bandlimiting frequency of the modulating signal), we get

 v t
A

A
x t t

c

c

c0
2

1
4

( ) ( ) cos= +
È

Î
Í

˘

˚
˙

p

w  (4.20)

From its form, we can easily recognize that v0(t) is an amplitude-modulated signal, the carrier 

component being Ac/2, the carrier frequency being fc and the modulation index being

 m
A
c

=
4

p
 (4.21)

Equation (4.21) implies that the peak amplitude of the carrier, viz., Ac, must be small in order to have 

a value of m close to unity. However, Ac must be quite large compared to 1 as otherwise the assumptions 

made by us for this analysis will be violated.

Transistor Switching Modulator or Collector-modulated class-C Amplifier A transistor switching 

modulator, or, a collector modulated class-C amplifier is shown in Fig. 4.18.

The base bias supply VBB reverse biases the base-emitter junction beyond cutoff and the transistor Tr 

works under class-C conditions. The input carrier signal level is so adjusted that the conduction angle for 

the collector current is approximately 120∞ which gives good power efficiency for the class-C amplifier 

while allowing reasonable output power.

There will be one current pulse for each r.f. cycle. These current pulses excite the tank circuit on the 

collector side, which is tuned to a frequency of fc. Thus, across the tank circuit, we get a sinusoidal r.f. 

voltage at carrier frequency, the peak amplitude of the sinusoid varying in accordance with the modulating 

signal. If the carrier drive is adjusted to be sufficiently large, collector current pulses exist even at the 

trough of the modulating signal voltage. The average value of the current over a modulating signal cycle is 

marked as Idc and it is the direct current drawn from the collector supply voltage VCC. The average value 

of these current pulses over each r.f. cycle (i.e., carrier cycle) will, however, be varying from one r.f. 

cycle to the next. This component of current is marked in Fig. 4.19 as ic(t).



142 Analog Communication

Input
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modulated

signal
(Output)

Modulating
signal from

modulating amplifier
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Fig. 4.18 A collector-modulated class-C amplifier

t

I
c
(t) Idc

Fig. 4.19 Collector current pulses in a class-C collector modulated amplifier

Let the final stage of the modulating signal amplifier produce a message signal

 e E t
m m m

= cosw  (4.22)

in the collector circuit through the modulating transformer, TX, as shown in Fig. 4.15.

If, m
E

V

m

CC

      D = modulation index, (4.23)

 i t I m t
c DC m
( ) ( cos )= +1  (4.24)

P (t)T  D  Total power input into the collector circuit (averaged over an r.f. cycle)

 = +[ ]V m t i t
CC m c

1 cos ( )w    (4.25)

But i t I m t
c DC m
( ) ( cos )= +1  from Eq. (4.24)

Thus,

 P t V m t I m t
T CC m m

( ) cos cos= +[ ] +[ ]1 1w w  
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 (4.26)

We define

 P V I
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    D ◊
DC

 (4.27)

Then PB represents the dc power supplied by the VCC supply to the collector circuit.
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When we average PT (t) over a modulating signal cycle, the second and third terms on the RHS of 

Eq. (4.28) vanish.

\ P P
m

T Bav
  = +

È

Î
Í

˘

˚
˙1

2

2

 (4.29)

PTav represents the total average power supplied to the collector circuit. Of this, PB = VCC. IDC
 represents 

the power supplied by the VCC supply. The remaining part, viz., PBm2/2 is supplied by the final stage of 

the modulating amplifier.

If h denotes the collector circuit efficiency (h is generally about 80 to 90%, i.e., 0.8 to 0.9), then

hPTav = Total average power in the amplitude modulated output signal = P0

 P P P P
m

T B B0

2

2
= = +h h h

av
 (4.30)

hPB = Carrier component of P0 = Pc

hP
m

P
m

B C

2 2

2 2
=  = Total sideband power component of P0.

From the foregoing, it is clear that the carrier component of the output AM signal is generated from the 

power drawn from the VCC supply and the total sideband power of the output AM signal is derived from 

the power supplied by the modulating signal, i.e., from the final stage of the modulating signal amplifier.

Referring to Fig. 4.8, if Ac max = 75, and Ac min = 15, determine the following 
assuming sinusoidal modulating signal.
(a) m, (b) carrier power and total sideband power, and (c) amplitude and phase of the additional 
carrier to be added in order to have m = (i) 50%, and (ii) 90%.

Example 4.15

 (a) m
A A

A A

c c

c c

=

-

+

=
-

+

= =
max min

max min

. %
75 15

75 15

60

90
66 7

 (b)  .  P P
m

P
A

A
T c c

c

c
= +

È

Î
Í

˘

˚
˙ = = +

-
=1

2 2
15

75 15

2
45

2 2

Here but

\ P
c

= = =
45

2

2025

2
1012 5

2

. W

\ sideband power (total) = P
m

c
◊ = ¥ ¥ =

2 2

2

45

2

4

9

1

2
225W

 (c) x t t t A t

A
A

c m c c
( ) cos cos cos

( )
( )

= +È
ÎÍ

˘
˚̇

+

= + +
+

Ê
ËÁ

45 1
2

3

45 1
30

45

w w w

ˆ̂
¯̃

È

Î
Í

˘

˚
˙cos cosw w

m c
t t

 (i) 
30

45
0 5 0 4 15

+
= = +

A
A A. \6 \ =5

 \ carrier to be added = 15–0∞
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A transistor class-A amplifier working with an efficiency of 20% is collector-
modulating a transistor class-C power amplifier working with a collector-circuit efficiency of 60%. The 
class-C power amplifier transistor is dissipating 24 W when the modulation depth is 80%. (i) What 
is the carrier power in the output modulated wave? (ii) What will be the class-C power amplifier 
collector dissipation for 100% modulation? (iii) What should be the modulating amplifier transistor 
rating in watts for this depth of modulation? (iv) What is the overall efficiency of the circuit (including 
class-C and class-A power amplifiers)?

Example 4.16

Let dissipation in the transistor (class-C power amplifier) be Pd.

At m = = - = -[ ] = =0 6 1 0 4 24
0

. : .P P P P P
d in in in

h

\ P
in

= =
24

0 4
60

.
W

But P P P
in c c
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Î
Í

˘

˚
˙ = =1

0 6

2
1 18 60

2.
.

\ P
c

= =
60

1 18
50 85

.
. W

This represents the power required to be supplied to the class-C amplifier in order to produce the 

carrier component in the output amplitude-modulated signal.

\ carrier component of output AM signal = 50.85 ¥ 0.6 = 30.5 W

\ answer for part (i) is 30.5 W.

 (ii) m = 1

P0 = 30.5(1 + 0.5) = 45.75W = Total output power with m = 1.

\ the corresponding input power = Pin = 45.75/0.6 = 76.25 W

\ P
d

m( )=1

 = 76.25 - 45.75 = 30.5 W

 (iii)  m = 1 The AF output to give m = 1 is supplied by the power required to generate the output 

sideband power with m = 1. This is given by

PSB = Pc ¥ 0.5 = 50.85 ¥ 0.5 = 25.425 W

 (iv) Rating of the transistor used for the class-A modulating amplifier:

The class-A power amplifier transistor undergoes maximum dissipation when it is delivering zero 

output power. Under this condition, the dissipation equals the input power to the class-A amplifier.

\ P P
dmax

.

.
.= = =

in
W

25 425

0 2
127 125

 (v) Overall efficiency at m = 0.6:

h
m

m

=

=
=

0 6.

Total output power with 0.6

Total input power (for  the class-C and class-A amplifiers) with 0.6m =

=

+

36

50 85 1. 227 125

36

180
0 2

.
.= =

 \ the overall efficiency = 20%
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A carrier signal Ac cos wct and a modulating signal x(t) = cos wmt are applied 
in series to a diode switching modulator. What should be the carrier amplitude, Ac, if the AM signal 
at the output is to have a modulation index of 85%? Assume that the diode acts as an ideal switch.

Example 4.17

From Eq. (4.21), we have

m
A

A
m

c

c

=

= = =

4

4 4

0 85
1 498

p

p p.
. volts

A collector-modulated class-C power amplifier is giving an amplitude-modulated 
signal of 100 W average power at the output, while operating with a collector-circuit efficiency of 
80%. Assuming the modulation index to be 0.8, find (a) the power to be supplied by the modulating 
amplifier, and (b) the dissipation in the transistor.

Example 4.18
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\ the output sideband power = 100 - 75.75 = 24.25 W.

(a)  Since the power supplied by the modulating amplifier gets converted into the output sideband power 

and since the efficiency of the class-C modulated amplifier is 80%, we have

power to be supplied by the

modulating amplifier
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(b) Let the dissipation in the transistor be PD with 80% modulation, Then
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4.2.11 High-Level and Low-Level Modulation

In a transmitter, modulation of the carrier may be performed either at a low carrier power level or at 

a high carrier power level. In the former case, it is called low-level modulation and in the latter case, 

it is called high-level modulation. As the modulated signal is produced at a low carrier level in the 

case of low-level modulation, the modulated signal so produced will have to be raised to the required 

power level using a chain of power amplifiers. As the modulated signal occupies certain bandwidth, 

these power amplifiers will have to be necessarily either class-A or class-AB tuned power amplifiers; 

and these will have very low efficiencies. In the case of high-level modulation, however, the carrier 

signal produced by an oscillator is first amplified using a series of tuned power amplifiers, which in 

this case can be class-C power amplifiers (with very high power efficiency) since the signal to be 

amplified is a sine wave. The final stage of this class-C power amplifiers chain may be plate-modulated, 

or collector-modulated, depending on whether a vacuum triode or a transistor is used as the device. As 

shown in the analysis of a collector-modulated class-C power amplifier, the total sideband power in the 
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modulated signal so generated, will be derived from the final stage of the amplifier chain used for the 

power amplification of the modulating signal. Thus, unlike the low-level modulation case, the modulating 

signal power required in this case can be very high. For example, if a transmitter which is to radiate 

10 kW of average power of the modulated signal employs high-level modulation and if the modulation 

index is say 0.8, the total sideband power will be 2424 watts; and if the modulated class-C amplifier 

has a power efficiency of 85%, the final stage of the modulating amplifier will have to deliver about 

2.85 kW of modulating signal power.

To summarize, the advantages and disadvantages of these two types of modulation are the following:

Advantages of Low-level Modulation

1. The modulation circuit is relatively simple as the power levels to be handled are low.

2.  The power required to be supplied by the modulating signal amplifier is very low. Hence, it is 

especially useful when the modulating signal is a video signal, since it is difficult to get large 

amounts of video power, as in the case of TV transmitters.

Disadvantages of Low-level Modulation

1.  Since the modulated signal is generated at a low power level, class-A or class-AB tuned power 

amplifiers will have to be used to raise the power of this signal to the required level. These have 

very low efficiencies.

Advantages of High-level Modulation

1.  As the modulation is performed at a high power level of the carrier, there is no need to use class-A 

or class-AB tuned power amplifiers. Since class-C power amplifiers are used for raising the power 

level of the carrier, the efficiency is quite high.

Disadvantages of High-level Modulation

1. Large amounts of modulating signal power will be needed.

DEMODULATION OF AM SIGNALS
4.3

In order to send the message signal across to the destination, the transmitter modulates a carrier signal 

with the message signal and transmits the modulated signal through the channel. At the receiving end, 

the message signal is recovered from the modulated signal through a process called ‘demodulation’ or 

‘detection’, and the carrier signal, which, as we know, does not carry any information, is rejected. Thus, 

demodulation is the process of recovering the message signal from a modulated signal.

There are several techniques available in principle, for demodulation of amplitude-modulated signals. 

These are

 (i) Coherent/synchronous detection

 (ii) Square-law detection

 (iii) Envelope detection

Of these three, the simplest and by far the most widely used one is the envelope detector. Hence, after 

discussing the principle of the first two, we shall discuss the third one in detail.

4.3.1 Coherent/Synchronous Detection

The modulated signal which is received is given by

x t A mx t t
c c c
( ) ( ) cos= +[ ]1 w  (refer Eq. 4.2)
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As shown in Fig. 4.20, coherent/synchronous detection consists of

(a) Generating the carrier signal, correct in frequency and phase, at the receiver

(b) Multiplexing xc(t), the received signal, by this locally generated carrier signal

(c) Lowpass filtering the above product of the two signals

\ x t t A t mA x t t

A A
t

mA
x

c c c c c c

c c

c

c

( ) cos cos ( )cos

cos (

w w w

w

= +

= + +

2 2

2 2
2

2
tt t

c
) cos1 2+[ ]w

If the highest frequency component present in x(t) is W Hz, let the cutoff frequency of the lowpass 

filter be W Hz. Then at the output of the LPF we will have

y t
A mA

x tc c( ) ( )= +

2 2

The dc component represented by 
A
c

2
 is blocked by the 

coupling capacitor, C, and at the output, we get m x t
A
c

2
( ),  

which is a scaled version of the message signal.

It is not an easy thing to generate in the receiver, a carrier signal of the correct frequency and which is 

in phase with the carrier of the received signal. We will be discussing in more detail about this problem 

when we deal with detection of Double Side Band Suppressed Carrier (DSB-SC) signal. It is sufficient 

to state here that synchronous detection, though theoretically possible, is never used in practice for the 

detection of AM waves because of the above problem, and the availability of simple diode detectors 

(envelope detectors).

4.3.2 Square-Law Detection

Square-law
device

e0ei= xc(t) e0́

Lowpass
filter

f0=WHz

RL

Fig. 4.21 A square-law detector

Let the square-law device/circuit have an input–output relation given by

 e a a e a e
i i0 0 1 2

2
= + +  (4.31)

where, e0 is the output signal and ei is the input signal.

But e x t A mx t t
i c c c
= = +[ ]( ) ( ) cos1 w

\ substituting this in Eq. (4.31), we have
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Fig. 4.20  Block diagram of a coherent detector 
for AM signals
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Since the lowpass filter has a cutoff frequency f0 = W Hz which is very small compared to the carrier 

frequency fc, the output of the lowpass filter will be

e a
a

A a A mx t
a

m A y tc c c0 0
2 2

2
2 2 2 2

2 2
= +Ê

ËÁ
ˆ
¯̃
+ +( ) ( )

where y(t) is the signal consisting of all frequency components of x2(t) which have frequencies less than 

or equal to W Hz, the cutoff frequency of the lowpass filter. The first-term a
a

A
c0

2 2

2
+Ê

ËÁ
ˆ
¯̃

 representing 

the dc component may be blocked by using a coupling capacitor. The next term a A mx t
c2
2 ( )  is the 

desired signal and passes through the LPF. However, since y(t) and x(t) have overlapping spectra, the 

final output across the load will not be the message signal alone; there will be distortion due to the last 

term. To keep this distortion low compared to the desired signal term, viz., the second term, one has to 

ensure that |mx(t)| is reasonable small compared to 1 so that the last term becomes negligible compared 

to the second.

A signal v t m t t
c

( ) [ ( )]= 1+ cosw  is detected using a square-law detector whose 
input–output relationship is v v

in0

2= . If the Fourier transform of the signal m(t) is constant at the 
value M0 from -fm to +fm, sketch the Fourier transform of the output of the square-law detector in 
the frequency range -fm < f < fm. (GATE Question)

Example 4.19

The square-law device of the square-law detector has an input–output relationship v v
0

2=
in

\ when v(t) is given as input to this square-law device,

v t v t m t t

m t m t t m t

c

c

0
2 2 2

2

1

1

2

1

2

1

2
2

( ) ( ) [ ( )] cos

( ) ( ) cos (

= = +

= + + + +

w

w )) cos ( ) cos2
1

2
22w w

c c
t m t t+

In a square-law detector, the square-law device will be followed by an LPF whose cutoff frequency 

is the highest frequency available in the modulating signal m(t). Since the signal m(t) has its spectrum 

extending from -fm up to +fm, the highest modulating signal frequency and hence the cutoff frequency 

of the LPF in the detector is fm Hz.

\ when v0(t) is lowpass filtered with this LPF, its output is

v t m t m t
D
( ) ( ) ( )= + +

1

2

1

2
2

Note: All the other components are rejected by the LPF.

* = 

M(f)

M0

f 
–fm 0 fm

M(f)

M0

–fm 0 fm

F[m2(t)]

M0
22fm

M0
2fm

–2fm –fm 0 fm 2fm

Fig. 4.22(a) Signal for Example 4.19
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where, m t2 ( )  represents that part of m2(t) made up of frequency components from -fm to +fm. This is 

because m2(t) will have components having frequencies from -2fm to +2fm as is going to be evident from 

what follows. Consider F m t m t
1

2
2+ +

È

ÎÍ
˘

˚̇
( ) ( ) . This is

1

2

1

2

1

2

1

2

d

d

( ) ( ) ( ). ( )

( ) ( ) ( ). ( )

t M f F m t m t

t M f M f M f

+ + [ ]

= + + [ ]

Before sketching vD(  f  ), let us see the shape of [M(  f  )*M(  f  )].

Because the LPF has a cutoff frequency of fm, only 

that part of the spectrum of m2(t) which lies between -fm 

and +fm will have to be considered [it is shown shaded in 

the spectrum of m2(t)].

\ V f t M fD ( ) ( ) ( )= + +
1

2
d  that part of F  [m2(t)] which is 

from -fm to fm

When we sketch this we get Fig. 4.22(b).

4.3.3 The Envelope Detector

We know that the envelope of an amplitude-modulated signal 

follows the variations in amplitude of the message, or the 

modulating signal, if the modulation is without distortion. 

The diode detector, or the envelope detector tries to extract 

the envelope of the received amplitude-modulated signal; and 

that is why it is called the envelope detector. The envelope 

detector circuit is very simple and inexpensive as it consists 

of a diode and a few resistors and capacitors; and if properly designed, gives an output that is a very 

good approximation of the message signal. The basic circuit of an envelope detector is shown in Fig. 4.23.

Principle of Operation During the positive half-cycle of the r.f., the diode is forward biased and it 

conducts, charging the capacitor C. At the peak of an r.f. cycle, say point A, the capacitor gets charged 

to that peak value. Then onwards, the r.f. voltage of the AM wave decreases very fast. As the voltage 

across C cannot decrease that fast, the AM wave voltage will be less than the capacitor voltage and so 

the diode is reverse biased and it stops conducting. So the charging of the capacitor stops and it starts 

VD(f)
M0

22fm+M0

M0
2fm+M0

M0
1/2

–fm 0 fm f

Fig. 4.22(b) Fourier transform of the output

Amplitude modulated
Signal x

c
(t)

V
c
(t) C R

L

Fig. 4.23  Basic circuit of an envelope 
detector

A

E

B

D

V
c
(t)

t
X
c
(t)

Diagonal clipping

Fig. 4.24 Working of an envelope detector
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discharging through the resistor RL. While this process is going on, the r.f. voltage of the AM wave 

goes through the portion ADB. At the point B, the instantaneous voltage across the capacitor and the r.f. 

voltage of the AM wave are equal. After this instant corresponding to B, while the r.f. voltage is trying 

to increase further, the voltage across the capacitor is trying to decrease further. Hence the diode is again 

forward biased and it starts conducting, charging the capacitor. This charging of the capacitor continues 

till the peak of r.f. cycle at which the diode stops conducting. This cycle of events will go on repeating 

in all the subsequent r.f. cycles. The voltage across the capacitor therefore follows the variations as shown 

by the thick line in Fig. 4.24. It is readily seen that vc(t), the voltage across the capacitor approximately 

follows the envelope of xc(t), the AM signal. Lowpass filtering the vc(t) removes the r.f. component in 

it and the message signal can be recovered by blocking the dc component using a coupling capacitor.

In the above explanation, certain conditions, not explicitly mentioned, have been assumed to be 

satisfied. These conditions are the following:

 (i)  The charging of the capacitor takes place almost instantaneously so that the voltage across the 

capacitor can almost follow the portion of the r.f. cycle from B to E. If the source resistance for 

xc(t) is RS and the forward resistance of the diode is Rf, the charging time-constant is (Rs + Rf) c ª 

RsC since Rf is generally very small compared to Rs. Then for the above condition to be satisfied, 

it is required that

 R C
f

s
c

<<
1

 (4.32)

 (ii)  The time-constant for the discharge of the capacitor, viz., RLC, should be quite large compared 

the period of the r.f.,

i.e., R C
f

L
c

>>
1

 (4.33)

Unless this condition is satisfied, the capacitor voltage, vc(t), will not able to follow the envelope 

of the AM wave during the rising portion of the envelope.

 (iii)   The discharge time-constant, although quite large compared to the r.f. period, (1/fc), is nevertheless 

small compared to the period of the modulating signal,

i.e., R C
f

L
m

<<
Ê

ËÁ
ˆ

¯̃
1

 (4.34)

where, fm is the frequency of the modulating signal. In case the modulating signal is not single-tone, 

fm should be taken as the frequency of the highest frequency component present in the modulating 

signal. If this condition is not satisfied then, during the time when the envelope is decreasing, 

the capacitor voltage, vc(t) cannot follow the envelope and we get a severely distorted version of 

the modulating signal as vc(t) the output of the envelope detector. This distortion, referred to as 

‘diagonal clipping’, is shown in Fig. 4.24.

All the three conditions stated above may be combined as

 R C
f

R C
f

s
c

L
m

<< << <<
1 1

 (4.35)

How Diagonal Clipping can be Avoided As we will be interested in using the maximum possible value 

of RLC that would still allow us to avoid diagonal clipping, we shall now derive such an upper limit for 

RLC for the case of sinusoidal modulation.
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Let fm be the frequency of the highest frequency 

component present in the modulating signal x(t), and 

let it produce a modulation index m. Note that we are 

considering a sort of worst-case condition.

From Eq. (4.2), we may write the expression for the 

envelope of the AM signal as

 e t A m t
c m

( ) cos= +[ ]1 w  (4.36)

\ rate of change of the envelope at t = t0 is given by

 
de t

dt
m A t

t t
m c m

( )
sin

=

= -

0

0w w  (4.37)

Magnitude of the envelope at t = t0 is given by

 e A m t
c m0 0

1= +[ ]cosw  (4.38)

At any time t (t > t0), the voltage across the capacitor of Fig. 4.23 is given by

e t e e
c

t t R C
L( ) ( )/

=
- -

0
0

\ rate of change of the capacitor voltage = 
de t

dt

c
( )

=

-

- -

e

R C
e

L

t t R C
L

0
0( )/

As the capacitor commences discharging at t = t0, the maximum rate of change of the capacitor voltage 

occurs at t = t0.

\ maximum rate of change of the capacitor voltage = 
de t

dt

e

R C

c

t t
L

( )

=

=

-

0

0  (4.38(a))

To avoid diagonal clipping, we have to ensure that the maximum rate of fall of capacitor voltage is 

always greater than or equal to the maximum rate of fall of the envelope.

\ 
e

R C
A m t

L

c m m

0

0
≥ w wsin  (4.39)

If we now substitute for e0 in the above equation by using Eq. (4.38), we have

A m t
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A m t

c m

L

c m m

1
0

0

+[ ]
≥

cos
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w
w w

or,
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 (4.40)

For the above inequality, the worst-case condition arises when the right-hand side takes a minimum 

value. This happens when t0 is such that

m t

m t

m

m

sin

cos

w

w
0

0
1+

È

Î
Í

˘

˚
˙

e
0

t
0

0 t

Fig. 4.25 Amplitude-modulated signal
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takes a maximum value. By differentiating the above expression, we find that it takes a maximum value 

when

cosw
m
t m
0
= -

\ corresponding to this worst-case condition,

 R C
m

m
L

m

£
-È

Î
Í
Í

˘

˚
˙
˙

1 1 2

w
 (4.41)

Equation (4.41) gives the maximum value of the discharge time-constant that can be used for given 

values of modulation index and the frequency of the maximum frequency component in the modulating 

signal, without causing diagonal clipping.

A simple diode detector uses a load resistance of 400 kilo-ohms. Across this 
resistance, there is a 100 p.f capacitor. If the maximum modulation depth of the input amplitude 
modulated signal is 75%, what is the maximum frequency of the modulating signal that can be 
detected without diagonal clipping?

Example 4.20
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\ from Eq. (4.41), we have
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4.3.4 A Practical Diode Detector

The circuit of a practical diode detector is shown in Fig. 4.26.

R1
R2

R3

R4

C1

I.F. transformer

AM signal
AF output

AGC voltage

C2

C3
C4

Fig. 4.26 A practical diode detector
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In this circuit, C1 and C2 are provided for r.f. bypass. Their values are such that their reactances 

are negligible at the carrier frequency (here, intermediate frequency) and extremely high at the audio 

frequencies. This is to ensure that while they provide good filtering of r.f., they do not shunt the load 

resistance of the diode. C3 is a coupling condenser and is meant for blocking the dc component while 

having negligible reactance (as compared to R4) for audio frequencies. R3 and C4 act as filters for audio 

frequencies so that almost pure dc voltage is available for AGC.

Negative Peak Clipping in a Diode Detector The conditions based on which the values of the capacitors 

C1, C2, C3 and C4 are chosen, have been stated above. Although these conditions can never be fully fulfilled 

in practice, in our analysis of the diode detector, we shall now make the following simplifying assumptions.

 (i)  C1 and C2 act as short circuits for the carrier (intermediate) frequency and as open circuits for 

dc and audio frequencies.

 (ii)  Capacitors C3 and C4 act as perfect short circuits for the entire range of audio frequencies and 

as open circuits for the dc components.

Keeping in view the above assumptions, if we look at the circuit of Fig. 4.26, we find that the loads 

presented to the diode at dc and at audio frequencies are different. This difference in the loads sets a 

limit to the maximum value of the modulation index, m, of the incoming modulated wave. As we will 

be seeing presently, a distortion, referred to as negative peak clipping, results if the received AM signal 

has a modulation index greater than a certain limit which is determined by the dc and audio loads. From 

Fig. 4.26, we find that

The detector load for dc D   
DC

R R R= +
1 2

 (4.42)

The detector load for audio frequencies D   ACR R R R R= +1 2 3 4( || || )  (4.43)

where (R2 || R3 || R4) denotes parallel combination of R2, R3 and R4.

Since R2 > (R2 || R3 || R4), it follows that the ac load (i.e., at audio frequencies) of the detector is 

always less than the dc load.

\ Rac < Rdc (4.44)

Modulation index of the received AM signal = m
A
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=
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where,

Am = Peak of the audio component of the envelope

Ac = Peak of the unmodulated carrier wave
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 \m
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 (4.46)

and, negative peak clipping occurs if ac

dc

m
R

R
>

Ê

ËÁ
ˆ

¯̃
 (4.47)

The above result is only an approximation since the assumptions listed in (i) and (ii) at the beginning 

of this derivation are not valid at all audio frequencies. C1 and C2 may act almost like short circuits at 

the intermediate frequency but they will not be acting as perfect open circuits at all audio frequencies. 

At the higher audio frequencies, say 10 kHz, these capacitors will have a finite reactance and this shunts 

the load. Further, the coupling condenser C3 does not provide a reactance that is negligible compared 

to R4, at the lower audio frequencies. Thus, the detector load for audio frequencies is not a pure resistance 

as has been assumed; instead, it will be an impedance with a capacitive reactance component. For an 

excellent discussion on the performance of a diode detector, the reader may refer to Electronic and Radio 

Engineering by F E Terman, McGraw-Hill.

The output of a diode envelope detector is fed through a dc blocking capacitor 
to an amplifying stage which has an input resistance of 10 kW. Determine the maximum depth of 
sinusoidal modulation the detector can handle without negative peak clipping.
 (University Question)

Example 4.21

I
m
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I
c

t

I
m Low modulation index

(b)

I
c

Im

High modulation index
I
c
< I

m

Negative peak clipping

(c)

Ic

Fig. 4.28  (a) Actual diode current (b) dc and audio 
components of current for low value of m  
(c) dc and audio components of current for 
high value of m

A
m

A
c

t

Fig. 4.27 Received AM signal
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5 kW 10 kW

To the audio

amplifier stage

Input resistance

of the amplifier

Cb

Fig. 4.29 Circuit for Example 4.21

The blocking capacitor is meant to block the dc voltage present across the diode load resistance of 5 kW 

from reaching the input to the amplifier. Its value will be such that at even the lowest audio frequencies 

its reactance will be negligible compared to the input resistance of the amplifier. So, while the dc load 

for the diode is 5 kW, its ac load is the parallel combination of 5 kW and 10 kW.

i.e., R

R

ac

dc

k k

k

=
¥

+
=

=

5 10

5 10
3 3

5

( )
.W W

W

From Eq. (4.46), we know that the maximum value of the modulation index of the input AM signal 

which still does not cause negative peak clipping, is given by

m
R

R
max

.
.= = =ac

dc

3 3

5
0 66

A signal xc(t) = 5[1 + 2cos wc(t)] is to be demodulated. Check whether some 
of the following detectors can be used: (i) an envelope detector, (ii) a square-law detector, and 
(iii) a synchronous detector or coherent detector.

Example 4.22

Given, x t t t
c m c
( ) [ cos ]cos= +5 1 2 w w  

This is an over-modulated AM signal. Hence, the envelope will be distorted and an envelope detector 

cannot be used.

Let us check whether a square-law detector can be used.

yc(t) = Output of the square-law device = ax t
c
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If the dc component is blocked by a coupling condenser and the high frequency components are 

removed by using an LPF of cutoff frequency fm after the square-law device, the final output will be 

z t a t
m

( ) . . cos= 0 5 w , which is proportional to the modulating signal.
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Hence, a square-law detector can be used.

Now, let us check whether a synchronous demodulator can be used. Recall that in synchronous 

demodulation, we first multiply the received modulated signal by the locally generated carrier signal 

and then pass the product through an LPF having a cutoff frequency of W Hz, the bandwidth of the 

modulating signal.

x t t t t t t
c c m c m c
( ) cos cos cos cos cosw w w w w= +[ ] = +[ ] +[ ]

=

5 1 2
5

2
1 2 1 2

5

2
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2
2 5
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4
2
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4
2+ + + + + -cos cos cos( ) cos( )w w w w w w

c m c m c m
t t t t

\ the output of the LPF = z t t
m

( ) cos= +Ê
ËÁ

ˆ
¯̃

5
5

2
w

The dc component, i.e., 5/2, can be rejected by using a coupling condenser, and the output will then 

be only the message signal.

Hence, either a square-law detector, or a synchronous detector, may be used, but not the envelope 

detector.

DOUBLE SIDEBAND SUPPRESSED CARRIER  
(DSB-SC) MODULATION

4.4

While discussing the carrier and sideband components of power in an AM signal, it was shown in 

Section 4.2 that even with m = 1, a large portion (66.67% in the case of tone modulation) of the total 

average power of the AM signal lies in the carrier component. Since the information in the message 

(i.e., modulating signal) is contained only in the sidebands and not in the carrier, and since the carrier 

is anyhow filtered out and rejected in the receiver, the carrier component of power in an AM signal is a 

waste. Further, the AM signal occupies a bandwidth of 2W where the modulating signal is of bandwidth W. 

In fact, the information contained in the message is completely available in any one of the two sidebands 

and can be recovered in the receiver even if just one sideband alone occupying a bandwidth of W is 

transmitted. Thus the AM is wasteful in power as well as bandwidth.

A modulation process in which the modulated signal contains no carrier component and has only 

the two sidebands, is called ‘Double Sideband Suppressed Carrier Modulation’, or simply, ‘DSB-SC 

Modulation’. Before we discuss how such a DSB-SC signal may be produced, let us see what happens 

if the carrier component of an AM signal is removed. For this, referring to Eq. (4.7), if we ignore the 

first term which represents the carrier, we get

 x t A x t t
c c c
( ) ( ) cos= w  (4.48)

(we have absorbed m into the amplitude factor Ac)

From the above equation, it is clear that a DSB-SC signal can be generated easily just by taking the 

product of the carrier and modulating signals.

Since the carrier component is totally absent in the DSB-SC signal, demodulating it for recovering 

the message signal, x(t), requires complex receiving equipment. Hence, unlike AM, it cannot be used 

for broadcasting purposes. Since both the sidebands are present, it requires a bandwidth of 2W, just like 

the AM. Hence, it is not used even in carrier telephony and point-to-point radio communication since 

SSB-SC, i.e., single sideband suppressed carrier is more preferable in such applications because it offers 
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saving in power as well as bandwidth. It is in forming the chrominance signal in the NTSC and PAL 

colour television systems that the DSB-SC has found its greatest use. This again is mainly because of 

the quadrature multiplexing (about which we will be discussing later) possibility that DSB-SC offers. 

Further, generation of a DSB-SC signal constitutes the first step in the generation of an SSB-SC signal 

using the filter method. Hence, we shall discuss, in some detail, the time-domain and frequency-domain 

representation, as well as the methods of generation of DSB-SC signals.

4.4.1 Time-Domain Representation of DSB-SC Signals

From Eq. (4.48), we have x t x t A t
c c c
( ) ( ) cos

(DSB-SC)

= w  (4.48a)

Since x(t) multiplies the carrier signal A t
c c
cosw , whenever x(t) changes sign, the DSB-SC modulated 

signal suffers a 180∞ carrier phase reversal. Such a thing does not happen in AM unless over modulation 

takes place. Further, as may be inferred from the waveforms of Fig. 4.30, simple envelope detector using 

a diode cannot be used for recovering the message signal from a DSB-SC signal.

(c)

0

0

t

t

(a)

(b)

Phase
reversal

Fig. 4.30  Waveform of (a) modulating signal, (b) AM signal (m < 1), and
(c) the DSB-SC signal (product of x(t) and c(t))

Power in a DSB-SC Signal
From Eq. (4.48) we have

x t A x t t
c c c
( ) ( ) cos= w

We know that the average power of xc(t) is given by
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The second integral is zero since it is the area under a cosine curve. Further,
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4.4.2 Frequency-Domain Representation of DSB-SC Signals

For the sake of this discussion let the magnitude spectrum of the 

message or modulating signal be as shown in Fig. 4.31. Its shape has 

no particular significance except that it should have even symmetry 

since x(t), the modulating signal, is real-valued.

Taking the Fourier transform on both sides of Eq. (4.48), we 

have

 X f x t A t A X f f X f fc c c c c c( ) ( ) cos ( ) ( )= ◊[ ] = - + +[ ]F w
1

2
 (4.49a)

Figure 4.32  gives a plot of |Xc(  f  )| making use of the X(  f  ) that we have assumed earlier.

|Xc(f)|
0.5Ac

–fc–w fc–w–fc fc f0–fc+w fc+w

0.5Ac

USB USBLSB LSB

Fig. 4.32 Amplitude spectrum of a DSB-SC signal

From the above spectrum of a DSB-SC signal, it is clear that the signal contains both the sidebands 

and therefore needs a bandwidth of 2W, just like the AM signal, but the carrier frequency component is 

not present. Because of this, all the average power of the DSB-SC signal resides in its two sidebands only.

The modulating signal in an AM-SC system is a multiple-tone signal by 
m(t) = A1cos w1t + A2cos w1t + A3cos w1t. The signal m(t) modulates a carrier Accos wct. Plot the single-
sided spectrum and find the bandwidth of the modulated signal. Assume that w3 > w2 > w1 and 
A3 > A2 > A3. (University Question)

Example 4.23

An AM-SC system is nothing but a DSB-SC system. We know that in DSB-SC modulation, the modulated 

signal is simply the product of the modulating signal m(t) and the carrier. Hence, the modulated signal 

xc(t) is given by

|X(f)|

1

W–W f0

Fig. 4.31  Spectrum of the modulating 
signal
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x t m t A t A t A t A t A t
c c c c c
( ) ( ) cos cos cos cos cos= [ ] = + +[ ]w w w w w1 1 2 2 3 3  

== + + +

=

A A t t A A t t A A t t
c c c c c c1 1 2 2 3 3

1

2

cos cos cos cos cos cosw w w w w w  

AA A t A A t
c c c c c c1 1 1 2 2 2

1

2
cos( ) cos( ) cos( ) cos(w w w w w w w w+ + -[ ]+ + + - ))

cos( ) cos( )

[ ]

+ + + -[ ]
1

2
3 3 3A A t

c c c
 w w w w

Noting that w3 > w2 > w1; A1 > A2 > A3 and wc >> w1, w2 and w3, we may plot the one-sided spectrum 

of xc(t) as shown in Fig. 4.33.
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Fig. 4.33 One-sided output spectrum for Example 4.23

The signal x(t) = sinc(105t) is used for DSB-SC modulating a carrier signal 
having a frequency of 10 MHz. Determine the bandwidth of the modulated signal and sketch its 
spectrum.

Example 4.24

We know that if the modulating signal has a bandwidth of W Hz 

then the DSB-SC wave has a bandwidth 2W Hz.

To determine W, we take the FT of x(t).

X f f f( ) ( ) ( / )= =- - -10 10 10 105 5 5 5P P

A plot of this is shown in Fig. 4.34.

Hence, the spectrum of the DSB-SC modulated signal is as 

shown in Fig. 4.35.

10.0510 MHz9.95 MHz

0.5¥ 10–5

|Xc(f)|

–10 MHzc f

Fig. 4.35 Spectrum of xc(t)

|X(f)|

10–5

–50 kHz 50kHz f0

Fig. 4.34 Fourier transform of x(t)
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4.4.3 Generation of DSB-SC Signals

 (i) Balanced Modulator We had seen that an AM signal may be written as

x t A mx t t
c c c
( ) ( ) cos= +[ ]1 w

Suppose we now consider two AM signals identical in all respects except that the message 

signals in the two cases are 180∞ out of phase. We may write them as

 x t A mx t t
c c c1

1( ) ( ) cos= +[ ] w  (4.50)

and

 x t A mx t t
c c c2

1( ) ( ) cos= -[ ] w  (4.51)

Subtracting x
c2

 from x
c1

, we have

 x t x t x t mA x t t
c c c c c3 1 2

2( ) ( ) ( ) ( ) cos= - = w  (4.52)

We recognize that x t
c3

( ) , so obtained is a DSB-SC signal. The above analysis suggests that to 

generate a DSB-SC signal using a carrier signal c(t) and a message signal, x(t), we need to have 

two identical AM generating circuits, to which the carrier c(t) is applied in the same phase but the 

message signal is fed 180∞ out of phase, and we take difference of the output signal of the two 

amplitude modulators. A simple circuit-realization of the above is illustrated in Fig. 4.36 in which 

we have used two identical amplitude modulators using the non-linearity of FETs (see Fig. 4.12).

T1

T2
G1

iD1

iD2

G2

x(t)

c(t)

–x(t)

Carrier

FET-2

FET-1

DSB-SC
signalModulating

signal

Fig. 4.36 A balanced modulator using FETs

As can be seen from the above circuit diagram, the carrier signal is applied to the gates G1 

and G2 of the two identical FETs in the same phase. The modulating signal, however, is applied 

to G1 and G2 in opposite phase, since the modulating signals developed across the two halves of 

the secondary of the transformer T1 will be 180∞ out of phase with respect to each other.

Suppose the modulating signal is not applied and the carrier alone is applied. Since the carrier 

signals at G1 and G2 are in phase, the carrier components of iD1 and iD2 which flow in opposite 

directions through the primary of the output transformer, do not induce any carrier component of 

voltage on the secondary side of transformer T2. The carrier is thus eliminated. Because of the 

symmetry of this circuit, it is called a balanced modulator.
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To show that the balanced modulator produces an output signal which is a DSB-SC signal, 

we proceed exactly in the same way as we did for the analysis of the circuit of the amplitude 

modulator of Fig. 4.12.

Let i a a e a eD g g1 1 1
0 1 2

2
= + +

(Non-linear relationship between the gate voltage and the drain current of the FET)

But e x t A tg c c1
= +( ) cosw

\ i a a x t A t a x t A t
D c c c c1 0 1 2

2
= + +[ ]+ +[ ]( ) cos ( ) cosw w

 = +
È

Î
Í

˘

˚
˙ + + + + +a

a
A a x t a A t a x t

a
A t

c c c c c0
2 2

1 1 2
2 2 2

2 2
2 2( ) cos ( ) cosw w aa x t A t

c c2 ( ) cosw  (4.53)

Since the two FETs are identical and are operating under identical conditions,

Let i a a e a eD g g2 2 2
0 1 2

2
= + +

But e x t A tg c c2
= - +( ) cosw

\ i a
a

A a x t a A t a x t
a

A
D c c c c c2 0

2 2
1 1 2

2 2 2

2 2
2= +

È

Î
Í

˘

˚
˙ - + + +( ) cos ( ) cosw w tt a x t A t

c c
- 2 2 ( ) cosw

\ ( ) ( ) ( ) cosi i a x t a A x t t
D D c c1 2

2 41 2- = + w

The output tank circuit, which is tuned to the carrier frequency, eliminates the first term and 

a voltage e0(t) where,

 e t kx t t
c0 ( ) ( ) cos= w  (4.54)

where k is a constant, is induced in the secondary of transformer T2. e0(t), being proportional to 

the product of the modulating signal and the carrier signal, is a DSB-SC signal.

The two FETs will not, in practice, be exactly identical. The centre-taps on the secondary of 

the transformer T1 and the primary of the transformer T2, may not be exact centre-taps. The degree 

of suppression of the carrier depends on to what extent these conditions are met.

 (ii)  The Ring Modulator (Balanced Modulator using Diodes) One popular type of balanced modulator 

(especially in telephone circuits), is the ring modulator shown in Fig. 4.37. It consists of four diodes, 

all pointing in the same direction and forming a ring, because of which it is named as a ring 

modulator. A square-wave carrier of frequency, say, fc, is used for switching these diodes, and is 

applied between the centre-taps of the secondary of transformer T1 and the centre-tap of the primary 

of transformer T2, as shown in the figure. First let us assume that the modulating signal is absent.

T2T1
D1

D4

D3

D2

Modulating
signal x(t)

Square wave
carrier signal c(t)

DSB-SC
signal

x0(t) = c(t)x(t)

d

g

c

a

b

e f

h

Fig. 4.37 A ring modulator
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During the positive half-cycle of the carrier wave, let us 

say when a is positive with respect to h, the diodes D1 and 

D2 are forward biased and the diodes D3 and D4 are reverse 

biased. Carrier component of current flows through the 

paths a-b-c-d-h and a-b-e-f-g-h. During the next half-cycle, 

i.e., negative half-cycle of the carrier, diodes D3 and D4 are 

forward biased and diodes D1 and D2 are reverse biased. 

Carrier signal now drives a current through the paths h-g-

d-e-b-a and h-g-f-c-b-a. If the centre taps b and g are true 

centre-taps and the diodes are identical in their behaviour, in both the half-cycles of the carrier, 

no carrier component of voltage is induced either in the primary of T1 or in the secondary of T2 

since in each of the half cycles, equal and opposite currents flow through the secondary winding 

of T1 and the primary winding of T2. Thus, no carrier component will be produced in the output.

It may be noted that just like the case of the DSB-SC modulator of Fig. 4.30, here also, 

whenever the modulating signal induced in one half of the secondary of T1 adds to the carrier, 

the modulating signal induced in the other half subtracts from the carrier. Thus, DSB-SC signals 

with carrier frequencies of fc, 3fc, 5fc, 7fc, etc., are produced in the output because the square wave 

carrier signal (as shown in Example 2.4) has only the fundamental and odd harmonics. Thus, if 

the modulating signal has a spectrum as shown in Fig. 4.38 with a bandwidth of W Hz, then the 

spectrum of the ring modulator output would be as shown in Fig. 4.39.

.     .      .            .     .      . 

|x0(f)|

–3fc –fc–w fc –w–fc+w fc+w–fc fc 3fc f
0

Fig. 4.39 Spectrum of the output of the ring modulator

Since we are interested only in the DSB-SC signal corresponding to the fundamental frequency 

component of the carrier, by using a bandpass filter of centre frequency fc and bandwidth 2W, at 

the output of the ring modulator, we can obtain the desired DSB-SC modulated signal.

For the balanced ring modulator circuit, the carrier input frequency fc = 500 kHz 
and the modulating input signal frequency ranges from 0 to 5 kHz. Determine the output frequency 
range and the output frequency for a single modulating signal input frequency of 3.4 kHz.
 (University Question)

Example 4.25

Referring to Figs. 4.37 and 4.38, and noting that, as mentioned underneath Fig. 4.39, we are interested 

in only the fundamental frequency component of the carrier, at the output of the ring modulator, we get 

only a DSB-SC signal centered on the fundamental carrier frequency component fc = 500 kHz, because of 

the bandpass filter with centre frequency fc and bandwidth equal to twice the maximum frequency (W ) 

of the modulating signal, used at the output of the ring modulator.

Thus, the output will contain frequency components ranging from (  fc - W ) to (  fc + W ), i.e., from 

495 kHz to 505 kHz.

|X(f)|

W f–W 0

Fig. 4.38  Spectrum of the 
modulating signal
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For a single modulating signal of 3.4 kHz frequency, the output of the ring modulator (with the above 

mentioned bandpass filter) will have only two frequency components (500 - 3.4) kHz and (500 + 3.4) kHz.

i.e., 496.6 kHz and 503.4 kHz.

4.4.4 Detection of DSB-SC Signals

In the case of AM, we could use a simple envelope detector to extract the message signal from the 

modulated signal because the envelope of the modulated signal, in the absence of over modulation, was 

found to be a replica of the modulating signal. Figure 4.30(c) clearly shows that such a situation does not 

exist in the case of DSB-SC modulated signals. For these signals, we go in for coherent, or synchronous 

detection, the basic principle of which we have briefly discussed in Section 4.3.

If x(t) is the modulating signal and Ac cos wct is the carrier signal, we know that the DSB-SC modulated 

signal formed by these two is given by

x t A x t t
c c c
( ) ( ) cos= w

If this is the signal received by the receiver, let us say we generate a carrier signal (in the receiver) having 

exactly the same frequency and phase as possessed by the suppressed carrier of the received signal, then, 

we may multiply the received xc(t) by this locally generated carrier to get

 

x t t A x t t A x t
t

A x t

c c c c c

c

c

( ) cos ( ) cos ( )
cos

( )

w w
w

= =
+È

ÎÍ
˘

˚̇

= +

2
1 2

2

1

2

11

2
2A x t t

c c
( ) cos w  (4.55)

The first term here is a quantity proportional to x(t) and is hence the desired signal, while the second 

term is a very high-frequency component which can easily be removed by lowpass filtering. Synchronous 

detection, or coherent detection may therefore be represented by the following block diagram in Fig. 4.40.

Received signal Product device
(a balanced
modulator)

Carrier
generator

(in the receiver)

Lowpass
filter

cutoff b Hz

coswc t

y(t) z(t)

kx(t)

Acx(t) cos2wc t

xc(t) =Acx(t) coswc t

Fig. 4.40 A coherent detector

Effect of Phase Error of the Locally Generated Carrier Let us now examine the effect of any deviation 

in the phase of the locally generated carrier. So, if the received DSB-SC modulated signal is

x t A x t t
c c c
( ) ( ) cos ,= w

Let the locally generated carrier be cos(wct + q), where q is the phase error. With reference to Fig. 4.40, 

the output y(t) of the product device will now be

\ 

y t A x t t t

y t A x t t A x

c c c

c c c

( ) ( ) cos cos( )

( ) ( ) cos( )

= ◊ +

= + +

w w q

w q
1

2
2

1

2
(( ) cost q  (4.56)
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The lowpass filter following the product device has a cutoff frequency B Hz, where W B f Wc£ £ -( ),2  

W being the bandwidth of x(t). The first term on the RHS of Eq. (4.56) has frequency components around 

2fc while the second term is proportional to the modulating signal x(t) provided q is constant. Hence, the 

first term gets eliminated by the lowpass filter and we have:

 z t A x t
c

( ) ( ) cos=
1

2
q  (4.57)

Thus, the signal output of the coherent detector is x(t) cosq instead of x(t). This has the following 

consequences.

 (i)  Even if q remains constant, which of course, is not true in practice, the cos q factor tends to 

reduce the output message signal.

 (ii)  The phase of the received signal goes on varying with time in a random fashion because of 

the changes in the channel conditions. Thus, the phase deviation from the correct value of the 

locally generated carrier, namely q, goes on changing randomly. This random variation of q and 

consequently of cos q, has the effect of producing distortion in the recovered message signal.

The foregoing simple analysis and the subsequent discussion clearly bring out the need to maintain 

the locally generated carrier signal always in frequency and phase synchronism with the frequency and 

phase of the suppressed carrier in the received DSB-SC signal. We shall now discuss Costas receiver, or 

Costas loop, and the squaring loop systems which accomplish this task.

Consider the wave obtained by adding a non-coherent carrier Accos(wct + f) to 
the DSB-SC wave, m(t)cos wct, where m(t) is the message waveform. This waveform is applied to an 
ideal envelope detector. Find the resulting detector output. Evaluate the output for

 (i) f = 0 and (ii) f π 0 and |m(t)| << Ac /2 (University Question)

Example 4.26

The input to the envelope detector is given by

 

y t A t m t t

A m t t A

c c c

c c c c

( ) cos( ) ( ) cos

cos ( ) cos sin

= + +[ ]

= +[ ] -

w w

w w

f

f tt tc[ ]sinw  (A)

Hence, y(t) may be put in the polar form y(t) = R(t)cos[wct + q(t)], where, R(t) is the envelope and q( )t  

is the phase angle. It is this R(t) which an ideal envelope detector extracts and gives as output.

Thus,

 

y t R t t t R t t t

R t t

c c( ) ( )(cos )cos ( ) ( )(sin )sin ( )

( ) cos ( )

= -

= [ ]

w q w q

q ccos ( )sin ( ) sinw q wc ct R t t t-[ ]  (B)

Comparing Eqs (a) and (b),

R t t A m t
c

( ) cos ( ) cos ( )q = +[ ]f

and R t t A
c

( )sin ( ) sinq = f

Hence, R t R t t R t t

A m t A

R

c c

( ) ( ) cos ( ) ( )sin ( )

cos ( ) sin

= +

= +[ ] + [ ]

2 2 2 2

2 2

q q

f f

(( ) ( ) ( ) cost A m t m t A
c c

= + +2 2 2 f\
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and q( ) tan
sin

cos ( )
t

A

A m t

c

c

=
+

È

Î
Í

˘

˚
˙-1

f

f

 (i) When f = 0,

R t A A m t m t A m t A m t
c c c c

( ) ( ) ( ) ( ) ( )= + + = +[ ] = +2 2
2

2

Thus, when f = 0, the output of the envelope detector is z(t) = Ac + m(t), where Ac is a dc 

component and m(t) is the message signal.

 (ii) When f π 0, and |m(t)| << Ac/2:

In this case,

R t A m t m t A A A m t
c c c c

( ) ( ) ( ) cos ( ) cos= + + ª +
2 2 22 2f f

(since m2(t) can be neglected in comparison with Ac)

\ R t A A m t A
m t

A
c c c

c

( ) ( ) cos
( )

cos@ + = +
2 2 1

2
f f  

Now Ac > > 2|m(t)| \ 
2

1
m t

A
c

( )
cosf <<

Now, we know that when x << 1, 1+ x  can be approximated by 1
1

2
+Ê

ËÁ
ˆ
¯̃

x

\ in this case, the output of the envelope detector will be

z t A
m t

A
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c
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Î
Í

˘

˚
˙ = +1 f f

Thus the output is again having a dc component of Ac plus the attenuated version (provided f is 

constant) of the message signal m(t) since cos f < 1 (as f π 0). Further, if f varies with time, the message 

signal m(t) is multiplied f(t) and so the message component at the output of the envelope detector will 

be only a mutilated version of the actual message.

4.4.5 Costas Loop

It consists of two coherent detectors. A voltage-controlled oscillator initially adjusted to operate at the 

correct suppressed carrier frequency, fc, assumed to be known a priori, supplies the ‘locally generated 

carrier’ to the two coherent detectors—to one of them directly and to the other through a - 90∞ phase 

shifter. The former coherent detector which is supplied cos wct directly as the locally generated carrier, 

is called the In-phase channel or I-channel, while the one to which sin wct is applied as the local carrier, 

is called the Quadrature channel or the Q-channel. Both the coherent detectors are fed with the same 

received DSB-SC signal Ac x(t)cos wct.

Suppose the carrier phase error is zero; i.e., q = 0. Then the output of the I-channel is 
1

2
A x t
c

( ) while 

that of the Q-channel is zero. The I-channel output is taken as the demodulated signal. Now, suppose 

there is a carrier phase error of q. Then the I-channel output is 
1

2
A x t
c

( ) cosq  while that of the Q-channel 

is 
1

2
A x t
c
( )sinq . As shown in Fig. 4.41, both these outputs are fed to the phase discriminator, which 

consists of a product device followed by a lowpass filter. For q values that are quite small, we know 
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that cos q ª 1 and sin q ª 0. Thus, the output of the product device in the phase discriminator is of the 

form A x t
c
2 2 ( )q . The lowpass filter, which has a very low cutoff frequency of the order of a few Hertz, 

gives a dc voltage proportional to q at its output since variations in q will be very slow compared to 

variations in x2(t).

‘I-channel’

‘Q - channel’

Detector output
(demodualted signal)

Product device
(a balanced
modulator)

Product device
(a balanced
modulator)

Lowpass
filter

Lowpass
filter

–90° phase
shifter dc control

voltage

DSB-SC signal

cos (wct+q)

cos (wct+q)

sin (wct+q)

Acx(t) coswct

Voltage
Controlled
Oscillator

(VCO)

Phase
discriminator

Acx(t) cosq1
2

Acx(t) sinq1
2

Fig. 4.41 Costas receiver or Costas loop

Thus, we obtain a control dc voltage which has the same polarity (positive or negative) as q and is 

proportional to it. This changes the VCO output in such a way as to minimize q by locking it to fc. The 

phase error is thus kept very small.

The Costas loop thus provides a good practical solution to the ‘phase synchronism’ problem encountered 

in coherent detection. However, it suffers from one major drawback—the 180∞ phase ambiguity for 

the demodulated signal, i.e., the output of the loop. To understand what is meant by this 180∞ phase 

ambiguity, suppose that the phase of the modulating signal in the DSB-SC signal is reversed so that the 

received signal is -Ac x(t)cos wct instead of Ac x(t)cos wct. Since the output of the product device in the 

phase discriminator is given by A x t
c
2 2 ( )q , it is insensitive to the polarity of the modulating signal. Thus, 

when the loop is working and is locked to the carrier frequency, one cannot be sure whether it has got 

locked in such a way as to give a demodulated output of x(t) or -x(t). When the x(t) is an audio signal, 

one need not bother about this 180∞ phase ambiguity as our ear is not sensitive to it. However, if x(t) is 

polar data that can take positive and negative values, the phase ambiguity can cause serious problems, 

as a binary 1 may be detected as a ‘0’ and vice-versa. Another disadvantage with Costas loop is that the 

phase control of the loop ceases if there is no modulation. This is not a serious problem as the lockup 

establishes very fast.

4.4.6 The Squaring Loop

Unlike the Costas loop, the squaring loop extracts the carrier signal of correct frequency and phase from 

the received DSB-SC signal itself.

y t x t A x t t A x t t

z t A

c c c c c

c

( ) ( ) ( ) cos ( ) cos

( )

= = = +[ ]

=

2 2 2 2 2 2
1

2
1 2

1

2

w w

22 2 2x t tc( ) cos w
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xc(t) =Acx(t) coswct Product
device

Limiter
Square law

device

Bandpass
filter centred

on 2tc

Frequency
divider

kx(t)

v(t)

w(t)

z(t)y(t)

LPF

Fig. 4.42 The squaring loop for carrier recovery

The variations with respect to time, of the peak amplitude of cos 2wct, caused by the multiplication by 

x2(t), are removed by the limiter to give an output w(t), where

w t k t
c

( ) cos= 1 2w

The frequency divider circuit then gives an output v(t), where,

v t k t
c

( ) cos= 2 w

This v(t), which represents the missing carrier signal correctly in frequency and phase, is then used for 

coherent detection by multiplying the received DSB-SC signal with it using a product device (a balanced 

modulator) and then lowpass filtering this product using a lowpass filter with a cutoff frequency B Hz 

such that W < B < (2fc - W ), where W Hz is the bandlimiting frequency of the modulating signal.

Just like the Costas loop, the squaring loop also suffers from the disadvantage of 180∞ phase ambiguity 

in so far as the demodulated signal x(t) is concerned.

4.4.7 Quadrature Carrier Multiplexing of DSB-SC Signals (QAM)

Quadrature carrier multiplexing (also called Quadrature Amplitude Modulation, QAM), is a technique 

which enables us to transmit simultaneously over the same physical channel, two different message 

signals x1(t) and x2(t) having spectra that occupy the same bandwidth, using a single carrier frequency. 

The carrier signals DSB-SC modulated by the two messages have the same frequency, but differ in phase 

by 90∞. Thus, the modulated signals may be represented by

and 

x t A x t t

x t A x t t

c c c

c c c

1

2

1

2

( ) ( ) cos

( ) ( )sin

=

=

w

w  

We may transmit the multiplexed signal,

x t x t x t A x t t x t t
c c c c c c
( ) ( ) ( ) ( ) cos ( )sin ,= + = +[ ]

1 2 1 2w w

over the channel. This signal xc(t) occupies a bandwidth of only W Hz, even though x1(t) and x2(t) 

individually have a bandwidth of W Hz each. This is because the spectra of x1(t) and x2(t) completely 

overlap. Although their spectra completely overlap, signals x1(t) and x2(t) can be recovered from the 

multiplexed signal xc(t) by coherent detection as shown in Fig. 4.43, wherein the balanced modulators 

act as product devices.

At the receiving end, the message signals x1(t) and x2(t) are recovered in the following manner.

\ 

x t A x t t A x t t

x t t A x t

c c c c c

c c c

( ) ( ) cos ( )sin
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Fig. 4.43 Quadrature carrier multiplexed system

Subsequent lowpass filtering of xc(t)cos wct removes the high-frequency component 
1

2
21A x t t

c c
( ) cos w  as 

well as 
1

2
22A x t t

c c
( )sin w , leaving a signal 

1

2
1A x t

c
( )  which is proportional to x1(t) at the output of the LPF. 

In a similar way, x2(t) is obtained by multiplying xc(t) by sinw
c
t  and then lowpass filtering the product.

It is of course necessary that the cos wct generated in the receiver be in frequency and phase synchronism 

with the missing carrier in the multiplexed signal that is received. For this purpose, a Costas receiver 

may be used; or else, a low-level pilot carrier may be transmitted along with the multiplexed signal.

Quadrature carrier multiplexing reduces the number of subcarriers used besides reducing the bandwidth 

requirement of the multiplexed signal.

What is the effect of a frequency error Dw in the angular frequency of the locally 
generated carrier on the coherently demodulated signal in the case of DSB-SC?

Example 4.27

Let the received DSB-SC signal be xc(t) = Ac(cos wct)x(t).

Let the locally generated carrier be cos( ) .w w
c

t+ D  Then, output of the product device is (refer to 

Fig. 4.40)

and 

y t A x t t t

A x t t

c c c

c c

( ) ( ) cos cos( )

( ) cos( ) cos( )

= ◊ +

= ◊ +

w w w

w w w

D

D D
1

2
2 tt

z t A x t tc( ) ( ) cos( )= =
1

2
Dw Demodulated signal.  

Dw will generally be quite small compared to wc; but it can be comparable to W, the highest frequency 

component in x(t). Thus, a beat frequency is produced, giving rise to serious distortion.

SINGLE SIDEBAND MODULATION
4.5

In the previous section, we had discussed in detail about DSB-SC modulation. Because of the absence 

of any carrier component in the modulated signal, the DSB-SC of course, offers some saving of power. 

However, both the sidebands are present although, as stated earlier, from the point of transmission of 
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information, one would have sufficed. Thus, it does not offer the maximum possible power saving. 

Moreover, as both the sidebands are present, it requires a bandwidth of 2W, i.e., twice the maximum 

frequency in the message signal, same as in AM.

So we shall proceed to the next logical step of suppressing not only the carrier, but also one of the 

sidebands, so as to maximize the saving in transmitted power as well as bandwidth required for transmission. 

This leads us to what is called the Single Side Band Suppressed Carrier or SSB-SC modulation.

4.5.1 Frequency-Domain and Time-Domain Representation of SSB-SC Signals

In Fig. 4.32 we had sketched the amplitude spectrum of a typical DSB-SC signal. Figure 4.44 shows the 

same with a scaled version of the amplitude spectrum of the message signal itself super imposed on it.

|Xc(f)|
|X(f)|

(DSB-SC)
Ac/2 Ac/2 Ac/2

USB LSB Ac/2X–(f) Ac/2X+(f) LSB USB

–fc–w –fc –fc+w –w 0 w fc–w fc fc+w f

Fig. 4.44 Amplitude spectrum of DSB-SC signal and amplitude spectrum of the message signal (scaled)

From Fig. 4.44, we may draw the spectra of the USSB-SC signal, i.e., the SSB-SC signal in which only 

the upper sideband is present, and of the LSSB-SC signal in which only the lower sideband is present, 

as shown in Figs 4.45(a) and (b) respectively.

(a)

(b)

|Xc
L(f)|

(LSSB-SC)
Ac/2 Ac/2

–fc –fc+w 0 fc–w fc f

|Xc
u(f)|

(USSB-SC)
Ac/2 Ac/2

–fc–w –fc 0 fc fc+w f

Fig. 4.45 (a) Spectrum of a USSB-SC signal (b) Spectrum of a LSSB-SC signal

The message spectrum shown in Fig. 4.45 may be visualized as the sum of 
A

X fc

2
+ ( )  and 

A
X fc

2
- ( )  

where 
A

X fc

2
+ ( )  is the positive frequency part and 

A
X fc

2
- ( )  is the negative frequency part. From 

Eq. (2.154) of Section 2.10, we know that

 F -
+ +

È

Î
Í

˘

˚
˙ =

1

2 4

A
X f

A
x tc c( ) ( )  (4.58)
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and F -
- -

È

Î
Í

˘

˚
˙ =

1

2 4

A
X f

A
x tc c( ) ( )  (4.59)

where,

 ˆ ( ) ( ) ˆ( )xx t x t jx t
+

= +  (4.60)

is the pre-envelope of x(t) for positive frequencies,

and

 ˆ ( ) ( ) ˆ( )xx t x t jx t
-

= -  (4.61)

is the pre-envelope of x(t) for negative frequencies.

Then, from Fig. 4.44, we may write the following:

If spectrum of the USSB-SC signal = X fc
u ( ),

then, X f
A

X f f X f fc
u c

c c( ) ( ) ( )= - + +[ ]+ -
2

 (4.62)

Taking the inverse Fourier transform on both sides of the above, we get

x t
c

u ( ) =  USSB-SC signal = +
+

-

-

A
x t e

A
x t ec j t c j tc c

4 4
( ) ( )w w

( ) ˆ( ) ( ) ˆ( )

( )

A
x t jx t e

A
x t jx t e

A
x t e
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c j

c c= +[ ] + -[ ]
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4 4

4
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ww w w wc c c ct j t c j t j te j
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x t e e+{ }ÈÎ ˘̊ - -{ }ÈÎ ˘̊- -

4
ˆ( )

\ ˆ ( ) ( ) cos ˆ( )sinxx t
A

x t t x t t
c
u c

c c
= -[ ]

2
w w  (4.63)

Equation (4.63) represents the general form of a USSB-SC signal. The corresponding expression for 

an LSSB-SC signal may be derived by proceeding in a similar way and the result is

 ˆ ( ) ( ) cos ˆ( )sinxx t
A

x t t x t t
c
L c

c c
= +[ ]

2
w w  (4.64)

A carrier c t A t
c c

( ) cos= w  is USSB-SC modulated by a modulating signal 
x(t) = cos wmt. Write down the expression for the modulated signal. Sketch its spectrum.

Example 4.28

From Eq. (4.63), we have

\ 

ˆ ( ) ( ) cos ˆ( )sin

cos cos sin

xx t
A

x t t x t t

A
t t

c
u c

c c

c
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|Xc
u(f)|

Ac/4 Ac/4

(–fc+ fm) 0 (fc+ fm) f 

Fig. 4.46 Spectrum of the USSB-SC modulated signal of Example 4.28

4.5.2 Methods of Generation of SSB-SC Signals

There are mainly two methods of generation of SSB-SC modulated signals.

 (i)  Filter method or the Balanced Modulator-filter Method: In this method, we first generate a 

DSB- SC signal and then filter out from it the unwanted sideband.

 (ii)  Phasing Method: This method of generation of SSB-SC signals is based on direct implementation 

of the Eqs (4.63) and (4.64) depending on whether a USSB-SC signal or LSSB-SC signal, is 

needed.

There is also another method, known as the Third Method or the Weaver’s method, which is a variant 

of the phasing method.

Filter Method of Generation of SSB-SC Signals As 

mentioned earlier, in this method, a DSB-SC signal 

is first generated using a balanced modulator and the 

unwanted sideband is suppressed using an appropriate 

filter. Though the method may appear very simple and 

straightforward from the above description, there 

are some practical difficulties one encounters while 

implementing the filtering. We will now elaborate this.

Suppose the modulating signal x(t) has a spectrum as shown in Fig. 4.47. Then the DSB-SC signal 

will have a spectrum as shown in Fig. 4.48.

–fc–w –fc –fc+w 0 fc–w fc fc+w f

Fig. 4.48 Spectrum of the DSB-SC signal. The dotted lines show the passband of the filter for obtaining LSSB-SC signal.

To obtain an LSSB-SC signal from the DSB-SC signal, the passband of the filter must extend 

from (  fc - W ) to + fc and must suddenly change over to the stop band without any transition band, 

if the unwanted (USSB) sideband is to be fully removed and if the desired (LSSB) sideband is to 

suffer no distortion. However, we know that such a 

filter cannot be realized in practice. If the above two 

conditions of removing the unwanted sideband fully 

and causing no distortion to the desired sideband are 

to be fulfilled using a practical filter with a finite 

transition band, then it is easy to see that the spectrum 

of the modulating signal should have a gap near the 

zero frequency; i.e., it should have a spectrum X(  f  ) 

whose shape is somewhat as shown in Fig. 4.49 with 

|X(f)|

–w 0 w f

Fig. 4.47 Spectrum of x(t)

|X(f)|

–fL 0 fL

Fig. 4.49  Spectrum of a modulating signal with an 
energy gap
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a gap between - fL and + fL. With this type of modulating signal, the DSB-SC signal will have a spectrum 

as shown in Fig. 4.50. As may be seen from the figure, it is now possible to make use of a practical 

narrow bandpass filter with a finite transition bandwidth for suppressing the unwanted upper sideband 

of the DSB-SC signal.

f

–f
c
– f

L
–w –f

c
– f

L
–f

c
+ f

L
–f

c
+ f

L
+w

|Xc(f)|

0 f
c
– f

L
–w f

c
– f

L
f
c
f
c
+ f

L
f
c
+ f

L
+w–f

c

Fig. 4.50  Spectrum of a DSB-SC signal when the modulating signal has a gap in its spectrum, as shown in Fig. 4.45. 
Filter passband is shown in dotted lines.

The filter, a narrow bandpass filter, has to have almost constant gain over a bandwidth W covering the 

lower sideband and can have a transition bandwidth from (  fc - fL) to (  fc + fL), i.e., a bandwidth of 2fL.

Fortunately, voice signals have practically no energy upto about 300 Hz; i.e., these signals possess a 

spectrum of the type shown in Fig. 4.49, with fL = 300 Hz. However, if fc is say 10 MHz, the transition 

bandwidth of the filter, which is now 2fL = 600 Hz, will be extremely small compared to fc. Hence 

an extremely high value of Q is needed for the filter. To overcome this difficulty, a very low carrier 

frequency, like 100 kHz, is used for generating the DSB-SC signal so that the required Q value of the 

filter is practically attainable atleast with crystal filters. After suppressing the unwanted sideband, the 

carrier frequency is raised to the required level by mixing this SSB-SC signal of a low frequency carrier 

with a high-frequency signal generated by a crystal oscillator, as shown in the block diagram of Fig. 4.51.

Crystal
oscillator

low frequency

Balanced
modulator

Sideband
filter

Low carrier

frequency

SSB-SC signal

Mixer

SSB-SC signal

with correct

carrier frequency

Linear
power

amplifier

Crystal
oscillator

Audio Input

Fig. 4.51 Block diagram of a SSB-SC transmitter

With regard to the above block diagram, the following points may be noted.

 (i)  For changing over from LSSB-SC to USSB-SC signals, the sideband filter is not changed; instead, 

a different crystal is used in the crystal oscillator used for generation of the low frequency carrier.

 (ii)  After raising the carrier frequency to the required level, the signal power is raised to the required 

level by using class-A or class-AB linear power amplifiers.

 (iii)  The sideband filter must attenuate the unwanted sideband at least up to 60 dB relative to the 

desired sideband.

Alternatively, we may use a 2-stage SSB-SC modulator in order to overcome the problem with the 

design of the sideband suppression filter. A block diagram showing the essential details of this method 

is given in Fig. 4.52.
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Sideband

filter

1

Sideband

filter

2

To linear

power amplifier

SSB-SC signal

Balanced

modulator

1

Very low

frequency

carrier

High

frequency

carrier

cosw2tcosw1t

Balanced

modulator

2

Audio input

Fig. 4.52 A two-stage SSB-SC modulator

The first carrier frequency f1 is chosen to be very low so that the design of the first sideband filter 

is simplified. The SSB-SC signal from the first stage, which is now the baseband signal for the second 

stage, has a gap of approximately 2f1 Hz in its spectrum and so the design of the second filter also does 

not cause any problem.

Phasing Method of Generation of SSB-SC Signals This method is based on direct implementation of 

Eq. (4.63) or (4.64) which gives the time-domain representation of USSB-SC (or LSSB-SC) signal. To 

produce x(t) cos wct, we need one balanced modulator to which we have to feed the modulating signal x(t) 

and the carrier oscillator output, viz., cos wct, directly, as shown in Fig. 4.53. To produce ˆ( )sinx t t
c

w , we 

need to have a second balanced modulator, to which we apply ˆ( )x t  obtained by passing x(t) through a -90∞ 
phase shifter and sinw

c
t  obtained by passing the carrier oscillator output through a -90∞ phase shifter.

Balanced
modulator

–900 phase
shifter

Linear power
amplifier

Balanced
modulator

2

–900 phase
shifter

Carrier
signal

Accos wct SSB-SC
signal

A
c
cos w

c
t

1/2A
c
x(t) cos w

c
t

1/2A
c
x(t) cos w

c
t

^

x(t)^

x(t)

A
c
sin w

c
t

–For USSB-SC

+For LSSB-SC

Â

±

+

Fig. 4.53 The phasing method of generation of an SSB-SC signal

The carrier being a single frequency signal, the -90∞ phase shifter for it is a very simple circuit. But 

the modulating signal x(t) will have several frequency components in it and hence the -90∞ phase shifter 

used for it should produce an exact -90∞ phase shift for every frequency component and further it should 

have the same gain for all these frequency components, i.e., it should be a Hilbert transformer. This is 

a complex circuit and is generally expensive.

Comparison of Filter Method and Phasing Method

1.  The filter method needs costly sideband suppression filters. Although the phasing method does not 

need these filters, it needs wideband -90∞ phase shifters which are not easy to realize.
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2.  Being stable, the filter method does not need constant attention and adjustment. The phasing method, 

however, needs constant adjustments.

3.  In the filter method, the unwanted sideband is suppressed quite effectively; almost to -60 dB 

relative to the desired sideband. In phasing method suppression of the unwanted sideband is not 

that effective. This is because of the wideband phase shifters not producing exact -90∞ phase shift 

for all frequencies. A deviation of even 2∞ in the phase shift from the ideal -90∞ would cause that 

particular side frequency to be suppressed only to about 20 to 25 dB relative to the corresponding 

side frequency in the desired sideband.

4.  In the filter method, it is not very easy to change from USSB-SC to LSSB-SC and vive-versa. In the 

phasing method, however, it is quite easy to change over from USSB-SC to LSSB-SC and vice-versa.

5.  Changing the carrier frequency in the case of the filter method is cumbersome as it involves changing 

the sideband suppression filters and crystals in the local oscillators in the mixer stages, and then 

re-tuning all the stages. In the phasing method, it is quite easy to change the carrier frequency.

6.  The filter method can be successfully implemented only for modulating signals having a gap of 

a few hundred hertz near the origin, in their spectra. There is, however, no such restriction in the 

case of the phasing method.

Weaver’s Method, or The Third Method This method, a variant of the phasing method, was invented 

in 1950 by DK Weaver. It avoids the need for wideband phase-shifters which are difficult to construct 

and expensive and instead, uses an AF subcarrier at an audio frequency, say f0.

sinwmt

2 sinw0t sinwct
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2 cosw0t
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–
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Fig. 4.54 Weaver’s method of generation of SSB-SC signals
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F: cos( )w w
m

t- 0

G: sin cos( )

sin( ) sin( )

w w w

w w w w w w

c m

c m c m

t t

t t
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= + - + - +[ ]

0
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1

2

\ D + G: sin( )w w w
c m
- +0

-D + G: sin( )w w w
c m

+ +0

Thus, D + G gives USSB-SC signal with (  fc - f0) as the carrier frequency; and -D + G gives LSSB-SC 

signal with (  fc + f0) as the carrier frequency.

Advantages of Weaver’s Method
1. No need for any sideband suppression filters.

2. No need for any wideband phase shifters.

3. As the phase shifters used are for a single frequency, they are extremely simple and inexpensive.

4. No need for frequent adjustments.

5. Easy to change over from USSB-SC to LSSB-SC and vice-versa.

4.5.3 Detection of SSB-SC Signals

SSB-SC signals can be demodulated using coherent detection, as shown in Fig. 4.55:

Product
device
(BM)

LPF
cutoff: w

z(t) = x(t).ky(t)

SSB-SC
signal

xc (t)

cos 2pfc t

Fig. 4.55 Coherent detection of SSB-SC signals

Let the SSB-SC signal be xc(t). Then from Eqs (4.63) and (4.64),
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The second and third terms are high-frequency terms and will be rejected by the LPF whose cutoff 

frequency is W Hz, the band-limiting frequency of x(t).

Hence, z t A x t k x t
c

( ) ( ) ( )= = ◊

1

4
 (4.65)

The above analysis assumes that the locally generated carrier signal used for feeding to the product 

device, is in phase and frequency synchronism with the missing carrier component of the received SSB-

SC signal.
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A frequency-domain interpretation of coherent detection of SSB-SC signals is given in Fig. 4.56(a) and (b).

0
(a)

(b)

Passband of LPF

0
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4 3 2

1

|Xc (f)|
USSB-SC

|Y (f)|

fc f

f

fc+w

2fc+w2fc–2fc

–fc–fc–w

2fc–w –w w

Fig. 4.56 Frequency-domain interpretation of coherent detection of a USSB-SC signal

Figure 4.56(a) shows the spectrum of the USSB-SC signal, xc(t).

Now, y t x t f t

Y f X f f f f f

X f f

c c

c c c
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 (4.66)

1 and 2 of Fig. 4.56(b) represent 
1

2
X f fc( )-  while 3 and 4 represent 

1

2
X f fc( )+ . Thus, Fig. 4.56(b) 

represents Y(  f  ). The part of this from f  = -W to f  = +W, which represents the spectrum of the modulating 

signal, x(t), can be separated from the rest of the spectrum Y(  f  ) by using an LPF whose gain is constant 

in its passband from -W to W. In time-domain terms, this amounts to extracting x(t) from y(t).

As mentioned earlier, the time-domain analysis as well as the frequency-domain analysis of coherent 

detection which show that the message signal, x(t), can be recovered without any distortion, assume that 

the locally generated carrier signal used in the coherent detection process, is in frequency and phase 

synchronism with the missing carrier in the received SSB-SC signal.

4.5.4 Effect of Phase and Frequency Errors of the Local Carrier

(i) When the Local Carrier has a Phase Error q

Product
device
(BM)

LPF
cutoff: w

z(t)y(t)

SSB-SC
signal

x(t)

cos (wct+q)

Fig. 4.57 Effect of phase error of the local carrier
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Let the received SSB-SC signal be represented by
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where, as we know, the minus sign applies for USSB-SC signals and plus sign for the LSSB-SC signals
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So, after lowpass filtering
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Note that in this equation, the plus sign applies for USSB-SC.

Taking Fourier transform on both sides
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where, the –ve sign applies for USSB.

Equation (4.67) tells us that all frequency components of x(t) suffer a constant phase-shift of q 

irrespective of their frequency. Obviously, it would lead to phase distortion. Also, as q varies randomly 

with time due to channel variations, it means that all frequency components suffer the same phase shift 

which goes on varying randomly with time. This type of severe phase distortion may not be of much 

concern as far as audio signals are concerned, since the human ear is not sensitive to phase distortion. 

But if x(t) is a video signal, phase distortion cannot be tolerated at all as our eyes are very sensitive to 

any phase changes.

(ii) When the Local Carrier Oscillator has a Frequency Error Let the local carrier oscillator have a 

frequency (  fc - Df  ) where fc is the frequency of the missing carrier signal in the SSB-SC signal. Then 

referring to Fig. 4.57, we will have cos 2p(  fc + Df  )t in the place of cos (wct + q) shown therein.

In that case,
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Since the LPF has a cutoff frequency W << fc, we have
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4
2 2p pD D

(with ve sign f+ oor USSB)

 (4.68)
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This is a very interesting result because we now find from the above equation that z(t) is not x(t) at all. 

Far from being so, it is actually an SSB-SC signal for which x(t) is the modulating signal and (Df  ) is the 

carrier signal. From Eq. (4.68), it is clear that when (Df  ) is close to zero, z(t) is approximately proportional 

to x(t). In fact, a frequency error of more than a few Hz results in unacceptable levels of distortion in the 

output of the coherent detector. This places severe constraint on the local oscillator generating the carrier.

For this reason, sometimes a pilot carrier at low power level is inserted into the SSB-SC signal before 

it is transmitted. At the receiving-end, a technique, referred to as homodyne detection, is resorted to. This 

is shown in Fig. 4.58.

LPF
cutoff: w

Amplifier

Carrier
Signal

Pilot carrier
filter

(very narrow
band)

SSB-SC+pilot
carrier

ª x(t)

Fig. 4.58 Homodyne detection

Equation (4.68) shows that if the transmitted signal is a USSB-SC signal and (Df  ) is positive then the 

detected signal is an LSSB-SC signal with x(t) SSB-SC modulating the (Df  ). Alternatively, if the transmitted 

signal is an LSSB-SC signal and (Df  ) is negative, then also the detected signal is an LSSB-SC signal. If 

there is an energy gap in the spectrum of the modulating signal x(t), as would be the case if x(t) is a speech 

signal, then the effect of LSSB-SC modulation of (Df  ) by x(t) is to reduce all frequency components of the 

speech signal x(t) by (Df  ). The effect of this is to reduce the energy gap in the spectrum of detected signal. 

On the other hand, if the transmitted signal is an LSSB-SC signal and (Df  ) is positive (or USSB-SC is 

transmitted and (Df  ) is negative), from Eq. (4.68), we find that the demodulated signal is a USSB-SC signal 

with (Df  ) as carrier and x(t) as the modulating signal. If x(t) is a speech signal, this amounts to increasing 

the frequency of all frequency components of x(t) by (Df  ). This manifests as an increase in the energy gap 

of x(t) obtained as the detected signal. For speech signals this does not cause very severe distortion provided 

(Df  ) is less than about ±10 Hz. In the case music, translation in frequency of all the frequency components 

will result in severe distortion and therefore even if (Df  ) is less than ±10 Hz, it will still be unacceptable. 

In the case of video signal there will be no energy gap at all. Hence the detected signal will be a highly 

distorted version of the original modulating signal x(t) and this cannot be tolerated at all.

A synchronous detection of SSB signal shows phase and frequency discrepancy. 
Consider

s t t t t t
c i i c i i

i

N

( ) ( ) ( )= + - +ÈÎ ˘̊
=
Â cos cos sin sinw w w wf f

1

is an SSB signal. This signal is multiplied by the locally generated carrier cos wct and then passed 
through a lowpass filter.

(a)  Prove that the modulating signal can be completely recovered if the cutoff frequency of the 
filter is fN < f0 < 2fc.

(b) Determine the recovered signal when the multiplying signal is cos[wct + f].
(c)  Determine the recovered signal when the multiplying signal is cos[(wc + Dw)t], given Df << fi, 

where wc = 2pfc and Dw = 2pDf. (University Question)

Example 4.29
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Synchronous detection is another name for coherent detection. Although it has not been explicitly 

mentioned, this question assumes that fN > fN-1 > fN-2…. > f1, where f1 to fN are the frequencies of the N 

single-tone modulating signals, whose sum, viz.,

x t t
i i

i

N

( ) cos( )= +

=

Â w f
1

is the modulating signal for the given SSB-SC signal.

(a)  When the local carrier oscillator has no frequency or phase error, i.e., it is cos wct. 

When we use this for coherent detection, s(t) is multiplied by this cos wct and then the product 

is lowpass filtered.

s t t t t t t t
c c i i c c i i

i

( ) cos cos cos( ) sin cos sin( )w w w w w w= + - +[ ]
=

2

1

f f
NN

Â

Replacing cos2 w
c
t  by 

1

2
2 1[cos ]w

c
t +  and sin cosw w

c c
t t  by 

1

2
2[sin ]w

c
t

s t t t t t t
c i i c i i c

( )cos cos( ) cos sin( ) sinw w w w w= + +[ ]- + [ ]{ }
1

2
1 2 2f f

ii

N

=

Â
1

When we lowpass filter this using a LPF whose cutoff frequency f0 is greater than the highest 

modulating signal frequency fN but less than 2fc, we get output of the coherent detector

= = + =

=

Âz t t x t
i i

i

N

( ) cos( ) ( )
1

2 1

w f

Since all the other terms represent frequencies close to 2fc, they are not passed by the LPF.

Thus, the modulating signal can be completely recovered in this case.

(b) When the multiplying signal (i.e., local carrier signal) is cos[wct + f]

Proceeding exactly as in the above case,

s t t t t t
c i i c i i

( )cos cos( ) cos( ) cos sin( ) siw w w w= + + +{ }- +[ ]1

2
2f f f f nn( ) sin2

1

w
c

i

N

t + -{ }ÈÎ ˘̊
=
Â f f

When this is lowpass filtered by an LPF whose cutoff frequency f0 is s.t. fN <  f0 < 2fc

z(t) = output of the filter = + + +{ }
=

Â
1

2 1

cos cos( ) sin sin( )f f f fw w
i i i i

i

N

t t

This z(t) can be shown to be x(t) with all its frequency components given a constant phase shift 

of f. Thus, there will be severe phase distortion.

(c) When the multiplying signal is cos[(wc + Dw)t]

Proceeding exactly as in the above two cases, it can be shown that

z(t) = output of the filter = + + +[ ]
=

Â
1

2 1

cos( ) cos( ) sin( ) sin( )D Dw w w wt t t t
i i i i

i

N

f f

This z(t) is not x(t) at all. It is an SSB-SC signal for which the x(t) is the modulating signal 

and (Df  ) is the carrier signal. If Dw ª 0, then sin(Dw)t ª 0 and cos(Dw)t ª 1 and so z t x t( ) ( )ª
1

2
; 

otherwise it represents a highly distorted version of x(t).
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What is known as a phase-shift SSB-SC demodulator, is shown in the figure. 
Show that it demodulates an SSB-SC signal.

A

B

x
c
(t) x(t)

D

cosw
c
t

–900

–900

C

A΄

Â

+

+

Fig. 4.59 Phase-shift SSB-SC detector

Example 4.30

Consider the following SSB-SC modulated signal.

( ) ( ) cos ˆ( )sinx t x t t x t t
c c c

= -w w , which is a USSB signal, where, ˆ( )x t  is the Hilbert Transform of the 

message signal, x(t).

Signal at A = Signal at A¢ = xc(t)

\ signal at C: ( ) cos ( ) cos ˆ( )sinx t t x t t x t t
c c c c

w w w= -
2

1

2
2

\ signal at B: ˆ ( ) ( )sin ˆ( ) cosx t x t t x t t
c c c

= +w w . (Property of HT)

\ signal at D: ˆ ( )sin ( )sin ˆ( )sinx t t x t t x t t
c c c c

w w w= +
2

1

2
2

Thus, the output of the phase-shift demodulator = Signal at C  +  Signal at D

= + = =x t t t x t
c c c
( )[cos sin ] ( )2 2w w  Message signal

The given system does act as a demodulator for SSB-SC.

4.5.5 Applications of SSB-SC Modulation

From the previous discussion, it is clear that SSB-SC modulation cannot be used for transmission of 

music and video signals and that it may be used only for transmission of speech signals since they have 

an energy gap around the origin, in their spectra. Because it conserves power as well as bandwidth, it 

is ideally suited for simultaneous transmission of a very large number of telephone speech signals by 

the use of what is called ‘Frequency-Division Multiplexing, or simply ‘FDM’. Hence the usefulness of 

SSB-SC can be summarized as follows.

1.  Point-to-point speech communication but not for audio broadcasting in which millions of receivers 

may be interested in what is being broadcast by a single transmitter. This is because, though SSB-

SC transmission gives saving in power as well as bandwidth and thereby reduces the cost of the 

transmitter, SSB-SC receivers are quite complex and expensive. It just doesn’t make sense to make 

millions of receivers expensive in order to save a little in the cost of a transmitter.

2.  Transmission of a very large number of telephone conversations simultaneously over the same 

physical channel by using FDM.

3.  As the carrier and one of the sidebands are suppressed, for the same average transmitted power, 

compared to the AM, SSB-SC gives more signal power at the destination. Further, since it occupies 

only half of the bandwidth required for AM, for the same power spectral density of white noise on 

the channel, the noise power entering an SSB receiver is half of the noise power entering an AM 
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receiver. Thus, assuming that the noise added by the internal circuitry of the two receivers is the 

same, the output signal-to-noise ratio for an SSB-SC receiver will be far better compared to that of 

an AM receiver. We will be discussing this aspect in more quantitative terms in Chapter 9.

4.5.6 Frequency Division Multiplexing

Multiplexing refers to the technique used for simultaneous transmission of a number of different message 

signals over the same physical channel. There are mainly two important methods used for multiplexing—

Frequency Division Multiplexing (FDM) and Time Division Multiplexing (TDM). We will be discussing 

about TDM in detail later. In FDM we assign specific non-overlapping bandwidth slots for the various 

messages and then transmit the combined signal. The fact that different message signals occupy different 

non-overlapping frequency slots is made use of at the receiving end for separating them and recovering 

the individual messages.

In telephony, intelligibility being the sole criterion, the bandwidth of a speech signal is limited only 

to 3.2 kHz in order to conserve the spectrum. Hence, when telephone messages are FDM-ed, each of 

the messages is assigned a bandwidth of 4 kHz in order to provide for guardbands in the multiplexed 

signal. These guardbands facilitate the recovery of the individual messages by making the specifications 

for the bandpass filters used for recovering them less stringent. SSB-SC modulation is used to translate 

each message signal to the 4 kHz bandwidth slot assigned to it. Thus, if N telephone message signals are 

to be FDM-ed, as shown in Fig. 4.60, N sub-carriers, each differing from its adjacent one by 4 kHz, are 

used. These sub-carriers are LSSB-SC modulated by the telephone message signals. Before modulation, 

each telephone message is first passed through a lowpass filter to ensure that it is strictly bandlimited to 

3.2 kHz. After LSSB-SC modulation, the modulated signal is passed through a bandpass filter. The i th 

message channel, having a sub-carrier frequency of fci, will have a BPF whose passband extends from 

(  fci -4 kHz) to fci.

In Fig. 4.60, the multiplexed signal is fed directly to the channel. For long-distance transmission 

of the multiplexed signal, however, a main carrier is modulated by this multiplexed baseband signal 

before being fed to the channel. Correspondingly, at the receiving end of the channel, a carrier 

demodulator retrieves the multiplexed baseband signal which is then fed simultaneously to all the BPF’s 

which separate the various SSB-SC sub-carrier modulated message signals. These are then coherently 

demodulated using the various sub-carriers and the detected message signals are then passed through 

LPFs and recovered.

BPF DEMOD

DEMOD

DEMOD

LPF

LPFBPF

LPFBPF
SSB/SC
MOD

BPFLPF1

SSB/SC
MOD

BPF

SSB/SC
MOD

BPF

LPF2

LPF3

CHANNEL

Receiver

fc2

fc1

fcN

fc2

Subcarrier fc1

Subcarrier fcN

Transmitter

Message-N Message-N

Message-2 Message-2

Message-1 Message-1

Fig. 4.60 An FDM system
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A practical FDM system will have several stages of multiplexing. In the first stage of multiplexing, 12 

telephone voice messages are multiplexed to form what is generally called as the basic group. The sub-

carriers used for forming this group have frequencies 64 kHz, 68 kHz, 72 kHz,…, 104 kHz. With LSSB-

SC modulation, the 12 telephone messages are translated into frequency bands (or slots) of 60–64 kHz, 

64–68 kHz,…, 104–108 kHz. Thus, the basic group carrying 12 telephone messages, occupies a bandwidth 

of 48 kHz. In the second stage of multiplexing, five such basic groups are FDM-ed to form what is known 

as a super group, which occupies the frequency range of 312 kHz to 552 kHz. They are then combined 

to form master groups and these are in turn multiplexed to form very large groups. Table 4.1 shows the 

AT&T FDM hierarchy.

Table 4.1 AT&T FDM hierarchy

Type of group Frequency range Bandwidth Number of telephone channels

Group 60–108 kHz 48 kHz 12

Super Group 312–552 kHz 240 kHz 60

Master Group 564–3084 kHz 2.52 MHz 600

Very Large Group (Jumbo Group) 0.5–17.5 MHz 17 MHz 3600

4.5.7 Independent Sideband Transmission (ISB)

A variant of SSB-SC transmission is the independent Sideband Transmission in which two sidebands 

are transmitted with reduced/no carrier. The two sidebands, however, carry different speech signals and 

hence the name—Independent Sideband Transmission. It thus doubles the capacity of the communication 

channel and is therefore used for point-to-point communication in areas with high traffic density.

Carrier signal generated by a crystal oscillator is applied as input to two balanced modulators 

simultaneously. To one of these, say balanced modulator-I (BM-I) a speech signal A is applied. To the 

other balanced modulator, speech signal B is applied. One sideband filter suppresses the lower sideband 

in the DSB-SC signal produced at the output of BM-I while another sideband filter suppresses the upper 

sideband of the DSB-SC signal at the output of BM-2. Thus at the output of one sideband filter we have 

the upper sideband, while at the output of the other sideband filter we have the lower sideband. These 

two have the same carrier, but they carry different speech signals.

VESTIGIAL SIDEBAND MODULATION
4.6

In television, two message signals need to be transmitted—video, or the picture signal, and audio or the 

sound signal. TV transmitters employ amplitude modulation for the video signal and frequency modulation 

for the sound signal. The video signal that they handle occupies a bandwidth of 5 MHz. If ordinary 

AM with carrier and both the sidebands is employed, the modulated signal, i.e., the TV signal which is 

transmitted, will occupy a huge bandwidth, viz., 10 MHz, which is impractical. However, to reduce this 

bandwidth requirement, it is not possible to employ SSB transmission, for the following reasons.

 (i)  If we employ SSB-SC, the receiver becomes quite complex and expensive, as we have to use 

coherent detection.

 (ii)  Even if one sideband and the carrier are to be transmitted in order to make the receiver simpler, 

difficulties arise in the transmitter. The phasing method of generation, as we know, does not give 

the high level of suppression of the unwanted sideband required for commercial TV broadcasting.

 (iii)  The filter method of generation requires, as has already been discussed, a hole in the low frequency 

part of the spectrum from zero Hertz up to at least a few hundred Hertz. However, video signals 
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will not have such a hole in their spectra. In fact, they are generally quite rich in dc and low 

frequency components. Thus, it is not possible to employ even the filter method.

 (iv)  Further, the phase response of the bandpass filters used in the filter method will not be linear 

near the passband edges. This will make the received video signal distorted. Since the eye is quite 

sensitive to phase, this cannot be tolerated.

Since the use of AM (both the sidebands plus the carrier) as well as SSB with pilot carrier is ruled out 

because of the above reasons, what is known as vestigial sideband modulation is used. In this, in addition 

to the carrier and one sideband, a part, or what may be called the ‘vestige’ of the other sideband is also 

transmitted. That is why it is called as ‘Vestigial Sideband Modulation; or VSB modulation.

Consider a video signal x(t). Let its spectrum be as shown in Fig. 4.61(a) when we feed this and a 

carrier signal cos 2p fct to a balanced modulator let us say we get a signal y(t) = x(t).cos 2p fct. The spectrum 

Y(  f  ) of y(t) is given by

 Y f X f f X f fc c( ) ( ) ( )= + + -[ ]
1

2
 (4.69)

1

–w 0 w f–f

(a)

(b)

Y(f)

X(f)

Bandwidth = 2W 

–0.5

–fc–W –fc –fc+W 0 fc–W fc fc+W
f

Fig. 4.61 (a) Spectrum of x(t) (b) Spectrum of y(t)

y(t) is a DSB-SC signal and its spectrum Y(  f  ) is shown in Fig. 4.61(b). This y(t) is say appearing 

at the receiving end as z(t). In order to recover x(t) from z(t) = y(t), we multiply it by the carrier signal 

(coherent detection).

Channel
LPF

r(t)ª1/2x(t)

cos 2pfct cos 2pfct

Receiving-endSending-end

x(t) y(t) z(t) w(t)

Fig. 4.62 Coherent reception of y(t)

\ w t y t f t x t f t x t f tc c c( ) ( ).cos ( ) cos ( ) cos= = = +[ ]2 2
1

2
1 42p p p

\ w t x t x t f tc( ) . ( ) . ( ) cos= +0 5 0 5 4p

\ W f X f X f f X f fc c( ) . ( )
.
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W(f)

0.25 0.25

0.5

–2fc 2fc
f

–2fc+W 2fc–W–W W0

Transfer Function of the LPF

Fig. 4.63 Spectrum of w(t) and transfer function of the LPF

As shown in Fig. 4.63, the LPF which has a cutoff frequency of w, will reject the high frequency 

components centered around 2fc and will pass only 0.5 x(t), whose spectrum is from –W to W. Hence, 

we are able to recover at the receiving-end a signal r(t) which is a scaled version of x(t).

For the assumed message signal x(t), we have until now, considered only the DSB-SC transmission 

and reception. As shown in Fig. 4.61(b), the required bandwidth for this is 2 W. But this will be too 

large when x(t) is a video signal. However, as we observed earlier, we cannot use SSB-SC transmission. 

So, let us now consider the vestigial sideband transmission, in which we transmit the carrier and one 

sideband plus a vestige of the other sideband as shown in Fig. 4.64(a)

Vestige of the LSBVestige of the LSB

USBUSB

Xc1(f)

–fc–w –fc fc ffc+w–fc+ fv –fc– fv0

(a)

(b)

(c)

Xc2(f)

f–fc–w –fc fc fc+w–fc+ fv

–fc– fv fc+ fv

–fc– fv0

1

0.5

f0

1

2

– fv fv ww

Fig. 4.64  (a) Full upper sideband plus a portion of LSB transmitted (b) The demodulated signal resulting from (a) 
(c) USB and LSB suitably shaped to avoid the distortion shown in (b)

Figure 4.64(b) clearly brings out the need to suitably shape the USB and the LSB of the transmitted 

signal in order to recover the message signal x(t) without distortion after the frequency translation that 

takes place in the demodulator. Figure 4.63(c) shows an appropriate way of shaping the USB and LSB of 
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the transmitted signal so as to avoid distortion in the demodulated signal. This shaping may be considered 

to be done by a filter, called the vestigial sideband filter, or VSB filter, as shown in Fig. 4.65.

x(t) y(t) z(t) z(t)

H(f)

Channel

cos 2pfct cos 2pfct

VSB
Filter

LPF
cutoff: W

w(t) r(t)

Fig. 4.65 Generation of VSB signal and recovery of x(t)

4.6.1 Frequency-domain Representation of a VSB Signal

Let the message signal x(t) have a spectrum X(  f  ). Then the spectrum at the input to the VSB filter 

is Y(  f  ) given by

 Y f X f f X f fc c( ) ( ) ( )= + + -[ ]
1

2
 (4.70)

Since the VSB filter has a transfer function of H(  f  ), the spectrum at the output of the VSB filter, 

which is the frequency-domain representation of the VSB signal, is given by

 Z f H f Y f H f X f f X f fc c( ) ( ). ( ) ( ) ( ) ( )= = + + -[ ]
1

2
 (4.71)

4.6.2 Transfer Function of the VSB Filter

The spectrum of w(t) is

W f H f X f f X f f f f f f

H f f

c c c c

c

( ) ( ) ( ) ( ) ( ) ( )

( )

= + + -[ ]* + + -[ ]

= +

1

2

1

2

1

4

d d

XX f f X f H f f X f f X fc c c( ) ( ) ( ) ( ) ( )+ +[ ]+ - - +[ ]2
1

4
2

Since the LPF has a cutoff frequency of W and W << fc, terms like X(  f + fc) H(  f + fc) and X(  f - 2fc) 

H(  f - fc) vanish because of the lowpass filtering. We may therefore write the spectrum R(  f  ) of the 

demodulated signal r(t) as

R f H f f H f f X fc c( ) ( ) ( ) ( )= + + -[ ]
1

4

But this demodulated signal must be proportional to x(t)

i.e., R f kX f W f W( ) ( );= - £ £    

This means that

H f f H f f W f Wc c( ) ( )+ + - = - £ £   a constant;   

The choice of this constant is purely arbitrary and let us take it as unity.

 \ H f f H f f W f Wc c( ) ( )+ + - = - £ £  1  ;    (4.72)

Since the shape of the spectrum of y(t), the DSB-SC signal is as shown in Fig. 4.66(a), it follows 

that the shape of the transfer function H(  f  ) of the VSB filter should be as shown in Fig. 4.66(b) so that 

[H(  f  ).Y(  f  )] which is Z(  f  ), will have the desired shape as shown in Fig. 4.66(c).
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Y(f)
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f–fc–w –fc fc fc+w–fc+ fv –fc– fv0

1
0.5

Fig. 4.66  (a) DSB signal y(t) (b) H(  f  ), the transfer function of the VSB filter (In (a) the part outlined with dark 
lines is the spectrum of the VSB signal)

H(  f + fc) is obtained by shifting H(  f  ) to the left along the frequency axis by an amount of fc, while 

H(  f - fc) is obtained by shifting H(  f  ) to the right by an amount of fc. These are shown in Fig. 4.67(a) and (b).

(a)

(b)

(c)

H(f+ fc) +H(f– fc)

1

–2fc –w –fV 0 fV w 2fc f

|H(f– fc)|

  –w 0 fV fc 2fc– fV 2fc 2fc+w f

|H(f+ fc)|

–2fc–w –2fc –2fc+ fV fc –w fV 0 fV w f

Fig. 4.67 Sketches of (a) H(  f + fc ); (b) H(  f - fc ); (c) H(  f + fc ) + H(  f - fc )
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4.6.3 Time-domain Representation of the VSB Signal

An analytical expression for the VSB signal (i.e., the time-domain representation of the VSB signal), may 

be obtained by taking the inverse Fourier transform of its spectrum.

\ z t x t F H f X f f X f f

H f X f f X

c c c

c

( ) ( ) ( ) ( ) ( )

( ) ( )

= = + + -{ }ÈÎ ˘̊

= + +Ú

VSB

(( )

( ) ( ) ( ) ( )

f f e df

x t H f X f f e df H f

c
j ft

c c
j ft

-[ ]

= + +Ú

  

  
VSB

2

2

p

p

-
Ú -X f f e dfc

j ft( )  2p

 

\ (4.73)

Before proceeding further with determining the inverse Fourier transform of Z(  f  ), the spectrum of the 

VSB signal, let us define a frequency function Hv(  f  ) as follows:

 H f H f H f f H f f H f for W f Wv c c c c( ) ( ) ( ) ( ) ( )= - - = + - - £ £       (4.74)

where, H f H fc
f fc

( ) ( )=
=

Since H fc( ) =
1

2
, we find from Eq. (4.74) and Fig. 4.66(a) 

that Hv(  f  ) has a shape as shown in the Fig. 4.68.

Figure 4.68 clearly brings out the fact that the function Hv(  f  ) 

is an odd function of frequency,

i.e., Hv( - f  ) = - Hv(  f  ) (4.75)

Now, reverting to Eq. (4.73), and making the following substitutions, i.e.,

and 

a

b

= -

= +

( )

( )

f f

f f

c

c ,

we get

 x t H f X e d H f X ec c
j f t

c
c( ) ( ) ( ) ( ) ( )( )

VSB

    = + + -+Ú Úa a a b bp a2 jj f tc d2p b b( )-  (4.76)

But, from Eq. (4.74), we find that

and 

H f H f H

H f H f H

c c V

c c V

( ) ( ) ( )

( ) ( ) ( )

a a

b b

+ = +

- = -

Substituting these in Eq. (4.76), using the fact that H(  fc) = 0.5 and simplifying, we get

 x t x t f t g t f tc c c( ) ( )cos ( )sin
VSB

= -2 2p p  (4.77)

where,

 g t j X f H f e dfV
j ft( ) ( ) ( )        D - Ú2 2p  (4.78)
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Fig. 4.68 The function HV(  f  ) of Eq. (4.74)
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As is to be expected, if fV Æ 0, x t x t
c c
( ) ( )
VSB SSB-SC

Æ

i.e., ˆ ( ) ˆ( )xg t x tÆ  since H f fV ( ) sgn( )Æ  as fV Æ 0  (see Fig. 4.68)

4.6.4 Spectrum of Transmitted TV Signal and Receiver Response

From the above discussion on the frequency-domain and time-domain representation of VSB signals, the 

reader should not conclude that the signal transmitted by a TV transmitter will have a spectrum as shown 

by the product of Hv(  f  ) and Y(  f  ) in Fig. 4.66(a) and (b).

One TV > channel (61 MHz – 68 MHz)

1.0

0.5

0 0.5 1.25 2.0 6.5
(b)

Picture carrier Sound carrier

Part of the LSB transmitted fully 0.75 MHz

5.5 MHz separation between carriers 6.5

0 0.5 1.25 6.0 6.75 7.0

61 MHz 62.25 MHz
(a)

67.75 68 MHz

Fig. 4.69  (a) Spectrum of the transmitted TV signal (CCIR-B, Monochrome) (b) Typical response characteristic of 
the video amplifier in the receiver

In fact, in practice, the transmitted signal will have full carrier, full upper sideband and a part of the 

lower sideband, as shown in Fig. 4.69(a). This type of spectrum for the transmitted signal is obtained by 

asymmetrically tuning the tank circuits of the linear amplifiers used in the transmitters video channel for 

raising the power level after the modulation process. Because they are tuned asymmetrically, while the 

upper sideband is transmitted in full, only 0.75 MHz width of the lower sideband is transmitted in full 

and the rest of it transmitted only partly, as shown clearly in Fig. 4.69(a).

The fully transmitted part of the lower sideband leads to the effect shown in Fig. 4.64(b). This 

distortion is avoided by shaping the response characteristic of the receiver as shown in Fig. 4.69(b), 

on the lines suggested in Fig. 4.64(c). The picture detector in the receiver therefore gets a VSB signal 

with full carrier although what has been transmitted is not a VSB signal. It must be noted here that 

while two-sided spectra are shown in Fig. 4.64, only one-sided spectrum and response are shown in 

Fig. 4.69(a) and (b) respectively. Also note that the partly transmitted part of the LSB which is more 

than 0.75 MHz away from the picture carrier, is totally rejected by the receiver as the receiver is zero 

for these frequencies.
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4.6.5 Detection of VSB Signals

Although we had, in the analysis leading to the determination of the transfer function HV(  f  ) of the VSB filter, 

assumed a coherent detector, in actual practice, in TV receivers, it is not possible to have such a detector, as 

it is quite complex and makes the TV receiver quite expensive. So, although it results in some distortion of 

the demodulated signal, the TV receiver uses only a simple envelope detector. It is for this reason that the 

transmitter transmits full carrier in addition to one full sideband and a vestige of the other sideband. We shall 

now briefly analyze the action of the envelope detector and examine how this distortion may be reduced.

Since the detector input is the VSB signal, plus the carrier, let us scale the VSB signal of Eq. (4.77) 

by a factor m (0 < m < 1), the modulation index and then add the carrier term cos2p f tc , to get

 s t mx t f t mg t f tc c( ) ( ) cos ( )sin= +[ ] -1 2 2p p  (4.79)

As the envelope detector extracts the envelope of this signal given to it as input, the detector output 

is (see Eq. 2.171)
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[1 + mx(t)] being the correct envelope term, the other one, viz., 
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˙  is the distortion term.

Hence, to reduce the distortion due to demodulation by an envelope detector, we have to either reduce 

the modulation index m or reduce g(t) by increasing the width of the vestige of the LSB. In commercial 

TV, we do both. That is the reason why the width of the vestige of the LSB is as high as 0.75 MHz 

[see Fig. 4.69(a)].

Table 4.2 Shows a comparison of various varieties of amplitude modulation

System

Useful part 

of transmitted 

power B.W

Carrier 

suppression

Sideband 

suppression

Figure 

of merit

Receiver 

complexity Application

AM + 

Both SB

Low 2 W Hz No No
m x

m x

2 2

2 21+

Simple Audio 

Broadcasting

DSB-SC Good 2 W Hz Yes No 1 Complex Quadrature 

multiplexing, 

point-to-point 

communication

SSB-SC Very good W Hz Yes Carrier and one 

sideband fully 

suppressed

1 Complex Used for long-

haul point-to-point 

communication

VSB Moderate B.W < 2W No One sideband is 

fully transmitted 

while the other 

is partially 

transmitted

– Simple TV broadcasting



190 Analog Communication

SUMMARY

1. Modulation is the process of translating a low-frequency information-bearing signal to a high-frequency 

slot.

2. Modulation is necessary for (i) keeping the antenna size small, (ii) making it possible for the receiver 

to select the desired message signal, and (iii) multiplexing and transmitting several information-bearing 

signals simultaneously.

3. In continuous-wave modulation, the amplitude, frequency, or the phase of a high-frequency sinusoidal 

signal, called the carrier, is changed in accordance with the variations in the amplitude of the message 

signal.

4. Amplitude Modulation (carrier plus both sidebands), i.e., AM is that type of modulation in which the 

amplitude of the carrier is changed from instant to instant in such a way that at any instant of time, 

the change in the peak amplitude of the carrier from its unmodulated value is directly proportional 

to the instantaneous amplitude of the message/modulating signal.

5. Time-domain description of AM xc(t) = Ac[1 + mx(t)]cos wct, where, x(t) is the message or modulating 

signal, A t
c c
cosw  is the unmodulated carrier signal and m is the modulation index, whose value lies 

between 0 and 1, i.e., 0 £ m £ 1 and |x(t)| £ 1. For single-tone message signal, x(t) = cos wmt so that

x t A m t t A t
mA

t
mA

c c m c c c

c

c m

c( ) cos cos cos cos( ) cos= +[ ] = + + +1
2 2

w w w w w (( )w w
c m

t-

6. Frequency-domain description of AM

X f
A

f f f f
mA

X f f X f fc
c

c c
c

c c( ) ( ) ( ) ( ) ( )= + + -[ ]+ - + +[ ]
2 2

d d

where, for single-tone modulation, X f f f f fm m( ) ( ) ( )= + + -[ ]
1

2
d d

7. Amplitude spectrum of an AM signal

|Xc(f)| (Ac/2)d(f – fc)(Ac/2)d(f + fc)

m Ac/2 m Ac/2

USB LSB LSB USB

–fc – fm –fc –fc + fm 0 fc – fm fc fc + fm f

8. Carrier and sideband power components in AM

 (i) When a general message signal x(t), with |x(t)| £ 1 is used,

  x t
c

2 ( )  = Average power in an AM signal = +È
Î

˘
˚

1

2
12 2 2A m x t

c
( )

  where, x t
c

2 ( )  = Average power of the message signal.

 (ii) For single-tone modulation,
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 9. Trapezoidal pattern When 0 £ m £ 1 and there is no distortion.

m
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10. Generation of AM

 (i) By the use of non-linear devices

 (ii) By the use of product devices

 (iii) By the use of switching devices

11. Plate/collector—modulated class-C amplifier

 Total average power in the AM output signal = P0 = hPTav

 = + Ê
ËÁ

ˆ
¯̃

h hP P
m

B B

2

2
;  where, PTav = total average power

Supplied to the collector/plate circuit: PB = power supplied by the VCC or Ebb supply; h = plate-

circuit efficiency of the modulated class-C amplifier and m = modulation index.

 \ P0 = carrier power + total sideband power

Carrier power is supplied by Ebb/Vcc supply and sideband power is supplied by the final stage 

of the modulating amplifier.

12. High-level modulation and low-level modulation In an AM transmitter, if the modulation of the 

carrier is carried out at a high power level, using plate/collector modulated class-C amplifiers, it is 

called high-level modulation. If the modulation is carrier out at any point before the plate/collector 

of the final carrier power amplifier stage, it is called low-level modulation.

13. Advantages and disadvantages of high-level modulation As modulation is performed only at the 

plate/collector of the final power amplifier stage of the carrier chain, there is no need to use class-A 

or class-AB tuned power amplifiers whose efficiency is low.

However, high-level modulation requires large amounts of modulating signal power since the 

entire sideband power of the AM signal to be radiated, has to be supplied by the final stage of the 

modulating signal amplifier chain.

14. Detection of AM signals An AM signal may be detected by (i) coherent detection, (ii) square-law 

detection, or (iii) envelope detection.

15. Coherent detector The received signal is multiplied by a locally generated carrier signal and the product 

is lowpass filtered using an LPF with a cutoff frequency of W Hz, the baseband signal bandwidth.

16. Square-law detector The received AM signal is fed to a square law device and then its output is 

lowpass filtered using an LPF with a cutoff frequency of W Hz.

17. Envelope detector If there is no distortion in the modulation process, the envelope of an AM 

signal follows the variations in amplitude of the message signal. The diode/envelope detector tries 

to extract the envelope of the received AM signal. The detector consists of a diode in series with 

a parallel combination of RL and C, to which the AM signal is applied. The output is taken across 

the parallel combination of RL and C. It should be seen that

R C
f

R C
f

s
c

L
m

<< << <<
1 1

where, Rs is the source resistance, and fm is the highest modulating signal frequency.
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18. Distortions in envelope detection

 (i) Diagonal clipping To avoid this, it must be ensured that

R C
m

m
L
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 (ii) Negative peak clipping To avoid this, it must be ensured that

 m
R

R

AC

DC

max
;£

Ê

ËÁ
ˆ

¯̃
 RAC = ac load res. of the envelope detector

 RDC = dc load res. of the envelope detector

19. Disadvantages of AM As the information contained in the message is completely available in any 

one of the two sidebands, it can be recovered even if just one sideband alone, occupying a bandwidth 

of W is transmitted. Thus, AM is wasteful in power as well as bandwidth.

20. DSB-SC An amplitude modulation process, in which the modulated signal contains no carrier 

components and has only two sidebands, is called double sideband suppressed carrier modulation.

x t A x t t
c c c
( ) ( )cos

DSB-SC

= w

 For x(t) which is single-tone: x t
A

t t
c

c

c m c m
( ) cos( ) cos( )

DSB-SC

= + + -[ ]
2

w w w w

21. Generation of DSB-SC Since a balanced modulator multiplies the two signals given to it, it can 

be used for generating DSB-SC signals by givingA t
c c
cosw , the carrier signal and x(t), the message 

signal, as the two inputs to it. Or else, a ring modulator may be used.

22. DSB-SC signals can be detected only by synchronous or coherent detection only.

23. The locally generated carrier signal used for coherent detection, has to be in frequency and phase 

synchronism with the carrier in the received sidebands. For this purpose, a ‘Costas loop’ or a 

‘squaring-loop’ may be used.

24. Quadrature carrier multiplexing, or quadrature amplitude modulation, is a technique by which 

two different message signals, x1(t) and x2(t), having spectra occupying the same bandwidth, can be 

transmitted simultaneously over the same physical channel, using the same carrier frequency.

25. Single sideband suppressed carrier (SSB-SC) modulation is an amplitude modulation process in 

which the carrier as well as one of the sidebands is suppressed and only one sideband is transmitted.

26. Frequency domain representation of SSB-SC signals

 USSB-SC signal: X f
A

X f f X f fC
U c
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2
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27. Time-domain representation of SSB-SC signals

 x t
C
U ( ) =  USSB-SC signal ( ) cos ˆ( )sin

A
x t t x t t

c

c c
= -[ ]

2
w w

 and x t
C
L ( ) =  LSSB-SC signal ( ) cos ˆ( )sin

A
x t t x t t

c

c c
= +[ ]

2
w w
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28. Generation of SSB-SC signals There are three methods.

 (i)  Filter method In this method, first a DSB-SC signal is generated. From this, the unwanted 

sideband is suppressed using a filter. Advantages: very stable; used in commercial circuits.

 (ii)  Phasing method In this, two balanced modulators, BM1 and BM2 are used. BM1 is fed with 

Ac cos wct and x(t) and its output is the product of these two. BM2 are fed with Ac sin wct and 

ˆ( ).x t  Its output is the product of these two. Outputs of BM2 are either added or subtracted 

from the output of BM1. Addition gives LSSB-SC while subtraction gives USSB-SC signal. 

Advantages: used by radio amateurs, needs frequent adjustment.

 (iii)  Weaver’s method or third method It is a variant of the phasing method and obviates the need 

for wideband 90∞ phase shifters by using 4 BMs.

29. Detection of SSB-SC signals

 (i)  If the locally generated carrier has a phase error q, the detector output will be x(t) with all its 

frequency components shifted by q. Hence severe phase distortion results.

 (ii)  If the locally generated carrier has a frequency error (Df  ), then the detector output will not be 

x(t); instead, it will be a SSB-SC signal with x(t) as modulating signal and (Df  ) as the carrier.

30. Applications and advantages of SSB-SC transmission

 (i) Useful for point-to-point communication for speech but not for audio broadcasting

 (ii) Bulk transmission of telephone conversations using FDM

 (iii) Gives better (S/N) at the destination as compared to AM

31. Frequency Division Multiplexing (FDM) A technique used for simultaneous transmission of a 

number of different message signals over the same physical channel. For this, different message 

signals are, by frequency translation, made to occupy different non-overlapping frequency slots and 

this multiplexed signal is transmitted. At the receiving end, the messages are separated by using 

BPFs, demodulators and lowpass filters.

32. Typical FDM hierarchy

Type of group Frequency range Bandwidth Number of telephone channels

Group 60–108 kHz 48 kHz 12

Super Group 312–552 kHz 240 kHz 60

Master Group 564–3084 kHz 2.52 MHz 600

Very Large Group (Jumbo Group) 0.5–17.5 MHz 17 MHz 3600

33. Independent sideband transmission It is a variant of SSB-SC transmission in which two sidebands 

are transmitted without the carrier, with the two sidebands carrying different speech signals.

34. Vestigial sideband modulation Since use of AM as well as SSB is not possible for video 

transmission, what is known as vestigial sideband modulation is used. In this, in addition to the 

carrier and one sideband, a part, or what is generally called a vestige of the other sideband is also 

transmitted. It is used for TV transmission. A VSB signal may be detected using an envelope detector. 

The distortion in the detected signal will be small, if the depth of modulation is small.
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REVIEW QUESTIONS

 1. Define ‘amplitude modulation’.

 2. What is modulation index? What happens if it is greater than unity?

 3. A carrier signal Ac cos wct is amplitude modulated by a message signal Am cos wmt, where, Am < Ac. 

(i) Write down the expression for the modulated signal. (ii) Write down the expression for the carrier 

component and the side-frequency components. (iii) Draw the phasor diagram of the modulated signal.

 4. From the expression for the amplitude modulated signal of question 3 above, write down the 

expression fro the r.m.s. value of the modulated signal.

 5. Sketch the spectrum of an AM signal assuming sinusoidal modulation with a modulation index of 

m (m < 1).

 6. A carrier signal is sinusoidally modulated to a depth of m = 0.8. What percentage of the total power 

of the modulated signal is in the two sidebands?

 7. State one important advantage and one important disadvantage of AM. Where is AM used?

 8. What is diagonal clipping? How can it be avoided?

 9. State how a DSB-SC signal may be generated.

10. Assuming sinusoidal modulation, sketch the spectrum of a DSB-SC signal for some m (m < 1).

11. How can a DSB-SC signal be demodulated?

12. Name one practical application in which DSB-SC modulation is put to use.

13. Briefly explain quadrature carrier multiplexing.

14. Discuss the advantages and disadvantages of SSB-SC transmission.

15. In the filter method of generation of an SSB-SC signal, why do we have to use initially a low-frequency 

carrier?

16. In the filter method of generation of an SSB-SC signal, why is it necessary that the message signal 

should have a hole near the origin in its spectrum?

17. How is an SSB-SC signal demodulated?

18. With reference to SSB-SC signal modulation, discuss the effect of an error in the locally generated 

carrier signal’s (i) frequency, and (ii) phase.

19. State the applications of SSB transmission.

20. Draw the spectrum of an LSSB-SC signal. Write down an expression for this spectrum in terms of 

that of the message signal.

21. How does the 2-stage SSB-SC modulation overcome the problems associated with the design of the 

sideband suppression filter?

22. Critically compare the filter method and the phasing method of generation of SSB-SC signals.

23. With the help of block schematic diagram, clearly explain homodyne detection of an SSB signal 

transmitted with a pilot carrier.

24. Explain briefly the basic principle of FDM.

25. What is independent sideband transmission?

26. Explain why SSB transmission even with a pilot carrier is not feasible in the case of TV.

27. Sketch the typical spectrum of the VSB signal that is given as input to the video detector of a TV 

receiver.
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28. Write down an expression for the time-domain representation of a VSB signal.

29. Sketch the spectrum of typical TV signal.

30. Sketch the typical response characteristic of the video amplifier section of a TV receiver.

31. What are the steps taken in commercial TV broadcasting to ensure that the distortion arising in the 

detected video signal owing the use of an envelope detector, is within tolerable limits?

FILL IN THE BLANKS

 1. A carrier of frequency fc is amplitude modulated (AM) using a message signal of frequency fm. 

The frequencies of the two side-frequencies are _______ and _______, and the bandwidth of the 

modulated signal is ________ Hz.

 2. A carrier Ac cos wct is amplitude modulated by a message signal x(t), depth of modulation being m. 

If |x(t)| £ 1, the expression for the modulated signal in the time domain is ___________; and in the 

frequency domain it is ___________. The envelope of the modulated signal is given by __________.

 3. A single-tone message signal amplitude modulates a carrier and the average power in the modulated 

signal is 118 watts, when the depth of modulation is 0.6. The carrier power is ________ watts.

 4. The source of power for the carrier component of the power in the output modulated signal of 

a collector-modulated class-C amplifier is _________ and that of the sidebands component is 

___________.

 5. The two important distortions that can appear in the demodulated output of an envelope detector 

are __________ and ____________.

 6. Out of these two distortions, ____________ is due to the rate of decrease of voltage across the 

capacitor-resistor parallel combination being slower compared to the rate of decrease of the envelope, 

and the _________ arises due to the ac load of the detector diode being not equal to its dc load.

 7. A DSB-SC signal may be generated by using a _________ modulator.

 8. Quadrature-carrier multiplexing permits the transmission of _______ (two, four) different messages 

simultaneously using a single carrier frequency.

 9. SSB-SC transmission is not used for audio broadcasting because __________.

10. In commercial point-to-point communications, for the generation of SSB-SC signal, the __________ 

(filter, phasing) method is used.

11. The sideband filter design is made very simple if we use the _________ SSB-SC modulation.

12. In the ________ method of generation of SSB-SC signal, it is quite easy to change from LSSB-SC 

to USSB-SC.

13. Phasing method uses _________ (wideband, single-frequency) phase shifters whereas Weaver’s 

method uses ________ (wideband, single-frequency) phase-shifters.

14. The time-domain representation of a USSB_SC signal is x t
c

u ( ) =  ______________.

15. The frequency-domain representation of a USSB-SC signal is x t
c

u ( ) =  __________.

16. The filter used in the filter method of generation of SSB-SC signals can have a transition bandwidth 

of not more than ___________ Hz.

17. The filter method of generation of SSB-SC signals can be used for speech signals but not for music 

because _________.

18. In an FDM system (used for multiplexing telephone channels) producing the basic group, the 

separation in frequency between adjacent sub-carriers is ___________ Hz.

19. A TV transmitter transmits the full _________ sideband and a vestige of the ________ sideband.

20. The VSB shaping filter is used in the TV __________ (Transmitter, Receiver).

21. The TV receivers use __________ detectors for the video.
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MULTIPLE CHOICE QUESTIONS

 1. In an amplitude modulated wave obtained by sinusoidal modulation of the carrier, the positive peak 

amplitude of the r.f. is varying between 12 V and 4 V. The modulation index and the unmodulated 

carrier amplitude are respectively

(a) 1/3, 8 V (b) 0.5, 8 V (c) 0.5, 4 V (d) 1/3, 4 V

 2. An amplitude modulated wave is given by

x t t t t
c
( ) cos cos cos= + +10 1200 40 1400 10 1600p p p

The modulating signal frequency and modulation index are

(a) 200 Hz, 0.5 (b) 400 Hz, 0.25 (c) 200 Hz, 0.25 (d) 400 Hz, 0.5

 3. To save transmitted power, the carrier of an AM signal obtained by sinusoidal modulation to a depth 

of modulation equal to 1, has been recovered. The percentage saving in power is

(a) 33.33 (b) 50 (c) 66.66 (d) 100

 4. A collector modulated class-C amplifier is drawing 50 W from the Vcc supply. If an output AM 

wave with 100% modulation is obtained, the average power supplied by the final modulating power 

amplifier stage is

(a) 50 W (b) 16.66’ W (c) 33.33’ (d) 25 W

 5. When sinusoidally modulated, the r.m.s. value of the current in the antenna of an AM transmitter 

increases 15% over its unmodulated value. The modulation index is

(a) 0.6 (b) 0.8 (c) 0.5 (d) 0.707

 6. Two sinusoidal signals are simultaneously modulating a carrier, the modulation indices being 0.3 

and 0.4. The overall modulation index is

(a) 0.5 (b) 0.1 (c) 0.7 (d) 0.12

 7. When the modulation index is halved, it is found that the antenna current (r.m.s. value) is also 

halved. The type of modulation used is

(a) AM (carrier plus both sideband)  (b) Single sideband plus carrier

(c) SSB-SC   (d) Vestigial sideband

 8. In filter method of generation of SB-SC, the type of filters that can be used are

(a) LC filter (b) crystal filters (c) RC filters (d) active filters

 9. In the filter method of generation of SSB-SC, in order to make the filter specifications less stringent,

(a) it is ensured that the modulating signal has no high-frequency components

(b) a high-frequency carrier is used initially for generating the DSB-SC signal

(c) only those modulating signal which have a high dc and low frequency content, are used

(d) a low-frequency carrier is used initially for generating the DSB-SC signal

10. The ‘third method’, or the Weaver’s method, has the following advantage over the ‘phasing method’:

(a) It does not need wideband 90∞ phase-shifters.

(b) It gives better carrier stability.

(c) It gives much better suppression of the unwanted sideband.

(d) It does not need frequent adjustments.

11. SSB-SC modulation is not used for audio broadcasting because

(a) it is difficult to generate SSB-SC signals

(b) it makes the receiver circuit quite complex and expensive

(c) SSB-SC modulation cannot be used for speech signals

12. Vestigial sideband modulation is generally used for

(a) TV broadcasting (b) point-to-point communications

(c) telemetering  (d) stereo broadcasting
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13. In a diode detector circuit, if the ac load for the diode is very much smaller than the dc load, it can 

result in

(a) poor sensitivity of the receiver  (b) poor AGC

(c) diagonal clipping  (d) negative peak clipping

14. An SSB-SC signal may be demodulated using a

(a) diode envelope detector  (b) synchronous detector

(c) ratio detector  (d) none of these

PROBLEMS

1. An AM signal is given by x t t t t
c
( ) cos cos cos= + +[ ] ¥30 9 2000 12 3000 2 105p p p

(a) Sketch the spectrum of the modulated signal.

(b) Determine the effective modulation index.

(c) Determine the carrier power and total sideband power.

2.  A class-C collector modulated class-C amplifier is producing an AM signal at its output with a carrier 

component of power equal to 50 watts. The modulating amplifier is a class-A power amplifier. If the 

class-C amplifier has an efficiency of 75% and the class-A amplifier has an efficiency of 40%, determine 

(a) the total input dc power for the two amplifiers, (b) the dissipation in power of the devices used for 

the class-C and the class-A amplifiers, for modulation indices of (i) 40%, and (ii) 100%.

3. A square-law device has an input–output relation given by e a e a e
in in0 1 2

2
= + . To this device, we give 

an input signal which is the sum of the message signal, x(t) = 0.3 cos 2p50t + 0.4 cos 2p150t and a 

carrier signal of frequency 5 kHz. The output signal e0(t) is then subjected to bandpass filtering. What 

should be the centre frequency and the bandwidth of this BPF if the output of the filter is to be an 

AM signal?

4. The square law device of Problem 3 is now proposed to be used for detection of an AM signal 

given by e t x t A mx t f tin c c c( ) ( ) ( ) cos= = +[ ]1 2p  (i) Determine e0(t). (ii) What are the conditions to be 

satisfied if the message signal x(t) is to be recovered?

5. A carrier signal of frequency, fc, is DSB-SC modulated using the message signal x t t( ) = ¥10 102 3sinc . 

The resulting modulated signal is to be demodulated using a coherent detector whose locally generated 

carrier may be assumed to be in perfect synchronism with that of the modulator. Determine the lowest 

value of fc for which the coherent detector output yields x(t).

6. x t t t( ) (cos cos )= ¥ + ¥2 500 2 2 1000p p  DSB-SC modulates the carrier.

c t t( ) cos= ¥50 2 10p 5 . Find the expressions for the USSB-SC and LSSB-SC components of the 

modulated signal, and sketch their spectra.

7. A message signal x(t) is positive for all t. This message DSB-SC modulates a carrier signal. Show 

that an envelope detector can be used to demodulate this DSB-SC signal.

8. In a quadrature-carrier multiplex system using a carrier frequency fc and two message signals x1(t) 

and x2(t), each of bandwidth 0 to W Hz, the multiplexed signal is transmitted to the receiver through 

a communication channel whose transfer function is H(  f  ). Show that the H(  f  ) should satisfy the 

condition

H f f H f f f Wc c( ) ( )+ = - £ £* for 0

for the receiver to recover the two message signals.

9. A carrier of frequency fc = 100 kHz is DSB-SC modulated by a message signal x(t) = cos 2000pt + 

2 cos 4000pt to give a modulated signal x t x t t
c
( ) ( ) cos= ¥50 2 105p

(a) Sketch the spectrum of xc(t), the modulated signal.

(b) Find the average powers of all the frequency components in xc(t).
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10. A carrier signal of frequency fc = 105 Hz is LSSB-SC modulated by a message signal given by

x(t) = cos 2000 pt + 2 cos4000 pt + 3 cos 6000 pt

Sketch the two-sided spectrum of the modulated signal. If the carrier peak amplitude, Ac = 50, 

what is the average power of the modulated signal? What is its bandwidth?

11. For the carrier signal and the message signal given in Problem 10, determine the time-domain 

expression for the USSB-SC signal by first determining ˆ( )x t  and sketch its two-sided spectrum.

12. A message signal x(t) having a bandwidth of 5 kHz has been normalized so that | x(t) | £ 1 for all t. 

This normalized message, having an average power of 1 watt modulates the carrier signal

c t f tc( ) cos= 20 2p

Determine the average power in the modulated signal if the modulation is

(a) SSB-SC (b) DSB-SC (c) AM with a modulation index m = 0.8

13. A two-stage SSB-SC modulator is shown in Fig. 4.52. The message signal, x(t), is a voice signal 

with frequency components from 0.3 kHZ to 3.5 kHz. If the carrier frequency f1 is 100 kHz and the 

high-frequency oscillator frequency, f2, is 5 MHz, and if the final output signal is to be a USSB-SC 

signal, specify the details of the two sideband filters.

14. The carrier component is added to a USSB-SC signal and the resulting signal is

ˆ ( ) cos ( ) cos ˆ( )sinxx t A f t x t t x t tc c c c c= + -2p w w

where x(t) is the message signal and the ˆ( )x t , its Hilbert transform. Is it possible to use an envelope 

detector to recover a reasonably good approximation of x(t) from this modulated signal, xc(t)? If it 

is possible what are the conditions to be satisfied?

15. Repeat Problem 13 if the final output signal of the 2-stage SSB-SC modulator is to be an LSSB-SC signal.

16. Equation (4.63) gives the time-domain representation of a USSB-SC signal in terms of the message 

signal x(t), its Hilbert transform ˆ( )x t  and the carrier frequency fc. Using that equation, derive the 

expression for the message signal x(t) in terms of the USSB-SC signal x t
c

u ( ) , its Hilbert transform 

and the carrier frequency. This expression for x(t) suggests a method of demodulating x t
c

u ( ) . Draw 

the block schematic diagram of such a demodulator.

17. A scrambler is a system used for privacy of communication. In the 2-stage SSB-SC generator of Fig. 4.48, 

assume that the message signal has an amplitude spectrum as shown in Fig. P-4.1; that the first oscillator 

frequency f1 >> W, that the first sideband filter passes only the upper sideband, that the second sideband 

filter is a lowpass filter with a cutoff frequency of W, and that the second oscillator frequency f2 = f1 + W. 

Show that the two-stage SSB-SC generator now works as a scrambler by determining and sketching the 

spectrum of its output signal. Show that the same set-up may be used for unscrambling this output signal.

|X(f)|

0 f0–f0 fW–W

Fig. P-4.1

Key to Multiple Choice Questions
 1. (b)  2. (a)  3. (c)  4. (d)  5. (b)  6. (a)  7. (c)

 8. (b)  9. (d) 10. (a) 11. (b) 12. (a) 13. (d) 14. (b)



By going through this 
chapter, the student
Ø understands the concept of angle 

modulation and learns the difference 
between frequency modulation and 
phase modulation

Ø learns to derive expressions for 
frequency-modulated waves and 
phase-modulated waves

Ø learns the way the modulation index 
and deviation ratio are defined for FM

Ø can draw the block diagrams of 
the direct and indirect methods of 
generation of WBFM signals and 
explain the operation of various types 
of FM detectors

Ø can derive the expression for the 
spectrum of an angle-modulated 
wave for a single-tone modulating 
signal and can find the effective 
bandwidth of the modulated signal

Ø can draw the block diagram of a 
superheterodyne FM broadcast 
receiver and explain the function of 
each block

Ø can draw the block diagram of an FM 
stereo transmitter and receiver and 
explain their working

5
INTRODUCTION

5.1

In Chapter 4, we had considered amplitude modulation, 
wherein, the carrier signal amplitude is changed in 
accordance with the variation in amplitude of the 
message signal. As had been stated there, this is only 
one way of modulating the carrier signal. Instead of 
the amplitude, if the frequency of the carrier is varied 
in accordance with the variations of the amplitude 
of the modulating signal, we call it frequency 

modulation; and if it is the phase of the carrier that 
is changed as per the variations of the amplitude of 
the modulating signal, we call it phase modulation. 
Since both of these ultimately vary the phase angle 
of the carrier signal, although in different ways, and 
are closely related, both of these modulations are 
together referred to as angle modulation.

Amplitude modulation is sometimes referred to as 
a linear modulation, although, strictly speaking, it is 
not a linear one. Angle modulation, as we are going 
to see, is however, highly non-linear. This makes 
the analysis of angle modulation quite involved for 
a general class of modulating signals, thus forcing 
us to go in for an approximate analysis. Further, an 
angle modulated signal has theoretically an infinite 
bandwidth even for a single-tone modulating signal, 
thus compelling us to talk of its ‘effective bandwidth’, 
a finite bandwidth within which a large percentage 
(generally more than 98%) of the average power of 
the modulated signal lies. This effective bandwidth of 
an angle-modulated signal is very much larger than 
that of an AM signal for the same modulating signal 
bandwidth. Also the complexity of implementation 
is generally much more for angle modulation as 
compared to the AM. But, it has two great advantages 
which make it very attractive for certain applications.

Angle 
Modulation
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 (i)  As we are going to see in Chapter 9, which discusses the noise performance of amplitude and 
frequency modulation systems, frequency modulation systems have in general, better noise 
immunity as compared to the AM systems. Further, FM systems offer a BW-to-(S/N) trade-off 
which makes it possible to operate an FM transmitter at a relatively low power and still maintain 
the required (S/N) ratio at the destination provided we are prepared to pay the price for it in terms 
of larger transmission bandwidth.

 (ii)  Unlike in AM where the transmission bandwidth increases in proportion to the message signal 
bandwidth, in the case of FM, the transmission bandwidth is, by and large, unaffected by the 
message bandwidth. 

These advantages make FM extremely useful for high-fidelity broadcasting of music and a few other 
applications.

ANGLE-MODULATED SIGNALS
5.2

Consider a carrier signal 

 c t A t
c c

( ) cos= w  (5.1)

When this carrier is angle-modulated, the modulated signal may be represented by

 

x t A t

t t t

c c

c

( ) cos ( )

( ) ( )

=

= +

q

q w f  (5.2)

\ x t A t t
c c c
( ) cos ( ) ( )= +[ ]w f  (5.3)

f (t), the change in phase of the modulated signal from its unmodulated value (i.e., wct), is called the 
phase deviation.

5.2.1 Phase Modulation

In phase modulation, the phase deviation f (t) is varied in such a way that at any instant of time, t, it is 
proportional to the instantaneous amplitude of the modulating signal, x(t).

Hence, f( ) ( )t k x tp=  (5.4)

where, kp   D  phase-deviation constant

It represents the change in phase angle per unit amplitude of the modulating signal x(t) and has the 
unit of radians per volt.

The phase-modulated signal may therefore be written as

 x t A t k x tc
P M

c c p( ) cos ( )
.

= +È
Î

˘
˚w  (5.5)

5.2.2 Frequency Modulation

In understanding ‘frequency modulation’, the concept of ‘instantaneous frequency’ plays a very vital role. 
As our concept of frequency itself is that it represents the number of full cycles completed per second, 
the term, ‘instantaneous frequency’ may, at first, sound a little odd. But, when the term, ‘instantaneous 
speed’ does not sound odd even though speed is defined in much the same way as frequency has been, 
as the distance covered in a unit time, why should ‘instantaneous frequency’ sound odd? When speed v, 
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is varying with time and is denoted by v(t), a function of time, we know that the distance s(t) covered 
in say t seconds, is given by

s t v d

t

( ) ( )= Ú a a
0

and  v t
ds t

dt
( )

( )
= = Speed at the instant t

 = Rate of change of distance with respect to time

Exactly in the same way since q (t) = wt and w = 2pf, if the frequency is varying with respect to 
time, we write

q p a a( ) ( )t f d

t

= Ú2

0

 = Phase angle at the instant t

and f(t) = Frequency at the instant t = 
1

2p

qd t

dt

( )

Thus, instantaneous frequency of a signal is defined as 1/2p times the rate of change of its phase angle.

Definition In frequency modulation, the instantaneous frequency of the modulated wave changes in such 
a way that at any instant, the change from the unmodulated carrier frequency is directly proportional to 
the instantaneous amplitude of the modulating signal, x(t). 

But x t A t
c c
( ) cos ( )= q  = Modulated signal

Therefore, its instantaneous frequency fi(t) is given by

 f t
d t

dt

d

dt
t t f

d

dt
ti c c( )

( )
( ) ( )= = +[ ] = +

1

2

1

2

1

2p

q

p
w

p
f f  (5.6)

From the definition of frequency modulation given above, the change in fi(t) from fc, the unmodulated 
carrier frequency, called the frequency deviation, should be proportional to the amplitude of x(t).

Thus, from Eq. (5.6), we have

 
1

2p

d

dt
t k x tff( ) ( )=  (5.7)

\ f t f k x ti c f( ) ( )= +  (5.8)

where, kf represents the change in instantaneous frequency for a unit amplitude of the modulating signal 
with units of Hertz/volt, and is referred to as the frequency deviation constant

and q p a a( ) ( )t f di

t

= +Ú 2
0

0f   (5.9)

where, f0 is a constant reference phase, generally taken as zero without any loss of generality.
Hence, the FM signal may be represented as 

x t A f d k x dc c c

t

f

t

( ) cos ( )
F.M

= +
È

Î
Í
Í

˘

˚
˙
˙

Ú Ú2 2

0 0

p a p a a
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Thus, x t A t k x dc c c f

t

( ) cos ( )
F.M

= +
È

Î
Í
Í

˘

˚
˙
˙

Úw p a a2

0

 (5.10)

From Eqs (5.5) and (5.10) we find that f (t) of Eq. (5.3) is given by

 
f( )

( )

( )
t

k x t

k x d

p

f

t=

Ï

Ì
ÔÔ

Ó
Ô
Ô

Ú

  for  PM

  for  FM2

0

p a a  (5.11)

The above equation clearly brings out the different ways adopted by PM and FM to change q(t) 
using the modulating signal x(t). It also clearly shows that a phase modulator can indeed be used for 
producing frequency modulation and vice-versa. If the message signal, x(t), is integrated and given as 
the modulating signal to a phase modulator, the output modulated signal will be a frequency modulated 
signal. Conversely, if the message signal x(t) is differentiated and then fed as the modulating signal to a 
frequency modulator, the modulated signal that we get would be a phase-modulated signal. 

(a)

Phase
modulator

x(t)
∫(.)d(t)

Frequency
modulated signal

with x(t) as the
modulating signal

(b)

x(t) Frequency
modulator

(.)
d(t)
d

Phase
modulated signal

with x(t) as the
modulating signal

Fig. 5.1 (a) Frequency modulation using a phase modulator 

 (b) Phase modulation using a frequency modulator

An angle-modulated signal is given by

x t t t
c
( ) [ . ( ) ]= ¥ +6 2 10 0 2 107 4cos sinp p

 (i) If xc(t) is a peak modulated signal with kp = 5 rad/volt; and
 (ii) If xc(t) is a frequency modulated signal with kf = 5 ¥ 102 Hz/volt,

in each case, determine the modulating signal x(t).

Example 5.1

 x t A t k x dc c c f

t

( ) cos[ ( ) ]
F.M

= + Úw p a a2

0

 from Eq. (5.10)

 x t A t k x tc c c p( ) cos[ ( )]
P.M

= +w  from Eq. (5.5)

 (i)  For PM: Compare the above equation for x t
c
( )
P.M

 with the given equation of the angle-modulated 

signal. If we take x t A t
m

( ) sin= 104p , it means that kp.Am = 0.2
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  But kp is given to be 5. \ 5Am = 0.2 or Am = 0.2/5 = 0.04
  \ the modulating signal x(t) in this case is

x t t( ) . sin= 0 04 104p

 (ii) For FM: Compare x t
c
( )
FM

 as given by Eq. (5.10) with the given xc(t). 

  Let the modulating signal be A t
m
cos2 5 103p ¥ ¥ .

\ 2 10 104

0

4
p pa a pk A d

k A

f
tf m

t
f m

m

cos sinÚ =
Ê

ËÁ
ˆ

¯̃
, where fm = 5 ¥ 103

  From the expression for xc(t), we therefore have

k A

f
t t

f m

m

.sin . sin10 0 2 104 4p p=

\ 
k A

f

f m

m

= 0 2. . 

Substituting values of kf and fm, we get

  A
m
=

¥ ¥

¥

=
0 2 5 10

5 10
2

3

2

.

  \ the message signal, in the case of FM is x t t( ) cos= ¥ ¥2 2 5 103p

The message signal shown in the Fig. 5.2 phase modulates a carrier signal Ac 

cos wct, where fc = 1 MHz. If a maximum frequency deviation of 80 kHz is needed, determine the 
value of the phase constant kp to be used by the modulator. With this value of kp, what will be the 
range of variation of the carrier frequency?

x(t)
16

0

º º

8 10 16 20 t in ms

Fig. 5.2 Signal for Example 5.2

Example 5.2

The modulated signal xc(t) is given by

x t A t k x tc c c p( ) cos( ( ))= +w

\ instantaneous frequency, f
d

dt
t k x ti c p= +È

Î
˘
˚

1

2p
w ( )

\ f f k
d

dt
x ti c p= +

1

2p
( )

\ ( )f fi c-  = maximum frequency deviation

 =
1

2p
k

d

dt
x tp ( )

max
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\ 
d

dt
x t( )

max

=

¥
-

16

2 10 3
 (from the waveform of x(t))

 = 8000 v/sec

\ maximum frequency deviation = = ¥
1

2
8000 80 103

p
. .kp

\ kp =
¥ ¥

=
80 10 2

8000
20

3 p
p  rad/volt.

From t = 0 to t = 8 m.s 
d

dt
x t v v( ) /= =2 2000/m.s s

\ during this period, frequency deviation 

= = ¥ ¥ =

1

2

1

2
20 2000 20

p p
pk

d

dt
x tp ( ) kHz

Hence, from 0 ms to 8 ms, the frequency of the modulated signal is 

1000 kHz + 20 kHz = 1020 kHz

From 8 ms to 10 ms, the frequency deviation is negative and has a value of 80 kHz. Hence, during 
this period the frequency of the modulated wave is 

1000 kHz - 80 kHz = 920 kHz

The frequency of the modulated signal varies between 920 kHz and 1020 kHz.

5.2.3 Angle-Modulated Signals for Some Simple Modulating Waveforms

(i) Sinusoidal Modulating Signal

(a)

PM: fi = fc + (1/2p) kfx(t)

(c)

FM: fi = fc + kf x(t)

(d)

t1 t2 t3 t4 t5 t

(b)

Fig. 5.3  (a) The carrier signal (b) The modulating sinusoidal signal (c) The phase-modulated signal
(d) The frequency-modulated signal
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(ii) A Unit-step Function

(a)

x(t) =u(t)

t
(b)

Kp= p and x(t) =u(t)

(c)

(d)

Freq = fc Freq = fc + kf.1

Fig. 5.4  (a) The carrier signal (b) The unit-step modulating signal (c) The phase-modulated signal
(d) The frequency- modulated signal

5.2.4 Modulation Indices for FM and PM

(i) For a Single-tone Message Signal

Let x t A f tm m( ) cos( )= 2p  (5.12)

Then from Eq. (5.11) we have, for PM

 f( ) ( ) cos( )t k x t k A f tp p m m= = 2p  (5.13)

and, for FM,

 f( ) ( ) sin( )t k x d
k A

f
f tf

t
f m

m
m= =Ú2 2

0

p a a p  (5.14)

Hence, from Eqs (5.5) and (5.10), we may write the modulated signals as

PM:  x t A f t k A f tc c c p m m( ) cos cos( )= +È
Î

˘
˚2 2p p   (5.15)

FM:  x t A f t
k A

f
f tc c c

f m

m
m( ) cos sin( )= +

È

Î
Í

˘

˚
˙2 2p p  (5.16)

If we now define

 bp  D  Modulation index for PM = k Ap m  (5.17)

and  b f  D  Modulation index for FM =
A k

f

m f

m

 (5.18)
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Then the corresponding modulated signals may be written as

 x t A f t f tc c c p m( ) cos cos( )
PM

= +È
Î

˘
˚2 2p b p  (5.19)

 x t A f t f tc c c f m( ) cos sin( )
FM

= +È
Î

˘
˚2 2p b p  (5.20)

Note:

1. Since kp, the phase deviation constant represents, as pointed out earlier (see Eq. 5.4), the phase 
deviation produced in the carrier per unit amplitude of the modulating signal, the parameter bp of 
Eq. (5.17) represents the maximum phase deviation.

2. From Eq. (5.8), it is clear that kf Am represents the peak frequency deviation. Referring to Eq. (5.18) 
then bf, the modulation index for FM represents the ratio of the peak frequency deviation to the 
frequency of the modulating single-tone signal. This ratio is called the deviation ratio.

(ii)  For a General Modulating Signal Having seen the physical meaning of the modulating indices bp for 
PM, and bf for FM, in the case of a single-tone modulating signal, we may now extend the concept 
of modulation index to a general modulating signal by defining bp and bf as follows:

 bp pk x t    D Dmax ( ) ( )maxÈÎ ˘̊ = f  (5.21)

and b f
fk x t

W

f

W
    D

Dmax ( ) ( )max
ÈÎ ˘̊

=  (5.22)

where, W represents the bandwidth of the modulating signal, (Df)max represents the peak phase 
deviation for PM and (Df)max, the peak frequency deviation for FM.

An FM transmitter has a frequency deviation constant of 100 Hz/volt. To the 
modulator of this transmitter, a sinusoidal modulating signal of rms value 2 volts and a frequency 
of 1 kHz, is applied. Determine the peak frequency deviation and the deviation ratio.

Example 5.3

Peak amplitude of the modulating signal = 2 2 volts

Deviation constant kf of the modulator = 100 Hz/volt

\ peak frequency deviation = 2 2 100 200 2¥ =  Hz

Deviation ratio =
È

Î
Í

˘

˚
˙

Peak frequency deviation

Modulating signal frequency

= =
200 2

1000

2

5

A frequency-modulated signal is given by

x t t t
c
( ) = ¥ + ¥[ ]10 2 10 5 2 2008cos sinp p

Determine (i) the carrier frequency, (ii) the modulating signal frequency, (iii) the peak frequency 
deviation, and (iv) the modulation index.

Example 5.4
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 (i) fc = 100 MHz = 108 Hz

 (ii) fm = 200 Hz

 (iii) b f = =
Peak freq. deviation

Modulating signal frequency
5

  \ peak frequency deviation = 5 fm = 5 ¥ 200 = 1 kHz.
 (iv) Modulation index bf = 5 as stated in (iii)

An FM transmitter is operating with the maximum frequency deviation of 
75 kHz. What will be the modulation index if a sinusoidal signal is used for modulation and it has a 
frequency of (a) 100 Hz? (b) 20 kHz?

Example 5.5

(a) b f = =
¥Frequency deviation

Modulating signal frequency

75 10

10

3

00
750=

(b) b f = =
¥Frequency deviation

Modulating signal frequency

75 10

20

3

¥¥

=

10
3 75

3
.

An FM signal with single-tone modulation has a frequency deviation of 15 kHz 
and a bandwidth of 50 kHz. Find the frequency of the modulating signal.

Example 5.6

From Carson’s rule, BW = + = ¥2 1 50 103( )b f mf

\ 2 2
50 103

b f
mf

+ =
¥

,  but b f
m m

f

f f
= =

¥D 15 103

\ 
2 15 10

2
50 103 3

¥ ¥
+ =

¥

f fm m

Multiplying throughout by fm, we get

2 50 10 30 10 20 103 3 3fm = ¥ - ¥ = ¥

\ fm = ¥ =10 10 103 kHz

A signal x t t( ) = ¥5 20 103cos p  angle modulates a carrier signal Ac cos wct. 
Determine the modulation index and the bandwidth of the modulated signal for (i) an FM system 
with kf = 12 kHz/volt, and (ii) a PM system with kp = 1.0 rad/volt.

Example 5.7

 (i) bf = Modulation index =
Ê

ËÁ
ˆ

¯̃
=

¥ ¥
=

k A

f

f m

m

. 12 10 5

10
6

3

4

  \ bandwidth BT = 2(kf ◊Am + fm) = 2(bf + 1)fm (Carson’s rule)

= ¥ ¥ ¥ =2 7 10 10 1403 kHz
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 (ii) bp = Modulation index = kp.Am = 1 ¥ 5 = 5

  \ bandwidth BT = 2(kf . Am + 1)fm = 2(bp + 1)fm

= ¥ ¥ =2 6 10 1204 kHz

A phase modulator with kp = 4 rad/V is fed with a sine wave modulating signal 
of 3 V peak amplitude and 2 kHz frequency. What is the peak frequency deviation produced in the 
carrier frequency?

Example 5.8

The phase deviation f(t) produced by the modulating signal

= = ¥ ¥ ¥k x t tp ( ) sin4 3 2 2 103p

\ f( ) sint t= ¥12 4 103p

If the modulated signal = x t A t t
c c c
( ) cos ( )= +[ ]w f , the instantaneous frequency fi is given by

f
d

dt
t f

d

dt
ti c c= +[ ] = + [ ]

1

2

1

2p
w

p
f f( ) ( )

\ f f
d

dt
t f ti c c= + ¥[ ] = + ¥ ¥

1

2
12 4 10 24 10 4 103 3 3

p
p psin( ) cos( )

\ peak frequency deviation of the carrier is

Df = ¥ =24 10 243  kHz

A modulating signal x(t) with a trapezoidal waveform as shown is used for
(a)  Frequency modulating a carrier signal of 2 MHz frequency with a frequency deviation constant, 

kf of 4 kHz/volt
(b)  Phase modulating a carrier with a phase deviation constant kp of 4 rad/V

In each of these cases, find the maximum instantaneous frequency of the modulated signal.

x(t)

20 V

0 1 4 5
(in ms)

t

Fig. 5.5 Signal for Example 5.9

Example 5.9

(a) Instantaneous frequency fi = fc + kf .x(t)

 \ maximum instantaneous frequency = (fi)max

= + ◊[ ] = ¥ + ¥ ¥ =f k x tc f ( ) .
max

2 10 4 10 20 2 086 3 MHz
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(b) Instantaneous frequency f f
d

dt
ti c= + [ ]

1

2p
f( )  where, f(t) = phase deviation = kp.x(t)

\   ( ) ( )max
max

f f
k d

dt
x ti c

p
= +

È

ÎÍ
˘

˚̇2p

 Now, 
d

dt
x t( ) ,=

¥

=
-

20

1 10
20 000

3
 in the interval 0 to 1 ms.

 It is zero from 1 ms to 4 ms and –20,000 from 4 ms to 5 ms. Beyond 5 ms, it is always zero.
 Hence,

 
d

dt
x t( ) ,

max

È

ÎÍ
˘

˚̇
=

 

20 000

\ ( ) ( ) .max
max

f f
k d

dt
x ti c

p
= +

È

ÎÍ
˘

˚̇
= ¥ + ¥ ¥ =

2
2 10

4

2
20 10 2012 746 3

p p  

kkHz

 = 2.012746 MHz

This value is obtained in the interval 0 ms to 1 ms.

A particular modulated signal is given by

x t t f t tc c m c( ) . .= +2 0 4 2cos sinw p wcos

Comment on the nature/type of modulation.

Example 5.10

x t t f t t

f t t

c c m c

m c

( ) cos . cos .sin

. cos cos[

= +

= + ( ) +

2 0 4 2

2 0 4 22
2

w p w

p w qq( )]t

where q
p

p( ) tan
. cos

. cost
f t

f tm
m=

È

Î
Í

˘

˚
˙ @

-1
0 4 2

2
0 2 2

Here, we have made use of the approximation that tan q ª q when q is quite small.

Now, 2 0 4 2 2 1 0 08 22
2

2+ ( ) = +. cos . cosp pf t f tm m

Since cos2 1p f tm £ , 0 2 2 12. cos p f tm << . Hence, we will use the approximation that

1 1
1

2
1+ ª +Ê

ËÁ
ˆ
¯̃

<<x x if x

\ x t f t t f tc m c m( ) [
.

cos ]cos[ . cos ]= + -2 1
0 08

2
2 0 2 22
p w p

= + +{ }È

ÎÍ
˘

˚̇
-

= +

2 1
0 08

2
1 4 0 2 2

2 1 02 0 02

.
cos cos[ . cos ]

. .

p w pf t t f tm c m

ccos cos[ . cos ]4 0 2 2p w pf t t f tm c m[ ] -
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while cos[wct - 0.2cos2pfmt] indicates angle modulation, the peak amplitude of this angle-modulated 
signal, which is 2[1.02 + 0.02cos4pfmt] indicates amplitude modulation.

Thus, the given xc(t) is having a combination of amplitude modulation and angle modulation.

NARROWBAND ANGLE MODULATION
5.3

There exists considerable similarity between narrowband angle modulation and AM. In what follows, we 
will be examining this aspect.

Referring to Eq. (5.3), we know that an angle-modulated signal could be represented by

 x t A t t
c c c
( ) cos ( ) ( )= +[ ]w f

where, as stated in Eq. (5.11),

f( ) ( )t k x tp=  for PM

and f( ) ( )t k x df

t

= Ú2

0

p a a  for FM

Expanding the above equation for xc(t), we get

  x t A t t t t
c c c c
( ) cos ( )cos ( ) sin ( )sin ( )= -[ ]w wf f  (5.23)

Now, if f(t) is quite small, say f(t) £ 0.2 radian, we may make the following approximations.

cos ( ) sin ( ) ( )f f ft t tª ª1     and    

Substituting these in the expression for xc(t), we get

  x t A t t t
c c c c
( ) cos ( ) ( )sin ( )= -[ ]w wf  (5.24)

Let us now consider single-tone modulation and let

x t A t
m m

( ) cos= w

5.3.1 In the Case of Phase Modulation

For this case f( ) ( )t k x tp=

Hence, referring to Eq. (5.24), we have

\  x t A t t t A t k A tc c c c c c p m m( ) cos ( ) ( )sin ( ) cos ( ) cos ( ) s= -[ ] = - ◊w w w wf iin ( )wc tÈÎ ˘̊

But cos ( ) sin ( ) sin( ) sin( )w w w w w w
m c c m c m

t t t t◊ = + + -[ ]
1

2

\ x t A t
A k A

t tc c c

c p m

c m c m( ) cos ( ) sin( ) sin( ) = - + + -[ ]w w w w w
2

\  
NBPM

x t A t
k A A

tc c c

p c m

c m c m( ) cos ( ) cos{( ) / } cos{( )= + + + + -w w w p w w

2
2 tt +[ ]p / }2  (5.25)

The above equation shows that the narrowband phase-modulated signal too has three components—the 
carrier component represented by the first term, the upper side-frequency component represented by the second 
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term, and the lower side-frequency component represented 
by the third term, just like an amplitude-modulated wave. 
Further, just like AM, the narrowband angle-modulated 
signal also has a bandwidth of 2fm, where fm is the 
highest modulating signal frequency. However, there is a 
difference—the two side-frequency components are shifted 
in phase by 90° relative to the carrier component, as may 
be seen from Eq. (5.25) and the phasor diagram shown 
in Fig. 5.6.

5.3.2 In the Case of Frequency Modulation

For FM, f( ) ( ) cos

sin

t k x d k A d

k A
t

k A

f

f

t

f m m

t

f m

m
m

f m

m

= =

= =

Ú Ú2 2

2

0 0

p a a p w a a

p

w
w

ÊÊ

ËÁ
ˆ

¯̃
sinwmt

\ substituting this in Eq. (5.24), we get

 

 

 

x t A t
k A

f
t t

A

c c c

f m

m
m c

c

( ) cos ( ) sin ( )sin ( )= -
Ê

ËÁ
ˆ

¯̃

È

Î
Í
Í

˘

˚
˙
˙

=

w w w

ccos ( ) cos( ) cos( )w w w w wc
c f m

m
c m c mt

A k A

f
t t+

Ê

ËÁ
ˆ

¯̃
+ - -[ ]

2
 (5.26)

Hence, the components of a NBFM signal may be represented by the following phasor diagram.

Carrier

1/2 AcAm(kf/fm) 1/2 AcAm(kf/fm)

wm
wm

LSB

U
SB

Ac

Fig. 5.7 Phasor diagram of a narrowband frequency modulated signal

It may be instructive to compare the above phasor 
diagrams with that of a single-tone modulated AM signal 
shown in Fig. 5.8.

For a single-tone modulated AM signal,

 

 

x t A m t t

A t
mA

t

c c m c

c c

c

c m

( ) cos ( ) cos ( )

cos ( ) cos( )

= +[ ]

= + +

1

2

w w

w w w ++ -[ ]cos( )w w
c m

t

Carrier
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wmtwmtwm
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U
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Fig. 5.6  Phasor diagram of a narrowband phase 
modulated signal
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w
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Fig. 5.8 Phasor diagram of a single-tone 
modulated AM signal
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5.3.3 Spectrum of a Narrowband FM Signal

Making use of Eq. (5.26), we may draw the two-sided spectrum of a narrowband FM signal as shown 
on Fig. 5.9.

xc(f) NBFM

0 fc ffc+ fm

fc− fm

Ac

2

Ac

4

kfAm

fm

Ac

4

kfAm

fm

Fig. 5.9 Two-sided spectrum of an NBFM signal

A single-tone signal of 5 kHz frequency modulates a carrier of 90 MHz, and 
produces a frequency deviation of 50 kHz. Find the peak value of the angle of phase advance/
retardation produced by this signal. Also determine the deviation that would be produced by a signal 
of equal amplitude and of 1000 Hz frequency.

Example 5.11

From Eq. (5.20), we have

x t A t f tc c c f m( ) cos sin
FM

= +È
Î

˘
˚w b p2

\ phase advance/retardation produced at any instant t is given by 

f( ) sint f tf m= b p2

Obviously, the maximum value of this is b f
m

f

f
D

DÊ

ËÁ
ˆ

¯̃

\ in the first case, b f
1

50 10

5 10
10

3

3
=

¥

¥

=  radians

In the second case, Df remains the same as the amplitude of the new modulating signal is the same 
as that of the previously used modulating signal.

\  in the second case, b f
2

50 10

1 10
50

3

3
=

¥

¥

=  radians.

5.3.4 Generation of Narrowband PM/FM

Equation (5.24) tells us that a narrowband angle modulated signal can be represented as

 x t A t t
c c c c
( ) cos ( ) sin= -[ ]w wf

where,

f( )

( )

( )
t

k x t

x d k

p

t

f

= È

Î
Í
Í

˘

˚
˙
˙

Ï

Ì
ÔÔ

Ó
Ô
Ô

Ú

  for  PM

  for  FMa a p

0

2
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Hence, as per this equation, an angle-modulated narrowband signal may be generated by means of an 
arrangement shown in Fig. 5.10.

Ú(.)dt
Amplifier
gain: 2p kf

PM f(t)

FM
–

+

S

Amplifier
gain: kp

–90°
Carrier

Accoswct

AccoswctAcsinwct

x(t) xc(t)

Narrowband angle-
modulated signal

Fig. 5.10 Generation of narrowband angle-modulated signal

As we shall be seeing later, one important method of generation of wideband FM, which in fact, is 
of much interest to us, viz., the Armstrong method, or the indirect method of generation of WBFM, is 
based on generation of narrowband FM as per the arrangement shown above.

SPECTRUM OF AN ANGLE-MODULATED SIGNAL
5.4

Non-linearities inherently present in the angle-modulation process make the derivation of the spectrum of an 
angle-modulated signal mathematically intractable except when the modulating signal is a simple one, like a 
sinusoid. We shall therefore derive the spectrum for an angle-modulated signal when the modulating signal 
is a sinusoid and then try to extend this result for the case of slightly more complex modulating signals.

5.4.1 Spectrum for Single-tone Modulation

We had seen that an angle-modulated wave could be represented as (refer to Eq. 5.3)

 x t A t t
c c c
( ) cos ( ) ( )= +[ ]w f

where,

 f( )

( )

( )
t

k x t

k x d

p

f

t=

Ï

Ì
ÔÔ

Ó
Ô
Ô

Ú

  for  PM

  for  FM2

0

p a a

For FM As we have assumed single-tone modulating signal,

Let: x t A t
m m

( ) cos= w  (5.27)

\ f( ) cos sint k A d
A k

f
tf m m

t
m f

m
m= =

Ê

ËÁ
ˆ

¯̃Ú2

0

p w a a w  (5.28)

Let us now define

 b f

m f

m

A k

f
   

Peak frequency deviation

Modulating signal fre
D =

qquency

   Modulation index for FMb f mD f =

  (5.29)
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For PM For the case of PM, let the single-tone modulating signal be represented by 

 x t A t
m m

( ) sin= w  (5.30)

 f( ) ( ) sint k x t k A tp p m m= = w  (5.31)

We now define

 bp  D modulation index for PM D D       k A mp m p  (5.32)

Since kp represents the phase deviation for unit amplitude of the modulating signal and Am represents 
the peak amplitude of the modulating signal, bp obviously denotes the peak phase deviation.

We thus find that

 f( ) sint t
m

= b w  (5.33)

where, for FM,

 b b w= = =f

m f

m
m m

A k

f
x t A tand ( ) cos  (5.34)

and for PM,

 b b w= = =p p m m mk A x t A t  and ( ) sin  (5.35)

So, henceforth, we shall put

 f( ) sint t
m

= b w

and suitably interpret for PM and FM, so that the analysis becomes common for the two.
We know that

\ 

 x t A t t A t t

x t A e

c c c c c m

c c

( ) cos ( ) ( ) cos ( ) sin ( )

( ) Re

= +[ ] = +[ ]
=

w w b wf

jj t j tc mew b w◊ÈÎ ˘̊sin  (5.36)

In the RHS of the above, e j tmb wsin  is a periodic function of time and its period is

 T
fm

=
Ê

ËÁ
ˆ

¯̃
1

 (5.37)

Since the function is periodic, it can be expanded as a Fourier series and the expansion will be valid 
for all time.

\ let e c ej t
n
jn t

n

m mb w wsin =

=-

Â  (5.38)

where,

c e e dtn
m j t jn tm m

m

m

= -

-

+

Ú
w

p
b w w

p w

p w

2

sin

/

/

If we put

 x t
m

= w  (5.39)

Then, dt dx

m

=
Ê
ËÁ

ˆ
¯̃

1

w
;  when t x

m
= - = -p w p/ ,   
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and when t x
m

= = +p w p/ ,   

\ c e dxn
j nx x= - -

-
Ú

1

2p
b

p

p

( sin )  (5.40)

The above integral is a function of n and b and is known as Bessel function of the first kind of order 
n with b as its argument. It is denoted by Jn(b). It cannot be evaluated in closed form. However, it has 
been extensively tabulated for various values of n, the order, and b, the argument.

\ c J
n n

= ( )b  (5.41)

Substituting this in Eq. (5.38), we have

 e J ej t
n

jn t

n

m mb w wbsin ( )=

=-

Â  (5.42)

Now, substituting this in the RHS of Eq. (5.36), we get

x t A e J ec c
j t

n

n

jn tc m( ) Re ( )=
È

Î
Í

˘

˚
˙

=-
Âw wb

\ x t A J n t
c c n

n

c m
( ) ( ) cos( )= +

=-

Â b w w  (5.43)

Equation (5.43) enables us to expand the angle-modulated signal xc(t) in terms of its carrier and side-
frequency components. The carrier component is given by Ac J0(b)coswct corresponding to n = 0. The 
upper side-frequency components with frequencies (wc + wm), (wc + 2wm), (wc + 3wm), . . . are obtained 
by putting n = 1, 2, 3, . . . and the lower side-frequency components having frequencies of (wc - wm), 
(wc - 2wm), (wc - 3wm), . . . are obtained by putting 
n = -1, -2, -3, . . . Thus, even for this simple case 
of single-tone modulating signal, the angle-modulated 
signal actually has an infinite number of side-frequency 
components and an infinite bandwidth. However, 
fortunately it is possible to define what is called an 
effective bandwidth which is finite, because for any b, 
Jn(b) tends to zero as n tends to infinity, making the 
amplitudes of the higher side-frequency components 
negligibly small (see Fig. 5.11).

An infinite series expansion of Jn(b) is given by

 J
k n k

n

n k

k

k

( )

( )

!( )!
b

b

=

Ê
ËÁ
ˆ
¯̃

-

+

+

=
Â 2

1

2

0

 (5.44)

However, for small values of b, Jn(b) may be approximated by

 J
nn

n

( )
!

b

b

=

Ê
ËÁ

ˆ
¯̃2  (5.45)

Some useful properties of Jn(b) are given in Table 5.1.

J
n
(b)

b

1.0
n=0

0.5 n= 1
n= 2

n= 3
n= 10

0
1 2 3 4 5 10

Fig. 5.11 Jn(b) for various values of n
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Table 5.1 Useful properties of Jn(b)

S.No. Property S.No. Property

1

2

3

4

J0(0) = 1

Jn(0) = 0, if n is a non-zero integer

Jn(b) = Jn(-b) if n is even

Jn(b) = -Jn(-b) if n is odd

5

6

7

Jn(b) = J-n(b) if n is even

Jn(b) = -J-n(b) if n is odd

Jn(b) Æ 0 as n >>b 

Expanding the RHS of Eq. (5.43) term by term, and noting the fact that

J-n(b) = + Jn(b) for n even

and J-n(b) = -Jn(b) for n odd

we get

 

x t A J t A J t t

J

c c c c c m c m
( ) ( ) cos [ ( ){cos( ) cos( ) }

(

= + + - -

+

0 1

2

b w b w w w w

b)){cos( ) cos( ) }

( ){cos( ) cos(

w w w w

b w w w w

c m c m

c m c

t t

J t

+ + -

+ + - -

2 2

3 33 mm
t) }

+   .   .   .   .  .   .  .  .

(an infinite number of suuch terms)

 (5.46)

Note that for an angle-modulated signal, Ac J0(b) is the amplitude of the carrier, Ac J1(b) is the 
amplitude of the first side-frequency, Ac J2(b) is the amplitude of the second side-frequency and so 
on. Figure 5.12 shows the amplitude spectra of an FM signal for single-tone modulation for different 
modulation indices. It may be noted that unlike in AM, the amplitude of the carrier component in the 
modulated signal varies with the modulation index. This is because the value of J0(b) goes on changing 
with the value of b (see Fig. 5.11) and may be positive, zero, or even negative. In fact, for values of 
b like b @ 2.3 for which J0(b) has zero-crossings, the carrier component completely vanishes in the 
modulated signal.

bf=0.5

fc– fm fc fc+ fm f 

bf= 1.0

fc– 2fm fc– fm fc fc+ fm fc+ 2fm
f 

bf= 2

fc– 5fm fc– 3fm fc– fm fc fc+ fm fc+ 3fm fc+ 5fm f 

Fig. 5.12  Amplitude spectra of an FM signal with single-tone
modulation for different modulation indices

Note: For these sketches, fm is decreased while keeping Amkf constant to get larger values of b
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5.4.2 Spectrum of an Angle-Modulated Signal for a Periodic Message Signal

In the foregoing discussion, we have studied the spectrum of an angle-modulated signal when the 
modulating signal was a single-tone signal and found that the spectrum contains an infinite number of 
side-frequencies. We shall now determine the spectrum of an angle-modulated signal when the modulating 
signal is a periodic signal. We know that an angle-modulated signal can be represented as

  x t A t t
c c c
( ) cos ( ) ( )= +[ ]w f  (5.47)

Let us assume that the modulation is phase modulation and that the modulating signal x(t) is a periodic 
wave with a period T f

0 0
1= / .

\ x t A t t A t x t

A e e

c c c c c p

c
j t j

c

( ) cos ( ) ( ) cos ( ) ( )

Re

= +[ ] = +ÈÎ ˘̊

= ◊

w w b

w

f

bbpx t( )ÈÎ ˘̊  (5.48)

Since x(t) is periodic with a period T0, e
j x tpb ( )  is also periodic with the same period. Hence, we may 

expand this function as a complex-exponential Fourier series.

Let e c e tj x t
n

j nf t

n

pb p( ) ;= -

=-

Â 2 0      

where,

 c
T

e e dtn
j x t j nf t

T

T

p= ◊ -

-
Ú

1

0

2

2

2

0

0

0

b p( )

/

/

 (5.49)

\  x t A e c ec c
j t

n
j nf t

n

c( ) Re= ◊
È

Î
Í

˘

˚
˙

=-
Âw p2 0

 

= + +–

=-

ÂA c f nf t cc n c n

n

cos{ ( ) }2 0p  (5.50)

Find the spectrum of a phase-modulated signal when the modulating signal 
is a periodic square-wave as shown in Fig. 5.13.

x(t)

+1

–T0 –T0/2 0 T0/2 T0 t

–1

Fig. 5.13 A square-wave modulating signal

Example 5.12

Let bp be the modulation index.

Then x t A t t A t x tc c c c c p( ) cos ( ) ( ) cos ( ) ( )= +[ ] = +ÈÎ ˘̊w w bf
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\ x t A e ec c
j t j x t

c p( ) Re ( )= ◊È
Î

˘
˚

w b

Since x(t) is a periodic square-wave with a frequency of f0 = 1/T0, we may expand e j x tpb ( ) , which is 
also periodic with the same period, using complex-exponential Fourier series.

Let e c e tj x t
n

j nf t

n

pb p( ) ;= -

=-

Â 2 0      

\ c
T

e e dtn
j x t j nf t

T

T

p= ◊ -

-
Ú

1

0

2

2

2

0

0

0

b p( )

/

/

Evaluating the integral and simplifying the result, we get

c
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=
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Ì
Ô
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2   for  odd

n

n np bsin

\       

   

e n e tj x t
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Â 2 2 0
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cRe sin
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AA n nf tc
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Î
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  odd

cos( )w p2 0

POWER OF AN ANGLE-MODULATED SIGNAL AND 
EFFECTIVE BANDWIDTH

5.5

As we had already seen, an angle-modulated signal may be represented as

x t A t t
c c c
( ) cos ( ) ( )= +[ ]w f

Hence, the average power in the angle-modulated signal is

x t A t t

A A t t

c c c

c c c

2 2 2

2 2
1

2

1

2
2 2

( ) cos ( )

cos ( )

= +[ ]

= + +[ ]

w

w

f

f

\ x t A
c c
2 2

1

2
( ) =  (5.51)

From the analysis in the previous section leading to the spectrum of an angle-modulated signal, it 
appears as though the bandwidth occupied by an angle-modulated signal is infinitely large. Strictly, from 
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a theoretical point of view, this is correct. But, as has been pointed out earlier, since the amplitude of 
the nth side-frequency component is AcJn(b) and as

Jn(b) Æ 0 as n  (refer to Table 5.1)

most of the power of the angle-modulated signal resides in the carrier component and some finite number 
of side-frequency components. This enables us to define what is called the effective bandwidth of an 
angle-modulated signal by considering only those sidebands which have a significant portion of the total 
power of the modulated signal.

Following the above argument, we define the ‘effective bandwidth’ of an angle-modulated signal as the 
bandwidth occupied by those minimum number of first k side-frequency components, which along with 
the carrier component, have at least 98% of the total power of the modulated signal.

Now, power in the first  

side  frequency components 

and t

k

hhe carrier

¸

˝
Ô

˛
Ô
=

=-
Â

1

2
2 2A J
c n

n k
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( )b
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1

2
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2

0 98 2

2 2

2
0
2 2
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A J
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c n

n k

k
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n

k
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. ( ) ( )

b

b b=-

=

Â
Â= = +

\ k must be so chosen that it is the smallest integer satisfying

 J J
n

n

k

0
2 2

1

2 0 98( ) ( ) .b b+ ≥

=

Â  (5.52)

Table 5.2 A short table of Bessel functions (values of Jn(b) for various values of n and b)

n b = 0.1 b = 0.2 b = 0.5 b = 1.0 b = 2.0 b = 5.0 b = 8.0 b = 10.0

0 0.997 0.990 0.938 0.765 0.224 -0.178 0.172 -0.246

1 0.050 0.100 0.242 0.440 0.577 -0.328 0.235 0.043

2 0.001 0.005 0.031 0.115 0.353 0.047 -0.113 0.255

3 0.020 0.129 0.365 -0.291 0.058

4 0.002 0.034 0.391 -0.105 -0.220

5 0.007 0.261 0.186 -0.234

6 0.001 0.131 0.338 -0.014

7 0.053 0.321 0.217

8 0.018 0.223 0.318

9 0.006 0.126 0.292

10 0.001 0.061 0.207

11 0.026 0.123

12 0.010 0.063

13 0.003 0.029

14 0.001 0.012

15 0.004

16 0.001
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By referring to the Bessel function tables (see Table 5.2) we find that for any given b, the value of 
k satisfying Eq. (5.52) is approximately equal to the integer part of (1 + b). For example, for b = 1, 
n = 2 = (b + 1); for b = 2, n = 3 = (b +1), and so on. Since ( )b +ÍÎ ˙̊1  side-frequency components are to 
be considered, the transmission bandwidth BT for angle-modulated signals with modulation index b, is 
given by (for single-tone modulation)

 BT = Transmission bandwidth = 2 1( )b +ÍÎ ˙̊ fm  (5.53)

where, xÍÎ ˙̊  is used to denote the nearest integer value of x and fm is the frequency of the single-tone 
modulating signal. The above formula is generally referred to as Carson’s rule.

It may be noted that in Eq. (5.53), b has to be taken as bp for phase modulation and bf for frequency 
modulation.

Since bp p mk A= ◊

and bp f m mk A f= ◊( ) /

where, Am denotes the peak amplitude of the single-tone modulating signal, we may re-write Carson’s 
Rule as

 B
k A f

k A f
T

p m m

f m m

=
◊ +

◊ +

Ï
Ì
Ô

ÓÔ

2 1

2

( )

( )

   for  PM

   for  FM
 (5.54)

where, kp is the phase deviation constant and kf is the frequency deviation constant.
When a non-sinusoidal modulating signal is used, as generally is the case, Carson’s rule is extended 

to this case by modifying it as follows.

 B W
T
= ÍÎ ˙̊ +2 1( )b  (5.55)

where W is the bandwidth of modulating signal, x(t), and bÍÎ ˙̊  is the nearest integer value of b which is 
the modulation index defined as

 b =

ÈÎ ˘̊

ÈÎ ˘̊

Ï

Ì
Ô

Ó
Ô

k x t

k x t

W

p

f

max ( )

max ( )

   for  PM

   for  FM

 (5.56)

5.5.1 Relationship between PSD of an FM Wave and the PDF of its Modulating Signal

There exists an interesting and useful relationship between the power spectral density of an FM wave 
and the amplitude probability density function of its modulating signal and we shall now derive this in 
a heuristic way.

Let x(t) be the modulating signal, frequency modulating a carrier signal of peak amplitude Ac and 
frequency fc. Let x(t) have an amplitude probability density function (PDF) given by fX (x).

From Eqs. (5.6) and (5.7), we have the instantaneous frequency fi of the modulated signal at the 
instant t, is given by

f f k x t f fi c f c= + = +
1

2p
( ) ( )D

where, fc is the carrier frequency, kf is the frequency deviation constant and Df is the frequency deviation 
produced by x(t) at the instant t.
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Since fx(x) is the amplitude probability density function of x(t), it follows that

P x x t x dx f x dxX£ < +[ ] =( ) ( ) ( )

= Probability of x(t) lying between x and (x + dx).

But, we know (from the expression for fi) that when x(t) lies between x and (x + dx), fi lies between

f k x f k x dxc f c f+ + +
1

2

1

2p p
and ( ) .
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( )be the power spectral density of the frequency-modulated wave. Then the area under this 
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fraction of the power of the modulated signal within the frequency interval f = m to f = m + dm, is given by
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From the equation for the instantaneous frequency we know that when f, the frequency of the FM wave, 
lies between m and (m + dm), correspondingly, the value of x(t) lies between some x1 and x1 + dx. The 
fractional time for which x(t) lies between x1 and (x1 + dx) is given by fx(x1)dx; where fx(x1) is the value 
of fx(x) at x = x1. Now, making the reasonable assumption that the fractional power of the modulated 
signal between frequencies m and (m + dm) is directly proportional to the fractional time for which x(t) 
lies between x1 and (x1 + dx), we have
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where, K1 is a constant of proportionality to dx and Ac is constant, we may write

P f Kf xx Xc
( ) ( )= , where K is a constant.

Thus, we have the important result that Pxc(  f  ), the PSD of an FM signal is directly proportional to 

fx(x), the amplitude probability density function of its modulating signal x(t).

5.5.2 Effective Bandwidth of a Gaussian Modulated FM Signal

Though not exactly Gaussian, the amplitude density function of many of the signals that we come 
across in practice, can be approximated to Gaussian density. Determining the effective bandwidth of a 
Gaussian modulated signal therefore assumes importance. We shall now proceed with this, making use 
of the above result.

If x(t), the modulating signal, has a Gaussian probability density function, it follows from the earlier 
result that the power spectral density Pxc(  f  ) also is going to be Gaussian. Since the total area under a 
PSD curve is to be equal to the average power, and since in our case, it is A

c
2 2/ , the two-sided PSD of 

xc(t) may be written as
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A sketch of this is shown in Fig. 5.14.
Defining the effective bandwidth, B as usual, as that 

bandwidth, within which 98% of the average power of 
the modulated signal is available, we may write

Ac
2/2 B

–fc 0 fc–B/2 fc fc+B/2 f

Fig. 5.14  PSD of a Gaussian modulated 
FM signal
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5.5.3 Comparison between FM and PM

1. Equation (5.54) clearly brings out the difference between phase modulation and frequency modulation. 
On the RHS of this equation, fm just adds to kf Am which is the peak frequency deviation, in the case 
of FM. But in the case of PM, fm multiplies (1+ kp Am). Thus, increase in fm, the modulating signal 
frequency, will have very little effect on the transmission bandwidth in the case of FM, while it 
will have a very significant effect (on the transmission bandwidth) in the case of phase modulation.

2. Increasing the amplitude of the modulating signal, on the other hand, will have same effect on the 
transmission bandwidth in the case of both PM and FM.

As pointed out in Remark-1, the bandwidth of an FM signal is practically unaffected by an increase 
in the modulating signal frequency. This property, coupled with the fact that FM signals are relatively 
unaffected by the additive noise on the channel, makes frequency modulation eminently suited for 
broadcasting of high quality music which necessitates handling of audio frequencies up to even 15 kHz. 
That is why commercial FM broadcasting uses audio frequencies up to 15 kHz. (AM broadcasting on 
the other hand, handles audio frequencies up to only 5 kHz). In order to get a good signal-to-noise ratio 
at the destination, these FM broadcasting stations use modulation indices (i.e., b values) of the order of 
at least 5 (see Chapter 9). As per Carson’s rule, therefore, a transmission bandwidth of at least 180 kHz 
is needed for FM broadcasting. In practice, a bandwidth of 200 kHz is provided.

Equation (5.54), which gives the transmission bandwidth BT of an FM signal as 
BT = 2(bf + 1)fm for single-tone modulation. This equation, known as Carson’s rule, was derived on the

Example 5.13
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basis that the ‘effective bandwidth’ BT has at least 98% of the total average power of the FM signal. 
Instead of Carson’s rule, sometimes we use the equation B fT f m

¢ = +( )2 1b . Determine the percentage 
of average power of an FM signal contained in it, assuming bf = 1.

 (i) As per Carson’s rule, BT = 2(1+1)fm = 4fm
The average power in a bandwidth up to k side frequencies expressed as a fraction of the total 

average power of the FM signal is given by Eq. (5.52) as
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 For b b= =f 1, k = 4 since BT = 4fm
 From Table 5.2 of Jn(b) for various values of n and b, if we compute, we get 
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  \ % power in BT = 99.9683

 (ii) If we use the approximate formula B fT f m
¢ = +( )2 1b ,

  with b f = 1, we get B fT m
¢ = 3 , \ k = 3 in this case.

Then J J
n
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  \ % power in BT = 99.9675

In an FM system, with a modulating signal frequency of 600 Hz and a peak 
modulating voltage of 3.6 volts, the modulation index is 60. Find the frequency deviation constant 
and the peak frequency deviation. If the modulating signal frequency is reduced to 400 Hz while the 
modulating voltage is simultaneously increased to 4 volts, what is the value of the modulation index?

Example 5.14
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\ peak frequency deviation = 3.6 ¥ 104 = 36 kHz.
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Compute the bandwidth requirement for the transmission of an FM signal 
having a frequency deviation of 75 kHz and an audio bandwidth of 10 kHz. (JNTU Sept. 2007)

Example 5.15

Frequency deviation Df = 75 kHz
Audio bandwidth = 10 kHz \ bf  = modulation index = 75/10 = 7.5

\ max. audio frequency = fm = 10 kHz = W

\ using Carson’s Rule, the required bandwidth is given by

Bandwidth = 2(bf  + 1)W = 2(7.5+1)10 ¥ 103 = 170 kHz
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An FM radio link has a frequency deviation of 30 kHz. The modulating 
frequency is 3 kHz. Calculate the bandwidth needed for the link. What will be the bandwidth if the 
deviation is reduced to 15 kHz? (JNTU, Sept. 2007)

Example 5.16

In the first instance, Df1 = 30 kHz and fm = 3 kHz

\ b f1
=  modulation index = = =

Df

fm

1
30

3
10

\ by Carson’s rule, the required bandwidth is

BW ff m. ( ) ( )1
32 1 2 10 1 3 10 66

1
= + = + ¥ ¥ =b kHz

If now the deviation is reduced to 15 kHz,

\ b f
m
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3
5= = =

D

\ by Carson’s rule, the bandwidth required now is

BW ff m. ( ) ( )2
32 1 2 5 1 3 10 36

2
= + = + ¥ ¥ =b kHz

A signal x(t), whose Fourier transform X(f) 
is shown in Fig. 5.15 is normalized so that |x(t)| £ 1. This signal is 
to be transmitted using FM with a frequency deviation constant 
kf = 60 kHz per volt. What will be the bandwidth required for 
transmission?

Example 5.17
X(f)

–10 kHz 0 10 kHz f

Fig. 5.15  Spectrum of the signal 
of Example 5.17

Here, the bandwidth W of the modulating signal is

W = 104 Hz

kf is given to be 60 kHz/volt and Am = 1 volt since |x(t)| £ 1

\ b f
f mk A

W
=

◊

=

¥ ¥

¥

=

60 10 1

10 10
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3
.

\ B WT f= +( ) = ¥ ¥ =2 1 2 7 10 1404b kHz

An angle-modulated signal is of the form

x t cos t sin t
c
( ) .= ¥ ¥ + ¥ ¥ÍÎ ˙̊50 2 10 5 2 1 5 107 3p p

 (a)  If xc(t) is a frequency-modulated signal, find the modulation index and the transmission 
bandwidth required.

 (b)  If xc(t) is a phase-modulated signal, find the modulation index and the transmission bandwidth 
required.

Example 5.18
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 (c)  In (a), if the frequency of the modulating signal is doubled, what will be the modulation index 
and the transmission bandwidth?

 (d)  In (b), if the frequency of the modulating signal is doubled, what will be the modulation index 
and the transmission bandwidth?

(a) bf = 5 and B
T
= + =2 5 1 1500 18( )  kHz since 5

1500
=
Ê

ËÁ
ˆ

¯̃
=

k Af m

fb

(b) bp = 5 and BT = 2(5 + 1)1500 = 18 kHz

(c) bf = 2.5 and BT = 2(2.5 + 1)3000 = 21 kHz since
k Af m

3000
2 5=

Ê

ËÁ
ˆ

¯̃
.

(d) bp = kp Am = 5 and is not affected by the doubling of fm.

B fT p m= + = ¥ ¥ = =2 1 2 6 3000 36000( )b Hz  36 kHz

An angle-modulated signal has the form 

 v t cos sin t( ) = +ÈÎ ˘̊100 2 4 2000p pf tc  where, fc = 10 MHz

 (i) Determine the average transmitted power.
 (ii) Determine the peak phase deviation.
 (iii) Determine the peak frequency deviation.
 (iv) Is this FM or a PM signal? Explain. (University Question)

Example 5.19

 (i) Average transmitted power = =
( )100

2
500

2

W

 (ii) Peak phase deviation

   Since 4 sin 2000 pt represents the phase deviation at any instant t and since sin 2000 pt has a peak 
value 1, the peak phase deviation is equal to 4 radians.

 (iii) Peak frequency deviation The instantaneous frequency is given by

f t
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dt
f t ti c( ) sin= +[ ]Ï
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p
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= + ◊ ◊ = + ◊f t fc c

4

2
2000 2000 4000 2000

p
p p p pcos cos

   \ the frequency deviation at the instant t is 4000 cos 2000 pt and the peak frequency deviation is 
4000 Hz.

 (iv)  It can be considered to be a PM signal with bp = 4 and a modulating signal of sin 2000 pt, or it can 
be considered to be an FM signal with b f = 4  and a modulating signal of cos 2000 pt.

An FM wave with modulation index b = 1 is transmitted through an ideal 
bandpass filter with midband frequency fc and bandwidth 5fm, where fc is the carrier frequency and 
fm is the frequency of the sinusoidal modulating wave. Determine the amplitude spectrum of the 
filter output.

Example 5.20
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From Eq. (5.46), the spectrum of an FM wave xc(t), with b as the modulation index, is given by

x t A J t A J t t
c c c c c m c m
( ) ( )cos ( ) cos( ) cos( )= + + - -{ }ÈÎ ˘̊0 1b w b w w w w

                                      + + +A J t
c c m2 2( ) cos( ) cb w w oos( )w w

c m

c

t

A

-{ }ÈÎ ˘̊

+

2

                                     JJ t t
c m c m3 3 3( ) cos( ) cos( )b w w w w+ - -{ }ÈÎ ˘̊

                                        .   .   .   .  .+

Even though theoretically the side-frequency components are infinite in number on either side of fc, 
only the carrier component and the first two side-frequency components on the two sides of fc fall within 
the passband of the BPF. 

0.44Ac

fc– 3fm fc– 2fm fc– fm fc+ fm fc+ 2fm fc+ 3fm

0.44Ac

0.115Ac 0.115Ac

0.765Ac

BW = 5fm

BPF passband

0 ffc

Fig. 5.16 Amplitude spectrum for Example 5.20

From Table 5.2 which gives the values of Jn( b ) for some values of b and n = 0, 1, 2, 3 etc., we find 
that J0(1) = 0.765, J1(1) = 0.44, J2(1) = 0.115. Thus, the signal at the output of the filter is given by

y t A t t tc c c m c m( ) [ cos . cos( ) cos( )= + + - -{ }0765 0 44w w w w w

                              + + + -{ }0 115 2 2. cos( ) cos( )w w w wc m c mt t

The spectrum of y(t) is as shown in Fig. 5.16.

Express the carrier power as a fraction or percentage of the total power in 
an FM signal being transmitted with bf = 2.

Example 5.21

with b bf fJ= = =2 0 224 0 0501760
2 2, ( ) ( . ) .

Total average power in the FM signal =
1

2

2A
c

, if Ac is the peak amplitude of the unmodulated carrier 
(see Eq. 5.51)

The average power in the carrier component =
1

2
2

0
2A Jc f( )b ,

since the peak amplitude of the carrier component in an WBFM signal is given by

 A Jc f0 ( )b  (see Eq. 5.46)
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\ 
Carrier power

Total power
= = =
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2
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2
0
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c f
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( )

( ) .

b
b 66

As a percentage, it is just 5.0176%.

A carrier signal A cos t
c c

w  is angle-modulated by the sum of two single-tones 
(sinusoids) of frequencies f1 and f2 with modulation indices b1 and b2 respectively. The modulated 
signal is

x t A cos t sin t sin t
c c c
( ) [ ]= + +w b w b w1 1 2 2

Derive an expression for its spectrum.

Example 5.22

The given angle-modulated signal may be written as

x t A e e ec c
j t j t j tc( ) Re[ . . ]sin sin= w b w b w1 1 2 2

From Eq. (5.42), we have

e J e e J ej t
n

n

jn t j t
m

n

jmb w w b wb b1 1 1 2 2
1 2

sin sin( ) ( )= =

=- =-

Â Âand ww2t

Substituting these in the above equation for xc(t), we have

x t A J J t n t m t
c c

n

n m

m

c
( ) ( ) ( )cos= + +[ ]

=- =-

Â Â b b w w w1 2 1 2

Thus the spectrum will have the carrier component, side-frequencies of the type cos[ ]w w
c
t n t± 1  and 

cos[ ]w w
c
t m t± 2  and also of the type cos[( ) ]w w w

c
t n m t± ±1 2 .

GENERATION OF WIDEBAND ANGLE-MODULATED SIGNALS
5.6

5.6.1 Indirect or Armstrong Method

An important method for generation of a wideband angle-modulated signal is to first generate a narrowband 
angle-modulated signal using the narrowband angle-modulator shown in Fig. 5.10 and then convert the 
narrowband signal into a wideband signal. This method is known as the indirect method of generation 
of wideband FM and PM signals. It is also known as Armstrong Method.

Narrowband
angle

modulator

Frequency
multiplier

xn

Low
frequency
carrier fc

Local
oscillator

f0

Bandpass
filter

Wideband
Mixer

Angle-
modulated
signal, z(t)

x(t) y(t)xc(t)

Fig. 5.17 Armstrong or indirect method of generation of wideband angle-modulated signals
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Figure 5.17 shows the block schematic diagram of the indirect method of generation of wideband 
angle- modulated signals. As shown in the figure, the first stage is a narrowband angle modulator of the type 
shown in Fig. 5.10. The modulating signal x(t) and a low-frequency carrier signal produced by a crystal 
oscillator are given as input signals and it uses these two signals to produce a narrowband angle-modulated 
signal with a carrier frequency of fc. A low-frequency carrier is used for producing the narrowband signal. 
The next stage is a frequency multiplier used for converting the narrowband signal into a wideband signal 
and it raises the carrier frequency from fc to nfc. The frequency multiplier stage consists of a non-linear 
device whose output is tuned to the desired harmonic of fc. Generally, a class-C amplifier whose output 
circuit is a tank circuit tuned to nfc serves as a ‘Xn’ frequency multiplier. The collector current pulses of 
class-c amplifier have a conduction angle of about 100∞ to 200∞ and are quite rich in harmonics. Quite 
often, this frequency multiplier stage consists of the cascade connection of several doublers and/or triplers.

Although the output signal of the frequency multiplier stage is certainly a wideband angle-modulated 
signal, the carrier frequency, nfc, of this wideband signal will not in general be the correct desired carrier 
frequency at which the wideband signal is to be transmitted. Hence, we use a mixer to which we connect 
the output of a local oscillator having an appropriately chosen frequency f0 and if necessary, a chain of 
frequency multipliers, in order to finally get a carrier frequency which is the desired carrier frequency. 
As the mixer produces the sum frequency and the difference frequency, a bandpass filter which has a 
centre frequency equal to either the sum frequency, or the difference frequency (whichever is needed) 
and whose passband is adequate to accommodate the effective bandwidth of the wideband signal, is used.

If the narrowband angle-modulated signal is represented as

x t A t t
c c c
( ) cos ( ) ( ) ;= +[ ]w f f( ) is smallt

then the output of the Xn frequency multiplier will be

y t A n t n tc c( ) cos ( ) ( )= +[ ]w f

Note: The frequency multiplier multiplies the instantaneous frequency wi(t) which is given by

w w
i c
t

d

dt
t( ) ( )= + f

If the BPF selects the difference frequency generated by the mixer,

 z t A n t n t
c c

( ) cos ( ) ( )= - +[ ]w w0 f  (5.57)

Since we can choose n and f0, by an appropriate choice of these two, we can ensure that the wideband 
angle-modulated signal z(t) has the desired carrier frequency.

Advantages and Disadvantages of Indirect Method

1. As crystal oscillators are used for obtaining the carrier frequency, it (the carrier frequency) is very 
stable.

2. Since the narrowband FM is generated by a phase modulator, a long chain of frequency multipliers 
will have to be used to bring the frequency deviation to the required level.

In a wideband FM generator using the indirect method, the narrowband FM 
signal initially generated has a carrier frequency of 200 kHz and a frequency deviation of 49 Hz. Choose 
appropriate values for the local oscillator frequency for the mixer and the frequency multiplication 
required before and after the mixer if the final WBFM signal is to have a carrier frequency of 91.2 MHz 
and the standard frequency deviation of 75 kHz.

Example 5.23
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Final carrier frequency = fc4
= 91.2 ¥ 106 Hz

Initial carrier frequency = fc1
= 200 ¥ 103 Hz

\ 
 frequency multiplication needed

       for the carrier freqquency

¸
˝
Ô

Ǫ̂
=

¥

¥
=

91 2 10

200 10
456

6

3

.

Initial frequency deviation = 49 Hz = (Df  )1

Final frequency deviation = 75 ¥ 103 Hz = (Df  )3

\ 
 frequency multiplication needed

        for the carrier freequency

¸
˝
Ô

Ǫ̂
= =

¥
=

( )

( )
.

D

D

f

f

3

1

375 10

49
1530 6

If we use frequency multiplication of 1530 at one go, the frequency deviation attains the correct value 
of 75 kHz but the carrier frequency becomes 200 kHz ¥ 1530 = 306 MHz, which is too high a value.

Hence, we shall split the frequency multiplication and perform it in two stages—one before the mixer 
and the other after the mixer. The mixer does not change the frequency deviation but can be used for 

reducing the carrier frequency to a value which when subjected to multiplication by the second stage of 

frequency multipliers, will give the specified final carrier frequency.
Since frequency multipliers are generally either doublers or triplers, and since 64 ¥ 24 = 1536 ª 1530, 

the overall frequency multiplication that we require, let us first subject the NBFM signal to a frequency 
multiplication of 64.

\ fc2
 = fc1

 ¥ 64 = 200 ¥ 103 ¥ 64 = 12.8 MHz

( ) ( ) .D Df f2 1 64 49 64 3 136= ¥ = ¥ = kHz

(Df  ) at the output of the mixer = (Df  ) at the input to the mixer = (Df  )2

= 3.136 kHz

Final carrier frequency required = 91.2 MHz = fc4

\ carrier frequency fc3
 at the output of the mixer = 

91 2 10

24
3 8

6.
.

¥
=  MHz

For the mixer, the input carrier frequency = fc2
= 12.8 MHz

Hence the local oscillator frequency of the mixer = (12.8 - 3.8) MHz = 9 MHz
Figure 5.18 shows the WBFM generator along with the carrier frequencies and frequency deviation 

at the various stages.

Mixer Difference
frequency

filter
(BPF)

NBFM
Signal X24

Multiplier

WBFM
signalFrequency

multiplier
fc1= 200
kHz

(Df)1= 49
Hz

fc2= 12.8
MHz

(Df)2= 3.136
kHz

fc3= 3.8
MHz

(Df)2= 3.136
kHz

fc4= 91.2
MHz

f0= 9.0MHz

(Df)3= 75
kHz

x64

Fig. 5.18 Indirect method of generation of WBFM of Example 5.23



230 Analog Communication

In a WBFM generator of the Armstrong type shown in Fig. 5.19, the initial low-
frequency carrier is of 200 kHz frequency. The maximum frequency deviation range from 100 Hz to 
15 kHz, and the final maximum frequency deviation and the carrier frequency are to be 75 kHz and 
102.4 MHz respectively. Choose an appropriate multiplier and the mixer oscillator frequency.

Mixer
Frequency
multiplier

n1

Frequency
multiplier

n2

NBFM signal WBFM signal

f3 = 102.4 MHz

n1 f1
Difference
frequency
filter (BPF)

(Df)3 = 75 kHz
f2

(Df)2

Carrier f1 = 200 kHz
(Df)1 = 25 Hz

fLo

Fig. 5.19 WBFM generator of Example 5.24

Example 5.24

Since the mixing operation changes the frequency but not the frequency deviation, and since frequency 
multipliers change both the frequency as well as the deviation, we shall use the frequency multipliers 
to get the required ratio of frequency deviation (from 25 Hz to 75 kHz) and try to get the final carrier 
frequency of 102.4 MHz by an appropriate choice of fLO, the frequency of the local oscillator.

\ total frequency multiplication needed = n n
f

f
1 2

3

1

375 10

25
3000= =

¥
=

( )

( )

D

D

Now, 
f

n
f f n f f n f n n fLO LO

3

2

2 1 1 3 2 1 2 1= = - = -or,

\ 102 4 10 3000 200 106
2

3. ¥ = - ¥ ¥n fLO

\ f O
6102 4 600 10 702 4= + ¥ =( . ) . MHz

Now, let us choose n2 = 100 and n1 = 30, so that n1n2 = 3000

\ f
n

LO =

¥

=

¥

=

702 4 10 702 4 10

100
7 024

6

2

6. .
. MHz

Hence, f f n f n fO
6

1
67 024 10 7 024 6 10= - = ¥ - = - ¥. ( . ) Hz

\ f f f n2 3 2 21 024 102 4= = ¥ =. , .MHz and MHz, as required.

5.6.2 Direct Method of Generation of WBFM

The basic approach of the direct method is quite simple. Here, we vary the frequency of an L-C oscillator 
in accordance with the variations in the amplitude of the message or the modulating signal. This is 
accomplished by placing an additional reactance across the tank circuit of the oscillator and making 
this reactance vary with the amplitude of the message. There are two methods for creating this variable 
reactance. One is to use a ‘varactor’, or a reactance diode and the other is to use a reactance modulator.

Basic Principle Let c0 be the tank circuit capacitance in the absence of any modulation and let

 f
LC

c =
1

2
0

p
 (5.58)

where fc is the unmodulated carrier frequency. Let DCx(t) be the capacitance produced across the tank 
circuit by the varicap or the reactance modulator.
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\ total tank circuit capacitance  = c(t) = C0+DCx(t); |x(t)| £ 1
The instantaneous frequency of the oscillator at the instant ‘t’ is 

given by

f t
L C t

LC
C

C
x t

i ( )
. ( )

( )

= =

+
Ê
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ˆ

¯̃

È

Î
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˚
˙
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1

2

1

2 10
0

p
p

D

Then, using Eq. (5.58), we may write fi(t) as

 
f t f

C

C
x t

i c( )
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+
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1
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D
 (5.59)

Since |x(t)| £ 1 and 
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If we now make use of the approximation that
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The approximation of Eq. (5.61) is accurate up to 1% for 
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This amounts to saying that Eq. (5.62) is accurate up to 1 % if

 
Df
fc

Ê

ËÁ
ˆ

¯̃
£ 0 0065.  (5.63)

Noting that fc, the unmodulated carrier frequency for FM should be in the VHF range in the 88– 108 MHz 
band, let us take fc to be typically 100 MHz. Then Eq. (5.63) means that (Df  ), the peak frequency deviation 
that can be obtained has to be limited to 

or 
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Fig. 5.20  Variable capacitor 
across the tank circuit
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So, it turns out that this is not at all a restriction since the frequency deviation that we need in practice 
(75 kHz) is much smaller than 650 kHz.

Thus, we can obtain a WBFM signal by producing a variable capacitor that varies according to the amplitude 
variations of the modulating signal. This variable capacitor can be realized either by using a varactor diode or 
by means of a reactance modulator. What is important is that the direct method of generation of WBFM needs 
only simple circuits that do not involve any frequency multipliers, etc. However, the direct method of generation 
uses L-C oscillators for the carrier generation and these have poor frequency stability. Hence, in order to meet 
the stringent specifications regarding the carrier frequency stability for transmitters, it becomes necessary to 
use some Automatic Frequency Control or AFC arrangement in conjunction with these L-C oscillators. These 
are discussed in detail in Chapter 6 which deals with AM and FM transmitters and receivers. We shall now 
discuss briefly, the two methods—one using a varactor diode and the other using a reactance modulator, for 
obtaining the capacitance that varies according to the amplitude variations of the modulating signal.

5.6.3 Using a Varactor Diode

The modulating signal x(t) is given in series with the reverse bias for the varactor diode and the diode 
itself is placed across the tank circuit of an L-C oscillator. Figure 5.21 shows a tuned-collector L-C 
oscillator across whose tank circuit, a varactor diode is connected. The RFC (RF choke) together with the 
bypass capacitor Cb ensures that the r.f from the oscillator does not enter the modulating signal circuit. 
The coupling condenser, Cc, is of such a small value that it works like a perfect open circuit for the 
modulating signal frequencies while offering negligible reactance to the r.f signal. It also prevents the dc 
bias supply of the varactor from reaching the oscillator.

RFC

VARACTOR
DIODEReverse

bias for 
varactor

x(t)

Cb

Cc

RE

CE

WBFM
Signal

Vcc

+

–

Fig. 5.21 Typical arrangement for putting the varactor diode across the tank circuit of an L-C oscillator

5.6.4 Using a Reactance Modulator

Principle of Operation Let the r.f voltage generated by the L-C oscillator 
be applied across the terminals A–A.

In the analysis that follows, we shall make the following assumptions.

 (i) i1 << id
 (ii) Xc >> R
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Fig. 5.22  A FET-based reactance 
modulator
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Because of our first assumption that i1 << id, we may write the impedance seen across the terminals 
A–A as
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But since Xc >> R (second assumption), we may write
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The above equation shows that the impedance z is a capacitive reactance given by
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where, fc is the frequency of the oscillator voltage and 

 C g R Cmeq
= ◊ ◊  (5.70)

Hence, the tank circuit of the oscillator, which is connected across the terminals A–A will effectively 
find a capacitance Ceq across the terminals. Thus, if we want to make this C C x teq = ◊D ( )  of Fig. 5.20, 
we should make gm to vary according to the variations in the amplitude of the message signal, x(t).

Recalling that
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D
∂
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 (5.71)

all that needs to be done to make gm proportional to x(t), is to operate the FET in that part of its transfer 
characteristic where i Ked g= 2  (so that gma eg) and place the message signal x(t) in series with the gate 
bias voltage.

Note that although Fig. 5.23 shows a FET based reactance modulator, the foregoing analysis is equally 
applicable to a BJT-based reactance modulator. Figure 5.23 shows a BJT-based reactance modulator used 
in conjunction with a Colpitt’s oscillator for generating wideband FM.
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A.F Input

Reactance modulator Colpitt’s oscillator

RFC RFC

WBFM
output

Vcc

C

R2 R2RE RE

Cb

CE

A

A

Cc

Cc CE
C2 C

C1

Fig. 5.23 Direct method of generation of wideband FM using a reactance modulator

While the varactor diode can only present a capacitive reactance across the tank circuit of the 

oscillator, a reactance modulator can offer a capacitive, or an inductive reactance across the oscillator 
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tank circuit. For instance, if the positions of R and C are interchanged in the reactance modulator circuit of 
Fig. 5.22, it can be shown that the circuit to the left of terminals A–A will appear as an inductive reactance.

A reactance modulator offers better stability than the varactor diode circuit. However, it suffers from the 
disadvantage that the input impedance is very small. This is because of the small values of R and Xc of the 
series RC circuit. Further, at very high frequencies of the oscillator, the Xc becomes small (even if we make 
C quite small) and hence R also has to be made small, reducing the input impedance to such low values as 
to make the circuit unworkable. So, to realize the carrier frequencies required for FM, it becomes necessary 
to use frequency multipliers while working the oscillator at a low frequency, typically less than about 5 MHz.

VCO Buffer
x(t) Frequency

multiplier
Frequency
multiplier

Oscillator

Power
amplifier

WBFM

signal
Mixer

Fig. 5.24 Varactor diode direct method of generation of a WBFM signal

Reactance
modualtor

and oscillator

WBFM

signal

x(t) Buffer
amplifier

Frequency
multipliers

Driver
amplifier

Power
amplifier

Fig. 5.25 Reactance-modulator method of generation of WBFM signal

As mentioned earlier at the beginning of this section, both the methods suffer from the disadvantage 
that the carrier frequency is obtained from an L-C oscillator and not a crystal oscillator. Hence, the carrier 
frequency stability will be poor. This makes it necessary to use some automatic frequency control wherein 
the carrier frequency of the WBFM signal is controlled by a crystal oscillator. Details of the AFC circuit 
are given in Chapter 6 in which transmitter details are discussed.

5.6.5 Comparison of Narrowband and Wideband FM

Wideband FM typically has a maximum deviation of 75 kHz and makes use of audio frequencies up to 
15 kHz. Thus it is eminently suitable for high-quality music broadcasting, since FM has considerable 
immunity for additive noise. The bandwidths occupied by these wideband FM signals are of course large 
and are of the order of 200 kHz.

Narrowband FM (strictly speaking, it is not NBFM as defined earlier) on the other hand, is used for 
FM mobile communication systems operating in the VHF band and used by the police department, by 
the taxis and for ship-to-shore communication. Unlike music, speech requires only intelligibility but not 
high quality. Hence, audio frequencies in the range of 30 Hz to about 3 kHz or 5 kHz would be quite 
sufficient. Even for these speech (or telephone) quality audio frequency ranges, the bandwidth required 
for these so-called NBFM communication systems may be of the order of 25 to 30 kHz since frequency 
deviations of the order of 10 to 15 kHz are used in order to get at least some degree of noise immunity, 
as the NBFM in the strict sense, is no better than conventional AM in so far as noise performance is 
concerned. These point-to-point FM mobile communication systems operating in the VHF band, also make 
use of pre-emphasis and de-emphasis in order to get good SNR at the destination.

EFFECTS OF CHANNEL NON-LINEARITIES ON FM SIGNALS
5.7

We shall now briefly discuss the effect of passing an FM signal

 x t A f t tc c c( ) cos ( )= +[ ]2p f  (5.72)
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where,

 f( ) ( )t k x df
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= Ú2
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p a a  (5.73)

through a memoryless channel having a non-linear input–output relation such as
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where ei(t) and e0(t) represent, respectively, the input and output voltages, while a0, a1, a2 and a3 
are constants. Replacing ei(t) by xc(t) in Eq. (5.74), expanding the terms on the right-hand side and 
re- arranging the terms, we get
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Thus, the channel output, e0(t) consists of a dc component and three FM signals with fc, 2fc and 3fc as 
their carrier frequencies. The FM signal with carrier frequency fc, which is the desired component, can 
be separated out from the rest by using a BPF with centre frequency fc and bandwidth equal to 
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˘
˚̇

 (5.76)

where, W is the bandwidth of the message signal, x(t). The BPF output is

 ( )cos ( )a A a A f t tc c c1 3
3

3

4
2+ +[ ]p f  (5.77)

Thus, we find that the effect of the non-linearity of the channel is only to change the amplitude of the 
FM signal, which of course, does not cause any problems, as it is no distortion. On the other hand, instead 

of an FM signal, if we had passed an AM signal through the same channel, it would have got terribly 

distorted. This therefore, indicates the advantage in using FM when the channel includes devices like say, the 
TWT amplifier which generally has a non-linear input–output relation when it is operating at its power limit.

However, channel non-linearities of a type which produce phase changes with signal amplitude changes, 
will create problems, and it should be ensured that such non-linearities are very small.

The tank circuit of a 0.5 MHz LC oscillator has an inductance of 1 mH connected 
across a capacitor. The output of this oscillator is frequency modulated by an FET reactance modulator 
consisting of a series connection of a 1500 W resistor and a 10 p.f capacitor, with the capacitor 
connected between the gate and drain of the FET. The message signal varies the mutual conductance 
of the FET by ±0.6 mA/volt, find the peak frequency deviation that is produced.
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where,  C0 = tank circuit capacitance
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DETECTION OF FM SIGNALS
5.8

Since in FM the carrier frequency is changed in accordance with the amplitude of the modulating signal, 
FM signal demodulation is essentially one of frequency-to-amplitude conversion. There are several FM 
demodulators—the slope detector, the phase discriminator of Foster and Seeley, the ratio detector, the 
FM feedback detector, the quadrature FM detector, the zero-crossing detector and the phase-locked loop 
detector. The slope detector, historically the earliest and also the simplest of all, is of course no longer in 
use; but once the principle of it is understood, it is easy to understand the phase discriminator and ratio 
detector. So we shall first briefly discuss the principle of the slope detector.

5.8.1 The Slope Detector

In the mixer stage of the receiver, the carrier frequency of the received signal is changed to a fixed 
frequency called the intermediate frequency, fi.f, which has a value of 10.7 MHz in the case of standard 
FM broadcast receivers. Hence, the FM signal arriving at the input to the discriminator (from the IF 
stage) is having a carrier frequency of fif. The slope detector simply consists of a resonant circuit tuned 
to a frequency f0 which is slightly more than fif followed by an envelope detector. The f0 is so chosen 
that fif falls in the middle of the range of frequencies over which the response of the resonant circuit is 
almost linear. This region is from fmin to fmax, as shown in Fig. 5.26.

Linear

region

Response of resonant

circuit tuned to f0

Detector output voltage

corresponding to the carrier

frequency

f

Amin

fmax

f0

fif

Amax

fmin

Fig. 5.26 Principle of slope detector
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As can be seen from this figure, the frequency variations of the input FM signal are converted into 
corresponding changes in voltage at the output of the detector. This frequency-to-voltage conversion will 
be linear to the extent that the region marked ‘linear region’ is really linear. Thus, the slope detector 
converts the FM signal into an AM signal with carrier frequency of fi.f = 10.7 MHz and modulating signal 
the same that the FM signal was carrying. The AM signal can be detected and the modulating signal 
extracted by using a conventional envelope detector as shown in Fig. 5.27.

Tank circuit of
IF amplifier

Tank circuit of
slope detector

f0

(f0 > fi.f)

fi.f
Message signal

Fig. 5.27 Frequency-to-amplitude converter followed by an envelope detector

Although it is simple and inexpensive, the slope detector suffers from one serious disadvantage, viz, 

non-linearity in the frequency-to-amplitude conversion. This non-linearity arises from the fact that the 
response curve of the resonant circuit can be considered to be linear only over a very small region.

5.8.2 Dual-slope Detector or Balanced Discriminator

To overcome the problem of non-linearity encountered in the simple slope detector discussed earlier, 
Foster and Seeley proposed the dual-slope detector. This makes use of two resonant circuits with identical 
responses but with slightly different resonant frequencies. The technique used in order to obtain a larger 
linear range is illustrated in Fig. 5.28(b).
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H2(f)

f1 fif

f2 f

H1(f) (f2– fif) = (fif – f1)

Fig. 5.28 (b) Technique for larger linear range
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Fig. 5.28 (a) Dual-slope detector circuit

When the incoming signal frequency is equal to the IF, the responses of H1(  f  ) and H2(  f  ) will be equal 
and so the voltages developed across R1 and R2 will be equal. From the way D1 and D2 are connected, 
terminals A and B will be at the same potential with respect to the ground and so E0, the potential difference 
between them is zero. If the incoming signal has a frequency above the IF, the response of H2(  f  ) will 
be more and that of H1(  f  ) will be less (when compared to what it was when incoming signal frequency 
was IF). Hence the voltage drop across R1 will be greater than the voltage drop across R2. Hence, the 
terminal A will be at a higher potential than the terminal B with respect to ground and E0 π 0. If the 
incoming signal has a frequency less than the IF, response H1(  f  ) will be more than the response H2(  f  ), 
causing B to be at a higher potential than A. Thus, the frequency variations of the incoming FM signal 
are converted into corresponding variations in the amplitude of E0. Therefore, E0 will be the modulating 
signal assuming the overall response [see Fig. 5.28(b)] to be perfectly linear between f1 and f2.
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5.8.3 Foster–Seeley Discriminator

Originally developed as a sub-system of an automatic frequency control unit, this FM detector is known 
as Foster–Seeley discriminator, phase-shift discriminator and centre-tuned discriminator.

A tank circuit consisting of a centre-tapped 
inductance L2 and capacitor C2 is inductively 
coupled to the inductance L1 of the tank-circuit of 
the IF stage. The diodes D1 and D2 and the elements 
R3, C3 and R4, C4 are connected to this secondary 
side tank circuit as shown in Fig. 5.29. Further, a 
large RF coupling capacitor C and a large RF choke 
are connected as shown in the figure.

The primary and secondary tank circuits are 
tuned to the same frequency—the IF, which is the 
carrier frequency for the FM signal being fed to the discriminator. At the r.f., the circuit comprising 
C, L and C4 is effectively coming across L1. Since the reactance of the r.f. choke L far exceeds the 
reactances of C and C4, the voltage across the choke L, say VL, is practically equal to the voltage across 
the primary, i.e., VP.

\ V V
L P

@  (5.78)

If M is the mutual inductance between the primary and secondary windings, the voltage induced in 
the secondary, viz., Vs, is given by

 V j MIs p= ± w  (5.79)

The direction of winding of the secondary determines whether the positive or the negative sign is to be 
used. Ip in Eq. (5.79) above, denotes the current flowing through the primary winding L1, and is given by

 I
V

j L
P

P@
w 1

 (5.80)

While writing Eq. (5.80), we have assumed that the secondary side load impedance reflected into the 
primary, as well as the resistance of the primary coil, are negligible, since the Q-factors of the primary 

and secondary are large and the mutual inductance M is small.
Taking the negative sign in RHS of Eq. (5.79) and substituting in it for Ip using Eq. (5.80), we get
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1

 (5.81)

This induced voltage Vs produces a voltage drop Vab across the capacitor C2 given by
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Hence, when the frequency f of the incoming FM signal is equal to the IF, i.e., fc, then
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 (5.83)
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Fig. 5.29 Foster–Seeley discriminator
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i.e., Vab leads Vp by 90∞.

The voltage Va0 applied to diode D1 is given by

 V V V V V
ao ab L ab P
= + = +
1

2

1

2
 (5.84)

The voltage Vbo applied to diode D2 is given by

 V V V V V
bo ab L ab P
= - + = - +

1

2

1

2
 (5.85)

Hence, when f = fc, i.e., when there is no modulation for the incoming signal, the phasor diagram will 
be as shown in Fig. 5.30(a). 
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Fig. 5.30 Phasor diagrams showing voltages across D1 and D2 for (a) f = fc (b) f > fc (c) f < fc

Thus Vao = Vbo. The diode D1 charges capacitor C3 and diode D2 charges capacitor C4. Neglecting the 
diode drops and assuming R3C3 and R4C4 to be large compared to (1/fc), we may say that C3 and C4 will 
be charged to the peak values of the voltage Vao and Vbo respectively. From Fig. 5.30(a), we find that 
when f = fc, V V

ao bo
= . Hence,

V V
do eo

=

and therefore,

V2 = 0

From Eq. (5.82), we find that the phasor diagrams for f > fc and f < fc will be as shown in Figs 5.30(b) 
and (c) respectively and that

 (i) For f > fc: V V
ao bo

>  \ V2 is positive and equal to V V
ao bo

-

 (ii) For f < fc: V V
ao bo

<  \ V2 is negative and equal in magnitude to V V
bo ao

-

For the Foster–Seeley discriminator, if we plot the frequency response around fc, we will get the 
S-shaped curve similar to the one shown in Fig. 5.28(b); and the frequency-to-amplitude conversion is 
fairly linear if the discriminator is properly designed. However, this discriminator responds to amplitude 
variations also, as is evident from Eqs 5.83 and 5.85. Hence, if this discriminator is used, it must be 

preceded by a limiter stage.

5.8.4 Ratio Detector

The ratio detector is a modified version of the Foster–Seeley discriminator, the modifications being such 
as to make it unresponsive to the amplitude variations of the incoming FM signal while responding in 
the same way as the Foster–Seeley circuit for the input signal’s frequency variations.
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The circuit of a ratio detector is shown in Fig. 5.31.
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Fig. 5.31 The ratio detector

It may be noted that the ratio detector circuit is essentially the same as that of the Foster–Seeley 
discriminator except for the following three modifications.

 (i) Diode D2 is reversed in direction.
 (ii) A large capacitor C5 is connected across the output voltage of the two diodes.
 (iii) The output voltage of the detector is drawn across 0¢ and 0.

5.8.5 Frequency-to-Amplitude Conversion

In the Foster–Seeley discriminator, we had seen that the output voltage is equal to the difference between 
the output voltages of the two diodes and that it varies in amplitude according to the amount of deviation 
in frequency of the input FM signal from the unmodulated carrier frequency. We shall now show that 
although the output voltage is now taken between the terminals 0¢ and 0, it is still proportional to the 
difference in the diode output voltages.
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Vdo is the dc output voltage of diode D1 and Voe is the dc output voltage of diode D2. Thus, just like 
in the Foster–Seeley circuit, here also, the output voltage is proportional to the difference between the 
diode output voltages. The only difference is that whereas it was equal to the difference between the diode 
output voltages for the Foster–Seeley discriminator, in the case of the ratio detector, it is one-half of it. 
However, here too, the output voltage amplitude varies in accordance with the amount of deviation of the 
input signal frequency from the un-modulated carrier frequency—just like the Foster–Seeley discriminator.

5.8.6 Response to Amplitude Variations

We shall now show, in a qualitative manner, how the ratio detector responds to changes in the amplitude 
of the incoming FM signal so as to make its output unaffected by these amplitude variations.

It is the capacitor C5 that makes the ratio detector’s output to be unaffected by amplitude variations. 
This it does in two ways. Primarily the large time constant associated with it does not permit the voltage 
across it to change quickly. Thus, irrespective of changes in the amplitude of the incoming signal, it tries 
to maintain a constant voltage Vde. That is, the sum of the two diode output voltages is kept constant even 
while the difference between them changes as the frequency of the incoming signal changes. Secondly, it 
helps in bringing into play as amplitude-dependent damping of the primary and secondary tank circuits 
in such a way as to offset the effect of any increase or decrease of the amplitude. For example, if the 
amplitude tries to increase suddenly, a larger charging current tends to flow into the capacitor C5. But, 
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as its voltage and therefore the load voltage cannot increase suddenly, it amounts to having a low value 
of load presented to the secondary side tank circuit and its Q-factor is lowered. Because of the reflected 
load, the primary side tank circuit also will have its Q-factor lowered. These changes in Q will lower 
the IF amplifier gain and therefore the amplitude of the incoming signal fed to the detector gets reduced 
automatically. Similarly, when the amplitude of incoming signal decreases suddenly, the loading on the 
tank circuit will decreases their Q-factor will increase and the IF amplifier gain will increase, which in 
turn will tend to increase the amplitude of the signal fed to the discriminator.

Because of the above reasons, the ratio detector does not respond to sudden changes in the amplitude 
of the incoming FM signal such as those caused by the additive noise on the channel. Slow fading of the 

signal, however, does cause the ratio detector output voltage to change accordingly.

5.8.7 Quadrature FM Detector

In this, a quadrature signal is first generated from the received FM signal (i.e., output of the IF amplifier 
or the limiter) by passing it through a delay line or a phase-shift network. This delay line/phase-shift 
network is so designed that at carrier frequency it gives a phase shift of 90∞ while giving a group delay 
of say some t1 sec. As shown in Fig. 5.32, this quadrature signal is multiplied by the FM signal given 
as input to the delay line/phase-shift network and the product is low pass filtered with an LPF having a 
cutoff frequency of W Hz, which is the message bandwidth.

Delay line
or

phase-shift
network

Analog
multiplier

Lowpass
filter

cutoff: W HZ

xc(t)

xc(t)

xq(t)

y(t) z(t) µ x(t)
BPF

Limiter
stage

FM signal
from

IF amp.

Fig. 5.32 A quadrature FM detector

Let the FM signal from the IF amplifier fed to the delay-line and the analog multiplier be represented as
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kf being the deviation constant and x(t), the normalized message signal. Then the quadrature signal is

 
x t A t t t

A t t t

q c c

c c

( ) cos ( )

sin ( )

= - + -[ ]

= + -[ ]

w

w

90 1

1

∞ f

f
 (5.88)

\ output of the analog multiplier is given by
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Writing (1 + cos 2wct)/2 for cos2 wct and (1 - cos 2wct)/2 for sin2 wct, and cancelling all high-frequency 
terms involving sin 2wct and cos 2wct, we get the output of the lowpass filter as

 z t K t t t( ) sin ( ) ( )= - -[ ]1 1f f  (5.89)

where K1 is a constant.
If f f( ) ( )t t t- -[ ]1  is very small, say very much less than p radians (this will be the case, since t1, the 

group delay, will generally be quite small), then we may make the approximation

 sin ( ) ( ) ( ) ( )f f f ft t t t t t- -[ ] @ - -[ ]1 1  (5.90)

Again,
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 (meaning of a derivative) (5.91)

This is true when t1 is quite small, in fact so small that f (t) does not change much between (t - t1) and t.

\ z t K t t t K t
d t

dt
K

d t

dt
( ) ( ) ( )

( ) ( )
= - -[ ] = =1 1 1 1 2f f

f f
 (5.92)

where, K2 includes t1.

But 
d t

dt
k x tf

f( )
( )= 2p  (from Eq. 5.87) (5.93)

\ z t K x t( ) ( )= 3  (5.94)

where, K K kf3 2
2= ◊ p

\ the output of the LPF is proportional to the message signal. Thus, the set-up of Fig. 5.32 acts as an 
FM detector. In fact, even though several approximations have been made in the above analysis, the 
quadrature FM detector provides better linearity than the Foster–Seeley discriminator. Hence, it is used 
in some of the expensive FM receivers as it gives a better audio quality.

5.8.8 Zero-Crossing FM Detector

An FM detector with an excellent linear relation 
between input frequency and output voltage, is 
the zero-crossing FM detector. In this detector, 
a hard-limiter first converts the incoming FM 
signal into a rectangular waveform. A monostable 
multivibrator which is designed to get triggered 
by the rising edges of this rectangular waveform, 
produces rectangular pulses of fixed duration t 
as shown in Fig. 5.33(d).

If this waveform in (d) is integrated for a 
period of T seconds such that

1 1

f
T

Wc

<< <<

where,
fc = unmodulated carrier frequency of the FM 

signal given as input to the detector (i.e., IF)

and W = bandwidth of the message signal

(a)

(b)

(c)

(d)
T

t–T

z(t) A A A A A

t

t

t

t

t

t t t t t

Fig. 5.33  Waveforms to illustrate the principle of working 
of a zero-crossing detector (a) Modulating 
signal (assumed to be singe-tone) (b) FM 
signal (c) Hard-limited FM signal (d) Output of 
the monostable multivibrator
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Then,
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where, n is the number of zero-crossings which is proportional to the (instantaneous) frequency. Thus, the 
integrator output is proportional to the frequency. A practical form of a balanced zero-crossing detector 
is illustrated in Fig. 5.34.
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Fig. 5.34 Balanced zero-crossing detector (a), circuit (b), (c), (d) waveforms

When there is no modulation, y(t) will have 50% duty cycle and hence w w( ) ( )t t=  so that d(t) = 0. 
As the frequency increases above fc, w (t) increases while w( )t  decreases. Hence d(t) is positive and 
increases with frequency deviation above fc. When frequency decreases below fc, d(t) is negative and its 
amplitude increases with frequency deviation below fc. Practical balanced zero-crossing FM detectors can 
have better than 0.1% linearity and they can operate upto even 10 MHz. Higher operating frequencies 
may be obtained by resorting to frequency division after the hard limiter.

5.8.9 Phase-Locked Loop (PLL) Detector

There exists one disadvantage with all the FM demodulation methods described earlier. All these methods 
have the same bandwidth as the bandwidth occupied by the FM signal, which of course, is very much 
more than the bandwidth of the message signal. Thus, these demodulators pass on all the noise contained 
in the bandwidth of the FM signal.
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Using feedback to reduce this bandwidth and thereby 
reduce the noise power at the output of the demodulator, is 
one way of tackling the problem. Such an approach leads 
to what is known as an FM demodulator with feedback 
(FMFB). A demodulator using this approach is the Phase-
Locked Loop (PLL).

The block diagram of an arrangement that uses a PLL 
for FM demodulation, is shown in Fig. 5.35.

As can be seen from this figure, it is a feedback system, in fact, a negative feedback system comprising 
a phase comparator and a loop filter with a VCO in the feedback path. The phase comparator is just 
a product device. The loop filter has a high gain and a passband from 0 Hz to W Hz. The VCO is a 
voltage-controlled oscillator, whose output is a sine wave, the frequency of which is determined by the 
control voltage given as input to it. In fact, for our purpose here, any system that can generate an FM 
signal can be used as the VCO.

For a mathematical analysis of the system, let us assume that the VCO has been initially so adjusted that

 (i)  it produces a sine wave with a frequency exactly equal to the unmodulated carrier frequency of 
the incoming FM signal, when there is no control voltage applied to it; and 

 (ii)  the sine wave signal that it generates under the condition stated above has a 90∞ phase difference 
with the carrier signal of the incoming FM signal.

Accordingly, let us assume that the incoming FM signal, xc(t) is given by

where, 
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Let the loop filter output be v(t). Since this controls the frequency of the VCO output signal r(t), the 
frequency of r(t) is given by

 f t f k v tr c v( ) ( )= +  (5.97)

and,

 r t A f t tr c r( ) cos ( )= +[ ]2p f  (5.98)

where,
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Since the phase comparator multiplies the two signals given to it,
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The filter eliminates the high frequency component at the frequency of 2fc.
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f f  (5.100)
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Fig. 5.35  Block diagram of a phase-locked 
loop



Angle Modulation 245

If the PLL is in the phase-locked condition,
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will be very very small.
Hence, we may make the approximation sinf fe e@
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(since v(t) is the output of the LTI filter with h(t) as its 
impulse response)

Because of the approximation we made, that sin fe @ fe, 
we are now getting a linear differential equation relating 
f, fe and v(t). using this, we may now draw the linearized 
version of the PLL as shown in Fig. 5.36.

Taking the Fourier transform of the differential 
equation, we have
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If the gain of the loop filter is high enough so that 
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v(t) is proportional to the modulating signal, x(t), and hence v(t) is the demodulated signal. If X(  f  ) = 0 for 
| f | ≥ W Hz, V(f ) also is zero for | f | ≥ W. \ H(  f  ) can be made equal to zero for all f such that | f | ≥ W. 
That is, noise at the output of the loop filter will be limited to only the message bandwidth, unlike in the 
case of the demodulators discussed earlier. As we are going to see later in Chapter 9, there is a ‘threshold 
effect’ for FM in the sense that if the signal-to-noise ratio at the input to an FM detector is less than a 
certain critical value, called the ‘threshold’, the output of the receiver will be only noise. We are going 
to see in that chapter that a PLL may be used as the FM detector to lower the threshold.

Show that d(t), the output of the balanced zero-crossing detector shown in 
Fig. 5.34(a) is approximately proportional to the amplitude of the normalized modulating signal x(t) 
of the input FM signal, xc(t).

Example 5.26

Referring to Fig. 5.34, let the integrating period be T where,
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where w( )t  is the average value of x(t) over a period T.
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t  changes with the amplitude of x(t) and is given by
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Since 
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FM BROADCASTING
5.9

FM radio broadcasting for speech and music makes use of the 88 MHz–108 MHz band. The peak 
frequency deviation is to be 75 kHz, audio frequencies up to 15 kHz are handled and the bandwidth 
is 200 kHz, i.e., two adjacent carriers are to have a separation of 200 kHz. The transmitters employ 
pre-emphasis—i.e., boost the high frequency components of the message or baseband signal in order to 
improve the signal to noise ratio at the destination. FM broadcast receivers are of the superheterodyne 
type, the intermediate frequency being 10.7 MHz.

Irrespective of the carrier frequency of the signal to which the receiver is tuned, owing to the gang-
tuning of the r.f. amplifier and the local oscillator, the carrier frequency at the mixer output is always the 
intermediate frequency of 10.7 MHz. Since it operates at a constant frequency, the IF amplifier is designed 
to give a large gain. Although the transmitted FM signal has a constant amplitude, it gets corrupted by 
the additive noise in the channel and the received signal has small random variations in its amplitude. 
These are removed in the receiver by the limiter stage. A balanced discriminator extracts the message 
or the baseband signal from the FM signal at the output of the limiter. In monophonic receivers, the 
discriminator output will be just the audio. This is amplified, de-emphasized for removing the extra boost 
given to the higher audio frequencies before transmission, lowpass filtered for removing the out-of-band 
noise, if any, and then finally fed to the loudspeaker,

RF
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Mixer
IF

amplifier
Limiter

Local
oscillator

Automatic
Frequency

Control
(AFC)GANG TUNING

Discriminator

Audio
de-emphasis

network
and LPF

L.S

Fig. 5.37 Block diagram of superheterodyne FM broadcast receiver

5.9.1 Capture Effect

Suppose there is an interfering signal having a frequency close to the desired signal to which we have 
tuned the receiver, and that the interfering signal is quite weak compared to the desired signal. If it were 
to be AM, in the receiver output, we will be getting not only the desired signal but also the interfering 
one, the latter as a sort of weak background noise. But, in the case of FM, the situation will be totally 
different—only the relatively strong desired signal will be received and the weak interfering signal will 
be suppressed to a very large extent. This phenomenon is called capture effect, since the stronger signal 

virtually captures the receiver.
This phenomenon may be explained as follows. Let the desired signal have a carrier of peak amplitude 

A and frequency wc. Let the interfering signal have a frequency (wc + Dw) and a peak amplitude B. For 
our analysis here, the modulations of the desired and interfering signals may be totally ignored, as they 
do not play any part. The received signal may be written as
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In the case of FM, the amplitude R(t) of the received signal r(t) is of no consequence. q(t), the phase 
deviation of the desired carrier signal, caused by the interfering signal, is however, important, as it 
produces an output in the receiver. But
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So, the stronger the desired signal, relative to the interfering signal, the better is the suppression of the 
interfering signal. It may be noted here that the interfering signal need not be only an undesired carrier 
or modulated signal. It may be made up of just noise frequency components closed to the desired carrier 
frequency. Thus, capture effect suppresses noise too.

5.9.2 FM Stereo Broadcasting

In monophonic transmission of music, the output from only one microphone is used. But in stereophonic 
transmission, outputs from two different microphones, kept at different locations on the stage, are used 
for transmission. We call the outputs from the two microphones as message signals xL(t), the left message 
signal, and xR(t), the right message signal, and each of these occupies a bandwidth of 15 kHz. In an FM 
stereo transmitter, using the xL(t) and xR(t), we first produce the sum signal [xL(t) + xR(t)] and the difference 
signal [xL(t) - xR(t)], as shown in Fig. 5.38. The sum signal is passed through the pre-emphasis network 
and then without any further processing, is taken to an adder where a pilot tone of 19 kHz is added to 
it. On the other hand, the difference signal, after being passed through the pre-emphasis network, is used 
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Fig. 5.38 An FM stereo transmitter
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for DSB-SC modulating a 38 kHz carrier obtained by 
doubling the 19 kHz pilot carrier. The DSB-SC signal 
so generated is added to the sum signal and the pilot 
carrier. The output of this adder, consisting of the sum 
signal, the pilot carrier and the DSB-SC signal, is used 
as the baseband signal for frequency modulating the 
final carrier used for transmission.

From the foregoing, it is clear that functionally, 
the receiver should first recover the baseband signal 
(whose spectrum is shown in Fig. 5.39). So up to the discriminator stage, there is no difference between 
a stereophonic FM receiver and a monophonic FM receiver. The above spectrum clearly indicates the 
various functions that the stereo FM receiver should perform to get xL(t) and xR(t) separately. All these 
are shown in the block diagram of the receiver given in Fig. 5.40.
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Fig. 5.40 FM stereo receiver after the discriminator stage

The output of the discriminator is the baseband signal whose spectrum is as in Fig. 5.39. This is 
fed simultaneously to a lowpass filter, a bandpass filter and a narrowband filter centered on 19 kHz, to 
separate out the three component signals comprising the baseband—the sum signal, the DSB-SC signal 
containing the difference signal and then the pilot tone of 19 kHz frequency. The sum signal, after de-
emphasis, serves as the audio signal for the monophonic FM receiver whose post-discriminator bandwidth 
is only 15 kHz. Thus, a monophonic FM receiver also can receive the audio from a stereophonic FM 
transmitter and this audio signal is the sum signal. The stereophonic receiver, however, makes use of the 
sum and difference signals to obtain xL(t) and xR(t) separately as shown in Fig. 5.40. These are then fed 
to the (stereo) audio amplifier and they finally drive the dual loudspeakers. 

SUMMARY

1. Frequency modulation and phase modulation are together known as angle modulation.
2. FM and PM both change the phase angle, but in different ways.
3. PM: x t A t k x tc c c p( ) cos ( )= +È

Î
˘
˚w  where, kp is called the phase deviation constant.

Pilot tone

(XL+ XR)

(XL– XR)

f (in kHz)0 15 19 23 38 53

Fig. 5.39  One-sided spectrum of the baseband 
signal used for frequency modulating 
the final carrier
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 where, kf is called the frequency deviation constant.

 5. When x(t), the modulating signal = A f tm mcos2p ,
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 7. (a)  If f(t), the phase deviation is less than or equal to 0.2 radian, it is called narrowband angle 
modulation.

 (b) Bandwidth of an NB angle-modulated signal = 2fm.
 8. (a)  If x(t) is integrated and fed as the modulating signal to a phase modulator, an FM signal is obtained.

 (b)  If x(t) is differentiated and fed as the modulating signal to a frequency modulator, a PM signal 
is obtained.

 9. (a)  An angle-modulated signal has, theoretically, an infinite bandwidth, even for a single-tone 
modulating signal.

(b)  The bandwidth within which at least 98% of the average power of an angle-modulated signal is 
contained, is called the ‘effective bandwidth’ of the angle-modulated signal.

10. (a)  The average power of an angle-modulated signal is P A
av c

=
1

2

2  where, Ac is peak amplitude of 
the carrier.

(b) Carson’s rule for effective bandwidth for single-tone modulation:
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 (c) Carson’s rule for a general modulating signal:
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11. (a) BT of a FM signal is practically unaffected by an increase in the modulating signal frequency.
 (b) BT of a PM signal increases almost linearly with the increase of the modulating signal frequency
12. WBFM may be generated either by the indirect (or, Armstrong method), or by the direct method.
13. (a)  Indirect method gives a WBFM signal with good frequency stability, but needs a number of 

frequency multipliers.
 (b)  Direct method needs AFC unit for stabilizing the frequency but does not need frequency 

multipliers.
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14. An FM signal may be demodulated by using a Foster–Seeley detector, a ratio detector, a quadrature 
detector, a zero-crossing detector, or a Phase-Locked Loop (PLL).

15. WBFM is used for high-quality music broadcasting in the 88 MHz to 108 MHz band, using a 
maximum frequency deviation of 75 kHz, a bandwidth of about 180 kHz and a carrier separation 
of 200 kHz. Typical IF for FM is 10.7 MHz.

16. A superheterodyne receiver for FM has a limiter stage after the IF amplifier stage to remove the 
small random variations in the amplitude of the FM signal, caused by the additive noise.
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REVIEW QUESTIONS

 1. Define frequency modulation.
 2. Define phase modulation.
 3. Derive an expression for the time-domain representation of a frequency-modulated signal.
 4. Explain how you would use a phase modulator for obtaining a frequency-modulated signal.
 5. Sketch the waveform of a phase-modulated signal assuming kp = p / 2  and x t u t( ) ( ).=
 6.  Define the term, ‘modulation index’ for FM in the case of single-tone modulation and for a general 

modulating signal.
 7.  By deriving the necessary expressions, show that a narrowband angle-modulated signal and an AM 

signal have similar forms (assuming single-tone modulation). Draw the phasor diagrams for both 
the cases.

 8.  By drawing the block schematic diagram, show how a narrowband angle-modulated signal may be 
generated.

 9.  Assuming single-tone modulation, derive an expression for the spectrum of an angle-modulated signal.
10.  Making use of the Bessel function tables, sketch the spectrum of an angle-modulated signal for 

fm = 5 kHz and b = smallest value of b for which the carrier component vanishes. Sketch the 2-sided 
spectrum up to the 3rd side-frequency component.

11.  Using the expression for the spectrum of an angle-modulated signal for single-tone modulation by 
a tone of frequency fm, show that the transmission bandwidth of the modulated signal is given by 
B fT m= +2 1( )b , where b is the modulation index.

12. Define ‘effective bandwidth’ of an angle-modulated signal.
13.  Explain how the transmission bandwidth changes with respect to changes in the modulating signal 

frequency in the case of PM and FM.
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14.  With the help of a neat block schematic diagram, explain the indirect method of generation of 
WBFM signals.

15.  Explain the reactance modulator method of generation of WBFM. Why is it necessary to use AFC 
in this method of generation?

16. Explain the working of a Foster–Seeley detector for FM.
17. How is a phase-locked loop (PLL) useful in detecting FM signals?
18.  With a neat block diagram, briefly explain the principle of working of a superheterodyne FM 

broadcast receiver.
19.  Why is a limiter stage used in the superheterodyne FM broadcast receiver? Explain the principle of 

working of the limiter. Sketch the transfer function of a hard limiter.
20.  With the help of block schematic diagrams and sketches of the spectra of appropriate signals, explain 

the principle of stereo FM transmission and reception.

FILL IN THE BLANKS

 1. In  FM, the carrier ___________ (amplitude / frequency) is varied in accordance with the variations 
in the ___________ (amplitude / frequency) of the modulating signal.

 2. The frequency deviation constant kf has units of ________.
 3. The modulating signal x(t) has to be ________ (differentiated/integrated) before being fed to a phase 

modulator in order to obtain a FM signal.
 4. The modulating signal x(t) has to be ________ (differentiated/integrated) before being fed to a 

frequency modulator if a PM signal is to be obtained.
 5. Deviation ratio in the case of FM, is the ratio of ________ to _______.
 6. If the modulating signal is a single-tone with peak amplitude Am and frequency fm, bp = ______ and 

bf = _____.
 7. For single-tone modulation with modulation index b, the peak amplitude of the n th side-frequency 

component of an angle-modulated signal is given by _______.
 8. Jn(b) represents _____ ______ of the ______ _______ of order _____ and with argument ______.
 9. For small values of b, Jn(b) ª ____________.
10. If n is a non-zero integer, Jn(0) = _________.
11. If n is odd, J-n(b) = __________.
12. A carrier A t

c c
cosw  is frequency modulated by a single-tone of frequency fm and peak amplitude 

Am to a modulation index of b. The average power of the modulated signal is ___________.
13. The effective bandwidth of an angle-modulated signal is defined as ___________.
14. Consider angle-modulation by a single-tone of frequency fm. The effective bandwidth of the modulated 

signal is found to be increasing linearly with fm. The modulation is ________ (FM / PM).
15. For commercial FM broadcasting b ª _______, (Df)max = _______ kHz and adjacent carriers are to 

be separated by _________ kHz.
16. A FM signal with carrier frequency fc and peak frequency deviation (Df)max is given as input to a 

mixer with a local oscillator frequency f0 and followed by a BPF that selects the difference frequency. 
The new carrier frequency is ________ and the new peak frequency deviation is __________.

17. A frequency discriminator may be thought of as a ________ to _________ converter.
18. In a superheterodyne FM broadcast receiver, the IF is ________.
19. In a superheterodyne FM broadcast receiver, the function of the limiter stage is to _______.
20. In stereo FM transmission, the difference signal is made to _________ modulate a 38 kHz tone.
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MULTIPLE CHOICE QUESTIONS

 1.  For fixed values of the phase deviation constant and the amplitude of the single-tone modulating 
signal, the modulation index for phase modulation
(a) increases with modulating signal frequency fm
(b) decreases with increasing values of fm
(c) is not dependent on fm
(d) increases with fm up to a certain value of fm and then decreases

 2.  In frequency modulation by a single-tone modulating signal, the frequency deviation constant and 
the modulating signal frequency are both doubled. The modulation index will be
(a) quadrupled (b) unchanged (c) doubled (d) 0.25 times the previous value

 3. To produce frequency modulation using a phase modulator 
(a) the message signal must be integrated and then used for modulation
(b) the message signal must be differentiated and then used for modulation
(c) the phase-modulated signal must be integrated
(d) the phase-modulated signal must be differentiated

 4. If phase modulation is to be produced using a frequency modulator
(a) the message signal must be integrated and then used for modulation
(b) the message signal must be differentiated and then used for modulation
(c) the frequency modulated signal must be integrated
(d) the frequency modulated signal must be differentiated

 5.  In phase modulation by a single-tone modulating signal, the phase deviation constant is doubled and 
the modulating signal frequency is halved. The modulation index is
(a) halved (b) quadrupled (c) doubled (d) unchanged

 6.  x(t), a message signal, angle-modulates a carrier A t
c c
cosw . The modulated signal is A t t

c c
cos ( ) .w +[ ]f  

If it is phase modulation, f (t) is

(a) 2
0

p a ak x dp

t

( )Ú  (b) 
2pk

W

p
 (c) 2pk x tp ( )  (d) k x tp ( )

 Note: kp is phase deviation constant.
 7.  For a frequency-modulated signal, the modulation index is doubled. The average power of the 

modulated signal is
(a) quadrupled (b) doubled (c) unaltered (d) none of these

 8.  For a WBFM signal, when the frequency of the single-tone modulating signal is doubled, the 
transmission bandwidth 
(a) doubles
(b) does not change
(c) increases slightly but does not become double
(d) reduces considerably since the deviation ratio is halved

 9. In commercial FM broadcasting, the audio frequency range handled is only up to
(a) 15 kHz (b) 5 kHz (c) 3.5 kHz (d) 10.7 kHz

10.  For wideband phase modulation, when the frequency of the single-tone modulating signal is doubled, 
the transmission bandwidth
(a) does not change at all   (b) doubles
(c) increases slightly but does not double (d) reduces slightly
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11. The transmission bandwidth required for commercial FM broadcasting is
(a) 75 kHz (b) 10 kHz (c) 200 kHz (d) 220 kHz

12. The standard intermediate frequency used in the superheterodyne FM receiver is
(a) 88 MHz (b) 455 MHz (c) 15 MHz  (d) 10.7 MHz

13.  A narrow band FM signal has a carrier frequency of fc and a frequency deviation of (Df). The signal 
is passed through a frequency doubler. The new carrier frequency and deviation are

 (a) 2 f fc ,D( ) (b) 2 2f fc , D( ) (c) 2 1 2f fc , /  D( )  (d) f fc ,2D( )
14.  An FM signal having a carrier frequency of 12 MHz and a frequency deviation of 3.2 kHz is given 

to a mixer along with a local oscillator signal of frequency 10 MHz. The filter following the mixer 
allows only the difference frequency. The new values of carrier frequency and deviation are
(a) (2 MHz, 3.2 kHz)  (b) (2 MHz, 0.53 kHz) 
(c) (2 MHz, 2.67 kHz)  (d) (2 MHz, 0.64 kHz)

15. A narrow band FM signal is generated using a phase modulator. The maximum deviation at the 
output of a phase modulator is about
(a) ± 250 Hz (b) ± 1 kHz (c) ± 1 MHz (d) ± 25 Hz

16.  The type of reactance that a reactance modulator presents to the tank circuit of the oscillator can be
(a) only capacitive  (b) only inductive
(c) either capacitive or inductive  (d) neither capacitive nor inductive

17.  A reactance modulator is presenting capacitive reactance to the oscillator. To make it offer inductive 
reactance, we have to
(a) interchange the positions of C and R

(b) replace C by L

(c) making R >>(1/wc)
(d) reactance modulator cannot be made to present an inductive reactance

18.  In a stereo FM transmitter, the difference signal x t x t
L R
( ) ( )-[ ]  modulates a 38 kHz tone 

 The type of modulation employed is
(a) AM (b) DSB-SC (c) SSB-SC (d) FM

19. The Foster–Seeley discriminator responds to the input FM signal’s
(a) amplitude variations only (b) amplitude as well as frequency variations
(c) frequency variations only (d) variations neither in amplitude nor in frequency

20. The ratio detector responds to the input FM signal’s variations in
(a) amplitude only  (b) frequency only
(c) both amplitude and frequency  (d) neither amplitude nor frequency

PROBLEMS

1. Sketch the waveforms of the resulting modulated signal when a high-
frequency sinusoidal carrier signal is modulated by the modulating 
signal shown in P-5.1, if the modulation is (a) frequency modulation, 
or (b) phase modulation.

2. An FM signal is of the form x t t tc
( ) cos sin= ¥ ¥ +Î ˚75 2 5 10 6 2006p p

(a) What is the modulating signal frequency? (b) What is the carrier frequency?
(c) Determine the peak frequency deviation. (d) Determine the deviation ratio.
(e) Determine the modulation index.  (f) Determine the average power of this FM signal.
(g) What is the (effective) bandwidth of this FM signal?

0 1

1

1.5 2 t

Fig. P-5.1
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3. A message signal, x t t( ) = 100 2000sinc  frequency modulates a carrier signal c t t( ) cos ,= ¥200 2 108p  
with a modulation index of 5.
(a) Write down an expression for xc(t), the modulated signal.
(b) What is the peak frequency deviation?
(c) What is the average power of the modulated signal?
(d) What is the bandwidth of this modulated signal?

4. The carrier signal c t t( ) cos= ¥200 2 108p  is phase modulated by the message signal, x(t) = 2 cos 2p ¥ 103t, 
the peak phase deviation being p/5.
(a) What is the bandwidth of this PM signal?
(b)  Sketch the magnitude spectrum of the modulated signal up to frequencies lying within the 

bandwidth calculated in (a).
5. x1(t) and x2(t) are two modulating or message signals and x1(t) + x2(t) = x3(t). When x1(t) modulates the 

carrier c(t), the modulated signal is x1c(t) ◊ x2c(t) and x3c(t) are similarly defined, using the same carrier.
(a)  When the modulation is AM, show that the modulation is linear in the sense that it obeys 

superposition principle, by proving that x t x t x t
c c c3 1 2( ) ( ) ( )= +

(b)  When the modulation is angle modulation, show that the modulation is not linear, i.e., that in 
this case, x t x t x t

c c c3 1 2( ) ( ) ( )π +

6. A NBFM signal with a carrier frequency of 200 kHz and peak frequency deviation of 21.3 Hz is to be 
used to produce a WBFM signal of carrier frequency about 100 MHz and peak frequency deviation of 
75 kHz, using frequency multipliers, a mixer, etc., as shown in the Fig. P-5.2. Determine N1, N2 and 
fc to achieve the desired result. Note that the multipliers should comprise either doublers or triplers, 
or a combination of these two.

NBFM gen.
200 kHz
21.3 Hz

Frequency
multipliers

Frequency
multipliers

Filter
selects

diff. freq

N1

N2fcª 100 MHz
(Df) = 75 kHz

f0

L.O

Fig. P-5.2

7. An FM signal is represented by

x t f t x dc c

o

t

( ) cos ( )= +
È

Î
Í
Í

˘

˚
˙
˙

Ú50 2 50p t t

Where the modulating signal x(t) is as shown in Fig. P-5.3.
(a)  Write down the expression for the instantaneous frequency and sketch it.
(b) What is the value of the deviation constant?
(c) What is the peak frequency deviation?

8. An angle-modulated signal is given to be

x t t tc
( ) cos sin= ¥ + ¥ ¥Î ˚75 2 10 6 2 2 107 3p p

(a)  If it is an FM signal, what are its frequency deviation constant, 
modulation index bf  and transmission bandwidth?

x(t)

10

1 2

0 t

–10

Fig. P-5.3
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 (b)  If it is a phase-modulated signal, what are its phase deviation constant, modulation index bp and 
transmission bandwidth?

 (c)  For each of the above cases, determine the pertinent values when fm, the message frequency, is 
increased to 4 ¥ 103 Hz.

 9. A sinusoidal carrier of 150 MHz frequency and 1V peak amplitude is frequency modulated by a 
2 kHz sinusoidal modulating signal, producing a peak frequency deviation of 10 kHz. Using the 
Bessel function tables, sketch the amplitude spectrum of the modulated signal up to ten side-
frequencies. Using Carlson’s rule determine the bandwidth of the modulated signal.

10. A NBFM signal generated with a carrier frequency of 100 kHz, and a frequency deviation of 30 Hz, 
is applied to a frequency multiplier chain consisting of 5 doublers and then a frequency multiplier 
chain consisting of 3 triplers. Assuming the modulating signal to be a 2 kHz tone, determine the 
frequency deviation and the modulation index at the end of the doubler chain and at the end of the 
tripler chain.

11.  Explain how a square-law device may be used for increasing the frequency deviation of an FM signal.
12.  Figure P-5.4 shows an arrangement used frequently 

as an FM demodulator at microwave frequencies. 
The delay line produces a delay of T seconds that 
corresponds to p/2 radians phase shift at the carrier 
frequency fc. The FM signal xc(t) may be taken to be 

x t A f t f tc c c f m f( ) cos sin( ) ;= +È
Î

˘
˚ <2 2 1p b p b  

Assuming T
fm

<
1

 so that cos2 1p f Tm ª , show that the output signal is proportional to the 

modulating signal.

Key to Multiple Choice Questions
 1. (c)  2. (b)  3. (a)  4. (b)  5. (c)
 6. (d)  7. (c)  8. (c)  9. (a) 10. (b)
11. (c) 12. (d) 13. (b) 14. (a) 15. (d)
16. (c) 17. (a) 18. (b) 19. (b) 20. (b)

FM signal

Delay
T seconds

x
c
(t)

+
Â

–

Envelope
detector

Output

signal

Fig. P-5.4



This chapter helps the 
student to
Ø clearly understand the various ways 

transmitters are classified

Ø recognize the key specifications 
for AM and FM audio broadcast 
transmitters, draw their block 
diagrams and explain their working

Ø understand the difference between 
and the merits and demerits of 
high‑level and low‑level modulation

Ø understand clearly the problems like 
image‑frequency interference, and 
adjacent‑channel interference and the 
effect that the choice of IF has on 
these

Ø understand the importance of 
broadcast receiver parameters like 
selectivity, sensitivity, fidelity and 
output SNR and know the typical 
ranges of their values

Ø draw the block diagrams of AM 
and FM broadcast, SSB‑SC, SSB‑pilot 
carrier and ISB transmitters and their 
receivers and explain their working

6
INTRODUCTION 6.1

In the fourth chapter, we had discussed various 
types of amplitude modulations like AM, DSB-SC 
and SSB-SC. We had also discussed the methods 
of demodulation to be adopted for these different 
types of modulations. Similarly, in the fifth chapter, 
we discussed frequency and phase modulation 
and the demodulation techniques for them. Thus, 
till now, our attention was focused mainly on the 
various modulation and demodulation techniques 
and the theories behind them. While it is true that 
modulation and demodulation are the most important 
operations taking place at the transmitter and receiver 
respectively, it is, however, necessary to have a good 
understanding of the various processes taking place 
both at the transmitter and at the receiver, all of 
which together make ‘communication’ possible. This 
chapter therefore is devoted to a study of AM and 
FM transmitters and receivers, in detail. It is neither 
necessary, nor is it possible, for us to go into the 
details at the circuit level; we will mostly confine 
the discussion only to the block schematic diagrams 
level.

6.1.1 Functions of a Transmitter

Any transmitter, whatever may be the type of 
modulation employed, has three basic processes 
taking place in it. These are

1. Generating the carrier signal at the specified 
frequency conforming to the frequency stability 
criteria as laid down by an appropriate regulatory 
authority and to raise the power of this carrier 
signal to the required level

AM and FM 
Transmitters and 

Receivers
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2. Processing the message signal and raising its power level
3. Modulating the carrier signal at an appropriate power level using the message signal as the 

modulating signal

6.1.2 Sections of a Transmitter

Three distinct sections can clearly be identified in any transmitter (these do not exactly correspond to the 
three processes listed above). These are the following:

1. The exciter section This section comprises the carrier oscillator, frequency stabilization arrangements 
and the buffer amplifier, etc.

2. The modulation section Audio pre-amplifiers, voltage amplifiers and power amplifiers come under 
this section.

3. RF power section This section, in which RF power amplification takes place, comprises the driver 
amplifier and the subsequent RF power amplifiers, which are class-C power amplifiers, the final 
stage being the modulated class-C amplifier if the AM transmitter employs high-level modulation. 
In case of low-level modulation, this section consists of class-A or class-AB power amplifiers.

6.1.3 Some Definitions

(i) Effective Radiated Power (ERP) The effective radiated power from a transmitter is the average rf 
power from the transmitter multiplied by the gain (i.e., loss) of the transmission lines from the transmitter 
to the antenna and the gain of the antenna itself.

(ii) Primary Service Area It is the area around a transmitting antenna comprising all points at which the 
field strength due to the signal radiated by the antenna is not below a certain prescribed value, which is 
generally 5 to 10 mV per metre.

6.1.4 Classification of Transmitters

Transmitters may be classified in several different ways.

 (i)  On the basis of the frequency band in which they operate—such as medium-wave transmitters, 
short-wave transmitters, VHF transmitters, etc.

 (ii)  On the basis of the modulation employed—such as AM transmitters, FM transmitters, SSB 
transmitters, and so on.

 (iii)  On the basis of the service provided—such as broadcast transmitters, radio telephone transmitters, 
TV and radar transmitters, etc.

 (iv)  On the basis of their power—as low-power transmitters, typically less than 1 kW, medium-power 
transmitters, typically less than 5 kW and high-power transmitters, typically 5 kW to several 
hundreds of kilowatts.

A transmitter is generally designed for some specific service or application and all of its parameters 
such as its carrier frequency, type of modulation, power rating, etc., will be dependent upon this.

(i) Transmitters for Audio Broadcasting These transmitters handle speech, music, etc., and each of them 
is meant to serve a very large number of receivers. Hence, they use either AM with full carrier, or FM.

(a)  AM broadcast transmitters generally handle audio frequencies only up to 5 kHz and use carrier 
frequencies in the medium-wave band of 550 kHz to 1650 kHz, or in the short-wave band of 
3 MHz to 30 MHz. Transmitters operating in the medium-wave band primarily depend on ground 
wave propagation and because of the attenuation inherent in ground-wave propagation, they have 
limited service area. Those operating in the short-wave band primarily depend upon sky-wave 
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propagation and cover very large areas. AM broadcast transmitters use carrier powers of the order 
of 1 kW to 100 kW, or more.

(b)  FM broadcast transmitters handle audio frequencies up to 15 kHz. Because of this and the relative 
immunity enjoyed by FM with regard to additive noise of the channel, FM broadcast transmitters are 
particularly useful for transmission of high-quality music. These transmitters use carrier frequencies 
of 88 MHz to 108 MHz in the VHF band, and make use of powers of the order of 100 kW. As 
propagation of radio waves in the VHF takes place by line-of-sight, the service area of these 
transmitters will depend not only on the carrier power radiated, but also on the height of the antennas.

(ii) Transmitters for Radio Telephony These are essentially for transmission of telephone signals 
from one point to another over long distances, using radio waves. AM/FM and short waves are used. 
Highly directional antennas are employed as the objective is only point-to-point communication and not 
broadcasting. Because of the use of highly directional antennas, transmitter powers need be only of the 
order of a few kilowatts.

(iii) Transmitters for TV Transmitters for analog television broadcasting make use of FM for the sound 
and vestigial sideband modulation for the video signal. They operate in the VHF and UHF bands and 
are assigned 7 MHz wide channels. 

6.1.5 Functions of a Receiver

Any receiver, in general, has the following functions to perform.

1. To enable one to pick up the signal emanating from any desired transmitter when the receiver is in 
the service area of that transmitter, with minimum possible, or no interference caused by the signals 
emanating from the other transmitters whose service area also covers the receiver location

2. To amplify the picked-up signal sufficiently so that it can be demodulated
3. To extract the message signal by demodulating the picked-up RF signal
4. To raise the message signal obtained by demodulation to a power level sufficient to operate the 

output device (usually a loud speaker)

6.1.6 Classification of Receivers

Receivers may be classified in several different ways. One way is to classify them according to the type 
of modulation of the incoming signal that the receiver is capable of detecting, e.g., AM receivers, FM 
receivers and SSB receivers, and so on. Another way is to classify them based on the frequency range 
in which they operate: RF receivers, VHF receivers, microwave receivers, etc. Yet another way, and one 
which is based on the type of configuration of the receiver, is to classify them as Tuned Radio Frequency 
(TRF) receivers and superheterodyne receivers. TRF receivers were in vogue during the early stages of 
development of radio communication, i.e., approximately up to about 1930. Although it was invented 
much earlier, i.e., in 1920’s, the superheterodyne configuration became popular only in the thirties. Now, 
it is the standard configuration for a almost all receivers—AM, FM, TV and even for radars.

AM BROADCAST TRANSMITTERS 6.2

AM broadcasting makes use of the 550 kHz to 1605 kHz medium-wave band which depends on ground-
wave propagation and the 3 MHz to 30 MHz short-wave band which depends on the sky-wave propagation. 
It is meant for voice communication and audio frequencies up to 5 kHz only are used, making the 
transmitter bandwidth equal to 10 kHz. Thus, carrier frequencies are allocated with 10 kHz separation 
between adjacent channels. This means that the transmitter carrier frequency must be extremely stable, as 
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otherwise the higher side-frequencies are likely to drift into the adjacent channel and cause interference. 
That is why stringent stability requirements like a drift of not more than ±20 parts per million i.e., ±0.02% 
of the assigned carrier frequency, are to be complied with. 

Transistors are used for low power transmitters, say up to 1 kW; but in the case of high-power 
transmitters, the last, or, even the last few RF power amplifiers stages use only vacuum tubes.

6.2.1 High-level and Low-level Modulation

AM transmitters are generally categorized into two types—those with high-level modulation and those 
with low-level modulation.

Driver
amplifier

Envelope
detector

Audio
power

amplifier

Audio
voltage

amplifier

MIC

To dc
supply

Vcc

a

d
e

c

+

+
+

–

b
f

Tuned
RF

amplifier

RF
buffer

amplifier

Crystal
oscillator
(carrier)

Plate/collector
modulated

class-C
power

amplifier

Fig. 6.1 AM transmitter with high‑level modulation

Definitions Modulation of the carrier by the message signal may be performed at any point beyond the 
oscillator buffer stage up to and including the final power amplifier. If the modulating message signal is 
introduced in series with the collector/plate supply voltage of the final power amplifier stage so that it 
becomes a collector/plate-modulated class-C amplifier, the modulation is referred to as high-level modulation. 
On the other hand, if the modulating message signal is introduced beyond the buffer at any point up to 
and including the base of the final power amplifier, the modulation is referred to as low-level modulation.
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Fig. 6.2 AM transmitter with low‑level modulation

Comparison The advantage of high-level modulation is that all the RF power amplifiers can be class-C 
power amplifiers, which can be designed to have very high power efficiencies of the order of 80 to 90%. 
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However, since the final class-C power amplifier is collector/plate modulated, as shown in Section 4.2, 
the power to be supplied by the final audio power amplifier will have to be very large, since the total 
sideband power in the AM signal at the output of the modulated amplifier is derived from the audio 
power supplied by the final audio power amplifier. Noting that at 100% modulation, this is 50% of the 
carrier power, the final audio power amplifier of a high-level transmitter with a carrier power of 10 kW 
will have to supply 5 kW of audio power to the modulated class-C amplifier. In the case of low-level 
modulation, the audio power needed to be supplied by the final audio power amplifier is very little and 
therefore is not a problem. However, since the modulation takes place at a stage much earlier than the 
final RF power amplifier, all the RF power amplifiers subsequent to the modulated stage will have to be 
either class-A or class-AB tuned power amplifiers, and these have very low power efficiency.

6.2.2 Carrier Frequency Stability

As mentioned earlier in the beginning of this section, in order to avoid causing interference to the adjacent 
channels, it is absolutely necessary that the carrier frequency is extremely stable and the carrier frequency 
drift, if any, is not more than 20 parts per million. To achieve this level of carrier frequency stability, 
only crystal oscillators must be used to generate the carrier. Further, it is necessary to

 (i)  ensure that the oscillator is not loaded and the impedance coming across its output does not 
change; for this purpose, a buffer has to be used as shown in Figs 6.1 and 6.2., it must have a 
very high input impedance and a low output impedance

 (ii)  keep the crystal used in the carrier oscillator circuit at a constant temperature, as temperature 
variations can cause frequency drift

 (iii)  ensure that the dc supply voltages for the crystal oscillator circuit are absolutely steady, since 
variations in these voltages can cause frequency drifts

Neutralization Apart from carrier frequency stability, another thing that needs special mention in 
connection with transmitter, is the need for neutralization of the RF amplifiers. Whether it is a vacuum 
tube, or a transistor that is used as the active device for the amplifier, it will have inter-electrode 
capacitances. It is the base-collector (or grid-plate capacitance in the case of vacuum tubes) inter-electrode 
capacitance which causes stability problem for the RF amplifiers, because at these frequencies, even the 
very small inter-electrode capacitance (generally of the order of a few picofarads) will have small enough 
reactance to provide a good feedback path from collector to base (plate to grid in the case of vacuum 
tubes). This positive feedback can cause parasitic oscillations in the RF amplifiers. These oscillations will 
generally be at much higher frequencies than the carrier. They will distort the carrier signal waveform, and 
so will have to be avoided. The technique adopted is to neutralize the positive feedback by deliberately 
providing a negative feedback in equal measure—hence the name neutralization for all the different 
methods using this approach. Among the various neutralization methods available, the Hazeltine method 
and Rice method are worth mentioning.

(i) Hazeltine Method We first note that points A and B of the collector 
tank circuit are 180∞ out of phase. To neutralize the feedback from the 
collector (point-B) to the base through the capacitance Ccb, we connect 
another capacitor CN between the point A and the base. We then adjust 
it to a value equal to Ccb.

(ii) Rice Method The same principle is used in this method too. The 
only difference is that now two points which are 180∞ out of phase on 

the base side are used, as shown in Fig. 6.4. Because the centre-tap of 
the transformer secondary is earthed, points A and B are always 180∞ out 

Ccb

CN

Vcc
A

B

Fig. 6.3  Hazeltine method of 
neutralization
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of phase. Since the inter-electrode capacitance Ccb is connecting the point 
C to the base, i.e., point B, point A which is 180∞ out of phase with B is 
connected by us through the neutralizing capacitor CN to the same point C 
and CN is adjusted to be equal to Ccb, so as to neutralize the effect of Ccb.

6.2.3 Feedback in Transmitters

Negative feedback is invariably provided in AM broadcast transmitters with 
a view to improve their performance. The AM signal fed to the antenna 
should ideally have, as its envelope, (after removal of the dc component), 
the message signal as available at the output of the audio voltage amplifier. This will be the case only 
if there is no distortion produced in the audio power amplifiers, the modulation characteristic of the 
modulator is exactly linear and incase low-level modulation is employed, if the class-A/AB tuned power 
amplifiers do not cause any distortion of the envelope.

This negative feedback is provided as shown in Figs 6.1 and 6.2. The AM signal to be radiated is picked up 
at the point ‘a’, its envelope is extracted and the dc component is removed in order to obtain, what in an 
ideal situation should be the undistorted message signal. This is then added to the output of the audio voltage 
amplifier in such a way that it subtracts from the voltage amplifier output, as shown in the Figs 6.1 and 6.2. 
The loop a-b-c-d-e-f thus acts as the feedback loop. To avoid oscillations which will be caused if the feedback 
turns positive, it should be ensured that the loop gain |Ab| < 1 for all the audio frequency components.

This negative feedback improves the performance of the transmitter as it reduces the distortion of the 
envelope of the radiated signal by making it closely resemble the message signal. It reduces the noise 
and power frequency hum also.

AM BROADCAST RECEIVERS
6.3

Historically, the earliest AM receivers were crystal, regenerative and super-regenerative receivers. 
However, they were soon superseded by the Tuned Radio Frequency (TRF) receivers, which continued 
to be quite popular till about the beginning of the Second World War. However, the superheterodyne 
type of receiver, actually invented by Major Armstrong some time during World War I, became popular 
by about mid 1930’s because of its far superior performance, and now it forms the standard structure of 
not only AM broadcast receivers, but also FM broadcast receivers, TV receivers and even radar receivers.

We shall discuss the TRF receiver first, although briefly, and then discuss the superheterodyne receiver 
in some detail.

6.3.1 Tuned Radio Frequency (TRF) Receiver

As shown in Fig. 6.5, a TRF receiver simply consists of a chain of two or three single-tuned r.f. amplifiers, 
all of them tuned to the same frequency, followed by a detector, an audio voltage amplifier and an audio 
power amplifier that feeds the loudspeaker.

These TRF receivers are quite simple and inexpensive. But they suffer from several severe disadvantages, 
chief among them being poor ‘adjacent channel selectivity’. Because of this, when the receiver is tuned to 
a particular station, say of carrier frequency fc, signals radiated by stations operating on adjacent channels 
having carrier frequencies of fc ± 10 kHz, are also received, although they are attenuated to some extent. 
This is called adjacent channel interference. This problem gets aggravated if the receiver is to be tuned 
over a wide frequency range, as the Q’s of the tuned circuits go on changing when the receiver (i.e., 
the tuned RF amplifiers) is tuned to different frequencies. The adjacent channel selectivity is of course 
lowest when the receiver is tuned to the highest end of its frequency range.

CN

Ccb CB

A

Vcc

Fig. 6.4 Rice neutralization
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Fig. 6.5 A tuned radio frequency receiver

Further, as all the amplification (of the received signal) required for proper operation of the detector, 
has to be at the signal frequency, there exists the possibility of instability of the RF amplifiers. Also, it 
has to be ensured that the RF amplifiers are all tuned to exactly the same frequency as the receiver is 
tuned to different stations.

The superheterodyne receiver, which we are going to discuss next, overcomes all the above problems.

6.3.2 The Superheterodyne AM Broadcast Receivers

Principle of Superheterodyne Receivers Almost all the gain of a TRF receiver is obtained in the RF 
amplifiers, at signal frequency; and this gain varies quite a bit as the receiver is tuned to different stations. 
In a superheterodyne receiver, by a process of mixing, the message-bearing received AM signal, whatever 
may be its carrier frequency, is converted into an AM signal carrying the same message signal at a fixed 

carrier frequency called the Intermediate Frequency (IF), which is lower than the lowest carrier frequency 
covered by the receiver. About 70–75% of the gain of the receiver is obtained through amplification at 
this fixed frequency IF by using a fixed-tuned high gain amplifier, called the IF amplifier. This signal is 
then detected and the extracted message signal is then amplified and fed to the loudspeaker. This way, 
the superheterodyne receiver overcomes all the disadvantages of the TRF receiver.

The block diagram of an AM superheterodyne broadcast receiver is shown in Fig. 6.6.
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Fig. 6.6 Block diagram of an AM superheterodyne broadcast receiver

We shall now discuss briefly the salient features and the functions of each block in the above block 
diagram.

(a) RF Amplifier It is a tuned voltage amplifier that selects and amplifies the signal induced in the 
antenna having a carrier frequency corresponding to the frequency to which it is tuned. Its bandwidth is 
10 kHz. It is not designed to give a high gain and its main functions are the following:

 (i)  To ensure that the receiver has a good overall signal-to-noise ratio—if RF amplifier is not used, 
the mixer, which inherently is a noisy stage will be the first stage in the receiver. As the overall 
noise figure depends to a very large extent on the noise figure of the first stage (refer Chapter 8), 
this will not be a desirable arrangement.
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 (ii) To give good image frequency rejection and IF rejection capability to the receiver.
 (iii) To give some amount of adjacent channel selectivity.

(b) Local Oscillator This is an LC oscillator which produces a sinusoidal signal of frequency f0 which 
is such that f0 - fc = IF, the pre-determined fixed frequency called the intermediate frequency, where fc is 
the frequency of the carrier of the station to which the receiver is tuned (this is the frequency to which 
the RF amplifier is tuned). The receiver may be tuned to any frequency from 550 kHz to 1605 kHz. But 
whatever may be the frequency to which the receiver is tuned, the local oscillator frequency tracks it in 
such a way as to always maintain the local oscillator frequency above the signal frequency by an amount 
of 455 kHz, the usual IF used in AM broadcast receivers. This is achieved by using ganged variable 
capacitors for tuning the tank circuits of the RF amplifier and the local oscillator and also by using 
appropriate tracking techniques, as discussed later. The LO frequency f0 can be, theoretically speaking, 
higher or lower than the signal frequency fc by an amount of IF. But, for reasons discussed in detail later, 
it is always kept higher than the signal frequency.

(c) Mixer The received AM signal with a carrier frequency fc, amplified by the RF amplifier, is fed as 
one of the inputs to the mixer, the other input signal being the output of the local oscillator, a sinusoidal 
signal of frequency f0 = fc + fif. Mixing is a non-linear process and it results in generation of the sum and 
difference frequency components in addition to the original frequency components of the two input signals. 
The output circuit of the mixer—a tank circuit tuned to the difference frequency, i.e., the intermediate 
frequency, rejects all other frequency components. Thus, the output of the mixer is an AM signal whose 
carrier frequency is the intermediate frequency fif (455 kHZ) and which is modulated by the original 
message signal.

Thus, the mixer and local oscillator convert the received AM signal with a carrier frequency fc into 
another AM signal with fif as the carrier frequency. The modulation present on the original carrier is simply 
transferred on to the new carrier, which is the intermediate frequency. The mixer output circuit, of course, 
is designed to have a 3 db bandwidth of 10 kHz to accommodate all the side-frequencies of the AM signal.

(d) IF Amplifier(s) One or two stages of IF amplifiers are generally used. These are fixed-tuned voltage 
amplifiers of high gain. These IF amplifiers provide a 3 dB bandwidth of 10 kHz centered on the 
intermediate frequency. They provide good sensitivity and selectivity to the receiver.

(e) Detector This extracts the modulating signal from the AM signal. In commercial AM broadcast 
receivers, envelope detectors are used and they require a minimum of at least 1 volt amplitude for proper 
operation. They are designed so as to provide linear operation and avoid distortions—particularly the 
distortion due to diagonal clipping and negative peak clipping.

As shown in Fig. 4.24, the envelope detector can be used to provide a dc voltage of appropriate 
polarity for automatic gain control, i.e., AGC. As shown in Fig. 6.6, this voltage is used for biasing the 
preceding stages so as to control their gains and thus provide AGC.

(f) Automatic Gain Control (AGC) An arrangement for automatic gain control, or AGC, is necessary in 
radio receivers for the following reasons.

(1)  When the receiver is tuned from one station to another, difference in signal strengths of the two 
stations causes an unpleasantly loud output, if from a weak station, we are moving to a strong one, 
unless we initially keep the volume control very low before changing the tuning from one station 
to another. Changing the volume control every time before attempting to re-tune the receiver, is 
however, cumbersome.

(2)  Even if we are not retuning to another station, signal strength from the station to which the receiver 
is tuned can go on fluctuating due to signal fading, causing corresponding fluctuations in the audio 
output from the receiver.
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The points noted above underscore the need for keeping the audio output power from the receiver 
somewhat constant when the input r.f. signal level changes because of any one of the two reasons listed 
above. This calls for an arrangement by which the overall gain of the receiver can be made to automatically 
vary when the signal strength changes, in such a manner as to keep the audio output reasonably constant. 
Such an arrangement is called automatic gain control or AGC.

In receivers, automatic gain control is achieved by producing an AGC voltage form the detector circuit 
as shown in Fig. 4.24. This AGC voltage will be high for stronger r.f. input signals and low for weaker 
signals. We therefore apply this as a bias voltage to the r.f. amplifiers, mixer and the IF amplifier stages 
in such a way that it reduces their gain of these stages by reducing their transconductance.

This type of arrangement is called ‘simple AGC’. However, there is one serious difficulty with this 
‘simple AGC’. Even weak r.f. input signals also produce some AGC voltage, though it may be small. 
So, while reducing the receiver gain for stronger RF signals, it reduces the receiver gain to some extent 
even for weak RF signals. This is undesirable.

(g) Delayed AGC To overcome this disadvantage of a simple AGC, what is referred to generally as the 
‘delayed AGC’, may be used. It allows the AGC action to commence only after the input RF signal level 
reaches a pre-determined level, as shown in Fig. 6.7, which depicts the AGC characteristics.
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Fig. 6.7 AGC characteristics

Delayed AGC is generally obtained by having a separate diode rectifier circuit for producing the 
AGC voltage, and applying a positive bias of pre-determined value to the cathode of that diode so that 
it conducts and produces the AGC voltage only after the RF input to the receiver is sufficiently large.

Audio Voltage and Power Amplifiers The demodulator output is the message signal. But it is very 
weak and cannot be used directly to actuate a loudspeaker. So the audio signal coming out from the 
detector stage is first amplified using a voltage amplifier stage to raise it to a level at which it can 
drive a class-A audio power amplifier which is the next stage. This power amplifier is designed to have 
minimum distortion and a 3 dB bandwidth of at least 5 kHz. It is transformer-coupled to a loudspeaker. 
This output transformer is also called the matching transformer since it provides good matching between 
the high output impedance of the power amplifier and the low impedance of the loudspeaker.

Choice of Local Oscillator Frequency We had remarked earlier that theoretically the local oscillator 
frequency, f0, can be either greater than, or less than the carrier frequency fc of the received signal and 
that what is required is only that the difference between the two should be equal to the fixed value of 
the intermediate frequency, fif, of the receiver. We also said that for certain practical reasons, it is chosen 
to be higher than the fc. We shall now examine this question.

Consider an AM superheterodyne receiver meant for the medium-wave band, which we shall take 
as extending from 555 kHz to 1605 kHz. Let us assume that the IF fixed for the receiver is 455 kHz.
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(a) f0 > fc \ f0 = fc + fif 
Since fc ranges from 555 kHz to 1605 kHz,

f0 ranges from (555 + 455) kHz to (1605 + 455) kHz

i.e., from 1010 kHz to 2060 kHz

\ f0 max = 2060 kHz and f0 min = 1010 kHz

Since the frequency of the oscillator is inversely proportional to the square-root of the tank circuit 
capacitance, if Cmax and Cmin are the maximum and minimum values of the gang condenser (oscillator 
section) used for tuning the oscillator, we have
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This ratio is quite practical.
Note: Even if the vanes on the rotor of the variable air condenser are completely out, the capacitance 
will not be zero because of the parasitic capacitances, which generally will be of the order of a few tens 
of picofarads. Hence, Cmin π 0.
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This is an impractical value since it implies that Cmax should be of the order of a few thousand 
picofarads!

Thus, this practical difficulty forces us to choose the local oscillator frequency to be higher than the 
signal frequency to which the receiver is tuned.

Adjacent Channel Selectivity Medium-frequency and high-frequency bands are used for AM broadcasting 
and channel allocation is made using a 10 kHz separation between adjacent channels. Spectrum crowding 
does not permit a larger spacing between channels.

When a receiver is tuned to a particular station, adjacent-channel interference occurs due to the inability 
of the receiver to totally reject the signal at the adjacent channel frequency. Thus, from the adjacent 
channel selectivity point of view, an ideal situation is one in which the RF sections of the receiver have 
a frequency selectivity characteristic of the shape shown in Fig. 6.8. However, no practical filter can 
give such a frequency response.

Further, in the RF sections, uniformly good adjacent channel selectivity cannot be maintained over 
the entire frequency range covered by the receiver. When the receiver is tuned to a station operating 
near the lower end of the FM band, say, 600 kHz, a signal from 
another station operating on the adjacent channel, i.e., at a frequency 
of 610 kHz, can be effectively suppressed since 10 kHz is not a very 
small fraction of 600 kHz. However, when the receiver, and hence 
the RF amplifiers, are tuned to a station at the higher end of the MF 
band, say 1600 kHz, an adjacent channel signal of 1610 kHz will not 

|HRF(f)|

1

fc– 5 kHz fc+ 5 kHzfc f 

Fig. 6.8 Ideal selectivity curve



AM and FM Transmitters and Receivers 267

be very much attenuated. Hence, as we move towards the higher end of the receiver’s frequency range, 
the adjacent channel selectivity provided by the RF amplifiers becomes progressively poorer. Such a 
problem does not arise in the case of IF amplifiers since these are fixed-tuned and always operate at a 
centre frequency of fif , the intermediate frequency (455 kHz), whatever may be the station to which the 
receiver is tuned—whether it is at the lower end, or the higher end of the tuning range of the receiver. 
That is why almost all the adjacent channel selectivity desired for a superheterodyne receiver, is sought 
to be obtained from the IF stages. A good receiver is expected to give an adjacent channel selectivity 
of at least 60 to 80 dB.

An ideal selectivity curve for the IF stages is also the same as the one shown in Fig. 6.8, except that 
fc in it has to be replaced by fif , the intermediate frequency. This shape may be approximated by using 
any of the following techniques.

 (i)  We can use 3 or 4 identically tuned IF stages with the inter-stage transformers loosely coupled. 
We know that the overall frequency response of a number of cascaded amplifier stages is the 
product of the responses of individual stages. The skirts become sharper as we multiply and it is 
so arranged that an overall 3 dB bandwidth of 10 kHz is obtained, as shown in Fig. 6.9.
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Fig. 6.9 Selectivity curves for 1, 2 and 5 stages

 (ii)  We can use three or more stagger-tuned IF stages. Three or more odd-number (N) of loosely coupled 
IF stages may be used, to give an overall response that is reasonably flat, but has a ripple, and has 
fairly sharply falling skirts, as shown in Fig. 6.10. As N increases, the ripple amplitude becomes 
smaller and the skirts become sharper.
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Fig. 6.10  Selectivity curve for an IF amplifier 
comprising 3 stagger‑tuned stages

|HIF(f)|

fif f

Fig. 6.11  Using over‑coupled 
transformers in the IF stage
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 (iii)  We can use stages with over-coupled inter-stage transformers. When transformers are over-coupled, 
we know that double hump appears in the frequency response. The first stage is loosely coupled 
while the next two inter-stage transformers are tightly coupled. The overall response exhibits 
3 humps—one at the centre and one each on either side of it.

Nowadays, high-frequency op-amp based single-chip IF amplifiers are available.

Image Frequency Rejection and IFRR Suppose the receiver is tuned to a station with a carrier frequency fc. 
Then the tuned circuits in the RF stage are tuned to the signal frequency fc and the local oscillator 
frequency f0 will therefore be (fc + fif). Now, if there is another station operating with a carrier frequency 
of (f0 + fif) = (fc + 2fif) and if that signal passes through the RF stage even in a slightly attenuated condition, 
in the mixer, it will also produce an output at the intermediate frequency since it  also differs from the 
local oscillator frequency by fif. So, this undesired signal also gets amplified in the IF stages along with 
the desired signal and causes interference at the destination. Hence, if a receiver is tuned to a desired 
signal having a carrier frequency fc, the signal with a carrier frequency of (fc + 2fif) can cause interference 

and it is called the image signal for the desired signal with carrier frequency fc. This image signal should 
not therefore be allowed to reach the input of the mixer stage. Of course, it is not possible to completely 
eliminate it, but it should be attenuated heavily in the RF stage. To what extent it can be attenuated, 
will depend on

 (i)  The Q of the tuned circuits in the RF stages. (higher the values of Q, better is the image frequency 
rejection)

 (ii)  The value of the IF for the receiver—higher the value of the IF, better is the image frequency 
rejection

 (iii)  Whether the desired signal is close to the lower-end or the higher-end of the tuning range of the 
receiver—for fixed values of Q and IF, image rejection is better when the desired signal is at the 
lower-end of the tuning range

The extent to which the image frequency signal is rejected by the receiver is generally expressed in 
terms of what is referred to as the ‘Image Frequency Rejection Ratio (IFRR)’, which is defined as follows:
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where, fc is the desired carrier frequency to which the receiver is tuned, fc
¢  is the corresponding image 

frequency, i.e., f fc c
¢ = + 2( )IF  and H fRF( )  is the transfer function of the RF amplifier.

The dependence of image rejection capability of a receiver on the above quantities follows from the 
off-resonance behaviour of a parallel resonant circuit. We shall now examine this briefly.
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Fig. 6.12 (a) A parallel resonant circuit (b) Its equivalent circuit (c) Its frequency response
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Let R be the equivalent parallel resistance which takes care of the small series resistance r associated 
with the coil of inductance L. Then

admittance at resonance Y
R

fc
=

1

At some frequency f fcπ , the admittance of the circuit is given by
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Equation (6.7) clearly brings out the dependence of the degree of image rejection on the values 
of Q, fif and fc. Obviously, A A

c
/  decreases as Q increases. When we consider the image frequency, 

w w w= +c if2 . When wif  is large, value of x will be higher and so A A
c

/  will decrease for larger values 
of IF. For a given wif , x increases as wc is decreased and so again the image rejection will be better 

since A Ac
c if

/
w w w= +2

 decreases. Note that Eq. (6.7) is for the case of a single stage of RF amplifier. For 

multi-stage case, the relative responses get multiplied.
From Eqs (6.1) and (6.7), it follows that
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w ¢ being 2p times the image frequency. (6.7a)
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An AM superheterodyne broadcast receiver is tuned to 600 kHZ. If the Q of its 
single‑stage RF amplifier tank circuit is 60 and the IF (for the receiver) is 455 kHz, determine the 
image rejection of the receiver in dB. In case it has a two‑stage RF amplifier with identical tank 
circuits, what will be the image rejection?

Example 6.1
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If a 2-stage RF amplifier is used, image rejection = 84 dB

When a superheterodyne receiver is tuned to 555 kHz, its local oscillator provides 
the mixer with an input at 1010 kHz. What is the image frequency? The antenna at the receiver is 
connected to the mixer via a tuned circuit whose loaded Q is 40. What will be the rejection ratio 
for the calculated image frequency?

Example 6.2

We know that image frequency ¢ = +f f fc if2

and that local oscillator frequency f f fc if0 = +

\ f f f fc if if0
1010 555= + = = + kHz  kHz   kHz

\ fif = intermediate frequency = 455 kHz

\ image frequency = f ¢ = + ¥ =555 2 455 1465 kHz  kHz  kHz

\ from Eq. (7.7a), we have:

IFRR = Image Frequency Rejection Ratio = 10 20 110
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But x
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¢
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Ê
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ˆ
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ˆ
¯̃
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555
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1465
2 2608.

and Q2 40 40 1600= ¥ =

\ IFRR = 20 1 2 26 8 40 20 90 5 39 13210
2 2

10log ( . . ) log . .+ = = dB

In a broadcast superheterodyne receiver having no RF amplifier, the loaded Q of 
the antenna coupling circuit is 100. If the IF is 455 kHz, determine
 (i) the image frequency and its rejection ratio for tuning at 1100 kHz
 (ii) the image frequency and its rejection ratio for tuning at 25 MHz

Example 6.3

Image frequency ¢ = +f f fc if2

 (i) Since the receiver is tuned to a frequency of 1100 kHz

fc = 1100 kHz

  It is given that fif, the intermediate frequency is

fif = 455 kHz

  \ ¢f ,  the image frequency = f fc if+ = + =2 1100 910 2010( )kHz kHz

  From Eq. (6.7a), we have

  Image Frequency Rejection Ratio = IFRR = 10 10
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 (ii)  Assuming the same Q for the antenna coupling circuit when the receiver is tuned to 25 MHz, we 
have, in this case, 

fc = 25 MHz; fif = 455 kHz

  \ ¢f  = Image frequency = f fc if+ = + =2 25 910 25 910MHz kHz kHz,
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6.3.3 Double Spotting

Suppose the carrier frequency of the desired station is fs1 and the receiver (i.e., the RF amplifiers) are 
tuned to this frequency. For this dial setting, the local oscillator frequency f f fs if01 1= +( ). Now, suppose 
we go down the tuning range of the receiver. The local oscillator frequency also goes down. At some 
setting of the receiver tuning dial, the local oscillator frequency will take the value f f fs if02 1= -( ) . Then, 
with this dial setting also, the signal fs1

 will be received, although with reduced strength, since f02 and fs1 
differ by the IF. This phenomenon of a desired signal fs being  received at two different dial settings of 
the receiver, is known as ‘double spotting’. It must be noted that with the dial setting such that the local 
oscillator frequency is f02, the RF amplifiers are tuned to a signal frequency f f fs if2 02= -( )  and that the 
signal frequency fs1 which is equal to ( )f fif02 +  is just the image frequency of fs2. Thus, the cause for 

the occurrence of double spotting is the same as the one for the occurrence of image interference and 
the steps to be taken to avoid it are the same—improving the Q of the RF amplifiers and choosing the 
largest possible value for the intermediate frequency.

Therefore we now discuss the various factors affecting the choice of the value of the intermediate 
frequency, fif, of the receiver.

6.3.4 Choice of the Value of IF

The following are the factors governing the choice of the IF of a superheterodyne receiver.

 (i)  The IF should be outside the tuning range of the receiver. Except in certain special types of 
receivers, it is generally chosen lower than the lowest frequency covered by its tuning range. 
Hence, for an AM broadcast receiver, it should be less than 550 kHz.

 (ii)  A lower value of IF improves the selectivity of the receiver and reduces the adjacent channel 
interference.

 (iii)  A higher value of IF makes the frequency difference between the desired station of frequency fc to 
which the receiver is tuned, and its image frequency (fc + 2fif), larger. Hence, the image frequency 
rejection is improved.

Because of the conflicting requirements as stated above, the choice of the value of IF is generally a 
matter of compromise. Hence, it is generally chosen to be the highest possible value which is lower than 
the lowest frequency in the tuning range of the receiver.

Typical values of IF are 455 or 465 kHz for AM broadcast receivers, 9.7 MHz for the FM broadcast 
receivers, 26 MHz for the video channel of VHF band TV receivers and 41 MHz to 46 MHz for the 
video channel of UHF band TV receivers.

6.3.5 Tracking and Alignment

In a superheterodyne receiver, the tuning capacitors of the RF amplifier and the local oscillator are ganged, 
i.e., the rotating plates of both these variable capacitors are mounted on a common shaft so as to have 
only one tuning control for the receiver. But we know that the difference between the local oscillator 
frequency and the frequency to which the RF amplifier is tuned, should be equal to the IF and should 
be maintained at that value irrespective of the station to which the receiver is tuned, i.e., irrespective of 
the position of the shaft of the tuning capacitor. This means that the local oscillator frequency should 
track the frequency to which the receiver is tuned and keep itself always above the latter by an amount 
equal to the IF This is achieved as follows:

For single-band receivers, the plates of the variable capacitor of the local oscillator section are made 
smaller than those of the RF amplifier section, in order to make the local oscillator frequency to be above 
the frequency to which the RF amplifier is tuned. In order to keep this difference equal to the fixed IF 
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of the receiver for all positions of the rotor shaft of the ganged capacitor, i.e., for proper tracking, the 
rotor mounted plates of the oscillator section are suitably segmented.

For superheterodyne receivers covering the medium-wave as well as the short-wave bands, the two 
sections of the ganged condenser are made exactly identical; the minimum and maximum values of 
capacitance in each section being about 50 p.f. and 500 p.f. respectively. The inductance in the local 
oscillator tank circuit is made slightly smaller than the one used in the RF amplifier tuned circuit so as 
to keep the local oscillator frequency higher than the frequency to which the RF amplifier is tuned. In 
addition, small variable capacitors, a padder (CP) and trimmer (CT), may be used in the local oscillator 
tuned circuit. Padder is the name given to the capacitor connected in series with the variable tuning 

condenser while trimmer is the name given to the one connected across the tuning condenser. If a padder 
alone or a trimmer alone is used, it leads to what is generally referred to as the 2-point tracking, wherein 
the LO frequency and the frequency to which the receiver is tuned, differ exactly by the correct value of 
the IF of the receiver only at two frequencies in the tuning range of the receiver, one located near the 
lower-end of the range and the other near the upper end. In between these two points at which tracking 
is perfect, the difference between the LO frequency and receiver tuning frequency will not differ exactly 
by the IF and we say there is a small ‘tracking error’. This tracking error can be adjusted to be small by 
means of the padder or the trimmer, as the case may be. Using a padder as well as a trimmer will give 
a 3-point tracking. These various conditions are shown in Fig. 6.13(a), (b) and (c).
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Fig. 6.13  Local oscillator tank circuit with padder and trimmer connections. Also shown are tracking curves for 
2‑point and 3‑point tracking.
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The local oscillator tank circuit’s inductance is first adjusted to give perfect tracking when the receiver 
is tuned to the middle of the band. The receiver is then tuned to a frequency near the high-frequency end 
of its tuning range and the trimmer is adjusted to obtain the correct oscillator frequency that gives exact 
IF. Next, the receiver is tuned to a frequency near the lower-end of its tuning range and now the padder 
is adjusted to get the correct oscillator frequency that gives the exact IF. These steps are then repeated 
some three or four times to get correct tracking. It may be noted in this connection that to a large extent 
the trimmer capacitor determines the higher-end cross-over point while the padder capacitor determines 
the lower-end cross-over point. The mid-range cross-over point is determined by the inductance L0.

6.3.6 Double Heterodyne Receivers

It has already been explained earlier that for good image rejection a high value of IF is required and 
that for good sensitivity and selectivity, a low value of IF is required. Hence, the choice of IF value is 
generally based on a compromise between these conflicting requirements.

For the reception of AM signals in the medium-wave and short-wave band, usage of 455 kHz or 
465 kHz as the IF does not cause any problems since at these signal frequencies 455 kHZ is large enough 
to give a good image rejection and at the same time it is small enough to give a good adjacent channel 
selectivity even though adjacent channels are separated only by 10 kHz. At higher signal frequencies, as 
are used in FM, an IF of 10.7 MHz is large enough to give good image rejection but would have been 
too large to give a bandwidth of say 10 kHz as required for AM. However, since the adjacent channel 
separation for FM is 200 kHz, it is possible to get the required values of Q’s using L and C, to get an 
IF bandwidth of 200 kHz at a centre frequency of 10.7 MHz.

But if we consider VHF communication receivers which have high signal frequencies but need an IF 
bandwidth of only 10 kHz, problems arise in the choice of IF. The high signal frequencies require a high IF 
for adequate rejection of image signals. However, a bandwidth of 10 kHz centered on a high value of IF would 
necessitate filters with extremely high values of Q—like those that can be obtained only from crystal filters.

However, this problem posed by high signal frequencies and small adjacent channel separation, may 
be solved by the use of double heterodyne, or double conversion receivers that can give good image 

rejection as well as good selectivity.
The idea is simple—use a high first IF to get good image rejection and a low second IF to get good 

gain (sensitivity) and adjacent channel (selectivity), by resorting to double conversion. Sometimes the 
first IF is chosen higher than the signal frequency upper limit and the LO frequency is chosen to be 
IF—signal frequency). In that case, the filter in the output of the first mixer selects the sum frequency. 
The LO for the second mixer is generally a crystal oscillator. Since the second IF is chosen quite low, 
the second IF amplifier is designed to give almost all the required sensitivity (gain).

Second

mixer

Second

IF

amp

First

IF

amp

Audio

v.amp

Audio

power

amp.

L.S

Detector
RF

amp

First

mixer

L.O.-I
L.O.-II

X’TAL

Fig. 6.14 Double heterodyne receiver

6.3.7 Receiver Parameters and Characteristics

When we discuss the performance of a receiver, the most important parameters that need to be considered 
are its sensitivity, selectivity, fidelity and noise figure, although there are many others which also influence 
its performance. We shall now discuss these parameters in some detail.
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(a) Sensitivity Whatever may be the transmitted power, because of the losses in the transmission path, 
the signal received by a receiving antenna will generally be exceedingly weak. The signal power at the 
input terminals of the receiver may be of the order of pico-watts (10-12 W ) or less (or, the voltage may 
be a few microvolts or less). However, the loudspeaker needs about 1W of audio power to be applied 
to it for satisfactory operation. In fact, the envelope detector of the AM broadcast receiver itself requires 
an AM signal voltage of at least 1 volt for proper demodulation. Thus, a considerable voltage (RF and 
IF) amplification is needed before the demodulation and again a considerable audio voltage and power 
amplification is needed after detection. This overall gain determines the ‘sensitivity’ of the receiver, since 
the sensitivity of a receiver is expressed as the signal voltage required to be applied to the receiver input to 

obtain some specified standard output power. For AM broadcast receivers, it has been defined as follows.

Definition ‘The sensitivity of an AM broadcast receiver is the amplitude of a carrier wave modulated to 
30% by a 400 Hz tone, which, when applied to the input of the receiver through a standard artificial antenna, 
produces an output of 0.5 watt in a resistance of appropriate value connected in the place of the loudspeaker’.

Note: The artificial antenna, comprising an inductance of 20 microhenries in series with a 200 p.f. 
capacitor, is used to simulate the standard wire antenna of a 
broadcast receiver.

The sensitivity, as defined above, naturally depends on the 
frequency of the applied carrier. Hence it is generally given as 
a curve as shown in Fig. 6.15. Since most of the gain of the 
receiver is obtained in the IF stage, the gain of this stage plays 
a key role in determining the sensitivity of the receiver. Since 
this gain is obtained at a constant frequency, the sensitivity of the 
receiver is, to a large extent, independent of the signal frequency.

(b) Selectivity The selectivity of a receiver represents the ability of the receiver to distinguish between 
the desired signal to which the receiver is tuned and the other signal frequencies.

It is expressed as the ratio of the signal voltage (i.e., a 

carrier modulated to 30% by a 400 Hz tone) required at the 

input to the receiver to produce a standard output when the 

frequency of the carrier of the signal voltage is slightly away 

from the desired carrier frequency (i.e., the one to which 

the receiver is tuned), to the signal voltage required to be 

applied as input to produce the same standard output when 

the signal voltage is at the desired carrier frequency. This 
ratio of the signal voltages is generally expressed in decibels. 
When the input signal voltage is at the desired frequency, 
the input voltage required to produce the standard output 
takes a minimum value and increases on either side, as we 
move away from desired frequency to which the receiver 
has been tuned. The selectivity is also expressed by means 
of a selectivity curve. Figure 6.16 shows the typical selectivity curve of a receiver.

The 3 dB bandwidth of the selectivity curve tells us whether all the side-frequencies are getting through 
or not. If it is less than 10 kHz, the high frequency components of the modulating signal (which appear 
at the edges of the sidebands) are getting rejected and that the received message is getting distorted. The 

selectivity at 10 kHz off resonance on either side represents the adjacent channel selectivity.

(c) Fidelity Ideally a receiver should be able to give at its output, a signal that is an exact replica of 
the modulating signal. A good receiver therefore, should be able to do this with very little distortion.
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The output signal may be a distorted version of the modulating signal because of some or all of the 
following reasons.

 (i)  Inter-modulation frequency components may be generated when the desired signal mixes with an 
interfering signal in a non-linear way.

 (ii)  Inter-modulation frequency components may be produced even by the non-linearities, if any, 
present in the detector stage.

 (iii)  Distortion due to suppression of the high frequency components of the modulating signal, can take 
place if the IF bandwidth of the receiver is inadequate for the audio bandwidth being handled by 
the transmitter. For instance, if the transmitter is handling audio frequencies up to 5 kHz, the IF 
bandwidth required is 2 ¥ 5 kHz = 10 kHz. But suppose, the IF bandwidth is only 6 kHz, then all 
the frequency components of the modulating signal which are above 3 kHz will be suppressed, 
causing distortion.

 (iv)  Distortion of the message signal can arise also due to the IF amplifier frequency response being 
not constant over its bandwidth of 10 kHz.

 (v)  Poor low frequency and/or high frequency response as well as non-flat midband gain of the audio 
voltage and power amplifiers will also cause distortion of the message signal.

The term ‘fidelity’ denotes how faithfully the receiver is able 
to reproduce the modulating or message signal at its output; and 
is generally expressed in the form of a characteristic as shown in 
Fig. 6.17. For plotting this curve, a carrier signal which is 30% 
modulated by an audio modulating tone, is applied as input to 
the receiver and its relative response is plotted for various values 
of the frequency of the modulating tone, taking the response for 
400 Hz modulating tone as the reference (0 dB).

(d) Noise Figure The noise figure of a two-port network indicates 
the amount of noise power internally generated in the network. In 
the case of a receiver, the received signal, given as input, itself 
has signal and noise components. This noise being the additive noise contributed by the channel. Now, 
when it passes through the receiver, the receiver’s internally generated noise gets added. Hence, the noise 
figure of a receiver indicates to what extent the receiver degrades the received signal’s signal-to-noise 
ratio, since we have defined the noise figure as the ratio of the input signal-to-noise ratio to the output 
signal-to-noise ratio,

i.e., NF
input

output
=

( / )

( / )

S N

S N

AM broadcast receivers generally have noise figures of the order of about 5 to 10 dB.
The noise figure of a receiver is an important parameter since it determines the smallest signal power 

that it can receive without making the output signal get drowned in noise.

SSB TRANSMITTERS
6.4

Single sideband transmission has, as mentioned earlier in Chapter 4, several advantages over AM. But 
there are some disadvantages too. Because its bandwidth is only half of that of AM, it conserves the 
spectrum. In addition, smaller bandwidth implies less channel noise and less susceptibility to selective 
fading. However, the receiver complexity makes it unsuitable for broadcast purposes.

0

–4

–8

–12

–16

50 100 500 1000 5 K 10 K

Frequency of modulating tone in Hz

R
e

la
ti

v
e

 r
e

sp
o

n
se

 in
 d

B

Fig. 6.17  Typical fidelity curve of a 
standard broadcast receiver



AM and FM Transmitters and Receivers 277

SSB transmission may be with no carrier at all, or with a pilot carrier, i.e., a re-inserted carrier with 
reduced power.

6.4.1 SSB-SC Transmitter
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modulator
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filter
H(f )

Class-A
amplifier
(power)

Class-A
amplifier
(power)

Mixer
Message
signal

x(t)
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Fig. 6.18 SSB‑SC transmitter using filter method of generating the SSB‑SC signal

As mentioned earlier in Chapter 4, it is possible to use the filter method for generation of an SSB 
signal only if the message signal spectrum has a hole near the origin; i.e., if the message has no frequency 
components from 0 to say, about 200 Hz. Fortunately, voice signal satisfies this condition. Further, 
initially, to generate the SSB-SC signal, a low-frequency carrier, usually 100 kHz, is used, in order to 
ease the stringent requirements on the sideband suppression filter which is to attenuate the unwanted 
sideband atleast by 40 dB. With a 200 Hz hole on either side of the origin of the two-sided spectrum of 
the message signal, the output of the balanced modulator will be as shown in Fig. 6.19. 

99.8 kHz
100 kHz

100.2 kHz

USB

PassbandStopband

Filter response
characteristic

LSB

ffc

|H(f)|

Fig. 6.19 DSB‑SC signal spectrum and the sideband filter response characteristic

If the lower sideband is to be suppressed, the filter response can change over from passband to stopband 
over the 100.2 kHz to 100 kHz frequency interval; i.e., a transition bandwidth of 200 Hz at a carrier 
frequency of 100 kHz. Even now, the Q of the sideband filter will have to be of the order of several 
thousands—a value that ordinary R-L-C filters cannot provide.

6.4.2 Sideband Filters

The Q-value required for the sideband suppression filter depends on (i) the centre frequency (ii) the 
amount of attenuation needed for the unwanted sideband, and (iii) the transition bandwidth available. 
It is given by

 Q
f

f
Ac= È

Î
˘
˚( )

.
D

0 25  (6.8)

where,
 fc = Centre frequency

 Df = Transition bandwidth permitted
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A = Antilog
|Attenuation required in dB|
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˘

˚
˙

As discussed earlier, if fc = ¥100 103Hz, Df = 200 Hz and A = 40 dB, the Q value required works out 
to be 12,500. Such high Q values can be attained only by using special filters like mechanical filters, 
crystal filters or surface acoustic wave, or SAW filters. The Q-values these filters can provide, are SAW 
filters—well over 30,000; crystal filters—around 20,000; mechanical filters—around 10,000; ceramic 
filters—around 2500, LC filters—up to 500.

6.4.3 Raising the Carrier Frequency and Power

Once the unwanted sideband is removed by the sideband suppression filter, the carrier frequency and 
power will have to be raised to the required levels.

The frequency of the crystal oscillator (used as the local oscillator for the mixer) is suitably chosen so 
that the frequency ay the output of the mixer (say, the difference frequency) is the correct carrier frequency 
at which the SSB-SC signal is to be finally radiated. But before the signal is fed to the antenna, its power 
level must be raised to the required level. As the modulation has already taken place, the power cannot 
be raised using high efficiency class-C amplifiers. Instead, only class-A amplifiers will have to be used 
in order to avoid distortion of the modulated signal.

6.4.4 Pilot Carrier SSB Transmitter

The main advantage of SSB-SC is that because of the absence of the carrier and one of the sidebands, 
all the transmitted power is in the message-bearing signal and the transmission bandwidth is halved. But 
the absence of the carrier in the received signal makes it necessary to have a complex receiver circuit for 
recovering the message. Hence, in order to reduce the complexity of the receiver to some extent while 
maintaining, to a very large extent the two main advantages of SSB-SC, a pilot carrier SSB is used in 
which a reduced low-frequency carrier signal (10%) is again added to the SSB-SC signal before the mixer 
stage, where the carrier frequency is raised to its final value.
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Fig. 6.20 Block diagram of a pilot‑carrier SSB transmitter

SSB RECEIVERS
6.5

6.5.1 SSB-SC Receivers

We had seen in Section 4.5 that for the detection of SSB-SC signals we have to resort to coherent 
detection which involves multiplication of the received SSB-SC by a locally generated carrier signal, and 
that ideally, this signal should be in frequency and phase synchronism with the suppressed carrier of the 
SSB-SC signal. Hence in the receiver we employ a highly stable oscillator, preferably a crystal oscillator 
and give its output either directly, or after frequency division, as one of the inputs to a product device 
(a balanced modulator), the other input to it being SSB-SC signal derived from the received signal after 
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due processing so as to make it have its suppressed carrier have a frequency exactly equal to that of this 
stable oscillator or a sub-multiple of it.

Since SSB signals have a very small bandwidth (5 kHz for each sideband) very good adjacent-channel 
selectivity is a must for these receivers. Further, since HF band is generally used for point-to-point 
communication using SSB modulation, the required adjacent-channel selectivity can be obtained only by 
resorting to double conversion (refer to the introduction for the section on double heterodyne receivers, 
given in this chapter). Figure 6.21 shows the block diagram of a communication receiver meant to receive 
SSB-SC signals in the HF range by employing double conversion.
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Fig. 6.21 Block diagram of a SSB‑SC receiver

Since these communication receivers are generally designed to receive either the upper sideband, or 
the lower sideband, or both the sidebands (in the case of ISB transmission), a bandwidth of 10 kHz is 
provided. As the tuning range covered by these HF communication receivers is from 3 MHz to 30 MHz, 
the first IF is generally 2.2 MHz (slightly below the lower end of the tuning range) to give a good image 
signal rejection and the second IF is 200 kHz, low enough to give good adjacent-channel selectivity and 
making it easy to design the second IF amplifier to give a large gain.

The II IF amplifier output is detected to obtain an AGC voltage which is applied to the RF and IF 
amplifiers. It is also used to prompt the squelch circuit to make the audio amplifier inoperative in case 
the strength of the received signal is very weak. This is done n order to avoid annoying sounds being 
produced by the loudspeaker in the absence of a strong desired signal.

6.5.2 SSB-Pilot Carrier Receiver

These receivers are of the double-conversion type and they make use of the pilot carrier to ensure 
frequency synchronization with the transmitted carrier.

The mixer-I will produce an output which is a pilot carrier SSB signal with the pilot-carrier at the 
first IF, viz. IF-I. A stable reference oscillator, a crystal oscillator, produces a 200 kHz carrier signal. The 
frequency multiplier produces an output signal at f0 = (n ¥ 200) kHz. The SSB signal with pilot carrier at 
IF-I which is the output of the first IF amplifier, is mixed with this signal at a frequency of f0 (coming 
from the frequency multiplier) in mixer-II. The values of IF-I and n are so chosen that at the output of 
this second mixer, we get the SSB signal with its pilot carrier at 200 kHz; i.e., (  f0 - IF-I) = 200 kHz. 
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Fig. 6.22 Block diagram of a pilot‑carrier SSB‑receiver

This output of mixer-II is fed simultaneously to IF amplifier-II and a very narrow-band filter and amplifier. 
The output of this NB filter and amplifier is the 200 kHz pilot carrier only, as the narrowband filter has 
its passband centered on 200 kHz and it is so narrow that the sideband is rejected. This 200 kHz signal 
from the NB filter and amplifier, is fed to the balanced modulator which is the output of IF amplifier-II. 
So, this product device (which is followed by a lowpass filter) acts as a coherent detector whose output 
is the modulating audio signal. After voltage and power amplification, this goes to the loudspeaker.

6.5.3 ISB Transmitter

As explained in Section 4.5, ISB transmission is one in which two sidebands are transmitted with either 
a pilot carrier or no carrier. The two sidebands, however, carry different speech signals.

As shown in Fig. 6.23, a low-frequency carrier, of 100 kHz, is applied as input to two balanced 
modulators BM-I and BM-II simultaneously. These balanced modulators give DSB-SC signals. BM-I is 
given Message-I while BM-II is given Message-II. The crystal filter following BM-I produces a USSB-SC 
signal while the crystal filter following BM-II gives an LSSB-SC filter. These two signals, as well as a 
reduced carrier signal of 100 kHz, are given to an adder whose output is a pilot carrier ISB signal. The 
carrier frequency is then raised to the desired final carrier frequency value using a mixer and a crystal 
oscillator with a frequency of f0 which is 100 kHz higher than the final carrier frequency desired, i.e., fc. 
The power is then raised to the required level using a few stages of tuned linear class-A power amplifiers 
before taking it to the transmitting antenna.
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Fig. 6.23 Block schematic diagram of a pilot carrier ISB transmitter
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6.5.4 ISB Receiver

ISB receivers are double-conversion superheterodyne receivers. The received signal, consisting of the 
two independent sidebands and the pilot carrier, is amplified by an RF stage and then fed to a mixer 
(mixer-I) to which the LO-I output is also given. The first IF amplifier, IF amp-I, amplifies the signal 
and feeds it to mixer-II to which the output of the second local oscillator, LO-II, is also given. The LO-II 
frequency is so chosen that at the output of mixer-II, the ISB signal will have a pilot carrier of 100 kHz 
frequency. As shown in Fig. 6.24, the IF amp-II output is simultaneously applied to (i) very narrowband 
filter which extracts the 100 kHz carrier signal; (ii) A USB filter which extracts the channel-A SSB 
signal; and (iii) An LSB filter which extracts the channel-B SSB signal.
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Fig. 6.24 Block diagram of a pilot carrier ISB receiver

The 100 kHz carrier from the narrowband carrier filter is amplified and fed simultaneously to the AGC 
circuit, the AFC circuit and the channel-A and channel-B detectors. The AGC voltage (dc) produced 
by the AGC circuit is applied to the RF and IF amplifiers as bias voltage to automatically control the 
gain. The output of the second IF amplifier, comprising the pilot carrier, the upper sideband (containing 
message of channel-A) and the lower sideband (containing message of channel-B), is applied simultaneously 
to the USB filter and the LSB filter. The amplified 100 kHz carrier and the amplified USB signal are 
fed to the product detector, the output of which is amplified by an audio amplifier to get the channel-A 
message. The channel-B message is similarly obtained from the audio amplifier of channel-B. In order 
to ensure that the carrier frequency at the output of mixer-II is always maintained at 100 kHz, an AFC 
circuit is used. The output of the 100 kHz carrier amplifier and the output of a 100 kHz crystal oscillator, 
are both fed to this AFC. Using these two, the AFC circuit produces a dc control voltage which adjusts 
the LO-II frequency in such a way as to keep the carrier frequency of the output of mixer-II at 100 kHz.

FM TRANSMITTERS AND RECEIVERS
6.6

FM broadcasting has been assigned the 88 MHz–108 MHz frequency band. All transmitting stations 
are to ensure that the unmodulated carrier frequency is within ±2 kHz of the assigned carrier frequency. 
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With a maximum frequency deviation of ±75 kHz and a maximum audio frequency of 15 kHz, the signal 
occupies a bandwidth of 180 kHz (Carson’s rule). Further, a guard band of 20 kHz is provided to ensure 
interference-free communication in the service area. Since the FM band of 88 MHz–108 MHz is in the 
VHF band, it is on line-of-sight propagation that FM broadcasting depends. The primary service area is 
determined largely by (i) the effective radiated power, and (ii) the height of the antenna; and may be up 
to about 80 km.

As discussed in Chapter 5, a WBFM signal may be generated either by the indirect method, or the 
direct method.

6.6.1  FM Transmitter Based on Indirect Method of Generation of WBFM (Armstrong 
Method)

Crystal
oscillator

(low freq.)
carrier

Pre-
emphasis Integrator

Modulating
signal

Message
Audio

amplifier
Crystal

oscillator

Buffer
amplifier

NB
phase

modulator

Frequency
multipliers

Mixer
Class-C
power

amplifier

Fig. 6.25 FM transmitter based on the indirect method

As explained in Chapter 5, initially a low-frequency carrier is used. A narrow band phase modulator 
of the type shown in Fig. 5.8 is used. The signal is subjected to pre-emphasis, integrated, amplified and 
used as the signal for modulating the low-frequency carrier. Frequency multiplier chain and mixer are used 
to obtain the required values of final carrier frequency and peak deviation. A chain of class-C amplifiers 
is used to raise the power of the modulated signal to the required value.

6.6.2 FM Transmitter Based on Direct Method of Generation
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As mentioned in Section 6.5, the direct method of generation of WBFM has the disadvantage that the 
unmodulated carrier signal is not generated by a crystal oscillator and therefore, is not very stable. Hence, a 
frequency stabilization circuit is a must. One such arrangement is shown in Fig. 6.26. In this, the modulated 
signal is taken from the output of the buffer and fed to a mixer to which, the output of a crystal oscillator 
also is given. If the transmitter is to operate with a carrier frequency of fc, the crystal oscillator frequency 
f0 is so chosen that f f fd c   D ( )0 -  is reasonably small. This difference frequency signal from the mixer is 
applied to a balanced discriminator which is so adjusted that it gives zero output when its input signal has 
a frequency exactly equal to fd. The lowpass filter following this FM discriminator has a very low cutoff 
frequency and removes the modulating signal component. The output of this filter will be zero if the carrier 
frequency is exactly fc and will be a dc voltage of appropriate sign depending on whether the carrier frequency 
is above or below the correct value fc. This dc voltage is used to modify the bias applied to the reactance 
modulator in such a way as to bring the oscillator unmodulated carrier frequency to the correct value.

6.6.3 FM Receivers

Just like the AM broadcast receivers, FM broadcast receivers are also superheterodyne receivers. Their 
tuning range, i.e., the standard VHF FM broadcast band, is 88 MHz to 108 MHz. The standard value of 
the intermediate frequency for these receivers is 10.7 MHz. Figure 6.27 shows a block schematic diagram 
of a typical mono-aural FM broadcast receiver.

The tuned circuits of the RF stage and the local oscillator are ganged and so when the r.f. stage tuning 
is varied from one end to the other, things are so arranged that the local oscillator frequency varies form 
98.7 MHz to 118.7 MHz so that when we take the difference frequency at the output of the mixer, the FM 
signal obtained has always a carrier frequency of 10.7 MHz, i.e., the intermediate frequency, irrespective 
of the frequency of the station to which the receiver is tuned.

The RF amplifier stage is generally a double-tuned low noise dual-gate MOSFET cascode amplifier 
with high values of input and output impedances. In FM receivers, image rejection does not pose a 

problem. This is because, the image signal, which is 2 ¥ IF Hz away from the frequency of the desired 
signal, is always outside the tuning range of the receiver irrespective of whether the receiver is tuned to 
a station near the lower end, or the upper end of the tuning range (Note that 88 + 2 ¥ 10.7 = 109.4 MHz 
and 108 - 2 ¥ 10.7 = 86.6 MHz, both of which are outside the tuning range).
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Fig. 6.27 Block diagram of a superheterodyne FM broadcast receiver

Generally, two or three high-gain IF amplifier stages are employed, and one of them is used as an 
amplitude limiter to remove the additive noise which causes amplitude variations. These IF amplifiers 
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are designed to have a bandpass characteristic with a flat response in the 180 kHz passband centered on 
10.7 MHz.

Amplitude-limiting action too may be obtained in an IF stage either by including back-to-back 
connected diodes in the input tuned circuit of the IF amplifier, or by designing the IF stage to be driven 
to saturation and cutoff, depending upon whether low-level or high-level limiting is desired.

The discriminator may be a dual-slope discriminator or a ratio detector—its main function being to 
convert frequency variations of its input signal into corresponding amplitude variations, with the output 
voltage remaining at zero volts when the input signal frequency is exactly equal to the IF.

As stated earlier, pre-emphasis and de-emphasis are used in all FM communication systems in order 
to ensure a good SNR at the destination. The message signal is deliberately distorted at the transmitter 
before using it for modulation, by passing it through a pre-emphasis network, which boosts up the 
high-frequency components. The post-detection noise power spectrum increases as the square of the 
frequency, as we will be seeing in Chapter 9 when we discuss the noise performance of FM systems. 
To remove the distortion introduced by the pre-emphasis network, the output of the discriminator in the 
receiver is passed through a de-emphasis network which de-emphasizes the high-frequency components 
so as to restore the original relative amplitudes of the various frequency components of the message 
signal. In that process of de-emphasising, while the message spectrum is restored to  its original shape, 
the high frequency noise components at the output of the discriminator get reduced and so the SNR at 
the destination is improved.

The audio voltage and power amplifiers then raise the power level of the audio signal so that it can actuate 
the loudspeaker. As FM handles audio up to 15 kHz, and so is mostly used for high-quality music broadcasting, 
these audio amplifiers should have flat frequency response form very low audio frequencies up to 15 kHz so 
as not to introduce any distortion. The audio power amplifier must of course be a class-A amplifier.

Generally, AFC is provided to keep the frequency of the local oscillator at the value that produces 
the correct intermediate frequency. If the average value of the intermediate frequency differs from the 
centre frequency of the dual-slope discriminator then, a dc voltage will be developed at the output of 
the discriminator. The polarity of this dc voltage will depend on the direction of deviation of the IF with 
respect to the centre frequency of the discriminator. This dc voltage is extracted from the discriminator 
and is applied to the varactor diode across the tank circuit of the local oscillator in such a way as to 
change the local oscillator frequency in the right direction so that it gives the correct value of intermediate 
frequency. It is thus ensured that slight frequency drifts of the local oscillator do not cause any deterioration 
of the performance of the receiver.

SUMMARY

1. A transmitter has to generate the carrier, raise its power level, process the message signal and raise 
its power level, and modulate the carrier at an appropriate power level.

2. Sections of a transmitter (a) the exciter section—the carrier oscillator, frequency stabilization 

systems, buffer amplifier; (b) Modulation section—audio pre-amplifiers, voltage amplifiers and power 
amplifiers (c) RF section—RF power amplifiers (class-C, if high-level modulation is used; class-A 
or class-AB if low-level modulation is used).

3. Effective Radiated Power (ERP) The effective radiated power from a transmitter is the average RF 
power from the transmitter multiplied by the loss of the transmission lines and the gain of the antenna.

4. Primary Service area of a transmitter It is the area around the transmitting antenna comprising 
all points at which the field strength due to the signal radiated by the antenna is not below a certain 
prescribed value—generally 5 to 10 mV per metre.
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 5. Classification of transmitters Transmitters are classified in several different ways—on the basis of 
operating frequency band, on the basis of modulation employed, on the basis of service provided, 
and on the basis of transmitted power.

 6. Functions of a receiver To pick up any desired signal, amplify it, extract the message signal by 
demodulating the picked-up signal and amplifying the message signal and operate the output device 
like a loudspeaker.

 7. Classification of receivers They are classified in different ways: (i) according to the type 
of modulation of the received signal, (ii) according to the frequency range of operation, and 
(iii) According to the configuration of the receiver—TRF, superheterodyne, etc.

 8. AM broadcast transmitters Use audio frequencies up to 5 kHz, operate in MW band from 550 kHz 
to 1650 kHz and in SW band from 3 MHz to 30 MHz. MW band transmitters primarily depend 
upon ground-wave propagation, while SW band transmitters depend upon sky-wave propagation. 
Carrier powers of 1 kW to 100 kW are used. Carrier frequency stability of the order of ±0.02% is 
mandatory. Adjacent carrier separation is 10 kHz since carrier and both sidebands are transmitted.

 9. FM broadcast transmitters They handle audio frequencies 06 up to 15 kHz; used mostly for 
high-quality speech and music. They operate in the VHF frequency band from 88 MHz to 108 MHz 
and depend on line-of-sight propagation and so service area is limited to about 40–80  km. Carrier 
frequency stability of ± 2kHz needed. Maximum frequency deviation is ±75 kHz. Adjacent carrier 
separation is 200 kHz. Power of the order of 100 kW are used.

10. High-level modulation In an AM transmitter, if the modulating message signal is introduced in 
series with the collector/plate supply voltage of the final RF power amplifier, the modulation is 
referred to as high-level modulation.

11. Low-level modulation In an AM transmitter, if the modulating signal is introduced beyond the buffer 
at any point up to and including the grid/base of the final RF power amplifier, the modulation is 
referred to as low-level modulation.

12. Advantages and disadvantages High-level modulation permits the use of class-C RF power 
amplifiers which are highly efficient. But it requires very large amounts of message signal power. 
Low-level modulation compels us to use class-A or AB type of RF power amplifiers (which are 
inefficient) after the modulation stage. But it does not need large amounts of message signal 
powers.

13. Neutralization of RF amplifiers RF stages in a transmitter need to be provided with neutralization 
circuits to prevent them from oscillating. Hazeltine and Rice methods of neutralization are quite 
common.

14. Negative feedback in AM broadcast transmitters Negative feedback is generally provided in all 
AM broadcast transmitters. This is done by taking a small portion of the AM signal given to the 
antenna, envelope detecting it and feeding the resulting audio message signal in series with the 
output of the audio voltage amplifier so as to oppose it in order to give negative feedback. This 
reduces the distortion of the envelope of the radiated AM signal and also reduces the noise and 
power frequency hum.

15. TRF receivers A tuned radio frequency receiver (TRF receiver) consists of RF amplifiers, a detector 
and audio voltage and power amplifiers, It is one of the earliest types of receiver and has very poor 
adjacent channel selectivity.

16. Principle of superheterodyne receiver In a superheterodyne receiver, the received RF signal is 
converted into another RF signal carrying the same message signal, but having a fixed carrier 
frequency called the intermediate frequency (IF) which is lower than the lowest carrier frequency 
covered by the receiver. Most of the gain of the receiver is obtained at the IF. This is then detected 
and the message signal is amplified.
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17. Superheterodyne broadcast receiver
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18. Why the local oscillator frequency f0 is kept greater than the carrier frequency fc In a 
superheterodyne receiver, the difference between f0 and fc should be equal to fi.f of the receiver. Thus, 
f0 may be greater than fc or less than fc. But it is always arranged to be grater than fc as otherwise, 
the tuning capacitor range required will be far greater than what can be obtained in practice.

19. Adjacent channel selectivity When a receiver is tuned to a particular station, adjacent channel 
signal also will be picked up to some extent due to the inability of the receiver to totally reject it. 
This selectivity depends mostly on the shape of the IF amplifier’s response and to some extent on 
the shape of the RF amplifier’s response. In a good receiver, adjacent channel selectivity should be 
of the order of 60 to 80 dB. For this purpose, the IF amplifier response is shaped appropriately by 
using 3 or more stagger-tuned stages, or 3 or more identically tuned IF stages with loose coupling 
of the inter-stage transformers.

20. Image frequency If a receiver with intermediate frequency fi.f is tuned to a carrier frequency fc, the 
corresponding image frequency is ¢ = +( )f f fc if2

21. Image Frequency Rejection Ratio (IFRR) IFRR RF

RF
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2

log
( )

( )

H f

H f

c

¢
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value of the loaded Q of the tuned circuits of the RF stages, the value of the IF of the receiver 
(higher the better) and on whether fc is close to the lower end or the higher end of the tuning range 
of the receiver. Should be atleast 40 dB.

22. Double spotting The phenomenon of a desired signal fs being received at two different dial settings 
of the receiver, is known as double-spotting. The cause is poor image rejection.

23. Choice of IF (i) IF should be outside the tuning range of the receiver.
 (ii) Lower value of IF reduces adjacent channel interference.
 (iii) Higher value of IF improves image rejection.
 Usual Values 455 to 465 kHz for AM receivers and 10.7 MHz for FM receivers.
24. Tracking In a superheterodyne receiver, ideally, the local oscillator frequency should always keep 

itself above the carrier frequency fc to which the receiver is tuned by an amount equal to the IF. 
This is referred to as tracking. In practice, perfect tracking cannot be achieved exactly over the 
entire tuning range of the receiver.

25. Two-point tracking Perfect tracking is obtained only at two frequencies over the tuning range and 
at the other frequencies the difference between f0 and fc is kept as close as possible to the correct 
IF. For this purpose a ‘padder capacitor’ in series with the tuning capacitor, or a ‘trimmer capacitor’ 
in parallel with the tuning capacitor are used. These are small variable capacitors.

26. Three-point tracking It is possible to get perfect tracking at three points over the tuning range of 
the receiver and only a small error at all other points, by the use of both a padder and a trimmer.
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27. Double heterodyne receivers In VHF communication receivers requiring an IF bandwidth of only 
10 kHz, double heterodyning is used in order to get good selectivity as well as good image rejection. 
The first IF is chosen high to get good image rejection and the second IF is chosen low to get good 
adjacent selectivity.

28. Receiver parameters (i) Sensitivity (ii) Selectivity (iii) Fidelity (iv) Noise figure
29. SSB-SC transmitters Since a 200 Hz wide hole exists near the origin in the spectrum of an 

audio signal, filter method can be used for generating the SSB-SC signal. Initially, a low carrier 
frequency of 100 kHz is used to make the filter’s requirements less stringent even when 40–60 dB 
suppression of unwanted sideband is to be achieved. High Q filters such as SAW filters, Crystal 
filters, mechanical filters and ceramic filters are used for sideband suppression. After sideband 
suppression the carrier frequency is raised to the required level using a crystal oscillator and a 
mixer.

30. SSB-SC receivers Since HF band is used for point-to-point communication using SSB, and since 
SSB signal bandwidth is only 5 kHz, it is necessary to use double heterodyne receivers. The first 
IF is generally 2.2 MHz and the second IF is 200 kHz.

31. FM transmitter based on Indirect Method Refer Fig. 6.24.
32. FM transmitter based on Direct Method Refer Fig. 6.25. Note that it is imperative to make use 

of a carrier frequency stabilization circuit for FM transmitters based on the direct method.
33. FM broadcast receiver block diagram
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34. Limiting In an FM receiver, the amplitude variations of the received FM signal, caused by 
noise etc., are removed by using amplitude limiters. Amplitude limiting action may be obtained 
in an IF stage by including back-to-back connected diodes in the input tuned circuit of the IF 
amplifier.

35. Pre-emphasis and de-emphasis All FM communication systems use pre-emphasis at the transmitter 
and de-emphasis at the receiver, to improve SNR at the destination. Pre-emphasis consists of 
boosting the high-frequency components of the message signal before modulation and de-emphasis 
attenuates the high frequency components of the message signal obtained in the receiver at the output 
of the discriminator, so that the distortion of the message signal, introduced by the pre-emphasis, is 
removed.
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REVIEW QUESTIONS

 1. What are the functions of a transmitter?
 2. Name the important sections of a transmitter.
 3. Define the terms: ERP and Primary Service Area.
 4. Define ‘high-level modulation’ and ‘low-level modulation’, and discuss the advantages and 

disadvantages of each.
 5. Draw the block schematic diagram of an AM broadcast transmitter and explain the function of each 

block.
 6. Explain the neutralization techniques adopted in the RF amplifiers of a transmitter.
 7. Draw the block schematic diagram of a TRF type of AM broadcast receiver. Explain its functioning 

and its deficiencies.
 8. What is the basic principle of a superheterodyne broadcast receiver? How does it overcome the 

limitations noted in the case of a TRF receiver?
 9. Draw the block schematic diagram of a superheterodyne AM broadcast receiver and with ist help, 

explain the working of the receiver.
10. Taking the case of a medium-wave band superheterodyne AM broadcast receiver, explain why the 

local oscillator frequency is arranged to be above and not below the signal frequency.
11. What is meant by an image signal? What are the steps generally taken to minimize image signal 

interference?
12. With reference to a superheterodyne broadcast receiver, explain what is meant by tracking. How is 

it ensured?
13. Distinguish between 2-point and 3-point tracking.
14. Discuss the factors governing the choice of IF for a superheterodyne receiver.
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15. Clearly justify the following statements.
 (i) Good image signal suppression requires that the IF be high.
 (ii) Good adjacent channel selectivity can be obtained by choosing a low value of IF.
16. Define and explain the terms: ‘Sensitivity’, ‘Selectivity’, and ‘Fidelity’. What are the various factors 

that influence these parameters?
17. With the help of a neat block schematic diagram, explain the working of an SSB-SC transmitter.
18. Clearly explain the need for the following: ‘SSB transmitters use a low-frequency carrier initially’.
19. In SSB-SC transmitters using filter method of generation of the SSB signal, sideband filters have 

to be used for suppression of the unwanted sideband. What type of filters are used and why?
20. Draw the block schematic of a pilot-carrier SSB transmitter.
21. With the help of a neat block schematic diagram, explain the working of an SSB-SC receiver.
22. Draw the block diagram of a pilot-carrier SSB receiver and explain its working.
23. Clearly explain how an ISB signal is generated by drawing the block diagram of the relevant portion 

of a pilot-carrier ISB transmitter.
24. With the help of a neat block schematic diagram, explain the working of a pilot-carrier ISB receiver.
25. Explain the working of a FM broadcast transmitter employing the direct method of generation of 

WBFM by drawing the block diagram. In particular, explain how the drift of the carrier is countered.
26. Explain the working of a FM broadcast transmitter employing the indirect method of generation of 

WBFM by drawing the block diagram.
27. Draw the block schematic diagram of a FM broadcast receiver, and explain its working.

FILL IN THE BLANKS

 1. The important sections of any transmitter are _________, _________ and _________.
 2. An AM broadcast transmitter is said to be employing high-level modulation if _______.
 3. An AM broadcast transmitter is said to be employing low-level modulation if ________.
 4. In an AM transmitter, the RF amplifier to be used subsequent to the modulator stage are _________.
 5. _________ level modulation requires large amounts of modulating signal power.
 6. The main disadvantage of the TRF receivers is __________.
 7. In a superheterodyne AM broadcast receiver, the RF amplifier helps in improving the ______ of 

the receiver and also in suppressing ______ ______.
 8. In a superheterodyne receiver, most of the gain of the receiver is obtained in the _______ ,________stage.
 9. The audio power amplifier of an ordinary AM broadcast superheterodyne receiver is a class __ 

________ amplifier.
10. Double spotting in a superheterodyne receiver is the phenomenon of ____________.
11. In an AM broadcast superheterodyne receiver, the local oscillator frequency is arranged to be 

_______ (higher/lower) than the signal frequency to which the receiver is tuned.
12. In a double conversion superheterodyne receiver, the first IF is ________ (higher/lower) than the 

second IF.
13. Double conversion is used in certain receivers in order to achieve good _____ as well as good ____.
14. In filter method of generation of SSB signals, the sideband filters used are of _____, or ______, or 

______ type.
15. A limiter is used in an FM broadcast receiver in order to _________.
16. ISB receivers use ______ type of detectors for recovering the audio.
17. FM transmitters handle audio frequencies upto _______ kHz.
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MULTIPLE CHOICE QUESTIONS

 1. In an AM transmitter employing low-level modulation, the amplifiers following the modulator stage 
have to be
(a) frequency multipliers (b) linear tuned class-A or class-AB amplifiers.
(c) class-C amplifiers (d) class-B amplifiers

 2. The advantages of base modulation over collector modulation of a class-C amplifier is
(a) better linearity of the modulation characteristic
(b) better efficiency of the class-C modulated amplifier
(c) it requires lower modulating signal power
(d) it gives more output power

 3. A pre-emphasis circuit provides extra noise immunity by 
(a) boosting the bass frequencies
(b) amplifying the higher audio frequencies
(c) pre-amplifying the whole audio band
(d) converting PM to FM

 4. An RF amplifier of a superheterodyne receiver
(a) helps in image signal suppression
(b) improves the adjacent channel selectivity
(c) makes it easier to align the receiver
(d) improves the fidelity of the receiver considerably 

 5. In an AM broadcast superheterodyne receiver, the local oscillator frequency is arranged to be higher 
than the incoming  signal frequency in order to
(a) provide better image rejection
(b) make tracking easier
(c)  produce the correct intermediate frequency, since a lower LO frequency will not permit generation 

of correct IF
(d)  enable us to cover the required tuning range with the practically possible ratio of maximum to 

minimum values of the variable capacitors
 6. A low IF will

(a) improve the image signal rejection capability of the receiver
(b) improve adjacent channel selectivity
(c) make it difficult to get good sensitivity for the receiver
(d) improve the fidelity of the receiver

 7. The occurrence of double spotting indicates
(a) that the IF is too high
(b) that the selectivity is poor
(c) that image rejection capability of the receiver is inadequate
(d) that the local oscillator frequency is less than that of the incoming signal

 8. Double conversion superheterodyne receivers use
(a) a high first IF and a lower second IF
(b) a low first IF and a higher second IF
(c) a low IF for the first as well as the second IF stages
(d) a high IF for both the first and second IF stages

 9. Harmonic generators use
(a) class-A amplifiers  (b) class-AB amplifiers
(c) class-B amplifiers  (d) class-C amplifiers
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10. The most noisy stage of an AM broadcast receiver is
(a) the RF stage  (b) the mixer stage
(c) the IF stage  (d) the audio stage

11. The noise figure of a superheterodyne receiver is mostly controlled by
(a) the RF stage  (b) the mixer stage
(c) the IF stage  (d) the audio stage

12. A superheterodyne AM broadcast receiver has an IF of 455 kHz. If it is tuned to a frequency of 
700 kHz, the image frequency is
(a) 1610 kHz (b) 1155 kHz (c) 245 kHz (d) 210 kHz.

13. The stage contributing significantly to the sensitivity of a superheterodyne AM broadcast receiver, 
is the
(a) RF stage (b) mixer stage (c) IF stage (d) detector stage

14. A high value of IF for a superheterodyne receiver
(a) improves image frequency rejection
(b) improves the  selectivity
(c) improves the sensitivity
(d) improves the fidelity

15. For broadcasting, AM is preferred to SSB because
(a) AM signal is easy to generate
(b) AM gives better signal-to-noise ratio
(c) SSB receivers are complex and expensive
(d) AM transmitters do not need expensive filters

16. In FM broadcasting, the peak frequency deviation and the maximum audio frequency handled, are 
respectively
(a) 75 kHz; 10 kHz  (b) 75 kHz; 15 kHz
(c) 200 kHz; 10 kHz  (d) 75 kHz; 5 kHz

17. An ISB transmitter is generating the ISB signal initially with a low carrier frequency of 100 kHz. 
To increase the carrier frequency to the final value required, we may use
(a) a mixer
(b) a chain of frequency multipliers
(c) a combination of mixer and frequency multiplier chain
(d) none of the above

18. A squelch circuit acts as
(a) demodulator  (b) a switch which acts at a set level.
(c) an oscillator  (d) a filter 

PROBLEMS

1. A superheterodyne receiver has an IF of 460 kHz. Its RF amplifier is tuned to an incoming signal 
of 700 kHz carrier frequency. If at this frequency the tuned circuit of the RF amplifier has a Q of 
60, determine the image frequency rejection in dB.

2. A double conversion receiver is tuned to an incoming signal of 25 MHz at which frequency its tank 
circuit has a Q of 65. The receiver is using a first IF of 1.5 MHz and a second IF of 150 kHz. 
Calculate (in decibels) the image frequency rejection. Make reasonable assumptions, if necessary.

3. A FM transmitter using the direct method of generation of WBFM, is using a varactor diode modulator 
which produces a frequency deviation of 2.5 kHz per volt. The maximum deviation produced by the 
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modulator is 360 Hz. The modulator is followed by a buffer and a tripler, doubler and tripler for 
frequency multiplication.
 (a) Can this transmitter produce a 6 kHz peak deviation at the output?
 (b) If the final carrier frequency is to be 180 MHz, what should be the oscillator frequency?
 (c)  What is the audio voltage to be applied to the varactor to obtain the full deviation at the 

output?
4. A SSB transmitter uses a set-up of the form shown in Fig. P-6.1 to generate the SSB signal using 

filter method.

Audio
(message signal)

Carrier
oscillator

5.0015 MHz

Centre frequency = 5.0000 MHz

BPF
SSB signal

BW = 3 kHz

BM

Fig. P-6.1

 For the values given in the figure, determine
 (a) whether the lower sideband or the upper sideband will be produced
 (b) the carrier frequency value if the other sideband is to be produced

Key to Multiple Choice Questions
 1. (b)  2. (c)  3. (b)  4. (a)  5. (d)  6. (b)
 7. (c)  8. (a)  9. (d) 10. (b) 11. (a) 12. (a)
13. (c) 14. (a) 15. (c) 16. (b) 17. (a) 18. (b)



Probability and 
Random Processes

By going through this 
review chapter, the 
student
Ø can thoroughly revise all the key 

concepts in probability and random 
processes

Ø will be in a position to apply the 
results of this chapter to the study 
of noise in the next chapter and the 
study of noise performance of AM 
and FM systems in Chapter 9

7
INTRODUCTION

7.1

Probability theory lays the foundation for a study of 
random processes and both of them are inextricably 
connected with communication engineering.

The two most important entities in the study 
of communication engineering are ‘noise’ and 
‘signal’. Noise is unpredictable in nature and any 
quantitative study of it requires modeling of it 
by a random process. Any useful signal also is 
unpredictable in nature because if it was not so 
and was absolutely predictable then the receiver 
could know it apriori and there would have been 
no need to transmit it.

When a signal passes through a channel, it suffers 
several changes. Some of these changes are caused 
by phenomena which are deterministic in nature and 
can therefore be eliminated. Linear and non-linear 
distortion and intersymbol interference come under 
this category. On the other hand, phenomena like 
fading, etc., are essentially non-deterministic and 
have to be modeled as random processes.

It is not proposed, and it is also not possible, 
to cover these topics of probability and random 
processes in an exhaustive manner in this chapter. 
As the reader must have been exposed to these topics 
earlier—possibly in a full one-semester course—
we propose to adopt a review-like approach. The 
review of probability theory will be limited to cover 
only those areas that are essential for understanding 
random processes.
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BASICS OF PROBABILITY
7.2

Modern probability theory is based on the following three axioms:

1. P(A) ≥ 0, where A is any event.
2. P(S) = 1, where S is the ‘certain’ event.
3. If events A and B are mutually exclusive, i.e., if A « B = {f}, where {f} is the null set, then 
P A B P A P B( ) ( ) ( )» = +

In the above, P(E) is to be read as ‘probability of the event E’. An event itself is defined in terms 
of the outcomes of a random experiment, i.e., an experiment whose outcome cannot be predicted with 
certainty. Tossing a coin, throwing a die, and randomly picking a card out of a deck of playing cards, are 
all examples of random experiments. Each of these experiments has certain possible outcomes, called the 
elementary outcomes—head and tail, for the tossing of a coin; 1, 2, 3, 4, 5, and 6 for the throwing of a 
die, and each one of the 52 cards in the deck of playing cards. The set of all possible outcomes is referred 
to as the ‘sample space’ and is denoted by S. Events are the subsets of sample space. For example, for the 
random experiment of ‘throwing a die’, while 1, 2, 3, 4, 5 and 6 are the elementary outcomes, and can be 
considered as events, one may also define ‘events’ using subsets of these elementary outcomes. Thus, we 
may consider ‘even’ and ‘odd’ as events—event ‘even’ being associated with the subset {2, 4, 6} and event 
‘odd’ being associated with the subset {1, 3, 5}. Thus, in general, events are subsets of S and we assign a 
non-negative number P(E), 0 £ P(E) £ 1, for each event in such a way that axioms 1 to 3 above are satisfied.

Sample space may be discrete or non-discrete. It is said to be discrete if the number of elements in 
it, i.e., the number of elementary outcomes for the experiment are finite, or countably infinite. Otherwise, 
it is called a ‘non-discrete’ sample space. In all the random experiments considered above, the sample 
space is discrete. But, suppose our random experiment is to randomly choose an instant, say between 
9 a.m. and 10 a.m., for making a telephone call. For this experiment, the sample space is non-discrete.

When we consider an experiment with a non-discrete sample space, we get into problems. It is not 
possible to consider every subset of this sample space as an event and assign probabilities to each of 
them without violating the ‘axioms’. To overcome this problem, we consider as events only those subsets 
of S which belong to what is called the s-field, B, defined on S as follows: 

1. S Œ B
2. If the event A Œ B then A also belongs to B. ( A is complement of A.)
3. If any A and B belong to B, then A B» ŒB

The three entities S, B, and P, where P is the probability measure, together constitute what is generally 
referred to as the ‘probability space’

From the three axioms listed in the beginning of Section 7.2, it is possible to derive the following 
basic properties of P.

 (i) P A P A( ) ( ).= -1  (ii) P( )f = 0  (iii) P A B P A P B P A B( ) ( ) ( ) ( )» = + - «

CONDITIONAL PROBABILITY
7.3

Let A and B be two events defined on the same probability space with individual probabilities P(A) and 
P(B). Then P(A | B), i.e., the conditional probability of A given B, is

 P A B
P A B

P B

P AB

P B
P B

( | )
( )

( )

( )

( )
; ( )

=
«

=
π

Ï

Ì
Ô      

  ;   otherwise

0

0ÓÓÔ
 (7.1)
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Remarks

1. If A and B are mutually exclusive, i.e., if A B P A B« = =0 0; ( | ) .
2. If P A B P A( | ) ( ),=  i.e., the occurrence of B does not affect the probability of A, events A and B 

are said to be statistically independent. In this case,

 P A B
P AB

P B
P A P AB P A P B( | )

( )

( )
( ) ( ) ( ) ( )= = fi = ◊  (7.2)

A die is thrown and you are told that the outcome is even. Then what is the 
probability that the result is 2?

Example 7.1

Let us denote the event ‘even’ by B and the event that the outcome is 2 by A. Then since B is said 

to have occurred if either 2, or 4 or 6 has turned up, P B( ) = =
3

6

1

2

Since A B A P A B
P AB

P B

P A

P B
« = = = = =, ( | )

( )

( )

( )

( )

/

/

1 6

1 2

1

3

\ P(2  | even) = 1/3

Total Probability Theorem Let the events A1, A2, ..., An belong to the same probability space. Let them 
be such that

A A A A S
b n1 2

» » » =.....

If B is any arbitrary event, also belonging to the same probability space then

P B P B A P A P B A P A P B A P A
n n

( ) ( | ) ( ) ( | ) ( ) ( | ) ( )= + + +1 1 2 2  . . . . . 

=

=

ÂP B A P A
i i

i

n

( | ) ( )
1

This is called the total probability theorem.

Bayes̕ Theorem Bayes’ theorem, or Bayes’ rule, enables us to find the 
conditional probability of Ai given B, in terms of the conditional probabilities 
of B given Ai, i = 1 to n.

P A B
P A B

P B

P B A P A

P B A P A

i

i i i

i i

i

n
( | )

( )

( )

( | ) ( )

( | ) ( )

=
«

=

=

Â
1

\ P A B
P B A P A

P B A P A

i

i i

i i

i

n
( | )

( | ) ( )

( | ) ( )

=

=

Â
1

 (7.3)

This is called Bayes’ theorem.

Statistical Independence As stated earlier, two events A and B are said to be statistically independent if

P AB P A P B( ) ( ) ( )= ◊

A2 A3

A4

A1 S

B

Fig. 7.1 Partitioning of S
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The three events A, B and C are said to be statistically independent if the following two conditions 
are satisfied.

 (i) P AB P A P B P BC P B P C P AC P A P C( ) ( ) ( ) ; ( ) ( ) ( ) ( ) ( ) ( )= ◊ = ◊ = ◊       and  

 (ii) P ABC P A P B P C( ) ( ) ( ) ( )= ◊ ◊

In general, n events, A1, A2, ..., An are said to be independent if for every k < n the events A1, A2, ..., Ak 
are independent and further, if

P A A A P A P A P A
n n

( , ,....., ) ( ) ( ).... ( )1 2 1 2=

There are 5 boxes B1, B2, B3, B4, and B5 containing compact fluorescent lamps. Each 
box contains 1000 lamps. It is known that B1 has 5%, B2 has 20%, B3 has 3%, B4 has 10% and B5 has 14% 
defective units. If a box is selected at random and randomly a lamp is picked out of it, what is the 
probability of that this lamp so picked, is defective? If the lamp so picked is found to be defective, 
what is the probability that it was picked from the box B1?

Example 7.2

Since the box has been randomly chosen,

P B P B P B P B P B( ) ( ) ( ) ( ) ( ) / .1 2 3 4 5 1 5 0 2= = = = = =

\ probability of the picked lamp being defective =

P D P D B P B P D B P B P D B P B P D B P B P( ) ( | ) ( ) ( | ) ( ) ( | ) ( ) ( | ) ( )= + + + +1 1 2 2 3 3 4 4 (( | ) ( )D B P B5 5

= + + + + =0 2 0 05 0 2 0 03 0 1 0 14 0 104. [ . . . . . ] .

\ the probability of the picked-up lamp being defective = 0.104
Now, given that the lamp that is picked is defective, the probability of its having been taken from 

box B1 is say, P B D( | ).1

P B D
P B D

P D

P D B P B

P D
( | )

( , )

( )

( | ) ( )

( )
1

1 1 1= =

But P D B( | )1 = 0.05, P(D) = 0.104 and P(B1) = 0.2

P B D( | )
. .

.

.

.
.1

0 05 0 2

0 104

0 01

0 104
0 0961=

¥
= =

RANDOM VARIABLES
7.4

Definition A real random variable is a mapping of the outcomes of a random experiment to the real 
line and satisfying the following two conditions:

 (i) X £{ }x , i.e., X( xx) £{ }  is an event for every real number x

 (ii) P ( P (X Xx x) )= +{ } = = = -{ }0

The mapping referred to in the above definition, therefore, has S, the set of all outcomes as its domain 
and R, the set of real numbers, as its range. x represents an outcome, X(x) is used to denote the number, 
the random variable assigned to the outcome x, and X denotes the rule according to which each x is 
allotted a real number. However, for simplicity of notation, we use X instead of X(x) to denote the number 
assigned to x. The ambiguity, if any, caused by this, may be resolved easily from the context.
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For example, in the random experiment of tossing of a coin, we may assign the number 1 for the 
outcome heads and the number ‘0’ for the outcome tails. Then

X(heads) = 1 and X(tails) = 0

Suppose, x denotes some real number. As x is given various values along the real line, the elements 
of S that constitute the set X £{ }x  also change because, after all, X £{ }x  represents a subset of 

S consisting of all the outcomes x which are such that X ( )x £ x . Thus X £{ }x  is a set of outcomes. 

As mentioned in the definition of a random variable, we demand that the mapping be such that this set 
is an event for every x.

A complex random variable Z is given by

 Z = X + jY (7.4)

where, X and Y are real random variables.

Definition The Cumulative Distribution Function (CDF) of a random variable X is denoted by FX (x) 
and is defined by

 F x P x
X

( ) { }    D X £  (7.5)

To make the notation simpler, we shall use F(x) instead of FX (x). We shall, therefore, be representing 
the CDF of a random variable Y by F( y).

For the random experiment of tossing of a coin, let us define a random variable X 
by saying that

X(x = Heads) = 1 and X(x = Tails) = 0.

x10

1

0.5

F(x)

Fig. 7.2 CDF of X

The CDF of the random variable (r.v) X will be as shown in Fig. 7.2, since P{Heads} = P{Tails} = 0.5. 
Since F x P x( ) { }   = £X , when x < 0, F(x) = 0. when x £ 0, but less than one, F(x) = 0.5 and for x ≥ 1, 
F(x) = 1. Thus, we get a staircase type of CDF.

Example 7.3

Properties of CDF

1. F(x) lies between 0 and 1; i.e., 0 £ F(x) £ 1
2. F( ) = 1 and F( ) = 0
3. F(x) is a non-decreasing function of x.
4. F(x) is continuous from the right; i.e., Lim

ŒÆ

+ Œ = Œ>

0
0F x F x( ) ( );

5. F(b)-F(a) = P[a < X £ b]

6. P x F x F xX =[ ] = - -
1 1 1( ) ( ) , where, F x F x( ) ( );1

0
1

-

ŒÆ

- ŒDLim  Œ> 0

7.4.1 Types of Random Variables

Random variables are categorized as discrete random variables, continuous random variables and mixed-
type random variables, based upon the type of CDF.



298 Analog Communication

A random variable, whose CDF has a staircase shape is called a discrete random variable. A random 
variable with a CDF which is a continuous function of x is called a continuous random variable. A random 
variable which is neither a discrete r.v. nor a continuous r.v. is called a mixed random variable.

F x

x

F
x
x F

x
x

x x

Fig. 7.3 (a) CDF of a discrete r.v (b) CDF of a continuous r.v. (c) CDF of a mixed r.v.

Definition The Probability Density Function (PDF) of a r.v. X is defined as the derivative with respect 
to x of its CDF, viz., Fx(x)

\ 
 f x

dF x

dx
x

x( )
( )

=
 (7.6)

If X is a discrete r.v., we know that its FX (x) will be of the staircase type. Hence, as shown in Fig. 7.3, 
its probability density function (PDF) will be zero everywhere except at the points of discontinuity, where 
it will have impulses.

The PDF, fX (x) of a continuous r.v. X will be a continuous function of x. The PDF of a mixed r.v. 
involves impulses but need not necessarily be zero between any two consecutive impulses.

Properties of PDF

1.  Since the CDF is a non-decreasing function of x, its derivative, fX (x), will be non-negative, i.e., fX (x) ≥ 0.

2. The area under any probability density function will be unity; i.e., f x dxX ( )Ú = 1

3. f x dx P x xX

x

x

( )

1

2

1 2Ú = < £[ ]X

4. F x f dX X

x

( ) ( )= Ú a a

In the case of a discrete r.v., since the derivative of 
the CDF results in impulses, it is more appropriate to 
talk in terms of probability masses, p P xi i= £  [ ]X . In 

this case, pi ≥ 0 for all i and pi

i

Â =1.

7.4.2 Some Useful Random Variables

In what follows, we give the distributions or density functions of a number of continuous and discrete 
random variables which are useful in the study of communication engineering (analog and digital):

(a) Continuous Random Variables
(i) Uniform Random Variable A random variable X is called a uniform r.v. if its probability density 
function fX (x) is given by

 f x x x
x x x

x x
X ( ) ( )

;
;= -

£ £
Ï

Ì
Ô

Ó
Ô

< <

1

0

2 1
1 2

1 2

   

  otherwise

     (7.7)

(a)

D

F(x)

0

1

xx1 x2 x3 x4

(b)

Dd (x–x4)

0 xx1 x2 x3 x4

fx(x)

Fig. 7.4  (a) CDF, and (b) PDF of a discrete 
random variable
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Such an r.v. is generally denoted by U(x1, x2). The cumulative distribution function (CDF) of this r.v. 
is as shown in Fig. 7.5(b) and is given by

fx(x)

0 x1 x2 x

(a)

Fx(x)
1

0 x1 x2 x

(b)

1

(x2– x1)

Fig. 7.5 (a) PDF and (b) CDF of a uniformly distributed r.v.

 F x

x x

x x

x x
x x x

x x

X
( )

( )

( )
=

≥

-

-
£ £

<

1

0

2

1

2 1
1 2

1

  for  

   for  

  for  

ÏÏ

Ì

Ô
Ô

Ó

Ô
Ô

   (7.8)

The uniform r.v. is used to model a continuous random variable, about which we have no other 
knowledge except for the finite range over which its values are spread. Such a situation arises in the 
case of a sinusoid whose phase is random. We model its phase by a uniformly distributed r.v., its range 
of values being from 0 to 2p.

(ii) Gaussian or Normal Random Variable The r.v. X is said to be a Gaussian or normal random variable 
with mean m and variance s2 if its probability density function is given by

 f x eX
x m( ) ( ) /

=
- -

1

2 2

22 2

ps

s  (7.9)

This density function has a shape as shown in Fig. 7.6 and is symmetric with respect to x = m. If s2 is 
large, the values of X are more spread out around the mean value and if it is small, the values are more 
concentrated near the mean value. Since the density function is completely determined by the two parameters, 
the mean and the variance, it is generally denoted 
by N(m, s2). A Gaussian random variable with zero 
mean and unit variance, is called the standard normal 
random variable and is denoted by N(0, 1).

Gaussian distribution function, FX (x) is given by

F x P x e dyX
y m

x

( ) ( ) /= £[ ] = - -ÚX
1

2 2

22 2

ps

s

 = -

-Ê
ËÁ

ˆ
¯̃

Ú
1

2

2 2

p

s

e dyy

x m

/  (7.10)

The Gaussian density function is the most extensively used one in communication engineering. This 
is because thermal noise, which is a major source of noise in communications, is, Gaussian in nature.

For a N(0, 1) r.v., Eq. (7.10) reduces to

 g x e dy P xX
y

x

( ) /= = £[ ]-Ú
1

2

2 2

p
X  (7.11)

fX(x)

0 m x

Fig. 7.6  Density function of a Gaussian r.v. with 
mean m and variance s2



300 Analog Communication

In communications engineering, the so-called ‘tail probability’ of a Gaussian random variable is the 
one, which one has to determine frequently while calculating error probabilities. So it is given a special 
symbol Q(x) called the Q-function and is given by

 Q x g x P X xX( ) ( ) [ ]= - = >1  (7.12)

This Q-function, which is extensively tabulated, has the following important properties.

 Q x Q x( ) ( )- = -1  (7.13)

 Q( )0
1

2
=  (7.14)

 Q( ) 0  (7.15)

(iii) Rayleigh Random Variable A random variable X is said to have a Rayleigh distribution with 
parameter s2 if its density function is

 f x

x
e x

x

X

x

( )
;/

=
≥

<

Ï

Ì
Ô

Ó
Ô

-

s
s

2
22 2

0

0 0

 

  ; 

   (7.16)

The Rayleigh distributed r.v. has a mean value of s
p

2
 and a variance of 2

2
2-Ê

ËÁ
ˆ
¯̃

p
s . The shape of 

Rayleigh density function is shown in Fig. 7.7(a)

fx(x)

0

(a) (b)

x x0

fx(x) (m/s) = 0

(m/s) > 0

Fig. 7.7 (a) Rayleigh density function (b) Ricean distribution

If a bandpass signal has an identically distributed Gaussian zero–mean random processes as its in-
phase and quadrature components, it can be shown that its envelope will have Rayleigh distribution. This 
density function is extensively used in the study of fading communication channels.

(iv) Ricean Random Variable (Rice distribution) A random variable X is said to be a Ricean random 
variable with parameters m and s2, if its probability density function fX (x) is of the form

 f x xe I
x

X
x( ) ( )/= È

ÎÍ
˘
˚̇
◊ Ê

ËÁ
ˆ
¯̃

- +1
2

2
0 2

2 2 2

s

m

s

m s  
 

  (7.17)

where, I e d0

0

1
( ) cosa

p
qa q

p

D Ú  (7.18)

i.e., I0 ( )a  is the modified Bessel function of the first kind and zeroth order.
The shape of Rice density function (see Fig. 7.7(b)) is somewhat similar to that of a Rayleigh density 

function. In fact, as can be seen from Eqs (7.16) and (7.17), the Rice density function simplifies into the 
Rayleigh density function when the parameter m = 0.
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If a bandpass signal has Gaussian random processes with the same variance but different non-zero mean 
values as its in-phase and quadrature components, it can be shown that its envelope will have a Ricean 
distribution. Ricean distribution, just like Rayleigh distribution, is widely used in the study of fading channels. 
The sum of a sinusoid and a narrowband noise can be shown to have a Ricean distribution for its envelope.

(b) Discrete Random Variables

(i) Bernoulli Random Variable A discrete random variable, X, is said to be a Bernoulli random variable 
provided it takes the values 1 and 0 with probabilities of P and (1–P). This random variable is quite 
useful in modeling a binary data generator and also in modeling the error pattern in the received binary 
data when the channel introduces random errors.

(ii) Binomial Random Variable A discrete random variable, X, is said to be a binomial random variable 
with parameters n and p if

 P k
n

k
p q k nk n kX =[ ] =

Ê

Ë
Á
ˆ

¯
˜ £ £-      ; 0  (7.19)

In fact, this gives the number of 1’s in a sequence of 1’s and 0’s generated by n independent Bernoulli 
trials. Therefore, it may be used to model the total number of erroneous bits in the received data when 
a sequence of n bits is transmitted over a channel having a bit-error probability of p.

Gaussian density function is given as

f x eX
x m( ) ( ) /

=
- -

1

2 2

22 2

ps

s

show that 
1

2
2

ps

 is a normalization factor required to make the total area under the density function 

equal to 1.

Example 7.4

Let ( )x m z-     D  \ =dx dz

f z e dzX
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È
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Now, let A e dzz    D -Ú
2 22/ s .

Then it is enough if we show that

A = 2 2
ps

\ consider A e dzdwz W2 22 2 2= - +ÚÚ ( )/ s

If we now put z r= cosq  and w r= sin ,q  dzdw rdrd= q  and ( ) .z w r
2 2 2
+ =

Hence we get
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00

2

0

2

2

0

2 2 2 2= =
È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í
Í

- -ÚÚ Ú Ú  / /s

p p

sq q
˘̆

˚
˙
˙



302 Analog Communication

Now, put 
r

v

2

22s
  D  Then dv

rdr rdr
= =

2

2 2 2s s

 \ A e dvv2 2

0

22 2= =-Úps ps   \ =A 2 2
ps

Hence the factor 
1

2 2
ps

 in fX (x) is a normalization factor.

FUNCTIONS OF A SINGLE RANDOM VARIABLE
7.5

Consider a function g(x) of the real variable x. Let us also consider a random variable X whose range 
is included in the domain of g(x). Then, for every outcome, x, of the random experiment, X(x) is a real 
number which is in the domain of the function g(x). Thus, we may talk of the function g(X ), a function 
of the r.v. X. If we can call this as another random variable Y then

 Y = g(X ) (7.20)

We can then talk of the CDF, FY( y) of the r.v. Y.

 F y P S g yY ( ) : ( ( ))= Œ £[ ]x xX  (7.21)

Now, for Y to be a r.v. for every y, the set of values of x such that g(x) £ y must consist of the unions 
and intersections of a countable number of intervals. This means that for every y,

Y = g(x)

must have a countable number of solutions. Then only

g(X(x)) £ y

will be an event. If the function g(x) belongs to such a class, and further, if at every x g yi =
-1( ) , a 

derivative exists for the function g(x), and the derivative is not zero then it can be shown that the density 
function of Y is given by

 f y
f x

g x
Y

X i

ii

( )
( )

( )
=

¢
Â  (7.22)

If Y = X2, find fY(y) in terms of fX(x).
Example 7.5

y

y

0 xx=–√y x=+√y

Fig. 7.8 y = x2

Let us consider the set of values {xi} of x which are such that for a given y, g(xi) £ y for all i.
For y < 0, there does not exist any value of x for which g(x) < y, i.e., x2 < y. So let us consider only 

y ≥ 0. For this case x2 £ y is true for

- £ £y x y .
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\ F y P y y P y P yY ( ) = - £ £È
Î

˘
˚ = £È

Î
˘
˚ - £ -È

Î
˘
˚X X X

\ F y F y F y yY X X( ) ;= ( ) - -( ) > 0

To get the corresponding density function, f yY ( ) , we have

f y
d

dy
F y y

f y f y y

Y Y

X X
( ) ( )= =

( ) + -( )È
Î

˘
˚ >

1

2
0

0

for   

                      for  

   

y <

Ï

Ì
Ô

Ó
Ô

0

MEAN, VARIANCE AND CHARACTERISTIC FUNCTION
7.6

7.6.1 Mean

The mean, or the expected value of a random variable X with the density function fX(x), is defined as

 E xf x dxXX{ } ÚD ( )  (7.23)

The expected value, or mean, will be just a number and it is generally denoted by either mX or hX.
For a discrete r.v., we had already seen that

 f x p x xX i i

i

( ) ( )= -Â d  (7.24)

Substituting this for fX(x) in Eq. (7.23), we get

 E p xi i

i

X{ } = Â ,  where p P xi i= =[ ]X  (7.25)

A r.v. X has a density function fX(x) given by

f x e u xX
x( ) ( ) = -2 2

Find the expected value of this random variable.

Example 7.6

h
X

x xx e u x dx xe dx= = =- -Ú Ú. ( )2 2
1

2
2 2

0

A loaded die produces the numbers 1, 2, 3, 4, 5 and 6 with probabilities 0.10, 0.12, 
0.12, 0.14, 0.20 and 0.32 respectively. Find the mean value.

Example 7.7

h = = ¥ + + + + +

=

Â i pi
i

. ( . ) ( . ) ( . ) ( . ) ( . ) ( .
1

6

1 0 10 2 0 12 3 0 12 4 0 14 5 0 20 6 0 322

4 18

)

.=  
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7.6.2 Variance

The variance of a random variable X with expected value hX, is defined as

Var X X X X X[ ] = = ÍÎ ˙̊ = ÍÎ ˙̊ - [ ]+ = [ ]-s h h h h2 2 2 2 2 22E E E E
X X X X

( )-

\ s2 2
2

= [ ]- [ ]{ }E EX X  (7.26)

Since E
X

( )X -h 2 0ÍÎ ˙̊ ≥ ,  it follows that

E EX X2
2

[ ] ≥ [ ]{ }
Discrete r.v In this case,

 s h2 2D  p xi i X

i

( )-Â  where, p P xi i= =[ ]X  (7.27)

Note: The positive square-root of the variance is referred to as the ‘standard deviation’.

Find the mean value and the variance of a random variable X which is uniformly 
distributed between x = a to x = b.

Example 7.8

(a) Mean hX X

a

b

x f x dx x
b a

dx
b a

= =
-

=
+

Ú Ú. ( ) .
( )

1

2

(b) Variance s h2
2

2
2

= -[ ] = [ ] [ ]{ }Ú E dx E E
X

X X X -

=
-

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
-

+È

Î

Í
Í

˘

˚

˙
˙

=
-

Ú x
b a

dx
b a b a

a

b

2
2 21

4 12
.
( )

( ) ( )

\ s2
2

12
=

-( )b a

Find the variance of a Bernoulli random variable.
Example 7.9

A Bernoulli r.v. takes the values 1 and 0 with probabilities p and (1 - p)

\ hX p p p= + - =1 0 1. .( )

E p p pX 2 2 21 1 0ÍÎ ˙̊ = + - =. ( ).

\ s2 2
2

2 1= [ ] [ ]{ } = - = - E E p p p pX X- ( )

Properties of Mean and Variance Let c be a constant and X be a random variable with mean hX . Then 
mean will have the following properties.

1. E[cX ] = c E[X ] = chX

2. E[c] = c
3. E[X + c] = E[X ] + c = hX + c
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If the r.v. X has a variance s X
2  and if c is a constant, the following are the properties of variance.

 1. Var[c.X ] = c2Var[X ] = c2s X
2

 2. Var [c] = 0
 3. Var[X + c] = Var[X ] = s X

2

7.6.3 Characteristic Function of a Random Variable

Definition The characteristic function of a random variable X is denoted by fX ( )w  and is defined as

 fX X
j xf x e dx( ) ( )w w= Ú  (7.28)

If we now define F D( ) ( )s f x e dxX
sx   Ú

So that F( ) ( )j Xw w= f  of Eq. (7.28)

Taking the first derivative of F( )s  with respect to s, we get

 F( ) ( ) ( )1 s xf x e dx E esx s= = [ ]Ú X X X  (7.29)

If we take the nth derivative with respect to s, we get

 F( ) ( ) ( ) ( )n n
X

sx n ss x f x e dx E e= = ( )È
Î

˘
˚Ú X X  (7.30)

If we put s = 0 in Eqs (7.29) and (7.30), we find that

 F F( ) ( )1 0   first derivative of ( ) with respect to  at th= s s ee origin = [ ]E X  (7.31)

 F F( ) ( )n 0    derivative of ( ) with respect to  at the th= n s s oorigin = [ ]E nX  (7.32)

i.e., derivatives of various orders of the moment generating function F( )s  at the origin give the moments 
of various orders for the r.v. X.
Note: Thus, the characteristic function of an r.v. X helps us in determining moments of various order 
for X in an easy manner.

Discrete Random Variable If X is a discrete r.v. which takes values xi with probabilities pi = 1, 2, 3, ..., 
then Eq. (7.28) reduces to
 fX i

j x

i

p e i( )w w= Â  (7.33)

Show that the characteristic function of a Gaussian r.v. X with mean value m 
and variance s2 , is given by

fX
jme( ) ( . )w w s w

=
-0 5 2 2

Example 7.10

The density function fX(x) is given by

f x eX
x m( ) ( ) /

=
- -

1

2 2

22 2

ps

s
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Let us transform the r.v. X into another r.v. Y by putting

Y = (X-m)/s

Then, E E
m

Y X[ ] = [ ]- =
1

0
s s

.  \ Mean of Y is zero

Var[ ]
( )

Y Y Y Y
X

= [ ] [ ]{ } = [ ] = È

ÎÍ
˘

˚̇
=E E E E

m
2

2
2

2
1-

-

s

\ Y = N(0, 1); and its density function is given by

f y e dyY
y( ) /= -Ú

1

2

2 2

p

FY
y sy sy ys e e dy e dy( ) ./ ( / )= =- -Ú Ú

1

2

1

2

2 22 2

p p

But, sy y
s

y s- = - -
2

2
22

2

1

2
/ ( ) .

\ substituting this in the RHS of the above equation,

 FY

s
y s

s y ss e dy e e( )
( )

/ ( ) / )= =
- - -

È

Î
Í

˘

˚
˙ - -Ú

1

2

1

2

2
2

2 22

1

2 2 2

p p ÚÚ
È

Î
Í
Í

˘

˚
˙
˙

=dy es
2 2/  (7.34)

But Y
X

=

-m

s
 or X Y= +s m

 FX X
j y m j m

X
j y j jf x e dx e f x e dx E e e( ) ( ) ( )( )w w s w ws ws= = = [ ]+Ú Ú Y wwm (7.35)

Since FX
jE e( )w w= [ ]X , we may write: E e j

y
ws

s
wY[ ] = F ( )

But F
Y

e( ) /w w= - 2 2  from Eq. (7.34)

F
s

s ww
Y

e( ) = - 2 2 2/

\ from Eq. (7.35), we have

FX
j m j me e e( ) . / ( . )w w s w w s w= =- -2 2 2 22 0 5

Find the characteristic function of a Bernoulli random variable.
Example 7.11

The Bernoulli r.v. takes the values 1 and 0 with probabilities p and (1-p) respectively.

\ FX
j j jp e p e p e( ) . ( ).. .w w w w= + - = + -[ ]1 01 1 1

FUNCTIONS OF TWO RANDOM VARIABLES
7.7

Consider two random variables X and Y defined on the same probability space. The cumulative distribution 
functions, FX(x) and FY(y) defined as

FX(x) = P[X £ x] and FY(y) = P[Y £ y]
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are called marginal distribution functions and the corresponding density functions are called marginal 

density functions.
We may now define joint, or bivariate distribution function FXY(x, y) or F(x, y) of the two r.vs X and Y as

 F x y P x y, ,( ) £ £[ ]    D X Y  (7.36)

The joint density function may be defined as

 f x y
F x y

x y
,

( , )
( )

∂

∂ ∂
    D

2

 (7.37)

Then, since F x F y( , ) ( , )= - 0  and F( , ) =1, we have

 F x y f d d

yx

, ( , )( ) = ÚÚ a b a b  (7.38)

The marginal distribution functions and density functions can be obtained from the joint distribution 
and density functions respectively as follows

 F x F x F x
x XY
( ) ( ) ( , )= =  and F y F y F yy XY( ) ( ) ( , )= =  (7.39)

and

 f x f x y dy f y f x y dxXY XY( ) ( , ) ; ( ) ( , )= =Ú Ú  (7.40)

Discrete Random Variables If X and Y are two discrete random variables defined on a certain probability 
space, and if they take values xi and yk with probabilities pi and qk respectively and given by

 p P xi i= =[ ]X  and q P yk k= =[ ]Y  (7.41)

then their joint probability pik is given by

 p P x yik i k= = =[ ]X Y   and   (7.42)

Of course, just like the marginal probabilities, the joint probabilities also add up to a value 1,

i.e., pik
ki

ÂÂ =1 (7.43)

Also,

 p pi ik

k

=Â  and p pk ik

i

=Â  (7.44)

Conditional CDFs and Conditional PDFs Let X and Y be two random variables defined on the same 
probability space. The conditional CDF of Y given X £ x, a real number, is denoted by F y X xY ( | )£  
and is defined by

 F y x
P x y

x

F x y

F x
Y

X

( | )
, ( , )

( )
X

X Y

P X
£

£ £{ }
£{ }

=D  (7.45)

\ f y x
y
F x y

F x
Y

X

( | )

( , )

( )
X £ =

∂

∂
[ ]

 (7.46)
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The PDF of Y given X = x, is represented by f y xy x| ( | )  or, f y x( | )  and is given by

 f y x
f x y

f x
( | )

( , )

( )
=  (7.47)

Similarly,

 f x y
f x y

f y
( | )

( , )

( )
=  (7.48)

If the r.vs X and Y are statistically independent,

 f y x
f x y

f x
f y( | )

( , )

( )
( )= =  \ = ◊f x y f x f y( , ) ( ) ( )  (7.49)

Discrete r.vs If X and Y are discrete type of random variables with P x pi iX =[ ] =  and P y qk kY =[ ] = ,

and P x y pi k ikX Y= ={ } =,  with say i = 1 to M and k = 1 to N, then

 P y x
P x y

P x

p

p
k i

i k

i

ik

i

Y X
X Y

X
= ={ } =

= ={ }
={ }

=|
,

 (7.50)

Conditional Mean and Variance The conditional mean of the r.v. Y given that X = x, is represented by 
hy|x and is given by

 hy x E x yf y x dy| | ( | )= [ ] = ÚY  (7.51)

The conditional variance is represented by s
y x|
2  and is given by

 s h hy x y x y x y xE x y f y x dy| | | |( ) | ( ) ( | )2 2 2= -È
Î

˘
˚ = -ÚY  (7.52)

Independence, Uncorrelatedness and Orthogonality

 (i) If two r.vs X and Y are statistically independent,

 f y x f y( | ) ( );=  f x y f x( | ) ( )=  and f x y f x f y( , ) ( ). ( )=  (7.53)

 (ii) The co-variance of the two random variables X and Y is defined as

 
C E

E E E

XY X Y
= - -[ ]

= [ ]- [ ] [ ]

( )( )X Y

XY X Y

h h

 (7.54)

  The correlation coefficient rXY of two r.v.s X and Y is

 r
s s

XY

XY

X Y

C
D  (7.55)

  The random variables x and y are said to be uncorrelated if their covarience is zero, i.e.,

 C
XY

= 0  i.e., when r
XY

= 0 or E E EXY X Y[ ] = [ ] [ ] (7.56)

 (iii) Random variables X and Y are said to be orthogonal, if

E XY[ ] = 0



Probability and Random Processes 309

JOINTLY GAUSSIAN RANDOM VARIABLES
7.8

Definition Two random variables X and Y are said to be jointly Gaussian if their joint density function 
is of the form

 f x y
x m y m x

XY ( , ) exp
( )

( ) ( ) (
=

-
-

-

-
+

-
-

1

2 1

1

2 1

2

1 2
2 2

1
2

1
2

2
2

2
2

ps s r r s s

r -- -Ï
Ì
Ó

¸
˝
˛

È

Î
Í
Í

˘

˚
˙
˙

m y m1 2

1 2

)( )

s s
 (7.58)

Properties

1.  If X and Y are jointly Gaussian then (a) they are individually Gaussian, and (b) the conditional  
densities f (x | y) and f (y | x) are also Gaussian.

2. If X and Y are individually Gaussian, they need not necessarily be jointly Gaussian.
3. Jointly Gaussian r.v.s are completely characterized by their mean vector and covariance matrix.
4. For jointly Gaussian r.v.s, uncorrelatedness implies statistical independence.

CENTRAL LIMIT THEOREM
7.9

The central limit theorem states that if (X1, X2,...., Xn) are independent random variables with means (m1, 
m2,...., mn) and variances ( , , , ...., )s s s s1

2
2
2

3
2 2

n , then the cumulative distribution function of the random 
variable

X
i i

ii

n
m

n

-Ê

ËÁ
ˆ

¯̃=
Â

 s
1

converges to that of a Gaussian random variable having a mean of zero and a variance of 1.
In case the n random variables are not only independent, but are also identically distributed with mean 

of each = m and variance of each = s2 then, the CDF of their mean converges to the CDF of a Gaussian 
random variable having a mean of m and a variance of (s2/n).

It is as a consequence of a central limit theorem that the sum of the noises produced by a very large 

number of independent sources tends to have Gaussian distribution.

Random variable Y = sin X, where X is uniformly distributed between -p/2 to 
+p/2. Find the density function of Y.

Example 7.12

FY
j y j x j x

XE e E e e f x dx( ) ( )sin sinw w w w= [ ] = [ ] = Ú

Since X is uniformly distributed over -p/2 to + p/, we have,

f x
x

X ( )
;

;

=
- £ £

Ï

Ì
Ô

Ó
Ô

1

2 2

0

p

p p
    

     otherwise

\ FY
j xe dx( ) sin

/

/

w

p

w

p

p

=
-
Ú

1

2

2
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Since y x= sin , dy xdx= cos  and when x = -p/2, y = -1 and when x = p/2, y = 1

\ FY
j ye

y
dy( ) .w

p

w=
--

Ú
1 1

1 2
1

1

 But FY
j y j y

YE e e f y dy( ) ( )w w w= [ ] = Ú

\ we find that f y
y

Y ( ) =
-

1

1 2p
 for |y| £ 1 and zero otherwise.

X and Y are two independent zero-mean Gaussian random variables with 
variance s2. We define another pair of random variables r and q in terms of X and Y as follows

r = +X Y2 2 ; q =
-tan 1( / )Y X  where, q < p

Obtain the joint density function of r and q. Also, obtain their marginal densities.

Example 7.13

f x eX
x( ) /

=
-

1

2 2

22 2

ps

s  and f y eY
y( ) /

=
-

1

2 2

22 2

ps

s

Since X and Y are given to be independent r.v.s, their joint density is

f x y eXY
x y( , ) ( )/

=
- +

1

2 2
22 2 2

ps

s

Now, we are given that r x y= +
2 2  and q =

-tan ( )1 y x/

\ one solution is

x r
1

= cosq  and y r
1

= sinq

Then, the Jacobian J r

x

r

x

y

r

y

r

r
r( , )

cos sin

sin cos
q

q

q

q q

q q
=

∂

∂

∂

∂

∂

∂

∂

∂

=
-

=

1 1

1 1

\ f r rf x y
r

e rr xy
r

,
/( , ) ( , ) ;

q
sq

ps
q p= = < <

-

1 1 2
2

2
0

2 2
and

This is their joint density function. To obtain the marginal density function of r we integrate f rr, ( , )q q  
for all values of q from -p to +p. Similarly, to get the marginal density of q, we integrate f rr, ( , )q q  
w.r.to r from r = 0 to r = .

\ f r f r d
r

e rr r
r( ) ( , ) ;,
/= = < <

-

-Ú q

p

p

sq q
s2

22 2
0

f f r drrq q
q q

p
q p( ) ( , ) ;,= = <Ú

0

1

2

\ r has Rayleigh density function while q is uniformly distributed between -p and +p. Also, since 
f r f r fr r, ( , ) ( ). ( )q q q= q , we find that r and q are statistically independent.
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RANDOM PROCESSES
7.10

Earlier, in Section 7.4, we had defined a random variable 
X as the rule according to which we could assign a real 
number to each outcome, x, of a random experiment. 
Thus, we define the random variable as a function of x 
and denoted it by X(x), or simply, by X. Now, if with 
every outcome x of a random experiment, we associate a 
time signal instead of a number, we get a family of time 
signals, each one associated with one outcome x and this 
family of time signals is called a random process and is 
shown in Fig. 7.9.

Thus, the random process is a function of two 
variables, time t and outcome x; and is therefore denoted by X(t, x). However, for notational simplicity, 
we generally omit the x and represent a random process simply by X(t).

Now, if t Œ R, the set of all real numbers, the random process is called a continuous random process 
and if t Œ I, the set of all integers, the process is called a discrete random process. We shall be discussing 
continuous random processes only. Hence, unless specifically stated otherwise, by a ‘random process’, 
we mean only a continuous random process.

From the foregoing, the following is clear:

(a)  When x is fixed and t is a variable, X(t, x) represents a single time signal corresponding to that 
x, or what is generally called, a single realization of the process.

(b)  When t is fixed and x is a variable, X(t, x) represents a set of real numbers (as shown in Fig. 7.9), 
one for each x and hence X(t, x) in this case, is just a random variable.

(c) When both t and x are fixed, X(t, x) represents a mere number.
(d) When both t and x are variables, X(t, x) represents a family of time signals and is a random process.

A simple example of a random process is perhaps a sinusoid with a random phase.

7.10.1 First- and Second-order Statistics

Since the random process becomes a random variable when t is fixed, we can talk about the distribution 
and density functions of a process in terms of those of a random variable. For a particular fixed value 
of t, X(t) is a r.v. and its distribution is

 F (x, t) = P[X(t) £ x] (7.59)

The derivative with respect to x of this first-order distribution function, F(x, t) of the process X(t),

 f x t
x
F x t( , ) ( , )=

∂

∂
[ ] (7.60)

is referred to as the first-order density function of the process X(t).
On the same lines, we define the joint distribution function of the random variables X(t1, x) and 

X(t2, x) obtained by considering the process at the two fixed instants of time t1 and t2, as the second-
order distribution function and it is

 F (x1, x2; t1, t2) = P[X(t1) £ x1, X(t2) £ x2] (7.61)

The second-order density function is

 f x x t t
x x

F x x t t( , ; , ) ( , ; , )1 2 1 2

2

1 2
1 2 1 2=

∂

∂ ∂
[ ] (7.62)

x4

x3

x2

x1

D

C

B

A

0 t t

Fig. 7.9  Random processes as family of time 
signals, one for each x
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Of course, as usual, we must have the first-order statistics from the second-order statistics; i.e.,

 f x t F x t t( , ) ( , ; , )1 1 1 1 2[ ] and f x t f x x t t dx( , ) ( , ; , )1 1 1 2 1 2 2= Ú  (7.63)

The Mean Proceeding on the same lines, we define the mean of the random process X(t) as the mean 
of the r.v. X(t)

\ hX t E t x f x t dx( ) [ ( )] . ( , )= = ÚX  (7.64)

So, the mean of X(t) is a deterministic function of time and at any instant of time t0, it equals the 
mean of the random variable X(t0).

The Auto-correlation The auto-correlation R t t
X
( , )1 2  of a random process X(t) is a deterministic function 

of two variables t1 and t2 and is defined as the expected value of the product of the random variables 
X(t1) and X(t2).

R t t E t t
X
( , ) ( ) ( )1 2 1 2= [ ]X X  if X(t) is a real process

 = Ú Ú x x f x x t t dx dx1 2 1 2 1 2 1 2( , ; , )  (7.65)

And, if X(t) is a complex valued process,

 R t t E t t
X
( , ) ( ) ( )1 2 1 2= [ ]X X*  (7.66)

where, the * indicates complex-conjugation.

The Auto-covariance The auto-covariance of the process X(t) is the co-variance of the two random 
variables X(t1) and X(t2) and is denoted by C t t

X
( , )1 2

\ C t t E t t t t
X X X
( , ) ( ) ( ) ( ) ( )1 2 1 1 2 2= -[ ] -[ ]{ }X Xh h  for a real process,

 = -R t t
X X Y
( , )1 2 h h  for a real process

and  C t t E t t t t
X X X

( , ) ( ) ( ) ( ) ( )1 2 1 1 2 2= -[ ] -[ ]{ }*X Xh h  for a complex process,

\ C t t R t t t t
X X X X
( , ) ( , ) ( ) ( )*
1 2 1 2 1 2= -h h  for a complex process (7.67)

Note:

1. R t t E t
X
( , ) ( )= Í

Î
˙
˚

X
2 = Average power in X(t)

2. C t t E t E t
X
( , ) ( ) ( )= [ ]- [ ]{ }X X2

2
= variance of X(t).

Cross-correlation and Cross-covariance If we have two random processes X(t) and Y(t), their cross-
correlation is defined as

 R t t E t t R t t
XY YX

( , ) ( ) ( ) ( , )*
1 2 1 2 2 1= È

Î
˘
˚ =

*X Y  (7.68)

The cross-covariance of the two processes is defined as

 C t t E t t t t
XY X Y

( , ) ( ) ( ) ( ) ( )1 2 1 1 2 2= -[ ] -[ ]{ }*X Yh h

\ = -R t t t t
XY X Y

( , ) ( ) ( )*
1 2 1 2h h  (7.69)

(In the above two equations, complex conjugation can be ignored if the processes are real valued).
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7.10.2 Independent Processes

The two processes X(t) and Y(t) are said to be statistically independent processes if the set of random 
variables {X(t1), X(t2), . . . , X(tn)} and {Y Y Y( ), ( ),.... ( )t t t

n1 2
¢ ¢ ¢ } are mutually independent for all values of 

t t t
n1 2, ,...., , t t t

n1 2
¢ ¢ ¢, , ....  and all integer values of n.

Uncorrelated Processes Two processes X(t) and Y(t) are said to be uncorrelated processes if

 C t t
XY

( , )1 2 = 0 for all values of t1 and t2 (7.70)

Orthogonal Processes Two processes X(t) and Y(t) are said to be orthogonal processes if

 R t t
X
( , )1 2  = 0 for all values of t1 and t2 (7.71)

Note: If two processes are orthogonal and in addition if any one of them, or both, have zero mean, then 

the two processes will be uncorrelated.

X( ) ( )t A t= +cos w f where f is a r.v. uniformly distributed between -p  and +p. 
Determine the mean and auto-correlation of X(t).

Example 7.14

 (i) hX t E t t f d( ) [ ( )] ( ). ( )= = ÚX X f f f

= +Ú
A

t d
2p

wcos( )f f  = 0

 (ii) R t t E t t
X
( , ) ( ) ( )1 2 1 2= [ ]X X  = E A t t2

1 2cos( ) cos( )w w+ + +[ ]f f

= + + +[ ]A E t t2
1 2cos( ) cos( )w wf f

= - + + +[ ]
1

2
22

1 2 1 2A E t t t tcos ( ) cos( )w w w f

= -

1

2
2

1 2A t tcos ( )w

If X(t) = aej tw ,  determine its auto-correlation.

Example 7.15

R t t E t t
X
( , ) ( ) ( )1 2 1 2= [ ]*X X  = E e ej t j ta aw w

1 2. * -È
Î

˘
˚

= Í
Î

˙
˚

-E e j t ta
2

1 2w ( )

STATIONARITY, AUTO-CORRELATION AND POWER SPECTRUM
7.11

As we have seen till now, the statistical properties of a random process, like its mean, auto-correlation 
etc., are in general dependent upon time. However, there is an important class of random processes, whose 
statistical properties are independent of time. These processes are called stationary processes.

There are different levels of stationarity—strict-sense stationarity, kth order stationarity, wide-sense 
stationarity, etc.
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Definition A strict-sense stationary process X(t) is one whose density function of any order is independent 
of time; i.e.,

 f x x x t t t f x x x t tX n n X n( , ,...., ; , ,...., ) ( , ,...., ; ,1 2 1 2 1 2 1 2= + Œ + Œ,,...., )tn+ Œ  (7.72)

For any integer n and any real number Œ.
If Eq. (7.72) is true only up to n £ K then the process X(t) is said to be Kth order stationary.
Strict stationarity is a very restrictive condition and most of the processes are not stationary in the 

strict sense. Wide-sense stationarity, on the other hand, is a less restrictive one, and is satisfied by many 
of the processes of interest.

Definition A random process X(t) is said to be wide-sense stationary (i.e., WSS), if it satisfies the 
following conditions:

 (i) Its mean, h
X
t E t( ) ( )= [ ]X  is independent of time.

 (ii)  Its auto-correlation function R t t
X
( , )1 2  is a function only of t = -( )t t1 2  and not of t1 and t2 

individually.

\ R t t R
X X
( , ) ( )1 2 = t = +[ ]*E X t X t( ) ( )t

When t = 0, R E t
X
( ) ( )0

2
= Í

Î
˙
˚

X = average power of X(t), and the power is independent of time.

As we will henceforth be dealing only with WSS processes, unless specifically stated otherwise, the 

term ‘process’ would be assumed to mean a WSS process only.

Properties of Auto-correlation Function

 (i) It is deterministic.
 (ii) It takes maximum value when t = 0
 (iii) R

X
( )0 = average power of the process.

 (iv) For real, process X(t), R R
X X
( ) ( )- = +t t , i.e., R

X
( )t  has even symmetry

 (v) For a complex process R R
X X
( ) ( )- =

*t t  where * denotes complex conjugation.

Show that the random process X(t) = +A tcos( )w f , where f is a r.v. uniformly 
distributed over -p to +p, is WSS.

Example 7.16

It has already been shown in Example 7.14 that h
X

t( ) = 0  and hence, is independent of time.
It has also been shown that its auto-correlation R t t

X
( , )1 2  is given by

R t t A t t
X
( , ) cos ( )1 2

2
1 2

1

2
= -w

\ R t t
X
( , )1 2  is a function only of t t

1 2
- = t  and not of the individual values of t1 and t2.

Thus, X(t) satisfies the two conditions required to be satisfied by a process to be WSS.

7.11.1 Ergodicity

We have seen that the mean hX  of a random process is given by the ensemble average E tX ( )[ ] of the 
process. Referring to Fig. 7.8, the ensemble average E tX ( )[ ] is the mean of the values A, B, C and D, 
i.e., the average of the values of X(t, x) at a fixed t and for all possible values of x. Hence, to find the 
ensemble average of the process X(t), we should have all of its realizations available to us. Since the 
auto-correlation also involves ensemble average, its determination also requires all the realizations of 
X(t) to be available. In fact, determination of any statistical average of a process requires that all the 

realizations of it be available.



Probability and Random Processes 315

However, in practice, whenever we observe a random process, it is only one realization of it which we 
observe. In practice, therefore, it is not possible for us to have all the realizations of the process, i.e., it is 

not possible in practice to determine the ensemble average of a process. The only thing we can possibly do 
is to try to determine the time-average of the single realization that we observe. Even this single realization 
also we can observe only for a limited period of time, certainly not from minus infinity to plus infinity. 
However, it is pertinent to examine whether we can atleast estimate the ensemble averages from the time-
averages. Random processes for which the time-averages equal the ensemble averages, are known as 

‘ergodic processes’. However, it must be noted that a process may be ergodic for statistics up to a particular 
order only. For instance, the process may be ergodic in mean but may not be ergodic in auto-correlation.

Show that the process X(t) = +A t
c
cos( )w0 q  where q is uniformly distributed 

over -p to +p, is ergodic in mean and auto-correlation.

Example 7.17

We have already seen in Example 7.16 that it is WSS and that

h
X
t E t( ) ( )= [ ]X

And that

R A
X c
( ) cost wt=

1

2
2

Now, we shall find the hX and R
X
( )t  by time-averaging and show that we get the same result for 

hX  and R
X
( )t .

h w
w

w
X

T
c

T

T

T

c

TT
A t dt

A

T
t= + = +

-
-ÚLim Lim

1
0

2

2

0
0cos( ) sin( )

/

/

/
q q

22

2

0
T /È

Î
Í

˘

˚
˙ =

\ it is ergodic in mean

R
A

T
t t dt

X
T

c

T

T

( ) cos{ ( ) }cos( )

/

/

t w t w= + + +
-
ÚLim

2

0

2

2

0q q

 =
È

Î
Í
Í

˘

˚
˙
˙

-
-
ÚLim Lim

T

c

T

T

T

c
A

T
dt

A

T

2

2

2

2
2

2
2cos cos cos sin

/

/

q a b qq sin cos

/

/

a b
-
Ú

È

Î
Í
Í

˘

˚
˙
˙T

T

dt

2

2

 -
È

Î
Í
Í

˘

˚
˙
˙

+
-
ÚLim Lim

T

c

T

T

T

c
A

T
dt

A

T

2

2

2
2

2

2
2sin cos sin sin

/

/

q a b qq sin sin

/

/

a b
-
Ú

È

Î
Í
Í

˘

˚
˙
˙T

T

dt

2

2

where, a w t  D 0 ( )t +  and b w= 0t

Replacing sin2q  of the last term by ( cos )1 2- q  and simplifying, all the terms vanish except

Lim
T

c

T

T
A

T
dt

-

-Ú
2

2

2

2
cos( )

/

/

a b

But this equals A
c
2

0
cosw t

Hence the expected value and time average value of X X( ) ( )t t+[ ]t  are same.
\ the given X(t) is ergodic in auto-correlation
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7.11.2 Power Spectral Density of a Random Process

Definition The power spectral density, or simply, the power spectrum of a random process (real, or 
complex), is the Fourier transform of its auto-correlation. (This is generally referred to as Wiener–Khinchin 
theorem.)

 S f R e dX X
j f( ) ( )= -Ú t t
p t2  (7.73)

\ R S f e dfX X
j f( ) ( )t
p t= Ú 2  (7.74)

Since in general, R R
X X
( ) ( )- =

*t t , S fX ( ) , the PSD is always a real valued function of frequency. 

Further, if X(t) is a real process, R
X
( )t  is real and also even with respect to t. Hence its Fourier transform 

S fX ( )  will also be real and even.
If X(t) and Y(t) are two processes, we define their cross-correlation and cross-spectral density as follows:

 Cross-correlation = R E t t
XY

( ) ( ) ( )t t    D X Y+ÍÎ ˙̊*  (7.75)

We now define the cross-power spectrum, or cross-spectral density S fX ( )of X(t) and Y(t) as the 
Fourier transform of R

XY
( ).t

i.e, S f R e dXY XY
j f( ) ( )= -Ú t t
p t2  (7.76)

and R S f e dfXY XY
j f( ) ( )t
p t= Ú 2  (7.77)

Since R R
XY YX

( ) ( )- =
*t t , the cross-spectral density is, in general, a complex function of f even if both 

the processes X(t) and Y(t) are real valued.

Determine the power spectrum of the processes
X(t) = +A t

c
cos( )w q0 ; q is uniformly distributed over (-p, +p).

Example 7.18

In Example 7.17 we obtained the ACF of this X(t) as

R
A

X

c( ) cost wt=
2

2

\ the power spectrum, which is the Fourier transform of R
X
( )t  is

S f
A

te dX
c j f( ) cos= -Ú
2

0
2

2
w t

p t

But we know that F cos ( ) ( )w t d d0 0 0

1

2
[ ] = + + -[ ]f f f f

\ S f
A

f f f fX
c( ) ( ) ( )= + + -[ ]
2

0 0
4

d d
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7.11.3 Gaussian Processes

A random process X(t) is said to be a Gaussian random process, if the random variables X(t1), X(t2), ..., 
X(tn) are jointly Gaussian for all n and all t1, t2, ..., tn.

Properties of Gaussian Processes

 (i) A Gaussian process is completely described by its mean and auto-correlation.
 (ii) If a Gaussian process is wide-sense stationary then it is stationary in the strict sense too.
 (iii) If a Gaussian process is given as input to a LTI system, the output process also is Gaussian.
 (iv) If two processes which are jointly Gaussian are uncorrelated then they are statistically independent.

Gaussian processes are very important in communication engineering. This is mainly because of the 
fact that thermal noise, which plays a key role in communications, can be closely modeled by a Gaussian 
process. In addition, some of the information sources also can be modeled as Gaussian processes.

White Noise Process

Definition A process X(t) whose power spectral density is a constant for all frequencies, is called a 
white process.

The PSD of a white process is sketched in Fig. 7.10. As shown in 
the figure, it has a constant value N0/2 for all frequencies.

 Since the area under any PSD curve is equal to the total average 
power of the process, a constant PSD makes a white process to have 
an infinite average power. Thus, in practice, there cannot be any source 
producing a perfect white process. Every so-called white process has 
a power spectral density that tends towards zero at some frequency, although it might remain constant 
(or almost constant) up to that frequency. Although no source can produce a white process, the concept 
of a ‘white process’ is, nevertheless, quite useful. This is because, if the PSD is constant up to a 
very very high frequency which is far beyond the frequencies at which any practical communication 
system operates, then in so far as our communication systems are concerned, we can safely assume 
that the PSD of the process is absolutely constant, i.e., that the process is a white process. It is in this 
sense that we say that thermal noise is white, although we know that its PSD tends to fall off beyond 
approximately 1012 Hz.

Auto-correlation of a White Process Since the auto-correlation is the inverse Fourier transform of the 
power spectral density, a white process with a PSD of N0/2 will have an auto-correlation of

 R
N

n
( ) ( )t d t= 0

2
 (7.78)

Since the auto-correlation is an impulse function, it means that no two samples of a white process will 
have any correlation, however close (in time) the two samples may be. That is why we call the white 
process as ‘white noise’.

LTI SYSTEMS WITH RANDOM PROCESSES AS INPUTS
7.12

In this section, we will be discussing how the mean and auto-correlation of the output process may be 
determined in terms of those of the input process and the impulse response of the LTI system. Of particular 
interest is the relationship between the PSD of the output process and PSD of the input process. Before 
we can talk about the power spectrum of the output, it is of course necessary to examine whether the 
output process will also be stationary if the input process is.

f0

Sx(f)
N0/2

Fig. 7.10  PSD of a white 
process



318 Analog Communication

Definition Two processes X and Y are said to be jointly stationary if they 
are individually stationary and if their cross-correlation RXY(t1, t2) is a function 
only of t = (t1 - t2) and not individually of t1 and t2.

Let us give a stationary process X(t) as input to an LTI system with impulse 
response, h(t). Let the output process be Y(t). We shall now show that the 
input and output processes are jointly stationary and that

 (i) Mean of the output = h h
Y X

h t dt= Ú ( )  a constant independent of time. (7.79)

 (ii) Cross-correlation of input and output processes = = * -R R h
XY X

( ) ( ) ( )t t t  (7.80)

 (iii) Correlation of output process = = * * -R R h h
Y X
( ) ( ) ( ) ( )t t t t  (7.81)

(i) We know that

Y X X( ) ( ) ( ) ( ) ( )t t h t t u h u du= * = -Ú

Taking the expectation on both sides, we have

E t t E t u h u du
Y

Y X( ) ( ) ( ) ( )[ ] = = -
È

Î
Í
Í

˘

˚
˙
˙

Úh

= -[ ]Ú E t u h u duX ( ) ( )

Since X(t) is stationary,

= -[ ] = [ ] = =E t u E t
X

X X( ) ( ) h  a constant

\ E t h t dt t
X

Y ( ) ( ) .[ ] = =Úh a constant independent of   

(ii) R t t E t t
XY

( , ) ( ) ( )1 2 1 2    D X Y[ ]

R t t E t t u h u du
XY

( , ) ( ) ( ) ( )1 2 1 2= -
È

Î
Í
Í

˘

˚
˙
˙

ÚX X

= -[ ]Ú E t t u h u duX X( ) ( ) ( )1 2

If we now put u = -l,

R t t R t t u h u du R u h u du
XY X X

( , ) ( ) ( ) ( ) ( )1 2 2 2= - + = +Ú Ú t

= - = * -Ú R h d R h
X X
( ) ( ) ( ) ( )t l l l t t

X(t) Y(t)LTI System
h(t)

Fig. 7.11  An LTI system 
with a random 
process as input
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 \ = * -R t t R h
XY X

( , ) ( ) ( )1 2 t t  (7.82)

\ the cross-correlation is a function only of t = -( )t t1 2

(iii) To find the auto-correlation of the output process

R t t E t t
Y

( , ) ( ) ( )1 2 1 2   = [ ]Y Y

But Y X( ) ( ) ( )t u h t u du1 1= -Ú

\ R t t E u h t u du t
Y
( , ) ( ) ( ) ( )1 2 1 2= -

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í
Í

˘

˚
˙
˙

Ú X Y

= { } -Ú E u t h t u duX Y( ) ( ) ( )2 1   

= - -Ú R u t h t u du
XY

( ) ( )2 1   

If we put (t1 - u) = l, we get u t du d= - = -1 l l;

\ R t t R t t h d
Y XY

( , ) ( ) ( )1 2 1 2= - -Ú l l l   

\ R R h d R h
Y XY XY

( ) ( ) ( ) ( ) ( )t t l l l t t= - = *Ú    (7.83)

\R t t
Y
( , )1 2 , the auto-correlation of the output process Y(t) is a function only of t = -( )t t1 2 , but not 

individually of t1 and t2. As we have already shown that its mean is independent of t, it means that the 
process Y(t) is stationary (WSS). Further, we have already shown that R t t R

XY XY
( , ) ( )1 2 = t . Hence, 

it follows that the input and output processes are jointly stationary.

Substituting for R
XY

( )t  in Eq. (7.83) using Eq. (7.82), we get

R R h h
Y X
( ) ( ) ( ) ( )t t t t= * * -

7.12.1 Input and Output Spectra and Cross-power Spectrum

Equations (7.79), (7.81) and (7.80) give us the output mean, the output auto-correlation and the input-output 
cross-correlation respectively in terms of the input quantities and the impulse response of the LTI system.

Now, to get the relationships in the frequency domain, let us take the Fourier transforms of these 
equations.

(i) From Eq. (7.79), we have

 h h h
Y X X

h t dt= =Ú ( ) .  area under the impulse response.
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But we know that

h t dt h t e dt H f Hj ft
f

f
( ) ( ) ( ) ( )-

=
=Ú Ú=

È

Î
Í
Í

˘

˚
˙
˙

= =2
0

0
0p

 \ h h
Y X

H= ( )0  (7.84)

(ii) From Eq. (7.80), we have

R R h
XY X

( ) ( ) ( )t t t= * -

Taking Fourier transform on both sides and noting that

 F h H f( ) ( )-[ ] = *t  (7.85)

 S f S f H fXY X( ) ( ). ( )=
*

 (7.86)

(iii) From Eq. (7.81), we have

R R h h
Y X
( ) ( ) ( ) ( )t t t t= * * -

\ taking Fourier transform of this on both sides,

S f S f H f H fY X( ) ( ). ( ). ( )=
*

 
\ S f S f H fY X( ) ( ). ( )=

2
 (7.87)

This is a very important result and is used quite frequently in communication engineering.

An ideal differentiator is an LTI system. If a WSS process X(t) of mean hX  
and auto-correlation R

X
( )t  is given as input to it, determine the mean and the power spectrum of 

the output.

Example 7.19

From Eq. (7.84), we have h h
Y X

H= ( )0

But H(f) of an ideal differentiator = j2pf

\ H(0) = 0. It then follows that hY = 0
From Eq. (7.87), we have

S f S f H fY X( ) ( ). ( )=
2

H f H f H f j f j f f( ) ( ) ( ) .( )
2 2 22 2 4= = - =

* p p p

S f f S fY X( ) . ( )= 4 2 2p

Here, S f RX X( ) ( )= [ ]F t

\ S f f R f S fy X X( ) ( ) ( )= { }ÈÎ ˘̊ =4 42 2 2 2
p t pF
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REPRESENTATION OF BAND-LIMITED AND BANDPASS 
PROCESSES

7.13

7.13.1 Band-limited Processes

In the case of a deterministic signal x(t) which is lowpass and band-limited to say W Hz, i.e., X(  f  ) = 0 
for f W≥ , we know from the lowpass sampling theorem for deterministic signals, that if x(t) is sampled 

at regular intervals of Ts where T
W

s
£

1

2
, the samples so obtained completely represent the band-limited 

deterministic signal x(t) and that in fact x(t) can be expanded as follows in terms of these samples and 
an infinite set of sinc functions displaced in time with respect to each other by Ts.

 x t
W

f
x kT W t kT

s
s

k

s( ) ( ) ( );= -

=-

Â
2

2 sinc  f Ts s= 1/ , < <t  (7.88)

In the particular case when T
W

s
=

1

2
, this equation reduces to

 
x t x k W Wt k

k

( ) ( ) )= -

=-

Â /  sinc (2 2 ; < <t  (7.89)

The equality sign in the above equations holds at all instants of time, i.e., it holds point-wise.
Since the signals as well as noise that we have to deal with in communications are random processes, 

it will be of interest to examine whether a band-limited lowpass process also could be represented by its 
samples, or, in short, whether a similar lowpass sampling theorem exists in the case of random processes 
too. Fortunately, there is a similar theorem applicable to stationary lowpass band-limited processes, and 
it states as follows.

Theorem If X(t) is a stationary lowpass process which is band-limited to W Hz, i.e., if S fX ( ) = 0  for 

f W≥  Hz, and if it is sampled at regular intervals of Ts where T
W

s
=

1

2
, then

 E t kT W t kT
s

k

s
X X( ) ( ) ( )- -
È

Î

Í
Í

˘

˚

˙
˙
=

=-
Â  sinc 2 0

2

 (7.90)

What Eq. (7.90) says is that under the conditions stated in the theorem, X(t) is equal, in the mean-

square sense, to

X ( ) ( )kT W t kT
s

k

s

=-

Â - sinc 2

Proof To prove Eq. (7.90), let us first expand the LHS of it. Writing down term by term and assuming 

the process X(t) to be real, we get

E t kT W t kT E t E T
s

k

s
X X X X( ) ( ) ( ) ( ) (- -
È

Î

Í
Í

˘

˚

˙
˙
= [ ]-

=-
Â  sinc 2 2

2

2 )) ( ) ( )X kT W t kT
s

k

s[ ] -
=-
Â sinc 2

+ [ ] - -Â Â
k

s s

l

s s
E kT lT W t kT W t lTX X( ) ( ) ( ) ( )sinc sinc 2 2
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But E t R
X

X 2 0( ) ( )[ ] =  and E kT lT R kT lT
s s X s s

X X( ) ( )[ ] = -( ) .

Now, if we put m = l - k, l = m + k and LHS of Eq. (7.90) equal,

R R t kT W t kT
X X s

k

s
( ) ( ) ( )0 2 2- - -

=-

Â  sinc 

 + - - - -Â Â
k

X s

m

s s s
R mT W t kT W t kT mT( ) ( ) ( ) sinc  sinc 2 2  (7.91)

But 
k

X s

m

s s s
R mT W t kT W t kT mTÂ Â - - - -( ) ( ) ( ) sinc  sinc 2 2

 = - - - -Â Âsinc  sinc 2 2W t kT R mT W t kT mT
s

k

X s

m

s s
( ) ( ) ( )  (7.92)

However, since X(t) is a real process, its ACF has even symmetry

\ R mT R mT
X s X s
( ) ( )- =  (7.93)

Further, since X(t) is band-limited to W Hz, it means that its ACF, R t
X
( ) , which is a deterministic 

function, has a Fourier transform, S fX ( ) , which equals zero for all f W≥ . Hence, as per the lowpass 
sampling theorem for bandlimited deterministic signals, using Eq. (7.89), we may expand R t

X
( )  in terms 

of its samples, as follows:

 R t R mT W t mT
X X s

m

s
( ) ( ) ( )= -

=-

Â  sinc 2  (7.94)

\ R t kT R mT W t kT mT
X s X s

m

s s
( ) ( ) ( )- = - -

=-

Â  sinc 2  (7.95)

\ using Eqs (7.93) and (7.95), the RHS of Eq. (7.92) may be written as

= - -

=-

Â R t kT W t kT
X s

k

s
( ) ( ) sinc 2

Hence, Eq. (7.91) may be modified as

R R t kT W t kT
X X s

k

s
( ) ( ) ( )0 2 2- - -

=-

Â  sinc + - -

=-

Â R t kT W t kT
X s

k

s
( ) ( ) sinc 2

\ LHS of Eq. (7.90) = R R t kT W t kT
X X s

k

s
( ) ( ) ( )0 2- - -

=-

Â  sinc  (7.96)

Now, R t
X
( )  is a deterministic signal which is band-limited to W Hz since its FT, S fX ( )  = 0 for 

f W≥ Hz. But we know from the lowpass sampling theorem for deterministic signals that

 R t R kT W t kT
X X s

k

s
( ) ( ) ( )= -

=-

Â  sinc 2  (7.97)
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In Eq. (7.97), it is assumed that the sampling at regular intervals of T
W

s
=

1

2
 is done in such a manner 

that there is a sample taken at t = 0 second. Instead, if we have a sample t = t0 and every Ts sec on either 
side of it, Eq. (7.97) gets modified and from that modified equation we may write (by putting t = 0) as

R R t kT W t kT
X X s

k

s
( ) ( ) ( )0 20 0= - -[ ]

=-

Â  sinc 

Since t0 can take any value, we may write

R R t kT W t kT
X X s

k

s
( ) ( ) ( )0 2= - -[ ]

=-

Â  sinc 

Substituting this on the RHS of Eq. (7.91), we get

E x t X t kT W t kT
s

k

s
( ) ( ) ( )- - -[ ] =

=-

Â  sinc 2 0

2

Thus, the theorem is proved.

7.13.2 Bandpass Processes

In Section 2.8, we had discussed in detail, the in-phase and quadrature component representation of a 
deterministic bandpass signal x(t)

i.e., x t x t t x t tI c Q c( ) ( )cos ( )sin= -w w  (7.98)

where, x t
I
( )  and x tQ ( )  are lowpass signals

Let X(t) be a stationary, zero-mean bandpass process, 
whose power spectral density is of the form shown in 
Fig. 7.12.

We encounter such a bandpass noise process when we 
say white noise is filtered by a bandpass filter. Similar 
to the bandpass signal case, we shall now define two 
lowpass processes X t

I
( ) and X tQ ( ) , where

 ˆ ( ) ( )cos ˆ ( )sinXX t X t f t X t f tI c c= +2 2p p   (7.99)

and ˆ ( ) ˆ ( ) cos ( )sinXX t X t f t X t f tQ c c= -2 2p p  (7.100)

Here ˆ ( )X t  is the Hilbert transform of X(t).
From Eq. (7.99) and (7.100), it is easy to verify that

 X t f t X t f t X tI c Q c( )cos ( )sin ( )2 2p p- =  (7.101)

When X(t) is a stationary, zero-mean bandpass process, the inphase component process X t
I
( ) and the 

quadrature component process X tQ ( )  have certain very important properties which we state below without 
proof. The proofs can be had from the references given at the end of the chapter.

PX(f)

B
1

B

–fc 0 fc f

Fig. 7.12 PSD of a bandpass process X(t)
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Properties of XI (t) and XQ (t) 

1. X t
I
( ) and X tQ ( )  are zero-mean, lowpass, jointly stationary processes. If in addition X(t) is Gaussian, 

then X t
I
( ) and X tQ ( )  will be jointly Gaussian.

2. The in-phase and quadrature components X t
I
( ) and X tQ ( )  have the same average power as the 

process X(t) itself,

i.e., P P P P f dfX X X XI Q
= = = Ú ( )  (7.102)

3. X t
I
( ) and X tQ ( )  have identically the same power spectral density. This is obtained by shifting the 

positive frequency portion of P fX ( )  to the left by fc, shifting the negative frequency portion of 
P fX ( )  to the right by fc and then adding these two. Since the total area under a PSD curve gives 
the average power, from this, it is clear that the total average powers are the same for the inphase 
and quadrature components as well as the process X(t) itself.

SUMMARY

 1. Modern probability theory is based on the following axioms:
 (i) If A is an event, P(A) ≥ 0.
 (ii) If S is the certain event, P(S) = 1.
 (iii) If events A and B are mutually exclusive, then P(A»B) = P(A) + P(B).
 2. Sample space is the set of all possible outcomes of a random experiment.
 3. Events are defined in terms of subsets of the sample space forming a Borel field s.
 4. Probability is a non-negative number less than or equal to one which is assigned to an event and 

it has to satisfy certain conditions.

 5. Conditional probability of A given B is P A B
P AB

P B
( | )

( )

( )
= ; where P(AB) = Probability of joint 

occurrence of A and B and P(B) π 0.

 6. Bayes’ theorem: P A B
P B A P A

P B A P A

i

i i

i i

i

n
( | )

( / ) ( )

( / ) ( )

=

=

Â
1

 7. (i) Events A and B are said to be independent events if P AB P A P B( ) ( ) ( ).= ◊

 (ii)  In general, n events, A1, A2, ..., An are said to be independent, if for every k < n, the events A1, 
A2, ..., Ak are independent and further, if

P A A A A P A P A P A
n n

( , , ,..., ) ( ) ( )..... ( )1 2 3 1 2=

 8. A real random variable is a mapping of the outcomes of a random experiment to the real line and 
satisfying the following two conditions:

 (i) X £{ }x , i.e., X ( )x £{ }x  is an event for " real number x.
 (ii) P PX X( ) ( )x x= +{ } = ={ } = 0

 9. The cumulative distribution function, CDF of a r.v. X is denoted by FX (x) and is defined as: 
F x P x
X

( )    D X £{ }
10. Properties of CDF

 (i) FX  (x) lies between 0 and 1.
 (ii) FX  ( ) = 1 and FX  ( ) = 0
 (iii) FX  (x) is a non-decreasing function of x.
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 (iv) FX  (x) is continuous from the right
 (v) FX  (b) - FX  (a) = P[a < X £ b]
11. Random variables are of three types—continuous, discrete and mixed types. R.Vs whose CDF is a 

continuous function is called a continuous r.v.s. A r.v. whose CDF has a staircase shape is called 
a discrete r.v. A r.v. which is neither discrete, nor continuous, is called a mixed r.v.

12. The probability density function PDF is defined as f x
d

dx
F xX X( ) ( )= [ ]

13. Properties of PDF

 (i) f xX ( ) ≥ 0

 (ii) f x dxX ( )

-
Ú = 1

 (iii) f x dx P x X xX

x

x

( )

1

2

1 2Ú = < £[ ]

 (iv) f x f dX

x

( ) ( )= Ú a a

14. (i) Uniform random variable is one whose PDF is constant over a certain interval or range of x.

  \ f x x x
x x x

X ( ) ( )
;

;

= -
£ £

Ï

Ì
Ô

Ó
Ô

1

0

2 1
1 2   

  elsewhere

  

 (ii) A Gaussian random variable is one having a PDF of the form

f x eX
x m( ) ( ) /

=
- -

1

2 2

22 2

ps

s

 where, s 2 = variance and m = mean value of the r.v. X.
 (iv) A Rayleigh r.v is one which has PDF f xX ( )given by

f x

x
e x

x

X

x

( )
;/

=
Ê
ËÁ

ˆ
¯̃

≥

<

Ï

Ì
Ô

Ó
Ô

-
s

s
2

22 2
0

0 0

   

  ; 

  

 (v) A Rician r.v. is one which has a PDF of the form

f x xe I
x

X
x( ) ( )/= È

ÎÍ
˘
˚̇
◊ Ê

ËÁ
ˆ
¯̃

- +1
2

2
0 2

2 2 2

s

m

s

m s  
 

 

 where, I0 ( )a  is the modified Bessel function of the first kind and zeroth order.
15. A Bernoulli random variable is a discrete r.v. which takes the values 1 and 0 with probabilities of 

P and (1 - P).
16. A discrete r.v. X is said to be a binomial random variable with parameters n and p if 

P k
n

k
p q k nk n kX =[ ] =

Ê

Ë
Á
ˆ

¯
˜ £ £-      ; 0
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17. If X is a r.v and if Y = g(X), then f y
f x

g x
Y

X i

ii

( )
( )

( )
=

¢
Â

18. The ‘mean’ or ‘expected’ value of a r.v. X is E xf x dxXX{ } = Ú ( ) , if X is continuous.

19. If X is discrete r.v., E p xi i

i

X{ } = Â ,  where p P xi i= =[ ]X

20. The variance of a continuous r.v. X with expected value hx is define as:

 Variance of X = Var X X[ ] = = ÈÎ ˘̊ =s h
X X

E2 2( )-  E EX X2
2

[ ]- [ ]{ }

21. For a discrete r.v X, s hX i i X

i

p x2 2= -Â ( )  where, p P xi i= =[ ]X

22. The positive square root of variance is called ‘standard deviation’.
 The characteristic function of a continuous r.v. X is defined as

fX X
j xf x e dx( ) ( )w wD Ú

23. The characteristic function of a discrete r.v. X which takes values xi, i = 1, 2, …. with probabilities 
pi, is given by

fX i
j x

i

p e i( )w w=Â

24. The joint, or bi-variate distribution function FX,Y (x, y) is

F P x yX,Y x, y( ) £ £[ ]    D X Y,

25. The joint density function of twp r.vs X and Y is

f x y
F x y

x y

X Y
,

( , ),
( )

∂

∂ ∂
    D

2

26. F x y f d d

yx

, ( , )( ) = ÚÚ   a b a b ; F x F x
X X Y

( ) ( , ),

 F y F yY X Y( ) ( , ), ; f x f x y dyXY( ) ( , )= Ú  and f y f x y dxXY( ) ( , )= Ú

27. (i) if two r.vs X and Y are statistically independent,

f y x f y( | ) ( )= ; f x y f x( | ) ( )=  and f x y f x f y( , ) ( ) ( )= ◊

 (ii) r.vs X and Y are said to be uncorrelated if their covariance is zero; i.e., if

C E

E E E

XY X Y
      ThenD ( )( ) .X Y

XY X Y

- -[ ] =

[ ] = [ ] [ ]

h h 0

 (iii) Two r.vs X and Y are said to be orthogonal if E XY[ ] = 0
28. Two r.vs X and Y are said to be jointly Gaussian if

f x y
x m y m x

XY ( , ) exp
( )

( ) ( ) (
=

-
-

-

-
+

-
-

1

2 1

1

2 1

2

1 2
2 2

1
2

1
2

2
2

2
2

ps s r r s s

r -- -Ï
Ì
Ó

¸
˝
˛

È

Î
Í
Í

˘

˚
˙
˙

m y m1 2

1 2

)( )

s s
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29. The ‘Central Limit Theorem’ says that the sum of n independent random variables will have a CDF 
that converges to the CDF of a Gaussian r.v.

30. A random process is a function of two variables—time t and outcome x and is denoted by X(t, x).
31. The mean of a random process at the instant t = t1 is defined as the expected value (or mean) of 

the random variable X(t1).
32. The ACF of a random process is defined as the expected value of the product of X(t1) and X(t2)

R t t E t t
X

( , ) ( ) ( )1 2 1 2D  X X◊[ ] = Ú Ú x x f x x t t dx dx1 2 1 2 1 2 1 2( , ; , )

33. The auto co-variance of a random process X(t) is

    C t t E t t t t
X X X

( , ) ( ) ( ) ( ) ( )1 2 1 1 2 2= -{ } -{ }ÈÎ ˘̊X Xh h

34. The auto-correlation of a r.p. X(t) is R t t E t t
X
( , ) ( ) ( )1 2 1 2= [ ]X X

 The average power in X(t) = R t t E t
X
( , ) ( )= Í

Î
˙
˚

X
2

 Variance of X(t) = C t t E t E t
X
( , ) ( ) ( )= [ ]- [ ]{ }X X2

2

35. Cross covariance C t t R t t t t
XY XY X Y

( , ) ( , ) ( ) ( )1 2 1 2 1 2= -h h

 Cross correlation R t t E t t
XY

( , ) ( ) ( )1 2 1 2= [ ]X Y

36. Independent processes Two processes X(t) and Y(t) are said to be statistically independent, if the 
set of r.vs {X(t1), X(t2),.., X(tn)} and {Y Y Y( ), ( ),.... ( )t t t

n1 2
¢ ¢ ¢ } are mutually independent for all values 

of t t t
n1 2, ,....,  and t t t

n1 2
¢ ¢ ¢, , ....  and all integer values of n.

37. Uncorrelated processes X(t) and Y(t) are said to be uncorrelated process if C t t
XY

( , )1 2 = 0 for all 
values of t1 and t2.

38. Orthogonal process Processes X(t) and Y(t) are said to be orthogonal processes if R t t
X
( , )1 2 = 0 for 

all t1 and t2.

39. If X(t) and Y(t) are orthogonal processes and, in addition, if either (or both) of them has zero mean, 
then they are uncorrelated.

40. Stationarity Random processes, whose statistical properties like mean, ACF, etc., are independent 
of time, are called stationary processes.

41. WSS A process X(t) is said to be stationary in the side sense, if its mean i.e. E[X(t)] is independent 
of time and if its ACF RX (t1, t2) is such that it is a function only of (t2 - t1) and not individually, 
of t1 and t2.

42. Ergodocity Random processes for which the time averages equal the ensemble averages, are known 
as ergodic processes.

43. Wiener–Khinchine theorem The PSD of a random process is the Fourier transform of its auto-
correlation.

44. Gaussian random process X(t) is a Gaussian random process if the r.vs X(t1), X(t2), ..., X(tn) are 
jointly Gaussian for all values of t t t

n1 2, ,....,  and all integer values of n.
45. White noise process A process X(t) whose PSD is a constant for all frequencies, is called a white 

noise process.
46. ACF of a white noise process For a white noise process with a PSD of N0/2, the ACF is

R
N

t
n
( ) ( )t d= 0

2
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47. LTI systems with random inputs If X(t) and Y(t) are respectively the input and output processes 
for an LTI system, then

 (i) Mean of the output = h h
Y X

h t dt= Ú ( )

 (ii) Input and output cross-correlation = = * -R R h
XY X

( ) ( ) ( )t t t

 (iii) Correlation of output process = = * * -R R h h
Y X
( ) ( ) ( ) ( )t t t t

 (iv) From (iii), it follows that       S f S f H fY X( ) ( ). ( )=
2

48. Lowpass sampling theorem for random processes If X(t) is a stationary process which is 
band-limited, i.e., if SX(  f  ) = 0 for | f | ≥ W Hz and if it is sampled at regular intervals of Ts where 
Ts = 1/2W then

E t kT W t kT
s

k

s
X X( ) ( ) ( )- -
È

Î

Í
Í

˘

˚

˙
˙
=

=-
Â  sinc 2 0

2

49. Canonical representation of bandpass processes A stationary bandpass process X(t) = R(t) 
cos[wct + q(t)] can be represented in the canonical form, or the in-phase and quadrature component 
form as

X X X( ) ( )cos ( )sint t t t tI c Q c= -w w

  where, XI(t) is the inphase component and XQ(t) is the quadrature component. Both XI(t) and XQ(t) are 

lowpass processes; and R t t tI Q( ) ( ) ( );= +X X2 2  q( ) tan
( )

( )
t

X t

X t

Q

I

=
È

Î
Í

˘

˚
˙-1 . Further, X X X2 2 2( ) ( ) ( ).t t tI Q= =
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REVIEW QUESTIONS

1. What are the constituents of a ‘probability space’?
2. Explain the need for introducing the s-field as an element of the probability space.
3. The probability, P, assigned to an event must satisfy certain conditions. What are they?
4. State Bayes, theorem for conditional probability.
5. When do you say that two events are independent?
6. Define a random variable. Give an example.
7. What is meant by the Cumulative Distribution Function (CDF) of a random variable?
8. State the properties of the CDF and PDF of a random variable.
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 9. Distinguish between discrete, continuous and mixed type of random variables.
10. If a normal random variable has a mean of ‘m’ and variance of s2, what is its density function and 

what is the area under its density function curve?
11. Define the terms ‘mean’ and ‘variance’ of a random variable.
12. Define ‘characteristic function’ of a random variable X. How is it useful?
13. Define ‘joint distribution function’ of two random variable.
14. Explain the meaning of ‘conditional PDF of Y given X’.
15. When do you say the r.v.s X and Y are independent? Uncorrelated? Orthogonal?
16. Define joint Gaussianity of two random variables.
17. State the properties of jointly Gaussian r.v.s.
18. Explain what the ‘central limit theorem’ states and comment on the importance of the theorem.
19. Define the term ‘random process’.
20. Interpret what a random process represents when (i) time variable is fixed, and (ii) outcome x is fixed.
21. Define ‘first and second-order distribution functions’ of a random process.
22. Explain what do you understand by the terms ‘mean’, ‘auto-correlation’, and ‘auto co-variance’, of 

any random process.
23. When do you say two random processes are independent? Uncorrelated? Orthogonal?
24. Distinguish between strict-sense stationarity and wide-sense stationarity with regard to a random 

process.
25. State the properties of the auto-correlation function of a stationary process.
26. What is ‘ergodicity’?
27. Define the ‘power spectrum’ of a random process and state its properties.
28. What is a Gaussian process? State some of its properties.
29. Sketch the PSD and ACF of a white noise process.
30. What do you understand from the statement: ‘When a stationary random process is applied as input 

to an LTI system, the input and output processes are jointly stationary’?
31. State the ‘sampling theorem’ for stationary lowpass band-limited processes.
32. How are the average powers of the ‘in-phase’ and ‘quadrature’ components related to the average 

power of a bandpass process?

FILL IN THE BLANKS

 1. In probability theory, the ‘sample space’ consists of ___________.
 2. {S, B, P} is called the __________.
 3. P(A»B) = __________.

 4. 
P A B

P A

( , )

( )
=  ____________.

 5. Two events A and B are said to be independent events if P(B) = ____________.
 6. The probability density function of a discrete r.v. will be having __________.
 7. The cumulative distribution function of a random variable has a maximum value of _________.
 8. __________ and _________ completely specify a Gaussian density function.
 9. __________ random variable is quite useful in modeling a binary data generator.
10. If fX  (x) is the density function of a continuous r.v. X, its expectation is given by _________.
11. If X is a random variable, its characteristic function is the expectation of _________.
12. If FXY  (x, y) is the joint distribution function of two random variables X and Y, the marginal 

distribution function of Y is given by _________.
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13. The co-variance, CXY, of two random variables X and Y is defined as __________.
14. Random variables X and Y are said to be orthogonal if ___________.
15. Two random variables, X and Y are said to be jointly Gaussian if their joint density function is of 

the form fXY  (x, y) = __________.
16. Jointly Gaussian random variables are completely characterized by their ______, ________ and 

_________, ____________.
17. For jointly Gaussian random variables _________ implies statistical independence.
18. The CDF of the average of n i.i.d. random variables, each with a mean of m and variance s2 will 

converge to N(__, __)
19. A ________ _________ will be obtained when a random process is observed at a fixed instant of time.
20. A random process X(t, x) is a continuous random process if t Œ __________ and is a discrete random 

process if t Œ __________.
21. The second-order distribution function of a random process X(t) is denoted by F(x1, x2; t1, t2) and 

is given by P[ ________, ________].
22. The auto-covariance CX(t1, t2) of a random process X(t) is given by CX(t1, t2) = _____________.
23. The random process X(t) and Y(t) are said to be uncorrelated if their ________ for all t1 and t2.
24. A random process X(t) is said to be wide-sense stationary if ________ and _______.
25. Random processes whose time averages equal the ensemble averages, are known as _________ 

processes.
26. For any real or complex stationary process, RX(-t) = ________.
27. If a Gaussian process is WSS, it is _________.
28. The auto-correlation function of a white-noise process is an ______ _________.
29. If a WSS process with power spectrum SX (  f  ) is given as input to an LTI system with transfer 

function H(  f  ), the cross-spectral density SXY (  f  ) of the input and output processes is given by 
SXY (  f  ) = _______.

30. If X(t) is a zero-mean, stationary bandpass process, then XI (t) and XQ(t), its in-phase and quadrature 
components, are zero-mean, __________ stationary _________ (bandpass/lowpass) processes.

MULTIPLE CHOICE QUESTIONS

1. If A and B are two events, P(A»B) equals
(a) P(A) + P(B)  (b) P(A) + P(B) + P(A«B)
(c) P(A) + P(B) - P(A«B) (d) P(A) + P(B) - P(A | B)

2. A and B are two events and P(A | B) = 0. Then
(a) B is a certain event (b) A is an impossible event
(c) A and B are independent (d) A and B are mutually exclusive

3. Box A contains 4 white balls and 6 red balls. Box B contains 8 white balls and 2 red balls. One of 
the boxes is randomly selected and a ball is randomly picked from it. If the ball so picked up is a 
red ball, the probability that it would have been picked up from box A is
(a) 0.75 (b) 0.6 (c) 0.8 (d) 0.25

4. Figure MCQ-4 shows the distribution function of a random variable 
X. The probability of the random variable X taking a value between 
2.5 and 4.0 is

(a) 2/3  (b) 1/2

(c) 1/3  (d) 2/9

FX(x)

0

1

2 5 x

Fig. MCQ-4
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 5. A zero-mean bandpass signal has identically distributed Gaussian processes as its in-phase and 
quadrature components. The envelope of the bandpass process has a
(a) Gaussian distribution  (b) Ricean distribution
(c) Rayleigh distribution  (d) uniform distribution

 6. The variance s2 of a random variable X is given by
(a) E[X 2] (b) {E[X ]}2 (c) E[X 2] - {E[X ]}2 (d) E[X 2] + {E[X ]}2

 7. A random variable is uniformly distributed between 3 and 6. Its variance is
(a) 0.75 (b) 0.25 (c) 0.5 (d) 1

 8. The variance of a Bernoulli random variable is
(a) p2 (b) (1 - p)2 (c) p(1 - p) (d) (1 + p)2

 9. X is a random variable with variance s x
2 . The variance of (X + a) where a is a constant is

(a) ( )s
x

a+ 2  (b) s x
2  (c) ( )s

x
a

2 2+  (d) ( )s
x

a
2 2-

10. The density function fX(x) of a discrete random variable X is given by

f x x x x x xX ( ) . ( ) . ( ) . ( ) . ( ) . ( )= - + - + - + - + -0 2 1 0 2 2 0 4 3 0 15 4 0 15 5d d d d d .

 The mean value of X is
(a) 2.5 (b) 3.2 (c) 2.8 (d) 3.0

11. The variance s x
2  of X in the above question is

(a) 1.65 (b) 2.6 (c) 1.1 (d) 3.2
12. The characteristic function of a random variable that takes the values 1 and 0 with probabilities of 

0.6 and 0.4 is

(a) 0 6 1. + -( )e jw   (b) 0 6 1. - -( )e jw

(c) 1 0 6 1- -( ). e jw   (d) 1 0 6 1+ -( ). e jw

13. If random variables X and Y are statistically independent, then fXY  (x, y) is equal to

(a) f x f yX Y( ) ( )+   (b) f x f yX Y( ) ( )◊

(c) f x f yX Y( ) ( )*   (d) f x f yX Y( ) ( )-

14. Random variables X and Y are such that E E EX Y X Y. [ ] [ ][ ] = . The random variables X and Y are
(a) statistically independent (b) orthogonal
(c) uncorrelated  (d) nothing can be concluded

15. When x is fixed X(t, x) represents
(a) a random variable
(b) a single realization of the random process
(c) a real number
(d) a family of time signals

16. Two random processes X and Y are such that RXY  (t1, t2) = 0 for all t1 and t2 and further one of them 
has zero mean. The processes are
(a) uncorrelated but not orthogonal (b) orthogonal but not uncorrelated
(c) statistically independent and orthogonal (d) orthogonal and uncorrelated

17. Auto-correlation function RX(t) of a stationary process X(t) is a
(a) deterministic function with maximum value at t = 0
(b) deterministic function which is periodic
(c) stationary random process
(d) periodic stationary process
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18. The power spectrum, SX(  f  ), of a random process X(t) is a
(a) real-valued function of frequency with even symmetry
(b) complex-valued function of f with conjugate symmetry
(c) real-valued function of f with even symmetry if X(t) is real-valued.
(d) real-valued function of f with odd symmetry.

19. A process is said to be an ergodic process if
(a) its ensemble averages are different from time averages
(b) it is not stationary
(c) ensemble averages are same as time averages
(d) it is neither continuous, nor discrete

20. For two Gaussian processes to be statistically independent, it is enough if they are
(a) orthogonal
(b) uncorrelated
(c) orthogonal and one of them has zero-mean
(d) uncorrelated and both are zero-mean

21. If a zero-mean Gaussian process is given as input to an LTI system, the output of the LTI system is
(a) a zero-mean Gaussian process
(b) a Gaussian process but not necessarily of zero-mean
(c) a zero-mean process but not necessarily Gaussian
(d) not necessarily zero-mean or Gaussian as it depends on the nature of h(t) of the system

22. A stationary random process with a mean of 2 is passed through an LTI system with h(t) = 2 2e u tt- ( ).    
The mean of the output process is
(a) 4 (b) 0.5 (c) 2 (d) 1

23. A white noise process with power spectral density of N0/2, is given as input to an LTI system with 
h(t) = 2 2e u tt- ( ) . The PSD of the output process is

(a) 
2

4

0

2

N

- w
 (b) 

4

4

0

2

N

+ w
 (c) 

N
0

24 + w
 (d) 

2

4

0

2

N

+ w

PROBLEMS

1. Event A = { 3 £ x £ 6 } and event B = { 4 £ x £ 7 }. Find A » B, A « B.
2. A box contains 5 red balls numbered 1, 2, 3, 4, 5 and 3 black balls numbered 1, 2, 3. Our random 

experiment is to randomly pick one ball from the box. What are the outcomes involved in the following 
events?
(a) A = A ball with an odd number
(b) B = A black ball with number greater than 1
(c) C = A ball bearing a number less than 3

3. Given that AB = Null set, show that P A P B( ) ( )£
4. Prove that

P A B C P A P B P C P AB P AC P BC P ABC( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).+ + = + + - - - +

5. A and B are two disjoint events. What conditions should be fulfilled for them to be independent?
6. Show that P AB C P A BC P B C( ) ( ) ( )/ / /= .
7. A source produces the binary digits 0 and 1 with probabilities 0.4 and 0.6 respectively. The channel 

over which these digits are transmitted has an error probability of 0.3.
(a)  What is the probability of a 1 being obtained at the output of the channel?
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 (b)  If a 1 has been obtained at the output, what is the probability that it is due to the source giving 
a 1 to the channel?

 8. Ram is to make a telephone call at some random instant in the interval (0, 20) in seconds. What is 
the probability of his making the call in the 10 second-to18 second interval? What is the probability 
of his making the call in the 10-to-18 second interval given that he did not make the call up to the 
end of the 8th second?

 9. There are three sections—A, B and C of a class. In a test, 25% of the students from section A, 10% 
of the students from Section B and 15% of the students from Section C, failed. Two answer scripts 
are randomly picked from those of a randomly selected section. (a) What is the probability that both 
the answer scripts belonged to failed students? (b) Assuming that both scripts belonged to failed 
students, what is the probability that these were from Section A?

10. A Gaussian random variable X has zero mean and a variance of 2. Find the probability P[ 2 £ x £ 3]. 
Also, find P[ 2 £ x £ 3; Given X ≥ 1].

11. Find the mean, variance and the density function of r.v. Y given that Y = 3X + 6 and that X is 
Gaussian with hX = 2 and s X

2 3= .

12. Determine the CDF and PDF of Y given that Y = 2X + 3 and that f x e u xX
x( ) ( )=

-2 .
13. A zero-mean Gaussian noise with a variance of 10-6 is rectified using a full-wave rectifier. Assuming 

the rectifier to be an ideal one, determine the density function of the rectified noise. What is its 
expected value?

14. X and Y are zero-mean Gaussian random variables with a variance of s2  for each. Assuming them 
to be independent, determine the density function of the r.v. Z = X + Y.

15. X and Y are zero-mean identically distributed Gaussian random variables with a variance of s2  for 

each. Determine the probability density function of the r.v. Z X Y= +
2 2 .

16. X(t) is a stationary random process and X ¢(t) is its derivative. Show that for any fixed t1, the random 
variable X(t1) and X ¢(t1) are orthogonal. Are they also uncorrelated?

17. Two processes X(t) and Y(t) are said to be jointly stationary if they are individually stationary and 
their cross-correlation is a function only of t. Is it possible for RXY (t1, t2) to be a function only of 
t    D t t

1 2
-  without X(t) and Y(t) being non-stationary individually?

18. Find whether the function f t f t( ) sin= 2 0p  can be the auto-correlation function of a random process. 
Irrespective of whether your answer is yes or no, give reasons.

19. When X(t) and Y(t) are jointly stationary, we know that RXY(t1, t2) = RXY(t) where t is (t1 - t2). Show 
that RXY (-t) = RYX (t). How are SXY (t) and SXY (t) related?

20. If SX(  f  ) is the power spectrum of a stationary random process, X(t), find the PSD’s of the following 
processes.

 (a) X(t - T) where T is a constant
 (b) X(t) - X(t - T  )
21. In Section 7.12, we have proved that when the input process to an LTI system is stationary, the 

output process too is stationary. Is the converse of this also true? Why or why not?
22. A white-noise process of PSD = N0/2 is the input to an ideal LPF having a cutoff frequency of 

2 kHz. If uncorrelated samples are required, at what rate should the output of the filter be sampled?
23. A zero-mean white Gaussian noise with power spectral density N0/2 is passed through an ideal 

bandpass filter of centre frequency fc and bandwidth 2W. If the output process is n(t), determine
 (i) the density function of the envelope of n(t)
 (ii)  the density function of the envelope of the process X n( ) cos ( ),t A f t t= +2 0p where A is a 

constant
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Key to Multiple Choice Questions
 1. (c)  2. (d)  3. (a)  4. (b)  5. (c)  6. (c)
 7. (a)  8. (c)  9. (b) 10. (d) 11. (a) 12. (d)
13. (b) 14. (c) 15. (b) 16. (d) 17. (a) 18. (c)
19. (c) 20. (b) 21. (a) 22. (d) 23. (d)



On going through this 
chapter, the student
Ø understands how noise degrades the 

quality of communication

Ø knows the various sources of noise 
and the characteristics of the noise 
generated by each of those sources

Ø can calculate the thermal noise 
voltage across a 2-terminal network 
of only resistors, or of resistors and 
reactive elements connected in some 
manner

Ø can calculate the noise equivalent 
bandwidth of a given filter, the 
equivalent noise resistance of 
amplifiers /systems, and equivalent 
noise figure (or noise temperature) 
of a number of two-port networks 
connected in cascade

Ø can experimentally determine the 
noise figure of a given 2-port network

Ø can calculate the in-phase and 
quadrature components of a 
bandpass noise process given 
its envelope and phase-angle 
representation

8
INTRODUCTION

8.1

The function of a communication system is to make 

available, at the destination, a signal originating at a 

distant point. This signal is called the desired signal. 

But, unfortunately, during its passage through the 

channel and the front‑end of the receiver, this desired 

signal gets corrupted by a number of undesired signals. 

All these undesired signals, put together, constitute 

what is referred to as the noise. This noise is mostly 

random (i.e., unpredictable) in nature, but it can, at 

times have, deterministic components as well, like 

the power supply hum and certain oscillations. These 

deterministic components, however, can be eliminated 

by proper shielding and introduction of notch filters, 

etc. Hence, in this chapter, we will be concentrating 

only on the random components constituting the 

noise—their types, origins, mean‑squared values and 

spectral contents, etc.

If there were to be no noise, perfect communication 

would be possible even with very little transmitter 

power since the received signal, although very weak, 

is not corrupted by noise and we may amplify it so 

as to bring the signal power to the desired level. 

Further, as these amplifiers do not produce any noise, 

the amplified signal will be an exact replica of the 

one that was transmitted, in so far as the shape of 

the waveform is concerned. But, in practice, noise 

is always present and it corrupts the received signal. 

Amplifying the received signal does not help, as 

the amplifiers amplify both the signal and noise 

components of the received signal equally and 

further they add some more noise power. Thus, the 

signal‑to‑noise ratio at the output of an amplifier can 

only be worse than what it is at the input.

Noise
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We cannot even remove the noise by filtering because the noise, as we will be seeing in this chapter, 

is often of very large bandwidth—much more than that of the signal. We may by using filters, easily 

remove the out‑of‑band noise (i.e., noise outside the signal bandwidth) but not the in‑band noise.

Thus, noise degrades the performance of a communication system and hence it is important that we study 

its characteristics and take all possible steps in the design of a communication system, to reduce its effect.

NOISE SOURCES AND CLASSIFICATION 8.2

As shown in Fig. 8.1, noise may be broadly classified, depending on the location of the sources, into 

two types—external noise and internal noise. Note that these terms, external and internal, are used with 

reference to the receiver. External noise may, in turn, be divided into atmospheric noise, extraterrestrial 

noise, and man‑made noise. Internal noise is mainly of two types—thermal noise and shot noise.

Noise

Externally generated noise Internally generated noise

Atmospheric

noise 

Extra-terrestrial

noise 

Man-made

noise 

Shot

noise 

Partition

noise

Thermal

noise 

Fig. 8.1 Types of noise

ATMOSPHERIC NOISE
8.3

Atmospheric noise (also referred to as ‘static’) arises from lightning discharges (cloud‑to‑cloud, or cloud‑to‑

earth), caused by thunderstorms. Lightnings are heavy electrical current discharges, running into thousands 

of amperes and are accompanied by intense radiation of electromagnetic waves over a broad spectrum of 

frequencies. Different frequency bands of these electromagnetic waves propagate via the usual modes of 

propagation like the ground‑wave and sky‑wave, just like ordinary radio waves, and corrupt the desired 

signal. Atmospheric noise has frequency components extending from very low frequencies up to hundreds of 

megahertz and its intensity varies with frequency as well as time of the day. Further, it has been experimentally 

observed that during day time, its intensity decreases with frequency up to about 2 MHz and that there exists 

a relative peak of intensity around 10 MHz. It has a relative dip at around 2 MHz. During night time also 

its intensity decreases with frequency but has generally higher values (than those obtained during day time) 

at all frequencies. Its intensity at night time becomes very low or insignificant, beyond about 10 MHz.

From this, it is clear that the disturbance caused by atmospheric noise is more severe in the medium‑

wave band as compared to the short‑wave band; and it is very little in the case of VHF and UHF bands 

that are used for television.

8.3.1 Extra-terrestrial Noise

This has two components—‘solar noise’, and ‘galactic noise’.

Solar Noise Our sun, being a gaseous body with very high surface temperatures (in excess of 6000∞C), 

radiates considerable amount of noise, whose intensity has been observed to be having a cyclic variation 

with a 11‑year period, called the 11‑year sun‑spot cycle.
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Galactic Noise All the stars are also hot gaseous bodies and they too radiate noise. The radiation 

reaching the earth from each individual star may be very small compared to that from our sun, because 

of their very large distance. But they are large in numbers and are spread all over the sky, making their 

overall contribution not insignificant. In addition, the suns of other galaxies and our own ‘Milky Way’ 

also radiate noise. This noise, called the ‘galactic noise’, is almost uniformly intense from all parts of 

the sky but is slightly more intense in the direction of our Milky Way.

The extra‑terrestrial radiation has spectral components from a few megahertz to about a few gigahertz. 

However, only those components which have frequencies above 20 MHz pass through the ionosphere and 

reach the earth. Further, those with frequencies above approximately 1.5 GHz are absorbed by hydrogen 

in the interstellar space. Thus, extra‑terrestrial noise can cause disturbance to communications in the 

frequency range of 20 MHz to 1.5 GHz.

Man-made Noise Automobile ignition, aircraft ignition, fluorescent lamps, sparking at the brushes of 

electric motors, etc., radiate electromagnetic waves that cause disturbance to communications, especially 

in the 1 MHz to 500 MHz range. Because of the nature of its origin, this noise is more intense in urban 

areas than in rural areas. However, it must be noted that noise emanating from these sources can travel 

considerable distances.

THERMAL NOISE
8.4

We know that at any temperature above 0 K, the free electrons in a conductor possess kinetic energy and 

so will be in random motion because of collisions with the lattice. This random motion of electrons is 

equivalent to a random current flow within the conductor, and this creates a random voltage across the 

conductor. This random voltage across a conductor, arising from the random motion of free electrons 

inside it because of thermal agitation is called ‘thermal noise’. It is also known as Johnson noise. 

This thermal noise voltage fluctuates randomly about a mean value of zero.

Analysing the thermal agitation of the free electrons by using quantum mechanics, it has been shown 

that at a temperature of T K, the power spectral density of the thermal noise across a conductor having 

a resistance of R ohms, is given by

 P f
Rh f

e
h f

kT

( )
| |

=

-
Ê

ËÁ
ˆ

¯̃

2

1

 volt2/Hertz (8.1)

where,

 h = Planck’s constant = 6.6 ¥ 10-34 Joule‑second,

 k = Boltzmann’s constant = 1.38 ¥ 10-23 J/K

In Eq. (8.1),

e
h f

kT

| |

=1 at | f | = 0

and it goes on increasing as | f | increases. Further, its rate of increase will be greater than that of the 

numerator. Thus, P(  f  ), power spectral density of thermal noise, has a maximum value at f = 0 and it 

goes on decreasing as | f | increases. The maximum value of P(  f  ), occurring at f = 0, can be obtained by 

using L’Hospital’s rule and is given by

 P f kTR
f

( )
=

=
0

2  volts2/Hz (8.2)
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Although P(  f  ) decreases as | f | increases, the rate of decrease at normal room temperature is so 

small that it may safely be assumed to be remaining constant at the value 2 kTR even up to frequencies 

of the order of 1012 to 1013 Hz, as its value drops only by 10 % from its zero frequency value even at 

a frequency of 2000 GHz. As this frequency is far more than the frequencies and bandwidths used in 

any of our ordinary communication systems, for all practical purposes, we can safely assume that the 

Power Spectral Density (PSD) of thermal noise is constant and independent of frequency and that it has 

a value given by

 P f kTR( ) = 2  volt2/Hz (8.3)

Note: It must be noted that P(  f  ), as given in Eq. (8.3) represents the two‑sided power spectral density 

as shown in Fig. 8.2.

2kTR

f

DfDf

P(f)
(Volt2/Hz)

0

Fig. 8.2 PSD of thermal noise

Since thermal noise has a PSD which is almost a constant, it has all frequency components from 

minus infinity to plus infinity, in equal measure. Such a noise is called white noise. Since its PSD is 

constant, its ACF (inverse FT of PSD) is an impulse function in time. This indicates that any two samples 

of white noise, however close they may be in time, are uncorrelated. However, it must be noted that no 

physical noise source can be a white‑noise source, since white noise implies infinite noise power (area 

under PSD curve).

We may now determine the r.m.s. value of the noise voltage across a resistor of R ohms at a temperature 

of T K over a bandwidth of Df. From Fig. 8.2, we find that

 Mean‑squared value of noise in R = (2Df) 2kTR = 4 kTRDf volt2 (8.4)

 
Hence r.m.s. value of voltage

across the resistor R
k

¸
˝
Ô

Ǫ̂
= 2 TTR fD volts  (8.5)

From the foregoing, it is clear that in so far as noise calculations are concerned, we may model a 

resistor of R ohms at temperature T K as follows.

R

ohms
(noisy)

P(f) = 2kTR
            Volt2/Hz

R ohms

R

Noiseless

2kT/R
   amp2/Hz

(noiseless)

Fig. 8.3 Modeling a noisy resistor

We shall now make use of the noise model of a resistor shown in Fig. 8.3 to obtain the noise‑equivalent 

circuits of resistances in series and in parallel.
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8.4.1 Resistors in Series and in Parallel

(i) Series Connection

(a) (b) (c)

R1 ohms
(noisy)

R2 ohms
(noisy)

R1

P1(f) = 2kTR1 volt2/Hz

P2(f) = 2kTR2 volt2/Hz

(noiseless) (noiseless)

R2
(R1 +R2) ohms

2kT(R1 +R2)
volt2/Hz

(noiseless)

Fig. 8.4 Resistors in series

Superposition of PSD’s In Fig. 8.4, let resistor R1 produce noise voltage n1(t) and R2 produce noise 

voltage n2(t). Then the total power of the sum process n t n t1 2( ) ( )+[ ] is given by

P E n t n t E n t E n t E n t n t12 1 2

2

1
2

2
2

1 22= +[ ] = ÈÎ ˘̊ + ÈÎ ˘̊ + [ ]( ) ( ) ( ) ( ) ( ) ( )

But since the noise processes produced in R1 and R2 are independent and zero‑mean processes,

E n t n t1 2 0( ) ( )[ ] =

Further

E n t1
2 ( )È

Î
˘
˚  = P1 = Average power of the noise process n1(t)

and  E n t2
2 ( )È

Î
˘
˚  = P2 = Average power of the noise process n2(t)

\ P P P
12 1 2
= +

Thus, it is their powers (or the mean squared values) which get added, and not the voltages. This 

means that, as shown in Fig. 8.4, in the equivalent circuit, it is the noise power spectral densities to 

which superposition principle applies—not to the noise voltages produced by the two resistors.

(ii) Parallel Connection

R1 ohms
(noisy)

R2 ohms
(noisy)

(a)

R2

noiseless
R1

noiseless

2kT/R1

amp2/Hz
2kT/R2

amp2/Hz

(b)

Fig. 8.5 Resistances in parallel
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(R1 +R2)

(noiseless)

volt2/Hz

R1 +R2

R1R2
2kT

(d)

2kT(1/R1 + 1/R2)
     amp2/Hz

(c)

R1 +R2

(noiseless)

R1R2

Fig. 8.5 Resistances in parallel

Note:

1.  When two resistors are in series, it is their noise powers, or their noise power spectral densities 

(PSD’s) in volt2/ Hz, which can be added, and not their noise voltages.

2.  When two resistors are in parallel, it is their noise powers, or their noise PSD’s in amp2 / Hz, 

which can be added—not their individual noise currents.

Thus, in a circuit with multiple noise sources which are independent, the principle of superposition 

applies not to the r.m.s. voltages or currents of the sources, but only to their mean‑squared values or 

power spectra. As has been already shown, the justification for the above two statements stems from 

the fact that the two noise sources are independent and hence uncorrelated and further, the noise has 

zero mean.

Find the r.m.s. value of the thermal noise voltage across a resistor of 1 MW at a 
temperature of 27∞C if the measurement is made with an instrument having a bandwidth of 104 Hz.

Example 8.1

From Eq. (8.5) we have

e kTR fr.m.s. = 4 ( )D  volts

 = ¥ ¥ ¥ ¥ ¥
-4 1 38 10 300 10 1023 6 4.

 = ¥ ¥
-12 1 38 10 11.  = 12.868 mV

From the above result, the reader may wonder why we should bother about the thermal noise at 

all, if their r.m.s. values are typically a few microvolts. However, if we see the signal voltage levels 

at the front‑end of a receiver, they will also have typically values of the same order. If the resistance 

considered in the example is the input resistance of the front‑end of the receiver, it means that we have a 

situation where the signal and noise have approximately the same levels of magnitude at the input of an 

amplifier—not a desirable situation, as the amplifier is likely to add some more noise while amplifying 

the input signal and noise by the same factor.

A 10 kW and a 20 kW resistor are both at a room temperature of 27∞C. For a 
100 kHz bandwidth, determine the r.m.s. value of the thermal noise voltage across (i) each one of 
them, (ii) their series combination, and (iii) their parallel combination.

Example 8.2
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 (i) (a) Across the 10 kW resistor

  From Eq. (8.5), we have

e kTR fr.m.s. = = ¥ ¥ ¥ ¥ ¥-4 4 1 38 10 300 10 1023 4 5( ) .D

\ e
r.m.s.

V= 4 07. m

 (ii) (b) Across the 20 kW resistor

e kTR fr.m.s. = = ¥ ¥ ¥ ¥ ¥ ¥-4 4 1 38 10 300 2 10 1023 4 5( ) .D

\ e
r.m.s.

V= 5 75. m

 (iii) With the two resistors in series

e
r.m.s.

 7.04 V= = m4 1 38 10 300 3 10 1023 4 5¥ ¥ ¥ ¥ ¥ ¥-.

  It may also be found out as

er.m.s.  7.04 V= +( . ) ( . )4 07 5 752 2 = m

 (iv) With the two resistors in parallel

Resistance of parallel combination 
10 20

10 20
6 67

¥

+
=

( )
. kW

\ e
r.m.s.

= ¥ ¥ ¥ ¥ ¥ ¥ = ¥
- -4 1 38 10 300 6 67 10 10 110 4 1023 3 5 13. . .

\ e
r.m.s.

V= 3 32. m

8.4.2 Thermal Noise and Reactive Circuits

Pure reactive circuit elements like inductances and capacitances do not dissipate any power and do not 

produce thermal noise. A lossy reactive element like an inductance which can be represented by pure 

inductance in series with a resistance, or a lossy capacitor, i.e., a capacitor in which dielectric loss takes 

place and which can be represented by a pure lossless capacitor in shunt with a resistance, do generate 

thermal noise. While calculating the thermal noise in circuits containing reactive elements, we should, 

however, consider the effect of the reactive elements on the shape of the noise power spectrum. 

A resistor of R ohms at a temperature of T K is connected across a pure capacitor 
of C farads. Determine the r.m.s. value of noise voltage across the capacitor C.

Example 8.3

Representing the resistance R by its noise equivalent 

circuit, we have the following:

For the R‑C lowpass filter of Fig. 8.6, the transfer 

function is given by

H f
j CR

( ) =
+

1

1 w

\ H f
f C R

( )
2

2 2 2 2

1

1 4
=

+ p

(noiseless)

2kTR
volt2/Hz C

en

R ohms

Fig. 8.6 Noise equivalent circuit of Example 8.3
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\ P f
C

0 ( ) =
¸
˝
Ô

Ǫ̂
=

PSD of the noise voltage

across the capacitor 
22

2

1 4

2

2 2 2 2
kTR H f

kTR

f C R
. ( ) =

+ p
 volt2/Hz

To find the r.m.s. value of the noise voltage across the resistor, we first determine P0, the average 

noise power across the output by integrating the power spectral density of the output noise across the 

capacitor, i.e., P0(  f  ) over the entire frequency range from f =  to f = .

\ P
kTR

f C R
df

0 2 2 2 2

2

1 4
=

+
Ê
ËÁ

ˆ
¯̃Ú p

 

Substituting 2p qfCR = tan , and integrating,

P
kTR

CR
d

kT

C
0 2

2

2

2
2

2
= Ê

ËÁ
ˆ
¯̃

◊ Ê
ËÁ

ˆ
¯̃

=
-
Ú

sec

sec

/

/

q

q

p
q

p

p

 

\ r.m.s. value of the noise voltage across the capacitor = e
kT

C
r.m.s.

=  volts.

This result appears a bit surprising because, the r.m.s. value of the output noise voltage is independent 

of R, although the r.m.s. value of the thermal noise voltage across the resistance, over any bandwidth, is 

proportional to R . Actually, what happens is, as the value of R increases, even though the input noise 

voltage power spectrum increases proportional to R, the bandwidth over which noise is allowed to pass 

through the R‑C lowpass filter goes on decreasing with R as the cutoff frequency is inversely proportional 

to R. Thus, the noise power available at the output, and hence the r.m.s. value of the noise voltage across 

the output terminals, is independent of the value of R.

The input circuit of an RF amplifier is a tuned circuit comprising of a coil 
having a resistance r ohms and inductance of L henries connected across a capacitor of C farads. 
Determine the r.m.s. value of the thermal noise voltage across the input terminals of the amplifier 
at resonance.

Example 8.4

Let the tuned circuit be at resonance. Consider a small bandwidth 

Df around the resonance frequency. The r.m.s. value of the thermal 

noise voltage across the r ohms resistance over a bandwidth of (Df) 

around the resonance frequency is given by erms, where

 e kTr fr.m.s. = 4 ( )D  (8.6)

\ 

At resonance, the r.m.s. value

of voltage across the capacittor 

over a bandwidth of 

C kT Q r f

D

D

f

¸

˝
Ô

˛
Ô
= 4 2( )( )

where, Q is the magnification factor of the tank circuit at resonance 

and is assumed here to remain constant over a small interval of 

frequency, Df.

L

(noiseless)

2kTr
volt2/Hz

Vn

C

r

Fig. 8.7  Tuned circuit of 
Example 8.4
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But Q r Rd
2 = , the dynamic resistance of the tank circuit at resonance.

\ 
at resonance, input noise voltage 

(r.m.s. value) for the r..f amplifier

¸
˝
Ô

Ǫ̂
= 4kTR fd ( )D  (8.7)

Equation (8.7) represents an interesting result, as it tells us that insofar as thermal noise at resonance 

across the tank circuit is concerned, it is the dynamic resistance Rd of the tank circuit at resonance, which 

appears to be producing the noise.

A parallel circuit resonates at 90 MHz and its capacitor C is 30 pF. The Q of the 
tuned circuit is 50 and the circuit is at a temperature of 17∞C. Calculate the r.m.s. value of the noise 
voltage in a bandwidth of 20 kHz around the resonance frequency?

Example 8.5

The equivalent series resistance r of the tuned circuit = r = 
X

Q

c

=
¥ ¥ ¥ ¥ ¥

=
-

1

2 90 10 30 10 50
1 17

6 12p
. W

where, Xc is the resistance of C at resonance

The effective equivalent resistance for the tuned circuit, at resonance 

= = = ¥ =R Q rd
2 250 1 17 2925( ) . W

\ r.m.s. value of the noise voltage across the tuned circuit

= = ¥ ¥ ¥ ¥ ¥ ¥-4 4 1 38 10 300 20 10 292523 3kTR fd ( ) .D

= ¥ = ¥ =- -96876 10 98 42 10 0 984217 8. .V Vm

8.4.3 Available Noise Power

The maximum power transfer theorem tells us that maximum power will be delivered by the source to 

the load resistance RL of Fig. 8.8, when RL equals R, the source resistance. Under this condition, the load 

is said to be matched to the source and the power delivered to RL under matched conditions, is given by

V

R
R

V

R2 4

2
2Ê

ËÁ
ˆ
¯̃
◊ =      D  available power from the source

R

R
L

V

Fig. 8.8 Maximum power transfer

R

(noiseless)

RL=R

4kTR(Df)÷

Fig. 8.9  Maximum noise power transfer 
from a resistor 



344 Analog Communication

Considering a resistor of R ohms as a thermal noise source as shown in Fig. 8.9, we have,

Available noise power = 
4

2

2
kTR f

R
R kT f

( )
( )

D
D

Ê

ËÁ
ˆ

¯̃
◊ =

 \available noise power watts= kT f( )D  (8.8)

Noise Temperature of a Source The noise temperature of a source is defined as T:

 T
p

k f
   D

D( )
 (8.8a)

where, p is the available power from the source in a bandwidth (Df) Hz. It may be noted here that the 

source may be a thermal noise source or it may be some other type. If it is thermal type, T will be 

the temperature of that source. If it is not thermal type, T may not have anything to do with the actual 

temperature of the source.

8.4.4 White Noise

A noise in which all frequency components from f =  to f =  are present in equal measure, i.e., 

whose power spectral density remains constant for all frequencies and is independent of frequency, as 

shown in Fig. 8.10, is called white noise.

PW(f)

N0/2

0 f

Fig. 8.10 PSD of white noise

R
WW

(t)

N0/2

0 t

Fig. 8.11 ACF of white noise

Thus, the auto‑correlation function of white noise is given by

 R
N N

WW
( ) ( )t d t=

È

Î
Í

˘

˚
˙ =

-F 1 0 0

2 2
 (8.9)

The fact that the auto‑correlation function is an impulse implies that if we take two samples of white 

noise, however close the two samples may be, they are uncorrelated. Thus, we find that white noise is 

perfectly random.

We know that the total area under the PSD curve of any signal gives the average power of that signal. 

Since the PSD of white noise remains constant for all frequencies from f =  to f = , the area under its 

PSD curve is infinity. This means that a white‑noise source must be producing an infinite average power, 

which is of course impossible in practice. Thus, there cannot be any physical source producing exact 

white noise. However, ‘white noise’ is very useful conceptually and is easy to deal with mathematically.

Note: We had stated earlier that ‘thermal noise’ although not exactly white, can be regarded as white for 

all practical purposes since its PSD remains almost flat even up to 1012 Hz–frequencies far beyond those 

used by any conventional communication system. Further, since by its very nature, it is the aggregate of 
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the noise components produced by the independent random movements of a very large number of charged 

carriers in a conductor, from central limit theorem, we conclude that thermal noise is Gaussian and zero 

mean. Thermal noise is thus a zero‑mean white (approximately) Gaussian noise.

White noise with PSD of N0 /2 is filtered using an ideal LPF whose cutoff frequency 
is fc Hz. What is the maximum rate at which the output of the LPF can be sampled, if the samples 
so obtained are to be uncorrelated?

Example 8.6

(a)

f0

N0/2
Pww(f)

f0

1

fc–fc

|H(f)|

(b)

f0–fc fc

N0/2
Pn(f)

(c)

0–1/2fc 1/2fc–1/fc 1/fc–3/2fc 3/2fc

N0fc
Rnn(t)

(d)
t

Fig. 8.12  (a) PSD of white noise (b) Magnitude response of the ideal LPF (c) PSD of noise at output of LPF 
(d) ACF of output noise, Rnn(t)

PSD of noise at output of LPF = H f( )
2
 ¥ PSD of white noise = Pn(  f  )

Hence PSD of noise at the output of LPF, viz., Pn(  f  ) will be as shown in Fig. 8.12(c). The ACF of 

the noise at the output of LPF, viz., Rnn(t) which is the inverse Fourier transform of Pn(  f  ), is a sinc 

function and is shown in Fig. 8.12(d).

Since this auto‑correlation function goes through zero values at regular intervals of 
1

2 fc

Ê

ËÁ
ˆ

¯̃
 seconds, 

the minimum sampling interval should be 
1

2 fc

Ê

ËÁ
ˆ

¯̃
 for the samples to be uncorrelated. Hence, the sampling 

of the output noise of the LPF should be done at a frequency of 2fc samples per second for the samples 

to be uncorrelated.

SHOT NOISE
8.5

In the previous section, we had considered, in some detail, ‘thermal noise’, which is one of the important 

constituents of internal noise. Another important source of internal noise is what is called the ‘shot noise’. 

This is produced in electronic devices such as vacuum and semiconductor diodes, photo‑diodes, transistor, 

etc. It is due to the random emission of electrons from the cathode in the case of vacuum tubes and due 

to the inherent randomness in the diffusion of minority carriers and drift of majority carriers across the 

junction in the case of semiconductor devices. 

Let us consider the case of simple vacuum diode with plane, parallel electrodes. The cathode of this device 

emits electrons due to a process called as ‘thermionic emission’. When the cathode is kept at a constant 

temperature, the number of electrons emitted per second, on the average, remains the same and if the anode 
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is given a sufficiently large positive potential with respect to the cathode, the tube operates in what is called 

the ‘temperature‑limited condition’. When the tube is operated in this condition, all the electrons emitted by 

the cathode ultimately reach the anode and the number of electrons reaching the anode per second, is limited 

only by the rate of emission of electrons by the cathode, i.e., limited by the temperature of the cathode and 

not by the voltage applied to the anode. Under this condition, an electron emitted from the cathode surface 

gets accelerated towards the anode and ultimately reaches it after a brief interval, called the ‘transit‑time’, i.e., 

time taken by the electron to travel the distance between the cathode and anode. Under normal temperature‑

limited conditions, this transit‑time will be extremely small, of the order of a micro‑microsecond.

Let us now follow the motion of one such electron emitted by the cathode. Since the initial velocity 

with which it is emitted is extremely small compared to the final velocity it acquires before reaching the 

anode, we will assume that the initial velocity is zero. Then, due to the uniform electric field between 

the cathode and the anode, it gets accelerated and its velocity goes 

on increasing linearly with time. Since an electron is a charged 

particle, its movement creates current and as its velocity increases 

uniformly with time, the current contributed by the electron also 

increases linearly with time. Finally, when the electron reaches the 

anode, the current drops down to zero. Thus, the waveform of the 

current created by a single electron will be as shown in Fig. 8.13. 

The maximum value attained by the current must be (2q/t) where q 

is the charge of an electron (1.6 ¥ 10-19 coulomb) and t is the transit‑

time, since the area of the triangular current pulse must be equal to q.

Suppose a steady current of 1 milli‑ampere is flowing through the diode under temperature‑limited 

condition. A current of 1 m.a. means that on the average 6 ¥ 1015 electrons are reaching the anode per 

second. We have deliberately used the word ‘average’ because 6 ¥ 1015 electrons per second does not 

necessarily mean that exactly 6 ¥ 109 electrons reach the anode every microsecond, or that exactly 6 ¥ 103 

electrons reach the anode every 10-12 second. The actual number may fluctuate about these values because 

the number of electrons emitted per second from the cathode goes on varying randomly with a mean value 

which is a constant and dependent upon the temperature of the cathode. Hence, the waveform of the currents 

from individual electrons when a large number of the emitted electrons are considered, will be as shown in 

Fig. 8.14, where t1, t2, t3, etc., are random instants of time. 

The average number of such random instants per second is 

however, constant.

Since the transit time, t, is extremely small, we may 

approximate each triangular current pulse of area q by 

an impulse of strength q. In Fig. 8.14 then we will have 

impulses of strength q occurring at random instants t1, t2, 

t3, etc. As ie(t), the current pulse due to a single electron, 

is a finite energy signal and is therefore Fourier 

transformable, let

 i t I fe e( ) ( )
FT

¨ Æææ  (8.10)

But i t q te ( ) ( )ª d

Now, to find PnI(  f  ), the power spectral density of 

the diode current component in(t), we note that in(t) is 

a random signal and so is not Fourier transformable. 

We shall, therefore, follow the approach adopted in 

ie(t)

t0

2q/t

t

Fig. 8.13  Current waveform created 
by a single electron

t1 t2 t3 t4 t5 t6 t7 t

2q/t

. . . .

Fig. 8.14  Waveforms of current contributed 
by randomly emmited electrons

Randomly fluctuating
current in(t)

T–T 0

i(t) = I0 + in(t)

I0

t

Fig. 8.15  Anode current waveform obtained 
by summing up the various triangular 
current pulses of Fig. 8.14
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Section 2.7 for determining the PSD of deterministic power signals. Accordingly, let us consider a signal 

inT (t) defined as

 i t

i t t T

nT

n

( )
( ); | |

;
D

   

  otherwise

£Ï
Ì
Ô

ÓÔ0
 (8.11)

inT (t) is thus a segment of in(t) and is of duration 2T. Hence inT (t) is a finite energy signal. Let

i t I fnT nT( ) ( )
FT

¨ Æææ

Following the arguments similar to those of Section 2.9.3 and recognizing that here inT (t) is a segment 

of one realization of the random signal in(t), we write the expression for the PSD of in(t) as 

 P f E
I f

T
nI

T

nT
( )

( )
=

È

Î

Í
Í

˘

˚

˙
˙

Lt

2

2
 (8.12)

where the symbol E is used to indicate the ensemble average since I fnT ( )
2
 changes from one realization 

to another.

Assuming that on the average N electrons arrive at the anode per second, 2TN electrons arrive in 2T 

seconds and we may write

P f E
I f

T
TN E

I f

T
nI

T

nT

T

e
( )

( )
( )

( )
=

È

Î

Í
Í

˘

˚

˙
˙
=

È

Î

Í
Í

˘

˚

˙
˙

Lt Lt

2 2

2
2

2
@@ q n2

But qN = I0, the dc current in the anode circuit.

 \P f I qnI ( ) = 0 amp /2 Hz  (8.13)

Thus, the PSD of the anode current is independent of f. This indicates that shot noise is a white‑noise 

process. However, it must be remembered that this is only an approximation, since we have approximated 

the triangular current pulses by impulses of current by considering t the transit time to be negligibly small. 

If we do not make that approximation and use the Fourier transform of triangular pulse instead of that of an 

impulse function, and proceed with the derivation, we will find that PnI(  f   ) is not independent of frequency 

and that it falls off slowly with increasing frequencies. However, its rate of decrease with frequency is so 

low that it is, for all practical purposes, constant up to frequencies of the order of a few hundred megahertz.

Note: PnI(  f  ), as given in Eq. (8.13) is a two‑sided power spectrum. Hence, over a bandwidth of (Df  ) Hz, 

the mean‑squared value of the shot noise current is given by

 I I q fn
2

02= ( )D  amp2 (8.14)

PnI(f)

f

DfDf

0

I0q

Fig. 8.16 Showing that PnI(f) given by Eq. (4.13) is a 2-sided power spectrum
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8.5.1 Shot Noise in Space-charge-Limited Diodes

For a vacuum diode operating in the space‑charge‑limited region of its characteristic, the randomness in 

the number of electrons arriving at the anode is somewhat smoothened out due to the presence of a thick 

cloud of electrons near the cathode surface. Hence, in this case, Eq. (8.13) is modified as

 P f I qnI ( ) =a 0  amp2/Hz (8.15)

In this equation, a is a ‘space‑charge smoothing factor’ whose value depends on the density of the 

space‑charge and may vary from 0.01 to 1. It is given by (ref. 2)

 a =
1 28

0

. kT g

qI

c d  (8.16)

where, k = Boltzmann’s constant = 1.38 ¥ 10-23 Joules per degree Kelvin

 Tc = Cathode temperature in degree Kelvin

 gd = Dynamic conductance of the diode = rate of change of plate current with plate voltage

 q = Charge of an electron = 1.6 ¥ 10-19 coulomb

8.5.2 Shot Noise in Semiconductor Diodes

Shot noise arises in the case of semiconductor diodes also, because of the random nature of the number 

of minority carriers diffusing across the junction and also of the generation and recombination of holes 

and electrons. An analysis of the shot noise in semiconductor diodes yields a somewhat similar equation:

 I I I q fn
2

02 2= +( ) ( )D  amp2 (8.17)

In Eq. (8.17), I is the dc current flowing across the p‑n junction, expressed in amperes and I0 is the 

reverse saturation current in amperes. This equation, however, is applicable only at low frequencies and 

low injection currents.

Partition Noise In multi‑electrode devices like the vacuum triodes and pentodes as well as the bipolar 

junction transistors, one more type of noise, known as the ‘partition noise’, is generated. In triodes and 

pentodes, it arises due to the random distribution of the electrons emitted by the cathode between the 

grids and the anode or plate; and in the case of transistors, due to the random distribution between the 

base and collector, of the charged carriers injected into the base region.

In supreheterodyne radio receivers, it is this partition noise which makes the mixer stage the most 

noisy one.

A vacuum diode operating in the temperature-limited region and carrying a direct 
current of I0 amperes, with a resistance of R ohms connected across it through a coupling capacitor, 
is used as a noise source.
 (i) Determine the PSD of the output noise neglecting the effect of the coupling condenser.
 (ii)  Find the ratio of mean-squared value of the thermal noise to the mean-squared value of the 

total noise at the output.

Example 8.7

With a direct current of I0 amperes flowing through it, the mean‑squared value of the shot noise generated 

by the diode in temperature‑limited condition is given by

I I q fsh
2

02= ( )D  amp2 (from Eq. 8.14)
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The thermal noise generated by the resistance of R ohms has a 

mean‑squared value given by

I
kT f

R
th
2

4
=

( )D
 amp2 (from Fig. 8.3)

\ PSD of the total output noise = 2
4

0
I q

kT

R
+Ê

ËÁ
ˆ
¯̃

 amp2/Hz

and, 
Mean-squared value of the thermal noise

Mean-squared value oof total noise

Ê
ËÁ

ˆ
¯̃
=

+Ê
ËÁ

ˆ
¯̃

4

2
4

0

kT f R

I q
kT

R
f

( ) /D

D

=
+

Ê
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ˆ

¯̃
4

4 2
0

kT

kT I qR

NOISE EQUIVALENT BANDWIDTH OF A FILTER
8.6

Definition Let T be an arbitrary filter, with transfer function H(  f  ). The noise‑equivalent bandwidth of this 

filter T is defined as the bandwidth B of an ideal lowpass filter whose passband gain is H H f
f

( ) ( ) ,0
0

=
=

such that when a white noise source of power spectral density N0 /2 is applied as input, the ideal LPF 

gives the same output power as the filter T under consideration.

With White Noise of PSD Equal to N0 /2 Applied as Input

 (i) Output noise power of the filter = =Ú Ú
N

H f df N H f df0 2

0

2

0
2

( ) ( )

   Note: With h(t) real‑valued, |H(  f  )| must have even 

symmetry.

 (ii) Output noise power of the ideal LPF =
-
Ú

N
H df

B

B

0 2

2
0( )

= N B H0

2
0( )

N B H N H f df0

2

0

2

0

0( ) ( )= Ú

  \ B = Noise‑equivalent bandwidth of the filter T

=
Ú H f df

H

( )

( )

2

0
2

0

  \ noise‑equivalent bandwidth B

H f df

H
=

Ú ( )

( )
,

2

0
2

0
 for a filter with transfer function H(  f  ) (8.18)

Fig. 8.17 Circuit  of Example 8.7

C

RI
0

Fig. 8.18  Transfer functions of T and the 
ideal LPF of passband gain H(0) 
and bandwidth B Hz

|H(f)|
H(0)

H(f)

–B 0 B f
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Determine the noise equivalent bandwidth of 
the R-C lowpass filter shown in Fig 8.19.

Example 8.8

Input Output

R

C

Fig. 8.19 Circuit of Example 8.8

For the R‑C lowpass filter,

H f
j CR

H f
f C R

( ) ( )=

+

\ =

+

1

1

1

1 4

2

2 2 2 2
w p

          

\ when white noise of PSD equal to N0/2 is applied as input to the R‑C lowpass filter, the output noise 

power is 

P
N

f C R
df N

f C R
df

1

0

2 2 2 2 0 2 2 2 2

0
2

1

1 4

1

1 4
=

+
=

+Ú Úp p

Put 2p q p qfCR d= \ =tan         2 sec2CRdf

\ P N
CR

d
N

RC
no

= =Ú0

2

2
0

2

01 2

4

( / )sec

sec

/
p q

q
q

p

When white noise of PSD equal to N0/2 is applied as input to an ideal LPF of bandwidth B and 

passband gain = H(0) = 1, the corresponding output noise power is

P B
N

H N B2
0 2

02
2

0= Ê
ËÁ

ˆ
¯̃

◊ =( )

\ N B
N

RC
0

0

4
=  i.e., B

RC
=

1

4

If zero-mean white noise of 2-sided PSD h / 2 W / Hz is applied as input to the 
lowpass R-C filter of Fig. 8.19, determine and sketch the PSD and auto-correlation function of the 
filtered noise.

Example 8.9

The transfer function H(  f  ) of this filter is

H f
j RC

( ) =
+

1

1 w

The PSD of the input white noise process is 

P fX ( ) /= h 2

\ from Eq. 7.87, we know

PY(  f  ) = Power spectral density of the output noise process

= ◊ =

+

H f P f
RC

X( ) ( )
/

( )

2

2

2

1

h

w

Fig. 8.20(a) Py (f) 0f output noise process

PY(f)

0 f



Noise 351

Taking the inverse Fourier transform of PY(  f  ), we get

R
RC

e
Y

RC( )t
h

t

=
-
Ê
ËÁ

ˆ
¯̃

4

A parallel resonant circuit resonant at 100 MHz has a capacitance of 20 pF. If the 
Q-factor of the circuit at resonance is 40, and the circuit temperature is 17∞C, what is the equivalent 
noise bandwidth of the tuned circuit?

Example 8.10

Effective or equivalent series resistance r of the tuned circuit = r = 
X

Q

c

=
¥ ¥ ¥ ¥ ¥

=
¥ ¥

=
- -

1

2 100 10 20 10 40

1

2 8 10
1 9894

6 12 12p p
. W

\ effective parallel resistance = ◊ = ¥ = =Q r Rd
2 1600 1 9894 3183. W

Since this is an R‑C lowpass filter, the noise equivalent 

bandwidth is given by

B
R C

N

d

= =

¥ ¥

1

4

10

4 3483 20

12

=
10

25464

6

= 39.27 MHz

= 39.27MHzDetermine the noise equivalent bandwidth of a normalized lowpass Butterworth 
filter of order 2. 

Example 8.11

 

The squared‑magnitude response of a Butterworth filter of order n is given by

H f
f B

n n
( )

( / )

2

2

1

1
=

+

where, B is the 3 dB cutoff frequency. Hence, for a normalized second‑order Butterworth filter, putting 

n = 2 and B = 1, we get

H f
f

2

2

4

1

1
( ) =

+

\ H f H
f

2

2

0
2

21

1
1 0( ) ( )

=
= = =

\ the noise equivalent BW of a second‑order Butterworth filter is given by (refer to Eq. (8.17)

BN = Noise‑equivalent bandwidth

R
Y
(t)

h/4RC

0 t

Fig. 8.20(b) IFT of Py(f)

L
C C

Rd Rd

Fig. 8.21  Noise model of the parallel resonant 
circuit and its approximate equivalent 
circuit beyond resonance frequency
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+
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8.6.1 Equivalent Noise Resistance

In noise calculations, it is often quite convenient to represent the noise arising from a device or a 

whole system like say a radio receiver, by the thermal noise generated by a fictitious resistance Req at 

room temperature connected at the input of the device or system, with the device or the system itself 

considered as totally noiseless. The idea is that Req connected at the input would produce at the output 

of the noiseless device / system, the same mean‑squared value of noise as is being produced by the noisy 

device / system itself.

For a 2-stage amplifier with the following details, calculate the equivalent input 
noise resistance.
First stage: Voltage gain 12 : Input resistor 500 W; Equivalent noise resistance 1000 W; Output resistor 
30 kW
Second stage: Voltage gain 20 : Input resistor 90 kW; Equivalent noise resistance 10 kW; Output 
resistor 500 kW

Example 8.12

We shall start from the output side of stage 2 and work backwards.

Step (i) A resistance of 500k at the output of the 2nd stage is equivalent, in so far as noise contribution 

is concerned, to a resistor of 
500 10

20
1 25

3

2

¥

=

( )
. k  at the input of the 2nd stage.

Step (ii) The resistor of the first stage (30k) and the input resistor of the second stage (90k) are in parallel 

and this parallel combination is in series with the noise equivalent resistance (10k) of the second stage 

and the 1.25 kW obtained in the step (i)

i.e., 
30 90

30 90
10 1 25 10 33 753

¥
+

+ +Ê
ËÁ

ˆ
¯̃
¥ =. ) .W kW

Step (iii) The resistance of 33.75 kW obtained at the output of the first stage will be equivalent, in so 

far as noise contribution is concerned, to a resistor of 
33 75 10

10
337 5

3

2

.

( )
.

¥
=  W connected at the input of the 

first stage. But this stage already has at its input, a 500 W input resistor and a 1000 W noise‑equivalent 

resistance of the first stage. Hence, the total noise resistance at the input of the first‑stage amplifier is

Req = 500 + 1000 + 337.5 = 1837.5 W
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NOISE FIGURE AND EQUIVALENT NOISE TEMPERATURE 
OF 2-PORT NETWORKS

8.7

8.7.1 Signal-to-Noise Ratio

As mentioned earlier in the discussion on the result of Example 8.1, in communication engineering the 

values of signal and noise are individually not of much significance. It is their relative strength that 

matters. Hence, we will always be interested in the ratio of signal power to noise power rather than the 

signal power alone or the noise power alone. Thus, we define the Signal‑to‑Noise Ratio (SNR) as 

   SNR       
Signal power

Noise power
  D  (8.19)

Note that SNR is a ratio of powers and not of voltages. We may talk about the SNR at the input or 

the output of an amplifier. It is generally more convenient to express the SNR in decibels rather than 

as just a ratio.

   SNR       10log  
Signal power

Noise power
  

dB 10( ) =
È

Î
Í

˘

˚
˙  (8.20)

Modification of SNR by an Amplifier Consider an amplifier with a power gain G. Let this amplifier 

have an input SNR of (S/N)i.

Input SNR = 
S

N

S

N
i

i

i

Ê
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ˆ
¯̃
= =

Ê
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ˆ

¯̃
Input Signal Power

Input Noise Power

The amplifier amplifies both the signal power as well as the noise power by the same factor, G. Further, 

since the amplifier contains some noise producing elements like resistors and electron devices, it produces 

some additional noise power, say Na, at the output. Hence, at the output side we have

Signal power = G.Si

Noise power = (G.Ni + Na)

Thus, the SNR at the output = 
S

N

G S

G N N

S

N

i

i a

i

i

Ê
ËÁ

ˆ
¯̃

=
◊
+

<
0 ( . )

 (8.21)

Therefore, for any amplifier, or, for that matter, for any 2‑port network with some noise producing 

active/passive elements in it, the SNR at the output will always be less than the SNR at the input; i.e., 

there is a deterioration of the signal‑to‑noise ratio. Thus, an amplifier does not improve the signal‑to‑

noise ratio, it only degrades it.

Noise Figure In Eq. (8.21), if the noise power at the output contributed by the amplifier/linear two‑port 

network due to the noise generated within, viz., Na, were to be zero, i.e., if the amplifier was totally noise‑

free, then output SNR would have been equal to the input SNR. A measure of how noisy an amplifier is, 

can therefore be obtained from the ratio of the input SNR to the output SNR. This ratio will have a value 

of 1 if the amplifier/2‑port linear network is totally noise‑free and a value greater than unity otherwise. 

How large the ratio is compared to unity would give us an indication of how noisy the amplifier/2‑port 

linear network is. This ratio is called the noise figure of the amplifier.
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 F
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i
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 Noise figure 
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     D
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( )0

0  (8.22)

With regard to the ‘noise figure’, there are a few points that need to be noted.

1.  If we consider the ratio of N0 to GNi at a single frequency, then the noise figure so obtained is 

called the ‘spot noise figure’. The frequency at which it is valid should also be stated along with 

the spot noise figure, as the value would be different at different frequencies.

2. If the total noise powers (over the entire bandwidth that is of interest to us) at the output and input 

are considered, then the ratio of N0 to GNi gives what is called the ‘integrated noise figure’.

3. The integrated noise figure is the one most generally used, firstly because it is more realistic and 

secondly because it can be measured more easily. However, it is the ‘single frequency noise figure’, 

or the ‘spot noise figure’ which is most easily computed.

4. Power spectral density represents power as a function of frequency. Hence, the spot noise figure can 

be obtained as function of frequency by taking the ratio of power spectral densities of N0 and GNi.

5. We know that the maximum noise power that a 2‑port network can deliver to a load can be obtained 

only under matched conditions, and since an amplifier amplifies the noise power available at its input 

terminals, the noise figure is defined only in terms of available noise powers, so that mismatches, 

if any, are automatically taken care of.

Available Output and Internal Noise Powers in terms of F

 (i)  From Eq. (8.21), we have available output noise power N0 = F.GNi. Now making use of Eq. (8.8) 

for Ni, we have 

N0 = Available output noise power

 = FGkT0(Df) (8.23)

   where, T0 is the room temperature. In RHS of Eq. (8.22), GkT0(Df) is the component of the output 

noise power obtained by amplification of the available input noise power kT0(Df). If the amplifier 

had been noise‑free, the output noise power would have been only this component, i.e., GkT0(Df). 

However, due to the noise internally generated in the amplifier, it is increased by a factor F( > 1)

 (ii) From Eq. (8.22),

N

G
FkT f0

0= ( )D

   This is the total output noise including the internally generated noise, referred to the input. Of 

this, kT0(Df) is the available noise power at the input terminals because of the source. Hence, the 

internally generated noise, referred to the input, is given by

  N
a
¢  = Internally generated noise referred to input = (F - 1) kT0(Df) (8.24)

An amplifier has a noise figure of F = 12 dB. Express the internally generated 
component of the output noise power as a fraction of the available output noise power.

Example 8.13

From Eq. (8.23), internally generated noise, referred to the input

= -( ) ( )F kT f1 0 D

From Eq. (8.22), available output noise power = FGKT f0 ( )D
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Now, internally generated noise referred to the output = G F kT f( ) ( )-1 0 D

\ internally generated component of output noise power/available output noise power

=
-

=
-( ) ( )

( )

( )F GkT f

FGkT f

F

F

1 10

0

D

D

Here, F is in the form of a ratio of the SNR’s and not in decibles.

\ we should convert the given value of F into a ratio

For this, we note that F
S N
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Î
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F
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= =

1 14 85
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.

.
.

\ 
Internally generated component of noise power

Available oupuut noise power
= 0 9369.

The available output noise power from an amplifier is 80 nW, the available 
power gain of the amplifier being 40 dB and the equivalent noise bandwidth being 25 MHz. Calculate 
the noise figure, assuming T0 to be 27∞C.

Example 8.14

From Eq. 8.22, we know that the available output noise power N0 is given by

N FGkT f0 0= ( )D

where T0 is the room temperature and given to be 27∞C = 300 K.

\ F
N

GkT f
= =

¥

¥ ¥ ¥ ¥ ¥

-

-

0

0

9

4 23 6

80 10

10 1 38 10 25 10 300( ) .D

= =
2318

300
7 7267.

\ 10 10 7 7267 8 87910 10log log . . .F = = dB

8.7.2 Equivalent Noise Temperature

Although the noise figure F gives a good measure of the degree of noisiness of a device, amplifier, or any 

2‑port linear network, there is one disadvantage with it. We know that it is equal to one for a noise‑free 

network and that the greater the value of F, the noisier the amplifier/network is. Thus, for low‑noise 

microwave devices and amplifiers, the value of F is very close to one. It then becomes difficult to compare 

the ‘noisiness’ of two low‑noise amplifiers by comparing their noise figures. A good alternative in such 

cases, is to use what is called the ‘equivalent noise temperatures’ of these amplifiers. Since this also tells 

us how noisy a device or circuit is, it must be related to the noise figure F. We shall now define the 

term ‘noise equivalent temperature’ and then see how it is related to F.
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Definition The equivalent noise temperature of a device or a 2‑port linear network is a fictitious 

temperature Te which is such that the available noise power at that temperature, viz., kTe(Df) is equal to 

the internally generated noise power of the device or the 2‑port network referred to its input.

From Eq. (8.22), we have

F
GN N

GN

i a

i

=
+

From the above definition, it is clear that Na in the RHS of the above can be replaced by G[kTe(Df)]. 

Further, we know that

N kT f Ti = =0 0( );D      room temperature

Hence,

F
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GkT f GkT f

GkT f

T T

T

i a

i

e e
=

+
=

+
=
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0

0
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D D

D

 \ F
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e= +
Ê
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ˆ

¯̃
1

0

 (8.25)

or T F T
e
= -( )1 0  (8.26)

From Eq. (8.26) it is clear as to why the use of Te is preferable for lownoise devices/amplifiers. The 

small difference between F and 1 for these low‑noise amplifiers, is magnified by getting multiplied by 

T0, the room temperature in degrees Kelvin (i.e., nearly 300).

8.7.3 Noise Figure of Amplifiers in Cascade

In communication engineering, quite often we come across a number of amplifiers or 2‑port networks 

connected in cascade. It then becomes necessary to determine the overall noise figure of the cascade 

connection in terms of the noise figures of the individual amplifiers or 2‑ports.

In this connection, let us recapitulate the following

 (i) From Eq. (8.22), we have

 F
GN N

GN

i a

i

=
+

=
Actual output noise power

Noise output power if  the amplifier is noise-free
 (8.27)

 (ii)  If we have an amplifier with noise figure F, available power gain G, and an available input 

noise power kT0(Df), its output noise power (total) will be FG kT0(sDf) since F is defined with 

reference to available noise power. Also, the noise power internally generated by the amplifier, 

when referred to the input, is given by (F - 1) kT0(Df) Eq. (8.24).

  Now consider the cascade connection of two amplifiers as shown.

Power
gain =G1

(F1–1)kT0(Df) (F2–1)kT0(Df)

+ (F2–1)kT0(Df)G2

F1kT0(Df)G1

F1kT0(Df)G1G2

kT0(Df)
NF= F1 NF = F2

Power
gain =G2

Fig. 8.22  Cascade connection of two amplifiers
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  Then the overall noise figure F is given by

F =
Actual output noise power

Output noise power assuming the  amplifiers to be noise-free

=
+ -FkT f GG F kT f G

kT f GG

1 0 1 2 2 0 2

0 1 2

1( ) ( ) ( )

( )

D D

D

  \ F F
F

G
= +

-

1
2

1

1( )
 (8.28)

   This is known as Friis’s formula. It may be extended to any number of amplifiers connected in 

cascade.

       F F
F
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F
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F

GG G
= +

-
+

-
+

-
+1

2

1

3

1 2

4

1 2 3

1 1 1( ) ( ) ( )
.....  (8.29)

   Here, F1, F2, F3, . . . are the noise figures and G1, G2, G3, . . . . are the available power gains 

of the first, second and third amplifiers, etc.

8.7.4 Improvement of Overall Noise Figure

(1)  From Eq. (8.29), it is clear that if the available power gain G1 of the first amplifier is quite large, 

the overall noise figure F of the cascade connection will be approximately equal to the noise figure 

of the first system in the cascade connection.

(2)  Since our objective is to have a low overall noise figure, it becomes necessary to choose a system 

with high power gain and low noise figure as the first stage in a chain of cascade amplifiers. In a 

superheterodyne radio receiver, as already mentioned earlier, the mixer stage is the most noisy. That 

is why it is always preferable to precede it with a high gain RF amplifier having a low noise figure, 

so that the overall noise figure is not allowed to be affected by the presence of the noisy mixer stage.

8.7.5 Equivalent Noise Temperature of Cascaded Amplifiers

Let the individual stages have equivalent noise temperatures Te1, Te2, Te3, . . . and available power gains 

G1, G2, G3, . . . . Let the room temperature be T0. If the equivalent noise temperature of the cascade 

connection is say Te, then from Eqs (8.28) and (8.25), we have
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....  (8.30)

A source with an internal resistance of 50 W and an internal e.m.f. of 6 mV is 
supplying the signal voltage to an amplifier that has an input resistance of 75 W. The amplifier has 
an equivalent noise resistance of 1470 W. For a noise bandwidth of 5 kHz, calculate the output (S/N) 
ratio in dB at room temperature of 290 K.

Example 8.15
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The signal voltage Vs developed across the input resistance of 75 W is the signal voltage actually available 

at the input of the amplifier. Hence, we will use the Thevenin’s equivalent circuit of this.

50W

E
s

V
s

6mv

75W

Fig. 8.23  Signal source 
voltage circuit

(Noisy)

Req= 1470W

Amplifier

= 30W
50× 75
50+ 75

= 3.6mV
6× 75
50+ 75

Fig. 8.24  Input circuit of the amplifier, 
noise equivalent resistance of 
the amplifier is included

Mean‑squared value of the noise voltage

= +4 0kT R R f( )( )th eq D

= ¥ ¥ ¥ ¥ ¥ +
-4 1 38 10 290 5 10 30 147023 3. ( )

= ¥
-12 10 14  volt2

Mean‑squared value of the signal voltage = ( . )3 6 102 12
¥

-  volt2

= ¥
-12 96 10 12.  volt2

Hence (S/N) ratio = 
12 96 10

12 10
108

12

14

. ¥

¥

=
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-

\ 
S

N

Ê
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ˆ
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= =
dB

dB10 108 20 310log .

(i) Determine the noise figure F of the amplifier of Example 8.15 in dB. (ii) Also 
determine its equivalent noise temperature.

Example 8.16

 (i) We know from Eq. (8.27) that the noise figure F is given by

F =
Actual output noise power

Output noise power assuming the  amplifiers to be noise-free

  In our case, actual noise output power

= +( )( )È
Î

˘
˚ = ¥ ¥ -4 12 100

14kT R R f G Gth eq D  volt2

   where, Req is the equivalent noise resistance of the amplifier referred to the input, and G is the 

available power gain.

  Noise output power assuming the amplifier to be noise free 

= ( )ÈÎ ˘̊ = ¥ ¥ -4 2 4 10
0

15kT R f G G
th
D .
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  \ F
G

G
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15 10
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  Note: As can be seen from the above steps, F is in fact, given by

F

R R

R

R

R
=

+

= + = + = + =
th eq

th

eq

th

1 1
1470

30
1 49 50

 (ii) Since F
T

T

e
= +1

0

, we have T
e
= - =( ) ,50 1 290 14 210 K

A low-noise amplifier of 30 K equivalent noise temperature and 20 dB available 
power gain precedes a microwave receiver which has a noise figure of 25 dB. What is the overall 
noise equivalent temperature if the room temperature is 27∞C?

Example 8.17

 T T
T

G
e e

e
= +

1

2

1

 (see Eq. 8.29)

T
e
1

30= K, G1 = 20 dB = 100; 

F2 = Noise figure of the microwave receiver = 25  dB = 102.5 = 316.228

\ T
e2

= Equivalent Noise temperature of the microwave receiver = (F2 – 1)T0

= (315.228) ¥ (273 + 27) = 315.228 ¥ 300 = 945.684 K

\ overall noise equivalent temperature = T T
T

G
e e

e
= +

1

2

1

= ∞30
316 228

100
33 16228+ =

.
. K

8.7.6 Equivalent Noise Temperature and Noise Figure of a Lossy Line

Let us consider a lossy transmission line of power loss 

L where L is the ratio of input power to the output 

power. Let it be terminated on both sides by R0 ohms, 

its characteristic resistance, as shown in Fig. 8.25.

For simplicity, let us assume that the line and the resistances of R0 ohms each, are all at the ambient 

temperature T0K. The lossy line acts as a thermal source and if Te is its equivalent noise temperature, 

and gL=1/L is its gain, then from the way Te has been defined as the internally generated noise power 

available at the output referred to the input, we may write

Available internally generated 

noise power at the output

¸
˝
ÔÔ

Ǫ̂
= kT g fe L ( )D

But this must be equal to the total noise power available at the output minus the noise power generated 

in the R0 at the input side and made available at the output end of the line.

R0

ohms

R0

ohms

Fig. 8.25  Lossy transmission line 
terminated in its R0
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Since the noise power contributed by input side R0 and made available at the output end is given by  

kT g fL0 ( )D , if the total available noise power at the output is kT f0 ( )D , we may write

kT g f kT f kT g fe L L( ) ( ) ( )D D D= -0 0

\ T
T

g
T T Le

L

= -
Ê

ËÁ
ˆ

¯̃
= -0

0 0 1( )

\ T T L
e
= -0 1( )   

But, we know, from Eq. (8.26) that  T T F
e
= -0 1( )

Hence, combining the above two equations, we get

F L= Noise figure of the lossy line =

In TV receivers, the antenna is often mounted on a tall mast and a long lossy 
cable is used to connect the antenna to the receiver. To overcome the effect of the lossy cable, a 
pre-amplifier is mounted on the antenna as shown in Fig. 8.26(a). 

G1 = 20 dB

F1 = 6 dB

G3 = 20 dB

F3 = 6 dB
L
c
= 3 dB

To demodulator

Receiver front-endLossy-cablePre-amplifier

 Fig. 8.26(a) Antenna with pre-amplifier

 (i) Find the overall noise figure of the system.
 (ii)  Find the overall noise figure of the system if the pre-amplifier is omitted and the gain of the 

front-end is increased by 20 dB. (University Question)

Example 8.18

We know, from the derivation given above, that for a lossy cable, the noise figure (ratio) equals its power 

loss. So, in our case,

Fc = Noise figure of the lossy cable = L (ratio) = 2

 (i) Applying Friis’s formula for the overall noise figure,

F F
F

G

F

G G

C

C

= +
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+
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1
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3

1

1 1( ) ( )

.

  where GC = (1/LC) = Gain of the cable

  \ F = +
-

+
-

¥

3 981
2 1

100

39 8 1

100 1 2
.

( ) ( . )

( / )

= =4 767 6 782. . dB

 (ii)  When the pre‑amplifier is omitted and the gain of the front end is increased by 20 dB, the system 

configuration is as given in Fig. 8.26(b). 

6 10 3 9810 6dB = =. .

3 10 20 3dB = =.

16 10 39 81 6dB = =. .

60 10 106 6dB = =
20 10 1002dB = =
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  \ overall noise figure F is now given by

F F
F

LC
C

= +
-

= +
-

=
( )

( / )

( . )

( / )
.3 1

1
2

39 8 1

1 2
79 6

\ FdB dB= =10 79 6 19 0110log . .

A satellite receiving system consists of a low-noise amplifier (LNA) that has a 
gain of 47 dB and a noise temperature of 120 K, a cable with a loss of 6.5 dB and the main receiver 
with a noise factor of 7 dB. Calculate the equivalent noise temperature of the overall system referred 
to the input for the following system connections.
 (i) LNA at the input followed by the cable connecting to the main receiver.
 (ii)  The input direct to the cable, which is then connected to the LNA, which, in turn, is connected 

to the main receiver. (University Question)

Example 8.19

As the value of the ambient temperature, T0 is not 

given, let us conveniently assume it as 17∞C = 290 K.

 (i) For the first case, configuration is as follows:

\ 

G L F
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C
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1
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338 4 0118 290 1163 442= ¥ =. .

  Applying Friis’s formula for the overall equivalent noise temperature Te (see Eq. 8.29)
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1005 38
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50118 7.
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= + + =120 0 0200 0 10369 120 12. . . K

 (ii) For the second case, the configuration is as follows:

L

G F

C
= =

= = = = = = =

loss dB
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6 5

10 4 4668 47 10 7 10 5 0110 65
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  \ applying Friis’s formula for the overall equivalent noise temperature Te, we have

T T
T

G

T

G G
e e

e

C

e

C
c

= + + = + +
1 3

1

1005 38
120

1 4 4668

1163 442

50118
.

( / . )

.

( .772 4 4668/ . )

= + + =1005 38 536 016 0 10369 1541 499. . . . K

L
c
= 3 dB = 2

F
c
= 2

G3 = 80 dB

F3 = 16 dB

To demodulator

Lossy-cable

Fig. 8.26(b) System configuration for part (ii)

LNA Cable Receiver

Fig. 8.27(a) First configuration for Example 8.19

LNACable Receiver

Fig. 8.27(b)  Second configuration
for Example 8.19



362 Analog Communication

Note: From the definition of the equivalent noise temperature of a 2‑port, we know that it is the 

temperature Te which is such that the available noise power at that temperature, viz., KT fe ( )D , is equal 

to the internally generated noise power of the 2‑port, referred to its input.

A coil having an inductance of 2 henry and an internal resistance of 1 ohm is 
shunted by a capacitor of 2 farads. Determine the power density spectrum of the thermal noise at 
the network terminals.  (University Question)

Example 8.20

Thermal noise is produced in the circuit only by the resistance of the coil. We shall therefore draw the 

equivalent circuit as shown in Fig. 8.28.

2henry

2 kTR volt2/Hz

2 farad
10W

C

L

R

2 kTR

v2/Hz

(lossless)

C

LRA

B
B´

A´

=

Fig. 8.28 Circuit for Example 8.20

The 2‑port network shown inside the dotted line box has input power spectral density of 2 kTR volt2/Hz. 

Hence, its output power spectral density (PSD) will be

Output PSD = (Input PSD) ¥ |H(  f  )|2

where H(  f  ) is the transfer function of the 2‑port.

Now,

H f
j C

R j L
j C

LC j RC
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( )
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+ + ( )
=

- +
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1

1

1 2

w

w
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2 2 2 2 2
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1
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- +w w

Substituting the values of R, L, and C, we get

H f( )
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2

2 2 2 4 2

1

1 4 4

1

1 16 4
=

- +

=

+ -w w w w

\ output PSD = 2
2

kTR H f( )  volt2/Hz

=

+ -

2

1 16 44 2

kT

( )w w
 since R = 1W
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8.7.7 Measurement of Noise Figure

In Section 8.5 of this chapter, we had shown that a temperature‑limited vacuum diode carrying a plate 

current of I0 amperes generates shot noise current component whose mean‑squared value is given by 

Eq. (8.14) as

I I q fn
2

02= ( )D  amp2

Thus, the temperature‑limited vacuum diode can be used as a noise source. As stated earlier, this 

noise is not exactly white, but has a flat spectral density even upto a few hundred megahertz. Hence, for 

most of our communication systems, for which the carrier frequencies are in the RF this source can be 

regarded as a white noise source. For microwave communication systems, one may make use of noise 

generators which use a fluorescent tube placed inside a waveguide as a noise source.

A simple set‑up for the measurement of the noise figure F of a two‑port network, using a 

temperature‑limited vacuum diode as the noise source, is shown in Fig. 8.29.

Noise source

K

V

I0

I0 R
s

C

Network

under test

power gain =G

Noise 

figure = F

Power

meter

D

Fig. 8.29 Measurement of noise figure

Let us assume that the value of C is such that its effect can be ignored.

Initially, we make I0 = 0 by opening the switch K and note the power meter reading. Let it be P1. Then 

P1 is the output noise power with input noise power being only the thermal noise generated by the RS 

which is actually the parallel combination of the output resistance of the source and the input resistance 

of the 2‑port network under test. Hence, from Eq. (8.4) and (8.27) we have

 P kTR f GFS1 4= ( )D  (8.31)

With the switch K now closed and with a diode direct current of I0, let the output noise power be P2. 

Now, this P2 is caused by an input noise power consisting of shot noise and thermal noise.

\ P kTR f GF qI R G fS S2 0
24 2= +( ) ( )D D  (8.32)
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01
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2
= + = +

( )
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D

D

Note: In Eq. (8.32), the first term represents the output noise power including the amplified thermal noise 

power given to the input and the noise power at the output due to the internally generated noise. Hence, 

to get the total output noise power when both thermal noise and shot noise are present at the input, we 

merely add to the first term the output shot‑noise power which is G times the input shot‑noise power.

Let us now adjust the cathode temperature of the diode (by adjusting the filament voltage) so that 

P2 / P1 becomes 2. Let the new plate current under this condition be I0
¢. Then

2 1
2

0
= +

qI R

kTF

S
¢

 i.e., F
qI R

kT

S
=

0

2

¢
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Now, if T = 290K,

\ F
I R
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Thus, we will be able to determine the value of the noise figure of the 2‑port network from the values 

of I0
¢ and RS.

NARROW-BAND NOISE REPRESENTATION
8.8

In any communication system, the front‑end of the receiver will be designed to have a bandwidth just equal 

to the bandwidth of the transmitted signal. For example, in the case of AM audio broadcasting, 5 kHz 

being the maximum audio frequency handled by the transmitter, the transmitted amplitude modulated 

signal occupies a bandwidth of 10 kHz, five kilohertz on either side of the carrier. Hence, the front‑end 

of an AM broadcast receiver is designed to have a bandwidth of just 10 kHz. While a smaller than the 

required bandwidth for the front‑end of the receiver results in distortion of the received signal, a larger 

than required bandwidth would only allow more noise power to enter the receiver without any increase 

in the signal power.

If the channel noise is modeled as a zero‑mean white Gaussian process, and the front‑end of the 

receiver is modeled as a narrow‑band filter with centre frequency fc, the received noise will then be a 

narrow‑band noise process with centre frequency fc and 

its PSD will be some what as shown in Fig. 8.30.

Earlier, in Section 2.8 of Chapter 2, we had shown that 

it is possible to represent a narrowband signal, x(t), with 

centre frequency fc in terms of its inphase and quadrature 

components as

x t x t t x t tI c Q c( ) ( )cos ( )sin= -w w  (ref to Eq. 2.163)

where, the lowpass signal x t
I
( )  and x tQ ( )  were respectively called the in phase and quadrature components 

of the signal x(t).

In the present case, we are not dealing with a narrowband deterministic signal x(t); instead, we are 

dealing with a narrowband noise—a narrowband random process n(t). However, we may proceed exactly 

the same way as we did in Chapter 2 for the deterministic signal case and write

 Pre‑envelope of  ̂ ( ) ( ) ( ) ˆ( )nn t n t n t jn t= = +
+

 (8.33)

and complex‑envelope of n t n t n t j f tc( ) ( ) ( )exp[ ]= = -
+

% 2p  (8.34)

Let the lowpass complex process %n t( )  be represented as

  %n t n t jn tI Q( ) ( ) ( )= +  (8.35)

Since  %n t( )  is a lowpass process of bandwidth, say W Hz,  n t
I
( )  and  n tQ ( )  are also lowpass of the 

same bandwidth.

From Eq. (8.33), we have

n t n t n t e j tc( ) Re ( ) Re ( )= [ ] = È
Î

˘
˚+ %

w  (from Eq. 8.34)

Fig. 8.30 PSD of noise entering the receiver

PN(f)

–fc 0 fc f
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Now, substituting for  %n t( )  using Eq. (8.35), we get

\ n t n t jn t t j tI Q c c( ) Re ( ) ( ) cos sin= +{ } +{ }È

ÎÍ
˘

˚̇
w w

 \n t n t t n t tI c Q c( ) ( ) cos ( )sin= -w w  (8.36)

RHS of Eq. (8.36) is called the in‑phase and quadrature component representation of the narrowband 

noise process n(t) centered on fc.

There are a few extremely useful properties associated with the in‑phase and quadrature components, 

viz.,  n t
I
( )  and n tQ ( ) . These are stated in the chapter on probability and random processes.

SUMMARY

 1. Noise degrades the performance of communication system.

 2. Noise sources may be internal to the communication system or may be external to it. Atmospheric 

noise, extra‑terrestrial noise, and man‑made noise are due to external sources while thermal noise, 

shot noise and partition noise are due to internal sources.

 3. Disturbance caused by atmospheric noise is more severe in the medium wave band as compared to 

the short‑wave band; and it is very little in the VHF and UHF bands that are used for television.

 4. Extra‑terrestrial noise can cause disturbance to communications in the frequency range 20 MHz to 

1.5 GHz.

 5. Man‑made noise causes disturbance to communications in the 1 MHz–500 MHz frequency range.

 6. Random motion of electron in a conductor cause thermal noise (also known as Johnson noise). It 

has zero mean value and has an almost flat spectral density even upto 200 GHz. Hence, for all 

practical purposes it can be considered as a zero‑mean white noise.

 7. For thermal noise,  P f KTR( ) = 2  volts2/Hz; where K is Boltzmann’s constant, T is absolute 

temperature in K and R is the resistance in ohms.

 8. 
r.m.s  value of noise voltage across a resistor

of  ohms i

.

R nn a bandwdith of f Hz, at KD
D

T ∞

¸
˝
Ô

Ǫ̂
= 2 KTR f( )  volts.

 9. When two resistors are in series, it is their noise power spectral densities in volt2/Hz which can be 

added but not their noise voltages.

10. When two resistors are in parallel, it is their noise power spectral densities in amp2/Hz which can 

be added, but not their noise currents.

11. A noise whose PSD is flat and independent of frequency, is called ‘white’ noise. If (N0/2) is its 

PSD, then its ACF = (N0/2) d(t), an impulse. This means that however closely (in time) we may 

take two samples of a white noise process, the two samples will be un‑correlated.

12. Shot noise which arises in electron devices, is due to the random emission of electrons from 

the cathode in the case of vacuum tubes and due to the inherent randomness in the diffusion of 

minority carriers and the drift of majority carriers across the junction in the case of semiconductor 

devices.

13. Shot noise is approximately a white noise process with a two‑sided power spectral density of 

I0q amp2/Hz, where I0 is the average current through the device and q is the magnitude of the charge 

of the charged particles in motion. Its r.m.s. value  = 2 0I q f( )D  amp, where (Df  ) is the bandwidth 

over which the current is considered.
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14. In multi‑electrode electron devices like triodes, pentodes, BJT’s etc., ‘Partition Noise’ is generated 

due to the random distribution of electrons (or charged carriers) between the various electrodes—grid 

and plate in the case of triodes and base and collector in the case of a BJT.

15. The noise equivalent bandwidth of a filter with transfer function H(f  ) is defined as the bandwidth 

B of an ideal LPF whose passband gain is H(0) such that when a white noise source of PSD = N0/2 

is applied as input, the ideal LPF gives the same output noise power as the filter under consideration.

16. The equivalent noise resistance Req of a device or a system is that value of resistance which when 

connected at the input of the device or the system, with the system itself considered noiseless, 

produces at its output a mean squared value of the noise which is the same as what is being produced 

by the device/system itself.

17. SNR = Signal‑to‑noise ratio  D
Signal power

Noise power
 

 ( ) logSNR
Signal power

Noise power
dB =

È

Î
Í

˘

˚
˙10 10

18. F = Noise figure D
SNR at input

SNR at output
 For any practical device/system, it is always greater than unity. The closer the value of F is to unity, 

the better.

19. Available output noise power = FGkT f0 ( )D

  
Internally generated noise of a system referred to 

the inpuut of that system 

¸
˝
Ô

Ǫ̂
= -( ) ( )F kT f1 0 D

20. For low‑noise amplifiers and devices, it is more convenient to use noise temperature instead of noise 

figure. 

 The equivalent noise temperature of a device, or a 2‑port linear network, is a fictitious temperature 

Te which is such that the available noise power at that temperature, viz., kTe(Df  ) is equal to the 

internally generated noise power of the device or the 2‑port network, referred to its input.

21. Te = (F-1)T0, where Te is noise equivalent temperature of a devices/network whose noise figure is 

F and T0 is the room temperature.

22. Friis’s formula for noise figure of amplifiers in cascade

 F F
F

G

F

GG

F

GG G
= +

-
+

-
+

-
+1

2

1

3

1 2

4

1 2 3

1 1 1( ) ( ) ( )
.....

 For the overall noise temperature of amplifiers in cascade:

         T T
T

G

T

GG
e e

e e
= + + +

2

1

3

1 2

....

23. A bandpass noise  n t R t t t
c n

( ) ( )cos ( )= +[ ]w q  can be represented in the canonical form or the ‘in‑phase 

and quadrature’ components form as

       n t n t t n t ti c q c( ) ( )cos ( )sin= -w w

 where ni(t) and nq(t), called the in‑phase and quadrature components respectively, are such that they 

are lowpass processes and

n t n t n ti q
2 2 2( ) ( ) ( )= =
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REVIEW QUESTIONS

 1. In a communication scenario, what is meant by noise?

 2. Name the important components of external noise and internal noise.

 3. In which bands of the electromagnetic spectrum is communication affected by atmospheric noise? Why?

 4. What are the sources of ‘galactic noise’? What is the range of frequencies over which this noise 

has its spectral components?

 5. What is the origin of thermal noise? Comment on its power spectral density.

 6. Explain the meaning of the term: ‘available noise power’.

 7. What is ‘white noise’? Sketch the PSD and ACF of white noise. Why is it not possible to have a 

‘white noise’ source in practice?

 8. How does ‘shot noise’ originate? Comment the power spectrum of shot‑noise current.

 9. What is partition noise?

10. Define and explain the term: ‘noise equivalent bandwidth of a filter’.

11. What is meant by the ‘equivalent noise resistance’ of an amplifier?

12. The ‘signal‑to‑noise ratio’ at the output of an amplifier is given to be 200. What is its value in 

decibels?

13. Define and explain the terms: noise figure and noise temperature of a 2‑port network? How are they 

related?

14. Explain clearly, why in a super heterodyne receiver, it is preferable to have an RF amplifier with 

high gain to be the first stage instead of a mixer.

FILL IN THE BLANKS

 1. Noise may be broadly classified as __________ and _________.

 2. Atmospheric noise, ______________ and ________ come under the category of _______ while 

Thermal noise, __________ and __________ come under the category of ____________.

 3. Disturbance to communication caused by atmospheric noise is more severe in the __________ band.

 4. Extra‑terrestrial radiation has spectral components from _______ to _______.

 5. The two‑sided PSD of the thermal noise from a resistor of R W at a temperature of T  K is _______ 

volt2/Hz.

 6. The r.m.s. value of the thermal noise voltage across a resistor of R W at a temperature of T  K, 

measured over a bandwidth of (Df  ) is __________volts.

 7. The available noise power from a resistor of R W at a temperature of T  K over a bandwidth (Df  ) 

is _________ watts.

 8. White noise has a PSD which is __________.



368 Analog Communication

 9. The ACF of white noise with (N0/2) as its PSD is _________.

10. We cannot have perfect white noise source in practice because ___________.

11. Thermal noise may be considered as ____________ mean _________ Gaussian noise.

12. In a temperature‑limited vacuum diode carrying a direct current of I0 amperes, the PSD of shot noise 

is _______ amp2/Hz.

13. In a temperature‑limited vacuum diode carrying a direct current of I0 amperes, the r.m.s. value of 

the shot‑noise current, measured over a bandwidth (Df  ) Hz is ______ amperes.

14. For any amplifier, (S0 /N0) __________ (Si / Ni). (≥ , £)

15. For any amplifier, the noise figure is always ___________ 1 (≥ , £).

16. In the case of lownoise amplifiers, it is better to use ________ rather than the noise figure. 

17. At a room temperature of 290 K, the noise figure of an amplifier was found to be 1.01. What is its 

equivalent noise temperature?

18. A number of amplifiers with available power gains G1, G2, . . . and noise figures F1, F2, . . . are 

connected in cascade in that order, If G1 >> 1, the overall noise figure is approximately equal to 

_________.

MULTIPLE CHOICE QUESTIONS

 1. The effect of atmospheric noise is most severe in 

(a) medium wave band  (b) shortwave band

(c) VHF band  (d) microwave region

 2. Extra‑terrestrial noise can cause disturbance to communications in the frequency range

(a) below 100 kHz  (b) 100 kHz to 10 MHz

(c) 15 MHz to 1.5 GHz  (d) above 1.5 GHz

 3. Man‑made noise can cause disturbance to communications especially in the frequency range

(a) below 1 MHz  (b) 1 MHz to 500 MHz

(c) 500 MHz to 5 GHz  (d) above 5 GHz

 4. The power spectrum of thermal noise is flat almost up to

(a) 100 kHz (b) a few MHz (c) a few GHz (d) 1012 to 1013 Hz

 5. The two‑sided power spectral density of thermal noise is

(a) kTR volt2/Hz  (b) 2 kTR volt2/Hz

(c) 4 kTR volt2/Hz  (d) I0 q amp2/Hz

 6. The r.m.s. value of the thermal noise voltage across a resistor of R W at a temperature of T K 

measured over a bandwidth of (Df) Hz is

(a) 2 kTR f( )D    (b) 4 kTR f( )D

(c) kTR f( )D   (d) none of the above

 7. The r.m.s. value of the thermal noise voltage across resistors R1 and R2 are 3 microvolts and 

4 microvolts respectively. The r.m.s. value of the thermal noise across their series combination is

(a) 10 microvolts  (b) 7 microvolts

(c) 5 microvolts  (d) none of the above

 8. When the temperature (in K) of a resistor is doubled, the r.m.s. value of the noise voltage across it is

(a) doubled  (b) halved

(c) quadrupled  (d) 1.414 times its previous value

 9. Given a resistance of R ohms at T K, the available noise power from it over a bandwidth of (Df) 

Hz is

(a) kT (Df  ) (b) ½ kT (Df  ) (c) 4 kTR (Df  ) (d) 2 kTR (Df )
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10. White noise is filtered using an ideal LPF of cutoff frequency 1 kHz. The frequency at which the 

output noise of the filter should be sampled in order to get totally uncorrelated samples is

(a) 1 kHz  (b) 500 Hz 

(c) 2 kHz  (d) not possible to get uncorrelated samples

11. The two‑sided PSD of the shot‑noise generated by a vacuum diode operating in the temperature‑

limited region and carrying a direct current of I0 amperes is

(a) 2 I0q amp2/Hz  (b) I0q amp2/Hz

(c) ½ I0q amp2/Hz  (d) none of the above

12. For the same direct current I0 flowing through it as in a temperature‑limited vacuum diode, a vacuum 

diode operating in the space‑charge limited region

(a) does not produce any shot noise (b) produces less shot noise

(c) produces more shot noise (d) produces the same amount of shot noise

13. The noise equivalent bandwidth of an L‑section RC‑lowpass filter

(a) increases with the time‑constant RC (b) decreases with the time‑constant RC

(c) does not depend upon the time‑constant RC (d) none of the above

14. Temperature and bandwidth remaining constant, the available noise power from a resistor of R ohms 

(a) is independent of R  (b) increases with R

(c) decreases with R  (d) none of the above

15. An amplifier

(a) improves the signal‑to‑noise ratio (b) does not alter the signal‑to‑noise ratio

(c) degrades the signal‑to‑noise ratio (d) none of the above

16. When a number of amplifiers are connected in cascade, the overall noise figure is approximately 

equal to the 

(a) noise figure of the most noisy amplifier (b) noise figure of the least noisy amplifier

(c) sum of noise figures of all the amplifiers (d) noise figure of the first amplifier

PROBLEMS

 1. Thermal noise voltage (r.m.s.) across a resistor has been found to be 10 microvolts at a temperature 

of 27∞C and over some bandwidth B Hz. What will be the r.m.s. thermal noise voltage at (i) 77∞C 

with bandwidth B Hz, and (ii) 77∞C with a bandwidth 2B Hz?

 2. Determine the mean‑squared value of the noise voltage across a resistor of 20 kW at a temperature 

of 27∞C over a noise bandwidth of 20 kHz.

 3. Three resistors of resistance values 10k, 20k and 30k are at a temperature of 27∞C. Determine the 

r.m.s. value of the noise voltage over a bandwidth of 1 MHz when (i) they are all connected in 

series, and (ii) when they are all connected in parallel.

 4. A parallel tuned circuit has a capacitor of 1500 pF and is tuned to 2 MHz. It has a Q‑factor of 90. 

What is the r.m.s. noise voltage across the tuned circuit at a temperature of 27∞C if the voltage is 

measured over a bandwidth of 10 kHz?

 5. If I0 = 10 mA and D is in temperature limited condition, determine 

the r.m.s. noise voltage across the terminals aa¢. Assume room 

temperature of 27∞C.

 6. An instrument used for measuring noise voltages has an input 

impedance that is effectively equivalent to a resistor of 100 kW in 

parallel with a capacitance of 0.1 mF. What is the noise equivalent 

bandwidth of instrument?

R= 100W

1K

a

a/

0.1mFD
50V I0

Fig. P-8.1
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 7. A signal source having an internal resistance of 300 W and an internal e.m.f. of 10 mV is connected 

to the input of an amplifier. The amplifier has an input resistance of 1200 W and equivalent noise 

resistance of 300 W. For a noise bandwidth of 2 kHz and a room temperature of 27∞C, determine 

(i) the output (S/N) ratio in dB, and (ii) the noise figure of the amplifier.

 8. In Problem 7, what should be the internal e.m.f of the signal source if an output signal‑to‑noise 

ratio of only 20 dB is needed?

 9. In a particular superheterodyne radio receiver, the antenna circuit comprising a tank circuit tuned to 

the incoming signal, is coupled inductively to the input of the mixer stage. The coupling provides 

a step‑up ratio of 10:1 and also provides perfect matching with the 12 kW input resistance of the 

mixer stage. If this stage has noise equivalent resistance of 80 kW, what should be the r.m.s. value 

of the signal voltage induced in the antenna to give an (S/N) of 20 dB? Assume a room temperature 

of 27∞C and an effective noise bandwidth of 10 kHz.

10. Consider a receiving system consisting of an antenna with a leading cable having a loss factor 

L = 1.5 dB = F1, an RF pre‑amplifier with a noise figure of F2 = 7 dB and a gain of 20 dB, followed 

by a mixer with a noise figure of F3 = 10 dB and a conversion gain of 8 dB, and finally, an 

integrated‑circuit. If the amplifier has a noise figure F4 = 6 dB and a gain of 60 dB,

 (i) Find the overall noise figure and noise temperature of the system

 (ii)  Find the noise figure and noise temperature of the system with pre‑amplifier and cable 

interchanged (VTU August 2002).

Key to Multiple Choice Questions
 1. (a)  2. (c)  3. (b)  4. (d)  5. (b)  6. (a)

 7. (c)  8. (d)  9. (a) 10. (c) 11. (b) 12. (b)

13. (b) 14. (a) 15. (c) 16. (d)



Through this chapter, 
the student
Ø learns the way the channel and the 

receiver are modeled for a study of 
the noise performance of the system

Ø will be able to analyze the noise 
performance of FM and the various 
types of AM systems and compare 
them

Ø learns that an FM system offers the 
possibility of power bandwidth trade-
off and understands that there is a 
limit for this trade-off

Ø understands clearly how and why it 
is possible to improve the destination 
SNR for FM systems by employing 
pre-emphasis and de-emphasis

Ø learns that there is a threshold 
effect in FM receivers, understands 
how it arises and studies the various 
methods of threshold extension

9
INTRODUCTION

9.1

In Chapter 8, we had discussed various types of 
noise, their sources and characteristics and noted 
that thermal noise and shot noise are both white 
so far as the frequencies and bandwidths used in 
practical communication systems are concerned. 
In the fourth chapter, we had studied the methods 
of generation and demodulation of various types of 
amplitude-modulated signals like AM, DSB-SC, SSB-
SC, etc. Similarly, in the fifth chapter, we studied 
angle modulation and discussed the modulation and 
demodulation methods for FM and PM. In the sixth 
chapter, we discussed the details of AM and FM 
transmitters and receivers. In the seventh, we had 
reviewed probability and random processes.

In the present chapter, we will make use of the 
material covered in the previous five chapters and 
examine, by deriving the necessary expressions, the 
noise performance of CW communication systems. 
From these results, we will not only be able to compare 
the various CW communication systems on the basis 
of their noise performance, but also use them for 
communication-system design. For continuous-wave 
communication systems, a convenient and useful 
parameter for assessing the noise performance of any 
modulation–demodulation scheme, is the destination 
signal-to-noise ratio (S/N)D, i.e., the ratio of the 
average signal power to the average noise power at 
the output of the receiver. For determining this (S/N)D 
for different modulation and demodulation schemes, 
we must have the models for the pertinent signals, 
channel noise and receiving systems. We already 
have the mathematical representation of message 
signals and modulated signals. We will model the 

Noise Performance of 
AM and FM Systems
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channel noise as zero-mean white Gaussian noise with a two-sided PSD of h/2. For each type of 
modulation and demodulation that we take up, we shall use an appropriate receiver structure and then 
model it suitably for the purpose of this analysis.

After studying the noise performance of various types of amplitude-modulation systems and frequency-
modulation systems, we shall, towards the end of the chapter, discuss a few related topics like improvement 
in the noise performance of FM systems by the use of pre-emphasis at the transmitter and de-emphasis 
at the receiver, threshold effect in FM receivers and the threshold extension techniques.

DESTINATION SNR OF A BASE-BAND SYSTEM
9.2

The baseband system is one in which the baseband signal is directly sent over the channel without any 
carrier and modulation, The receiver too does not have any demodulator and is modeled as an ideal 
lowpass filter with a cutoff frequency of W Hz, which is the bandwidth of the baseband signal.

As mentioned earlier, let the power spectral density of 
the zero-mean white noise on the channel be h/2. Hence, 
the shaded area of Fig. 9.1 represents the average noise 
power lying within the bandwidth of the baseband and 
corrupting the signal.

\ N W=
Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
=

Average noise power

within the bandwidth W
2 .h // 2 = hW

Hence, if we denote the average signal power at the receiver input as SR, since the receiver is modeled 
as an ideal LPF with cutoff frequency equal to W, the destination signal-to-noise ratio is

 
S

N

S

W
D

RÊ
ËÁ

ˆ
¯̃

=
h

g    D  (9.1)

The 
S

N
D

Ê
ËÁ

ˆ
¯̃

 of other systems are generally compared with this.

MODEL FOR LINEAR MODULATION SYSTEMS
9.3

LPF
HL(f)

BW = WHz

Detector
(Envelope/

Synchronous)

Kxc(t)

S(f) =h/2

HR(f) idealised
BPF BW=BT (S/N)R

z(t) w(t)

(S/N)D

y(t) =Kxc(t) +n(t)

nw(t)

+
+

Â

Fig. 9.2 Model for linear modulation systems

xc(t) is the transmitted modulated signal. k is the attenuation factor so that K.xc(t) is the received signal 
assumed to be having a carrier frequency fc = fi.f, the intermediate frequency. n t

W
( )  is the zero-mean 

white Gaussian noise of the channel with a two-sided power spectral density of h/2. It gets added to the 
received signal. HR(  f  ) is an ideal bandpass filter which is used for modeling the combined effect of the 
RF amplifier and the IF amplifier. It has a bandwidth BT, the transmission bandwidth of the modulated 

S(f)

h/2

–w 0 w f

Fig. 9.1  Noise power corrupting the baseband 
signal
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signal and is also the bandwidth of the front end of the receiver. This bandwidth BT is 2W for AM and 
DSB-SC and is W for SSB-SC. Further, the filter is assumed to have the bandwidth BT centered on fc = fi.f, 
the intermediate frequency, and the gain of the filter is unity in its passband. The output of this filter 
will have a signal component Kxc(t) and noise component n(t) where n(t) is Gaussian and zero mean, 
but not white. It is a bandpass noise having an average power = (h/2).(2BT) = hBT. Thus the input to the 
detector block in the model is

y t Kx t n tc( ) ( ) ( )= +

The signal-to-noise ratio at the input to the detector is denoted by (S/N)R. The LPF, shown as the last 
block, is an ideal unit-gain LPF with a cutoff frequency of W Hz, which is the bandwidth of the message 
signal x(t), and is used to model the LPF which follows the analog signal multiplier of a synchronous 
detector, or, the response characteristic of the audio amplifiers following an envelope detector. The 
destination SNR is denoted by (S/N)D.

Figure of Merit To facilitate comparison of the various types of modulation systems, we generally define 
a ‘figure of merit’ of a system as

Figure of merit D  
/

/

(Destination signal to noise ratio)

Channel

( )

( )

S N

S N

D

C

=
- -

  signal to noise ratio- -

where, the ‘channel signal-to-noise ratio’ is defined as
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Thus, in fact the figure of merit of a particular modulation system is the ratio of the destination SNR 

with that modulation, to the destination SNR for baseband transmission. The higher the figure of merit 

as compared to 1, the better it is.

Pre-detection Signal-to-Noise Ratio

 y(t) = Detector input = Kxc(t) + n(t) (9.2)

where, n(t) is a bandpass noise with an average power of hBT where, BT = 2W or W, depending on the 
type of modulation.

SR = Average signal power at the input to the detector

 = K x t
c

2 2 ( )  (9.3)

where, the overbar on x t
c

2 ( )  denotes its average value.

NR = Average noise power at the input to the detector
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But, we have already seen that in the case of baseband transmission, the destination SNR is given by

 g
h

=
S

W

R  (9.6)

Hence, we may express the pre-detection SNR, viz (S/N)R as
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¯̃h h
g  (9.7)

With this, we are now ready to proceed with the determination of the destination signal-to-noise ratios 
for various linear modulation schemes.

(S/N)D FOR SSB-SC SYSTEMS
9.4

For SSB-SC systems, the detector is a synchronous detector and the transmitted signal is given by

 ˆ ( ) ( ) cos ˆ( )sinxx t A x t t x t t
c c c c

= [ ]
1

2
w wm  (refer Eqs 5.63 and 5.64) (9.8)

with (-) sign for the USSB and (+) sign for the LSSB

But ˆ ( ) ( ) cos ( ) ˆ( )sin cos ˆxS K x t K A x t t x t x t t t
R c c c c c

= = +2 2 2 2 2 2
1

4
2w w wm xx t t

K A x t K A x t

c

c c

2 2

2 2 2 2 2 2
1

2

1

4
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2

1

4

( )sin

( ) ˆ ( )

wÈ
Î

˘
˚

= + Ê
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¯̃

But ̂ ( ) ˆ ( )xx t x t2 2=  since the Hilbert transform doesn’t alter the power.

\ S A x t
R R

=
1

4
2 2 ( ) (9.9)

where A KA
R c

=

Now, input to the synchronous detector is given by

 y t Kx t n tc( ) ( ) ( )= +  (9.10)

If we assume that it is a USSB system and substitute for xc(t) using Eq. (9.8), and further, if we 
substitute for the bandpass noise n(t) in Eq. (9.10) by its in-phase and quadrature component representation, 
we get

 ˆ ( ) ( ) cos ˆ( )sin ( ) cos ( )sinxy t A x t t A x t t n t t n tR c R c i c q= - + -
1

2

1

2
w w w wwct  (9.11)

In the synchronous detector, y(t) is multiplied by cosw
c
t  and lowpass filtered to give w(t) (see Fig. 9.2)

\ ˆ ( ) ( ) cos ( ) cos ˆ( )sin ( ) coxz t y t t A x t t A x t t n tc R c R c i= = - +w w w
1

2

1

4
22 ss ( )sin2

1

2
2w wc q ct n t t-

When this z(t) is lowpass filtered using an ideal LPF with a cutoff frequency of W Hz, all high-
frequency components are rejected.

\ w t A x t n t
R i

( ) ( ) ( )= +
1

4

1

2
 (9.12)
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In the above, the first term is the signal term and the second term is the noise term.
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 (since BT = W for SSB)

In the above, we have made use of the properties of the in-phase and quadrature components of a 

zero-mean bandpass process, that n t n t n ti q
2 2 2( ) ( ) ( )= =  and that n t B

T
2 ( ) = h  from Eq. (9.4). Since it is an 

SSB-SC system, BT = W and so n t W
i
2 ( ) = h .

 \

-
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N
D

Ê
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ˆ
¯̃

=

SSB SC

g  (9.14)

Thus, the ‘figure of merit’ for an SSB-SC system is (from equations 9.14 and 9.7)

Figure of merit
/

/SSB-SC

=
( )

( )

S N

S N

D

C

\ figure of Merit for SSB-SC = 
g

g

Ê
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ˆ
¯̃
= 1 (9.14a)

DSB-SC SYSTEMS
9.5

For a DSB-SC system, a coherent or synchronous demodulator will be used and the modulated signal 
is given by

 x t A x t t
c c c
( ) ( ) cos= w  (9.15)

\ received signal = Kx t
c
( )

and Kx t KA x t t A x t t
c c c R c
( ) ( ) cos ( ) cos= =w w  (9.16)

\ SR = Received signal power = K x t x t A
c R

2 2 2 2
1

2
( ) ( )= ◊  (9.17)

Also, BT = 2W (9.18)

Input to the detector = y t A x t t n tR c( ) ( ) cos ( )= +w  (9.19)

But n t n t t n t ti c q c( ) ( ) cos ( )sin= -w w

\ y t A x t n t t n t tR i c q c( ) ( ) ( ) cos ( )sin= +[ ] -w w  (9.20)

The synchronous detector multiplies y(t) by cosw
c
t

\ z(t) = Output of the multiplier in the detector

= +[ ] -

= +[ ]+

A x t n t t n t t t

A x t n t

R i c q c c

R i

( ) ( ) cos ( )sin cos

( ) ( )

2

1

2

w w w

11

2
2

1

2
2A x t n t t n t tR i c q c( ) ( ) cos ( )sin+[ ] -w w
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\ w(t), the output of the lowpass filter is given by

 w t A x t n t
R i

( ) ( ) ( )= +[ ]
1

2
 (9.21)

In this, the message signal component is 
1

2
A x t
R

( )  and the noise component is 
1

2
n t

i
( ).
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n tD
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=
2 2
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 (9.22)

But 
1

2
2 2A x t
R

( )  = Received signal power = SR (from Eq. 9.17) for a DSB-SC signal;

and n t n t B W
i T
2 2 2( ) ( )= = =h h

(since n(t) is zero mean, ni(t) and n(t) will have the same variance)
\ substituting these values in Eq. (9.22), we get
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¯̃

=
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g  (9.23)

Thus, the ‘figure of merit’ for a DSB-SC system is (from equations 9.7 and 9.23)

 Figure of Merit
/

/(DSB-SC)

=
( )

( )

S N

S N

D

C

 = 
g

g
= 1 (9.23a)

A DSB-SC signal is transmitted 
over a noisy channel, with the power spectral 
density of the noise being as shown in Fig. 9.3(a). 
The message bandwidth is 4 kHz, and the carrier 
frequency is 200 kHz. Assuming that the average 
power of the modulated wave is 10 watts, find the 
output signal-to-noise ratio of the receiver.

Example 9.1
PSD

10–6 W/Hz

–400 0 400 f (in kHz)

Fig. 9.3(a) Noise PSD for Example 9.1

Here, the additive noise on the channel is not white. It has a triangular shaped 2-sided power spectral 
density as shown in the figure. The DSB-SC signal has a bandwidth of 8 kHz since the message signal 
bandwidth is given to be 4 kHz. Hence, the receiver front-end bandwidth is also 8 kHz and is centered 
on 200 kHz, the carrier frequency. Thus, the two-sided power spectrum of the bandpass noise entering 
the receiver is as shown by the shaded area in Fig. 9.3(b).

The value of the noise PSD at 200 kHz, i.e., the height at 200 kHz is equal to 0.5 ¥ 10-6 W/Hz (from 
similar triangles). Hence, we may compute the area of each of the trapezoidal shaded portion as the area 
of a rectangle of 8 kHz width and 0.5 ¥ 10-6 W/Hz height.
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\ average power of the bandpass noise entering 
the receiver = n t2 ( )

= total area of the shaded portion

= 2 ¥ 
1

2
 ¥ 10-6  ¥ 8 ¥ 103 = 8 ¥ 10-3W.

But, from the properties of bandpass noise, 
we know that

\ 

n t n t

n t

i

i

2 2

2 38 10

( ) ( )

( )

=

= ¥
- W

Average power of the received DSB-SC signal 

=
1

2
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\ SR = received signal power =
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2
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But, from Eq. (9.22), we know that
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AM SYSTEMS
9.6

In the case of AM systems, the carrier as well as both the sidebands are transmitted, and so the transmission 
bandwidth BT is

 BT = 2W (9.24)

where, of course, W is the bandwidth of x(t), the message signal. The transmitted signal, xc(t) is given by

 x t A mx t t
c c c
( ) ( ) cos= +[ ]1 w  (9.25)

where, m, 0 £ m £ 1, is the modulation index and x(t) is the normalized message signal assumed to be 
zero mean and normalized so that x t( ) £ 1. An AM signal can be detected using a synchronous detector 
or an envelope detector. In practice, however, only an envelope detector is used for AM. For arriving 
at the (S/N)D of an AM system, we shall first assume a synchronous demodulator and then derive the 
expression assuming an envelope detector.

9.6.1 AM System with a Synchronous Detector

The received signal = Kx t KA mx t t
c c c
( ) ( ) cos= +[ ]1 w

 = +[ ]A mx t t
R c

1 ( ) cosw  (9.26)

\ SR = Average received signal power = K x t
c

2 2 ( )

\ S A mx t t
R R c

= +[ ]2 2 21 ( ) cos w

PSD

10–6 W/Hz

8 kHz 8 kHz

–400 kHz 0 400 kHz f (in kHz)

–200 kHz 200 kHz

Fig. 9.3(b)  Two-sided noise power spectrum
for Example 9.1
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Since x(t) is zero mean, the above expression reduces to

 S A m x t
R R

= +È
Î

˘
˚

1

2
12 2 2 ( )  (9.27)

y(t), the input to the synchronous detector is given by

 y t A mx t t n tR c( ) ( ) cos ( )= +[ ] +1 w  (9.28)

Replacing n(t) in the above by its in-phase and quadrature component representation, we get

 y t A mx t n t t n t tR i c q c( ) ( ) ( ) cos ( )sin= +[ ]+{ } -1 w w  (9.29)

The synchronous detector multiplies this by the carrier, i.e., cosw
c
t .

\ z t A mx t n t t n t tR i c q c( ) ( ) ( ) cos ( )sin= +[ ]+{ } -1
1

2
22 w w  (9.30)

The lowpass filter removes all the high-frequency components as its cutoff frequency is W. Hence, 

replacing cos2 w
c
t  by 

1

2
1 2( cos )+ w

c
t  and then rejecting all the terms representing high-frequency 

components, we get

 w t A mx t n t
R i

( ) ( ) ( )= +[ ]+{ }
1

2
1  (9.31)

In the above equation, 
1

2
A
R

 represents a dc component, 
1

2
A mx t
R

( )  represents the message signal 

component and 
1

2
n t

i
( ) represents the noise component. In the receiver, anyhow, the dc component at the 

output of the detector will be blocked by using a blocking capacitor. So, we ignore the dc component 
of w(t). Then
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But, n n B W N
i T D
2 2 2= = = =h h  (9.33)

(since n(t) is of zero mean, variances of ni(t) and n(t) will be equal)

Also, S A m x t
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12 2 2 ( )  (from Eq. 9.27)
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9.6.2 AM System with Envelope Detector

An envelope detector ideally extracts the envelope of the signal given to it as input. If there were to be 
no channel noise the input signal to the detector block in Fig. 9.2 would be

y t Kx t KA mx t tc c c( ) ( ) ( ) cos= = +[ ]1 w

And the output of the detector would be its envelope.

i.e., z t A mx t
R

( ) ( )= +[ ]1 , where A KA
R c

    D .

However, with the channel noise, the detector input is

 y t KA mx t t n tc c( ) ( ) cos ( )= +[ ] +1 w  (9.35)

where, n(t) is bandpass noise centered on fc and having a bandwidth of 2W. This noise changes the 
envelope. To see how it affects the envelope of the AM signal, let us replace n(t) by its in-phase and 
quadrature components.

\ y t A mx t t n t t n t tR c i c q c( ) ( ) cos ( ) cos ( )sin= +[ ] + -1 w w w

 = +[ ]+{ } -A mx t n t t n t tR i c q c1 ( ) ( ) cos ( )sinw w  (9.36)

\ Ry(t) = envelope of y(t)

 = +[ ]+{ } +È
Î

˘
˚

A mx t n t n tR i q1
2

2
1 2

( ) ( ) ( )
/  

 (9.37)

and the phase angle qy(t) is

 qy

q

R i

t
n t

A mx t n t
( ) tan

( )

( ) ( )
=

+[ ]+
È

Î
Í

˘

˚
˙-1

1
 (9.38)

Since an envelope detector is totally insensitive 
to the phase variations of its input signal, we can 
totally ignore qy(t).

Generally, for satisfactory intelligibility of the 
message signal output from an envelope detector, the 
signal-to-noise ratio at the input to the detector must be 
at least around 8 to 10 dB. So, we can safely assume 
that the carrier-to-noise power ratio is quite high at the input to the envelope detector. So, we assume that

 A n t
R
2 2>> ( )  (9.39)

as this will enable us to write the output of the detector, viz., the envelope of y(t) as the sum of a signal 
component and a noise component. This will allow us to write down the expression for the destination 
SNR immediately.

From Fig. 9.3, in view of the assumption of Eq. (9.39), we may say that

P A mx t n tR q1+{ } >>ÈÎ ˘̊( ) ( )  is almost equal to unity.

\ R t A mx t n ty R i( ) ( ) ( )ª +[ ]+1  (9.40)

The dc component AR in this envelope, will be blocked by the coupling capacitor at the output of 
the detector. (Note that AR is the mean because both x(t) and ni(t) are zero-mean processes). Hence, the 
signal at the output of the receiver is

 w t A mx t n t
R i

( ) ( ) ( )= +  (9.41)

AR[1 + mx(t)]

Ry(t)

qy

nq(t)

ni(t)

n
(t
)

Rn

Fig. 9.4  Phasor diagram of the components of y(t), 
the input to the detector. A n

R
2 2>>  is assumed
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Since A mx t
R

( )  represents the signal component and ni(t), the noise component of this output signal, 
we have
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But,
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(since n(t) is of zero-mean, the variances of ni(t) and n(t) will be the same)
Hence, we may write Eq. (9.42) as
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Comparing Eqs (9.34) and (9.44), we find they are exactly the same. However, it must be noted that 

Eq. (9.44) gives the destination SNR for AM with an envelope detector only if the carrier-to-noise ratio 

at the input to the detector is large and provided m, the modulation index, is not more than one. It must 

also be noted that there are no such conditions in the case of AM with coherent or synchronous detector, 

for Eq. (9.34) to be valid.
The figure of merit for AM is, therefore, obtained from Eqs (9.7) and (9.44).
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 (9.44a)

Find the figure of merit of an AM system when the depth of modulation is 
(i) 100 % (ii) 50 %, and (iii) 30 %. (University Question)

Example 9.2

Figure of merit (FOM) of an AM system = 
m x

m x

2 2

2 21+
 (from Eq. 9.44a)
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 (i) m = 1, i.e., 100% modulation
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Prove that the figure of merit of an AM system for single-tone modulation with 
100% modulation is 1/3.

Example 9.3

Figure of merit
/

/of an AM system

= =

+

◊

( )

( )

S N

S N

m x

m x

D

C

2 2

2 21

1
g

g
==

+

m x

m x

2 2

2 21

Since x2  represents the mean-squared value of the normalized message signal, normalized such that 
x t( ) ,£ 1  for the case of a single-tone message signal (i.e., sinusoidal message signal), it means that its 

peak value is 1. Hence, its r.m.s. value is 
1

2

 and the mean-squared value x2  is 1/2. Further, for 100% 

modulation, m = 1
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9.6.3 Threshold Effect for AM with Envelope Detector

In case the SNR at the input to the envelope detector becomes very much less than unity, noise completely 
dominates over the signal and the behaviour of the envelope detector would be entirely different. It can 
be shown that in such a situation, there will be no separate term in the output of the detector, which can 
be identified as the message signal; the message signal and noise become intermingled.

Referring to Eq. (9.37), we may write the expression for the envelope of the detector input as

R t A mx t n t n t

A mx t n t n

y R i q

R i q

( ) ( ) ( ) ( )
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= +[ ]+{ } +

= +( ) + +
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2 2 2 2 (( ) ( ) ( )t A n t mx tR i+ +[ ]2 1
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Since the SNR at the input to the detector is much smaller than 1, A mx t
R
2 21( ( ))+  can be neglected 

in comparison with the rest of the terms under the square-root sign in the above expression. Hence Ry(t) 
may be written as
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 (9.45)

Under the assumption of a small SNR at the input to the detector, the following will be true:
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If we represent the above expression by Œ then, in Eq. (9.45), we may make use of the approximation 
that when Œ << 1,
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(compare this with the Ry(t) given by Eq. (9.40) for the case A n t
R
2 2>> ( ) )

Thus, at the output of the envelope detector, the message signal term mx(t) gets multiplied by the 
noise terms and cannot, therefore, be distinguished from noise. This is called the ‘threshold effect’ in 
envelope detection of AM.

An AM receiver, operating with a sinusoidal modulating wave and 80% modulation 
has an output signal-to-noise ratio of 30 dB. What is the corresponding carrier-to-noise ratio?
 (University Question)

Example 9.4

For an AM system with modulation index, m, the output SNR is given by
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 (see Eq. 9.32)

This is given to be 30 dB = 103; m = 0.8 and x t2
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or, ( ) log . .CNR dBdB = =10 1562 5 31 910
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A message signal x(t) of 5 kHz 
bandwidth and having an amplitude probability 
density as shown, amplitude modulates a carrier to a 
depth of 80%. The AM signal so obtained transmitted 
over a channel with additive noise power spectral 
density of h = ¥

-2 10 12W/Hz(one-sided). The received 
signal is demodulated using an envelope detector.

 (i)  If a 
S

N
D

Ê
ËÁ

ˆ
¯̃

≥ 40 dB is desired, what should be 

the minimum value of Ac , the peak amplitude 
of the carrier?

 (ii) Assuming (S/N)th for envelope detection to be 10 dB, determine the threshold value of Ac.

Example 9.5
fx(x)

1

–1 0 1 x

Fig. 9.5 PDF of Signal for Example 9.5

For AM systems, the destination SNR is given by

S
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m x

m xD

Ê
ËÁ

ˆ
¯̃

=
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ˆ
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2 2

2 21

. .g  Here, m = 0.8

So, let us first find x2 , the average power of the message, using the given amplitude probability 
density function of x(t).

We know x x f x dxX
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Since 40 dB = A ratio of 104, substituting for m and x2 , we get
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Here, we have used the fact that x t( ) = Average value of x(t) = 0.
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Since g
h
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 (ii) We are given that 
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An AM system, employing an envelope detector in the receiver, is operating at 

threshold. Determine the increase in transmitter power (in dB) needed if an 
S

N
D

Ê
ËÁ

ˆ
¯̃

 of 40 dB is desired. 
Assume m = 1 and tone modulation.

Example 9.6

In the first case, when the system is operating at threshold, let the received average signal power be S
R1

, 
If NR is the average noise power that has entered the receiver, we have
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; or, S W
R
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where W is the bandwidth of the modulating signal, i.e., the frequency of the modulating signal, since it 
is given as tone modulation. Let S

R2
be the received signal power required to obtain (S/N)D of 40 dB.

Then, S
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Since m = 1 and it is tone modulation,
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9.6.4 Comparison of Noise Performance of AM, DSB-SC and SSB-SC

We find that SSB-SC and DSB-SC have the same destination signal-to-noise ratio, as is evident from 
Eqs (9.14) and (9.23), and that it is g. In this connection, it must be noted that this is on the basis of the 
average power in each sideband being the same in the two cases. This is because, SR, the received signal 

power is 1
4

2 2( )A x t
R

( )  for SSB-SC and 1
2

2 2( )A x t
R

 ( ) for DSB-SC. So, if the same message signal, x(t) 

is considered in the two cases, DSB-SC gives twice as much signal power at the input to the detector as 
compared to SSB-SC. However, the transmission bandwidth, BT, of DSB-SC being twice that of SSB-SC, 
the noise power that it brings in at the detector input is also twice as much when compared to SSB-SC. 
That is why their noise performances are the same.

From Eq. (9.27), it is clear that the total sideband power in the AM is 1
2

2 2 2( )A m x t
R

 ( ), where, m is the 

modulation index. This means that if we make m = 1, we will be able to compare the noise performance 
of AM with the noise performance of DSB-SC and SSB-SC on the basis of equal average signal power 

per sideband; i.e., the same basis on which we compared the noise performance of DSB-SC and SSB-SC. 
So, assuming that m = 1, the destination SNR for AM is

 S N
x t

x t
D

m

/
AM

( ) =
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Ê

ËÁ
ˆ

¯̃
◊

=1

2

21

( )

( )
g  (9.47)

Note: x t2 ( )  is always less than or equal to 1 since x(t) is the normalized signal, normalized so that |x(t)| £ 1.

Since  x t2 ( )  has got to be non-negative, this means that whatever may be the message signal x(t), 
the destination SNR for AM is always less than g, i.e., it is always inferior to DSB-SC and SSB-SC. 
This, of course, can be attributed to the fact that in the case of AM, the carrier power is rejected after 
demodulation and does not contribute to signal power at the destination.

The RHS of Eq. (9.47) makes it clear that the value of  x t2 ( )  determines how small the value of the 
destination SNR with m = 1 would be, as compared to g.

(i) For Tone Modulation

x t

S N
D

m

2

1

12

1 2
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◊ =

=

/
AM

g g

So, in the case of tone modulation, even with m = 1, the performance of AM is about 5 dB poorer 

compared to DSB-SC or SSB-SC.
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(ii)  If x2 ( )t  takes its maximum possible value of 1 (as it would, for example when x(t) is a square-
wave), and with m = 1,

S N
D

/
AM
(t) 12 2

( ) =
+

Ê
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ˆ
¯̃

◊ =

m x =

1

1 1
2g g /

So, even in this case, AM is still 3 dB poorer compared to DSB-SC and SSB-SC.
In the above two cases, we have assumed that m = 1 and  x t2 ( )  was 0.5 in the case of tone 

modulation and 1 in the other case. But in actual practice, we have speech signal as the message 
signal. For this signal, m can hardly reach a value of 0.2 for most of the time since a speech signal 

has occasional large peaks and a very small amplitude in between. Further, this makes  x t2 ( )  also 
very small. Because of these reasons, with speech as the modulating signal, the destination SNR of 
AM will be very much smaller than g making its performance poorer than that of DSB-SC or SSB-
SC by as much as 10 dB. However, peak limiting and volume compression of the audio, used in all 
broadcast transmitters will ensure a fairly good value of m for most of the time and this will help in 
improving the noise performance of AM to some extent.

A message signal has a bandwidth of 15 kHz. This signal is to be transmitted over 
a channel whose attenuation is 80 dB and the two-sided noise PSD is 10-12 W/Hz. If it is desired to 
have a destination signal-to-noise ratio of 40 dB, what will be transmitter power (average) needed 
and what will be the transmission bandwidth, if the modulation is (a) SSB-SC, and (b) DSB-SC?

Example 9.7

(a) g
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where, ST is the average transmitted power and SR is the average received power.
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= ¥ =3 10 304 kW. Since it is SSB-SC, BT = W = 15 kHz.

(b) For DSB-SC, ( )S N
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R/ = =g
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3

8

 and S S
R T
=

-10 8

\ 
S
T

3
104=  or S

T
= 30 kW

Since both the sidebands are transmitted in DSB-SC, the bandwidth BT required is 2W = 30 kHz.

A message signal with maximum amplitude of ± 5 V is uniformly distributed and 
has a bandwidth of 15 kHz. Using AM with a modulation index of 0.6, it is transmitted over a channel 
whose attenuation is 60 dB and whose noise power spectral density (two-sided) is 10-11 W/Hz. Determine 
the average power of the transmitter and the transmission bandwidth required, if a post-detection 
signal-to-noise ratio of 40 dB is desired.

Example 9.8
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kW ; BT = 2 ¥ 15 kHz = 30 kHz.

A transmitter, transmitting an unmodulated carrier power of 20 kW is amplitude 
modulated to a depth of 0.8, by a message signal x(t) of 15 kHz bandwidth, which has an average 
power of 0.78  W when normalized so that |x(t)| £ 1. The modulated signal is transmitted over a 
channel whose attenuation is 60 dB and has an additive white noise with two-sided power spectral 
density of 10-12 W/Hz. Determine the pre-detection and post-detection SNRs at the receiver.

Example 9.9

 Pc = Unmodulated carrier power = 20 ¥ 103  W

m = 0.8

 x t2 ( )  = 0.78 W when x t( ) £ 1

\ average total power of the modulated signal = PT

where, P P m x
T c
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˘
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\ ST = Transmitted power = 30 ¥ 103  W
Attenuation of the channel = 60 dB ( = a ratio of 10-6)
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\ noise power at the input to the detector = NR = 6 ¥ 10-8 W

\ pre-detection SNR = 
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An AM transmitter is to transmit a message signal having a bandwidth of 
20 kHz and an average power (when normalized such that |x(t)| £ 1) of 1, over a transmission channel 
characterized by an additive white noise of 2-sided PSD of 0.5 ¥ 10-15 W/Hz and a total transmission 
loss of 100 dB. If the modulation index m = 1, determine the average transmitted power if destination 
SNR is to be 104.

Example 9.10
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A message signal of bandwidth 5 kHz is to be transmitted using SSB-SC over a 
transmission channel characterized by an additive white noise of 2-sided PSD h / .2 0 5 10 15

= ¥
- W/Hz  

and a transmission loss of 100 dB. If a destination SNR of 40 dB is required, determine the average 
transmitter power required.

Example 9.11
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NOISE PERFORMANCE OF FREQUENCY MODULATED SYSTEMS
9.7

Local

Oscillator

Discriminator

LS

RF

Amplifier

AF

Amplifier

IF

Amplifier
Mixer Limiter

Fig. 9.6 Block diagram of an FM broadcast superheterodyne receiver

The block diagram of an FM broadcast superheterodyne receiver is shown in Fig. 9.6. For the purpose 
noise performance evaluation, we model the receiver as shown in Fig. 9.7.

Discriminator
BPF

BW=BT

y(t) =Kxc(t) +n(t)Sw(f) =h/2

Kxc(t)
+

+

Kxc(t)+nw(t) HR(f)

(S/N)R

z(t) w(t)LPF
HL(f)

BW=WHz

Fig. 9.7 Receiver model for noise-performance evaluation

Additive noise of the channel is modeled as zero-mean white Gaussian noise of a two-sided power 
spectral density h/2. K represents the channel attenuation. The modulated signal in this case, is given by

 x t A t t
c c c
( ) cos ( ) ,= +[ ]w f  f fc i f= .  of the receiver (9.48)

where,

 f( ) ( )t k x df

t

= Ú2

0

p a a  (9.49)

Note: In Eq. (9.49), kf is the frequency deviation constant 
if the message signal, x(t), is not normalized. If x(t) is 
normalized, kf denotes the peak frequency deviation.

The ideal BPF whose response characteristic is shown 
in Fig. 9.8, is used to represent the combined effect of the 
RF and IF amplifiers.

The bandwidth of this BPF is the transmission bandwidth BT of the modulated signal, xc(t), and is also 
the bandwidth of the front end of the receiver. The signal at the input to the filter is Kxc(t) + nw(t), i.e., the 
modulated signal and the additive white noise. Its output, however is Kxc(t) + n(t), where n(t) is bandpass 
noise centered on fc and obtained by filtering the white noise using the BPF of bandwidth BT, with centre 
frequency f fc i f= . , the intermediate frequency of the superheterodyne receiver. The FM detector, called 
the discriminator produces an output voltage which at any instant, is proportional to the deviation of the 
instantaneous frequency of the input signal from the carrier (i.e., in this case the IF) frequency.

The input signal for the discriminator is Kxc(t) + n(t) where xc(t) is the FM signal and n(t) is bandpass 
noise centered on fc. In the case of amplitude modulation, the additive noise would simply add to the 

|HR(f)|
BT BT1

–fc 0 fc f

Fig. 9.8 Response characteristic of the BPF
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amplitude modulated signal xc(t) and thus change its envelope, which the envelope detector would extract. 
So, in the case of AM, the additive noise directly affects that parameter of the input signal (envelope) which 
the detector tries to extract. So the effect of the additive noise is considerable in the case of AM. But 
in the case of FM, the discriminator extracts the frequency deviation of the carrier of the input signal 
each instant, and produces an output voltage proportional to the instantaneous frequency deviation. And 
the additive noise does not directly affect the frequency deviation of the incoming FM signal. It affects 
it only indirectly, as we will be seeing presently. Thus, in a qualitative way we may say that FM will 
not be affected by the channel noise to the same extent as AM.

Since the bandwidth of the BPF is BT and the two-sided PSD of the additive white noise in the channel 
is h/2, the noise power entering the receiver is

 n t B B N
T T R

2

2
2( ) = ¥ =

h
h   D  (9.50)

The received signal power is equal to the average power of the component Kxc(t) of y(t), the input to 
the discriminator. This is denoted by SR and is given by

 S
KA A

R

c R=
( )

=

2
2

2 2
 (9.51)

\ the pre-detection SNR is given by
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As mentioned earlier, n(t) is bandpass noise centered on fc and we may represent it by its inphase and 
quadrature components as

 n t n t t n t ti c q c( ) ( ) cos ( )sin= -w w  (9.53)

Alternatively, we may use the envelope and phase-angle representation (See Section 2.8, Eq. 2.164) 
and write as

 n t R t t t
n c n

( ) ( ) cos ( )= +[ ]w f  (9.54)

where, Rn(t), the envelope is related to ni(t) and nq(t) by

 R t n t n tn i q( ) ( ) ( )= +
2 2  (9.55)

and is Rayleigh distributed. The phase angle, f
n

t( )  is given by

 fn

q

i

t
n t

n t
( ) tan

( )

( )
=

È

Î
Í

˘

˚
˙-1  (9.56)

As it is more convenient in the present analysis to use the envelope and phase representation, we shall 
write y(t), the input to the discriminator, as

 

y t A t t n t

A t t R t t t

R c

R c n c n

( ) cos ( ) ( )

cos ( ) ( ) cos (

= +[ ]+

= +[ ]+ +

w

w w

f

f f ))[ ] (9.57)

We shall make use of Eq. (9.57) to examine how the noise term n(t) affects the angle f (t) of the FM signal 
and thus changes its frequency deviation. However, this is going to be quite involved. So, we shall proceed 
by making the simplifying and reasonable assumption that the SNR at the input to the discriminator is high,
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i.e., 
S

N
R

Ê
ËÁ

ˆ
¯̃

>>1 (9.58)

If under this assumption, we draw the phasor diagram for 
Eq. (9.57), it will appear as shown in Fig. 9.9.

For the bandpass signal y(t), if Ry(t) is the envelope and 
fy t( ) , the phase angle, we may write

 y t R t t ty c y( ) ( ) cos ( )= +È
Î

˘
˚w f  (9.59)

Since y(t) is the input to the discriminator, what the 
discriminator does is, it produces an output z(t) which at any instant, is proportional to the instantaneous 
frequency deviation given by

 f t
d

dt
ti y( ) ( )= È

Î
˘
˚

1

2p
f  (9.60)

So, let

 z t
d

dt
ty( ) ( )= È

Î
˘
˚

1

2p
f  (9.61)

The phasor diagram of Fig. 9.7 shows how the additive noise component n(t) affects the phase angle f 

and thereby the frequency deviation, of the incoming FM signal. f (t) is the phase angle of the received 
FM signal, fn(t) is the phase angle of the bandpass noise component n(t). The sum of the phasors AR and 
Rn gives Ry, the envelope of y(t), the phase angle of which is fy(t). Note that because of our assumption 
that the pre-detection SNR is very much greater than 1,

 P R t A
n R
( ) <<[ ] is almost equal to 1 (9.62)

But, from Fig. 9.7,

 sin ( ) ( )sin ( ) ( )q at R t t R tn y= [ ] /  (9.63)

However, from Eq. (9.62), it follows that the following small-angle approximation can be made so that

sin ( ) ( )q qt t@

and hence, Eq. (9.63) may be re-written as

 q
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( )
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( )
t

R t t
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n

y

=  (9.64)

Thus, since

 f fy t t t( ) ( ) ( )= +q  (9.65)

We have

 f fy
n

y

t t
R t t

R t
( ) ( )

( )sin ( )

( )
= +

a
 (9.66)

But because of Eq. (9.62), we may make the following approximation

 R t Ay R( ) @  (9.67)

Ry

AR

Rnsina
a

(S/NR>> 1)
q

fy fnf

Rn

Fig. 9.9  Phasor diagram of Eq. (9.54) when 
(S/N)R >> 1
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Hence, from Eqs (9.61) and (9.65) we have

z(t) = Discriminator output signal
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˚ = + = +
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2p p p
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dt
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dt
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dt
t k x t n ty f df f( ) ( ) ( ) ( ) ( )  (9.68)

Since f (t) is the phase angle caused due to frequency modulating the carrier by the message signal x(t), 
from Eqs (9.48) and (9.49) the first term in Eq. (9.68) clearly represents the message signal component 
in the output of the discriminator. Since q (t) is the additional phase caused by noise, the second term of 
Eq. (9.68) represents the noise term in the output of the discriminator and is denoted by nd(t).

To see how much of this noise goes past the lowpass filter and reaches the destination, we have to 
examine the spectrum of the noise term in Eq. (9.68). For this purpose, let us re-write it as follows:
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˙  from Eq. (9.64) and (9.67) (9.69)

From the phasor diagram of Fig. 9.7, we find that

 a( ) ( ) ( )t t t
n

= -f f  (9.70)

This seems to indicate that the post-detection noise, nd(t), is dependent on the modulation angle f (t). Now, 
fn(t) is the phase angle of the bandpass noise in its envelope—phase-angle representation. But, we know that in 
such a representation, the envelope is Rayleigh distributed while the phase angle fn(t) is uniformly distributed 
over -p to +p (see Example 7.13). If we can assume that a(t), which is f f

n
t t( ) ( )-[ ], is itself uniformly 

distributed over -p to + p then this coupling between the post-detection noise and the modulation angle 
will be removed and nd(t) will be independent of modulation. 
Rice has shown that such an assumption is justified provided 
the carrier-to-noise ratio is large. In that case, we may, for a 
moment, assume that there is no modulation and that only an 
unmodulated carrier is transmitted. In such a case, the phasor 
diagram, will appear as shown in Fig. 9.10 (since f(t) = 0 when 
there is no modulation).

Since f(t) = 0, a(t) = fn(t) and so

 R t t R t t n tn n n q( )sin ( )sin ( ) ( )a = =f  (9.71)

Hence, Eq. (9.69) may be re-written as
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Therefore, to determine how much power of this post-detection noise goes past the lowpass filter with 
a cutoff frequency of W Hz, we have to determine the power spectrum of nd(t). To do this, we first note 
that nq(t) is the lowpass equivalent of the bandpass noise, n(t), that has entered the receiver. Since the 
BPF at the front-end of the receiver has a transfer function of HR(  f  ), its output, n(t), will have a power 
spectrum of

 S f S f H f H fn n R Rw
( ) ( ) ( ) ( )= =

2 2

2

h
 (9.73)
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Fig. 9.10  Phasor diagram with no 
modulation (S/N)R >> 1
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Fig. 9.11 Power spectral density of n(t)

Snq(f)

1/2BT 0 1/2BT

h

f

Fig. 9.12  Power spectral density of nq(t), 
lowpass equivalent of n(t)

The PSD of the bandpass noise, n(t), is shown in Fig. 9.11, and that of its lowpass equivalent, nq(t), 
is shown in Fig. 9.12.

\ S f f Bnq T( ) ( )= hP /  (9.74)

The power spectrum of 
1 1

2A
n t

R
q. ( )

p
 is then given by
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S f
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To find the power spectrum of the post-detection noise nd(t), in view of Eq. (9.72), we proceed as 
in Fig. 9.13.

Spectrum of
the noise process

Spectrum of the post-detection noise
process, i.e., spectrum of nd(t)Ideal differentiator

H(f) = j2
p
f

= Soutput(f) = Snd(f)

Sinput(f) = Snq
(f)

2

2pAR

1
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(f)(2pf)2.

2

2pAR

1

Fig. 9.13 Deriving the spectrum of post-detection noise

Substituting for Snq(  f  ) in the expression for the Snd(  f  ) and simplifying, we get

 

S f
f

A

f
B

f

S

f
B

n
R T

R T

d
( ) =

Ê

ËÁ
ˆ

¯̃
Ê
Ë )

=
Ê

ËÁ
ˆ

¯̃
Ê
Ë )

h

h

2

2

2

2

P

P  (9.76)

A sketch of the post-detection noise spectrum is given 
in Fig. 9.14. While the message has a bandwidth of only 
W Hz, this noise process has a bandwidth of BT/2, which 
is much greater than W. Hence, there is considerable noise 
outside the message bandwidth. This out of band noise 
has to be removed using a lowpass filter having a cutoff 
frequency of W Hz.

The average power of the noise at the output of the lowpass filter = ND = Destination noise power = Area 
of the shaded region

–BT/2

Snd(f)

BT/2 f–w w0

Fig. 9.14  Power spectral density of post-
detection noise
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The message signal component at the output of the discriminator has been found [refer Eq. (9.68)] 
to be kf x(t). Since this has a bandwidth of W, all of it passes through the lowpass filter. Hence the 
destination signal power is given by

 S k x tD f= 2 2 ( )  (9.78)

\ destination signal-to-noise ratio is given by
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But, we know that when x(t) is the normalized message signal, kf denotes the peak frequency deviation 
[refer to the note under Eq. (9.49)]. Since we have kf over W as a factor in the above expression for the 
destination SNR, let us replace that factor by the deviation ratio denoted by D.
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D x t
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 3 2 2 ( ) g  (9.79)

Hence, from Eqs (9.79) and (9.7), the figure of merit for FM systems may be written down as:

 Figure of merit
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For tone modulation, show that the figure of merit of an FM system is given by 
3

2

2bf , where bf
 is the modulation index.

Example 9.12

D = Deviation ratio = 
k A

W

f mÊ

ËÁ
ˆ

¯̃
, where Am is the peak amplitude and W = fm, is the frequency of the single-

tone modulating signal. Because x t A
m

( ) ,£ =1 1 and so x2 1 2= / . Substitution in Eq. (9.79a) gives

Figure of merit = 
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2
k A
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f m

m
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ˆ

¯̃
= b  (see Eq. 5.18)
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Remarks

1.  Although derived under certain assumptions, the result represented by Eq. (9.79) is indeed a very 
significant one. This is because, it says that as long as the assumptions under which it is derived are 
not violated, the destination signal-to-noise ratio can be increased just by increasing the deviation 
ratio without having to increase the average transmitted power. When the deviation ratio D is 
increased, we know that the transmission bandwidth, BT, increases, becauseB D W

T
= +2 1( ) . So, 

Eq. (9.79) tells us that the destination SNR can be increased by increasing the transmission bandwidth 
without increasing the transmitter power. This means there is a ‘power-bandwidth trade-off  ’ possible 
in the case of FM. This is something which is not possible in the case of AM, where the bandwidth 
is fixed and does not depend on the value of the modulation index, m.

2.  This ‘power-bandwidth trade-off’ is, however, not without a limit. We must realize that as the 
transmission bandwidth BT is increased to get better destination signal-to-noise ratio, the average 
noise power entering the receiver also increases, since it is equal to hBT ; but the received signal 

power doesn’t, because it is equal to 
A
R
2

2
. Thus, along with the bandwidth the received noise power 

increases, making (S/N)R smaller and smaller. Hence, a situation will arise at some value of the BT, 
in which the assumption that (S/N)R is large, which we made use of while deriving Eq. (9.79), will 
no longer be valid.

3.  The relative immunity that it enjoys with regard to the additive noise on the channel, its ability 
to handle message bandwidths up to even 15 to 20 kHz (with very little increase in transmission 
bandwidth) which makes it extremely useful for transmission of high quality music, and the 
flexibility that it offers through the ‘power-bandwidth trade-off  ’, make FM a really attractive 
proposition.

A single-tone modulating signal f t E tm m( ) cos= w phase modulates a carrier 

signal A t
c c
cosw . Show that Figure of merit for PM = 

1

2

2mf  where, mf is the modulation index for FM.

Example 9.13

We know that in the case of phase modulation,
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If mf is the modulation index for FM,
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Show that narrow-band FM does not offer any better destination signal-to-noise 
ratio than AM.

Example 9.14
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The maximum value of this occurs when m x t2 2 ( )  = 1; i.e., m = 1 and x t2 1( ) =

Then 
S

N
D

Ê
ËÁ

ˆ
¯̃

=
1

2
.g

For FM: 
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 for AM,

3
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2

1

6
=  \ >b f 0 408.

i.e., for FM to be better than AM, bf should be greater than 0.408. But, for NBFM, bf < 0.2 \NBFM 
is no better than AM.

PRE-EMPHASIS AND DE-EMPHASIS
9.8

In the last section, we found that the power spectral density of the post-detection noise varies as the 
square of the frequency. This means that within the message bandwidth -W £ f £ W, the high-frequency 
components of the message signal will, after detection, encounter a much higher noise power than the 
low frequency components. This tends to make the destination signal-to-noise ratio poor for the high 
frequency components of the message. Unfortunately, there exists another factor, associated with the power 
spectral density of the message itself, which too tends to make the destination SNR worse for the high 
frequency components of the message. Audio message signals in general, and speech message signals in 
particular, generally have a power spectral density that tends to fall rather sharply beyond about 800 Hz 
to 1 kHz. Thus, compared to the low-frequency components, the high-frequency components are much 
weaker and produce much smaller-frequency deviation. Hence, at the output of the discriminator in the 
receiver, the high-frequency message signal components at these frequencies will be quite weak; but the 
noise-frequency components at these frequencies will be quite strong. Thus, the SNR for high frequency 
components of the message will be poor. This will reduce the overall destination SNR of the receiver.

‘Pre-emphasis and de-emphasis’ is a technique quite often used in all FM systems in order to overcome 
the problem stated above, and improve the destination SNR. The pre-emphasis part of the process, 
performed at the transmitting end, consists of boosting up of the high frequency components of the 
message signal before using it for modulation, so as to make the PSD of the message more uniform within 
its bandwidth of –W £ f £ +W. Because of pre-emphasis, the signal at the output of the discriminator 
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will be a distorted version of the original message. Hence, the output of the discriminator (signal plus 
noise) is subjected to the de-emphasis process so as to restore the original relative amplitude values of the 
various frequency components of the message signal. The de-emphasis process consists of appropriately 
attenuating the high frequency components of the output of the discriminator, to compensate for the 
‘boosting-up’ or pre-emphasis done at the transmitting end. In this process of de-emphasis therefore, while 
the message spectrum is restored to its original form, amplitudes of the high-frequency components of the 

noise at the output of the discriminator are also reduced, thereby improving the SNR at the destination. This 

method is effective because the boosting up of the high-frequency components is done at the transmitter 

before channel noise enters and attenuating of the high-frequency components is done in the receiver at 

the output of the discriminator so that high-frequency components of both the message signal and the 

post-detection noise, are attenuated. For introducing pre-emphasis and de-emphasis, a pre-emphasis filter 
Hpe(  f  ) is included in the transmitter and a de-emphasis filter Hde(  f  ) is included in the receiver after the 
discriminator stage, as shown in Fig. 9.15.

Pre-emphasis
filter
Hpe(f)

Message
signal

x(t) FM
transmitter

channel

xc(t)

De-emphasis
filter
Hde(f)

Discriminator

Receiver

z(t) w(t)

(S/N)D

BPF
HR(f)

LPF
HL(f)
W Hz

Snw(f) =h/2

channel

Kxc(t)

Fig. 9.15 Pre-emphasis and de-emphasis in an FM system

The de-emphasis filter should come after the discriminator stage and may be placed either before or 
after the LPF. This is because, both the LPF and Hde(  f  ) being linear time-invariant systems, the order 
in which they are placed, is immaterial.

Ideally, the transfer functions of the pre-emphasis and de-emphasis filters should be inverses of each 
other, atleast over the message bandwidth, W.

 H f
H f

de
pe

( )
( )

;=
1

 f W£  (9.80)

Since the pre-emphasis filter should boost up the high-frequency components of the message signal 
and leave the low frequency components practically unaffected, the following simple transfer function 
is generally used for it.
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In this, f0 is a fixed frequency. The corresponding Hde(  f  ) is
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 (9.82)
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f
0

(a)

2f0–2f0 4f0–4f0 6f0

|Hpe(f)|

f

1

0

(b)

2f0–2f0 4f0–4f0 6f0

|Hde(f)|

1/÷2

Fig. 9.16  Magnitude responses: (a) Pre-emphasis, and 
(b) De-emphasis filter (linear frequency scale)
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Fig. 9.17  Magnitude responses (in decibels) of 
pre-emphasis and de-emphasis filters plotted 
using logarithmic scale for frequency

Figures 9.16 and 9.17 show the typical magnitude responses of the pre-emphasis and the de-emphasis 
filters. As long as f << f0, the magnitude responses of both the filters remain practically constant. At 
f = f0, the response of the pre-emphasis filters is +3 dB, while that of the de-emphasis filter is -3 dB.

Hpe(  f  ), which is essentially the response of a differentiator, can be closely realized by a simple R-C 
filter shown in Fig. 9.18(a) and Hde(  f  ), which is essentially the response of an integrator, can be closely 
realized by the simple R-C filter shown in Fig. 9.18(b).

OutputInput

(b)

r

C

OutputInput

(a)

r

R

C

Fig. 9.18 (a) Pre-emphasis filter (b) De-emphasis filter

For commercial FM broadcasting, for which W = 15 kHz, the value of the time constant rc is set equal 
to 75 ms so that f0, the 3 dB frequency is equal to 2122 Hz.

Since the response of the pre-emphasis filter is almost constant for low message frequencies, and that 
of a differentiator for high message frequencies, and noting that the message signal passes through this 
filter before being used for frequency modulating the carrier, we may say that the pre-emphasis filter 
makes the low frequency components of the message to frequency modulate the carrier while making 
the high frequency components of the message signal to phase modulate it. Similarly, the discriminator 
together with the de-emphasis filter may be considered to be working as a frequency demodulator for 
low message frequencies and as a phase demodulator for high message frequencies.
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9.8.1 Improvement in Destination SNR due to Pre-emphasis and De-emphasis

To make a quantitative evaluation of the improvement in (S/N)D caused by the ‘pre-emphasis, de-emphasis’ 
technique, we first note that SD, the signal power at the destination is unaffected by the presence or 
absence of the pre-emphasis filter at the transmitter and de-emphasis filter in the receiver. It is only the 
destination noise power that is getting reduced and this reduction is caused only by the de-emphasis filter 
in the receiver. Hence, a good quantitative measure of the destination SNR improvement due to the use 
of pre-emphasis and de-emphasis is given by the following ratio.

 I   
Noise power output at the destination without de-empha

D
ssis

Noise power output at the destination with de-emphasis

ÊÊ
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ˆ
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 (9.83)

Earlier, we found (see Eq. 9.76) that the PSD of the noise at the output of the discriminator is given by
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So, this is the PSD of the noise at the input to the ‘de-emphasis filter–baseband lowpass filter’ 
combination.

To find how the combination of these two filters will modify this post-detection noise spectrum, let 
us say Hc(  f  ) is the overall transfer function of the cascade connection of these two filters.

Then

 H f H f H fc de L( ) ( ) ( )= ◊  (9.84)

and, H f f WL ( ) ( )= P /2  (9.85)

since the baseband filter has been modeled as an ideal LPF with a cutoff frequency of W Hz.
Hence, noise PSD at the destination is given by
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2
 (9.86)

\ average noise power at the destination, i.e., at the output of the receiver with pre-emphasis and de-
emphasis is given by
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Average noise power at the output of the receiver without the pre-emphasis and de-emphasis, is given by
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Note: The limits for the integral are -W and + W because of the baseband filter HL(  f  ).
Substituting these in Eq. (9.83), we have
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 (9.89)

For the type of de-emphasis filter used in FM broadcast receivers, the destination SNR improvement 
due to the use of pre-emphasis and de-emphasis works out to about 13 dB, which represents a substantial 
improvement.

Show that the improvement in (S/N)D due to the use of de-emphasis filter in a 
broadcast FM receiver is of the order of 13 dB.

Example 9.15

From Eq. (9.82), we have
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In a commercial FM broadcast receiver, W = 15 kHz and f0 = 2122 Hz. Substituting these values in the above,

I ª 22 \ improvement of (S/N)D in dB = 10 22 1310log ª dB.

The ratio of (S/N)D to g is referred to as the figure of merit of a system. Assuming 
that the normalized message signal has a bandwidth of W Hz and an average power of 0.5, determine 
the figures of merit for an FM system (without pre-emphasis, de-emphasis) and an AM system.

Example 9.16

For an FM system, 
S

N
x t

D

Ê
ËÁ

ˆ
¯̃

= 3 2 2b g( ) 

with x t2 0 5( ) .= , the figure of merit for an FM system is

F S N
D

= [ ] =( / ) / g b
3

2
2

For an AM system, 
S

N

m x

m xD

Ê
ËÁ

ˆ
¯̃

=
+

È

Î
Í

˘

˚
˙

2 2

2 21

 g

\ F
m

m

m

m
=

+

=
+

È

ÎÍ
˘

˚̇

( / )2

2

2

2

2

1
1

2

2



Noise Performance of AM and FM Systems 401

THRESHOLD EFFECT IN FM
9.9

For wideband FM, we have seen that (refer to Eq. 9.79) the destination SNR is given by
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 3 2 2 g  (9.90)

As has already been observed in Remark 2 under that equation, it then follows that just by increasing D, 
the deviation ratio, it is possible to increase the destination signal-to-noise ratio without increasing the 
transmitted power. In other words, it means that it is possible to exchange transmitter power for the 
bandwidth of the transmitted signal.

However, as explained in that remark, this exchange is not without a limit. As we increase the 
bandwidth, BT, by increasing the deviation ratio D at the transmitter while keeping the average transmitted 

power A
c
2 2/( ) constant, the destination signal-to-noise ratio at the output of the receiver will, ofcourse, 

increase initially. But, as BT is increased, the average noise power entering the receiver, given by hBT, 
will also be increasing. However, since A

c
2 2/( ), the average transmitted power is held constant, the signal 

power entering the receiver, given by K A
c

2 2 2/( ) = A
R
2 2/( ), is also constant, while the average noise power 

entering the receiver is increasing. So, the receiver input signal-to-noise ratio, ( ) ( )S N S B
R R R T

/ /= h  goes 
on decreasing. Thus, as we go on increasing D to get better (S/N)D, a stage will be reached at some 
value of D and BT, at which, the input SNR for the receiver is so low that the basis on which we had 
derived Eq. (9.79), viz; that the (S/N)R is quite high, is violated, making the application of Eq. (9.79) no 
longer appropriate.

This fact, that Eq. (9.79) is not applicable below a certain value of input SNR, is clearly brought 
out by a plot of (S/N)D vs (SR/NR) for a fixed D. For the purpose of plotting this curve, let us assume 
single-tone modulation so that

 x t t
m

( ) cos= w  (9.91)

Since x(t) has been normalized in such a way that x t( ) £ 1,
\ from Eq. (9.91), we have

 x t2
1

2
( ) =  (9.92)

Further, since x(t) is single-tone, and has been normalized,

 D = b (9.93)

From the above, Eq. (9.90) may, therefore, be written as
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or,
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Note: Relationship between r and g
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Fig. 9.19 Plots of output SNR to input SNR for WBFM and DSB-SC or SSB-SC

For linear modulation schemes DSB-SC and SSB-SC, we had seen that output SNR is equal to g, 
the output SNR for baseband transmission. So for these modulation schemes the output SNR vs input 
SNR plots give a straight line passing through the origin as shown in Fig. 9.19. For WBFM too, as per 
Eq. (9.95), the plot of S N

D
/

;
( )

  dB
 vs g

dB
 for a given b yields a straight line. So, for large values of g

dB
 

for which Eq. (9.79) is valid, for WBFM also we get straight lines; but they will not pass through the 
origin. For different values of b like b1 and b2 etc., we get parallel lines as shown provided g dB values 
are in the range for which Eq. (9.79) and therefore Eq. (9.95) will be valid. As g

dB
 is reduced, we find 

that S N
D

/
;

( )
 dB

 comes down rapidly below a certain value of g dB, thus exhibiting the phenomenon of 
threshold in WBFM. For larger values of b we find that the threshold input (SNR) value is also higher 
(i.e., g g

th th
2 1

> if b2 > b1). The threshold input SNR for any given value of b, is arbitrarily defined 

as that input SNR for which the S N
D

/( )  falls by 1 dB with respect to the straight line portion or its 

extension. For b = b2, as shown in the figure, this happens at the point A on the characteristic, since at A, 
the output SNR has fallen by 1 dB with respect to the value it would have had for S N

D
/( )  at that input 

(S/N) corresponding to the point A, if it had not deviated from the straight line characteristic. Similarly, 
it is happening at the point B on the characteristic corresponding to a value of b = b1. The corresponding 
input (SNR) values at A and B are the threshold values for b = b2 and b = b1 respectively. One interesting 
point which should be observed is that if we are operating at the point P on the straight line portion (i.e., 
above the threshold) of the b = b1 curve and if we increase the modulation index b to a higher value b2, 
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the output SNR increases; but if we are operating below the threshold, an increase in b value actually 
produces a deterioration in the output SNR, as may be seen from the points B and C. Another interesting 
thing that we observe is that g th depends on b. It is approximately 13 dB for most of the FM receivers, 
since rth is about 10 dB (see the note in the box above Fig. 9.19).

One may wonder why the output SNR falls steeply when the input SNR is reduced below some value. 
This leads us to a discussion on the physical phenomenon that causes this.

9.9.1 Causes for Threshold Effect

In an FM receiver, the noise at the output, as heard through the loudspeaker, appears ‘soft’ and ‘smooth’ 
when it is operated above the threshold and ‘spiky’ and coming out like ‘bursts’, when the receiver is 
operated below the threshold. That is, the nature of the output noise changes as we go below the threshold 
value of the input SNR.

For a discussion on the mechanism responsible for this change in the nature of the output noise, let 
us, for the sake of simplicity, assume without loss of generality, that there is no modulation and that 
only the carrier is being received along with the channel noise. Let the noise entering the receiver be 
represented as in Eq. (9.54)

\ n t R t t t
n c n

( ) ( ) cos ( )= +[ ]w f  (9.96)

where, fn

q

i

n t

n t
=

Ê

ËÁ
ˆ

¯̃
-tan

( )

( )
1  (9.97)

\ the input to the discriminator is (see Fig. 9.5)

 y t K A t n t A t n tc c R c( ) . cos ( ) cos ( )= + = +w w  (9.98)

Combining Eqs (9.96) and (9.98), we may write y(t) as

 y t R t t ty c( ) ( ) cos ( )= +[ ]w x  (9.99)

When the receiver is operated well above the threshold, 
the input SNR is high and so R A

n R
<< . Hence, under this 

condition the phasor diagram will be as shown in Fig. 9.20.
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<<  with a high probability and so
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 (9.100)

Further, since 
n

A

q

R

Ê

ËÁ
ˆ

¯̃
<< 1for most of the time, we may write

 x ª
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¯̃

n
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R

 (9.101)

Now, Rn(t) and x(t) vary randomly with time, with Rn having Rayleigh density and x having uniform 

distribution. Since the 
S

N
R

Ê
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ˆ
¯̃

<< 1,  R A
n R

<<  for most of the time. Further, because fn(t) is also randomly 

varying, the point P in the phasor diagram moves randomly around the tip of the phasor AR and may 
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nq
fn

P

One possible path

for the point P

x

Fig. 9.20 Phasor diagram when (S/N)R >>1
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take paths such as the one shown by the dotted line. However, since Rn is quite small compared to AR, 
for most of the time, the point P, while moving along such random paths, will be close to the tip of 
the phasor AR. But, of course, occasionally, Rn may take large values, i.e., values larger than AR and the 
random path traversed by the point P may enclose the point O as shown in Fig. 9.21. Whenever such a 
thing happens, x changes by 2p radians. However, we know that the discriminator produces an output 
proportional to the rate of change of the phase angle of its input signal, y(t). So, when x(t) suddenly 
changes by 2p radians as shown in Fig. 9.22(a) the discriminator output z(t) which is given by

 z t
d

dt
t( ) ( )= x  (9.102)

suddenly takes a large value causing a spike in the voltage z(t) and a loud click to be produced by the 
loudspeaker. [Refer to Fig. 9.22 (b)]. However, since A R

R n
>>  for most of the time, this phenomenon 

occurs only very rarely. But when the receiver is operated at a low input S N
R

/( ) , the probability of Rn 
becoming larger than AR will be high and so, the occurrence of spikes, at the output of the discriminator, 
will become more frequent. Since a large amount of energy is associated with each spike, the average 
noise power at the output of the receiver increases considerably with the onset of the occurrence of spikes 
and so the output signal-to-noise ratio falls rather steeply, causing a ‘threshold phenomenon’ insofar as 
the input SNR is concerned, in the case of a FM receiver.
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Fig. 9.21  Phasor diagram when (S/N)R << 1 showing 
one possible path traversed by P

t

t

(a)

(b)0

0

x(t)
4p

2p

d
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x(t)

Fig. 9.22  (a) x(t) vs t (b) x(t) vs t showing spikes 
in the discriminator output, z(t)

It is required to transmit, using WBFM, a normalized message signal with x2
1=  

and W = 15 kHz, over a channel whose bandwidth is 200 kHz. Additive white noise on the channel has 
h =

-10 8W Hz/ . The destination signal-to-noise ratio should be at least be 40 dB. If the signal attenuation 
during its passage through the channel is 40 dB, find the minimum transmitter power required.

Example 9.17

As stated in Section 9.9, the value of b to be used may be restricted either by power considerations, or 
bandwidth considerations. We shall first examine this.
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\ b + =1 6 6.  and \ b = 5 6.  from bandwidth point of view.

We find that the maximum value of b is restricted by the channel bandwidth and not by power. We 
shall, therefore, choose

b = 5 6.

With this b, and an (S/N)D of 104, the value of g is
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A message signal normalized so that x t( ) £ 1 and having an average power of 
1 watt and a bandwidth of 15 kHz, is to be transmitted using WBFM with b = 5, over a channel with 
additive noise of 2-sided PSD = h / .2 0 5 10 13

= ¥
-  W/Hz and a total transmission loss of 100 dB. If a 

destination SNR of 40 dB is required, what should be the average transmitted power? Check whether 
the system is above the threshold.

Example 9.18
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\ the system is operating above the threshold since g g>
th

9.9.2 Threshold Extension

As we have stated earlier, for most WBFM receivers, g th is about 13 dB. This corresponds to a value of 
10 dB for r

th
, the actual input SNR to the discriminator. So, for satisfactory operation of the receiver, we 

have to ensure that the input SNR is always kept above 10 dB. While this may not be a problem in the case 
of FM broadcast systems, in the case of wideband satellite communications and space communications, 
such a large value of threshold does pose problems. The reason for this is easy to see. Since

r
h

=
S

B

R

T

,

if we desire to operate above rth, we have to either increase the transmitter power, or decrease the 
transmission bandwidth. But both these options are not feasible in the case of satellite to earth or space 
communications, where power is at a premium and wide bandwidth is a must.

This underscores the need to have some methods for reduction of the threshold rth below the 10 dB 
value. These methods are called ‘threshold extension techniques’, and they permit the receiver to operate 
satisfactorily even when the input SNR is very low.

9.9.3 Threshold Extension Techniques

Basically there are two ‘threshold extension techniques’ available. These are

 (i) The ‘Frequency Modulation FeedBack’ (FMFB) technique
 (ii) The ‘Phase Lock Loop’ or PLL technique

Actually, these two techniques work on similar lines and are equally effective in lowering the threshold. 
However, the PLL method is simple and is, therefore, generally preferred. In practice, they reduce the 
threshold rth by about 5 to 7 dB, i.e., when either of these techniques is used, the value of the threshold 
rth effectively has a value of 3 to 5 dB.

(i)  The FMFB Technique As we have already discussed, the onset of threshold condition occurs when the 
input signal-to-noise ratio (SR/NR), of the discriminator falls below some critical value. We know that

S
A

R

R=
2

2

and, N B
R

= h ,
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where,

B = Bandwidth of the noise at the input of the discriminator

In a normal FM broadcast superheterodyne receiver, B is equal to the bandwidth of the incoming FM 
signal, which is being denoted by us as BT, the transmission bandwidth; and the IF amplifier bandwidth 
is designed to be equal to BT. So, in a normal FM broadcast receiver not employing any threshold 
extension techniques, the bandwidth of the noise at the input to the receiver’s discriminator is BT.

Hence, keeping SR, the input signal power the same, if we can reduce NR by reducing the noise 
bandwidth below BT, we can improve the SNR at the input to the discriminator and thus achieve threshold 
extension. Basically, this is precisely what the FMFB technique for threshold extension tries to do.

RF
amplifier

IF
amplifier

Volatge controlled oscilator
(frequency modulator)

Limiter
and

discriminator

Baseband
lowpass

filter

Product
modulator

Fig. 9.23 FMFB method for threshold extension

Referring to Fig. 9.23, in this method for threshold extension, the normal local oscillator of the 
receiver is replaced by a voltage controlled oscillator, which may as well be considered as a frequency 
modulator. The VCO is adjusted, in the absence of the control voltage, to oscillate at a frequency f0 
which is fif hertz below the carrier frequency, fc, to which the receiver is tuned. The control voltage 
applied to it is the output audio signal of the receiver, which is an approximation to the message 
signal x(t) of the FM signal being received. The output of the VCO is thus a frequency-modulated 
signal with a carrier frequency f0 and x(t) as the modulating signal. The product modulator multiplies 
the incoming FM signal having a carrier frequency fc with the output of the VCO. In the output of 
the product modulator, only the difference frequency component is passed on to the IF amplifier. The 
input to the IF amplifier is therefore a FM signal with (  fc - f0) = fif as the carrier frequency and x(t) as 
the modulating signal. However, its peak deviation will be less than that of the incoming FM signal, 
since it is the difference frequency component coming out of the product modulator. Because of the 
smaller deviation, its bandwidth will be less than BT, the transmission bandwidth of the incoming FM 
signal. Since the IF stage bandwidth is much less than BT, say B, the noise power at the input to the 
discriminator is only hB instead of hBT. Thus, the input (S/N) ratio for the discriminator is increased 
and consequently the onset of threshold is made to occur at a much smaller value of (S/N)R than the 
value at which it would have occurred in the absence of the feedback.

(ii)  PLL Method of Threshold Extension Earlier, in Section 5.8, we had seen how a PLL could be 
used as a FM demodulator.
For convenience, Fig. 5.36 showing the linearized 

equivalent circuit of the PLL has been reproduced 
here as Fig. 9.24. This circuit was analyzed in 
Section 5.8. It was shown there that
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Fig. 9.24 Linearized Equivalent circuit of the PLL
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and that
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As pointed out there, if the gain of the loop filter is high enough, so that
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then, v(t), the output of the PLL is given by
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where, x(t) is the modulating signal of the incoming FM wave. Hence, for good tracking, i.e., for fe f( )  
to be very small, the loop filter’s gain must be adjusted to be high.

Now, since v(t) is proportional to the modulating signal, x(t), if x(t) is bandlimited to W Hz, i.e., X(  f  ) = 0 
for f W≥ , then V(  f  ) will also be zero for f W≥ . Since v(t) is the output of the loop filter, and since it 
is bandlimited to W Hz, we need to provide a bandwidth of 
only W Hz to the loop filter. As in the case of the FMFB, this 
implies that the threshold is lowered and that the receiver can 
operate satisfactorily with even smaller values of input SNRs.

Generally, a second-order filter of the ‘proportional plus 
integral type’, shown in Fig. 9.25, is used as the loop filter. 
Table 9.1 gives a comparison of AM and FM.

9.9.4 Comparison of AM and FM

Table 9.1 Comparison of AM and FM

S.No. Amplitude Modulation Frequency Modulation

1. It is the amplitude parameter of the carrier 
which is varied.

It is the frequency parameter of the carrier which is 
varied.

2. Average power of the modulated signal changes 
with the depth of modulation.

Average power of the modulated signal does not 
change with modulation index.

3. Depth of modulation depends only on the 
amplitude of the modulating signal.

Modulation index, b, depends both on the amplitude 
as well as the frequency of the modulating signal.

4. For a single-tone modulating signal, the 
modulated signal has only two side frequencies 
besides the carrier. BT = 2fm.

Even for a single-tone modulating signal, the 
modulated signal theoretically contains an infinite 
number of side-frequencies besides the carrier. 
Theoretically, BT is infinite.

5. The carrier component in the modulated signal 
has a fixed amplitude and it does not change 
with the modulation index.

The carrier component in the modulated signal varies 
with the modulation index and it becomes zero for 
some values of the modulation index.

6. Bandwidth is constant and equal to 2W, 
irrespective of the depth of modulation.  
BT = 10 kHz for commercial AM broadcasting.

Effective bandwidth changes with modulation index b.
BT = 2W(b + 1) ª 180 kHz for commercial FM 
broadcasting.

7. Bandwidth increases in direct proportion to the 
frequency of the modulating signal.

Effective bandwidth increases only slightly with the 
frequency of the modulating signal.

Input

signal

Output

signal
OP-AMP

R

C

+

+
Σ

Fig. 9.25 Loop filter for a second-order PLL

(continued)
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S.No. Amplitude Modulation Frequency Modulation

8. The maximum audio frequency handled by an AM 
broadcast transmitter is generally limited to 5 kHZ.

The maximum audio frequency handled by an FM 
broadcast transmitter is generally 15 kHZ.

9. Additive noise on the channel directly affects an 
amplitude modulated signal.

Additive noise on the channel can affect the FM 
signal only indirectly by producing a change in its 
phase. Thus, compared to AM, FM enjoys some 
immunity against channel noise.

10. AM systems do not permit any trade-off 
between transmission bandwidth and the average 
transmitted power.

Trade-off is possible between transmission bandwidth 
and the average transmitted power.

11. When the channel includes devices like TWT 
amplifier which have a non-linear input–output 
relation, an AM signal gets terribly distorted. 
(see Section 5.7).

Input–output non-linearity of the channel does not 
cause any distortion. It only changes the amplitude of 
the FM signal.

12. Even weak interfering signals close to the 
frequency of desired signal can cause some 
interference.

Interfering signals which are weak compared to 
the desired signal do not cause interference due to 
capture effect.

SUMMARY

1.  For a baseband transmission system, i.e., when the baseband or message signal is transmitted without 
any modulation,
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 h/2 = PSD of white noise on the channel
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2.  Model used for linear modulation systems
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Table 9.1 (continued)
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 5.  There is a threshold effect for AM with an envelope detector. That is, when the SNR at the input to 
the envelope detector is small compared to unity, the message signal and noise become intermingled 
at the output of the detector.

 6.  Model used for FM systems:

Sw(f) =h/2

LPF
HL(f)

BW = W Hz

Kxc(t)

Kxc(t) +nw(t)

BPF
BW = BT

Discriminator
(S/N)R

z(t) w(t)

y(t) =Kxc(t) +n(t)

+
+

HR(f)

 7.  The PSD of the noise at the output of the discriminator in the FM receiver varies as the square of 
the frequency.

 8.  
S

N
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 9.  There is a power-bandwidth trade-off possible in WBFM as shown by 
S

N
D

Ê
ËÁ

ˆ
¯̃

 for FM.

10.  (a)  Pre-emphasis consists of boosting up the higher message frequencies before modulation at the 
FM transmitter.

(b)  De-emphasis consists of de-emphasising the higher message frequencies back to their original 
level after the discriminator stage in an FM receiver.

(c) Pre-emphasis, de-emphasis technique is used to improve the destination SNR in an FM system.

11.  There is a threshold effect in FM reception; i.e., if the input SNR for an FM receiver falls below 
a certain threshold value, the output of the receiver will be only noise.

12.  For WBFM receivers, the threshold value of the input SNR is approximately 10 dB.
13.  Threshold extension technique like FMFB and PLL methods reduce the threshold input SNR to 

about 3 to 5 dB; i.e., they reduce the threshold by 5 to 7 dB.
14.  Figure of Merit (FOM) of a communication system is defined as

FOM    
(SNR at the destination)

(SNR at the input to the d
D
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15.  FOM Values: SSB-SC: 1; DSB-SC: 1, AM: 
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REVIEW QUESTIONS

 1.  Draw the block diagram of the model used for the channel and the receiver to study the noise 
performance of various modulation systems.

 2.  Derive an expression for the destination SNR of a baseband system. How is the receiver modeled 
for this case?

 3.  What is the model used for a synchronous detector?
 4.  Derive an expression for the destination SNR in the case of an AM system employing synchronous 

detection.
 5.  What is the model used for an envelope detector?
 6.  Derive an expression for the destination SNR of a DSB-SC system in terms of that of a baseband system.
 7.  Show that a SSB-SC system gives the same destination SNR as a baseband system.
 8.  Critically compare the noise performance of AM, DSB-SC and SSB-SC systems.
 9.  Discuss the effect of channel noise on the phase angle and frequency of a FM signal.
10.  Derive an expression for the PSD of noise at the output of the discriminator of a FM receiver.
11.  Explain the meaning of the following statement:

‘FM systems permit a trade-off between bandwidth and power’.
12.  Explain the need for ‘pre-emphasis and de-emphasis’ in the case of FM systems. How is it implemented?
13.  Draw the circuit diagram of the filters used for pre-emphasis and de-emphasis. Write down the 

expressions for their transfer functions and sketch their frequency response.
14.  Derive an expression for the improvement in the destination SNR obtained by the use of pre-emphasis 

and de-emphasis in an FM system.
15.  What is meant by the ‘threshold effect’ in FM receivers?
16.  Explain clearly the physical processes that lead to the occurrence of threshold in a FM receiver.
17.  Clearly explain the basic principle of extension of threshold using the FMFB technique.
18.  How can a PLL be used for threshold extension?

FILL IN THE BLANKS

 1.  For determining the destination SNR of a baseband system, we model the receiver as an ideal ____, 
____ with a cutoff frequency of _____ Hz.

 2.  If the additive white noise on the channel has a two-sided PSD of h/2, and if the transmission bandwidth 
of the modulated signal being received is BT Hz, the noise power entering the receiver is _______.
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 3.  A synchronous detector is a product modulator followed by a _____. The two inputs given to the 
product modulator are _____ and ________.

 4.  The destination SNR of a DSB-SC system is _________.
 5.  The destination SNR of a SSB-SC system is _________.
 6.  The peak amplitude of the FM signal at the input to the discriminator of a FM receiver is AR. The 

PSD (2-sided) of the white noise on the channel is h/2 and the transmission bandwidth of the FM 
signal being received, is BT. The pre-detection SNR is _______.

 7.  The PSD of the noise at the output of the discriminator is proportional to the ____ of the frequency.
 8.  The destination SNR of a FM system is directly proportional to the ________ (modulation index/

square of the modulation index).
 9.  In an FM system, the transmission bandwidth __________ (increases/decreases) with the modulation 

index, b.
10.  Pre-emphasis _________ (boosts up/attenuates) the high frequency components of the modulating 

signal.
11.  Pre-emphasis and de-emphasis, used in a FM system, help in improving the _____, ___.
12.  The threshold effect in a FM receiver manifests in the form of __________.
13.  The threshold value of (S/N)R for most of the FM receivers is _________.
14.  Threshold extension may be obtained by using _____ or a _______.

MULTIPLE CHOICE QUESTIONS

 1.  The channel noise has a two-sided PSD of h/2 W/Hz and the incoming FM signal has a bandwidth 
of BT Hz. The peak amplitude of the FM signal at the input to the discriminator is AR volts. The 
pre-detection SNR is

(a) 
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h
 (b) 
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 2.  In the receiver model used for discussing the noise performance of different modulation schemes, 
the pre-detection and post-detection stages of the receiver are modeled respectively as
(a) bandpass filter and lowpass filter (b) highpass filter and lowpass filter
(c) lowpass filter and lowpass filter  (d) bandpass filter and highpass filter

 3.  If g denotes the destination SNR for a baseband transmission system, that of a DSB-SC system with 
carrier peak amplitude of AR is given by
(a) g/2 (b) g (c) 2g  (d) g/4

 4.  For AM, the destination SNR is given by

(a) 
m x

m x
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 5.  In an AM system, transmitting a single-tone message at 100% modulation, the destination SNR is 
given by
(a) g (b) (1/2)g (c) (1/3) g (d) 2g

 6.  At the output of the discriminator in a FM receiver, the PSD of the noise
(a) increases linearly with frequency
(b) decreases as the square of the frequency
(c) increases as the square of the frequency
(d) decreases linearly with frequency
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 7.  The average signal power at the input to the detector in the case of an AM system is given by

(a) 1 2+( )mx  (b) 
A

mx
R
2

2

2
1+È
Î

˘
˚  (c) 1 2 2+( )m x  (d) 

A
m x

R
2

2 2

2
1+( )

 8.  For the same average power transmitted and with tone modulation,
(a) (S/N)D will be the same for AM and SSB-SC
(b) (S/N)D for AM is greater than (S/N)D for SSB-SC by 5 dB
(c) (S/N)D for AM is less than (S/N)D for SSB-SC by 5 dB
(d) (S/N)D for AM is less than (S/N)D for SSB-SC by 10 dB

 9.  ‘Pre-emphasis’ is
(a)  boosting up of the high-frequency components of the message signal after detection in the receiver
(b)  boosting up of the high-frequency components of the message signal at the transmitter before 

modulation
(c)  boosting up of the low-frequency components of the message signal after detection in the receiver
(d)  boosting up of the low-frequency components of the message signal at the transmitter before 

modulation
10.  In standard FM broadcasting systems, the time constants of the pre-emphasis and de-emphasis filters 

are respectively
(a) 75 ms and 100 ms (b) 75 ms and 75 ms
(c) 100 ms and 75 ms (d) 100 ms and 100 ms

11.  For standard FM broadcast receivers, the threshold input SNR, i.e., rth is approximately
(a) 10 dB (b) 13 dB (c) 5 dB (d) 7 dB

12.  Use of some type of threshold extension technique is absolutely necessary in the case of
(a) FM broadcast receivers
(b) wideband FM communication from the earth station to a satellite
(c) wideband FM communication from a satellite to the earth station
(d) none of the above

PROBLEMS

 1.  An AM transmitter is used to send a message signal with x2 0 5= .  and a bandwidth of 5 MHz 
over a channel which introduces additive white noise with a power spectral density of 10-12 W/Hz. 
The modulation index is equal to 1. If the channel introduces a loss of 100 dB, and if the average 
transmitted power is 200 W, find the destination signal-to-noise ratio that can be obtained.

 2.  Determine the post-detection SNR to pre-detection SNR ratio for the following types of communication 
systems.
(a) AM with a modulation index of m (b) SSB-SC
(c) DSB-SC   (d) FM with modulation index bf

 3.  A DSB-SC signal is transmitted over a channel with additive white noise of two-sided PSD 
of ( / ) .h 2 0 5 10 12

= ¥
- W/Hz . If the received signal power is S

R
= ¥

-20 10 9  W and the message 
bandwidth W = 5 ¥ 106 Hz, find the destination SNR.

 4.  It is proposed to transmit a message signal whose amplitude is uniformly distributed over [-1, 1] 
and whose bandwidth is 1.5 MHz over a channel with an additive white noise two-sided PSD of 
0.5 ¥ 10-13 W/Hz and introducing a loss of 80 dB between the transmitter and receiver. If destination 
SNR of 40 dB is desired, for each of the following cases, determine the transmitter power that will 
be required.
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(a) SSB-SC modulation
(b) AM with a modulation index of m = 0.6
(c) DSB-SC modulation

 5.  A message signal, bandlimited to 2 kHz, is uniformly distributed in the interval [-1, 1]. It is used 
for amplitude modulating (AM) a sinusoidal carrier of peak amplitude 5 V and frequency fc Hz, the 
modulation index being 0.5. The modulated signal is transmitted over a channel with additive white 
noise of PSD (2-sided) 0.5 ¥ 10-12 W/Hz and the channel introduces an attenuation of 80 dB. The 
received signal is first filtered using a BPF centered on fc and having a transfer function H(  f  ) as 
shown in Fig. P-9.1.

|H(f)|

4 kHz

–fc– 3 kHz fc– 3 kHz–fc+ 3 kHz fc+ 3 kHz

4kHz

–fc 0

f

Fig. P-9.1

Then it is demodulated using a synchronous detector consisting of a product device (to which 
the locally generated carrier and the filtered received signal are applied) followed by an ideal LPF 
with a cutoff frequency of 2 kHz. Determine the pre-detection and destination SNR’s.

 6.  A transmitter is producing an average transmitted power of 20 kW. The channel with an additive 
white noise of PSD (2-sided) 0.5 ¥ 10-10 W/Hz introduces an attenuation of 70 dB. The message 
signal has a bandwidth of 10 kHz and a normalized average power of 0.2 W.
(a) Find the pre-detection SNR.
(b) Find the destination SNR if

 (i) the modulation is AM with a modulation index of m = 0.8
 (ii) the modulation is DSB-SC
 (iii) the modulation is SSB-SC
 7.  While deriving the destination SNR for a WBFM system, we had assumed that the baseband filter in the 

receiver is an ideal LPF with a cutoff frequency of W Hz. Derive the expression for the (S/N)D assuming 
that the baseband filter is a Butterworth filter of order n with a 3 dB cutoff frequency of W Hz.

 8.  A message signal, x(t), normalized so that x t( ) £ 1, has a bandwidth of 4 kHz and an average power 
of 0.2 W. It is used for modulating a carrier and the modulated signal is transmitted over a channel 
of 100 kHz bandwidth. Find the ratio of the destination SNRs obtained for the following two cases.

 (i)  The message frequency modulates the carrier and the modulated signal fully utilizes the full 
bandwidth of the channel.

 (ii)  The message amplitude modulates (AM) the carrier to a depth of 0.5.
 9.  A message signal, x(t), with a bandwidth of 500 kHz and an average power of 0.33 W, frequency 

modulates a carrier having a peak amplitude of 22.36 V, producing a peak frequency deviation of 
2 MHz. This modulated signal is transmitted over a channel with additive white noise of two-sided 
PSD equal to 0.5 ¥ 10-15 W/Hz and a transmission loss of 80 dB. If the receiver uses a post-detection 
de-emphasis filter having a transfer function

H f
f B

de ( )
( / )

=

+

1

1 2
 where B = 5 kHz

followed by an ideal LPF of 500 kHz cutoff frequency, determine the destination SNR.
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10.  A message signal with a bandwidth of 6 kHz and an average power of 0.5 W, is transmitted using 
FM, over a channel characterized by a bandwidth of 60 kHz and additive white noise of two-sided 
PSD equal to 10-11 W/Hz.
(a)  If a destination SNR of 60 dB is desired without pre-emphasis and de-emphasis, what should 

be the transmitted power?
(b)  If a destination (SNR) of 60 dB is desired using pre-emphasis and de-emphasis filters of time 

constant 75 microseconds, what should be the transmitted power?
11.  A communication system makes use of a message signal with an average power of 0.5 W and a 

bandwidth W = 10 kHz. The modulated signal is transmitted over a channel with additive white 
noise having a 2-sided PSD of 0.5 ¥ 10-14 W/Hz, and a transmission loss of 80 dB. A destination 
SNR of 40 dB is needed. Determine the transmitter power required if
(a) AM with m = 0.5 is used
(b) SSB-SC is used
(c) WBFM with D = 5 is used. (no pre-emphasis and de-emphasis)
(d)  WBFM with D = 5 is used and pre-emphasis and de-emphasis filters of 75 ms time constant 

are used
12.  An FM receiver employing FMFB for threshold extension, is shown in Fig. P-9.2.

Discriminator

VCO
frequency =wLO

x0(t)

xLo

fc fIF

W
LPF

HIF(f)
BW=BIF

HRF(f)
BW=BT

Fig. P-9.2

Assume that the received FM signal is noise-free and that it has a carrier frequency of fc. The 
VCO produces a signal given by

x t K x d
LO c IF

t

= -( ) +
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Î
Í
Í

˘

˚
˙
˙

Ú2 2 0

0

cos ( )w w p t t

Show that the deviation ratio of the FM signal with fif as the carrier, is D/(1 + K), where D is 
the deviation ratio of the received FM signal with carrier frequency fc. How is BIF related to BT?

Key to Multiple Choice Questions
1. (b) 2. (a) 3. (b)  4. (a)  5. (c)  6. (c)
7. (d) 8. (c) 9. (b) 10. (b) 11. (a) 12. (c)



In this chapter, 
the student
Ø learns the lowpass sampling theorem 

and its implications, understands the 
meaning of terms like ‘band-limited’ 
signals, Nyquist rate, aliasing, etc.

Ø understands the usefulness and 
limitations of various methods of 
sampling by a study of the spectrum 
of the sampled signal in each case

Ø realizes, from the lowpass sampling 
theorem as well as the spectra of 
the sampled signals, that an LPF may 
be used for reconstruction of the 
lowpass band-limited signal from its 
samples

Ø learns the basic concept of time-
division-multiplexing

Ø understands the way the amplitude 
of each sample of a continuous-time 
band-limited signal, is represented in 
PAM, PDM and PPM

Ø recognizes that bandwidth deficiency 
of the channel results in cross-talk in 
the transmission of PAM, PDM and 
PPM signals

Ø will be in a position to mathematically 
analyze the noise performance of 
PAM, PDM and PPM systems and 
compare their noise performance

10
INTRODUCTION

10.1

In this chapter, we will be first discussing the lowpass 
sampling theorem. In essence, this theorem tells us 
that a lowpass signal x(t), band-limited to W Hz, i.e., 
one which does not have any frequency components 
at and above W Hz, can be completely recovered for 

all time from its samples taken at regular intervals Ts, 

provided T
W

s
£

1

2
 seconds. As we are going to see, 

the process of reconstructing, or recovering, x(t) from 
its samples, is extremely simple. All that we need to 
do is to pass the samples through a lowpass filter 
having an appropriate cutoff frequency.

In all the continuous-wave modulation techniques, 
AM, FM or PM, information about the message signal 
is transmitted continuously in terms of corresponding 
variations of the amplitude, frequency, or the phase of 
the carrier wave as the case may be. In this context, 
what the lowpass sampling theorem states, has 
tremendous practical implication. It makes it clear 
that if a message is band-limited, it is not necessary 
to transmit it continuously; it is enough if we transmit 
its samples, since the receiver can reconstruct the 
message from these samples.

There are different methods that one can adopt for 
representing the sample values and transmit them to 
the receiver. These different methods of representing 
the sample values give rise to the different pulse 
modulation schemes. Some of them, like Pulse 
Amplitude Modulation (PAM), Pulse Duration 
Modulation (PDM or PWM) and Pulse Position 
Modulation (PPM) are analog pulse modulation 
techniques, while pulse code modulation (PCM), etc., 
are digital pulse modulation techniques. We will of 
course, confine our discussion to only analog pulse 
modulation systems in this book.

Sampling and Analog 
Pulse Modulation
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Information about the sample value at a sampling instant, is carried by the amplitude of a pulse 
occurring at that instant in the case of PAM, by the width of the pulse occurring at that sampling instant 
in the case of PDM and by the shift in its position with respect the sampling instant, in the case of PPM. 
Since the width of the pulse, t, is very small compared to the interval between consecutive pulses, the 
average power in a pulse-modulated signal is very low compared to that in a continuous wave modulation 
system. Of course, in the course of this chapter, we will be discussing this and other advantages and 
disadvantages of pulse communication systems, but for the present, we will simply list them as follows.

1.  The average transmitted power is very low. This is especially useful when the energy to be radiated 
is obtained from devices like magnetron or a laser, which can give large pulsed powers but only a 
very small average power.

2.  It is possible to have Time-Division Multiplexing (TDM) for transmission of several message signals 
simultaneously over the same physical channel by making the pulses pertaining to different message 
signals to share the available time Ts between two consecutive samples of the same message signal.

3.  Pulse modulation has the disadvantage of requiring large transmission bandwidths.

Since the pulses contain considerable dc content and low-frequency components in addition to the 
high frequency components, they cannot be radiated directly. So, when transmission over long distances 
is desired, these pulses must be made to modulate a high-frequency carrier. For short distances, however, 
they can be transmitted over a cable, or a pair of wires.

Pulse modulation systems are mostly used for time-division multiplexing of several message signals 
as in the case of data telemetry and in instrumentation systems.

SAMPLING OF BAND-LIMITED LOWPASS SIGNALS
10.2

If x(t) is an analog signal, the process of sampling it should result 
in the set of samples, {x(nT)}, where T is the sampling interval 
and x(nT) is the value of x(t) at t = nT, the nth sampling instant.

An easy way of visualizing the sampling process, and perhaps a 
simple way of implementing it may be through a switch, as shown 
in Fig. 10.1. Although a mechanical switch is shown in Fig. 10.1, in 
actual practice, an electronic switch, making use of a diode bridge 
clamper, a diode bridge linear gate or a shunt transistor 
gate, may be used.

Let the switch make contact with A once every T 
seconds. Then xs(t) consists of samples of x(t) taken 
every T seconds, provided the switch makes contact with 
A instantaneously. However, in practice, the contact will 
be made for a finite amount of time, say, t seconds.

Then the sampled version is as shown in Fig. 10.2. 
This consists of strips of x(t) of width t occurring at 
regular intervals of T seconds; and may be visualized as 
the waveform that results when x(t) is multiplied by a 
‘sampling function’ shown in Fig. 10.3.

This sampling function may be expanded using Fourier 
series, as it is a periodic function with period T

 s t c en
j f nt

n

( ) =
=-

Â 2 0p ; T = sampling period = 
1

fs
 (10.1)

A

B

K

x
s
(t)x(t)

Fig. 10.1 A switch used for sampling

s(t)
1

–4T –3T –2T –T 0 T 2T 3T 4T t

Fig. 10.3 The sampling function

x(t)t

–T 0 T

–4T –3T –2T 2T 3T 4T t

Fig. 10.2 Sampling waveform xs(t)
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where,
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However, over the interval -T/2 to T/2,

s t t( ) ( / )= P t , since t << T

Hence, we may write Eq. (10.2) as
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As P(t/t) = 0 outside the limits of integration, we may write
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since f
T

s =
1

 and 
T

t
 = duty ratio of the sample function = a,

 s t f t f ts s( ) ( ) cos )cos= + + +a a a p a a p a a2 2 2 2 2 2 sinc sinc (2 sinc (3 )) cos 2 3p f ts + . . .  (10.6)
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Taking Fourier transform on both sides, we get

 X f X f c X f f X f f c X f f X f fs s s s s( ) ( ) ( ) ( ) ( ) ( ) ...= + - + +[ ]+ - + +[ ]+a 1 2 2 2  (10.8)

where, c k
k

= a a sinc  (10.9)

If the signal x(t) has a spectrum as shown in Fig. 10.4, the spectrum of Xs(  f  ), the sampled version 
of x(t), will be as shown in Fig. 10.5.

This figure showing Xs(  f  ) has been drawn assuming that (  fs - W ) > W, or fs > 2W. It is interesting to 
note from this figure that the spectrum of x(t), viz., X(  f  ) appears in it without any distortion. It is only 
scaled by the factor a, the duty cycle of the sampling function. If we can, by some means, separate out 
this part of the spectrum from Xs(  f  ), say, by using a lowpass filter with a cutoff frequency of B Hz, where 
B is such that W < B < (  fs - W) and whose gain is constant atleast up to W Hz, then, in time- domain, it 

X(f)
1

–W 0 W f

Fig. 10.4 Spectrum of x(t)

Xs(f)

Guard band

–2fs+W –fs–W –fs –fs+W –W 0 W fs–W fs+W 2fs–W 2fs f

a

Fig. 10.5 Spectrum of xs(t)
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means that we are able to get back our x(t) without any distortion, from its sampled version. If fs = 2W, 
then W = (  fs - W) and so there will not be any guard band. So, to recover x(t) from xs(t), one has to use 
an ideal LPF with a cutoff frequency equal to W.

In case fs is less than 2W, the spectrum Xs(  f  ), of the sampled version of x(t), viz., xs(t), will be as 
shown in Fig. 10.6. In this case, we find that there is no guard band.

Xs(f)

–2fs –fs 0 fs-w w fs 2fs f

Fig. 10.6 Spectrum of xs(t) when fs < 2W

In fact, the spectra overlap and it is impossible to retrieve x(t) from xs(t) without distortion. Thus, 
we find that in general, there are two basic conditions to be satisfied if x(t) is to be recovered from its 
samples. These are

 (i) x(t) should be band-limited to some frequency, W, and
 (ii) the sampling frequency should be atleast twice the band-limiting frequency.

If W is the band-limiting frequency, (  fs - 2W ) is called the Nyquist rate of sampling and represents 
the theoretical minimum sampling frequency that can be used if the signal is to be recovered without any 
distortion from its samples. It is the ‘theoretical minimum’ because when the Nyquist rate of sampling is 
used, only an ideal LPF can be used to extract X(  f  ) from Xs(  f  ), i.e., to recover x(t) from xs(t). However, 
if fs > 2W, any practical LPF with constant gain over the frequency range -W to W and a phase shift that 
is proportional to the frequency, will be able to recover x(t), without any distortion from xs(t).

With the above background, we shall now proceed to the lowpass sampling theorem—an extremely 
important theorem that forms the basis for all modern digital communications. It summarizes the results 
obtained in the foregoing and guarantees that it is possible to recover the continuous-time signal, x(t), for 
all time, from its samples taken at regular intervals, if the signal x(t) is band limited and if the sampling 
is done at or above the Nyquist rate.

LOWPASS SAMPLING THEOREM
10.3

Statement Let x(t) be a band-limited lowpass signal, band limited to W Hz; i.e., X(  f  ) = 0 for | f | ≥ W. Then 
it is possible to recover x(t) completely, without any distortion whatsoever from its samples, if the sampling 
interval, Ts, is such that Ts £ 1/2W. Specifically, x(t) can be expressed in terms of its samples, x(kTs) as follows:

 x t BT x kT B t kT
s s s

k

( ) ( ) ( )= -

=-

Â2 2sinc  (10.10)

where, B is any frequency such that W £ B £ (  fs - W )

Proof Let x(t) have a spectrum X(  f  ) as shown in Fig. 10.7.
Consider %X f( ) , shown in Fig. 10.8, which is a periodic repetition 

of X(  f  ) at regular intervals of frequency equal to fs, where fs > 2W.

X(f)

1

–W 0 W f

Fig. 10.7 Spectrum of x(t)
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1

–fs –W –fs –fs +W  –fs /2 –W 0 W fs /2 fs –W fs fs +W 2fs –W 2fs f

X(f)
~

Fig. 10.8 Spectrum of xs(t)

Since fs > 2W, dividing by 2 on both sides, fs/2 >W.
Hence, fs /2 - W > 0. Now, adding fs /2 on both sides, we get fs - W > fs/2. Hence, we have

 W
f

f Ws
s< < -

2
( )  (10.11)

i.e., fs /2 lies between W and (  fs - W).
Since %X f( )  is periodic in frequency with a period of fs, we can expand it as a Fourier series. Let us say

 %X f c e T
f

n
j nT f

n

s
s

s( ) ;= =

=-

Â 2
1

p        (10.12)

where,

 c
f

X f e dfn
s f

f

j nf T

s

s

s=
-

-Ú
1

2

2

2%

/

/

( ) p  (10.13)

Since

%X f X f f
f

X f f Ws( ) ( ) | | ( ) | |= < = ≥    for   and     for    
2

0

Equation (10.13) may be written as

 c T X f e dfn s
j nfTs= -Ú ( ) 2p  (10.14)

But X f e df X fj nfT

t nT

s

s

+ -
=-Ú = { }( ) [ ( )]2 1p F    

Hence, Eq. (10.14) may be written as

c T x t T x nT
n s s s
= = -

=-

( ) ( )  
 t nT

s

Substituting this in Eq. (10.12), we have

%X f T x nT es s
j nfT

n

s( ) ( )= -

=-

Â 2p

If we put k = -n

 %X f T x kT es s
j f kT

k

s( ) ( )= -

=-

Â 2p    (10.15)
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If we now define a gate pulse W2B(  f  ) of 2B width Hz in the frequency domain, i.e., if

 W f
f

B
B2

2
( )     D PÊ

ËÁ
ˆ
¯̃

 (10.16)

then W X f X fB2
% ( ) ( )=   (10.17)

\ X f T x kT e W fs s

k

j fkT
B

s( ) ( ) . ( )=

=-

-Â 2
2

p  (10.18)

But x t X f T x kT e W fs s
j fkT

B

k

s( ) [ ( )] ( ) . ( )= =
È

Î
Í

˘

˚
˙- - -

=-
ÂF F1 1 2

2
p

= { }ÈÎ ˘̊
=-

- -ÂT x kT e W fs s

k

j fkT
B

s( ) . ( )F 1 2
2

p

 = ÈÎ ˘̊{ } [ ]{ }
=-

- - -ÂT x kT e W fs s

k

j fkT
B

s( ) * ( )F F1 2 1
2

p  (10.19)

Making use of the convolution theorem of Fourier transform and noting that

 F- -Î ˚ = -1 2e t kTj fkT
ssp d ( )  (10.20)

and F F- -[ ] = =1
2

1 2 2 2W f f B B BtB ( ) [ ( / )]P sinc , (10.21)

we have, x t BT x kT t kT Bt
s s s

k

( ) ( ) ( ) *= -[ ]
=-

Â2 2d sinc 

 \ x t BT x kT B t kT
s s s

k

( ) ( ) ( )= -

=-

Â2 2sinc  (10.22)

Equation (10.22) tells us how we may reconstruct the signal x(t) from its samples, x(kTs). It says that 
x(t) is the weighted sum of an infinite number of the interpolating functions sinc 2B(t - kTs). with x(kTs) 
as the weightage given to the sinc function delayed by an amount of time kTs. Since 2B sinc 2Bt is the 
impulse response of an ideal lowpass filter whose cutoff frequency is B Hz and whose passband gain 
is 1, Eq. (10.22) in fact, gives us the clue as to how we may reconstruct x(t) from its samples—obtain 
a sequence of impulses at regular intervals of Ts, with the impulse at t = kTs having a strength equal to 
x(kTs), the value of the kth sample of x(t), and then give this sequence of impulses as input to an ideal 
LPF whose cutoff frequency is B Hz. The output of the ideal LPF will then be proportional to x(t).

To get a better appreciation of the foregoing, let us first consider what is generally called as ‘ideal 
sampling’, ‘impulse sampling’ or ‘instantaneous sampling’.

IDEAL OR IMPULSE SAMPLING
10.4

Earlier, in Section 10.2, we had considered sampling of a continuous-time waveform using periodic 
rectangular pulses of width t.

Ideally, sampling should be done instantaneously so that the kth element of the sequence obtained by 
sampling represents the value of x(t) at t = kTs. However, for obtaining this instantaneous sampling, if 
we try to reduce t, the pulse width in the sampling function, to zero, the duty ratio a will be zero and 
hence, xs(t) will be zero, as may be seen from Eq. (10.7).
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x(t)

0 Ts 2Ts 5Ts 10Ts

(a)

0–Ts Ts 2Ts

º

x(2Ts)
x(Ts) x(5Ts)

x(0)
. . .x(10Ts)

(c)

X(12Ts)

t

0 Ts–Ts 2Ts

º º

5Ts 10Ts 12Ts

1

(b)

t

t

Fig. 10.9 (a) x(t) (b) s(t) (c) xd(t)

To overcome this difficulty, we will consider a sampling function that is a sequence of unit impulses 
as shown in Fig. 10.9(b) instead of a sequence of unit amplitude pulses of zero width. This s(t) may be 
expressed as

 s t t nT
s

n

( ) ( )= -

=-

Â d  (10.23)

If we again model the sampling process as multiplication of x(t) by the sampling function s(t), we 
have the sampled version xs(t), or, in this case, xd(t), given by

 x t x t s td ( ) ( ) . ( )=  (10.24)

or,

 X f X f S fd ( ) ( ) * ( )=  (10.25)

To find S(  f  ), let us make use of the fact that s(t) is a periodic function with a period of Ts. Hence, 
we may write its Fourier series expansion as

 s t c e f
T

tn

n

j nf t
s

s

s( ) ; ;= = < <

=-

Â 2
1

p            (10.26)

where, c
T

s t e dtn
s

j nf t

T

T

s

s

s

= -

-
Ú

1
2

2

2

( )

/

/

p  (10.27)

However, for - £ £ =
T

t
T

s t t
s s

2 2
, ( ) ( )d , as may be seen from Fig. 10.9(b).
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Hence, c
T

t e dt
T

e f fn
s

j nf t

T

T

s

j nf t

t
s s

s

s

s

s= = = =-

-

-

=
Ú

1 1
12

2

2

2

0
d p p( ) .

/

/

 (10.28)

Since cn = fs for all values of n, substituting this in Eq. (10.26), we get

s t f es

n

j nf ts( ) =
=-

Â 2p

Taking Fourier transform on both sides,

S f f e f es
j nf t

n

s

n

j nf ts s( ) =
È

Î
Í

˘

˚
˙ = ÈÎ ˘̊

=- =-
Â ÂF F2 2p p

= -

=-

Âf f nfs s

n

d ( )

\ S f f f nfs s

n

( ) ( )= -

=-

Â d  (10.29)

Substituting this in Eq. (10.25) and realizing that

X f f nf X f nfs s( ) * ( ) ( )d - = -

and invoking the linearity theorem of FT, we have

 X f f X f nfs s

n

d ( ) ( )= -

=-

Â  (10.30)

Equation (10.30) tells us that the spectrum of the ideally sampled version of x(t), viz., Xd(  f  ) is nothing 
but a periodic repetition of X(  f  ), the spectrum of x(t), with a period of repetition fs and is scaled by the 
factor fs. Hence, if x(t) is a lowpass signal band-limited to W, with a spectrum as shown in Fig. 10.10(a) 
then Xd(  f  ) would be as shown in Fig. 10.10(b).

X(f)
1

f

–w 0 w

(a)

Xd (f)

fs

–2fs –fs–w –fs –fs+ w –B –w 0 w B fs– w fs fs+ w 2fs– w

Guard band

fs chosen greater 
than 2w

Transfer function of
reconstruction filter (LPF)

f

Fig. 10.10 (a)  X(  f  ) (b) Xd(  f  )
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For the sake of drawing Fig. 10.10(b), it has been assumed that fs > 2W, i.e., that the sampling is done 

above the Nyquist rate. Hence fs - W > W and a guard band appears in the spectrum of xd(t). Because 
of the presence of the guardband, as shown in the figure, it is possible to recover X(  f  ) from Xd(  f  ), i.e., 
x(t) from xd(t) without any distortion using any practical lowpass filter whose passband gain is constant 
over the range of frequencies 0 Hz to W Hz within which all the frequency components present in the 
signal x(t) are contained.

If fs is equal to 2W, i.e., if the sampling is done exactly at the Nyquist rate, fs - W = W and therefore 
the spectrum of xd(t) would appear as shown in Fig. 10.11.

Transfer function of an ideal LPF Sampling done at Nyquist´s rate

–3fs 3fs –2fs –fs fs 

fs 

f– w

= –fs + w  

w

= fs – w  

–fs– w fs + w 

Xδ(f) 

2fs 

Fig. 10.11 Spectrum of xd(t) when fs = 2W

As before, a lowpass filter may be employed to separate out X(  f  ) from the rest of the spectrum of 
xd(t). However, as the passband gain of this filter has to be constant at least from -W to +W for obtaining 
x(t) without any distortion and as there is no guardband in the present case, only an ideal lowpass filter 
with a cutoff frequency of W will have to be used, as shown in dotted lines in Fig. 10.11.

If the sampling is done at less than the Nyquist rate, i.e., if fs < 2W, then fs - W < W and, therefore, 
the spectrum of xd(t) would appear as shown in Fig. 10.12.

Undersampled case; fs< 2W

2fs
f

fs –w–fs +w

w–w–2fs –fs fs

fs

Xδ(f)

Fig. 10.12 Spectrum of xd(t) when fs < 2W

In this case, we find that the spectra overlap and hence it is not possible to separate X(  f  ) from 
Xd(  f  ), i.e., it is not possible to recover x(t) from xd(t) even if we were to use an ideal LPF. As may be 
seen from Fig. 10.12, because of this overlapping, the high frequency components of x(t) re-appear as 
low frequency components. This phenomenon is therefore appropriately referred to as aliasing. It is also 
called frequency folding effect.

We may summarize the foregoing discussion on the effect of sampling rate as follows.

(a)  Xd(  f  ) is a repetitive version of X(  f  ), with X(  f  ) repeating itself at regular intervals of fs, the 
sampling frequency.

(b)  If fs > 2W then there is a guard band and it is easy to separate out X(  f  ) from Xd(  f  ), i.e., easy to 
recover x(t) from xd(t) using a practical LP filter.
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(c)  If fs = 2W, i.e., Nyquist rate, no guard-band exists and an ideal LPF is needed to recover x(t) from 
xd(t).

(d) If fs < 2W, aliasing takes place and it is not possible to recover x(t) from xd(t) without distortion.
(e) To avoid aliasing, it should be ensured that

 (i) x(t) is strictly band-limited
 (ii) fs is greater than 2W

We have all along been assuming that x(t) is band-limited to W. 
But, it must be realized that in practice, signals are time-limited, i.e., 
no practical signal exists from  of time to  of time. This means 
that no signal will, in practice, be strictly band-limited. For example, if 
the spectrum of a signal x(t) is as shown in Fig. 10.13, it is necessary 
to first band-limit x(t) to some appropriate frequency W such that most 
part of the energy is retained.

We then choose a sampling frequency fs such that it is more than 2W. The choice of W depends on the 
application. For example, speech signals can have frequencies up to even 15 kHz if it is a female voice. 
But, for digital telephony it is band-limited to 3.4 kHz and sampled at 8 kHz. This is because, for this 
application, intelligibility is the criterion governing the choice of W. The minimum possible value of W 
is chosen for the sake of reducing the required bit rate, consistent with the requirement that the speech 
should be intelligible at the destination. A value of W equal to 3.4 kHz has been found to satisfy the 
requirement. This filter, an LPF, used for band-limiting a signal before sampling, is generally referred to 
as an anti-aliasing filter since it is used primarily for preventing aliasing. Incidentally, this anti-aliasing 
filter helps in cutting off the out-of-band noise, if any, present along with the signal. This noise would 
otherwise alias into the useful band 0 Hz to W Hz after sampling. Similarly, for high fidelity music, a 
minimum bandwidth (W ) of 20 kHz is needed. That is why, in CD music systems, a sampling frequency 
of 44.1 kHz, which is slightly more than the Nyquist rate, is used.

The signal x t cos t( ) = 10 150p  is ideally sampled at a frequency fs = 200 samples 
per second (sps). Sketch the spectrum of xd(t).

Example 10.1

X f x t t

f f

( ) [ ( )] [ cos ]

[ ( ) ( )]

= =

= - + +

F F 10 150

5 75 75

p

d d

Since the spectrum Xd(  f  ) of xd(t) is given by

X f f X f nfs s

n

d ( ) ( )= -

=-

Â ,

The sketch of it is as follows:

.   .   . .   .   .

f

Xd(f)

5fs

–275 –200 –125 –75 0 75 125 275200

Fig. 10.15 Sketch of Xd(  f  ) with fs = 200 sps

X(f)

–W W0 f

Fig. 10.13 Spectrum of an x(t)

–75 750

5 5

f

X(f)

Fig. 10.14 Sketch of X(  f  )
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For the x(t) of Example 10.1, sketch xd(t), the spectrum of xd(t), the ideally 
sampled version of x(t), if the sampling is done at a frequency fs = 100 sps.

Example 10.2

f

Xd(f)

5fs

–200

.   .   . .   .   .

–175 –125 100 –75 –25 0 25 75 100 125 175 200

Fig. 10.16 Sketch of Xd(  f  ) of Example 10.2 with fs = 100 sps

Note the presence of the 25 Hz component in the spectrum of xd(t) even though x(t) contains only the 
75-Hz component. This is because the sampling frequency in this example is 100 sps while the frequency 
of the signal is 75 Hz. Thus, the sampling rate of 100 sps is less than the Nyquist rate of sampling 
which is equal to 150 Hz. Hence, aliasing takes place and we should recognize the fact that the 75 Hz 
component of x(t) is itself re-appearing as a low-frequency component at 25 Hz because of aliasing.

How many minimum number of samples are required to exactly describe the 
following signal:

x t cos t sin t( ) ( ) ( )= +10 6 4 8p p

Example 10.3

If x(t) is periodic then it can be described exactly by a finite number of samples – corresponding to those 
in one period of x(t). So, let us first check whether x(t) is periodic.

T1 = period of 10 6
2

6

1

3
cos p

p

p
t = =

T2 = period of 4 8
2

8

1

4
sin p

p

p
t = =

\ 
T

T

1

2

1

3

4

1

4

3
= ¥ = , which is a rational number.

Hence, x(t) is periodic. Now, to determine its period T,

T = Ê
ËÁ

ˆ
¯̃
=LCM

1

3

1

4
1,  \ = =   T T T3 4

1 2

The maximum frequency present in x(t) is 4 Hz, which is the frequency of the sin (8pt) component.
\ the minimum sampling frequency required = 8 sps.
\ the number of samples in one period of x(t) is equal to 8 since T = 1 second and the sampling frequency 
is 8 samples per second.

Determine the minimum sampling frequency to be used to sample the signal

x t sinc t( ) = 100 1002

if the signal x(t) is to be recovered from the samples without any distortion.

Example 10.4
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x t t t t( ) ( ).( )= =100 100 10 100 10 100sinc sinc sinc2

We know that 10 100 0 1 100sinc /
FT

t f¨ Æææ . ( )P

\ F 100 100 0 1 100 0 1 100sinc / /2 t f fÍÎ ˙̊ = [ ]*. ( ) . ( )P P

Referring to Section 2.5 of Chapter 2, we find that convolution 
of two identical rectangular pulses results in a triangular pulse 
whose base width is twice that of each rectangular pulse.

\ F 100 100 0 1 100 0 1 100

0 01 100

sinc / /

/

2 t f f

f

ÍÎ ˙̊ = [ ]*[ ]
= ¥

. ( ) . ( )

. (

P P

L 2200)

where L( / )f 200  denotes a triangular pulse as shown.
Thus, the signal x t t( ) = 100 100sinc2  is a lowpass signal band-

limited to 100 Hz.
Hence, the Nyquist rate for it is 200 sps.

RECONSTRUCTION
10.5

As already mentioned earlier, ‘recovering X(  f  ) from Xd(  f  )’ and ‘reconstructing x(t) from xd(t)’ are one 
and the same; the only difference being that in the former case, it is looked upon as a frequency-domain 
operation, while in the latter, it is looked upon as a time-domain operation.

We shall now briefly analyze and see how the signal x(t) is recovered in each case. First, we shall 
consider the frequency-domain operation.

Then, as shown in Fig. 10.11, let us assume fs = 2W and that an ideal LPF is used to recover X(  f  ) 
form Xd(  f  ). Let the ideal LPF have a gain of Ts in the passband and let it introduce t second time-delay. 
Then, we can write down its transfer function H(  f  ) as

 H f T f f es s
j( ) ( / )= -P wt  (10.31)

Hence the spectrum of the output of the filter is

Y f X f H f T f X f es s
j( ) ( ). ( ) ( )= =

-

d
wt

\ Y f X f e j( ) ( )=
- wt  (10.32)

or, taking the inverse Fourier transform on both sides,

 y t x t( ) ( )= -t  (10.33)

Thus, the output of the LPF is a time-shifted version of the signal x(t)
We now consider the reconstruction operation in the time domain.
xd(t) is a sequence of weighted impulses given by

 x t x nT t nT
s s

n

d d( ) ( ) ( )= -

=-

Â  (10.34)

This weighted sequence, when given as the input to the ideal LPF with 
impulse response h(t), gives an output signal y(t) given by

 y t x nT h t nTs s

n

( ) ( ) ( )= -

=-

Â  (10.35)

L(f/200)

–100 100 f0

1

Fig. 10.17  Triangular spectrum of the 
x(t) = 100 sinc2 100t signal

xd(t)

h(t)

Ideal LPF y(t)

Fig. 10.18  Recovering x(t) 
from xd(t), the 
sampled version
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where h(t), the impulse response of the ideal LPF is given by

 

h t H f T f W e

BT B t

s
j

s

( ) [ ( )] ( / )

sin ( )

= = [ ]

= -

-F F- -1 1 2

2 2

P wt

tc  (10.36)

In our case, the cutoff frequency B of the LPF = W = fs/2.

\ h t
f

T B ts
s( ) ( )= -2

2
2sinc t

 = -sinc 2B t( )t  (10.37)

Taking the time delay t introduced by the LPF equal to zero, and substituting for h(t) in Eq. (10.35) 
using Eq. (10.37), we have

 y t x nT B t nTs s

n

( ) ( ) ( )= -

=-

Â sinc 2  (10.38)

But, from Eq. (10.22), we realize that RHS of Eq. (10.38) is nothing but x(t), since B
f

T

s

s

= =
2

1

2
 in 

this case.

\ x t x nT B t nT
s s

n

( ) ( ) ( )= -

=-

Â sinc 2  (10.39)

x(–T
s
)

x(T
s
)

x(t)

T

x(2T
s
)

x(3T
s
)

x(0)

Fig. 10.19 Reconstruction of x(t) from its samples (A sketch of RHS of Eq. 10.39)

As explained earlier in Section 10.3 in connection with the lowpass sampling theorem and Eq. (10.22), 
when xd(t), a sequence of weighted impulses, is given as input to an ideal LPF, the output will be a sequence 
of weighted sinc pulses (since sinc pulse is the impulse response of an LPF  ) as shown in Fig. 10.19. When 
these are all added, together with their precursors and post-cursors, Eq. (10.39) tells us that we get x(t). Hence, 
when the sampled version xd(t) is fed as input to the LPF, x(t) appears at the output. Since the LPF reconstructs 
the original signal x(t) from its sampled version, it is generally referred to as the ‘reconstruction filter’.

SAMPLING USING A SEQUENCE OF PULSES
10.6

Instead of a sequence of unit impulses as the sampling function s(t), one may use a sequence of pulses 
p(t) of width t along the time axis occurring at regular intervals of Ts = 1/fs such that t << Ts. The actual 
shape of the pulse p(t) is not important, although for the sake of illustration it is shown as a rectangular 
pulse in Fig. 10.20(b). Again, modeling the sampling process as multiplication of x(t) by s(t), we have

 x t x t s t
s
( ) ( ). ( )=  (10.40)
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(a)
t

x(t):

(b)

s(t):

1 1

T
s

t

t

(c)

x
s
(t):

t

Fig. 10.20  (a) Signal x(t), (b) Sampling function s(t) 
(c) Sampled version of x(t), i.e., xs(t)

p(t)
1

–t/2 0 t/2 t

Fig. 10.21 Pulse p(t)

where,

 s t p t kTs
k

( ) ( )= -

=-

Â  (10.41)

As s(t) is a periodic pulse train, let us write its Fourier series expansion

 s t p t kT c es

k

n
j nf t

n

s( ) ( )= - =

=- =-

Â Â 2p  (10.42)

where,
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Since t, the width of p(t) is very much less than Ts and p(t) = 0 for | t | ≥ t /2, we may write
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where,

 P nf p ts
f nfs

( ) ( )= [ ]
=

F
  

 (10.44)

\ s t f P nf es s

n

j nf ts( ) ( )=

=-

Â 2p  (10.45)

and

X f x t f P nf x t e

f P nf X

s s s s
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Since F e f nfj nf t
ss2p dÎ ˚ = -( )

hence,

 X f f P nf X f nfs s s s

n

( ) ( ) ( )= -

=-

Â  (10.46)

If x(t) has a spectrum as shown in Fig. 10.10(a), Xs(  f  ), the spectrum of the sampled version of x(t) 
will appear as shown in Fig. 10.22.

Xs(f) Transfer function of
reconstruction FilterfsP(0)

fsP(fs) fsP(fs)fsP(2fs) fsP(2fs)

–2fs –fs –B –w 0 w B fs 2fs f

Fig. 10.22 Spectrum of the sampled version of x(t)

From the figure, it is clear that X(  f  ) can be recovered from Xs(  f  ), i.e., x(t) can be recovered from 
xs(t), if fs > 2W by using a lowpass filter whose passband gain is constant at least up to W Hz and whose 
cutoff frequency B is such that W < B < fs - W, as shown. This is true whatever may be the pulse shape, 
as mentioned earlier.

The signal x(t) = 2 cos 200pt + 6 cos 180pt is ideally sampled at a frequency of 
150 samples per second. The sampled version xd(t) is passed through a unit gain ideal LPF with a 
cutoff frequency of 110 Hz. What frequency components will be present in the output of the LPF. 
Write down an expression for its output signal.

Example 10.5

x t t t

t t

( ) cos cos

cos ( ) cos ( )

= +

= +

2 200 6 180

2 2 100 6 2 90

p p

p p

Hence, taking FT on both sides,

X f f f f f( ) ( ) ( ) ( ) ( )= + + -[ ]+ + + -[ ]d d d d100 100 3 90 90

This is depicted in Fig. 10.23.
The spectrum of xd(t), the ideally sampled version of x(t) 

is a periodic repetition of X(  f  ) at regular intervals of f, i.e., 
150 Hz; and will be as shown in Fig. 10.24.

Xd(f)
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Transfer function of an ideal LPF
with fc= 110 Hz

Fig. 10.24 Spectrum of sampled version of x(t)
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Fig. 10.23 Spectrum of x(t)
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From Fig. 10.24, it is clear that the output of the LPF contains frequency components at 50 Hz, 60 Hz, 
90 Hz and 100 Hz, although the original analog signal contains only 90 Hz and 100 Hz components. As 
x(t) is under sampled, aliasing is taking place 50 Hz component is the alias of the 100 Hz component 
and 60 Hz component is the alias of the 90 Hz component.

The expression for the output of the LPF is given by

x t t t t t( ) cos ( ) cos ( ) cos ( ) cos ( )= +[ ]+ +[ ]2 2 50 2 100 6 2 60 2 90p p p p

The signal x t cos t cos t( ) ( ) ( )= 12 800 18002p p  is ideally sampled at 4600 sps. What 
is the minimum allowable sampling frequency? What is the range of permissible cutoff frequencies 
for the ideal lowpass filter to be used for reconstructing the signal?

Example 10.6

x t t t

t t

( ) cos ( ) cos

cos cos

= +{ }È

ÎÍ
˘

˚̇

= +

12 800
1

2
1 3600

6 800 6 800

p p

p p ..cos

cos cos cos

3600

6 800 3 4400 3 2800

p

p p p

t

t t t= + +

Hence the maximum frequency component present in x(t) has a frequency of 2200 Hz. So, the minimum 
allowable sampling frequency, i.e., the Nyquist rate is 4400 sps.

Xd(f) 

666

3 333

f50004600420032002400220014004000

Fig. 10.25 Spectrum of ideally sampled version of x(t) (only one-sided spectrum drawn)

From Fig. 10.25, it is clear that in order to recover the three frequency components at 400 Hz, 1400 Hz 
and 2200 Hz which are present in x(t) and avoid other frequencies, the cutoff frequency of the ideal LPF 
should be above 2200 Hz but less than 2400 Hz.

PRACTICAL SAMPLING
10.7

In practice, sampling is done using what is generally referred to as the ‘sample and hold’ circuit which 
produces ‘flat-top sampling’ unlike in the previous case wherein the sampled version consisted of pulses 
whose top followed the contour of x(t). The schematic of a ‘sample 
and hold’ (S/H) circuit is shown in Fig. 10.26 and a typical output 
waveform from a S/H circuit is shown in Fig. 10.27.

The S/H circuit essentially consists of two switches k1 and k2 
and a capacitor c, connected as shown. With k2 open, k1 is closed 
for a very brief period at each sampling instant. The capacitor c 
then gets charged to a voltage equal to the value of the input signal 

x(t) xs(t)
ck2

k1

Fig. 10.26 Schematic of an S/H circuit
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x(t) at the sampling instant and holds it for a period t at 
the end of which, k2 is closed to allow the capacitor to 
discharge. This sequence of operations is repeated at the 
next and all subsequent sampling instants. The switches 
k1and k2 are generally FET switches and are operated by 
giving appropriate pulses to their gates. An actual S/H 
circuit uses one or two op-amps also. The voltage across c 
appears as xs(t) and is sketched in Fig. 10.27.

From the figure, it is obvious that the sampled version, xs(t) consists of a sequence of rectangular 
pulses, the leading edge of the kth pulse being at t = kTs and the amplitude of the pulse being the value 
of x(t) at t = kTs, i.e., x(kTs). Hence, we may write

 x t x kT p t kTs s

k

s( ) ( ) ( )= -

=-

Â , (10.47)

where, p t
t

( )
/

   D P
-Ê

ËÁ
ˆ
¯̃

t

t

2
 (10.48)

and is as shown in Fig. 10.28.

Since p t kT p t t kTs s( ) ( ) * ( )- = -d ,

we may write Eq. (10.47) as

 x t p t x kT t kTs s

k

s( ) ( ) * ( ) ( )= -

=-

Â d  (10.49)

Now, taking Fourier transform on both sides,

X f x t p t x kT t kTs s s

k

s( ) ( ) ( ) . ( ) ( )= [ ] = [ ] -
È

Î
Í

˘

˚
˙

=-
ÂF F F d

\ X f p f X fs ( ) ( ). ( )= d  (10.50)

where, Xd(  f  ) is the Fourier transform of xd(t) the ideally sampled version of x(t).

Note that P f p t( ) [ ( )]= F

 = ( ) =
Ê
ËÁ

ˆ
¯̃

- -
t t t

p t

p t

p t p tsinc f e
f

f
ej f j f2 2/

sin
 (10.51)

We shall now assume that x(t) has a spectrum as shown in Fig. 10.29 (This shape of X(  f  ) is deliberately 
chosen for this illustration, as it helps in clearly bringing out the ‘aperture effect’, to be discussed later).

Since p(t) is a rectangular pulse of width t, its Fourier transform P(  f  ), which is a sinc function, will 
have an ‘inverted bowl’ shape as shown in Fig. 10.30(a) and will 
have its first zero values only at f = -1/t and + 1/t. Since t << Ts, 
these zero values of |P(  f  )| which occur at ± 1/t, will be far away 
from fs and - fs. Since Xs(  f  ) = P(  f  ). Xd(  f  ), its plot will be as shown 
in Fig. 10.30(b).

As before, if we pass the sampled version xs(t) through the reconstruction filter (a LPF  ), what we get 
at the output of the filter will not be exactly x(t). It will be a distorted version of x(t)—distorted because, 
the magnitudes of the high-frequency components are relatively reduced, as compared to the magnitudes 
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Fig. 10.27 Signal x(t) and output of S/H circuit

0

1

t

p(t)

t

Fig. 10.28 Pulse p(t)

0 f

1

w–w

X(f)

Fig. 10.29 Assumed shape of X(  f  )
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of the low-frequency components, as can be seen in Fig. 10.30(b), because of the multiplication of Xd(  f  ) 
by P(  f  ). This distortion of x(t), wherein the amplitudes of the high-frequency components are reduced 

relative to the amplitudes of the low-frequency components, in the reconstructed signal x(t) obtained from 

the flat-top sampled version of the signal, is referred to as the ‘aperture effect’.

P(  f  ), which is in the form of an invented bowl as shown in Fig. 10.30(a), will have a relatively flat 
shape in the message frequency band -W to W if it reaches its zero value at a frequency far greater than 
W; i.e., if 1/t >> W. This will reduce the ‘aperture effect’. Hence, the time t for which the ‘sample and 
hold’ circuit holds the sample value, should be made as small as possible, in order to reduce the aperture 
effect. But this makes the average power in xs(t) and hence in the reconstructed message, very low. So, 
we keep the pulse width t reasonably large and try to reduce the distortion within the message frequency 
band arising out of the aperture effect by using an equalizer with transfer function He(  f  ) in cascade with 
the reconstruction filter and adjusting He(  f  ) so that

 H f
P f

f We ( )
( )

; | |= £
1

       (10.52)

Figure 10.31 shows the spectrum of a 
particular message signal x(t). If this x(t) is sampled at a rate 
of 1 kHz using flat-top pulses, each of 0.5 m.s duration and unit 
amplitude, determine and sketch the spectrum of the PAM signal 
that results.

Example 10.7
|X(f)|

0

1

450Hz–450Hz f

Fig. 10.31 Spectrum of x(t)

From Eq. (10.50) we know that the spectrum of the flat-top sampled version of x(t), viz., Xs(  f  ) is given by

X f P f X fs ( ) ( ) ( )= d ,

where Xd(  f  ) is the spectrum of the ideally sampled version of x(t), which, we know, is a periodic 
repetition of X(  f  ) at regular frequency intervals of fs. P(  f  ) is the spectrum of the sampling pulse p(t) 
and is given by

0

|P(f)|

w

Transfer function
of reconstruction filter

(a)

(b)

–w

Xd(f)

f–fs fs

fs

0 w–w –fs

P(t).Xd(f) =Xd(f)

fs+w fs+w–fs f

Fig. 10.30 (a) Plot of P(  f  ) and Xd(  f  ); (b) Plot of Xd(  f  ) = P(  f  ).Xd(  f  )
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P f f e
f

f
ej f j f( ) sin

sin
= =

Ê
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ˆ
¯̃

- -
t t t

p t

p t

p t p tc  (see Eq. 10.51)

Here, t is the width of the pulse and is given to be 10-4 s.
Since it is the relative attenuation of the high-

frequency components of x(t) relative to the 
low-requency components that causes the distortion, 
the constant factor t and the phase factor e j f- p t  
can be ignored attention can be focused only on 
(sin )/( )p t p tf f[ ] to see how it varies with f, the 

frequency, over the frequency range of interest, i.e., 
from 0 Hz to 450 Hz.

We know that 
sinp t

p t

f

f

Ê
ËÁ

ˆ
¯̃
= 1 for f = 0 Hz.

f

|X(  f  )|
0
1

100
0.7777

200
0.5555

300
0.3333

400
0.1111

450
0

sinp t

p t

f

f

Ê

ËÁ
ˆ

¯̃
=1 1 0.96639 0.9836 0.9629 0.93547 0.91878

|X(  f  )|P(  f  )| = |Xs(  f  )| 1 0.7749 0.54638 0.3209 0.10393 0

ANTI-ALIASING AND RECONSTRUCTION FILTERS 10.8

From the lowpass sampling theorem, we know that an analog signal x(t) can be recovered without any 
distortion from its uniformly sampled version, provided the sampling frequency, f s, is at least twice the 
highest frequency component present in x(t). If fs is less than twice the highest frequency component, x(t) 
cannot be recovered from the sampled version because of the distortion caused by aliasing.

However, in practice, no signal will be strictly band-limited, as every practical signal has to be time-
limited. Hence, prior to sampling, we have to band-limit the signal to some frequency W, keeping in view 
the frequency band of interest in the spectrum of the signal. For this purpose, we use, what is generally 
called an ‘anti-aliasing filter’ just before the sampler. Such a filter will be helpful in removing “out-of-band 
frequency components”, or out-of-band noise, if any, in the original analog signal x(t).

An ideal LPF with a brick-wall type of transfer function and a cutoff frequency W, less than fs /2 
would be best suited for use as an anti-aliasing filter. However, since such a filter cannot be realized in 
practice, and since practical filters will have a transition frequency band, the attenuation of the filter should 
slowly increase from zero at the passband edge fp to some desired value at the stop band edge fs, where

 f f
f

p st
s

< £
2

 (10.53)

If the signal were to be band-limited to W, we will obviously choose fp = W. In this case, since the 
gain of the filter is designed to remain almost constant within the passband, the filter will not distort the 
signal much, especially if it has a linear phase response too. However, since the signal is not going to be 
strictly band limited, we have to choose an appropriate portion of the spectrum of x(t), keeping in view the 
application, and fix the passband edge, fp, accordingly. But, since the filter response of the non-ideal filter 
also is slowly decreasing from fp onwards, the spectrum of the output of the filter may extend even beyond 
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Fig. 10.32 Spectrum of the PAM signal
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fs /2. When this happens, the sampling of the output 
of the filter will create severe aliasing problems. 
In this connection, it must be realized that it is the 
frequency components in the band (  fs - fp) to fs that 
alias into the passband 0 to fp Hz, which is the useful 
part of the baseband, as shown in Fig. 10.33.

To keep the amplitude of these aliased components 
low, the anti-aliasing filter must be so designed that 
its response falls adequately for frequencies beyond (  fs - fp). So, if all these aliased components are to be 
at least, say, 60 dB below the corresponding ones in the passband, the filter has to be so designed that it 
has 60 dB attenuation at a frequency of (  fs - fp). Noting that the frequency (  fs - fp) aliases and appears 
as a frequency component at a frequency of fp in the passband, the other frequency components between 
(  fs - fp) and fs which re-appear in the passband between fp and 0 Hz, will suffer more than 60 dB attenuation.

Butterworth, Chebyshev, elliptic or Bessel type of analog lowpass filters of appropriate order, may be 
used as anti-aliasing filters. Butterworth filters give reasonably good magnitude as well as phase response. 
However, if linear phase response is more important, one may go in for Bessel filters, but they give 
slightly poorer magnitude response. If better magnitude response, rather than linear phase response, is 
important, then elliptic or Chebyshev filters may be used.

In applications where distortion due to aliasing has to be kept very low, fs, the sampling frequency is 
chosen to be high compared to fp, the passband edge, typically about 4 times. But where it is not critical, 
fs is chosen to be a little more than the Nyquist rate, as in the case of digital telephony for which fp is 
chosen as 3.6 kHz while fs is chosen as 8.0 kHz.

As the reader must have realized by now, achieving low-aliasing distortion with an fs that is not much 
greater than the Nyquist rate, would necessitate the use of a very sharp cutoff lowpass filter. So it will be 
an analog filter of high order and will be quite complex. Sometimes in such cases, to ease the stringent 
roll off requirements of the anti-aliasing filter, deliberately an extremely high value of fs is used for the 
analog signal, and decimation circuits are used to bring down the sampling frequency of the digital signal 
at a later stage. Such a deliberate over sampling and a down sampling at a later stage, are resorted to in 
the case of VLSI realization of digital signal processing of analog signals. In the compact disk encoding 
of audio signals, sampling frequencies as high as 3175.2 kHz are used.

10.8.1 Reconstruction Filter

Reconstruction filter is a system that is used to reconstruct the analog signal x(t) from its samples. That 
is, if the sampled version of x(t) is given as input to the system, ideally it should give x(t) as the output. 
In frequency-domain terms, it means that the transfer function of the reconstruction filter should, as shown 
in Fig. 10.34, separate out the baseband, i.e., the spectrum of x(t), from the spectrum of xs(t), which, as 
we know, consists of periodic repetitions of X(  f  ) at regular intervals of fs.

–w 0 w f 

Transfer function of
practical filterTransfer function

of ideal LPF

Xs(f)

–fs –fs + w fs + w fs

Fig. 10.34 Action of the reconstruction filter in the frequency domain

In principle, an ideal LPF with a cutoff frequency of W as shown in Fig. 10.34 would be best suited 
for being used as a reconstruction filter. However, an ideal LPF is not physically realizable, as its 

X(f) |Ha(f)|

0 fp fs/2 ( fs– fp) fs f 

Fig. 10.33  Anti-aliasing filter response and frequency 
components aliasing into the baseband



436 Analog Communication

impulse response function, which is the inverse Fourier transform 
of its transfer function, is a sinc function that extends from minus 
infinity to plus infinity of time. Hence, any practical lowpass filter 
with a flat amplitude response up to W Hz and whose gain reduces 
to zero before (  fs - W ) may be used.

The action of the reconstruction filter when viewed in the time domain, is shown in Fig. 10.35. Since 
the input to the filter is the sequence of samples of x(t), the job of the reconstruction filter is one of 
interpolating between successive samples. The best interpolator is the ideal LPF. However, in practice, we 
invariably employ a zero-order-hold (ZOH) for this purpose. Figure 10.36(a) shows the block schematic 
of a ZOH while Figure 10.36(b) shows its interpolating action.
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xd(t) +

–

y(t)
Ú(.)dt

z(t)

Delayer
Tssecond

=Â  x(kTs) d (t– kTs)
k=–

Â

Integrator

Fig. 10.36 (a) A Zero-Order-Hold (ZOH) circuit
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x(Ts)

Ts 2Ts t
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x(3Ts)

x(0)

0

Fig. 10.36 (b) Interpolation using a ZOH

It is easy to find the impulse response of a zero-order-hold as can be seen from the following example.

Determine the impulse response h(t) and the transfer function H(  f  ), for a ZOH.
Example 10.8

If a unit impulse, d(t), is given as input to the system,

y t t t Ts( ) ( ) ( )= - -d d

\ z( ) ( ) ( ) ( ) ( )t y t dt u t u t T p ts= = - - =Ú  (10.54)

where, p(t) = impulse response h(t) and is as shown in Fig. 10.35.
The transfer function H(  f  ) is, therefore, given by

 H f h t T f T es s
j fTs( ) [ ( )] ( )= =

-F sinc p  (10.55)

Hence, the output of the ZOH for an input of

x t x kT t kT
s s

k

d d( ) ( ) ( )= -

=-

Â

is a staircase waveform as shown in Fig. 10.34(b). This contains several high-frequency components 
outside the baseband. Hence, the ZOH is generally followed by a LPF with a cutoff frequency of W. To 

x
s
(t)
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Fig. 10.35  Action of reconstruction 
filter in the time domain
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Fig. 10.37 Impulse response of ZOH
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compensate for the aperture effect, an amplitude equalizer of appropriate transfer function, as discussed 
earlier, will also be added in tandem with the ZOH and LPF.

From Eq. (10.55) which gives the transfer function of the ZOH, two things are quite clear.

 (i) ZOH gives a linear phase shift corresponding to a time delay of Ts/2.
 (ii)  Since the spectrum of the reconstructed signal is equal to Xd(  f  ).H(  f  ) for | f | £ W, and since H(  f  ) 

is a sinc function while Xd(  f  ) = X(  f  ) for | f | £ W when fs £ 2W, it follows that the reconstructed 
signal is a distorted version of x(t). As mentioned earlier, we make use of an amplitude equalizer 
to reduce this distortion.

An L-section RC lowpass filter with a 30 dB cutoff frequency fc is used for band-
limiting a signal which is to be sampled at a frequency fs, what is the minimum value of fs if the 
response to the aliased component at the edge of the passband, i.e., at fc is to be at least 30 dB 
below the response at fc?

Example 10.9

For L-section RC lowpass filter, the transfer function is

H f
j f fc
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( / )

=
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1
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Now, referring to Fig. 10.32, in which fp is now fc, response at (  fs - fc) which appears as a frequency 
fc because of aliasing, is given by
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PAM AND TIME-DIVISION MULTIPLEXING
10.9

PAM signals may be generated staight away by flat-top sampling discussed in section 10.7 (see Figs 10.26 
and 10.27).

The PAM signal of Fig. 10.27 is unipolar because the continuous-time signal x(t), from which it is 
derived by f lat-top sampling, is positive throughout. If that was not the case, there would have been zero 
amplitude pulses, or missing pulses in the PAM signal. Missing pulses cause synchronization problems 
in time-division multiplexing and so have to be avoided. Since PAM is invariably used only for time-
division multiplexing, we shall consider only unipolar PAM.

A unipolar flat-top PAM signal may be analytically represented as

 x t A mx kT p t kTs s s

k

( ) ( ) ( )
PAM

 = +[ ] -Â 0 1  (10.56)

where, p(t) is a unit-amplitude f lat-top pulse of width t << Ts and having its leading edge at t = 0 as shown 
in Fig. 10.28; m is the modulation index and is such that 0 < m < 1, x t( ) £ 1 and A0 is the unmodulated 
pulse amplitude. From this, it is clear that

 1+ mx kT
s

( )  (10.57)

for all k and that therefore it is ensured that xs(t) is a unipolar PAM signal.
If x(t) has a spectrum as shown in Fig. 10.29, the spectrum of the unipolar PAM signal of Eq. (10.56) 

will be similar to what has been shown in Fig. 10.30 except that there will be impulses in the spectrum 
at f = 0, ±fs, ±2fs, . . . . As shown in Fig. 10.30 we may use a lowpass filter for recovering x(t); but 
now, to block the dc component (represented by the impulse at f = 0 in the spectrum) we have to use a 
blocking condenser too, and also an equalizer to reduce the aperture effect.

10.9.1 Time-Division Multiplexing (TDM)

The lowpass sampling theorem forms the basis for TDM. This theorem tells us that a band-limited 
continuous-time signal can be completely recovered, without any distortion, from its samples taken at 
regular intervals provided the sampling frequency is at least equal to the Nyquist rate. This means that 
we need not transmit the bandlimited continuous-time signal which engages the transmission channel 
all the time. Instead, we can transmit only the samples and reconstruct the continuous-time signal from 
the received samples. In this case, as the samples are separated in time by the sampling interval, the 
transmission channel is not engaged all the time; it is engaged only whenever a sample occurs. It is this 
fact that gives scope for the use of TDM. The interval between two successive samples of one message 
signal during which time the transmission channel is free, may be utilized to transmit the samples of each 
of the other message signals; i.e., we may interleave the samples of various message signals as shown, 
so that samples of different messages occupy different non-overlapping time slots.

Messages x1(t), x2(t), . . , xN(t) which are all to be time-division multiplexed, are first band-limited 
using lowpass filters. These band-limited signals are then sequentially sampled by the arm of the 
commutator at the sendingend. This commutator arm, therefore, carries samples of messages as shown, 
where, x11 is the first sample of the first message, x21 is the first sample of the second message, and so 
on, x12 is the second sample of the first message. These samples are fed to a pulse modulator and then 
transmitted over the channel. If the arms of the sending-end and receiving-end commutators are 
synchronized, (neglecting the propagation delay caused by the transmission over the channel) xi1, xi2, 
xi3, . . . which are all samples of xi(t), are fed to LPFi at the receiving end which reconstructs the 
continuous-time signal and gives %x t

i
( ) , an approximation to xi(t).
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Fig. 10.38 A PAM/TDM system

10.9.2 Bandwidth of TDM-ed Baseband PAM signals

Assume that messages x1(t), x2(t), . . , xN(t), each band-limited to W Hz, have been flat-top sampled by 
narrow pulses (which can be approximated by impulses). Assume that this baseband TDM-ed signal is 
transmitted over a channel with finite bandwidth. For convenience, let us model the channel by an ideal 
LPF with a cutoff frequency of fc Hz, where fc > W.

When an impulse of strength I is fed as input at t = 0 to the channel, its output is a sinc pulse extending 
from t  to t = + , but having its peak at t = 0. Now the baseband TDM signal is a sequence of 
impulses regularly spaced at intervals of Ts/N and having strengths proportional to the sample values at 
the respective sampling instants.

Therefore, if (Ts/N) = (1/2fc) and if the arm of the de-commutator samples the successive sinc pulses 
exactly at the time instants marked as A, B, C, etc., in Fig. 10.38, then each sample so collected is directly 
proportional to a sample value of only one of the messages and so there will not be any cross-talk.
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Fig. 10.39 Response of the channel (ideal LPF  ) to successive samples (impulses) fed to it at t = 0, 1/2fc, 1/fc, etc.



440 Analog Communication
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Remarks

1.  Therefore, the minimum bandwidth required for the baseband signal consisting of the TDM-ed 
samples of N identically band-limited messages is NW, where W is the bandwidth of each message.

2.  Note that we would have got the same minimum bandwidth even if we had multiplexed these N 
message signals using Frequency Division Multiplexing (  FDM), by making use of SSB sub-carrier 
modulation (with no guard bands).

Twenty-four different message signals, each band-limited to 4 kHz are to be 
multiplexed and transmitted. What is the minimum bandwidth required for each of the following 
methods of multiplexing and modulation?

(i) FDM with SSB modulation (ii) TDM with pulse amplitude modulation.

Example 10.10

 (i)  FDM-SSB: With SSB, each message channel occupies 4 kHz and the 24 messages can be 
accommodated in 24 non-overlapping frequency slots, each of 4 kHz width. Hence, total 
bandwidth required for the frequency division multiplexed signal, is 24 ¥ 4 = 96 kHz. It is 
assumed here that no guardbands have been provided. Since we are required to find the minimum 
bandwidth.

 (ii)  TDM-PAM: Equation 10.58 tells us that for TDM-PAM of N different messages, each of W Hz 
bandwidth, the minimum bandwidth required is NW Hz.

Signals x1(t), x2(t) and x3(t) are to be TDM- ed. x1(t) and x2(t) have a bandwidth 
of 10 kHz and x3(t) has a bandwidth of 15 kHz. Determine a commutator switching system so all the 
three signals are samples at their respective Nyquist rates.

Example 10.11

Since x1(t) and x2(t) have bandwidths of 10 kHz each, the 
Nyquist rate of sampling for them is 20 kilosamples/s. The 
Nyquist rate of sampling for x3(t) with 15 kHz bandwidth, 
is 30 kilosamples/s. So the commutator arrangement shown 
satisfies the requirement.

x2(t)

104re
v/s

x3(t)

x1(t)

Fig. 10.40  Commutator for Example 10.11
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10.9.3 Cross-talk in PAM

As shown in Fig. 10.37, when we send a number of messages using PAM/TDM, we interleave the samples of 
the various messages. In such a situation, cross-talk can take place unless the communication circuit is carefully 
designed. We say that cross-talk is taking place if a sample of one message signal, say, xi(t) can influence the 
received sample value of a sample pertaining to some other message signal, say, xj(t), where, j π i. Cross-talk 
should be avoided, since it results in distortion of the message re-constructed from received samples.

Cross-talk can occur due to the following reasons:

 (i) High-frequency limitation of the channel
 (ii) Low-frequency limitation of the channel

10.9.4 Cross-talk in PAM/TDM due to Frequency Limitations of the Channel

As mentioned earlier, in PAM/TDM, the samples of various messages are interleaved. A sample is 
represented by a narrow pulse whose width t is very small compared to the sampling interval Ts and 
whose amplitude is proportional to the value of the sample. Samples of various channels (or messages) 
occur in non-overlapping time-slots. Actually, a time-slot is an interval of time that can accommodate a 
pulse of width t and also a guard time tg. Thus, each pulse of width t is separated from its preceding 
pulse as well as the next pulse by guard times of tg on each side.

When a pulse is transmitted over a channel, it is affected in three ways. First, it is attenuated. Second, it 
is corrupted by noise. And third, it suffers some distortion because of the high-frequency and low-frequency 
deficiencies of the channel. In so far as our interest is on cross-talk, the first two are of no consequence. We 
will of course be discussing the effect of noise separately later. The low- and high-frequency deficiencies 
of the channel cause a pulse to get distorted and also spill out into the guard time and sometimes even into 
the adjacent time-slot. When that happens, it affects the value of the sample in the next time-slot and thus 
causes cross-talk. We shall now see how these bandwidth deficiencies of the channel can result in cross-talk.

(i)  Cross-talk due to High-Frequency Deficiency To study this, let us model our channel as a lowpass 
R-C filter with a time-constant RC

c
= <<t t .

2pRC

1
fc =

R

C
Output v0(t)Input vi(t)

= 3 dB cutoff frequency
RC = tc << t, the pulse width

Fig. 10.41 A lowpass R-C filter

vi(t) Time
slot-1

Time
slot-2

V

Guard time

0 t
(a)

V

Ve–(t– t)/t
c

tg+ 2t

0 t
(b)

t t+ tg

t t+ tg

Fig. 10.42  (a) Waveform of the transmitted pulse 
(b) Waveform of the received pulse
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Figure 10.42(a) shows the waveform of the input pulse and Fig. 10.42(b) shows the waveform at the 
output of the channel. Since t tc << , the pulse rises almost to the full value V (attenuation caused by the 
channel is ignored) within the time t and from t = t, begins to fall exponentially towards zero as shown, 
again with a time-constant of tc. It is obvious from Fig. 10.42(b) that cross-talk would be considerably 
reduced if tc is very small compared to even tg. From this figure, it is clear that a sample of message-1, 
transmitted in time-slot-1 will, at the receiving end, appear partly in time-slot-2 also, thus causing cross-
talk. The degree of cross-talk is generally specified by a ‘cross-talk factor’, denoted by K and defined as

 K
A

A
   D 12

2

 (10.59)

where, A12 = Shaded area in Fig. 10.42(b)

and A2 = Area under the pulse transmitted in time-slot-2.

Assuming that the sample values in time-slots 1 and 2 are equal,
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Substituting this for A12 in Eq. (10.60), we get
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From this equation, we find that

1. when t t
g c

>> , K @ 0 and there is no cross-talk, and
2. if it is specified that the cross-talk factor K should not exceed some particular value, we can 

determine ( / )t t
g c

 for given values of t and either tc or tg.

(ii) Cross-talk due to Low-Frequency Deficiency We shall now investigate how the low-frequency 
limitation of the channel can cause cross-talk. For this purpose, to simplify matters, we shall once again 
model the channel as an R-C filter, but of the high-pass type, as shown in Fig. 10.43.
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As in the previous case, here too

 A V1 ª t  (Q D <<V )  (10.63)

The low-frequency deficiency of the channel causes a ‘tilt’, or ‘droop’ denoted here by D and the 
received pulse waveform will be as shown in Fig. 10.44(b). Because the time constant tc is quite large 
compared to t, the undershoot dies down rather slowly. Because of this, we may consider the shaded 
region to be a rectangle of area Dt.
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It may be noted that the cross-talk resulting from high-frequency limitation of the channel might at 
the most affect the immediately adjacent channel only, because of the low time constant of the channel. 

OutputInput R

C

RC highpass filter with
time constant RC = tc << t,
3 dB cutoff frequency = f1

where f1 = 1/(2pRC) = 1/(2pt)

Fig. 10.43  RC highpass filter used for 
modeling the channel
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Fig. 10.44  (a) Waveform of the transmitted pulse
(b) Waveform of the recieved pulse
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But, because of the large time constant, the cross-talk arising from low-frequency deficiency will affect 
not just the immediately adjacent channel but even up to a few adjacent channels.

Twelve speech signals, each band-limited to 3.5 kHz, and sampled at a rate of 
8 kHz, are to be transmitted as PAM signals over a certain channel using time division multiplexing. 
Assuming a guard time of half the pulse width, calculate the minimum bandwidth of the channel 
if the cross-talk factor (arising from high-frequency limitation of the channel) between adjacent 
channels is less than 10-3.

Example 10.12

fs = Sampling rate = 8000 samples/second

\ Ts, the sampling period = 
1 1

8000
125

fs
= = ms

Since there are 12 message signals to be TDM-ed, the duration of the time-slot for each, i.e., t is 
given by

t = =
125

12
10 41microseconds   microseconds..

Since time-slot includes pulse width and guard time, and since guard time is given to be half of the 
pulse width,

\ 

Pulse width microseconds

Guard time

= = ¥ =

= =

t

t

10 41
2

3
6 94

10 41

. .

.g -- =6 94 3 47. . microseconds
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In the above equation, we know K, t and tg. \ solving for tc, we get

tc = 0.75 microsecond = RC

\ upper 3-dB cutoff frequency of the channel = 
1

2

10

2 0 75
212 314

6

p pRC
=

¥

=

.
. kHz

\ the minimum bandwidth of the channel = 212.314 kHz.

PULSE-TIME MODULATION SYSTEMS
10.10

We had seen that in pulse amplitude modulation, information regarding the sample value at any particular 
sampling instant, is carried by the amplitude of a flat-top pulse located at that sampling instant. In the 
case of pulse-time modulation, the information regarding the sample value at any particular sampling 
instant, is carried not by the amplitude, but an ‘interval of time’ associated with a flat-top pulse. In the 
case of Pulse Width Modulation (PWM) that ‘interval of time’, is the width of the flat-top pulse located 
at that sampling instant; and in the case of Pulse-Position Modulation (PPM) that ‘time interval’ is the 
displacement in time, given to the position of the flat-top pulse, relative to the sampling instant under 
consideration. Since PWM and PPM are closely related, generally they are clubbed together under the 
common name, ‘pulse-time modulation’.
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Fig. 10.45 (a) Message signal x(t) (b) PDM signal (c) PPM signal

Assuming that x(t) has been normalized so that x t( ) £ 1, the width of the pulse at kth sampling instant, 
i.e., at t = kTs in the PDM waveform shown in Fig. 10.45(b), is given by

 t t
k s

mx kT= +[ ]0 1 ( )  (10.65)

where, t0 is the un-modulated pulse width, m is the modulation index and is such that 0 < m < 1. Again 
in this case too,

1 0+ >mx kT
s

( )

which ensures that there will not be any missing pulses. Of course t0 must be so chosen that tk is always 
less that Ts. To ensure this, we choose

 t
0

2
<

T
s  (10.66)

Under certain simplifying assumptions, it can be shown that a PDM signal contains a dc component, 
the message signal, x(t), and groups of phase-modulated waves with the sampling frequency fs and its 
harmonics as the carrier frequencies, and that as long as t0 is chosen as indicated in Eq. (10.66), the 
side-frequencies of these phase modulated waves do not overlap much in the message signal bandwidth 
especially if fs >> W, so that x(t) can be recovered without much distortion from the PDM signal with a 
lowpass filter followed by a blocking capacitor to reject the dc component.

Just as the pulse width in the case of PDM, as indicated in Eq. (10.65), contains a dc or constant pulse width 
plus a pulse width component that is directly proportional to the pertinent sample value x(kTs), in the case of 
PPM also, the delay in the occurrence of the pulse relative to the sampling instant also has two components, the 
dc component shown as td in Fig. 10.45 and another component directly proportional to the pertinent sample 
value. Hence, we may write the expression for the instant tk at which the leading edge of the pulse appears, as

 t t
k s d s

kT t x kT= + + 0 ( ) (10.67)

where, t0 is a proportionality constant having units of seconds per volt.

10.10.1 Generation of PTM Signals

We shall now discuss briefly, a few methods for the generation of PTM signals.
One way of generating PDM and PPM signals by first generating PAM signal, is illustrated in 

Fig. 10.46. In this method, the PAM signal and an inverse ramp signal are generated synchronously, 
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as shown. These two are then added and fed to a comparator whose triggering level is so adjusted that 
it is in the sloping portion of the sum waveform. The second crossing of the comparator trigger level 
with the sum waveform coincides with the trailing edge of the PDM wave and the leading edge of the 
PPM pulse. All these PPM pulses are of constant width.

For the generation of PDM and PPM signal, it is not necessary that one should first produce PAM, 
although the above method is based on such a procedure. We now give two more methods of generation 
of PDM and PPM and these methods do not need the generation of PAM first—they generate PDM and 
PPM directly from the message signal.

In the first of these two methods, as illustrated in Fig. 10.47, a periodic inverse ramp signal with a 
period Ts is added to the message signal and the sum signal is fed to a comparator whose triggering 
level is set to fall in the ramp portion of the sum signal. The leading edge of the PDM signal coincides 
with the first intersection of the comparator trigger and the vertical side of the inverse ramp. The trailing 
edge occurs at the instant at which the second intersection occurs. The leading edge of each PPM pulse 
coincides with the trailing edge of the corresponding PDM pulse, and these PPM pulses will be of the 
same amplitude and width.

The circuit diagram given in Fig. 10.48 gives yet another direct method of generation of PDM and 
PPM signals.

This circuit is an emitter-coupled one-shot or monostable multivibrator. In its stable state, transistor T1 
is in cutoff condition and T2 is in conducting state. However, when a trigger pulse of sufficient amplitude 
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is applied to its base, T1 suddenly goes into conduction and T2 is temporarily cutoff. We know that the 
duration t of the pulse that results at the collector of T2 is linearly related to the bias applied to the base 
of T1. This bias is, as may be seen from the figure, the sum of a fixed dc component, and the message 
signal. Thus, t is linearly related to the amplitude of the message signal at the instant at which the trigger 
pulse is applied and since the trigger pulses are applied at regular intervals of Ts, we get PDM/PWM signal 
at the collector of T2. By differentiating this PDM signal, and using the negative trigger pulses occurring 
at the location of the variable edge (of the PDM signal) for triggering another monostable multivibrator 
with a fixed bias for its normally cutoff transistor, one can obtain a PPM signal.

10.10.2 Detection of PTM Signals

Earlier, while discussing the frequency components that make up a PDM signal, we have pointed out 
that recovery of the message signal from the PDM signal by directly lowpass filtering is possible but it 
results in some distortion.

Apart from direct lowpass filtering, there is another approach possible for recovery of the message 
signal from a PDM signal. This approach consists of first converting the PDM signal into a PAM signal 
from which the message signal may be recovered with very little distortion by lowpass filtering and 
equalization. Actually, if the pulse width in this PAM signal is quite small, equalization may not be 
necessary at all; simple lowpass filtering will suffice. This approach is applicable to the detection of PPM 
signals also. This method is illustrated in Fig. 10.49.

The PDM signal is first integrated and the value of the output of the integrator at the end of each PDM 
pulse, is held till the next sampling instant, at which time the capacitor of the integrator is discharged 
suddenly and the integrator of the next pulse is allowed to start. We get the waveform shown in 
Fig. 10.49(b). To this we add locally generated constant amplitude pulse sequence having a period of Ts 
in such a way that the pulses sit over the pedestal portion. This waveform is then subjected to clipping 
with the clipper level so adjusted that it is above the level of the highest pedestal. The clipper output, 
shown in Fig. 10.49(d) is a PAM representation of the original PDM signal. For converting a PPM signal 
into a PAM signal we may first convert it into a PDM signal by generating pulses with their leading 
edges at the sampling instants and trailing edges at the leading edges of the PPM pulses. Once the PAM 
signal is obtained, it can be lowpass filtered to recover the original signal. If the locally generated pulse 
sequence has very narrow pulses, the resulting PAM signal also will have only narrow pulses. In that 
case, the distortion due to aperture effect will be negligible and no equalizer need be used after lowpass 
filtering of the PAM signal.
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Fig. 10.48 A circuit for generating PDM (PWM) signals
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(c) Locally generated constant amplitude pulses added on the pedestal
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10.10.3 Cross-talk in PTM

Cross-talk can occur in PTM time-division multiplexed systems too, just as it occurs in TDM-ed PAM 
systems because of the low-frequency and high-frequency deficiencies of the channel. However, one 
basic difference between the two should always be borne in mind. Pulse transmitted in one time-slot 
extends at the receiving end into the following time-slot (or time-slots) because of the low-frequency, or 
high-frequency deficiency of the channel in both the cases (PAM and PTM). In PAM, cross-talk results 
from such an extension into the following time-slot because of its effect on the amplitude of the pulse 
in that time-slot. But in the case of PTM, such an extension causes cross-talk by influencing the width 
of the pulse in the following time-slot in the case of PDM and the position of the pulse in the following 
time-slot in the case of PPM.
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(i) Cross-talk due to High-Frequency Limitation of the Channel
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Fig. 10.50  (a) Transmitted PTM signal without modulation (b) Received signal without modulation 
(c) Received signal when modulation is present

In Fig. 10.49 the transmitted pulses in the Nth and (N + 1)th time-slots are shown by the solid line. 
t1 represents the instant at which the trailing edge of the unmodulated transmitted pulse occurs, if it is 
PDM. If it is PPM, it represents the instant at which the leading edge of the unmodulated pulse occurs. 
t2 represents the instant at which the trailing edge of the transmitted pulse occurs when pulse duration 
modulation is present. If the modulation is PPM, t2 represents the position of the leading edge of the 
transmitted pulse with modulation. Fig. 10.50(b) represents the received pulses in the two time-slots 
when there is no modulation. Note that owing to the high-frequency deficiency of the channel, there is 
distortion. However, there is no cross-talk. Figure 10.50(c) shows the two received pulses when modulation 
is present in channel-1. It is of course assumed, for the purpose of drawing this figure, that there is no 
modulation in channel-2. Note that the cross-talk has caused a timing error Dt in the time slot-2. Since 
time translates into amplitude at the time of detection of PDM and PPM signals, this timing error creates 
distortion of the received signal in channel-2.

(ii) Cross-talk due to Low-Frequency Deficiency
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Fig. 10.51  (a) Transmitted pulses (dashed line shows change due to modulation)
(b) Received pulses (assuming excellent high frequency response for channel)
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Figure 10.51(b) we find that if the high-frequency response of the channel is very good, the low-
frequency deficiency of the channel does not lead to any timing error because the rising and falling 
edges of the received pulses will also be absolutely vertical. Hence, in such a case, the low-frequency 
deficiency does not cause any cross-talk.

However, if the high-frequency response of the channel is not very good, its low-frequency deficiency 
can cause timing error and cross-talk. This is due to both the tilt in the top of the received pulse owing 
to the low-frequency deficiency and also the finite rise time and fall-time of the received pulse owing to 
the ‘not-so-good’ high frequency response.

10.10.4 Synchronization in TDM-ed PAM and PTM

In a TDM system, arrangements must be made for proper synchronization of the commutator at the 
transmitting end and the de-commutator at the receiving end. During each time-slot, at the transmitting-
end, the channel must be connected to the particular message channel the sample value of which must 
be transmitted during that time slot. This is accomplished by the use of a clock signal (at the transmitter) 
from which the necessary gate signals are derived. Similarly, at the receiving end, the channel must be 
connected to the baseband recovery circuits of the various message channels in a sequential manner. 
Again, this also is accomplished with the help of a clock signal generated at the receiving end. For proper 
functioning of the TDM system, it is necessary that these two clocks, one at the transmitting end and the 
other at the receiving end, work in synchronism.

For this purpose, a special pulse called synchronization pulse distinguishable from the normal signal 
pulses, is transmitted along with the signal pulses, but in a separate time-slot, at regular intervals. Hence, if 
there are N message signals TDM-ed, in addition to the N time-slots required per frame, an extra time-slot 
is provided to accommodate the synchronization pulse. A frame, is said to be completed when one sample 
of each one of all the messages is sent in a sequential manner. In case the frame time is too long because 
the number of messages to be TDM-ed is very large, more than one synchronization pulse will have to 
be included per frame, in order to ensure that the receiving-end clock does not go out of synchronization.

In the case of PAM, the synchronization pulse is made to have a much larger amplitude than any of 
the signal pulses. Since the time of arrival of the synch pulse is important, rather than its amplitude, the 
instant at which the received synch pulse crosses the set level of a comparator, is used for synchronizing.

For PDM, the synch pulse is made to have a much larger width than any of the signal pulses.

Frame synch pulse Frame synch pulse

(a)

Comparator reference

level 

(b) t

t

Fig. 10.52 (a) TDM-ed PDM pulses along with one synch pulse per frame (b) Output of an integrator circuit

The pulses shown in Fig. 10.52(a) are inverted and as shown in Fig. 10.53, applied to the base of a 
transistor which acts as a switch. In the absence of any external input, the transistor conducts heavily 
passing saturation current. Hence, the capacitor connected across it will have no voltage across it. But when 
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these pulses are inverted and applied, for each pulse duration, 
the transistor goes into the cutoff state and so the capacitor 
charges from Vcc through the collector load resistance RL. When 
a pulse ceases to exist, the transistor conducts heavily and the 
capacitor discharges quickly. Thus, we get a number of saw-
tooth pulses, as shown in Fig. 10.52(b). The synch pulses have a 
very large width and so the corresponding sawtooth pulses will 
have very large amplitudes compared to the amplitudes of the 
sawtooth pulses produced by the signal pulses. A comparator, 
whose reference level is adjusted to be far above the smaller 
sawtooth pulses, produces an output trigger pulse whenever the 
large sawtooth pulse produced by a frame synchronization pulse crosses the reference level. This trigger 
is used for synchronization of the clock that controls the operations at the de-commutator.

10.10.5 Comparison of TDM and FDM

1. TDM hardware is much simpler than that required for FDM, as there is no need for sub-carrier 
modulators, bandpass filters, etc.

2. In FDM cross-talk occurs mainly due to non-linear cross-modulation and imperfect bandpass 
filtering. In TDM, cross-talk is mainly due to inadequate transmission bandwidth of the channel.

3. It is much easier to time-division multiplex baseband signals having widely different bandwidths, 
whereas it is not that easy in the case of FDM.

4. Short-term fading of the transmission channel affects all the message channels in the case of FDM. 
However, in the case of TDM, only a few sample pulses transmitted during the occurrence of the 
fading will be affected, causing slight distortion only in the few affected channels.

Five lowpass message signals, each of bandwidth 2 kHz are to be sampled at 
5 kHz and PAM/TDM-ed using pulses of width 20 ms. What is the guard time available?

Example 10.13

Since fs = Sampling frequency = 5 ¥ 103 sps,

T
f

s
s

= =

¥

=

1 1

5 10
0 2

3
sec . ms

Hence, the interval between successive samples of a particular message signal, is 0.2 ms. If 5 such message 
signals are to be TDM-ed, it means that 5 pulses, each of width 20 ms (as specified) are to be interleaved 
in the interval between two successive samples of any one message signal, as shown in Fig. 10.54.

0 20 40 80 120 160 200 t in ms

200 ms

=T
s

Guard time

Tg

Fig. 10.54 PAM/TDM-ed signal for Example 10.13

Therefore, as can be seen from the figure, the guard time between adjacent pulses in the PAM/TDM- ed 
signal is 20 ms.

Output
Input C

V
cc

R
L

R
B

+

Fig. 10.53  Sawtooth waveform 
generating circuit
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A TDM signal is shown in Fig. 10.55. Show that it is possible to detect it using 
a time-averaging lowpass filter.

A A A A

T0 T0 2T 3T t

Fig. 10.55 Signal for Example 10.14

Example 10.14

A time-averaging filter takes the average value over each period T.

\ output of the filter at t = T is given by

V t
T

Adt
T

dt
AT

T

T

T

T

D

D

D

0

0

1 1
0( ) = + ◊ =Ú Ú

\ V0(T) is proportional to TD, the width of the pulse. Hence, a time-averaging filter can be employed 
to detect a TDM signal.

NOISE PERFORMANCE OF ANALOG PULSE 
MODULATION SYSTEMS

10.11

Before we proceed to a study of the noise performance of PAM and PTM, it would be proper to have 
a brief discussion on certain aspects of baseband pulse transmission.

We know that a rectangular pulse of width t seconds will, in general, have a spectrum extending from dc 
up to very high frequencies. Smaller the value of t, the width of the pulse, more will be the high-frequency 
content in the spectrum. Therefore, one question that immediately arises in one’s mind, is ‘How much 
transmission bandwidth is to be provided for pulse transmission’? The answer to this question depends upon 
what our requirement is. If we would like the pulse to be reproduced at the receiving end of the channel 
with very little distortion, i.e., if our requirement is to preserve the pulse shape; the channel should produce a 
phase shift that is proportional to frequency and should have a bandwidth, BT, which is very large. In this case

 B
T

>>
1

t
 (10.68)

On the other hand, if our interest is only to detect the presence of a pulse, or measure the amplitude 
of the received pulse, a bandwidth BT given by

 B
T

≥
1

2t
min

, (10.69)

would be sufficient, where tmin is the smallest output pulse duration.
Yet another type of scenario in which we will be interested is one wherein two closely spaced 

rectangular pulses which have been transmitted over a channel may have to be resolved, or identified 
as two separate pulses when they arrive at the receiving end. We will be interested in knowing what 
minimum bandwidth the channel should have for a given separation tmin between the two pulses, each 
of which is of width t seconds. It has been found that the minimum spacing is to be at least equal to t 
and that the bandwidth required with that spacing is
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 B
T

=
1

2t
 (10.70)

For this bandwidth, if the spacing is reduced below t, or for the spacing of t if the bandwidth of the 
channel is less than the value specified by Eq. (10.70), there will be considerable overlap between the 
two output pulses and it will be difficult to recognize them as two separate pulses.

In case we are interested in measuring the time of occurrence (i.e., the position) of an output pulse 
relative to some reference instant, the rise-time and/or fall-time of the output pulse become important. We 
then fall back on the well-known relationship between the rise-time of the output pulse and the channel 
bandwidth; and write

 B
T

r

≥
1

2t
min

 (10.71)

when tr
min

 is the minimum rise-time of the output pulse.
We are now ready to study the noise performance of PAM and PTM. In connection with this study, 

the following remarks are very pertinent, as they put the derivations in the proper perspective, and so 
are to be borne in mind.

(a)  The pulse-modulated signals (PAM and PTM) that we consider are baseband signals and have no 

high frequency carrier.
(b)  Because there is no carrier modulation, the noise entering the receiving system is lowpass noise 

and not bandpass noise as was the case when we considered the noise performance of continuous-
wave modulations like AM and FM.

(c)  Whereas in CW modulation systems we were interested in receiving the transmitted message 
waveform without much distortion, in the pulse modulation case, our interest is limited to measuring 
the amplitude, or the time of arrival, of the received pulse rather than ensuring that the received 
pulses are replicas of the corresponding transmitted pulses.

(d)  We may, at the receiving end, know the shape of the transmitted pulse in advance.

A continuous-time signal x(t), band-limited to W Hz is the modulating signal which has been sampled at 

regular intervals of T
W

s
=

1

2
 and the sample values are represented by a PAM, PDM or a PPM signal and 

this baseband pulse-modulated signal is transmitted to the receiver through a channel characterized ideally by 
additive white noise of two-sided PSD equal to h/2 W/Hz. So, whatever may be the actual method adopted 
by the receiver for demodulation, the demodulation process may ideally be visualized as one of converting 
back the pulse modulated signal (PAM, PDM or PPM) plus the additive noise into a sequence of weighted 
impulses (corresponding to ideal sampling). The original message plus noise will be obtained when this 
impulse train is passed through an ideal LPF which acts as the reconstruction filter. Thus, we shall use the 
model shown in Fig. 10.56 for studying the noise performance of analog pulse modulated systems.

Noise-limiting
filter

Zero-mean while
noise PSD(2-sided)
=h/2

Converter
PAM/PDM/PPM

to weighted
impulse sequence

Reconstruction
filter

Ideal
LPF

Synch

Cutoff
=fs/2

z(t)y(t)
Pulse modulated

signal

nw(t)

BN≥ 1/2t

V(t) = xp(t
) +n(t)

xp(t)
LPF BN

Fig. 10.56 Model for an analog pulse modulation receiver
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We shall now derive the expression for destination signal-to-noise ratios for PAM, PDM and PPM 
systems by making use of the above model.

10.11.1 Pulse Amplitude Modulation

Pulse amplitude modulated signal plus white noise tries to enter the receiver. The noise limiting lowpass 

filter has a cutoff frequency B
N

≥
1

2t
, where t is the pulse width of the PAM signal. Its output therefore is

 v t x t n tp( ) ( ) ( )= +  (10.72)

v(t)

A

tr t0 t

Received pulse
plus n(t)

n(t0)

A+n(t0)

Fig. 10.57 Received pulse plus lowpass filtered noise pulse

Because of the finite rise time and fall time, the pulse amplitude is generally measured near the middle 
of the time-slot at some instant such as t0. So the measured value is

 v t v t A n t A
t t

( ) ( ) ( )
=
= = + = + Œ

0
0 0 0  (10.73)

where Œ0 represents the amplitude error. This error has a variance equal to the average power in n(t), 
the filtered (white) noise. Therefore, it is given by

 s h
0
2 2= =n B

N
 (10.74)

The output of the converter, y(t), which is a train of weighted impulses spaced Ts second apart, may 
therefore be written as

 y t A mx kT t kTc s k s

k

( ) ( ) ( )= + Œ[ ] -Â  d  (10.75)

where, m is the modulation index and Œk is the error in the measurement of the amplitude of the kth 

received pulse because of noise. The reconstruction filter, assumed to be an ideal LPF with a cutoff 
frequency of fs/2, a passband gain of Ts (this is purely arbitrarily chosen, just for convenience) and zero 
delay, will given an output z(t) which may be written as

 

z t A mx kT f t kT

A mx kT f t kT

c s k s s

k

c s s s

( ) ( ) ( )

( ) (

= + Œ[ ] -[ ]

= -

Â sinc

sinc )) ( )[ ]+ Œ -[ ]Â Â
k

k s s

k

f t kTsinc  (10.76)

The first term in the RHS of the above equation gives the output signal component and the second 
term gives the output noise component. Hence, we may write

 z t A mx t n t( ) ( ) ( )= +0 0  (10.77)
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As shown in Fig. 10.56, B
N

≥
1

2t
. Since t << Ts, it follows that

 B
T

N

s

>
1

 (10.78)

Hence, the values of the error, i.e., Œk‘s can be considered to be uncorrelated. Further, since the 
channel noise has been assumed to be zero-mean and since the noise limiting filter is a LTI system, n(t) 
is also zero mean. Hence, Œk‘s have a zero-mean and are uncorrelated. Thus, the average noise power at 
the destination, viz., ND is given by

 N n t
D D k
= = Œ

2 2( )  (10.79)

But, we have already shown that the variance of the measurement error (see Eq. 10.74) is equal to 
the average noise power at the output of the noise limiting filter and that this is given by hB

N
.

\ N B
D N

= h  (10.80)

Now, to determine the average signal power at destination, we proceed as follows.

 
Average energy per pulse in

the PAM signal

¸
˝
˛

= +t A mx kTs0
2 1 ( )[[ ] =

2
Ep

 (10.81)

 Number of pulses per seconds in the PAM signal = fs (10.82)

\ received average signal power = = +[ ] ◊S A mx kT fR s st 0
2 2

1 ( )  (10.83)

But, 1 1
2

2 2+[ ] = +mx kT m x t
s

( ) ( )  (10.84)

since x(t) is assumed to be of zero-mean so that

 mx kT
s

( ) = 0  (10.85)

\ we may rewrite Eq. (10.83) as follows:

\ S A f m xR s= +0
2 2 21t[ ] (10.86)

From Eq. (10.77), average signal power at the destination is given by

 S A m x t
D

= 0
2 2 2 ( )  (10.87)

\ using Eq. (10.80) and Eq. (10.87), we may write

S

N

m x t A

B
D N

Ê
ËÁ

ˆ
¯̃

=
◊2 2

0
2( )

h

But B
N

≥
1

2t
. Therefore, the minimum value of B

N
=

1

2t
 and this gives the maximum destination 

SNR for a given modulation index, m.

 
S

N

A m x t

D

Ê
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ˆ
¯̃
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◊
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( )2 0
2 2 2 t

h
 (10.88)

But, as per Eq. (10.84), t is given by

t =
+ÈÎ ˘̊

S

A f m x t

R

s0
2 2 21 ( )
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Substituting this for t in Eq. (10.88),

 
S

N

WA m x t S W

A f m x t

m

D

R

s

Ê
ËÁ
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¯̃
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 g  (10.89)

This can be further maximized by choosing m = 1. Then

 
S

N

x

x

W

fD s

Ê
ËÁ

ˆ
¯̃

=
+

È

Î
Í
Í

˘

˚
˙
˙

Ê

ËÁ
ˆ

¯̃; max

PAM

 
2

21

2
g  (10.90)

Since x2  can at the most be 1 (since x t( ) £ 1) and since f Ws ≥ 2 , it follows that (S/N)D is less that or 
equal to (g/2). It is therefore at least 3 dB inferior to baseband transmission. However, this has not much 
significance, since PAM, when used, it is not for its good noise performance but only for its simplicity 
and for time division multiplexing.

10.11.2 Noise Performance of PDM and PPM

In the case of PDM/PWM, information regarding the kth sample value of the message signal is incorporated 
into the width tk of the kth pulse.

t t
k s

mx kT= +[ ]0 1 ( )

Here, t0 is the width of the unmodulated pulse. The amplitude of the pulse is constant and equal to A.
In the case of PPM, information about the value of the kth sample is incorporated into the delay tk, in 

the arrival of the leading edge of the kth pulse.

t kT t x kT
k s d s
= + +t 0 ( )

where, td represents the delay when the sample value kTs is zero. So, a PDM receiver has to measure the 
pulse duration time while a PPM receiver has to measure the pulse arrival time. Since the leading and 
trailing edges of the received pulse will be having finite slopes and are superimposed by additive noise, 
the exact instant at which the pulse begins or ends will not be easy to identify. Hence, the instant t0 at 
which the pulse attains say 50% of its final value, i.e., a value of A/2, is generally identified. An error 
Œ is caused by the noise in this measurement, as shown in Fig. 10.58.
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Œ

Fig. 10.58 Received pulse and position error Œ

The triangles PQR and P/Q/R/ are similar
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And, s h2 2
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To maximize 
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For PPM
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Substituting the above in Eq. (10.96) in order to maximize (S/N)D, we get
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i.e., 
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Thus, just like in CW wideband FM, for PPM also the destination SNR varies as the square of 
the transmission bandwidth. In practice, however, the (S/N)D for PPM will be less than the maximum 

value given by Eq. (10.99) by about 10 dB. Nevertheless, PPM has the advantage of low-average-power 
requirement for the transmitter and so is used in situations where average transmitter power is at a 
premium.

It may be noted that as suggested by Eqs. (10.96) and (10.99), both PDM and PPM offer a trade-off 
between transmission bandwidth and average transmitter power. However, since the destination SNR of 
PPM varies as the square of BT, while that of PDM varies proportional to BT only, the PPM offers a 
better trade-off than PDM.

A message signal has x2
0 1= .  and is band-limited to 100 Hz. It is sampled at 

a rate of 250 sps and converted into a PDM signal with m = 0.2 and an unmodulated pulse width 
of 80ms, which is then transmitted over a channel of bandwidth 3 kHz. If the two-sided PSD of the 
additive noise on the channel is 0 5 10 12. ¥

- W/Hz, find the value of the received average signal power, 
SR given that the (S/N)D is to be at least 40 dB.

Example 10.15

From Eq. (10.95), we have
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10.11.3 Comparison of FDM and TDM

Both FDM and TDM achieve the same objective—that of transmitting several message signals 
simultaneously over the same physical channel; only, the techniques used are different and so each one 
has its own advantages. However, TDM has a definite edge over FDM because of its simplicity.

S.No. FDM TDM

1 Individual message channels are allocated different 
non-overlapping frequency slots.

Individual message channels are allocated distinct, 
non-overlapping time slots.

2 Requires sub-carrier modulator, bandpass filter and 
de-modulator for each message channel.

Uses inexpensive digital VLSI circuitry for switching 
operations at the commutator and the de-commutator.

3 Synchronization required for the carrier generated at 
the receiving end, in the case of SSB-SC modulation.

Synchronization of the commutator and the de-
commutator is essential and is more elaborate.

4 Short-term fading of the channel affects all the 
message channels.

Short-term fading affects at the most only a few 
channels.

5 Slow, narrowband fading of the channel may affect 
at the most one or two FDM channels only.

Slow, narrowband fading of the channel affects all 
the message channels of TDM.

6 Multiplexing message channels of widely different 
bandwidths, is not easy.

Multiplexing message channels of widely different 
pulse rates (bandwidths) is not difficult.

7 Cross-talk in FDM is caused by non-linear cross-
modulation and imperfect bandpass filtering.

Cross-talk in TDM is caused by high-frequency and 
low-frequency deficiencies and dispersion, if any, in 
the channel.

SUMMARY

1. Statement of lowpass sampling theorem: if x(t) is a lowpass signal, bandlimited to W Hz, i.e., if 
X(  f  ) = 0 for all | f | ≥ W, it is possible to recover x(t) completely, without any distortion whatsoever, 
from its samples taken at intervals Ts £ 1/2W. x(t) can be expressed in terms of its samples as

x t BT x kT B t kT
s s s

k

( ) ( ) ( )= -

=-

Â2 2sinc 

2. The lowpass sampling theorem provides the basis for all analog pulse modulation systems as well as 
all digital communication systems.

3. fs = 2W represents the minimum sampling rate that can be used, for sampling a lowpass signal 
bandlimited to W Hz, if the signal is to be recovered from its samples. This minimum sampling rate 
is called ‘Nyquist rate’.

4. There are basically three types of sampling—impulse or ideal sampling, natural sampling using pulses 
of finite width, and flat-top sampling using finite-width pulses.
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 5. It is possible to recover x(t), without any distortion, from its samples in the case of ideal sampling 
as well as natural sampling.

 6. In the case of flat-top sampling, which is the most commonly used sampling method in practice, 
it is not possible to recover x(t) without any distortion because of ‘aperture effect’. However, this 
distortion can be reduced using an amplitude equalizer with an appropriate transfer function.

 7. ‘Aliasing’, or ‘folding-over effect’ occurs because of under-sampling, i.e., sampling below the 
‘Nyquist rate’, and manifests itself as some of the high-frequency components of x(t) re-appearing 
as low frequency components in the spectrum of the sampled signal.

 8. ‘Aperture effect’ is a distortion that appears in the message signal recovered from its samples taken 
using flat-top sampling. Because of this effect, high-frequency components of the recovered message 
signal x(t), suffer relatively higher attenuation compared to its low-frequency components.

 9. A zero-order-hold (ZOH) may be used to reconstruct the message from its samples—it gives a stair-
case approximation of the message.

10. PAM, PDM and PPM are, strictly speaking, not modulation techniques at all, as there is no 
frequency translation and these signals cannot be radiated directly. They are actually signal processing 
methods—methods used for representing a sample value in terms of the amplitude of a pulse in the 
case of PAM the width of a pulse in the case of PDM/PWM and the shift/delay in the position of 
a pulse in the case of PPM.

11. A PPM signal may be obtained by directly flat-top sampling an analog signal. It can be detected 
by making use of a lowpass filter, followed by, if necessary, an equalizer.

12. A PDM signal may be generated either from a PAM signal, using a ramp signal and a comparator, 
or directly from the analog signal by using a monostable multivibrator.

13. The spectrum of a PDM signal consists of a dc component, the message signal and groups of phase-
modulated waves with sampling frequency fs and its harmonics as the carrier frequencies.

14. A PDM signal may be detected either by first converting into a PAM signal and lowpass filtering 
this PAM signal, or by directly lowpass filtering the PDM signal itself.

15. A PPM signal may be generated by first generating a PAM signal and converting it into a PDM 
and then using a trigger pulse produced by the trailing edge of the PDM when it is differentiated, 
to generate a rectangular pulse from a pulse generator so that the leading edge of the resultant PPM 
pulse coincides with the trailing edge of the PDM pulse.

16. Cross-talk occurs in PAM, PDM as well as PPM transmission if the channel bandwidth is inadequate. 
In PAM it causes an amplitude error while in PDM and PPM it causes a timing error.

17. In TDM-ed transmission of PAM, PPM, or PDM, synchronization of the commutators at the two 
ends is necessary.

18. In comparison with FDM, the TDM hardware is much simpler. It has several other advantages over 
FDM, such as its ability to easily handle baseband signals having widely different bandwidths and 
its relative robustness with regard to short-term fading.

19. As far as noise performance is concerned, PAM is at least 3 dB inferior direct baseband analog 
message signal transmission.

20. The destination SNR of PDM is proportional to (BT/W) while that of PPM is proportional to the 
square of (BT/W). Hence, power to bandwidth trade off is possible in both, with PPM offering a 
better tradeoff. However PPM is inferior to WBFM by about 10 dB.
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REVIEW QUESTIONS

 1. What is ‘aliasing’? How can it be reduced or avoided?
 2. What is meant by ‘aperture effect’? How can it be reduced?
 3. What is a zero-order-hold? How can it be used as a reconstruction filter?
 4. State the lowpass sampling theorem and briefly explain its significance.
 5. Discuss the advantages and disadvantages of analog pulse modulation as compared to continuous-

wave modulation.
 6. Explain how a PAM signal may be generated. How can it be demodulated?
 7. Describe with the help of neat sketches of waveforms, any two methods of generation of PDM/

PWM and PPM.
 8. How do you demodulate a PDM signal?
 9. Explain how a PPM signal may be converted into a PAM signal.
10. What is time-division multiplexing?
11. If N voice signals, each of bandwidth W Hz, are TDM-ed, show that the TDM-ed signal needs a 

minimum transmission bandwidth of NW Hertz.
12. What is meant by cross-talk with reference to TDM-ed signals?
13. Explain how the low frequency deficiency of a channel causes cross-talk consider PAM signal and 

model the channel as a highpass R-C filter.
14. By considering a PAM signal and using a lowpass R-C filter as the model for the channel, show 

how high frequency deficiency of a channel can cause cross-talk.
15. Derive an expression for the destination signal-to-noise ratio of a PAM system, and show that it 

cannot exceed g /2.
16. With the help of a neat sketch, show how additive noise on the channel can cause an error in the 

measurement of the arrival time of a pulse.
17. Show that in the case of PPM, the (S/N)D takes a maximum value which is proportional to the 

square of the ratio of transmission bandwidth BT to the message bandwidth W.
18. Critically compare FDM and TDM.

FILL IN THE BLANKS

 1. An analog lowpass signal, x(t), is band-limited to 1500 Hz. The maximum sampling period that can 
be used in order to recover x(t) from its samples without distortion, is ________.

 2. A continuous-time lowpass signal, x(t), is being sampled. If the signal x(t) is to be recovered from 
the samples, the conditions to be satisfied are (i) ____, and (ii) ______.

 3. x(t) is a lowpass signal band-limited to W Hz and having a spectrum X(  f  ). The ideally sampled 
version, xg(t), of x(t), will have a spectrum Xd(  f  ) which is a periodic repetition of X(  f  ) with a 
period of ______.

 4. The minimum sampling rate fs to be used for sampling a continuous-time lowpass band-limited signal 
x(t) for distortion-less recovery of x(t) from its samples, is called _______ and it is equal to _____.

 5. A lowpass band-limited signal, sampled at a frequency higher than the Nyquist rate, may be recovered 
from its samples by passing them through a _______.
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 6. For a guard band to exist in the spectrum of xd(t), it is necessary that the _____ be _______ than 
the _______.

 7. Aliasing is the name given to the phenomenon where by the _______ frequency components of a signal 
x(t) reappear as ________ frequency components in the spectrum of the sampled version of x(t).

 8. Anti-aliasing filter is a _______ (lowpass/highpass) filter used _______ (before/after) the sampler.
 9. The distortion in the recovered signal caused by flat-top sampling, is called _____. It attenuates the 

______ frequency components relative to the ______ frequency components.
10. The impulse response of a ZOH circuit has a ____ shape.
11. A PAM signal may be generated using a ______ and _____ circuit.
12. The width of an unmodulated pulse in the case of PDM can at the most be _______.
13. PAM is at least ______dB inferior to direct baseband transmission in so far as (S/N)D is concerned.
14. _________ (PDM/PPM) offers a better trade-off than ______ (PPM/PDM) between transmitter power 

and transmission bandwidth.

MULTIPLE CHOICE QUESTIONS

 1. A band-limited lowpass signal is sampled at twice its Nyqyist rate with fs = 2000 sps. The signal is 
bandlimited to
(a) 250 Hz (b) 1000 Hz (c) 500 Hz (d) 2000 Hz

 2. A certain lowpass signal x(t) is sampled and the spectrum of the sampled version has guardband 
from 1500 Hz to 1900 Hz. The sampling frequency used is
(a) 1500 sps (b) 1900 sps (c) 1700 sps (d) 3400 sps

 3. A lowpass signal bandlimited to 1200 Hz was sampled and it was found that the 1000 Hz frequency 
component was re-appearing in the recovered signal, because of aliasing, as 400 Hz component. The 
sampling frequency used is
(a) 1400 sps (b) 1600 sps (c) 2200 sps (d) 800 sps

 4. x t t( ) cos= 3 2502 p . This signal is sampled at regular intervals of T seconds. The maximum value 

of T for which x(t) may be recovered from the sampled version without any distortion, is equal to
(a) 1 ms (b) 2 ms (c) 4 ms (d) 0.5 ms

 5. A cosinusoidal signal x t t( ) cos= 5 240p  was sampled at a frequency fs. The signal recovered from 

the samples was, however, found to be 3 110cos p t . The sampling frequency fs is equal to

(a) 175 sps (b) 350 sps (c) 130 sps (d) 65 sps
 6. Aperture effect

(a) amplifies the high-frequency components (b) attenuates the low-frequency components
(c) amplifies the low-frequency components (d) attenuates the high-frequency components

 7. A continuous-time signal x(t) is ideally sampled using an unit impulse train with a sampling interval 
of T sec. The sampled version is a
(a) sequence of samples of x(t), the kth sample being equal to x(kT) and located at t = kT

(b) periodic version of x(t) with period of T seconds
(c) sequence of impulses, the kth impulse having a strength of x(kT) and located at t = kT

(d) none of the above
 8. The most commonly used sampling method is

(a) ideal or impulse sampling (b) natural sampling using rectangular pulses
(c) sample-and-hold method (d) none of the above

 9. The distortion in the signal arising from aperture effect, can be reduced by
(a) reducing the width of the pulses used for flat-top sampling (b) reducing the sampling frequency
(c) properly band-limiting the signal before sampling it (d) using flat-top sampling
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10. The impulse response function, h(t), of a zero-order-hold circuit is
(a) an impulse (b) a rectangular pulse (c) a triangular pulse (d) none of the above

11. A PAM signal may be generated using
(a) impulse sampling (b) a sample-and-hold circuit
(c) natural sampling (d) a clipper circuit

12. A PAM signal may be demodulated using
(a) a lowpass filter (b) a differentiator followed by a lowpass filter
(c) an integrator (d) a lowpass filter followed by an equalizer.

13. Cross-talk occurs in PAM/TDM-ed system because of
(a) only low-frequency deficiency of the channel
(b) only high-frequency deficiency of the channel
(c) either low-frequency deficiency or high-frequency deficiency, or both.
(d) non-linear cross modulation.

14. In general, cross-talk decreases with increasing bandwidth
(a) it reduces more rapidly in PPM than in PAM (b) it reduces more rapidly in PAM than in PPM
(c) it reduces at the same rate in PAM and PPM (d) none of the above

15. Noise performance of PAM is
(a) better than that of direct base-band transmission (b) better than C.W. amplitude modulation
(c) poorer than that of direct base-band transmission (d) better than that of PDM

16. (S/N)D of PDM is
(a) proportional to the transmission bandwidth
(b) proportional to the square of the transmission bandwidth
(c) proportional to the square-root of the transmission bandwidth
(d) independent of the transmission bandwidth

17. (S/N)D of PPM is
(a) proportional to the transmission bandwidth
(b) proportional to the square of the transmission bandwidth
(c) proportional to the square-root of the transmission bandwidth
(d) independent of the transmission bandwidth

18. Short-term fading of the channel
(a) affects only a few message channels of a FDM system
(b) affects all the message channels of a TDM system
(c) affects all the message channels of a FDM system
(d) does not have much effect on both TDM and FDM systems

PROBLEMS

 1. Determine the Nyquist rate of sampling for the following signals.
(a) x t t( ) = 10 100sinc  (b) x t t( ) cos ( )= 10 1002 p  (c) x t t( ) ( )= 10 1002sinc

 2. For each of the signals listed below, identify the minimum sampling frequency needed to ensure 
that no aliasing takes place,
(a) x t t t( ) ( ) cos ( )= 5 10 100sinc p  (b) x t t( ) cos= 10 1002 p  (c) x t t t( ) ( / ) cos( )= -4 10 102 2P p

 3. A unipolar rectangular wave of unit amplitude, 0.3 duty cycle and a period of T seconds is used 
as the sampling function for sampling a signal x(t) with a maximum frequency component 1 kHz. 
What is the largest value of T for which reconstruction of x(t) from the samples would be possible? 
Determine a suitable system for reconstruction of x(t) from the samples.

 4. To completely describe a periodic band-limited signal, it is enough if we have the samples from one 
period. How many samples are needed to exactly describe the following band-limited periodic signals?
(a) x t t t( ) cos ( ) sin ( )= +5 300 15 200p p  (b) x t t t( ) cos ( ) sin ( )= +16 5 6 8p p
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 5. The signal x t t( ) cos= 12 40 p  is ideally sampled 
at fs = 50 samples/sec. Plot the spectrum of the 
sampled version up to a frequency of ± 180 Hz.

 6. The schematic diagram of a bipolar chopper is 
shown in Fig. P-10.1
(a)  Sketch the waveform of the sampling function 

s(t), assuming switch k starts at A at t = 0 and 
makes contact alternately at A and B staying at 
each stud for Ts/2 seconds.

(b) If the spectrum of x(t) is as shown in Fig. P-10.2.
 (i) Sketch the spectrum of the sampling function s(t).
 (ii) Sketch the spectrum of the sampled signal xs(t) assuming fs > 2W.

(c) Comment on the filter to be used for reconstruction of x(t) from xs(t).
 7. For the lowpass sampling theorem of Section 10.2, there is a dual. 

It says that if x(t) is time-limited, i.e., if x(t) = 0 for | t | ≥ T, then 
the frequency-domain representation of x(t), namely, X(  f  ), can be 
determined without any error from its samples taken at regular 
frequency intervals of f0 £ 1/2T. Prove this.

 8. A PAM is represented by

x t A mx kT p t kTp s s

k

( ) ( ) ( )= +[ ] -Â 0 1

(a) Show that its spectrum is given by

X f A f P f f nf mx f nfp s s s

k

( ) ( ) ( ) ( )= - + -{ }
È

Î
Í

˘

˚
˙Â0 d

(b)  Sketch Xp(  f  ) when p(t) is a rectangular pulse of amplitude 1 and base width equal to half the 
sampling period; m = 1 and x t t( ) cos= ¥2 200p  when fs = 500 Hz. Take A0 = 1.

 9. Is it possible to detect a PAM signal using a product demodulator? If your answer is in the 
affirmative, give details of the local oscillator frequency and the cutoff frequency of the LPF.

10. What is the transmission bandwidth needed for a PDM signal for which the sampling frequency is 
8 kHz, m = 0.8 and x t( ) £ 1 and unmodulated pulse width t

0
5= T

s
/ . It is desired that the rise time 

tr should not be greater than a quarter of the minimum pulse width in the PDM signal.
11. Fifteen voice signals, each band-limited to 4 kHz, are sampled at a rate that allows us to provide a 

guard band of 1.5 kHz to facilitate reconstruction. The samples are transmitted using PAM with AM 
of a continuous wave, i.e., PAM/AM, the duty cycle being 0.25. Calculate the required transmission 
bandwidth.

12. Ten message signals, each band-limited to 2 kHz are sampled at a frequency fs that permits a 1 kHz 
guard band. The multiplexed samples are transmitted by (i) PAM/AM with 25% duty cycle (ii) PAM/
FM with baseband filtering and a peak frequency deviation of ± 75 kHz.

13. Twenty-five voice channels, each sampled at 8 kHz, are transmitted via PPM/TDM. If t0 = t = 1 
micro second, determine the channel bandwidth required to keep the cross-talk at -40 dB or less.

Key to Multiple Choice Questions
 1. (c)  2. (d)  3. (a)  4. (b)  5. (a)  6. (d)
 7. (c)  8. (c)  9. (a) 10. (b) 11. (b) 12. (d)
13. (c) 14. (a) 15. (c) 16. (a) 17. (b) 18. (c)

A fs= 1/Ts
xs(t)

B K

x(t)

Amplifier
Gain = –1

Fig. P-10.1

X(f)

1

–W 0 W f

Fig. P-10.2



MATLAB PROGRAMS
Appendix–A

The following functions are used in the programs.

%FFTSEQ Function generates M, the FFT of the sequence m.

%The sequence is zero padded to meet the required frequency resolution df.

%ts is the sampling interval. The output df is the final frequency

%resolution. Output m is the zero padded version of input m. M is the FFT.

%

function [M,m,df] = fftseq(m,ts,df)

% [M,m,df] = fftseq(m,ts,df)

% [M,m,df] = fftseq(m,ts,df)

fs = 1/ts;

if nargin = = 2

n1 = 0;

else

n1 = fs/df;

end

n2 = length(m)

n = 2^(max(nextpow2(n1),nextpow2(n2)));

M = fft(m,n);

m = [m,zeros(1,n-n2)];

df = fs/n;

return

%

% FSERIES Returns the Fourier series coefficients.

% funfcn s the defined function.

% It would depend on three parameters p1, p2, p3.

% The function is given over one period extending from ‘a’ to ‘b’.

% ‘fsc’ is the vector of length n+1 of Fourier series coefficients

% xx0,xx1,..xxn.

% ‘tol’ is the error level.

%

function xx = fseries(funfcn,a,b,n,tol,p1,p2,p3)

j = sqrt(-1);

args0 = [];

for nn = 1:nargin-5

args0 =[args0,’,p’,int2str(nn)]

end

args =[args0,’)’]

a

b

t = b-a;

xx(1) = eval([‘1/(‘,num2str(t),’).*quad(funfcn,a,b,tol’,args]);
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for i = 1:n

new_fun = ‘exp_fnct’;

args=[‘,‘,num2str(i),’,‘,num2str(t),args0,’)’];

xx(i+1) = eval([‘1/)‘,num2str(t),’).*quad(new_fun,a,b,tol’,args]);

end

% ‘

% gengauss’ generates two independent Gaussian random variables with

% mean ‘m’ and standard deviation ‘sgma’. If one of the input

% arguments is missing it takes the mean as 0.

% If neither the mean nor the variance is given, it generates two

% standard Gaussian random variables.

%

function [gv1 gv2] = gengauss(m,sgma)

% [gv1,grv2] = gengauss(m,sgma)

% [gv1,grv2] = gengauss(sgma)

% [v1,gsrv2] = gengauss

if nargin = = 0

m = 0; sgma = 1;

elseif nargin = = 1

sgma =m; m=0;

end

u = rand; % uniform random varioable in (0,1)

z = sgma*(sqrt(2*log(1/(1-u)))); % a rayleigh distributed random variable

u = rand;

gv1 = m+z*cos(2*pi*u);

gv2 = m+z*sin(2*pi*u);

%

% [Nx] = Nx_ext(X,M)

% NX_EST estimates the autocorrelation of the sequence of random

% variables given in X, only Nx(0), Nx(1)...Nx(M) are computed.

% Note that Nx(m) acutally means Nx(m-1).

%

function [Nx] = Nx_ext(X,M)

N = length (X)

Nx = zeros(1,M+1);

for m = 1:M+1

for n = 1:N-m+1

Nx(m) = Nx(m)+X(n)*X(n+m-1);

end

Nx(m) = Nx(m)/(N-m+1)

end
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A periodic signal x(t) with period To = 6 is defined by x(t) = II(t/2) for abs t < = 3. 
This signal is passed through an LTI system with an impulse response given by 

h(t) = {e-t/2 for 0 ≤ t ≤ 4

 = 0 otherwise

Determine the discrete spectrum of the output signal numerically using MATLAB.

Problem 1

MATLAB Program

%

% Generation of x(t) signal

%

clc

df = 0.01;

fs = 10;

ts = 1/fs

t = [-8:ts:8];

%

% Generation of periodic signal

%

x = zeros(size(t));

x(11:30) = ones(size(x(11:30)));

x(71:90) = ones(size(x(71:90)));

x(132:151) = ones(size(x(132:151)));

subplot (2,2,1)

plot(t,x)

grid on

xlabel (‘time’);

ylabel (‘amplitude’);

title (‘Periodic Signal’)

ylim ([0,1.25]);

%

% Generation of impulse response

%

h = zeros(size(t));

h(82:120) = exp(-t(82:120)/2)

subplot (2,2,2)

plot(t,h)

grid on

xlabel(‘time’);

ylabel(‘Amplitude’);

title (‘Impluse Response’);
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%

% Transfer function

%

H = fft(h)/fs; % frequency resolution

f = [0:df:fs];

H1 = fftshift(H) % rearrange H

subplot (2,2,3)

stem (t,abs(H1))

xlabel (‘Frequency’)

grid on

y = x.*H1

subplot (2,2,4)

stem (t,abs(y))

grid on

xlabel (‘Frequency’);

title (‘discrete spectrum of output signal’);

Results
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Plot the magnitude spectrum and phase spectrum of the nonperiodic signal 
shown in the figure.

Problem 2
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x(t)

1 20–2 –1 Time

MATLAB Program

clc

df = 0.01;

fs = 10; % sampling frequency

ts = 1/fs % sampling time

t = [-5:ts:5] % time scale

%

% Generation of nonperiodic signal

%

x = zeros(size(t));

x(32:41) = ones(size(x(32:41)));

for i= 1:1:10

x(41+i)=1-0.1*i;

end

for i = 1:1:10

x(51+i) = 0.1*i;

end

x(61:70) = ones(size(x(61:70)));

subplot (3,1,1)

plot(t,x)

ylim([0 1.5]);

grid on

xlabel (‘Time’);

ylabel (‘Amplitude’);

title(‘Given Signal’);

%

% Finding magnitude spectrum and phase spectrum of the nonperiodic signal

%

[X,x1,df1] = fftseq(x,ts,df);

X1 = X/fs;

f = [0:df1:df1*(length(x1)-1)]-fs/2;

subplot (3,1,2)

plot(f,fftshift(abs(X1)));

grid on

xlabel (‘frequency’);

ylabel (‘amplitude’);

title (‘Magnitude Spectrum’);

subplot (3,1,3)

plot(f(412:612),fftshift(angle(X1(412:612))))
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grid on

xlabel (‘frequency’);

ylabel (‘radian’);

title (‘Phase Spectrum’);

Results
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Determine the spectra of the message signal m(t) and the amplitude-modulated 
signal xc(t) (AM with carrier + both side bands) and plot them. Plot also the waveform of the 
message signal. Carrier signal is cos (2*π*250*t) and modulation index m = 0.85. The message signal 
is a sinusoidal signal of 6.67 Hz.

Problem 3

MATLAB program

%

% Amplitude modulation

%

t0 = 0.15; % signal duration

f = 1/0.15;

ts = 0.001; % sampling interval

fc = 250; % carrier frequency

fs = 1/ts; % sampling frequency

t = [0:ts:t0]; % time vector
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a = 0.85; % modulation index

df = 0.5; % required freqency resolution

%

% Generation of message signal

%

m1 = sin(2*pi*2*f*t)

figure(1)

subplot (3,1,1)

plot(t,m1)

n = length(m)

grid on

xlabel(‘time’);

ylabel(‘Magnitude’);

title (‘Message signal’);

ylim([-1.1 1.1]);

%

% Generation of carrier signal

%

c = cos(2*pi*fc.*t); % carrier signal

subplot (3,1,2)

plot(t,c);

title (‘Carrier Signal’);

xlabel (‘time’)

% 

% Generation of modulated signal and spectrum

%

[M,m,df1] = fftseq(m,ts,df); % Fourier transform

M = M/fs; % scaling

f = [0:df1:df1*(length(m)-1)]-fs/2; % frequency vector

u = (1+a*m);

u = u(1:151).*c;  % modulated signal

subplot (3,1,3)

plot(t,u) 

xlabel (‘time’);

title (‘Modulated signal’);

ylim ([-1.2 1.2])

%

% Generation of frequency spectrum of message signal

%

[U,u,df1] = fftseq(u,ts,df); % Fourier transform

U = U/fs % scaling

% frequency spectrum of message signal

figure (2)

subplot (1,2,1)

plot(f,abs(fftshift(M)));

xlabel (‘Frequency’);

title (‘Spectrum of Message signal’);
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subplot (1,2,2)

plot(f,abs(fftshift(U)));

xlabel(‘Frequency’);

title (‘Spectrum of Modulated signal’);

Results
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Using MATLAB 9 generate an amplitude-modulated wave and detect it using the 
simple envelop detector shown in the figure:

D

RLVin VoutC

Show the waveforms of the modulating signal, amplitude-modulated signal and output of the 
detector for carrier signal angular velocity of 50 radians/s and modulating signal angular velocity of 
1 radian/s.

1. RLC = 2π/10 and modulation index alpha = 0.5
2. RLC = 2π/3 and alpha = 0.9 (in this case diagonal clipping should take place)

Problem 4

MATLAB Program

%

% Envelope.m detects AM waveform

%

% Part 1 of the problem

RL C = 2*pi/10;

alpha = 0.5;

Dt = 2*pi/1000;

W = 50;

global RLC, alpha, W, Dt;

t = 0:2*pi/1000:2*pi;

%

% Allocation of memory for input and output arrays

%

Vin = zeros(1,1001);

Vout = zeros(1,1001);

%

% Define input array

%

V = 1+alpha*sin(t); % modulating signal

Vin = (1+alpha*sin(t)).*sin(W*t);

%

% First point of output is the initial value of the envelope

%

Vout(1) = 1;

%

% Compute output over all points

%
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for i = 2:1001

if Vin(i) > Vout(i-1)

Vout(i) = Vin(i)

else

Vout(i) = Vout(i-1)*exp(-Dt/RL C);

end

end

% Plot input then pause

figure (1)

plot(t,Vin);

hold on

plot(t,Vout,‘k’,‘LineWidth’,2);

hold on

plot(t,V,‘g’);

axis ([0 2*pi -1-alpha 1+alpha]);

title (‘Figure 1: Detector output superimposed on the input for \alpha = 0.5, RLC = 0.628’);

xlabel(‘time’);

ylabel(‘Amplitude’);

legend (‘Detector output’,‘Input to the detector’,‘Modulating Signal’,0)

%

% Part II of the problem

%

RC = 3*pi/10;

alpha = 0.9;

Dt = 2*pi/1000;

W = 50;

global RLC, alpha, W, Dt;

t = 0:2*pi/1000:2*pi;

%

% Allocation of memory for input and output arrays

%

Vin = zeros(1,1001);

Vout = zeros(1,1001);

%

% Define input array

%

V = (1+alpha*sin(t)) % Modulating signal

Vin = (1+alpha*sin(t)).*sin(W*t);

%

% First point of output is the initial value of the envelope

%

Vout(1) = 1;

%

% Compute output over all points

%
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for i = 2:1001

if Vin(i) > Vout(i-1)

Vout(i) = Vin(i)

else

Vout(i) = Vout(i-1)*exp(-Dt/RL C);

end

end

% Plot input then pause

figure (2)

plot(t,Vin);

hold on

plot(t,Vout,‘k’,‘LineWidth’,2);

axis ([0 2*pi -1-alpha 1+alpha]);

title (‘Figure 2: Detector output superimposed on the input for \alpha = 0.9, R_{L}C = 2.09’);

xlabel(‘time’);

ylabel(‘Amplitude’);

legend (‘Detector output’,‘Input to the detector’,‘Modulating Signal’,0)

Results
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Detector Output Superimposed on the Input for a= 0.9, RLC= 2.09
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(Frequency Modulation)
Message signal is sin(2*pi*10*t), carrier signal cos (2*pi*200*t).
Type of modulation: FM, Frequency deviation constant kf = 50
Using Matlab, do the following:

(a) Plot the message signal.
(b) Plot the modulated signal.
(c) Determine and plot the spectrum of the message signal.
(d) Plot the spectrum of the frequency-modulated signal.

Problem 5

MATLAB Program

%

% This program calls the function ‘fftseq’ to solve the problem

%

t0 = 0.15; % signal duration

ts = 0.001; % sampling interval

f = 10 hz;

fc = 200; % carrier frequency

kf = 50; % modulation index

fs = 1/ts; % sampling frequency

t = [0:ts:t0]; % Time vector

df = 0.25 % frequency resolution

%

% Message signal

%

m = sin(2*pi*2*f*t)
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% plot of the message signal

subplot (2,2,1)

plot(t,m)

grid on

ylim([-1.1 1.1]);

xlabel (‘time’);

ylabel (‘x(t)’);

title (‘Message Signal’);

% integral of m

int_m(1) = 0;

for i = 1:length(t)-1

int_m(i+1) = int_m(i)+m(i)*ts;

end

%

% Finding the Fourier transform of the m signal

%

[M,m,df1] = fftseq(m,ts,df); % Fourier Transform

M = M/fs; % Scaling

f = [0:df1:df1*(length(m)-1)] - fs/2; % Frequency Vector

%

% Generation of modulated signal

%

u = cos(2*pi*fc*t+2*pi*kf*int_m) % modulated signal

subplot (2,2,2)

plot(t,u(1:length(t)));

xlabel (‘time’);

title (‘Modulated Signal’);

%

% Finding the Fourier transform of the modulated signal u

%

[U,u,df1] = fftseq(u,ts,df); % modulated signal

U = U/fs % scaling

% Plots of magnitute of message and modulated signal in frequency domain

length(f)

length (M)

length (U)

subplot (2,2,3)

plot(f,abs(fftshift(M)));

xlabel (‘frequency’);

title (‘Spectrum of Message Signal’)

grid on

subplot (2,2,4)

plot (f,abs(fftshift(U)));

xlabel (‘Frequency’);

title (‘Spectrum of Modulated Signal’)

grid on
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Results
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Generate a discrete time sequence of N = 2000 independent identically distributed 
(uniformly) random numbers in the interval [-1/2, 1/2]. Compute the autocorrelation Rx of the 
sequence {Xn}. Find the power spectrum of {Xn} by finding the DFT of Rx using FFT. [Note: Rx(k) and 
Sx(f) have to be computed for each value of k and f respectively at least some 10 to 20 times and 
the average of all the values of the Rx(k) for each k and of Sx(f) for each f must be taken].

a. Plot Rx(k) and Sx(f).
b. Bandpass filter the white Gaussian noise {Xn} using bandpass filter.
c. Determine and plot the autocorrelation and the power spectrum of the output noise.

Problem 6

MATLAB Program

clc

N = 2000; % Number of samples

M = 50;

Nxav = zeros(1,M+1);

Sxav = zeros(1,M+1);

for i = 1:10 % takes the ensemble average over ten realizations

X = rand(1,N)-(1/2);  % Generate a uniform number sequence on (-1/2,1/2)

Nx = Nx_est(X,M); % autocorrelation of x

Sx = fftshift(abs(fft(Nx))) % power spectrum of x



Appendix 479

Nxav = Nxav+Nx;

Sxav = Sxav+Sx;

end;

Nxav = Nxav/10;

Sxav = Sxav/10;

figure (1)

subplot (2,1,1)

plot(X)

xlabel(‘Numbers’)

title (‘Independently Identically uniformly distributed random numbers’);

subplot (2,1,2)

plot(Nxav);

title (‘Autocorrelation of random numbers’);

xlabel (‘M’);

figure (2)

subplot (3,1,1)

f = -0.5:1/M:0.5

plot (f,Sxav)

title (‘Power spectrum’);

xlabel (‘Frequency’)

%

% Bandpass filter (BPF) the white Gaussian noise {Xn} using

% a BPF response as given

% generation of white noise

%

for i = 1:2:N

[X1(i) X1(i+1)] = gengauss;

[X2(i) X2(i+1)] = gengauss;

end

A = [1 -0.9];

B = 1;

Xc = filter(B,A,X1); % in-phase component

Xs = filter(B,A,X2); % quadratic component

fc = 2000/pi;

for i = 1:N

band_pass_process(i) = Xc(i)*cos(2*pi*fc*i)-Xs(i)*sin(2*pi*fc*i);

end

%

% Determine the autocorrelation and the spectrum of bandpass process

%

M = 50;

bpp_autocorr = Nx_est(band_pass_process,M);

bpp_spectrum =fftshift(abs(fft(bpp_autocorr)));

subplot (3,1,2)

plot(bpp_autocorr)

title (‘Autocorrelation of Gaussian noise band pass process’);

xlabel(‘M’)
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subplot (3,1,3)

plot(f,bpp_spectrum)

title (‘Spectrum of Gaussian noise band pass process’);

xlabel (‘frequency’);

Results
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(Pulse Width Modulation and Pulse Position Modulation)
Modulating (message) signal is a sinusoidal signal with f = 100, and sampling frequency is 4000 samples/s.
Pulse carrier will be as shown below:

Unmodulated pulse width

Ts = 2 ms

1 ms

–4 –3 21 4

Time in ms

At the peak of the modulating sinusoidal signal, the pulse carrier width should increase from the un- 
modulated value. Generate the Pulse Width Modulated (PWM) signal. Then do the following:

a. Display the PWM signal obtained (for I full cycle of modulating signal).
b. Display its spectrum.
c. Demonstrate the PWM signal and display two cycles of the recovered message signal.
d. Replace PWM in your program by PPM and repeat the above three steps.

Problem 7

MATLAB Program

clc

Fc = 100; % modulating signal frequency

Fs = 4000; % sampling frequency

ts = 1/Fs % sampling time 0.0025 (0.25 milli seconds)

t = [0:ts:1/Fc]; % a total 4500 samples for 9 milli seconds (500 samples per millisecond)

size(t)

%

% Generation of message wave

%

figure (1)

subplot (2,1,1)

x = 0.5+0.4*sin(2*pi*Fc*t); % message or modulating signal

plot(t,x)

grid on

ylabel (‘amplitude’);

xlabel (‘time(in secs)’)

title (‘modulating/message signal’);

%

% Generation of pulse carrier

%

tt = (-4/1000:(ts/10):6/1000)

m = zeros(size(tt));

m(1:40) = ones(size(m(1:40)));

m(81:120) = ones(size(m(81:120)));

m(161:200) = ones(size(m(161:200)));

m(241:280) = ones(size(m(241:280)));

m(321:360) = ones(size(m(321:360)));
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subplot (2,1,2)

plot(tt,m)

ylim ([0 1.2])

ylabel (‘amplitude’);

xlabel (‘time(in milli secs)’)

title (‘Pulse carrier signal’);

%

% Generation of PULSE WIDTH MODULATION

%

y = modulate(x,Fc,Fs,‘pwm’,‘centered’);

k = 1:1:length(y)

k = k/(length(y)*100);

figure (2)

subplot (2,2,2)

plot(k,y)

title(‘Modulated Signal’);

ylim ([0 1.2])

subplot (2,2,1)

plot(t,x)

grid on

ylabel (‘amplitude’);

xlabel (‘time(in secs)’)

title (‘modulating/message signal’);

% Demodulated signal of modulated signal

%

m1 = demod(y,Fc,Fs,‘pwm’,‘centered’);

subplot(2,2,3)

plot (t,m1);

title (‘PWM Demodulated Signal’);

grid on

%

Sx = fftshift(abs(fft(y))) % power spectrum of PWM

f = -length(Sx)/2:1:(length(Sx-1)/2)-1

subplot (2,2,4)

plot (f,Sx);

grid;

title(‘Magnitude Spectrum of x(n)’);

xlabel(‘Frequency, Hz’);

ylabel(‘Magnitude, dB’);

%

% Generation of PULSE POSITION MODULATION

%

k = 1:1:length(Sx)

k = k/(length(Sx)*100);

y1=modulate(x,Fc,Fs,‘ppm’);

figure (3)

subplot (2,2,2)

plot (k,y1)
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title(‘Pulse position Modulated Signal’);

ylim ([0 1.2])

subplot (2,2,1)

plot(t,x)

grid on

ylabel (‘amplitude’);

xlabel (‘time(in secs)’)

title (‘modulating/message signal’);

%

% Demodulated signal of PPM

%

m2 = demod(y1,Fc,Fs,‘ppm’);

subplot (2,2,3)

plot (t,m2);

grid on

ylabel (‘amplitude’);

xlabel (‘time(in secs)’)

title (‘PPM Demodulated signal’);%

% Spectrum of the pulse position modulated signal

%

Sx1 = fftshift(abs(fft(y1))) % power spectrum of PPM;

f = -length(Sx1)/2:1:(length(Sx1-1)/2)-1

subplot (2,2,4)

plot (f,Sx1)

grid on;

title(‘Magnitude Spectrum of x(n)’);

xlabel(‘Frequency, Hz’);

ylabel(‘Magnitude, dB’);

Results
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Pulse Width Modulation
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MATHEMATICAL FORMULAE
Appendix–B

Cramer’s Method of Solving a System of Linear Equations

Let a x b y c

a x b y c

1 1 1

2 2 2
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+ =
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Geometric Progressions
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Differentiation
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Trigonometric Identities
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 (xi) sin sin sin3 3 4 3x x x= -

VALUES OF USEFUL MATHEMATICAL  
AND PHYSICAL CONSTANTS

Appendix–C

Mathematical Constants

Pi(p) p = 3.1415927

Base of natural logarithm e = 2.7182818

Logarithm of e to base 2 log2 e = 1.442695

Logarithm of 2 to base 10 log10 2 = 0.30103
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Physical Constants

Boltzmann’s constant k = 1.38 ¥ 10-23 Joule/degree Kelvin

Planck’s constant h = 6.625 ¥ 10-34 Joule-second

Charge of an electron e = 1.602 ¥ 10-19 coulomb

Speed of light in vacuum c = 2.998 ¥ 108 meters/second

Thermal energy  at 

standard room temperature of

K

kT

T

0

0 273= ∞

¸̧

˝
Ô

˛
Ô

= ¥ -    kT0
213 77 10.  Joule

HILBERT TRANSFORM PAIRS
Appendix–D

Time Function Hilbert Transform

1. cos 2p fct sin 2p fct

2. sin 2p fct -cos 2p fct

3.  x(t) cos 2p fct (When fc >>W, the band limiting 

frequency of x(t))

x(t) sin 2p fct

4. x(t) sin 2p fct (When fc >>W) -x(t) cos 2p fct

5. 1/t -pd(t)

6. (sin t)/t (1 - cos t)/t

7. d(t) (1/pt)

FOURIER TRANSFORM 
Appendix–E

Basic Fourier Transform Pairs

X f x t e dtj t( ) ( )= -Ú w  and x t X f e dfj t( ) ( )= Ú w

S.No. Signal in time domain Signal in frequency domain

1 x(t) = d(t) X(  f  ) = 1

2 x(t) = 1 X(  f  ) = d(  f  )

3 x(t) = u(t) X f f
j f

( ) ( )= +
1

2

1

2
d

p

4 x t e j t( ) ( )
=

+w f0 X f e f fj( ) ( )= -
fd 0

5 x t t( ) sgn( )= X f
j f

( ) =
1

p
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S.No. Signal in time domain Signal in frequency domain

6 x t t( ) cos( )= +w f0
X f e f f e f fj j( ) ( ) ( )= - + +[ ]-

1

2
0 0

f fd d

7 x t e u tat( ) ( )=
- X f

a j f
( ) =

+

1

2p

8 x t e a t( ) | |
=

- X f
a

a f
( )

( )
=

+

2

22 2p

9 x t A t( ) ( / )= P t X f A f( ) = t t sinc 

10 x t Wt( ) = sinc 2 X f
W

f W( ) ( / )=
1

2
2P

11 x t A t( ) ( / )= L t X f A f( ) = t t sinc  2

12 x t Wt( ) = sinc22 X f
W

f W( ) ( / )=
1

2
2L

Useful Theorems

Theorem Function Transform

Linearity a x t a x t1 1 2 2( ) ( )+ a X f a X f1 1 2 2( ) ( )+

Time-delay x t( )- t X f e j( ) - wt

Scale change x at( )
1

| |
( / )

a
X f a

Conjugation x t( ) X f( )-

Duality X t( ) x f( )-

Modulation x t e j f tc( ) 2p X f fc( )-

Differentiation
d

dt
x t( ) j fX f2p ( )

Integration x d

t

( )t tÚ
1

2

1

2
0

j f
X f X f

p
d( ) ( ) ( )+

Convolution x t y t( ) ( )* X f Y f( ). ( )

Multiplication x t y t( ). ( ) X f Y f( ) ( )*

Parseval’s or

Rayleigh’s theorem
x t dt E X f dfx( ) ( )

2 2

Ú Ú= =

Generalized 

Parseval’s theorem
x t y t dt X f Y f df( ) ( ) ( ) ( )Ú Ú=
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ERROR FUNCTIONS AND Q-FUNCTIONS
Appendix–F

If X is Gaussian with mean m and variance s2 ,

fX x

m m ks x

f x eX
x m( ) ( ) /

=
- -

1

2 2

2 2

ps

s

Probabiltiy of X taking a value greater than (m + ks) is the area under the shaded region and is given by

Q k e d

k

( ) /D
1

2

2 2

p
ll-Ú ,

where Q(.) is called the Q-function.

The error function and complementary error function are defined as follows:

and 

erf

erf erf

( ) ( )

( ) ( )

k e d Q k

k e d k Q

k

k

D

D

2
1 2 2

2
1 2

2

2

0
p

l

p
l

l

l

-

-

Ú

Ú

= -

= - =c (( )2k

For k > 3, Q(k) may be approximated by

Q k
k
e k( ) /

@
-

1

2

2 2

p

Error Function Values

k erf(k) k erf(k) k erf(k) k erf(k) k erf(k) k erf(k) k erf(k)

0.00 0.0000 0.35 0.37938 0.70 0.67780 1.05 0.86244 1.40 0.95229 1.75 0.98667 3.00 0.99998

0.05 0.05637 0.40 0.42839 0.75 0.71116 1.10 0.88021 1.45 0.95970 1.80 0.98909

0.10 0.11246 0.45 0.47548 0.80 0.74210 1.15 0.89612 1.50 0.96611 1.85 0.99111

0.15 0.16800 0.50 0.52050 0.85 0.77067 1.20 0.91031 1.55 0.97162 1.90 0.99279

0.20 0.22270 0.55 0.56332 0.90 0.79691 1.25 0.92290 1.60 0.97635 1.95 0.99418

0.25 0.27633 0.60 0.60386 0.95 0.82089 1.30 0.93401 1.65 0.98083 2.00 0.99532

0.30 0.32863 0.65 0.64203 1.00 0.84270 1.35 0.94376 1.70 0.98379 2.50 0.99959



A
Acoustic channels 5, 12

Acoustic signal 14

Additive Gaussian channel 11

Adjacent channel interference 262, 266

Adjacent channel selectivity 262, 266, 275, 279, 286

Adjacent channel 260

Aliasing 424, 425, 431, 460, 461

Alignment 272

AM superheterodyne receiver 265

AM systems 377

AM transmitter 258

Amplitude modulated signal 129, 138

Amplitude modulation 3, 124

Amplitude probability density function 220

Amplitude spectrum 25, 68

Amplitude-limiting 284

Analog multiplier 241

Analog pulse modulation 453, 459

Analytic signal 69, 76, 80, 81

Angle modulated signals 228

Angle modulation 124, 199

Antenna 5, 123

Anti-aliasing filter 425, 434

Aperture effect 433, 447, 460, 461

Armstrong method 213, 227, 250, 282

Artificial antenna 275

Atmospheric noise 336, 365

Attenuation 108

Audio frequencies 129, 222

Audio voltage amplifier 262

Auto co-variance 327

Auto-correlation function 14, 60, 314, 330, 344

Auto-correlation 39, 40, 78, 79, 312, 319, 327

Auto-covariance 312, 330

Automatic frequency control 232

Automatic gain control (AGC) 264

Available noise power 343, 344, 356, 367, 372

Available output noise power 355

Average power 130

Average signal power 372

B
Balanced discriminator 237, 247

Balanced modulator 160, 167, 277, 280

Balanced zero-crossing detector 243

Band-limited processes 321

Band-limiting frequency 419

Bandpass filter 109, 138

Bandpass noise 389, 391

Bandpass processes 323

Bandpass signal 70, 71, 80

Band-rejection filter 109

Band-stop 109

Bandwidth limited 11

Bandwidth 106, 130

Baseband signal 440

Baseband system 372

Baseband transmission system 409

Basic group 182

Bayes' theorem 295, 324

Bernoulli random variable 301, 325

Bernoulli trials 301

Bessel function of the first kind 215

Bessel function 251

Bessel 435

BIBO criterion 100

BIBO stability criterion 101, 116

BIBO stability theorem 116

BIBO stability 102

Binomial random variable 301, 325

Boltzmann's constant 337, 365

Borel field 324

Bounded signal 116

Bounded-input 100

Index
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Bounded-output 100

Butterworth filter 351

Butterworth 435

C
Canonical representation 328

Capture effect 247, 409

Carrier frequency stability 234, 261

Carrier 3, 124

Carrier-to-noise power ratio 379

Carrier-to-noise ratio (CNR) 382

Carson's rule 207, 220, 222, 224, 250

Causal system 95, 116

Causality 95

Cellular mobile communication 2

Central limit theorem 309, 327, 329, 345

Centre-tuned discriminator 238

Channel attenuation 389

Channel signal-to-noise ratio 373

Channel 3, 146

Characteristic function of a random variable 305

Characteristic function 326

Chebyshev 435

Cladding 5

Class-A amplifier 144

Class-AB tuned power amplifiers 261

Class-C amplifier 141, 228

Class-C power amplifiers 260

Co-axial cables 5

Coherent detection 167, 175, 192, 278

Coherent detector 163, 178, 191

Coherent/synchronous detection 147

Collector-modulated class-C amplifier 141

Colpitt's oscillator 233

Communication receivers 279

Commutator 440, 450

Compact disk 435

Complete set of orthogonal functions 22, 23

Complete set 20

Complex gain 104

Complex-envelope 70, 71, 72, 73, 80, 81

Complex-exponential Fourier series 24, 84, 218

Complex-exponential 103

Conditional mean 308

Conditional probability 294

Conditional variance 308

Continuous r.v.s 325

Continuous random process 311

Continuous random variable 297, 298

Continuous-time signals 14, 15, 93, 115

Continuous-time systems 115

Convolution integral 36, 97

Convolution theorem 29, 50, 53, 421

Convolution 14, 35, 36, 59, 78, 81, 108

Core 5

Correlation coefficient 308

Correlation 35, 37, 59, 78, 81

Costas loop 164, 165

Coupling capacitor 148

Covariance matrix 309

Cross-correlation 38, 59, 60, 87, 312, 316, 318, 

319, 327

Cross-covariance 312, 327

Cross-power spectrum 319

Cross-talk factor 442

Cross-talk in PAM 441

Cross-talk in PTM 448

Cross-talk 439, 442, 460

Crystal filters 274, 278

Crystal oscillators 228

Cumulative distribution function (CDF) 297, 306, 324

D
De-commutator 439, 450, 451

De-emphasis filter 397, 398, 400

De-emphasis 234, 284, 287, 397, 410, 411

Delayed AGC 265

Delay-line 241

Delta-function 36

Demodulation 146

Depth of modulation 126

Destination signal-to-noise ratio (S/N)D 371

Destination signal-to-noise ratio 394, 396

Destination SNR 380, 385, 395, 396, 411

Detection of DSB-SC signals 163

Detection of VSB signals 189

Detection 146

Detector 130, 135

Deterministic signals 17

Deviation ratio 206, 250, 326, 395, 401

Deviation 326

Diagonal clipping 150, 192, 264

Differential amplifier 139

Differential equation 98, 113

Differentiation theorem 29, 57

Differentiation-in-frequency theorem 54

Differentiation-in-time theorem 53

Differentiator 398
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Diffraction 10

Diffusion 345

Diode detector 149

Direct method 230, 283, 250

Directional antennas 259

Dirichlet's condition 43

Discrete r.v 325

Discrete random process 311

Discrete random variables 297, 298

Discrete spectrum  26

Discrete-time signals 15, 116

Discrete-time systems 93, 116

Discriminator 236, 389, 390, 404

Distortion 3, 148

Distortionless transmission 92, 106, 107, 117

Distributions 17

D-layer 6, 8

Double conversion receivers 274

Double heterodyne receivers 279, 287

Double sideband suppressed carrier modulation 156

Double spotting 272, 286

Doublers 228

Drift 345

DSB-SC modulation 156

DSB-SC system 375

Duality theorem 50

Dual-slope detector 237

Dynamic systems 93, 116

E
Effective bandwidth 199, 219, 221, 228, 250, 251

Effective radiated power (ERP) 258, 282, 284

Eigensignal 103, 105, 116

E-layer 8

Electromagnetic spectrum 4

Elementary outcomes 294

Elliptic 435

Energy signal 14, 15, 79, 81, 82, 347

Energy spectral density 14, 60, 79

Ensemble average 314, 347

Envelope and phase-angle representation 390

Envelope detector 146, 149, 189, 191, 237, 

264, 373, 377, 379, 389, 411

Envelope 126, 135

Equalizer 447

Equivalent lowpass LTI system 74

Equivalent lowpass system 80

Equivalent noise resistance 352, 358, 366

Equivalent noise temperature 355, 356, 357, 361, 366

Ergodic processes 327

Euclidian space 21

Even symmetry 33, 44, 108, 117

Event 294

Exciter section 258

Expected value of a random variable 303

Exponential order 112

External noise 336

Extra-terrestrial noise 336, 337

F
Fading 3, 5, 9

Fall-time 453

FDM hierarchy 193

Fidelity 274, 276, 287

Figure of merit for a DSB-SC system 376

Figure of merit for a SSB-SC system 375

Figure of merit for AM 380

Figure of merit for FM 394

Figure of merit for PM 395

Figure of merit 269, 373, 410

Filter method 171, 193, 277

Filter 108

Filtering 105

Flat-top sampling 431, 438, 459

F-layer 6, 7

FM demodulator with feedback (FMFB) 244

FM feedback detector 236

FM mobile communication 234

FM radio broadcasting 247

FM receivers 283

FM stereo broadcasting 248

FM transmitters 258

Folding-over effect 460

Foster-Seeley detector 251, 252

Foster-Seeley discriminator 238

Fourier series coefficients 29, 77

Fourier series 13, 20, 417, 420, 422

Fourier transform theorems 47, 79

Fourier transform 13, 41, 78, 82, 105, 113, 170, 

320, 418, 423, 432

Free space 123

Frequency demodulator 398

Frequency deviation constant 201, 220, 223, 250, 389

Frequency deviation 208, 390, 201, 206

Frequency divider 167

Frequency division multiplexing (FDM) 180, 

181, 193, 440

Frequency error 177
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Frequency folding effect 424

Frequency modulation feedback (FMFB) 406

Frequency modulation 3, 124, 182, 199

Frequency multipliers 250

Frequency response function 103, 104

Frequency response 117, 268

Frequency stability 232, 257

Frequency translation 3

Frequency-shift theorem 29

Frequency-to-voltage conversion 237

Friis's formula 357, 361, 366

Function of a random variable 305

G
Galactic noise 336

Ganged condenser 273

Gate waveform 140

Gaussian density function 299, 329

Gaussian density 221

Gaussian modulated signal 221

Gaussian processes 317

Gaussian random variable 299, 325

Generalized Fourier series 24

Generalized functions 17

Ground state 94

Ground wave 6, 258, 336

Group delay 242

Guard band 419, 424

Guard time 444

H
Half-power bandwidth 107, 117

Half-wave symmetry 33

Hazeltine method 261

Hermitian symmetry 43, 81

High-frequency band 6

High-level modulation 145, 191, 260, 285

Highpass filter 109

Hilbert transform 14, 66, 75, 80, 88, 108, 180, 323, 374

Homodyne detection 178

Homogeneity 47

I
Ideal bandpass filter 110

Ideal high pass filter 109

Ideal lowpass filter 109, 421, 424

Ideal sampling 421, 459

IF amplifier bandwidth 407

IF amplifier 241, 247, 263, 264

IF bandwidth 276

Image frequency rejection ratio (IFRR) 268

Image frequency rejection 264, 268

Image frequency 270, 286

Image rejection 274

Image signal rejection 279

Image signal 268

Impulse function 317

Impulse response function 13, 64

Impulse response 96, 116, 317, 436

Impulse sampling 421

Independent processes 327

Independent sideband transmission (ISB) 182, 193

Indirect method 227, 252

In-phase and quadrature components 379

In-phase channel 165

In-phase component 71, 323

Instantaneous frequency 200, 208, 221, 231, 389

Instantaneous sampling 421

Integrated noise figure 354

Integration theorem of Fourier transform 56

Integrator 398

Interfering signal 247

Intermediate frequency (IF) 236, 247, 263, 283, 373

Inter-modulation frequency 276

Internal noise 336

Interpolating functions 421

Intersymbol interference 293

Inverse Fourier transform 42, 51, 78, 109 317,  427, 436

Ionosphere 6, 337

ISB receiver 281

ISB transmitter 280

J
Jacobian 310

Johnson noise 337, 365

Joint density function 307, 326

Jointly Gaussian 309, 324, 326

Jointly stationary processes 324

Jointly stationary 318

Jumbo group 182

K
Kirchhoff's mesh equations 102
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L
Laplace transform 98, 104

Laser 417

Leading edge 446

L'Hospital's rule 337

Limit theorem 327, 329

Limiter stage 247, 252

Limiter 239

Linear phase response 92, 106

Linear system 94

Linear time-invariant (LTI) systems 13, 92

Linearity theorem 29, 47

Line-of-sight propagation 282

Line-of-sight 8, 259

Local carrier 176

Local oscillator frequency 265, 272

Local oscillator 178, 228

Loop filter 244, 408

Lossy transmission line 359

Loud speaker 259

Lower side-band 129, 169

Low-level modulation 145, 191, 260, 285

Low-noise amplifier 359, 361

Lowpass equivalent 392

Lowpass filter 109, 418

Lowpass process 321

Lowpass representation 72

Lowpass sampling theorem 322, 328, 416, 419,  

428, 438, 459

LSSB-SC signal 170, 175, 192

LTI system 317, 328

M
Magnetron 417

Magnification factor 342

Magnitude response 104, 107, 117

Magnitude spectrum 44, 77, 106, 108

Man-made noise 336

Marginal density functions 307

Master groups 182

Matching transformer 265

Maximum power transfer 343

Maximum usable frequency 8

Mean of the random process 312

Mean of the random variable 312

Mean square sense 321

Mean squared value 347

Mean 299, 327

Measurement of noise figure 363

Mechanical filters 278

Medium frequency 6

Medium waves 6

Medium-wave band 258, 336

Microwave 10

Milky way 337

Mixed r.v 325

Mixed random variable 298

Mixed-type random variables 297

Mixer stage 348

Mixer 228, 264

Modified Bessel function 300

Modulated signal 124

Modulating signal 138

Modulation index for FM 205, 250

Modulation index for PM 205, 250

Modulation index 126, 133, 135, 153, 217, 

220,  224, 251, 377, 445

Modulation section 258

Modulation theorem 29, 48, 58

Modulation 3, 123

Modulator 138

Monostable multivibrator 242, 447

Morse code 1

Multipath propagation 12

Multipath 3, 5

Multiplexing 3, 124, 180, 181

Multiplication theorem 29, 51

Mutual conductance 235, 238

Mutual inductance 238

N
Narrowband angle modulation 210

Narrowband angle modulator 228

Narrowband noise 364

Natural sampling 459

Negative feedback 262, 285

Negative frequencies 170

Negative peak clipping 153, 192, 264

Neutralization 261, 285

Noise equivalent bandwidth 351, 366, 367

Noise equivalent circuit 341

Noise figure of the lossy line 360

Noise figure 263, 287, 353, 356, 364, 366, 274, 

276, 354

Noise power spectral densities 339

Noise power spectrum 341
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Noise power 340

Noise temperature of a source 344

Noise temperature 361, 367

Noise 243, 293, 335

Noise-equivalent bandwidth of the filter 349

Noise-equivalent circuits 338

Non-linear system 94

Normal random variable 299

Notch filters 335

Nyquist rate 419, 435, 424, 459

O
Odd symmetry 33, 44, 117

Op-amp 139

Optical fibre 3, 5

Optical frequencies 3

Orthogonal expansion 20, 41

Orthogonal functions 21, 23

Orthogonal process 313, 327

Orthogonal vectors 21

Orthogonal 308

Orthonormal functions 23, 24, 31, 81

Oscilloscope 135

Out-of-band noise 336, 425

Over modulation 126, 135

P
Padder 273

Pahse spectrum 25

Paley-Wiener criterion 112, 117

PAM 438

Parseval's theorem 30, 45, 51, 60, 85

Partition noise 348, 365

Passbands 108

Peak frequency deviation 222, 223, 225, 236, 394

Peak phase deviation 225

Periodic signal 40

Personal communications 2

Phase ambiguity 166, 167

Phase demodulator 398

Phase deviation constant 200, 208, 220, 249

Phase deviation 200, 206, 208

Phase discriminator 236

Phase distortion 177

Phase error 163, 176

Phase lock loop or PLL 406

Phase modulation 3, 124, 199

Phase modulator 228

Phase response 104, 117

Phase shifters 175

Phase spectrum 44, 77, 108

Phase synchronism 166

Phase-locked loop (PLL) 244, 251

Phase-locked loop detector 236

Phase-shift discriminator 238

Phase-shift SSB-SC detector 180

Phasing method 171, 193

Physical realizability 111

Pilot carrier SSB transmitter 278

Pilot carrier 178, 249

Planck's constant 337

Point-to-point communication 182, 259

Positive frequencies 170

Post-detection noise spectrum 393

Post-detection noise 393, 397

Post-detection signal-to-noise ratio 386

Post-detection SNR 388, 413

Power gain 353

Power in a DSB-SC signal 157

Power signal 14, 15, 39, 62, 81, 82

Power spectral density of the thermal noise 337

Power spectral density 14, 61, 62, 79, 220, 

316, 324 , 346, 349

Power spectrum 313, 320, 329, 393

Power-bandwidth trade-off 395, 410

Power-limited 11

Practical diode detector 152

Pre-detection signal-to-noise ratio 373

Pre-detection SNR 388, 390, 409, 413

Pre-emphasis filter 397, 398

Pre-emphasis 234, 247, 248, 284, 287, 396, 411

Pre-envelope 69, 70, 76, 80, 170

Primary service area 258, 282, 284

Probability density function (PDF) 298, 325

Probability masses 298

Probability space 294, 306

Product modulator 139

PSD of an FM signal 221

Pulse amplitude modulation (PAM) 416, 454

Pulse code modulation (PCM) 416

Pulse duration modulation (PDM) 416

Pulse modulation systems 417

Pulse position modulation (PPM) 416, 444

Pulse width modulation (PWM) 444

Pulse-time modulation 444
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Q
Q-factors 238

Q-function 300

Quadrature amplitude modulation 167

Quadrature carrier multiplexing 167, 192

Quadrature channel 165

Quadrature component 71, 323, 365

Quadrature detector 251

Quadrature FM detector 236, 241

R
Radio horizon 9

Raised cosine pulse 83

Random processes 293, 311

Random signals 17

Random variable 296

Ratio detector 236, 239, 251

Rayleigh density function 310

Rayleigh density 403

Rayleigh distributed 392

Rayleigh distribution 300

Rayleigh r.v 325

Rayleigh's theorem 45

Reactance modulator 230, 232, 234, 252

Reactive elements 341

Realization of the random signal 347

Received signal power 376

Receiver 3

Reconstruction filter 428, 432, 435

Reconstruction 427

Replication property 18, 53

RF power section 258

Rice method 261

Ricean random variable 300

Rician r.v 325

Ring modulator 161

Rise time 112, 117, 453

S
Sample space 294, 324, 329

Sample and hold 431

Sampling function 417, 422

Sampling property 18, 66

Satellite communication 3

SAW filters 278

Sawtooth waveform 451

Scaling theorem 29, 49, 58

Scrambler 198

Selectivity 274, 275, 287

Sensitivity 274, 275, 287

Service areas 129

Shielding 335

Shifting in time 19

Short-wave band 258, 336

Shot noise in semiconductor diodes 348

Shot noise 336, 345, 347, 365

Sideband filters 277

Sideband power 145, 385

Sideband suppression filters 173

Sideband 131, 133

Signal bandwidth 92, 106

Signal 293

Signal-to-noise ratio 181, 222, 335, 353, 366, 373

Signum function 55

Simple AGC 265

Sine integral function 114

Single frequency noise figure 354

Single sideband suppressed carrier 156, 169

Skin depth 5

Skip distance 8

Sky-wave 6, 8, 258, 336

Slope detector 236

Snell's law 7

SNR improvement 399

Solar noise 336

Sonars 5

Source 2

Space 329

Space-charge-limited region 348

Space-wave 8

Spectrum of the DSB-SC 159

Spectrum 48, 106, 124, 217, 329

Speech signals 124

Spot noise figure 354

Square-law detection 147

Square-law detector 191

Square-law modulators 138

Squaring loop 164, 166

Squelch circuit 279

SSB transmitters 258

SSB-pilot carrier receiver 279

SSB-SC modulation 169

SSB-SC signal 157

SSB-SC systems 374

Stability 100

Stagger-tuned IF stages 267

Standard deviation 326
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Static systems 93, 116

Static 336

Stationarity 327

Stationary in the wide sense 327

Stationary processes 313

Statistically independent 295, 326

Step response 97, 98

Stereophonic FM receiver 249

Stop-bands 108

Strong Dirichlet's conditions 33, 77

Subcarriers 168, 181

Sub-carriers 181

Sun-spot cycle 336

Super group 182

Superheterodyne receiver 251, 259, 263, 283, 285, 389

Superheterodyne 247

Superposition integrals 97

Superposition principle 339

Superposition 47

Surface acoustic wave 278

Switching modulator 139

Synchronism 166

Synchronization 438, 450

Synchronous demodulator 156, 375

Synchronous detection 147

Synchronous detector 373, 374, 377, 411

System bandwidth 92, 106, 107

System 93

T
Telemetry 417

Television 182

Temperature-limited condition 346

Thermal noise 299, 336, 337, 345, 365

Thermionic emission 345

Thevinin's equivalent circuit 358

Third method 171, 174

Three-point tracking 273, 286

Threshold effect for AM 410

Threshold effect in envelope detection of AM 382

Threshold effect in FM 410

Threshold effect 246

Threshold extension 406, 407, 410

Threshold in WBFM 402

Threshold phenomenon 404

Time division multiplexing (TDM) 181, 417, 438, 456

Time invariance 94

Time-constant 152, 442

Time-delay theorem 47, 58

Time-invariant system 116

Time-shift theorem 29

Time-varying system 94

Tracking error 273

Tracking 272, 286

Trailing edge 446, 449

Transfer function 87, 103, 104, 105, 117, 341, 427, 436

Transition bandwidth 172

Transit-time 346

Transmission bandwidth 200, 222, 395, 458

Transmitter 3, 257

Trapezoid method 135

Trapezoidal pattern 191

TRF receivers 259, 285

Trigonometric Fourier series 30, 77, 84, 140

Trimmer 273

Triplers 228

Troposphere 10

Tropospheric propagation mode 8

Tuned circuit 342

Tuned power amplifiers 145

Tuned radio frequency (TRF) receiver 262

Two-point tracking 273, 286

TWT amplifier 235

U
Uncorrelated processes 313, 327

Uncorrelated 338

Uniform distribution 403

Uniform random variable 298, 325

Uniformly distributed 392

Unit impulse function 17, 19, 97

Unit-step function 17, 19, 97, 112, 116

Unit-step response 113, 116

Unscrambling 198

Upper side-band 129, 169

USSB-SC signal 170, 175, 192

V
Varactor diode 232, 234

Variable capacitor 231

Variable reactance 230

Variance of a random variable 304

Variance 299

Very large groups 182

Vestigial sideband filter 185

Vestigial sideband modulation 183, 193

Video signal 177
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Voltage-controlled oscillator 165, 244

VSB filter 185

VSB shaping filter 195

W
Waveguide 3, 5

Wave-guide 7

Wavelength 123

Weak Dirichlet's condition 33, 77

Weaver's method 171, 174, 193

White noise process 317, 327, 330

White noise 88, 338, 344, 347

Wideband -90° phase shifters 173

Wideband FM 213

Wide-sense stationarity 313

Wiener–Khinchine theorem 327

WSS process 330

Z
Zero-crossing detector 236, 251

Zero-crossing FM detector 242

Zero-crossings 243

Zero-mean white noise 350, 365

Zero-order-hold 436, 461
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