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Artificial Intelligence (AI) is a confluence of many disciplines. There are two distinct strands of AI 

activity. One, a more cognitive approach, seeks to understand how intelligent behaviour arises. For 

researchers pursuing this flavour, AI provides a computational platform to test their ideas. The other 

strand adopts an engineering approach, and the goal is to construct intelligent machines. What the two 

have in common is that the ideas manifest themselves in computer programs. And these programs draw 

upon ideas from many disciplines—computer science, philosophy, psychology, economics, mathematics, 

logic and operations research.

The problem solving viewpoint says that intelligence is the ability to solve problems. We often 

refer to an autonomous program that senses its environment and acts independently in a goal directed 

manner as an agent. Then, given a state in which a problem solver exists, and given a set of actions that 

the problem solving agent has access to, the intelligent agent choses the actions that will result in the 

agent being in a desired state that satisfies the agent’s goals. Within this broad framework, all kinds of 

problems can be posed, and many different kinds of techniques can be applied. Identifying a desired 

state, or goal of an agent, is also within the scope of intelligence, though often categorized as wisdom, 

exemplified by the phrase “wise choice”.

There are two broad approaches to solving problems.  The first is to treat every problem to be solved 

using first principles, and the second is to harness knowledge gleaned from experience or from other 

agents. The first principles approach says that an agent can solve a problem by reasoning about actions, 

exploring combinations, and choosing the ones that lead to the solution. Even this exploration can be done 

in an informed manner. We begin our own exploration of AI by first studying this approach. However, 

as we soon see, there lurks the danger of combinatorial explosion that the agent has to contend with. We 

then refine and modify the search based approach to include heuristic knowledge, and then we move 

towards ways to deploy more explicit forms of domain specific knowledge. These will include logic 

and reasoning, memory structures and the exploitation of experience, deeper knowledge in models and 

ontology, and the relation between language and knowledge. We will look at machine learning techniques 

that can learn from instances of data. Along the way, we also look at game playing and planning problems. 

Our study of knowledge begins with employing logic as a vehicle. We draw upon the strong 

mathematical and philosophical base of logical reasoning. Here again, we witness that the weak 

methods for theorem proving encounter the feared adversary, CombEx, or combinatorial explosion. 

We look at ways to structure knowledge in an effort to connect the related pieces and make compact 

representations. Our study of ontology and description logic is also driven by the need for programs to 

communicate and exchange information by different machines across the Internet. Humans use language 

not only to communicate but also to represent knowledge, for example in a book. Formal reasoning and 

argumentation is also often done using language. We devote three chapters to dealing with various aspects 

of language, including methods for text processing which have gained prominence with the explosion 

of information available online. I have been sometimes asked by students as to why I teach, and write 

about, approaches like the conceptual dependency theory and scripts etcetera, which were popular up 

till the early eighties in the last century and not really pursued after that. The reason is that semantics 

is important, as also is pragmatics that involves the representation and reasoning with stereotypical 

knowledge. If a computer is to interact meaningfully with a user then it will need to access the meaning 
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of what is being said. The specific formalism that is used is not the important thing, but the idea that 

the meaning of natural language sentences is expressed in a language that is used to model the concepts 

in the underlying domain. With increasing computational power and advances in representation and 

reasoning, such approaches to handle deep knowledge are bound to make a comeback. 

However, the use of classical mathematical logic is inadequate for reasoning about a changing 

world and where we have to contend with incomplete information. Mathematical logic connects true 

statements to other true statements. It is not quite equipped to talk about statements whose truth values are 

neither unequivocally true nor unequivocally false. Researchers have tried various approaches to handle 

uncertain knowledge, from probabilistic methods to characterizing conditions under which statements 

are true, to prescribing degrees of belief. We look at some of these in the latter half of the book. 

As we move from pure search based methods to more and more use of knowledge, we study the 

algorithms that have been devised at each stage. Eventually, a truly agile problem solving agent will 

need to integrate many of these algorithms for solving problems into one system. 

About the Book

This book is a first course in artificial intelligence. The word course here is in the sense of offering, 

implying that the reader could go on to more detailed offerings in selective areas. It is like the first course 

of a sumptuous feast, which indeed artificial intelligence promises to be. Every chapter in the book, and 

in some case even sections in chapters, has enough material to write a book on, and in most cases indeed 

have books written on them. Our goal in this book is to provide in one place an introduction to the core 

concepts of artificial intelligence. If these ideas have to be embedded in an agent, whether physical or 

virtual then other disciplines will be involved for sensing and acting. A physical intelligent agent, for 

example, may need visual, auditory and tactile sensors and a robotic platform or a speech synthesis 

system for effecting actions.  The related disciplines of speech processing, computer vision and robotics 

are beyond the scope of this book. We confine ourselves to the cognitive aspects of intelligent agents. 

The book is meant primarily for the first-time student, most likely in an undergraduate or even 

postgraduate course. But it could also be useful for a seasoned professional making a foray into this 

exciting field. That could be a software engineer with a desire to implement smarter programs (apps?) or 

a researcher from another domain keen to exploit artificial intelligence techniques in her area of activity. 

No background is required except familiarity with programming. Even for those who do not program 

themselves, the book could provide insights into software written by others. And finally, I hope this 

book will be a part of essential reading for the budding artificial intelligence researcher.

The book has evolved over a period of over twenty years of teaching artificial intelligence at IIT 

Madras, and is based on a set of six elective courses taught by my colleagues and me in the department—

Introduction to AI, Knowledge Representation and Reasoning (KRR), Planning and Constraint 

Satisfaction (PCS), Memory Based Reasoning in AI (MBR in AI), Natural Language Processing (NLP), 

and Machine Learning (ML). In fact, I am privileged to have my colleague Sutanu Chakraborti who 

teaches NLP write Chapter 16, and Ashish Tendulkar who taught ML contribute to Chapter 18.  In 

addition, there is material on Qualitative Reasoning, Probabilistic Reasoning and Artificial Neural 

Networks. The last two also have courses devoted to them. Most of the book reflects the way I teach 

the AI related courses, and contains examples and figures designed to aid the reader in understanding 

concepts. The book has a narrative style, telling the story of the quest for AI, in which concepts may 

sometimes be expressed again in different words. I have also received feedback that this reinforces the 

learning of concepts. 
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The book follows a theme of building intelligent systems from scratch. We begin with general purpose 

search methods and gradually bring out the need for knowledge for problem solving, which first appears 

in the form of heuristic functions before appearing in the form of explicit symbolic structures designed to 

address the different issues in reasoning, eventually even in an uncertain world with incomplete informa-

tion. On the way, we look at alternate approaches like constraint satisfaction and also at specific problems 

like planning and game playing. As we go along, various sub-areas of artificial intelligence emerge. 

This book is an attempt to give a comprehensive account of Artificial Intelligence to the reader in 

one place. I would expect the serious reader to complement this material with other literature, much of 

which has been indicated in the text.

The book has a flow of chapters building up a case for and leading up to future chapters. However, 

an attempt has been made to write each chapter so that it can be read in isolation, and make it possible 

for an instructor to choose and string together chapters to form a course. 

Roadmap to the Syllabus

The book is not written explicitly for a one-semester course or a one-year course. In fact, it would be 

difficult to include all the material in a one- or even two-semester course, unless the syllabus is carefully 

selected from different chapters. We assume each teacher will formulate a course syllabus that fits in well 

in the curriculum, and encourage the interested student to read up the remaining part. Even the order in 

which the material is taught is not sacrosanct, though there are some dependencies. For example, it has 

been suggested by a reviewer or two that the chapter on games can come earlier in the book. In fact, 

this is the case in the introductory course I teach on AI, and it does lead to a programming assignment 

that can be given early—writing game playing programs that participate in a course tournament with 

marks being earned by the programs—that students find quite exciting. 

The following contents could form a one-semester course.

Chapters 1-4. Chapter 5 up to 5.7, Chapter 7, Chapter 8 up to 8.2, Section 1 from Chapter 10, Chapters 

11-12, Chapter 16 and some parts of Chapter 18.

A three-semester course would do more justice to the subject and could be as follows. 

Semester 1.  Problem solving using search. Chapters 1-4. Chapter 5 up to 5.7, Chapter 6-9, Section 

1 from Chapter 10, Chapter 12. 

Semester 2.  Knowledge representation and reasoning. Chapter 11, review of Chapter 12, Chapter 

6, Chapter 13 up to Section 5, Chapter 14 up to Section 7, Chapter 15.

Semester 3.  Natural language processing, handling uncertainty, and machine learning. Chapters 

16-18.

A two-semester course could cut down on some material from the second semester of the three-

semester syllabus, and add some from the third.

Online Learning Center

The Online Learning Center is accessible at http://www.mhhe.com/khemani/ai and contains

 ● Wiki page for programs
 ● PowerPoint slides of the chapters
 ● Solution Manual with pointers
 ● Web links to additional reading
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A Final Word

The proof of the pudding is in the eating. Learning artificial intelligence has to be reflected in the 

implementation of programs that embody the algorithms written in the book. The algorithms have 

deliberately not been written in a programming language. One reason for this is that this allows us to 

abstract away from a programming language and focus on the algorithms. Another is that the algorithms 

are indeed independent of the language they can be implemented in. While someone might like to use a 

language like Lisp or Haskell, other readers might prefer C, C++, Python or Java. We leave the choice 

to the user. A third reason, as appreciated by a reviewer, is that this allows the instructor to specify the 

algorithm with just enough detail, and actually get the students to learn by doing the implementation. 

Many of these algorithms have been implemented by students at IIT Madras over the years as part of 

course assignments. Perhaps we can use some of those programs to seed a Wiki site for algorithms in 

which readers can contribute implementations in different flavours. Do look out on the book webpage 

for a link.

Feedback from the readers is welcome at AFCAI@cse.iitm.ac.in

Deepak Khemani

Publisher’s Note

Do you have any further request or a suggestion? We are always open to new ideas (the best ones come 

from you!). You may send your comments to tmh.csefeedback@gmail.com
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T  he human mind is a wondrous thing. For centuries, humans have reflected upon the world we live 

in; looking at the sun, the moon and the stars in wonderment, observing nature as the days grew and 

shrunk, seasons change, the searing heat of the summer followed by the dark clouds bringing welcome 

rain; observing life around us in the form of plants and trees and rabbits and bees; the constant struggle 

for food and the desire to avoid becoming food; and most of all, upon themselves and the human species 

amidst all these.

 We, the Homo sapiens, have learned to exploit this ability to reflect upon the world around us to make 

life better for ourselves. After the extinction of the dinosaurs, when mammals began flourishing, we 

were probably just one amongst the many species foraging for food and fleeing the predators. Evolution, 

however, bestowed us with bigger brains; and we started changing the rules of the survival game being 

played amongst the different species. We learnt to form societies and evolved language as a means of 

communication between individuals; we learnt to protect and domesticate species of flora and fauna 

that were advantageous for us; and perhaps most importantly, we learnt to make and use tools.

 As humankind became technologically more advanced, individual lifestyles diversified enormously. 

Though we are all born the same, as we grow and learn we channelize our activity and occupations into 

a multitude of directions, and the more technologically advanced we have become, the more specialized 

our professions have become. This has no doubt given us the benefits of efficiency, exemplified by 

workers in a factory, each doing a specific task. We drink our coffee grown by someone, transported by 

someone else; roasted, ground, and packaged by an organized mini-society, and sold to us by someone 

else. Everything we use in our daily lives goes through a similar process, and we are able to enjoy a 

rich and bountiful existence1 because each of us is occupied with doing something well, for the benefit 

of many others.

 Technological advancement combined with an organized society has created spaces in which 

sections of society can devote their energies towards things beyond our basic necessities. Humankind 

has developed music, literature, painting, sculpture, theatre and many other art forms to cater to our 

minds. Research in science and society pushes the frontier of our understanding further and further. 

Technological development has accelerated with this deeper understanding.

 And during all stages of human development, our minds have continued to reflect on life around us 

and upon ourselves. We have continuously asked questions about our own existence and about our own 

minds. On this quest for understanding our minds, philosophers have now been joined by mathematicians, 

and psychologists, and economists, and cognitive scientists, and most recently, computer scientists. We 

not only want to understand minds, brains and intelligence, but also want to create minds, brains and 

intelligence. This quest goes broadly under the name of artificial intelligence.

1 We must admit though that the situation is not ideal, being far better for some of us than for others.
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2 A First Course in Artificial Intelligence

1.1 Artificial Intelligence

The field of artificial intelligence (AI) that we explore in this book came into being as soon as digital 

computers were built. But even before the electronic machine came into existence, Gottfried Leibniz 

(1646–1716) and Blaise Pascal (1623–1662) had explored the construction of mechanical calculating 

machines. Charles Babbage (1791–1871) had designed the first stored program machine. The ability of 

storing and manipulating symbols evoked the possibility of doing so intelligently and autonomously by 

the machine; and artificial intelligence became a lodestar for the pioneers of computing.

The name artificial intelligence is credited to John McCarthy who, along with Marvin Minsky and 

Claude Shannon (1916–2001), organized the Dartmouth Conference in 1956. The conference was to 

be a “two month, ten-man study of artificial intelligence … on the basis of the conjecture that every 

aspect of learning or any other feature of intelligence can in principle be so precisely described, that a 

machine can be made to simulate it.”

The above goal set the tone for the definition of artificial intelligence in the textbooks that appeared 

on the subject (see for example (Feigenbaum and Feldman, 1963), (Nilsson, 1971), (Newell and Simon, 

1972), (Raphael, 1976), (Winston, 1977), (Rich, 1983) and (Charniak and McDermott, 1985)). Some 

definitions focus on human intelligence, and some on hard problems.

 ● We call programs ‘intelligent’, if they exhibit behaviours that would be regarded intelligent if they 

were exhibited by human beings—Herbert Simon.

 ● Physicists ask what kind of place this universe is and seek to characterize its behaviour 

systematically. Biologists ask what it means for a physical system to be living. We (in AI) wonder 

what kind of information-processing system can ask such questions—Avron Barr and Edward 

Feigenbaum (1981).

 ● AI is the study of techniques for solving exponentially hard problems in polynomial time by 

exploiting knowledge about the problem domain—Elaine Rich.

 ● AI is the study of mental faculties through the use of computational models—Eugene Charniak 

and Drew McDermott.

Even while Charles Babbage was designing a mechanical computer, his collaborator Lady Ada 

Lovelace (1815–1852) had prudently observed that a machine can only do what it is programmed to 

do. This perhaps was an indicator of the debates that accompanied the foray into artificial intelligence 

(discussed briefly in a section below) which led many people to assert that the goal of AI was to 

mimic human intelligence. We should then perhaps add our preferred description of what AI is all  

about:

 ● The fundamental goal of this research is not merely to mimic intelligence or produce some clever 

fake. “AI” wants the genuine article; machines with minds—John Haugeland (1985).

Haugeland also says that he would have preferred the name Synthetic Intelligence, since for some 

people, the word artificial intelligence has a connotation of not being real. Other names that have been 

suggested are Applied Epistemology, Heuristic Programming, Machine Intelligence and Computational 

Intelligence. But it is Artificial Intelligence that has stuck both within the scientific community and in 

popular imagination.

The field of AI is a culmination of a long series of efforts to build sophisticated machinery in Europe 

over the last few centuries, along with advances in philosophy, mathematics and logic in the scientific 

community. Perhaps a quick look at the history of the activity leading up to our modern times will be 
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insightful. The serious student of artificial intelligence is referred to the books Machines Who Think 

by Pamela McCorduck (1973), and AI: The Very Idea by John Haugeland (1985) that explore the 

historical and philosophical background in considerably more detail. The material in the next section 

draws significantly from them.

1.2 Historical Backdrop

The urge to create intelligent beings can be traced back to Greek mythology. Hephaestus, son of Hera 

(the queen of gods and Zeus’ wife), constructed humanlike creations regularly in his forge. As a present 

from Zeus to Europa (a human princess), he created Talos out of bronze to guard and defend the island 

of Crete, where Europa lived. Perhaps his most famous creation is Pandora. He did so at the behest of 

Zeus who wanted to punish humankind for accepting Prometheus’s gift of fire. Pandora is sent to Earth 

with a casket, which she has been forbidden to open, but does so, overcome by curiosity, and releases 

the world’s evils.

Disenchanted with human women, Pygmalion is said to have created Galatea out of ivory, and fell in 

love with his own creation. Aphrodite, the goddess of love, obliged him by breathing life into this man 

made woman. Such stories in which creations of men that come alive abound in literature.

One of the earliest mechanical contraptions actually built was by Heron of Alexandria in the first 

century AD when he built water powered mechanical ducks that emitted realistic chirping sounds.

Gradually, as metal-working skills improved, the line between fact and fiction got blurred. The 

European people were not as affluent as they are now, and many were totally occupied with eking 

out a living and protecting themselves from the harsh winters. Science, and art, was the forte of the 

rich aristocrats, and scientists had begun to gain liberty of action and were beginning independent 

philosophical and scientific investigations. The works of scientists and artisans (and sorcerers) blended 

with folklore and often became a subject matter of folklore itself.

Daedalus, most famous for his artificial wings, is also credited with creating artificial people. In 

mediaeval Europe, Pope Sylvester II (946–1003) is said to have made a statue with a talking head, with a 

limited vocabulary, and a penchant for predicting the future. It gave replies to queries with a yes or a no, 

and its human audience did not doubt that the answer was preceded by some impressive mental activity. 

Arab astrologers were believed to have constructed a thinking machine called the zairja. The zairja 

caught afire imagination of a missionary, Ramon Lull (1232–1315), with religious zeal, who decided to 

build a Christian version called the Ars Magna. Like the zairja, the Ars Magna was constructed using 

a set of rotating discs and was aimed “to bring reason to bear on all subjects and, in this way, arrive at 

the truth without the trouble of thinking or fact finding” (McCorduck, 1973).

This period also marks the emergence of the art of making elaborate clocks decorated with animated 

figures, which helped establish the belief that learned men kept artificial servants. In the sixteenth century, 

the rabbi Judah ben Loew (1520–1609) is said to have created an artificial man named Joseph Golem, 

who could only be instructed properly by the rabbi. Earlier in the century, Paracelsus (1493–1541), a 

physician by profession, is reputed to have created a homunculus, or a little man.

The art of mechanical creatures flourished in the following years. The Archbishop of Salsburg built 

a working model of a complete miniature town, operated by water power. In 1644, the French engineer, 

Isaac de Caus, designed a menacing metal owl along with a set of smaller birds chirping around it, 

except when the owl was looking at them. In the eighteenth century, Jacques de Vaucanson (1709–1782) 

of Paris constructed a mechanical duck that could bend its neck, move its wings and feet, and eat and 

apparently digest food. Vaucanson himself was careful not to make strong claims about the duck’s 

innards, asserting that he was only interested in imitating the larger aspects. This approach has been 
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echoed often in artificial intelligence. For example, chess playing machines do not make decisions the 

way human players do. A creation of doubtful veracity was the chess automaton, the Turk, created by 

the Hungarian baron Wolfgang von Kempelen (1734–1804). The contraption was demonstrated in many 

courts in Europe with great success. The automaton played good chess, but that was because there was 

a diminutive man inside the contraption.

Fiction took the upper hand once again and Mary Shelley (1797–1851), an acquaintance of Lord Byron 

(1788–1824), wrote the classic horror novel Frankenstein, in which the character Dr Frankenstein, creates 

a humanoid which turns into a monster. The word robot, which means worker in Czech, first appeared 

in a play called Rossum’s Universal Robots

on the suggestion of his brother Josef (Levy, 2008). It is derived from the word robota meaning forced 

labour

the robots rebel and destroy the human race. The prospect of human creations running haywire has 

long haunted many people. Isaac Asimov who took up the baton of writing about (fictional) artificial 

creatures, formulated the three laws of robotics in which he said the following:

A robot cannot injure a human being, or through inaction allow a human being to come to harm. A 

robot must obey any orders given to it by human beings, except where such orders would conflict with 

the First Law.

A robot must protect its own existence as long as such protection does not conflict with the First or 

Second Law. These were laws in the civic sense that Asimov said should be hardwired into the “brains” 

of robots. A zeroeth law was subsequently added: A robot may not injure humanity, or, by inaction, 

allow humanity to come to harm.

But by then, Charles Babbage (1791–1871) had arrived. The son of a wealthy banker, he was exposed 

to several exhibitions of machinery, and it was his desire to build the ultimate calculating machine. 

In one such exhibition in Hanover, the young Babbage was much impressed by a man who called 

himself Merlin, in whose workshop he saw fascinating uncovered female figures in silver, one of which 

“would walk about, use an eyeglass occasionally, and bow frequently”, and the other, Babbage wrote, 

“was a dancer, full of imagination and irresistible.” In 1822, he constructed his smaller machine—the 

Difference Engine. His larger project, the Analytic Engine, however never found the funding it deserved. 

A description of the design can be found in (Menabrea, 1842)2. The distinctive feature of the Analytic 

Engine was that it introduced the stored-program concept, for which we acknowledge Charles Babbage 

as the father of computing. The first realization in physical form of a stored-program computer was in 

fact the EDSAC built in Cambridge a century later. The sketch by Menabrea was translated by Lady 

Ada Augusta (1815–1852), Countess of Lovelace, daughter of Lord Byron, who worked closely with 

Babbage and is often referred to as the first programmer. The programming language Ada has been named 

after her. She has famously said that “The Analytical Engine has no pretensions whatever to originate 

anything. It can do whatever we know how to order it to perform.” She did recognize the possibility of 

representing other kinds of things in the “calculating machine”, including letters of the alphabet, notes 

in music or even pieces on a chessboard.

1.2.1 Mind and Body

The notion of the mind came into our thoughts much later than minds came into existence. Almost all 

life forms sense the world, and most have eyes, arguably our principal means of perceiving the world 

2 See also http://www.fourmilab.ch/babbage/contents.html
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around us. The earliest notions of the world were 

probably that the world was as we saw it. What you 

see is what there is. Somewhat like the WYSIWYG 

(what you see is what you get) text editors. It is not 

surprising that the earliest models of the world were 

geo-centric ones based on the perception of a flat 

earth (Figure 1.1).

This view of the world was drawn from the ideas 

of Greek philosophers Plato and Aristotle who 

dwelt at length upon the notion of ideas. For Plato, 

both an object in the world and the idea of that 

object were derived from a world of perfect ideas or 

ideals. Our own ideas, as well as the objects in the 

world out there, could be imperfect. Aristotle did 

away with the notion of ideals, and said that ideas 

were like pictures of the objects they were based on. 

The ideas were true if they had the same form as the 

object. The human mind was thus something like 

a mirror reflecting the world to us. This, of course, 

takes “us” for granted. The more modern view is 

that the notion of “I” is itself a creation of our mind. 

It was, however, a challenge to make models of the heavens that could explain the apparently erratic 

motion of some heavenly bodies, the planets. It was Nicolaus Copernicus (1473–1543) who gave a 

simpler model which provided a satisfactory explanation for the wanderings of the planets. According to 

his model, the daily movement of the sun, the moon and the stars was an illusion created by the rotation 

of the Earth, and that the Earth itself revolved around the sun. This view would have been an anathema to 

the prevailing human centric view of the world, and Copernicus delayed the publication of his book On 

the Revolution of the Spheres till the end of his life. When it did get published, the book drove a wedge 

between thought and reality. What we thought the world was, did not necessarily reflect as it really was.

Galileo Galilei (1564–1642) futher developed the notion that what we think and perceive is something 

that happens within us. He said that the fact that the when we taste, smell or hear something and associate 

a name with it, the name is really a name we give to the sensation that arises in us. In our modern parlance, 

one would say that the fragrance of a flower we perceive is caused by certain molecules emitted by the 

flower, but the fragrance we feel is the sensations caused by those molecules in our nasal glands. This 

notion was taken up later by John Locke (1632–1704) who distinguished between the primary qualities 

matter has, independent of the perceiver; and the secondary qualities of matter that are as perceived by us.

Galileo was perhaps one of the first to assert that we can reason with our own representations, which 

may not necessarily mirror what we are reasoning about, but stand for elements of the subject in some 

way. The most well known example of this is the way Galileo explained motion. Algebraic systems 

were yet to be devised, and Galileo’s represntations were geometric. If, for example, one side (the 

height) of a right angled triangle represents the final speed of a body accelerating uniformly from rest, 

and the other side (the base) represents the time elapsed then the area represents the distance covered. 

For uniform motion, the shape would be a rectangle. The important point is that Galileo showed that we 

can create representations, and that the representations can stand for something else. In fact, the same 

representation can stand for different things. We shall revisit this notion when we look at the semantics 

of First Order Logic later in the book.

FIGURE 1.1 The world we saw was made 

up of a flat earth, with the heavens rotating 

around it.

Earth



6 A First Course in Artificial Intelligence

It was the English philosopher Thomas Hobbes3 (1588–1679) who first put forward the view that 

thinking is the manipulation of symbols (Haugeland, 1985). Hobbes felt that thought was expressed 

in “phantasms” or thought “parcels”, and was clear and rational when it followed methodical rules. 

Galileo had said that all reality is mathematical, in the sense that everything is made up of particles, 

and our sensing of smell or taste was how we reacted to those particles. Hobbes extended this notion 

to say that thought too was made up of (expressed in) particles which the thinker manipulated. Hobbes 

had used the analogy of thought parcels with words in a language. However, he had no answer to the 

question of how a symbol can mean anything, because he had given up on the idea of thoughts being 

in the image of reality. That is a question that we can say is still unresolved. To some extent now, we 

can say though that meaning arises via explicit association with, or an interpretation of, something that 

is known independently.

Hobbes parcels were material in nature. He would have been at home with the modern view of 

materialism in which one would think of the mind as something that emerges out of activity in the brain, 

which was the flow of electrons and the movement of neurotransmitters across synapses. It was René 

Descartes (1596–1650) who said that what the mind did was to manipulate mental symbols. Descartes 

was a pioneer in the development of algebraic systems. His analytic geometry showed an alternate 

symbolic way of representing lines and figures and reasoning with them. Galileo had shown that motion 

could be described using geometry. Descartes moved one more step away from the subject into the 

realm of mathematics. He said that (pure) mathematics is not concerned with any subject in particular, 

but with the kinds of relations that can arise in any subject of interest. This probably led to his notion 

of the mind as something that was concerned with manipulating symbols. He emphasized the fact that 

symbol systems were useful only when they came with methods and procedures for manipulating them 

and reasoning with them. Descartes was a dualist. He separated the mind from the body and said they 

were made of different kinds of “substances”. Minds had thoughts in them, while the physical universe 

operated by the physical laws of nature. This, however, led to the well known mind-body problem—if 

minds and bodies are distinct then how do they interact? When I think of typing this word, how does 

my thought influence my hand and fingers, which should have been behaving according to the laws of 

the physical world? Likewise, when the (light) photons from the garden impinge upon my retina, how 

do they trigger a corresponding thought about a flower?

The alternative to believing that minds are different from bodies is to believe that there is only one 

kind of thing. Idealism, discussed briefly later, says that (as far as we the thinkers can know) there are 

only ideas, and matter is something we imagine. The opposite of idealism is materialism, which says that 

only the material world exists and the mental world is a kind of a construct that (somehow) arises out of 

physical activity. This view would acknowledge our brains and what happens in them, but would have 

less to say about our minds, and even lesser about souls. Adapting this view, we still cannot escape the 

question of how could one reason or manipulate symbols meaningfully. Either we can manipulate them 

mechanically using some procedure, or we have to somehow bring meaning into the picture. If symbols 

are being manipulated meaningfully then who does the manipulation? One suggestion, mockingly put 

forward by its opponents, is that there is a humunculus, or a little man, who resides in our heads, reading 

our thoughts and creating new ones for us. Then of course, one would have to explain in turn how the 

humunculus works.

A way out was suggested by David Hume (1711–1776), an admirer of Isaac Newton (1644–1727). 

Hume put forth the idea that just as the physical world operated according to the laws of nature, the 

mental world also operated according to its own laws, and did not need a manipulator. And just as 

3 Hobbes in the comic strip Calvin & Hobbes was named after him (Waterson, 1995).
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we do not question why physical bodies obey the law of gravitation, we do not have to question why 

mental symbols will obey the laws that determine their manipulation. This does do away with the need 

for a manipulator, but Hume too could not answer the question of how the thought process could mean 

anything. Because meaning, as we now believe, can only be with respect to something, a real world, a 

domain in which the thinker operates.

While the debate over what minds are and whether machines can have minds of their own raged on, 

the arrival of the digital computer heralded an age when everyone plunged into writing programs to do 

interesting things without bothering about whether the programs would be called ‘intelligent’ or not.

1.2.2 AI in the Last Century

We take up the action in 1950 when Alan Turing proposed the Imitation Game described in the next section, 

and Claude Shannon published a paper on chess playing programs. Soon afterwards, checkers playing 

programs appeared, the first one being written in 1951 in the University of Manchester by Christopher 

Strachey (1916–1975). The program that became well known was by Arthur Samuel (1901–1990)  

which he demonstrated at the Dartmouth Conference in 1956. The basic components of a program to 

play checkers, or similar board games, are the search algorithm that peers into the future examining all 

variations, and the evaluation function that judges how good a board position is. Samuel’s program is 

remembered as the first program that incorporated learning; it would improve with every game it played. 

This was achieved by tuning the parameters of the evaluation function based on the outcome of the 

game. This is important because the program chooses between alternative moves eventually based on 

the values returned by the evaluation function. The better the evaluation, the better would be the choice 

of the move. The program also remembered the values of board positions seen earlier. Samuel is also 

credited as being one of the people who invented Alpha-Beta pruning, a method that can drastically cut 

down on the search effort. In the end, the program became good enough to beat its own creator. One 

can imagine the kinds of fears that might have been raised amongst people after Frankenstein and RUR.

Computers then, by today’s standard, were small (in memory size; physically they were huge) and 

slow. Computing was still an esoteric field.

The earliest proponents of artificial intelligence experimented with logic, language and games. Chess 

and checkers were already a fascination, and considered hallmarks of intelligence. Alex Bernstein had 

spoken about chess at Dartmouth, and developed the first chess playing program in 1957. There was 

optimism amongst many that machines would soon be the best chess players around, but skepticism 

amongst others. Herbert Simon (1916–2001) and Alan Newell (1927–1992) said that a computer would 

be a world champion in ten years. In 1968, David Levy, an international master, wagered a bet that no 

machine would beat him in the next ten years, and won it by beating the strongest player at that time, 

from Northwestern University named Chess4.7. However, Levy later lost to Deep Thought4, originating 

from the Carnegie Mellon University, and in 1997, its successor Deep Blue from IBM beat the then 

reigning world champion, Gary Kasparov.

Game playing programs worked with a numerical evaluation function, and processing natural language 

beckoned as a new avenue of exploration. Noam Chomsky had been developing his theory of generative 

linguistics and moving on to transformational grammar. Armed with a grammatical model of language, 

and aided by a bilingual lexicon, machine translation became an area of research, much to the interest 

of the public. The earliest programs, however, were unable to contend with the richness of language, in 

4  Named after the fictional computer of the same name in Douglas Adam’s celebrated novel, The Hitchhiker’s Guide to the Galaxy. 

The computer was created by a pan-dimensional, hyper-intelligent race of beings to come up with the Answer to The Ultimate 

Question of Life, the Universe, and Everything. 
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particular when dealing with idioms. It was reported in the press that on translating “the spirit is willing 

but the flesh is weak” into Russian and back into English, the output read “the vodka is fine, but the 

meat has got spoiled” or something to that effect.

More interestingly, a natural language parser developed in 1963 by Susumu Kuno at Harvard revealed 

the degree of ambiguity in English language that often escapes human listeners, who latch on to one parse 

tree and the corresponding meaning. Given the input “Time flies like an arrow”, the parser produced at 

least four interpretations other than the one we normally assume. In 1966, the US government appointed 

Automatic Language Processing Advisory Committee (ALPAC) produced a negative report leading to 

a decline in research funding for machine translation. Like other ideas, it revived only with availability 

of increased computing power in the latter half of the century.

The task that computers were successful at from the word go, was logical reasoning. In the Dartmouth 

Conference in 1956, two (then) relatively unknown scientists from the West Coast of the US, Herbert 

Simon and Alan Newell, demonstrated a working theorem prover called LT (Logic Theorist), along 

with J C Shaw. The Logic Theorist proved many of the theorems in Russell and Whitehead’s Prinicipia 

Mathematica, even finding shorter and elegant proofs for some of them. An attempt to publish a new 

proof in the Journal of Symbolic Logic however failed, apparently because a paper coauthored by a 

program was not acceptable! Another system that showed promise was a geometry theorem prover built 

by Gelernter in 1959. However, these theorem provers were based on search, and were faced with its 

nemesis—an exponentially growing search space. Like many AI problems, ‘geometry theorem proving’ 

too faced a revival many years later. In 1961, James Slage wrote the first symbolic integration program, 

SAINT, which formed the base for many symbolic mathematics tools.

Perhaps the most significant contribution of Newell and Simon was their program called GPS (General 

Problem Solver) that addressed general purpose problem solving, based on human thought processes. 

Their strategy called Means End Analysis (MEA) embodied a goal directed search strategy in which 

the problem solver repeatedly looks for methods (means) to achieve the most significant partial goal 

(ends), till all goals are solved. Their work found a home in the Carnegie Mellon University (CMU). 

It was first implanted in a production system language, OPS5, that was used to build expert systems. 

Subsequently, John Laird and Paul Rosenbloom built a general symbolic problem solving architecture 

known as SOAR, which is a popular tool now.

Neural networks, the emergent systems approach to problem solving that believes that the sum of 

interconnected simple processing elements is more than its part, too made their first appearance in the 

early years. Unlike classical AI systems that are designed and implemented in a top-down manner, neural 

networks are built by connecting the “neurons” according to a certain architecture, and then learning 

the weights of these connections by a process of training. It is in these weights, that all the knowledge 

gets captured, and it is generally not straightforward to interpret the weights in a meaningful manner. 

That is why we often call them subsymbolic systems. The first of these was a system called Perceptron 

built in 1957 by Frank Rosenblatt (1928–1971) at Cornell University. The Perceptron was essentially a 

single layer feed-forward neural network, and could learn to classify certain patterns. However, Minsky 

and Papert (1969) gave a mathematical proof that the Perceptron could handle only a simpler class of 

patterns, which proved to be a dampener for neural networks. It was only in the mid-eighties,  with the 

revival of the Backpropagation algorithm for training multilayer neural networks by Rumelhart and Co. 

that research in neural network came again to the fore, and with bigger and faster machines available, 

was quite a rage amongst researchers in the nineties.

Meanwhile, John McCarthy, focused on logic in computer science, and proposed a system called 

Advice Taker in 1958, which was to use logic as a vehicle for knowledge representation and common-

sense reasoning. He also invented Lisp, the programming language of choice for AI practitioners, based 
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on Alonzo Church’s lambda calculus. An important feature of Lisp was that a program could build data 

structures of arbitrary size dynamically during execution, which one believed was a great asset for AI 

programming. An interesting property of Lisp is that programs and data have the same representations, 

which means that programs can treat other programs, or even themselves, as data and modify them. 

Soon there was talk of building (dedicated) Lisp machines, mostly out of Massachusetts Institute of 

Technology, and a small number were even built by companies like Symbolics, Lisp Machines Inc., 

Xerox and Texas Instruments. However, an “AI winter” had set in with the drying of funds in the late 

eighties, largely due to the large hype that AI projects had generated only to disappoint. Meanwhile, 

personal computers were growing by leaps and bounds, rendering Lisp machines, and even the language 

Lisp itself, to be a forte of a dedicated but small community.

In 1965, Alan Robinson published the Resolution Method for theorem proving that brought all kinds 

of logical inferences into one uniform fold. This approach gave a tremendous fillip to logical theorem-

proving research. The notion of declarative knowledge representation took hold, and the possibility of 

using logic as a vehicle for writing programs emerged. As opposed to procedural languages that specify 

the execution steps, logic programming requires the programmer to specify the relations between the 

different entities involved in the problem. Collaborating with Robert Kowalski in Edinburgh University, 

Alain Colmerauer at the University II of Aix-Marseille at Luminy created the language Prolog in 

1972. The idea of logic programming took off, mostly in Europe, and variants like Constraint Logic 

Programming, Parallel Logic Programming (with Parlog), Inductive Logic Programming and (much 

later) Linear Logic Programming were explored. The ideas were taken up with enthusiasm by the 

Japanese government, who announced the Fifth Generation Computer Systems (FGCS) project in 

1982. The goal was to exploit massive amounts of parallelism and make logical inference the core of 

computing, measuring performance in LIPS (logical inferences per second), instead of the traditional 

MIPS (million instructions per second). Along with the Connection Machine—also designed to exploit 

massive parallelism, being built by Daniel Hillis around the same time, and almost in sync with the 

decline of the Lisp machine—the FGCS also faded away after the eighties.

The first autonomous robot was built at the Johns Hopkins University in the early sixties. The Hopkin’s 

Beast, as it came to be known, was a simple minded creature, if it had a mind at all. The requirement of 

being standalone meant that it could not have a built in computer, which in those days would have been 

the size of a small room. It was battery driven, and its main goal was to keep the batteries charged. It 

ambled along the corridors of the department, occasionally stopping to plug itself into an electric outlet 

to “feed” itself. The first robot that could deliberate and do other stuff was built at the Stanford Research 

Institute over six years starting in 1966. It was named Shakey, apparently owing to “his” unsteady pos-

ture. A large computer nearby (there were no small ones then) analysed the data sensed by Shakey’s TV 

camera, range finder and bump sensors, accepted commands in natural language typed into its console, 

and generated and monitored its plans.

In 2004, Shakey was inducted into CMU’s Robotic Hall of Fame5 along with Honda’s ASIMO; 

Astroboy, the Japanese animation of a robot with a soul; C3PO, a character from the “Star Wars” 

series; and Robby the Robot from MGM’s Forbidden Planet. In the preceding year, the Mars Pathfinder 

Sojourner Rover, Unimate, R2-D2, and HAL 9000 were the first set of robots to be inducted. Sony’s 

robotic dog, AIBO, joined them in 2006, along with the industrial robotic arm, SCARA. The entries from 

science fiction were Maria of Metropolis (1927), David of Artificial Intelligence: AI (2001), and Gort 

of The Day The Earth Stood Still (1951). Lego’s robotic kit MINDSTORMS, the agile Hopper, and the 

autonomous vehicle NavLab 5 joined the elite group in 2008, along with Lt. Cmdr. Data from Star Trek: 

5 See http://www.robothalloffame.org/
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The Next Generation. Research in robotics is thriving, commercial development has become feasible, and 

we will soon expect robotic swarms to carry out search and rescue operations; and as we have observed 

elsewhere in this chapter, the possibility of robotic companions is no longer considered outlandish.

The first planning system STRIPS (Stanford Research Institute Planning System) was developed 

around the same time, 1971, by Richard Fikes and Nils Nilsson. So far, the work in planning had adopted 

a theorem proving approach. Planning is concerned with actions and change, and an important problem 

was to keep track of what is not changing. This was the well known Frame Problem described by John 

McCarthy and Patrick Hayes in 1969. The STRIPS program sidestepped the problem by doing away with 

time altogether in its representation, and only keeping the given state, making only those modifications 

that were the effects of actions. It was only later in the last decade of the twentieth century, that time 

made an appearance again in planning representations, as bigger and faster machines arrived, and other 

methods emerged. The Frame Problem is particularly difficult to deal with in an open-world model, 

where there may be other agencies. The Circumscription method given by McCarthy in 1980, laid the 

foundations of engaging in default reasoning in a changing world.

One system that created quite an impression in 1970 was Terry Winograd’s natural language under-

standing system, SHRDLU 6. It was written in the Micro-Planner language that was part of the Planner 

series of languages, that introduced an alternative to logic programming by adopting a procedural 

approach to knowledge representation, though they did have elements of logical reasoning. SHRDLU 

could carry out a conversation about a domain of blocks. It would listen to instructions like “pick up 

the green cone”, and if this was ambiguous, it would respond with “I don’t understand which cone you 

mean”, and you could say something like “the one on the red cube”, which it would understand. Then 

if you told it to find a bigger one and put it in the box, it would check back whether by “it” you meant 

the bigger one and not the one it was holding, and so on. 

The optimism generated by SHRDLU generated expectations of computer systems that would soon 

talk to people, but it was not to be. Language is too rich a domain to be handled by simple means. 

Interestingly, Winograd’s office mate and fellow research student at MIT, Eugene Charniak, had made 

the pertinent observation even then that the real task behind understanding language lies in knowledge 

representation and reasoning. This is the dominant theme when it comes to processing language that we 

explore in this book as well. Incidentally, Charniak’s implementations were also done in Micro-Planner.

A similar view was expressed by Roger Schank and his students at Yale University. They did a 

considerable amount of work, hand coding knowledge into complex systems that could read stories 

and answer questions about them in an “intelligent” fashion. This effort peaked in the eighties, with the 

program BORIS written by Michael Dyer. People whose research approach was to build large working 

systems with lots of knowledge were sometimes referred to as “scruffies”, as approached to the “neats” 

who focused on logic and formal algorithms. But the effort of carefully crafting complex knowledge 

structures was becoming too much, and by then, the pendulum was swinging in AI research towards 

“neat” general purpose, problem solving methods. Machines were getting faster; neural networks were 

on the ascendant; and approaches to knowledge discovery were showing promise. A decade or so later, 

even language research would start taking a statistical hue.

One of Schank’s ideas was that stories follow patterns, like Scripts, and that story understanding 

requires knowledge of such pattern structures. There were other people who investigated structured 

knowledge representations as well. A well known formalism is the theory of Frames, proposed by Marvin 

6  The name derives from a 1942 play of the name “ETAOIN SHRDLU” by Frederic Brown about an artificially intelligent Linotype 

machine. The title itself was based on the order of letter keys on the Linotype machine.

  See http://hci.stanford.edu/~winograd/shrdlu/name.html
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Minsky in 1974, which explored how knowledge exists in structured groups related to other frames by 

different kinds of relations. The idea of Frames eventually led to in the development of Object Oriented 

Programming Systems. A related idea was that of Semantic Nets proposed by Richard H Richens and 

developed by Ross Quillian in the early sixties. The approach of representing knowledge as a network 

of interconnected networks was taken up by John Sowa in his Conceptual Graphs in the eighties. And 

now the system Wordnet7 developed at Princeton University is a valuable resource for anyone interested 

in getting at the knowledge behind lexical utterances.

The importance of knowledge had been brilliantly illustrated by the program Dendral. Developed 

at the Stanford University by Edward Feigenbaum and his colleagues in 1967, Dendral was a program 

designed to be a chemist’s assistant. It took the molecular formula of a chemical compound, its mass 

spectrogram and searched through a vast number of possibilities to identify the structure of the molecule. 

It was able to do this effectively with the aid of large amounts of knowledge gleaned from expert 

chemists. This resulted in performance that matched that of an expert chemist. And the idea of Expert 

Systems was born: to educe domain specific knowledge and put it in the machine. The preferred form 

of representation was rules, and we often refer to such systems as Rule Based Expert Systems. A flurry 

of activity followed. MYCIN, a medical diagnosis system, the doctoral work of Edward Shortliffe, 

appeared in the early seventies. Its performance was rated highly by the Standford Medical School, 

but it was never put to use mainly due to ethical and legal issues that could crop up. Another medical 

system was the Internist from the University of Pittsburgh. A system to help geologists’ prospects for 

minerals, Prospector, was developed by Richard Duda and Peter Hart. Buying a computer system was 

not an ‘off-the-shelf’ process as it is now, and needed considerable expertise. A system called R1, later 

named XCON, was built in CMU in 1978, to help users configure DAC VAX systems.

The main problem with the idea of Expert Systems was what is known as the knowledge acquisition 

bottleneck. Despite the elaborate interviewing protocols that researchers experimented with, domain 

experts were either unable or unwilling to articulate their knowledge in the form of rules. And like in 

other domains, the lure of deploying techniques to extract performance directly from delving into data 

was becoming more appealing. In the nineties, things began to change. The Internet was growing at a 

rapid pace. Automation was happening in all kinds of places. The problem of getting data was the least 

of the problems; making sense of it was.

By this time, we were at the cusp of the 21st century.

There were other strands of investigation in AI research that had been and were flourishing. Research 

areas like qualitative reasoning, non-monotonic reasoning, probabilistic reasoning, case based reasoning, 

constraint satisfaction, and data mining were evolving. Robots were becoming more and more capable, 

and robotic football was providing an exciting domain for integration of various ideas. The ageing 

population in many advanced countries is motivating research in robotic companions and care givers. 

John Laird had declared that the next level of computer games is the killer application for artificial 

intelligence. Search engines were ferreting out information from websites in far flung areas. Machines 

talking to each other across the world demanded advances in Ontology. Tim Berners-Lee had put forth 

the idea of the Semantic Web. NASA was deploying AI technology in deep space. Kismet8 at MIT was 

beginning to smile.

The last frontier is perhaps Machine Learning, the automatic acquisition of knowledge from data, 

which seems again a possibility, given the increasing ability of machines to crunch through large amounts 

7 See http://wordnet.princeton.edu/
8 http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html
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of data. But not before, as Haugeland says in his book, AI: The Very Idea, before we have solved the 

knowledge representation problem.

As we have seen, the juggernaut of AI has been lurching along. Quite like the search methods AI 

algorithms embody, AI research has also been exploring various avenues in search of the keys to building 

an intelligent system. On the way, there have been some dead ends, but there have been equally, if not 

more, stories of achievement and progress. And on the way, many interesting and useful applications 

have been developed. Are these systems intelligent? Will we achieve artificial intelligence? Perhaps we 

can keep that question on the backburner for some more time. And, as Shakespeare said9,

“What’s in a name? that which we call a rose

By any other name would smell as sweet;”

Nevertheless, the question of what is intelligence is an intriguing one. In the following section, we 

take a fundamental look at this question, keeping in mind that one of the goals of artificial intelligence 

research is to implement programs that take us closer to achieving it.

1.3 What is Intelligence?

Everyone has an intuitive notion of intelligence. But at the same time, intelligence has eluded definitions. 

We often try to define it by certain functionalities, which one might associate with the competition to 

survive. The ability to perceive the world around us, to procure food for satisfying one’s hunger, to pick 

a spot of shade to avoid the sun in the tropics, or a spot of warm sun in a cooler climate, to sense danger 

and flee, or fight if escape is not possible, are surely characteristics of intelligent behaviour. Who would 

ever call something intelligent if it kept standing in the sweltering sun, eschewing the shelter of a nearby 

tree? But that is perhaps not all there is to intelligence, for if it were then cats and deer and lions would 

be intelligent too. They are, in this sense and to this extent, intelligent. But intelligence, as we want to 

define or recognize, must include something more. There is the ability to reason, do arithmetic, and play 

chess. This of course is well within the capacity of the computer, but this is not sufficient to be called 

intelligent too. The ability to use language and learn from experiences must count as well. We know that 

animals learn from experience, and that certain species do communicate with some form of meaningful 

sounds. Other species do use signs and symbols to mark their territory and lay trails for others to follow. 

The question we ask then is do they do so consciously, or is it a part of their inherited genetic makeup?

Gradually, a picture emerges that intelligence may be (the effect of, or emerge from) a collection of 

different kinds of skills working together. It is as if a society of problem solvers inhabits and makes up 

our minds (see (Minsky, 1988)).

Goal oriented behaviour must be part of intelligence, and the deployment of skills is usually directed 

towards the achievement of certain goals one may have. Such goal directed behaviour may require 

collection and organization of large amounts of knowledge, which we believe computers should be good 

at. But we also believe that forgetting unimportant things is part of intelligent behaviour. Knowledge 

may be hard-wired, such as that of a weaver bird that builds the intricate nest, or the beaver that can 

build a dam; or it may be acquired through a process of learning, such as when human infants do. One 

might of course ask whether learning itself is hardwired, or is it an acquired skill. It is the ability to 

acquire knowledge in a specialized domain that we often feel is beyond the grasp of other animals. After 

all, who would not call a well-dressed cigar-smoking rabbit who can talk English and beat everyone 

at chess, intelligent? Then there are the higher order faculties that we associate with intelligence. One 

9 In Romeo and Juliet
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of them is creation, or even appreciation of fine art. Sometime in the mid-seventies of the last century, 

Harold Cohen created a program called AARON whose paintings have been much admired (McCorduck, 

1990), (Cohen, 1995). Classical music has also been the forte of higher forms of intelligence. And yet a 

program called EMI (Experiments in Musical Intelligence) written by David Cope (1992; 1996; 2005) 

composed music in the style of over a hundred composers which seasoned listeners could not differentiate 

from the original composer’s style.10

Does that mean that if we could build a robot with arms and legs, teach it to run, drink lemonade, be 

courteous and speak English in addition to its abilities of manipulating very large numbers with ease, 

beating us at chess while painting a study in still life, composing an aria for an opera, diagnosing illnesses 

and prescribing medicines, and planning and cooking a dinner for two—then we would have succeeded 

in creating artificial intelligence? ‘No’, comes the answer this time from a section of philosophers. The 

computer is only a symbol manipulator. It does not know what it is doing. It does not have a sense of 

being in this world. It does not know, for example, that it is adding money to someone’s account even 

when it goes through a sequence of steps that results in doing so. It does not know that it is playing 

chess, or that it should win, or that there is chess, or that it is there. It is just programmed.

All this has something to do with self awareness. ‘The computer may be able to beat me at chess’, 

they say, ‘but it is I who am intelligent, not it. Because I know that I am’. Ironically, grappling with the 

question of human identity, René Descartes had said “cogito ergo sum” (Latin for “I think, therefore 

I am” originally asserted by him in French “Je pense donc je suis”). Descartes felt that the very fact 

that he was thinking (the statement “I am, I exist”, or for that matter any other thought) was enough to 

establish his existence, even if there were “a deceiver of supreme power and cunning who is deliberately 

and constantly deceiving” him. Much earlier, Plato had said “…so that whenever we perceive, we are 

conscious that we perceive, and whenever we think, we are conscious that we think, and to be conscious 

that we are perceiving or thinking is to be conscious that we exist...”11. In recent times, it seems that 

when Warren McCulloch, a pioneer in neural models, was embarking upon his education at the age of 19, 

he was asked by the Quaker philosopher Rufus Jones on what he wanted to do. McCulloch replied “I 

have no idea; but there is one question I would like to answer: What is a number that a man may know 

it, and a man, that he may know a number?” At which his elderly mentor smiled and said “Friend, thee 

will be busy as long as thee lives.” (McCulloch, 1960). There have been many more people who have 

grappled with the notion of the self and consciousness. The interested reader is referred to (Hofstadter 

and Dennett, 1981) and (Hofstadter, 2007) for some very insightful explorations.

So, while for humans we use the process of thinking as a means of arriving at the knowledge of 

our existence, for computers we adopt the contrapositive. They cannot think because they have no 

knowledge of their existence. I know that I am playing chess. I want to win. I know that I want to win… 

and so on. The philosophical objection to artificial intelligence is that since computers are not capable 

of self awareness, being just programmed machines, they cannot be called intelligent. One suspects that 

such objections are made in anticipation of technical advances. Earlier, the challenges were posed at a 

technical level, one of the more celebrated ones being the one by the chess grandmaster David Levy in 

1968, who wagered a bet of £1000 that a computer could not beat him in the next ten years. He did not 

lose his bet, but in 1989 lost to the program Deep Thought, and in 1997, a chess computer beat the world 

champion Gary Kasparov (Hsu, 2002). David Levy, meanwhile, won the 2009 Loebner Prize contest 

(see below) and now believes that robots will be able to interact with humans in many meaningful ways, 

including at an emotional and physical level (Levy, 2008).

10  See for example “Sounds like Bach” by Douglas Hofstadter, at http://www.unc.edu/~mumukshu/gandhi/gandhi/hofstadter.htm 

(accessed on August 20, 2010).
11 See http://en.wikipedia.org/wiki/Cogito_ergo_sum
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The requirement of self awareness lays the trap of solipsism.12 How am I to be aware of someone 

else’s self awareness? Can I even say confidently of another human being that she is self aware as I am? 

We all agree that sugar is sweet and the sky is blue. But how do I know that the sensations of sweetness 

that sugar gives rise in me, are the same as in you? We may both say that the sky is blue. But is your 

experiencing of blue the same as mine? When you say that you are feeling happy, can I really understand 

what you feel? If we answer yes to some of these questions then on what basis do we do that? Is it based 

on our physical likeness? Or the common language that we speak? Or the similar goals we seem to have?

And yet there is another argument against this criterion of self awareness. If  I can ascribe it to a 

fellow human being, can I deny it to other animals, and other life forms? Surely, a cheetah is aware that 

it is hungry when it embarks upon a hunt. Then if we associate self awareness with life and require it to 

be a necessary criterion for intelligence then in effect we would be denying the computer the property 

of being intelligent; not because it cannot do something that one would expect of an intelligent agent, 

but because it is artificial.

One would have observed that definitions of intelligence are usually human centric. This may be 

simply because as humans, we can see life only from our own perspective.

1.3.1 The Turing Test

Perhaps, in order to circumvent the debate on intelligence and get on with the business of building 

machines that are intelligent, Alan Turing, prescribed a test to determine whether a machine (computer 

program) is intelligent (Turing, 1950). Turing himself felt that the question “Can machines think?” was 

meaningless. Instead, he proposed what he called “The Imitation Game” played between a man (A), a 

woman (B) and an interrogator (C), who can communicate with each other only through text messages. 

The interrogator knows A and B only as X and Y, and her (or his) task is to correctly label X and Y with 

A and B, by means of asking them questions. In the game, A tries to mislead the interrogator. Turing 

then asks what would happen if a machine replaces the man in the role of A? If the interrogator decides 

wrongly as often as when A was the man then we could say that the machine was intelligent. This test 

has since come to be known as the Turing Test, and one can visualize it today as being played in a chat 

room with the interrogator chatting with the two entities.

In the paper, Turing (1950) anticipates various objections and offers rebuttals for them. He also says, 

“I believe that in about fifty years’ time, it will be possible to program computers, with a storage capacity 

of about 109, to make them play the imitation game so well that an average interrogator will not have 

more than 70 percent chance of making the right identification after five minutes of questioning. …  

I believe that at the end of the century, the use of words and general educated opinion will have altered 

so much, that one will be able to speak of machines thinking without expecting to be contradicted.”

Obviously, the Turing Test lays emphasis on the program behaving like a human. This means that 

a program participating in the test should conceal its abilities, like for example, to multiply very large 

numbers, or search through large amounts of information, or produce all anagrams of a given word in 

a jiffy. At the same time, it must display the kind of knowledge and language humans use, and engage 

in small talk about the weather, food prices and football scores. Some people feel that computers will 

never be able to do that, while others feel that the test is too simple.

A chatterbot program called ELIZA, written by Joseph Weizenbaum (1966) in 1966, showed how 

human judgment is fallible. The most popular version of ELIZA is a program running the script Doctor, 

and can be found amongst other places in the emacs editor. Weizenbaum said that the program parodies 

“the responses of a nondirectional psychotherapist in an initial psychiatric interview”. He intended the 

12 See http://en.wikipedia.org/wiki/Solipsism
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program to be an exploration of natural language processing, but it was often taken too seriously by 

people who interacted with it. This was because the core of the program was to turn around the user’s 

phrases. If you were to type “I’m feeling sad”, it would respond with something like “Why are you 

feeling sad ?”. Very often, if it did not know how to manipulate the current input, would resort to general 

questions like “Tell me more about your family”. It seems his secretary at MIT thought the machine was 

a real therapist, and spent hours revealing her personal problems to the program, only to be deterred 

when Weizenbaum told her (who was outraged at this invasion of privacy) that he had access to the 

logs of all the conversations.

Somewhat disturbed by the seriousness with which people were taking ELIZA, Weizenbaum wrote 

another book (Weizenbaum, 1976) to debunk the aura around the program, and said that it is we humans 

who tend to anthropomorphize such programs.

Nevertheless, since 1991, an annual competition called the Loebner Prize has been held, in which 

a set of judges interact with a set of chatterbots, programs that chat, to decide which one is the most 

humanlike. Though no program has been able to fool the judges yet, there has been an admirable amount 

of sophistication in the participating programs over the years. Unlike ELIZA which had no knowledge 

backing its conversations, the modern versions have access to databases and topical world information. 

The 2009 competition was won by David Levy’s program named Do-Much-More, in which it responded 

to a question about its identity with13 “Well, I am studying engineering. That ought to give you an idea 

about who I am, but I would sooner be working at the Cadbury’s factory.”

One well known objection to the Turing Test was put forward by John Searle (1980) who says that 

programs like ELIZA could pass the Turing Test without understanding the words they were using at 

all. One must keep in mind that ELIZA itself has no understanding of words, but it cannot also be said 

to have passed the test. Searle illustrated his argument, now known as the Chinese Room argument, by 

a thought experiment. He imagines himself in a room, acting like a computer, manipulating Chinese 

symbols according to some rules. People outside the room slide in some slips with Chinese symbols, 

and Searle passes back some Chinese symbols in return. Does this mean that he understands Chinese? 

As one can see, this is a kind of Turing Test, in which success is determined by meaningful conversa-

tion. Searle does not address the issue of what kind of a program or rules would enable him to converse 

meaningfully with his interlocutors, and perhaps therein lies the question.

1.3.2 Intelligent Decisions

Let us attempt to look at intelligence from a more fundamental perspective. Intelligence is obviously 

about making the right choices and doing the right thing. The perceptive reader would have observed by 

now that we are on slippery ground again here; defining intelligence in terms of equally vague notions. 

But let us nevertheless make an attempt.

Doing the right thing would refer to some goals that the agent has. One might say that the fundamental 

goal of life is life itself. Consequently, the goal of living things is to live; to maintain the body by eating. 

From this point onwards, the ‘boundedness’ of resources comes into the picture. Bodies have finite 

lifespans, and life resorts to procreation. The individual may perish, but the species must survive. Food is 

a finite resource, and apart from having to compete for it, there is also the danger of ending up as a meal 

for someone. Competition leads to evolution, and mixing up of genes via mating becomes an effective 

means of improvement. The right thing, therefore, for an individual of a species, is to do whatever 

propagates the species. The homo sapiens (us humans, that is) developed cognitive abilities and have 

13 From http://www.worldsbestchatbot.com
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“won” the war of species promulgation. We have organized ourselves into heterogeneous societies that 

benefit from the multitude of diverse efforts. In that sense, humans have done the right thing.

An agent can do the right thing only when the agent knows the situation. Intelligence is perhaps 

most associated with the faculty of understanding; the ability to perceive the world around us and 

comprehend the meanings of signs and symbols, including language; the ability to grasp the situation. 

A self aware agent will be able to conceptualize itself in a situation, choose the goals to achieve and the 

actions to achieve those goals. Taking to one’s heels on espying a tiger in one’s vicinity may be an act 

of cowardice, but more importantly is an act of intelligence derived from understanding the situation. 

The intelligent student will observe the teacher’s face go red with anger and refrain from throwing that 

piece of chalk at his neighbour. The enthusiastic baseball player, who is not a blockhead, will realize 

that the accumulating dark clouds imply impending rain and will not implore his friends to hang on.

Having evolved a mind in which one can see oneself in the world, we have a situation in which 

individual human beings have their own personalized goals. That is, our individual goals are not 

necessarily in tune with the goal of the tribe, or community, or even the species. The goals of the species 

are long term, whereas the individual goals may be of shorter term. Long term goals and short term goals 

can often be in conflict, and whether one’s choices or actions are intelligent or not would depend upon 

the context they are evaluated in. Thus, rampant consumption and exploitation of our earth’s resources 

may be intelligent in the context of a few lifespans, but stupid from a longer term perspective. Individual 

goals may themselves be over varying time frames. Enjoying junk food in front of the television set may 

serve an immediate goal, but may not be a great idea over the long term, specially if it becomes a habit. 

Again, one sees that actions may be intelligent with respect to short term goals, but stupid with respect 

to long term goals. This may happen at smaller and smaller time frame levels. Tripping an opponent 

who is charging towards your goal in a football match may be a “right thing” if it averts the goal, but 

wrong if you get a red card and are sent out, and the opponents anyway score of the resulting free kick.

The point we are trying to make is that actions or decisions can only be judged in the context of the 

goal. Intelligence (or wisdom, in the larger context) may often lie in the selection of the goal to pursue. 

Having selected goals, one must figure out the actions that will achieve those goals. There is considerable 

scope for intelligence here as well. As we shall see later in the book, goals and actions will form a layered 

hierarchy. Goals are addressed by plans of actions, and may themselves be part of higher level goals. 

For example, packing a bag may involve a plan, but itself may be part of a holiday plan. Our endeavour 

in building intelligent machines will start at the bottom of the goal hierarchy, and then move upwards. 

Our task will be to devise means to find the right actions, at any given level.

A software program controlling the stability of an aircraft will choose the right actions to do so at one 

level, a chess program may do so at another level. A route planner that gives you instructions in a car, 

a diagnostic program that tells you what is wrong with your copier, a program that teaches you how to 

solve problems in algebra and geometry, a storytelling machine, a program that guides you step by step 

through a recipe, or a program that acts as an organized memory repository for you, or cross checks 

your logical reasoning—all of these will fall within the scope of our work. We will not address the 

issues of whether these programs are intelligent or not, specially in comparison to conscious articulate 

creatures like ourselves.

Intelligence, thus, may manifest itself in the choice of goals an agent may choose, and the means 

adopted by the agent to achieve those goals. It also involves the ability to understand the situation and 

reason about the consequences of one’s actions. It involves learning from experiences and adapting one’s 

behaviour in a dynamic environment. Intelligence may involve doing calculated trade-offs between 

different options. It also shows up in appreciating an intricate work of art. But most of all, it involves 

being able to make sense of the world around us, and reasoning about change in this world.
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1.4 The Bottom Line

The distinctive features of intelligence can perhaps be summed up in one word—imagination.

We might go so far as to say that intelligence is the power of imagination. Perception is being able to 

imagine the world around us, but imagination also allows us to create new worlds, like fiction writers do 

for us. Planning by projecting the effects of our intended actions is imagining what would happen if we 

carried out those actions. Listening to a story is fascinating because of our ability to imagine the events 

in the narrative. Watching a real life athlete do a high jump is similar to watching her do it on television, 

because in both cases, it is our imagination that is triggered. Sometimes of course, our imagination goes 

out of sync with reality, and then we say we are deluded or hallucinating. The exception however proves 

the rule. It is our ability to reconstruct the world around us in our heads, to imagine, that is at the core 

of intelligent behaviour.

Imagination is concerned with creating models of our surroundings in our heads, and being able to 

reason with those models. Reasoning may involve analysis or it may involve simulating the happenings 

in some form. The models may be close to reality, mirroring the world around us, in which case, we 

may want to validate them with “ground reality”. Or they may be abstract like those of a mathematician. 

Different professions teach us to make different kinds of models, some of which need a considerable 

amount of imagination to validate. Albert Einstein’s theory of relativity needed sophisticated experiments 

in astronomy to validate. The astronomer works with models of stars and galaxies, and is able to devise 

experiments to validate theories14 of different kinds. A chemist works with models of atoms and the 

bonds between them that form molecules. Complex molecules, like the double strand of DNA, are best 

described by constructing physical three-dimensional models. Biologists work with models of cells and 

organs. More recently, these models have become more and more precise and mathematical. Particle 

physicists imagine the workings of matter at sub-atomic level, and make predictions that may need an 

experiment in a cyclotron with a circumference running into kilometres.

But all of us model the everyday world around us and learn to map incoming information into this 

model and make predictions about actions that we and others do. Thus, an intelligent agent, or one might 

say an imaginative agent, can be modelled as shown in Figure 1.2. In the figure, the humanlike head 

represents the agent, and the world around it is depicted by the outermost zig-zag lines. The shaded 

oval inside the agent represents the model of the world that the agent has. Observe that we have not 

represented it as the dotted lines mirroring the outside world because the model of the world the agent 

carries is not perfect, and may be an abstract model. The humanlike head in the oval represents the 

fact that the agent is self aware, and can think of itself as part of the model of the world it carries. Of 

course, a deeper level of awareness would require that the model of itself that it carries should contain 

a model of the world, with itself in it. The agent “knows” the world. It knows that it knows the world. 

It knows that it knows that it knows the world. As one can imagine, this process can go on indefinitely, 

and practical constraints will dictate how aware the agent is of itself.

The ability to imagine can thus be seen as being at the heart of intelligence.

One, somewhat extreme view of the universe, called digital philosophy, is that the world itself is 

a computation being run, that is, it can be seen as a model being executed. “The school of philosophy 

called pancomputationalism claims that all the physical processes of nature are forms of computation or 

information processing at the most fundamental level of reality”.15 One of its main proponents, Edward 

14  We use the term ‘model’ in the sense of the word theory, something that stands for the real thing and needs to be validated. 

Logicians also use word ‘theory’ for what we mean here by a model, and model for a domain and a mapping that satisfies the theory.
15 See http://en.wikipedia.org/wiki/Digital_philosophy and http://en.wikipedia.org/wiki/Ed_Fredkin
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Fredkin, who also used the term digital physics16, said that in principle, at least, there is a program or a 

computer that simulates the world in real time. A natural consequence of this that is of interest to us, is 

that we can never build perfect models of the universe that can make predictions of events faster than 

they actually happen. This means that all models we devise must necessarily be abstract to some degree, 

and must lose on accuracy in the interest of speed.

The reasoning that an agent does happens within the model that the agent has of the external world. 

The question that Descartes was trying to answer was about his own existence, and he said that the fact 

that he could think showed that he existed. Another question that has been raised is whether the world 

(really) out there is what we think it is? Given that everything that we can know is through our perception 

and cognition, how can we “get outside our thoughts” and know the “real world ”. An extreme view 

known as subjective idealism or immaterialism put forward by George Berkeley (1685–1753), also known 

as Bishop Berkeley, says that there is no “out there” at all. His view on existence is “esse is percipi” (to 

be is to be perceived).17 Berkeley (1710) says “objects of sense exist only when they are perceived; the 

trees therefore are in the garden . . . no longer than while there is somebody by to perceive them.” This 

has led to the well known philosophical riddle “If a tree falls in a forest and no one is around to hear 

it, does it make a sound?” In the ancient Indian philosophy school, Advaita Vedanta, the term Maya is 

used to refer to the limited mental and physical reality that our consciousness has got entangled in.18 It 

is Maya that creates the illusion of the physical universe to be seen by us, and may sometimes lead us 

to perceive a coiled piece of rope to be a snake.

Berkeley was opposing the views put forward by John Locke (1632–1704) that the primary qualities 

of a (material) object, such as its shape, motion and solidity, are inseparable from the object. Both 

belonged to the Empiricist school of philosophy that said that there existed an outside world in which 

16 See http://en.wikipedia.org/wiki/Digital_physics
17 See http://en.wikipedia.org/wiki/George_Berkeley
18 See http://en.wikipedia.org/wiki/Maya_(illusion) for a detailed description.

FIGURE 1.2 An intelligent agent in a world carries a model of the world in its “head”. The model may 

be an abstraction. A self aware agent would model itself in the world ‘model’. Deeper awareness may 

require that the agent represents (be aware of) itself modeling the world.
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our own ideas were rooted. But Berkeley argued that the outside world was also composed of ideas, and 

that ideas can only resemble ideas. He says that what we call as bodies are simply stable collections of 

perceptions to which we give names like “tree”, “cloud”, and so on. If we believe that there are only 

ideas in the world (idealism) then we do not have to contend with the mind-body dualism that Descartes 

faced. More recently, Steve Grand (2001) has observed in his book that what we think is a cloud seen 

floating over a mountain is actually made up of moisture in the wind flowing over there. Our perception 

of a stationary cloud is only because condensation happens only in that region.

Even when we accept, like Locke, that there is a real world out there, we have to be careful about 

our perceptions about it. If we assume the atomic theory of matter then we can think of every physical 

object, including our own body, as made up of a large collection of atoms forming complex molecules, 

which in turn form cells, which in turn form organs, and so on. We tend to think of different clusters 

of atoms as individual objects and give them names. But biologists tell us that the bodies we had, say 

twenty years ago, were made up an entirely different set of atoms as compared to what we are made 

up of now. Yet, we think of our body as the same one we had as a child. Likewise, we know that a tree 

that we perceive in the forest has leaves that were not there last year, yet we think of it as the same 

tree. In his book, Six Easy Pieces, physicist Richard Feynman (1962) describes in detail how what we 

perceive as still water in a vessel is actually a humdrum of activity with atoms moving around, leaving 

the surface (evaporating) and reentering the liquid. We can extend this description to almost everything 

in the world around us. The fact that we tend to think of objects with well defined extents and surfaces 

is in fact the creation of our own minds.

An interesting anecdote that conveys our perception of objects is that of the Illinois farmer who 

possessed the (very same) axe used by Abraham Lincoln, where only the handle had been replaced 

twice and the head once. Also a work of fiction, the film Matrix (1999) by Andy Wachowski and Lana 

Wachowski, questions the nature of reality as perceived by humans, where the protagonist “discovers 

that all life on Earth may be nothing more than an elaborate facade created by a malevolent cyber-

intelligence,”19 a throwback to the fears of Descartes.

The point we are trying to make here is the ability to imagine is what is needed for intelligence. An 

agent can exist intelligently if it is able to imagine the world it operates in. Intelligent systems can be 

built around the ability to represent and model the world, and reason about change in the model. The 

hypothesis called the Physical Symbol System Hypothesis stated by Alan Newell and Herbert Simon 

asserts that the ability to represent and manipulate symbolic structures is both necessary and sufficient 

to create intelligence (Newell and Simon, 1976). This means that it does not matter whether the agent 

is living or nonliving; carbon based biological form, an electromechanical robot or a virtual creature in 

cyberspace. All one needs is the ability to create symbolic representations and the ability to manipulate 

those representations. The degree of intelligence they demonstrate will depend upon the relevance and 

richness of their representations and the effectiveness of their manipulation procedures.

1.5 Topics in AI

Philosophers have long dwelt over the mind and the human being that possesses that mind. They have 

asked questions about the universe and the mind that perceives the universe. Cognitive psychologists 

have studied how people acquire, process and store information. They investigate human memory, 

perception and decision making. Linguists have studied the use of language. Cognitive neuroscientists 

have investigated the biological systems that make up our brains, the seat of our minds. Economists 

19 Plot summary by Jake Gittes at http://www.imdb.com/title/tt0133093/plotsummary
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have studied rational behaviour and decision making. Mathematicians have explored formal methods 

and the limits of logical reasoning.

The study of Artificial Intelligence can be seen to derive from all the above disciplines which can 

broadly be grouped under the name Cognitive Science. Except that the AI community is always focused 

on writing programs, whether it is to investigate and validate theories of human cognition, or it is to 

engineer systems for doing a particular task. The computer is a machine that allows us to represent and 

manipulate symbols explicitly, and symbols we believe, are the vehicles for ideas and concepts. And, as 

Patrick Henry Winston, professor at MIT, has observed, “the computer is an ideal experimental subject, 

requires little care and feeding, is endlessly patient, and does not bite.”

Computer programming has a quality that is quite different from most other activities. A team of 

programmers may pore over a procedure in the minutest detail, working out the required steps pains-

takingly; but when it is ready, the computer program runs in a jiffy, zipping through the steps that were 

determined by months of analysis. Written carefully in great detail, it can be invoked without care. Once 

a program is done, it can be executed and replicated as often as one wants. As more and more research-

ers write more and more programs, the ratchet of evolution will retain the best ones; and hopefully the 

different modules will evolve, and one day come together.

An intelligent agent would need a multitude of faculties. The agent should be able to sense the world 

around it, deliberate over its options, and act in the world. The different areas of study that are listed in 

Figure 1.3 are all part of the enterprise of building intelligent systems. One could think of these com-

petencies as making up Minsky’s Society of the Mind. The topics have been arranged in the figure so 

that sensing the world is to the left, and acting in the world is to the right. The world in this figure is the 

world inhabited by us humans, and we can think of the agent as a robot in the same world interacting 

with human beings. The topics inside the dashed circle are concerned with what we might call ‘think-

ing’. The sense-deliberate-act cycle would describe the activity of an autonomous agent in the world.

The topics on the left are concerned with sensing the world. As humans, we use the senses of sight, 

sound, touch, smell and taste. Of these, our current research focus is on the first three, though some work 

has been done in using smell as well (look up for example “artificial noses”). Visual perception is perhaps 

our most used sense, so much so that the word “seeing” has acquired a sense of “understanding” (when 

we say “I see”, for example). A variety of topics in computer science now address visual perception. 

Chief amongst those, depicted in the figure, are Pattern Recognition and Computer Vision, now areas 

of interest in their own right. The former, as the name suggests, studies the methods of recognizing 

patterns, while the latter deals with employing pattern recognition and other techniques to process still 

and moving images to identify objects and extract other kinds of information, and is often preceded by 

image processing which deals with the acquisition and preprocessing of image data.

Our sense of hearing gives us another window to the world. Sound can reach us when light often 

cannot, behind closed doors, deep in a forest, and even when we are sleeping. Humans have developed 

sound as the principal medium of conveying symbols, in the form of language. The written word came 

later. The disciplines of speech recognition and natural language understanding are concerned with the 

transduction of speech into language, and language into concepts respectively. Both may be concerned 

with dealing with patterns at different levels. Not shown in the figure is the faculty of creation and 

appreciation of music, which has been another manifestation of making sense of sounds. The sense of 

touch too becomes important when we talk of building robots. A tactile sensor would allow a metal 

being to shake a human hand gently, and could also be used to sense the surroundings in some situations.

The topics on the right are concerned with acting in the world. On the language side, we have natural 

language generation and speech synthesis that express concepts in natural language and convert the 

words in the language into sounds respectively. We can also have music generation and along with 
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computer graphics and animation, one can imagine a system that will generate a soothing tale at bedtime 

for our children, help us navigate through a new town, describe incidents from far flung planets, or give 

us a glimpse of tomorrow’s weather in our neighbourhood.

But the core of intelligence lies in the centre, dealing with knowledge, language and reasoning. 

These are the faculties we believe “lower” forms of life do not possess. These are the means that make 

imagination possible: the ability to conceptualize and create models of the world around us; to categorize 

things and create memories of our experiences; to reason with what we know and make predictions by 

projecting actions into the future; to handle uncertainty and incomplete knowledge; to take into account 

the options of adversaries and collaborators, and to formulate problems and search for their solutions. 

These are the topics that will form the subject matter of our text. These are the processes that can be 

modelled as operating on symbol systems.

One could adopt the view that the agent and the world it interacts with are entirely symbolic in nature. 

In practice, however, we often build systems that treat the external world as analog, consisting of con-

tinuous signals. Thus, we talk of speech signals which we digitize to create digital sequences. One can 

imagine that the core symbolic reasoning system has a shell of processes around it that converts signals 

to symbols and vice versa. It has been empirically observed that neural networks and fuzzy reasoning 

systems can serve as a bridge between symbolic representations and analog signals, and vice versa. 

For example, it is much more effective to train a neural network to recognize handwritten characters. 

It is not easy for us to define rules that capture the myriad variations in human writing; but feed a large 

number of examples to a neural network, and it soon learns to the symbols that make up words from the 

(digitized) squiggles one makes with pen and paper. Likewise, a fuzzy controller would take a symbolic 

command like “warm” and generate an appropriate signal to a heater in some contraption. The physical 

Machine learning
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Search Models
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FIGURE 1.3 A sampling of the “society of the mind”. Different kinds of reasoning methods would 

be required by an intelligent mind, as it goes through a sense-deliberate-act cycle. The dashed circle 

represents symbolic reasoning in artificial intelligence.
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systems that interact with the world, for example a microphone to capture sound, or an accelerator pedal 

in an autonomous vehicle, may operate entirely with signals. This way of looking at things is depicted 

in Figure 1.4 in which the core symbolic system is shown as having a neuro-fuzzy shell around it. The 

neuro-fuzzy shell is instrumental in mediating between the symbolic reasoning system and the external 

continuous world.

The subject matter of this textbook is the inner core of symbolic reasoning, and is sometimes referred 

to as Classical AI.

Symbolic
reasoning

Neuro-fuzzy systems

Signal
processing

Motor
control

Signal Symbol Signal

FIGURE 1.4 A model of a cognitive agent. The innermost circle represents Classical AI that is 

concerned with symbolic reasoning. This is encapsulated in neuro-fuzzy systems that produce and 

consume the symbols. The outermost layer deals with the external world directly, processing signals 

and producing motor activity.

Incidentally, one must realize that the distinction between analog and digital is entirely of our own 

making, and mostly reflects the nature of our devices. The earliest radios were made up of vacuum tubes, 

as were the earliest computers until the invention of the diode. Likewise, our telephones, television sets 

and cameras started off as analog devices and are now digital in nature. We can think of it as digital 

systems going more and more into the analog world. But we can also think of the analog representation 

as a way of looking at a world that is entirely digital, as Ed Fredkin would have us think. After all, we 

may think of continuously varying voltage and current, but the electrical signal is ultimately made up of 

electrons, which we do tend to think of as distinct “particles”. Similarly, we tend to think of flowing water 

as continuous material but we do know that it is a large collection of individual molecules obeying the 

laws of physics. Signal processing is becoming more and more digital signal processing. If we simulate 

a neural network then the weight of its synapses is represented by a number of finite precision in a 

computer. In the end, anything that we do on a digital computer has to be symbolic at the deepest level, 

because the digital machine can in the end distinguish between only two kinds of symbols—0 and 1.

Nevertheless, we shall be concerned with only those symbolic systems in which the symbols mean 

something to us. These will include numerals to represent numbers, or words like “apple” and “love”, 

or even a variable routinely named X in a program. We will not deal with neural networks and similar 

systems in which we cannot interpret weights of edges, and what a node represents. We will be concerned, 

however, with networks of nodes, semantic nets, in which each node will represent something meaningful 

to us. The following section describes the contents of this book with some description that would allow 

one to eschew the linear narrative, and jump directly to some topic of interest.
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A Brief Look at the Chapters

The study of Artificial Intelligence is concerned not so much with defining intelligence, but the study 

of the different kinds of reasoning processes that would come together to create an intelligent system. 

And an intelligent system would be one that can represent its domain of activity, perceive the state of 

the domain, and reason in a manner to achieve its goals. This reasoning process we refer to as problem 

solving.

There are two basic approaches to solving problems. One is to create an appropriate representation 

of the domain, and project the consequences of one’s decisions into the future by some kind of simula-

tion. One can investigate different possible courses of actions and choose the most promising one. We 

can say that this approach is a first principles approach, in which a problem is solved anew when it 

presents itself. However, as we will see in the book, such methods incur a high computational cost since 

the number of combinations explodes exponentially in many domains. The second approach is to delve 

into the agent’s memory, and retrieve similar problems that were solved in the past. Both approaches 

require knowledge representation to model the domain, the entities and the relations between them. In 

addition, systems that rely on memory also need to represent episodes from the past.

In the first half of the book, we look at problem solving using search. The given situation and the 

desired situation are mapped on to a search space. We assume that the solver has access to “moves”, 

using which the solver can change the situation a little bit. Each application of a move transforms the 

situation, taking the solver to a new state. Problem solving using search involves exploring, by a process 

of trial and error; and finding the sequence of moves that will take the solver to the desired state.

Chapter 2 introduces the basic procedures for exploring the search space, and discusses the complexity 

of search algorithms.

Chapter 3 introduces heuristic functions and heuristic search. It also introduces greedy search methods.

Chapter 4 looks at randomized approaches to search and discusses some popular optimization 

techniques. We also look at emergent systems.

Chapter 5 extends the heuristic search algorithms of Chapter 3 to find optimal solutions. It also 

describes variations that have a lower space requirement at the expense of increased time complexity.

Chapter 6 moves away from state space search and looks at problem decomposition and rule-based 

systems.

Chapter 7 looks at automated planning methods in which the moves are described as planning 

operators. The basic planning methods, including plan space planning, are covered.

Chapter 8 is devoted to game playing in which the problem solver has to contend with the moves of 

an adversary. We focus on board games like chess.

Chapter 9 introduces the alternative formulation of constraint satisfaction problems. We study the 

algorithms for constraint propagation and look ahead and look back methods in search.

Chapter 10 discusses the advanced planning algorithms that were developed in the last decade of the 

twentieth century. It also looks at richer planning domains in which actions have durations, along with 

some real world applications.

Solving problems from first principles has its advantages. The principal one being that one is solving 

the given problem. However, this approach is fraught with computational pitfalls. Every trial-and-error 

search method has to contend with a danger lurking in the deep. That deeper one searches the greater 

number of possibilities one has to consider, not unlike the monster Hydra that Hercules has to fight 

(in Greek mythology). For every head Hercules severed, several more appeared. A similar thing happens 

in search. Every failed possibility gives rise to several new ones. We will call our monster CombEx, for 

combinatorial explosion, the bane of every search method.
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And yet we can fight CombEx. The weapon we deploy successfully in our daily lives is knowledge; 

knowledge about how to do things, knowledge about what the world is like, and knowledge gleaned 

from our experiences and that of others.

The second half of the book is concerned with knowledge representation and reasoning. This is in 

contrast to the first half that ignored how the world was represented. In the second half, we explore ways 

to represent different kinds of knowledge and study algorithms to exploit that knowledge.

Chapter 11 introduces the issues dealt with in the second half.

Chapter 12 deals with first order logic and theorem proving methods.

Chapter 13 is concerned with how we express everyday facts in first order logic. We also look at the 

process of reification that allows us to extend the logic to talk about events and actions.

Chapter 14 introduces the notion of knowledge structures. We look at organizing knowledge into 

packages and hierarchies, and look at notions of inheritance.

Chapter 15 is concerned with problem solving by remembering and reusing experiences. The simple 

process of storing experiences and recalling relevant ones has proven to very effective.

Chapter 16 focuses on natural language processing. We study the techniques needed to process 

a sentence in language and the task of disambiguation that crops us. We also look at text processing 

applications like information retrieval and machine translation.

Chapter 17 looks at various methods of dealing with uncertainty. We begin with extending logics to 

handle incomplete knowledge, look at qualitative approaches to reasoning, reasoning with assumptions, 

reasoning with probability.

Chapter 18 is the last chapter dealing with machine learning, an area that will determine how machines 

can acquire more knowledge by themselves. We begin with concept learning and decision trees, and 

follow up with well established techniques like Naïve Bayes Classifier and Hidden Markov Models, and 

approaches to clustering. We also look at learning in Artificial Neural Networks.

A word about the algorithms presented in this book. We begin by describing them in considerable 

detail, but later when we build variations, we make our descriptions a little bit more abstract, focusing 

on the principal ways the new algorithms differ from the ones described earlier. Every now and then, 

however, we find the need to describe an algorithm in greater detail.

Even though our long term goal is to build a fully integrated intelligent system, the journey can 

be productive as well. During the last fifty years, AI researchers have built many useful systems that 

use only a few reasoning methods individually. These are systems we may not want to label as being 

‘intelligent’, but they do employ some of the aspects of intelligence we have discussed. These systems 

include a chemist’s expert assistant, a system that helps explore the earth for minerals, systems that 

advise a patient on whether they need to rush to a hospital or not, tutoring systems that teach children 

math, systems that can prove theorems, systems that can create an organizational memory, system that 

help plan and book your travel, systems that can ferret out useful information from the World Wide 

Web, systems that would recommend a movie and a restaurant to you, systems that would respond to 

verbal commands of the user, systems that would monitor the activity of the aged and remind them of 

activities they need to do, systems that analyse large amounts of data and discover useful knowledge, 

systems that help translate from one language to another, systems that can plan the movement of rover 

on another planet, or an autonomous submarine in our own seas, systems that generate weather forecasts 

in a coherent manner, systems that help monitor the progress of neonatal babies and produce reports for 

anxious parents, and many others including, not least of all, systems that play with us and entertain us.

The development of all these systems has taken place independently by different groups in different 

parts of the world. Many of these systems demonstrate the capability that would be part of a general 

intelligent system. It is only to be expected that with further advances, more and more capabilities will be 



Chapter 1: Introduction 25

integrated into single systems, and perhaps one day, we will have intelligent companions who behave like 

friends to us, giving us advice and telling us jokes, but who are not embodied in flesh and bones like us.

  Points to Ponder

 1. We cannot represent the full world.

  We cannot sense the full world.

  We cannot (always) act perfectly.

  We cannot predict the consequences of proposed actions perfectly.

  How then does intelligence arise?

 2. Our brains are finite, made up of tens of billions of neurons. The number of different sentences 

we can construct in (say) the English language is much larger. When we are faced with a new 

sentence we have never seen before, how do we make sense of it?



P  roblem solving basically involves doing the right thing at the right time. Given a problem to solve 

the task is to select the right moves that would lead to the solution.

   Consider the situation in a football game you are playing. You are shown as player P in Figure 2.1 

below. You have the ball with you and are running towards the opponent’s goal. There are some other 

players in the vicinity also shown in the figure along with the directions of their movement. You have 

a problem to solve. What should you do next? What move should you make? What is the “intelligent” 

thing to do?

P

GCOpp

Opp TM

FIGURE 2.1 A problem to solve on the football field. What should player P do next? GC is the 

opponent goalkeeper, Opp are opponents, and TM is teammate. Arrows show the direction of each 

player’s movement.

 To solve such a problem on a computer, one must first create a representation of the domain; in this 

case, a football game being the problem, the decision to make next, the set of alternatives available, 

and the moves one can make. The above example is a problem in a multi-agent scenario. There are 

many players and the outcome depends on their moves too. We will begin, in the initial chapters, with 

a much simpler scenario, in which there is only one player who can make changes in the situation. We 

will look at algorithms to analyse the complete problem and find a solution. In later chapters, we will 

explore ways to deal with multi-agent scenarios as well.

State Space Search

Chapter 2
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 We will also use the term agent to refer to the problem solver. The problem solver, or the agent, 

operates on a representation of the space in which the problem has to be solved and also a representation 

of the moves or decisions that the agent has to choose from to solve the problem.

 Our endeavour will be to write the algorithms in a domain-independent manner. Then the algorithms 

will be general purpose in nature and could be adapted to solve problems in different domains as depicted 

in Figure 2.2. A user would only have to implement the domain description and call the domain specific 

functions from the general program.

Domain-independent problem-solving algorithms

Domain functions

for domain-1

Domain functions

for domain-2

Domain functions

for domain-3

Domain-independent

algorithm-1

Domain-independent

algorithm-2

Domain-independent

algorithm-3

Domain descriptions

...

...

FIGURE 2.2 The goal is to develop general problem solving algorithms in a domain-independent 

form. When a problem is to be solved in a domain then the user needs to create a domain description 

and plug it in a suitable problem solving algorithm.

 We model the problem solving process as traversing a state space. The state space is a space in 

which each element is a state. A state is a description of the world in which the problem solver operates. 

The given situation is described by a state called the START state. The desired or the goal situation is 

described by one or more GOAL states. In any given state, an action or a decision by the agent changes 

something and the agent makes a move to a new state. The task is to make a sequence of moves, such 

that the agent ends up being in a goal state.

 The set of choices available to us implicitly define the space in which the decision making process 

operates. We do not assume that the entire state space is represented in some data structures. Instead, 

only the states actually generated by the agent exist explicitly. The unseen states are only implicit. In 

this implicit space, we visualize the problem as follows. Initially, we are in some given state, or the 

START state. We desire to be in some state that we will call the GOAL state, as shown in Figure 2.3. The 

desired state may be described completely, identifying the state, or it could be described partially by 

some desirable properties; in which case there may be more than one goal state satisfying the properties. 

The given state being the current state is described completely. 

 This transformation from the start state to the goal state is to be made by a sequence of moves that are 

available to us in the domain of problem solving. In the beginning, the search algorithm (or agent) can only 

“see” the start state. It has access to some move generation operators that determine which states are reach-

able in one step (see Figure 2.6). The algorithm has to choose one of these moves. Each move applied to a 

given state transforms it into another state. Our task is to find those sequences of moves that will transform 

our current (START) state into the desired (GOAL) state. The solution is depicted in Figure 2.4.
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FIGURE 2.3 The state space.

START state

GOAL state

FIGURE 2.4 The solution is a sequence of moves that end in the GOAL state. There may be more 

than one solution to a problem. The figure shows one solution with thick arrows, and two alternatives 

with dotted arrows.
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2.1 Generate and Test

Our basic approach will be to search the state space looking for the solution. The high level search 

algorithm has two components; one, to generate a candidate from the state space, and two, to test 

whether the candidate generated is the solution. The high level algorithm is given below in Figure 2.5.

Generate And Test()

 1 while more candidates exist

 2  do  Generate a candidate

 3   Test  whether it is a solution

 4 return FAILURE

FIGURE 2.5 A high level search algorithm.

The rest of the chapter will be devoted to refining the above algorithm. We assume that the problem 

domain has functions defined that allow us to operate in the domain. At the moment, we need two 

functions to be defined on the domain. They are the following:

moveGen(State) Takes a state as input and returns a set of states that are reachable in one step from 

the input state, as shown in Figure 2.6. We call the set of states as successors or children of the input 

state. The input state is the parent of the children.

goalTest(State) Returns true if the input state is the goal state and false otherwise.

goalTest(State, Goal) Returns true if State matches Goal, and false otherwise.

Observe that we may have either of the above goal-test functions. The former is used when the goal 

is described by some properties that are checked by the function. The latter takes an explicit goal state 

and uses that to compare with the candidate state.

FIGURE 2.6 The moveGen function returns a set of states that are reachable in one move from a 

given state.
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Our search algorithms should be able to operate in any domain for which the above functions are 

provided. We view the set of states as ‘nodes’ in the state space, and the set of moves as the edges 

connecting these nodes. Thus, our view of the state space will be that of a graph that is defined implicitly 

by the domain function moveGen. Figure 2.7 depicts the part of the state space generated and explored 

by the Generate&Test algorithm. The generated space is known as the search tree generated by the 

search program.

FIGURE 2.7 The nodes visited by a search algorithm, form a search tree shown by empty circles and 

dotted arrows. The solution found is shown with shaded nodes and solid arrows.

Before looking at the algorithms in detail, let us look at a couple of problem examples . While many 

real world problems can indeed be posed as search problems, we prefer simpler problems often posed as 

puzzles. Small, well defined problems are easy to visualize and easy to implement, and serve to illustrate 

the algorithms. Real problems on the other hand would be complex to represent, and divert from the 

understanding of search methods. Nevertheless, the reader is encouraged to pose real world problems 

as state space search problems. A few suggestions are given in the exercises.

Common sorts of puzzles are river-crossing puzzles. In these puzzles, a group of entities need to cross 

the river, but all of them cannot cross at the same time due to the limited capacity of the boat or the bridge. 

In addition, there may be constraints that restrict the combination of entities that can stay in one place.

One example of a river-crossing puzzle is the missionaries and cannibals problem stated as follows. 

There are three missionaries and three cannibals who want to cross the river. There is a boat with a 

capacity to seat two. The constraint is that if on any bank the cannibals outnumber the missionaries, 

they will eat them1. How do all the six people get across safely? In the Text Box 2.1, we look at another 

river-crossing problem, and also design the domain functions required.

1 In an alternate version of the problem, if the missionaries outnumber the cannibals, they will convert them. 
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Box 2.1: The Man, Lion, Goat, Cabbage Problem

A man (M) needs to transport a lion (L), a goat (G), and a cabbage (C) across a river. He has a boat 

(B) in which he can take only one of them at a time. It is only his presence that prevents the lion 

from eating the goat, and the goat from eating the cabbage. He can neither leave the goat alone with 

the lion, nor the cabbage with the goat. How can he take them all across the river?

The state representation and move generation functions are interrelated. Let us say that we 

represent the state as a list of two lists, one for each bank of the river, say the left bank L and the 

right bank R. In each list, we name the entities on that bank.

start state S = ((M G L C B) ())

goal state G = (() (M G L C B))

The move generation could first generate all possible moves and then filter out illegal moves. For 

example, from the start state, the following states are reachable:

((G L C) (M B)), ((L C) (M G B)), ((G C) (M L B)), and ((G L) (M C B))

Of these, only the second state ((L C) (M G B)) is a legal state. Notice that the moveGen has 

transferred some elements from the first list to the second. In the next move it will need to transfer 

elements in the opposite direction. Also, there is redundant information in the representation. When 

one knows what is on the left bank, one also knows what is on the right bank. Therefore, one 

of the lists could be removed. To solve the problem of alternating directions, we could choose a 

representation that lists the entities on the bank where the boat is, and also which bank it is on, as 

shown below.

start state S = (M L G C Left)

goal state G = (M L G C Right)

where Left denotes that the boat is on the left bank and Right on the right bank. Note that M is 

redundant, because the man is where the boat is, and could have been removed.

The moveGen(N) function could be as follows.

Initialize set of successors C to empty set.

Add M to the complement of given state N to get new state S.

If given state has Left, then add Right to S, else add Left.

If legal(S) then add S to set of successors C.

For each other-entity E in N

  make a copy S’ of S,

  add E to S’,

  If legal (S’), then add S’ to C.

Return (C).

The complement of a state is with respect to the set {M L G C}.

The function “legal (state:S)” will return “no” or “false” if either both G and C or both L and G 

are missing from S, otherwise it will return “yes” or “true”.

The following figure shows the well known Eight Puzzle used extensively in one of the earliest 

textbooks on artificial intelligence (Nilsson, 1971). The goal is to find a path to a desired arrangement 

of tiles, for example as shown in Figure 2.8.

The idea in weak methods or general methods in artificial intelligence (AI) is that we develop a 

general algorithm that can be applied to many domains. In the above examples, we have illustrated 
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how problems can be posed as search problems. Let us return to the design of the search algorithms. 

The following refinement of Generate&Test falls in the category of forward state space search. Here 

we begin with the START state and search until we reach the GOAL state.

2.2 Simple Search 1

We assume a bag data structure called OPEN to store the candidates that we have generated. The 

algorithm is given below.

SimpleSearch1()

1 open {start}

2 while open is not empty

3    do pick some node n from open

4       open open \ {n}

5       if GoalTest(n) = TRUE

6       then return n

7       else open open » MoveGen(n)

8 return FAILURE

FIGURE 2.9 Algorithm SimpleSearch1.

FIGURE 2.8 The Eight Puzzle consists of eight tiles on a 3 ¥ 3 grid. A tile can slide into an adjacent 

location if it is empty. A move is labelled R if a tile moves right, and likewise for up (U), down (D) and 

left (L).
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Let us look at a small, synthetic problem to illustrate our search algorithms. Figure 2.10 depicts the 

state space graph for a tiny search problem.

S
A

B

D

C

E

G

G : Goal

S: Start

Simple Search 1 simply picks a node N from 

OPEN and checks if it is the goal.

 – If Yes, it returns the node N

 – If No, it adds all children of N to OPEN

FIGURE 2.10 A tiny search problem.

There are two problems with the above program. The first is that the program could go into an infinite 

loop. This would happen when the state space is a graph with loops in which it would be possible to 

come back to the same state. In the Eight Puzzle 

described above, the simplest loop would be when 

a tile is moved back and forth endlessly. For the tiny 

search problem of Figure 2.10, a possible trace of 

the search algorithm is shown below in Figure 2.11, 

in which the same nodes are visited again and again.

Mazes are a very good example where infinite 

loops lurk dangerously. They also illustrate the nature 

of difficulty in the search. See the accompanying 

FIGURE 2.11 Simple search may go into 

loops. One possible evolvement of OPEN is 

shown above. The node picked at each stage is 

underlined.

(S)

(ABC)

(SACD)

(ABCACD)

(SACACDACD) …

Box 2.2: Hercules, Hydra and CombEx

In Greek mythology, one of the monsters that Hercules found himself fighting was Hydra. Hydra 

was not an easy monster to deal with. For every head that Hercules chopped off, many more grew 

in its place. The problem faced by our search program is not unlike the one faced by Hercules. For 

every node that Simple-Search-1 picks to inspect, many more are added in the bag.

In mathematical terms, the search tree generated by the program grows exponentially. And yet, 

as Hercules demonstrated in his fight with Hydra, the monster can eventually be overcome.

Almost all the research we see in artificial intelligence can be seen as a battle against CombEx, 

the monster that makes our problems grow with a ‘COMBinatorial Explosion’.

Our battle with CombEx will require two abilities. The first will be the basic skills to navigate 

and explore the search space. This is akin to learning how to handle the sword. But as we will see, 

this will not be enough. We will also need to know where to strike. Without knowledge to guide the 

exploration, search will be hopelessly outnumbered by the exploding possibilities.

The first is necessary because CombEx will appear in new forms as we strive to solve new 

problems. But as we wage the battle, we must be able to learn the strengths and weaknesses of 

CombEx in every domain. We must acquire knowledge both through our own experience and the 

accumulated experience of other problem solvers.
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Box 2.3 for a note on the limited visibility in search. The key to not getting lost endlessly in a maze is 

to mark the places where one has been. We can follow a similar approach by maintaining a list of seen 

nodes. Such a list has traditionally been called CLOSED. It contains the list of states we have tested, and 

should not visit again. The algorithm Simple Search 2 (SS-2) in Figure 2.13 incorporates this check. It 

does not add any seen nodes to OPEN again. To prune the search tree further, one could also specify that 

it does not add any successors that are already on OPEN as well. This would lead to a smaller search 

tree in which each node occurs exactly once.

Box 2.3: The Problem of Visibility in Search

Anyone who has gone trekking in the mountains would have experienced the following. You are at 

a peak looking down towards a village in the valley. You can clearly chart a path through the woods 

on the way down, past those set of boulders, back into the woods, and then following a path along 

the sunflower fields. But when you start descending and enter the woods, the perspective and clarity 

you had from the top curiously vanishes.

A similar problem is faced by people navigating a network of roads. It is all very clear when 

you are poring over a map. But down at the next intersection, it becomes a problem which road to  

take.

The search algorithms we are trying to devise 

do not have the benefit of perspective and global 

viewpoints. They can only see a node in the search 

space, and the options available at that node. The 

situation is like when you are in a maze. You can 

see a number of options at every junction, but you 

do not have a clue about the choice to make. This 

is illustrated in Figure 2.12.

In the next chapter, we will investigate 

methods to take advantage of clues obtained from 

the domain. If for example, one of the paths in 

the maze has a little more light than the others, it 

could be leading to an exit.

FIGURE 2.12 In a maze, one can only see 

the immediate options. Only when you choose 

one of them do the further options reveal 

themselves.

SimpleSearch2()

 1 open ¨ {start}

 2 closed ¨ {}

 3 while  open is not empty

 4  do Pick some node n from open

 5   open ¨ open \ {n}

 6   closed ¨ closed » {n}

 7   if GoalTest(n) = TRUE

 8    then return n

 9    else open ¨ open » {MoveGen(n) \ closed}

 10 return FAILURE

FIGURE 2.13 Algorithm SimpleSearch2.
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The search tree generated by one possible execution of the algorithm is shown below. The CLOSED 

list is depicted by shaded nodes and the OPEN list by dotted circles.

SS-2 picks some node N from OPEN and adds it to CLOSED.

If N is Goal, it returns N, Else it adds unseen successors of N
to OPEN

S

A
BC

S
A

B

D

C

E

G

8

2

4

G : Goal

S: Start

ABC

S

E

ABC

S

ED

D

C

S

E

G

Let us say SS-2 picks G from OPEN and

terminates

S

AB

FIGURE 2.14 SS-2 visits each node only once and finds the goal.
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The second problem with the above program is that it returns the goal state when it finds it. This is 

not always problematic though. There are problems in which we are only interested in finding a state 

satisfying some properties. For example, the n-queens problem in which we simply need to show a 

placement of n queens on an n ¥ n chessboard such that no queen attacks (as defined by rules of the game) 

any other queen. We can call such problems as configuration problems. The other kinds of problems, 

that we call planning problems, are those in which we need a sequence of moves or the path to the goal 

state. Clearly, our program is inadequate for the latter kind of problems.

One simple approach is to explicitly keep track of the complete path to each new state. We can do this 

by modifying the state representation (in the search algorithm only) to store a list of nodes denoting the 

path. In order to work with the same domain functions moveGen and goalTest, we need to modify our 

algorithm. Simple-Search-3 (SS-3) incorporates this change (see Figure 2.15). After picking the node 

from OPEN, it extracts the current state H. It tests H with goalTest and generates its successors using 

moveGen. When the goal node is found, all that the algorithm needs to do is to reverse the node to get 

the path in the proper order. The function mapcar in Figure 2.15 takes a list of lists as an argument and 

returns a list containing the heads of the input lists. The function cons adds a new element to the head 

of a list.

In some problems, the path information can be represented as part of the state description itself. 

An example of this is the knight’s chessboard-tour problem given in the exercises. One could start by 

representing the state as a 10 ¥ 10 array in which the centre 8 ¥ 8 sub-array, initialized to say 0, would be 

the chessboard. The starting state would be a square on the chessboard labelled with 1, and subsequent 

squares could be labelled in the order in which the knight visits them.

SimpleSearch3()

1 open ¨ {(start)}

2 closed ¨ {}

3  while open is not empty

4   do Pick some node n from open

5    h ¨ Head(n)

6    if GoalTest(h) = TRUE

7     then return Reverse(n)

8     else closed ¨ closed » {h}

9       successors ¨ {MoveGen(h) \ closed}

10       successors ¨ {successors \ Mapcar(open)}

11       open ¨ {open \ {n}}

12       for each s in successors

13        do Add Cons(s,n) to open

14 return FAILURE

FIGURE 2.15 Algorithm SS-3 stores the path information at every node in the search tree.

The path information stored in the node could also be exploited to check for looping. All that the 

algorithm would need to do is to check if the new candidate states are not in the path already. While 

the pruning of nodes will not be as tight as our algorithm above, it would require lesser storage since 

the set CLOSED will no longer be needed. We also remove those successors that are already on OPEN. 

Figure 2.16 shows the OPEN and CLOSED list for the tiny search problem for the algorithms SS-2 and 

SS-3.
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The search tree as seen by SS-2

OPEN CLOSED

(S)  ()

(ABC) (S)

(BCE) (SA)

(CDE) (SAB)

(CGE) (DABS)

SS-2 terminates when G is 

picked and found to be the 

goal.

The program returns G.

SS-3 maintains entire path information at each node on OPEN in the 

search tree.

The search tree as seen by SS-3

OPEN CLOSED

((S)) ( )

((AS) (BS) (CS)) (S)

((BS) (CS) (EAS)) (AS)

((CS) (DBS) (EAS)) (BAS)

((CS) (GDBS) (EAS)) (DBAS)

Again, the search terminates when G is picked.

But now the program reverses the path and returns SBDG, which is the 

path found from S to G.

FIGURE 2.16 The search trees as seen by SS-2 and SS-3.

In SS-3, OPEN contains paths and CLOSED contains states. Next, we modify our search function 

such that both OPEN and CLOSED store node pairs, representing a node and its parent node in the 

search tree. Now, all nodes in the search tree have the same structure. We will, however, need to do more 

work to return the path found. Each node visited has a back pointer to its parent node. The algorithm 

reconstructPath below reconstructs the path by tracing these back pointers until it reaches the start node 

which has NIL as back pointer.

ReconstructPath(nodePair, closed)

1 path ¨ List(Head(nodePair))

2 parent ¨ Second(nodePair)

3 while parent is not NIL

4  do path ¨ Cons(parent, path)

5    nodePair ¨ FindLink(parent, closed)

6    parent ¨ Second(nodePair)

7 return path

FindLink(child, closed)

1 if child = Head(Head(closed))

2  then return Head(closed)

3  else return FindLink(child, Tail(closed))

FIGURE 2.17 Reconstructing the path from the list of back pointers of each node involves retrieving 

the parent of the current node all the way back to start whose parent, by definition, is NIL. nodePair is 

a pair that contains the goal g and its parent node. The functions List, Head, Second, Tail and Cons for 

the list data structure.

In the algorithms in Figures 2.17, 2.18 and 2.20, we also move from the set representation to a list 

representation. It calls a function removeSeen to prune the list of successors, and makeNodes to prepare 

the successors in the form for adding them to OPEN. We also make it deterministic by picking the new 

candidate from the head of the list OPEN, since this is an easy operation for most data structures.
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2.3 Depth First Search (DFS)

The algorithm DFS given below (Figure 2.18) treats OPEN like a stack. It adds the new candidates at 

the head of the list. The reason it is called depth first is that from the search tree, it selects a node from 

the OPEN list that is deepest or farthest from the start node. The candidates are inspected in the last-

in-first-out order. This way its focus is on the newer arrivals first, and consequently its characteristic 

behaviour is that it dives headlong into the search space. Figure 2.19 illustrates the search tree as seen 

by DFS, represented by the two lists OPEN and CLOSED.

DepthFirstSearch()

1 open ¨ ((start NIL))

2 closed ¨ ()

3 while not Null(open)

4  do nodePair ¨ Head(open)

5   node ¨ Head(nodePair)

6   if GoalTest(node) = TRUE

7    then return ReconstructPath(nodePair, closed)

8    else closed ¨ Cons(nodePair, closed)

9      children ¨ MoveGen(node)

10      noLoops ¨ RemoveSeen(children, open, closed)

11      new ¨ MakePairs(noLoops, node)

12      open ¨ Append(new, Tail(open))

13 return ”No solution found”

RemoveSeen(nodeList, openList, closedList)

1 if Null(nodeList)

2  then return ()

3   else n ¨ Head(nodeList)

4    if (OccursIn(n, openList) OR OccursIn(n, closedList))

5     then return RemoveSeen(Tail(nodeList), openList, closedList)

6     else return Cons(n,RemoveSeen(Tail(nodeList), openList, closedList)

OccursIn(node, listOfPairs)

1 if Null(listOfPairs)

2  then return FALSE

3  else if n = Head(Head(listOfPairs)

4     then return TRUE

5     else return OccursIn(node, Tail(listOfPairs))

MakePairs(list, parent)

1 if Null(list)

2  then return ()

3  else return Cons(MakeList(Head(list), parent), 

MakePairs(Tail(list), parent))

FIGURE 2.18 DFS treats OPEN like a stack adding new nodes at the head of the list. The function 

RemoveSeen removes any nodes that are already on OPEN or CLOSED. The function MakePairs 

takes the nodes returned by RemoveSeen and constructs node pairs with the parent node, which are 

then pushed onto OPEN.
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DFS treats OPEN like a stack.

The search tree as seen by DFS

OPEN CLOSED

((S, Nil)) ( )

((A, S)(B, S)(C, S)) ((S, Nil))

((E, A)(B, S)(C, S)) ((A, S)(S, Nil))

((D, E)(G, E)(B, S)(C, S)) ((E, A)(A, S)(S, Nil))

((G, E)(B, S)(C, S)) ((D, E)(E, A)(A, S)(S, Nil))

Again, the search terminates when G is picked.

The program reconstructs the path and returns SAEG, 

which is the path found from S to G. The back pointers are:

GÆE, EÆA, AÆS
  

S
A

B

D

C

E

G

G : Goal

S: Start

FIGURE 2.19 The search tree as seen by Depth First Search.

2.4 Breadth First Search (BFS)

Breadth First Search (Figure 2.20), on the other hand, is very conservative. It inspects the nodes generated 

on a first come, first served basis. That is, the nodes form a queue to be inspected. The data structure 

Queue implements the first in, first out order. The BFS algorithm is only a small modification of the 

DFS algorithm. Only the order in the append statement where OPEN is updated needs to be changed.

BreadthFirstSearch()

1 open ¨ ((start, NIL))

2 closed ¨ ()

3 while not Null(open)

4  do nodePair ¨ Head(open)

5   node ¨ Head(nodePair)

6   if GoalTest(node) = TRUE

7    then return ReconstructPath(nodePair, closed)

8    else closed ¨ Cons(nodePair, closed)

9      children ¨ MoveGen(node)

10      noLoops ¨ RemoveSeen(children, open, closed)

11      new ¨ MakePairs(noLoops, node)

12      open ¨ Append(Tail(open), new)

13 return ”No solution found”

FIGURE 2.20 In BFS, the order in append is reversed. OPEN becomes a QUEUE.

This small difference in the order of adding nodes to OPEN produces radically different behaviours 

from the two search methods. DFS dives down expanding the search tree. Traditionally, we draw it 

going down the leftmost side first. BFS on the other hand pushes into the tree, examining it layer by 

layer. Consider the following small search tree (Figure 2.21) that would be built if every node had three 

successors, and the total depth was three.
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Let us look at the tree generated by search at the point when the search is about to examine the fifth 

node, shown in black for both DFS and BFS in Figure 2.22.

1

2

3

4

1

2 3 4

DFS BFS

FIGURE 2.22 The search trees generated by DFS and BFS after four expansions.

DFS dives down the left part of the tree. It will examine the fifth and the sixth nodes and then 

backtrack to the previous level to examine the sibling of the third node it visited. BFS, on the other 

hand, looks at all the nodes at one level before proceeding to the next level. When examining its fifth 

node, it has started with level two.

How do the two search methods compare? At this point, we introduce the basis for comparison of 

search methods. The search algorithm is evaluated on the following criteria:
 ● Completeness: Does the algorithm always find a solution when there exists one? We also call a 

complete search method systematic. By this we mean that the algorithm explores the entire search 

space before reporting failure. If a search is not systematic then it is unsystematic, and therefore 

incomplete.
 ● Time Complexity: How much time does the algorithm run for before finding a solution? In our 

case, we will get a measure of time complexity by the number of nodes the algorithm picks up 

before it finds the solution.

FIGURE 2.21 A tiny search tree.
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 ● Space Complexity: How much space does the algorithm need? We will use the number of nodes 

in the OPEN list as a measure of space complexity. Of course, our algorithm also needs to store 

CLOSED, and it does grow quite rapidly; but we will ignore that for the time being. There are two 

reasons for ignoring CLOSED. Firstly, it turns out that on the average it is similar for most search 

methods. Secondly, we also look at search methods which do not maintain the list of seen nodes.
 ● Quality of Solution: If some solutions are better than others, what kind of solution does the 

algorithm find? A simple criterion for quality might be the length of the path found from the start 

node to the goal node. We will also look at other criteria in later chapters.

2.5 Comparison of BFS and DFS

How do Depth First Search and Breadth First Search compare? Let us look at each of the criteria 

described above.

2.5.1 Completeness

Both Depth First Search and Breadth First Search are complete for finite state spaces. Both are systematic. 

They will explore the entire search space before reporting failure. This is because the termination criterion 

for both is the same. Either they pick the goal node and report success, or they report failure when OPEN 

becomes empty. The only difference is where the new nodes are placed in the OPEN list. Since for every 

node examined, all unseen successors are put in OPEN, both searches will end up looking at all reach-

able nodes before reporting failure. If the state space is infinite, but with finite branching then depth first 

search may go down an infinite path and not terminate. Breadth First Search, however, will find a solu-

tion if there exists one. If there is no solution, both algorithms will not terminate for infinite state spaces.

2.5.2 Time Complexity

The time complexity is not so straightforward to estimate. If the search space is finite then in the worst 

case, both the search methods will search all the nodes before reporting failure. When the goal node 

exists then the time taken to find it depends upon where the goal node is in the state space. Both DFS 

and BFS search the space in a predefined manner. The time taken depends upon where the goal happens 

to be in their path. Figure 2.23 shows the progress of both the searches on our state space.

FIGURE 2.23 DFS on the left dives down some path. BFS on the right pushes slowly into the search 

space. The nodes in dark grey are in CLOSED, and light grey are in OPEN. The goal is the node in 

the centre, but it has no bearing on the search tree generated by DFS and BFS.
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If the state space is infinite then DFS could dive down an infinitely long path and never recover! It 

would then make no sense to talk of time complexity. Let us assume, for analysis, a domain where the 

search tree is of bounded depth and of constant branching factor. The tree is shown in Figure 2.24, and 

depicts two cases that are specifically good for the two searches respectively. A goal node on the bottom 

left will be found rather quickly by a DFS that dives into that area2 when it gets going. A goal node in 

the shallow part of the tree on the right would be found faster by BFS that explores the tree level by 

level. Basically, the DFS finds nodes on the left side in the search tree faster, while BFS finds nodes 

closer to the starting node faster.

For quantitative analysis, let us look at a search tree in which the goal is always at the same depth 

d in a search tree with a fixed branching factor b. Of course, this may not be true in real problems but 

making this assumption will give us some idea of the complexity of the two algorithms for finding 

goals at depth d. We further assume that the search tree is of bounded depth d. An example of such a 

domain is the n-queens domain, where in each row a queen can be placed in any of the n columns, and 

a solution will have queens placed in all the n rows. The goal node can be anywhere from the extreme 

left to the extreme right.

The root node of the search tree is the start node. At level (depth) 1, there are b nodes. At depth 2, 

there are bxb nodes, and so on. At level d there are bd nodes. Also, given a tree of depth d, the number 

of internal nodes I is given by

 I = 1 + b + b2 + … + bd–1

 = (bd – 1) / (b – 1)

Table (2.1) illustrates the numbers for b = 10, and gives us a good idea of how rapidly the search tree 

grows. At depth = 13, there are 1013 leaves and about 1.1 ¥ 1012 internal nodes. An interesting point to 

note is that the number of internal nodes is significantly smaller than the number of leaves. This means 

that most of the work by the search is done on the deepest level. This is, of course, a characteristic of 

an exponentially growing space.

2  Incidentally, while we have assumed in both DFS and BFS that the search picks up the leftmost of siblings, this is really determined 

by the order in which moveGen generates them. It is merely easier and more convenient for us to visualize the two algorithms 

searching from the left to the right.

FIGURE 2.24 DFS vs. BFS on a finite tree.

BFS
DFS

will find this quickly, while
will take a long time; as it

sweeps from left to right.

DFS will find this
one fast, while will

need to wade through
exponentially

growing layers.

BFS
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Table 2.1 The number of leaves and internal nodes in a search tree

Depth Leaves Internal nodes

0 1 0

1 10 1

2 100 11

3 1000 111

4 10000 1111

5 100000 11111

6 1000000 111111

7 10000000 1111111

8 100000000 11111111

9 1000000000 111111111

10 10000000000 1111111111

11 100000000000 11111111111

12 1000000000000 111111111111

13 10000000000000 1111111111111

Let us now compare the time taken by our two search methods to find a goal node at the depth d. The 

time is estimated by looking at the size of the CLOSED list, which is the number of nodes examined 

before finding the goal. This assumes that the algorithms take constant time to examine each node. This 

is strictly not true. Remember that just to check whether a node has been seen earlier, one has to look 

into the CLOSED list. And for that, one has to look into CLOSED which grows as more and more nodes 

are added to it. This is likely to become costlier as the search progresses. Nevertheless, we are only 

interested in relative estimates, and will adopt the simpler approach of counting the nodes examined 

before termination. Also, in practice, one might use a hash table to store the nodes in CLOSED, and 

then checking for existence could in fact be done in constant time.

DFS

If the goal is on the extreme left then DFS finds it after examining d nodes. These are the ancestors 

of the goal node. If the goal is on the extreme right, it has to examine the entire search tree, which is  

bd nodes. Thus, on the average, it will examine NDFS nodes given by,

 NDFS = [(d + 1) + (bd+1 – 1)/(b – 1)] / 2

 ª (bd+1 + bd + b – d – 2) / 2(b – 1)

 ª bd/2 for large d

BFS

The search arrives at level d after examining the entire subtree above it. If the goal is on the left, it picks 

only one node, which is the goal. If the goal is on the right, it picks it up in the end (like the DFS), that 

is, it picks bd nodes at the level d. On an average, the number of nodes NBFS examined by BFS is

 NBFS = (bd – 1)/(b – 1) + (1 + bd) /2

 ª (bd+1 + bd + b – 3) / 2(b – 1)

 ª bd (b + 1) / 2b for large d

Thus, we can see that the BFS does marginally worse than DFS. In fact,

NBFS / NDFS = (b +1)/b

so that for problems with a large branching factor, both tend to do the same work.
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Box 2.4: Combex: Unimaginably Large Numbers

Even simple problems can pose a number of choices that we find difficult to comprehend. Consider 

some search problem where the branching factor is ten, and the solution is twenty moves long. 

Notice that even the Rubik’s cube generates a larger search space. Real world problems will have 

larger branching factors.

To find the solution, the algorithm may have to examine 1020 nodes. How long will this take? 

Assume that you have a fast machine on which you can check a million nodes a second. Thus, you 

will need 10(20 – 6) = 1014 seconds. Assume conservatively that there are 100000 seconds in a day 

(to simplify our numbers). Assume a thousand days to a year, and you would need 1014 – 8 = 106 

years or a million years.

Surely, you are not willing to wait this long!

In an interesting observation, Douglas Hofstadter (Hofstadter 1986) has talked about our inability 

to comprehend large numbers. Anything beyond a few thousands is “huge”. Very often two million 

and two billion look “similar” to us. And numbers like 1020 and 1030 don’t give us the feel of looking 

at two numbers, one of which is ten billion times larger than the other. Also, interestingly, George 

Gamow had written a book called “One, two, three, … Infinity” (Gamow 71) to highlight a similar 

observation about comprehending large numbers.

2.5.3 Space Complexity

For assessing space complexity, we analyse the size of the OPEN list. That is, the number of candidates 

that the search keeps pending for examination in the future. Here again, we are ignoring the size of 

CLOSED, which as we know, does grow exponentially, but our interest is in relative measures. Moreover, 

we will later look at ways to prune the CLOSED list in more detail. Figure 2.25 shows the OPEN and 

the CLOSED lists at different stages of search in a depth-bounded tree of branching factor 3. The double 

circle shaded nodes are the ones on CLOSED, and the unfilled nodes are the ones on OPEN.

DFS

In a general search tree, with a branching factor b, DFS dives down some branch, at each level, leaving 

(b – 1) nodes in OPEN. When it enters the depth d, it has at most ODFS nodes in the OPEN list, where

 ODFS = (b – 1)(d – 1) + b

 = d(b – 1) + 1

Thus, the size of OPEN is linear with depth. In fact, as the search progresses from the left to right, 

the number of candidates at each level decreases, as shown in Figure 2.26.

Note that the process of backtracking happens automatically when search reaches a dead end. If the 

examined node has no successors, the next node in OPEN is then picked up. This could be a sibling of 

the node just examined, or if it has no siblings left, a sibling of its parent. Thus, as search exhausts some 

deeper part of the tree, it automatically reverts to shallower nodes waiting in the OPEN list.

BFS

Breadth First Search pushes into the tree level by level. As it enters each level at depth d, it sees all the 

bd nodes ahead of it in OPEN. By the time it finishes with these nodes, it has generated the entire next 

level and stored them in OPEN. Thus, when it enters the next level at depth (d + 1), it sees b(d+1) nodes 

in the OPEN list.
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FIGURE 2.25 The OPEN and CLOSED for DFS and BFS on the tiny search tree.

DFS

BFS

Double circle—CLOSED

Blank—OPEN

This then is the main drawback of BFS. The size of OPEN grows exponentially with depth. This stands 

out when one looks at DFS, managing its search with an OPEN list that grows only linearly with depth.
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2.6 Quality of Solution

Our formulation of problem solving does not include any explicit cost for the moves or choices made. 

Consequently, the only quality measure we can talk of is the length of the solution. That is, we consider 

solutions with smaller number of moves as better.

Where BFS loses out on space complexity, it makes up on the quality of the solution. Since it pushes 

into the search space level by level, the Breadth First Search inspects candidate solutions in increasing 

order of solution length. Consequently, it will always find the shortest solution. This is a major advantage 

in many domains.

Depth First Search on the other hand, dives down into the search tree. It backtracks if it reaches 

a dead end, and tries other parts of the search space. It returns the first solution found, which holds 

no guarantee that it will be the shortest one. Given a search tree with two goal nodes as shown in  

Figure 2.24, DFS will find the longer solution deeper in the search tree. Thus, it can find a non-optimal 

solution. On the other hand, since BFS pushes into the search tree, it will always find the shortest solu-

tion. So, this is one feature where BFS is better than DFS.

In fact, if the search space is infinite, there is a danger that DFS will go into a never-ending path and 

never return a solution! Consider the task of finding a pair of two integers <m,n> which satisfy some 

given property. Let the moveGen for each state <x, y> return two states <x+1,y> and <x,y+1>. Let the 

goal state be <46, 64> and the start state be <0,0>. The reader is encouraged to simulate the problem 

on paper and verify that DFS would get lost in an infinite branch.

One way to guard against this possibility is to impose a depth bound on the search algorithm. This 

means that the search space is prohibited from going beyond a specified depth. This could be done if 

for some reason one wanted solutions only within a certain length.

FIGURE 2.26 With a branching factor of 5, at depth 5, there are 5(5 – 1) +1 = 21 nodes in the OPEN 

to begin with. But as DFS progresses and the algorithm backtracks and moves right, the number of 

nodes on OPEN decreases.
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2.7 Depth Bounded DFS (DBDFS)

Figure 2.20 shows a depth bounded DFS algorithm. It is different from DFS, in that it takes a parameter 

for depth bound. Given any node, it calls moveGen only if it is within the given depth bound. The node 

representation is changed to include depth of node as the third parameter, apart from the parent link, 

which is the second parameter. The function makePairs is modified appropriately to compute the depth 

of a node, by adding one to the depth of its parent.

The astute reader would have observed that implementing DBDFS would have been simpler with 

the node representation that stored the complete path. One would just have to look at the length of the 

node to determine whether one is within the allowable bound. And in addition, the task of reconstructing 

the path is also simplified. Obviously, various design choices will have to be made while implementing 

solutions for specific problems.

DepthBoundedDFS(start, depthBound)

1  open ¨ ((start, NIL, 0))

2  closed ¨ ()

3  while not Null(open)

4    do nodePair ¨ Head(open)

5   node ¨ Head(nodePair)

6   if GoalTest(node) = TRUE

7       then return ReconstructPath(nodePair, closed)

8       else closed ¨ Cons(nodePair, closed)

9         if Head(Rest(Rest(nodePair))) < depthBound

10     then children ¨ MoveGen(node)

11         noLoops ¨ RemoveSeen(children, open, closed)

12          new ̈  MakePairs(noLoops, node, Head(Rest(Rest(nodePair))))

13            open ¨ Append(new, Tail(open))

14  return ”No solution found”

MakePairs(list, parent, depth)

1 if Null(list)

2  then return ()

3  else return (Cons(MakeList(Head(list), parent, depth+1)),

4           MakePairs(Tail(list), parent, depth))

FIGURE 2.27 Depth Bounded DFS generates new nodes only within a defined boundary.

Performance wise, DBDFS is like DFS on a finite tree. However, given that the depth bound is 

artificially imposed, the algorithm is not complete in the general case.

2.8 Depth First Iterative Deepening (DFID)

The algorithm Depth First Iterative Deepening (DFID) combines the best features of all the algorithms 

described above. It does a series of depth first searches with increasing depth bounds. Since in every 

cycle it does a DFS with bound incremented by one, whenever it finds a solution it would have found 

the shortest solution. In this respect, it is like BFS. New nodes are explored one level at a time. On the 

other hand, within each cycle it does a DBDFS. Therefore, its memory requirements are those of DFS, 

that is, memory requirements grow linearly with depth.
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DepthFirstIterativeDeepening(start)

1 depthBound ¨ 1

2 while TRUE

3  do DepthBoundedDFS(start, depthBound)

4   depthBound ¨ depthBound + 1

FIGURE 2.28 DFID does a series of DBDFSs with increasing depth bounds.

The high level algorithm described above ignores the possibility of a finite search space with no 

solution. In that situation, the above algorithm will loop endlessly. The detailed algorithm given below 

keeps a count of the number of nodes examined in each call of DBDFS. If the count is the same in two 

successive cycles, that is no new nodes are generated, the algorithm DFID reports failure.

DepthFirstIterativeDeepening(start)

1  depthBound ¨ 1

2  previousCount ¨  0

3  newNodes  ¨ YES

4  repeat

5   count ¨  0

6   open  ¨ ((start, NIL, 0))

7   closed  ¨ ()

8   while not Null(open)

9    do  nodePair ¨ Head(open)

10     node ¨ Head(nodePair)

11     if GoalTest(node) = TRUE

12      then return ReconstructPath(nodePair, closed)

13      else closed Cons(nodePair, closed)

14       if Head(Rest(Rest(nodePair))) < depthBound

15        then children MoveGen(node)

16         noLoops  RemoveSeen(children, open, closed)

17         new MakePairs(noLoops, node,

18            Head(Rest(Rest(nodeP air))))

19         open Append(new, Tail(open))

20         count count + Length(new)

21   if previousCount = count

22    then newNodes NO

23   previousCount count

24   depthBound depthBound + 1

25  until newNodes = NO

26  return ”No solution found”

FIGURE 2.29 DFID—the algorithm in detail.

Thus, the algorithm DFID finds the shortest solution using only linear space. Is there a catch 

somewhere? In a way there is, but only a small one. The DFID algorithm does a series of searches. In 

each search, it explores a new level of nodes. But for inspecting these new nodes, it has to generate the 

tree all over again. That is, for exploring the new level, it has to pay the additional cost of regenerating 

the internal nodes of the search tree all over again. 

The question one should ask is how significant is the above cost? The new nodes are the leaves of the 

search tree at the end of that cycle. What then, is the ratio of the number of internal nodes I (the extra 

cost) to the number of leaves L (the new nodes) in a tree?
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The ratio is the highest for binary trees. The number of internal nodes is just one less than the number 

of leaves. So, the number of nodes inspected is at most twice as in BFS. In general, for inspecting bd new 

nodes at level d, one has to inspect (bd – 1) / (b – 1) extra nodes. The ratio of internal nodes to leaves 

tends to 1/(b – 1) for large d.

Every time DFID inspects the leaves at the depth d, it does extra work of inspecting all the internal 

nodes as well. That is, every time BFS scans L nodes at depth d, DFID inspects L + I nodes. Thus, it 

does (L + I)/L times extra work as compared to BFS. This ratio tends to b/(b – 1) for large d, and as 

the branching factor becomes larger, the number of extra nodes to be inspected becomes less and less 

significant. A look at Table 2.1 above shows that when b = 10, the number of internal nodes is about 

11% of the leaves.

Box 2.5: Leaves Vastly Outnumber Internal Nodes

Given a tree with branching factor b, a simple way to compute the ratio of leaves to internal nodes 

is by thinking of the tree as a tournament in which b players compete, and one winner emerges 

at each event (internal node). That is, at each (event) internal node, b – 1 players are eliminated. 

Thus, if there are L players, and only one emerges at the root the number of events (internal nodes), 

I must satisfy

 L = (b – 1) I +1

Thus I = (L – 1)/(b – 1), and I/L = 1/(b – 1) for large L.

Also (L + I)/L = b/(b – 1) for large L.

The work done by DFID can also be computed by summing up the work done by all the Depth 

First Searches that it is made up of, to arrive at the same result.

 That is NDFID = Sj =0 to d (b j+1– 1)/ (b – 1)

Thus, the cost of repeating work done at shallow levels is not prohibitive

Thus, the extra work that DFID has to do becomes insignificant as the branching factor becomes 

larger. And the advantage gained over BFS is a major one, the space requirement drops from exponential 

to linear.

The above discussion shows that as search algorithms have to search deeper and deeper then at every 

level they have to do much more work than at all the previous levels combined. This is the ferocious 

nature of the monster CombEx that problem solving finds itself up against.

Nevertheless, the fact remains that all the three search algorithms explore an exponentially growing 

number of states, as they go deeper into the search space. This would mean that these approaches will not 

be suitable as the problem size becomes larger, and the corresponding search space grows. The DFS and 

DFID algorithms need only a linear amount of space to store OPEN. They still need exponential space 

to store CLOSED whose size is correlated with time complexity. We will need to do better than that.

There are basically two approaches to improve our problem solving algorithms. One is to try and 

reduce the space in which the algorithm has to search for solutions. This is what is done in Constraint 

Propagation. The other is to guide the search problem solving method to the solution. Knowledge based 

methods tend to exploit knowledge acquired earlier to solve a current problem. These methods range 

from fishing out complete solutions from the problem solver’s memory, to providing domain insights 

to a search-based first principles approach.
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Observe that the search methods seen so far are completely oblivious of the goal, except for testing 

for termination. Irrespective of what the goal is or where the goal is in the solution space, each search 

method described in this chapter explores the space in one single order, which they blindly follow. They 

can be called blind or uninformed search methods.

In later chapters, we will find the weapon to fight CombEx, our adversary that confounds our 

algorithms with unimaginably large numbers. Our weapon will be knowledge. Knowledge will enable 

our algorithms to cut through the otherwise intractable search spaces to arrive at solutions in time to 

be of use to us. In the next chapter, we look at search methods that use some domain knowledge to 

impart a sense of direction to search, so that it can decide where to look in the solution space in a more 

informed manner.

  Exercises

 1. The n-queens problem is to place n queens on an n-by-n 

chessboard, such that no queen attacks another, as per chess 

rules. Pose the problem as a search problem.

 2. Another interesting problem posed on the chessboard is the 

knight’s tour. Starting at any arbitrary starting point on the 

board, the task is to move the knight such that it visits every 

square on the chessboard exactly once. Write an algorithm 

to accept a starting location on a chessboard and generate a 

knight’s tour.
FIGURE 2.30 A 5-queens 

solution.

Box 2.6: Self Similarity

An interesting observation has been made about 

chessboards that have sides that are powers of 

5. The adjoining figure displays one solution for 

the 5-queens problem.

If we want to solve the 25 queens problem, 

then we can think of the 25 ¥ 25 board as twenty 

five 5 ¥ 5 boards. Then, in the five 5 ¥ 5 boards 

that correspond to the queens in the above 

solution, we simply place the 5 ¥ 5 solution 

board as shown in Figure 2.31. Thus, the 25 ¥ 

25 board solution is similar to the 5 ¥ 5 board 

solution. Such similarity to a part of itself is 

known as self similarity and is a key property 

of fractals (see for example (Barnsley, 1988)). 

Clouds, coastlines, plants and many artifacts in 

nature have this property. Observe that with this 

knowledge, arbitrarily large n-queen problems 

that are powers of five can be solved quite easily, 

whereas the search would have taken very long.

FIGURE 2.31 A 25-queens solution 

constructed from a 5-queens solution.
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 3. In the rabbit leap problem, three east-bound rabbits stand in a line blocked by three west-bound 

rabbits. They are crossing a stream with stones placed in the east west direction in a line. There 

is one empty stone between them.

FIGURE 2.32 Rabbits waiting to cross. Each rabbit can jump over one, but not more than that. How 

can they avoid getting into a deadlock?

  The rabbits can only move forward one step or two steps. They can jump over one rabbit if the 

need arises, but not more than that. Are they smart enough to cross each other without having to 

step into the water? Draw the state space for solving the problem, and find the solution path in 

the state space graph.

 4. Given that you have a set of shopping tasks to be done at N locations, find a feasible order of the 

shopping tasks. The constraints are the different closing times of the N shops, given a closing time 

table. An N ¥ N array D gives the time it takes to go between shops, where dij being the time taken 

from the ith shop to the jth shop. Assume that the time taken for the actual shopping is negligible. 

Hint: Augment the state representation to have time. If the time of reaching a shop is later than 

its closing time, try another solution.

 5. Amogh, Ameya and their grandparents have to cross a bridge over the river within one hour to 

catch a train. It is raining and they have only one umbrella which can be shared by two people. 

Assuming that no one wants to get wet, how can they get across in an hour or less? Amogh can 

cross the bridge in 5 minutes, Ameya in 10, their grandmother in 20, and their grandfather in 25. 

Design a search algorithm to answer the question.

 6. The AllOut game is played on a 5 by 5 board. Each square can be in two positions, ON or OFF. The 

initial state is some state, where at least one square is ON. The moves constitute of clicking on a 

particular square. The effect of the click is to toggle the positions of its four neighbouring squares. 

The task is to bring all squares to OFF position. Pose 

the above problem as a state space search problem.

 7. Ramesh claims that a given map can be coloured 

with three colours, such that no adjacent countries 

have the same colour. The map is represented as 

a planar graph with nodes as countries and arcs 

between countries that are adjacent to each other. 

Design a search program to test his claim for any 

given problem.

 8. In the algorithms given in this chapter, the list 

CLOSED is searched in a linear fashion to find 

out whether a node has been visited earlier or not. 

Devise a faster approach to accomplish this task.

 9. In the following graph, the node A is the start node 

and nodes J, G and R are goal nodes. The tree is 

A

CB

HGFED

NMLJI K

PO RQ TS

FIGURE 2.33 A small search tree. 

Assume that the algorithm searches it 

from left to right.
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being searched by the DFID algorithm, searching left to right. Write the sequence of nodes 

inspected by DFID till termination.

 10. Given the moveGen function in the table below, and the corresponding state space graph, the task 

is to find a path from the start node S to the goal node J.

moveGen

FIGURE 2.34 A small search problem. The task is to find a path from the start node S to the goal 

node J.

  Show the OPEN and CLOSED lists for the DFS and the BFS algorithms. What is the path found 

by each of them?

 11. The search algorithms depicted in this chapter maintain an OPEN list of candidate states. In some 

domains, the description of a move may need much less space than the description of a state. Show 

how the DFS algorithm can be modified by storing a list of move pairs in the list OPEN. Each 

move pair consists of a forward move and a backward move, to and fro to a successor. What is 

the space complexity of the resulting algorithm?

 12. How can the same technique be applied to BFS? What is the resulting complexity?

 13. Show the order in which DFID applies goalTest to the nodes of the above graph. What is the path 

it finds?

 14. What is the effect of not maintaining the CLOSED list in DFID search? Discuss with an example. 

Will the algorithm terminate? Will it find the shortest solution?

 15. Show that the effort expended by DFID is the same as its constituent depth first searches.

 16. Which of the following is more amenable to parallelization? DFS, BFS, or DFID? Justify your 

answer.

 17. Explain with reasons which search algorithms described in this chapter will be used by you for 

the following problems:

 (a) A robot finding its way in a maze.

 (b) Finding a winning move in a chessboard.

 (c) Finding all winning moves in a chessboard.

 (d) A sensor trying to route a packet to another sensor (Assume the network topology is known. 

Hint: Sensors are limited memory devices.)

  Justify your answers with a description of your search primitives and state definitions for each 

problem.
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I  n the search algorithms described in Chapter 2, the only role that the goal node plays is in testing 

  whether the candidate presented by the search algorithm is a goal or not. Otherwise, the search 

algorithms are quite oblivious of the goal node. Any intelligent observer watching the progress of the 

algorithms would soon get exasperated! They always go about exploring the state space in the same 

order, irrespective of the goal to be achieved. They are, therefore, called blind or uninformed. The 

Depth First Search (see Figure 3.1) dives into the search space, backtracking only if it reaches a dead 

end. If the search space were infinite, it might just keep going along an endless path. The Breadth First 

Search, on the other hand, ventures out cautiously, going further away, only if it has finished inspecting 

the nodes the same distance away from the start position. Consequently, it always finds the shortest 

solution, though its space requirements grow exponentially. DFID is basically a sequence of ‘depth first 

searches’ masquerading as a breadth first search.

FIGURE 3.1 DFS searches blindly, wherever the goal may be.

The search algorithms described so far maintain a list, called OPEN, of candidate nodes. Depending 

upon whether the algorithm operates OPEN as a stack or as a queue, the behaviour is either depth first 

or breadth first. What we would like is the algorithm to have, instead, some sense of direction. If it could 

make a guess as to which of the candidates is more likely to lead to the goal, it would have a chance 

of finding the goal node faster. We introduce the notion of a heuristic function to enable the search 

algorithm to make an informed guess.

Heuristic Search

Chapter 3
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3.1 Heuristic Functions

As seen in Chapter 2, the time required for search could be exponential in the distance to the goal. The 

idea of using a heuristic function is to guide the search, so that it has a tendency to explore the region 

leading to the goal. A heuristic function is designed to help the algorithm to pick that candidate from 

the OPEN list that is most likely to be on the path to the goal. A heuristic value is computed for each of 

the candidates. The heuristic value could be an estimate of the distance to the goal from that node, as 

shown in Figure 3.2. The heuristic function could also embody some knowledge gleaned from human 

experts that would indicate which of the candidate nodes are more promising. The algorithm then simply 

has to choose the node with the lowest heuristic value to expand next.

FIGURE 3.2 The heuristic function estimates the distance to the goal.

The word heuristic has its roots in the Greek word ‘  or , which means “I find, discover”. 

It has the same root as the word eureka from ‘  or  meaning “I have found (it)”—an 

expression, the reader might remember, that is attributed to Archimedes when he realized that the volume 

of water displaced in the bath was equal to the volume of his body. He is said to have been so eager 

to share his discovery, that he leapt out of his bathtub and ran through the streets of Syracuse naked1.

The heuristic function must not be computationally expensive, because the idea is to cut down on the 

computational cost of the search algorithm. The simplest way to do this is to make the heuristic function 

a static evaluation function that looks only at the given state and returns a value. It will also have to look 

at the goal state, or a goal description. Since we expect the move generation function to transform the 

given state into the goal state via a sequence of moves, the heuristic function has to basically estimate 

how much of that required transformation still needs to be done for a given state. In other words, it is 

some kind of a match function that computes some similarity measure of the current state with the goal 

state. Such a heuristic function will be domain dependent, and will have to be included into the domain 

functions, along with the moveGen and goalTest functions described in Chapter 1. In later chapters, we 

1 http://en.wikipedia.org/wiki/Eureka_(word)
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will also look at the notion of domain independent heuristic functions. These functions estimate the 

distance to the goal by solving a relaxed version of the original problem. The relaxed problems are such 

that they are simpler to solve, typically being linear or polynomial in complexity. They typically give 

us a lower bound on the distance to the goal. 

Traditionally, the heuristic function is depicted by h(n), where n is the node in question. The fact that 

the heuristic value is evaluated with respect to a goal state is implicit, and, therefore, the heuristic value 

should be seen to be for a given problem in which the goal has been specified. To incorporate heuristic 

values in search, the node-pair representation used will have to be augmented with the heuristic value, 

so that a node in the search tree will now look like,

searchNode = (currentState, parentState, heuristicValue)

We illustrate the idea of heuristic functions with a few example problems.

In a route finding application in a city, the heuristic function could be some measure of distance 

between the given state node and the goal state. Let us assume that the location of each node is known 

in terms of its coordinates. Then a heuristic estimate of distance could be the Euclidean distance of the 

node from the goal node. That is, it estimates how close to the goal the current state is

Euclidean distance: h(n) = ÷(xGoal – xn)
2 + (yGoal – yn)

2

Note that this function gives an optimistic estimate of distance. The actual distance is likely to be 

more than the straight line distance. Thus, the Euclidean distance is lower bound on the actual distance. 

Another distance measure we could use is the Manhattan distance or the city block distance, which is 

given below:

Manhattan distance: h(n) = |xGoal – xn|
 + |yGoal – yn|

This estimates the distance assuming that the edges form a grid, as the streets do in most of Manhattan. 

Observe that at this point, we are not really interested in knowing the distance accurately; though later we 

will encounter algorithms that will benefit from such accuracy. At this moment it suffices if the heuristic 

function can reliably say as to which of the candidates is likely to be closer to the goal. 

Next, consider the Eight puzzle. The following diagram shows three choices faced by a search 

algorithm. The choices in the given state are R (move a tile right), U (up) and L (left). Let us call the 

corresponding states too R, U and L. One simple heuristic function could be simply to count the number 

of tiles out of place. Let this function be called h1. The values for the three choices are:

h1(R) = 6 (Only 4, 5 and 7 are in place. The rest are in a wrong place.)

h1(U) = 5 (Again only 4, 5 and 7 are in their final place, but also the blank tile.)

h1(L) = 5 (2,4,5 and 7 are in place.)

Thus, according to h1, the best move is either U or L. Let us look at another heuristic function h2 that 

adds up the Manhattan distance of each tile from its destination. The values, counting from the blank 

tile, and then for tile-1 to tile-8, are:

h2(R) = (2 + 1 + 1 + 3 + 0 + 0 + 2 + 0 + 1) = 10

h2(U) = (0 + 1 + 1 + 3 + 0 + 0 + 3 + 0 + 2) = 10

h2(L) = (2 + 1 + 0 + 3 + 0 + 0 + 3 + 0 + 1) = 10
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If one were to think of the heuristic values as obtained from solving a relaxed version of the Eight-

puzzle then the first one can be thought of as a problem, where a tile can be moved to its destination in 

one move, and the second heuristic from a problem where a tile can move even over existing tiles. The 

values are the total number of moves that need to be made in the relaxed problem(s). Curiously, this 

more detailed function seems to think that all moves are equally good. We leave it as an exercise for the 

user to pick the best move in this situation.
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FIGURE 3.3 Which state is closest to the goal?

The Eight-puzzle has its bigger cousins, the 15-puzzle and the 24-puzzle, played on a 4 ¥ 4 and a 

5 ¥ 5 grid respectively. The state spaces for these puzzles are much larger. The 15-puzzle has about 

10000000000000 (or more succinctly 1013) states, while the 24-puzzle has about 1025 states. These are 

not numbers to trifle with. With an algorithm inspecting a billion states a second, we would still need 

more than a thousand centuries to exhaustively search the state space. Only recently have machines 

been able to solve the 24-puzzle, and that requires a better heuristic function than the ones we have.

We now look at our first algorithm to exploit the heuristic function, called Best First Search, because 

it picks the node which is best according to the heuristic function.

3.2 Best First Search

We need to make only a small change in our algorithm Depth First Search from Chapter 2. We simply 

maintain an OPEN list sorted on the heuristic value, so that the node with the best heuristic value 

automatically comes to the head of the list. The algorithm then picks the node from the head of OPEN 

as before. Conceptually, this can be written by replacing the line,

OPEN ¨ append (NEW, tail(OPEN))

with

OPEN ¨ sorth (append (NEW, tail(OPEN)))
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In practice, though, it would be more efficient to implement OPEN as a priority queue. In addition, 

one has to make the changes to the search node representation to include the heuristic value, and the 

consequent changes in the other functions. These changes are left as an exercise for the reader.

The following figure illustrates the progress of the algorithm on an example problem. The graph in 

Figure 3.4 represents a city map, where the junctions are located on a two dimensional grid, each being 

1 km. A path from the start node S to the goal node G needs to be found. The search uses the Manhattan 

distance as the estimate of the distance. The graph depicts the nodes on CLOSED with double circles, 

and the nodes on OPEN with single circles, at the instance when the algorithm terminates. Both the sets 

of nodes are labelled with the heuristic values. The labels near the nodes show the order in which the 

nodes are expanded. Note that the heuristic function initially takes the search down a path that is not 

part of the solution. After exploring nodes labelled 2, 3 and 4 in the search order, the search abandons 

them and goes down a different path. This is characteristic of a heuristic search, and happens because 

the heuristic function is not “aware” of the entire roadmap. It only has a sense of direction. Perhaps, in 

this example, there is a river on the way without a bridge at that point. The search then has to explore 

an alternate route. The back pointers on the edges point to the parent nodes, and the thick edges with 

back arrows show the path found by the search.
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FIGURE 3.4 Best First Searches has a sense of direction, but may hit a dead end too.

What about the performance of the Best First Search algorithm? How much does it improve upon 

the uninformed search methods seen in Chapter 1? 

3.2.1 Completeness

Best First Search is obviously complete, at least for finite domains. The reasoning is straightforward. 

The only change we are making is in the ordering of OPEN. It still adds all unseen successors of a node 

to the list, and like the earlier search algorithms, it will report failure only after OPEN becomes empty. 
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That is, only when it has inspected all the candidate nodes. Note that Best First Search is systematic 

too, in the sense that it will inspect all nodes before giving up.

For infinite state spaces, the ‘completeness’ property will depend upon the quality of the heuristic 

function. If the function is good enough, the search will still home in on the goal state. If the heuristic 

function yields no discriminating information (for example if h(n) = 0 for all nodes n), the algorithm will 

behave like its parent algorithm. That is, either DFS or BFS, depending upon whether it treats OPEN 

like a stack or a queue.

Let us discuss the quality of the solution before looking at complexity.

3.2.2 Quality of Solution

So far we have only talked about the quality of the solution in terms of its length, or the number of moves 

required to reach the goal. With a simple example shown in Figure 3.5, we can see that it is possible that 

Best First Search can choose a longer solution, in terms of the number of hops. This may happen if the 

heuristic function measures the difference in terms of some metric which does not relate to the number 

of steps. Even when we look at other measures for quality, it will be possible to construct examples 

for which the algorithm picks a sub-optimal solution. This happens mainly because the algorithm only 

compares two states by estimating the distance to the goal, without taking into account the cost of 

reaching the two states. Thus, if two states have the same heuristic value, but one of them was more 

expensive to achieve, the Best First Search algorithm has no way of discriminating between the two. 

As we shall see later (in Chapter 5), incorporating this cost and some conditions on the heuristic will 

ensure the finding of optimal solutions.

Start

Goal

FIGURE 3.5 Best First Search chooses a solution with five moves.

3.2.3 Space Complexity

We have already seen that the search frontier, represented by the list OPEN, grows linearly for DFS 

and exponentially for Breadth First Search. The search frontier for Best First Search depends upon the 
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accuracy of the heuristic function. If the heuristic function is accurate then the search will home in onto 

the goal directly, and the frontier will only grow linearly. Otherwise, the search algorithm may go down 

some path, change its mind, and sprout another branch in the search tree (Winston, 1977). Figure 3.6 

depicts the frontiers for the three algorithms being discussed. Empirically, it has been found though that 

for most interesting problems, it is difficult to devise accurate heuristic functions, and consequently the 

search frontier also grows exponentially in best first searches.

Best First Search
frontier depends
upon the heuristic
function

DFS frontier
grows linearly

Breadth First
frontier grows
exponentially

FIGURE 3.6 The Search Frontier is an indication of space requirement.

3.2.4 Time Complexity

Like space complexity, time complexity too is dependent upon the accuracy of the heuristic function. 

With a perfect heuristic function, the search will find the goal in linear time. Again, since it is very 

difficult to find very good functions for interesting enough problems, the time required too tends to be 

exponential in practice.

In both space and time complexity, we have pegged the performance on the accuracy of the heuristic 

function. In fact, by measuring performance experimentally, we could talk about the accuracy of heuristic 

functions. A perfect heuristic function would only inspect nodes that lead to the goal. If the function 

is not perfect then the search would often pick nodes that are not part of the path. We define effective 

branching factor as a measure of how many extra nodes a search algorithm inspects.

effective branching factor = total-nodes-expanded / nodes-in-the-solution

For a perfect search function, the effective branching factor would tend to be 1. For a very poor 

heuristic function, one expects the effective branching factor to tend to be much greater that the branching 

factor of the underlying search space. This is because a really poor function would lead the search away 

from the goal, and explore the entire space. As an exercise, the reader could implement the two heuristic 

functions discussed earlier for the Eight-puzzle, and compare the performance over a set of problems. 

The function that performs better on the average is likely to be better.
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A related measure for heuristic functions that has been suggested in literature is called penetrance 

(Nilsson 1998). Penetrance can be defined as the inverse of effective branching factor. That is:

penetrance = nodes-in-the-solution / total-nodes-expanded

The best value of penetrance is 1, and if the search does not find a solution, which it might in an 

infinite search space with a poor heuristic, the penetrance value could be said to be zero. Note that both 

the above measures are for specific search instances. To get a measure of the heuristic function that 

does not depend upon the given problem, one would have to average the values over many problems.

Best First Search is an informed search algorithm. Instead of blindly searching in a predefined 

manner, it inspects all candidates to determine which of them is most likely to lead to the goal. It does 

this by employing a heuristic function that looks at the state in the context of the goal, and evaluates it 

to a number that in some way represents the closeness to the goal. The heuristic functions we have seen 

are domain dependent. They require the user to define them. Typically, the heuristic function measures 

closeness by measuring similarity from some perspective. For the route map, finding the similarity is in 

terms of location; while for the Eight-puzzle, it is in terms of similarity of the patterns formed by the tiles.

In Chapter 10 on advanced methods in planning, we will also see how domain independent heuristics 

functions can be devised. They will essentially solve simpler versions of the problem in such a way that 

the time required is significantly smaller. By solving the simpler version for all the candidates, they will 

be able to give an estimate as to which of the candidates is the closest to the goal. Of course, care has 

to be taken that the work done by the heuristic function is offset by a reduction in the number of nodes 

explored, so that the overall performance is better than an uninformed search.

Meanwhile, there exist many interesting real problems that need to be solved, and for which heuristic 

functions can be devised. For many of these problems, the state representations may be quite complex. 

There is a need to find algorithms that are easier on space requirements. In the next few sections, we 

begin by looking at heuristic search algorithms that are guaranteed to have low space requirements. This 

will enable us to work on complex problems with large search spaces. The cost we may have to pay is 

in terms of completeness. While Best First Search is complete for finite spaces, it becomes impractical 

if the search spaces are too large. There is still a market for heuristic algorithms to search these spaces, 

even though they may not always find the solution.

3.3 Hill Climbing

If our heuristic function is good then perhaps we can rely on it to drive the search to the goal. We modify 

the way OPEN is updated in Best First Search. Instead of,

OPEN ¨ append (sorth (NEW, tail(OPEN)))

we can try using

OPEN ¨ sorth (NEW),

where, NEW is the list of new successors of the nodes just expanded. Observe that in doing so we have 

jettisoned the nodes that were added to OPEN earlier. We have burned our bridges as we move forward. 

A direct consequence of this will be that the new algorithm may not be complete. But having done this, 

we might as well not maintain an OPEN list, since only the best node from the successors will be visited. 

The revised algorithm is given in Figure 3.7.
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HillClimbing()

1 node ¨ start

2 newNode ¨ Head(Sorth(MoveGen(node)))

3 while h(newNode) < h(node)

4  do node ¨ newNode

5   newNode ¨ Head(Sorth(MoveGen(node)))

6 return newNode

FIGURE 3.7 Algorithm Hill Climbing.

Observe that this algorithm has modified our problem solving strategy considerably.

In the search algorithms we saw till now, the termination criterion was finding the goal node. In 

Hill Climbing, the termination criterion is when no successor of the node has a better heuristic value. 

Searching for the goal has been replaced with optimizing the heuristic value. The problem has been 

transformed into an optimization problem, in which we seek the node with the lowest heuristic value, 

rather than one that satisfies the goalTest function. This is consistent with the notion that the goal state 

has the lowest heuristic value, since the distance to the goal is zero. We will also intermittently use the 

term objective function used by the optimization community to refer to the heuristic function.

Let us consider the negation of the heuristic function –h(n). Instead of looking for lower values 

of h(n), we can equivalently say that we are looking for higher values of –h(n). That is, instead of a 

minimization problem, we have a maximization problem.

As long as the moveGen function keeps generating nodes with better (higher) values, the search 

keeps stepping forward. Of the choices available, the algorithm picks the best one. In other words, the 

algorithm is performing steepest gradient ascent. Imagine you were blindfolded and left on a hillside, 

and asked to go to the top. What would your strategy be? Presumably, you might test the ground on all 

sides and take a step in the direction of the steepest gradient. And you would stop when the terrain in no 

direction is going upwards. That is precisely what the algorithm Hill Climbing is doing; moving along the 

steepest gradient of a terrain defined by the heuristic function. The idea is illustrated in Figure 3.8 below.

FIGURE 3.8 Hill Climbing.
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Observe that while the “terrain” is defined by the heuristic function, and different heuristic functions 

define different “landscapes”, it is the moveGen function that independently determines the neighbourhood 

available to the search function. The moveGen function determines the set of points, both in number and 

location, in the landscape that become the neighbours of a given node. The heuristic function assigns a 

heuristic value to each point supplied by the moveGen function.

The problem with climbing hills blindfolded is that one does not have a global view. We can only 

do local moves, and the best we can do is to choose the locally good options. If the hill we are asked 

to climb had a “smooth” surface then the algorithm will work well. However, mountainous terrain is 

seldom smooth, and one is more likely than not to end up in the situation depicted in Figure 3.9. Instead 

of reaching the highest peak, we might end up in a lower peak somewhere on the way. In other words, 

one has reached a maximum, but only one that is local. If the heuristic function used by Hill Climbing 

is not perfect then the algorithm might well find a local maximum as opposed to a global maximum.

FIGURE 3.9 Stopping at a Local Maximum.

3.4 Local Maxima

We look at an example problem where the choice of a heuristic function determines whether there 

are local maxima in the state space or not. The blocks world domain consists of a set of blocks on an 

infinitely large table. There can be only one block on top of each block. The problem is to find a sequence 

of moves to rearrange a set of blocks, assuming that one can only lift the topmost block from a pile, or 

keep a block only on the top of a pile. That is, each pile of blocks behaves like a stack data structure. 

The figure below illustrates a sample problem.
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FIGURE 3.10 A blocks world problem.

In the initial state, four moves are possible as shown in Figure 3.11 below. Either block A can be 

moved, or block E can be moved. The destination is either the other pile or the table. Let us see how two 

different heuristic functions guide our Hill Climbing search algorithm. The two functions (also described 

in (Rich & Knight, 1990)) differ in the level of detail they look at in a given state. 

The first function h1(n) simply checks whether each block is on the correct block, with respect to the 

final configuration. We add one for every block that is on the block it is supposed to be on, and subtract 

one for every one that is on a wrong one. The value of the goal node will be 6. Observe that the heuristic 

function is not an estimate of the distance to the goal, but a measure of how much of the goal has been 

achieved. With such a function we are looking for higher values of the heuristic function. That is, the 

algorithm is performing steepest gradient ascent. For the five states, S (start) and its successors P, Q, 

R, and T, the values are

 h1(S) = (–1) + 1 + 1 + 1 + (–1) + 1 = 2

 h1(P) = (–1) + 1 + 1 + 1 + (–1) + 1 = 2

 h1(Q) = 1 + 1 + 1 + 1 + (–1) + 1 = 4

 h1(R) = (–1) + 1 + 1 + 1 + (–1) + 1 = 2

 h1(T) = (–1) + 1 + 1 + 1 + (–1) + 1 = 2

where,

h1(n) = valA + valB + valC + valD + valE + valF

Clearly h1 thinks that moving to state Q is the best idea, because in that state, block A is on block E.

The second heuristic function looks at the entire pile that the block is resting on. If the configuration 

of the pile is correct, with respect to the goal, it adds one for every block in the pile, or else it subtracts 

one for every block in that pile. The values for the six nodes we have seen are

 h2(S) = (–3) + 2 + 1 + 0 + (–1) + 0 = –1

 h2(G) = 4 + 2 + 1 + 0 + 3 + 0 = 10

 h2(P) = 0 + 2 + 1 + 0 + (–1) + 0 = 2

 h2(Q) = (–2) + 2 + 1 + 0 + (–1) + 0 = 0

 h2(R) = (–3) + 2 + 1 + 0 + (–4) + 0 = – 4

 h2(T) = (–3) + 2 + 1 + 0 + 0 + 0 = 0

The first thing to notice is that the heuristic function h2(n) is much more discriminating. Its evaluation 

for almost all nodes is different. The second is that its choice of the move is different. It thinks that 

moving to state (node) P is the best. It is not tempted into putting block A onto block E. The reader will 

agree that the second function’s choice is better.
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In both cases, since there is a successor with a better heuristic value, the Hill Climbing algorithm 

will make a move. Let us look at the second move. In the first case, for h1, the algorithm is faced with 

the following choices for the second move, shown in Figure 3.12. We have named the states P and Start 

the same, though the search will see them as new choices.

The heuristic values of the possible moves are given below. Search is at node Q, and all choices have 

a lower heuristic value. Thus, Q is a local maximum, and Hill Climbing terminates.

 h1(Q) = 1 + 1 + 1 + 1 + (–1) + 1 = 4

 h1(P) = (–1)  + 1 + 1 + 1 + (–1) + 1 = 2

 h1(S) = (–1)  + 1 + 1 + 1 + (–1)  + 1 = 2

 h1(U) = 1 +  (–1) + 1 + 1 + (–1)  + 1 = 2

 h1(V) = 1 +  (–1) + 1 + 1 + (–1)  + 1 = 2

Meanwhile, the choices faced by the search using the second heuristic function h2, from state P, are 

shown below in Figure 3.13. Like in the previous case, two of the four choices result in states seen earlier.

The heuristic values are

 h2(P) = 0 + 2 + 1 + 0 + (–1) + 0 = 2

 h2(S) = (–3) + 2 + 1 + 0 + (–1) + 0 = –1

 h2(Q) = (–2) + 2 + 1 + 0 + (–1) + 0 = 0

 h2(W) = 0 + 2 + 1 + 0 + (–1) + 0 = 2

 h2(X) = 0 + 2 + 1 + 0 + 3 + 0 = 6
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FIGURE 3.11 The first moves possible. A move consists of moving one topmost block to another place.
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FIGURE 3.12 The choices from state Q.

FIGURE 3.13 The choices from state P.

A

B

C

D F

E

Start

A

B

C

D F

E

State P

AB

C

D F

E

State Q

A

B

C

D F

E

State W

A

B

C

D F

E

State X



66 A First Course in Artificial Intelligence

The search has a better option available in state X and moves to it. The reader can verify that in the 

next move it will reach the goal state.

Thus, we see that the performance of the Hill Climbing algorithm depends upon the heuristic function 

chosen. One can think of the heuristic function defining a terrain over the search space, with each state 

having a heuristic value. While the strategy remains the same, that is the steepest gradient ascent (or 

descent, if the heuristic function is such that lower values are better), the performance depends upon 

the nature of the terrain being defined, as illustrated in Figure 3.14. If the heuristic function defines a 

smooth terrain, the search will proceed unhindered. On the other hand, if the terrain is undulating then 

the search could get stuck on a local optimum.

A well behaved
function with only

one maximum

.

A local
maximum

A plateau

Nodes in the Search Space

h(n)

FIGURE 3.14 A well behaved function monotonically improves towards one maximum.

Let us evaluate the Hill Climbing algorithm on the four criteria we have been using.

3.4.1 Completeness

Algorithm Hill Climbing is not complete. Whether it will find the goal state or not depends upon the 

quality of the heuristic function. If the function is good enough, the search will still home in on the goal 

state. If the heuristic function yields no discriminating information (for example, if h(n) = 0 for all nodes 

n), the algorithm will terminate prematurely when it gets stuck.

3.4.2 Quality of Solution

Like Best First Search, no guarantee on the quality of the solution can be given.

3.4.3 Space Complexity

This is the Hill Climbing algorithm’s strongest feature. It requires a constant amount of space. This 

is because it only keeps a copy of the current state. In addition, it may need some constant amount of 

memory for storing the previous state and each candidate successor. But overall, the space requirements 

are constant.
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3.4.4 Time Complexity

The time complexity of Hill Climbing will be proportional to the length of the steepest gradient ascent 

route from the Start position. In a finite domain, the search will proceed along this path and terminate. 

Thus, one can say that the complexity of Hill Climbing is linear.

Overall, one can observe that the performance of Hill Climbing is critically dependent upon the 

heuristic function. The algorithm is an example of a greedy algorithm that makes locally best choices 

and halts when no locally better option exists. While this may work for some problem domains, in 

many domains, finding a well behaved heuristic function is not easy. In particular, this is so when a 

problem can be seen as decomposable into a set of smaller problems. For example, consider the Eight-

puzzle or the Rubik’s cube kind of problems. Most human solvers tend to decompose the goals into 

subgoals. For example, while solving the Rubik’s cube, one may first do the top row, then the middle 

row, and finally the bottom row. Each of these subgoals is itself achieved by further decomposition. It 

is instructive to take a given solution for the Rubik’s cube and plot the values of a heuristic function 

along the solution path. Assuming a Manhattan distance like heuristic function, the plot is likely to look 

somewhat like the one shown in Figure 3.15, but with more local minima. As each subgoal is achieved, 

the heuristic value reaches a local minimum. But further progress temporarily disrupts the heuristic value, 

before showing improvement again. Such problems are called problems with nonserializable subgoals 

(Korf 1985) because the subgoals cannot be independently achieved in any serial order. While solving 

any subgoal, extra care has to be taken to eventually restore any disrupted subgoals.

Top row

Nodes in the Solution Path

h(n)

Middle row

Bottom cross

Solved cube

FIGURE 3.15 For human generated solutions of the Rubik’s cube, the heuristic value passed 

through many local minima.

Given that there are going to be problems where the heuristic function will not be well behaved 

over the domain, there is a need to look for alternate methods to solve such problems. The simplest 

of them is to increase the memory available by a constant amount, so that more than one option can 

be kept open. This method is known as the Beam Search, described in a later section. But before that, 

we review the transformation our original problem statement has undergone, and look at an alternate 

search space formulation.
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3.5 Solution Space Search

The problems we have seen so far have been formulated as constructive search problems. In a constructive 

search, we incrementally build the solution. A move consists of extending a given partial solution, and 

the search terminates when the goal state is found. For example, in the n-queens problem, one could start 

with an empty board, and place one queen at a time. Constructive searches can be both global as well 

as local. The term global and local refer to the regions of the search space accessed by the algorithm. 

The algorithm Best First Search is global, in the sense that it keeps the entire search space in its scope. 

The Hill Climbing algorithm, on the other hand, is local, because it is confined only to extending one 

given path.

Another way to formulate a search problem is with perturbation search. In perturbation search, each 

node in the search space is a candidate solution. A move involves perturbation of a candidate solution 

to produce a new candidate solution. For example, in the n-queens problem, the search might start with 

a random placement of queens, and then each move may change the position of one or more than one 

queen. Perturbation searches may be local or global, depending upon whether the algorithm explores 

the entire search space or only a part of it. Most implementations work with searches looking for local 

improvements. Hill Climbing, the simplest of perturbation search algorithms, does precisely this, and 

stops when it cannot find a better candidate. Local perturbation search methods are also known as 

neighbourhood search algorithms, because they only search in the neighbourhood of the current node.

Hill Climbing has a termination criterion in which the algorithm terminates when a better neighbour 

cannot be found. We have already observed that in doing so, it has converted a searching for goal 

problem into optimization of the heuristic function problem. The optimization community refers to the 

function being optimized as the objective function. While focusing on the optimization problem, we 

will adopt this term.

Box 3.1: The SAT Problem

Consider a Boolean formula made up of a set of propositional variables V = {a, b, c, d, e, … } (see 

Chapter 12, propositional logic). For example,

F = ((a ÿe) Ÿ (e ÿc)) … (ÿc ÿd)

Each of the propositional variables can take up one of two values: true or false, known as truth 

values, and also referred to by 1 and 0, or T and F. Given an assignment true or false to each variable 

in the formula, the formula F acquires a truth value that is dictated by the structure of the formula 

and the logic connectives used. The problem of satisfiability, referred to as the SAT problem, is to 

determine whether there exists an assignment of truth values to the constituent variables that make 

the formula true. The formula F given above can be made true by the assignment {a = true, c = true, 

d = false, e = false} amongst others.

Very often SAT problems are studied in the Conjunctive Normal Form in which the formula is 

expressed as a conjunction of clauses, where each clause is a disjunction of literals, and each literal 

is a proposition or its negation. The reader should verify that the CNF version of the above formula 

has only one clause with 4 literals.

F = (ÿa  ÿc  ÿd  ÿe)

SAT is one of the earliest problems to be proven NP-complete (Cook, 1971). Solving the SAT 

problem by brute force can be unviable when the number of variables is large. A formula with 
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Consider the SAT problem. It involves finding assignments to the set of variables to satisfy a given 

formula. For example, the following formula has five variables (a, b, c, d, e) and six clauses.

(b  ÿc) Ÿ (c  ÿd) Ÿ (ÿb) Ÿ (ÿa  ÿe) Ÿ (e  ÿc) Ÿ (ÿc  ÿd)

The candidate solutions can be represented as five-bit strings, one bit for the truth value of each 

variable. For example, 01010 represents the candidate solution {a = 0, b = 1, c = 0, d = 1, e = 0}. In 

solution space search, we define moves as making some perturbation in a given candidate. For the SAT 

problem, the perturbation could mean changing some k bits. For the above example, choosing k = 1 will 

yield five new candidates. They are 11010, 00010, 01110, 01000 and 01011. These five then become 

the neighbours of 01010 in the search space. If we had chosen k = 2 then each candidate would have 

ten new neighbours (we can choose two bits in 5C2 ways). For 01010, they are: 10010, 11110, 11000, 

11011, 00110, 00000, 00011, 01100, 01110, and 01001.

The above example gives us an interesting insight into designing search spaces. For the same search 

space, or the set of all possible candidate solutions, different neighbourhood functions can be defined 

by choosing different operators. This would obviously affect the performance of the search algorithm, 

because all algorithms consider the set of neighbours to select a move. A sparse neighbourhood function 

would imply fewer choices at each point, while a dense function would mean more choices. The more 

dense the neighbourhood, the more expensive it is to inspect the neighbours of a given node. As an 

extreme in the SAT problem, one could choose an operator that changes all subsets of bits. This would 

mean that all nodes in the search space would become neighbours of the given node, and the search 

would then reduce to an inspection of all the candidates. Notice that with this all-subsets exchange, 

there is no notion of a local optimum. When all the candidates are neighbours, the best amongst them is 

the optimum, and that is the global optimum. Conversely, the more sparse the neighbourhood function, 

the more likelihood of there being a local optima in the search space. The local optima arise because 

the node (the local optimum) does not have a better neighbour. That is, better nodes exist in the search 

space; but the local optimum is not connected to any of them.

The above realization leads to a simple extension of the Hill Climbing algorithm, known as the 

Variable Neighbourhood Descent.

3.6 Variable Neighbourhood Descent

In the previous section, we saw that one can define different neighbourhood functions for a given 

problem. Neighbourhood functions that are sparse lead to quicker movement during search, because the 

algorithm has to inspect fewer neighbours. But there is a greater probability of getting stuck on a local 

optimum. This probability of getting stuck becomes lower as neighbourhood functions become denser; 

100 variables will have 2100 or about 1030 candidate assignments. Even if we could inspect a million 

candidates per second, we would need 3 ¥ 1014 centuries or so. Clearly, that is in the realm of the 

impossible. Further, it is believed that NP-complete problems do not have algorithms whose worst-

case running time is better than exponential in the input size.

One often looks at specialised classes of SAT formulas labelled as k-SAT, in which each clause 

as k literals. It has been shown that 3-SAT is NP-complete. On the other hand, 2-SAT is solvable in 

polynomial time. For k-SAT, complexity is measured in terms of the size of the formula, which in 

turn is at most polynomial in the number of variables.
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but then search progress also slows down because the algorithm has to inspect more neighbours before 

each move. Variable Neighbourhood Descent (VDN) tries to get the best of both worlds (Hansen and 

Mladenovic, 2002; Hoos and Stutzle, 2005). It starts searching with a sparse neighbourhood function. 

When it reaches an optimum, it switches to a denser function. The hope is that most of the movement 

would be done in the earlier rounds, and that the time performance will be better. Otherwise, it is 

basically a Hill Climbing search. In the algorithm in Figure 3.16, we assume that there exists a sequence 

of moveGen functions ordered on increasing density, and that one can pass these functions as parameters 

to the Hill Climbing procedure.

VariableNeighbourhoodDescent()

 1 node ¨ start

 2 for i ¨ 1 to n

 3  do moveGen ¨ MoveGen(i)

 4      node ¨ HillClimbing(node, moveGen)

 5 return node

FIGURE 3.16 Algorithm Variable Neighbourhood Descent. The algorithm assumes that the function 

moveGen can be passed as a parameter. It assumes that there are N moveGen functions sorted 

according to the density of the neighbourhoods produced.

3.7 Beam Search

In many problem domains, fairly good heuristic functions can be devised; but they may not be foolproof. 

Typically, at various levels a few choices may look almost equal, and the function may not be able to 

discriminate between them. In such a situation, it may help to keep more than one node in the search tree 

at each level. The number of nodes kept is known as the beam width b. At each stage of expansion, all 

b nodes are expanded; and from the successors, the best b are retained. The memory requirement thus 

increases by a constant amount. The search tree explored by Beam Search of width = 2 is illustrated in 

Figure 3.17.

FIGURE 3.17 Beam Search with beam width = 2.
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Beam Search is often used in situations where backtracking is not feasible because of other reasons. 

One of the places where it has been used often is in speech processing. The idea is to combine simpler 

units of sounds, syllables or phonemes, into bigger units. There are various rules for combining sounds 

to get meaningful words, and the process has to be done in a continuous (online) mode, producing 

candidate words as the smaller sound units come in. Since most languages have words that sound similar, 

where similar symbols that can combine into different word units, a speech processing system benefits 

by keeping more than one option open. A complete description of various techniques used in speech 

processing is given in (Huang et al., 2001).

We look at an illustration of Beam Search on the instance of SAT discussed earlier in the chapter, 

reproduced below.

(b  ÿc) Ÿ (c  ÿd) Ÿ (ÿb) Ÿ (ÿa  ÿe) Ÿ (e  ÿc) Ÿ (ÿc  ÿd)

The candidate solutions can be represented as five-bit strings, one bit for the truth value of each 

variable. Let us choose the starting candidate string as 11111. For the objective function, we choose the 

number of clauses satisfied by the string. For the instance of the SAT problem given above, this value 

can range from 0 to 6. Note that this is an example of a maximization problem, because the value of the 

objective function is maximum for the goal node. We observe that e(11111) = 3. Figure 3.18 below shows 

the progress of Beam Search of width 2. For each node in the search space, the candidate string and the 

heuristic (objective) value are depicted. At each level, the best two nodes are chosen for expansion. Since 

in our problem the value of the objective function increases by a unit amount, and since the maximum 

value is 6, the search can move forward only three steps. This is because the Beam Search, being an 

extension of Hill Climbing, is constrained to only move forward to better nodes.

3 11111

10111 10113 111103

001114 010114 011103 101014 110014 111004111113 111113
*

001015 010015 011004111014 011114 001015 010015 011004111014 011114

5

011114 4

5

3 1 11101

0110101101

FIGURE 3.18 Beam Search with width 2 fails to solve the SAT problem. Starting with a value 3, the 

solution should be reached in 3 steps. In fact the node marked * leads to a solution in three steps.

If instead of 11111 we had chosen 01110, the node marked with a star in Figure 3.18, then even the 

Beam Search would have found a path of monotonic increasing values to reach a goal state (there are 

three different satisfying valuations for the above instance). This means that with a suitable starting 

point, a solution can be reached. Even with the Hill Climbing algorithm, one can reach the solution. An 
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extreme case of this is if one chose a goal as the starting point itself. We explore variations of search 

algorithms that deploy random choices in the next chapter, and one of them is to randomly choose 

different starting nodes.

Another way to reach a goal node is to not terminate the search at an optimum point, but to continue 

looking further. This could be done while keeping track of the best solution found. But if one is to search 

further beyond an optimum, what should be the terminating criteria? One would then have to devise 

algorithms that have a criterion decided in advance. Moreover, if one is to get off an (local) optimum, 

what should be the condition for doing so? Do we simply ignore the idea of gradient ascent? Some 

possible choices that deal with random moves will be explored in the next chapter. In the following 

section, we explore a deterministic algorithm that exploits the gradient during search, but is also able 

to move off optima in search of other solutions.

3.8 Tabu Search

The main idea in Tabu search is to augment the exploitative strategy of heuristic search with an explorative 

tendency that looks for new areas in the search space (Michalewicz and Fogel, 2004). That is, the search 

follows the diktat of the heuristic function as long as better choices are presented. But when there are no 

better choices, instead of terminating the local search as seen so far, it gives in to its explorative tendency 

to continue searching. Having got off an optimum, the algorithm should not return to it, because that is 

what the heuristic function would suggest. Tabu search modifies the termination criteria. The algorithm 

does not terminate on reaching a maximum, but continues searching beyond until some other criterion 

is met. One way to getting the most out of the search would be to keep track of the best solution found. 

This would be fairly straightforward while searching the solution space.

Tabu search is basically guided by the heuristic function. As a consequence, even if it were to go 

beyond a local maximum, the heuristic function would tend to pull it back to the maxima. One way to 

drive the search away from the maxima is to keep a finite CLOSED list in which the most recent nodes 

are stored. Such a CLOSED list could be implemented as a circular queue of k elements, in which only 

the last k nodes are stored.

In a solution space search where the moves alter components of a solution, one could also keep track 

of which moves were used in the recent past. That is, the solution component that was perturbed recently 

cannot be changed. One way to implement this would be to maintain a memory vector M with an entry 

for each component counting down the waiting period for changing the component. In the SAT problem, 

each bit is seen as a component, and flipping a bit as a move. Consider a four-variable SAT problem with 

5 clauses: (ÿa  ÿb) Ÿ (ÿc  b) Ÿ (c  d) Ÿ (ÿd  b) Ÿ (a  d). Let us say that the period before a bit 

can be flipped again is 2 time units. This is known as the Tabu tenure tt. This means that if one has flipped 

some bit then it can be flipped back only after two other moves. Assume the evaluation/heuristic function 

is the number of clauses satisfied. Let the solution vector be in the order (a b c d), and the corresponding 

memory vector in the same order. Let the starting candidate be (0 0 0 0). The memory vector M is also 

initialized to (0 0 0 0). This is interpreted that the waiting time for all moves is zero. As soon as a bit is 

flipped, the corresponding element in M is set to 2, and decremented in each subsequent cycle. At any 

point, only bits with a zero in the M vector can be considered for a move. The following figure shows 

the progress of Tabu search. After the first expansion, there are two candidates with the same value 

e(n) = 4. The two alternate expansions are shown on the left and right side with different arrows. Note 

that Tabu search would choose randomly between the two. Cells in the top row coloured grey with a 

thick border show a tabu value 2, and grey cells without a thick border depict a tabu value 1. These 

cannot be flipped in that expansion. The tabu bits and their values are also shown alongside in the array 

M. The shaded rows are the candidates that the Tabu search moves to.
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M = [0000]

M = [2000]

M = [1020]

M = [0002]

M = [0201]

3010110000

e(n)C5C4C3C2C1dcba

4110110001

3010110010

3011010100

4111111000

e(n)C5C4C3C2C1dcba

4101111001

5111111010

3101011100

e(n)C5C4C3C2C1dcba

5111111110

4111101011

e(n)C5C4C3C2C1dcba

3110100011

3101010101

4110111001

e(n)C5C4C3C2C1dcba

4111100111

3101011101

e(n)C5C4C3C2C1dcba

M = [0210] M = [0120]

FIGURE 3.19 Two possible paths chosen by the Tabu search.

Consider the left branch. Starting with 0000 it goes to 1000. Only the last three bits can be changed 

and the best choice is 1001. Now in the next move, only the second or third bits can be changed. That 

is, the state 0001 is also excluded in this path.

The above example illustrates that barring certain moves in a Tabu search may also exclude some 

previously unexplored state. What if one such excluded state is a good one? One could set an aspiration 

criterion under which moves could overrule the tabu placed on them. The criteria could be that all 

non-tabu moves lead to worse nodes, and a tabu move yields a value better than all values found so 

far. Thus, while the tabu principle would try and distribute the search amongst different components 

equitably, the aspiration criteria would still allow potentially best moves to stay in the competition.

Yet another way to diversify a search could be to keep track of the overall frequency of the different 

moves. Note that this can also be done with a finite memory. Moves that have been less frequently used 

could be given preference. Imposing a penalty proportional to the frequency on the evaluation value 

could do this. Thus, nodes generated by frequent moves would get evaluated lower and lower, and the 

other moves would get a chance to be chosen.

The algorithm TabuSearch described below assumes that the candidate solutions have N components, 

and changing them gives N neighbours, which can be generated by some move generator function called 

Change(node, i) that changes the ith component. The algorithm works with two arrays of N elements. The 

first called M, keeps track of the tabu list, and is a kind of short term memory. The second called F, keeps 

track of the frequency of changing each component, and serves as a long term memory. The algorithm 

also assumes the existence of an Eval(node) function that evaluates a given node, and the resulting 



74 A First Course in Artificial Intelligence

values for the neighbours are stored in an array Value. The algorithm written in Figure 3.20 highlights 

the special aspects of TabuSearch, and hence has explicit array computations. The search features are 

implicit in the calls to the functions Change and Eval, and the use of the procedure moveTo(Index) that 

finally makes the move and does the bookkeeping is shown in Figure 3.21.

TabuSearch(tt)

1  for i ¨ 1 to n

2   do M[i] ¨ 0; F[i] ¨ 0       /* initialize memory */

3  Choose the current node c randomly   /* or as given */

4  best ¨ c

5  while some termination criterion

6   do for i ¨  1 to n

7      do       /* generate the neighbourhood */

8     tabu[i] ¨ YES

9     neighbour[i]  ¨ Change(c, i)   /*change the i’th component */

10    value[i]  ¨ Eval(neighbour[i])

11    if M[i]  =  0

12      then     /* if not on tabu list */

13       tabu[i] ¨ NO

14       bestAllowedValue ¨ value[i]   /*some initial value*/

15       bestAllowedIndex ¨  i

16    /* BestAllowedValue is best value neighbour that is not on tabu list */

17    /* BestValue is best value amongst all neighbours */

18    bestValue ¨  value[1]

19    bestIndex ¨  1

20    for i  ¨ 1 to n

21     do      /* explore the neighbourhood */

22      if value[i] is better than bestValue

23       then  bestValue ¨ value[i]

24         bestIndex ¨  i

25      if value[i] is better than bestAllowedValue AND tabu[i] =  NO

26       then  bestAllowedValue ¨ value[i]

27         bestAllowedIndex ¨ i

28    if bestAllowedValue is worse than Eval(c)

29     then if bestValue is better than Eval(best)

30       then MoveTo(bestIndex)   /*the aspiration criterion */

31       else   /* use frequency memory to diversify search */

32        for i ¨ 1 to n

33         do if tabu[i]  =  NO

34           then  value[i] ¨ value[i Penalty(F[i])

35             /* some initial value */

36             bestAllowedValue ¨ value[i]

37             bestAllowedIndex ¨ i

38        for i  ¨ 1 to n

39         do if value[i] is better than bestAllowedValue

40              AND tabu[i]  =  NO

41           then  bestAllowedValue ¨ value[i]

42              bestAllowedIndex ¨ i

43        MoveTo(bestAllowedIndex)

44     else   /* the best allowed node is an improvement */

45      MoveTo(bestAllowedIndex)

FIG 3.20 Algorithm TabuSearch.
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MoveTo(index)

 1  c ¨  neighbour[index]

 2  if  Value(index) is better than Eval(best)

 3   then best ¨ c

 4  F[index] ¨  F [index] + 1

 5  M[index] ¨  tt + 1

 6  for i ¨ 1 to n

 7   do if M[i] > 0

 8    then M[i] ¨ M[i

FIGURE 3.21 Procedure MoveTo makes the move to the new node, and does all the associated 

bookkeeping operations.

Tabu search is a deterministic approach to moving away from maxima. In the following chapter, 

we will also explore stochastic search algorithms that have explorative tendencies built into the move-

generation process itself. Before doing that, we take a small detour into a knowledge based approach 

to navigating a difficult heuristic terrain.

3.9 Peak to Peak Methods

The problem solving algorithms seen so far operate at the operator level. Human beings, the best known 

problem solvers so far, rarely do so. Instead, we often break the problem into sub-problems and solve 

them. We also remember our problem solving experiences and learn from them. We will look at both 

these approaches in more detail in later chapters. Here, we look at the idea of macro operators to solve 

problems in a given domain.

One of the first uses of macro operators was in the Means Ends Analysis (MEA) problem solving 

strategy proposed by Herbert Simon and Alan Newell in their pioneering study on human problem-

solving (Newell and Simon, 1972). The MEA strategy operates in a top down manner. Consider the 

problem of transporting yourself from IIT Madras to the IIT Bombay guesthouse. The MEA strategy 

attempts to identify the largest difference between the current state and the desired state, and looks for 

a suitable operator to reduce that difference. Say the operator is flyToMumbai. The problem solver now 

has to solve two new problems: One, to reach the Chennai airport, and the other to reach the guesthouse 

from the Mumbai2 airport. In this way, the problem solver works into the details of the solution. We 

discuss the MEA strategy again in Chapter 7.

The idea of macro operators was made more explicit by Richard Korf (1985) and can be illustrated 

by the way we typically solve the Rubik’s cube. Remember that the problem with the Rubik’s cube 

is that it is very difficult to devise a heuristic function that will monotonically drive the search to the 

solution. Instead, if we were to plot the heuristic function for an expert human solver (see Figure 3.15), 

we find that there are stages in the solution where the heuristic values “peaks” and then it gets worse 

temporarily before attaining a better “peak” (in the figure, the heuristic function goes through better and 

better local minima). The macro operators proposed by Korf, package the moves between two “peaks” 

into an operator. The problem solver then has a set of macro operators to work with, and blindly applies 

each operator without looking at the heuristic value in between. The way I solve the cube, for example, 

is in the following macro steps:

2 IIT Madras is in Chennai (formerly Madras) and IIT Bombay, in Mumbai (formerly Bombay).
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Get the top cross in place.

Get the top layer in place.

Get the middle layer in place.

Get the bottom corner cubelets in position.

Get the cubelets in correct orientation.

Get the bottom cross in place.

I, myself, fill in the moves for each operator blindly, as taught to me by a friend a long time ago. 

The operators I learnt were themselves made up of generic operators that could be easily selected. I am 

essentially using a knowledge based approach, not caring to “reinvent the wheel”. The interesting idea 

that Korf introduced was in devising search algorithms to learn the macro operators. Thus, the operators 

could be learned offline, and at problem solving time, the solution would be found quite quickly.

The idea of macro operators is generalized to the concepts of aggregation and chunking of information, 

leading to hierarchical problem solving spaces. Human beings work with such packaged information 

quite naturally, as illustrated by the studies in (Newell and Simon, 1972). In later chapters, we will look 

at both problem solving and knowledge representation in hierarchical spaces in more detail.

Macro operators illustrate one prominent characteristic of the use of knowledge, which is that at 

problem solving time, solutions are found very quickly. But acquiring the knowledge that is useful in 

problem solving is an expensive pre-processing step. Thus, it would make sense to implement knowledge 

based problem solvers, if the knowledge acquired finds sufficient reuse. In later chapters, we will 

investigate the means by which problem solvers can benefit from knowledge obtained from human 

experts. Heuristic functions are a first step in this direction. We will also explore how to build systems 

that will learn from experience and improve their performance. As of now, most knowledge based 

systems use representations that are tailored for solving a particular class of problems. This restricts the 

scope of each system that is built. We will be able to think of generalized, knowledge based programs 

only after we are able to devise one integrated, representation mechanism common to a variety, if not 

all applications. These would naturally allow new kinds of algorithms to exploit a common pool of 

knowledge. Knowledge representation is thus still an exciting challenge in artificial intelligence. In the 

meantime, we will continue to build upon a set of general problem solving algorithms that will find a 

place in the arsenal of any self respecting, intelligent system of the future.

In the next chapter, we look at optimization methods that employ randomness to avoid getting stuck 

on local maxima.

3.10 Discussion

Heuristic functions give a sense of direction to search algorithms. Given a set of choices that the search 

process faces, the heuristic function estimates the closeness to the desired goal function. The functions 

introduced in this chapter are domain dependent heuristic functions. They look at a given state in the 

context of the goal, and return a value that is an estimate of closeness to the goal. In the Best First 

Search, the OPEN list is sorted on the heuristic value, so that the best looking nodes are examined 

first, yielding a complete algorithm. However, the space requirements are still large. The Hill Climbing 

algorithm burns its bridges as it goes along, discarding the unseen nodes altogether. It has constant space 

requirements, but is not complete. The Hill Climbing algorithm basically exploits the gradient defined by 

the heuristic function, and may get stuck at nodes that look locally optimum. Variable Neighbourhood 

Descent attempts to increase connectivity in the search space gradually, and to provide more actions as 

the search moves to better values. Beam Search is similar, but always keeps a fixed number of options 



Chapter 3: Heuristic Search 77

open. Its space requirements are constant as well, but it has better chances of reaching the goal state. Tabu 

search continues beyond an optimum, keeping a small, constant memory of recent moves. The memory 

forces the search to explore new areas, often going against the heuristic function. Finally, we observe 

that knowledge based methods could be used to remember macro operators that could jump from peak 

to peak on the heuristic terrain. They solve the problem quickly, but the knowledge acquisition process 

has to be done in advance. All the methods in the chapter are deterministic in nature.

  Exercises

 1. Devise heuristic functions for the exercises given in Chapter 2.

 2. Modify the algorithm for Depth First Search (Figure 2.18) to incorporate the heuristic function 

and do a Best First Search.

 3. In configuration kind of problems, a goal state is not specified, but a description of the state is 

given. How would one devise a heuristic function for such problems? Define a heuristic function 

for the N-queens problem (A) when one begins with an empty board and places one queen at a 

time, and (B) when all queens are on the board and the move is a perturbation of a given board 

position. 

 4. Write the domain functions for the Eight-puzzle. Devise two heuristic functions h1 and h2. 

Randomly generate a hundred start states and goal states and run the algorithm with the two 

heuristic functions. Compute and compare the effective branching factor for the two versions.

 5. It was shown by Johnson and Story (1879) that the Eight-puzzle and Fifteen-puzzle state space is 

partitioned into two disjoint sets. This means that if the start state is in one partition and the goal 

state is another, there is no path between the two states. Study the “parity of permutation” test 

described by them, and incorporate it into the Eight-puzzle solver.

 6. Given the two graphs below, show how the algorithms Hill Climbing and Best First Search explore 

the graphs. Use Manhattan distance as the heuristic function. Assume that each unit on the grid 

is 10 kilometres.

 7. For the same task, assuming beam width = 2,

 (a) Show the order in which the Beam Search expands the nodes and the h-value at the time of 

expansion.

 (b) Disclose the OPEN and CLOSED list maintained by the Beam Search at each level till the 

search terminates.

  Does the algorithm reach the goal? If yes, what is the path found.

 8. When would you prefer the Hill Climbing algorithm to the Tabu Search algorithm, and vice versa? 

Give reasons for your answer.

 9. Given the SAT problem with 5 clauses: (ÿa  d) Ÿ (c  b) Ÿ (ÿc  d) Ÿ (ÿd  ÿb) Ÿ (a  ÿd), 

assume that the evaluation/heuristic function is the number of clauses satisfied. Let the solution 

vector be in the order (a b c d). Let the starting candidate be (0 0 0 0).

   Show 3 expansions of the Tabu search assuming tt = 2 (that is tabu tenure is 2). Show the new 

candidate as well as the tabu moves at each of the three stages. Also, draw a table showing which 

clauses are true for each candidate.

 10. Write a program to randomly generate k-SAT problems. The program must accept values for k, m 

the number of clauses in the formula, and n the number of variables. Each clause of length k must 

contain distinct variables or their negation. Instances generated by this algorithm belong to fixed 

clause length model of SAT and are known as Uniform Random k-SAT problems.
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FIGURE 3.22 Problem graph 1. Locations A to Q are located on a grid with each square side being 10 km.

FIGURE 3.23 Problem graph 2. Locations A to Q are located on a grid with each square side being 10 km.
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 11. Write programs to solve a set of Uniform Random 3-SAT problems for different combinations of m 

and n, and compare their performance. Try the Hill Climbing algorithm, Beam Search with beam 

widths of 3 and 4, Variable Neighbourhood Descent with 3 neighbourhood functions, and Tabu 

Search with neighbourhood functions changing up to 2 bits at a time. (It has been shown that for a 

given n when the number of clauses is small, the problems are underconstrained trivially solvable; 

when m is large they are not likely to have a solution; and around m = 4.24n there is sudden drop 

in the probability of solving them (Mitchell et al., 1992).)



Escaping Local Maxima

 We have seen that most real world problems create search spaces that are too huge to explore 

fully. The most studied problems with large solution spaces are SAT and TSP. A SAT problem on a 

hundred variables has 2100 candidate assignments. If we had a machine inspecting a thousand of these 

per second, and if the machine was started at the time of the Big Bang, fourteen billion years ago when 

the (current) universe came into being, it would have finished less than one percent of its task by now. 

Clearly, inspecting all the candidates is not a viable option. Similar search spaces crop up with most 

problems we formulate. With optimization problems like the TSP, the difficulty is compounded by the 

fact that we would usually1 not recognize that a solution is optimal, even if we were to find it. Observe 

that we also see the SAT problem as an “optimization” problem during search, in which we attempt to 

optimize the heuristic value of a candidate solution. Only, in this case, the optimal value is recognized 

easily; for example when the number of unsatisfied clauses is zero, and we can terminate the search. 

Complete search not being a viable option for large problems, search methods like Hill Climbing and 

Tabu Search work with bounded memories. While Hill Climbing is conceptually simple, it can get stuck 

on a local optimum. In Tabu Search, the attempt is to diversify search, as opposed to only following the 

steepest gradient, often moving to a node that is not the best successor, or even a better one. This allows 

it to move away from local optima, and the possibility of moving towards the global one is kept open.

 The steepest gradient ascent attempts to exploit the gradient information (Michalewicz and Fogel, 

2004). To this, the Tabu Search adds an explorative component by trying to push the search into newer 

areas. It does this in a deterministic way, keeping a Tabu list of recent moves to be avoided. In this chapter, 

we look at randomized approaches to promoting exploration. First, we look at a way to randomize the 

Hill Climbing algorithm. Then, we look at other approaches motivated by the way random moves made 

in nature can lead to build up and preservation of good solutions.

4.1 Iterated Hill Climbing

Working in the solution space, our search algorithms perturb current candidate solutions in search of 

better ones. The notion of a start node and a goal node in the state space is replaced by optimizing 

the value of the evaluation or heuristic function. The start node in the search tree has no particular 

significance when we are searching in the solution space. It is simply a candidate solution we begin with. 

For the Hill Climbing algorithm, this is the starting point of the steepest gradient ascent (or descent, if 

1  If in the candidate solution, each city was connected to its two nearest neighbours, then the solution will clearly be optimal, but 

not all optimal solutions satisfy this property.

Randomized Search and 
Emergent Systems

Chapter 4
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the problem is of minimization). Once the starting point is decided, the algorithm moves up (or down) 

along the steepest gradient, and terminates when the gradient becomes zero. The end point of the search 

is determined by the starting point, and the nature of the surface defined by the evaluation function. If 

the surface is monotonic then the end point is the global optimum; otherwise the search ends up at an 

optimum that is in some sense closest to the starting point, but may only be a local optimum. Iterated Hill 

Climbing exploits this property by doing a series of searches from a set of randomly selected different 

starting points. The hope is that the best value found by at least one of the searches will be the global 

optimum. The algorithm can be written as shown in Figure 4.1.

IteratedHillClimbing(n)

1  node ¨ random candidate solution

2  bestNode ¨ node

3  for i ¨ 1 to n

4    do  node ¨ random candidate solution

5        newNode ¨ Head(Sorth(MoveGen(node)))

6        while h(newNode) > h(node)    /* “>” for maximization */

7               do            

8                    node ¨ newNode

9                    newNode ¨ Head(Sorth(MoveGen(node)))

10              if h(newNode) > h(bestNode)

11                   then bestNode ¨ newNode

12 return bestNode

FIGURE 4.1 Algorithm Iterated Hill Climbing (IHC) for a maximization problem. It does a number of 

Hill Climbing runs from random starting points.

The Iterated Hill Climbing approach will work well if the surface defined by the evaluation function 

is smooth at the local level, with perhaps a small number of local optima globally. Such a surface is 

illustrated in Figure 4.2.

FIGURE 4.2 A smooth surface with a small number of local optima is well suited for Iterated Hill Climbing. 

A random starting point in any iteration from any of the shaded nodes would lead to the global maximum.

The IHC algorithm has the same space requirements as Hill Climbing. Both need a constant amount 

of space to run. The difference is that for different runs on the same problem, the Hill Climbing algorithm 

will always return the same result; while the IHC algorithm may return different results. This is because 

its performance is determined by the random choice of the random starting points. Figure 4.2 shows a 



82 A First Course in Artificial Intelligence

set of shaded nodes from where the steepest gradient leads to the global maximum. Let us call this set 

the footprint of the HC algorithm. If in one of the outer loop iterations of IHC, a point in this region 

is chosen as the starting point then the algorithm will find the optimal solution. The likelihood of IHC 

finding the global optimum depends upon the size of the footprint. The larger the footprint is, the greater 

is the chance of starting in it, and finding the optimum.  If the footprint covers the entire search space 

then HC itself will work. As the footprint gets smaller, one would need a larger number of iterations 

in the outer loop to have a good chance of finding the optimum. If the footprint is very small then the 

number of iterations in the outer loops may become prohibitively large, and one may have to look for 

an alternative approach. Such an evaluation function surface is depicted below in Figure 4.5, and the 

next section describes an approach that might work better there. 

4.2 Simulated Annealing

The algorithms we have seen so far have all depicted deterministic search moves. The IHC algorithm 

above introduces a randomized aspect by choosing a series of random starting points followed by 

deterministic moves in the search space. We now look at the possibility of making random moves. The 

effect of this would be that even from the same starting point, the search may proceed differently for 

different runs of the algorithm.  A completely random procedure is the Random Walk, in which the search 

process makes random moves in the search space in complete disregard of the gradient. The algorithm 

is shown below in Figure 4.3.

RandomWalk()

1  node ¨ random candidate solution or start

2  bestNode ¨ node

3  for i ¨ 1 to n

4      do node ¨ RandomChoose(MoveGen(node))

5            if h(node) > h(bestNode)

6                  then bestNode ¨ node

7  return bestNode

FIGURE 4.3 RandomWalk explores the search space in a random fashion. Function RandomChoose 

randomly picks one of the successors of the current node. The above algorithm has n random moves.

Given a surface defined by the evaluation function, Random Walk and Hill Climbing are two extremes 

of local search. Random Walk relies on exploration of the search space. Its performance is dependent 

upon time. The longer you explore the space, the more the chances of finding the global optimum. 

Because it is totally oblivious of the gradient, it never gets stuck on a local optimum. Hill Climbing, 

on the other hand, relies on the exploitation of the gradient. Its performance depends upon the nature 

of the surface. It terminates on reaching an optimum. If the surface has a monotonic gradient towards 

the global optimum, HC will quickly reach that. Otherwise, it will reach the nearest local optimum.

Simulated Annealing (SA) is an algorithm that combines the two tendencies, explorative and 

exploitative, of the two search methods. The basic idea is that the algorithm makes a probabilistic move 

in a random direction. The probability of making the move is proportional to the gain of value made 

by the move. Traditionally, this gain is associated with energy2 and we use the term DE to represent the 

2  The name annealing comes from physical processes in which materials are cooled at a controlled rate with the aim of stabilising in 

minimum energy states. Since this can be seen as a problem of minimization, the term ‘energy’ has been carried to the evaluation 

function value in the computational version of this physical process.
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change in the evaluation value. The larger the gain, the larger is the probability of making the move. 

The algorithm will make a move even for negative gain moves with nonzero probability, though this 

probability decreases as the move becomes worse. The point is that the algorithm will make moves against 

the gradient too, but will have a higher probability of making better moves. Consider a maximization 

problem from which three states A, B and C are shown in Figure 4.4. Both A and B are maxima with B 

having a higher evaluation value. If the algorithm has to move from local maximum A to C, it will have 

a negative gain of DEAC. Likewise, if it has to move from B to C, it will have to go through a negative 

gain of DEBC. Since this is larger than DEAC, it is likely that the algorithm moves from A to C more often 

than from B to C. Again, since the positive gain from C to B is higher; the algorithm is more likely to 

move from C to B than to A. That is, it is more likely that the algorithm will move from A to B than in 

the other direction. Then, given a series of local maxima of increasing magnitude, the search is likely 

to move towards the better ones over a period of time.

DEAC

DEBC

B

A

C

FIGURE 4.4 To move from A to C, the algorithm has to incur a smaller loss than to move from B to 

C. Simulated Annealing is more likely to move from A to C to B than vice versa.

One hopes, and this has been empirically supported by numerous applications, that by and large, 

the search will have a tendency to move to better solutions. The search may not perform very well on 

surfaces like in Figure 4.2 where IHC worked well, but for jagged surfaces with many maxima, like the 

one shown in Figure 4.5 below, it will probably do well.

A randomized algorithm that has a simple and constant bias towards better values would be called 

Stochastic Hill Climbing. Simulated Annealing adds another dimension to this. It starts of being closer to 

the Random Walk, but gradually becomes more and more controlled by the gradient and becomes more 

and more like Hill Climbing. This changing behaviour is controlled by a parameter T called temperature. 

We associate high temperatures with random behaviour, much like the movement of molecules in a 

physical material. In Simulated Annealing, we start with a high value of T and gradually decrease it to 

make the search more and more deterministic. The probability of making a move at any point of time 

is given by a sigmoid function of the gain DE and temperature T as given below,

P(C, N) ¨ 1/(1 + e–DE/T) (4.1)

where P is the probability of making a move from the current node C to the new node N, DE = (eval(N) 

− eval(C)) is the gain in value and T is an externally controlled parameter called temperature. Note that 

the above formula is for maximization of the evaluation function value. For minimization, the negative 

sign in the denominator will be removed. The probability as a function of the two values is illustrated 
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in Figure 4.6.  The Y axis shows the probability value, and the X axis varies DE. The different plots are 

for different values of T.

1.0

T = 0

DE

T Æ `

0.0
0

0.5

FIGURE 4.6 The probability curves (Sigmoid function) for different values of T. The probability of 

making a move increases as DE increases. For very large T, the algorithm behaves like Random 

Walk. As T tends to zero, the behaviour approaches the Hill Climbing algorithm.

When the temperature tends to infinity, the probability is uniformly 0.5, irrespective of the DE value. 

This means that there is equal probability of staying in the current node, and shifting to the neighbour. 

Nodes in the search space

h n( )

FIGURE 4.5 A jagged surface with many local optima, but a broader trend towards the optimum is 

well suited for Simulated Annealing. Observe that the footprint of HC is very small.
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This is like the Random Walk algorithm. For finite values of T, one can see that when DE is positive, the 

probability is greater than half; and when it is negative, the probability is less than half. Thus, a move to a 

better node is more likely to be made, than a move to a worse node, though both have nonzero probability. 

For any given temperature, the greater the DE, the more the probability of the move being made. When 

DE is negative then the probability becomes lower as the loss in value becomes greater. Observe that 

for all temperatures, the probability is half when DE = 0. This means that when the neighbour evaluates 

to the same value as the current node, it does not matter and one may or may not move to it with equal 

probability. Finally, one can observe that as temperature T becomes lower, the Sigmoid probability 

function tends to become more and more like a step function. When T = 0, it is a step function and the 

decision to move to the neighbour becomes a deterministic one. The search moves to the neighbour (with 

probability = 1) if the neighbour is better (DE > 0), else it does not move to it (moves with probability 

= 0). This is like the Hill Climbing algorithm.

The Simulated Annealing algorithm does a large number of probabilistic moves with the temperature 

parameter being gradually reduced from a large initial value to a lower one. The manner in which the 

temperature is brought down is known as the cooling schedule. The intuition is that starting off with 

random moves that allow the search to explore the search space, the temperature is lowered gradually 

to make the search more exploitative of the gradient information. As time goes by, the probability of 

the search being in the vicinity of the global optimum becomes higher, and at some point the gradient 

dominates the search and leads it to the optimum. The general outline of the SA algorithm is given below 

in Figure 4.7. There are many variations that can be done here, by choosing different cooling schedules. 

Another variation is one in which probabilistic moves are made only for negative gain moves.

SimulatedAnnealing()

1  node ¨  random candidate solution or start

2  bestNode ¨ node

3  T  ¨ some large value

4  for time ¨ 1 to numberOfEpochs

5     do while some termination criteria  /* M cycles in a simple case */

6          do        

7              neighbour ¨ RandomNeighbour(node)

8              ΔE  ¨ Eval(neighbour) Eval(node)

9              if Random(0, 1) < 1 / (1+e−ΔE/T)

10                        then node ¨ neighbour

11                   if Eval(node) > Eval(bestNode)

12                        then bestNode ¨ node

13                   T ¨  CoolingFunction(T, time)

14 return bestNode

FIGURE 4.7 Simulated Annealing makes probabilistic moves in the search space. We use the function 

Eval instead of h in the style used in optimization. Function CoolingFunction lowers the temperature 

after each epoch in which some probabilistic moves are made. Function RandomNeighbour randomly 

generates one successor of the current node, and Random(0,1) generates a random number in the 

range 0 to 1 with uniform probability.

One way that the SA algorithm is different from the many algorithms we have seen is that it does not 

do local optimization. It does not look around the neighbourhood of a node for the best neighbour. Instead, 

it generates one successor or neighbour randomly, and then decides probabilistically whether to move to 

it or not. Thus, it can easily be used in problems where there are a large number of neighbours for a given 
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node. In domains where one is dealing with real-valued variables, there could potentially be an infinite 

number of neighbours, like on a real hill; but this would not deter one from writing a search algorithm.

4.3 Genetic Algorithms

The natural world around us is a manifestation of life. In the world, and including this world itself, 

“things that persist, persist and things that don’t, don’t” (Grand, 2001). We can say that life is made 

up of forms that persist. We can also say that the goal of life is persistence, that is, to exist, or to live. 

Whichever way we look at it, life forms or living creatures are manifestations of different strategies to 

persist. Each species of life forms represents a strategy in which the individuals strive to persist. All 

living creatures have finite lifespans, but life itself continues as individuals beget offspring, which carry 

forward the strategy to live.

Persistence of living creatures requires energy, and different mechanisms have evolved to consume 

resources to generate the energy that sustains life. Plants feed on the energy in sunlight and nutrients in 

the soil; rabbits, cows and goats eat the plants; lions, foxes and tigers eat the rabbits, cows and the goats. 

Living creatures die naturally too, and are consumed by bacteria, which in turn produce the nutrients 

for plants. Life exists in an ecosystem, in which a multitude of individuals from different species exist 

in a dynamic equilibrium (see Figure 4.8).

Hawk

Grasshopper

Grass Wildflowers

Beetle

Robin

Rabbit

CarrotTrees

Squirrel
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Fungi

Mouse

Snake

Sparrow

Bacteria

FIGURE 4.8 A small fragment of the vast ecosystem. The natural world contains millions of species 

interacting with each other. Arrows depict a positive influence of the population of one species on another.
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Individuals may be born or may die, but life goes on. Even the extinction of a species or two does not 

stop this juggernaut. Once in a while though, some catastrophic event does occur that wipes out a part of 

the ecosystem and radically shifts the equilibrium, for example the one that happened about 65 million 

years ago wiped out the dinosaurs on Earth and created the opportunity for mammals to come to the fore.

Each species has its own strategy to live and consume resources, and when it can do that successfully, 

it survives. A species survives if the individuals of that species survive, at least long enough to create 

the next generation. Darwin called it the ‘survival of the fittest’ (Darwin, 1859). A good strategy, a good 

design of a living creature, a candidate solution for the problem of life, is the one that survives. Life 

cannot explode limitlessly because the amount of matter is limited, and life uses matter to build creatures 

that live. And these creatures have to survive on the limited amount of energy that is available. So 

there is competition for survival, and life forms evolve by a process of natural selection. The ones that 

survive are the “fit” ones or good ones. The bad designs die out. In that sense, we can think of nature 

as searching through different designs of living creatures.

While there is competition between the species, there is also competition within the species, perhaps 

more so. It is this competition that has led to the continual improvement of the species as a whole. The 

American paleontologist Edward Drinker Cope hypothesized that the body size of the members of a 

species grows with evolution (Cope’s rule)3. This continues till a point when the members become so 

large, like the dinosaurs, that they become susceptible to rapid changes in environment, and become 

prone to extinction. It has been suggested that it is this competition that has resulted in the development 

of human brains and intelligence.

The species evolves and the ecosystem selects the individuals that survive longer. The species are 

interdependent upon each other. It is the individuals that participate in this interaction between the species. 

Each individual member strives for survival and propagation, and competes with other individuals for 

the means to do so. The fastest foxes catch the rabbits; the slower ones have to starve. The faster rabbits 

escape and live to eat and procreate. The early bird gets the worm. Life forms embody strategies that 

are more complex than just speed or timing. Foxes and rabbits may be clever too. Fruits and flowers 

rely on taste and looks for their seeds to be dispersed. Many predators and prey adopt disguises to hide 

from the other. In general, the strategies are complex and multi-faceted. Some simple strategies like that 

of a cockroach have survived for long periods, while other more complex ones like that of the cheetah 

seem endangered in this age of human dominance.

The offspring of a single individual would be like the individual in its strategy for survival. Nature 

has struck upon a novel way to produce improved designs. Procreation in nature is mostly through 

bisexual reproduction. Every species has male and female members, who mate and produce offspring. 

Selection happens because individuals that are alive and can find mates will get to reproduce, and others 

will not. When mating and reproduction does happen, the offspring inherits features from both parents. 

This process has the elements of a random move built in. Some children will inherit good features 

from both parents, and will be better than both, and will probably have better chances of survival and 

reproduction. In this way, “fitter” members of a species will survive and the population will have more 

and more fitter members.

The design of an individual is expressed in the genetic make-up of the individual, known as its 

genotype.  A chromosome is a large macromolecule into which DNA is normally packaged in a cell and 

which contains many genes. The genes carry instructions encoded in a physical form in the DNA of 

an individual. Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic instructions for 

3 http://en.wikipedia.org/wiki/Cope’s_rule
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the biological development of a cellular form of life or a virus4. DNA consists of a pair of molecules, 

organized as strands running start-to-end and joined by hydrogen bonds along their lengths. Each strand 

is a chain of chemical “building blocks”, called nucleotides, of which there are four types: adenine (A), 

cytosine (C), guanine (G) and thymine (T). DNA is thought to have originated approximately 3.5 to 

4.6 billion years ago, and is responsible for the genetic propagation of most inherited traits. In humans, 

these traits range from hair colour to disease susceptibility. The genetic information encoded by an 

organism’s DNA is called its genome. During cell division, DNA is replicated, and during reproduction 

is transmitted to offspring. The offspring’s genome is a combination of the genomes of its parents. The 

phenotype of an organism, on the other hand, represents its actual physical properties, such as height, 

weight, hair colour, and so on. It is the physical entity or the phenotype that goes out and competes in 

the world. So while the genotype represents the inherited design, the phenotype is the individual that 

is the result of that design.

A newborn individual is like a computer program let loose in a system that can interpret it. Simple life 

forms, like the paramecium, earthworm, jellyfish or a cockroach, embody simple programs or strategies. 

More complex forms, like a typical mammal, embody more complex strategies. “Intelligent” life forms 

deploy very flexible strategies5. And in each species, the competition within has led to a continuous 

improvement in the strategy, through a process of natural selection.

Genetic Algorithms (GA) are a class of algorithms that try and build solutions by introducing evolution 

and selection of the best in a population of candidate solutions. The first thing one must do is to encode the 

problem by devising a schema for candidate solutions. One can think of this as an artificial chromosome, 

or the DNA sequence that is the blueprint of the solution. The chromosome is made up of the different 

components that make up the solution. Starting with a population of strings, GAs involve churning of 

the genes in search of better combinations. 

There are three basic operations in Genetic Algorithms (Goldberg, 1989):

1. Selection

The selection operator allows the fitter candidates to be chosen for reproduction, and thus propagation 

of the genes (components). While in nature, the phenotype is out in the world competing for survival, 

such an approach is not suitable because the purpose of writing the GA is to produce a good design 

(solution). It would be too time consuming to build the phenotypes and test them in the real world, 

though such an approach has been used where simulation is possible (Sims, 94). In practice, GAs employ 

a user specified function to decide which designs/solutions are good or not. This function is called the 

fitness function, and gives a fitness value to each candidate. In optimization, we called this function the 

evaluation function. The selection operator takes a population of candidates and reproduces (clones) 

them in proportion to their fitness values. Fitter candidates will have more copies made, and the worst 

ones may not get replicated.

4 http://en.wikipedia.org/wiki/DNA
5  The strategy adopted by human beings involves representation and modelling of their environment, including themselves, so 

that it is possible for human beings to contemplate and reflect upon their own strategy, fine tune it to the world, and even create 

machines and exploit other life forms to their advantage. Interestingly, human beings can contemplate human beings contemplating 

human beings contemplating … … contemplating their strategy, ending up in all kinds of philosophical conundrums about reality 

and what is really happening out there.
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2. Recombination

The recombination operator takes the output of the selection operator, and randomly mates pairs6 of 

candidates in the population, producing offspring that inherit components (genes) from both parents. 

The new population thus contains  a totally different set of solutions. In order to preserve the best 

candidates, sometime elitism is followed, that allows the best few candidates to have cloned copies in 

the new generation. 

3. Mutation

Once in a while in the real world, a mistake happens and a child gets a mutated copy of a gene from 

the parent. Most of the time this happens, it is disastrous for the individual, but on a rare occasion the 

mutated gene is beneficial, giving rise to a more successful individual. GAs incorporate mutations to 

allow for the possibility of making good random moves. As a result, even when the population does not 

contain a good gene, there is a chance that it may arise out of a random mutation.

A typical framework of a Genetic Algorithm is given below. The most commonly used operator to 

recombine the genes from the two parents is known as the crossover operator. A single point crossover 

simply cuts the two parents at a randomly chosen point and recombines them to form two new solution 

strings. For example, if the solution has eight components then given the two parents:

P1 = X1X2X3X4X5X6X7X8

P2 = Y1Y2Y3Y4Y5Y6Y7Y8

If we choose a crossover point between components 5 and 6, we get the two children as follows,

C1 = Y1Y2Y3Y4Y5X6X7X8

C2 = X1X2X3X4X5Y6Y7Y8

A two point crossover would be equivalent to doing the above operation twice. One can define many 

crossover operators which will take components from the parents and mix them up. Care has to be 

taken that the resulting strings are valid candidates. This is easy when dealing with problems like SAT, 

where the ith bit is a value of the ith variable, but for most problems, the crossover point should be at 

a component level. Some problems like the TSP will not work with the crossover depicted above. We 

will look at TSP separately since it is a problem of considerable interest. 

The algorithm GA is described at a high level in Figure 4.9.

In the algorithm shown in Figure 4.9, if we make the population size 1, and work only with the 

mutation operator then we would have the Random Walk or Simulated Annealing algorithms. The novel 

feature in GA is that it combines two processes working on a population of candidates. One recombines 

the components, and the other selects the best candidates. It is this dual action that makes GAs different. 

Without recombination, the algorithm would reduce to a parallel Random Walk or Simulated Annealing, 

where the mutation operator would be used to perturb solutions. Perturbation is a local change in the 

solution, and affects a local move in the neighbourhood graph. The crossover operator, on the other hand, 

results in a (big) jump in the neighbourhood graph. We can think of the crossover as a move from two 

parents to the two children. The two children may not be anywhere in the vicinity of the two parents, 

unless the two parents are similar to each other. At the same time, the Selection operator chooses the 

6  One supposes that there is no fundamental reason that pairs are used, except that this process is the one that has persisted. In 

principle, the offspring could be a result of a recombination of genes from more than two parents, but perhaps nature did not find 

a mechanism to do so. Observe, that handling such pairs is also commonplace in computer science. We represent numbers in 

binary form, we use two valued logics of true and false sentences, and most sorting algorithms compare two elements at a time. 
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best (fittest) members and makes more copies of them. As the above two processes work in tandem, 

the population becomes fitter and fitter. This leads to more and more members accumulating near the 

peaks in the search space (see Figure 4.10 below). If the number of peaks is small, this will in turn lead 

to a population that has more members that are similar to each other because they are all congregating 

near the peaks where the fitness values are high. Since more and more similar parents will be chosen 

to mate, the children will be closer to both of them. If there is only one peak, eventually the population 

will stabilise to most members becoming similar to each other and the genetic variation will diminish7, 

7  The cheetah is an example of such an event happening. The animal was so well suited to its predator life form, that the species 

stabilised into low genetic variation. With human civilization changing the face of the world totally, the same cheetah is a misfit 

and on the verge of extinction.

GeneticAlgorithm()

1 Initialize an initial population of candidate solutions p[1..n]

2 repeat

3     Calculate the fitness value of each member in p[1..n]

4     selected[1..n] ¨ the new population obtained by picking n members

5                  from p[1..n] with probability proportional to fitness

6     Partition selected[1..n] into two halves, and randomly mate and

7                           crossover members to generate offspring[1..n]

8     With a low probability mutate some members of offspring[1..n]

9     Replace k weakest members of p[1..n] with the k strongest members of

10                                                        offspring[1..n]

11    until some termination criteria

12    return the best member of p[1..n]

FIGURE 4.9 The GA algorithm works by reproducing a population in proportion to fitness, recombines 

the genes by crossover, and randomly mutates some members in each cycle. Parameter k decides how 

many of the parent population is to be retained.

Nodes in the search space

f(n)

FIGURE 4.10 The Initial population may be randomly distributed, but as Genetic Algorithm is run, the 

population has more members around the peaks.
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leading to fewer changes in future generations (Figure 4.11). This convergence behaviour is somewhat 

similar to the one in SA, which too starts off jumping about the search space.

f(n)

Nodes in the search space

FIGURE 4.11 If there is one major peak, then most of the population is expected to converge towards 

that peak, leading to high similarity in the genetic make-up.

The genetic algorithms described here are instances of randomized processes at work. In particular, the 

mating and crossover is done by random selection from fit members. In the natural world, this process is 

far from random. Selection of mates is a conscious process in which attraction between opposite sexes 

plays a major role. One could say that both the concept of beauty and also its perception have evolved 

to help members choose mates that will result in better offspring. In a way then, that is a process of 

selection that operates at a different level. Another factor that affects mating is geographic location. 

Living creatures usually find mates from a nearby area. The structures of society and the often complex 

processes of matchmaking too, play a role. Many a time these are designed to serve a community or a 

clan, rather than the individual.

4.4 The Travelling Salesman Problem

The ‘Travelling Salesman Problem’ (TSP) is one of the harder problems around, and considered by 

some to be the holy grail of computer science. The problem can informally be defined as follows. Given 

a graph in which the nodes are locations or cities, and edges are labelled with the cost of travelling 

between cities, to find a cycle containing each city exactly once, such that the total cost of the tour is 

as low as possible.  Thus, the salesman must start from a city, visit each city exactly once, and return 

home incurring minimum cost. The cost may be distance, time, or money. Most studies of TSP assume 

a completely connected graph. While practical problems, like a country map, generate graphs that are 

not complete, one can make them complete by adding edges with a very high cost.

Given N cities, a tour may be represented by the order in which the cities are represented, (City1, 

City2, …, CityN) which is often abbreviated to (1, 2, …, N). This is known as the path representation. 

One can observe that there are N! permutations possible with N cities, each representing a tour. Every 

tour can be represented by N of these permutations, where each is a rotation of another. For example, 

in a nine city problem, (1, 2, 3, 4, 5, 6, 7, 8, 9) represents the same tour as (5, 6, 7, 8, 9, 1, 2, 3, 4). One 

must remember that a tour is a complete cycle, so after the last city in the path representation, one has 

to go back to the first one. Further, one can observe that reversing the order does not change the cost of 
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the tour because this simply means that the salesman goes in the opposite direction on the same tour. 

This assumes that the graph is not a directed graph. Thus, the number of distinct tours is N!/(N ¥ 2) = 

(N – 1)!/2. In practice, in an algorithm, one may not be able to prune the duplicate solutions always. In 

general, the number of candidate solutions grows as a factorial of the number of cities which, as we see 

below, is much worse than the exponential function, which is much larger than the exponential growth 

of SAT problems.

Let us look at the value 2100 which is the number of candidates for a 100-variable SAT problem. Two 

to the 100th power is 1, 267, 650, 600, 228, 229, 401, 496, 703, 205, 376. In the US number naming 

system, it is one nonillion, 267 octillion, 650 septillion, 600 sextillion, 228 quintillion, 229 quadrillion, 

401 trillion, 496 billion, 703 million, 205 thousand, 376. This is about 1030. If one were to take a sheet of 

paper 0.1 millimetre thick and double the thickness (by folding it) one hundred times, the resulting stack 

would be 13.4 billion light years tall. It would reach from Earth to beyond the most distant galaxy we 

can see with the most powerful telescopes—almost to the edge of the observable universe8. A hundred 

variable SAT is hard enough. But 100! is a much bigger number. The following output from a simple 

Lisp9 program shows the number.

(factorial 100) Æ  9332621544394415268169923885626670049071596826438162146

8592963895217599993229915608941463976156518286253697920

827223758251185210916864000000000000000000000000

This number is larger than 10157 and clearly it is impossible to inspect all possible tours in a hundred-

city problem. Thus, the general case of TSP is a prime candidate for applying stochastic (randomized) 

local search methods. While inspecting all candidates is not going to be an approach, (using techniques 

of dynamic programming, one can solve the problem exactly in time O(2n)) the TSP problem has been 

shown to be NP-hard (Gary and Johnson, 1979). Exact solutions are hard to find for a given large 

problem, and thus it makes it difficult to evaluate one’s algorithm. A library of TSP problems TSPLIB10 

(Reinelt, 2004) with exact solutions is available on the Web. An exact solution for 15, 112 German cities 

from TSPLIB was found in 2001 using the cutting plane method proposed by George Dantzig, Ray 

Fulkerson and Selmer Johnson in 1954, based on linear programming (Dantzig, 1954). The computations 

were performed on a network of 110 processors. The total computation time was equivalent to 22.6 years 

on a single 500 MHz Alpha processor. In May 2004, the travelling salesman problem of visiting all 24,978 

cities in Sweden was solved: a tour of approximately 72,500 kilometres was found and it was proven 

that no shorter tour exists. In March 2005, the travelling salesman problem of visiting all 33,810 points 

in a circuit board was solved using Concorde (Cook, 2006). A tour of length 66,048,945 units was found 

and it was proven that no shorter tour exists. The computation took approximately 15.7 CPU years11. 

Stochastic Local Search (SLS) methods (Hoos and Stutzle, 2005), on the other hand, can find very 

good solutions quite quickly. For example, for randomly generated problems of 25 million cities, a 

solution quality within 0.3 percent of the estimated optimal solution was found in 8 CPU days on an IBM 

RS6000 machine (Applegate, 2003). More results on performance can be obtained from the Website for 

8 http://www.freemars.org/jeff/2exp100/answer.htm
9  Lisp has a built-in feature to handle large numbers. It has long been a favourite language of AI researchers, primarily because it 

allows dynamic structures to be built naturally, and its functional style allows the creation of domain specific operators easily. 

It has been on a little bit of a decline with the advent of other object-oriented languages, and a diminishing community makes 

it daunting for new entrants to try their hand at it.
10  http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
11  Quoted from Wikipedia: http://en.wikipedia.org/wiki/Traveling_salesman_problem
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the DIMACS implementation challenge on TSP (Johnson et al., 2003) and (Cook, 2006). Some more 

interesting TSP problems available at (Cook, 2006) are: The World TSP - A 1,904,711-city TSP consisting 

of all locations in the world that are registered as populated cities or towns, as well as several research 

bases in Antarctica; National TSP Collection—a set of 27 problems, ranging in size from 28 cities in 

Western Sahara to 71,009 cities in China. Thirteen of these instances remained unsolved, providing a 

challenge for new TSP codes, and; VLSI TSP Collection—a set of 102 problems based on VLSI data 

sets from the University of Bonn. The problems range in size from 131 cities up to 744,710 cities.

TSP problems arise in many applications (Johnson, 1990), for example circuit drilling boards 

(Litke, 1984), where the drill has to travel over all the hole locations, X-ray crystallography (Bland and 

Shallcross, 1989), genome sequencing (Agarwala, 2000) and VLSI fabrications (Korte, 1990). These 

can give rise to problems with thousands of cities, with the last one reporting 1.2 million cities.  Many 

of these problems are what are known as Euclidean TSPs, in which the distance between two nodes 

(cities) is the Euclidean distance. One can devise approximation algorithms that work in polynomial 

time. Arora (1998) reports that in general, for any c > 0, there is a polynomial time algorithm that finds 

a tour of length at most (1 + 1/c) times the optimal for geometric instances of TSP, which is a more 

general case of an Euclidean TSP. Special cases of TSPs can be solved easily. For example, if all the 

cities are known to lie on the perimeter of a convex polygon, a simple greedy algorithm, TSP-Nearest-

Neighbour shown below works.

4.4.1 Constructive Methods

Several constructive methods construct tours from scratch. We look at a few of them starting with the 

most intuitive nearest neighbour construction (Figure 4.12).

TSPNearestNeighbour()

1  currentCity  ¨ some startCity

2  tour  ¨ List(currentCity)

3  while an unvisited city exists

4       do  neighbour  ¨ NearestAllowedNeighbour(currentCity)

5           tour ¨  Append(tour, List(neighbour))

6           currentCity ¨  neighbour

7  return tour

FIGURE 4.12 The Nearest Neighbour Tour construction algorithm moves to the nearest neighbour 

(that has not been visited) at each stage. Function NearestAllowedNeighbour picks the nearest 

neighbour from the unvisited cities. The last segment back to the startCity is implicit.

The complexity of the algorithm is O(bn), where n is the number of cities and b is the maximum degree 

of nodes (which is n – 1 for fully connected graph). We can observe that for most greedy algorithms 

for TSP, the complexity is O(n2). For TSP problems that satisfy the triangle inequality12, it has been 

shown that the tour found by the nearest neighbour algorithm is not more than (Èlog2(n)˘ + 1)/2 times 

the optimal tour cost (Rosenkrantz et al., 1977). In practice, the algorithm yields fairly good tours where 

there may be a few long edges that are added in the final stages. The reader can verify this by trying out 

the method on the problem shown in Figure 4.13. Observe that if the two extreme cities were not there, 

the cities would have satisfied the condition of being on a convex polygon, and the algorithm would 

have found the optimal solution.

12  The triangle inequality states that the sum of the distances along two sides of a triangle is larger than the distance along the 

third side.
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FIGURE 4.13 A near polygon arrangement of cities. The distances are the Euclidean distances in the 

figure.

We can improve upon the above algorithm slightly by extending the partial tour at the either end, 

choosing the one that has the nearest neighbour. The above algorithms work by adding nodes (cities) 

to the partial tours. The new node to be added is the one that is nearest to either end of the partial tour 

and extends the partial tour.  Another heuristic method also adds nodes to the partial path, but selects 

the node to be added as the one that is nearest to any node in the partial tour. The new node is inserted 

into the partial tour by connecting it to the nearest node and splicing the new node. This is known as 

the nearest insertion heuristic, and it has been shown that the resulting tour costs are at most twice 

the optimal tour costs (Rosenkrantz et al., 1977). The reader is encouraged to try the heuristic on the 

problem in Figure 4.13.

We now look at constructive methods that add edges instead of nodes. The idea is that one adds 

edges making up the tour in some order, eventually stringing together the entire tour. In an algorithm 

known as the Greedy Heuristic, one starts off by sorting the edges in order of their costs (or weights 

or distances). The algorithm begins with the graph G containing all the nodes and no edges. One then 

keeps adding the cheapest edges to a partial tour being constructed in the graph G, such that no node 

ever has a degree more than two, and no cycles except the final tour exists.

Another method known as the Savings Heuristic starts off by constructing (n – 1) tours of length two, 

all originating from a base node nb. At the start, the ith tour looks like (nb, ni, nb). The algorithm then 

performs (n – 2) merges, at each stage removing two edges from two cycles to nb and adding an edge to 

connect the two hanging nodes. Of the four combinations of edges that can be removed and replaced, 

the algorithm chooses the one that gives maximum savings in combined tour cost. Figure 4.14 below 

illustrates the algorithm.

FIGURE 4.14 The Savings Heuristic starts with (n – 1) tours of length 2 and performs (n – 2) merge 

operations to construct the tour.
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It has been shown (Ong and Moore, 1984) that the Greedy Heuristic produces tours at most 

(1 + log(n))/2 longer than the optimal tour, and the Savings Heuristic at most twice of that. In practice, 

however, the Savings Heuristic has empirically produced better tours. The following tours from the 

DIMACS Webpage (Figure 4.15) illustrate typical performances of these heuristic algorithms.

Greedy tour Nearest neighbour tour

Savings tour Optimal tour

FIGURE 4.15 Tours found by some heuristic constructive algorithms. Figure taken from 

http://www.research.att.com/~dsj/chtsp/

4.4.2 Perturbation Methods for the TSP

Search methods that operate in the solution space can be easily applied to TSP problems. They work on 

complete tours, and the neighbours of a search node are tours obtained by perturbing the given tour in 

some way. In the path based representation of a tour, a given tour can be modified by exchanging any 

two cities in the tour, as shown in Figure 4.16. For example, cities 4 and 5 can be exchanged in (2, 3, 4, 

1, 7, 6, 5, 8, 9) to give (2, 3, 5, 1, 7, 6, 4, 8, 9). We can call this the 2-city-exchange move. For a tour of 

N cities, this generates NC2 neighbours for any given tour. We can also exchange more than two cities 

to design a neighbourhood function k-city-exchange. Notice that if we remove 3 cities from the tour, 

we can put them back in (3!−1) = 5 other different ways, thus giving us NC3 * (3!-1) neighbours for any 

given tour. In general, as k increases, the neighbourhood function becomes denser.
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FIGURE 4.16 In the 2-city-exchange, the two shaded cities exchange their position in the path 

representation. The new tour has the dashed edges instead of the four broken ones in the linear  

order. 

Another way of defining neighbourhood functions is to think of exchanging edges instead of cities 

in a tour. In a 2-edge exchange move, we would remove two edges and cross connect them to give a 

different tour, as shown in Figure 4.17. For example, in the tour (2, 3, 4, 1, 7, 6, 5, 8, 9), we could remove 

edges 4-1 and 8-9 and replace them with 4-8 and 9-1 to give a tour (2, 3, 4, 8, 5, 6, 7, 1, 9). The reader 

is encouraged to verify that this is the only way the two edges can be replaced to give a valid tour. It can 

also be observed that the 2-edge-exchange can be implemented by reversing a subsequence, in this case 

1-7-6-5-8 in the path representation. We can do a 3-edge exchange by taking out and replacing three 

edges from the tour, and this can be done in four different ways (see Figure 4.18).

FIGURE 4.17 In the 2-edge-exchange, the tour is altered as shown.

FIGURE 4.18 In a 3-edge-exchange, three edges are removed and replaced by other edges.
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A closer look at the 2-city-exchange shows that it is one particular case of 4-edge-exchange in which 

two sets of two consecutive edges are removed from a tour, and each freed node is connected to the 

neighbours of the other freed node. Experiments have revealed that edge exchanges give better results 

than city exchanges. They are also intuitively more appealing. For example, one can visualise the  

2-edge-exchange undoing a crossed path in a tour (if the move shown in the figure were reversed). It also 

allows for using a heuristic like selecting longer edges to be removed from a given tour.  In general, using 

a higher k-exchange operator gives a denser neighbourhood. In the case where k = n, the entire search 

space comes in the neighbourhood, as perturbations are no longer local. The graph is fully connected 

as all permutations become neighbours. We have seen that a deterministic search method like Variable 

Neighbourhood Descent (Chapter 3) can exploit increasingly denser neighbourhood functions. The TSP 

problem, like the SAT problem, allows for a number of neighbourhood functions of increasing density, 

and one can implement algorithms that work within the capacity of a given set of resources.

4.4.3 GAs for TSP

Instead of perturbing a given solution, GAs generate new candidates by inheritance and recombination 

of solution components from two parents selected, based on their fitness. The idea is to serendipitously 

combine good components that occur in the two parents. In the TSP problem, the components are the 

individual segments in a tour, and also subtours made up a sequence of segments. For GAs to work well, 

one must be able to devise crossover operators that allow for such recombination. This is a somewhat 

difficult task, and different crossovers, and even alternate representations, have been tried. We look at 

a few of them here.

Path Representation

In path representation, the simple one point or multipoint crossovers defined in this chapter earlier do not 

work because the resulting sequences are not likely to be valid tours. For example, given two parent tours

P1 = (2, 4, 7, 1, 5, 9, 8, 3.6), and

P2 = (4, 5, 7, 2, 6, 8, 1, 9, 3)

if we do a crossover after four segments, we get the two offspring: 

C1 = (2, 4, 7, 1, 6, 8, 1, 9, 3), and

C2 = (4, 5, 7, 2, 5, 9, 8, 3.6)

Neither of the two offspring is a valid tour because cities repeat in them. We need crossover operators 

that will retain the n cities and only introduce a different order. Some interesting crossovers that have 

been tried out (Michalewicz and Fogel, 2004) are as follows.

The Partially Mapped Crossover (PMX) builds a child as follows. It chooses a random subsequence 

from one parent, and fills in the remaining tour by maintaining the order and position of cities as in the 

other parent. For the above example, choosing the subsequences from fourth to seventh city gives the 

children.

C1 = (x, x, x, 1, 5, 9, 8, x, x), and

C2 = (x, x, x, 2, 6, 8, 1, x, x)

This defines a series of mappings (1´2), (5´6), (9´8) and (8´1). Next, the cities that can be 

copied from the other parent are brought in to give

C1 = (4, x, 7, 1, 5, 9, 8, x, 3), and

C2 = (x, 4, 7, 2, 6, 8, 1, 3, x)
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Finally, the four x’s in the above children are replaced by 6 (from the mapping (5´6) because 5 

should have been there), 1 (from the mappings (9´8) and (8´1), 9 (from (1´2), (8´1) and (8´9) 

– it should have been 2, but since 2 is already there 1, but since 1 is also  there 8, and since 8 is already 

there 9), and 5, to give the two offspring

C1 = (4, 6, 7, 1, 5, 9, 8, 6, 3), and

C2 = (9, 4, 7, 2, 6, 8, 1, 3, 5)

In Order Crossover (OX), we copy a substring from one parent as in PMX, but fill in the remaining 

nodes in the order they occur in the other parent.  Starting with 

C1 = (x, x, x, 1, 5, 9, 8, x, x), and

C2 = (x, x, x, 2, 6, 8, 1, x, x)

the remaining cities for C1 are arranged in order as in P2 = (4, 5, 7, 2, 6, 8, 1, 9, 3) giving (4, 7, 2, 6, 3). 

Likewise for the other child, the remaining cities are arranged in the order of P1 giving the two offspring

C1 = (1, 5, 9, 8, 4, 7, 2, 6, 3) and

C2 = (2, 6, 8, 1, 4, 7, 5, 9, 3)

In Cycle Crossover (CX), the attempt is made to inherit the position of each city in the offspring from 

one of the two parents as far as possible. We start constructing the two offspring with the first city as

C1 = (2, x, x, x, x, x, x, x, x), and

C2 = (4, x, x, x, x, x, x, x, x)

Since CX tries to inherit the position of each city from one of the parents, it can be seen that in C1 

the position of city 4 can only be inherited from P1, because the first slot where 4 occurs in P2 is already 

used up in C1. Likewise, the position of city 2 in C2 can only be inherited from P2, giving

C1 = (2, 4, x, x, x, x, x, x, x), and

C2 = (4, x, x, 2, x, x, x, x, x)

Now since 4 is in second place in C1, the position of the other city in the second place, that is city 5, 

can only be inherited from one parent, which is C1. In this manner, we propagate the constraints till we 

cannot fill up a city without creating a cycle in the partial tour. At this stage, we have

C1 = (2, 4, x, 1, 5, 9, 8, 3.6), and

C2 = (4, 5, x, 2, 6, 8, 1, 9, 3)

The remaining cities, in this case there is only one, is filled up from the other parent. Let us look at 

another example where a smaller subtour is selected. Given two parents

P3 = (1, 2, 3, 4, 5, 6, 7, 8, 9), and

P4 = (3, 4, 6, 5, 2, 7, 9, 8, 1)

the reader should verify that the subtours chosen by from one parent are

C3 = (1, x, 3, x, x, 6, 7, x, 9) from P1, and

C4 = (3, x, 6, x, x, 7, 9, x, 1) from P2

In the positions marked x, the cities from the two parents are exchanged, giving

C3 = (1, 4, 3, 5, 2, 6, 7, 8, 9), and

C4 = (3, 2, 6, 4, 5, 7, 9, 8, 1)

We can see the cycle crossover as a carefully chosen simple multipoint crossover, in which selected 

parts of the two “chromosomes” are exchanged.
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Ordinal Representation

Interestingly, there does exist a tour representation where the simple crossover can be used producing 

valid tours. This is known as the ordinal representation. We begin by arranging the cities to create a 

reference order R of the cities. Since we are interested in the index of cities in this reference, we name 

the cities themselves by letters to avoid confusion.

R = (A, B, C, D, E, F, G, H, I)

Then a tour, say C-D-F-E-B-G-I-H-A, is represented as a list L of references which is constructed as 

follows. The first entry in L is the reference index from R for the first city in the tour, in this case, city 

C in position 3 in R. We also modify the reference index R by deleting the city C from it.

L = (3)

R = (A, B, D, E, F, G, H, I)

The next city in the tour D is now in the third position in the modified reference R. We have,

L = (3, 3)

R = (A, B, E, F, G, H, I)

The next city F is in the fourth position in the updated R.

L = (3, 3, 4)

R = (A, B, E, G, H, I)

Continuing in this manner, we get a tour representation for the given tour as,

L = (3, 3, 4, 3, 2, 2, 3, 2, 1)

The reader is encouraged to verify that with the ordinal representation, one can use an arbitrary 

simple crossover operator that will yield valid tours as offspring. The advantage is that while the coding 

of tours may take some computational effort, once we have a population of tours available, the GA 

implementation becomes faster because we can use, say a single point crossover.

Adjacency Representation

Another representation of tours that has been experimented with is the adjacency representation. This 

is an indexed representation in which cityi is in position j in the list if in the tour the salesman goes 

from cityj to cityi. For example, the representation (4, 5, 7, 2, 6, 8, 1, 9, 3) can be interpreted as follow. 

Starting with 1, the next city in the tour is 4, because 4 is in the first place in the representation. From 

4, the next hop is to city 2, because 2 is in the fourth position. The complete tour can in this manner be 

constructed as 1-4-2-5-6-8-9-3-7-1.

One problem with the above representation is that not every permutation of cities represents a 

valid tour. For example, no permutation can start with 1, because that would mean going from 1 to 1. 

Furthermore, any permutation that contains say (3, x, 5, x, 1, x, x, x, x), is not a tour because it contains 

a cycle 1-3-5-1. Also, the single point crossover will not work. The appeal of the representation lies in 

the fact that it represents explicitly where to go from any given city. Thus, we can say in the tour (4, 5, 7, 

2, 6, 8, 1, 9, 3) that after city 3 one goes to city 7, because 7 is in the third location in the representation. 

Given two parents, in the adjacency representation, the two options in the two parent tours are available 

at the same location, and could thus be inherited from either parent. One could then construct a child 

tour by choosing the next location to go to, using some heuristic approach.

In the Heuristic Crossover (HX), a child tour is constructed by choosing a random city as a starting 

point. The next city is chosen from the two options in the two parents, by choosing the one that is 

linked by a shorter edge. One has to keep a lookout for the formation of a cycle in the tour, and if that 



100 A First Course in Artificial Intelligence

is happening at some stage, a random city is chosen that does not introduce a cycle. Observe that if one 

of the parents has a sequence of cities connected by short edges, they are likely to be carried forward 

to the offspring being constructed.

One can simplify the above crossover by choosing the successor cities from the two parents alternately. 

This is known as the Alternating Edges Crossover (AEX). A variation of this is to select a sequence of 

edges from one parent before choosing some from the other. This is known as the Subtour Selection 

Crossover (SSX). One can observe that this is similar to the PMX crossover with path representation. 

A check for cycle formation has still to be kept in all these approaches though.

In summary, the TSP problem is one of those problems in which defining crossover functions is not 

a straightforward process. The intuition behind GAs is that the offspring have a chance of inheriting 

and combining good components from the parents. In TSP, the good components are tour segments. But 

the shortest tour segments may not add up to a valid tour. If this happened, a greedy tour construction 

would have worked.
13

13  The development of vertebrates (creatures with backbones) in nature is an example. The set of genes for developing the vertebra 

can be thought of as a BB. However nature took quite long to arrive at designs using vertebras, with the first appearance around 

the Cambrian explosion about 530 million years ago, much later in the journey of life begun 3.5 billion years ago. 

Box 4.1: A Note on Innovation and Creativity

Over a period of 3.5 billion years, nature has produced a vast plethora of designs for life through 

a process of recombination and selection. Starting presumably with a few simple forms, life has 

diversified into a number of species, with a large number of individuals within the species. Life forms 

display a bewildering diversity, occupying all nooks and corners of the earth. The number of living 

creatures living can safely be said to be unknown. Even the number of species is not known, and is 

variously said to be anywhere between 3 to 100 million. The world around us is a result of billions 

of generations of recombination and selection over a population of billions.

In contrast, human endeavour is relatively short termed. Our problem solving efforts are focused 

on speed and minimal use of resources. There has been considerable evidence that the completely 

unconstrained methods employed by nature are too slow to solve our problems (Grand, 1998; 

Goldberg, 2002). If we are to devise GAs that work, we have to put in more structure to guide the 

search. (Goldberg, 2002) defines competent GAs as follows.

“The primary objective is to design what we call competent genetic algorithms. A GA is called 

competent if it can solve hard problems quickly, accurately, and reliably. Each of these can be 

quantified further, but qualitatively, hard problems are those that have large subsolutions that 

must be discovered whole, badly scaled subsolutions, many different local optima, a high degree 

of subsolution interaction, or a lot of external noise or stochasticity. In short, we are interested in 

designing effective solvers for the class of nearly decomposable problems (Simon, 1969). Speed, 

accuracy, and reliability requires that we get to near-global or high-quality solutions in times that 

grow as a polynomial function of the number of decision variables with high probability.” 

The competent GA is centred around decomposing problems into subproblems and finding 

subsolutions of those subproblems and combing them to “build” the solution. The subsolutions 

are called Building Blocks (BB). This is clearly different from the GAs described in this chapter 

because it looks for ways to find and preserve BBs. Unconstrained GAs will take too long13 a time 

to do this.  Clearly, the design of GAs that will find solutions in reasonable time is still in the realm 

of being an art form.
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Having expressed the above caveat, we would like to observe that the dual process of recombination 

and selection is the only known approach to creativity. Moreover, reports on the study of human 

creativity have repeatedly thrown up the notion that innovation and creativity arise when humans 

combine and recombine ideas, often subconsciously; and have the ability to latch onto a good idea 

when it does emerge. We look at some of the evidence reported below.

The French mathematician Hadamard (1954) has attributed innovation and discovery to 

recombination in a pool of ideas “We shall see a little later that the possibility of imputing discovery 

to pure chance is already excluded....Indeed, it is obvious that invention or discovery, be it in 

mathematics or anywhere else, takes place by combining ideas”.  He also quotes the French poet 

Paul Valéry who argued, “It takes two to invent anything. The one makes up combinations: the other 

chooses ... what is important to him in the mass of the things which the former has imparted to him.” 

This statement describes the two processes of recombination and selection succinctly. 

Recent work employing techniques from psychology and brain imaging has shown that a key 

ingredient to creativity is the ability to handle many diverse kinds of ideas together, allowing them 

to cross fertilize each other. Our normal thinking processes are tuned to focusing on relevant matters 

and ignoring information that may be irrelevant to the task at hand. This process of ignoring irrelevant 

inputs is called latent inhibition. With high levels of latent inhibition, a person can pursue a task with 

a single mindedness that is a highly valued trait. The work done in Harvard University by a team led 

by Shelley Carson, a Harvard psychologist, reports a study that reveals that people with low levels 

of latent inhibition are the ones who can combine ideas creatively (Carson, 2003). Interestingly, low 

levels of latent inhibition are also related to psychotic conditions. “Scientists have wondered for a 

long time why madness and creativity seem linked, particularly in artists, musicians, and writers. … 

Our research results indicate that low levels of latent inhibition and exceptional flexibility in thought 

predispose people to mental illness under some conditions, and to creative accomplishments under 

others.” (Carson, 2003, Cromie, 2003).

Unlike the “normal” thought processes that are focused, people with low levels of latent inhibition 

have their minds flooded with many different ideas. If the person is able to handle this meaningfully, 

she can be creative; otherwise there is a danger of being labelled as ‘mad’. Low latent inhibition, it 

seems, increases the available “mental elements”—thoughts, memories, and the like, or what Carson 

calls “bits and pieces in the cognitive workspace”—that supply the raw material for originality 

and novelty. Although too much material entering the “cognitive working area” might disorient 

psychotics, Carson wondered whether “highly creative people could use those many bits and 

pieces in the cognitive workspace and combine them in novel, original ways.” (Lambert, 2004). 

“Perhaps they do not dismiss as easily as the rest of us “irrelevant” ideas that pop into their heads, 

but instead entertain them long enough for one of them to connect with another thought that is 

kicking around—giving birth to a novel, creative idea. … Getting swamped by new information 

that you have difficulty handling, may predispose you to a mental disorder,” Carson says. “But if 

you have high intelligence and a good working memory, you are more likely to be able to combine 

bits of new information in creative ways.” The “high intelligence” part of Carson’s statement is key 

(Begley, 2005). High intelligence, she adds, “should help you to better process the increasing 

information that goes along with low latent inhibition. To be creative, you can be bright and crazy, 

but not stupid.” Some minimal level of intelligence is, therefore, required for creativity. The reason is 

that in order to generate novel combinations, it helps to have a wealth of mental elements to work with. 

Without a sufficient supply of elements that can be combined in an original way, creativity is impossible 

(Begley, 2005).
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This view is also expressed by Dean Simonton, a psychologist from the University of California, 

Davis. He says (Simonton, 2004) that creativity is analogous to variation and selection in Darwinian 

evolution. “The creator must generate many different novelties from which are selected those that 

satisfy some intellectual or aesthetic criteria. …  Underlying creativity, therefore, must be some 

process that generates these variations, made up of novel combinations of cognitive bits and pieces, 

as well as some way to choose among them. Creative people in diverse fields have said that this is 

exactly what it feels like they did. Chemist Linus Pauling described the need to “have lots of ideas 

and throw away the bad ones.... You aren’t going to have good ideas unless you have lots of ideas 

and some sort of principle of selection.” Mathematician Henri Poincaré recalled the feeling that 

accompanied a creative breakthrough: “Ideas rose in crowds; I felt them collide until pairs interlocked, 

so to speak, making a stable combination. By the next morning, I had established the existence of a 

class of (previously unknown mathematical) functions.” Einstein described how “combinatory play 

seems to be the essential feature” in creativity (Begley, 2005).

“One eternal question is the relationship between madness and creativity. To be sure, most people 

who are mentally ill are not especially creative. But history is full of creative geniuses who were 

insane, including Vincent van Gogh and Robert Schumann; those who committed suicide, such as 

Ernest Hemingway and Virginia Woolf; or who were paranoid, such as Sir Isaac Newton. In the largest 

study ever conducted of the connection between creativity and madness, Arnold Ludwig analysed the 

biographies of about one thousand eminent men and women (Ludwig, 1995). He found that mental 

illness occurred more frequently in this group than it did in the general population. Specifically, 

60 percent of the composers had psychological problems, as did 73 percent of the visual artists, 74 

percent of the playwrights, 77 percent of the novelists and short-story writers, and 87 percent of the 

poets. But only about 20 percent of scientists, politicians, architects, and business people had even 

mild mental illness.” (Begley, 2005).

It is the pathways and flexible connectivity in the human brain that determines what thought 

patterns can come together to “mate” and produce novel ideas.

Can we implement systems that are creative? The above discussion indicates that creativity 

involves the ability to make connections between seemingly unrelated ideas and selecting the useful 

combinations. Our exploration of GAs has just begun. The chromosomes we talk about are all of 

strings of the same length and a fixed schema. Though there has been some research with variable 

length strings and working with tree structures (see (Koza, 1992)), we are still far away from having 

integrated representations for all the problems our agents solve. As a result, each system that we 

develop for a specific task has its own representation. We will see in Chapter 15 that repositories 

(populations) of solutions can also be accumulated and used in the form of experience by memory-

based agents. Even here, the schema of the solution is fixed and each system is designed for a specific 

task. Building integrated knowledge representation systems that an agent can use for different tasks is 

definitely a challenge for artificial intelligence research. Until we can do so, there is little chance of 

being able to make “long-distance” cross connections that seem to be the source of novel solutions. In 

some sense, our systems are tuned to work within a species, making changes within a rigid framework. 

To mimic, natural evolution would also result in accepting the slow process of change that nature has 

worked with. To emulate human creativity, we must be able to represent diverse ideas in a common 

pool and develop an ability to combine them in different ways and recognizing the good ideas when 

they do come along.
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1415

14  Notice that we are not saying that they will come together to display complex behaviour. They might and when they do it is up 

to the selection mechanism to allow them to persist.
15 http://www.molbio.ku.dk/MolBioPages/abk/PersonalPages/Jesper/Hoffmeyer.html

Box 4.2: Swarms in the Semiosphere

In genetic algorithms, we talk about systems (species, designs and solutions) that are made up of parts; 

and of processes that recombine the parts to produce new and novel systems. A question one might 

ask is what  these processes are and how these parts come together.  The idea of emergent systems 

is that these parts come together by themselves in an environment where “things that persist, persist 

and things that don’t, don’t” (Grand, 2001). The idea behind emergent systems is that small simple 

parts can come together to form systems that can display complex behaviour.14 And that simple parts 

come together and cooperate; not as a conscious process, but because their simple behaviours mesh 

together easily.  Well known examples of complex systems emerging out of combinations of simple 

ones are ant colonies and human brains.

Jesper Hoffmeyer says15, “The emerging discipline of biosemiotics looks at how complex behaviour 

emerges when simple systems interact with each other through signs. Sign processes (or semiosis) are 

processes whereby something comes to signify something else to somebody (and ‘somebody’ here may 

be taken in the broadest sense possible, as any system possessing an evolved capacity for becoming 

alerted by a sign). The study of living systems from a semiotic (sign theoretic) perspective is called 

biosemiotics. According to biosemiotics, most processes in animate nature at whatever level, from the 

single cell to the ecosystem, should be analysed and conceptualized as sign processes. Biosemiotics 

is concerned with the sign aspects of the processes of life. In the biosemiotic conception, the life 

sphere is permeated by sign processes (semiosis) and signification. Whatever an organism senses 

also means something to it, food, escape, sexual reproduction, etc.; and all organisms are born into 

a semiosphere. The study of signs is known as semiotics, and the notion of a semiosphere (Lotman, 

1990) refers to a world of meaning and communication: sounds, odours, movements, colours, electric 

fields, waves of any kind, chemical signals, touch, etc. The semiosphere poses constraints or boundary 

conditions to the Umwelts of populations since these are forced to occupy specific semiotic niches, 

i.e. they will have to master a set of signs of visual, acoustic, olfactory, tactile and chemical origin 

in order to survive in the semiosphere.” 

The behaviour of termites and ants has long been understood as being coordinated through a system 

of signs. Higher level creatures like mammals routinely employ signs for communication. Many 

animals are known to mark their territory through various means. Humans, of course, have taken 

communication through symbols to a totally new level with the invention of language. Even outside 

of language, we have a rich and diverse system of communicating through signs, and by doing so, 

we often (consciously) organize ourselves into teams and mobs where the activity of one becomes a 

sign for others to interpret. One has only to watch a high level team sporting event, like soccer, to see 

how the players “read” the actions of their teammates as well as opponents.  We have no difficulty 

in accepting the fact that mammals and humans communicate through signs. Biosemiotics however, 

shows that communication through signs may result in simpler entities coming together, and forming 

swarms that can be seen as a more complex system. Consequently, it emerges that not only are our 

social structures immersed in a semiosphere, but also that we ourselves are kinds of semiospheres, 

in which the cells making up our different organs are bound together.
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Hoffmeyer (1994) introduces a notion of semetic interaction (from Greek: semeion = sign, etos 

= habit) interaction between simple elements as a general phenomenon in the life sphere. Semetic 

interaction refers to the tendency of living systems to make signs based on any persistent regularity: 

wherever there has developed a habit, there will also exist an organism for whom this habit has 

become a sign. He illustrates this with the behaviour of termites in the following paragraph—“When 

termites initiated nest constructing, the following sequence of events was observed by Grassé: First, 

hundreds of termites move around at random, while they exhibit a peculiar habit of dropping small 

pellets of masticated earth in places which are elevated a little bit from the ground. In spite of the 

disorganized character of this activity, it results in the formation of small heaps of salivated earth 

pellets. Second, these heaps of earth pellets are interpreted by the termites as a sign to release a 

new habit. Every time a termite meets a heap, it energetically starts building earth pellets on top of 

it. The effect of this activity will soon be the formation of a vertical column. The activity stops when 

the column has reached a certain species-specific height. Third, if the column has no immediate 

neighbours, the termites completely stop bothering about it. But if in an adequate distance there 

are one or more other columns, a third habit is released. The termites climb the columns and start 

building in a sloping direction towards the neighbouring column. In this way, the columns become 

connected with arches. The amazing fact is that through a seemingly haphazard sequence of events, 

a nest is actually produced which cannot but elicit the feeling in the observer, that there must have 

been some kind of intelligence behind it.” 

The last statement resonates with Richard Dawkins who says that  nature is “The Blind Watchmaker” 

who has fashioned the world. Looking at life from the perspective of a semiosphere, one can even 

think of the living forms achieving persistence by passing information about themselves in their 

genes. The notion is best described in another quote from the author (Hoffmeyer, 1994a)—“To grasp 

the fundamentally semiotic character of animate nature, let us begin by considering the key process 

in life’s peculiar way of persistence, heredity. Heredity is a phenomenon which is now rather well 

understood. And yet its real significance is rarely properly explained. The significance is this: Since 

living systems are mortal, their survival has to be secured through semiotic rather than physical 

means. Heredity is semiotic survival, i.e. survival through a message contained in the genome of a 

tiny template cell, the fertilized egg in sexually reproducing species. … In addition to this vertical 

semiotic system, i.e. genetic communi cation down through the generations, all organisms also partake 

in a horizontal semiotic system, i.e. communication throughout the ecological space. Every organism 

is born into a world of significance. Whatever an organism senses also mean something to it, food, 

escape, sexual reproduction, etc. This is one of the major insights brought to light through the 

pioneering work of Jakob von Uexküll: “Every action, therefore, that consists of perception and 

operation imprints its meaning on the meaningless object and thereby makes it into a subject-related 

meaning-carrier in the respective Umwelt (subjective universe)” (Uexküll, 1982). 

One can then imagine all activity in terms of hierarchically composed semiotic systems, in 

which smaller parts come together (by themselves, through a long process of experimentation of 

recombination and selection) to form bigger and bigger “entities” that are more complex than the 

parts that make them up. The swarms like those of bees and ants may be made up of components 

that are similar, as are human organizations.

It must be observed though that even when similar members organize themselves into larger 

entities, they take up different roles. A typical corporate house, for example, will have CEOs, directors, 

managers, engineers, technicians, drivers, typists, cleaners, accountants and even lawyers. So they 

are similar as human beings, but functionally very different. In the same manner, we can think of our 
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4.5 Neural Networks

The discipline of biology has revealed that all life forms we see around us are colonies of cells that exist 

in a symbiotic equilibrium.

Life exists in many forms varying from the simple organisms made up from a few cells to very 

complex creatures hosting hundreds of types of cells.  From the simple amoeba to the human being, 

there is an increase in complexity of behaviour accompanied with the faculty of awareness. Somewhere 

along this order of increasing complexity, the notion of a self emerges and creatures like us can think 

about ourselves. The real wonder though is that we can have a notion at all! Creatures can somehow 

think about things; about the world around them; and about themselves. The notion of self is possible 

only when notions are possible in the first place. And when notions about the self and the world become 

possible then creatures can act purposefully and intelligently, increasing the chances of their own survival.

Minds in bodies have, for long, confounded thinkers. Philosophers across cultures and times have 

grappled with the nature of reality and the relation between the mind, that perceives the reality, and the 

body, that is presumably real. Indian philosophers starting with Gotama (in 6th century BCE
16), Vatsyayana 

(2nd century BCE), Vacaspati Misra (9th century CE) up to Madhusadana Sarasvati (16th century CE) have 

explored the notion of mind-body dualism (Chakrabarti, 1999). European philosophers too, including 

Thomas Hobbes (16th century), René Descartes (16th century) and David Hume, (18th century), have 

struggled to understand how we can have minds (Haugeland, 1985). Idealism says that everything is 

in the domains of minds, or ideas, and that matter is an illusion. The opposite more prevalent view, 

materialism, is that everything is matter and that mind is a construct of the activity in the physical brain. 

16   http://en.wikipedia.org/wiki/Common_Era: The Common Era (CE), sometimes known as the Current Era or as the Christian 

Era, is the period of measured time beginning with the year 1 on the Gregorian calendar. The notations CE and BCE (Before the 

Common Era or Before the Christian Era) are alternative notations for AD (Anno Domini, Latin for “in the year of the Lord”) 

and BC (Before Christ), respectively. The CE/BCE system of notation is completely chronologically equivalent with dates in the 

AD/BC system, i.e. no change in numbering is used and neither includes a year zero. The abbreviations may also be written CE and 

BCE.

own body as made up of functionally different parts, which have some basic level of similarity, in 

that they all contain the same genetic code. One must keep in mind though that this analogy is a very 

loose one since bodies and industrial houses differ in many other ways. The point is that maybe one 

can loosen the strong sense of focused “self” that we all have and try and visualise the creation of life 

forms as something that arises out of a bottom up process as described by Hoffemeyer (Hoffmeyer, 

1994)—“The general principle which has made this bottom up or swarm conception of the body-

mind biologically possible is the introduction of semiosis as the basic principle of life. By delegating 

semiotic competence to decentralised units, and ultimately to single cells, it becomes possible to 

ascribe intelligent behaviour to distributed systems. Stupid molecules become powerful tools as soon 

as they acquire semiotic quality, i.e. as soon as they are interpreted according to cellular habits. The 

transformation of molecules to signs opens for an unending semiogenic evolution based on semetic 

interaction patterns between entities at all levels. And through this evolution, the semiotic aspects of 

material processes gradually increase their autonomy, thereby creating an ever more sophisticated 

semiosphere. A semiosphere which finally had the power to create semiotic systems, such as thoughts 

and language, which are only in the slightest way dependent on the material world from which they 

were ultimately derived.”
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Recent progress in biology, neuroscience and computer sciences have reinforced the notion that 

thinking is some kind of a process that happens in a body that emerges as a whole from the constituent 

parts. And the seat of thought is the brain. It has also been hypothesized that the mind itself  emerges 

from a combination of simple mental faculties (Minsky, 86). And all this happens in the brain. 

The human brain has been described as the “most complex piece of matter in the universe” (Ramachandran, 

2003). While we still do not know how the brain creates the mind, represents information, and allows us to 

reason, we do have consensus that the brain is made up of a large number of simple cells called neurons. 

The number of neurons we have is estimated to be anywhere between ten and a hundred billion.

Each neuron is itself a simple device that receives electrochemical inputs from other neurons, and 

in turn generates an output signal that flows into other neurons. A biological neuron has basically three 

distinct components17 as shown in Figure 4.19,

Dendrites

Axon

Myelin
sheath

Synapse

Flow of signal

Soma or
cell body

FIGURE 4.19 A biological neuron from the brain receives several inputs via its dendrites and sends 

a signal down its axon. The axon branches out as well and connects to dendrites of other neurons via 

synapses, which transmit the signal chemically to the other neurons. The shaded portion of the soma 

is the nucleus of the cell. 

 ● The soma or the central part of the neuron is the cell body that contains the nucleus. Every neuron 

is surrounded by a plasma membrane containing proteins that make it behave like a gate. They 

hold charged particles that may be transmitted across ion channels, based on a voltage difference 

or sometimes on chemical properties. Neurons communicate with other neurons via electrical 

and chemical synapses. 
 ● The dendrites are cellular extensions with many branches forming what is known as a dendritic tree. 

The dendrites receive signals from other neurons they are connected to via synaptic connections.
 ● The axon carries the signal that the soma generates to other neurons. The axon can be very long, 

often being thousands of times the diameter of the soma. It is usually coated by a myelin sheath 

that provides insulation, enabling the transmission of electrical signals over longer distances. The 

17  See http://en.wikipedia.org/wiki/Neurons



Chapter 4: Randomized Search and Emergent Systems 107

terminals of the axon branches have the synapses that connect to other neurons via their dendrites, 

or even on the soma, and transmit signals chemically across.

Each neuron continuously receives signals through its dendrites in the form of spikes, and, from the 

information processing point of view, at some point based on some criterion, it sends a signal down its 

axon which is transmitted to other neurons. Figure 4.19 shows a schematic diagram of a neuron and 

illustrates a synaptic connection with the dendrite of another neuron.

The central nervous system of a biological entity is the information processing infrastructure of the 

colony of cells, that is the body. There are different types of neurons carrying out different functions in 

the nervous system. Functionally, its neurons can be classified as being of three types.
 ● Afferent neurons or sensory neurons capture information from tissues and organs and convey it 

to the centre of the nervous system, or the brain. 
 ● Efferent neurons or motor neurons carry signals from the central nervous system to the cells that 

control the muscles and other systems.
 ● Interneurons are those neurons that connect to each other in the central nervous system. These are 

the neurons we are interested in, because they make up what we call the brain.

The behaviour of each individual neuron is relatively simple. It receives signals from multiple neurons 

via its dendrites and produces its own signal under certain conditions. One can model this functionality 

as shown in Figure 4.20, where its output y is some function of all the inputs x1, x2,…, xn it receives.

That is,

 y = f(x1, x2,…, xn) (4.2)

x1

f

x2

xN

y = f (x1, x2, ..., xn)

FIGURE 4.20 The neuron is a simple device that computes some function of all the inputs it receives 

from the other neurons.

The simplest model of the neuron applies some function to the weighted average of all the inputs. 

The output yi of the ith neuron is given by,

 yi = f (Sk wki  xk) (4.3)

where xk is the input received from the kth neuron, and wki is the weight of the connection between the 

kth neuron and the ith neuron. In practice, the function used is

 yi = f (Sk wki  xk + b) (4.4)

where b is a bias, whose role becomes clear in Chapter 18, when we take up training.

The function f is a function applied to the weighted sum, and is known as an activation function 

which controls the output that the neuron generates. As we will see in Chapter 18, it is necessary that this 
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function be a nonlinear function, if the network of neurons is to be able to do interesting computations. 

The simplest function is the Threshold function defined as follows,

 f (x) = 1 if x ≥ 0 (4.5)

 = 0 if x < 0

With this function, the neuron generates an output 1, when the input to it crosses the threshold 0 (the 

bias b plays a role here), and outputs 0 otherwise. This is also known as Heaviside function, and this 

model of the neuron is also known as the McCulloch-Pitts model after Warren S McCulloch and Walter 

Pitts who first described it (McCulloch and Pitts, 1943).

Another function used is the sigmoid function, that we have seen earlier in Section 4.2. 

 f (x) = 1/(1 + e−ax) (4.6)

where a is a slope parameter that controls the shape of the sigmoid function in a manner similar to what  

is done by the parameter T in Figure 4.6. Here, the output is not a step function, but a graded increase, 

asymptotically reaching the value 1.

Many more refined models of the neuron have been created in an effort to model the biological neuron, 

keeping in mind that the output of the neuron is a temporal response in which a neuron generates output 

in a burst, only when certain conditions are met. That is beyond the scope of this text.

But we are concerned with the fact that colonies of interconnected neurons become the complex 

information processing machine, that is the brain. How does that happen? Constructing brains directly 

from neurons though is still beyond our means. But we do know that representing and reasoning of 

information is possible because of the connections between neurons. It is the topology of the connections 

between these billions of neurons that determines what thoughts go on in our heads. The brain is a large 

network of simple processing elements, a neural network. The brain is an emergent system, in which 

complex behaviour emerges from a system of many interacting simple elements, the neurons. We 

illustrate emergent systems in the following section.

If the performance of neural network is directly dependent upon the connectivity and graded influence 

of different neurons then how does one decide how much one neuron affects another? In other words, 

how does one decide the weight of each neural connection? The approach taken by the Artificial Neural 

Network community is learning. We shall look at it in Chapter 18. The basic idea is to develop algorithms 

that adjust the weights, based on training data that is shown to the system.

The approach to learning is also inspired by how human brains learn. A newborn human child does 

not have a very effective brain. Initially, the human brain is overly connected. But gradually, with a lot of 

“training” by parents and other adults, the child’s brain breaks some connections and strengthens others; in 

the process developing a keen and incisive brain that gives the human a definite advantage over other species.

In humans, the brain makes connections  in early childhood. But we can also reconnect—for example, 

visually impaired people can use that unused part of the brain for other tasks. As an example, blind 

people who learn to read Braille use the part of the brain that is used in vision for processing tactile 

information, doing it much better than the rest of us.

The human brain thus is a prime example of a complex system arising out of interaction between 

many simple elements.

4.6 Emergent Systems

Ever since people have begun to  understand the mechanisms of life, and the interplay between semetic 

and genetic interaction, there have been efforts to simulate the process of emergent complex systems by 

putting together the basic set of simple parts and then letting “nature do the rest”. Prominent amongst 
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these are efforts to mimic life in the field of artificial life. One such effort is described  (Cliff and Grand, 

1999; Grand, 2001) in which the authors adopts a ‘bottom-up’ approach of putting together artificial 

creatures. 

The fact that systems of simple elements can come together to display complex behaviour was 

illustrated by the British mathematician John Conway in a cellular automaton that has come to be known 

as Conway’s Game of Life, first publicized by Martin Gardner (Gardner, 1970). The Game of Life is 

played on an infinite two-dimensional grid of cells, each of which can be in one of two states, alive or 

dead. The “health” of a cell is directly influenced by the eight cells surrounding it. The automaton has 

simple rules for life and death:

 1. Cells that are alive will continue to live if they have exactly two or three living cells in their 

neighbourhood. Otherwise, they die of loneliness (less than two neighbours around) or overcrowding 

(more than three neighbours alive).

 2. Cells that are dead are born again if they are surrounded by exactly three living cells.

These rules are applied simultaneously to the entire grid, generating a new population from an old 

one. The system is a cellular automaton. The rules are simple and the reader is encouraged to implement 

the game (or download one of the numerous implementations available on the Web). The game became 

extremely popular because of the surprising patterns that evolve from these simple rules. It has a number 

of well documented patterns which emerge from particular starting positions. Soon after publication, 

several interesting patterns were discovered, including the ever-evolving R-pentomino (more commonly 

known as “F-pentomino” outside the game), the self-propelling “glider”, and various “guns” which 

generate an endless stream of new patterns18, all of which led to an increased interest in the game. Figure 

4.21 below shows the well known Glider. The pattern on the left goes through four transformations 

that result in the same pattern, but shifted one step right and down in the grid.  Over a period of time, it 

appears that the pattern is moving across the screen. 

FIGURE 4.21 The well known Glider in the Game of Life. By the time the above shape has gone 

through the transformations, it forms the same pattern shifted one step down and right. Over a period 

of  time, it looks like the pattern is shuffling or gliding across the screen.

This “illusion” of movement is interesting because what is happening is that different cells are dying 

and coming alive. In that sense, the moving pattern is more like a wave in which the carrier does not 

move, but the signal19 does. Grand (2001) gives another interesting example of an illusion of being. 

Some types of clouds that seem to hang still over a mountain range, are in fact physically moving 

moisture particles that condense and become visible only when passing over the mountain range, and 

then evaporate again, giving us the illusion of a stationary (orographic) cloud. 

Karl Sims demonstrated that one could “put together” working designs by a genetic system 

that experimented by putting together parts and testing them for their functionality in a simulated, 

18  See Wikipedia for a set of illustrative patterns. http://en.wikipedia.org/wiki/Conway’s_Game_of_Life 
19   We can extrapolate this concept to our own selves. The body we had as a baby was made up of an almost entirely different set 

of atoms and molecules as compared to our current body. Yet, we as selves, have existed continuously without being affected 

by this physical change. One recalls the anecdote about an axe belonging to Abraham Lincoln being kept in a museum in 

Illinois. Docents at the museum will, with scrupulous honesty, explain that over its life, the axe has had five new handles and 

two new heads changed.
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three-dimensional physical world (Sims, 1994). The physical-world simulation included articulated 

body dynamics, collision detection, collision response, friction, and an optional viscous fluid effect. 

In this simulated world, he put in creatures evolved for specific tasks or behaviour like swimming, 

walking, jumping and following other creatures. Different fitness functions are used for each of the 

above tasks. He developed a genetic representation that uses nodes and connections to describe both 

the morphology (the form and shape of the creature), as well as the neural circuitry used to control 

the system. The genotype of the system is a directed graph. The evolution of creatures begins by first 

creating a population of these genotypes. This could be done by creating random graphs, or by some 

other means like handcrafting them, or carrying some forward/across different runs of the system.  The 

phenotype of the creatures is made up of a set of three-dimensional rigid parts, connected by flexible 

joints, powered by muscles. Two examples of simple genotypes and the corresponding phenotypes are 

shown in Figure 4.22 below, taken from his paper.

(Segment)

(Leg
segment)

(Body
segment)

FIGURE 4.22 Two recurrent genotypes and their corresponding phenotypes. The genotype is a 

directed graph, and the phenotype a hierarchy of 3-D parts. Figure from (Sims, 1994).

Each graph contains the development instructions for growing the creature. Each node in the graph 

contains information describing a rigid part. The shape and size is described by a set of dimensions, 

and a joint type describes how it is connected to other parts. Each connection also contains information 

about the placement of the connected part in terms of position, orientation, scale and reflection.  The 

artificial creature is controlled by a virtual brain, made up of a collection of neurons, distributed across 

the body parts.20

The brain is a dynamical system that accepts input sensor values, and generates output to control 

the system. The output values are applied as forces or torques at the degrees of freedom of the body’s 

20   A similar view on the human brain is emerging nowadays. Hoffmeyer (1994) talks of a “floating brain”, functionally integrated 

into the body. Other people have observed the ability of our body parts to remember, for example our fingers to remember to 

type a password correctly, even when we cannot mentally recall it. 
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joints. The sensors can sense the position of body parts contact with body parts and light. The brain has 

internal neurons that define its internal state and play a role in determining the ‘out’ signals. Thus, the 

creature is more than a reactive system. While neurons are distributed along body parts, there is also 

one set of “central” neurons that allows for global synchronization of movement and central control.

When a creature is synthesized from its genetic description, the neural components described within 

each part are generated along with the morphological structure. This causes blocks of neural-control 

circuitry to be replicated, along with each instantiated part, so that each duplicated segment of a creature 

can have a similar but an independent, local control system. These local control systems can be connected 

to enable the possibility of co-ordinated control.

Figure 4.23 below from (Sims, 1994) shows some of the virtual creatures evolved for walking. The 

author says that “The walking fitness measure also produced a surprising number of simple creatures 

that could shuffle or hobble along at fairly high speeds. Some walk with lizardlike gaits using the corners 

of their parts. Some simply wag an appendage in the air to rock back and forth in just the right manner 

FIGURE 4.23 Different designs evolved for walking creatures. Figure from (Sims, 1994).
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to move forward. A number of more complex creatures emerged that push or pull themselves along, 

inchworm style. Others use one or more leglike appendages to successfully crawl or walk. Some hopping 

creatures even emerged that raise and lower armlike structures to bound along at fairly high speeds.”

The central theme in evolutionary or emergent systems is to provide the basic building blocks needed 

for the full system, and then letting some kind of recombination and selection process work on a 

population. While many interesting systems have been produced, the building blocks for most have 

to be carefully engineered. Nature, on the other hand, has used this process extensively from scratch. 

We can even say that Nature is this process of assimilating complex systems through natural selection 

from a population of designs.

Nature has been so successful at it that humans have wondered at the world around us and concluded 

that it must be the work of a master craftsman, a super being. Beginning with the work of Charles 

Darwin, only in the recent past have arguments for the natural evolution of our world been accepted (see 

(Dawkins, 1986, 1996)). Initially, the rate of change must have been very slow. To quote (Hoffmeyer, 

1994a) “… evolution spent two billion years to create that enormously complicated web of chemical 

habits which we call the eukaryotic cell, and the genome would not work if it were not put into the context 

of the historically appropriated competence of that cell. Ecosystems would not be stable were it not for 

the millions of semiotic processes built on habits which themselves were formerly built on other habits. 

And the human brain would not function without the historically developed patterns of communication 

between many billions of highly organized nerve cells.” Only after it had stumbled upon the building 

blocks of life as we know it, did the natural process accelerate, eventually leading to an explosion of 

myriad life forms. The basic building blocks may be relatively small, but the combination of the genetic 

material has survived in many many different phenotypes.

Genetic or evolutionary algorithms operate by recombining and transmitting information from 

individuals in one generation of the population to the next. Many life forms increase the chances of 

their survival by developing mechanisms for transmitting information amongst individuals of the same 

generation, creating a semiotic system. We look at a population based optimization approach, based on 

sharing information below.

4.7 Ant Colony Optimization

Ants have received much attention due to their ability to act in a coordinated manner.  A colony of ants 

is able to produce complex problem solving behaviour through semiotic interaction (as described in 

the boxes in this chapter). In particular, scientists have been impressed by their ability to find shortest 

paths between a food source and their nest, and being able to quickly discover new optimal paths when 

the world changes in some way (Goss, 1989; Beckers, 1992). 

This complex adaptive behaviour is achieved by a simple mechanism of leaving pheromone trails and 

following these trails. Successful behaviour is reinforced by the phenomenon of more ants following 

the trail and returning successfully (and quickly), in the process depositing more pheromone on the trail. 

Ants that wander off along other paths will not have this continued strengthening of their trail, and will 

not attract other ants.

Consider a thought experiment in which two ants go off in two directions in search of food. Both 

leave trails behind them, and the ants that come out of the nest after them randomly follow one of the 

trails. If one of the trails leads to food then the ant will bring the food back along that trail, adding more 

pheromone on the way back. More ants will follow, and return with more food, making the trail even 

stronger. Combined with the fact that the trails have a natural tendency to dry up (after all they are made 

up of minute chemical deposits), the overall effect will be that the food bearing trail will eventually 
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become strong enough to attract all the emerging ants, and further activity will be focused entirely along 

the successful trail.

Furthermore, if the world changes, say an obstacle is suddenly placed in their paths (see Figure 4.24 

below), the ants will not be able to follow the trail, but will have to “search” again. Both the outgoing 

ants and the returning ants will come up against the obstacle, and will have to choose between a left 

and a right turn. Some will choose left and some right, and there will be more choices for them later, 

but eventually the ants making the correct choices will rejoin the trail sooner. This will reconnect the 

other ants, and this new trail will quickly be adopted as the trodden path. 

FIGURE 4.24 When an obstacle is placed on the pheromone trail of an ant colony, they quickly find 

the shortest diversion around it.

In the absence of a trail, the real ant presumably does a random walk. In fact, the ants are known to 

follow the trails only probabilistically. The stronger the pheromone trail, the more likely that an ant will 

follow it. In the computational version of the algorithm, (see (Dorigo, 2004)), Ant Colony Optimization 

(ACO) combines this pheromone pull with the innate problem solving strategy of an agent. ACO thus 

refers to a set of agents working together in such a way that the agents have a tendency of following 

and reinforcing the “trails” of other agents, in addition to their own strategy. Given a choice of moves, 

the agent (an ant) will be influenced by two things. One is its own heuristic information that indicates a 

preference from the available moves. The second is the amount of pheromone left by other ants. 

Pheromone trails are simple semiotic means of sharing experience. The process works when the 

pheromone deposits reinforce good moves as opposed to bad ones. In the case of food finding activity, 

the ants travel at a constant speed and leave a constant amount of pheromone that evaporates at a 

constant rate. On the paths that lead to food, the ants will return quickly, adding more pheromone, and 

thus strengthening the shortest path to the food. In the example below, we look at the TSP problem that 

was used originally by Dorigo et al. (Colorni, 1991). In the ACO algorithm for TSP, a population of ants 

are used to construct a set of tours. After the tours have been constructed, each ant deposits an amount 

of pheromone on the edges, making up the tour that is inversely proportional to the cost of the complete 
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tour. In this way, the ants finding shorter tours will leave stronger pheromone trails, which will then 

attract more ants on those segments. 

Let there be n cities in the TSP problem. Let tij(t) represent the amount of pheromone on segment 

from the ith city to the jth city at time t, which is the start of a new tour construction. Then after n moves, 

each ant would have constructed a new tour and the pheromone trails will be updated as follows,

 tij(t + n) = (1 − r) tij(t) + D tij(t, t + n) (4.7)

where 0 £ r £ 1 is the coefficient of pheromone evaporation. By choosing an appropriate value of r, one 

can control how long the effect of pheromone deposit will last.  The second term in the above equation 

is the sum of the total pheromone deposited by all the ants on the segment from the ith city to the jth city 

during this cycle, computed as follows, for m ants.

 D tij(t, t + n) = Sm
 Dtk

ij(t, t + n) (4.8)

 k = 1

The amount of pheromone deposited by the kth ant is given by,

 Dtk
ij(t, t + n) = Q/Lk if the kth ant travels on the segment i – j

 0 otherwise (4.9)

where Q is a constant, and Lk is the cost of the tour found by the kth ant. Initially tij (0) is set to a small 

value D for all segments.

The basic outline of the ACO algorithm for TSP is described in Figure 4.25.

TSPACO()

1   Initialize tij(0) = D for all segments i-j in the problem
2   repeat

3        Construct the tour for each of the m ants

4        Remember the best tour when a better one is found

5        Update the pheromone levels for each segment tij(t + n)

6   until some termination criteria

7 return the best tour

FIGURE 4.25 In the ACO algorithm for TSP, a set of m ants construct tours by a greedy algorithm 

that moves probabilistically to the next city. After the tour construction, each ant deposits pheromone 

inversely proportional to the cost of its tour. This process is repeated a number of times, retaining the 

best tour found.

Each ant constructs a tour in a greedy manner. It starts at some city, and at each stage moves from 

the ith city to an allowed neighbour j with a certain probability governed by the amount of pheromone 

tij(t) on the i – j segment, and hij its heuristic estimate of how good the segment i – j is. The probability 

of the kth ant moving from the ith city to the jth city is given by,
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where allowedk(t) = {j | j œ tabuk(t)}, and hij = 1/ distance(cityi, cityj) also called the visibility of cityj 

from cityi. The algorithm maintains a set tabuk(t) for each ant k, that contains the cities already visited 

by the ant in that cycle of tour construction.
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In the TSP-ACO algorithm, the amount of pheromone on a segment gives an indication of the goodness 

of a move, based on the accumulated experience of the population. To achieve this, the amount of 

pheromone deposited by each ant is directly determined by the goodness (1/cost) of the solution found. 

Real ants move at a constant speed leaving behind a constant amount of solution. The ant colony manages 

to reinforce good solutions, simply because of the fact that ants using shorter routes to food come back 

faster, hence replenishing the pheromone levels faster. 

The ACO algorithm then can be seen as a parallel, randomized search algorithm that converges 

towards good solutions by a process of learning in which, each agent communicates some information 

about the goodness of solution components to a common pool. As more and more agents explore the 

good components, more agents use them to build solutions. In some sense, this behaviour is similar to 

the one in GA, except that there it is the solutions themselves that make up the populations. In ACO, the 

solutions are not coded, but simple agents repeatedly construct solutions, exploiting the information (or 

experience) of earlier attempts by the entire population. 

The ACO algorithm also has similarities with the Simulated Annealing algorithm. In both, a move is 

made probabilistically to a neighbour. SA works with a single solution, perturbing the solution probabilisti-

cally. The SA algorithm first chooses a neighbour and then decides whether to move to it or not. ACO looks 

at all neighbours to pick one to move to. In SA, the decision is based only on the goodness of the move 

determined by DE (temperature T is an external parameter). The decision in ACO is based on a combina-

tion of memetic signals of experience and the estimated goodness as determined by the heuristic function.

Real ant colonies survive because the simple interaction between simple agents has clicked (or 

emerged) as a good food finding behaviour. An individual ant, viewed as a system itself, is quite simple. 

The apparent complexity of its behaviour over time is largely a reflection of the complexity of the 

environment (terrain) in which it finds itself. See (Minsky, 1986; 2006) for more on emergent behaviour 

from simple elements in human brains. The strategy of ants is hardwired for food finding. It has survived 

so long because food for energy is a primary need for life, and ants probably don’t need much else. 

Observe that the strategy is good for ant colonies as a whole, or ant species in general. Consequently, 

it is also good for most individual ants; but it may not necessarily be good for a given individual ant. 

Humans on the other hand are much more complex creatures. They have evolved brains, which they 

consciously use to work for the survival of the owner of the brain, the individual21. In the process, we 

have evolved many secondary goals such as old age security, self actualization goals, recreation and 

entertainment goals. We pose and solve many different problems in many different ways. Communication 

between humans has gone much  beyond, leaving simple chemical trails. We are able to model our 

environments, reason with our models, and communicate our thoughts and reasons to others via spoken 

and written language. The average human receives a considerable amount of information from society 

though her lifetime. Our knowledge and language systems need a much more detailed study that goes 

beyond memetic habits. We will look at the representation and use of knowledge in later chapters.

4.8 Discussion

Search spaces for most problems are too large to be searched exhaustively. Complete algorithms like Best 

First Search may run out of memory space for large problems. Local search algorithms like Hill Climbing 

require small, usually constant, amount of space. While they do mitigate the space requirements, Hill 

21  In fact, this is the basis of the market economy. 
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Climbing ends up with another problem. They may not find the solution. Hill Climbing is a simple 

greedy algorithm that puts its entire faith into the heuristic function, choosing at each stage the move 

along the steepest gradient as indicated by the heuristic function, and possibly getting stuck on a local 

optimum with no way of knowing whether a better one exists. The HC algorithm exploits the heuristic 

function single mindedly. A Random Walk on the other extreme completely ignores the heuristic function, 

choosing instead to explore the search space. One redeeming feature of a random move is that it cheerfully 

goes past a local optimum, and this is what most methods that mix exploitation and exploration want 

to capitalize upon.

Simulated Annealing does this by probabilistically allowing random moves. At any point of time, it 

looks at one neighbour, and may move to it with a certain probability. The probability depends upon the 

amount of exploitation the move does. The better the neighbour is, the more likely the move. It can also 

move to a worse neighbour, though with a small probability. Even if no good moves are available at a 

node, it will eventually make a bad move too, and get off local optima. The probability also depends upon 

what stage the search is in. In the initial stages, SA is biased towards exploration, and the probability is 

high, irrespective of the value gain or loss, but it gradually settles down for exploitation. Towards the 

end, the chances of it being in the vicinity of the solution is higher, and hopefully the heuristic function 

will then do the job, and guide it to the solution.

Genetic Algorithms aim to mimic the way nature does design. The genetic makeup of each creature 

in the real (and artificial) world determines how it will grow, and act in the world. Viewing each creature 

as a program written with genes, nature has developed a mechanism of allowing creatures to mate and 

mix genes. The ones who get to do so are the strongest, in terms of survival abilities22. Nature allows the 

best (as determined by survival) designs to reproduce more. The process of reproduction mixes genes of 

the two parents. This may produce an offspring better than both, if it combines successful features from 

both. GAs attempt to mimic this selection process by allowing components of solutions to be inherited 

as a mix from two parents, and selecting the good solutions based on an explicit, fitness function. The 

general idea is that such churning of “genes” in a population of solutions will result in fitter populations, 

just as it has resulted in fitter species in nature. This happens when random mixing of genes from fit 

parents produce a fitter offspring. In this case, the  offspring will get more chances to reproduce and 

pass on its genes. The system improves from generation to generation, passing on information (of the 

solution design) encoded in the genetic make-up.

None of the methods for finding optimal solutions that we have seen are foolproof. None work in 

all situations. One can often try combinations of algorithms to develop hybrid algorithms. Some of the 

ideas of combining algorithms are as follows. One could start with a fit population for Genetic Algorithm 

by producing solutions by other methods like the Iterated Hill Climbing. Conversely, one could apply 

Genetic Algorithms to a population, and then follow up with Hill Climbing or Simulated Annealing on 

each member. Or, one could find solutions from ACO and improve upon them by other methods.

Ant Colony Optimization methods aim to mimic how, in a given population, individuals can cooperate 

by sharing information as a matter of habit. Ants, by themselves, have a limited view of the world. In 

their search for food, the ant has a tendency to follow a trail left by other ants, and in turn leave a trail for 

others to follow. Ants that find food will quickly retrace their steps, strengthening the trail; and this simple 

process reinforces the food finding trails, leading to a steady procession of ants towards the food source.

Ants are in fact doing a simple form of experience sharing. This is hardwired into their genetic 

make-up. They do not conceptualize their surroundings. They do not represent knowledge and facts, and 

22   Evolutionary psychologists believe that our notions of beauty and sexual attractiveness are rooted in the judgment of 

‘survivability’ of the offspring. Thus, people tend to be attracted to potential mates who will have healthy offspring. 
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reason with them. They are simply programmed to leave and follow trails. Consequently, their experience 

sharing behaviour is not flexible, and their lifestyles are simple. Humans on the other hand conceptualize 

their surroundings; have developed the ability to represent things, to reason about consequences, and 

language to share knowledge with. Consequently, our experience sharing behaviour is much more diverse. 

We can specialise in many areas and acquire experience in them. We can articulate this experience in 

fables, facts, stories, and text books to pass them on to others. The human species has accumulated 

knowledge over generations. We pass on to our offspring not only our genes, but also knowledge in 

various forms. This ability to build up experience in a cumulative manner has resulted in the human 

species dominating all others. Our knowledge of our surroundings is evolved to such an extent that we 

are even able to contemplate the harmful effects human civilization is having on the environment and 

ecology in the longer timeframe, so that the actions that will avoid a catastrophe (and destruction of the 

species) are still on the OPEN list of humankind. 

In our quest for randomized search algorithms, we also ran into biological systems that can be seen 

as employing search. We also learnt that such randomized methods often work well when we operate 

with populations of candidates. This led us to emergent systems, where populations of simple elements 

can be seen as a more complex system. Human brains and ant colonies are examples of such complex 

systems. At a higher level a research institute, a manufacturing company, or an academic department 

can be seen to be more complex than the individuals that make it up. Music lovers would also recognize 

the fact that a musical note by itself is simple in nature, but it is a combination of notes that makes up 

a melody or a symphony.

The point we make in this chapter is that hard problems cannot be solved by brute force. One needs 

either to have good heuristic functions to guide search, or one needs to share and exploit experience. 

Either way, the tool to cut through the combinatorial explosion has to do with knowledge. In later 

chapters, we will look at knowledge and experience in more detail.

Meanwhile, in the next chapter we turn our attention to those approaches to problems that can guar-

antee optimality. We explore the use of heuristic knowledge to search for optimal solutions, and push the 

envelope of the size of problems that can be solved in a reasonable time with small space requirements.

Further Reading

Many of the topics covered in this chapter are research areas in their own right. Optimization is an active 

field of work, and stochastic local search methods have been studied in great detail. A comprehensive 

book on the topic is the book by Hoos and Stutzle (2005). An interesting account of problem solving 

methods is given in the book by Michalewicz and Fogel (2004). Goldberg has two books (1989, 2002) 

on genetic algorithms and innovation in design. Dorigo has a book on ant colony optimization (2004). 

There are several books on artificial neural networks.  A popular one is the book by Hassoun (1996), 

and another by Yegnanarayana (1999).

  Exercises

 1. What do the terms ‘exploitation’ and ‘exploration’ refer to in the context of search?

 2. Describe the Simulated Annealing algorithm. When does one prefer to use the algorithm? What 

is the role of the parameter “temperature” in the algorithm?

 3. When does Simulated Annealing perform better than Hill Climbing? How is this better performance 

achieved? Would you ever prefer HC to SA? If yes, when?

 4. Compare the performance of Iterated Hill Climbing, Simulated Annealing and Genetic Algorithm 

on the instance of Uniform Random k-SAT problems of Exercise 3.10.
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 5. What is the motivation and strategy behind Genetic Algorithms? Under what conditions are GAs 

likely to perform better than other optimization algorithms?

 6. Experiment with different population sizes for the Genetic Algorithm for solving the SAT problem. 

Generate different Uniform Random k-SAT problems of different sizes. For each problem, generate 

different, random candidate solutions and apply Hill Climbing to each candidate before adding it 

to the population. Does the performance improve? 

 7. In Section 4.4.3, we have observed that not every permutation of numbers representing cities in 

the adjacency representation is a valid tour. Since every permutation in the path representation 

is a valid tour, does it  mean that there are some tours that are not represented in the adjacency 

representation?

 8. Given the TSP candidate solution (DHGBFCAE) in path representation, remove  three edges and 

show the neighbours generated by a 3-edge exchange operator. How many neighbours in all does 

this operator generate for this candidate? 

 9. Given the two tours in the TSP problem, (FICDEBAHG) and (EAGIDBHFC), illustrate,

 (a) The order crossover

 (b) The partially mapped crossover

 (c) The cycle crossover

 10. Create Ordinal Representations for the two candidates in the previous question.

 11. Given the cost matrix in the accompanying table, determine the estimated cost of a TSP tour that 

contains the segment DE, but excludes the segment AC. Describe your estimating function. What 

properties should the estimating function have to devise a good TSP solver?

A B C D E

A 0 70 20 50 60

B 70 0 40 10 30

C 20 40 0 30 40

D 50 10 30 0 70

E 60 30 40 70 0

 12. A TSP problem with N cities is being solved by the ant colony optimization problem using M ants. 

An edge Eij has s(t) amount of pheromone at time t. When will the amount of pheromone on this 

edge change and by what amount? Be precise.

 13. Explore the World Wide Web to get some facts about the human brain. How many neurons do we 

have? What is the size of the soma? How long can the axon be? How many neurons is a given 

neuron connected to? Does the number of connections increase or decrease with age?

 14. Explore the books Godel Escher Bach (Hofstadter, 1979) and The Mind’s I (Hofstadter and Dennett, 

1981). Read the chapter on ‘Ant Fugue’, and study how a colony of ants can be treated as a more 

complex organism.



H  euristic functions exploit domain knowledge to orient the search process towards the desired goal. 

The objective of using a heuristic function is efficiency of the solution finding process.

The solution that a search process returns may itself have a property or quality that may be of interest. 

That is the cost of executing the solution. This cost is something that we may want to minimize1. For 

example, in transportation to, say Mars, each trip will have an associated cost, which is quite significant. 

Or the different operations that go into acquiring components and assembling a product would each 

have an associated cost. Optimal solutions would be needed, especially if the solution found has to be 

executed many times. In such a case, the primary concern would be solution quality, and the speed with 

which the algorithm finds the solution could well be secondary.

While the number of moves that make up the solution is often a good measure of cost, it may 

become inappropriate when different moves have different costs associated with them. For example, 

you may have to change a couple of buses to reach a destination. This would count as two or three 

moves. Hiring a cab may accomplish the journey in one move, but is likely to be more expensive. The 

optimization community refers to the property that we seek to minimize as the objective function. In 

general, optimization can be a computationally hard problem. In Chapter 4, we looked at some methods 

for optimization that were designed to find good solutions within a reasonable time. In this chapter, we 

investigate methods that guarantee an optimal or a least cost solution.

5.1 Brute Force

The following algorithm is guaranteed to return the optimal solution

BritishMuseumProcedure()

1 Explore the entire search space

2 return the optimal solution

FIGURE 5.1 The British Museum Procedure.

The algorithm is conceptually simple. Computationally, it is mindlessly expensive. We owe the name 

to P H Winston who asserts that the only way to locate something in the British Museum is to explore 

the entire museum (Winston, 1992). The above algorithm simply searches the entire search space.

Our focus in this chapter will be to search as little of the space as possible, while guaranteeing the 

optimal solution.

1 The goal may change with time. Ergonomics in kitchen design earlier had the goal of minimizing the movement of a person in 

a kitchen. Recommendations in today’s sedentary world may be to increase the movement in order to provide exercise!

Finding Optimal Paths

Chapter 5
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5.2 Branch & Bound

The intuition behind Branch & Bound (B&B) is as follows.
 ● Organize a search space that does not preclude any solution. This could be the state space, in which 

a partial sequence of moves is extended in each move. This could also be a refinement space in 

which an abstract solution is refined.
 ● Continue looking for a solution by refining the cheapest candidate until

 ■ A complete solution is found
 ■ No candidate solution, partial or complete, with an estimated cost smaller than that of the 

complete solution exists

A high level algorithm is given in Figure 5.2. Here the task is to find the lowest cost path from a start 

node to a goal node, and the algorithm extends the cheapest cost partial solution at each stage.

B&B Procedure()

1 open ¨ {(start, NIL, Cost(start))}

2 closed ¨ {}

3 while TRUE

4 do if Empty(open)

5 then return FAILURE

6     Pick cheapest node n from open

7 if GoalTest(Head(n))

8 then return ReconstructPath(n)

9 else children ¨ MoveGen(Head(n))

10 for each m Œ children

11 do Cost(m) ¨ Cost(n) + K(m, n)

12                 Add (m, Head(n), Cost(m)) to open

FIGURE 5.2 Branch and Bound extends the cheapest solution till the cheapest solution reaches the 

goal.

The basic idea behind B&B is to ignore those regions of a search space that are known not to contain 

a better solution. We look at an example in which the cost of a move corresponds to the length of an 

edge in a graph. Then the least cost solution corresponds to the shortest path in the graph. Let the graph  

in Figure 5.3 represent a tiny search space to illustrate the algorithm.

B&B begins with the start node S. The partial cost of S is zero. It expands S, generating partial paths 

S-A with cost 3, S-B with cost 4 and S-C with cost 8. These paths are stored in the list OPEN. S is 

transferred to list CLOSED, shown shaded in Figure 5.4.

B&B continues extending the cheapest partial path. It terminates when the goal node is picked for 

expansion.

The example in Figure 5.4 shows Branch & Bound extending partial solutions. This is an example of 

state space search. We have seen earlier (Chapter 3) that when the search space is made up of candidate 

solutions, we search in the solution space.

If the candidate solution is only partially specified then we can think of it as a set of solutions that 

share the specified part. A refinement operator partitions this set into two sets by specifying another 

component of the solution. Each (complete) candidate from the set is some complete refinement of the 

partially specified solution. Search, then involves, decisions amongst the different possible refinements 

of a given partial solution (Kambhampati, 1997). That is, search involves choosing a refinement of some 

candidate by specifying more information. It is interesting to note that the state space search algorithms 
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seen earlier are a special case of refinement, in which the partial solution specifies the path from the start 

node to some node n, and the choice is between different extensions of the partial path.

We consider the travelling salesman problem (TSP) again to observe the Branch & Bound algorithm 

in a refinement space.

5.3 Refinement Search

Refinement search begins with the set of all candidate solutions, represented by the root node. Each new 

node in the search tree represents a subset of the candidates. The node can be seen as a partial solution, 

in which a part of the solution is specified. In each round, B&B selects and refines one node representing 

a partial solution, by specifying some more detail. This results in partitioning the set of solutions in 

that node. The candidate selected for refinement is the one that appears to have the lowest overall cost.

Assuming that there is a method for estimating the cost of a given (partial) solution, B&B refines the 

solution that has the least estimated cost. The process of refinement continues until we have a complete 

solution at hand, and when no other candidate (partial) solution has a lower estimated cost. We need to 

ensure that the cost estimates are such that the algorithm guarantees an optimal solution. Ensuring that 

the estimated cost is a lower bound on the actual cost can accomplish  this. That is, a (complete) solution 

will never be cheaper than it is estimated to be. Then, candidates with estimates higher than that of some 

fully refined solution can be safely ignored. It is also desirable that the estimate be as high and as close 

to the actual cost as possible, because that will mean faster pruning of expensive candidates. We will 

look at this requirement more formally, later in this chapter.

How does one get a lower bounding estimate of a partial solution? Consider a refinement space search 

to solve the TSP. Let the candidate solutions be permutations of the list of city names. The initial solu-

tion includes all permutations, when nothing is specified. We refine this solution by specifying specific 

segments in the tour. In the example below, we consider the TSP problem for five cities {Chennai, Goa, 

Mumbai, Delhi, Bangalore}. How do we get a lower bounding estimate for the candidate tours? Consider 

first the absolute lower bound for all tours, represented by the root node in the search space. We look 

at the cost matrix with costs in kilometres.

Table 5.1 Distance matrix for five cities

Chennai Goa Mumbai Delhi Bangalore

Chennai 0 800 1280 2190 360

Goa 800 0 590 2080 570

Mumbai 1280 590 0 1540 1210

Delhi 2190 2080 1540 0 2434

Bangalore 360 570 1210 2434 0

An absolute lower bound for the TSP can be estimated as follows (Michalewicz and Fogel, 2004). 

For each row, add up the smallest two positive entries. In the above example, select 350 and 800 from 

row 1. The contribution of the two Chennai segments will be smallest when it lies between Goa and 

Bangalore in the tour.  In this manner, pick the smallest two costs for each city, add  them up and divide 

by two. For the above cost matrix, we get,

LB = 
(360 + 800) + (570 + 590) + (590 + 1210) + (1540 + 2080) + (360 + 570)
————

2

=
8670
—

2
 = 4335
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Observe that the above lower bound may not actually be feasible. This is because for each city (each 

row), we consider the nearest two neighbours as ones in the estimate. In the example map shown below 

in Figure 5.5, there are two long edges that must be part of any tour, but neither will figure in the lower 

bound estimate.

The two edges occur in all tours. Yet 

they do not figure in the lower bound.

FIGURE 5.5 The lower bound estimated costs may not be feasible in practice.

Consider now the refinement search space. The root consists of a node representing all solutions. 

We can partition this set in two, one subset including a particular arc, and the other excluding it. These 

two sets can then be further refined recursively till each node describes one tour precisely. Part of the 

search tree is depicted below in Figure 5.6. It contains all the twelve distinct tours in the leaves. Some 

leaves that have not been fully refined contain more than one tour. A label like “CB” says the segment 

“CB” is included in the tour(s) in that node, while “ÿCB” says that it is not present in the tour(s) 

in that node. In addition, the tours in a node must also be consistent with the labels at the ancestor 

nodes.

The next task is to estimate the cost of these partially refined solutions. Wherever an arc is known 

to be part of a tour, we add the known cost. Otherwise we choose the smallest possible segments. For 

example, the estimated cost of a tour including the Chennai-Mumbai (CM) segment is

LB = 
(360 + 1280) + (570 + 590) + (590 + 1280) + (1540 + 2080) + (360 + 570)
————

2

=
9010
—

2
 = 4505

In the above case, the CM cost (1280) was included for both the Chennai and the Mumbai segments. 

The lower bound cost then went up to 4505. Suppose in addition to the above, we also want to include 

the Mumbai Bangalore (MB) segment.  The cost of this segment, 1210, will have to be included as well.

LB = 
(360 + 1280) + (570 + 590) + (1210 + 1280) + (1540 + 2080) + (360 + 1210)
————

2

=
10480
—

2
= 5240
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While this does give us a tighter estimate, one can improve upon this with some reasoning. The fact 

that the CM segment and MB segments are included implies that the Bangalore Chennai (BC) segment 

with cost 360 should be excluded. Otherwise, we would have a C-M-B-C cycle, which is not allowed 

by the specification of TSP. The BC segment costing 360, contributes twice in the above estimate. One 

must replace the two occurrences with the next better costs, 800 and 570, as shown below.

LB = 
(800 + 1280) + (570 + 590) + (1210 + 1280) + (1540 + 2080) + (570 + 1210)
————

2

=
11130
—

2
= 5565

Both are incidentally to Goa, and therein lurks another case for reasoning, because each city can be 

connected only to two others. With further reasoning, we could get a still better estimate. This kind of 

trade off is not uncommon. Reasoning can prune the search space, but itself has an associated cost. In 

the above method for estimating costs for example, we may be counting more that two edges emanating 

out of a node. If we could avoid this, then our estimates would become more accurate.

As we refine the above partial solution, we get increasing and better estimates of cost. If at any point 

all the estimated costs were to become higher than a known cost of a complete solution in hand then 

we would stop refining the solution.

The B&B algorithm can thus be summarized as shown in Figure 5.7. The only condition is that the 

estimated cost must be a lower bound on the actual cost.

FIGURE 5.6 Branch and Bound on TSP in the refinement space.
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Generalized B&B Procedure()

1 Start with all possible solutions

2 repeat

3    Refine the least (estimated cost) solution further

4 until the cheapest solution s is fully refined

5 return s

FIGURE 5.7 The general Branch & Bound procedure.

Branch & Bound is a complete and admissible algorithm. That is, it will find a solution, if there exists 

one, and it is guaranteed to find an optimal solution. In terms of space and time complexity, however, 

it is not very good. The algorithm can be seen as a generalization of the Breadth First Search algorithm 

when each move has an associated cost. Like Breadth First Search, this algorithm too is uninformed 

and conservative, searching blindly without a sense of direction. Figure 5.8 shows an example map 

(to scale) where the B&B algorithm would spend a lot of time exploring nodes that are closer to the 

starting point before finding a path to the goal. Both the time and space complexity of B&B tends to be 

exponential.

Start

Goal

B&B will shoot off in the
opposite direction!

FIGURE 5.8 Branch & Bound has no sense of direction.

5.4 Dijkstra’s Algorithm

Dijkstra’s algorithm (DA) (Dijkstra, 1959; Cormen et al., 2001) is a well known shortest path algorithm 

on graphs. It solves a more general problem, known as the single source problem. The algorithm finds 

the shortest paths to all nodes in the graph from a given (source) node. In that sense, it is not concerned 

with reaching a specific goal node. The algorithm is briefly described in Figure 5.9.  Observe, that one 

needs the complete graph for the algorithm, and it starts with colouring all the nodes white. A white 
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node is one that is yet to be picked up by the algorithm. In every cycle, it picks one node, to which it 

has found the shortest path, and colours it black.

Dijkstra´s Algorithm()

1 Colour all nodes white

2 cost(start) ¨  0

3 parent(start) ¨ NIL

4 for all other nodes n

5   do cost(n) ¨

6 repeat

7   Select lowest cost white node n

8   Colour n black

9   for all white neighbours m of n

10    do if (cost(n) + k(n, m)) < cost(m)

11      then cost(m) ¨ cost(n) + k(n, m)

12          parent(m) ¨ n

13 until all nodes are coloured black

FIGURE 5.9 Dijkstra single source shortest path algorithm.

We illustrate the algorithm with our tiny search graph shown in Figure 5.10.

 ● Note that in the last iteration, a better path to G was found from E. The cost was updated from 11 

to 10, and the parent pointer reassigned.

 ● The last node to be coloured is G, and the algorithm terminates.

The shortest route to any node can be traced back.

5.5 Algorithm A*

The algorithm A*, first described by Hart, Nilsson and Raphael, see (Hart et al., 1968: Nilsson, 1980) 

combines the best features of B&B, Dijkstra’s algorithm and Best First Search described earlier in 

Chapter 3.

Both B&B and Dijkstra’s algorithm extend the least cost partial solution. While the latter is designed 

to solve a general problem, the former uses a similar blind approach, even though it has a specific goal 

to achieve. B&B generates a search tree that may have duplicate copies of the same nodes with different 

costs; while Dijkstra’s algorithm searches over a given graph, keeping exactly one copy of each node 

and back pointers for the best routes. Neither has a sense of direction.

Best First Search does have a sense of direction. It uses a heuristic function to decide which of the 

candidate nodes is likely to be closest to the goal, and expands that. However, it does not keep track 

of the cost incurred to reach that node, as illustrated in Figure 5.11. Best First Search only looks ahead 

from the node n, seeking a quick path to the goal, while B&B only looks behind, keeping track of the 

best paths found so far. Algorithm A* does both.

A* uses an evaluation function f (node) to order its search.

f (n) = Estimated cost of a path from Start to Goal via node n.

Let f*(n) be the (actual but unknown) cost of an optimal path S Æ n Æ G as described above, of 

which f(n) is an estimate. The evaluation function has two components as shown in Figure 5.12 below. 

One, backward looking, g(n), inherited from B&B, the known cost of the path found from S to n. The 
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FIGURE 5.10 Dijkstra’s algorithm on the tiny search graph.
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other, forward looking and goal seeking, h(n), inherited from Best First Search, is the estimated cost 

from n to G.

f*(n) = g*(n) + h*(n)

f (n) = g(n) + h(n)
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where g*(n) is the optimal cost from S to n, and h*(n) is the optimal cost from n to G. Note that g*(n)

and h*(n) may not be known. What are known are g(n) which can be thought of as an estimate of g*(n)

that the algorithm maintains, and h(n) the heuristic function that is an estimate of h*(n).

OPEN List

g n( )

h n( )
Goal

Start

FIGURE 5.12 For all nodes, the function f(n) is made up of two components, g(n) and h(n).

In general, g*(n) will be a lower than g(n), because the algorithm may not have found the optimal 

path to n yet.

g(n) ≥ g*(n)

The heuristic value h(n) is an estimate of the distance to the goal. In order for the algorithm to 

guarantee an optimal solution, it is necessary that the heuristic function underestimate the distance to 

the goal. That is,

h(n) £ h*(n)

We also say that h(n) is a lower bound on h*(n). If the above condition is true then A* is said to 

be admissible; that is, it is guaranteed to find the optimal path. We will look at a formal proof of the 

admissibility of algorithm A* later in the chapter. Meanwhile, we illustrate with an example the intuition 

behind the condition that the heuristic function should underestimate the actual cost. Let an instance of 

A* have two nodes, P and Q on the OPEN list, such that both are one move away from the goal. Let the 

cost of reaching both P and Q be the same, say 100. Let the actual cost of the move from P to G be 30, 

and let the cost of the move from Q to G be 40, as shown in Figure 5.13.

FIGURE 5.11 Best First chooses the node from OPEN closest to the goal. It may find a costlier path.

Start

Best First only looks at the distance to the goal

Goal
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Let there be two versions of A*, named A1*

and A2*, employing two heuristic functions, 

h1(n) and h2(n). Let us assume that both have 

found the paths up to P and Q with cost 100. 

Let both heuristic functions erroneously evalu-

ate Q to be nearer to the goal G than P is. But 

let A1* overestimate the distance to G; thus, in 

fact becoming inadmissible, while A2* underes-

timates the distance, as illustrated below.

h1(P) = 50

h1(Q) = 45

and

h2(P) = 20

h2(Q) = 15

Let us trace the progress of A1* first. 

Assuming that only P and Q are in the OPEN

list, the f values are

f1(P) = g1(P) + h1(P) = 100 + 50 = 150

f1(Q) = g1(Q) + h1(Q) = 100 + 45 = 145

Since it has the smaller f-value, A1* picks Q and expands it generating the node G with g1(G) = 100 

+ 40 = 140. It now has two nodes on OPEN, P and G with the values,

f1(P) = g1(P) + h1(P) = 100 + 50 = 150

f1(G) = g1(G) + h1(G) = 140 + 0 = 140

It now picks the goal G and terminates, finding the longer path with cost 140.

A2* too starts off by picking the node Q in the following position.

f2(P) = g2(P) + h2(P) = 100 + 20 = 120

f2(Q) = g2(Q) + h2(Q) = 100 + 15 = 115

It also finds a path to G with a cost of 140. For the next move, however, it picks P instead of G in 

the following position,

f2(P) = g2(P) + h2(P) = 100 + 20 = 120

f2(G) = g2(G) + h2(G) = 140 + 0 = 140

Thus, A2* picks P instead of G and finds the shorter path to G. This happened because it underestimated 

the cost of reaching the goal through P.

The algorithm A* is described below. Like the Dijkstra’s Algorithm, it uses a graph structure but one 

which it generates on a need basis during search. It is also called a graph search algorithm. It keeps track 

of the best route it has found so far to every node on the OPEN and CLOSED, via the parent link. Since 

it may find cheaper routes to nodes it has already expanded, a provision to pass on any improvements 

in cost to successors of nodes generated earlier, has to be made.

OPEN List

g P g Q( ) = ( ) = 100

GOAL G

Start

P

Q

K P G( , ) = 30

K
Q

G
(

,
)

=
4
0

FIGURE 5.13 An instance of A* nearing 

termination.
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Procedure A*()

1 open ¨ List(start)

2 f(start) ¨  h(start)

3 parent(start) ¨  NIL

4 closed ¨  {}

5 while open is not EMPTY

6   do

7   Remove node n from open such that f(n) has the lowest value

8    Add n to closed

9    if GoalTest(n) = TRUE

10     then return ReconstructPath(n)

11   neighbours ¨ MoveGen(n)

12   for each m Œ neighbours

13     do switch

14      case m œopen AND m œclosed :   /* new node */

15        Add m to open

16        parent(m) ¨ n

17        g(m) ¨ g(n) + k(n, m)

18        f(m) ¨ g(m) + h(m)

19

20      case m Œ open :

21        if (g(n) + k(n, m)) < g(m)

22         then parent(m) ¨ n

23            g(m) ¨ g(n) + k(n, m)

24            f(m) ¨ g(m) + h(m)

25

26      case m Œ closed :    /* like above case */

27        if (g(n) + k(n, m)) < g(m)

28         then parent(m) ¨ n

29           g(m) ¨ g(n) + k(n, m)

30           f(m) ¨ g(m) + h(m)

31           PropagateImprovement(m)

32 return FAILURE

PropagateImprovement(m)

1 neighbours ¨ MoveGen(m)

2 for each s Œ neighbours

3   do newGvalue ¨ g(m) + k(m, s)

4    if newGvalue < g(s)

5     then parent(s) ¨ m

6       g(s) ¨ newGvalue

7       if s Œ closed

8        then PropagateImprovement(s)

FIGURE 5.14 Algorithm A*.

The representation used here is different from the nodePair representation introduced in Chapter 

2. Instead, an explicit parent pointer is maintained. This has been done because we want to keep only 

one copy of each node, and reassign parents when the need arises. Consequently, the definition of the 

ReconstructPath function will change. The revised definition is left as an exercise for the user.
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In the following example, the node labelled N is about to be expanded. The values shown in the nodes 

are the g values. The double lined boxes are in the set CLOSED and the single lined ones in OPEN. Each 

node, except the start node, has a parent pointer. The dotted arcs emanating from N show the successors 

of N, including a new node whose g value is yet to be computed.
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FIGURE 5.15 Node N is about to be expanded.

Figure 5.16 shows the changes that are made after the node N is expanded. Cheaper paths were 

found for some of the nodes on OPEN. Likewise, for some nodes on CLOSED too, and in their case the 

improved g-values had to be passed on to their descendents as well.

5.6 Admissibility of A*

The algorithm A* will always find an optimal solution, provided the following assumptions (A1 – A3) 

are true.

A1. The branching factor is finite. That is, there are only a finite number of choices at every node in 

the search space.

A2. The cost of each move is greater than some arbitrarily small nonzero positive value e. That is,

for all m, n: k(m, n) > e (5.1)

A3. The heuristic function underestimates the cost to the goal node. That is

for all n: h(n) £ h*(n) (5.2)

We prove the admissibility of algorithm A* via a series of lemmas. We also prove that as the heu-

ristic function becomes a better estimate of the optimal cost, the A* search examines fewer nodes. The 
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proofs are as given in (Nilsson, 1998). The proof is made up of a series of lemmas starting with L1 

below.

L1: The algorithm always terminates for finite graphs.

Proof In every cycle of the main loop in A*, the algorithm picks one node from OPEN and places it in 

CLOSED. Since there are only a finite number of nodes, the algorithm will terminate in a finite number 

of cycles, even if it never reaches the goal (that is, the goal is not reachable).

L2: If a path exists to the goal node then the OPEN list always contains a node n¢ from 

an optimal path. Moreover, the f-value of that node is not greater than the optimal 

cost.

Proof Let (S, n1, n2, …, G) be an optimal path as shown in Figure 5.17. To begin with, S is on OPEN.

Node n1 is a child of S. When S is removed from OPEN, n1 is placed on OPEN. In this manner, whenever 

a node from the above path is removed from OPEN, the next node is placed on OPEN. And if G is 

removed from OPEN then A* has terminated with the optimal path (S, n1, n2, …, G) to G.

Furthermore,

f(n¢) = g(n¢) + h(n¢)

= g*(n¢) + h(n¢) because n¢ is on the optimal path g(n¢) = g*(n¢)

£ g*(n¢) + h*(n¢) from (A3) h(n¢) £ h*(n¢)

£ f*(n¢)

£ f*(S) because n¢ is on the optimal path f*(n¢) = f *(S)

\ f(n¢) £ f*(S) (5.3)

Note that f*(S) is the optimal cost path from S to G.

FIGURE 5.16 The graph after node N has been expanded.
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FIGURE 5.17 OPEN always contains a node from the optimal path.

OPEN List

Goal G

Start

Optimal path

n’

L3: If there exists a path from the start node to the goal, A* finds a path. This is true 

even if the graph is infinite.

Proof A* always picks a node with the lowest f-value. Every time it extends a partial solution, the 

g-value of the partial solution increases by a finite value2 greater than  e (A2). Also, since the branching 

factor is finite (A1), there are only a finite number of partial solutions cheaper than the cost of a path to 

the goal, that is g*(Goal). After exploring all of them in a finite amount of time, eventually the path to 

the goal becomes cheapest, and is examined by A* which terminates with a path to the goal.

L4: A* finds the least cost path to the goal.

Proof (by contradiction)

Assumption A4: Let A* terminate with node G¢ with cost g(G¢) > f*(S).

At the last step when A* was about to expand G¢, there must exist (L2) a node n¢ such that f (n¢) £

f*(S). Therefore, f (n¢) < f (G¢), and A* would have picked n¢ instead of G¢. Thus, assumption A4 is wrong, 

and A* could not have terminated with any node with a suboptimal cost.  Therefore, A* terminates by 

finding the optimal cost path.

L5: For every node n expanded by A*, f(n) £ f*(S)

Proof A* picked node n in preference to node n¢. Therefore,

f (n) £ f (n¢) £ f*(S) (5.4)

L6: A more informed heuristic leads to more focussed search.

Let A1 and A2 be two admissible versions of A* using heuristic functions h1 and h2 respectively, and let 

h2(n) > h1(n) for all n. We say h2 is more informed than h1, because it is closer to the h* value. Since 

both versions are admissible, both heuristic functions have h*(n) as the upper bound. Then any node 

expanded by A2 is also expanded by A1. That is, the version with the more informed heuristic function 

is more focused on the goal, and will never generate more nodes than the less informed one.

Proof (by induction) We show that any node expanded by A2 is also expanded by A1. The property P

that we need to prove for all nodes n is,

expands(n, A2) fi expands(n, A1)

which should be read as “if A2 expands node n then A1 expands node n”.

2 One might think that it is enough to assume that the cost of each arc is positive. But if arc costs are real, then one could conjure 

up a problem where there exist paths of infinite steps, but whose total cost is smaller than a given value — first pointed out by 

Arvind Narayanan, a student, during my AI class at IIT Madras in the mid-nineties. See also Zeno’s paradox in (Hofstadter, 1999).
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Basis: expands(S, A2) fi expands(S, A1) since both start with S.

Hypothesis: Let P be true for all nodes up to depth k from S.

Proof step: (to show that property P is true for nodes at depth k+1).

We do the proof step by contradiction.

Assumption: Let there exist a node L at depth k+1 that is expanded by A2, and such that A1 terminates 

without expanding node L.

Since A2 has picked node L,

f2(L) £ f*(S)      from (5.4)

That is g2(L) + h2(L) £ f*(S),

or h2(L) £ f*(S) – g2(L) (5.5)

Now, since A1 terminates without picking node L,

f*(S) £ f1(L) because otherwise A1 would have picked L

or f *(S) £ g1(L) + h1(L)

or f*(S) £ g2(L) + h1(L)

because g1(L) £ g2(L) since A1 has seen all nodes up to depth k seen by A2, and would have found an 

equal or better cost path to L.

We can rewrite the last inequality as,

f*(S) – g2(L) £ h1(L) (5.6)

Combining (5.5) and (5.6), we get,

h2(L) £ h1(L)

which contradicts the given fact that h2(n) > h1(n) for all nodes.

The assumption that A2 terminates without expanding L is false, and therefore A2 must expand L.

Since L was an arbitrary node picked at depth k+1, the property P is true for depth k+1 as well.

Thus, by induction for all nodes n, the property P is true. That is,

For all nodes n, expands(n, A2) fi expands(n, A1)

q.e.d.

The search space explored by the two functions is illustrated in Figure 5.18.

Goal
Start

A2 A1

FIGURE 5.18 Search spaces for A1 and A2 when h2(n) > h1(n).
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5.6.1 The Monotone Property

The monotone property or the consistency property for a heuristic function says that for a node n that is 

a successor to a node m on a path to the goal being constructed by the algorithm A* using the heuristic 

function h(x),

h(m) – h(n) £ k(m, n) (5.7)

That is, the heuristic function is such that it underestimates the cost of every segment individually

along the way. Moving from node m to n, the reduction in heuristic value is less than the cost k(m, n)

incurred from m to n. Of course, this would be true, if node n were to be a bad successor of m, going

for example in the opposite direction. The monotone property says that even if m and n were to be on 

an optimal path, this is true.

Given that we started from node S. we can rewrite the above inequality and add the term g(m) to 

both sides to get,

h(m) + g(m) £ k(m, n) + h(n) + g(m)

Since n is the successor of m, we have

g(m) + k(m, n) = g(n)

Therefore,

h(m) + g(m) £ h(n) + g(n), (5.8)

or f (m) £ f (n) (5.9)

That is, on a path being constructed from to S to G by A*, the f-values increase as we move towards 

the goal G. This is true even for the optimal path. The closer you get to the goal, the better you estimate 

the actual cost, since the contribution of the heuristic component decreases. Remember that it is the 

heuristic function that underestimates the cost. Observe that the hill climbing algorithm using f-values

would simply not work, because these values are increasing.

For A*, the interesting consequence of searching with a heuristic function satisfying the monotone 

property is that every time it picks a node for expansion, it does so by finding an optimal path to that 

node. As a result, there is no necessity of improved cost propagation through nodes in CLOSED (lines 

26–31 in Figure 5.14), because A* would have already found the best path to them in the first place 

when it picked them from OPEN and put them in CLOSED.

L7: If the monotone condition holds for the heuristic function then at the time when 

A* picks a node n for expansion g(n) = g*(n).

Figure 5.19 illustrates the situation. Let A* be about to pick up node n with a value g(n). Let there be a 

(known) optimal path from S to n via nL and nL+1.

Proof Let A* expand node n with cost g(n).

Let nL be the last node on the optimal path from S to n that has been expanded. Let nL+1 be the 

successor of nL that must be on OPEN. The following property holds,

h(nL) + g(nL) £ h(nL+1) + g(nL+1)     from (5.8)

or h(nL) + g*(nL) £ h(nL+1) + g*(nL+1)

because both are on the optimal path



138 A First Course in Artificial Intelligence

By transitivity of £, the above property holds true for any two nodes on the optimal path. In particular, 

it holds for nL+1 and node n. That is,

h(nL+1) + g*(nL+1) £ h(n) + g*(n) (5.10)

That is,

f(nL+1) £ h(n) + g*(n) because nL+1 is on the optimal path to n

But since A* is about to pick node n instead,

f(n) £ f (nL+1)

That is,

h(n) + g(n) £ f (nL+1)

or h(n) + g(n) £ h(nL+1) + g*(nL+1) (5.11)

Combining (5.10) and (5.11) we get,

h(n) + g(n) £ h(n) + g*(n)

\ g(n) £ g*(n)

\ g(n) = g*(n) because g(n) cannot be less than g*(n) the optimal cost.

Therefore, whenever A* expands any node, it does so after finding an optimal path to it.

q.e.d.

That means that nodes that are in CLOSED cannot have better paths to them, and consequently need 

not be updated.

5.6.2 Performance of Algorithm A*

The algorithm A* is complete and admissible. The results have been proven in the previous section.  

Both space complexity and time complexity of A* are directly dependent on the heuristic function. With 

a perfect heuristic function, the algorithm will home in onto the goal in linear time with linear space 

requirement. In practice, heuristic functions are less than perfect, and the space and time requirements 

FIGURE 5.19 A* is just about to pick node n with cost g(n).

Path to node n
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can be exponential, though with a lower branching factor than the actual one, as was discussed in the 

case of Best First Search earlier. Figure 5.18 above also illustrates the point that more accurate heuristic 

functions require lesser space, and, therefore, lesser time (since the size of CLOSED can be seen to be a 

measure of time). Incidentally, the figure can be visually misleading since we tend to see the search space 

as area inside the curve that grows only as quadratic. The reader must keep in mind that in many search 

spaces, the sizes of successive layers are multiples of preceding layers, leading to exponential growth. 

However, figures like Figure 5.18 above are useful for visualizing algorithms and we will continue to 

use them. We will also see problems where the growth in search space is quadratic, which are better 

illustrated by these figures, and in which there is a combinatorial growth of choices.

Time complexity by itself can only improve with a better heuristic function, or at the expense of 

admissibility. For example, many researchers experiment with a variation known as Weighted A* which 

uses the following function to order the search nodes,

f(n) = g(n) + k * h(n)

The factor k is used to control the pull of the heuristic function. Observe that as k tends to zero, the 

algorithm is controlled by g(n) and it tends to behave like Branch & Bound. On the other hand, as we 

choose larger and larger values of k, the influence of h(n) on the search increases more and more, and the 

algorithm tends to behave more like Best First Search. With values of k greater than one, the guarantee 

of finding the optimal solution goes, but the algorithm explores a smaller portion of the search space.

The issue of space complexity can be addressed, though at the cost of additional time. We look at 

some algorithms that require much lower space in the following sections.

5.7 Iterative Deepening A* (IDA*)

Algorithm IDA* (Korf, 1985a) is basically an extension of DFID algorithm seen earlier in Chapter 

2. IDA* is to A* what DFID was to Breadth First Search. It converts the algorithm to a linear space 

algorithm, though at the expense of an increased time complexity. It capitalizes on the fact that the space 

requirements of Depth First Search are linear. Further, it is amenable to parallel implementations, which 

would reduce execution time further. A simple way to do that would be to assign the different successors 

to different machines, each extending different partial solutions. The IDA* algorithm is described below 

in Figure 5.20. The algorithm uses a search bound captured in a variable named cutoff. The initial value 

of cutoff is set to the lower bound cost, as seen from the start node S. Since this is a lower bound, any 

solution found within cutoff cost must be optimal. The observant reader would have noticed that it is 

quite unlikely that the solution would be found in the first iteration when cutoff = f(S). This is because 

the heuristic function is designed to underestimate the optimal cost. However, if the DFS search fails, 

in the next iteration the cutoff value is incremented to the next lowest f-value from the list OPEN. In 

this way, the value of cutoff is increased incrementally to ensure that in any iteration, only an optimal 

cost solution can be found.

IDA*()

1 cutoff ¨ f(S) = h(S)

2 while goal node is not found or no new nodes exist

3 do use DFS search to explore nodes with f-values within cutoff

4 if goal not found

5         then extend cutoff to next unexpanded value if there exists one

FIGURE 5.20 Algorithm Iterative Deepening A*.
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While the algorithm IDA*  essentially does Depth First Search in each iteration, the space that it 

explores is biased towards the goal. This is because the f-value used for each node is the sum of the 

g-value and the h-value. As for paths that are leading away from the goal, the h-values will increase 

and such paths would be cut off early. Thus, while DFS itself is without a sense of direction, the fact 

that f-values are used to prune the search pulls the overall envelope that it searches within towards the 

goal node as depicted in Figure 5.21.

Like DFS, the space required of IDA* grows linearly with depth. We do not need to maintain a 

CLOSED list if we keep track of the solution path explicitly. There is, however, a drawback that in 

problems like city map route, finding the algorithm may expand internal nodes many times. This happens 

because there are many routes to a node, and each time the node is expanded all over again. For large 

problem sizes, this can become a problem. Figure 5.21 below illustrates the search space explored by 

IDA* with some value of cutoff. One can see that there are combinatorially many paths to any node within 

the cutoff range. In the absence of a CLOSED list, IDA* will visit all nodes through all possible paths. 

Nevertheless, for many problems, IDA* can be a good option, specially if the number of combinations 

are small.

Goal

Start

In the next cycle cutoff is reset to
lowest unexplored -value nodef

Nodes within cutoff
f

DFS
-value are explored

by

FIGURE 5.21 IDA* iteratively extends search frontier for Depth First Search.

A factor that may adversely affect running time is when the increment in the cutoff value is such 

that only a few more nodes are included in each cycle. In the worst case, only one node may be added 

in each iteration. While this is necessary to guarantee admissibility, one could trade off execution time 

with some controlled loss in the solution cost. For example, one could decide in advance that the cutoff 

bounds will be increased by a value d that is predetermined. The loss then will be bounded by d, and 

an appropriate choice may be made for a given application. Figure 5.22 illustrates this situation. In the 

illustration, two goal nodes come within the ambit of cutoff when it is increased by d. However, since 

the underlying search is DFS, it may terminate with the more expensive solution.
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When cutoff is increased by

a value * may find a

costlier solution. The extra

cost is bounded by

d

d

IDA

DFS may terminate before
looking at a cheaper solution

Goal

Start

d

FIGURE 5.22 Loss in optimality is bounded by d.

5.8 Recursive Best First Search (RBFS)

One thing that IDA* suffers from is a lack of sense of direction, since the algorithm searches in a depth-

first manner.  Another algorithm  developed by Richard Korf called Recursive Best First Search (RBFS)

also requires linear space, but uses backtracking (Korf, 1993). One can think of the algorithm as heuristic 

depth-first search in which backtracking occurs when a given node does not have the best OPEN node 

amongst its successors. The interesting feature is that having explored a path once, if it backtracks from 

a node, it remembers the f-values it has found. It uses backed up f-values to update the values for nodes 

it has explored and backtracked on. The backed up value of a node is given by,

fbacked-up (node) = f (node) if node is a leaf node

= min {fbacked-up(child) | child is a successor of node} if node is not a leaf node

Figure 5.23 depicts the behaviour of RBFS. As shown in the figure on the left, it pursues the middle 

path from the root node with heuristic value 55, till it reaches a point when all successors are worse 

than 59, its left sibling. It now rolls back the partial path, and reverts to the left sibling with value 59. 

It also revises the estimate of the middle node from 55 to 60, the best backed-up values as shown by 

the upward arrows.

From the point of implementation, RBFS keeps the next best value (in Figure 5.23, this is 59) as an 

upper bound for search to progress further. Backtracking is initiated when all the children of the current 

node become costlier than the upper bound. Observe that like DFS, it maintains only one path in its 

memory, thus requiring linear space. Its time complexity is however difficult to characterize. One can 

imagine that in a large search space, it will often switch attention, sometimes even between the same 

two paths. This has been corroborated by experimental results, where it was found to take considerably 

longer solving problems, specially those where even though the problem only grows polynomially, 

the number of different paths grow combinatorially. Like IDA*, RBFS ends up repeatedly visiting the 
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Box 5.1: When is CLOSED a problem?

One would expect that the size of the 

CLOSED list should be less of a concern 

than the size of OPEN, given the fact that 

in an exponentially growing search space, 

the OPEN is likely to be much bigger than 

CLOSED. There are, however, problems 

where the list CLOSED could be the main 

memory bottleneck. These are problems that 

are combinatorial in nature. This happens 

when the underlying search space is a graph, 

for example in the route finding problem 

illustrated here.

One can see that there are many paths from node A to node L. The number of paths in an n + 1 

by m + 1 rectangular grid is (n + m)! / (n!m!) While the problem size increases only as a quadratic, 

FIGURE 5.23 Recursive Best First Search rolls back a path when it is not looking the best.
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same nodes again and again, leading to an increase in the computation time. This is the price both the 

algorithms have to pay for saving on space.

We now explore some other approaches to reducing memory, starting with the list CLOSED.

Maintaining the CLOSED list has two benefits. One, that it keeps a check on the nodes already visited, 

and prevents the search from expanding them again and again. And two, it is the means for reconstructing 

the path after the solution is found. In the next section, we look at an algorithm that prunes the CLOSED

list, and still does both but, again, at the expense of more time complexity.
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algorithms like DFS or IDA* will have to explore combinatorially many paths. A 25 ¥ 25 grid would 

have 1014 paths!  Moreover, the size of the CLOSED grows as a quadratic, while the size of OPEN

will only increase linearly. If one were to tackle large problems, then it is CLOSED that will require 

more memory. Thus, in algorithms that will prune, CLOSED will be valuable.

Recently, problems thrown up by the field of computational biology have precisely this kind of 

domain (Korf et al., 2005; Korf and Zhang, 2000). For example, the alignment of two DNA sequences 

can be posed as a path finding in a grid like the one above, with additional diagonal arcs. In sequence 

alignment problems, one is allowed to insert gaps in the sequences. For example, the sequences 

ACGTACGTACGT and ATGTCGTCACGT can be best aligned with gaps as

ACGTACGT — ACGT

ATGT– CGTCACGT

(The worst is ACGTACGTACGT - - - - - - - - - - - -

- - -  - - -  - - -  - -   ATGTCGTCACGT)

Notice that the second characters do not match. If the cost of each mismatch is 1, and the cost of 

a gap insertion is 2 then the cost of the best solution (alignment) is 5. The problem can be mapped 

to the problem of traversing a two dimensional grid with diagonal paths included (Needleman and 

Wunsch, 1970). The two given sequences form the two axes of the grid. Horizontal and vertical 

moves correspond to gap insertions. Diagonal moves correspond to character alignment and may 

have a cost of zero or one, depending upon whether the two characters are the same or different.

Further, the sequence alignment problem can easily be extended to multiple sequences. An 

n-sequence problem will form an n-dimensional grid.

5.9 Pruning the CLOSED List

One of the functions of the CLOSED list is to prevent nodes from being expanded again and again. 

However, for a node on CLOSED to be expanded again, it will have to be generated as a child of some 

node on OPEN that is being expanded. In the DFS search algorithms discussed earlier (Figure 2.18), 

a function removeSeen prevented old nodes from being added to OPEN again. However, one can also 

prevent the search from regenerating the CLOSED nodes again by observing that for search to “leak back” 

into CLOSED it will have to go through nodes that are children of nodes on OPEN. For any node that 

is being expanded, it suffices to exclude successors that are “behind” the node. An important condition 

that must be satisfied is the consistency condition. As shown in Section 5.6.1, the consistency condition 

implies that all nodes in CLOSED have the best path to them discovered already. If that is the case then 

in the A* algorithm there is no need to generate nodes already in the CLOSED again.

5.9.1 Divide-and-Conquer Frontier Search

One way of doing this is to modify the moves that can be made from the nodes on OPEN to keep a “tabu” 

list of disallowed successors for each node that is added to OPEN. The move generator is modified such 

that every time a node X (on OPEN) is generated as a successor of some node Y, Y is excluded from 

becoming a successor of X. If the node X is generated later as a successor of some other node Z then Z

is also excluded from its list of successors of X. That is, every time a node is expanded, it is put on a 



144 A First Course in Artificial Intelligence

tabu3 list of all its successors. And when a node is expanded, only the non-tabu successors are generated. 

As a consequence, every arc in the search graph is traversed only once, and only in one direction. In 

this way, search can be constrained to only move “forward”. An algorithm that uses this approach is 

called Divide-and-Conquer Frontier Search (DCFS) (Korf and Zhang, 2000).  Along with every node 

on OPEN, the algorithm DCFS keeps a list of disallowed moves. The list CLOSED, therefore, is no 

longer needed to prevent the search from leaking back.

The second task of reconstructing the path when the goal is found still remains. DCFS addresses this 

problem by storing a relay node around the halfway mark in the search space for every node on OPEN.

The halfway point could be approximately determined when the g-value is close to the h-value for a 

node. Every node on OPEN that is beyond the halfway mark keeps a pointer to its relay node Relay, as 

shown in the Figure 5.24. Note that different nodes on OPEN may have different relay nodes.

Relay nodes mark a landmark
roughly halfway on the path

Goal
Start

FIGURE 5.24 Divide-and-Conquer uses relay nodes to remember landmarks.

When the DCFS algorithm picks the goal node, it knows the cost of the solution, but not the path. It 

has only a pointer to the relay node (Relay) on its path, roughly on the halfway mark. To determine the 

path, DCFS is recursively called twice; once to find the path from Start to Relay, and next to find the 

path from Relay to Goal. It has divided the search problem into two parts. This process of recursive calls 

continues, till the entire path is reconstructed. The algorithm thus saves on space at the expense of running 

time. If T(d) is the time required to search a path of length d then DCFS has a time complexity given 

by,

T(d) + 2 * T(d/2) + 4 * T(d/4) + … + k * T(d/k), where in the last term, d/k = 1.

The reader can verify that the above sums up to T(d) * lg(T(d)). In the specific case where T(d)

is bd with branching factor b, this becomes O(bd
* d). That is, if one were to do divide-and-conquer 

reconstruction when search is exponential, one has to do an equivalent of d searches instead of one.

The basic idea of divide and conquer solution reconstruction was adopted from similar techniques 

used in dynamic programming methods developed earlier for sequence comparison (Hirschberg, 1975; 

Myers and Miller, 1988) before memory constraints led researchers to look at A* and its variants.

3 Korf and his group describe it as being marked “used”: 
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5.9.2 Sparse-Memory Graph Search

A variation for pruning of the CLOSED list takes a different approach. The Sparse-Memory Graph Search 

(SMGS) identifies the boundary of the CLOSED list, as shown in Figure 5.25 (Zhou and Hansen, 2003). 

The boundary can be defined as those nodes on CLOSED that have at least one neighbour (successor) 

still on OPEN. This can be done by keeping a counter with every node when it is expanded to keep 

track of the number of children it has on OPEN. The counter is decremented each time its children are 

expanded (the node will appear as a child). As long as the counter is greater than zero, the node is on 

the boundary. When it becomes zero, it goes into the kernel. The nodes of CLOSED that are not on the 

boundary are in the kernel. One can observe that the nodes in the kernel can only be reached via the 

nodes on the boundary. It would thus be enough to check for new successors to be on the boundary, to 

prevent the search from leaking back. The nodes in the kernel can be pruned away.

Frontier (OPEN)

Goal

Boundary

Start

FIGURE 5.25 Boundary nodes in the CLOSED list are enough to prevent search from “leaking” back.

The SMGS also keeps relay nodes for reconstruction of the path like the DCFS.  The difference is 

that it calls a module PruneClosed to prune the CLOSED list only when it senses that it is running out 

of memory.

The algorithm identifies three kinds of nodes. One, the kernel nodes that have been inspected and all 

their successors have been inspected. And two, the boundary nodes that have been inspected but have 

some successors on OPEN. Finally, the nodes in OPEN are the ones that have been generated but have 

not been inspected. Together, the kernel and the boundary would form the CLOSED set. Initially, the 

Start node is marked as a relay node.

The algorithm begins by keeping all three kinds of nodes, and proceeds to pick nodes from OPEN

and inspect them. Then at any time if it senses that it is running out of memory, it does the following, 

by calling a PruneClosed function. First, for every node on OPEN, it marks the corresponding nodes on 

the boundary as relay nodes. Then for each node on the boundary, it traces the back pointers to the latest 

relay node, and sets an ancestor pointer to that relay node. Then it deletes all kernel nodes that are not 

relay nodes. Having finished the pruning, it continues to pick nodes from OPEN and inspect them. The 

first time this is done, the ancestor pointer points to Start. The process is illustrated in Figures 5.26 and 

5.27.
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Start

Goal

Frontier (OPEN)

Nodes in Boundary
become Relay nodes

FIGURE 5.26 SMGS converts boundary nodes into Relay when a prune module is called.

The SMGS algorithm may create more than one relay layer if it is solving a large problem. It would 

have to recursively solve each segment between two consecutive relay nodes; otherwise it continues 

like the A* search algorithm. Therefore, while on the one hand it does pruning only when necessary, 

thus saving on reconstruction cost; on the other hand, it can create many relay layers, thus being able 

to tackle larger problems.

When the search terminates, there may be several relay layers in the memory. In Figure 5.27 below, 

we illustrate this with two relay layers. Thus, at the point when search picks the goal node, it also has a 

Sparse Solution Path to the Start node via the relay nodes. Like the DCFS algorithm, SMGS recursively 

calls itself with each segment in the Sparse Solution Path to find the Dense Solution Path, the solution 

required. While DCFS divides the problem into two parts, SMGS may divide it in many parts, depending 

upon how many times the module PruneClosed is called. In Figure 5.27, the problem has been divided 

into three segments, one of which has not yet been pruned.

Start

Goal

Unpruned CLOSED
contains the dense path

Relay layers created each time
PruneClosed is called

FIGURE 5.27 On termination, SMGS has a Sparse Solution Path to the goal.

Of the two search algorithms seen above, DCFS prunes CLOSED as it goes along. The only nodes it 

keeps are one relay node for each node on OPEN. It does so by modifying the nodes on OPEN to keep 

only forward-going successors. SMGS does not tamper with OPEN. Instead, it keeps a boundary layer 

amongst the nodes in CLOSED to prevent search from turning backwards. When a call to PruneClosed is 

made, this boundary becomes a relay layer. It also introduces the tactic of pruning only when memory is 

sensed to be running out, and keeps the option of pruning more than once and creating many relay nodes.
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5.10 Pruning the OPEN List

In the previous section, we looked at a method to prune the CLOSED list. We also observed that it was 

useful for problems where the problem space only grew polynomially with depth, in which case the 

list OPEN is generally much smaller, often only growing linearly.  However, in general, when problem 

space grows exponentially, it is the OPEN list that accounts for most of the memory. In this section, we 

look at ways to prune the OPEN list.

5.10.1 Breadth First Heuristic Search

In the chapter on State Space Search (Chapter 2), we had observed that Breadth First Search suffered 

from an exponentially growing memory requirement. The main reason for that was that the search was 

uninformed. If we can somehow generate an upper bound U on the solution cost then we could prune 

away nodes whose f-values are higher than U. This is because f-values are known to be lower bound 

estimates of solutions containing that node. The upper bound estimate could itself be obtained by using 

an inexpensive method like Beam Search, using only the heuristic function h(n).  The resulting search 

algorithm called Breadth First Heuristic Search (BFHS) (Zhou and Hansen, 2004) has been shown to 

use less memory than A* search. It explores nodes in a breadth first manner, but prunes nodes that have 

the estimated cost f(n) larger than the upper bound U. The following figure suggests why the algorithm 

keeps a smaller OPEN list, and it can be seen that the better the heuristic function, the tighter will be 

the upper bound.

Start Goal

Breadth First OPEN

Best First OPEN

Breadth First Heuristic OPEN

Upper Bound on -valuesf

FIGURE 5.28 Breadth First Heuristic Search prunes the OPEN using f-values.

Observe that the pruning of nodes from the Breadth First frontier is admissible because the pruned 

nodes cannot be part of the optimal solution. Thus, BFHS is a variation that is complete and admissible. 

It requires lower memory for OPEN than A*, but may expand more nodes than A* does. The memory 

required by the OPEN of BFHS peaks somewhere around the halfway mark. After that point, the number 

of nodes that have f-values within the upper bound starts decreasing. This happens because as one comes 

closer to the goal, the contribution of the heuristic function h(n) to the f-values becomes smaller, and 

the f-values become more and more accurate.
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5.10.2 Divide and Conquer Beam Search

Beam Search (using f-values) can be seen as further pruning the OPEN list as shown in Figure 5.29 

below. Given that the consistency condition entails that f-values increase when one proceeds towards 

the goal, one has to relax the criterion of moving to only better nodes, and instead move to the best w

nodes at each level. Since it uses a constant beam width w, the memory requirements of Beam Search

will grow only linearly with depth.

Start Goal

Beam Search OPEN CLOSEDand

Breadth First Heuristic OPEN
Breadth First Heuristic CLOSED

FIGURE 5.29 Beam Search further prunes the OPEN to a constant width w.

The memory required by Beam Search is proportional to dw, where d is the depth and w the beam 

width. However, Beam Search is inadmissible, not guaranteeing an optimal solution. In fact, it is not even 

guaranteed to find any solution. Later, we will address this issue and look at a way to make it complete.

Meanwhile, both BFHS and Beam Search keep the full CLOSED list. If we apply the techniques of 

pruning the CLOSED list from the last section to these two search methods, we get Divide-and-Conquer

BFHS (DCBFHS) and Divide-and-Conquer Beam Search (DCBS). Beam search expands nodes in a 

manner similar to breadth first search, except for sorting and pruning each layer to a fixed number of 

nodes before proceeding to the next. Both may have a partially expanded layer containing both nodes 

on OPEN and CLOSED. The next layer will contain a partially formed OPEN, while the preceding 

layer will have only CLOSED nodes. The current and the preceding layer will contain the boundary of 

the search, and are enough to prevent the search from leaking back. In addition, the divide and conquer 

strategy requires a RELAY layer around the halfway point, to which nodes on OPEN will hold a pointer 

to for path reconstruction. Before the search has crossed the halfway mark, the pointer will point to the 

Start node. These four layers are enough for search to progress without regenerating nodes in CLOSED.

Figure 5.30 illustrates the four layers.

Observe that Divide-and-Conquer Beam Search keeps a maximum of w elements in each of the four 

layers. Thus, its memory requirement is 4w, which is a constant amount! That means that using DCBS,

one can search up to any depth using a constant amount of memory. As a corollary, it allows us to fix 

the beam width w as high as resources will allow. The only problem is that it is incomplete.

Next, we look at an approach that allows Beam Search to backtrack and try other paths systematically, 

giving us a complete and admissible search algorithm.

5.10.3 Beam Stack Search

Beam Stack Search (BSS) is essentially beam search with backtracking. One of the reasons for the poor 

time performance of IDA* and RBFS is that they pursued only one path at a time. In some sense, they 
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underutilised the space available to the algorithm. Beam Search allows one to pursue multiple candidates 

simultaneously, but like Hill Climbing, cannot switch paths midcourse, and is therefore incomplete.

Beam Stack Search (Zhou and Hansen, 2005) explores the search space systematically with a beam 

of width w. Like the Beam Search, it too may prune nodes inadmissibly, but it retains the option to 

backtrack to explore those nodes later. It does this by sorting the nodes at each level on their f-values,

and keeping track of the minimum and maximum f-values of nodes admitted in the beam, at each stage 

of the search. It does this by keeping a separate stack, called the Beam Stack, in which it stores the fmin

and fmax values at each level as a pair [fmin, fmax) as shown in Figure 5.31 below. Since the algorithm 

involves sorting of nodes at each level, it is easier to visualise with the search tree it generates.

Increasing -f values

Upper bound U
on -valuesf

fmin values
fmax values

Yet to be
explored nodes

Explored nodes

First solution
found here

FIGURE 5.31 Beam Stack Search orders nodes on f-values. It slides the fmin, fmax window on 

backtracking, but does not go beyond the upper bound U.

FIGURE 5.30 Divide and Conquer Beam Search keeps four layers of constant width.
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Beam Search
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OPEN

RELAY

Divide and Conquer BFHS keeps four layers
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The beam stack maintains the fmin and fmax values at each level. This corresponds to the window in 

that layer that is exposed to the beam search. The fmax value corresponds to the lowest f-value node that 

was pushed out of the beam. When the algorithm backtracks, it slides the corresponding window by 

setting the new fmin to the old fmax. It sets the new fmax value to the upper bound U, updating it to a lower 

value, only if nodes are generated that cannot be accommodated in the beam width. In this way, it can 

systematically explore the entire space that A* would have explored.

Initially, it behaves like Beam Search. When it finds a solution, it sets the upper bound value, if a 

cheaper solution is found. This updating happens every time BSS finds a better solution. Once it has 

found a solution, the solution can be called for at any time. Thus, BSS becomes an anytime algorithm,

quickly finding a good solution which can be returned on demand, but continuing to explore the rest of 

the space looking for better solutions. The best solution so far can be returned on demand. Moreover, 

since it uses a heuristic function and explores the lowest f-value nodes first, it is quite likely to find the 

best solution early.

Beam Stack Search is a complete and admissible version of Beam Search. Like Beam Search (with 

the CLOSED list), the space required by the algorithm is linear with depth.

Finally, the divide and conquer strategy can be applied to Beam Stack Search as well, to give a 

complete and admissible algorithm that requires almost constant space.

5.11 Divide and Conquer Beam Stack Search

Like DCBS, the Divide and Conquer Beam Stack Search (DCBSS) (Zhou and Hansen, 2005) also keeps 

four layers of width w in memory, as shown in Figure 5.32. Like the BSS, it maintains a beam stack that 

marks the fmin and fmax values for each layer. Strictly speaking, the space requirements of DCBSS are 

not constant because of the beam stack, which grows linearly with depth. But since only two values are 

stored per layer, the space requirements are presumably much smaller than those required to encode the 

state for each node. The number of nodes that DCBSS keeps are however constant, being 4w, and thus 

the algorithm can permit a suitably large beam width w.

Upper bound U
on -valuesf

CLOSED

OPEN and CLOSED

RELAY

OPEN

FIGURE 5.32 Divide and Conquer Beam Stack Search stores four layers of width w.
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DCBSS differs from DCBS, in that for the sake of completeness it may backtrack and explore a 

different segment of the search space.  Backtracking is however not a straightforward process because 

DCBSS has burnt its bridges and pruned away most layers from the beam. Instead of backtracking 

chronologically, the algorithm instead exploits the beam stack that maintains fmin and fmax values for 

all layers. It simply regenerates the layer it is required to backtrack to using the fmin and fmax values to 

guide the (forward) regeneration process.

One has to be careful though that one begins with a finite value of the upper bound U. Otherwise, 

it is possible that the algorithm may go into a loop, exploring the same nodes again and again on an 

undirected graph4 (see Exercise 5.11). This happens because the algorithm is not maintaining a complete 

boundary layer that would prevent search from leaking back to nodes seen earlier. However, selecting 

an appropriate U value will check this looping. The g-value of a node in the loop increases with each 

repetition. Once the f-value becomes greater than U, then search will break out of the loop.

Observe that the solution reconstruction with divide and conquer process will also require memory. One 

can opt to reconstruct the solution when backtracking is to be done. That is, the solution reconstruction 

is delayed till an opportune moment. In the meantime, the algorithm can simply keep track of the best 

solution found (remember it continues to look for better solutions) and use its cost to update the upper 

bound to a tighter value.

Divide and Conquer Beam Stack Search is thus a complete and admissible search that has almost 

constant space requirement. The algorithm can explore deep search spaces without running into space 

problems. The larger the beam width w, the less likely is the need for backtracking, and one can thus 

choose a larger beam width w.

5.12 Discussion

In this chapter, we have explored algorithms for finding optimal cost solutions when the moves have an 

associated cost. Starting with the uninformed and conservative Branch & Bound algorithm (or Dijkstra’s 

Algorithm), we added a heuristic function to exert a pull towards the goal on the search frontier. The 

resulting algorithm A* is admissible when the heuristic function underestimates the distance to the 

goal. That is, the algorithm A* is guaranteed to find the optimal solution, even if the heuristic function 

makes errors in judging which of the candidates is closer to the goal. Further, if the heuristic function 

is consistent, underestimating the cost of each move, the algorithm keeps finding optimal partial paths 

as it progresses.

The main drawback of A* is that space requirement tends to grow rapidly with depth, because heuristic 

functions are rarely perfect. This limits the size of problems that can be tackled. IDA* is an iteratively 

deepening algorithm that uses f-values to limit depth first search depth. Recursive Best First Search is an 

improvement that uses heuristic to guide search, but backtracks when necessary. Both the algorithms face 

problems on search spaces that are graphs because they find multiple paths to the same nodes. Recent 

problems from computational biology have thrown up such problems, spurring further research into the 

area. In particular, the problem of sequence alignment has posed new challenges.  These problems were 

approached with algorithms that traded space for time. One strategy is pruning the CLOSED list, but at 

the expense of having to spend extra time reconstructing solutions found. The reconstruction procedure 

embodies a divide-and-conquer strategy, adopted from earlier work in dynamic programming.

For problems where the search space itself grows exponentially, the list OPEN is more of a problem. 

Beam Search prunes OPEN to operate with space growing only linearly with depth, but at the cost of 

4 This observation was made by I. Murugeswari. 
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completeness. The idea of a beam stack to do additional bookkeeping allows the Beam Stack Search

to backtrack even after finding the first solution and look for a better one. This gives us an anytime 

algorithm that can be called upon to return a (good) solution on demand, along with the option to wait 

for the optimal solution.

Combining the two ideas of Divide and Conquer reconstruction and the Beam Stack systematic 

search, gives us an algorithm DCBSS with almost constant space requirements. Thus, one can tackle 

arbitrarily large search spaces.

All the above algorithms save on space as compared to A*, but at the cost of extra running time. Every 

practical problem to be solved could use a variation that makes an appropriate trade off.

The algorithms seen so far view the problem solving process as a trajectory in some space, starting with 

a given situation and finding a path towards the solution. Each move transforms the entire representation, 

state or solution, to a different one. In the next chapter, we look at an approach in which a problem can 

be broken down into smaller problems, each of which can be attempted independently.

 Exercises

1. Figure 5.33 below shows the graph being explored by algorithm A* at the point when node N is 

about to be expanded. The shaded double circles represent nodes on CLOSED, and the unshaded 

circles represent nodes on OPEN. Values inside the circles represent g-values of nodes. The two 

nodes marked New in dashed circles are about to be put on OPEN. The arrows depict back pointers 

and labels on edges denote costs.

  Redraw the graph after A* has finished expanding the node N.
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FIGURE 5.33 A* is about to expand node N in the above graph. How will the resulting graph look like?
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2. Given the two graphs from Chapter 3 reproduced below, the task is to find an optimal path from 

the start node S to the goal node G. The length of each edge is marked on the graph. Use the 

Manhattan distance as the heuristic function. Assume that each unit on the grid is 10 kilometres.

(a) List the nodes that are on OPEN or CLOSED when A* terminates, and indicate their f-values.

(b) Show the order in which A* adds nodes to CLOSED.

(c) Mark the parent pointers on the graph as and when they are assigned. Show clearly if they 

are reassigned.

G

S A B C

D E

F H

I J

K

L M N

O P Q

R T

25

22

32

24

27

26

32

20

23

21

26

27

52

11

36

28

44
27

24

42

40

32

62

32

42

32

FIGURE 5.34 The graph from Figure 3.22 with weights assigned to edges.

3. Does the Manhattan-distance heuristic function satisfy the monotone criterion for the given 

problem? Would the Euclidean-distance heuristic function do so? Justify your answer.

4. Consider the state on the left for the 8-puzzle in Figure 5.36. Given that the goal state on the right, 

how does one define an accurate heuristic function? Consider the pairs of tiles {2, 3}, {4, 8} and 

{5, 6}. In each pair, the two tiles are in the correct row but in the wrong order. How would one 

design a heuristic function that accurately reflects the fact that extra moves have to be made to 

correct the order and move the tiles to their respective positions in the goal state?

5. Replace the function f (n) = g(n) + h(n) with the weighted function f (n) = g(n) + K * h(n) for the 

8-puzzle and 15-puzzle algorithms. Implement the algorithm and try out different values of K.

Report the number of nodes examined for each value of K and the length of the solution found. 

Conduct the experiment for a set of randomly chosen problems.
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6. Given the following three conditions, Arvind 

claims that the A* algorithm may not terminate 

with the shortest path.

(a) Branching factor is finite.

(b) Cost of each edge is greater than zero.

(c) The heuristic function underestimates the 

distance to the goal.

  Do you agree or disagree? Justify your answer.

7. Show that the node n being expanded by A* in Section 5.6.1 (Lemma 7) is in fact identical to node 

nL+I.

8. Which of the following is more amenable to parallelization? Best First Search, A* IDA*, RBFS.

Justify your answer.

9. Figure 5.37 shows part of a search space being explored by RBFS. The double circled nodes are 

on CLOSED and single circles are on OPEN. The dashed circled nodes and edges are yet to be 

generated. The values in the circles are f-values. Show how the graph will look after two more 

nodes are expanded. Mark the node that will be inspected next in the resulting graph.

10. Implement a program to accept two strings from the vocabulary {C, A, G, T} and align the two 

strings. Assume the following costs. A mismatch costs 3 and a gap insertion costs 2 units. Two 

matching letters incur a cost of 0.  Allow the user to change these costs and observe the alignments 

produced. Display the aligned sequences and the cost of the solution.

11. Construct a map of your city or locality. Assign costs of edges based on the length of roads and the 

amount of traffic expected on that road. Implement the Beam Stack Search and the A* algorithm 

FIGURE 5.35 The graph from Figure 3.23 with weights assigned to edges.
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for route finding. Compare the performance of the two algorithms in terms of nodes inspected 

and solution found. Try different beam widths.

12. Simulate the DCBSS algorithm on the graph in Figure 5.37 with a beam width 2. What are the 

successors of nodes F and G in the layer that follows? Assume that h(n) = 0 for all nodes. Try the 

algorithm with an admissible heuristic function (with approximate distances).
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FIGURE 5.38 A small problem graph. Assume A is the start node, and I the goal node. Edge labels 

are costs associated with the moves.

FIGURE 5.37 A graph being explored by RBFS. Numbers in the nodes denote f-values.
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T  he problem solving approach we have explored so far is to search for a sequence of moves starting 

from the given state in the state space, or a candidate solution in the solution space, till a desired 

state or solution is reached. This problem solving strategy is essentially forward looking trial and error. 

In many situations, one can instead reason backwards from the goal to determine what needs to be done. 

That is, the search algorithm reasons in a backward fashion from the goal, rather than in the forward 

direction from the given. Of course, in some problems this may not make a difference, for example in 

path finding in a city map where the two approaches are equivalent. But in some problems, backward 

reasoning can lead to breaking up the problem into smaller parts that can be tackled independently, 

leading to smaller search spaces. 

 Consider, for example, the task of designing a treat for your friend. The “moves” could be choosing 

from different activities, and the goal could be an evening plan acceptable to your friend. Let us say 

that the evening plan constitutes three phases. You start with some activity, followed by a movie and 

dinner. Let the options be,

 Evening Æ Visit Mall | Visit Beach

 Movie Æ The Matrix | Artificial Intelligence: AI | Bhuvan Shome | Seven Samurai

 Dinner Æ Pizza Hut | Saravana Bhavan

where the above productions represent the choices for each phase. Let us say that the forward search 

program traverses the tree shown in Figure 6.1 before terminating. Your friend is happy with a walk on 

the beach followed by the movie ‘The Matrix’, and dinner at Saravana Bhavan, as shown by the leaf 

node in grey in the figure. One can inspect the tree in some order, but observe that it is fruitless to search 

in the left subtree, which has Visit Mall as the activity. But a depth first search will end up doing exactly 

that, spending time searching the entire subtree below Visit Mall, before moving to the right half of the 

search tree. When it fails in one subtree below, it backtracks to the last choice made and tries the next 

subtree. That is, it does chronological backtracking.

 One problem with chronological backtracking that DFS does is that it simply goes back to the last choice 

point and tries the next option. If after trying the first combination (Visit Mall, The Matrix, Pizza Hut),  

the algorithm somehow knew that the culprit for failure was the Visit-Mall choice, it would backtrack 

directly to trying the next option at that level. We will visit this strategy, known as dependency-directed 

backtracking in Chapter 9. Meanwhile, let us focus on problem decomposition with backward reasoning.

 The DFS search formulation above is a bottom-up approach, in which the algorithm synthesizes 

different combinations of primitive moves, and then tests for the goal being achieved. In this chapter, 

we explore an alternative approach in which we view problem solving as a top-down process. The main 

idea is that problems can be decomposed into subproblems. This decomposition process continues till we 

have problems that are trivial to solve. This could happen when we have a library of simple (primitive) 

problems and their solutions. This approach assumes that the problems can be decomposed into smaller 

problems that can be solved independently, in smaller search spaces.

Problem Decomposition

Chapter 6
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 For the above problem of planning an evening out, we decompose the problem into three parts to be 

solved independently. They correspond to the three phases of the evening plan. The resulting search tree 

is depicted in Figure 6.2. Notice that the decomposition happens at the top level in this problem. This is 

indicated in the figure by connecting the three edges emanating from the root.  In general, decomposition 

could also happen lower down as one breaks down a subproblem further.

Plan outing

Dinner

Pizza Hut

Movie

Visit Mall

Evening

Seven Samurai

Bhuvan Shome

Artificial

Intelligence: AI

The Matrix

Visit Beach Saravana Bhavan

OR arc

AND arc

FIGURE 6.2 An AND-OR tree. And arcs represent subproblems to be solved individually. Notice that 

the solution is subtree rather than a path.

FIGURE 6.1 A search tree for planning an evening out. The desired plan is marked by the shaded 

node. Depth First Search will search through from left to right.
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 The semantics of an AND arc is that all the connecting edges have to be traversed. The three edges 

in the figure together can be thought of as a hyper-edge. Traditionally, such edges are known as AND 

edges, because all individual edges have to be traversed. In contrast, the other edges (the kind that we 

have been dealing with all along in the preceding chapters), are known as OR edges. This is because one 

could go down one edge, or the next one, or the next one. If a node has only an AND edge coming out 

of it, we will call it an AND node. Likewise, if it has only OR edges coming out, we will call it an OR 

node.  In general, if we have a graph with both kinds of nodes, we can always convert them into graphs 

with pure AND and OR nodes by an addition of extra nodes, as illustrated in Figure 6.3. These search 

spaces are also known as goal trees, (Charniak and McDermott, 1985) because they break up a goal 

(problem) into subgoals (subproblems). We also call them AND/OR trees/graphs or AO trees/graphs.

G

A B C

A B

B C

G

FIGURE 6.3 An AO graph with mixed nodes can be converted into a graph with pure AND and OR 

nodes.

 Since one has to traverse all the edges at an AND node, the solution obtained will not be a path, but a 

subtree (or a subgraph) in the AND/OR search space. This is illustrated as solid arcs in Figure 6.2 for the 

AND/OR problem formulated above. Observe that one can still use a depth first search approach, with 

the modification that at each AND node, more than one search will be spawned. In the above example, 

these will be three searches. The first will search below the node labelled Outing, the second below the 

node labelled Movie, and the third below the node Dinner. But since they will search independently, 

they will not explore fruitless combinations as done by our first formulation. In general, of course, an  

AND/OR search space will be much larger, with many AND and OR levels, and we will still need to 

adopt a heuristic approach.

 We look at a couple of examples where AND/OR graphs have been used for building problem solvers.

6.1 SAINT

One of the first AI systems that used AO graphs was SAINT, developed as part of his doctoral thesis by 

James Slagle (1961). SAINT was designed to solve symbolic problems in mathematics (Slagle, 1963), 

and was a precursor to many subsequent systems. We look at an example where SAINT solves an integral 

equation by searching for transformations and problem decomposition. The given problem is, 

Ú
x4

—
(1 – x2)5/2

 dx

Through a series of transformations as shown in Figure 6.4, SAINT breaks it down to three simple 

problems that can be solved trivially. The reverse transformations are applied to the three solutions to 

finally get the solution,
1
—
3

 tan3(arcsin x) – tan(arcsin x)  + arcsin x
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FIGURE 6.4 Symbolic integration as an AND-OR search problem (Nilsson, 1971).
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6.2 Dendral

One of the earliest successes of AI was the program Dendral (for Dendritic Algorithm), developed 

at Stanford University during 1965–1980, by a team led by Joshua Lederberg, Edward Feigenbaum, 

Bruce Buchanan and Carl Djerassi (Lindsay et al., 1980, 1993). The Dendral program was the first AI 

program to emphasize the power of specialized knowledge over generalized problem-solving methods.

The objective of the program was to assist 

chemists in the task of determining the structure of 

a chemical compound. This problem is important 

because the chemical and physical properties of 

compounds are determined not just by what their 

constituent atoms are, but by the arrangement of 

these atoms as well1. The difficulty is that the 

number of candidate structures (called hypotheses) 

for a given compound can be very large, and 

grows combinatorially (running into millions) 

as we consider molecules with more and more 

atoms.  Dendral led to a program called CONGEN 

(CONstrained GENerator) that allows a chemist 

to constrain the generation of candidates. Figure 

6.5 shows some of the hypotheses generated by 

CONGEN for the compound C6H13NO2.

The candidates generated were used as inputs 

to a system that produced synthetic spectrograms 

which were then tested against real spectrograms of the given compounds, before presenting them to the 

user. The key to its success was to use its knowledge of chemistry in the form of rules about allowed 

and taboo connections, to consider only plausible candidates. The success of the program is illustrated 

by the following quote:

“By observing structural constraints within molecules which made certain combinations of atoms 

implausible, generating and testing hypotheses about the identity of the compound, and ruling 

out candidates that did not fit within the structural constraints, Dendral traced branches of a 

tree chart that contained all possible configurations of atoms, until it reached the configuration 

that matched the instrument data most closely. Hence, its name, from “dendron, “ the Greek 

word for tree. … In its practical utilization, Dendral was designed to relieve chemists of a task 

that was demanding, repetitive, and time-consuming: surveying a large number of molecular 

structures, to find those that corresponded to instrument data. Once fully operational, the program 

performed this task with greater speed than an expert spectrometrist, and with comparable  

accuracy.”2

Figure 6.6 illustrates the kind of search space explored by Dendral. The reader will recognize it as 

an AO graph.

1 To look at an extreme example, graphite and diamonds are just different arrangements (allotropes) of carbon atoms. 
2  The Joshua Lederberg Papers, Computers, Artificial Intelligence, and Expert Systems in Biomedical Research, in Profiles In 

Science, National Library of Medicine, available at http://profiles.nlm.nih.gov/BB/Views/Exhibit/narrative/ai.html
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FIGURE 6.6 The search space for Dendral is an AO graph (figure adapted from (Mainzer, 2003) 

Chapter 6). The double line nodes are SOLVED nodes.

6.3 Goal Trees

We look at a heuristic algorithm to search goal trees. We assume that we have a heuristic function that 

estimates the cost of solving each node. 

The solution of an AO problem involves reduction to a set of primitive problems which have trivial 

solutions. We will label the primitive problems in the AO graph as SOLVED, to indicate that no further 

reduction is required. We will assume that SOLVED nodes have a certain cost associated with them. 

This cost may be zero in problems like symbolic integration, where the solution is directly available. 

This cost may also be nonzero for some problems. For example, if we were to pose the problem of 

constructing a house then one of the primitives of our system could be “install a door”, which would 

have a cost associated with it. We may also have costs associated with each arc or edge, representing 

the problem transformation cost. Whatever the costs associated with a problem, we will assume that 

a heuristic function estimates the total cost of solving a given node. Furthermore, we will require the 

heuristic function to be a lower bound on the actual cost of solving a node, in order to ensure that the 

optimal cost solution is found. The argument for underestimating the actual cost is similar to the one 
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presented for Branch&Bound and A* algorithms 

seen in Chapter 4. That is, as long as there is 

the possibility of finding a cheaper solution, the 

algorithm will continue searching even after one 

has been found.

Before writing the algorithm for solving 

goal trees, let us cook up a small problem and 

investigate how search could progress, using a 

heuristic function. Let us say that we start with 

a goal G of estimated cost 45, and expand it to 

get two ways of solving it, one an OR arc and 

the other an AND arc as shown in Figure 6.7. 

Let the three successor nodes A, B and C have 

heuristic values as 42, 22 and 24 respectively. 

Let the three edges leading to them have costs 4, 

3 and 2 respectively.  Which node should the algorithm refine (expand) next?

Unlike the A* search for optimal solutions, (paths) a node in the AO graph is not a representative of 

a solution. This is because solutions are not usually paths but subtrees, and a node may have an AND 

sibling (or a cousin) which also contributes to the solution with its own associated cost. Thus, looking 

at the heuristic value of a node by itself may not be useful. Even counting the costs of the edges leading 

to the node (like the g-values in A*) will not help, because the node only accounts for a part of the 

solution. Instead, we need to look at the total estimated cost of a solution. In the above example, the total 

estimated cost of the two options is 46 and 52 respectively. After every expansion by the algorithm, the 

best choice at each node is marked. The search should refine the marked solution. In the above example, 

this means that it should expand the node A next. 

The resulting graph is shown in Figure 6.8 and it represents a typical AO graph, not yet solved 

completely. Observe that there are two choice points in the graph, and at both, the best solution is 

marked. The topmost task at the root has two options. Let us call them the left option and the right 
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h = 42 h = 22 h = 24

h = 45

46

FIGURE 6.7 Which is the best node to expand 

next? Even though node B has the lowest 

heuristic value it is a part of a more expensive 

looking option. This is because it is a leaf on 

an AND (hyper) arc. The estimated cost of 

that solution is 22 + 3 + 24 + 3 = 52. The more 

expensive looking node A has an estimated cost 

of 42 + 4 = 46. Note that the choice is made on 

the basis of backed up values 46 and 52.
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FIGURE 6.8 After node A is expanded, there are two options (D, E) and (F, G) with estimated costs 

54 and 45 respectively. The revised estimate of A now becomes 45, the lower of the two. Propagated 

back to root, this option has a revised cost of 49. It is still a better option, and AO* will now go down 

the marked path and expand one of F and G.



Chapter 6: Problem Decomposition 163

option. In general, of course, there may be any number of options. The left option has been refined and 

it itself has two options for further decomposition. Again, the best option is marked. The left option, 

represented by node A, had a heuristic estimate of 42 before expansion, which was revised to 45, the 

better of the two sub-options, represented by nodes F and G, and marked as the better option. The revised 

estimate of node A has to be propagated up, and the left option at the root now evaluates to 49 instead 

of 46. 

In every cycle of refinement, the algorithm starts at the root. It follows the marked best option at 

each choice point, until it reaches some yet unsolved node or a set of nodes. It will refine one of them, 

and then propagate the new values back up again. In the process if the subproblems of a given node are 

SOLVED nodes then it may also propagate SOLVED label back. The algorithm will terminate when the 

SOLVED label is backed up right up to the root.

Thus, the algorithm for solving the goal tree, known as the AO* algorithm (Martelli and Montanari, 

1978; Nilsson, 1980), has the following cycle:

 ● Starting at the root, traverse the graph along marked paths till the algorithm reaches a set of 

unsolved nodes U.

 ● Pick a node n from U and refine it.

 ● Propagate the revised estimate of n up via all ancestors.

 ● If for a node all AND successors along the marked path are marked SOLVED, mark it SOLVED 

as well.

 ● If a node has OR edges emanating from it, and the cheapest successor is marked SOLVED then 

mark the node SOLVED. 

 ● Terminate when the root node is marked SOLVED.

The detailed algorithm given in Figure 6.9 below has been adopted from (Rich and Knight, 1991).

6.3.1 An Example Trace of AO*

Let us look at a complete example depicting the progress of the AO* algorithm on a synthetic problem. 

We begin with a version of a problem where the heuristic function is not a lower bound on the actual 

cost of solving each node. In the following example (Figure 6.10), assume that the SOLVED nodes all 

have an associated cost zero. The labels on the nodes are heuristic values. Let the cost of every arc in 

the graph be one. This means that the cost of  solving a node is dependent only on the number of arcs 

leading from it to SOLVED nodes. A cursory glance at the figure reveals that the heuristic function 

shown in the figure is quite wild. It definitely overestimates the cost of solving nodes specially the ones 

closer to SOLVED nodes.

Figures (6.11 continued in 6.12) show the progress of the AO* algorithm. At each stage, the algorithm 

goes down the marked path and expands the node shown in bold. The backed-up values in the nodes are 

the best known cost estimates for that node, backed up after each expansion.

After the last node in the above sequence is refined, the algorithm terminates with a solution as 

shown in Figure 6.12. 

The cost of the solution found is 8, but the heuristic functions in many places had much higher 

estimates. An overestimating heuristic function makes the search opinionated. It refuses to consider 

unseen alternatives because it estimates them to be worse. In the process, it may miss better solutions. 

For example, the AO graph has a better solution costing 7 units which the algorithm misses.
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The way to ensure that the optimal solution is found is by making sure the heuristic function under-

estimates the cost of solving a node. In this problem, this can be done by dividing the heuristic value 

by ten. Equivalently, we can assume each arc to cost 10 units, which makes the heuristic values given 

in problems as underestimating the actual costs. The progress of the algorithm is shown in Figures 6.13 

and 6.14.

The underestimating function does not grab the first solution in sight, and continues searching till no 

better options are left. The progress of the algorithm is continued below.

The algorithm terminates with the optimal solution costing 70 shown in the right in Figure 6.15. In 

fact, at that point, it has also discovered another optimal solution shown in the figure on the left.

FIGURE 6.9 Algorithm AO*.

Algorithm AO*()

1  /* uses a graph G instead of open and closed

2   the graph G is initialized to the start node start */

3  G ¨ start

4  Compute h(start)

5  while start is not labeled SOLVED AND h(start Futility

6   do     /* Futility is the maximum cost solution acceptable */

7    /* Forward phase */

8    Trace the marked path leading to a set U of unexpanded nodes

9    Select node n from U

10    children ¨ successors of n

11    if children is EMPTY

12     then h(n) ¨  Futility

13     else  Check for looping in members of children

14        Remove any looping members

15        for each s Œ children
16         do  Add s to G

17          if s is primitive

18           then  Label s SOLVED

19              Compute h(s)      /* could be zero*/

20    /*Propagate Back*/

21    /* Let M be the set of nodes that are modified */

22    M ¨ n

23    while M is not EMPTY

24     do Select deepest node d from M, and remove it from M

25      Compute best cost of d from its children

26      Mark best option at d as MARKED

27      if all nodes connected through marked arc are labeled SOLVED

28       then Label d as SOLVED

29      if d has changed

30       then Add all parents of d to M

31 if start is marked SOLVED

32   then return marked subgraph starting at start

33   else return FAILURE



Chapter 6: Problem Decomposition 165

FIGURE 6.10 A synthetic AND/OR problem. Assume every arc costs one unit to traverse. Nodes are 

labelled with heuristic values. Solved nodes represented by double-lined boxes have cost zero.

FIGURE 6.11 The progress of the AO* algorithm. The best options at each choice point are marked 

by arrows. Nodes in double-line squares are SOLVED.
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FIGURE 6.13 Searching with an underestimating function. Observe that an underestimating heuristic 

function makes the search try out more options at each stage. Searching with an overestimating function 

had plunged down one path.

FIGURE 6.12 The algorithm terminates as the root (start) is labelled SOLVED (double square). The 

solution is shown in bold lines on the right.
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FIGURE 6.14 AO* terminates after exploring a larger search space, but finds an optimal solution.
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6.4 Rule Based Systems

Rule based systems or production systems have been used in general to decompose a problem and address 

it in parts. In its most abstract form, a rule or a production is a statement of the form,

Left-Hand Side Æ Right-Hand Side

in which the computation flows from the left-hand side to the right-hand side. In the example we saw 

in the beginning of this chapter, productions were used to capture goal-directed knowledge about the 

domain. The production,

Dinner Æ Pizza Hut | Saravana Bhavan

says that the goal of having dinner can be reduced either to the goal of eating at Saravana Bhavan or 

eating at Pizza Hut. The production system was used to break down a given goal into a set of primitive 

goals that could be solved trivially.

Productions or rules can also be used in a forward direction, in a data-driven manner. The production 

then looks like, 

Pattern Æ Action

where the pattern is in the given database. Thus, 

a rule based system looks at a part of a state, 

and triggers some action when a pattern is 

matched. Usually, the actions are to make some 

changes in the database describing the state. 

That is, one in fact achieves a state transition 

but only by dealing with a part of a state that is 

characterized by the pattern.

For example, one could write a rule to sort 

an array of numbers as follows:

(p interchange

   (array ^ index i ^ value N)

   (array ^ index {j > i} ^ value {M < N}

  Æ
   (modify 1 ^value M)

   (modify 2 ^value N))

We have used the notation of the language OPS53 (Forgy, 1981), one of the first rule based languages 

developed at Carnegie Mellon University. The above rule has a name “interchange” and reads as follows:

(rule interchange

   IF there is an element at index i with value N,

     AND IF there is an element at index j > i with value M < N

   THEN

   modify array(i) to hold M, 

   AND  modify array(j) to hold N)

3 The so called “Official Production System” language was developed by Charles Forgy in Carnegie Mellon University. 

State

Pattern

FIGURE 6.16 A rule looks at a part of a state and 

modifies it to result in a new.
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Given an array of numbers, this rule will keep firing as long as it sees two numbers that are in an 

incorrect order, and will only stop when all pairs of elements are in order. While this rule will indeed sort 

a given array, one cannot make any statement about how efficient it will be in doing so. This is because 

we do not know which two elements it will look at any given time point. That would depend upon the 

conflict-resolution strategy adopted by the inference engine (describe below).

This rule gives us an insight into a strong point of rule based systems that the same rule can apply to 

different sets of data doing the same task with each one of them. Identifying what data a rule matches 

is done at runtime. Thus, based on the kind of processing we want to do, we could write a set of rules 

that will apply to patterns in any given state. This would imply that we may not have to write MovGen 

functions for doing state transformation. Instead, the state transformation (or moves) can be composed 

from rules. We will look at this approach in more detail in Chapter 7 on planning, in which we will use 

planning operators, which are like production rules, to construct sets of moves to search over.

Both the examples above depict rules being used with forward chaining. That is, the left-hand side 

is used to match the rule and the right-hand side, the effect of using the rule. The other direction is also 

possible. The right-hand side can be used as a match pattern and the left-hand side defines the effect of 

using the rule. Such a strategy is called backward chaining.

However, the two examples differ in another aspect.

The example of production that reduces “dinner” to “Pizza Hut” or “Saravana Bhavan” is operating 

in a goal-directed fashion. It is saying that if the goal is to have dinner then it could be achieved by 

going to one of the two restaurants. This form of reasoning is also called backward reasoning because 

the reasoning is done backwards from the goal. 

The second example, that is in fact a one rule program for sorting an array of numbers, is an example 

of data-driven reasoning or forward reasoning. This is because the rules are triggered by patterns in the 

data. The name pattern-directed inference systems has also been used to refer to such systems.

The above two rules illustrate the fact that both forward reasoning and backward reasoning can be 

implemented using forward chaining. In fact, all four combinations of forward and backward reasoning 

and forward and backward chaining are possible. In Chapter 12, we look at deduction in logic, backward 

reasoning with backward chaining, and also forward reasoning with forward chaining. 

In the rest of this chapter, we explore how forward chaining systems have been implemented to 

provide a platform for encoding problem solving knowledge in the form of rules obtained by domain 

experts. The idea took off in the seventies in the last century. The aim was to get experts in different 

domains to articulate their knowledge about the domain in the form of rules. Domain experts were not 

required to be competent in programming in order to build systems based on their knowledge. They 

needed only to express their knowledge in the <pattern, inference> form, and an inference engine would 

operationalize this knowledge in problem solving activity. Thus, the idea of Expert Systems was born.

We look at one system XCON briefly before delving into the algorithms that go into implementing 

the inference engine, also called an expert system shell.

6.5 XCON

Originally called R14, the XCON system was a forward-chaining rule-based system to help automati-

cally configure computer systems (McDermott, 1980a, 1980b). XCON (for eXpert CONfigurer) was 

4  McDermott’s 1980 paper on R1 won the AAAI Classic Paper Award in 1999. According to legend, the name of R1 comes from 

McDermott, who supposedly said as he was writing it, “Three years ago I wanted to be a knowledge engineer, and today I are 

one.” —http://en.wikipedia.org/wiki/Xcon
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built for the computer company Digital Equipment Corporation, and helped choose components for 

their VAX5 machines. XCON was implemented in the rule based language OPS5 described below. By 

1986, XCON had been used successfully at DEC processing over 80,000 orders with an accuracy over 

95%. 

XCON is a forward-chaining rule based system that worked from requirements towards configurations, 

without backtracking. It needed two kinds of knowledge (Jackson, 1986):
 ● Knowledge about components, for example voltage, amperage, pinning-type and number of 

ports, and
 ● Knowledge about constraints, that is, rules for forming partial configurations of equipment and 

then extending them successfully.

It stored the component knowledge in a separate database, and used its production system architecture 

to reason about the configuration. The following is an example of a record that describes a disk controller.

RK611*

 CLASS:     UNIBUS MODULE

 TYPE:      DISK DRIVE

 SUPPORTER:   YES

 PRIORITY LEVEL: BUFFERED NPR

 TRASFER RATE:  212 ...

Constraints knowledge is specified in the form of rules. The LHS describes patterns in partial 

configurations that can be extended, and the RHS did those extensions. The following is an English 

translation of an XCON rule taken from (Jackson, 1986).

DISTRIBUTE-MB-DEVICES-3

IF   the most current active context is distributing massbus devices 

   &  there is a single port disk drive that has not been assigned  to a 

massbus

   & there is no unassigned dual port disk drives 

   & the number of devices that each massbus should support is known

   &  there is a massbus  that has been assigned at least one disk drive 

and that should support additional disk drives

   &  the type of cable needed to connect the disk drive to the previous 

device on the disk drive is known

THEN

 assign the disk drive to the massbus

FIGURE 6.17 An English translation of an XCON rule (Jackson, 1986).

The XCON rules were written grouped into rule sets catering to distinct subtasks in the configuration 

tasks, by specifically stating the context (see first condition in the above rule) to demarcate the different 

sets of rules. This makes the task of the underlying processing algorithm easier, because it needs to only 

look at a subset of rules at each stage. Further, XCON breaks up the subtasks themselves into smaller 

subtasks, resulting in a task hierarchy of the kind depicted in Figure 6.2. Thus, we see that with the 

5  “VAX” was originally an acronym for Virtual Address eXtension, both because the VAX was seen as a 32-bit extension of the 

older 16-bit PDP-11 and because it was a commercial pioneer in using virtual memory to manage this larger address space.—

http://en.wikipedia.org/wiki/VAX
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introduction of contexts (or subgoals) as data elements, one can bring in a backward reasoning flavour 

even in a forward-chaining system.

The high-level task break up in XCON is as follows (Jackson, 1986).

 1. Check the order, inserting any omissions and correcting any mistakes.

 2. Configure the CPU, arranging components in the CPU and the CPU expansion cabinets.

 3. Configure the unibus modules, putting boxes into expansion cabinets and then putting the modules 

into the boxes.

 4. Configure the panelling, assigning panels to cabinets and associating panels with unibus modules 

and the devices they serve.

 5. Generate a floor plan, grouping components that must be closer together and then laying the 

devices out in the right order.

 6. Do the cabling, specifying what cables are to be used to connect devices and then determining the 

distances between pairs of components.

Thus, XCON fills in the low-level details of the above “algorithm” by selecting and firing specific 

rules. And since the entire implementation is in OPS5, the sequencing of the high-level tasks is controlled 

by activating the relevant contexts in the given order, somewhat like passing a baton in a relay race. 

McDermott said that the justification of such an approach of creating and working within specific 

contexts was that this was how the human experts approached the task.

6.6 Rule Based Expert Systems

The idea of expert systems that caught on, following the development of some of the systems described 

above, was that domain experts could transfer their knowledge to systems in the form of rules, and 

a general purpose inference engine would string together rule firings to some problems using this 

knowledge.  It led to the development of programming languages like OPS5 (see also (Brownston et 

al., 1985)) which facilitated the expression of such rules.

Traditionally, an expert system is a rule based system and has the following components.

1. A Set or Rules The set of rules are like the long-term memory (LTM) of a problem solver (Newell, 

1973). Rules are basically a memory of associations between patterns and actions. When some elements 

of data in the current problem match a pattern in a rule then that rule is ready to fire or execute.

2. A Working Memory (WM) The Working Memory of a problem solver is like its Short-Term 

Memory (STM). It stores the data related to the current problem. The working memory is made up of 

Working Memory Elements (WMEs). Each WME carries a time stamp marking when it was created, 

usually implicitly in sequence numbers assigned to them.

3. The Inference Engine The inference engine is a constant feature in all systems. It is domain 

independent, and drives the processing. The inference engine operates in the cycle described in Section 

6.6.3, in which it picks rules with matching data and executes them.

6.6.1 Working Memory

The working memory is made up of an ordered sequence of WMEs. Each WME is an instance of a WME 

class. A WME class has the following structure, 
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(classname

   attribute-name-1

   attribute-name-2

   .

   .

   attribute-name-k)

For example, devising a bridge playing program, one might declare a class in OPS5 by the following 

statement, which declares a class and its attributes.

 (literalize card-rank

 suit ; spades, hearts, diamonds or clubs or s, h, d, c

 card ; a, k, ... , 3, 2

 rank ;1, 2, ... , 12, 13

 int-rank ; internal rank

 will-win ; winner number from top

 tempo ; losers above this card

 player ; north6, south, east or west or N, S, E or W

 points ; 0, 1, 2 , 3, 4

 rankclass ; rank in terms of trick-taking value.

  ; for example a king supported by an ace has rankclass 1

 played ; yes, no

 updated) ; yes, no, marked, ranked

The text after the semicolon is a comment in OPS5. The class card-rank will have 52 instances in 

a card pack. The attributes are meant to keep track of the name, the current rank, the player holding it 

and whether it has been played or not amongst other features that are modified as the game proceeds.

A WME is an instance of a class, and has the following form:

(classname

   ^attribute-name-1 attribute-value-1

   ^attribute-name-2 attribute-value-2

   .

   .

   ^attribute-name-m attribute-value-m)

That is, the WME has values in the various attribute slots. Observe that the index m used above is 

different from k in the class definition. In fact, m is less than or equal to k. This is because one does 

not have to specify values for all attributes in a WME. Furthermore, the order of specifying attributes 

in a WME is unimportant. Specifying attributes in arbitrary order does not increase the complexity of 

matching process, because of the compiled network that the OPS5 system uses. The following are then 

valid instances of the class card-rank. Observe that white space is ignored and indentation is mainly for 

human consumption, and order of mentioning attributes and their values does not matter.

(card-rank ^card 9 ^suit spades ^player north ^played no)

(card-rank ^player south ^card a ^suit spades ^rank 1)

6 Traditionally, in contract bridge literature, the four players are called North, South, East and West.
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6.6.2 Rules

We have already seen some rules defined above. In OPS5, a rule has the following structure:

(p ruleName

 pattern-1

 pattern-2

 .

 .

 pattern-p

Æ
 action-1

 action-2

 .

 .

 action-r)

where each pattern is equal to or a generalization of a matching WME, optionally preceded by a negation 

sign “–”. However, the first pattern cannot have the negation sign.  The pattern may itself be enclosed 

in a pair of angle brackets, along with a name assigned to the pattern.

The following patterns are discussed in the context of the two example WMEs above.

(card ^suit spades) and (cards ^suit <x>)

Both patterns will match both WMEs. The value <x> in the second pattern is a variable that can 

match anything. However, if the variable occurs in more than one pattern within a rule then it should 

match the same value, 

(card ^suit spades ^player <<south north>>)

which will also match both WMEs. The value for attribute ^player <<south north>> is a disjunction. 

This means that the value could be either of south and north. The pattern can also be specified as a 

conjunction, as follows, 

(card ^player south ^rank {<n> > 0 < 5})

This says that the value of rank of the card is called <n>, and that it should both be greater than 0 

and smaller than 5. This will match the second WME, as will the following: 

(card ^player south ^rank {<n> = 1})

(card ^player south ^rank < 2)

Given a pattern p and a WME w, the match between the two is positive, if for every attribute of the 

pattern there is a matching attribute in the WME. By matching we mean that the value of the attribute 

in the WME satisfies the constraints expressed in the corresponding slot in the pattern. 

The negation sign “–”  inverts the match criteria. A pattern –p in a rule is satisfied if there is no WME 

in the WM matching that pattern.  Thus, for example, the following rule will match the highest ranking 

card held for the player south in each of the suits that has not been played,

(p top-card

 (card-rank ^suit <s> ^player south ^rank <r> ^card <c> ^played no)

 -(card-rank ^suit <s> ^player south ^rank < <r> ^played no)

Æ
 (make (highest-card ^player south ^suit <s> ^card <c> ^rank <r>))
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The above rule will fire four times at the beginning of the game, once for each suit, and create new 

WMEs, specifying the highest card of south in each suit. If we had instead stated the value of ^player as 

a variable <p> instead of the atom south, the rule would have fired for each of the four players.

Observe that we have also introduced one RHS action in this example. The action is 

(make WME …)

This has the effect of creating the specified WME. The make action can also be specified outside a 

rule, independently, to the OPS5 interpreter, either directly from the keyboard, or in a file presumably 

containing a set of initializing actions.

Another action on the RHS is (modify WME …) that modifies a WME identified in the LHS. The 

patterns in the LHS of a rule can be referred to, either by their sequence number, or an explicitly specified 

name. For example, we might have a rule that does some actions once a card is to be played expressed 

as followed.

(p update-top-card

 (played ^card <c> ^player <p> ^suit <s>)

 (card-rank ^card <c> ^player <p> ^suit <s>)

 (highest-card ^card <c> ^player <p> ^suit <s>)

Æ
 (remove 3)

 (modify 2 ^played yes))

Notice that the patterns on the LHS just need be enough to identify the concerned WME and access 

its relevant attributes. The pattern (card-rank …) above is used to spot the relevant card and modify its 

attribute played to value yes, and one needs only enough information to pinpoint the WME.

Two actions have been introduced above. The first one says that the WME matching the pattern 3 

of this matching instance of the rule should be removed or deleted. The second one says that in the 

corresponding matching WME for pattern 2, the value of the “played” attribute is to be set to “yes”. This 

will, of course, overwrite the earlier value of “no” before the card was played. 

The above rule could equivalently be written as,

(p update-top-card

  (played ^card <c> ^player <p> ^suit <s>)

  {<pc> (card-rank ^card <c> ^player <p> ^suit <s>)}

  { <hc> (highest-card ^card <c> ^player <p> ^suit <s>)}

 Æ
  (remove <pc>)

  (modify <hc> ^played yes))

This uses names for patterns instead of their sequence number.

Apart from the three actions—make, modify and remove—introduced here, the language also 

has actions for doing arithmetic computations (compute …) and input output actions (openfile …) 

(closefile …), (write …), (accept …), (crlf), etc. The reader is encouraged to consult the book by 

Brownston et al. (1985) for more details.
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6.6.3 Inference Engine

The inference engine goes through the following cycle:

1. Match For each rule, find all matching instances. The output of the MATCH routine is known as the 

Conflict Set (CS). If the CS is empty then the program exits. The Conflict Set is a made up of elements 

of the form (rulename timestamp1 timestamp2… timestampk). Where the timestampi is the sequence 

number used to identify the WME matching the corresponding pattern in the rule. That is, the Conflict 

Set contains a set of rules that are ready to fire along with their matching WMEs.

2. Resolve Select one element from the Conflict Set. That is, decide what rule is going to fire with 

its data.

3. Execute Execute (or fire) the selected rule. Make the appropriate changes in the WM, and also do 

any Input/Out that is indicated. Then go back to step 1.

The most straightforward task in the above cycle is step 3. It simply involves executing the instructions 

in the RHS of the rule. The other two steps need considerable attention because they determine the 

problem solving efficiency.

The second step RESOLVE is the one that deploys the problem solving strategy in OPS5. The 

Match-Resolve-Execute cycle of rule based systems can be viewed as doing hill climbing search in a 

(dynamic) state space. The Match step is equivalent to applying the moveGen function (see Chapter 2) 

to a given state. It generates the possible changes one can make to the state. The Resolve step embodies 

the strategy of search. It decides which of the candidate moves should be applied. That is, which rule 

in the CS should be selected to fire.

One strategy to select the move (rule instance with matching data) is some fixed strategy like the first 

(in order of writing) rule matching. This would be akin to doing depth first search in the state space. In 

practice, rule based systems employ some more sophisticated strategies. For example, OPS5 uses the 

following criteria, in order of application, to order the Conflict Set (CS).

Refractoriness7 This says that a given rule will fire only once with a given combination of data. 

This prevents the same rule from firing again and again with the same data, when the RHS does not 

change the data. For example, the rule named top-card above will fire only once with the given data.

Recency Choose the rule that matches the most recently produced data. This helps keep a reasoning 

thread going. The most recently created data (WME) gets acted upon quickly.

Specificity This says that given an option between two rules, the rule that has a more specific LHS is 

preferred. Specificity can be measured by counting the number of attributes in the patterns in the LHS. 

The last strategy is known as the LEX strategy. A variation of LEX known as MEA (means ends 

analysis—see Chapter 7). In MEA, the recency of the first pattern in all the rules is used to select the 

rule to fire. If there is a tie between rules then the system falls back upon the LEX strategy.

One can use the specificity rule to implement default rules which are fired when a more specific 

rule does not match. If a more specific rule were to match then that would be preferred. For example, 

in a contract bridge bidding program, one may have a rule asking a player to pass if there is no reason 

(matching rule) to make any other bid. One could write two rules as follows:

7  This term comes from the neurobiological observation of a refractory period for a neuron, which means that the neuron is not 

able to fire immediately without first going through a relaxation process. — OPS5 Reference, available at http://www.cs.gordon.

edu/local/courses/cs323/OPS5/ops5.html
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(p pass-rule

 (turn-to-bid ^player <x>)

Æ
 (make (bid ^player <x> ^bidName pass))

(p 1N-opening

 (turn-to-bid ^player <x>)

 (hand ^player <x> ^points <<15 16 17>> ^shape balanced)

 -(bid)

Æ
 (make (bid ^player  <x> ^round 1 ^type opening

^bidName notrump ^denomination 1))

Given these two rules, if the program encounters a balanced hand with 15 to 17 points8 and no one 

else has bid then it would make an opening bid of 1 no trump on its turn. Otherwise, the rule named 

pass-rule will advocate discretion and pass. In practice, a bidding system would have hundreds of rules.

Apart from the built-in conflict resolution strategies in the language, OPS5 also allows the user to 

define priority of rules. One may define different levels of priority classes as follows. 

(priority priority-class value).

For example, one could have the following priority classes, 

(priority top-level-rule 120)

(priority higher 60)

(priority high 50)

(priority low -50)

(priority lower -60)

(priority lowest -100)

Then one could assign individual rules to any group, as given below:

(rule-priority rule-name priority-class) 

(rule-priority 1N-opening high)

(rule-priority Minor-suit-opening low)

The effect of this is that is that if both rules, 1N-opening and Minor-suit-opening, are in the Conflict 

Set then the 1N-opening rule will be preferred over the Minor-suit-opening rule, irrespective of how 

the in-built strategies evaluate them.

6.6.4 Some Sample Rules

We look at a few sample rules from (Khemani, 1989). The rules are for a knowledge based program 

for declarer play in bridge. The rules give some idea of the language, and also illustrate that rules in a 

program may embody different functionalities. They may represent some knowledge about expert plays 

and their applicability, they may be used for describing and recognizing patterns, or they may even be 

used for ‘run of the mill’ computations and updating of data.

8 The author strongly advises the reader to learn the game of contract bridge.



Chapter 6: Problem Decomposition 177

The rule below is used to make an inference about the opponents’ cards in a given suit when an 

opening lead is recognized to be the fourth best card of the player’s suit9. It also makes an inference 

about how many cards above the led card the partner of the player has.

(p could-be-fourth-best

  {<oc> (outstanding-cards <n>)}

  (card-rank ̂ card <c>   ̂ played lead  ̂ player <west> ̂ rank <r>   ̂ suit <suit>)

  (partner ^of <west> ^is <east>)

  (card-rank ^player << north south >>  ^suit <suit>  ^played no

     ^rank {<rc> < <r>}      ; number of cards higher

     ^int-rank {<ir> <= <n>})     ; than <c> is <= <n>

 -(card-rank ^player << north south >>   ^suit <suit>

       ^rank {< <r> > <rc>}   ^played no)

 (opponents ^hold {<kk> >= 3} ^cards-of <suit>)  ; 1 lead

-->

 (remove <oc>)

 (bind <diff> (compute <n> - <ir>))

 (write record ..could be fourth best..)

 (make inference ^player <east> ^has-cards <diff>

   ^above <c> ^rank <r> ^suit <suit>)

 (make inference ^player <west> ^has-cards 3

   ^above <c> ^rank <r> ^suit <suit>)

 (make inference ^suit <suit>

   ^breaks (compute 1 + <kk> - <diff>)

   ^and <diff> ^or better)

 (make type-of ^lead fourth-best))

(rule-priority could-be-fourth-best opponents-card)

The second rule is used to recognize an honour card lead, and also makes inferences about holdings 

in that suit.

(p honour-led

 (card-rank ^card << a k q j >>  ^played lead ^player <west>

         ^suit <suit> ^rank <rank>)

 (one ^plus <rank> ^is <second>)

 (card-rank ^player ew ^rank <second> ^suit <suit> ^card <jack>)

 (one ^plus <second> ^is <third>)

 (card-rank ^player ew ^rank <third> ^suit <suit> ^card <ten>)

-->

 (make type-of ^lead honour)

 (write record ..an honour lead..

   <west> should have the <jack> and <ten> as well..)

 (make inference ^player <west> ^has <ten>

  ^suit <suit> ^rank <third>) ;weaker inference ??

 (make inference ^player <west> ^has <jack>

      ^suit <suit> ^rank <second>))

(rule-priority honour-led opponents-card)

9 Players often choose the cards to play in accordance to stated conventions that are designed to convey information to the partner. 

Since the conventions are known, this also means that opponents are privy to this information too. 
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Before one plans the play, one has to do a survey of one’s resources to decide which strategies are 

going to be feasible. The following rule establishes some of the links between the two hands of the 

partnership.

(p constructing-entry-map

 (pick ^patterns <suit>)

 (card-rank ^player {<player> << north south >>}

  ^rankclass 1 ^rank <rank>

  ^card <card> ^suit <suit> ^played no)

 (partner ^of <player> ^is <partner>)

 (card-rank ^player <partner>  ^card <entry>

     ^played no ^suit <suit> ^rank {<r> > <rank>})

 -(entry ^from <entry> ^to <card> ^of <suit>)

-->

 (make entry ^from <entry> ^to <card> ^of <suit>

  ^hand <player>  ^rank <r> ^used no ^played no))

(rule-priority constructing-entry-map pick-patterns)

The next rule is a rule that suggests a strategy in play, known as a Bath coup. The strategy is applicable 

only in certain situations.

(p try-bath-coup

 (card-rank ^played lead ^player <west> ^suit <suit> ^rank 2)

 -(lead-trick  ^of <suit>)

 (solidity ^suit <suit> ^rankclass 1 ^cards 1)

 (solidity ^suit <suit> ^rankclass 4 ^cards 1)

 (sequence-is ^plays <west> ^after <south>)

 (card-rank ^suit <suit> ^player <south> ^rank 4 ^played no)

 (holding ^suit <suit> ^hrc 1 ^length > 2)

 (holding ^player <south> ^suit <suit> ^length > 2)

 (tricks ^leeway >= 1)

 -->

 (write record ..let me try a bath coup..)

 (make encourage <suit>)

 (make lead-trick  ^of <suit>)

 (make duck ^rounds 1 ^of <suit>))

(rule-priority try-bath-coup opponents-card)

The following rule takes over after all players have played a card, and decides the winner of the  

trick.

(p deciding-winner

 (context ^for playing)

 (four cards over)

 {<f> (follow-suit ^to {<suit> << spades hearts diamonds clubs >>})}

 (current-trick ^suit {<suit> << spades hearts diamonds clubs >>}

  ^card <card> ^rank <rank> ^player <winner>)

 -(current-trick   ̂ suit <suit> ^rank < <rank>)

 (trick ^number <n>)
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-->

 (make winner  ̂ of-trick <n> ^player <winner>

      ^card <card> ^suit <suit>)

 (write record (crlf) (tabto 20)

    TRICK <n> WAS WON BY <winner> (crlf)

 (tabto 20) WITH THE <card> OF <suit> (crlf))

 (remove <f>))

(rule-priority deciding-winner trick-accounting)

6.6.5 Matching Rules with Data

Let us now turn our attention to the most demanding task that the inference engine has to do. This  

constitutes constructing the Conflict Set from which the rule to be executed will be chosen. For the sake 

of completeness, it must pick all the matching rules with all matching permutations of data. Consider 

the rule with the following LHS:

(p some-rule

 (card-rank ^rank > 1)

Æ
 (some actions))

Then given a pack of 52 cards, it will match all cards that are not aces, that is, 48 of the 52 cards. 

Thus, 48 instances of this rule will find their  way into the Conflict Set. Also, the matching algorithm 

will have tried this rule on all 52 cards and selected 48 out of them. If our algorithm is a simple brute 

force algorithm then in fact, the rule would have tried matching all the data in the working memory 

before selecting the 48 instances.

In the general case, if a rule has K patterns then each of the patterns will have to be tried with each 

WME. Thus, if there are R rules, each with K and the working memory has M WMEs, the brute force 

match algorithm will have to do M*R*K pattern comparisons.

And it will have to do that in each Match-Resolve-Execute cycle because the actions of the selected 

rule make changes in the working memory.

It has been empirically observed that the Match component uses up to eighty to ninety percent of 

computation time in rule based production systems. Therefore, it would make sense to improve upon 

the efficiency of the Match algorithm. That is precisely what was done by Charles Forgy when he 

implemented the OPS5 language. He designed 

a network, called the Rete network that vastly 

improved the performance of the Match 

algorithm.

6.6.6 Rete Algorithm

Consider the brute force algorithm mentioned 

above. Schematically, it is a procedure that 

takes the set of rules and the working memory 

as an input, and generates the Conflict Set, as 

depicted in Figure 6.18.

The rules and the working memory are 

stored separately. The match algorithm tries to 

Match algorithm

Conflict set

Rules

Working memory

FIGURE 6.18 The Match algorithm takes the 

set of rules and the set of working memory 

elements and generates the Conflict Set. The 

rules and the working memory are independent 

representations.
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match all rules with all permutations of WMEs. Matching each rule involves matching a pattern with a 

WME, which in turn involves testing for matching attributes within each pattern. 

The Rete10 match algorithm (Forgy, 1982) is based on the following observations.

 1. Many patterns share the tests to be done. The same pattern may occur in different rules. It will be 

tested separately for each rule by the brute force algorithm. If possible, this test should be made 

only once and the result should be available to the different rules.  Secondly, patterns that are not 

identical may still share some tests. If possible, these tests should also be done commonly as few 

times as possible. For example, the two patterns, 

(card-rank ^suit spades ^player south ^rank 1), and

(card-rank ^suit spades ^player south ^rank 3)

  share the first two attributes and values. Then, for any given WME, these two tests could just be 

done once. 

 2. When a rule fires, it makes only a few changes in the working memory. It may remove a few 

WMEs and add11 a few WMEs. This means that many rules that were in the Conflict Set would 

continue to do so, with the same set of matching WMEs. The brute force algorithm will compute 

these matches again in the next cycle. This can be avoided, if we carry forward the previous CS 

and only make changes to it. 

The Rete network is a compilation of the rules that also serves as distributed memory for WMEs. 

Each WME resides at some node in the network depending upon the matches that it has made and the 

constraints with other patterns that it has satisfied. Since a WME, or part of WME, can match multiple 

rules, it is possible that several copies of a WME will be made and will reside at different nodes.  The 

Rete algorithm may, therefore, have a larger space requirement than the brute force matching algorithm. 

But the reduction in time complexity more than makes up for the increased space requirements.

The Rete algorithm uses the Rete network. It accepts changes in the Working Memory, and generates 

changes in the Conflict Set. The working memory changes are input in the form of tokens of the 

form <+WME> and <–WME>. The positive sign means that a new WME has been created, and a 

negative one means that a WME has been 

removed. Remember that these are the two 

kinds of changes the RHS of a rule can make. 

The tokens traverse the net and eventually may 

combine with existing tokens to satisfy the LHS 

of a rule. The rule will then get added to the 

Conflict Set. Negative tokens may go and cancel 

some existing token, and result in the removal 

of a rule from the Conflict Set. The effect of the 

tokens is reversed for patterns with the negative 

sign. For such patterns, a positive token may 

remove a rule from the CS, while a negative 

token may insert a rule into it. The function 

implemented by the Rete algorithm is depicted 

in Figure 6.19.

10 The Latin word for net is rete.
11 Modifying a WME can be seen as removing it and adding a new one.

Rete net

Changes in CS

Changes in WM

FIGURE 6.19 The Rete match algorithm compiles 

the rules into a network. It accepts changes in 

the Working Memory as input, and computes the 

resulting changes in an existing possibly empty 

Conflict Set.
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The positive or negative tokens are input at the top of the net and the traverse downwards towards 

the rules. The net is made up of two kinds of nodes.

The top half of the network is a discrimination net that switches a token towards the rules that it 

matches. It is made up of nodes call alpha nodes. Each alpha node tests the value of one attribute and 

accepts tokens that satisfy its conditions. The token in question resides at the predecessor node before the 

test. The predecessor may itself be an alpha node or it may be the root node. Different alpha successors 

of a given node, test for different conditions. Figure 6.20 below illustrates the notion of an alpha node. 

In this figure, there are three alpha nodes and two example tokens.

token in

class = card-rank

Player = northPlayer = south

<+ (card-rank ^player east …)>

<+ (card-rank ^player north …)>

FIGURE 6.20 Alpha nodes, shown in the tree structure, test for conditions of attributes. In the figure, 

the two tokens, shown in dashed boxes,  will reside at the two nodes as shown.

The first token <+(card-rank ̂ player east)> satisfies the attribute test for class = card-rank, but does 

not match the values of the attribute “player” for any of its children. It will thus stay here, and never 

match any rule in this network. The second token matches two tests in the discrimination tree. If some 

other attribute’s value in this token matches some child, it will travel further down the tree. 

After the tokens have traversed across all alpha nodes, they encounter beta nodes in the lower part 

of the network.

The lower part of the network is an assimilative network made up of nodes called beta nodes. Each 

beta node, shown as circles in Figure 6.21 below, pulls tokens from its two ancestors without performing 

any check. If there is more than one beta child of a node, each gets a copy of the token. However, it 

lets the token go forward only if it can pair up with a matching token from the other branch. The two 

tokens match if any variables shared by the two patterns are bound to the same values.  For example, if 

the two tokens that arrive at node B1 (as shown) are,

 <+(card-rank ^player south)>, and

 <+ (turn ^of south)>

then the beta node B1 packs the two into a larger token and allows it to pass, when the node B4 pulls the 

compound token, and waits for another token from the left branch. Meanwhile, even node B3 pulls a 

copy of the token <+(card-rank ̂ player south) from the parent alpha node, but it has to wait for a token 

to arrive from its other parent B2. When a matching token does arrive then B3 would have assembled the 

complete matching LHS for rule RuleName. The rule can then be added to the Conflict Set.

Each alpha node has one parent, but may have many children. The parent has to be an alpha node 

or the root. The children of alpha nodes can be either alpha or beta nodes. Beta nodes, on the other 

hand, have two parents12. They could be either alpha nodes or beta nodes. Beta nodes have one or more 

12 We can easily generalize this to have more parents. 
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children, which are either beta nodes or rule nodes. When a beta node has collected all the tokens for 

satisfying the LHS of the rule below,  it passes the tokens to the rule node, which creates an instance of 

the rule to add to the Conflict Set.

The top half of the Rete net sorts or classifies the tokens according the test patterns in the rules. It acts 

like a switch that routes tokens towards their target rules. The bottom half of the network assimilates 

the tokens required by a rule, and hands them over to the rule node. 

6.6.7 Execution

First the rules are compiled into the network. Then, the following cycle ensues.

 1. Insert a bunch of tokens into the root (token in) node of the net. If there are no tokens, then exit 

the Match phase.  Each token traverses down the matching alpha nodes and waits for its partner 

at a beta node. If multiple beta nodes want the token then copies are made. When the partner of 

the token arrives, they form a compound token and travel down together. The last stage is the rule 

node where the matching tokens of a rule arrive. 

 2. The conflict resolution strategy is applied and a rule is selected to fire. If the Conflict Set is empty 

then execution ends. 

 3. The selected rule is executed.  A bunch of new positive and negative tokens are created. Control 

returns to step 1.

The above description does not contain the details about how negative tokens are handled. This 

is left as an exercise for the reader. Also, it seems that the author of the algorithm has subsequently 

developed improved versions said to be several orders of magnitude faster, but which are not available 

FIGURE 6.21 Beta nodes or join nodes combine two tokens when the variable condition (if any) 

matches and allow them to pass down. In the figure, there are two tokens <+(card-rank ^player 

south) and <+ (turn ^of south)>. Note that there are two copies of the first token, one at B3 and one 

at B4.

player = <var> of = <var>

<var> = <var> ?
<var> = <var> ?

B3

B2

B1

B4

<+(card-rank ^player south)

AND <+ (turn ^of south)>

<+ (card-rank ^player south)

Rule name
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in the literature13. The reader would find it interesting to work upon improvements to the algorithm. The 

data-driven processing on a network of nodes makes it a promising candidate for implementing OPS5 

on a parallel machine, and one can find more detail in (Gupta et al., 1986; 1989).

We next look at a toy example and the corresponding Rete net.

6.6.8 An Example

Let us say that we have data on objects from the blocks world, described in terms of the shape, size and 

colour of the base, sides and top. The following rules are used to recognize one of pyramids, cylinders, 

wands and domes. For example, the wand rule14 (number 3) says that,

IF    The block has name <x>

 & The base of the block is circular with area 1

 & The side of the block is curved and tapering with colour black

 & The top of the block is pointed

THEN

 Classify block named <x> as a wand.

Let us say that we have these four rules.

Rule 1: (p greenPyramid-rule

    (block ^name <x>)

    (base ^block <x> ^shape square ^area > 1)

    (side ^block <x> ^angle < 90 ^surface plane ^colour green)

    (top ^block <x> ^surface point)

Æ
 (make (class ^block <x> ^type greenPyramid)))

Rule 2: (p cylinder-rule

    (block ^name <x>) 

    (base ^block <x> ^shape circle ^area > 1)

    (side ^block <x> ^angle  90 ^surface curved)

    (top ^block <x> ^surface flat)

Æ
 (make (class ^block <x> ^type cylinder)))

Rule 3: (p wand-rule

    (block ^name <x>) 

    (base ^block <x> ^shape circle ^area 1)

    (side ^block <x> ^angle < 90 ^surface curved ^colour black)

    (top ^block <x> ^surface point)

Æ
 (make (class ^block <x> ^type wand)))

13 Apparently for commercial reasons. — http://en.wikipedia.org/wiki/Rete_algorithm
14 From a secret rule book at Hogwarts not accessible to muggles.
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Rule 4: (p dome-rule

    (block ^name <x>)

    (base ^block <x> ^shape circle ^area > 1)

    (side ^block <x> ^angle 90 ^surface curved)

    (top ^block <x> ^surface spherical)

Æ
 (make (class ^block <x> ^type dome)))

We construct the Rete net for the rules above. Observe that there is no unique Rete net corresponding 

to a set of rules. This is because one could choose any order of tests while constructing alpha nodes and 

any order of combining in beta networks. The objective will be to construct a network where maximum 

attribute value tests are shared. The following example net (Figure 6.22) is one possible network. The 

network also stores the WMEs described below.

 1. (base ^block A ^shape square ^area 20) 

 2. (base ^block B ^shape circle ^area 20) 

 3. (base ^block C ^shape circle ^area 1)

 4. (side ^block C ^angle 85 ^surface curved ^colour black) 

 5. (side ^block A ^angle 45 ^surface plane ^colour green) 

 6. (top ^block A ^surface point) 

 7. (top ^block C ^surface point) 

 8. (top ^block D ^surface point) 

 9. (side ^block B ^angle  90 ^surface curved)

 10. (top ^block B ^surface flat) 

 11. (block ^name A)

 12. (block ^name B)

 13. (block ^name D)

The numbers on the left are recency numbers, stating the order in which these WMEs are created. 

They are used to identify the WMEs in the Rete net. Observe that some tokens have been combined in 

beta nodes. The variable and the value for each such join event is also shown. Finally, one can see that 

in his example, there are two rules in the Conflict Set.

6.7 Discussion

Problem decomposition involves breaking up a problem into smaller parts and working them. In backward 

or goal-directed reasoning, we naturally break up the goal into subgoals and tackle each separately. This 

leads to the And/Or search for finding the decompositions that make up the solution. We will revisit 

goal-directed reasoning again in Chapter 7 on planning, and Chapter 12 on logic and theorem proving.

The mechanism used for problem decomposition was production systems, in which each goal is 

replaced by a set of subgoals and the subgoals have choices for solving them. But the process of reasoning 

in production systems is aligned with the arrow, from the left-hand side to the right-hand side. That is, 

the forward direction. We could use the forward chaining mechanism for goal-directed reasoning too, 

because we expressed the goal, subgoal relationship in this particular manner. We will visit backward 

chaining in the chapters on planning and theorem proving.

Meanwhile, production systems found their applicability in forward reasoning as well. In forward 

or data-driven reasoning, we move from the given situation and transform it into the desired situation. 
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Systems using data-driven reasoning have also been called pattern-directed inference systems (Waterman 

and Hayes-Roth, 1978). In many situations, data-driven reasoning is more appropriate, as was shown 

by the XCON system.

The language OPS5, and its derivates OPS83 and SOAR (Laird et al., 1987), employs the forward-

chaining process to implement a programming language. The syntax of the rules are fixed by the 

language, but the semantics can be very diverse, varying from expert knowledge expressed in production 

form to the more mundane data processing activities. So much so, that the forward-chaining process 

can in fact be used to do backward reasoning as well. After the development of systems like Dendral, 

XCON and MYCIN (Shortliffe, 1976), there was a flurry of expert system development activity. The 

reader is directed to (Buchanan and Shortliffe, 1984; Jackson, 1986) for a detailed account of that phase 

in artificial intelligence.

The lure of rule based systems is that the task of building problem solvers can be divided between 

different people. The computing community can develop the inference engine, and the domain personnel 

can write the “business logic” in the form of rules. This is slightly different from the situation depicted 

FIGURE 6.22 A Rete net for the example problem, with the given WMEs. The rectangular boxes are 

alpha nodes accepting WMEs that satisfy the test condition. Beta nodes are represented as circles. 

They hold WMEs waiting for matching ones to arrive, and pass them on when they do.
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in Figure 2.2, where the “user” had to implement the domain functions. Here, the user is encoding the 

problem solving strategy used for solving problems in the domain.

The question of forward reasoning versus backward reasoning still remains. At an abstract level, 

one can reason that the choice could be resolved based on the nature of the search graph. If  there is a 

lot of data narrowing down to a few goals, it might be appropriate to use forward reasoning. If, on the 

other hand, the number of possible goals is very high, it might be more appropriate to start reasoning 

with the goals that one has to solve. It has been observed by many including Robert Kowalski who 

formalized the notion of knowledge based systems (Kowalski, 1979), that human beings very often do 

backward reasoning.

Some clues on this matter come from the domain of visual perception. Visual perception is the task 

of making sense of the excitatory signals that a living creature receives on its retina in the eye. To quote 

the neuroscientist V.S. Ramachandran (2003)—“Our ability to perceive the world around us seems 

so effortless that we tend to take it for granted. But just think of what is involved. You have two tiny, 

upside-down distorted images inside your eyeballs, but what you see is a vivid three dimensional world 

out there in front of you”.  About one third of our brain comprising thirty different regions in the visual 

cortex is devoted to visual processing. There are different areas for recognition of colour, different areas 

for motion, and different ones for recognizing faces. 

Scientists have been able to identify these areas because once in a while a patient suffers damage to 

a part of the cortex and then they are unable to do that kind of processing. So while one patient cannot 

even recognize his mother’s face even when the voice is recognized, 

another one is afraid to cross the road because she cannot judge 

the speed of a car but can very well read the number plate on it. 

Furthermore, it seems there are two pathways from the retina into the 

brain for these signals to travel. One, known as the “old” pathway, is 

the evolutionary ancient pathway that seems to function more in what 

we would call the ‘forward direction’—collecting and assimilating 

signals and acting upon them. The second, or the “new”, goes to the 

visual cortex at the back of the brain. The cortex is the area of our 

brains that does symbolic processing, where goals and concepts and 

all kinds of knowledge resides. This region seems to be processing 

visual information in the backward direction; that is hypothesising 

goals15 of what we are seeing and looking for confirmation of these 

goals in the incoming data.

Optical illusions are a stark example of the fact that we do backward 

reasoning in visual processing. For example, in the well known optical 

illusion in which we can see a young woman or an old woman depicted 

in Figure 6.23. This image is from an anonymous German postcard 

from 1888 and depicts the image in its earliest known form.16

The interesting thing is that we seem to process our visual imagery 

in both forms of reasoning, forward and backward. This was revealed 

by an experiment in which a patient had his second pathway to the 

right visual cortex damaged. The patient was asked to point his finger 

to a point he said he could not see, but when asked to try, he could do 

15 And therefore, when people say to one another “you see only what you want to see” they are probably right. 
16 http://mathworld.wolfram.com/YoungGirl-OldWomanIllusion.html

FIGURE 6.23 Optical 

illusions illustrate the fact 

that what we see is what 

we believe we are seeing. 

This famous optical image 

in which you can switch 

between seeing a young 

woman or an old woman, is 

one of the oldest known.
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it ninety nine percent of the time. So our ancient pathway leads to an area of the brain where processing 

happens in the forward direction. This kind of processing does happen in simpler life forms more often. 

For example, the visual system of a frog is tuned to recognize flying insects. It can only see an insect 

when it moves, and is blind to a stationary one.

However, recent research shows that with the development of our neocortex, or the cerebral cortex, 

and our ability to handle a large number of concepts, the number of objects and situations we might 

be seeing is so large that we seem to be doing perception more in a goal directed fashion. We seem to 

hypothesise what we are seeing and only use the incoming visual information to validate our hypothesis. 

The following interesting experiment was discussed in a BBC program on vision17—“Almost a third 

of our entire brain is devoted to vision, but there’s a limit to how much our eyes observe. In a simple 

experiment in a busy shopping centre, Nigel asks shoppers for directions and then switches places with 

someone else while the shopper is distracted. Most people failed to notice the switch and carried on 

giving directions. Dr Richard Wiseman of the University of Hertfordshire explains that people’s brains 

weren’t paying attention to who was asking the questions because they were just concentrating on getting 

the directions right. So, ultimately, we only see what our brains want us to see.”

This chapter reinforces our hypothesis that knowledge is a key to solving large problems. We use 

knowledge about our world to understand what we see (there are many who say that it is us who in fact 

create these worlds in our minds), and we use our knowledge accumulated from experience to solve 

problems. We shall focus on both these approaches in later chapters. 

  Exercises

 1. Define the AND/OR search space for the task of building a house. How will the heuristic function 

be defined? 

 2. A user interested in designing a house may have certain preferences like having an east facing 

kitchen or a balcony. How can these preferences be incorporated by modifying the heuristic 

function during problem solving?

 3. The graph in Figure 6.24 represents an AND-OR graph. The terminal nodes are labelled SOLVED 

(depicted by double line) and have zero cost. The arcs represent the cost of transforming the 

17 http://www.bbc.co.uk/science/humanbody/tv/humansenses/programme2.shtml

5

1

22

3 2 3 2

11

1 1 1

1

1

1

2

2

2

3

3

3

3 3

3

1

FIGURE 6.24 A small And-Or graph.
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problem. Values associated with nodes are heuristic 

estimates of solving that node. Simulate the 

exploration of the graph by the AO* algorithm till 

it terminates. Show how the graph looks at the end 

of each cycle. Assume a FUTILITY value of 45. 

Clearly mark the final solution (by double-lined arcs) 

in the final graph.

 4. What is the solution that is going to be found by 

AO* on the accompanying graph (Figure 6.25) from 

(Rich and Knight, 1991)? Comment on the solution.  

Is it the optimal solution? State the assumptions your 

answer is based on.

 5. In the AO graph of Figure 6.26, the SOLVED nodes 

along with their costs are shown with double circles. Labels on internal nodes are heuristic values. 

Assume each edge has a cost 10. Show how the algorithm AO* will solve this graph. Show each 

expansion clearly and highlight the final solution. Is the algorithm guaranteed to find the optimal 

solution for this problem? Justify your answer.
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FIGURE 6.26 Another AO graph. The solved nodes, shown in double circles, have a cost associated 

with them. Values in internal nodes are heuristic estimates of cost.

 6. The problem graph in Figure 6.27 is similar to the graph in Figure 6.26, but with a different set 

of values. How would AO* perform on the new problem?

FIGURE 6.25 A problem with nonzero 

cost of SOLVED nodes.
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FIGURE 6.27 The problem from Figure 6.26 with a different set of values.

 7. Rete Net. Write a program to read in a set of rules in a given format and construct a Rete Net for 

the rules. Show the Rete Net in a graphical form.  Note that each node must have an associated 

memory to store tokens.  The user should be able to query for the instances of matching rules.

 8. Forward Chaining System. Read a set of rules (program) from a file (or the keyboard). Call the 

program for constructing the Rete Net. Read a set of working memory elements from a file (or the 

keyboard). Accept a command (run N), and execute N cycles of Match-Resolve-Execute. Accept 

a command (run) to do the same in an infinite loop. Include the following set of actions in rules. 

(1) Read—a file containing WMEs, (2) Print—a message on the screen (or a file), and (3) Halt—

stop the cycle. In a debug mode, it should show the Conflict Set after each step. Implement two 

conflict-resolution strategies.

 9. Write the most appropriate right-hand side for the following rule:

 (p what-does-this-rule-do

    (inst ^number <n>)

  -(inst ^number <m> < <n>)

Æ
   (assert . . .))

 10. Given a set of three WMEs of the form,

   (Marks subject: physics student: satish scored: 96)

  separately for physics, chemistry and math, and one WME for each student initialized to values 

as shown below, 

   (Total name: satish rank: 0 totalMarks: –1)
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  Write a set of production rules to sum up the marks for each student and store it in the attribute 

totalMarks: of the Total  WME, and assign a rank to each student in the attribute rank: based on 

marks. The number of students is not known and students with the same total marks may be ranked 

arbitrarily.

 11. Write the conditions for the rules in English, and construct a Rete net for the following set of rules:

Rule 1: (p fare-infant

        (inst ^person <x> ^type child)

        (age ^of <x> ^is < 5)

        (inst ^person <y> <> <x>) {y not equal to x}

        (age ^of <y> ^is >= 5)

        (traveling ^person <x> ^with <y> ^to <xyz>)

Æ
 (some Right-Hand Side))

Rule 2: (p fare-child

        (inst ^person <x> ^type child)

        (age ^of <x> ^is < 12)

        (age ^of <x> ^is >= 5)

        (traveling ^person <x> ^to <anywhere>)

Æ
 (some Right-Hand Side))

Rule 3: (p fare-student

        (inst ^person <x> ^type student)

        (age ^of <x> ^is < 25)

        (traveling ^person <x> ^to <<home school>>) {or}

Æ
 (some Right-Hand Side))

Rule 4: (p fare-games

        (inst ^person <x> ^type sportsman)

        (traveling ^person <x> ^to games)

Æ
 (some Right-Hand Side))

Rule 5: (p fare-arjuna

        (inst ^person <x> ^type sportsman)

        (traveling ^person <x> ^to <anywhere>)

        (awardee ^person <x> ^award Arjuna)

Æ
 (some Right-Hand Side))

 12. Construct a Rete net for the following set of rules:

Rule 1: (p alsoFather

    (brother ^of <x> ^is <y>)

    (son ^of <z> is <x>)

   Æ
    (make (son ^of <z> ^is <y>))

Rule 2: (p defineTau

    (brother ^of <x> ^is <y>)

    (son ^of <x> is <z>

    (age of <x> is <ageX>
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    (age of <y> is {<ageY> > <ageX>}  /* <y> is older than <x>*/

   Æ
    (make (tau ^of <z> ^is <y>))

Rule 3: (p younger-Than

    (age of <x> is <ageX>

    (age of <y> is {<ageY> > <ageX>}

   Æ
    (make (younger ^than <y> ^is <x>))

  In the Rete net show, where the tokens for the following data will reside, and what is the Conflict 

Set?

  Token 1: (age ^of Ramu ^is 17)

  Token 2: (age ^of Ramesh is 36)

  Token 3: (brother ^of Mahesh ^is Ramesh)

  Token 4:  (son ^of Suresh ^is Ramesh)

  Token 5:  (son ^of Mahesh is Ramu)

 13. Write a rule to define transitivity of the “younger” relation.

 14. A typical bank manager may decide to sanction a loan to an applicant based on some criteria such 

as creditworthiness, source of income, existing loans, nature of job, salary, etc. Define a set of 

attributes that a bank manager might use and write a few sample rules. 

 15. Write a rule based program to make a move in the Cross&Noughts (or tic-tac-toe) game.

 16. Consider the task of writing a piece of software (or an “app”) for assisting decision making in a 

medical emergency. For example, one might be able to prescribe some action immediately (loosen 

the clothes; or sprinkle water). Or one may be able to say that the person needs to be taken to a 

hospital immediately. Design a few sample rules that would go into such a system.



A  n agent interacts with the world via perception and actions (Figure 7.1). Perception involves sensing 

the world and assessing the situation. In sophisticated systems, it may involve creating some internal 

representation of the world, which we can call a mental model. Actions are what the agent does in the 

domain. Planning involves reasoning about actions that the agent intends to carry out. “Planning is the 

reasoning side of acting” (Ghallab et al., 2004). This reasoning involves the representation of the world 

that the agent has, as also the representation of its own actions.

Domain
 

Objectives

PerceiveAct

Other events

FIGURE 7.1 A planning agent can perceive the world, and produces actions designed to achieve its 

objectives. In a static domain, the agent is the only one who acts. A dynamic domain can be modelled 

by other agencies that can change the world.

 The objectives of planning are to achieve some desired situation. The objectives could be certain 

properties of the final state after all actions have been completed, or even along the way in the sequence 

of states. These could be strict requirements or hard constraints where the objectives have to be achieved 

completely for success. The objectives could also be soft constraints, or preferences, to be achieved to 

the extent possible.

 The planning problem can be described or posed at varying levels of detail. As the detail increases, 

so does the complexity of the computation. In the simplest planning problems, the domain is static, the 

agent has complete information of the domain (perception is perfect), actions are instantaneous and their 

effects are deterministic. The agent knows the world completely, and it can take all facts into account 

while planning. It is the only one changing the world, and therefore does not have to worry about the 

world changing while it is planning or executing a plan. The fact that actions are instantaneous implies 

that there is no notion of time, but only of sequencing of actions. The effects of actions are deterministic, 

and therefore the agent knows what the world will be like after each action. Each of these constraints can 

be relaxed to define richer planning domains, but in which planning is a computationally harder task. 

Planning

Chapter 7
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 The algorithms being developed in the planning community are all based on explicit representations 

of actions in a domain. This is a little different from our earlier view of search which was more abstract 

and tended to assume a move generating function. Representing actions explicitly allows us to explore 

richer domains, for example when actions have durations. It also allows us to investigate approaches to 

planning different from graph search. 

 In classical planning, reasoning about actions involves simulation of changes in the mental model 

that the agent has. The agent peers into the future to examine the different possibilities and select the 

desirable course of action. This is called projection into the future. The planner searches through the 

possible combination of actions to find the plan that will work.

 An alternative approach is to exploit the agent’s experience, looking into the past. If the agent has 

memory, it can reuse a plan that worked earlier, or reuse the problem solving experience to find a solution. 

The agent can fish out (retrieve) a plan or planning cues from its memory. Such an approach is known 

as memory based planning. It involves representation and reasoning over the events in the past. Human 

beings typically use both methods. If a problem is familiar then a known solution is used from memory. 

The idea is to not reinvent the wheel every time. However, when a problem is a new one, the first principles 

projection based methods have to be used. An efficient agent, for example an intelligent human being, will 

keep learning from experience, as and when new problems are encountered and solved. We will explore 

memory and knowledge based techniques later in the book (see Chapter 15). For the moment, we focus 

on how to find plans from first principles, by projecting the effects of candidate actions into the future.

 In order to explore planning algorithms in a domain independent form, a standardized notation for 

describing the world and also the actions has been developed. This is known as the Planning Domain 

Description Language (PDDL) (McDermott, 1998). PDDL allows one to define the language in terms of 

which the world will be described, as well as the actions that the planner is capable of, expressed in terms 

of schemas. The language is based on First Order Logic notation (see Chapter 12). It also allows one to 

state a specific planning problem by describing the current state and the objectives or goals using the 

constructs defined in the schema. The planning algorithms can then be written in a domain independent 

form. The domain and problem descriptions1 will become inputs to the domain independent algorithms.

 The complexity of planning will depend upon the expressiveness of the PDDL and the constructs 

defined. Starting with the simplest planning domain and problems, a series of more expressive PDDL 

languages have been defined (Fox and Long, 2003; Edelkamp, 2004; Gerevini and Long, 2005). 

In each new language, the world and the actions can be described in a richer fashion, taking more 

and more aspects from the real world problem. However, even the simplest of planning domains—

known as STRIPS domains described below—pose problems that are computationally hard to solve 

(Gupta and Nau, 1992). This is not surprising, given that they are basically viewed as search problems 

in the classical approaches. Nevertheless, there has been considerable interest in planning, and we  

shall look at some of the vast gamut of techniques that have been developed in the area.

7.1 The STRIPS Domain

Planning refers to the choice of moves an agent makes before making the moves in the domain. It involves 

synthesizing a set of actions, often arranged in a linear sequence, but sometimes also in a partial order. 

A partial ordering could mean that any linearization is a valid plan. In some domains it could also mean 

that some actions can be done in parallel. When the action sequence is executed in the domain, it has 

the effect of transforming the world from a given state into a new state, which if the plan works, is a 

desired or goal state. 

1  The problem description is the initial state description and the goal description. Each is a set of instantiated predicates defined 

in the domain description. 
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The search algorithms we have seen in the preceding chapters can also be used for planning. The 

algorithms assume that the state description is available in a compact form, and that generated moves 

produce new modified states. In practice, the state will be described by its components, and a database 

describes the world in a given state. Consequently, we also amend our notion of a move. Instead of 

viewing moves as state transitions, we will view them as operators that transform a part of a state (see 

also Chapter 6). Each operator looks for a pattern in the state and, when applied, makes some changes 

in the state. In doing so, it does implement the state transition function. But the same operators may be 

applicable over many states, leading to a more compact representation. The operators are close to the 

idea of production rules, being applicable when the associated preconditions hold. An action (or move 

in the state transition view) is an instance generated from an operator. 

The first program to use this formalism was STRIPS (Fikes, 1971)2. The program was designed to 

plan in the domain of blocks world. In this domain, a set of labelled blocks are in some configuration to 

start with. A block can be on another block, or a block can be on the table, and the table has unlimited 

capacity. The objective of the planner is to rearrange the blocks into a desired (goal) configuration. 

The output of the planner is the set of moves that brings about this desired rearrangement. Figure 7.2 

illustrates the domain with an example problem.
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The given state The goal = on(G, A) Λ on(B, J) 

FIGURE 7.2 The blocks world domain. Observe that the goal state is incompletely specified. The 

given state has to be specified completely. 

The world, in the blocks world domain, is described by a set of statements that conform to the 

following predicate schema:

on(X, Y)  :  block X is on block Y

ontable(X) :  block X is on the table

clear(X)  : no block is on block X

holding(X) : the robot arm is holding X

armempty : the robot arm is not holding anything

One can make the following observations about the description. There are no metrics involved. A 

block can have only one block on it, and there is no notion of size, weight or location co-ordinates. We 

assume an arbitrarily large table with no space constraints. For all purposes, the blocks are all of the 

same size and shape. They can be handled identically, and only one can rest on another. The one-armed 

2  The name was probably an acronym for Stanford Research Institute Problem Solver, but has now itself entered the vocabulary 

of the planning community. 
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robot can hold one block. The description is essentially qualitative in nature and does not involve 

numbers in any form.

The representation borrows from logic, specifically first order logic. Unlike in classical logic, however, 

predicates in planning such as on(C, D) can be true at one time instance, and false at another. Such 

predicates are also known as fluents. It was natural that the first approaches to planning too borrowed 

from logic, and viewed planning as an exercise in theorem proving (Green, 1970). 

Classical reasoning with first order logic does not allow for assertions to be withdrawn. Once an 

assertion is true, it remains true. There is no notion of time and change. For example, the Pythagoras 

theorem is true, independently of time. This is fine in the world of mathematics. In a world where an 

agent is trying to bring about change, one has to have a mechanism for representing situations. For 

example, in the start state in the illustration above on(C, D) is true. If I pick up (or unstack) C and 

place it on J then on(C, J) will become true. What shall one do with the assertion on(C, D), now that it 

is no longer true? One way to handle the problem is to introduce time as a parameter, and have every 

predicate time stamped. Then on(C, D, t0) would mean that block C is on block A at time t0. Then 

one can have another fact on(C, J, t2) that states that C is on J at time t2. At time t1, the arm is holding 

J, represented by holding(J, t1). One would also have to describe goals using variables for time. In Figure 7.2 

for example, one would have to describe the goal as “there is some time t at which on(G, A, t) and 

on(B, J, t) are simultaneously true.”

However, this creates an enormous book-keeping problem of carrying forward facts as time moves 

on. For example, ontable(B) and all other unchanging facts will need to be asserted afresh as being true 

at each time step. How do we know that if a fact like ontable(B, t1) is true then ontable(B, t2) will be 

true as well? This is the well known Frame Problem introduced by John McCarthy (McCarthy, 1969)3. 

This problem can be solved by adding the so called “frame axioms”, which explicitly specify that all 

conditions not affected by actions are not changed while executing that action. Thus, the frame axioms 

need to be applied at each stage to keep track of what is true as time marches on. We will look at frame 

axioms in Chapter 10.

The ingenious solution introduced in STRIPS was to make all change explicit. Thus, one was saved the 

bother of asserting facts all over again, each time an action was added to the plan. This is the approach 

a cartoon animator would take making cartoon films. She would take (copy) the previous frame, delete 

a few strokes, and add a few others to create the next frame. Whatever was not changed remained the 

same. STRIPS operators follow this strategy, and are made up of the following three components:

P: Precondition List The assertions needed to be true for the operator to be applicable.

A: Add List The assertions that became true as a consequence of the operator being applied.

D: Delete List The assertions that are no longer true as a consequence of the operator being applied.

The set of assertions in the database at any time describe the world as it is. When an instance of an 

operator is applied to a database of assertions, some assertions may be deleted, while others may be 

added. Fikes introduced the following operators for the blocks world domain.

PICKUP (X)
  P: ontable (X) Ÿ clear (X) Ÿ armempty

  A: holding (X) 

  D: ontable (X) Ÿ armempty

3  Hanks and McDermott described it with a now well known and more dramatic Yale Shooting Problem, in which one has 

to determine whether a gun loaded earlier is still loaded when a shot is fired at a later time instance. (see for example  

http://en.wikipedia.org/wiki/Yale_shooting_problem).
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PUTDOWN (X)

  P: holding (X) 

  A: ontable (X) Ÿ armempty

  D: holding (X)

UNSTACK (X, Y)

  P: on (X, Y) Ÿ clear (X) Ÿ armempty

  A: holding (X) Ÿ clear (Y)

  D: on (X, Y) Ÿ armempty

STACK (X, Y)

  P: holding (X) Ÿ clear (Y)

  A: on (X, Y) Ÿ clear (X) Ÿ armempty

  D: holding (X) Ÿ clear (Y)

Notice that when one picks up a block X, either with STACK or PICKUP, the operators do not delete 

the assertion clear(X). When we put it down, the assertion will already exist in the database. This will 

not cause a problem with the reasoning, and in fact save some computation, and it is anyway not clear 

what clear(X) would mean when it is being held. 

An encoding of the blocks world domain in PDDL is given in the accompanying Box 7.1. Observe 

that the notation used there combines the add list and the delete list into a common set of effects. The 

facts from the delete list are preceded by a “not”, to depict that the fact is not true in the resulting state. 

This is consistent with the PDDL standard that evolved later. Also shown is the coding of a small 

planning problem.

Another important observation is that the goal description may not describe the final state completely. 

In the above illustration in Figure 7.2, nothing is said about the location of blocks A and J. Likewise, it 

is not stated what if anything is on B and J. There can be many states in which the given goal conditions 

will be true. As we will see, this also implies that backward reasoning will have to deal with incomplete 

state descriptions.

Definition

We say that a state S satisfies a goal G iff G Õ S.

Box 7.1: The Blocks World Domain in PDDL

The blocks world domain may be described using a typed version of PDDL (PDDL3.0) which is 

given below. This also introduces the notion of variable types. Also note that add list and the delete 

list from the STRIPS notation is combined into an effects list.

(define (domain Blocks)    /* Blocks is a domain dealing with block types */

 (:requirements :typing) 

 (:types block)

 (:predicates  (on ?x - block ?y - block)    /*The predicates used for 

   (onTable ?x - block)        describing the situation */

   (holding ?x - block) 

   (clear ?x - block) 

   (armempty))
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 /* Given below are the four kinds of actions defined in the Blocks 

domain */

 (:action pickup 

  :parameters (?x - block) 

  :precondition (and (onTable ?x) (armempty) (clear ?x)) 

  :effect (and (not (armempty)) (holding ?x) (not (onTable ?x)))) 

 (:action putdown 

  :parameters (?x - block) 

  :precondition (and (holding ?x)) 

  :effect (and (not (holding ?x)) (armempty) (onTable ?x))) 

 (:action stack 

  :parameters (?x - block ?y - block) 

  :precondition (and (holding ?x) (clear ?y)) 

  : effect (and (not (holding ?x)) (armempty) (on ?x ?y) (not 

(clear ?y)))) 

(:action unstack

  :parameters (?x - block ?y - block) 

  :precondition (and (on ?x ?y) (clear ?x) (armempty)) 

  : effect (and (not (on ?x ?y)) (holding ?x) (clear ?y) (not 

(armempty)))) 

)

We now look at some planning algorithms in the STRIPS domain. The search algorithms developed 

in the preceding chapters can easily be adapted to the task of planning. We do so in the next section. 

After that, we look at other ways of searching for a plan. We look at the possibility of starting the search 

from the goal description. This is known as backward reasoning/search. We then describe a way of 

combining the good features of both, forward and backward search, into an algorithm called Goal Stack 

Planning. We also look at an approach that seeks to fill in the actions constituting the plan in a nonlinear 

order, filling in actions as and when we spot their requirement. Such an approach is also described by 

terms like Plan Space Planning and Partial Order Planning. Following this, we look at some flavours 

of hierarchical planning that have been developed. In subsequent chapters, we introduce the concepts 

of domain independent heuristics and look at their applicability in the planning algorithms discussed  

here.

7.2 Forward State Space Planning

Given a state, and given a set of operators, one can determine the actions (or moves) that can be applied 

in the state to generate successor states. This corresponds to the implementation of the moveGen function 

described in Chapter 2. Forward State Space Planning (FSSP) then refers to the search algorithms that 

start with the given state as the start state, generate the set of successor states, and search through them 

generating more successors till they find a state that satisfies the goal conditions. 
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Box 7.2: A Blocks World Problem in PDDL 

Figure 7.3 below depicts a planning problem from the blocks world domain. A description of the 

planning problem in PDDL follows. Observe that the domain field refers to the domain description 

named Blocks.

Armempty

C

A B C

B

A

Start state Goal = On(A, B) Ÿ On(B, C) 

FIGURE 7.3 A three block planning problem.

The description in PDDL.

(define (problem blocksProblem1) 

 (:domain Blocks) 

 (:objects 

  A - block 

  B - block 

  C - block ) 

 (:init 

  (onTable A) 

  (onTable B) 

  (on C A) 

  (clear B)

  (clear C) 

  (armempty))

 (:goal (and (on A B) (on B C))) 

)

Let effects(a) denote all the effects of action a. Let effects+(a) denote the set of positive effects of 

action a. This is the same as the add list in the STRIPS notation. Corresponding to the delete list, we 

have a similar set denoted by effects−(a). Then given a state S in which the action a is applicable, the 

state S¢ after action a is applied is given by, 

 S¢ ¨ {S – effects−(a)} » effects+(a)

That is, from the sets of facts representing S, we delete the facts that are not true after the action, 

and add the facts that become true, resulting in the new state S¢. We say that the state has progressed 

through the action a. Let us define a function progress(A, S) that returns the successor state when action 

A is applied to state S.
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Given the progress(A, S) function, the search algorithms in Chapter 2 can easily be used. They will, 

however, suffer from the same drawbacks. The main one being that the search space generated will 

be huge, and that the search algorithm will have no sense of direction. The given state in Figure 7.2 is 

described by the following collection of facts:

{AE, ontable(B), on(A, B), clear(A), ontable(E), on(D, E), on(C, D), clear(C), ontable(I), on(H, I), 

on(G, H), on(F, G), clear(F), ontable(J), clear(J), ontable(O), on(N, O), on(M, N), on(L, M), 

on(K, L), clear(K), ontable(Q), on(P, Q), clear(P)}.

In the given state, one instance of the Pickup operator is applicable, generating the action Pickup(J). 

Several instances of the Unstack operator are generated. Each of the actions does a small change in the 

world, and many actions are applicable in turn in the changed world. Figure 7.4 illustrates the fact that 

the search space generated by FSSP is huge. Looking at the full problem, one can notice that it includes 

actions that have nothing to do with achieving the goal. 
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Stack(F, A)
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Stack(F, G)

Stack(F, J) Stack(F, K) Stack(F, P)

FIGURE 7.4 The search space generated by FSSP is huge.

7.3 Backwards State Space Planning

Like the uninformed search algorithms seen earlier, FSSP is oblivious of the goal, and simply explores 

the set of all future states possible in some predetermined order. One way to take the goal state into 

account is to start searching backwards from the goal. That would make the reasoning purposeful and 

deliberative, focused towards the goal, or teleological. This is known as Backward State Space Planning 



200 A First Course in Artificial Intelligence

(BSSP). Backward reasoning or goal-directed reasoning has been proposed as being fundamental to 

intelligent behaviour, and we have already visited it while studying goal trees in Chapter 6. It is also 

the foundation of reasoning with logic, and the backbone of the logic programming language Prolog 

(Kowalski, 1974; Colmerauer, 1992). We will explore logic and reasoning later in Chapter 12. At this 

moment, let us focus on the possibility of backward state space planning.

One feature strongly in support of such an approach is the fact that goal states are often incompletely 

specified. That is, one often expresses only what is desired in the final state, rather than a complete 

description of the final state. For example, at some point of time, one might have the goal of satisfying 

hunger. Reasoning in a backward fashion, one will only focus on actions that will result in eating 

something, without worrying about anything else. Similarly, the goal in the planning problem of 

Figure 7.2 is that block G should be on block A, and block B on block J. Can we focus only on the moves 

that will achieve these conditions? To do this, we have to first define the notion of regression. This, in 

some sense, is the opposite of progression. It allows us to move back from a set of goal clauses to a set 

of subgoal clauses. For example, if in a regressed state the robot were holding block G, and block A was 

clear, and block B was on block J, then the stack(G, A) action would achieve the goal state of Figure 7.2.

Given a goal g, we say that an action a is relevant to g iff4

 (g « effects(a) π f) Ÿ (g « effects−(a) = f)

Let preconditions(a) denote the preconditions of action a. Given a goal g, and a relevant action a, 

one can regress to the goal g¢ as follows.

 g¢ ¨ {g – effects(a)} » preconditions(a)

That is, from the set of goal facts, remove the effects of the action, and add the preconditions of the 

action. Let us define a function regress(A, G) that returns the regressed goal over action A when applied 

to goal G. The regressed goal represents the minimum set of facts that must be true in a state in which 

the action can be applied and which would result in a goal state. 

However, the regression process is not sound, in the sense that the resulting set of predicates may 

not necessarily represent a state. This can happen because some actions that are relevant according to 

our definition may not be feasible in practice. This may result in an invalid plan. Figure 7.5 depicts 

some of the problems that may crop up in backward search. The algorithm begins with the given goal 

description on(G, A) Ÿ on(B, J) for the problem depicted in Figure 7.2. Observe that if a goal predicate 

is true in the current state then one does not need to look for a relevant action. Two actions are relevant 

here, stack(G, A) and stack(B, J). The former regresses to a goal holding(G) Ÿ clear(A) Ÿ on(B, J), from 

which four operators are relevant, as shown in the figure.

The first, pickup(G), would need block G to be on the table. But since the algorithm is working with 

incomplete descriptions, it does not know whether this will be so. If block G were on some block then the 

way to end up holding(G) would be to unstack it from some block, but which one? One way would be to 

instantiate an instance of unstack for each possible block in the problem. One can see that this will soon 

lead to an explosion in the search tree. The preferred method is to keep it as a variable, and instantiate 

it later. Some action to achieve clear(A) would be needed if block A were not already clear. And again, 

the algorithm does not know what should be unstacked from A to achieve clear(A). Furthermore, in the 

action unstack(?X, A) required for clear(A), the variable ?X can be bound only to G. This is because 

unstack(?X, A) also results in holding(?X), and the goal set requires holding(G) to be true. However, 

4  If one were allowed to have negative facts in the goal condition, for example (not (on(B, C)), then an additional condition would 

be needed stating that g- « effects+(a) = f.
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this connection between the requirements of the two predicates holding(G) and clear(A) requires some 

more sophisticated reasoning. Perhaps some kind of consistency check can force the binding of ?X to G. 

The last action stack(B, J) causes a more serious problem. It is meant to achieve the fact on(B, J). But 

one can notice that the robot arm could not be holding block G (asserted in the given goal) and block 

B (required for the stack action) at the same time. This shows that the algorithm could be reasoning 

with collections of facts that are not states. Figure 7.6 illustrates how a sequence of actions that is not a 

plan could be found by unhindered backward search. We consider a simple problem where in the given 

state three blocks, A, B and C, are on the table, and the goal is to stack A on B, and B on C. The figure 

shows a possible trace that backward search, using the regression process, might result in. The reader is 

encouraged to verify that at each stage of backward search the action chosen is relevant.

The reason why progression over states with planning operators works while regression does not, 

is that the operators are not symmetrical. They are designed to represent actions. An action converts a 

given state into a successor state. The applicability of the action is predicated only on the given state. If 

the given state satisfies the preconditions of the actions, it can be applied. Operators (or actions) have 

an in-built arrow of time, and the FSSP algorithm is aligned with it. Actions have preconditions on 

the given state which determine their applicability. The preconditions are necessary and sufficient for 

applicability. Once an action is applied to a given state, it produces a new state by adding some facts 

and deleting some facts. The point is that after progressing over an action, we necessarily land up in a 

state. One can say that the progression operation is closed over the state space. 

Regression is done over sets of goal predicates. A goal represents facts that one wants true in some 

future state5. The relevance of an action to a goal simply means that it looks like that the action could 

5  In PDDL3.0 one can even talk of conditions on the trajectory of the plan.

on(G, A) Ÿ on(B, J)

stack(G, A)

holding(G) Ÿ clear(A) Ÿ on(B, J)

pickup(G) unstack(G, X) unstack(X, A) stack(B, J)

stack(B, J)

holding(B) Ÿ clear(J) Ÿ on(G, A)

How can you stack B on 

J and end up holding G 

in the resultant state? 

Unstack would be 

needed only if clear(A) 

was not already true.

What should  X 

be instantiated 

to? 

FIGURE 7.5 BSSP does not have a concrete state description to work with!
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achieve some part of the goal. But it does not mean that the action may be applicable in the preceding 

state. For example, for the goal in the above problem (Figure 7.6), the action stack(B, C) satisfies our 

definition of being relevant. But it obviously cannot be applied as a last action in a plan, because one 

can only move one block at a time, and block A needs to be on block B. The backward search algorithm 

being discussed could easily have found another invalid plan with stack(B, C) as the last action. While 

the goal description presumably applies to a state, one can observe that the regression operator is not 

closed over the state space. One may start with a (subset of a) state but end up with a set of predicates 

that is not the subset of any state. For example, the description “holding(A) Ÿ clear(B) Ÿ holding(B) Ÿ 

clear(C)” in the figure cannot describe a state, because our robot has only one arm and cannot hold two 

blocks.

Since we can have action sequences that are not feasible plans, let us define the notion of a valid plan.

Definition

A planning problem P is defined as a triple (S, G, O) where, 

 — S is set of facts completely describing the given or start state, 

 — G is a set of facts required to be true in a goal state, and

 — O is the set of operators.

The above defines the simplest of planning problems. The simplest notion of a plan is a sequence of 

actions, each of which is an instance of some operator in O. 

on(A, B) Ÿ on(B, C)  

stack(A, B) 

holding(A) Ÿ clear(B) Ÿ on(B, C)  

stack(B, C)

holding(A) Ÿ clear(B) Ÿ holding(B) Ÿ clear(C) 

pickup(A)

ontable(A) Ÿ clear(A) Ÿ clear(B) Ÿ holding(B) Ÿ clear(C)  

pickup(B)

ontable(A) Ÿ clear(A) Ÿ clear(B) Ÿ ontable(B) Ÿ clear(C)  

Search terminates 

because the regressed 

goal is true in the 

given state

B CA

The given state

A

C

B

The goal state

FIGURE 7.6 The plan pickup(B), pickup(A), stack(B, C), stack(A, B) is not a valid plan. 
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Definition

A sequence of actions P = (a1, a2, …, an) is a valid plan for a problem P, if a1 is applicable in the state 

S, progressing to state S1, a2 is applicable in the resulting state S1, and so on, yielding the state Sn after 

the action an, and G Õ Sn.

A simple linear time procedure may be written to verify that a plan P = (a1, a2, …, an) is a valid 

plan, by successively progressing through the sequence of actions and checking whether the final state 

contains the goal facts G.

ValidPlan(plan, state, goal)

1  if Empty(plan)

2      then if Satisfies(state, goal)

3              then return TRUE

4              else return FALSE

5      else state ¨ Progress(Head(plan), state)

6 return ValidPlan(Tail(plan), state, goal)

FIGURE 7.7 Algorithm to verify a plan. Function Satisfies checks whether the state satisfies the goal 

(that is G Õ S). Function Progress progresses the state over an action.

Given the function to check the validity of a plan, we can write a backward state space planning 

algorithm that will apply this check before termination.

In the algorithm described below, we also assume a function Consistent(G) that takes a goal G and 

checks whether G can be part of a state. Observe that this check does not have to be perfect. We use 

the check to filter out some inconsistent goals. The more inconsistent goals we can filter out, the faster 

our search algorithm will perform. But for the sake of correctness, the check should not filter out any 

consistent goals. The trivial correct case is when Consistent(Goal) always returns true. In this case, it 

does not filter out any goals, which means the algorithm may waste time over an infeasible sequence of 

actions. Some work on checking for consistency has been described in (Fox and Long, 1998; Kumashi 

and Khemani, 2002).

In the algorithm below, the search node is a pair made up of the goal to be satisfied, and the current 

plan. We use two functions, Goal(node) and Plan(node), to extract the goal component and the plan 

component from a given search node. They return respectively the first member and the second member 

of the list representing the node. The plan grows in a backward fashion, with the last action being found 

first. The planning algorithm takes as input the given state, the goal description, and a set of actions that 

are all possible ground instances of the set of operators for the given domain. One can adapt the algorithm 

to work with the set of operators itself. Working with instances is simpler for a finite domain. Also, not 

shown in the algorithm, is the role of a CLOSED list to check for looping. This is left as an exercise.

7.4 Goal Stack Planning

The main problem with BSSP is that goal regression is not sound and the algorithm may be handling 

goal descriptions that are not consistent with any state. The advantage of BSSP over FSSP is that because 

it focuses on the goal, the search space it generates is smaller due to the branching factor being lower. 

FSSP, on the other hand, is sound but has a large branching factor, since it looks at modifications to the 

complete state.

One of the earliest planners STRIPS (Fikes, 1971) attempted to combine the focused search of BSSP 

with the soundness of FSSP. It considered actions by reasoning in a backward manner, but committed 
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itself to actions only in a forward manner. The algorithm is also called Goal Stack Planning (GSP) (Rich 

and Knight, 1990) because it pushes subgoals and actions into a stack, and picks an action only when all 

its preconditions are satisfied. That way, it works with state descriptions that are always consistent for 

growing plans, and goal descriptions for growing the search tree. The algorithm is however incomplete, 

in the sense that it could terminate without finding a plan. It is possible that the algorithm could commit 

to a wrong action at some time, reaching a state from which a plan cannot be found. For domains where 

the actions are reversible, for example the blocks world domain, the algorithm can be made complete by 

putting in an extra check, somewhat similar to the one in BSSP. However, the reasons for introducing 

the check are different, as described below.

GSP breaks up a set of goal predicates into individual subgoals and attempts to solve them individually 

one after another. This approach is also sometimes called linear planning. This refers to the fact that 

the subgoals are attempted and solved in a linear order6. When we implement BSSP with depth first 

strategy, we are in fact doing something similar. As we will see, this does not always work. In some 

domains, a subgoal solved earlier may get disrupted by later actions. We saw this depicted in Figure 3.15 

for the Rubik’s cube. Most human solvers of the cube attempt it as a sequence of subgoals, but end up 

disrupting them on the way to the final solution. In domains where the goal state is reachable from all 

states, one can tackle this problem of subgoal interaction by putting in a check to verify that all subgoals 

have indeed been solved before termination. This check is necessary to take care of subgoal interaction, 

which is different from the check in BSSP, where it was to determine the validity of the plan constructed. 

Goal Stack Planning works by pushing the goal description onto a stack. It pushes both the conjunct, 

as well as each of the individual goal predicates separately. The algorithm pops the element on the top of 

6  The term ‘linear planning’ has also been used for planning systems in which a plan is a linear order on actions, and the partial 

plan is extended action by action in a linear order. 

BSSP(givenState, givenGoal, actions)

1  goalPlan ¨(givenGoal, ())   /* start with the empty plan */

2  open ¨(goalPlan)            /* note the extra set of brackets */

3  while not Empty(open)

4    do  n ¨ Head(open)        /*initially n = (GivenGoal, ()) */

5      goal ¨ Goal(n)          /* extracts goal from search node n */

6      plan ¨ Plan(n)          /* extracts plan from search node n */

7      open ¨ Tail(open)       /* retain other search nodes */

8      if not Satisfies(givenState, goal)

9        then                  /* search further */

10          R ¨ set of relevant actions for goal    /*may be empty */

11          for each action a Œ R

12            do  p ¨ Cons(a, plan)

13                g ¨ Regress(a, goal)

14                   if Consistent(g)    /* do not add if not consistent */

15                     then

16                       gp ¨ List(p, g)

17                       open ¨ Cons(gp, open)    /* Depth First */

18      else if ValidPlan(plan, givenState, givenGoal)

19            then return plan

20 return “No plan found”

FIGURE 7.8 Backward State Space Search regresses over goals. It validates a plan before returning 

it. It also assumes a function Consistent to prune away inconsistent subgoals.
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the stack. If it is a (goal) predicate that is true in the current state then nothing is done and the next element 

is popped from the stack. If it is a goal predicate that is not true in the current state, a relevant action is 

pushed onto the stack, followed by the preconditions—first the conjunction, and then the individual pre-

conditions. The precondition on the top of the stack becomes the next subgoal to be addressed recursively.

In practice, one may have to choose from a set of relevant actions that is pushed onto the stack. In the 

algorithm described below, this is shown as a nondeterministic choice by a choose operator. In practice, 

during implementation, this should be a choice point for a backtracking search algorithm which will 

try out different actions.

If all the preconditions of an action are true in a given state, they will get popped away, and the action 

will be on the top of the stack. In this case, the action is popped and added to the partial plan being 

grown in a forward manner. The current state progresses over the chosen action, and planning resumes 

by looking at the top of the stack. If the stack becomes empty, all the goal predicates have been achieved, 

and a plan is returned. If at any stage the planner cannot find an action to achieve a goal predicate, the 

algorithm reports failure. 

We assume a function PushSet(Set, Stack) that takes a set of goal predicates and (a) pushes the 

conjunction of the predicates onto the Stack, and (b) also the individual goal predicates in some order. 

This order may be determined heuristically if possible. For example, in the blocks world domain, 

holding(Block) should be attempted last because it blocks up the robot arm. If it is solved or achieved 

first then it could be undone while achieving some other subgoal, since the plan is for a one-armed robot. 

The algorithm for GSP is shown in Figure 7.9. We assume, as is the case with many modern planners, 

that all instances of the planning operators that match the domain are available, is a set called actions.

GSP(givenState, givenGoal, actions)

1  state ¨ givenState

2  plan ¨ ()                       /* start with the empty plan */

3  stack ¨ emptyStack              /* start with the empty stack */

4  PushSet(givenGoal, stack)

5  while not Empty(stack)

6    do x ¨ Pop(stack)

7    if x Œ ¨ actions

8      then plan ¨ (plan ∑ x)      /* operator ∑ extends plan with x */

9           state ¨ Progress(x, state)

10      else if x is a conjunct of goal predicates C

11          then  solvedFlag ¨ TRUE

12              for each g Œ C

13                do if g Õ ¨ state

14                    then solvedFlag ¨FALSE

15              if solvedFlag = FALSE

16                then PushSet(C, stack)

17      else if x œgivenState      /* x is an unsatisfied goal predicate */

18          then  CHOOSE action a that achieves x

19              if no such action exists

20                then return FAILURE

21              Push(a, stack)

22              PushSet(Preconditions(a), stack)

23 return plan

FIGURE 7.9 Goal Stack Planning uses a stack to keep pending goals and actions. It picks actions 

only when it is applicable in the given state, and progresses forward.
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Let us look at the trace of algorithm GSP on a small problem depicted in Figure 7.6. Let the initial 

state be:

 S = {onTable(A), onTable(B), onTable(C), clear(A), clear(B), clear(C), armempty}

Let the final state be a tower of A, B and C expressed by {on(A, B), on(B, C)}. Assume that we execute 

the algorithm GSP and keep a watch on the push and the pop actions, the plan being assembled, and the 

current state S as and when it changes. Remember, that PushSet is a function that pushes the set onto 

the stack, first the conjunct of predicates, and then each one individually. Let us assume that the trace 

shows us the object being pushed or popped, the plan whenever it is augmented, and the state after the 

most recent action is popped. The trace of the algorithm will then look like the following:

S = {onTable(A), onTable(B), onTable(C), clear(A), clear(B), clear(C), 

armempty}

Plan = ( )

  push Æ on(A, B) Ÿ on(B, C)

  push Æon(A, B)      /* choice: tackle on(B, C) first and then on(A, B) */

  push Æon(B, C)

  pop    ¨ on(B, C)

  push Æstack(B, C) /* an action to achieve on(B, C) */

  push Æ clear(C) Ÿ holding(B)    /* preconditions of stack(B, C) */

  push Æ holding(B)

  push Æ clear(C)

  pop    ¨ clear(C)            /* true in the given (start) state */

  pop    ¨ holding(B)

  push Æ pickup(B)             /* this is a choice point */

  push Æ onTable(B) Ÿ armempty Ÿ clear(B)

  push Æ armempty 

  push Æ onTable(B) 

  push Æ clear(B)

  pop    ¨ clear(B)

  pop    ¨ onTable(B)

  pop    ¨ armempty

 pop    ¨ onTable(B) Ÿ armempty Ÿ clear(B)

  pop    ¨ pickup(B)

S = {onTable(A), onTable(C), clear(A), clear(B), clear(C), holding(B)}

Plan = (pickup(B))

  pop    ¨ clear(C) Ÿ holding(B)

  pop    ¨ stack(B, C) 

S = {onTable(A), onTable(C), clear(A), clear(B), on(B, C), armempty}

Plan = (pickup(B), stack(B, C))

  pop    ¨ on(A, B))

  push Æ stack(A, B) 

  push Æ clear(B) Ÿ holding(A)

  push Æ holding(A)

  push Æ clear(B)

  pop    ¨ clear(B)

  pop    ¨ holding(A)

  push Æ pickup(A)          /* this is a choice point */

  push Æ onTable(A) Ÿ armempty Ÿ clear(A)

 push Æ armempty
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  push Æ clear(A)

  push Æ onTable(A)

  pop    ¨ onTable(A)

  pop    ¨ clear(A)

  pop    ¨ armempty

  pop    ¨ onTable(A) Ÿ armempty Ÿ clear(A)

  pop    ¨ pickup(A)

S = {onTable(C), clear(A), clear(B), on(B, C), holding(A)}

Plan = (pickup(B), stack(B, C), pickup(A))

  pop    ¨ clear(B) Ÿ holding(A)

  pop    ¨ stack(A, B) 

S = {onTable(C), clear(A), on(B, C), on(A, B), armempty}

Plan = (pickup(B), stack(B, C), pickup(A), stack(A, B))

  pop    ¨ on(A, B) Ÿ on(B, C)

Stackempty

Return Plan = (pickup(B), stack(B, C), pickup(A), stack(A, B))

The reader would have noticed that the algorithm has made some choices in the above execution. 

Choice points occur when there is more than one way of achieving a goal predicate. For example, the 

above trace has to find actions to achieve the goal predicate holding(B). This can be achieved either by 

picking up block B from the table, or by unstacking it from some other block. Which block to unstack 

it from, would also be a choice point. Likewise, if the robot is holding a block, and the goal predicate 

being addressed is armempty, it has to decide where to put that block. One approach would be to 

introduce backtracking here. Another would be to do some secondary reasoning to resolve this choice. 

For example, one could look at the state to see which action would be appropriate. In the example 

trace, this would tell us that since block B is on the table, one can assume that nothing will disturb it till 

the time comes for holding(B) to be made true, the correct action is pickup(B). The choice can also be 

resolved by looking at the goal set. If, for example, the robot is holding a block (say) M, and the goal 

has a predicate on(M, N) then a good way to achieve armempty would be to use the action stack(M, N).

A different kind of choice is concerned with the order of attempting subgoals. By pushing the subgoals 

onto the stack one by one, the algorithm is serializing them. The order in which you attempt subgoals 

is obviously going to affect performance. In the given trace, the algorithm chose to solve for on(B, 

C) first. This turned out to be a good choice, and after stacking B on C, the algorithm stacked A on B. 

What if the order had been reversed? The algorithm would have first stacked A on B to reach the state,

 S = {onTable(B), onTable(C), clear(A), clear(C), on(A, B), armempty}.

Then to achieve on(B, C) it would need to stack B on C, for which it would need holding(B), for 

which it would have to pickup(B), for which it would have to achieve clear(B), for which it would have 

to unstack(A, B) and put it somewhere. It would have thus undone the subgoal on(A, B) achieved earlier. 

We have addressed this problem by adding the full goal conjunct in the stack. After achieving on(B, C) 

the algorithm will reach the state S = {onTable(A), onTable(C), clear(A), clear(B), on(B, C), armempty} 

and again look at the conjunct on(A, B)Ÿon(B, C). At this point on(B, C) is true but not on(A, B). Now 

it will pickup A and stack it on B to find the plan (pickup(A), stack(A, B), unstack(A, B) putdown(A), 

pickup(B), stack(B, C), pickup(A), stack(A, B)). It did solve the problem, but found a suboptimal plan.

Another place that ordering is imposed is in the order in which the preconditions are pushed onto 

the stack. For the action pickup(?X) the preconditions are onTable(?X), clear(?X) and armempty. It 

makes sense to push armempty first, and hence tackle it later. If armempty is addressed first then the 
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second precondition will need to disrupt it because the robot arm has to be used anyway. If for example 

clear(?X) is done last then that would be achieved by unstacking something from ?X, which would 

mean holding(?X) would be true and armempty would have got disrupted. Likewise, the preconditions 

of stack(?X, ?Y) are holding(?X) and clear(?Y). For a similar reason holding(?X) should be done later, 

and hence pushed first.

While in the above problem it was possible to find a subgoal ordering to solve them linearly, this may 

not always be the case. A seemingly similar problem (see Figure 7.3) known as the Sussman’s Anomaly, 

demonstrates that even in simple problems in the blocks world, the subgoals may not be serializable 

(Sussman, 1975). That is, there is no ordering of subgoals where when each of the subgoals is solved 

individually, the goal is solved as a consequence. The progress of the GSP on Sussman’s Anomaly is 

illustrated in Figure 7.10. We can observe that neither serialization of the two predicates will result in 

success. In both cases, the goal predicate achieved later undoes the one solved earlier. We have tackled 

this problem by adding an extra check for the entire conjunct. The algorithm will, therefore, realize that 

the goal has not been achieved and attempt the problem again, from the new state it is in. From here, 

it will find a solution in both cases. However, with this extra check we have created another problem. 

If the goal is inconsistent then the algorithm may never terminate. For example, if the goal were to be 

on(A, B) Ÿ on(B, C) Ÿ on(C, A), the algorithm will go into an infinite loop.

A

C

B

The Goal State

B

C

A

The Given State
B

A

C

First achieve on(B, C)

C

A

B

Then achieve on(A, B)
C

A

B

First achieve on(A, B)

A

B

C

Then achieve on(B, C)

pickup(B)
stack(B, C)

unstack(B, C)
putdown(B)
unstack(C, A)
putdown(C)
pickup(A)
stack(A, B)

unstack(C, A)

putdown(C)

pickup(A)

stack(A, B)

unstack(A, B)
putdown(A)
pickup(B)
stack(B, C)

FIGURE 7.10 Neither order in Sussman’s Anomaly solves the problem.
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In the blocks world, the extra check works. This is because in this domain, any state is reachable 

from any other state. If this were not the case then the GSP algorithm would have run into problems. 

Consider, for example, planning in the culinary domain, where the actions are mostly irreversible. A 

planner, for example, may need to do some actions in a particular order. If it commits to a wrong set of 

actions then it would need to be able to go back to the choice point and choose another action. Thus for 

completeness, backtracking in the backward phase would be necessary.

We can think of the GSP algorithm as doing depth first search on an AND/OR goal tree. Pushing 

into the stack is like generating the tree. A goal predicate is solved if it occurs in the current state. An 

action node (AND node) is solved if all its children (preconditions of the action) are solved. An OR node 

represents a choice of actions for achieving a goal predicate. We will revisit this algorithm in the chapter 

on reasoning with logic, as backward chaining, the foundation of the programming language Prolog (see 

Chapter 12). The theorem proving algorithm searches for supporting statements in the backward direc-

tion, but commits to inferences in the forward direction. A recursive version (Figure 7.11) of the GSP 

algorithm adapted from (Ghallab et al., 2004) illustrates the dual nature of GSP search, and its relation 

to an AND/OR tree. It uses a function PlanProgress(P, S), shown in Figure 7.12, that progresses a given 

state S over a plan P by successively progressing over its actions.

7.5 Plan Space Planning

The planning approaches described above reason with states. The planner is basically looking at a state 

and a goal. If the state satisfies the goal then it terminates. Otherwise, it makes a search move over the 

state space looking for actions to add to the plan.

An alternative view is to consider the space of all possible plans, and search in this space for a plan. 

We will call such approaches as plan space planning. Most algorithms in this category represent a plan 

as actions arranged in a partial order, and hence we also use the term partial order planning. Unlike in 

the state space methods described above, there is no restriction on the order in which actions are added to 

the plan. Since state space methods focus on the state, or on the goal which is a partial state description, 

the search methods look at ways to go to neighbouring states that are one move away. Thus, states are 

explored in a linear fashion, and the plans, which are themselves linear structures, grow linearly, being 

extended at one of the two ends. Plan space planning approaches work with plan structures, and have 

the ability, in principle, to modify or extend any part of a plan. That is why these methods are also 

known as nonlinear planning methods. Because of the fact that they can modify any part of a plan, the 

plan space planning approaches are not constrained to focus on any one subgoal continuously. They can 

shift attention midway, and in the process often solve problems, like the Sussman anomaly correctly as 

shown in Figure 7.13.

The start node for search in plan space planning is the empty plan P0. It is represented by two 

actions that we will call A0 and A . These two special actions will be part of every plan. The first, A0, 

has no preconditions, and its effects are the predicates describing the start state. The second, A , has as 

its preconditions the goal predicates, and has no effects, as shown in Figure 7.14 (for the tiny planning 

problem from Figure 7.18). Thus, every planning problem will have a distinct start node that will capture 

both the start state and the goal description.
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RecursiveGSP(givenState, givenGoal, actions)

1  state ¨ givenState

2  goal ¨ givenGoal

3  plan ¨ ()

4  while TRUE

5    do if Satisfies(state, goal)

6        then  return plan

7        else  Let R be set of relevant actions for goal

8            for each subgoal g Œ goal      /* AND node */

9              do        

10                CHOOSE an action a in R   /* OR node */

11                if no such action exists

12                  then return FAIL

13                subPlan ¨ RecursiveGSP(state, Preconditions(a), actions)

14                        /* searches in the backward fashion */

15                if subPlan = FAIL

16                  then return FAIL

17                  else    /* a deterministic version will backtrack */

18                    state ¨ PlanProgress(subPlan, state)

19                      /* progresses State in the forward direction */

20                    state ¨ Progress(a, state)

21                        /* assembles plan in the forward direction */

22                    plan ¨ (plan ∑ subPlan ∑ a)

FIGURE 7.11 Recursive GSP illustrates the dual nature of GSP. It considers actions by their relevance, 

but selects them only on applicability. For simplicity, we write a nondeterministic version with a CHOOSE 

operator that makes the correct choice. The deterministic version may make a wrong choice, but 

backtrack to try again.

PlanProgress(plan, state)

1  if Empty(plan)

2    then  return state

3    else  state ¨ Progress(Head(plan), state)

4 return PlanProgress(Tail(plan), state)

FIGURE 7.12 Algorithm PlanProgress iteratively progresses over the actions in a plan.

As planning proceeds, more actions are added to the plan. Interestingly, there is no constraint on 

where actions should be added. State space planning algorithms grow linear, partial plans at one end. 

Plan space methods separate the tasks of selection of an action and its placement in the plan. 

In addition to the set of actions, the plan representation contains links between actions. The links 

are of two types. The first, called ordering links, are used to capture ordering information where it is 

known. The initial plan for example, has a default link (A0 ≺ A )  to assert that the start action A0 

happens before the end action A . The second kind of link, first introduced in a system called NONLIN 

(Tate, 1977), is called a causal link. A causal link (Ai, P, Aj) between two actions Ai and Aj can be 

established when an affect P of action Ai is a precondition for action Aj. Action Ai is the producer of 

predicate P, and action Aj is the consumer of P. Figure 7.15 illustrates a causal link between the two 

actions Pickup(A) and Stack(A, B).

When the link is established, it represents a commitment on the part of action Ai to support the 

precondition P for action Aj. Once established, the algorithm will have to ensure that the link is not 
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FIGURE 7.14 The empty plan P0 has two actions. Action A0 produces the start state, while action A  

accepts the goal state.
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FIGURE 7.13 To find an optimal plan for the Sussman anomaly, the algorithm should start off with 

on(A, B), switch to on(B, C) on the way, and return to on(A, B) again, instead of attempting them 

linearly.
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disrupted or clobbered. If it is clobbered during the planning 

process then it will have to be declobbered. A causal link 

(Ai, P, Aj) is said to have a threat if there exists another action 

At in the plan that potentially deletes P, that is, has (not P) in its 

effects. One may even treat an action as a threat if it produces 

P, because it threatens to make action Ai redundant (McAllester 

and Rosenblitt, 1991; Kambhampati, 1993).

If an action A has a precondition P that is not causally linked 

then we say that P is an open precondition7. A solution plan 

cannot have any open preconditions or threats. Together, the two 

are also called flaws. It has been shown (Penberthy, 1992) that if 

a partial plan does not have any flaws then it is a solution to the 

planning problem. The starting plan containing the two actions 

(A0, A ) will be a solution plan only if the goal predicates are 

already true in the start state. That is, for each precondition of 

A , the action A0 is the producer, and the corresponding causal 

links are established. If the algorithm can establish these links 

then it can terminate.

Plan space planning often follows what is known as a 

least commitment strategy (Weld, 1994). This implies that the 

algorithm commits to a particular feature in a plan, only when 

it has to. For example, in the blocks world, if the planner has to achieve armempty when it is holding a 

block say B. It might want to choose the stack action, but it may not know where to stack the block. It 

then makes sense to use only partially instantiated operators, and insert stack(B, ?X)8 into the plan instead 

of choosing to guess and instantiate it to say stack(B, Q). We will use partially instantiated operators. 

Then for each variable, one has to keep track of the binding. So in addition to the two kinds of links, 

the plan representation will also contain a set of binding constraints that contain information of what 

specific variables can be bound to or cannot be bound to.

Thus, a node in plan space search will represent a partial plan, and will contain a set of partially 

instantiated operators, causal and ordering links, and binding constraints.

Definition

A partial plan P is a 4-tuple

P = (A, O, L, B) where

 — A is the set of partially instantiated operators in the plan,

 — O is the set of ordering relations of the form (Ai ≺ Aj),

 — L is the set of causal links of the form (Ai, P, Aj),

 — B is the set of binding constraints of the form (?X = ?Y), (?X π ?Y), or (?X Œ DX) where DX is a 

subset of the domain of ?X.

7  Also known as an open goal, open subgoal, or an open condition. In the planning literature, the term ‘goal’ is often used for a 

precondition or subgoal.
8  When the representation we are working with may contain variables, we will stick to the convention of identifying them by 

prefixing the question mark. These are different from the variables in algorithms which are programming variables, and are 

names for memory locations or values. These variables are more like variables in mathematics that stand for something unknown. 
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FIGURE 7.15 The causal link 

(Pickup(A), holding(A), stack(A, B)) 

is shown with the dotted link. The 

curved arrow is the ordering link 

between the two actions.
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The initial node in plan space search is defined by the partial plan,

 P0 = ({A0, A }, {(A0 ≺ A )}, { }, { })

The search space is the implicit directed graph whose vertices are partial plans and whose edges 

correspond to refinement operations. Each refinement operator transforms a partial plan P into a 

successor partial plan P¢ by augmenting one of the sets. The different refinement operations are,

 — adding an action or partially instantiated operator to A,

 — adding an ordering constraint to O,

 — adding a causal link to L, or

 — adding a binding constraint to B.

The choice in the refinement process is itself driven by the need to remove flaws from a partial plan. 

As described above, flaws can be of two types; open subgoals or threats. We look at ways to remove 

each of them.

An open goal refers to a precondition P of some action Ap in the plan that is not causally linked to 

another action. A causal link for P can be found in two ways.

 1. If an existing action Ae produces P and it is consistent to add (Ae ≺ Ap) then one can establish a 

causal link (Ae, P, Ap) to the partial plan.

 2. If no such existing action can be found then one has to insert a new action Anew to the partial plan, 

add the corresponding causal link (Anew, P, Ap), and add the ordering link (Ae ≺ Ap) to the partial 

plan. 

An action Athreat that can possibly disrupt an existing causal link (Ai, P, Aj) is a threat to the link. 

Disruption will occur if all three of the following happen:

 1. Athreat has an effect ÿQ such the P can be unified9 with Q.

 2. It is possible for Athreat to happen after Ai.

 3. It is possible for Athreat to happen before Aj.

If all the three happen then we say that the threat has materialized. To eliminate the threat, one needs to 

ensure that at least one of the three conditions for the threat is not met. This can be done by the following:

1. Separation Ensure that P and Q cannot unify. This can be done by adding an appropriate binding 

constraint to the set B in the partial plan.

2. Promotion Promote the action Athreat to happen before it can disrupt the causal link. That is, insert 

an ordering link (Athreat ≺ Ai) into the partial plan (add it to set O).

3. Demotion Demote the action to happen after both the causal link actions. That is, add an ordering 

link (Aj ≺ Athreat) to the set O in the partial plan.

Figure 7.16 shows an example of a threat. Assume that at some stage there is a partial plan with two 

actions pickup(A) and stack(B, ?Y). Of the many open conditions, let the algorithm choose clear(A) and 

insert a new action unstack(?X, A) in the plan establishing the causal link (unstack(?X, A), clear(A), 

pickup(A)).

At this point, one can notice that the existing action stack(B, ?Y) is a threat to the newly established 

causal link, because produces ÿclear(?Y), and if ? Y is bound to A then it could possibly disrupt the link. 

To resolve this threat, one the of three methods described above can be chosen. They are given below:

1. Separation Ensure that clear(?Y) and clear(A) cannot unify. This can be done by adding the binding 

constraint (?Y π A) to the set B in the partial plan.

9  Either P = Q or both P and Q are of the form R(?X1, …, ?Xn) and the variables in P and Q can be unified. We look at unification 

in more detail in Chapter 12 on logic and inference.
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2. Promotion Promote the action stack(B, ?Y). Insert an ordering link (stack(B, ?Y) ≺ unstack(?X, A) 

into the partial plan.

3. Demotion Demote the action stack(B, ?Y) to happen after the causal link actions. That is, add an 

ordering link (pickup(A)j ≺ stack(B, ?Y) to the set O in the partial plan.

At any stage of planning, a refinement step can be applied to the partial plan, provided it does not 

introduce an inconsistency. For the ordering links to be consistent, there must be no cycles in the directed 

graph representing the ordering relations. In other words, the action must begin with A0 and move 

forward without turning back, ending with A . Ordering links are added (a) along with causal links and 

(b) during promotion or demotion of actions. Before each of these operations, a check must be made for 

consistency. Likewise, for the binding constraints to be consistent, all assignments to variables should 

be consistent with all the binding constraints. Whenever a new binding constraint is added, a check for 

consistency for the variables involved must be made10. The causal links too must not have cycles, but 

10  This could be computationally expensive though.
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FIGURE 7.16 The action stack(B, ?Y) is a threat to the causal link for the proposition clear(A) 

produced by unstack(?X, A) and consumed by pickup(A).
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a check is not required because whenever a causal link is added to the partial plan, a corresponding 

ordering link is added as well, and it suffices to check that the ordering links are consistent.

The basic plan space algorithm described below (Figure 7.17) is adapted from (Ghallab et al., 2004). 

It is initially invoked with the empty plan P0 as the argument.

PSP(p)

1   flaws ¨ OpenGoals(p) » Threats(p)

2   if Empty(flaws)

3     then return P

4   CHOOSE f Œ flaws

5   resolvers ¨ Resolve(f, p)  /* the set of resolvers for flaw f */

6   if Empty(resolvers)

7     then return FAIL

8   CHOOSE r Œ resolvers

9   p¢ ¨ Refine(r, p)

10  return PSP(p¢)

FIGURE 7.17 The plan space planning (PSP) procedure selects a flaw in a given plan, and looks 

for a resolver that can remove the flaw. The Refine procedure applies the chosen resolver, and the 

algorithm PSP is called recursively.

In Line 1, the set of flaws is identified as the union of the set of open conditions and the set of 

threats. The procedures that return the two constituent sets need to maintain the two sets and update 

them incrementally in each cycle during the call to Refine in Line 9. The set of open conditions is 

usually maintained as an agenda of goals, to which new ones are added every time open conditions are 

created. Likewise, every time an ordering condition is added, a check is made for the possibility of a 

threat. Observe that whenever actions are added, one or more causal links as well as ordering links are 

added as well. In Line 4, one of the flaws is chosen for resolving. In theory, any flaw could be chosen 

because all the flaws have to be resolved for the algorithm to terminate. In practice, while implementing 

a deterministic algorithm choosing a flaw that has a smaller number of resolvers could lead to less 

backtracking. In Line 5, the set of resolvers for the chosen flaw that can be consistently applied are 

identified. The algorithm has to check that no ordering constraints and binding constraints are violated 

by the addition on new ones. This ensures that in Line 9, the resolver, chosen nondeterministically11 

in Line 8, can be applied without any problem, and procedure Refine has only to update the relevant 

structures being maintained. The PSP algorithm treats both kinds of flaws equally.

A variation of the above algorithm called Partial Order Planner (POP) works only with open goals 

in an agenda. Every time it finds a way of satisfying the open goal, it looks for any threats created and 

resolves them before moving onto to the next goal on the agenda. Thus, plan space planning or partial 

order planning can be seen to go through a cycle of “R” steps. Remove a flaw (or an open goal) from 

the agenda. Resolve the flaw. Refine the partial plan, and in the process, Revise the agenda.

Let us look at a small but complete example. Let the initial state of the problem be {ontable(A), 

clear(A), ontable(C), on(B, C), clear(B), AE} where AE stands for armempty. Let the goal predicates 

be {on(A, B), ontable(B)}. The problem is depicted in Figure 7.18.

11  CHOOSE makes a choice non-deterministically. In practice, this will be a choice point where the algorithm may need to 

backtrack to.
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B

A

The goal state

A

B

C

The given state

FIGURE 7.18 A small planning problem. Note that nothing is said about block C in the goal state. It 

could be on the table or on block A.

Figure 7.19 shows a partial plan after four actions have been added as described below.

The empty plan with actions A0 and A  captures the initial state and the goal clauses. The two goal 

clauses are the open conditions. The planner chooses one of them, say on(A, B), and inserts an action 

stack(A, B). It inserts an ordering link (stack(A, B) ≺ A ), and a causal link (stack(A, B), on(A, B), A ). 

The preconditions of the action stack(A, B) now appear as open conditions, holding(A) and clear(B).

Let us say that the planner then looks at clear(B) and finds that it has a producer in the action A0. It 

establishes a causal link (shown in the figure) and an ordering link (not shown) for clear(B). It could 

then take up the open condition ontable(B) and add the action putdown(B), and the corresponding links. 

Next comes the open condition holding(A), and for that, it inserts the action pickup(A) and its links.

The only open condition left at this point is holding(B), and for the planner, insert the action unstack

(B, C) into the plan. At this point, three threats appear, marked as t1, t2 and t3 in the figure.
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FIGURE 7.19 A partial plan with four actions added in the order stackAB, putdownB, pickupA, unstackBC. 

After the last action, there are no open conditions, but three threats t1, t1, and t3 appear.
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Threat t1 is that if stack(A, B) is done before unstack(B, C) it will disrupt (or clobber) the precondition 

clear(B) of the latter. This can be resolved by demoting action stack(A, B) to happen after unstack(B, C). 

This is done by adding an ordering link (unstack(B, C) ≺ stack(A, B)) into the plan.

Threat t2 and threat t3 are symmetrical in nature. Let us assume that the planner correctly resolves t2 

by likewise demoting action pickup(A) by adding the link (unstack(B, C) ≺  pickup(A)). Notice now 

that the threat t3 has become definite, in the sense that we know that the AE condition for pickup(A) 

is going to be clobbered by unstack(B, C). The corresponding causal link is broken, and we have the 

open condition AE for pickup(A). We cannot demote unstack(B, C) without making the ordering links 

inconsistent. Instead, the planner looks for an action to achieve AE again. It finds it within the plan 

itself. Action putdown(B) can produce AE for pickup(A) to consume. Thus, declobbering, as it was first 

described in a system called TWEAK (Chapman, 1987), is done by inserting ordering link (putdown(B) 
≺ pickup(A)) and causal link (putdown(B), AE, pickup(A)) between the two actions. The resulting plan 

with no threats or open conditions is shown in Figure 7.20. Only the necessary subset of ordering links 

is shown for clarity, like in a Hasse diagram.
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FIGURE 7.20 The final plan after threats t1, t2 and t3 are resolved. There are no open conditions or 

threats, and hence this is a solution plan.

The reader would have observed that the resulting plan is a linear plan. This is inevitable in the blocks 

world domain, because the one-armed robot can hold only one block, and therefore only one action can 

be done at a time. If the robot could hold more than one object then one could have partial plans that 

are not linear orders. For example, a parallel step could say pickup(A) and pickup(B) without specifying 
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the order, that is there would be no ordering constraint between the two actions, and the plan could be 

correctly linearized in any order.

An example of such parallel actions could be the “dressing up for school” problem, for which the plan 

is shown in Figure 7.21. The subplan has four actions—wear(left, sock), wear(right, sock), wear(right, 

shoe) and wear(left, shoe)—that follow a comb-hair action with only constraints that each sock must 

be worn before the respective shoe. Otherwise, the actions could be done in any order. This gives us 

a compact representation of a plan, which stands for all the linear plans that are consistent with the 

ordering constraints.
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FIGURE 7.21 A partial plan may stand for many linear plans.

The algorithms above have been written in a nondeterministic manner. While this results in a succinct 

description, it hides the fact that the algorithm still has to search through a combination of choices. 

In practice, one will have to choose a combination of heuristics to guide the search, and introduce 

backtracking to make it complete. The reader might have noticed that the search space for PSP is 

infinite, even when the state space is finite. Given a two block problem in the blocks world domain, 

there are only four distinct states possible. But the number of candidate plans is infinite, because one can 

always insert the two actions (pickup(X), putdown(X)) where applicable any number of times. Since the 

representation does not involve states at all, one cannot check that the same state is being visited again 

and again. One can, in principle, explore plans of arbitrary length without moving towards a solution. 

Thus, there is a need to control the search strategy efficiently. One way to do so is to explore plans in 

an iterative deepening manner, keeping an iteratively increasing bound on the number of actions in 

the partial plan. This would ensure that plans are considered in the order of increasing length, and the 

solution plan would be found in finite time.

The reader would also have noticed that the PSP algorithm has a backward reasoning flavour, since 

it looks for ways to resolve open conditions, though the representation is very different from BSSP. 

While BSSP can run into spurious states, PSP avoids that pitfall having done away with states altogether 

in its representation. The sequence in which both consider actions can still be similar. The partial plan 

representation on the other hand is powerful enough to accommodate other search strategies, with some 

modifications as discussed below. The approaches described below have a flavour of top down or goal-

directed problem solving.
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7.5.1 Means Ends Analysis

Means Ends Analysis (MEA) is a strategy first introduced in a system called General Problem Solver 

(GPS) (Newell and Simon, 1963). It was one of the first general purpose approach to problem solving, 

or planning. The basic idea in MEA is to,

 ● Compare the given state and the desired state and arrive at a set of differences

 ● Choose the most significant difference and look for a plan to reduce that difference recursively

 ● Apply the operators chosen and look at the problem again for any more differences

We can think of the GSP algorithm in STRIPS as an example of the MEA strategy. As described in 

Figure 7.11, the recursiveGSP algorithm looks at the goal propositions, and attempts to solve one of 

them before considering the next one. The STRIPS planner focuses on the goal propositions. Each goal 

proposition is a difference to be tackled. It chooses a goal to tackle from the goal set in a predefined 

manner. MEA, on the other hand, has a more top-down view of problem solving, and it requires the 

following set of procedures,

 ● A MATCH procedure that compares two states and returns a set of differences, if any, between 

them. There exists an efficient algorithm for doing this, the Rete algorithm, described in Chapter 

6 in a different context.

 ● A procedure for ordering the differences to arrive at a set of goals (Ends) to be achieved

 ● A set of operators (Means) to reduce the differences.

The versatility of the algorithm depends upon the availability of knowledge for the above three 

procedures. In STRIPS, the set of differences is simply the set of open goals or subgoals, and as observed 

above, it does not order the differences. The set of operators can be provided in a modular form as in 

PDDL. Consequently, the algorithm can be written in a domain independent form. On the flip side, as we 

have seen, GSP does not always find the best plans. In more general cases, some of the above knowledge 

would require more domain related procedures and may not be general enough. We illustrate the MEA 

strategy with a few examples below. The reader is encouraged to think of the strategy as working on a 

partially ordered plan structure, in which actions are inserted because they address the most significant 

differences between the desired state and the effects in the current partial plan. In particular we may 

insert actions based on criteria other than open condition satisfaction and threat removal, and work with 

a more general notion of flaws which may vary from domain to domain. We can think of the flaws (in 

the more general sense) as the differences in GPS. Furthermore, we order the flaws in some order of 

importance or difficulty and tackle them in that order.

Consider the task of planning a trip from IIT Madras (IITM) in Chennai to the Technical University 

in Munich (TUM). The problem is to overcome the difference (distance) in our current state (at IITM) 

and the desired state (at TUM). An FSSP may start by planning with applicable moves from IITM, and 

a BSSP or GSP may start looking at the relevant moves from the goal (at TUM). They would try and 

construct the plans in linear fashion at the level of detail of actions. A GPS like solver may first address 

the biggest difference, in terms of distance, and observe that we can reduce the distance from Chennai 

to Frankfurt (the most significant difference) because we have the means to do so. That is, there is a 

flight from Chennai to Frankfurt. As one can notice, this information comes from the domain. We often 

think of such an operator first because we visualize the differences as distances and operators as means 

of transport. We could be working with an operator difference table that looks as follows.
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Table 7.1  A possible operator difference table for travelling, lists the modes of transport that can be used to 

cover different distance ranges.

Modes of transport

Distances Aeroplane Train Car Taxi Bus Walk

More than 5000 km yes

100 km to 5000 km yes yes yes

1 km to 100 km yes yes yes yes

Less than 2 km yes yes yes

Observe that it is still not straightforward to use this table, because looking at the original problem, 

one has to choose from the set of available options and operator that would reduce the largest difference. 

Selecting a Chennai–Frankfurt flight12, for example, implies the knowledge that there are no Chennai–

Munich flights. Once we manage to decide upon the operator, we are left with two new problems to 

solve. They are,

 1. Given: (at IITM), Desired: (at Chennai airport)

 2. Given: (at Frankfurt airport), Desired: (at TUM)

One can solve these independently, consulting the operator difference table at each stage.

A more concrete example that is easier to implement is the Towers of Hanoi13 problem. This problem 

also illustrates the utility of being able to order the differences. The domain constitutes of three pegs, or 

locations, and a tower of N disks on one peg to start with. The disks are all of different diameters, and 

any disk can be placed only on top of a larger disk or on an empty peg. A move constitutes of transferring 

a disk from the top of one peg, to another peg where possible. Figure 7.22 depicts a problem with three 

disks.

d1 
d2 d3 

A  B C 

FIGURE 7.22 The Towers of Hanoi. The task is to move the tower of N (3 in the figure) disks from 

location peg A to peg C. Only the topmost disk on a peg may be moved, and cannot be placed on 

a smaller disk. The problem is known to have solutions (plans) that are exponentially long: (2N – 1) 

moves for towers with N disks.

The Towers of Hanoi problem is very structured and often used to illustrate recursive algorithms (to 

move a complete tower move all disks, but one recursively to a temporary peg, move the remaining 

disk to the destination, and move the other disks recursively to the destination). However, if the problem 

is treated as a planning problem, it poses a challenge because the optimal solution is known to be 

exponential in length. For a problem with N disks, the number of moves in the solution is (2N – 1). 

12   In practice, we might in fact decide to “fly to Munich” and leave the details for the travel agent to work out, but we wish 

to illustrate one (problem solving) agent solving the travel problem. Also, other considerations might warrant a train from 

Frankfurt to Munich.
13   Also known as the Towers of Brahma. According to Hindu mythology, Brahma gave the task of moving a 64-disk tower to 

pandits (priests) in Benaras (now Varanasi). The world is supposed to come to an end when they complete the task.
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Combined with the fact that in each intermediate state, either two or three moves are possible, one can 

see that the search space is very large.

The MEA strategy works well with the ordering information that the largest disks are hardest to 

move since they may have more disks on top of them. Then, if the differences measured are in terms of 

differences in location of each disk, the differences for the largest disks must be reduced first. In Figure 

7.2, three disks have to be moved from tower A to tower C. The differences in order of importance are,
 ● D3: disk d3 is on peg A and not on peg C
 ● D2: disk d2 is on peg A and not on peg C
 ● D1: disk d1 is on peg A and not on peg C

Having chosen the difference D3 to reduce, GPS creates a goal G3 of reducing that difference. This 

is because the operator to reduce the difference may not be applicable in the given state. For example, 

the operator to reduce D3 is to move disk d3 from A to C, but that can be only done if disk d3 is clear, 

and peg C is empty (because d3 is the largest disk; otherwise the condition would be that the existing 

disk on peg C is larger). These conditions would be true if disks d1 and d2 were not on peg A, and also 

not on peg C. Thus, GPS would recursively create a new set of differences as follows,
 ● D32: disk d2 is on peg A and not on peg B
 ● D31: disk d1 is on peg A and not on peg B

And work towards reducing D32. Continuing in the same manner, it would create a new goal to move 

d2 from A to B, and then another to move d1 from A to C. This is a move it can make, and it will do so 

going to a new state S1 in which d1 is on C. It can now move d2 from peg A to peg B, thus achieving the 

goal of reducing D32. Now it looks at the difference D31 and revises the difference to
 ● D¢13: disk d1 is on peg C and not on peg B

which can be reduced by moving d1 from peg C to peg B. Having done all this, GPS is now in a position 

to solve goal G3 by moving disk d3 to peg C. After this, it goes on to reduce the revised differences D2 

and D1, revised because the world may have changed in the interim period. The reader would recognize 

the similarity of the “trace” with the one for GSP, and in fact as observed earlier, GSP is a special 

case of GPS. If one were to use the GSP planner to solve the Towers of Hanoi and give it additional 

information on ordering of goal propositions (lowest blocks/disks in goal set first), we would have in 

effect the algorithm described above.

Problem decomposition by the MEA strategy can also be seen to generate an AND/OR tree 

(Nilsson, 1971). At the AND level, the strategy breaks up the problem into two parts, which are ordered 

(see Figure 7.23). In the first part, it poses a goal to reduce the largest difference, and in the remaining 

part, it addresses the remaining differences. Reducing the largest difference itself could be done in 

several ways and each of them becomes a choice at the OR level. Having selected an operator, the MEA 

strategy recursively poses the problem of achieving the preconditions for that operator and the task of 

applying that operator when its preconditions are achieved.

The reader would again have noticed the likeness in structure of the recursiveGSP algorithm in 

Figure 7.11 and Figure 7.23 showing the AND/OR tree above. One of the many contributions of the 

pioneering work on GPS is the recursive approach to problem solving.

The key to performance in GPS is an ordering of the differences to be addressed, and the availability 

of operators to reduce the differences. One desirable property of the operators is that applying an operator 

to reduce a difference should not undo the work of a previous operator. We have seen that such a problem 

can occur even in the blocks world with the example on Sussman’s anomaly. While it may not be possible 

to find primitive operators that satisfy this property, Korf has shown that one could construct operator 

difference tables in which the operators are not primitive operators, but chunked together into macros. In 

other words, one can even tackle nonserializable subgoals by devising macro moves that can be applied 
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in a serial order (see also the section on Peak-to-Peak Heuristics in Chapter 3). Table 7.2 below shows 

the macro table for the Eight-puzzle (taken from (Korf, 85)) for the goal state shown in Figure 7.24.

Table 7.2 A macro operator table for the Eight-puzzle

TILES

0 1 2 3 4 5 6

P
O

S
I

T
I

O
N

S

0 —

1 UL —

2 U RDLU —

3 UR DLURRDLU DLUR —

4 R LDRURDLU LDRU RDLLURDR

UL

—

5 DR ULDRURDL

DRUL

LURDLDRU LDRULURD

DLUR

LURD —

6 D URDLDRUL ULDDRU URDDLULD

RRUL

ULDR RDLLUURD

LDRRUL

—

7 DL RULDDRUL DRUULDRD

LU

RULDRDLU

LDRRUL

URDLULDR ULDRURDL

LURD

URDL

8 L DRUL RULLDDRU RDLULDRR

UL

RULLDR ULDRRULD

LURD

RULD

An entry in row I and column J is a macro move for reducing the difference in the position of tile 

J if it is currently in the final position of tile I. Tile 0 stands for the empty tile. The macro moves are 

composed from four primitive moves R, D, L, and U which stand for moving an appropriate tile right, 

Achieve goal G from state S 

Reduce largest difference between 

goal G from state S  
Achieve goal G from state S’ 

Operator O1 Operator Oi Operator Ok

Achieve precond(O1) from state S Apply O1 in S to generate S’ 

 

FIGURE 7.23 The MEA strategy generates an AND/OR tree by replicating the above structure below 

the shaded nodes when a recursive call is made.
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down, left or up. Note that the notation is unambiguous, because only 

one tile can make each of the primitive moves at any time. For example, 

in the position in Figure 7.24, move L means tile 4 is moved into the 

empty place, and U means tile 6 is moved.

The shaded squares can be interpreted as follows. If square at row I 

and column J is shaded, it means that the move to reduce the difference 

for tile J does not interfere with the location I (position of tile I in the 

goal state). In other words, the difference for tile I is invariant to the 

reduction of difference for tile J. In general, if we have operators such 

that we can arrange the invariance between differences in a triangular form then one can reduce the 

differences in a serial order (see note by G Ernst (1987) for another example of the triangle property 

for the Fool’s Disk puzzle).

In the above table, the differences are arranged in a triangular invariance order. This means that if 

we reduce the differences in the given order then the problem can be solved in a linear fashion. Thus, 

the differences to be reduced are in the order from tile 0 to tile 6, by the end of which the solution is 

reached. In other words, given any starting position, one can find a solution for the above goal in the 

Eight-puzzle by bringing tile 0 into place, bringing tile 1 into place, and so on using at each point the 

appropriate macro from the table. The reader would have observed that these are not the only macro 

moves that are possible. For example, the above table does not tell us what to do if we want to reduce 

the difference for tile 4, if it is in the position of tile 2. The point is that such a macro is not required for 

completeness, because by the time the turn of tile 4 comes, tile 2 would already be in place, and hence 

tile 4 could not have been in the location of tile 2. Also the macros are not unique. For example, the 

macro UL at location (1, 0) could also been LU. It has been shown that if we can find operators that 

allow us to arrange the differences so that the invariance relations can be arranged in a triangle then the 

solver is complete (Banerji, 1977). Using the macro table, one can solve the problem from any starting 

position when a solution exists. The solution found may not be optimal though. Finally, one could choose 

a different order of solving the differences, and then find the appropriate macro moves. In fact, the work 

by Korf demonstrates how this can be done.

7.5.2 NOAH

An important characteristic of top-down problem solving is that one should start by looking at the 

problem in totality at the abstract level, and then work on the detail. The search based methods we 

have seen earlier operate at the level of primitive moves or operators, and try and synthesize plans 

or solutions from them. In the GPS formulation, one does look at a problem and address the largest 

difference, but it needs an appropriate set of operators. Korf showed that one can construct appropriate 

macros from primitive operators and use them in planning with the MEA strategy. But in doing so, all 

the hard work has been pushed into the task of finding or learning those macro operators. Given the 

appropriate operator difference table, there is no search required any longer, and the plan or solution 

can be constructed by looking up the table. There is a need for search algorithms to be able to operate 

at different levels of abstraction. STRIPS like systems also use the MEA strategy, but are compelled to 

work with the primitive operators from the word go.

One of the first systems to adopt a hierarchical approach to planning was ABSTRIPS 

(Sacerdoti, 1974). As the name suggests, ABSTRIPS is an extension or abstraction of STRIPS and 

works on the same problem representations. It, however, uses some additional information to search 

in a different manner. The additional information it uses is a partial ordering of the predicates in the 
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5

FIGURE 7.24 The Goal 

State for which the macro 

Table 7.2 is constructed.
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domain, determined by a criticality value assigned to each predicate. This criticality value is very 

similar to the ordering of differences in GPS. ABSTRIPS start off by ignoring all but the most critical 

predicates and searches for a solution, with only the most critical predicates in the preconditions. During 

this process, it ignores all other preconditions of the operators. Having found a plan, it moves to the 

next level of criticality. This is done by looking at the predicate with the next level of criticality, and 

posing subproblems to achieve them wherever they become visible in the top level plan. The solutions 

for these subproblems are inserted into the top level plan, and the algorithm moves on to the next level.

The hierarchy of abstraction in ABSTRIPS is generated by ignoring preconditions in the decreasing 

order of criticality. Another way a hierarchy of actions can be generated is by considering the effects 

of groups of actions, somewhat like the macros described earlier, but treated as operators. This would 

enable the problem solver to operate with higher level tasks. Thus, planning a vacation trip might have 

a high level solution like (book-tickets, go-to-railway-station, travel-to-destination, look-for-hotel, 

check-in-to-hotel, hike-for-three-days, return) at different levels of abstraction14. This solution will in 

turn have to be expanded into sequence of actions at the primitive action level. It is the set of primitive 

actions that can be carried out in the domain. Thus, high level operators are like instructions in high level 

programming languages that have to be interpreted by sequences of the primitive instructions provided 

by the machine hardware. One of the first systems to look at planning in such a hierarchical space was 

called NOAH (Networks of Action Hierarchies), also developed by Sacerdoti (Sacerdoti, 1977). NOAH 

represents plans as task networks. The task networks are partial orders, but are not partial plans. Instead, 

they represent complete plans at a high level of abstraction. NOAH solves a problem by successively 

refining parts of the task network, till the network has only primitive tasks that can be done by domain 

operators. After every refinement step, NOAH passes control to a set of routines called critics. Each 

critic inspects the partial plan for a particular defect and, if found, suggests a remedial action.

We look at how NOAH would solve the Sussman’s Anomaly. NOAH starts off like GPS by addressing 

the problem at a high level and proceeds to work in the details, by refining a part of the task network. 

The initial task network contains a single node. The given task is to achieve the goal “on(A, B) Ÿ on

(B, C)”. Like STRIPS, NOAH too decomposes this task into two subtasks for each of the subgoals, 

but unlike STRIPS, it does not impose an order on the two 

subtasks. Instead, as shown in Figure 7.25, it creates a network 

by adding two special action nodes called split and join, to 

form a partial order. This is the least commitment strategy 

in which the planner delays commitment to decisions, until 

it can make an informed choice. The plan at this level is to 

split the task into two subtasks, then solve each of them in 

some order, and finally join the results of the two subplans.

In the next two steps, NOAH refines the two tasks, as 

shown in Figure 7.26 below. It replaces, or expands, each 

of the nodes into networks of lower level actions. The task 

“Achieve on(A, B)” can be accomplished by clearing blocks 

A and B, in some order, and then “putting” A on top of B. 

The higher level action “Put” can be expanded like a macro 

into pickup or unstack, as the case may be, followed by the 

stack operator.

14   By level of abstraction, we mean the level in the tree generated by the hierarchy. The relation between parent and child may 

be different in different kinds of hierarchies.

Achieve on(A, B) Λ on(B, C) 

Achieve on(A, B)  

Achieve on(B, C)  

S  J 

FIGURE 7.25 NOAH starts off by 

decomposing the higher level task into 

two tasks without committing to an 

order. The two tasks are linked by a 

Split node S and a Join node J.
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Put A on B

Put B on C

Achieve clear(A)

Achieve clear(B)

S J

Achieve clear(B)

Achieve clear(C)

S J

S

Put A on B

Put B on C

J

Achieve clear(A)

Achieve clear(B)

S J

Achieve clear(B)

Achieve clear(C)

S J

S
+

−

FIGURE 7.26 NOAH refines each of the two tasks and hands over control to the Critics. Critic: 

Resolve-Conflicts notices the conflict marked “+” and “–” on condition clear(B). Suggests that the 

action labelled “+” be promoted before action labelled “–” to resolve the conflict (threat).

Having expanded both the tasks, it calls in the critics. Critic: Resolve-Conflicts notices the conflict 

marked “+” and “–” on condition clear(B). It suggests that the action labelled “+” be promoted before 

action labelled “–” to resolve the conflict (threat), as shown in Figure 7.26. At this point the Critic: 

Elminate-Redundand-Preconditions observes that the condition marked “+” in Figure 7.27 is redundant, 

and suggests removal of one of the two instances of the task. The figure shows this transformation.

Once the critics have done their job, NOAH goes back to refinement. It sees that it can clear block 

A by removing block C from it and expands that node. Again, the critic Resolve-Conflicts notices the 

conflict (threat) marked “+” and “−” on condition clear(C). It suggests that the action labelled “+” be 

promoted, and the network is now as shown in Figure 7.28.

Now the critic Eliminate-Redundant-Preconditions observes that clear(C) marked “+” is being 

achieved twice, and suggests that one of the redundant nodes be removed. The resulting network is 

displayed in Figure 7.29.

The reader would have noticed that by now, NOAH has computed the best ordering of its subtasks, 

and all that remains to be done is to expand the “Put” actions into the lower level domain actions.

7.5.3 Hierarchical Planning

In hierarchical planning, high level planning operators are refined into low level ones. The systems 

described above illustrate various features one would like in an hierarchical planner. The planner should 

be able to reason about the problem with high-level operators and then drill down into the details. Like 

ABSTRIPS, it should be able to first focus of critical predicates and ignore the others. Like NOAH, it 
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Put A on B

Put B on C

Achieve clear(A)S J

Achieve clear(B)

Achieve clear(C)

S J

S

Put A on B

Put B on C

Achieve clear(A)

Achieve  clear(B)

S J

Achieve clear(B)

Achieve clear(C)

S J

S
+

+

FIGURE 7.27 Critic: Elminate-Redundant-Preconditions observes that condition marked “+” is 

redundant. Suggests removal of one task.

Put A on B

Put B on C

Achieve clear(C) J

Achieve clear(B)

Achieve clear(C)

S J

S

Put C on something

+

−

Put A on B

Put B on C

Achieve clear(C)

Achieve clear(B)

Achieve clear(C)

S J

S

Put C on something

FIGURE 7.28 Achieve clear(A) is refined to moving C onto something after achieving clear(C). Critic: 

Resolve-Conflicts notices the conflict marked “+” and “−” on condition clear(C). Suggests that the action 

labelled + be promoted.
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should be able to refine the high level task into networks of low level operators, with more detailed 

preconditions. In general, the networks should be partial orders containing only the necessary ordering 

information, to enable the planner to deploy the least commitment ordering strategy demonstrated by 

plan space planners and by NOAH. And like Korf’s macro operators, the final plans must be composed 

by putting together primitive actions from the domain.

The schematic diagram of the expansion of a high level operator is shown in Figure 7.30. The operator 

has its own set of preconditions and effects, shown with thick dashed arrows. The effects may be thought 

of as desired effects, because after refinement, the low level operators may also have other effects, shown 

with thin dashed arrows, which we can call ‘side effects’. Like ABSTRIPS, searching and putting together 

a high level plan based on the preconditions and effects of the high level operator may be considered. 

But after expansion, other preconditions and effects may come into play. The preconditions may have 

to be satisfied, and the post-conditions may have to be inspected for threats and redundant conditions.

Similar approaches to hierarchical task network (HTN) planning have been reported in the literature 

(Wilkins, 1988; Erol, 1994; Tate, 1994). In a system called SHOP2 (Simple Hierarchical Ordered 

Planner version 2) (Nau, 2003), the high level actions are called tasks and the decomposition of operators 

is done by methods. A SHOP2 method constitutes of a name, the name of the task it decomposes, a 

set of subtasks that the method generates, and constraints between the subtasks. Planning involves a 

combination of method selection and task decomposition, until one is left only with primitive tasks and 

the task network generated is consistent.

The advantages of using hierarchical planning methods are that in principle, they allow the planner 

to start at a high level and work out the details selectively. Secondly, they make it possible for the 

users to feed in problem solving knowledge in the form of the high level operators, and thus exploit 

human generated knowledge, in addition to the learning of macros proposed by Korf. The last point, 

+

Put A on B

Put B on C

Achieve clear(C)

Achieve clear(B) J

S

Put C on something

+

Put A on B

Put B on C

Achieve clear(C)

Achieve clear(B)

Achieve clear(C)

S J

S

Put C on something

FIGURE 7.29 Critic: Elminate-Redundant-Preconditions observes that condition marked + is redundant. 

Suggests removal of one task. The high level operator “Put X on Y” can be further decomposed into 

STRIPS actions. Blocks B and C need no actions to clear them. But by now, NOAH has found the 

correct order for the optimal plan.
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however, is a double edged feature, because to exploit the features of HTN planning, one has to be able 

to devise appropriate high level operators, and algorithms to efficiently interleave the tasks of search, 

decomposition and constraint reconciliation, specially in domains where the lower level operators may 

have to be interleaved. But given the fact that planning by search at the level of domain level operators 

is hard, hierarchical planning is an approach where the combinatorial explosion can be contained. 

However, to do so, one has to be able to represent the problem and the operators at different levels of 

abstraction, and also to establish the relations between them.

This is essentially a problem of knowledge representation, and therefore HTN planners have a strong 

knowledge based flavour. Such knowledge can effectively compress the search space, as we saw in 

the Eight-puzzle example using macro operators. But in doing so, they may lose the generality and 

completeness of search. One of the challenges in the domain of planning is to combine the domain 

compression achievable through the deployment of knowledge with the flexibility and completeness of 

search. Ideally, a system should be able to exploit knowledge wherever it can, and fall back on search 

where it cannot. One can then think of complete planning systems that can become more and more 

efficient, as they have access to more and more knowledge. This knowledge could be generated though 

approaches to machine learning, but could also be acquired from external sources, like a teacher, or an 

experienced elder when the planner is in a social setup.

7.6 A Unified Framework for Planning

The planners described in this chapter represent themes that were explored up to the mid-nineties in the 

twentieth century. Most researchers tended to view the different approaches as fundamentally different, 

until it was shown by Rao Kambhampati that all these approaches to planning could be viewed in a 

unified framework that he called refinement planning (Kambhampati, 1997). Significantly, he argued 

Operator

O1
O5

O4

O7

O3

Preconditions

Effects

FIGURE 7.30 Schematic of a high level operator. The operator has its own preconditions and effects, 

and is refined to a partially ordered network of lower level operators.
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that the state space planning approaches too had a place in the unified framework in which the basic 

structure being operated upon is a partial plan.

The partial plan is a partially ordered network in which nodes represent operators, and edges represent 

ordering links and causal links. The ordering links are divided into two kinds. One, called precedence 

links, assert that one action happened before another. The other, called contiguity links, represent the fact 

that one action happened immediately before another. The two ends of the partial plan are the actions 

A0 and A  as in plan space planning described earlier. The head step is the last step at the end of a chain 

of contiguity links starting from A0, and the tail step is the first step in the sequence of contiguity links 

ending in A .

In addition, one can introduce a notion of state in two places that can be computed easily. One, called 

the head state, is the set of predicates obtained by progressing the “start state” till after the head step, 

and the other called the tail state is the set of predicates obtained by regressing the “goal set” across the 

contiguity links from A  to the tail step. The partial plan representation is illustrated below in Figure 7.31.

A∞A0 A1 A2

A3

A4

A5

A6

A7

A8
A0

A9

FIGURE 7.31 The ordering links in a partial plan. A0 A1 and A2 are linked by contiguity links, as are A9 

and A . The arrows show the precedence links. Action A2 is the head step, and A9 the tail step. The steps 

A3 to A8 are called the middle steps. The figure does not show causal links.

Thus, while the planner operates on a representation that does not include states, one can implicitly 

associate two states with the partial plan, and thus include the state space planning into the unified 

framework. Further, if one can include high level actions into the partial plan then we can have a unified 

framework in which all the different planning approaches can be incorporated. The framework described 

here has been adapted from (Kambhampati, 1997).

In the unified framework, we start with a partial plan like the plan in PSP containing the two actions 

(A0, A ). We can also think of this as a high level network of NOAH, made up of a single task that is 

to achieve the goal predicates. Thus, plans are like networks in NOAH, in which the high level tasks 

are made up of the open conditions in PSP. Refinement of this network can be done in any one of the 

following ways,
 ● Expanding a node like in NOAH or in HTN planning. A node is replaced by a network of lower 

level actions.
 ● Introducing new actions like in PSP. Addition of actions in PSP has a backward state space search 

flavour because it caters to open conditions of some nodes. One can also allow actions to be added 

by MEA like computing as in ABSTRIPS, which identifies some essential actions first, and worry 

about their placement later. From the NOAH perspective, this would mean refining a high level 

task.
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 ● Imposing ordering constraints on some nodes of a partial plan as in PSP and NOAH in response 

to threats or conflicts.
 ● Adding actions with contiguity links to the head step or the tail step, as in state space planning.
 ● Imposing contiguity links on some actions added by MEA strategy, like in STRIPS/GSP.

Thus, in principle, a planner could interleave any of the refinement steps above.

We can also think of refinement as partitioning a set of candidate plans. Planning starts with the 

set of all possible plans. Remember, that this set is an infinite set even for finite domains, as long as 

looping is possible. A refinement step selects a subset from a set of plans. Let the refinement step choose 

a subset A, as shown by the dashed lines in Figure 7.32. We say that the refinement is complete, if the 

subset contains all the solution plans in the parent set. For example, the refinement step in the figure 

on the right is complete, because the selected subset contains all the solutions, shown as the shaded set. 

If the refinement operators we have are complete then the planner will find a solution directly through 

the refinement process. If the refinement step is incomplete then the planner may need to backtrack at 

some point, if a refinement contains no solution and try another subset.

A A 

FIGURE 7.32 Refinement selects a subset of candidates. Subset A in the Venn diagram on the right 

contains the set of all solution plans, shown as a shaded subset.

We say that a refinement step is progressive if the selected subset is a proper subset. In other words, 

a progressive refinement step always prunes the set of candidate plans. We say that the refinement is 

systematic, if no candidate is visited more than once in the process of backtracking. This implies that the 

refinement step induces a partition and selects one of the components. As we have seen during the study 

of search algorithms, a systematic search implies that the algorithm will be able to terminate reporting 

failure when a solution plan does not exist.

Thus, one can think of the planner as successively selecting a subset of candidates, till it has only 

solution plans. For the sake of completeness, the planner should be able to backtrack and try other 

selections. We can see that the more knowledge the planner has access to, the more dramatic the prun-

ing in the selected set of candidates, and the lower the need to backtrack. In the example of solving the 

Eight-puzzle with macros, the need to backtrack was totally eliminated. In a complete knowledge based 

system, a solution is simply reconstructed or retrieved from memory, in this case the macro-operator table.

We shall look at the process of case based problem solving, which relies on storing and reusing 

experience, in more detail, later in Chapter 15. In practice, complete sets of solutions are rarely available, 

and case based systems have to contend with retrieving the best matching solutions available in the 

memory, and adapting them to the current problem. In some domains, it may be feasible to formulate 

heuristic rules to guide search, so that the chances of backtracking are minimized. The challenge, as a 

theme that we have been developing in this book, is to combine knowledge with search in a manner to 

solve problems as quickly and reliably as possible.
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7.7 Discussion

In this chapter, we have looked at algorithms for planning in the simplest possible domains, known as 

the STRIPS domain. In this domain, the following assumptions hold.

The Actions are Instantaneous. Thus, we have only to worry about sequencing them, and there is 

really no notion of time. When actions are assigned durations then the total duration of executing the 

plan, the makespan, becomes a quality metric. For example, a recipe that uses a microwave for cooking 

is likely to produce your dinner faster. Further, when we talk of parallel actions then things become 

more complex, because of different durations. For example, while rice is being cooked on the stove, 

one could chop the vegetables, and knead the dough in parallel.

The Domain is Static. This means that the planning agent is the only agency of change. Thus while 

planning is being done, and while the plan is being executed, the world does not change.

The Actions are Deterministic. This means that the effects of actions when executed, are as intended. 

In such a world, the agent does not need to monitor the plan. In the real world, actions are not always 

deterministic, as anyone, who for example, attempted to walk on slippery ice would have discovered.

The Agent has Complete Information about the World. This means that the agent knows the 

state of the world completely. Often this is not the case in the real world. An agent planning a bid in an 

auction for example has no idea what the other agents may be planning to bid. Or an agent searching 

for a treasure does not know where the treasure is buried.

The Objective is Only on the Final State. Classical planning states the objectives as conditions 

on final state. In practice, there may be requirements on the plan trajectory too. For example, there may 

be a condition that if you open the refrigerator door, you must close it too.

The Goals are Categorical. A plan is valid if all the goal predicates are achieved. One may also 

want to introduce goals that are desirable, though not mandatory. This means, that one may be willing 

to relinquish some goal predicates, usually to save on some other cost metric. One may have, for 

example, a long shopping list, while going to the market, but may settle for a subset due to time or 

capacity constraints.

Each of the other assumptions may be relaxed, at the expense of increasing computationally 

complexity. We will look at some of the approaches to solve problems of some of the richer domains 

in later chapters. We will also look at some other approaches that take a completely different view of 

the planning problem, creating intermediate representations before addressing the planning task itself.

We have not used the notion of heuristic functions in this chapter, because the methods we are 

investigating are domain independent methods. However, given the fact that even the simplest planning 

domains are hard, there is an incentive to looks for methods that will speed up the search. Towards 

this end, we will also look at the notion of domain independent heuristics in Chapter 10, which look at 

relaxed versions of planning problems to determine which of the choices to be made are more promising.

  Exercises

 1. Choose an interesting problem from the real world and pose it as a planning problem.

 2. The Gripper domain of the International Planning Competition (IPC) (see http://ipc.icaps-

conference.org/) is as follows. There are some number of named balls in a room. A two-armed 
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robot, with two grippers, has the task of picking up the balls, taking them to the other room, and 

dropping them there. Define the Gripper planning domain in PDDL.

 3. The Driver Log domain is as follows (see http://planning.cis.strath.ac.uk/competition/domains.

html). Trucks area to be used to transport packages between different locations. The packages 

have to be loaded from the location where they are and unloaded at the destination location. The 

trucks have to be driven around by drivers, who may have to walk to the truck and board the truck 

before they can drive it. Express this planning domain in PDDL.

 4. The Rovers domain of the IPC is a simplified version of the task that NASA’s Mars rovers face. 

There are several rovers. Each rover is equipped with devices to gather data, and different rovers 

may have different devices. The rovers can move from waypoint to waypoint, gather data and 

transmit it back to the lander. Transmission may be limited to waypoints that are directly visible. 

Paths may be of different types, which can be navigated by some different rovers. Formulate the 

above domain in PDDL.

 5. Complete the BSSP algorithm described in the chapter to incorporate a check for looping by 

keeping a CLOSED list.

 6. In Section 7.4, the given trace of the example in Goal Stack Planning the algorithm chose to solve 

for on(B, C) first.  What if the order had been reversed, and the algorithm had picked on(A, B) 

first? Would GSP still have found a solution? Generate the trace to find the answer.

 7. Given the initial state {on(P, T), onTable(O), onTable(T), AE, clear(P), clear(O)}, show how goal 

stack planning with STRIPS operators will achieve the goal {on(T, O), on(O, P)}. You may choose 

any order for the subgoals. What is the plan found?

 8. Given the initial state {on(A, B), on(B, D), onTable(D), on(C, E), onTable(E), on(G, F), ontable(F), 

ontable(H), AE, clear(A), clear(C), clear(G), clear(H)} show how partial order planning with 

STRIPS operators will achieve the goal {on(C, B), on(B, A)}. You may choose any order where 

a choice has to be made. What is the plan found?

 9. Modify the blocks world domain so that one can stack two blocks on any given block. For example, 

it should be possible to say {on(A, D), on(B, D)} as part of a state description. How will the 

preconditions for the Stack operator change?

 10. Design a planning domain for playing the computer game Freecell or Solitaire available on many 

computers.

 11. Enumerate the different kinds of flaws that a partial plan may have in plan space planning. Also, 

enumerate the ways of dealing with them.

 12. Implement Goal Stack Planning and Plan Space Planning algorithms for the STRIPS domain. 

Test your algorithms for domains used in the International Planning Competitions (available on 

the internet).

 13. Given the initial state {on(A, B), onTable(B), on(C, D), onTable(D), AE, clear(A), clear(C)}, show 

how plan space planning with STRIPS operators will achieve the goal {on(A, D), on(C, B)}. Draw 

the plan structure that the algorithm returns at termination.

 14. The Wumpus world is a small artificial world with a strong legacy in literature15 that was suggested 

by Michael Genesereth as a testbed for intelligent systems, and used as an example in many games 

and the well known book by Russel and Norvig (2009). In one simple version, the task is for an 

agent to find as much gold as possible in a two-dimensional grid. Each time gold is collected, 

the agent’s score goes up by some large amount (say 1000). The agent can move to neighbouring 

squares horizontally and vertically. This can be done by a combination of move and turn. In 

15  See http://en.wikipedia.org/wiki/Hunt_the_Wumpus
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addition, the agent has a grab action for picking up gold. A shoot action can be done to shoot an 

arrow in some direction. Moving costs some points (say 2) as does shooting (say 50). The agent can 

also perceive some features that reveal what is in the neighbourhood. Stench indicates the presence 

of a Wumpus that would kill the agent if it entered the square. Breeze indicates that the agent is 

next to a pit in which it could fall and die. Glitter indicates the presence of gold in a neighbouring 

square. Bump means the agent walked into a wall. Scream indicates that the Wumpus has been 

killed. None, one, or more of these percepts may be perceived in a square. Model the above game 

in PDDL.

 15. Devise a set of actions for the cooking domain. Illustrate how a recipe for making an omelette can 

be expressed as a plan. Are there any actions that can be done in parallel?

 16. Having to plan a trip, say from Chennai to Jaipur, the first thing one might do is to find suitable 

train and/or flight combinations between the two cities, and then fill in all the other actions. What 

kind of planning algorithms will allow one to do so?



P  laying games like Chess well has long been considered a hallmark of intelligence amongst humans. 

The game of Chess was most likely invented in India1 (Murray, 1985), and has long been considered 

as a training ground for strategic thinking. Chess requires strategic and tactical skills, and in countries 

like the erstwhile USSR, it was actively promoted to help develop analytic skills (Kotov and Youdovich, 

2002).

 The computer science community quickly took up games from the earliest times. The first paper 

on computer chess was published by Claude Shannon (Shannon, 1950). In this paper, he discussed the 

merits and demerits of complete versus selective search. The first dramatic success in implementing 

games came, however, in checkers (also known as draughts). In the Dartmouth Conference 

(McCarthy et al., 1955) where the term AI was coined in 1956, one of the big exhibits was Arthur 

Samuel’s checkers playing program. The striking feature of Samuel’s Checkers program (Samuel, 1959) 

was that it learnt from experience, and grew better and better at the game, eventually defeating Samuel 

himself. In 1968, the British grandmaster David Levy had wagered a bet that no machine could beat 

him in Chess. The duration of the bet, fortunately for Levy, was 10 years. In 1989, Levy was soundly 

beaten by the computer program Deep Thought in an exhibition match. Computer programs improved 

steadily in performance, and by the mid-nineties were of world champiomship calibre. In 1996, IBM’s 

Deep Blue (Campbell et al., 2002; Hsu, 2004) did achieve the feat of beating world champion Garry 

Kasparov, and in the following year beat him 3.5–2.5 in a six match series. But no one has yet bestowed 

the quality of intelligence2 upon computers because of that!

 Apart from the fascination that humans naturally have for games, they are very good as platforms for 

experimentation. Games provide a well defined environment in which states are intrinsically discrete. 

This means that one does not have to worry about processing input or effecting output in a complex 

environment, and can focus entirely on the decision making strategy. One can circumvent perception and 

action in the real world; problems that one would have to address if one were building a robot to play 

golf or tennis. Moreover, absolutely nothing is lost in abstraction. Furthermore, in games, the rules are 

well defined and success or failure can be measured easily. Good programs will beat inferior programs 

or humans in the game. Moreover, as we will see in this chapter, in spite of the simplicity of the domain, 

they provide us with problems that are hard to solve.

1 “According to popular legends, the chess game was invented by a Brahmin named Sissa. One day the Indian king (rajah) Balhait 

summoned Sissa and requested the wise man to create a game which would require pure mental skill and oppose the teaching of games 

in which fate (luck) decides the outcome by the throw of dice. Moreover, the king requested that this new game should also have 

the ability to enhance the mental qualities of prudence, foresight, valour, judgment, endurance, circumspection, and analytical and 

reasoning ability. Sissa created the game chaturanga. Chaturanga was a war game, the first to borrow explicitly and extensively from 

the vocabulary of military conflict. The pieces were the king (rajah), the general (senapati/mantri, or modern day queen), the elephant 

(gaja, or the modern day bishop), the cavalry or horse (ashwa, modern day knight), the chariot (ratha/sakata, or modern day rook), 

and finally, the infantry (sainika/bhata, or modern day pawns)” – from Wikipedia (http://en.wikipedia.org/wiki/History_of_chess).
2 This sort of exemplifies the attitude of AI detractors: that if the computer can do it, it does not characterize intelligence.

Game Playing

Chapter 8
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 Game playing is also interesting because it allows us to reason about multi-agent activity. The problem-

solving activity studied in the preceding chapters is characterized by the fact that only a single agent is 

involved. Single agent situations do occur in the real world. For example, organizations can be seen as 

agents pursuing their goals in isolation. They could be in industrial organizations planning their design and 

manufacturing of products, or they could be government organizations planning infrastructure, or sending 

a man to the moon, or a rover to Mars. Or an individual may be planning a meal, or building a house.

 Many real world situations, however, have multiple agents involved. In such situations, the problem-

solving agents have to consider the actions of the other agents too, because they affect the world the 

agent is operating in. The agents may be collaborating with each other, they may be competing with 

each other, or they may be antagonistic to each other.

 Interaction between agents has most commonly been studied by abstracting them as games. Games 

are formalisms that are used in various fields of study, ranging from economics to war. The common 

feature is that they attempt to devise models of rationality in the face of other agents being active. 

John von Neumann (Neumann and Morgenstern, 1944), the prolific computer scientist, is also credited 

with pioneering work in formalizing games and is often referred to as the father of Game Theory. The 

following example, known as the Prisoner’s Dilemma, illustrates the kind of problems posed by von 

Neumann (Poundstone, 1993).

Prisoner’s Dilemma

Imagine that the police have in their custody two suspects of a bank robbery, but no real evidence. Their 

only chance lies in a confession from one or both of them. They interrogate them in separate chambers, 

and offer each a lighter sentence if they confess, and betray the partner. Imagine, for a moment, that 

you are one of the two suspects. In the normal form of game (McCain, 2004) representation, a payoff 

matrix can be constructed, as follows:

Payoff: Yours / his

He confesses –100 / –100 –200 / –10

He denies –10 / 200– – –50 / 50

You confess You deny

FIGURE 8.1 A payoff matrix for Prisoner’s Dilemma.

If both confess, they get –100 each. If only one confesses, he escapes with –10 but the other gets 

–200. If both deny, each gets –50 for possession of an illegal firearm. As one can see, the combined 

optimal payoff is achieved by both denying and getting a total penalty of 100. However, there is the 

temptation to betray the other and escape with –10. Seen from an individual perspective, the following 

extensive form3 of the game is represented as shown in Figure 8.2. Even though the choices are made 

concurrently, one views this as a sequential phenomenon in which the two players act one after the other. 

Since the outcome depends upon the other player’s action, the rational choice is to choose a move in 

which the worst penalty is as small as possible. Thus, the safer choice for you is to confess because it 

could at worst lead to the penalty of –100. If you deny the crime and the other player confesses, you 

will be in for a –200 penalty. Obviously, for habitual4 bank robbers, the more profitable strategy is to 

stand by each other and deny any involvement.

3 A tree structure in which each branch is a decision.
4  More recent studies have shown that such rationality exists only in the abstract scenarios. In real life, human psychology plays 

an important role, as depicted in many a movie about a pair of characters stepping outside the law. One might also observe that 

in the real world, not all countries have police forces that leave room for such rationality games.
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This can be perhaps seen more clearly by looking at an equivalent extensive form in which the other 

player plays first, as shown in Figure 8.3. If the opponent5 confesses, you are better off confessing 

yourself to get a penalty of –100, instead of –200. And if the opponent denies, you can get away with 

–10 by confessing.

You get –100 You get –10 You get –50You get –200

He

Confesses Denies

You You

Confess Confess DenyDeny

� �� �

FIGURE 8.3 In an equivalent extensive representation, one can see that whatever the other player 

does; in each case, confessing is a better option for you.

Observe that in the Prisoner’s Dilemma, the two players choose without really knowing what the 

other player has chosen. This is in contrast to many situations where a player is aware of the opponent’s 

choice while making a move. To distinguish between these two cases, one often draws the extensive 

form of the game (McCain, 2004) as shown in Figure 8.4. The idea is that the second player does not 

know which part of the tree he is operating in. This is depicted by merging the nodes at the second level 

into an information set.

One observation that one makes about the game is that simply acting rationally from one player’s 

perspective, does not yield the best possible result. In this example, if both players were to deny then 

they would have both got a penalty of –50, known as the Pareto optimal (after Vilfredo Pareto), but by 

rationally choosing to confess they both end up incurring a penalty of –100 each, reaching the Nash 

equilibrium (after John Nash). That is because rationality here is taking a pessimistic or conservative 

view trying to cater for the worst that can happen. In practice, human beings are often optimistic, they 

dream, they gamble and take chances, and they cooperate with each other. And on the average, they are 

better off as a result.

5 We will often refer to the other player as an opponent for the sake of brevity. 

FIGURE 8.2 In the extensive form of Prisoner’s Dilemma, the payoff is seen to be a function of the 

other person’s choice after you have made your decision.

You get –100 You get –200 You get –50You get –10

Confesses

You

He He

Confess Deny

Confesses DeniesDenies
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Games6 thus are abstractions of interactions between agents. In the Prisoner’s Dilemma example we 

saw above, the two players had to play simultaneously. Also, the strategy is concerned with choosing that 

one move. We will focus instead on board games like Chess, in which the two players play a sequence of 

alternating moves and the outcome is determined only when the game ends. Such games may be called 

board games. These games could in principle be represented and analysed by constructing the payoff 

table, but in practice, such a process would be cumbersome and computationally demanding. We will 

focus instead on more efficient strategies to play board games.

8.1 Board Games

The games we focus on primarily in this chapter are classified as
 ● two person,
 ● zero sum,
 ● complete information,
 ● alternate move, and
 ● deterministic games.

Two person games have exactly two players. In zero sum games, the total payoff is zero. One player’s 

gain is the other player’s loss. One wins, the other loses. In complete information games, both the players 

have access to all the information. That is, both can see the board, and thus know the options the other 

player has. In alternate move games, the players take turns to make their moves. In deterministic games, 

there is no element of chance in the moves that one can make.

All the above properties can be relaxed to produce more complex multi-agent environments. Adding 

a dice to a board game introduces an element of chance. The player cannot deterministically make a 

move. The essential feature of most card games is that they are multiple-player incomplete informa-

tion games. Cards of other players are hidden, but the pack is known and finite. So a player does not 

know the options available to other players, but the possible options are bounded by knowledge of the 

cards that have not yet been played. In games like contract bridge, players draw inferences from the 

known information to glean as much additional information as possible. The game has four players, 

with partnerships of two each, and the strategy also involves communication of information between 

partners. Since this information is also available to opponents, the tactics often involve misinformation 

6  Sometimes the term ‘game’ is used to refer to a strategy or a particular deviant kind of behaviour adopted by an agent, as described 

in the book “Games People Play” by Eric Berne. We are not interested in games in that sense, but as platforms on which agents act.

FIGURE 8.4 An information set is a node in an extensive form that hides the choice of the first player. 

The second player has to choose without knowledge of the move made by the other player.

You get –100 You get –10 You get –50You get –200

He

Confesses Denies

You

Confess Confess DenyDeny
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and deception too. Army generals fighting wars operate similarly with genuinely incomplete informa-

tion. They also attempt to glean information about the resources and options of the enemy, and likewise 

the flow of information yields opportunities of misinformation and deception. War and spies provide 

a multitude of engaging stories concerning information exchange and deception7. Since both sides 

usually suffer casualties, wars can be seen as negative sum games, though sometimes one side may 

have some positive payoff. A price war, likewise, inflicts losses on the competing sellers, and can be 

modelled as a negative sum game, though if the buyers are included in the game too then it becomes a 

multi-player zero sum game. Cooperation is an example of a positive sum game, whether it is between 

students studying together for an examination, or when large corporations collude to jack up prices. 

Observe that some of the examples above do not have alternating moves, and neither is the outcome of 

their actions deterministic.

In the domain of recreation, Checkers (also known as Draughts), Chess, Othello and Go are examples 

of board games that have received the attention of programmers. One of the earliest to make a mark 

was Arthur Samuel’s Checkers playing program (Samuel, 1959). It was a program that improved its 

performance with experience, and became news when it was able to beat its creator! The learning it did 

was essentially parametric reinforcement learning, tuning weights of its evaluation function based on 

the outcome of each game. But it contributed to the wild notion of computers taking over the world, 

à la Victor Frankenstein’s robotic creature (Shelley, 2001), in the novel written by Mary Shelley in 

1818.

Amongst the incomplete information games, the most successful has been the implementation of 

Scrabble. In fact, the program Maven, now commercially available, can easily outplay human players 

(Sheppard, 2002). This is not surprising given that the machine can have access to a large vocabulary. In 

addition, it can speedily run through different combinations, and pick the one yielding maximum score. 

One could use a heuristic function that evaluates a board position by the points it yields, along with 

some measure of the cost of openings it creates for the opponent. A game that is met with less success 

is Contract Bridge. Though there have been several attempts at implementing the game (see: Throop, 

Frank, Khemani, Smith, Ginsberg, Sterling and Nygate), a truly world class player is yet to emerge.

8.1.1 Game Trees

We now look at some well known, search based algorithms to play complete information games. Our 

focus will be on alternate move games. In some games, players are allowed to move again in certain 

situations. For example, multiple captures in checkers, or potting a ball in snooker. We will assume that 

the move sequence can be modelled as a single (macro) move. We also assume the games to be two-

player games. But the ideas presented can easily be extended to multi-player games. Finally, we assume 

that the game is a zero sum game. Our two players are traditionally named MAX and MIN, indicating 

that their goals are opposite of each other. The algorithms we study could be adapted to players whose 

goals are not diametrically opposite each other.

A game is represented by a game tree. A game tree is a layered tree in which at each alternating 

level, one or the other player makes the choices. The layers are called MAX layers and MIN layers as 

shown in Figure 8.5. Traditionally, we draw MAX nodes as square boxes and MIN nodes as circles in the 

tree8, and MAX is at the root. A game starts at the root with MAX playing first and ends at a leaf node. 

7  For example, Michael Howard in his book on strategic deception in the Second World War (Howard, 1995) describes how a 

nonexistent U.S. Army group pinned down an entire German Army in the Pas de Calais, until Montgomery’s forces had achieved 

a secure foothold in Normandy.
8 MAX MIN. 
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The leaves of the game tree are labelled with the outcome of the game and the game ends there. The 

task of each player is to choose the move when its turn comes. In the game tree, MAX chooses at MAX 

levels and MIN chooses at MIN levels. Thus, a game is a path from the root to some leaf node, chosen 

at alternating levels by the two players. For our zero sum game, the outcomes are defined by a set {win, 

draw, loss} and the values are as seen from the perspective of MAX, the player at the root. Thus, the 

value “win” means that MAX wins the game, and “loss” means that MAX loses or equivalently MIN 

wins. The leaves can also be labelled equivalently with numbers {1, 0, –1}. That is, it is a function that 

returns the outcome at a leaf node.

 value(leaf) = 1 if MAX wins

  = 0 if the game is a draw

  = –1 if MIN wins

One can now see the rationale of naming them MAX (the one who prefers the maximum valued 

outcome) and MIN (the one who prefers the minimum valued outcome).

Given a game tree, it is possible to analyse the game and determine the outcome when both players 

play perfectly. We can do this by backing up values from the leaf nodes up to the root. The backup rule 

is as follows.

DW DLWW

W W W W WD D DD D DL L L

LLL D D D

L L L L L

L

D D D

DD

W

WW

MIN

MAX

FIGURE 8.5 A small game tree. Leaf nodes are labelled with “W” for win, “D” for draw, and “L” for 

loss for Max. 1, 0, and –1 would be equivalent labels.
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Minimax rule
 ● If the node is a MAX node, back up the maximum of the values of its children.

value(node) = max {value(c) | c is a child of node}

 ● If the node is a MIN node, back up the minimum of the values of its children.

value(node) = min {value(c) | c is a child of node}

FIGURE 8.6 The minimax rule backs up values from the children of a node. For a MAX node, it 

backs up the maximum of the values of the children, and for a MIN node, the minimum.

The rationale of the rules is that given a set of choices with known outcomes, MAX will choose a 

move that yields the value = 1 (or win) if available, else 0 if available, and will have to choose a –1 

(or loss), only if all its children are labelled with –1. The backup rule for MIN is exactly the opposite, 

given that MIN is also trying to win the game. For MIN to win the game, the node must be labelled with 

–1 or loss. The minimax value of the game is the backed-up value of the root from all the leaves, and 

represents the outcome when both the players play perfectly. Figure 8.7 shows the above game tree with 

backed-up values. Observe that MAX wins this game when both players play their best.

DW DLWW

W W W W WD D DD D DL L L

LLL D D D

L L L L L

L

D D D

DD

W
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L L L
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L L L L L

W

W
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W

W

D

DD

D

L

D

D

D

FIGURE 8.7 The game tree with backed-up values. Arrows show the values backed up. They identify 

the best move for each player. Where more than one move is best, all are marked. MAX wins the 

game because the backed-up value is W.

A game playing program is required to produce the moves for a player, traditionally MAX. Since the 

minimax value determines the best that MAX can do against a perfect opponent, this involves computing 
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the minimax value, and the choice of moves that leads to it. The choices of a player can be represented 

as a strategy. A strategy is a subtree of the game tree that freezes the choices for the player. A strategy 

can be constructed by the following procedure.

ConstructStrategy(MAX)

1 Traverse the tree starting at the root

2 if level is MAX

3  then Choose one branch below it

4 if level is MIN

5  then Choose all branches below it

6 return the subtree constructed

FIGURE 8.8 A Strategy for MAX.

The idea is that the strategy freezes the choices for the player, in our case MAX. That is, MAX has 

already decided the strategy, or the set of choices. The following figure shows two strategies for MAX 

in the given game tree.

W

D W D W L

D W W L D

D D D D D DW W W W WL

L L D W D L L L D

L

L D L D LD

L

FIGURE 8.9 Strategies in a game tree are subtrees that represent choices of one player. The figure 

shows two strategies for MAX.

Once a player decides her strategy, the outcome of the game depends upon the opponent. Assuming 

that the opponent plays rationally, the value of the strategy for MAX will be the minimum value of a 

leaf node in the strategy, because that is where MIN will drive the game. Given a game tree, the optimal 

strategy for MAX is the strategy with the highest value. If this happens to be 1 (or win) then MAX has a 

winning strategy. In any case, the objective of both the players is to find their optimal strategies. Once 

both have chosen their strategies, the game played will be the path that is the intersection of the two 

strategies (the two subtrees), as shown in Figure 8.10. The thick grey lines are a strategy for MAX, the 
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thick dotted lines the strategy of MIN, and the thick black lines the resulting game path. Observe that 

the strategy for MAX shown in the figure is not an optimal one, leading to a draw.

W

D

D

L L

L D L LD D

WD D L L L D

L D L W W D D L D W D W W

W D W L

D W W L D

FIGURE 8.10 The subtree in grey arrows represents a strategy for MAX, and the one in dotted 

arrows, a strategy for MIN. The game played as a result of these two strategies is the path shown with 

black arrows, which is the intersection of the two subtrees.

Selection of the optimal strategy requires solving the game tree. Observe that the solution is a subtree, 

being a strategy, like the solution of an And-Or problem. In fact, finding the strategy is like solving the 

game tree as an And-Or problem. Each player has to choose her own moves, the Or choices, and cater 

to all possible responses by the opponent, the And nodes. With the cost of solving, the And node being 

the maximum of the costs of solving its children, instead of the sum, the question one might ask is can 

one use the AO* algorithm to play games? One rarely hears of algorithms like AO* being used to play 

games. The answer is that these algorithms could be adapted to play the games if it were possible to 

reach all the leaf nodes in the game tree. For most interesting games, the trees turn out to be too large 

to be traversed completely. Games with small trees can be completely solved. For example, the well-

known game of Tic-Tac-Toe (also known as Noughts and Crosses, see Figure 8.11) is known to end in 

a draw when both players play correctly. But such statements cannot be made for games like Checkers, 

Chess and Go, because their game trees are too big. That is why these games are still fascinating for us 

to play. In Chess, for example, many people believe that White, the first to play, has an advantage. But 

this is only speculation. Let us see why.

The starting position in a Chess game9 has twenty possible moves for each player. As the game pro-

ceeds, the board opens up and the number of choices increases further. Still further in the game as the 

number of pieces on the board reduce, the number of choices gradually comes down in the end game. It 

has been estimated that the average branching factor in Chess is thirty five, and that a typical game lasts 

9 We assume that the reader is familiar with Chess, or has access to one of the many introductory books on the subject. 
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about fifty moves. This means that the Chess tree has about 3550 leaves. This is roughly equal to 10120 

leaves, a number that is difficult even to comprehend. One followed by one hundred twenty zeroes. Let 

us make a rough estimate of how long it will take to inspect just the leaves, forgetting about the internal 

tree. Let us assume that we have a fast machine on which ten billion leaves can be examined every  

second. Thus, it will take 10110 seconds to examine 10120 nodes. Like in Chapter 2, we can conserva-

tively assume a hundred thousand seconds in a day, and a thousand days in a year. We will then need 

10102 years, or 10100 (also known as a Googol) centuries. Compare this number with the total number of 

fundamental particles in the entire universe, which is estimated to be about 1075, and one can see that the 

task of inspecting 10120 nodes is clearly in the realm of the impossible, with due respect to all who think 

otherwise10. Even if every one of these fundamental particles was a machine working in tandem with 

the others, it would still take 1027 years, which is much longer than the estimated age of the universe.

The back of the envelope analysis done above, gives us a couple of insights. First, that even toy 

problems can be computationally hard. This means that real world problems will be harder to solve, 

unless they are posed very tightly. That is, only the minimal key features of the problem are identified 

and abstracted. That is why problem formulation is important to successful problem solving. The second 

insight is that we humans still do tackle many complex problems. And we do it with the aid of knowledge. 

Knowledge thus, has to be a key component for problem solving, if we are to build intelligent agents.

8.1.2 The Evaluation Function

Since we cannot inspect the complete game tree and compute the minimax value, we have to resort to 

other means of selecting the move to make. If we could have computed the minimax value, we would 

have selected the move that would have been known to be the best move. Now instead, we have to 

look for methods with which we will select moves that appear to be the best. This is done by using a 

function to evaluate the goodness of a state, like we did with heuristic functions in Chapter 3. In game 

playing terminology, we call it the evaluation function, and it tells us how good a given position (state) 

is from the perspective of MAX.

The outcome of a game is a value from the set {–1, 0, 1}. The evaluation function, however, is 

usually applied to an intermediate node, and we are not in a position to choose a value from the set, 

since the game has not ended, and we cannot evaluate the full tree. Instead, we define the range of the 

evaluation function as the real interval [–1, 1]. The extreme values –1 and 1 still represent wins for the 

two players. But other values estimate how close to winning each side is. For example, the value 0.5 says 

10 “Impossible is a word found only in the dictionary of fools.” – Napoleon Bonaparte.

FIGURE 8.11 The game Noughts and Crosses is played on a 3 ¥ 3 board. One player places a 

cross and the other a nought, alternately. The objective is to place three in a line first; row, column 

or diagonal. The first figure shows the empty board, the second a game one by Cross, and the third 

figure shows a drawn game.

Starting position Cross wins A drawn game
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that MAX is better off than MIN, and 0.75 says that MAX is even more better off. A value of –0.9 says 

that MIN is doing very well. Note that the value zero says that both players are equally placed. It does 

not say that the game has ended in a draw. In practice, we extend the range to something like [–10000, 

10000] which is more conducive to devise evaluation functions. We will refer to it as [–Large, +Large]. 

Where do we get the values from? This is where the knowledge of an expert comes in. Generally, the 

evaluation function is computed as a sum of values of different features, and we add or subtract values 

for each good feature or bad feature. This kind of knowledge may be acquired from an expert, or one 

could devise experiments to learn from experience.

Typically, the evaluation function is split into different components. In Chess, for example, one may 

count the material value and add to that the positional value.

Chess players are used to assigning values to the pieces in the range of 1 to 10. Typically, pawns 

are valued at one point, knights and bishops about three points each, rooks about five points, and the 

queen about nine points. The fighting value of the king in the end game is equivalent to about four 

points. The material value of the king would be large, if it were counted, because its capture ends the 

game in a loss. Chess programmers however choose numbers in a larger range, thus enabling them to 

add positional values also more precisely. Thus, in the evaluation function of a program, a queen may 

be worth 900 points, a rook 500, a bishop 325, a knight 300 and a pawn 100. The material balance on 

a given board position is arrived at by adding the value of all the pieces on our side, and subtracting 

the value of pieces on the opponent’s side. One may observe that the value of the evaluation function 

in the starting position is zero.

The positional part of the evaluation function looks at many aspects. These are concerned with 

mobility, board control, development, pawn formations, piece combinations, king protection, etc. For 

example, two rooks in the same column have an added value; a pair of bishops is better than a bishop 

and a knight; knights are valuable in certain kinds of end positions. Traditionally, development and 

centre control have been given great importance; one’s pieces must become as mobile as possible and 

either occupy the centre or control it. Pawn formations are also subject to evaluation; chained pawns that 

support each other are better than isolated pawns; pawns in the same column or opposing pawns head 

to head are not good; and as most players know, pawns heading for promotion have added value. The 

king needs protection in the opening and middle games, and structures like those obtained by castling 

are valued high; while in the end game, the king 

may be an offensive piece adding to the fighting 

strength. Pins, forks and discovered attacks also need 

to be considered while computing positional value. 

The evaluation function of the program Deep Blue 

has about 8000 components (Campbell et al., 2002).

The value determined by a component of the 

evaluation function could have also been determined 

by searching further. For example, if one ascribes 

a value to the existence of a fork pattern on a 

chessboard (see Figure 8.12), it says that a fork tilts 

the value in favour of the player by a certain amount. 

If this was not part of the evaluation function, the 

advantage would have become evident after a few 

plies search. In the example in the figure, the Red 

Knight attacks the White Queen and the White 

Rook simultaneously. White can move only one of 

FIGURE 8.12 The fork is a pattern in which a 

Knight attacks two pieces simultaneously. The 

opponent can only move one piece away. In 

the example, the Red Knight attacks the White 

Rook as well the White Queen.
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the pieces away, and in the next move the Red Knight could capture the other piece, gaining material 

advantage, even if the knight is captured in turn. This estimate of material gain could be encoded as the 

value of the pattern. The key thing is that this value is available from the given board position directly, 

without having to look ahead. This also illustrates how knowledge can be used to trade off search.

One obvious way to play the game now would be to evaluate all the positions that result from the 

moves one can make, and choose the best one. This would be called one-ply look-ahead and is depicted 

in Figure 8.13.

35 29 47 –12 228 –14 127

FIGURE 8.13 A one-ply look-ahead picks the best looking successor.

This would be fine if the evaluation function was very good. While it has emerged that grandmasters 

do store tens of thousands of Chess schemata and evaluate them directly (Sowa, 1983), it is difficult to 

devise an evaluation function that is good enough to play with one-ply look-ahead. In practice, Chess 

programmers rely on a combination of evaluation and look-ahead. While we cannot write programs to 

look ahead till the end of the game, we can still do so to look ahead a smaller distance. Figure 8.14 below 

gives you a feel of the exploding search space with a game tree involving four choices per board position.

FIGURE 8.14 A game tree with a branching factor 4. A three-ply search needs to inspect 64 nodes. 

The next level will have 256, the one after that 1024, and the next one 4096; trees that are too large to 

draw on these pages. Most games have an even higher branching factor.

Look-ahead takes care of the combinatorial aspect of the game, like piece exchanges in Chess, which 

cannot be captured easily in a heuristic (evaluation) function, while the evaluation function provides a 

mechanism for evaluating the material and positional properties of nodes at the end of an incomplete look-

ahead. The amount of look-ahead would basically depend upon the resources available to the program. 

The faster the machine, the more is the look-ahead possible in the same time. The more the program looks 

ahead, the better it is likely to play. Experts hypothesize that even with a simple evaluation function, a 

program that looks ahead fourteen to sixteen plies will play at a grandmaster level (Newborn, 2003). The 

extent of look-ahead is determined by the computing resources available. Most commercial programs 

do an eight- or nine-ply search. More sophisticated machines try and harness parallel computing with 

specialized hardware (Berliner, 1987; Campbell et al., 2002). One does not have to do a fixed look-ahead 

rigidly. We can write programs to explore critical regions deeper. While playing competitive Chess, one 

is constrained by the clock. One can then do a flexible amount of look-ahead, depending on the amount 

of time available. This is typically done using an iterative deepening approach, like the one we studied in 

Chapter 2. The search component keeps searching deeper and deeper, and when the controlling program 

needs to play a move, it simply picks the best known move available.
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8.2 Game Playing Algorithms

The basic procedure for game playing is then the following. Explore the tree up to a finite ply depth. 

Compute the evaluation function of the nodes on the frontier. Use the minimax backup rule described 

earlier to determine the value of the partial game tree, and the best move. Make the chosen move, wait 

for the opponent’s move, and then again search for your best move.

GamePlay(MAX)

1 while game not over

2  do Call k-ply search

3    Make move

4    Get MIN’s move

FIGURE 8.15 The top level game playing algorithm makes a call to search algorithm that backs up the 

evaluation function values from the horizon at k-ply depth. It makes the move that yields the minimax 

value, and after getting the opponents move, does another k-ply search.

If we could have searched the entire tree, the search would have to be done only once. But constrained 

to search only a part of a tree, we do a series of searches, one every time the program has to make a 

move. Every subsequent search starts two plies deeper than the previous one, and explores two more 

plies in the game tree. But, as shown in Figure 8.16, since it searches only below the chosen moves, it 

only looks at a fixed number of nodes at each level in the game tree. The complexity of algorithm can 

be depicted by the area of the search tree, which is proportional to the number of nodes in the tree. The 

figure below gives one an intuitive idea that the series of fixed ply searches explore only a small part of 

the entire game tree. Assuming that each search looks at P nodes, the game playing program will look 

at a total of PN/2 nodes during the entire time, where N is the number of moves made by both sides.

First call to k-ply search

Second call to k-ply search

Third call to k-ply search

FIGURE 8.16 A game playing program does a k-ply look-ahead search for each move. It makes the 

best move, waits for the opponent to move, and does another k-ply search to decide upon the next 

move.

We now look at the basic algorithm for doing the fixed ply search. The algorithm uses an evaluation 

function e(J) when considering the nodes at the frontier.

8.2.1 Algorithm Minimax

The algorithm Minimax searches the game tree till depth k in a depth-first manner from left to right. It 

applies the minimax rule (Figure 8.6) to determine the value of the root node. The following algorithm 
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(Figure 8.17) is a recursive version adapted from (Pearl, 1984). The algorithm uses a test Terminal(node) 

to determine whether it is looking at a frontier node, and therefore should apply the evaluation function 

e(J) instead of making a recursive call. A node is a terminal of a leaf node of the game, and will evaluate 

to one of {–Large, 0, +Large } or it is a node on the horizon, and in that case the evaluation function 

e(J) will be applied. Not shown in the algorithm is the implementation of the test for terminal node. 

It will need incorporation of a depth parameter k, perhaps passed along with the node, decremented 

at each recursive call. It will become zero when the node is on the horizon. This is left as an exercise 

(number 5) for the reader.

Minimax(j)

1     /* To return the minimax value V(j) of a node j */

2 if Terminal(j)

3     then return V(j) ¨ j)

4     else for i ¨ to b            /* b is the branching factor */

5            do

6              Generate ji the i
th successor of j

7              V(ji) ¨ Minimax(ji)   /* recursive call */

8              if i = 1

9                   then CV(j) ¨ V(ji)

10                  else if j is MAX

11                          then   CV(j) ¨ Max(CV(j), V(ji))

12                          else   CV(j) ¨ Min(CV(j), V(ji))

13 return V(j) ¨ CV(j)

FIGURE 8.17 The MINIMAX algorithm recursively calls itself till it reaches a terminal node. A terminal 

node is either a leaf of the game tree or a node at depth k. The algorithm does a k-ply search from left 

to right. Note that the recursive calls are of decreasing ply depth. One will need to keep track of depth 

of a node.

In the above algorithm, the minimax value is returned but not the best move that leads to that value. 

Since the objective is to play the game, the following version returns the best move. It calls the above 

Minimax algorithm for each successor of the root, and keeps track of the best move as well as the best 

board value.

BestMove(j)

1    /* To return the best successor b of a node j */

2 b ¨ NIL

3 value ¨ –LARGE

4 for i ¨ 1 to b

5     do V(ji) ¨ Minimax(ji)

6     if V(ji) > value

7         then   value ¨ V(ji)

8                b ¨ ji
9 return b

FIGURE 8.18 The algorithm BestMove accepts a board position and returns the best move for MAX. 

It calls algorithm Minimax with each of its successors and keeps track of which successor yields the 

best value.
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Figure 8.19 depicts the tree searched by the algorithm Minimax and BestMove for a synthetic game 

tree. The tree is a binary tree, with two choices to each player at each level. The values for the evaluation 

at the 4-ply level have been arbitrarily chosen.

20 10 8 –3 11 6 3 7 –9 12 15 18 21 17 –6–17

6 –9

BestMove

FIGURE 8.19 The algorithm BestMove calls algorithm Minimax for each of the successors of root, 

which computes the minimax value of each of them. It then chooses the best successor and returns 

that as the best move.

The Minimax algorithm above is the one that is doing the search. The BestMove algorithm is simply 

a modification to keep track of the best move found by Minimax. In Exercise 6, the reader is asked to 

modify the algorithm, so that the moves available to MAX at the next turn (after two plies) are stored 

along with their backed-up values. We will see in the 

following section how to exploit this information.

The algorithm Minimax finds the best move after 

searching the entire tree k-ply deep. There are, however, 

situations when it is not necessary to continue searching. 

This happens when it is known that searching further does 

have any scope of improvement. The simplest case is 

when a winning move has already been found, as shown 

in Figure 8.20.

8.2.2 Algorithm AlphaBeta

In the above figure, MAX has found a successor that evaluates to +Large. Since one cannot hope to 

improve upon, it does not make sense to search any further. We say that the search tree has been pruned. 

For pruning to happen, it is not necessary that a winning move has been found. It can also happen that 

during exploration it becomes clear that a particular child of a node cannot offer to improve upon the 

value delivered by a sibling. In that case, that node need not be explored further.

To understand this, we can view the game tree as a supply-chain process. At the top level, MAX 

has a set of MIN suppliers, from which it will select the one with the maximum value. Likewise, each 

MIN has MAX suppliers, from which the one with the lowest valued one will be selected. This process 

continues down the tree.

As the search in algorithm Minimax continues from the left to right, each node on the search frontier 

has been partially evaluated as shown in Figure 8.21. We will call the partially (or fully) known values 

+Large

FIGURE 8.20 When a winning move 

has been found, the other options need 

not be explored.
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of MAX nodes as a values. These values are lower bounds on the value of the MAX node. This is because 

that the MAX node will only accept higher values from the unevaluated successors. MAX nodes are also 

known as Alpha nodes. Likewise, MIN nodes are also called Beta nodes and store b values, which are 

upper bounds on values of the concerned MIN nodes. Remember that the a and b values are values that 

are already available to the respective nodes. They are not going to be interested in any successors that 

offer something inferior. Not only that, they are not going to be interested in any descendant that does 

not offer a better value.

a2

a3

a4

b1

a1

b2

b3

FIGURE 8.21 The search frontier contains a partial path in the game tree in which nodes have been 

partially evaluated. As this frontier sweeps to the right, these node will get fully evaluated.

The following example is from the Noughts and Crosses game. We assume a 2-ply search, in which 

the following evaluation function is used,

e(J) =  (numbers of rows, columns and diagonals available to MAX)

– (number of rows, columns and diagonals available to MIN)

We look at the progress of the search to understand the need to prune search, shown in Figure 8.22. 

The algorithm starts with MIN child A by placing a cross in a corner. The MIN node A looks at all children 

and evaluates to a value –1. Note that while there are seven successors of A, only the five distinct ones 

are shown in the figure. Now the root has a = –1, which means that it will not go lower than –1. In the 

figure, this is expressed by the inequality a ≥ –1. It then turns to MIN child B. The first successor of B 

sends back a value –1, which becomes an upper bound on the value of B. Since this is an upper bound 

and the root is already getting a value –1, the root is not going to be influenced by B, and the rest of the 

tree below B can be pruned away. Note that even with k-ply search, where k is larger, the same pruning 

will happen as long as the backed-up values are as shown. It is also important to note that a node can 

be pruned only after it has been partially evaluated.

We call the pruning shown in the above figure an a cutoff. An a cutoff occurs below a b node, when 

it is constrained to evaluate to a lower (or equal) value than the a value above it. Correspondingly, when 

an a node has a lower bound (a value) that is higher than the b value of an ancestor than the rest of the 

tree below, it is pruned. This is known as a b cutoff.

In fact, this conflict between the bounds of two nodes need not be between a parent and child only. 

As described in (Pearl 1984), the Alpha node J in Figure 8.21 (with value a4) will influence the root, 

only if it is greater that all the a values in the (Alpha) ancestors, and smaller than all the b values in the 

(Beta) ancestors. That is, the value V(J) of a node J must satisfy,

 a < V(J) < b



250 A First Course in Artificial Intelligence

where,

 a = max {a1, a2, a3, …}, and

 b = min {b1, b2, b3, …}

When we are about to solve for a node J, we can propagate these bounds to the algorithm from its 

ancestors, and terminate the search if these bounds are crossed. Note that an Alpha node can only increase 

in value, and can only cross a b bound. If it does then the search below the Alpha node is discontinued, 

and a b cutoff takes place. Likewise, a Beta node can only cross a lower bound a, and can be pruned 

using an a cutoff. The two kinds of cutoffs are illustrated in Figure 8.23.

b = min (a1, a2, …)

If (b £ a) a cutoff

a = max (b1, b2, …)

If (b £ a) b cutoffb

b

a

a

a1 a2 b1 b2

FIGURE 8.23 The a cutoff is induced by an a-bound from a MAX ancestor below a b-node. The b 

cutoff is induced by a b-bound from a MIN ancestor below an a-node.

FIGURE 8.22 After evaluating the child A, the root node gets an a value of –1. When it starts 

on move B, it sees a b value of –1. Since this is an upper bound, the node B does not need to be 

explored further, and an a cutoff takes place.

b £ –1

a ≥ –1

A
B C

b = –1

a cutoff

6 – 5 = 1 5 – 5 = 0 6 – 5 = 1 5 – 5 = 0 4 – 5 = –1 5 – 6 = –1
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The resulting algorithm known as the AlphaBeta algorithm is given in Figure 8.24 below.

AlphaBeta(j, a, b)
1     /* To return the minimax value of a node j */

2     /* Intially a LARGE, and b = +LARGE */
3 if Terminal(j)

4     then  return e(j)

5     else  if j is a MAX node

6                then for i ¨ 1 to b     /* ji is the j
th child of j */

7                       do a ¨ Max AlphaBeta(ji, a, b))
8                          if a ≥ b   then return b
9                          if i = b     then return a
10               else   /*j is MIN */

11                  for i ¨ 1 to b

12                      do b ¨ Min(b, AlphaBeta(ji, a, b))
13                         if a ≥ b   then return a
14                         if i = b      then return b

FIGURE 8.24 The AlphaBeta algorithm searches the tree like Minimax from left to right. It passes 

two bounds a and b to each call, and continues searching, only if the node has a value within those 

bounds.

The AlphaBeta algorithm is called initially with bounds a = –Large, and b = +Large. As search 

progresses, these bounds come closer, and eventually converge on the minimax value of the tree. At 

any point, when it is recursively called with bounds a and b, it returns V(J) if the value lies between 

the two bounds. Otherwise, it returns a value b if J is an Alpha node, and returns a, if J is a Beta node.

An Example

The following figure shows the subtree in a 4-ply binary game. As in the earlier example, the values of 

the evaluation function have been filled in randomly.

9

7

5 7 8 11 8

7

8

11

10 5 7 11 12 8 8 5 12 11 12 9 8 7 10

8

Minimax value = 8
Recommended move

Alpha cutoffBeta cutoff Alpha cutoff

FIGURE 8.25 The AlfBeta algorithm evaluates twelve out of the sixteen leaves. It does one b cutoff 

and two a cutoffs as shown. The minimax value is 8.
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The reader is encouraged to verify that the minimax value of the game tree is indeed 8, as reported 

by the AlphaBeta algorithm. This is irrespective of the values that are in the pruned leaves, shown as 

shaded nodes. Based on the leaves the algorithm has seen earlier in the search, which is in the left part 

of a tree, some leaves have no influence on the minimax value. The reader is encouraged to try different 

values in the shaded nodes and verify that the minimax value does not change.

Since the cutoffs are dictated by values of nodes seen earlier, the amount of pruning by AlphaBeta 

algorithm will depend upon the leaves seen earlier. If the better moves for both sides are explored 

earlier then the window of a-bound and b-bound will shrink faster and more cutoffs will take place. In 

particular, if the node whose value is backed up to the root, and which represents the best moves from 

both sides, is found earlier, the number of cutoffs will increase significantly. In the above figure, one 

can observe that the minimax value comes from the right half of the tree. Let us flip the tree about the 

root by reversing the order of the leaves and run the AlphaBeta procedure on the reversed tree. The 

resulting cutoffs are shown in Figure 8.26.

710 98 11

118 7

12 512 98 128 711 105

8

8

£ 8

7 8 11 8 7 5

Minimax value =
Recommended move

Beta cutoff

Beta cutoff

Alpha cutoff
Alpha cutoff

FIGURE 8.26 When the tree of Figure 8.25 is flipped about the root, the algorithm inspects only eight 

nodes out of sixteen.

As can be seen, the number of cutoffs in the same game tree, but with the order reversed, has gone up 

to eight, and only eight of the sixteen nodes are inspected. In Exercise 8, the reader is asked to construct 

a tree in which AlphaBeta is forced to evaluate all leaves, and then try the algorithm on the flipped tree.

It is evident that the performance of the AlphaBeta algorithm depends upon the order in which the 

moves are generated, and when the better moves are generated earlier, the cutoffs will be greater in 

number. But how do we generate the better moves first? One way could be to somehow put in domain-

specific heuristics to order the moves. For example, in the Noughts and Crosses game, corner moves 

might be preferred over side moves.

Another, and a domain independent, way would be to use one instance of search to order the moves in 

the next instance of search. Let us say MAX is to play in some board position X. MAX calls the AlphaBeta 

algorithm and along with finding the best moves, also keeps track of the moves it explored at the third 

ply. These are moves it will start searching with the next time it has to make a move. MAX utilizes the 

current search to order the moves in preparation of the next one (see exercises 6 and 9).

Another way would be to give the algorithm a sense of direction, like in the transition from depth first 

search to heuristic search in Chapter 3. The algorithm AlphaBeta searches blindly from left to right. In 



Chapter 8: Game Playing 253

the algorithm SSS*, described in the next section, the search is guided towards the better looking nodes. 

The interesting thing is that the guidance does not come (directly) from a domain specific heuristic 

function. Instead, it is generated by a preliminary exploration of the game tree up to k-ply depth. This 

preliminary exploration yields some information which is used to guide the search towards better nodes. 

This notion of domain independent heuristics is an exciting one, and we shall visit it again in the chapter 

on advanced planning (Chapter 10).

8.2.3 Algorithm SSS*

The main problem with the AlphaBeta algorithm is that it is sensitive to the order in which the moves 

are generated. This is because it always searches the game tree from the left to right, in an uninformed 

fashion. An algorithm which searches the game tree guided by heuristic information, is the SSS* algorithm 

developed by Stockman (1979).

The basic idea behind algorithm SSS* is the same high level notion of heuristic search that we have 

been pursuing in the earlier chapters.

 Refine the best looking partial solution,

 till the best looking solution is fully refined.

The difference is in the way in which a partial solution is evaluated. As described in Chapters 5 and 

7, a partial solution stands for the set of complete solutions to which it can be extended. For the sake 

of completeness, it is imperative that search starts with and covers all potential candidate solutions till 

a solution is found. The job of the evaluation function is to help estimate the cost of a partial solution. 

Then, if the estimated cost of a partial solution is a lower bound on actual cost, the above strategy will 

terminate with the minimal cost solution, when a complete solution has the lowest cost. In the case of 

finding the best move for MAX, the optimal value is the maximum value. In this case, the estimated value 

of a partial solution should be an upper bound of the actual value of the partial solution.

The solution in the game tree search is a strategy. The task is to consider all strategies for MAX and 

pick the best strategy.

Consider the four-ply game tree that we have been using as an example. Remember that a strategy 

for MAX is constructed by choosing one move for MAX and all moves for MIN. The following figure 

shows one strategy in the game tree.

510 812

FIGURE 8.27 One of the eight strategies for MAX is the above 4-ply game tree. The value of this 

strategy is 5, the minimum value of the four leaves in this strategy.
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The 4-ply binary game tree has eight different strategies. Two choices at the first level, and  

2 ¥ 2 subsequent choices at the next level (two for each choice of MIN). Both 5-ply and 6-ply have 

128 (or 27) strategies and 7 and 8-ply have 215 strategies. At the next level, each of the 215 strategies can 

be extended in 216 ways, yielding 231 strategies.

The reader should verify that for a (2n – 1)-ply or 2n-ply game tree of branching factor b, the number 

of strategies that MAX has to choose from is,

 number of strategies for 2n-ply look-ahead = 

1

1

Ê ˆ-
Á ˜-Ë ¯

nb

b
b

Fortunately, we do not have to enumerate and evaluate all these strategies. The algorithm Minimax 

looks at each node in the game tree exactly once, searching in a depth first manner. The algorithm 

AlphaBeta also searches in a depth first manner but prunes parts of the game tree. As we will see below, 

the algorithm SSS* searches in a best first manner, and explores an even smaller part of the tree, visiting 

each node once.

The value of any given strategy for MAX is the minimum of the values of the leaves in that strategy. 

This is because the strategy freezes the choices for MAX, and we assume that MIN will play perfectly. 

Thus, if S is a strategy then,

 V(S) = min {V(Li) |  where Li is a leaf in the strategy S}

This means that

 V(S) £ V(Li)  for any leaf Li in the strategy S.

In other words, the value of a strategy for MAX will be equal to or less than the value of any given 

leaf in the strategy. That is, the value of a leaf node is an upper bound on the value of any strategy that 

it belongs to. For example, the leaf with value 10 in Figure 8.27 belongs to the two strategies, S1 and S2 

depicted in Figure 8.28 below, and is an upper bound on both the strategies.

10

FIGURE 8.28 The node with value 10 belongs to two strategies shown in straight lines (S1) and thick 

dotted lines (S2).

Thus, the value of any given node is an upper bound on a set of strategies containing the node, and 

in fact any given node defines a cluster or set of strategies. We can also think of a node as representing 

a partial solution, or a partially developed strategy that can be extended in various ways. This represents 
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a cluster of strategies and as more detail is added to the partial strategy, it becomes more refined, 

representing a smaller set, till eventually it becomes a single, fully refined strategy.

SSS*: An Example

If we can start the search with a set of nodes covering all the available strategies, and refine the one 

with the highest upper bound then when a fully refined strategy has a higher value than the other partial 

strategies, the algorithm can terminate. The procedure for finding nodes that will cover all strategies 

is like the one for constructing a strategy, only the choices are reversed. For MAX nodes, we select all 

choices, because we want to cover all strategies. For MIN nodes, we only choose one, since we are only 

constructing partial strategies that will be refined later. For the 4-ply binary game tree, four leaf nodes, 

each representing a cluster of two strategies, are selected as shown in Figure 8.29. The lone choice for 

each MIN node has uniformly been chosen as the leftmost one.

10 7 5 11

A B C D

FIGURE 8.29 Algorithm SSS* begins by selecting a set of leaf nodes covering all strategies. All 

moves for MAX and one move for MIN is selected from the game tree. The four clusters are labelled 

A, B, C and D.

The four clusters labelled A, B, C, and D are shown by the four shaded representative nodes. The upper 

bounds on the four clusters are 10, 7, 5 and 11 respectively, the values of the four nodes. The best value 

possible for MAX is 11 in cluster D. Algorithm SSS* picks cluster D for refinement, and evaluates the 

next node in the cluster, as shown in Figure 8.30 below. Observe that in this example, SSS* has already 

headed off in a direction that seems to be best.

The new node evaluates to 12 as shown in the above figure. This does not change the upper bound 

of cluster D (remember 11 is also an upper bound). Cluster D is still the best and is again picked for 

refinement. The lowest MIN node in cluster D is fully evaluated, and the other refinement will have to 

come at the level of the next higher MIN node, by selecting the next child marked X in the above figure. 

Observe that the subtree below X is common to strategies C and D. Since D is better in the subtree 

where the two differ, D will always be better than C, and C will never be considered again. As shown 

in Figure 8.30 above, this is an a cutoff.

The subtree below X will only be of interest if it evaluates to a value less that 11, the upper bound on 

strategy D. Otherwise, the MIN node above it will not be influenced by its value. To refine the strategy 
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D below node X, SSS* recursively calls itself with an upper bound of 11. It will continue evaluating 

that subtree, only as long as it is below this value. The recursive call generates clusters again for the 

subtree below node X. In our example, there are two clusters D1 and D2 as shown in Figure 8.31 below.

10 7 5 11

11 <11

12 9 8 7

A B C D D1 D2

FIGURE 8.31 SSS* further refines the best cluster D by recursively calling itself with an upper bound 

of 11. The two (new) clusters are D1 and D2 with node values 9 and 7. It refines D1 by inspecting 

another node in it, and D1 becomes fully refined with a value of 8, which becomes the new upper 

bound on cluster D. Observe that D is now fully refined, but cluster A could still be better.

FIGURE 8.30 SSS* refines the best cluster D by evaluating another node that evaluates to 12. The 

upper bound on D remains 11. At this point, cluster C drops out of contention, and will never be looked 

at again. Cluster D is still the best and further refinement involves looking at another (the only one in 

this example) child of the parent Min node, marked X in the figure.

10 7 5 11

11

12

A B C D
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In the recursive call shown by the shaded envelope above, the clusters D1 and D2 begin with bounds 

of 9 and 7 respectively. The reader would have noticed that these clusters contain only one strategy each, 

and have resulted by splitting the cluster D that had two strategies. The better cluster D1 is refined11 by 

inspecting the remaining node in it, and evaluates to 8. D1 is fully refined and higher than 7, the upper 

bound on D2. The recursive call terminates. If D1 had evaluated to a value higher than 11 (for example, 

if the three nodes in the recursive call had values 15, 14, 12) then too the recursive call would have 

terminated via a b cutoff. The node X now evaluates to 8 and this becomes the new bound on cluster D. 

Since the cluster D is fully refined, this becomes the known minimax value of the MIN node representing 

this cluster, as shown in Figure 8.32 below. However, since this value is not the highest, SSS* turns its 

attention to cluster A, which looks better.

10

1 8 2 3 4 5 6 9 7

7

5

5 5 11

11 8

8

12 9 8 7

A B C D D1 D2

FIGURE 8.32 After cluster D is fully refined to value 8, cluster A with an upper bound of 10 looks better. 

It is refined next, and the upper bound decreases to 5. The three clusters in contention: A, B, and D have 

values 5, 7 and 8. Furthermore, D is fully refined. SSS* then terminates with the minimax value 8. The 

order of inspecting the nodes is shown below the tree.

SSS* then refines cluster A and revises its upper bound downward to 5. At this point, cluster D has 

become the best, and SSS* can terminate with the minimax value 8.

We see that the SSS* algorithm is guided in its search by the estimates of the partial clusters, and 

always investigates the best looking cluster. It is not uninformed like the AlphaBeta algorithm, and has 

been shown to always inspect fewer than or the same nodes than the AlphaBeta search. The cost that SSS* 

has to pay is increased book keeping. Since it is a version of AO*, it needs to keep track of the different 

partial solutions. The AlphaBeta algorithm, on the other hand, needs to keep only the current node.

The Algorithm SSS*

The following description of the algorithm, adapted from (Pearl, 1984) does not use an explicit 

representation of clusters. Rather, the best node in the cluster is used as a representative of the cluster, 

in the following format.

11  The actual implementation is not recursive and in fact, at this point SSS* shifts attention to cluster A, as shown in the hand 

simulation below.
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Search node p = <J, s, h> where

       J is a node in the game tree

       s is the status of p:

                              s is SOLVED if its minimax value is known, else it is LIVE.

       h is the upper bound value on the cluster represented by node J

The algorithm, described in Figure 8.33, maintains a list OPEN of search nodes, sorted on the upper 

bound values, like our earlier algorithms for heuristic search in Chapter 3. That way the best node is 

always at the head of OPEN. But since the nature of the game tree is like an And/Or tree, it needs to 

treat each node differently based on whether it is a MIN node or a MAX node. The procedure is not 

recursive in nature, as the one described informally above. Instead, when a MAX node is SOLVED, and 

another sibling exists, the sibling is inserted in the OPEN list as a LIVE node along with the value from 

the MAX node. If no such sibling exists then its parent MIN can be labelled SOLVED.

Initially, the algorithm begins with the root node inserted with the label < root, LIVE, +LARGE >. 

When the algorithm removes a nonterminal LIVE node from OPEN, it replaces it with all its children if 

the removed node was MAX, and one child if it was MIN. This forward phase terminates at the horizon. 

SSS* then applies the evaluation function e(J) to the nodes on the horizon, labels them SOLVED, and 

arranges them in decreasing order of the h values (which in the first round are the values returned by 

the evaluation function e(J)). The node with the best h value is removed from OPEN, and its sibling 

added in Line 21 (for MAX nodes). Its sibling is added to OPEN with the lower of the two values. 

This is a refinement step in which one more leaf of the strategy is inspected. The reader should recall 

that each leaf is an upper bound on the value of a strategy. When it has finished with all the MAX sib-

lings then the (MIN) parent is inserted in OPEN with the label SOLVED. If a SOLVED MIN node is 

picked by SSS*, its MAX parent can be labelled SOLVED, and its siblings removed. This is because its 

siblings have lower upper bounds (since the MIN node was at the head of OPEN). Contrariwise, when a 

SOLVED MAX node is picked by SSS*, its siblings are added to the OPEN with the same h value. This 

will be “recursively” solved by SSS*. The algorithm terminates when, like in AO*, the root is labelled 

SOLVED.

SSS*: The Example Revisited

Let us explore how the algorithm SSS* arrives at the solution shown in Figure 8.32, redrawn as Figure 

8.34 with names assigned to the nodes explored by the algorithm. Initially, the algorithm begins with 

the root added to the open list.

 OPEN = (<root, LIVE, +LARGE>)

This is the only node in OPEN, and is a MAX node. It is removed from OPEN and all (both) its 

successors added to OPEN. These are MIN nodes, and in turn replaced by one child. This process 

continues (Lines 7–13) till the horizon is reached. The open list now looks like this:

 OPEN = ( <A1, LIVE +LARGE>, <B1, LIVE +LARGE>, <C1, LIVE +LARGE>,

    <D1, LIVE +LARGE>)

The node at the head is removed and the evaluation function is applied to these four nodes one by 

one in Line 15. The new value of each node is the one returned by the evaluation function, and they are 

arranged in a sorted order as shown below.

 OPEN = (<D1, SOLVED, 11>, <A1, SOLVED, 10>, <B1, SOLVED, 7>,

 <C1, SOLVED, 5>)



Chapter 8: Game Playing 259

Now D1 is removed from OPEN, and since it has an unexplored sibling, that is added to OPEN in 

Line 21 as a LIVE node with a value 11. Next it is removed and replaced (Line 15) with a SOLVED 

label and the value 11, the smaller of 11 (value of h in D1) and 12 (its own value e(D2)).

 OPEN = (<D2, SOLVED, 11>, <A1, SOLVED, 10>, <B1, SOLVED, 7>,

 <C1, SOLVED, 5>)

The node D2 is removed next, and since it is the last unexplored sibling, the parent node D12 is added 

as a SOLVED node in Line 20. This is still the best node.

 OPEN = (<D12, SOLVED, 11>, <A1, SOLVED, 10>, <B1, SOLVED, 7>,

 <C1, SOLVED, 5>)

FIGURE 8.33 The algorithm SSS* maintains a sorted open containing partial strategies and their 

upper bounds. It returns the minimax value when the root is labelled SOLVED. The function Insert 

inserts the triple after the last triple that has a higher value (as in the variation given in (Pearl, 1984)).

SSS*(root)

1 open ¨ (< root, LIVE, +LARGE >)

2 repeat

3    Remove node p = < J, s, h > from head of open

4    if J = root AND s = SOLVED

5        then return h                  /* return when root is SOLVED */

6        else if s = LIVE

7                then if J is non-terminal

8                        then if J is MAX

9                                then for j ¨ b to 1

/* b : branching factor */

10                                        do /* J·j is the jth

child of J */

11                                           open ¨ Cons(< J·j, LIVE,

h >, open)

12                               else          /* only first child

for MIN node */

13                                    open ¨ Cons(< J*1, LIVE, h >, open)

14                       else             /* J is terminal */

15                          open ¨ Insert(< J, SOLVED, Min(h, e(J)) 

>, open)

16               else                    /* status s = SOLVED */

17                  if J = J0◊j is MAX      /* J is the j
th child of J0 */

18                      then if j = b

20                               then open ¨ Cons(<J0, SOLVED, h >, open)

21                              else open ¨ Cons(<J0*j+1, LIVE, h >,

 open)

22                      else              /* J = J0 * j is MIN */

23                              open ¨ Cons(<J0, SOLVED, h >, open)

24                                          /* like an a cutoff */
25                              Remove from open all successors of J0
26 until FALSE          /* Repeat Indefinitely, exit when root is 

SOLVED */
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Now D12 is removed and replaced by node D as a SOLVED node, and all its siblings (in this case 

C1) removed (Lines 23–25).

 OPEN = (<D, SOLVED, 11>, <A1, SOLVED, 10>, <B1, SOLVED, 7>)

10 75 5 11

11

11

8

8

8

8

12 9 8 7

A1 A2 B1 C1 D1 D2 D11 D12 D21

root

DD1

D1D

D12 D112

FIGURE 8.34 The game tree of Figure 8.32 redrawn with names for the nodes visited by SSS*. The 

shaded nodes are the ones that were marked SOLVED by SSS* at some point.

When D is removed (Line 21), its sibling D1 is added to OPEN as a LIVE node.

 OPEN = (<D1, LIVE, 11>, <A1, SOLVED, 10>, <B1, SOLVED, 7>)

When the LIVE node D1 is removed, lines 6–15 are executed again to give,

 OPEN = (<A1, SOLVED, 10>, <D11, SOLVED, 9>, <B1, SOLVED, 7>,

 <D21, SOLVED, 7>)

At this point, node A1 becomes better and SSS* shifts attention to it. It is replaced by its sibling A2 

with a value 5, the smaller of 10 and 5. OPEN now looks like,

 OPEN = (<D11, SOLVED, 9>, <B1, SOLVED, 7>, <D21, SOLVED, 7>,

 <A2, SOLVED, 5>)

Now D11 is replaced by D12 with a value 8, and that being the last sibling, the parent D112 is labelled 

SOLVED.

 OPEN = (<D112, SOLVED, 8>, <B1, SOLVED, 7>, <D21, SOLVED, 7>,

 <A2, SOLVED, 5>)

When the MIN nodes D112 is removed, its parent D1 is added as a SOLVED node, and the MIN sibling 

D21 removed from OPEN (an Alpha cutoff).

 OPEN = (<D1, SOLVED, 8>, <B1, SOLVED, 7>, <A2, SOLVED, 5>)

Now since D1 is the last sibling, its parent DD1 is labelled as a SOLVED node with the value 8. 

When this MIN node is removed, its parent root is added as a SOLVED node with the value 8, and its 

siblings, represented by B1 and A2 are removed. Finally, since the root node has been labelled SOLVED, 

the algorithm terminates.
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8.2.4 B* Search

Another approach to selective search was developed by Hans Berliner, who had the distinction of being 

a world champion in correspondence chess12, in addition to being a computer scientist. He developed the 

Hitech chess machine (Berliner, 1987) that used a specialized sixty four custom VLSI chip architecture. 

The B* algorithm is a result of a quest for an algorithm that searches selectively in a humanlike manner. 

Berliner defines the necessary conditions for selective search as follows (Berliner, 1979),

 1. It must be able to stop when a clearly best alternative exists at the root. This is done by comparison 

and is independent of the ultimate value of the best move.

 2. It must be able to focus the search on the place where the greatest information can be gained 

toward terminating the search.

The first criterion is similar to the one in the AO* algorithm (see Chapter 6). The second pertains to the 

heuristic aspect of search. Berliner provides an interesting perspective to the game tree search problem. 

He views the search space as a surface with geological features defined by an evaluation function in 

the (third) Z dimension. Only the game tree search space has layers and layers of ridges, as one looks 

farther ahead in the X and Y dimensions. Heuristic search is concerned with optimizing the value in the 

Z dimension (see Chapter 3). A strategic outlook, on the other hand, is concerned with reasoning about 

choices in the X and Y dimensions. The algorithms discussed above determine the strategic outlook 

based on a predefined ply look-ahead search. In that sense, they are not selective, though the algorithm 

SSS* does refine partial solutions selectively. B* search carries this idea one step forward, searching 

selectively from the very beginning. Further, it does not search a predetermined ply depth, but continues 

searching until the best option is distinctly better than the others.

To do this, it must have an idea of the goodness of a node. Remember that the algorithms described 

above apply the evaluation only at the leaf node on the search frontier. The values of the internal nodes 

are the backed-up minimax values of these leaves. The final decision is based on a subset of the nodes 

evaluated at the search horizon. Algorithm B* also evaluates nodes using a small fixed ply look-ahead 

search, called a probe search. It uses the results of these evaluations to selectively explore certain move 

combinations, before deciding on the move to make. It is as if it is “arguing and counter-arguing” about 

some lines of play, using the probe searches to decide its move. Algorithm B* assigns bounds on the 

values of each node as it searches forward. The node representation in B* has the following elements 

(Berliner, 1979):
 ● The RealVal, which is the best estimate of the true value of the node.
 ● The OptVal, which is the optimistic value of the node for the side-on-move.
 ● The PessVal, which is the optimistic value for the side-not-on-move, backed up from its subtree, 

and
 ● The OptPrb, which is the probability that a certain target value can be achieved by future searches 

of the subtree rooted at this node.

The real values are determined by probe searches, using the minimax backup rule. Optimistic values 

are the best values13 of leaves of the same type (MAX or MIN). Pessimistic values are optimistic values for 

the opponent nodes. Optimistic values and pessimistic values are inherited by children from their parents 

during B* search. The OptPrb values represent the probability that the target value can be achieved 

in that subtree. Probability distributions collect the information needed to make good decisions about 

12 http://en.wikipedia.org/wiki/Hans_Berliner.
13  In practice, Hitech uses a fairly complicated evaluation using chess specific knowledge about moves that are checks, that 

threaten mate, or that start with certain kinds of captures.
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what to explore and when to stop. The target value for a node, which has been determined empirically, 

is computed as,

 Target Value = (OptVal(2ndBest) + RealVal(Best))/2

where the Best and the 2ndBest refer to the children of a node with the best real value and the second-

best optimistic value. The probability of a target value being reached from a given node is computed 

by linear interpolation between the real value, assumed to have probability 1, and the optimistic value, 

considered to have probability 0, of that node. If the former is 20 and the latter 250, then the probability 

of a target value of 100 is given by,

 Prob(100) = (250 – 100)/(250 – 20) = 0.652

The probability of the best node is backed 

up for a MAX node, while for a MIN node, the 

product of the probabilities of the children is 

backed up. Figure 8.35 by Berliner shows a 

sample tree to illustrate these values. First, the 

root node is expanded to generate three children: 

A, B and C. The three are evaluated using the 

probe search, and their real values are 20, 18 and 

10 respectively. The target value by the formula 

given above is (40 + 20)/2 = 30. Assuming that 

the probability of achieving real value is 1, the 

optimistic value 0, the probabilities of A, B, and 

C of achieving the target of 30 are interpolated 

as 0.875, 0.445, and 0.000 respectively. Note 

that the third one is set to zero.

The following table shows the complete 

values for the nodes in the above tree. The most 

promising node ‘A’ is expanded to generate 

nodes E, F and G. This is because A has the highest probability of achieving the target 30. The optimistic 

and pessimistic values are inherited from the parent, switching their labels. The real values are computed 

by a probe search. The probabilities of the three achieving the target 30 are 0.875, 1.000 and 1.000 

respectively (since the latter two are “better” than the target). The product of these three, viz. 0.875, is 

backed up to the parent A, because node A is like an AND node.

Table 8.1 The values for the tree in Figure 8.34 (from (Berliner, 1997))

Node Depth/Parent OptVal RealVal PessVal TargetVal OptProb

A 0 100 20 Undef. 30 0.875

B 0 40 18 Undef. 30 0.445

C 0 25 10 Undef. 30 0.000

D 1/A Undef. 20 100 30 0.875

E 1/A Undef. 60 100 30 1.000

F 1/A Undef. 80 100 30 1.000

A
0.875

20

D
20

0.875

E
60

1.000

D
80

1.000

B
0.445

18

A
0.000

10

FIGURE 8.35 A sample tree generated by B*. 

The nodes are arranged left to right in order of 

goodness for the respective player. The solid 

lines represent node chosen by B* for exploration. 

Figure from (Berliner, 1979).
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The search proceeds in two phases. In the SELECT phase, the best descendent of a candidate is found 

based on the optimistic value, revising the target value on the way. Since the opponent will try and drive 

the value in the opposite direction, the phase VERIFY attempts to refute that the node is indeed a good 

one. In the SELECT phase, MAX acts as a forcer and the search attempts to find the most optimistic 

move that is likely to achieve the target value. B* proceeds with the SELECT phase till the real value of 

a node becomes better than optimistic values of all its siblings that have the probability of achieving the 

target higher than a value known as minAct. Initially, minAct is chosen as 0.15 but it may be increased 

later in search to enable higher pruning. After the SELECT phase is over, let the real value of the second 

best sibling be a value X. The verify phase is called with a target value of (X – 1), and it computes the 

probabilities of this target value. If the probability of the chosen node having this revised target is high 

then the VERIFIER has demonstrated that the chosen move is not the best, and a new SELECT phase will 

begin. In the VERIFY phase, MIN acts as the forcer and tries its best moves to show that MAX’s move 

is not the best one. If it succeeds, a new attempt by MAX will be embarked upon in another SELECT 

phase. If it fails, then search can terminate.

In the SELECT phase, the search proceeds from the root, selecting the best optimistic value at MAX level 

and the best real value at MIN levels. When it terminates, the VERIFY phase begins selecting nodes with 

the criteria of nodes reversed, starting at the chosen node. The two phases continue alternately, till a move 

has been found which has a high probability of being better than the other moves. The reader is encouraged 

to read the articles by Berliner for more details, for some of the chess-specific knowledge that has been 

built into the system, and the use of parallelism in the Hitech machine that used the B* search algorithm.

We will conclude by observing the main differences between SSS* and B* search. SSS* does a best 

first search over a fixed horizon. It starts by picking leaf nodes that represent all possible strategies, and 

refines the best one till the best strategy is fully refined. B*, on the other hand, does selective search from 

the very beginning. In the first phase, it tries to optimistically find moves that look good from MAX’s 

perspective. In this phase, it may plunge down the tree till it feels that it has identified the best move 

from its choices. In the second phase, it pessimistically tries to check whether the move is really good. At 

all times, it keeps optimistic and pessimistic bounds on the value of each node. When a move becomes 

distinctly better than the other options, it can terminate. This could happen after different amounts of 

exploration in different situations. It could happen quickly after a short search phase, or it may extend 

to longer periods when the surface is flat and not discriminatory. B* can then progressively raise its 

minAct parameter to narrow down on its search space. The search space explored by B* is schematically 

depicted in Figure 8.36 below, adapted from the paper by Berliner.

FIGURE 8.36 Schematic illustrating the search done by B*, as compared to a full tree search by 

variants of the Minimax algorithm. The reasoning in B* is done on the basis of a series of small probe 

searches as shown by the smaller envelopes. Figure adapted from (Berliner, 1979).
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8.3 Limitations of Search

The game playing algorithms described above are constrained to search a limited part of a game tree. 

The constraints come from the limited time available to the program to find a move. Within this limited 

look-ahead, the search program has to rely on the evaluation function to decide the relative merits of 

the different moves. The evaluation function is basically some kind of perception function that looks at 

the board and returns a value that is indicative of how good the position is for MAX.

However, there are often situations where the evaluation function is unable to discriminate between 

different options because they are materially similar, and the consequences of the different choices are 

beyond the horizon of the search. This happens more often towards the end game, when the choices are 

typically fewer but more critical. There are some situations that are a kind of deadlock, where the interest 

of each player is in maintaining status quo. Plays in such situations explicitly try to delay meaningful 

activity, because changing the situation involves some kind of loss.

An example of such a situation in Chess is known as Zugzwang (Hooper and Whyld, 1992) in which 

the value of the board position critically depends upon who has to move. Figure 8.37 depicts two such 

positions from (Flear, 2004).

FIGURE 8.37 Two Zugzwang positions from (Flear, 2004). In the left position, if Black is to move in 

then the King has to withdraw protection from one of the three pawns, but if White has to move, Black 

is safe. In the position on the right as well, Black would rather not move. If White is to move however, 

the White King can be moved in a triangle (right, downLeft, up) to come back to the same position 

putting Black on move in Zugzwang.

In the first position on the left, the Black King is protecting the three pawns from being captured by 

the White King. If Black were to move then it would have to relinquish support for one of the pawns, 

clearing the way for White to win. If White were to move, on the other hand, the game would head 

towards a draw. Thus, the evaluation depends critically on who is to move next. In the second position 

on the right again, Black is in Zugzwang, and would rather not move, preferring it to be White’s move. 

But in this position, even if White is to move, the White King can be moved in a triangle returning to 

the same position in three moves while Black is forced to oscillate and return to the same position in 

two moves. This manoeuvre, known as triangulation, has the effect of coming back to the same posi-

tion, but now with Black to move in Zugzwang. Notice that it is difficult for an evaluation function to 

discriminate between these small but critical variations because neither the material nor positions change 
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significantly. However, a more detailed knowledge based 

program could store such patterns to be acted upon in a 

specific manner.

A more critical illustration of the limitation of search 

and evaluation functions is the following contrived 

situation from (Seymour and Norwood, 1993) depicted 

in Figure 8.38 below. Human chess players quickly 

realize that the Rook on offer to White is poisoned, and 

refrain from capturing it. However, it is difficult for an 

evaluation function to resist the material gain of capturing 

the Black Rook because the negative effects of this action 

are far down beyond the horizon. The best computer chess 

playing program at that time, Deep Thought II14, grabbed 

the Rook when tested on the board position.

Human players evade the trap of capturing the poi-

soned Rook, because we do other things than look-ahead 

and perception. We create abstract representations of 

situations and reason over these representations. In the 

poisoned-rook test position, we realize that the chess-

board is partitioned into two regions, which because of the peculiar and unlikely pawn formations, and 

the absence of pieces like the Knight or the black square Bishop for Black that can break these formations, 

are separated by an impermeable boundary. All that White needs to do, given that White is materially 

much weaker, is to maintain this boundary by doing arbitrary moves of the King in its territory. Black 

offers a Rook to be captured by a White Pawn, a distinct material advantage, but that is the one move 

that White should not make. While White gains a Rook, the move disrupts the protective boundary and 

eventually loses the game. Once the pawn formation is broken, the remaining material strength of Black, 

the Bishop and the other Rook which were of no use, can now come forcefully into action.

8.3.1 Go

A game in which these limitations of search are brought to fore much more forcefully is the ancient 

Eastern game of Go, that originated in ancient China. The main problem with using search on Go is 

that the branching factor is much too high and the search tree is much too large. This is because the 

game is played on a 19 ¥ 19 board called goban15, made up of the intersections of nineteen vertical 

lines with nineteen horizontal ones. The basic move in the game is to place a stone on one of the 381 

14  “It was named after Deep Thought, a fictional computer in Douglas Adams’ series, The Hitchhiker’s Guide to the Galaxy. The 

naming of chess computers has continued in this vein with Deep Blue, Deep Fritz, Deep Junior, etc. (“Deep” here generally 

refers to the special ability to use multiple processing units.) …. In 1994, Deep Thought II won the North American Computer 

Chess Championship for the fifth time, with its rating estimated at around 2600. It was sponsored by IBM. Some engineers who 

designed Deep Thought, also worked in the design of Deep Thought II. Its algorithms were quite simple evaluation functions, 

but it could examine half a billion chess positions per move in tournament games, which is sufficient to reach a depth of 10 

or 11 moves ahead in complex positions. Despite that, using the technique of singular extensions, it could also follow lines 

of forced moves that reach even further, which is how it once found checkmate in 37 moves.” – from http://en.wikipedia.org/

wiki/Deep_Thought_%28chess_computer%29
15 Rules of Go, Wikipedia, http://en.wikipedia.org/wiki/Rules_of_Go

FIGURE 8.38 A ‘poisoned rook’. In this 

unlikely chess position, human players 

quickly realize that it is (eventually) 

disastrous to capture the rook with the 

pawn. The program Deep Thought II 

apparently grabbed the rook given in this 

position (Seymour and Norwood, 1993).
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intersections. The two players are traditionally Black and White, and they place a black stone and a 

white stone respectively. Black plays first on any one of the 381 intersections, and then White places a 

stone anywhere else on the board. Thus, we can see that the branching factor in the first thirty moves of 

the game is going to be higher than 350! The players play in turns, and a player has an option to pass, 

usually used only in end games.

Go has been called a subtle game of territory (Iwamoto, 1977), and the objective is to have more 

stones on the board and surrounding more empty intersections (territory) than the opponent. The Japanese 

version of the game only counts the empty surrounded territory, while the Chinese version counts both 

the stones and territory. In addition to staking out territory, players can also capture opponent stones by 

surrounding them, and that counts as well in the final score.

Chess and Go are both board games, but while computer Chess has achieved spectacular success, 

computer Go is nowhere near any kind of human competence. One reason for this is that the search 

space is too large. The other is that the nature of evaluation is different. While pieces move around 

in Chess, they remain fixed on a Go board. Captures are few. Go players go through a process of 

learning in which they recognize more and more subtle patterns. They hardly employ look-ahead, except  

when it is a tactical necessity. Abstract knowledge is often expressed in the form of Go proverbs 

(Kensaku, 1966) and part of the learning process is to recognize when a proverb is applicable. In a 

comparison (Pinckard, 1992) of the three popular games in the east, Chess, the game of warriors and 

kings, is described as a game of “man vs. man”; the dice game of Backgammon (see the section on other 

games below), a game of “man vs. fate” contest; while Go the game of learning to recognize subtle 

patterns is billed as a “man vs. self” contest.

We now briefly look at some of the other games that are not two person complete information board 

games, like those that have been addressed in this chapter so far.

8.4 Other Games

The following games all differ from the games dealt with in the preceding sections in some way or the 

other. What is common between them is that for these games, it is not possible to construct a game tree 

to look ahead into the feature. We discuss three interesting games: Bridge, Scrabble and Backgammon. 

Of these, the first two are incomplete information games, in the sense that the players do not know the 

holdings of the opponent, and the third has an element of chance in the game introduced via the throw 

of dice. Another distinguishing feature of Bridge is that it is not a two person, but a four person game, 

in which there are two teams of two players each. Scrabble can be a multiplayer game too.

8.4.1 Bridge

Contract bridge is a game played with a pack of fifty cards. The pack contains four suits: spades, 

diamonds, hearts and club. Each suit contains thirteen cards which form an ordered set {2, 3, 4, 5, 6, 

7, 8, 9, 10, Jack, Queen, King, Ace}. The pack is dealt out amongst four players traditionally called 

North, South, East and West. North and South are partners and so are East and West. The basic unit of 

play is a trick. A trick begins with a designated player playing a card, and the others follow in clockwise 

succession. They are required to follow suit or play a card in the suit led by the first player, unless they 

do not have one, in which case they can play any card. The highest card of the led suit played in that 

trick wins the trick, unless someone has played a trump card, in which case the highest trump card wins 

the trick. The corresponding player has to lead the card for the next trick.
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The game is played in two stages. The first stage is an auction in which the players bid to make a 

certain number of tricks. A bid includes the number16 of tricks the side is bidding for as well as a suit 

to be the trump suit. If the final contract has a trump suit then all the cards of that suit are deemed to 

be higher than all other cards. Then if a player does not have cards in a led suit, she can ruff and win 

the trick with a trump card. A contract may also be bid without naming trumps, and is known as a no 

trumps contract.

The bids that a player can make are from an ordered list BIDS as follows:

 BIDS = <1C, 1D, 1H, 1S, 1N, 2C, 2D, …., 7H, 7S, 7N>

where C stands for clubs, D for diamonds, H for hearts, S for spades, and N for no trumps. A player can 

only choose a higher bid than the previous one. A player may also choose to PASS anytime. In addition, 

the following bids may be used conditionally. If the previous nonPASS bid is by an opponent and from 

the set BIDS then a player may use a bid called DOUBLE. Finally, if the previous nonPASS bid is a 

DOUBLE by an opponent then a player may bid REDOUBLE.

The side that bids the highest gets the contract, after which one designated opponent has to start 

play by leading a card. The next player puts down her cards face up and is known as dummy. She does 

not play any more role in the proceedings and her partner, known as declarer, decides what cards the 

dummy will play. Thirteen tricks are played out after that, the winner of each trick starting the next 

trick. The objective of the declarer is to fulfil the contract and perhaps win more tricks, and objective of 

the other side, known as defenders, is to prevent her from doing so. The degree to which they succeed 

in their objectives determines their score on that deal. In tournament play, this score is compared with 

the other players on the same deal, and that decides the winners and the losers in a bridge event. It is 

not the side which Lady Luck favours with good cards, and consequently achievable good contracts.

The Auction

The first phase of a Bridge deal is the auction. The auction is a sequence of bids by players in a clockwise 

order, according to the rules described above. It starts with the player who has dealt the cards and ends 

when three players pass in succession. The contract becomes the last bid from the set BIDS in the auction, 

with the declarer being the first player in that side who named that suit (or no trumps). 

Ostensibly, the meaning of each bid is that the player is bidding for a certain contract. However, the 

auction in a typical game is not so straightforward. This is because, a player can only bid by looking 

at her cards, but is bidding for the side which includes her partner as well. It is the combined tricks 

won by the side that go towards fulfilling the contract. It would help tremendously if a player knew her 

partner’s, and opponents’ cards, but that is not the case. Since it is only the last bid from the set BIDS 

that finally determines the contract, the earlier bids need not be used to simply compete for a contract. 

This is specially so because there is a premium on bidding certain high contracts, known as games and 

slams, and players would like to bid them when the combined strength of the cards permits it. Therefore, 

most teams devise bidding systems, which define an alternate semantics of bids apart from the legal one 

binding for a contract. Thus, usually while on the surface, a bid is a bid for a particular contract, it usually 

carries some encoded information17 meant for the partner about her hand. And this is not something 

nefarious but within the rules of the game, and the bidding system has to be revealed to the opponent. 

A linguistic approach to model bidding has been explored in (Jamroga, 1999, 2000).

16  Actually, the number in the bid is six less than the number of tricks bid for. The lowest bid is 1, for seven tricks, and the 

highest 7, for thirteen tricks.
17  Many a hilarious incident has occurred on the bridge table because the partner has forgotten the encoded meaning and taken 

the bid at face value. 
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Bidding then is not merely making a bid for a contract. It involves other things as well. The primary 

task is to communicate information between partners to try and know enough to bid for the right contract. 

For this to be done, bidding systems encode information, typically about the number of cards in a suit 

or information about high cards, for the players to judge the right contract. But when communication is 

taking place, the opponents are there eavesdropping as well. They can also make use of the information 

being exchanged. This may motivate a process of deception, when a player intentionally conveys false 

information to mislead them. Bidding systems are often sophisticated enough to allow one player to ask 

the partner for some specific information. The players need to manage the resource of the bidding space 

available to exchange as much information as possible. The opponents may pitch in with nuisance bids, 

known as preemptive bids, to gobble some bidding space.

The process of bidding then is the process of encoding and deciphering information in bids, often 

in the face of resource constraints and interference from opponents. A player has to make interferences 

and imagine the most likely hands that a partner, and opponents, can have and arrive at an estimate of 

the best contract.

Finally, the success of bidding is not known after the auction is over. It is only reflected in the final 

score that the side gets after the play phase is over. For this reason, bidding is considered the hardest 

part of the game, and is usually a discriminating factor between novices and experts.

The main tasks in bidding are the following:
 ● Interpreting the meaning of bids of other people and constructing some representation of their 

card holdings. Note that this representation can only be an approximate one.
 ● Using the information inferred about the holding of other players, either making bids conveying 

more information, or asking for more information, or deciding the contract to be played.
 ● Making interference bids designed to try and disrupt opponents’ communication. Note that one 

must be careful not to be saddled with a bid that has a high penalty for being unfulfilled during play.

Most known bidding implementations use rule based approaches. A few sample rules are illustrated 

below.

Rule: Feature rule Balanced-hand

IF

 If no suit has less than two cards

 If no suit has more than four cards

THEN

 The shape of the hand is balanced

Rule: Bid rule open-1-N

IF

 The shape of the hand is balanced

 The hand count is between 15 and 17

 No one has bid so far

 It is the player’s turn to bid

THEN

 Make a 1 no trump bid

Rule: Bid rule open-1-Major

IF

 It is the player’s turn to bid

 No one has bid so far

 The hand count is between 12 and 21
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 Number of cards in major (spades or hearts) is five or more

 Major is the longest suit

THEN

 Make 1 spade or 1 heart (as the case may be) bid.

Declarer Play

During the play phase, there are three players involved. The declarer plays her cards as well as the 

dummy’s cards. The two defenders play their own cards. Each of the three can see two sets of cards—

their own and the one in the dummy. The difference in nature of their tasks arises because the declarer 

can (1) see the complete set of cards for her side, and (2) is the only one to make decisions about what 

cards to play based on this information. Each of the defenders, on the other hand, has to play one set of 

cards without information about what their partner might hold. They can see the dummy’s cards, but that 

does not give them enough information to plan the hand. The defender’s task is generally considered 

to be more difficult. We take a brief look at declarer play, since not enough progress has been made in 

Bridge programming to discuss the complete game. Also, while Computer Bridge has been popular for 

a while, and there have been regular Computer Bridge championships, many of the programs like Jack18 

and BridgeBaron19 are shrouded in commercial secrecy and are not available for study. Furthermore, 

the level of the computer programs is still not comparable to Chess vis-à-vis the human champions, and 

there seems to be still considerable scope for new ideas here.

On the face of it, the task of declarer play is like that of play in Chess, the declarer and two opponents 

selecting moves alternately. The major difference is in the fact that the declarer cannot see the cards each 

opponent holds. A direct consequence of this is that the game tree cannot be generated, and, therefore, 

algorithms based on Minimax search cannot be used.

One interesting approach to solve the declarer play problem is to adopt a Monte Carlo method. This 

approach was used in implementing the GIB program (Ginsberg, 1999, 2001). The main idea behind 

this approach is that if you knew the opponents’ cards then the problem would become a complete-

information game problem, known in bridge parlance as a double-dummy problem. A double-dummy 

bridge problem is still a difficult one to solve, generating a tree of about 1021 nodes (Khemani and 

Ramakrishna, 1989). But one could tackle it by using a heuristic approach in which not all moves are 

generated at each step, but only a few likely ones. The key idea behind the Monte Carlo is to generate 

a number of different hands for the opponents, and solve them using a double-dummy approach, and 

select the strategy that works in most of the generated hands. Furthermore, one could use the inferences 

from bidding to generate the hands that are consistent with the bidding to improve the results.

A second approach would be to treat the problem as a planning problem, and use as operators the high 

level combination plays that work under some conditions. An example is one of the simplest combination 

plays known as the finesse, which in one of its forms works as follows.

One pattern of finesse is applicable when the declarer has the Queen and the Jack in one hand, and 

an Ace and a small card in the other hand as shown below,

  North: A 2

 LHO  RHO

  South: Q J

18 http://www.jackbridge.com/eindex.htm
19 http://www.bridgebaron.com/home.shtml
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South can plan for two tricks by using the following combination play. Start play from the South 

hand with the Queen. If the Left-Hand Opponent (LHO) plays the King then play the Ace from the North 

hand, and win the next trick with the Jack. If LHO plays the small card, play the 2 from the North hand 

and hope that the RHO does not have the King. If that is the case, the trick will be won with the Queen. 

The next trick is won by the Ace.

In this manner, a finesse can be used to get two tricks in a situation when the second highest card 

is with the opponent. The finesse is a conditional plan that will succeed if the King is with the LHO 

and fail if the King is with the RHO. In the absence of any other inferences, the probability of the King 

being with the LHO is fifty percent, and therefore the probability of the plan succeeding is fifty percent. 

Employing knowledge of such combination plays, a planner can assemble different plans, and choose 

the one which has the highest probability of success. This was the approach used in (Khemani, 1989), 

and some of rules used in the implementation have been discussed in Chapter 6.

Such probability calculations figure prominently in bridge analysis, and the bridge literature too is 

replete with Bridge proverbs like in the world of Go. One of the proverbs says for example “eight ever, 

nine never”, which says that if the declarer has eight cards in a suit between the two hands, missing the 

Queen, she should always finesse against the Queen; but if the declarer has nine cards then she should 

never finesse. This is merely an easy way of remembering how the probabilities lie in the two situations. 

A declarer play program on the lines described above is essentially a kind of hill climbing approach in 

which the algorithm refines the most likely plan. It stores a list of assumptions needed for the plan to 

succeed, and if during play one of the assumptions were to be falsified, the program would need to plan 

again from that point onward.

Other later work is on similar lines, but more refined. The declarer play in the program Tignum 2 

(Smith et al., 1996) was an application of the Hierarchical Task Network (see Chapter 7) planning 

approaches developed by Dana Nau and his group. Figure 8.39 below depicts the task network for a 

finesse in Tignum 2. The position being planned for is when the south hand holds the king and jack of 

spades and hopes to gain an extra trick when East has the queen. The Tignum 2 program is at the heart 

of the commercially available BridgeBaron20 program.

Another interesting, and a much more complete treatment on bridge play is described in the doctoral 

thesis by Ian Frank (1998) that explored the relation between partial plans and proof planning. Their 

approach is motivated from the area of mathematical reasoning combined with explicit probabilistic 

reasoning with card combination. The details are beyond the scope of this book, and the interested reader 

is referred to the published work. As of writing this text, the champion program21 in the tournament 

circuit is called Jack22, but the author has no information on its working.

8.4.2 Scrabble

Scrabble23 is a popular board game in which two or four players place letter tiles on a 15 by 15 

board to form words according to rules similar to crossword rules. The game is played with a bag of  

100 tiles, 98 of which are labelled with letters from the alphabet, along with a number between 0 and 

10 representing the points associated with that letter. The other two tiles are blank and may represent 

any letter the player playing it chooses. Each player holds a rack of seven tiles drawn randomly from 

the bag of tiles, and these are hidden from the other player(s). The players play alternately, placing 

20 http://www.bridgebaron.com/home.shtml
21 http://www.ny-bridge.com/allevy/computerbridge/results2007.html
22 http://www.jackbridge.com/eindex.htm
23 Scrabble refers to the SCRABBLE® brand word game, a registered trademark of Milton Bradley, a division of Hasbro, Inc.
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tiles on the board to form legal words as defined by some dictionary; for example the Official Scrabble 

Player’s Dictionary (OSPD) published (Merriam-Webster, 2005), and replace the played tiles with new 

ones randomly chosen from the bag. Each new word formed should be meaningfully connected to the 

existing words, either extending one, or cross-linking with one, as in crosswords. At no time must there 

exist a sequence of letters not part of a word. After each move, the player gets a score which is the sum 

of the scores of the words formed by the player in that move. This score may be augmented when the 

tiles are placed on specially marked squares, known as hotspots, on the board. The marked square may 

double or triple of either the tile points or the entire word score. In addition, if a player uses up all the 

seven tiles on her rack, she gets a bonus of fifty points. This play is also known as a bingo. The game 

ends when there are no tiles in the bag, and either one player has finished her tiles, or no player can make 

a move. At the end of the game, each player’s score is reduced by the sum of the points of their tiles left 

in the rack. In addition, if one player has finished all tiles, she gets the points of the tiles remaining on 

the other players’ rack. The winner of the game is the player who scores the most points.

FIGURE 8.39 The portion of a task network for Tignum 2 adapted from (Ghallab et al., 2004) for a 

‘finesse’ tactic in bridge. The strategy has the structure of an And-Or tree, where the And arcs point 

to the four cards played in that trick, and the Or arcs to the different opponent responses. The thick 

dotted arrows depict the sequence of plays. Observe the different notation. The opponent moves are 

represented in oval nodes, as opposed to states in which the opponent is to move.

Finesse(P, S)

Finesse(P, S)

North: Play ™2

North: Play ™2

East: Play ™3

LeadLow(P, S)

Easy Finesse (P, S) BustedFinesse (P, S) StandardFinesse (P, S)

West: Play ™5

West: Play ™Q

East: Play ™3

East: Play ©3

StandardFinesse(P, S) Two

StandardFinesse(P, S) Four

StandardFinesse(P, S) Three
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Tournament Scrabble is played between two players, and we restrict our attention to the two player 

version. In the initial stages, the game is an incomplete information game because a player does not 

know what letters the opponent has in her rack, and, therefore, cannot predict the moves of the opponent. 

Further, since one cannot predict what new tiles one will draw from the bag, even your own moves at the 

third ply cannot be generated. Hence, the traditional methods based on the Minimax algorithm cannot 

be used. Moreover, a typical Scrabble position has about 700 possible moves (Sheppard, 2002), which 

may go up to 8000 if the player holds two blanks. Therefore, searching the game tree would anyway 

be difficult. In the end of the game, when the bag becomes empty, the game reduces to a complete 

information game and traditional methods can be used.

Obviously, performance in Scrabble is critically dependent of the vocabulary of the player. The 

more words a player knows, the more the possibility of making high scoring words on the board. In 

this respect, a computer program has a distinct advantage, since the entire dictionary can be stored. 

The OSPD contains 95,000 words, and this is considerably more than the number of words humans 

typically have access to. Apart from the knowledge of words, there is also a combinatorial and tactical 

aspect to the game. Placing high point letters on hotspots yield more points. The letters left behind on the 

rack, known as rack leave, also have a bearing on the future scores of the players. In all these aspects, 

the computational power of a machine can be harnessed profitably, and it is no surprise that the best 

Scrabble players are computers. A brief history of early Scrabble playing programs can be found in 

(Appel and Jacobson, 1988). A program named Maven24 developed by Brian Sheppard (2002) has long 

been the reigning champion. More recent work on modelling the opponent and guessing the tiles on her 

rack (Richards and Amir, 2007) has taken computer Scrabble performance even further. While Maven 

is now a commercial program, the program by Richards and Amir, Inference Player, was developed on 

top of a freely available open-source program25 called Quackle (Katz-Brown and O’Laughlin, 2006). 

Richards’ program makes inferences about the tiles left on the opponent’s rack after their move. It infers 

that any letters that could have been used for high scoring words are not on the rack, because otherwise 

they could have been used. A similar inference, known as the principle of restricted choice, is made by 

bridge players about cards not played by an opponent.

We look at some of the techniques for implementing Scrabble as described by Sheppard (2002).

The Dictionary and Move Generation

In principle, the dictionary is a list of words. But searching a list of 95,000 words for legal words dur-

ing each move is no mean task. One way to address this problem is to organise the words in a trie data 

structure. At every node, the children branch on the different possible letters to extend a partial word. 

For the English language, the root node will have 26 children, one each for words starting with the 26 

letters of English. Nodes lower down in the tree structure would have fewer nodes. The node after the 

letter ‘Q’, for example, will have only one branch for the letter ‘U’, since in every word the letter is 

followed by the letter ‘U’. If one combines the common suffixes of different words then the resulting 

network is a discrimination network known as Directed Acyclic Word Graph (DAWG), and is a compact 

searchable structure containing the words in the dictionary (Aho et al., 1974). Figure 8.40 shows an 

example DAWG for a small collection of words.

Move generation for the game involves the following. The player must either identify whole words 

that can be placed on the board in such a way that it is connected to the existing words, or must identify 

a part of a word from her letters, such that the remaining letters are in place on the board already. In 

24 A word of Yiddish origin defined as “expert” with a connotation of “know-it-all” 
25 Quackle is available at http://web.mit.edu/jasonkb/www/quackle/
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both cases, one must ensure that the move does not result in any sequence of letters on the board that is 

not a legal word. Move generation is thus a critical part of a Scrabble program.

Appel and Jacobson (1988) use the DAWG structure to implement a fast move generator. Their 

algorithm first scans the current board looking for places where a word might be formed connecting to 

existing letters. Then it attempts to build words using letters on the rack and the letters near the chosen 

spot. Before searching for words, the program computes a cross-check for every existing word. If the 

program is searching for horizontal words then it precomputes what letters are feasible in the squares 

above and below an existing down word. For example, as shown in Figure 8.41, if a horizontal word is 

to be placed occupying one of the squares marked ‘?’ then one could use a ‘P’ on the upper square or 

an ‘R’ in the lower one while making the new word. The set of allowable letters can be represented as a 

FIGURE 8.40 A sample trie data structure for the set of words in the box on the right. The darker 

nodes represent legal words.
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26-bit vector, with one bit for each letter in the alphabet. Changes in 

these values will be few during each move of the game. In addition, 

the program precomputes anchor squares on the board where a move 

may be made. Anchor squares are empty squares next to existing 

letters where a word may be made. Note that squares marked ‘?’ in 

the figure are also anchor squares.

As described in (Appel and Jacobson, 1988): “The move 

generation problem is thus reduced to the following one-dimensional 

problem: given a rack of tiles, the contents of a row on the board, 

and the cross-checks and anchors for the row generate all legal 

plays in that row.”

Each word is generated in two phases. In the first phase, the left 

part of the word is generated. The left part is the part of the word that 

is to the left of the anchor. Observe that the left part of a word can 

be empty, for example when a word begins in the square marked ‘?’ 

in Figure 8.41. It is also possible that the left part may already exist 

on the board, for example for the blank square in the above figure. 

Again, one might note that the left part could be longer than one 

letter in this case. After this phase, either the left part of the word 

exists, or if it is empty, a constraint on the anchor letter exists in the 

form of the cross-check constraint. Thus, the right part of the word 

is generated as a constrained extension of the left part. The genera-

tion algorithm of Appel and Jacobson essentially tries out all feasible combinations of words that can 

be generated in the two-phase manner described above. The other constraints on the words generated 

are the constituent letters must be available, either on the board in the left part, or in the rack held by 

the player. In addition, the trial and error is not brute force. It is constrained to the paths available in the 

DAWG. Only meaningful letter permutations need be explored. For example, if the generator is explor-

ing the anchor next to the letter ‘T’ in the above figure, only paths starting with letter ‘T’ are explored 

in the DAWG, and only those paths are explored for which the player has the letters in the rack. The 

detailed algorithm and issues are available in the paper. The algorithm was very successful and was also 

incorporated into many other Scrabble programs, including Maven. The DAWG is conceptually similar 

to the Rete net we studied in Chapter 6, in the sense that only desired matches are done. A word is like 

the left-hand side of a rule. In this case, it also behaves like a finite state machine whose accepting states 

are nodes ending in meaningful words.

One problem with the above algorithm is that it constructs words from left to right. In Scrabble, 

however, one needs to hook a new word from any of its letters that satisfies the cross-check constraints 

shown in the above figure on the square marked ‘?’. For example, if a player has the letter ‘R’ then she 

could think of a horizontal word below ‘LATE’ extending it to ‘LATER’. The only constraint on the new 

word is that it should have an ‘R’ in it. Appel and Jacobson’s algorithm is forced to try all combinations 

of words from left to right, because the DAWG is organised in this fashion.

In a new algorithm (Gordon, 1994), the DAWG structure is replaced by another structure called 

GADDAG, which is bidirectional in nature26. Unlike the DAWG, which allows one to search only from 

the first letter, the GADDAG allows one to search in both directions from a letter anywhere in the word. 

26 … and perhaps derives its name from this property.
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The size of the GADDAG is reported to be about fives times the DAWG, but it generates words twice 

as fast. In a world of expanding computer memories, this is perhaps a good trade-off, specially if time 

is going to be of essence, as it is in a tournament. We will not discuss the details here, but the interested 

reader is referred to the paper by Gordon.

Play

The game is characterized by the following properties,
 ● The branching factor is high, ranging from 700 without blank tiles, to as high as 8000 when a 

player holds two blanks (Sheppard, 2002).
 ● The opponent moves cannot be generated since the opponent’s rack is hidden. This feature of 

incomplete information is similar to the one in card games like bridge. As a consequence, the 

second ply cannot be generated.
 ● Even the player’s next move cannot be generated. This is because (1) the opponent’s move is 

not known, and (2) because the tiles that will be drawn by the player are not known. The second 

feature is different from games like Bridge.

Maven divides the game into three parts, each of which it treats differently.

The first part is the initial game or the normal game, governed by the above properties. Maven 

plays this phase using a one-ply search. That is, it generates all moves and chooses the best looking 

one. Everything thus depends upon the evaluation function. The evaluation function has the following 

components.

Rack Leave A very important feature is the tiles left behind on the rack, known as the rack leave. 

Obviously some letters, for example ‘E’ and ‘T’ are easy to use because they occur in many words, 

while letters like ‘Q’ and ‘Z’ are more difficult to use. The rack leave has an impact on the score in 

future moves, and players would not like to leave bad combinations of letters. Thus, they have to trade 

off current score versus future score. Maven used games played against itself to learn this part of the 

evaluation function (see Chapter 18 on Machine Learning). It tracks individual tiles and combinations of 

tiles like duplicated letters, and vowel–consonant combinations. It learned values for these parameters, 

by completing games with different rack leaves, and recording the future score associated with each 

combination. The future score is the difference in the score of the side to move and the opponent over 

the rest of the game. It collected these scores over a set of games, and used these to tune the values 

associated with the letter combinations in the rack leave.

Current Score The points scored by the current move obviously contribute to the final score. Thus, 

this is a direct measure of the goodness of a move.

Board Position Surprisingly, the board position does not contribute much to the evaluation function. 

This is contrary to the opinion of experts that giving openings to the opponents is not a good idea, 

and one should be willing to sacrifice a few points to avoid opening up the board for opponents. 

Experiments reported with Maven reveal the opposite; that board position does not contribute to the 

evaluation function. Intuitively, one can understand this by observing that the board in Scrabble is 

fundamentally different from the board in other games. It is the same for both sides! In games like Chess, 

Go, Backgammon and Checkers, the two players have their own coins, and thus the arrangements of the 

coins are a reflection of the status of the game. In Scrabble, on the other hand, the coins are not owned 

by any one player, and can be used in future moves by both. In that sense, an open board is equally good 

for both. That only leaves the question of the immediate move advantage. Experiments with Maven 

reveal that this is negligible, except in the case of triple-word openings. This is when an opponent can 
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gain a significant advantage. There too, the value of the opening depends upon the state of a game. For 

example, playing a ‘Q’ near the triple-word hotspot may not yield value in most positions, specially in 

the end game. Maven has a table of values of letter combinations near triple-word that it uses to evaluate 

the cost of giving such an opening.

Simulation Even though one cannot generate the game tree, one can generate a plausible game tree 

by assuming some tiles for the opponent and for the draw, and compute the score at the end of some 

amount of look-ahead. If this is done a sufficient number of times then one can choose a move which on 

the average yields better results. Such a Monte Carlo approach was also used in Bridge in the program 

GIB which generated plausible hands for opponents and played out complete information games 

(Ginsberg, 1999). It was also used successfully in the game of Backgammon described below, where it 

was called a rollout. This approach becomes more feasible in the second phase described below.

The second phase, or the pre-endgame stage (Sheppard, 2002), begins when there are 16 unseen tiles, 

7 on the opponents rack and the rest in the bag. In this stage, some look-ahead can be done based on 

some educated guesses about what the opponent holds, and some informed fishing27 for some desired 

letters. This is where the program Inference Player (Richards and Amir, 2007) would gain advantage 

over programs that have no idea about what tiles are in the bag and which ones on the opponent’s rack.

The third stage, the end game proper, begins when the bag is empty. At this stage, both players 

know what tiles the other player has, and the game turns into a complete information board game. The 

branching factor is still high, and Maven resorts to the B* algorithm (Berliner, 1979) that does selective 

search over a game tree.

8.4.3 Backgammon

One of the earliest game playing programs to make an impact at the highest level was the game of 

Backgammon (Berliner, 1980). It was a time when Chess programs were making progress, but were not 

quite at the level of human champions. Of course, Samuel’s checkers playing program (Samuel, 1959) 

had made an impact earlier, by demonstrating that a program could learn and play better and better. 

Subsequently, a program named Chinook (Schaeffer et al., 1992) (Schaeffer, 1997) did become the world 

champion28 in 1994. But Checkers does not evoke so much passion as do some of the other games we 

have been discussing. Furthermore, the authors of Chinook have announced (Chang, 2007) that the 

program cannot be beaten. Like the children’s game of Noughts and Crosses, the game of Checkers is 

also now solved. Curiously, Samuel’s Checkers program and the reigning Backgammon programs share 

the same methodology of learning from playing against themselves.

Backgammon is amongst the oldest known games, reputedly being played a thousand years before 

Chess (Tesauro, 1995). Certainly, a similar game called Chausar29 has been described in ancient Indian 

literature (Handelman, 1997). A particular incident of the game from the Indian epic Mahabharata 

(traditionally ascribed to the sage Vyasa; many translations are available) is ingrained in the Indian 

psyche because it involved the gambling away of everything 30, eventually leading to the epic battle.

27  “FISHING—Generally it’s a bad idea to play 1 or 2 letters in the hope of picking up a specific letter to make a great play. The 

most common letter in Scrabble is E; there are 12 E’s in the set out of a total of 100. This means on average, you only have 

a 1 in 8 chance of picking an E and that the chances of picking any other specific letters are lower. Near the end of the game, 

however, fishing becomes more viable. Obviously, you won’t know precisely what letters your opponent holds. But you can 

see what letters have been played and take an educated guess at what’s left in the bag.”—http://www.mattelscrabble.com/en/

adults/tips/tip5.html
28 http://www.cs.ualberta.ca/events/csdays/1999/openhouse/chinook.html
29 Also called Pachisi, it was popular in the Mughal courts of India. http://www.tradgames.org.uk/games/Pachisi.htm
30 Including himself, his brothers and his wife.
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Modern Backgammon is played on a board of 24 locations called points31 on which two players start 

with 15 checkers (or pieces) as shown in Figure 8.42. The 24 points are partitioned into four quadrants 

as shown in the figure. The objective of the game is to bring one’s checkers to one’s home quadrant, 

and then move, or bear, them off the board. The moves are dictated by a pair of dice. For example, 

the dice in the figure show 4 and 1, and this means that the player can move one checker 4 steps and 

another, possibly the same one, 1 step. Every move can only be made to an open point that contains 

one or zero opponent checkers. If a player rolls double (same number on both dice) then the player 

gets four (double) moves. The players move in opposite directions from a symmetric starting position, 

and the first one to bear all checkers off, is the winner. In addition, if the losing player has all checkers 

on board, the winner wins a gammon. If the loser has a checker in the winner’s home or on the bar 

(see figure) then she loses a Backgammon. The players may also raise the stake by using a doubling 

dice that is labelled with the numbers 2, 4, 8, 16, 32 and 64.

1  2  3  4  5  6  7  8  9  10  11  12  

2423  22  21  20  19  18  17  16  15  14  13  

Black’s home

White’s home  

Outer board

Outer board  

Bar  

FIGURE 8.42 The initial position in Backgammon. The numbers are shown for Black. The objective 

is to bring your pieces to your home, and then “bear” them off the board. The moves are decided by a 

pair of dice.

Thus basically, the game is a race between two players, running in opposite directions on the same 

track. The speed of the two players is determined by the throw of the dice. The game gets its complexity 

from the interaction between the checkers of the two players. For one, a player cannot place her checker 

31 Rules of Backgammon © 1996-2007 by Tom Keith, http://www.bkgm.com/rules.html
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on a point occupied by two or more of the opponent’s checkers. As a corollary, players can aim to block 

the opponent by occupying crucial points with two or more checkers. Secondly, a checker can be played 

on a point that has one checker of the opponent (known as a blot). In doing so, the resident checker is 

hit, and has to move to the bar (shown in the figure) and try and get back on the board again.

A preliminary throw of a single dice decides who plays first. After that, the players play alternately 

until one of them has moved all the checkers off the board. The decision making task of the player is, 

given the throw of a pair of dice, to choose from the set of moves allowed by the throw. One can think of 

the dice throw as randomly pruning the branching factor at each level, keeping only moves determined 

by the outcome of the throw.

Traditional minimax based techniques cannot be used because one does not know the outcome of 

the throw by the opponent. Searching through all possibilities is also not feasible because there are 21 

different outcomes of a throw of two dice, and each outcome typically allows around 20 moves. So the 

branching factor would be about 400, much larger than the game of Chess, and more like the branching 

factor in the game of Go. Not surprisingly, the techniques of Backgammon also rely heavily on evaluation.

Two of the most successful Backgammon programs written by Gerald Tesauro illustrate two very 

different methods of learning the evaluation function.

The first program called Neurogammon (Tesauro and Sejnowski, 1989) used a feed-forward 

neural network (see Figure 4.20) to learn the mapping between board positions and moves. Its input 

representation included both the raw board information (number of checkers at each location), as well 

as a few handcrafted “features” that encoded important expert concepts, plus a final position after the 

move. The output was a value of the move in the range [–100, 100]. The program was trained by using 

the Backpropagation algorithm (Werber, 1994) on a set of recorded expert games. This is an example of 

supervised learning, in which the system is shown a set of desired values by an expert, and essentially 

learns a nonlinear function approximation representing the mapping between the input output pairs. 

Neurogammon was very successful and won the Backgammon championship at the 1989 International 

Computer Olympiad quite easily (Tesauro, 1989).

The second, and much better, program by Tesauro (1994, 1995, 2002), called TD-Gammon, learnt 

the evaluation function in an entirely different manner. While Neurogammon got its knowledge by being 

taught by experts, TD-Gammon learnt the principles of Backgammon strategy by itself, playing 300, 

000 games against itself and learning the good moves, or afterstates, as they are known in the research 

field of reinforcement learning (Sutton and Barto, 1998).

The specific form of learning that the program did is called Temporal Difference (TD) learning, and 

hence its name. TD learning addresses the problem of credit assignment to moves when the reward is 

only available at the end of a sequence of actions. When a player plays a game, the result is known only 

when the game ends. The task is to decide which of the moves contributed by how much to the result. 

The algorithm used in TD-Gammon is the algorithm known as TD(lambda) (Sutton, 1988). The training, 

as described in (Tesauro, 1994), is as follows.

The complete set of moves played by the program is fed to the feed-forward neural network. The 

board positions are the input vectors x[1], x[2] … x[f] to the network. For each input pattern x[t], there 

is a neural network output vector Y[t] indicating the neural network’s estimate of expected outcome for 

pattern x[t]. Y[t] is a four-component vector corresponding to the four possible outcomes of either White 

or Black, winning either a normal win or a gammon. At each time step, the TD(lambda) algorithm is 

applied to change the network weights, using the following formula,

 wt+1 – wt = a (Yt+1 – Yt) S
t
k = 1 l

t–k —wYk
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where a is a small constant, commonly thought of as a “learning rate” parameter, ‘w’ is the vector 

of weights that parameterizes the network, and —wYk is the gradient of network output with respect 

to weights. The equation computes the weight change for a single output unit. For multiple units, 

the computation is repeated. The quantity l is a heuristic that controls the degree of temporal credit 

assignment. When l = 1 then the feedback goes arbitrarily back in time. That is, it affects the weights 

of all preceding moves. At the other extreme, when l = 0, the no preceding moves are affected. With 

different values in between, one can control the extent to which the weights are affected. Tesauro used 

a value of 0.7 initially, but later used the value 0 since the performance was similar but much faster 

(Tesauro, 2002).

The first version of the program used only a raw representation of the board. A total of 198 input 

nodes represented the position of the checkers, at each point and on the bar, and the number borne off 

the board, and whose turn it is to move. It did not have any knowledge of Backgammon encoded by an 

expert. With 40 internal nodes and 200,000 training games, it was able to compete successfully against 

Neurogammon!

In the second version of TD-Gammon 1.0, Tesauro combined the knowledge intensive handcrafted 

features of Neurogammon with the unsupervised TD learning, and found that the program was a much 

better player. It was trained over 300,000 games. Next, in TD-Gammon 2.0, a selective two-ply search 

was introduced. The second ply search was done only on a subset of (good) successors at the one-ply 

level, determined by applying the evaluation function. Then in the second ply, a 1-ply move decision 

is made for each of the 21 possible dice rolls for the opponent, and the probability weighted average 

(weighting nondoubles, twice as much as doubles) of the resulting states is computed. The two-ply 

search process is illustrated in Figure 8.43 below.

●●●

●●●

1 2
2121 dice rolls Probability

Weighted
Average

best
state

Pruned state

FIGURE 8.43 The two-ply search in TD-Gammon 2.0. At one ply, some of the states are pruned. 

Then for each of the remaining states, the best move for each dice throw is picked by the second ply 

search. The values of the best states are averaged based on probability. The figure shows the process 

for one selected node at the first ply.
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TD-Gammon 2.0 and TD-Gammon 2.1 were trained over 300,000 and 1,500,000 self-games 

respectively and were comparable in performance to the best human players in 1992 (Robertie, 1992). 

TD-Gammon 3.0 had a three-ply search done as follows. The first ply was done as in the two-ply search, 

but at the next level, another 2-ply search was done. For each of the ‘best move’ selected in the second 

ply, a further 21 dice rolls were done and the weighted average computed in a similar manner. Thus, 

each value at the first ply level was backed up from 441 nodes. TD-Gammon 3.0 had 160 hidden units 

and was trained for over 6 million self-play games (Tesauro, 2002), and averaged 10–12 seconds per 

move decision in 1998, running on a 400 MHz Pentium-II processor.

Evaluating Backgammon games is not easy because whether a move turns out to be good or not 

may be dependent on future dice throws. Such a problem also occurs in Scrabble32 because the future 

score may depend upon the letters drawn from the bag. And playing a large number of games against 

humans for evaluation is not feasible. TD-Gammon introduced a different way of evaluating moves. 

That is the technique of rollout. A rollout is basically playing many game continuations from a given 

position, each time using randomly generated dice throws. The rollout score of a move is the average 

score obtained by the continuations commencing with that move. The move with the highest rollout score 

is judged to be the best move. And because the computer can play a very large number of games, the 

results have proven to be reliable; so much so that computer rollouts have become the standard method 

of evaluating Backgammon moves (Woolsey, 2000; Montgomery, 2000). Tesauro has suggested that 

with increasing computing power, one will be able to use the Monte Carlo rollout methods to produce 

much better programs. This approach also forms the basis of one of the successful Bridge playing 

programs (Ginsberg, 1999, 2001) and in the end game in Scrabble (Sheppard, 2002). Sheppard did try 

and use TD learning for the entire game of Scrabble but without success. He suggests that the algorithm 

works with spectacular results in Backgammon because the dice throws produce a sufficient number 

of states to cover the entire space; while in the case of Scrabble, the approach gets caught in local 

optima.

The two approaches used in Neurogammon and TD-Gammon are both learning systems in which 

neural networks are trained to evaluate positions. But they differ widely in the source of learning. 

Neurogammon learnt from moves made by experts and as a consequence its knowledge was a reflection 

of the experts’ knowledge. TD-Gammon, on the other hand, started from scratch and learned by playing 

a large number of games against itself, rewarding moves that led to winning positions. It quickly 

developed the basic concepts in the game, and went on to become a champion level player. Its learning 

was unsupervised in contrast to the supervised learning of Neurogammon. In the process, a curious thing 

happened. Many of the notions that human experts held were proven to be wrong, eventually leading 

to modification of the expert knowledge itself. An example given in (Tesauro, 1994) illustrates such 

a change. In the opening position, if Black was to roll 4–1 then the expert opinion was to play [13–9, 

6–5]33 but was changed to [13–9, 24–23] after TD-Gammon preferred it, and was subsequently validated 

by rollout. In his way, TD-Gammon has altered the way in which human experts evaluate positions!

8.5 Beyond Search

There are some games that can be analysed in advance completely. Consider, for example, the game, 

which we will call Pic123, where there are a number of coins (or sticks) on the board, and a player 

can pick up one, or two, or three coins at a time. The last one to pick a coin, and clear the board, is the 

32 The problem is circumvented in bridge to a large extent because performance is evaluated against other players on the same deal. 
33 Move the checker at 13 to position 9, and the one at 6 to 5.
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loser. Obviously, a state with only one coin is unsafe because the player has to pick that coin, and clear 

the board. One can see that if there are two or three or four coins on the board, a player, say MAX, is 

“safe”. MAX can pick up an appropriate number leaving only one coin on the board, which then MIN is 

forced to pick. Working backwards, one can see that if MIN is looking at five coins then whatever MIN 

does results in a safe state (2, 3 or 4 coins) for MAX. So a state with five coins is also unsafe, provided 

MAX plays perfectly. We can extend this argument and see that the states can be categorized as follows.

If a state has (1 + 4n) coins, it is unsafe, where n is a natural number.

Else, the state is safe.

The only thing that one needs to do to win this game is to ensure that the opponent is an unsafe 

state. Then whatever the opponent does, one can put her back in an unsafe state, as shown in Figure 

8.44 below. Observe that the graph in the figure is a strategy, containing one move for MAX and all for 

MIN. And this strategy is a winning strategy. Of course, if the opponent has also done this analysis then 

the starting board position completely decides the outcome, without having to search the consequent 

game tree. One only needs to count the coins on the board, and the game is no longer of any interest. 

Observe, that with a large number like 400, the game tree would have a depth of 400 moves with an 

average depth being about 200 moves. With a branching factor of three, this is quite a big tree. But faced 

with the knowledge gleaned from the above analysis, the game can simply be played in constant time!

The kind of analysis done for above is not only restricted to games like Pic123. Even in other board 

games, one can analyse positions in advance and prepare a generalised strategy that can be executed 

without going through search. This is, in fact, done in games like Chess as a matter of routine, but only 

for certain end positions. For example, most players quickly learn how to mate the opponent’s king with 

a rook and a king, with two rooks, with a queen and a king, with two bishops, etc. The game subtree 

below these positions may be quite large, but seasoned players tend to treat such positions as terminal 

nodes, just like we did in the Pic123 game above.

This means that playing the game is no longer just using search to look ahead, but also collecting and 

applying a set of specialized methods for specific situations which have to be recognized by some kind of 

pattern recognition process. This involves more sophisticated knowledge representation and processing 

techniques. Because search methods are general in nature and do not require special treatments for special 

situations, they may perform poorly in situations where specialized knowledge would solve the problem 

quickly. This is the case, for example, when a Chess player uses triangulation to achieve Zugzwang, 

or uses a special procedure to mate the opponent’s king with two bishops, or a Go master employs a 

Yose in the end game. While such specialized procedures work very well when they are applicable, and 

recognizing their applicability is a task in itself, they work only in those situations. Knowledge based 

methods thus may suffer from a problem of incompleteness, in the sense that they may not have a 

solution in all situations. One of the key open problems in artificial intelligence is to devise integrated 

representations that can be used by both kinds of methods, and implement hybrid multipronged problem 

solvers that may choose an appropriate procedure in different situations.

8.6 Discussion

Games have always fascinated us. They have been means of recreation and have been considered a 

hallmark of intelligence. They provide us a means to pit our wits against others and have been the 

training ground for learning strategy and analysis. Because they are by nature symbolic or digital board 
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games can be implemented on computers without any loss by abstraction. Furthermore, since rules and 

outcomes are well defined, the result of combat can be evaluated precisely.

Games like Chess, Checkers and Go are the simplest conceptually. But their complexity is still 

high enough to bar complete analysis and bring in the role of judgment in the form of evaluation. A 

complete analysis of Checkers was done in 2007 though. “Perfect play by both sides leads to a draw.” 

(Schaeffer, 2007). A combination of evaluation and look-ahead has been good enough to implement 

programs to best human champions in Checkers and Chess, but Go is still beyond the pale of these 

techniques. These games have demonstrated the limits of search, even in these small finite worlds.

1 + 4n

2+4n

3+4n

4+4n

5+4n = 1+4(n+1)
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Move: Pick 3 coins

9 coins: Unsafe node

8 coins: Safe node

FIGURE 8.44 States with 1+4n coins are unsafe in the Pic123 game. These are shown in circles 

in the above figure. A player in an unsafe state can be forced to move to the lower unsafe state, and 

eventually to the losing state, where there is only one coin on the board.
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Scrabble and Backgammon are two of the most popular games that are different from the complete 

information games like Chess and Go. Both these games have had the distinction of computer 

implementations that are better than human players. Both rely on machine learning methods to learn 

evaluation of positions. Scrabble also benefits from the large vocabulary that a program can have 

access to. Both benefit from being able to search many possibilities very quickly. While both rely on 

the knowledge of evaluation, Backgammon has also demonstrated that human knowledge, even of 

the experts, can be fallible. Computer implementations of games like Backgammon and Othello have 

changed the way humans play these games.

Bridge is still a challenge. This is probably because this is a multi-player, two-stage game. A player, by 

herself, cannot decide upon a winning strategy. The best moves have to be found in a concerted manner 

by the two players in the partnership. This involves planning for formal communication, understanding, 

interception and deception that contribute to the decision making for the play itself. It requires the ability 

to make inferences and to do probabilistic reasoning. It probably offers a domain for the integration of 

various artificial intelligence techniques.

There are many other games that have evinced interest from enthusiasts and AI aficionados. A special 

issue of the journal Artificial Intelligence (volume 134, numbers 1–2, 2002) gives a wider selection. 

We have only looked at a few of them to explore the general principles that can be used to implement 

them. The interested reader will find many avenues for exciting challenges.

  Exercises

 1. The game Undercut consists of a sequence of moves in which two players simultaneously choose 

an integer between one and five, both inclusive. Each person gets the number she chooses as her 

score for that round, except when the opponent has chosen a number smaller than hers by one, in 

which case the opponent gets both the numbers. For example, if A chooses 5 and B chooses 3 then 

A gets 5 and be gets 3. But if A chooses 5 and B chooses 4, A gets nothing and B gets 9. Devise a 

strategy to play the game. For variations on the game, see (Hofstadter, 1996).

 2. There are two companies producing a product of no intrinsic value and where sales are proportional 

to advertising. Advertising, however, costs money and cuts into the profits. Another way of 

increasing sales is by reducing the selling price, though this may lead to a price war. Model the 

price war between the two companies as a two-person game.

 3. Let G be the set of all finite games. We define the game gnew as follows. Player-1 selects a game, 

say game-i from the set G. Player-2 makes the first move in game-i, and they play the game till 

completion. Is gnew a finite game?

 4. Modify the value of only one leaf node to convert the game in Figure 8.6 to one where the minimax 

value is a draw (D).

 5. What is the size of the game tree for Noughts and Crosses?

 6. “If you know the strategy that an opponent is employing, you can predict all her moves accurately.” 

Is the preceding statement true or false, in context of the game of chess? Justify your answer.

 7. Modify the algorithm given in Figure 8.17 to keep track of depth. Write the terminal(node) function.

 8. Modify the algorithms given in Figures 8.17 and 8.18 so that they also return the set of moves 

available to MAX after two plies (for each possible node) along with their backed-up values.

 9. Modify the AlphaBeta algorithm to use the backed-up values stored in the above question, to order 

the moves of the algorithm in the next cycle.
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 10. In Section 8.2.2, we have observed that a < V(J) < b where,

 a = max {a1, a2, a3, …}, and

 b = min {b1, b2, b3, …}

  Argue that the following condition holds for V(J) to influence the root node.

 a1 < a2 < a3 < … < V(J) < … < b3< b2 < b1

 11. Will the AlphaBeta algorithm ever yield an inferior solution as compared to the Minimax algorithm? 

Give reasons for your answer.

 12. Starting with a randomly chosen number, construct a 4-ply binary game tree with no cutoffs when 

explored by the AlphaBeta algorithm. Reverse the tree, and try the AlphaBeta algorithm again on 

it.

 13. Construct a 4-ply binary game tree, using only the values 0 and 1 for the leaf nodes, such that 

there are no cutoffs with the AlphaBeta algorithm searching from left to right.

 14. Show how the algorithm AlphaBeta explores the game tree, searching from left to right.

 (a) Fill in the leaves that are inspected by AlphaBeta.

 (b) Show the cutoffs and label them with their type.

 (c) Mark the move that AlphaBeta will choose for MAX at the root.

15 16 14 13 12 16 18 11 16 14 18 15 13 16 16 14 13 10 14 15 16 15 17 13 15 

FIGURE 8.45 A small game tree.

 15. Would the Minimax algorithm have chosen the same move? Give reasons.

 16. In the game tree on the following page, the leaves are labelled with the values from the evaluation 

function. The letter labels [A … X] below the leaves are names of the leaves. Show the order 

in which algorithm SSS* will inspect the nodes, explaining all the decisions made, along with 

diagrams where appropriate. What is the minimax value of the game?
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70 60 70 40 30 65 30 75 20 30 4065 85 77 70 35 2045 78 95 90 85 80 81

A B C D E F G H I J K L M N O P Q R S T U V W X

FIGURE 8.46 Another small game tree.

 17. Compare and contrast the SSS* algorithm with AO* algorithm.

 18. (For Chess enthusiasts) Is the Chess game tree a finite tree or an infinite tree? Can the two players 

keep repeating some inconsequential moves indefinitely?

 19. (For Chess enthusiasts) Consider the following variation on Chess rules. In addition to the other 

rules a player is allowed to move a piece X onto a square containing his own piece Y. The two 

pieces then combine to form one piece XY with the mobility of both. It is claimed34 that with these 

rules there is a strategy for a player to ensure that game will always end in a draw. Comment.

34 By the author’s nephews, Anish (age 9) and Arnav (age 7), who invented the new rule.



I  n state space search, we formulate problem solving as a process of making a sequence of moves from 

  a given Start state ending in a desired Goal state. We assume that the moves themselves are generated 

by a move generating function moveGen. But states have to be represented in some language, and the 

moveGen function operates upon that representation. Often it makes sense to focus directly on those 

representations rather than view the problems at the abstract level of state space search. However, we 

have to be careful that our formulations are general enough to allow for the design of domain independent 

algorithms. In Chapter 7, we looked at the formulation of planning problems in which the moveGen

function was replaced by its constituent operators.

In this chapter, we look at an alternate formulation of problems in which we describe the constraints

that the solution must satisfy. The Constraint Satisfaction Problem (CSP) is a problem that specifies 

these constraints. The CSP is described as a set of variables, a set of domains for the variables where 

each domain contains allowable values for the variable, and a set of constraints that must be satisfied 

in any solution. A CSP, or a constraint network, is a triple (X, D, C) in which,

 ● X is a finite set of variables {x1, x2, …, xn},
 ● D is a set of domains {D1, D2, …, Dn} with each domain Di containing values that the corresponding 

variables can take, and
 ● C is a set of constraints {C1, C2, …, Ck} on some subsets of X.

Each Ci is a relation Ri on a subset Si Õ X of a variable called the scope of Ci. The constraint Ci can 

be viewed as a pair <Si, Ri>. The relation Ri may be expressed as an intension, for example xj < xk, or if 

the domains are finite, it could be expressed as an extension. Without any loss of generality, we assume 

that there is at most one constraint for a given scope. If there are more than one constraints, one can 

always combine them by the logical AND operation, which in the extension form will manifest as set 

intersection.

The solution of a CSP is an assignment {<xi, vik> | xi Œ X, vik ŒDi} for all variables of X such that 

every constraint in C is satisfied.

Observe that while the solution constitutes of a consistent assignment of values of all variables, the 

constraints themselves are often local, each being over a few variables. If there are n variables in the CSP

and the domain of each has k values, then a brute force algorithm would have to look kn combinations in 

the worst case. We would like to better than that, and as we shall see in the chapter, algorithms that work 

locally on a smaller set of variables can be employed to reduce the search space. The task of solving 

CSPs is approached with a two pronged strategy. The first is to prune the search space by a process of 

constraint propagation. The second is to search in an efficient manner. We look at both these strategies 

in this chapter.

Constraint Satisfaction 

Problems

Chapter 9
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The following is an example of a CSP with finite domains,

Problem CSP1

 ● X = {x1, x2, x3}
 ● D = {D1, D2, D3} where D1 = D2 = D3 = {1, 2, 3}
 ● C = {C12, C23} where S12 = {x1, x2} and S23 = {x2, x3} and R12 and R23 are defined below.

The constraint C12 has scope S12 = {x1, x2}. We will use a shortcut to represent this fact. That is, the 

indices of Sij will implicitly identify the variables xij and xj as the variables that form the scope. The 

corresponding relation R12 Õ D1 ¥ D2 is a relation on the variables x1 and x2. We use the notation <x, y>

to stand for the pair of allowable values, x ŒD1 and y Œ D2 for the two corresponding variables, in this 

case x1 and x2, and likewise for the other constraint C23. We may specify the relations as an intension,

R12 = {<x, y> | x Œ D1, y Œ D2, and x < y}

and R23 = {<x, y> | x Œ D2, y Œ D3, and x < y}

or we could specify them as extensions,

R12 = {<1, 2>, <1, 3>, <2, 3>}

and R23 = {<1, 2>, <1, 3>, <2, 3>}

Observe that if the domains of the variables had been infinite, we could have still used the intensional 

form of the relation, but not the extensional form. There has been the development of a considerable number 

of techniques for solving constraint satisfaction problems dealing with numbers in specialized domains 

of mathematics, for example solving sets of linear equations. We will, however, focus on the general 

approach to solving CSP problems with finite domains in which the relations are expressed as extensions.

A CSP can be depicted by a constraint graph. Each node in a constraint graph represents a variable, 

and an edge connects two variables if they participate in a constraint. The 

absence of an edge between two nodes means that all combinations of their 

values are allowed. One must be careful to understand that this means that 

locally, there is no constraint between the two variables, or that there is no 

explicit constraint between the two variables. Globally, there might only 

be certain combinations of values that participate in solutions. Figure 9.1 

depicts the constraint graph for the problem CSP1. One can observe that 

there is an implicit constraint that x1 < (x3 – 1) which does not find a place 

in the constraint graph because it is not explicit. But the relation will hold 

in any solution of the CSP.

We shall further restrict our focus on methods to solve binary CSPs. Binary CSPs are those CSPs

where the constraints have scopes of sizes 1 or 2 only. For a binary CSP, the edges in the constraint 

graph in fact represent constraints. It has been observed that any nonbinary CSP can be converted to a 

binary CSP (see for example (Rossi et al., 1990), (Tsang, 1993), and (Mamoulis and Stergiou, 2001)). 

One way to do this is by introducing extra variables. Consider a variation of the above CSP containing 

a relation over all three variables.

Problem CSP2

 ● X = {x1, x2, x3}
 ● D = {D1, D2, Dn} where D1 = D2 = D3 = {1, 2, 3}
 ● C = {C123} where S123 = {x1, x2, x3}} and

  R123 = {<x, y, z> | x Œ D1, y Œ D2, z Œ D3, and x π y, y π z, x π z }

As an extension,

  R123 = {<1, 2, 3>, <1, 3, 2>, <2, 1, 3>, <2, 3, 1>, <3, 1, 2>, <3, 2, 1>}

x
2

x
1

x
3

FIGURE 9.1 The con-

straint graph for the CSP1.
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We can now introduce a new variable Z with the domain R123 and express the same CSP using binary 

relations as follows:

 ● X = {x1, x2, x3, Z}
 ● D = {D1, D2, D3, DZ } where D1 = D2 = D3 = {1, 2, 3} and DZ = R123

 ● C = {C1Z, C2Z, C3Z} where S1Z = {x1, Z}, S2Z = {x2, Z}, S3Z = {x3, Z} and

  R1Z = {<1, <1, 2, 3>>, <1, <1, 3, 2>>, <2, <2, 1, 3>>, <2, <2, 3, 1>>, <3, <3, 1, 2>>, <3, <3, 2, 1>>}

The relation R1Z contains pairs in which every value of x1 is paired to those tuples of Z where the 

value of x1 is the same. A similar definition can be given for the other two relations R2Z and R3Z. One 

can also express these relations using the projection operator of relational algebra in which the projec-

tions of the tuples in Z match the corresponding variable. The conversion to the binary CSP is done by 

adding extra variables. This is often needed because it has been shown that the number of binary CSPs

that can be constructed with N variables is much smaller than the number of relations of N variables 

(Montanari, 1974).

In any case, a vast array of problems can be expressed as finite binary CSPs. Given the uniform 

manner in which all these problems are formulated, one can explore and exploit efficient techniques for 

solving them.

9.1 N-Queens

Consider the problem of placing N queens on an N ¥ N chessboard, so that no queen attacks another. 

As a state space search problem, we would have modelled it as a problem of placing queens on an empty 

chessboard. The initial state of the problem is illustrated for N = 6 in Figure 9.2.
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FIGURE 9.2 The six queen problem is to place the six queens on a 6 ¥ 6 chessboard such that no 

queen attacks another.

One possible move in the state space formulation could be to place a queen on an empty square. The 

task is then to place the N queens on the board. As one can imagine, this would needlessly generate a 

huge search space since the first queen can be placed in N2 ways, the second one in (N2 – 1) ways, and 

so on. An alternative state space formulation recognizes the constraint that no two queens can be on the 

same row or the same column. This allows us to describe the state as a vector of N values representing 

columns, with the index being identified with a queen. For example, the vector <a, c, f, b, e, d> represents 

a state in which the first queen is on column a, the second one on column c, and so on. It is implicit in the 

representation that the first queen is on row 1, the second on row 2, and so on. As described in Chapter 

3, one can search in the solution space by exploring permutations of the above vector.
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The N-queens problem is a natural binary CSP because the constraints are on the placement of each 

pair of queens. We can formulate it as a set variables {Q1, …, QN} with the domains as the column 

identifiers. In our example, the columns are labelled with the letters of the English alphabet, as is the 

norm in chess literature. See Exercise 2 for an alternate notation that allows us to express the constraints 

in intensional form. The CSP for a 4-queen problem is given below (the 6-queen problem is left as an 

exercise),

Problem CSP3

 ● X = {Q1, Q2, Q3, Q4}

 ● D = {D1, D2, D3, D4 } where D1 = D2 = D3 = D4 = {a, b, c, d}

 ● C = {Cjk | 1 £ j £ k £ 4} where Sjk = {Qj, Qk} and

with,

  R12 = R23 = R34 = {<a, c>, <a, d>, <b, d>, <c, a> <d, a>, <d, b>}

  R13 = R24 = {<a, b>, <a, d>, <b, a>, <b, c>, <c, b>, <c, d>, <d, a>, <d, c>}

  R14 = {<a, b>, <a, c>, <b, a>, <b, c> <b, d>, <c, a>, <c, b>, <c, d>, <d, b>, <d, c>}

The most straightforward approach to solve CSPs is by search, like in state space search. The 

difference is that in state space search algorithms studied in the preceding chapters, one can only test a 

board with all the queens placed, while in CSP, one can check the constraints for a partial placement as 

well. For example, after placing the first queen, one will try the second one only on locations that are 

allowed by the constraints between the first two queens. Further, it is possible to look ahead at the effects 

of partial placements to try and spot a problem well before it occurs. One can reduce the domains of all 

queens as and when each queen is placed. Assuming that we place queens in their given natural order, 

and place each queen on the leftmost available column, the situation after placing queen 1, and after 

the first four queens is shown in Figure 9.3 for a 6-queen problem. After the first queen is placed, the 

crosses on the board on the left indicate squares on which no queen can be placed. This is equivalent to 

deleting values that will not be allowed from the domains of each future queen1.
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FIGURE 9.3 Placing each queen on the leftmost available column. The board after placing 1 

queen is on the left and the after 4 queens is on the right. The crosses represent values deleted 

from the domains of all queens. We can see that after placing queen 4, there is no place left for 

queen 6.

1 A future variable for a search algorithm is a variable that is yet to be assigned a value.
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As one can see from the figure on the right, after the first four queens have been placed, the domain 

of queen 6 has already become empty. Thus, a search algorithm can backtrack without even trying to 

place the fifth queen.

Before we look at search, we look at the idea of constraint propagation or consistency establishment.
Even before starting search, one can do a certain amount of reasoning on the problem. Consider the 

problem CSP1 described above. The relation R12 asserts that the value of the variable x1 should be 

strictly less than the value of x2. This means that x2 can never take the value x2 = 1. We can thus remove 

the value 1 from the domain of x2 so that a search algorithm will not even try it. We look at his notion 

of constraint propagation in the next section.

9.2 Constraint Propagation

A solution to a CSP is an assignment of a value for each variable from its domain, such that all constraints 

are satisfied. A search algorithm tries different assignment of values to variables in some order. The 

domains of variables contain all possible values that each variable can take. Some of them may be part 

of a solution and some may not. The algorithm Backtracking described in a Section 9.6 below tries 

only those values for the next variable that are consistent with the choices made for earlier variables. 

If we can reduce the values of the domain in a variable, we can reduce the number of options a search 

algorithm needs to look at. In the extreme case, we can make the search backtrack free wherein all 

consistent values available for each variable at its turn lead to a solution. Reduction of domains is a 

form of making inferences, and like all computation incurs a cost. The goal is to arrive at a balance in 

which the cost of making inferences is less than the reduction in the cost of search.

We introduce the notion of consistency for a CSP. There are various degrees of consistency defined 

as follows. Given that (k – 1) variables have been assigned values, a CSP is said to be k-consistent, if 

for any kth variable there exists a value that is consistent with the (k – 1) variables. We need a few more 

definitions to formalize this notion (Dechter, 2003).

An instantiation or a compound label of a subset of variables V is the assignment of values to each 

variable from its domain. If the set of variables is V = {xV1, xV2, …, xVk} then the instantiation is the 

tuple of ordered pairs (<xV1, aV1>, <xV2, aV2>, …, <xVk, aVk>) where each pair consists a variable and a 

value or label assigned to it. We also write the instantiation as (xV1 = aV1, xV2 = aV2>, …, xVk = aVk) or 

as a vector  = <aV1, aV2, …, aVk>.

An instantiation satisfies a constraint <S, R> iff it is defined over the variables in S and the 

components of  corresponding to S are present in R. We also say that the instantiation is k-satisfiable.

For example, the instantiation <b, d> for {Q1, Q2} satisfies R12. An instantiation  over the set of variables 

V is consistent if it satisfies all the constraints in the CSP whose scopes are subsets of V. We say that 

the instantiation is k-consistent if it has k values. For example, the assignment <a, b, c, e> for {Q1, Q2,

Q3, Q4} is consistent because it satisfies R12, R13, R14, R23, R24 and R34.

A solution of a CSP is a consistent assignment over all its variables. The CSP is said to express the 

set of solutions of the CSP. Two CSPs (X, D, C) and (X, D ¢, C ¢) are said to be equivalent if they express 

the same set of solutions. This is of particular interest when D ¢ contains reduced domains arrived at by 

constraint propagation. Search on D ¢ would be less expensive and yield the same solutions.

9.2.1 Node Consistency

A CSP is said to be node consistent or 1-consistent if and only if every value in every domain satisfies 

the unary constraints on the corresponding variable. A unary constraint, by definition, selects a subset 

of a domain. For example, if the domain Dx = {1, 2, 3, 4, 5} and there is a constraint Cx = ({x}, {x<4})

in a CSP then for that CSP the values 4 and 5 can be removed from Dx because they can never be part 
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of a solution. The algorithm for achieving node consistency inspects all values in all domains to check 

that they are included in the corresponding constraint. It removes values from the domain of a variable 

if that value is not found in the extension of the relation for the corresponding unary constraint. One 

must remember that the absence of an explicit constraint is equivalent to a universal constraint that says 

that all values are allowed. The algorithm NodeConsistency is given in Figure 9.4.

NodeConsistency(X, D, C)

1 for each xŒX

2 for each v Œ Dx
3   if v œ Rx where Cx = ({x}, Rx)

4   then remove v from Dx
5 return (X, D, C)

FIGURE 9.4 The algorithm NodeConsistency takes as input a CSP and returns an equivalent 

node consistent CSP.

9.2.2 Arc Consistency

Arc Consistency is concerned with finding consistent values for pairs of variables. In the constraint 

graph, every pair of variables x and y that participate in some constraint are linked by an edge (x, y).

For a binary CSP every edge represents a constraint Rxy. Let variable x have domain Dx and variable y

have domain Dy. An edge (x, y) in the constraint graph is said to be arc consistent if for every value vx

in Dx, there exists a value vy in Dy such that <vx vy > Œ Rxy, and vice versa for vy and vx. We say that vy

supports vx, and vice versa.

One can depict the relation Rxy with a matching diagram in which edges connect values from the 

domains Dx and Dy (Dechter, 2003). In an arc consistent edge (x, y) every value in each domain is 

connected to some value in the other domain in the matching diagram. Figure 9.5 shows an example of 

a matching diagram where the edge (x, y) is not arc consistent on the left. One must keep in mind that 

the edge in the constraint graph is (x, y), while the edges in the matching diagram link values from the 

domains of the two variables.

Dx Dy Dx Dy

FIGURE 9.5 The matching diagram for a relation Rxy. On the left, the pair of variables (x, y) are not 

arc consistent. On the right, they become arc consistent after the non-participating values are removed 

from the domains.

The task of achieving arc consistency is to remove those values from each domain that are not the 

endpoints of any link, or that are not supported by any value of the other variable. The figure on the right 

shows the edge (x, y), after arc consistency has been enforced. An edge (x, y) can be made arc consistent 

by inspecting the two domains, Dx and Dy, and removing the unsupported values. If in the process, any 

domain becomes empty then it means that the CSP is inconsistent and does not have a solution. The 



292 A First Course in Artificial Intelligence

procedure Revise given in Figure 9.6 reduces the domain Dx with respect to the edge (x, y) (Mackworth, 

1977). Observe that this will have to be called twice, once with each variable, to enforce that the edge 

is arc consistent. If there are k values in each domain, the complexity of this algorithm is O(k2). Not 

shown in the algorithm, but in practice if the if condition is found true in line 4 then one would exit the 

inner for loop after line 5, thus saving on some computation.

Revise(Dx, Dy, Rxy)

1 for each vŒDx
2 delete ¨ true

3 for each w Œ Dy
4 if (v, w) ŒRxy
5 then delete ¨ false

6 if delete = true

7 then remove v from Dx
8 return Dx

FIGURE 9.6 The algorithm Revise takes as input the domains of two variables forming an edge and 

reduces the first domain, so that every value in Dx has a corresponding value in Dy. In practice, when 

a matching value is found in Dy the algorithm will exit that loop.

A CSP is said to be arc consistent if every edge in its constraint graph is arc consistent.

At first thought, it might appear that making a CSP arc consistent is simply a matter of looking at 

the domain of each variable with respect to every edge. However, deleting a value from a domain may 

have a cascading effect because that value might have been the supporting value for a value in another 

domain. Figure 9.7 extends the CSP of Figure 9.5 with two more variables, z and w. To achieve arc 

Dx Dy Dz Dw

FIGURE 9.7 The domains of four variables x, y, z and w are shown on the top along with the 

relations Rxy, Ryz, and Rzw. After one round of arc consistency with (x, y), (y, x), (y, z), (z, y), (z, w) and 

(w, z), the matching diagram is shown below. As one can see, two values in Dy are unsupported at this 

stage.
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consistency on the four variables, Revise has to be called more than once for some pairs of variables. 

The matching diagram on the top depicts the original problem, and the diagram below it is the state after 

one round of calls to algorithm Revise left to right. As one can see, two values in Dy which had matching 

values in Dz after (y, z) was made arc consistent, lost their supports after (z, w) was made arc consistent.

The reader is encouraged to continue applying the Revise algorithm to the four variables until the 

three edges in the constraint graph, (x, y), (y, z) and (z, w) are arc consistent.

We shall look at three well known algorithms to achieve arc consistency (Mackworth, 1977). The 

simplest algorithm AC-1 to achieve arc consistency repeats the complete cycle of calls to Revise, until

no domain changes in a cycle. It is computationally the most expensive of the three. The algorithm is 

given in Figure 9.8.

AC-1 (X, D, C)

1 repeat

2 for each xŒX

3  for each yŒX such that CxyŒC

4    Dx ¨Revise(Dx, Dy, Rxy)

5    Dy ¨Revise(Dy, Dx, Rxy)

6 until no domain is changed

7 return (X, D, C)

FIGURE 9.8 The algorithm AC-1 takes as input a CSP and returns an equivalent CSP that is arc 

consistent. It calls algorithm Revise with all edges in the constraint graph till quiescence is reached.

Let there be e constraints in the CSP. Given e edges in the constraint graph and at most k values 

per domain then one cycle of AC-1 has complexity O(ek2). If there are n variables then the maximum 

number of values is nk, and in the worst case one value is removed per cycle. Therefore, in the worst 

case, the complexity of AC-1 is O(nek3). If only a few variables participate in constraints then there can 

be at most 2e variables, two for each constraint. The complexity can then be estimated to be O(e2k3).

The algorithm AC-1 blindly applies Revise to all pairs of variables, irrespective of whether their 

domains have changed or not. The algorithm AC-32 keeps tracks of removal of elements from domains. 

Only if a value for variable x is removed, does AC-3 look again at other variables connected to x via 

some edge.

AC-3 (X, D, C)

1 queue ¨ ( )

2 for each pair (xk, xj) that participates in a constraint Ckj
3  enqueue ((xk, xj), queue)

4  enqueue ((xj, xk), queue)

5 while not(empty(queue))

6  varPair ¨ dequeue(queue)

7  x ¨ Head(varPair)

8  y ¨ Head(Tail(varPair))

9  Dx ¨Revise(Dx, Dy, Rxy)

10  if Dx has changed

11  then for each z which is connected to x such that z π x and z π y

12     enqueue ((z, x), queue)

13return (X, D, C)

FIGURE 9.9 Like AC-1, the algorithm AC-3 first calls Revise for each pair of variables that participate 

in a constraint. After the first round however, AC-3 looks at only those domains whose values might 

have lost support because of the removal of some elements by Revise.
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Algorithm AC-3 processes each constraint at most 2k times, where k is the size of the domain of 

each variable. This is because it looks at a pair (or constraint) again, only if a value has been removed 

from one of the domains at its two ends. Since there are e binary constraints, the complexity of AC-3 is 

O(ek3). The factor k2 as before comes from the complexity of Revise.

While AC-3 is more efficient that AC-1, it turns out that it is still not optimal. This is because when 

it relooks at a pair of variables, it inspects their entire domain. One can do better by keeping track of 

which values may have lost their support and only processing those values (Mohr and Henderson, 1986). 

In order to do this, however, additional data structures have to be maintained. The algorithm operates at 

the level of labels. Each label <x, a> must have a supporting value for each constraint that the variable 

x participates in. The following data structures are used.

 ● Support set S. S is set of sets named S<x, a>, one for each variable value pair <x, a>. For each 

variable-value pair (or label) <x, a>, the support set contains a list of supporting labels.

S<x, a> = {<y, b> | y Œ X, bŒDy, and <a, b> ŒRxy}

  The support set S can be constructed by inspecting the pairs of variables for each constraint. Given 

e constraints and domain sizes k, this step is O(ek2).
 ● Counter array counter. For each label <x, a>, the counter array maintains the number of supports 

from a variable y. If this value becomes zero, it means that the value ‘a’ has to be removed from Dx.

counter(x, a, y) = number of values in Dy that support <x, a>

  The counter array can be constructed along with S, adding a constant amount of computation for 

each label.
 ● A queue queue of labels without support that need to be processed.

The resulting algorithm AC-4 is given in Figure 9.10. We separate the initial setting up of the data 

structures and the propagation into two modules. Before propagation begins, the procedure Initialize

constructs the data structures. For every constraint Cxy it does the following. For each label <x, a> in 

Dx it finds the supports <y, b> in Dy and stores them in S<x, a>, and conversely stores <x, a> in S<y, b> for 

each label <y, b> in Dy. It also counts how many support each label has for each constraint it participates 

in. Finally, it identifies unsupported labels, removes them from their domains, and enters them into a 

queue to propagate the effects of their being removed.

In the propagation phase after the initialization, it removes the labels in the queue and deletes them 

one by one. For every value a for a variable x that is removed, the AC-4 algorithm looks up S<x, a> for

values of other variables it was supporting. For each such value b of variable y, it decrements counter(y, 

b, x). If any counter becomes zero then the corresponding value is removed and a label is added to queue

for propagation.

Thus while AC-3 was an improvement over AC-1 because it selectively calls Revise only with those 

pairs of domains for which a supporting a value has been deleted, AC-4 is an improvement over AC-3 

because it only looks at those labels whose supporting labels have been deleted. Since it does not make 

a brute force call to revise it saves on the O(k)2 computation that Revise does.

Given that there are e edges and each domain has at most k values, the complexity of procedure 

Initialize is O(ek2). This is because constructing the support S and the counter can be done by inspecting the 

domains of the variables on each side of each constraint. In the algorithm in Figure 9.10, the support sets 

have been initialized outside the loop at step 4 for simplicity. In practice, they will be constructed inside 

the loop and only for those labels that are parts of constraints. The queue of unsupported labels is also 

2 The missing AC-2 was an algorithm developed by David Waltz for scene labelling, described in Section 9.3. This evolved into 

AC-3 which has become a much studied algorithm.
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AC-4 (X, D, C)

1 <queue, S, counter> ¨ Initialize(X, D, C)

2 while not(empty(queue))

3  varVal ¨ dequeue(queue)

4 x ¨ Head(varVal)

5  a ¨ Head(Tail(varVal))

6  for each label <y, b> in S<x, a>
7   counter(y, b, x) ¨ counter(y, b, x) – 1 

8   if counter(y, b, x) = 0

9   then Dy ¨ Dy\b

10    enqueue ((y, b), queue)

11return (X, D, C)

Initialize (X, D, C)

1 queue ¨ ( )

2 for each label <x, a>

3 S<x, a> ¨ ( )

4 for each constraint Cxy = ({x, y}, Rxy)

5 for each b Œ Dy
6 counter(y, b, x) ¨ 0

7 for each a Œ Dx
8 counter(x, a, y) ¨ 0

9      for each b Œ Dy
10  if <a, b> Œ Rxy
11      counter(x, a, y) ¨ counter(x, a, y) + 1

12      counter(y, b, x) ¨ counter(y, b, x) + 1

13      S<y, b> ¨ S<y, b> » {<x, a>}

14      S<x, a> ¨ S<x, a> » {<y, b>}

15      if counter(x, a, y) = 0

16    Dx ¨ Dx\a

17     enqueue ((x, a), queue)

18  if counter(y, b, x) = 0

19          Dy ¨ Dy\b

20  enqueue ((x, a), queue)

21return <queue, S, counter>

FIGURE 9.10 Unlike AC-1 and AC-3, AC-4 operates at the level of labels, or <variable value> pairs. 

For this, it has to do elaborate bookkeeping, keeping track of individual edges in the matching diagram, 

and degree of each vertex looking out for vertices that get isolated.

constructed inside the loop. The size of S is also O(ek2), which is also the value of the sum of all counters.

Since in the worst case in the while loop of algorithm AC-4 one counter will get decremented in each 

cycle, there can be at most O(ek2) cycles, and therefore the complexity of AC-4 is O(ek2). Given that the 

various data structures have to be stored for AC-4, it can be shown that its space complexity is also O(ek2).

The complexity measures described above are worst case complexities. They are also asymptotic 

complexities in which the role of constants does not show up in the comparison. It has been suggested that 

for some problems, AC-3 might in fact be a better algorithm on the average than AC-4 (Van Hentenryck, 

1989). Furthermore, the performance of AC-3 is critically dependent on the order in which the variables 

are processed (Wallace and Freuder, 1992). It has been argued, with support from empirical evidence, 

that on the average AC-3 yields better performance than AC-4 for most problems (Wallace, 1993).
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FIGURE 9.11 A vertex 

with three edges.

9.3 Scene Labelling

One interesting problem where constraint propagation has been applied 

with remarkable effect is the scene labelling problem, also known as the 

Huffman-Clowes scene labelling problem (Clowes, 1971), (Huffman, 1971).

The scene labelling problem is a classification problem in which the lines 

in an image have to be assigned a label describing them. Each edge in the 

diagram needs to be assigned a label from the set {+, –, Æ, ¨}. Consider 

the following vertex that is part of a line drawing of a scene.

Now given that there are four possible labels for each of the three edges, the edges meeting at the 

vertex can be labelled in 43 = 64 different ways. However, if the line diagram is a scene depicting physical 

objects then the labels of the three edges are constrained. On the one hand, they are constrained by what 

combinations of labels at vertices are possible for physical objects. On the other hand, the labels will 

have to be consistent with the vertices that the edges are connected to at the other end, because only one 

label can be applied for one edge. Let us assume that the line drawings are restricted to trihedral objects 

with plane surfaces in which exactly three edges, or planes, meet at a vertex.

The meanings of the labels are as follows,

 ●  +  : The edge is convex when the two faces enclose material within an angle less than 180°.
 ●  –  : The edge is concave when the two faces enclose material within an angle greater than 180°.
 ● Æ : The edge is a boundary edge with visible face below the edge.
 ● ¨ : The edge is a boundary edge with visible face above the edge.

Observe that the two boundary edges essentially say that the material is on the right-hand side as you 

traverse along the arrow on the edge, but since either direction can be a label, we have treated them as 

two distinct labels. Figure 9.12 shows examples of two objects within the scope of this labelling with 

their labels, and three line drawings that are not of trihedral objects without labels.

FIGURE 9.12 Trihedral objects with their labels on the left, and nontrihedral objects on the right. 

Observe that the vertex of Figure 9.11 occurs in both with different labels. The two figures in the 

middle have a vertex with less than or more than three edges, and the cylinder has a curved 

surface. The bottom figure in the middle too has a surface that is not planar.
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One can identify four kinds of vertices as seen in the line drawings. They are known as the W, Y,

T and L vertices. In the L type of vertex, only two edges are visible, while the others have three edges 

visible. Figure 9.13 depicts the four kinds of vertices and their representation as lists of edges. Given that 

an edge can get one of four labels, there are 64 different labels for three edge vertices, and 16 for the L

vertex. It turns out that only a small number of label combinations are valid for objects in which vertices 

are made of exactly three planar faces. We assume that the objects are viewed such that vertices are not 

formed because of a particular viewpoint. For example, the two collinear line segments of a T vertex

are part of the same edge, and not two different edges appearing collinear because of the viewpoint. 

The twenty valid combinations are also shown in the figure. Observe that three label combinations of 

the Y joint are rotations of each other. This is because the edge labelled “–” could have been in any 

orientation.

Y joint

or Fork

W joint

or Arrow T joint L joint 

a 

b

c
a 

b 

c 
a 

b 

c a

b

(a, b, c) (a, b, c) (a, b, c) (a, b)

(+, +, +)

(–, –, –,)

(–, ¨, ¨)

(¨, –, ¨)

(¨, ¨, –)

(¨, ¨, ¨)

(¨, Æ, ¨)

(¨, +, ¨)

(¨, –, ¨)

(Æ, +, Æ)

(Æ, –, Æ)

(+, –, +)

(–, +, –)

(¨, +, ¨)

(Æ, Æ)

(¨, ¨)

(Æ, +)

(¨, –)

(–, ¨)

(+, Æ)

FIGURE 9.13 The four types of vertices and their list notation. The allowable combinations of labels 

are given below in boxes. The edges can be identified unambiguously irrespective of their orientation 

except for the Y vertex.

The allowable labels for edges meeting at vertices are determined by the physical properties of the 

sort of objects we are dealing with. These are the possible label combinations when the vertices are seen 

in isolation. When vertices correspond to physical objects, each edge of a vertex connects it to another 

vertex. Since the edge is the same for both vertices, it should be classified with the same label, and this 

imposes further constraints on the allowed labelling. This inter-vertex constraint is illustrated in Figure 

9.14. Vertices V1 and V2 share an edge, as do V2 and V3. The matching diagrams for these three vertices 

are also shown. The reader must remember that the labels (x, y, z) are with respect to the orientations 

shown in Figure 9.13. Only two labels of V2 have support from V1 and two from V3, and only one 

(+, +, +) has support from both. Enforcing arc consistency will keep only this label for V2 and the 

matching labels for V1 and V3.

A CSP for the edge labelling problem can be posed as follows. Each vertex in the line diagram is a 

variable. The domains of the vertices are the (compound) labels as shown in Figure 9.13. Each edge in 

the diagram imposes a binary constraint on the two vertices it connects. The constraint is that the edge 

must be labelled identically from the set {+, –, Æ, ¨} for the two vertices.

The CSP formulation for a simple object is shown in Figure 9.15. The object is shown on the upper left. 

The six vertices are V1 = (a, b, c), V2 = (c, d), V3 = (e, a), V4 = (b, f, g), V5 = (h, f, e), and V6 = (d, g, h).

Each edge is represented as a constraint between two variables. The constraint is that a particular 
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v1

v2

v3

(+, –, +) (–, +, –) (¨, +, ¨)

(+, –, +) (–, +, –) (¨, +, ¨)

(+, +, +) (–, –, –) (–, ¨, ¨) (¨, –, ¨) (¨, ¨, –)

FIGURE 9.14 Constraints across vertices. Every edge connects two vertices and imposes a 

constraint that the labels on the two vertices must assign the same value for that edge. The matching 

diagram for three vertices V1, V2 and V3 is shown. Achieving arc consistency will remove unsupported 

labels.

a

b c

d

e

f
g

h

W vertex: V1 = (a, b, c)

L vertex: V2 = (c, d)

L vertex: V3 = (e, a)

Y vertex: V4 = (b, f, g)

W vertex: V5 = (h, f, e)

W vertex: V6 = (d, g, h)

V1

V2

V3

V4

V5

V6
(+, –, +) (–, +, –)

(¨, +, ¨)
(+, –, +) (–, +, –)

(¨, +, ¨)

(Æ, Æ) (¨, ¨) (Æ, +)

(¨, –) (–, ¨) (+, Æ)

(+, +, +) (–, –, –)
(–, ¨, ¨) (¨, –, ¨)

(¨, ¨, –)
(Æ, Æ) (¨, ¨)

(Æ, +) (¨, –) (–, ¨)

(+, Æ)

(+, –, +) (–, +, –)

(¨, +, ¨)

V5(1) = V6(3)

V5(3) = V3(1)

V5(2) = V4(1)
V5

V3

V4

V2

V6(2) = V4(3)

V6(1) = V2(2)

V3(2) = V1(1)

V1(2) = V4(2)

V1(3) = V2(1)

FIGURE 9.15 A simple object and its constraint network.

component of one label must match a particular component of the other label. We use notation Vk(m) = Vj(n)

to say that the mth label of Vk must match the nth label of Vj. For example, we have V6(2) = V4(3), which 

says that the common edge “g” must get matching labels from both ends, V4 and V6.

The reader is encouraged to enforce arc consistency on the above CSP.

When we consider a larger variety of objects and also allow shadows from illumination and cracks, the 

number and types of vertices increases dramatically. David Waltz considered these objects and introduced 
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several additional types of junctions with four or more incident edges. Allowing for additional labels to 

represent shadows, cracks, overlap of objects, the number of physically realizable vertex labels reduces 

to 1790 from several billion combinations (Winston, 1992). The algorithm developed by Waltz for 

propagating constraints is essentially an arc-consistency algorithm similar to AC-3 algorithm described 

above (Waltz, 1975). The experiments conducted by Waltz showed that the constraint propagation pruned 

the domains of the edges dramatically, often to only the labels occurring in a solution.

9.4 Higher Order Consistency

Arc consistency or 2-consistency ensures that only matching labels from two related domains remain 

in a CSP, and for every label in a domain, there is a supporting label in a neighbouring domain. But 

achieving arc consistency does not mean that the variables that remain will necessary be part of a solution. 

In fact, it is even possible that there might not be a solution. Consider the map colouring problem with 

three nodes and two colours.

Problem CSP4

(X, D, C) = ({x1, x2, x3}, {{r, b}, {r, b}, r, b}}, {x1 π x2, x1 π x3, x2 π x3})

This problem is already arc consistent, but there is no solution to the problem. This problem is not 

path consistent.

9.4.1 Path Consistency

A CSP is said to be path consistent or 3-consistent if every pair of consistent variable 

instantiations can be extended to a third variable. Let the given instantiation or compound label be 

<x = a, y = b>. This instantiation is consistent if <a, b> Œ Rxy. The two variable set <x, y> is said to be 

path consistent with respect to a variable z if for every such compound label <a, b>, there exists a value 

c Œ Dz such that <a, c> Œ Rxz and3 <c, b> Œ Rzy. That is, there is a path from a to b via c. Observe that 

we do not require the variables to participate only in explicit relations because we can take the absence 

of an explicit constraint as representing a universal relation that allows any pairing of values. As we 

shall see, enforcement of path consistency results in tightening of all relations, removing pairs that are 

not path consistent. In the process, a new explicit relation may be inferred.

Arc consistency ensures that for every value in the domain of a variable, there is a supporting value 

in a related domain. It ensures that every node participates in an edge in the matching diagram. Path 

consistency ensures that for every edge between a pair of values, there is a value in every other domain 

such that the end points of the edge participate in edges to the new value. It thus ensures that every 

edge participates in a triangle. This implies that a partial solution made up of the two values at the end 

points of the edge can be extended to any other variable. Recall that the complete solution is made up by 

consistent values for all the variables. The procedure Revise-3 given in Figure 9.16 below is analogous 

to the procedure Revise, except that it removes edges from the binary relation that cannot be extended 

to a triangle.

3 Since the relations are symmetric, we assume that wherever the relation Ryz is available so is Rzy without going into implementation 

details.
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Revise-3(Dz, Rxy, Rxz, Rzy)

1 for each (a, b)ŒRxy
2  delete ¨ true

3  for each c Œ Dz
4   if (a, c) ŒRxz and (c, b) ŒRzy
5   then delete ¨ false

6  if delete = true

7   then remove (a, b) from Rxy
8 return Rxy

FIGURE 9.16 The algorithm Revise-3 takes as input the binary relations between three variables 

x, y, and z and the domain Dz. It ensures that every pair (a, b) in has pairs in Rxz and Rzy. If not, it 

removes the pair (a, b) from Rxy.

The complexity of Revise-3 is O(k3) because there are O(k2) edges in Rxy in the worst case, and for 

each edge, the entire domain Dz has to be inspected in the worst case.

Figure 9.17 shows what happens after a call to Revise-3(Dz, Rxy, Rxz, Rzy), given four variables w, x, y

and z. We assume the Rxy, Rxz, Rxw, Ryz, and Ryw are defined explicitly, and that Rwz is a universal relation. 

One must keep in mind that these binary relations are all symmetric. The black nodes in the matching 

diagram are the ones that emerge as consistent triangles in this call. The dashed edges between Dx and Dy

in the figure on the left are the ones removed by the call Revise-3(Dz, Rxy, Rxz, Rzy). Of the two surviving 

edges, between the domains of x and y, the dashed one in the figure on the right would get removed, if a 

subsequent call to Revise-3(Dw, Rxy, Rxw, Rwy) were to be made. The first two edges were deleted because 

they did not have a corresponding value in Dz and the third one because there was no matching value in Dw.

Dz

Dx

Revise-3((x, y), z)

Dw

Dy Dx

Dz

Dy

Dw

FIGURE 9.17 From the matching diagram on the left, a call to Revise-3(Dz, Rxy, Rxz, Rzy) removes 

the two edges shown in dashed lines. Of the remaining two edges between Dx and Dy in the figure on 

the right, the dashed edge will get removed by a call to Revise-3(Dw, Rxy, Rxw, Rwy). Note that neither 

diagram is arc consistent.

The objective of path consistency is to arrive at a matching diagram of all variables, such that any 

edge between any two variables forms triangles with values in all other domains. The simple procedure 

to achieve path consistency PC-1 is analogous to the procedure AC-1. It makes calls to all possible 

combinations of variable pairs with all other variables, till no relation is pruned further. The algorithm 

is given in Figure 9.18.
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PC-1 (X, D, C)

1 repeat

2  for each zŒX

3   for each xŒX and each yŒX s.t. xπyπz

4     Rxy ¨ Revise-3(Dz, Rxy, Rxz, Rzy)

5  until no domain is changed

6 return (X, D, C)

FIGURE 9.18 The algorithm PC-1 takes as input a CSP and returns an equivalent CSP that is path 

consistent. It calls algorithm Revise-3 with all triplets in the constraint graph, till quiescence is reached. 

The output CSP contains pruned sets of relations.

The algorithm PC-1 looks at all pairs of variables, irrespective of whether there is an explicit constraint 

between them or not. This is because the absence of a constraint is equivalent to a universal constraint 

in which all combinations are allowed. Thus, in each cycle, the algorithm will inspect (n – 1)2 edges for 

each of the n variables, expending O(k3) computations in each call to Revise-3. Thus, in each cycle, the 

algorithm will do O(n3k3) computations. Further, in each cycle, in the worst case, we will remove one 

pair of values <a, b> from some constraint Rxy. In the worst case then, the number of cycles is O(n2k2),

because there are n2 relations and each may have k2 elements. Thus in the worst case, algorithm PC-1 

will require O(n5k5) computations.

Every time a call is made to Revise-3 O(k3), computations are needed. But can we cut down on the 

number of calls to Revise-3? The answer is indeed yes, and in a manner analogous to AC-3 the algorithm 

PC-2 only calls Revise when a pair is removed from a relation. When <a, b> is removed from Rxy, one 

needs to check again whether <a, b> was a supporting edge for pairs <c, a> or <c, b>, for all c. The 

algorithm PC-2 described below maintains a queue of triples which it needs to inspect in a manner 

similar to algorithm AC-3.

PC-2 (X, D, C)

1 queue ¨ ( )

2 for each xi,

3 for each xk and xj such that k<j, kπi, jπi

4    enqueue (((xk, xj), xi), queue)

5 while not(empty(queue))

6 varTriple ¨ dequeue(queue)

7 x ¨ Head(Head(varTriple))

8 y ¨ Head(Head(Tail(varTriple)))

9 z ¨ Head(Tail(varTriple))

10 Rxy ¨ Revise-3(Dz, Rxy, Rxz, Rzy)

11 if Rxy has changed

12 then for each z such that z π x and z π y

13 enqueue (((z, x), y), queue)

14 enqueue (((z, y), x), queue)

15 return (X, D, C)

FIGURE 9.19 Like AC-3, the algorithm PC-3 maintains a queue of calls to Revise-3 for each triple of 

variables. Subsequently, if it removes a pair from a relation, then it checks whether a side of a triangle 

with a third value is not being broken.

The complexity of PC-2 depends upon how many elements can be added to the queue. Every time 

an element is removed from the queue, the call to revise does a computation of O(k3). The minimum 

number of calls is O(n3), which is the number of distinct calls that can be made. In the worst case, in each
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call to Revise-3 in the while loop one pair of elements is deleted from one relation. There are n3

combinations of variables for which calls to Revise-3 can be made. For each combination ((x, y), z) at 

most k2 elements can be removed from the relation Rxy. Therefore the while loop can be executed at 

most n3k2 times. Each call to Revise-3 is of O(k3). Hence the complexity of PC-2 is O(n3k5).

Both PC-1 and PC-2 rely on calls to Revise-3, which inspects all values in the three domains. One 

can design a finer grained algorithm analogous to AC-4. Indeed such an algorithm was devised by Mohr 

and Henderson (1986) and has complexity O(n3k3). Notice that like in the reduction in complexity from 

AC-3 to AC-4, here too complexity is reduced by a factor that was contributed to by the Revise operator. 

In particular, PC-4 looks at only the effect of removing a pair <a, b> rather than all the k2 pairs that exist 

in the corresponding relation. We leave it as a complex exercise for the interested reader the design of 

the support structures needed.

It is worth noting that path consistency does not automatically imply arc consistency. The following 

example is due to Freuder (1982).

Problem CSP6

(X, D, C) = ({x1, x2, x3}, {{r}, {r, b}, {r}}, {({x1, x2}, x1 π x2), ({x2, x3}, x2 π x3)}

As one can see, the CSP is path consistent, but it is not arc consistent. In general, if a CSP is 

i-consistent, it does not mean that it is (i – 1)-consistent as well.

9.4.2 i-consistency

The algorithms for path consistency give us a clue of how to write algorithms for higher order consistency. 

The notion of i-consistency for a constraint network is that any consistent compound label for i – 1 

variables can be extended by one more variable. The network is said to be strongly i-consistent if it 

is also j-consistent for all j < i. We can write a generalized consistency implementation algorithm by 

writing a generalized Revise-I algorithm as shown in Figure 9.20. For each variable z in the domain, 

the generalized i-consistency algorithm IC-1 looks at all subsets of variables of size i – 1 to test if all
consistent instantiations of size i – 1 can be extended by a value from the domain Dz.

IC-1 (X, D, C)

1 repeat

2 for each zŒX

3  for each S = {x1, x2, …, xi–1}Ã X s.t. each xi π z

4   RS ¨ Revise-I (S = {x1, x2, …, xi–1}, z)

5 until no relation is changed

6 return (X, D, C)

Revise-I (S = {x1, x2, …, xi–1}, xi)

1 for each (a1, a2, …, ai–1)ŒRS
2 delete ¨ true

3 for each c Œ Di
4  if (a1, a2, …, ai–1, c) is consistent

5  then delete ¨ false

6 if delete = true

7  then remove (a1, a2, …, ai–1) from RS
8 return RS

FIGURE 9.20 The algorithm Revise-I takes as input a set of (i – 1) variables and a distinct variable 

xi, and identifies those labels that cannot be consistently extended. The generalized i-consistency

algorithm described here applies a brute force method to trim all sets S of variables of size (i – 1) 

that cannot be extended with values from all variables not in S. Note that the relation RS may be a 

universal relation to start with when it is not mentioned explicitly.
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It is clear that we have moved beyond binary relations and have started inspecting larger compound 

labels for consistency. In fact even when we are looking at node consistency and arc consistency, we 

may have to look at relations of larger arity if we are to implement 1-consistency and 2-consistency 

respectively. Let us look at an example to see why this is so. Consider the following CSP problem.

Problem CSP5

({w, x, y, z}, Dw = Dx = Dy = Dz = {r, b, g}, {({x, y, z}, Rxyz = {<r, b, g>}), ({w, y, z}, Rwyz = {<b, b, g>})})

Now consider the notion of 3-consistency which says that any consistent assignments to two labels 

can be consistently extended to three labels. Consider now an assignment {y = r, z = r}. Clearly, 

there is nothing inconsistent about it, since there is no explicit constraint on S = {y, z}. But it cannot 

be consistently extended either to w or to x. Yet our path consistency algorithm will not catch this 

inconsistency because it was written only for binary relations. Now, if we were to extend our path-

consistency algorithm to 3-consistency then we would be forced to look at all pairs of variables and 

select values that can be consistently extended. This would result in the following relation pruning.

Rxy = {<r, b>}, Rxz = {<r, g>}, Rwy = {<b, b>}, Rwz = {<b, g>}, Ryz = {<b, g>}

Now, one can see that the value x = b or x = g cannot be consistently extended to Rxy and thus must 

be pruned. Likewise, for the other variables, and when we apply 2-consistency we get,

Dw = {b}, Dx = {r}, Dy = {b}, Dz = {g}

We can define generalized notions of arc consistency with respect to relations of higher arity as 

follows (Dechter, 2003).

Given a CSP = (X, D, C) with RS Œ C, a variable x Œ S is said to be arc consistent relative to RS, only 

if for every value of a Œ Dx there exists a tuple t Œ RS, such that x = a is in that tuple. A relation RS is 

said to be arc consistent iff all its variables are arc consistent. A relation can be made arc consistent by 

reducing the domains of its variables to those values that are specified in the relation.

9.4.3 Propagation = Inferencing Relations

Given a CSP (X, D, C), one can view the constraint propagation process as inferencing new constraints to 

get a new equivalent CSP = (X, D, C ¢) where C ¢ = C » NewConstraints. Given that there are n variables 

in the CSP, we can have one relation of arity n, n relations of arity (n – 1), nC2 relations of arity (n – 1), 

and so on with n relations of arity 1. One can say that the task of solving the CSP is to unearth the relation 

on n variables, often referred to as R(r), the solution relation.

Only some of these relations may be specified in the set C of constraints, and that too only partially, 

containing more tuples in the relation than actually allowed. When they are not specified explicitly, 

one can assume them to be universal relations. One can view the process of consistency enforcement 

as a process of tightening the constraints of appropriate arity, including arity 1. If at any time during 

the propagation process, any relation becomes empty, it means that there is no solution and the CSP is 

an inconsistent CSP.

When a relation is implicit then constraint propagation may still reduce tuples from its domain. 

One has to make that relation explicit now, and hence we can view the propagation process as having 

inferred a new relation.
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Enforcing node consistency and arc consistency can be seen as introducing new unary constraints that 

restrict the domains of certain variables. Traditionally, we see this as reducing the domain of a variable, 

say Dx, but we can also view this as having inferred a relation Rx on that variable.

Likewise, enforcing path consistency, or the generalized arc consistency (i.e. 3-consistency) can be 

viewed as inferring a new binary relation. Consider the following binary CSP on three variables.

Problem CSP7

(X, D, C) = ({x1, x2, x3}, {{r, b}, {r, b}, {r, b}}, {({x1, x2}, x1 π x2), ({x2, x3}, x2 π x3)}

Enforcing path consistency implies creating a new relation R13 with scope {x1, x3},

R13 = {(r, r), (b, b)}

Often, specially when enforcing higher order consistency, one may represent the complement of a 

relation rather than the relation because the complement is explicitly known and usually smaller. The 

complement of the relation is known as a nogood, and captures those tuples that are not allowed. The 

nogood inferred for the above problem would be,

R¢13 = {(r, b), (b, r)}

Enforcing i-consistency may introduce nogoods, or equivalently relations, of arity (i – 1). This means 

that some tuples from the relation of arity (i – 1) may be removed. If that happens then the CSP may 

lose (i – 1)-consistency, even if it was (i – 1)-consistent earlier. The example in Figure 9.21 shows a case 

when enforcing path consistency on a three variable binary, CSP disrupts arc consistency that was there 

earlier. Remember that algorithm PC-2 removes only relations or edges, and the corresponding nodes 

still remain in the domains.

Dz

Dx

PC-2

Dy Dx

Dz

Dy

FIGURE 9.21 Enforcing path consistency on an arc consistent network may disrupt arc consistency. 

The matching diagram on the left is arc consistent but not path consistent. Applying the algorithm PC-1 

or PC-2 gives us the diagram on the right that is path consistent but not arc consistent.

We leave the reader with the following question. If one wants to achieve strong k-consistency then 

will the enforcement of decreasing orders of consistency do the job?

Achieving more and more consistency reduces the amount of effort a search algorithm will have to 

put in. If the constraint network has n variables, achieving strong n-consistency will obviate the need 

for search altogether. This is because at every stage after having chosen a set of (i – 1) consistent values 

for the first (i – 1) variables, the procedure will not reach a dead end because i-consistency ensures that 

a consistent value for the ith variable exists in the domain. But as i increases, achieving i-consistency

becomes more and more expensive. In some situations, it may be profitable to work with a limited 

amount of consistency enforcement, and spend some time doing search.
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One such situation is when the order of selecting variables for an assignment is pre-decided. Given 

that the search algorithm is going to inspect variables in a fixed order one need not enforce consistency 

between variables in both directions. In the next section we explore how much consistency needs to be 

enforced, based on the topology of the constraint graph.

9.5 Directional Consistency

A constraint network is said to be 2-consistent, if for every assignment of a variable there exists an 

assignment for every other variable such that the new variable is consistent with the known constraints. 

This ensures that any variable that we pick for assignment can be followed up picking any other variable. 

Higher order consistencies extend this notion to sets of variables. A network is said to be i-consistent,

if any set of i – 1 variables is assigned a compound label then any other variable can be assigned a 

consistent value. However, if the order of assigning variables is known in advance, a weaker notion of 

consistency suffices. This weaker notion of consistency is directional consistency, which requires only 

variables chosen earlier in the assignment order to be consistent with later ones. In the discussion that 

follows, we assume that an ordering of variables (x1, x2, …, xn) has been specified, and x1 is the first 

variable to be assigned a value from its domain.

Consider the map colouring CSP shown in Figure 9.22 on the left, along with two orderings (ABCDE)

and (EDCBA) on the right. The domain of all the variables is {r, b, g}. Let us assume that algorithm 

for solving the CSP assigns values to the variables in the two given orders, and at each stage chooses a 

value consistent with the value assigned earlier to every related variable, called its parent, if any. For the 

order (ABCDE), the parent of B is A, parents of E are B, C and D. Observe that for the second ordering 

(EDCBA), every node has only one parent. The reader is encouraged to ponder over the orderings and  

ask which is better.

A 

B 

C 

D 

E 

A B C D E 

A B C D E 
r b r g ? 

r b b b r

FIGURE 9.22 A map colouring problem with the domain of all variables being {r, b, g}. The figures on 

the right show two different orderings and a possible colour assignment proceeding from left to right. 

As one can see, the lower ordering colours the graph automatically, but the upper one can reach a 

dead end.

One possible assignment sequence for the order ABCDE, as shown in the figure, is,

A = r, B = b, C = r, D = g
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However at this point, it is not possible to assign a value to E because the three parents of E have 

used up the three colours. The algorithm will need to backtrack and try another value for D. The reader 

should verify that for the order EDCBA, the assignment process goes smoothly from start to finish, and 

there is no need to backtrack. In fact, the solution displayed in the figure uses only two colours.

The given CSP is arc consistent, and also path consistent. What is different in the two examples is 

the ordering of the variables. The orderings can be characterized by a property called width defined as 

the largest number of parents any node has in that ordering. The ordering ABCDE has width 3, while 

the ordering EDCBA has width 1. The width of a given graph is the minimum of the widths of all its 

orderings.

A related property is called induced width. For a given graph, the induced width is the width of the 

induced graph. The induced graph, for a given ordering, is the graph produced by connecting all the 

parents of every node to each other.

It turns out that the induced width is an indicator of how much consistency enforcement is needed to 

have backtrack free search. Specifically, if the induced width of a graph is (i – 1) for an ordering, then 

i-consistency is needed to make search on that ordering backtrack free. What is more, given that we 

have a fixed order of selecting variables, we only need to ensure that any value we pick is consistent 

only with later variables. The later variables do not have a consistency requirement with respect to the 

earlier variables, which have already been assigned values. Thus consistency needs to be enforced only 

in one direction.

Clearly, it is profitable to find an ordering that has the minimum induced width. We look at some 

algorithms for arriving at this ordering a little later in this chapter. First, we look at the algorithms 

for directional consistency enforcement for a given ordering. We begin by looking at the algorithm 

Directional Arc Consistency (DAC).

9.5.1 Directional Arc Consistency

Given an order (x1, x2, …, xn) in which the variables of a CSP will be picked for assignment, directional 

arc consistency specifies that for every value a that one picks for a variable xj, for every variable xk such 

that j < k that is related to xj, there exists a value b in its domain such that <a, b> Œ Rjk. If this is not the 

case, the algorithm for enforcement removes the value “a” from the domain Dj of xj.

If a value is removed from the domain of a given variable xj then it can only affect arc consistency 

for a variable xi if i < j. Therefore, if we enforce arc consistency from the last variable to the first, only 

one call to Revise needs to be made for every pair of related variables. The algorithm DAC is given in 

Figure 9.23 below.

DAC (X = (x1, x2, …, xn), D, C)

1 for j ¨ n downto 2

2  do for each i<j s.t. ({i, j}, Rij) Œ C

3    Di ¨ Revise(Di, Dj, Rij)

4 return (X, D, C)

FIGURE 9.23 The algorithm DAC takes as input a CSP with an ordering on the variables and returns 

an equivalent CSP that is arc consistent with respect to that ordering.

The algorithm inspects O(n2) pairs of variables, but makes exactly e calls to Revise, where e is the 

number of constraints. In each call, it does O(k2) amount of work where k is the size of each domain. 

The complexity of DAC is therefore O(ek2).

Consider the following CSP with the same constraint graph as in Figure 9.22, but with different 

domains and constraints.
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DA = {r, b, v}, DB = {g, b, v}, DC = {r, b, m}, DD = {m, v, b}, DE = {r, b, m}

and the new relations as,

A = B, B = E, C = E and D = E

The reader should verify that after full arc consistency is enforced, the new domains are,

DA = DB = DC = DD = DE = {b}

However, when we do directional arc consistency with respect to the order EDCBA, we get the 

domains as,

DE = {b}, DD = {m, v, b}, DC = {r, b, m}, DB = {b, v}, DA = {r, b, v}

Observe that the only value in DE is b. The equality relation allows only the assignment of value b 

to the rest of the variables, which is indeed present in all domains. Thus, we have backtrack free search.

If we had chosen the other ordering ABCDE, we would have got the domains as follows,

DA = {b}, DB = {b}, DC = {r, b, m}, DD = {m, b}, DE = {r, m, b}

Now if we choose the assignments A = b, B = b and C = r, which is allowed because C is not related 

to either A or B, we are at a dead end, and will have to backtrack. This is consistent with what happened 

in the map colouring example. The ordering EDCBA makes the graph of width 1, and induced width4

1, and it suffices to achieve directional arc consistency or 2-consistency.

9.5.2 Directional Path Consistency

We can extend the idea of DAC to Directional Path Consistency (DPC). Here too, we begin with the 

last variable and call Revise-3 with every pair of variables, both of which are connected to it. DPC may 

prune the relation, whether implicit or explict, between the parent nodes. But for achieving backtrack-free 

status (under certain conditions), one must be careful to enforce DAC after DPC to remove unsupported 

values from those domains as well. Consider a three variable map colouring problem,

DA = {r, b, g}, DB = {r, b, g}, DC = {r}

and the relations as,

A π B : RAB = {(r, b), (r, g), (b, r), (b, g), (g, r), (g, b)}

B π C : RBC = {(b, r), (g, r)}

and A π C : RBC = {(b, r), (g, r)}

Assuming the order to be ABC, achieving DPC would remove all tuples containing r from RAB. But the 

value r is still in the domains DA and DB, and can potentially be selected leading to a dead end. These can 

be removed by DAC. In this example, the desired effect can be achieved by applying DAC before DPC

too, but the reader is encouraged to construct an example in which it is necessary to do so after DPC.

Every time a call is made to Revise-3, it may prune the relation between the calling pair of variables. 

If the relation is implicit then it infers a new explicit relation. This new relation must be added to the 

constraint graph before proceeding further with DPC. Figure 9.24 shows a map colouring CSP with a 

chosen ordering5 of variables. The graph and three implicit relations amongst parents of variable E are 

shown on the top. Observe that after a call to Revise-3(DE, RCD, RCE, RED), the relation RCD is introduced 

into the constraint graph, and after a call to Revise-3(DE, RBD, RBE, RED), the relation RBD is introduced. 

Next, when algorithm DPC moves to process node D, it must be aware of these two new edges to be 

able to prune the relation RBC if needed.

4 If width is 1, then each node has one parent, and induced width is 1 as well.
5 The ordering chosen is not the best possible as observed earlier.
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A B C D E

A B C D E

RBC = {(r, r), (r, b), (r, g), (b, r), (b, b), (b, g)}
RCD = {(r, b), (r, g), (b, b), (b, g), (g, b), (g, g)}
RBD = {(r, b), (r, g), (b, b), (b, g)}

{r, b, g} {r, b} {r, b, g} {b, g} {r}

{r, g} {b} {b, g} {b, g} {r}

RBC = {(b, b), (b, g)}
RCD = {(b, b), (b, g), (g, b), (g, g)}
RBD = {(b, b), (b, g)}

FIGURE 9.24 Another map colouring problem with a chosen ordering and the domains shown on 

the top. The revised domains and relations after calls to DPC and DAC at node E are shown below. 

Note that while the original relations depicted by solid edges are the not-equal relation, the new one’s 

shown with dashed edges allow certain combinations of colour including the same ones.

The revised domains and relations after DPC and DAC are enforced and are shown below the arrow 

in the figure.

The algorithm DPC described below includes the DAC step.

DPC (X = (x1, x2, …, xn), D, C)

1 initialize E = {(i, j) | {xi, xj} is the scope of some relation

2 for k ¨ n downto 2

3  do for each i<j<k such that (i, j), (j, k) Œ E

4   Rij ¨Revise-3(Dk, Rij, Rik, Rkj)

5   E ¨ E » {(i, j)}

6   C ¨ C » {({i, j}, Rij)}

7  do for each i<k s.t. ({i, k}, Rik) Œ C

8   Di ¨Revise(Di, Dk, Rik)

9 return (X, D, C)

FIGURE 9.25 The algorithm DPC takes as input a CSP with an ordering on its variables and returns 

an equivalent CSP after enforcing directional path and arc consistency. It may add new edges to the 

constraint graph, and therefore new explicit constraints.

The complexity of DPC is O(n3k3), where n is the number of variables and k the size of each domain. 

For the last variable in the worst case, it has to look at (n – 1) * (n – 2) or O(n2) pairs of variables. 

Each pair of variables may have at most k2 edges, for each of which k values in the domain of the last 

variable may have to be examined. Thus, for processing the last variable, the complexity is O(n2k3), and 

processing all the n variable will give us a worst-case performance of O(n3k3). Observe that we consider 

all pairs of variables instead of all edges because the procedure can add more edges during processing.

9.5.3 Adaptive Consistency

We can extend the notion of directional consistency for higher orders. If we want to enforce i-consistency, 

we need to look at combinations of (i – 1) parents of a node. For strong i-consistency, we would need 

to establish directional j-consistency for all j < i as well.
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Given the fact that directional consistency is enforced from the last to the first variable, when the 

time comes to process variable xi we already know how many parents it has, and therefore we know 

what degree of consistency is needed for that node. This leads us to the idea of adaptive consistency, in

which a call to an appropriate degree of i-consistency is made for each node. The following algorithm 

illustrates this idea of adaptive consistency. Observe that the algorithm in Figure 9.26 does not necessarily 

implement strong consistency.

AdaptiveConsistency (X = (x1, x2, …, xn), D, C)

1 initialize E = {(i, j) | {xi, xj} is the scope of some relation

2 initialize C ¢ ¨ C

3 for k ¨ n downto 2

4  S ¨ Parents(xk)

5  RS ¨ Revise-I (S, xk)

6  E ¨ E » {(i, j) | i, j Œ S}

7  C ¢ ¨ C ¢ » {(S, Rij)}

8 return (X, D, C ¢)

FIGURE 9.26 The algorithm AdaptiveConsistency takes as input a CSP with an ordering on its 

variables and returns an equivalent CSP after enforcing directional of appropriate degree. It may add 

new edges to the constraint graph, and therefore new explicit constraints. The function Parents(xk)

returns the set of parents of a node and the procedure Revise-I (S, xk) is defined in Fig. 9.20.

The induced width of the ordered constraint graph will dictate the amount of work done by adaptive 

consistency.

In general, if the induced width is w then enforcing strong w-consistency may require one to inspect 

subsets of smaller size as well. In the end, while selecting the value for a variable xi, the reduced domain 

of xi should only contain values that participate in all constraints for all future variables. We argue that 

this happens automatically if we use the Adaptive Consistency algorithm. If a given node xk has P

parents then the algorithm ends up adding edges between all the parents, and establishing a constraint 

of arity (P – 1). Let xP be the first such parent the algorithm encounters when processing in the last to 

first order. Then xP would have all the other parents of xk as parents, apart from any parents of its own 

that it might have had. Directional consistency will make sure that only those compound labels for the 

parents of xP are allowed that can be extended with a value for xP. As we progress (backwards), the 

maximum possible size of the sets of parents will decrease, even though more edges are added on the 

way, eventually pruning the domains of independent variables. Observe that if the graph is connected 

then x1 will have an edge to x2 by the time x2 is processed6. When the second variable x2 is processed, it 

will prune the domain D1 of x1 so that only values consistent with x2 are retained. If x1 is also connected 

to some xl then the constraint R12 would have been introduced (or pruned) to allow only pairs consistent 

with the later variable. This will constrain the choice of a value for x2. Likewise, a constraint R123 will 

constrain the choice a value for x3, and so on. We illustrate this with a couple of examples.

Consider applying adaptive consistency to the problem depicted in Figure 9.24, shown below in 

Figure 9.27. First, 4-consistency is applied to the variable E since it has three parents. This infers the 

relation RBCD and adds the edges (B, C), (C, D) and (B, D) to the constraint graph. Now the variable D

has two parents and so 3-consistency is applied to it. This prunes the relation RBC as shown. The edge 

(B, C) already exists. Then variables C and B are processed and 2-consistency is applied, pruning the 

domains of B and A respectively, as shown.

6 If the graph is not connected then each connected component is an independent CSP.
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A B C D E

A B C D E

{r, b, g} {r, b} {r, b, g} {b, g} {r}

{r, g} {b} {r, b, g} {b, g} {r}

RBCD = DB ¥ DC ¥ DD

RBC = DB ¥ DC

RB = DB

RA = DA

RBCD = {(b, b, b), (b, b, g), (b, g, b), (b, g, g)}

RBC = {(b, b), (b, g)}

RB = {b} = DB9

RA = {r, g} = DA9

FIGURE 9.27 Adaptive consistency on the problem in Fig. 9.24 infers a different set of relations as 

shown. It prunes the domains of only variables B and A, when establishing consistency for C and B 

respectively. The resulting graph is backtrack free, when values are chosen respecting the inferred 

constraints.

The reader should verify that the resulting graph yields backtrack free search. There is a spurious 

value “r” in the domain DC but it is never selected because the inferred relation RBC does not allow it.

Consider another problem of the five variables as follows,

Problem CSP8

 ● X = {x2, x2, x3, x4, x5}

 ● D = {D1 = D2 = D4 = {r, b, g}, D3 = {r, b}, D5 = {b, g}}

 ● C = {Cij | xi, xj Œ X} where Sij = {xi, xj} and Rij = (xi = xj).

The graph is fully connected and the relation is that any two variables are assigned the same colour. 

Let us assume the ordering x2, x2, x3, x4, x5. Adaptive consistency proceeds as follows.

1. 5-consistency is applied to the variable x5 and the relation R1234 is inferred as

R1234 = {(b, b, b, b)}

2. 4-consistency is applied to the variable x4 and the relation R123 is inferred as

R123 = {(b, b, b)}

3. 3-consistency is applied to the variable x3 and the relation R12 is inferred as

R12 = {(b, b)}

4. 2-consistency is applied to the variable x2 and the relation R1 is inferred as

R1 = {b}

Observe that no domain is pruned explicitly, except that the value of variable x1 is restricted to “b”

because of R1. Subsequently, because of the inferred domains, only the value “b” is selected for all 

other variables, in a backtrack free manner. See also Problems 14 and 15 for more examples of adaptive 

consistency.
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9.5.4 Minimum Width Orderings

It is clear that finding an ordering with the minimum induced width is beneficial from the complexity 

perspective. It turns out that while finding the minimum width can be done easily, finding a minimum 

induced width ordering is an NP-complete problem.

The following greedy algorithm yields a minimum width ordering of the nodes of a graph. The 

algorithm constructs the ordering from the last to first, at each stage choosing a variable with the smallest 

number of neighbours in the constraint graph, and removing it along with its edges from the graph. The 

algorithm is depicted in Figure 9.28. It returns a list which captures ordering of the nodes. Observe that 

the index k in the loop is not used. The for loop is only suggestive of the fact that the order is constructed 

last to first. One could have used a while or repeat-until loop as well.

MinWidth (G = (V = {v1, …, vN}, E))

1 O ¨ ( )

2 for k ¨ n downto 1

3  lowestDegree ¨ RemoveLowestDegreeNode(G)

4  E ¨ E \ {(x, y) | x = lowestDegree or y = lowestDegree}

5  O ¨ cons(lowestDegree, O)

6 return O

FIGURE 9.28 The algorithm MinWidth takes a graph with N vertices and returns a minimum width 

ordering of the vertices. We assume a function RemoveLowestDegreeNode(G) finds the vertex with 

the lowest number of edges emanating from it, and removes it from the set V. The function cons is a 

Lisp like function that adds an element to the head of a list.

It was observed by Freuder (1982) that if the constraint graph is a tree then one can always come 

up with an ordering of width one. The reader should verify that the above algorithm produces such an 

ordering for the problem in Figure 9.22. If one enforces directional arc consistency on such an ordering, 

the resulting graph will still have width one. This is due to the fact that each node has exactly one parent 

in this ordering, and, therefore, the induced graph is the same as the given graph. Hence, constraint 

networks that are trees can be made backtrack free by choosing a minimum width ordering and enforcing 

DAC on the resulting graph (Freuder, 1982).

In general though, enforcing an appropriate amount of directional consistency on a given ordering may 

increase the width of the graph. Figure 9.29 shows a graph with a minimum width ordering ABCDEFG
with width = 2. Enforcing directional path consistency makes the induced width of the graph 4.

A B C D E F G

Width

Induced Width

0 1 2 2 2 2 2

0 1 2 3 4 3 2

A B

C D

E

F

G

FIGURE 9.29 The ordering here is a minimum width ordering. Enforcing higher order consistency on 

a minimum width graph is likely to increase the width. The width of the example graph here increases 

from 2 to 4 as shown.
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While it is hard to find the minimum induced width orderings, one can adapt the MinWidth algorithm 

to account for connectivity of parents of a node. The two algorithms described below produce good 

orderings. The algorithm MinInducedWidth described in Figure 9.30 chooses a node with the smallest 

number of neighbours in the constraint graph, and removes it and the edges emanating from it. Before 

proceeding further, however, it connects the parents of the node just selected.

MinInducedWidth (G = (V = {v1, …, vN}, E))

1 O ¨ ( )

2 for k ¨ n downto 1

3  lowestDegree ¨ RemoveLowestDegreeNode(G)

4  E ¨ E » {(p, q) | (p, lowestDegree) Œ E and (lowestDegree, q) Œ E}
5  E ¨ E » {(q, p) | (q, lowestDegree) Œ E and (lowestDegree, p) Œ E}
6  E ¨ E \ {(x, y) | x = lowestDegree or y = lowestDegree}

7  O ¨ cons(lowestDegree, O)

8 return O

FIGURE 9.30 The algorithm MinInducedWidth is like the algorithm MinWidth in Fig. 9.28, except that 

while removing the selected node from the graph it connects its parents with edges. Observe that we 

have added two pairs (p, q) and (q, p) for every new edge for simplicity.

Figure 9.31 shows the ordering produced by the algorithm MinInducedWidth on the constraint graph 

depicted in Figure 9.29. Observe that the induced width on this ordering ABCEFDG is three, which is 

lower than taking a minimum width ordering and then connecting the parents.

A B C E F D G

Width

Induced Width

0 1 2 2 1 2 2

0 1 2 3 2 2 2

FIGURE 9.31 The induced width of the ordering produced by the algorithm MinInducedWidth on the 

graph of Fig. 9.29 is three.

Another algorithm that has been experimentally shown to be better than the MinInducedWidth

algorithm is the MinFill algorithm. The MinFill algorithm selects that node to be placed in the reverse 

order for which the number of edges needed to connect all its parents is the minimum.

9.6 Algorithm Backtracking

The constraint propagation methods described above are directed towards shrinking the space in which 

one searches for a solution. It is possible to enforce consistency to the extent that finding a solution 

can be done in one pass over the variables in a backtrack free manner, selecting an allowed value for 

each variable. But such reasoning has a computational cost that may become prohibitive. At the other 

end is the conceptually simple search algorithm that tries all combinations of values. This too may 

be computationally too expensive. Somewhere in between lie hybrid approaches that combine search 
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and reasoning, and one has to often find a trade off between the amount of search and propagation an 

algorithm does.

The simplest search algorithm is one that tries all combinations for all values of all variables looking 

for a solution. Such an algorithm could be implemented as Depth First Search (see Chapter 2). If we 

implement the algorithm in Figure 2.16 directly, it will test for consistency (the goalTest procedure) 

only when it has selected values for all variables. This is a waste of effort since we have the constraints 

between subsets of variables explicitly available. The algorithm Backtracking described below tests for 

applicable constraints while selecting values for each variable. If it cannot find a consistent value for 

a variable then it backtracks at that point itself. In the discussion below, we assume that the variables 

are named x1, x2, …, xn, and their domains as D1, D2, …, Dn. We assume a procedure SelectValue that 

selects and returns a value from the domain of the ith variable that is consistent with the values for the 

earlier variables chosen. The solution is assembled in the reverse order in an assignment list A. The list

A is initialized to a list containing an empty list to prevent a call to the function Tail with an empty list.

The algorithm Backtracking makes copies of the domains of all variables and the algorithm SelectValue

extracts values out from the copied domain. Note that the copied domain is shrunk inside the SelectValue

function, implying that the domain is treated as a global variable, or the call is call-by-name. This 

is necessary if the algorithm has to backtrack and try another value. Assuming that the domains are 

represented as lists, the algorithm in Figure 9.32 simply chooses the value at the head of the list. Later, 

we will look at variations that apply some reasoning to filter values not likely to succeed.

Backtracking (X, D, C)

1 A ¨ (( ))

2 i ¨ 1

3 Di ¢¨ Di
4 while 1 £ i £ n

5  do ai ¨ SelectValue(Di ¢, A, C)

6   if ai = null

7   then i ¨ i – 1

8    A ¨ Tail(A)

9   else

10    A ¨ Cons(ai, A)

11    i ¨ i + 1

12    if i £ n

13    then Di ¢¨ Di
14return Tail(Reverse(A))

SelectValue (Di ¢, A, C)

1 while not empty(Di ¢)

2  do ai ¨ Head(Di ¢)

3   Di ¢¨ Tail(Di ¢)

4   if Consistent(A, xi = ai)

5    then return ai
6 return null

FIGURE 9.32 The algorithm Backtracking explores the domains in a depth first manner. However at 

each stage, it calls the procedure Consistent(A, ai) to check that the value being chosen is consistent 

with the compound label assembled so far. We also assume the list processing functions Head, Tail 

and Cons. Initializing A with a list containing one element, in this case the empty list, is simply to 

prevent a call to Tail with an empty list. The return statement is modified to leave out this element. It 

returns an empty list if there is no solution.
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If SelectValue cannot find a value, it returns “null” which prompts the calling procedure to backtrack 

to look for another value for the previous variable from the values remaining in the copy of its domain 

(steps 7 and 8). Observe that if an appropriate amount of (directional) consistency has been enforced 

before calling algorithm Backtracking there would be no backtracking. Backtracking to the previous 

choice point (variable) is termed chronological backtracking. A little later we look at approaches to 

jumping back to variables that may have been the cause of inconsistency that resulted in the backtracking. 

Observe that every time it moves forward to the next variable (steps 11 and 12), it makes a fresh copy 

of the domain.

The algorithm Backtracking can abstractly be described as follows.

Loop: 1. Select a variable.

  2. Select a value for the variable.

  2a. If none then undo some choices and reselect a previous variable.

  2b. Else go to Loop.

Steps 1, 2 and 2a contain the three choices the algorithm has to make. Each of them offers the 

possibility of making an informed choice. The choice at step 1 can be made such that some critical 

variables are assigned values early in search. We have already seen that the motivation for choosing a 

minimum induced width ordering is to arrange the variables such that future variables are constrained by 

as few parents as possible. In the next section, we will also see how the choice of variables is influenced 

dynamically by the current domain sizes of future variables.

Having chosen a variable, the choice of a value for that variable at step 2 determines how future 

variable domains are affected. Some choices may leave more options for future variables. In the next 

section we look at varying degrees of lookahead that an algorithm can do to improve the choice at step 2.

If the algorithm has reached a dead end, then in step 2a it needs to go back and try another value for 

an earlier variable. But the question is, which earlier variable? The inconsistency that caused the dead 

end could have been due to the choice of any variable assigned values in the past. Look-back approaches 

are designed to make this choice in an informed manner. We will look at them in Section 9.8.

We will illustrate the algorithms with the CSP in Figure 9.33, which is a map colouring CSP on the 

constraint graph of Figure 9.29 shown here with the domains. The ordering chosen is GDBFEAC, which 

the reader would have noticed is not the best one, though it is useful for illustrating the algorithms.

A B

C D

E

F

G

1

2

3

4

5

6

7

g, r, w

r, b

r, b g, b, m

b, g r, w

w, r, b

FIGURE 9.33 A CSP associated with the constraint graph of Figure 9.29. We assume the problem 

is a map-colouring problem with the domains as shown. The fixed ordering chosen is GDBFEAC,

depicted by numbers in the graph on the right.
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The search tree generated by algorithm Backtracking is shown in Figure 9.34. Each node, except 

the root, represents a choice of value for a variable. The value has to be consistent with the values 

of its ancestor nodes. The variables are ordered according to the chosen ordering. In the algorithm 

Backtracking, the ordering is fixed, but other algorithms may choose different orderings along different 

branches. The reader is encouraged to try different orderings of a small CSP and verify that the number 

of nodes in the tree depend upon the ordering.

Backtracking goes down the leftmost branch with the partial assignment G = w, D = g, B = b, F = r,

E = g and A = r, before it realizes that it cannot find a consistent value for C. C = r conflicts with A = r,

and C = b conflicts with B = b. It backtracks and tries E = r, and now finds that there is no value left for A.

There are no more consistent values for E, F, and B left, and it next tries the path with B = g. Eventually, 

it terminates with the rightmost path with solid lines that goes down to the value C = b. The solution 

is the set of values along that path and has been assembled in the list A in the algorithm in Figure 9.32.

Algorithm Backtracking backtracks only when it reaches a variable that it cannot find a value for. 

We next look at some strategies that can foresee the dead end a little earlier. The degree of foresight is 

dependent on the amount of work the algorithm does analysing future variables.
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FIGURE 9.34 The search tree explored by algorithm Backtracking for the CSP in Fig. 9.33 when it 

finds the first solution. Each node represents a value for the variable listed on the left. The dashed 

edges indicate nodes not explored by the algorithm.

9.7 Lookahead Strategies

The lookahead strategies we are about to look at, do some amount of consistency checking when 

considering a value for a variable inside the SelectValue procedure of Figure 9.32. In general, the 
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lookahead procedures we discuss, prune the domains of future variables during the process of selecting 

a value for the variable. They reject the value being considered for the variable if it can be determined 

that some future domain has become empty.

The domains have to be carefully maintained. The procedure for selecting values should undo 

any changes to future domains it has made before finding the current value unfit. Likewise, the main 

procedure must also undo such pruning if it has to backtrack from a given variable. In the programs 

below, we assume that the domains and any copies that we make are global and visible to all procedures. 

In practice, one could package the needed domains into a structure and pass them as a parameter.

We use a generalized lookahead algorithm that will call different versions of SelectValue-X for varying 

degrees of propagation (in the style of (Dechter, 2003)). The algorithm is described in Figure 9.34. Since 

the SelectValue-X procedure will prune future domains, removing values variously inconsistent with 

the value being considered, the main algorithm needs to be able to restore the values if it backtracks. In 

the algorithm below, this is done by maintaining copies of all domains at each level in the search tree. 

Steps 11–13 in the algorithm restore domains on backtracking to as they were, before this variable was 

processed. Steps 17–19 make copies when advancing to the next variable.

The simplest consistency check is to make sure that no domain of a future variable is made empty. 

This was illustrated earlier with the 6-queen problem in Figure 9.3. The procedure SelectValue-FC is 

described below.

Backtracking-with-LookAhead (X, D, C)

1 A ¨ (( ))

2 for i ¨ 1 to n

3 do D0i ¨ Di
4 D1i ¨ D0i
5 i ¨ 1

6 while 1 £ i £ n

7 do ai ¨ SelectValue-X(i, A, C)

8 if ai  = null

9 then i ¨ i – 1

10 A ¨ Tail(A)

11 if 1 £ i

12 then for k ¨ i+1 to n

13 do Dik¨ D(i-1)k
14 else

15 A ¨ Cons(ai, A)

16 i ¨ i + 1

17 if i £ n

18 then for k ¨ i to n

19 do Dik ¨ D(i–1)k
20 return Tail(Reverse(A))

FIGURE 9.35 Backtracking with Lookahead prunes domains of forward variables. When it 

backtracks, it needs to undo the pruning done at current level. For this, it keeps mains domains for 

each variable at each level, and restores pruned domains for future variables when it backtracks. The 

call to SelectValue does not have domains as parameters since we have assumed them to be globally 

visible.



Chapter 9: Constraint Satisfaction Problems 317

9.7.1 Forward Checking

In the previous example in Figure 9.34, the variable C has two values in the domain. Of these, C = b 

gets precluded when B = b is assigned, and C = r gets precluded when A = r is assigned. The algorithm 

Backtracking would see this, only when the turn of variable C comes. The forward checking procedure 

would not have chosen the second assignment B = b because it removes values from future domains 

that are directly conflicting with the value being considered and rejects the value if any future domain 

becomes empty due to that. The algorithm SelectValue-FC in Figure 9.36 starts off by backing up copies 

of domains Dik, i < k £ n (steps 1–2). The domain Dii contains values for xi that have not been pruned 

by earlier variables. The algorithm picks one value and prunes inconsistent values from future domains 

(steps 6–16). At any point, if any domain becomes empty the algorithm aborts and resets domains it 

has pruned (steps 12–15), and tries another value (steps 3–6). If after pruning all domains they still 

are non-empty, the algorithm returns the selected value for xi. Observe that the domains Dik, i < k £ n

that are globally visible may have been pruned in the process, and will be copied when the algorithm 

Backtracking-with-LookAhead will move to the next variable (steps 12–13 of Figure 9.35).

SelectValue-FC (i, A, C)

1 for k ¨ i+1 to n

2   do Cik ¨ Dik
3 while not empty(Dii)

4   do    ai ¨ Head(Dii)

5    Dii ¨ Tail(Dii)

6   notEmptyDomain ¨ true

7   k ¨ i + 1

8   while notEmptyDomain and k £ n

9   do for all b Œ Dik
10      if not Consistent(A, xi = ai, xk = b)

11        then remove b from Dik
12    if Empty(Dik)

13      then notEmptyDomain ¨ false

14        for j ¨ i+1 to k

15          do Dij ¨ Cij
16      else k ¨ k+1

17   if notEmptyDomain

18    then return ai
19 return null

FIGURE 9.36 The algorithm Backtracking explores the domains in a depth first manner. However at 

each stage, it calls the procedure Consistent(A, ai) to check that the value being chosen is consistent 

with the compound label assembled so far. We also assume the list processing functions Head, Tail 

and Cons.

We look at the algorithm working on the problem in Figure 9.33. Figure 9.37 below depicts the 

matching diagram for the CSP.

Processing the nodes in the given order GDBFEAC, algorithm Backtracking-with-LookAhead begins 

by calling SelectValue-FC with variable G. SelectValue-FC assigns w to G, and prunes the value w

from the domains of E and F, the variables that G participates in constraints with. Next, the variable D

is taken up, and the value g selected for it. This has no effect on other variables. After that value b is

selected for B, and is therefore removed from the connected domains A and C. The matching diagram 

at this stage is shown in Figure 9.38.
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FIGURE 9.37 The matching diagram associated with the CSP of Fig. 9.33. The chosen ordering 

and the name of each node is shown next to each node. The algorithm begins by picking value w for 

variable G.
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FIGURE 9.38 Forward Checking. After G = w, D = g, B = b, Forward Checking does not notice that 

AC and CF have become arc inconsistent. It carries on to F. It will try to pick value F = r and remove r   

from the connected domains G and C. It will now see that the domain of C has become empty. Since 

there is no other value left in the domain of F, it will backtrack to B and try a new value g.
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At this point, the algorithm attempts to pick a value for the variable F. There is only one value, r, in 

its domain at this stage. The forward-checking algorithm will remove values not consistent with (G = w,

D = g, B = b, F = r) from the domains of the future variables E, A, and C. This results in the value r being 

removed from the domain of C. The domain of C becomes empty and the test in line 12 of the algorithm 

(Figure 9.36) succeeds and the value F = r is abandoned. The domain of F, D44, has become empty 

by now and the algorithm SelectValue-FC returns null, prompting Backtracking-with-LookAhead to 

backtrack to the previous variable. The reader is encouraged to continue tracing the progress of Forward 

Checking and verify that the search tree generated is smaller than the one generated by Backtracking

(Figure 9.34).

Forward Checking looks ahead to check that there exists a value in each future domain that is 

consistent with the value being considered. It does not check whether future domains are consistent 

(in our case, arc consistent) with each other. For example, when the value B = b has been chosen, the 

variable C is no longer arc-consistent with both A and F. An algorithm that explores the relation amongst 

future variable might be able to see that and, as a result, not choose the assignment B = b in the first 

place. Various degrees of lookahead have been investigated and some of the well known variations are 

described below.

9.7.2 Arc Consistency Lookahead

The AC lookahead or Full Lookahead implements full arc consistency between the remaining variables. 

It considers all pairs of future variables and removes values from one domain for which a consistent value 

in the other domain does not exist. The Directional Arc Consistency Lookahead, or Partial Lookahead,

does only directional arc consistency for the future variables. In both cases, the values assigned to existing 

variables are used for checking consistency. We leave the algorithms for full and partial lookahead as 

an exercise for the reader (see also (Haralick and Elliott, 1980)). Here we trace the progress of the 

Full Lookahead algorithm on the problem in Figure 9.33. Like Forward Checking, the algorithm Full

Lookahead too begins by trying G = w, and removing w from its connected variables E and F. But 

removal of these two values triggers a chain of value removals (in the manner of algorithm AC-3), 

resulting in the matching diagram shown in Figure 9.39. Observe that the value r has not been pruned 

from the domain of G because G is not a future variable and does not participate in the propagation. 

Full lookahead can see that choosing G = w will result in a dead end in which the fifth variable E will 

have no consistent assignment, and will abandon G = w right there.

Full Lookahead avoids picking the value w for the variable G. The reader should verify that it will 

proceed with G = r, D = g and try B = b, at which point, it will be able to foresee that one of A or C will

have their domain empty. It will refuse to assign B = b and try B = g next. This will lead to the solution 

shown in Figure 9.34, but in a backtrack free manner. The reader is encouraged to draw the matching 

diagram at the point when the algorithm finds the solution.

In the above example, full lookahead resulted in a backtrack free search, but in general one may 

have to check for higher order consistency, while doing the lookahead to have backtrack free search. 

In practice, the cost of doing this may be prohibitive and one may have to trade-off search effort with 

propagation effort appropriately for each domain.

Full lookahead may be useful when a variation of backtracking, in which the variables do not have a 

predetermined ordering, is used. Given a fixed ordering, one can use the less computationally expensive 

Partial Lookahead that does DAC on future variables.
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FIGURE 9.39 Full Lookahead G = w. Remove w from F and E. Remove r from C, because it is not 

arc consistent with F. Next, remove b from A, B, and D because not consistent with C. Next, remove 

g (not consistent with B) and r (not consistent with A) from E. At this point, domain of E has become 

empty and therefore G = w is rejected.

9.7.3 Value and Variable Ordering

The algorithms described above use a predetermined ordering of variables, and for each variable, choose 

the first value that is allowed by whatever degree of lookahead being done. One can make a more 

informed decision for both these choices.

Instead of choosing the first past-and-future-consistent value that we find for a variable, we could 

investigate all values in a domain (using a limited degree lookahead) and choose the value for instantiation 

based on some heuristic criteria (Dechter, 2003).

One heuristic called min-conflicts chooses that value that does the least amount of pruning of future 

domains. Another heuristic, max-domain-size, strives to keep the future domains as large as possible. 

For each candidate value, it computes the size of the smallest resulting domain, and chooses that value 

for which the size (of the smallest future domain) is largest. A third heuristic, estimated-solutions, takes 

a more global view and looks at the sizes of all remaining domains, by taking their product. The idea 

is that the product represents the maximum number of possible solutions remaining after the choice of 

a given value for a variable.

The minimum width and the minimum induced width ordering studied earlier in this chapter were 

based on the topology of the underlying constraint graph. They were oblivious of the domains of the 

variables. The number of values that the domain of a variable has determined the topology of the search 

tree lying below the variable. The number of subtrees below the variable is equal to the number of 

values in the domain of the variable. Thus, if we choose an ordering in which the variables of smallest 

domains are chosen first, we will get a search tree with the smallest number of nodes, as illustrated in 

Figure 9.40. In the example the domains are DA = {w, r, b}, DB = {g} and DC = {b}.
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FIGURE 9.40 The number branches below a node depends upon the number of values in the domain 

of the variable. Choosing smaller domain variables first, results in smaller trees, as in the tree on the 

right.

The domain sizes of variables change dynamically when lookahead algorithms prune domains of 

future variables. It is possible that some variables may be pruned more than others. In such a situation, 

one may want to investigate the domains of the future variables before choosing the variable to instantiate 

next. The high level algorithm for backtracking search with dynamic variable ordering would look like 

the following.

Loop: Choose the variable with the smallest domain.

  Choose a value for the variable extending the solution vector A.

  Prune the domains of all future variables, using lookahead w.r.t. A.

Refinement of the high level algorithm will fill in the method for selecting the value for the selected 

variable, backtracking if no value is found, and exiting with a solution vector or a failure message as 

the case may be. Observe that if the value for the variable is selected using Forward Checking or Full

Lookahead then the domains of all future variables would have been pruned during the selection process 

itself.

9.8 Strategic Retreat

In the algorithms that we have discussed above, and the search methods in the earlier chapters, when a 

partial solution cannot be extended, the algorithm backtracks to the latest choice point and tries another 

choice. This mode of backtracking is called chronological backtracking. In a way, this is a blind (and 

conservative) strategy that is devised to explore the complete space in a simple and systematic manner. 

However, as we saw in Chapter 6 (see Figure 6.1), a search algorithm will often repeatedly explore a 

part of the search space in which no solution lies, a behaviour known as thrashing. This is also evident 

in the space explored by the algorithm Backtracking described earlier in this chapter. A cursory look at 

Figure 9.34 will reveal that the three subtrees located below the choice of the first variable G = w are 

identical and without a solution. In hindsight, it is clear that given G = w (or Evening = Visit_Mall7 in 

Chapter 6), it is futile to explore different combinations of the remaining choices. The question is, can 

an algorithm have the foresight to skip some of this exploration destined to fail?

7 One can also recognize that the task of designing a treat in Chapter 6 is in fact a CSP. This is true of all problems that can be 

posed as search problems, and CSP is another formulation for a general problem solving method. 
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When the search algorithm reaches a dead end, it needs to undo some of the decisions made and try 

something different. In the context of CSP, let us say that the algorithm has constructed a compound label 

ak = (x1 = v1, x2 = v2, … , xk = vk) and is unable to find a consistent value for the (k + 1)st variable. We say 

that xk+1 is inconsistent with ak, and xk+1 is a dead-end variable associated with the dead-end assignment 

ak. An intelligent backtracking algorithm will try and determine the reason for this inconsistency and 

go back and undo the decision at the culprit variable. We often use the term dependency-directed 

backtracking for such algorithms. Let us say that the culprit variable is xi where 1 £ i £ k. We say that 

jumping back to try a different value for xi is safe, if trying a different value for any xj where i < j £ k

cannot lead to a consistent value for xk+1. This means that the compound labels ai and aj where i < j £ k

are all inconsistent with xk+1. We say that a jump to xi is maximal, if jumping back to an earlier variable 

is not safe.

An algorithm that performs safe and maximal jumps from dead ends is the BackJumping algorithm.

9.8.1 Algorithm Backjumping

The algorithm Backjumping presented by John Gaschnig (1977; 1978) keeps track of the values of past 

variables that conflict with the current variable. When a dead end occurs for the variable xk+1, it identifies 

the culprit variable xi as the latest variable whose (assigned) value is the first to conflict with some 

value of xk+1. The idea is that such a variable is likely to be safe and maximal for jumping back to. We 

illustrate this with an example from the 6-queens problem. Let a search algorithm place five queens as 

shown in Figure 9.41 before it reaches a dead end. There is no value for the sixth queen. The numbers 

in the row 6 on the chessboard represent the earliest queen that conflicts with that square. For example, 

the value 3 in the square <6, b> says that queen 3 is the earliest one that conflicts with placing queen 6 

on this square. Gaschnig’s BackJumping algorithm employs a ratchet variable called latestk for the kth

variable that keeps track of the highest such values. In the figure, this value is 4 from the square <6, d>.
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FIGURE 9.41 Gaschnig’s Backjumping identifies the culprit as the latest variable that has conflicted 

with a value being considered. In this figure, there is no value for queen 6. The numbers in row 6 

identify the first queen that conflicts that value (column label). The variable latest6 is a ratchet that 

keeps track of the highest such value.

Gaschnig’s algorithm is like Backtracking, except that when the procedure to select a value is called 

for the variable xi it either returns a value for that variable, or returns null along with the value for latesti.

In the algorithm in Figure 9.42, we assume8 that the variables latesti is in a global array latest(i) visible to 

8 This assumption is made to simplify the algorithm description. In practice, one may pass a pointer to the variable or array. 
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both procedures. We also assume a function SubLabel(A, k) that returns a prefix of the label constituting 

of (chronologically) the first k values in a compound label A. When Backjumping calls SelectValue-GBJ

with a variable xi, the latter inspects values in the domain Di one by one, till it finds a consistent value. 

For each value, it checks for consistency with the prefix of k values in the label, k varying from 1 to i. If 

for some k, it cannot find a value then it marks that k as a possible culprit. The real culprit is the highest 

such index found for each of the values of xi. Note that the culprit is needed only if all values of xi are 

inconsistent, and the state is a dead end.

Backjumping (X, D, C)

1 A ¨ (( ))

2 i ¨ 1

3 Di ¢¨ Di
4 latest(i) ¨ 0

5 while 1 £ i £ n

6  do ai ¨ SelectValue-GBJ(Di ¢, A, C, i)

7   if ai  = null

8   then i ¨ latest(i)

9      A ¨ Tail(A)

10   else

11      A ¨ Cons(ai, A)

12      i ¨ i + 1

13      latest(i) ¨ 0

14      if i £ n

15      then Di ¢¨ Di
16return Tail(Reverse(A))

SelectValue-GBJ (Di ¢, A, C, i)

1 while not empty(Di ¢)

2  do ai ¨ Head(Di ¢)

3   Di ¢¨ Tail(Di ¢)

4   conflicting ¨ false

5   k ¨ 1

6   while k < i and not conflicting

7      if k > latest(i) then latest(i) ¨ k

8      if Consistent(SubLabel(A, k), xi = ai)

9      then k ¨ k + 1

10      else conflicting ¨ true

11  if not conflicting then return ai
12return null

FIGURE 9.42 The algorithm Backjumping is like Backtracking, except that the procedure 

SelectValueGBJ tests for consistency with compound labels of increasing size. If at some stage the 

value being considered is not consistent with the label, it marks the index of the label as a possible 

culprit. We assume a function SubLabel that extracts a compound label of the first k variables from the 

partial solution being constructed.

Gaschnig’s approach to jumping back works only when a dead end is encountered during search, 

sometimes called a leaf dead end. It may be possible that when the algorithm jumps back to the culprit 

variable, it cannot find another value there as well. This situation is referred to as an internal dead end.

But here the algorithm is compelled to do chronological backtracking. The reason for this is as follows. 
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Let xc be the culprit variable that Backjumping has jumped back to. Now the fact that the algorithm 

had earlier proceeded beyond xc means that it had found a consistent value for xc. It is only when it 

has jumped back to xc that it cannot find another consistent value. The reason it cannot apply the same 

principle while backtracking from xc, the internal dead end, is that it was consistent with its predecessors 

(when it went forward) and, therefore, will be consistent with all the prefixes of the predecessors as well. 

And it cannot find a new culprit by trying the compound label with the remaining values of xc because 

it might jump over a variable which might have a value consistent with one of the ignored values of xc.

Hence to be safe, BackJumping steps back to the previous variable. The reader should verify that this 

happens automatically with the value stored in latest(c), and likewise for its predecessors.

In the search tree of Figure 9.34, when the algorithm is unable to choose a value for the variable C, it 

will jump back to F = r, which is the first variable C = r came in conflict with. Before that C = b would

have conflicted with B = b, but of the two, F is the “latest” variable. Since the algorithm has no other 

value for F (w conflicts with G = w), it steps back one step to the variable C.

An algorithm that is able to jump back from internal dead ends as well is described below. The 

algorithm GraphBackjumping decides which variable is a culprit, based on the topology of the underlying 

constraint graph. In the process, it tends to be more conservative, and its jumps may not be maximal.

9.8.2 Algorithm GraphBackjumping

The reason that a chronological step back may not be useful is that the previous variable may not have 

imposed any constraint on the current dead-end variable. One simple way to infer that the previous 

variable did not impose a constraint that resulted in consistency is that it is not connected to the current 

variable in the constraint graph.

When a search algorithm reaches a dead end at the variable xk+1 the algorithm GraphBackjumping

assumes that the latest variable xl connected to xk+1 in the constraint graph is the culprit. Observe that 

this may not lead to a maximal jump back because the real culprit may in fact be an earlier variable. 

GraphBackjumping does not keep track of values and conservatively assumes that xl is the culprit. 

Also, observe that GraphBackjumping will be safe only when all constraints explicitly show up in the 

constraint graph.

If the variable xl is an internal dead end, the algorithm will jump back to the latest predecessor variable 

connected to either xk+1 or xl. The style of backjumping is illustrated in Figure 9.43, where the CSP of 

Figure 9.33 is attempted with the ordering CEABFDG. If the variable G were to be a dead end then the 

latest connected predecessor is F, but if F too does not have another value then the algorithm will jump 

back to E which is the next latest predecessor of G.

A BC DE F GA B

C D

E

F

G

FIGURE 9.43 GraphBackjumping. Given the left ordering, if G is a dead end, the algorithm jumps 

back to F. If that is an internal deadend, it jumps back to E, and then to C if needed.
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When the GraphBackjumping algorithm retreats from a variable X, it uses a list of predecessors that 

it may need to jump back to. This list contains not only its own connected predecessors, but also that of 

any node in the future it is jumping back from. In the above figure, let the algorithm be about to jump 

back from the node F. If D were to be the leaf dead end that initiated the retreat for some assignment 

aF to variables C, E, A, B and F then it would “jump” back to F, and if F had no more values it would 

now go to C, because that is the latest connected predecessor for both F and D, the node it jumped back 

from. If on the other hand, G were to be the dead end for an assignment aD to variables C, E, A, B, F

and D, the algorithm would jump back to F, and then to E if it had to retreat further, if F was an internal 

dead end, finally backtracking to C if needed.

In the algorithm GraphBackjumping in Figure 9.44, each variable X maintains a set TX of target 

variables that it may have to jump back to. This set is initialized to Parents(X) (the parents of X in the 

given ordering) when search advances to X.

TX ¨ Parents(X)

GraphBackjumping (X, D, C)

1 A ¨ (( ))

2 i ¨ 1

3 Di ¢¨ Di

4 Ti ¨ Parents(i)

5 while 1 £ i £ n

6  do ai ¨ SelectValue(Di ¢, A, C)

7   if ai = null

8   then iCurrent ¨ i

9    i ¨ Latest(Ti)

10    Ti ¨ Ti » (TiCurrent « Predecessors(Xi))

11    A ¨ JumpTail(A, i, iCurrent)

12   else

13    A ¨ Cons(ai, A)

14    i ¨ i + 1

15    if i £  n

16    then Di ¢¨ Di

17    Ti ¨ Parents(i)

18 return Tail(Reverse(A))

SelectValue (Di ¢, A, C)

1 while not empty(Di ¢)

2  do ai ¨ Head(Di ¢)

3   Di ¢¨ Tail(Di ¢)

4   if Consistent(A, xi = ai)

5    then return ai

6 return null

FIGURE 9.44 The procedure GraphBackjumping is like Backjumping, but maintains a list of target 

variables Ti it can jump back to from Xi. When the time comes, it jumps to the latest variable in Ti at 

that point. We assume a function JumpTail(A, i, iCurrent) that rolls back  the partial solution by an 

appropriate amount determined  by the two indices i and iCurrent.
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Let the search jump back from some variable Y to X. If there is no value remaining in the domain of 

X then the algorithm will have to jump back from X. The candidate nodes for jumping back to are the 

nodes in TX and the nodes in TY that occur before X in the ordering.

TX ¨ TX » (Ty « Predecessors(X))

We assume a function Predecessors(X) that returns the nodes that are before X in the ordering. Note 

that TY would likewise have been initialized to Parents(Y) and augmented, if Y were not a leaf dead end. 

If Y were to be a leaf dead end then TY would be Parents(Y).

Assuming that the nodes are visited in the order X1, X2, …, Xn then the index of the node that 

Backjumping will jump back to from Xi is the latest node in Ti, the target set of Xi. We assume a function 

Latest(T) that returns the index of the latest variable from a set T with respect to the given ordering.

This making of a more informed leap back from an internal dead end is the way GraphBackjumping is 

different from Backjumping. Backjumping makes the first jump (from a leaf dead end) that is both safe and 

maximal, but subsequently moves back one step at a time in the chronological order. GraphBackjumping

may be somewhat conservative in the first jump from the leaf dead end, but can make longer jumps 

from internal dead ends too.

Backjumping relies on the actual conflicts of values it has seen. But these apply only to leaf dead ends. 

GraphBackjumping relies on possible conflicts as indicated by the constraint graph. It treats both internal 

and leaf dead ends in a similar manner. The only additional thing it needs to do for internal dead ends is 

to keep track of the parents of future variables it has backtracked from. The algorithm CDBackjumping

or Conflict Directed Backjumping relies on the information of actual conflicts, but maintains a target 

set for jumping back to in the manner of GraphBacktracking.

9.8.3 Algorithm CDBackjumping

Conflict Directed Backjumping is an algorithm that is aware of the underlying constraint graph, but 

determines where to jump back to, based on the actual conflicts that it has recorded. As a result, it can 

jump back over variables that GraphBackjumping is forced to revisit.

The algorithm uses an ordering of the constraints defined as follows. Given an ordering of the 

variables, a constraint Ci comes earlier than a constraint Cj if the latest variable in its scope Si which is 

not in Sj comes earlier in the variable ordering, than the latest variable in Sj not in Si. For example, if 

the variables are ordered as (x1, x2, …, xn) and the scope of C1 is S1 = {x1, x5, x7, x9} and the scope of 

C2 is S2 = {x2, x5, x6, x9} then C2 comes earlier in the constraint ordering because x6 comes before x7.

Let the ordered set of constraints be (C1, C2, …, CP) with the corresponding relations (R1, R2, …, RP)

and scopes (S1, S2, …, SP). When the algorithm has constructed a compound label ak = (x1 = v1, x2 = v2,

… , xk = vk) and is looking for a consistent value for the (k + 1)st variable xk+1, it looks at the values in 

its domain Dk+1 one by one. For each value b ŒDk+1 that is inconsistent with ak, it identifies the earliest 

constraint Cj (in the ordering described above) that violates (ak, xk+1 = b). It adds the variables in the scope 

Sj of that constraint to the set of target variables it may need to jump back to. Like GraphBackjumping,

this algorithm too accumulates the target variables when it jumps back from a future variable Y to the 

current variable, and also chooses the latest variable from this set of target variables. The algorithm is 

depicted in Figure 9.45.

One difference between Gaschnig’s Backjumping algorithm and CDBackjumping is that in the 

SelectValue phase, the former marks the index of the variable that is the culprit at a leaf dead end, while 

the latter marks the constraints that participate in a conflict with any value of the current variable. As 
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CDBackjumping (X, D, C = (C1, C2, …, CP))

1 A ¨ (( ))

2 i ¨ 1

3 Di ¢¨ Di

4 Ti ¨ ( )

5 while 1 £ i £ n

6  do ai ¨ SelectValue-CDBJ (Di ¢, A, C, i, Ti)

7   if ai = null

8   then iCurrent ¨ i

9    i ¨ Latest(Ti)

10    Ti ¨ Ti » (TiCurrent « Predecessors(Xi))

11    A ¨ JumpTail(A, i, iCurrent)

12   else

13    A ¨ Cons(ai, A)

14    i ¨ i + 1

15    if i £ n

16    then Di ¢¨ Di

17    Ti ¨ ( )

18 return Tail(Reverse(A))

SelectValue-CDBJ (Di ¢, A, C, i, Ti)

1 while not empty(Di ¢)

2  do ai ¨ Head(Di ¢)

3   Di ¢¨ Tail(Di ¢)

4   conflicting ¨ false

5   k ¨ 1

6   while k < i and not conflicting

7   if Consistent(SubLabel(A, k), xi = ai)

8   then

9    k ¨ k + 1

10   else

11   conflicting ¨ true

12   j ¨ EMC(SubLabel(A, k), xi = ai)

13   Ti ¨ Ti » Sj

14  if not conflicting then return ai
15 return null

FIGURE 9.45 The main procedure of CDBackjumping is same as GraphBackjumping, maintaining 

a set Ti of target variables to jump back to. The difference is that here the set Ti is initialized to an 

empty set, and variables are added in the call to SelectValue-CDBJ. The function SubLabel extracts

the first k values from a compound label. The algorithm works with a set of ordered constraints as 

described in the text. We assume a function EMC that returns the index of the earliest constraint in 

the ordering that produces the conflict, and variables in the scope of that constraint are added to the 

target set.
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it tries different values b ŒDk+1, it marks all the (variables in the) constraint that the value xk+1 = b was

in conflict with. This set of variables called the Earliest Minimal Conflict (EMC) set is remembered as 

the set of variables that conflicted with some value from Dk+1. Observe that the EMC set is augmented, 

only if there is an actual conflict which is better than the conservative GraphBackjumping that assumes 

that any connected variable is a culprit. However like GraphBackjumping, it remembers the set of target 

variables, so that when the current variable is an internal dead end it needs to backtrack from, it can 

jump back safely using this target set augmented by the targets of variables it has jumped back from. 

The target set Ti for each variable is recorded in the forward phase, and used in the backtracking phase 

to identify safe variables to jump back to. This is better than Gaschnig’s Backjumping which had no 

such memory of target variables and was forced to take only one step back chronologically after the 

first jump from the leaf dead end.

9.9 Discussion

Constraint Satisfaction Problems are an alternative formulation of problem solving, in which the problem 

to be solved is represented as a set of variables and constraints that define the combination of values the 

variables can be assigned in the same solution. Each constraint specifies partial and local information as 

relations between a subset of variables. Taken together, all the constraints together specify a constraint or 

relation on all the variables. This solution relation specifies the solutions or the set of allowable values 

for all the variables. The task of solving the CSP is to find this solution relation.

The simplest approach to solving a CSP is to treat it as a search problem, and explore different 

combinations of assignments till a solution (assignment) is found. The problem with this approach 

is that the number of combinations is too large. The explicit nature of the local information makes 

it possible to reason about allowable combinations to prune the domains of the variables, throwing 

away values from domains that will never participate in solutions. This form of reasoning also prunes 

combinations of values, or relations, for sets of variables, keeping only those that can participate in 

solutions. Enforcing higher forms of reasoning is also a computationally expensive process, and one 

has to rely on an appropriate combination of search and reasoning to solve a specific class of problems.

We have studied different combinations of reasoning that can help reduce the load of search, including 

ordering of variables based on the topology of the graph, combining different levels of lookahead with 

search, and exploiting some form of information to avoid searching fruitless combinations. The lookahead 

strategies described in this chapter have introduced the notion of domain independent heuristics in search. 

The heuristics are used to select the variable to instantiate next, as well as the values for the selected 

variable. The heuristic is computed not by harvesting some domain knowledge as was done in chapter 

3, but are computed in a domain independent manner by exploring the future decisions with a relaxed 

version of the original harder problem. We will study this notion of domain independent heuristic 

functions in the next chapter as well as on advanced planning.

In this chapter, we have confined ourselves to finite CSPs in which the domains of variables are 

finite sets. Many interesting problems, on the other hand, have infinite and/or real domains. Many of 

these are well studied in specific forms such as linear programming or integer programming problems. 

These problems are often associated with the optimization of some objective subject to these specialized 

constraints. One can also associate optimizing functions with CSPs by introducing what are known as 

soft constraints. Soft constraints are expressed as any other constraints, except that a penalty function 

is associated with them. In the normal CSP, a solution is an assignment that satisfies all the constraints 

unequivocally. With soft constraints on the other hand, a solution can be accepted even if the constraints, 
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usually a few are not satisfied. The caveat is that one has to incur a penalty with not satisfying those 

constraints. Thus problems with soft constraints have costs associated with solutions. A zero cost solution 

would be one where all constraints are satisfied. Solutions where some constraints are violated will have 

a non-zero cost, dependent on which constraints are violated. The problem of solving a CSP with soft 

constraints thus becomes an optimizing problem in which one has to find a solution that minimizes the 

penalty or cost.

One particular problem that is of interest is reasoning with time. When reasoning with problems 

involving time, one may have to deal with a set of variables that represent time. These variables take 

values from the real domain, and typically there are two approaches to representing time in what are 

known as temporal constraint networks. In one approach, variables are associated with time points, and 

in the other, with time intervals. In both, one can have constraints between variables, and one may be 

required to solve such networks. We will not explore such networks in detail, but introduce them briefly 

in the next chapter in the context of planning with durative actions. The reader interested in greater detail 

is referred to (Dechter, 2003), (Apt, 2003), and (Rossi et al., 2006).

 Exercises

1. Express the 6-queen problem associated with Figure 9.2, with relations in the extension form.

2. The N-queens problem in the chapter uses column labels {a, b, c…}. An alternate set of labels 

would be numbers {1, 2, … , N}. Here, the chessboard is viewed as an N ¥ N array, with the indices 

(j, k) of each square being the location. The N-queen problem can then be expressed as a collection 

of N such indices that satisfy certain constraints. Express the constraints in an intensional form. 

Hint: Given two locations Q1 = (x1, y1) and Q2 = (x2, y2), when does Q1 attack Q2?

3. Consider the CSP = <X, D, C> where X = {x1, x2, x3}, D1 = D2 = D3 = {1, 2, 3} and there are 

three constraints R12 = x1 < x2, R23 = x2 < x3 and R31 = x3 < x1. Draw the matching diagram for the 

CSP. Simulate the algorithm AC-3 on the matching diagram. What can one now observe about 

the given CSP?

4. Drop the constraints R31 from the above problem and repeat the process.

5. A cryptarithmetic problem is an arithmetic problem in which the digits have been replaced by 

some alphabets of a language. The task is to assign distinct digits to the letters in the encrypted 

problem such that the arithmetic is correct. Express the following cryptarithmetic problems as CSPs

(a) SEND + MORE = MONEY

(b) SIX + SEVEN + SEVEN = TWENTY

(c) EAT + THAT = APPLE

(d) SATURN + URANUS = PLANETS

6. Design a program to generate cryptarithmetic problems. Would you begin with a sum and fit 

numbers to it, or would you start with a word and try and construct the other words meaningfully?

7. Constructing a crossword puzzle that can be posed as a CSP problem. Given an empty crossword 

grid and sets of words of different lengths, express the crossword problem generator as a CSP

problem. What kind of constraints will one add if one wants to generate another problem on the 

same grid, but with different words? Implement a crossword program that generates crosswords 

from the words taken from the current issue of a college magazine.

8. Label the edges in the line diagram in Figure 9.46 with labels from Figure 9.13. Do these drawings 

represent a trihedral object?
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FIGURE 9.46 A line diagram of a solid object.

9. Draw line drawings of objects to illustrate all the different allowed combinations of edge labels 

given in Figure 9.13.

10. Use the following edge labels to pose the constraint satisfaction problem for scene labelling.

(a) (convex p1 p2)

(b) (concave p1 p2)

(c) (occluding p1 p2)

  The last one is to be interpreted as an arrow from p1 to p2. The vertices may be represented as a 

label and a list of 3 or 4 relevant points,

A. (arrow p1 p2 p3 p4)

B. (fork p1 p2 p3 p4)

C. (tee p1 p2 p3 p4)

D. (ell p1 p2 p3)

11. Choose an ordering for the CSP in Figure 9.21 and show that applying DPC and DAC makes it 

backtrack free. Is the same effect achieved if the two procedures are applied in the opposite order?

12. What is the degree of consistency one needs to make the order EDCBA for the problem in 

Figure 9.24, backtrack free?

13. Show that if the constraint graph is a connected graph, then at that point of time when Adaptive 

Consistency processes the second variable, there is an edge connecting the second variable to the 

first variable.

14. Consider the following CSP problem:

  X = {x2, x2, x3, x4}

  D = {{r, b, g}, {r, b, s}, {b, g}, {r, s, g})

  C = {Cij | i, j Œ X} where Sij = {xi, xj} and Rij = (xi π xj)

  Trace the processing done by Adaptive Consistency for the order x2, x2, x3, x4. Is the resulting 

problem backtrack free?

15. Delete any value from the domain of the variable x4 in Problem 14, and repeat the above process. 

Delete one more value and try it again.

16. Draw the search tree explored by Backtracking for the problem in Figure 9.33 with the ordering 

ABCEFDG.

17. Consider a four variable problem with X = {A, B, C, D} and DA = {r}, DB = {b, g}, DC = {c, m, p}, 

and DD = {o, y, v, i} for some CSP. Compare the sizes of the search trees for orderings ABCD

and DCBA.

18. Draw the search tree explored by the algorithm Forward Checking for the problem in Figure 9.33, 

and compare it with the tree in Figure 9.34.

19. Trace the execution of Full Lookahead and draw the matching diagram of the CSP from Figure 9.33 

at the point when the algorithm finds the first solution.

20. Show how the algorithm BackJumping will backtrack on the search tree of Figure 9.34.



P  lanning problems are often described by a Planning Domain Description Language (PDDL) (Fox 

and Long, 2003; Edelkamp, 2004; Gerevini and Long, 2005). The PDDL allows one to write a set 

of predicates that describe the domain and operators that describe the actions that are possible. A plan-

ning problem is an initial state description and a set of goal predicates that a solution plan is required 

to satisfy. The task of planning is to find a solution plan.

The simplest plans are sequences of actions, and the most direct approaches to planning are search 

algorithms to find those action sequences. In Chapter 7, we studied some of the search based planning 

algorithms for the simplest domains. The simplest domains described in PDDL1.0 have instantaneous 

deterministic actions making the only changes in a completely observable domain, and the goal predi-

cates specify conditions on the final state. One of the reasons why planning research confined itself to 

the STRIPS domain is that even for these domains, the basic search algorithms were bogged down by 

combinatorial explosion.

In this chapter, we look at some of the techniques that increased the length of plans that could be 

found by an order of magnitude. Included amongst these are methods to adopt a two stage approach in 

which the problem is transformed into a structure that circumscribes the space of search, and domain-

independent, heuristic estimation methods. We also look at the planning in richer domains. In particular, 

we look at planning with durative actions, and look at approaches for problems with trajectory and soft 

constraints. We begin with the algorithm Graphplan that probably heralded these advanced planning 

methods.

10.1 GraphPlan

The algorithm Graphplan presented by Avrim Blum and Merrick Furst (1995; 1997) takes a very 

different view of the planning problem. Instead of searching for a solution either in the state space or 

the plan space (see Chapter 7), it first constructs a structure called a planning graph that captures all 

possible solutions and then proceeds to search for a solution in the planning graph. The Graphplan

algorithm, as described by Blum and Furst, works in the STRIPS domain. An action is applicable in a 

state if its preconditions are true in the state. Negative preconditions cannot be handled
1
. The action 

may have both negative and positive effects. Negative effects delete propositions from the state, and 

positive effects add propositions.

1 They can, however, be encoded as new positive propositions. For example, the fluent clear(x) in the blocks world domain is 

equivalent to the condition ¬ $y(on(y, x)). The fact that actions explicitly add and delete this fluent makes it unnecessary to 

verify the equivalent form logically.

Advanced Planning 
Methods

Chapter 10
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Figure 10.1 shows the basic difference between the state space for a planning problem and the 

corresponding planning graph. State space search applies an action to a given state and generates a 

successor state, as shown on the left. For each action that is applicable, it generates a separate candidate 

state, which will be a starting point for further exploration. In the figure, we assume two actions a1 and a2

that are applicable, with the preconditions linked by edges. The planning graph is a structure, as shown 

on the right, which merges the states produced by the different actions that are applicable. The resulting 

set of propositions forms a layer, as does the set of actions that resulted in this layer. The planning graph 

is a layered graph made up of such alternating sets of action layers and proposition layers. This is in 

contrast to the search tree of states that state space search generates.

a2

a1

a2

a1

Union 

State space  Planning graph  

p4

p3

p2

p1

p4

p3

p2

p4

p3

p2

p1

p5

p4

p2

p1

p5

p4

p2

p4

p3

p2

p1

FIGURE 10.1 The planning graph merges the resultant states of all actions that are individually 

applicable in a given state.

How do we interpret the set of propositions in the proposition layer? Is the union of two (or more) 

states a state? And what is the semantics of the action layer? Does it mean that the actions in each 

layer can be executed together? Let us look at a concrete example from the blocks world domain (see 

Chapter 7). The figure below depicts the action layer and the fact layer for a state containing three 

blocks. One can see that there are propositions in the new layer that cannot hold together. For example, 

On(A, B) and Hold(A)
2
 cannot be true at the same time, and therefore cannot be part of a state. Likewise, 

On(A, B) and Clear(B), OnT(C) and Hold(C) cannot be a part of a state as well. We can also see that 

the two actions in the action layer, PkUp(C) and UnSt(A, B), cannot happen at the same time, given the 

blocks world assumption of a one armed robot.

Propositions in one layer that cannot be true simultaneously and actions in a layer that cannot happen 

simultaneously define a binary relation called mutex in each layer. The mutex relation, which stands for 

MUTual EXclusion, can be shown in the planning graph as edges connecting nodes in a layer. Another 

question one might ask is about the delete effects of actions. In the above example, the PkUp(C) has a 

2 We have adopted shorter names for some predicates to facilitate drawing planning graphs. Here, Hold(A) is a shortened form 

of Holding(A).
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delete effect OnT(C). Should the proposition be allowed in the next layer? The answer is yes, because

if the first action in the plan were to be UnSt(A, B), the resulting layer would have OnT(C). This is the 

Frame Problem (McCarthy & Hayes, 1969) turning up again, and the way it is solved is by introducing 

a special action called No-op(P) for every proposition P. The No-op(P) action has preconditions {P}

and effects {P}. It basically serves to preserve every proposition.

To account for the relation between actions and their effects, we introduce edges between the action 

in a given layer and each of its effects in the next (proposition) layer. These edges are of two kinds, one 

for the add effects and the other for the delete effects. A proposition node may have both a positive edge 

and a negative edge coming in from different actions. Only one, though, can be part of a valid plan.

10.1.1 The Planning Graph

A planning graph, therefore, is a layered graph consisting of alternating layers of proposition and action 

nodes (P0, A1, P1, A2, P2, A3, P3, …, An, Pn). For every proposition pŒPi, there is a special action called 

No-op(p)ŒAi+1 that carries forward p to Pi+1. There are four kinds of edges between nodes.

 ● A precondition edge <pi, ai+1>, linking the precondition pi to an action ai+1. These are depicted 

by solid lines in our figures.
 ● A positive edge <ai, pi>, linking an action ai to an add effect pi of ai. These are also depicted by 

solid lines in our figures.
 ● A negative edge <ai, pi>, linking an action ai to a delete effect pi of ai. These are depicted by solid 

lines with rounded heads in our figures.
 ● A mutex edge linking two propositions in the same layer, or two actions in the same layer. These 

are depicted by thick dotted lines in our figures.

The planning graph is made up of the following sets associated with each index i.

 ● The set of actions Ai in the ith layer.
 ● The set of propositions Pi in the ith layer.
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FIGURE 10.2 The proposition layer in the planning graph may contain inconsistent propositions, and 

the action layer may contain two actions that cannot be done in parallel.
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 ● The set of positive effect links PostPi of actions in the ith layer.
 ● The set of negative effect links PostNi of actions in the ith layer.
 ● The set of preconditions links PrePi of actions in the ith layer from Pi–1.
 ● The set of action mutexes in the ith layer.
 ● The set of proposition mutexes in the ith layer.

Figure 10.3 illustrates the structure of a planning graph. The initial state of the planning problem 

defines the layer P0. Since P0 represents a given state, there can be no mutex edges in this layer. In the 

graph shown below, there are four actions—a1, a2, a3 and a4. An action appears in a layer, only if all its 

preconditions are nonmutex in the previous proposition layer. The first two actions a1 and a2 appear in 

the first action layer A1, and the other two appear in layers A2 and A3 one by one. For every proposition, 

there is a No-op action shown in dashed edges in the figure. Only some of the mutex edges have been 

shown to avoid cluttering up the figure.

p4

p3

p2

p1

p4

a4

a3

a2

a1

p3

p2

p7

p6

p5

p1

P0 P1 P2 P3A1 A2 A3

FIGURE 10.3 A planning graph is a layered graph with alternate layers of propositions and actions.  

The actions with dashed edges are No-op actions.

Very often we do not show the No-op actions explicitly in the planning graph figures. Instead, we 

draw edges directly from the proposition in one layer to the proposition in succeeding layers. These are 

depicted as thick, dashed, grey lines in the figure below. Figure 10.4 depicts a few layers of a planning 

graph for a simple blocks world problem. Observe that the planning graph does not depend upon the 

goals to be solved in a specific planning problem.

One of the first observations one can make is that the nodes in the graph grow monotonically with 

every new layer. This is because every proposition has an associated No-op action. Once a proposition 

appears in a layer, it will always occur in subsequent layers. It is a little less obvious, but when an action 

appears in an action layer, it occurs in every subsequent layer as well. This is because its preconditions 

that appeared nonmutex in a layer continue to show up nonmutex in subsequent layers. This will become 

clear when we define the mutex relation formally as follows.
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More interestingly, the proposition layers and action layers in a planning graph stabilize or level off

after a while. Once the graph has levelled off, no new propositions or actions will appear. However, 

the number of mutexes may still change. In the starting layer, there are no mutexes. But as the graph is 

built, mutexes appear. However, these mutexes could disappear in future layers. Once they disappear, 

they can never appear again. Consider the blocks world problem in which two blocks, say A and B,

that have to be unstacked from two blocks, say C and D respectively, and are to be put on the table. In 

the first action layer, there will be two actions, UnSt(A, C) and UnSt(B, D), with effects Hold(A) and 

Hold(B) in P1. These actions and their effects will naturally be mutex since only one block can be picked 

up by the one armed robot. In the next level A2, there are two actions PtDn(A) and PtDn(B), resulting in 

propositions OnT(A) and OnT(B) in layer P2. Again, it is easy to see that these propositions are mutex 

in P2. However, with two more layers of actions and propositions, the two propositions OnT(A) and 

OnT(B) are not mutex in the layer P4.

10.1.2 Mutex Relations

The plans produced by Graphplan may have actions that occur in the same layer. This means that they 

could be done in parallel without affecting the outcome. Moreover, if one wants linear plans then these 

actions could be linearized in any order. The mutex relations identify a pair of actions or propositions 

that cannot be present in the same layer in a plan.

Two actions aŒAi and bŒAi are mutex if one of the following holds, 

1. Competing Needs There exist propositions paŒpreconditions(a) and pbŒpreconditions(b) such 

that pa and pb are mutex (in the preceding layer).
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FIGURE 10.4 The planning graph for a simple blocks world problem. Only a few mutex edges are 

shown. Also, the edges linking some of the new actions in A2 are not shown.
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2. Inconsistent Effects There exists a proposition p such that pŒeffects+(a) and pŒeffects−(b) or

vice versa. The semantics of these actions in parallel are not defined. And if they are linearized then the 

outcome will depend upon the order.

3. Interference There exists a proposition p such that pŒpreconditions(a) and pŒeffects−(b) or vice 

versa. Then only one linear ordering of the two actions would be feasible.

4. There exists a proposition p such that pŒpreconditions(a) and pŒeffects−(a) and also pŒpreconditions(b)

and pŒeffects−(b). That is, the proposition is consumed by each action, and hence only one of them can 

be executed. This condition can be seen as a special case of the condition 3 in which neither linearization 

is allowed.

Two propositions pŒPi and qŒPi are mutex if all combinations of actions <a, b> such that aŒAi and 

bŒAi and pŒeffects+(a) and qŒeffects+(b) are mutex. Observe that if two propositions are not mutex in 

a layer, they will be not mutex in all subsequent layers because of the No-op actions.

10.1.3 Building the Planning Graph

The process of building the planning graph continues till either the goal propositions have appeared 

nonmutex in the planning graph or the planning graph has levelled off.

The procedure to extend the planning graph by one level is described in Figure 10.5. The algorithm 

ExtendGraph takes as input all sets of data for each layer constructed so far, the index i of the layer to 

be constructed, and the set propositional actions A. The set A may be generated from the start state S and 

the set of operators O in a pre-processing phase. The algorithm begins by copying the sets for the (i – 1)th

layer, except the mutexes. This is because the set of propositions and actions are always carried forward. 

The algorithm then checks if any new actions are applicable (steps 8, 9). If there are, it adds elements 

to the different sets (steps 10–17). Then in steps 18 to 23, it computes all the mutex relations that hold 

at the ith layer in the graph, and returns the planning graph augmented by one layer in the last step. The 

applicability of actions in the planning graph needs to check that its preconditions are present and that 

none of the preconditions are mutex with each other. This is done by the procedure ApplicablePG(ak,

Pi–1, MuPi–1) that takes the action being considered, the previous proposition layer, and the previous 

proposition mutex layer as input. Note that the test for mutex has both < pm, pk> Œ MuPi–1 or < pk, pm>

Œ MuPi–1 for readability, though strictly speaking, one is enough.

The functions MutexA and MutexP are left as an exercise for the reader. The first task that algorithm 

GraphPlan takes up is the construction of the planning graph. The algorithm PlanningGraph described 

in Figure 10.6 starts off by initializing the layer zero of the planning graph. This contains only one 

non-empty set and that is P0, which is initialized to the given start state S. The others are initialized to 

empty lists and the only purpose they serve is as input to the call to ExtendGraph. We assume that the 

procedure is called only if the initial state is not the goal state. The process of extending the graph (lines 

11 and 12) continues till any one of the following two conditions is achieved.

1. The newest proposition layer contains all the goal propositions, and there is no mutex relation 

between any of the goal propositions. This is tested by the procedure GoalPropExist in the figure 

below. Like the ApplicablePG procedure, here also the test for mutex has both < pm, pk> Œ MuPi

or < pk, pm> Œ MuPi for readability, though strictly speaking one is enough.

2. The planning graph has levelled off. This means that for two consecutive levels, 

(Pi–1 = Pi and MuPi–1 = MuPi)
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ExtendGraph (i, A, < A0, MuA0, PreE0, PostP0, PostN0, P0, MuP0, …, 

    Ai–1, MuAi–1, PreEi–1, PostPi–1, PostNi–1, Pi–1, MuPi–1>)

1 Ai¨ Ai–1
2 Pi ¨ Pi–1
3 MuAi¨ ( )

4 MuPi¨ ( )

5 PreEi¨ PreEi–1
6 PostPi¨ PostPi–1
7 PostNi¨ PostNi–1
8 for each ak Œ (A \ Ai)

9 if ApplicablePG(ak, Pi–1, MuPi–1)

10 then Ai ¨ cons(ak, Ai)

11 Pi ¨ append(effects+(ak), Pi)

12 for each pŒprecond(ak)

13 PreEi¨ cons(<p, ak>, PreEi)

14 for each pŒeffects+(ak)

15 PostPi¨ cons(<ak, p>, PostPi)

16 for each pŒeffects–(ak)

17 PostNi¨ cons(<ak, p>, PostNi)

18 for each ak Œ Ai and amπak Œ Ai
19 if MutexA(am, ak, MuPi–1, PreEi, PostPi, PostNi)

20 then MuAi ¨ cons(<am, ak>, MuAi)

21 for each pkŒ Pi and pmπpk Œ Pi
22 if MutexP(pm, pk, , PostPi, MuAi)

23 then MuPi ¨ cons(<pm, pk>, MuPi)

24 return <A0, MuA0, PreE0, PostP0, PostN0, P0 MuP0, …, 

Ai, MuAi, PreEi, PostPi, PostNi, Pi, MuPi>

ApplicablePG(ak, Pi–1, MuPi–1)

1 Preconds ¨ precond(ak)

2 if Preconds Õ Pi–1
3 then for each pm Œ Preconds

4 for each pk Œ Preconds

5 if < pm, pk> Œ MuPi–1 or < pk, pm> Œ MuPi–1
6 then return false

7 else return false

8 return true

FIGURE 10.5 The procedure ExtendGraph creates the ith action layer and the ith proposition layer. It 

begins by copying the two preceding layers, and then adds any new applicable actions, and effects, 

and links to preconditions and effects. After adding all the actions and their effects, it computes afresh 

the mutex relation for the new action layer and the proposition layer.

The algorithm returns the planning graph along with the level i and the flag levelled. If levelled = 

false then the planning graph has been extended to the first layer in which the goal propositions exist 

without any mutex relations between them. The (calling) algorithm now needs to investigate whether a 

valid plan can be extracted from the planning graph. If levelled = true then the problem has no solution. 

  If two consecutive levels have the same set of propositions with the same set of mutex relations 

between them, it means that no new action can make an appearance. Hence, if the goal propositions 

are not present in a levelled planning graph, they can never appear, and the problem has no solution.
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Note that the two cases are distinct and there is no possibility of both the tests connected by or in step 

10 becoming true simultaneously.

The algorithm Graphplan is described below. It begins by checking if G is a subset of S. In that case, 

a plan need not be found. Otherwise, Graphplan calls Planning Graph. If the procedure PlanningGraph

returns a planning graph with all goal propositions nonmutex, it is possible, but not necessary, that a 

valid plan might exist in the graph. We assume a procedure ExtractPlan(G, i, PlanGraph) that either 

extracts a plan p if there exists one, or returns “nix”.

If the procedure ExtractPlan returns “nix” at layer i, there are two possibilities.

The first is that the shortest plan, which may have parallel actions, has more stages than the layers 

in the planning graph. To investigate this possibility, Graphplan extends the planning graph one step at 

a time, checking whether a plan exists at each stage. Observe that this is a kind of iterative deepening 

behaviour, and always results in the shortest plans being found. As the planning graph is iteratively 

extended, it levels off at some stage. Let us call this level n. That is Pn–1 = Pn and MuPn–1 = MuPn.

The second possibility is that a plan does not exist at all, even though the goal propositions occur 

without mutex relations amongst them. The question then is: when should the algorithm stop extending 

PlanningGraph (S, G, A)

1 P0 ¨ S

2 A0 ¨ ( )

3 MuA0 ¨ ( )

4 MuP0 ¨ ( )

5 PreE0 ¨ ( )

6 PostP0 ¨ ( )

7 PostN0 ¨ ( )

8 i ¨ 0

9 leveled ¨ false

10 while not(GoalPropExist(G, Pi, MuPi)) or leveled)

11 i ¨ i + 1

12 PlanGraph ¨ ExtendGraph (i, A, 

<A0, MuA0, PreE0, PostP0, PostN0, P0, MuP0, …, 

Ai–1, MuAi–1, PreEi–1, PostPi–1, PostNi–1, Pi–1, MuPi–1>)

13 if (Pi–1 = Pi and MuPi–1 = MuPi) then leveled ¨ true

14 return <PlanGraph, i, leveled>

GoalPropExist(G, Pk, MuPk))

1 if G Õ Pk
2 then for each pm Œ G

3 for each pk Œ G

4 if < pm, pk> Œ MuPk or < pk, pm> Œ MuPk
5 then return false

6 else return false

7 return true

FIGURE 10.6 The algorithm PlanningGraph takes as input the start state S, the goal propositions 

G, and the set of ground actions A. It begins by extending the graph to layer one. After that, it keeps 

calling ExtendGraph until one of the following conditions become true. One, the goal propositions have 

appeared nonmutex in the latest layer. Or two, the planning graph has levelled off. The empty sets at 

level zero have been created only to allow a uniform call to ExtendGraph.
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the graph and terminate with failure to find a plan? Observe that a layer in the planning graph supplies 

the preconditions for the succeeding layer. Conversely, the layer can be seen as containing the subgoals 

that need to be solved for the goals in the succeeding layer, and layers beyond that as well. The basic 

idea in formulating the termination criteria is to identify a layer in the planning graph in which the sets 

of subgoals are not solvable and the sets have stabilized as well. The most obvious
3
 candidate for this 

layer is layer n, in which the planning graph has levelled off. If one knew that all possible subsets that 

are candidates for being the subgoal sets at that layer have been considered and found to be unsolvable 

then one can conclude that the planning problem has no solution.

Let us say that the planning graph has gone beyond the level n, and has reached level i at which it 

has called the ExtractPlan procedure. Let Sn
i be the set of sets of subgoal propositions that ExtractPlan

tried at level n (and failed). Then, if there are two consecutive levels (t – 1) and t such that the size
4

of Sn
t–1 is equal to the size of Sn

t then the algorithm can terminate with the output that no plan exists. 

Observe that the number of sets (at level n) associated with layer (i + 1) would always be greater than 

sets associated with layer i, because the latter is contained in the former. And the number of such sets that 

is possible is finite because each set is a subset of Pn. Hence, at some point the number of sets will stop 

growing. The reader is referred to (Blum and Furst, 1997) for a proof of correctness of this termination 

criterion.

In the algorithm in Figure 10.7, we have assumed a function SizeSubgoalSets that returns the number 

of different subgoal sets that are possible in the level n when Graphplan is attempting to find a plan 

of i stages. This procedure is dependent upon the ExtractPlan procedure. We will describe it with the 

backward search phase used by Blum and Furst a little later. The algorithm Graphplan can be seen to 

operate in three stages. In the first stage, the initial planning graph is built and if the goal propositions 

have appeared then it attempts to extract a plan (lines 2–7). If the ExtractPlan procedure returns “nix”,

the algorithm incrementally extends the graph looking for a solution till it levels off (lines 8–15). When 

it does level off, it marks that level in the variable n, and computes the size of the set of sets of subgoals 

(lines 12–15). At this stage, this value will be 1 because the subgoal set is the original goal set G here. 

Finally, in the third phase (lines 16–21), Graphplan continues extending the planning graph looking 

for a plan. This happens till the termination condition is reached in line 21 where it reports failure. If 

at any time in phases 2 and 3 ExtractPlan returns a plan, the algorithm skips both these phases and 

terminates with the plan.

The plan that algorithm Graphplan returns has the following structure, 

p = ({a11, …, a1p}, {a21, …, a2q}, {a31, …, a3r}, …, {am1, …, ams})

That is, it contains m ordered sets of actions. The first set {a11, …, a1p} contains actions that can be 

executed in parallel in stage one, the second set {a21, …, a2q} in stage two, and so on. If one desired a 

linear plan then the set for each stage can be linearized in any order.

10.1.4 Extracting the Plan

When the planning graph reaches a level that contains all the goal propositions G in the newest layer with 

no mutex relations amongst them, it is time to check whether a plan can be extracted from the planning 

graph. At this stage, we have the goal propositions and the start propositions nonmutex. It remains to be 

checked whether there exists a plan p = ({a11, …, a1p}, {a21, …, a2q}, {a31, …, a3r}, …, {am1, …, ams}),

3 Occam’s razor. See http://en.wikipedia.org/wiki/Occam%27s_razor
4 Comparing the sizes is sufficient. The two sets will be equal as well, but checking for set equality is more expensive. 
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such that the set of actions at every layer {ak1, …, akz} are applicable and non mutex, and that the goal 

propositions have support from the last set of actions, including the No-op actions.

One way of looking at the plan existence question is to ask whether the goal propositions have support 

from a nonmutex set of actions. If yes then the combined preconditions of these actions can be viewed 

as a regressed subgoal set, which can be solved recursively. In fact, this is the approach taken by the 

algorithm Graphplan. It is possible that there is more than one combination of actions supporting the 

goal set, leading to different possible subgoal sets that the procedure must explore. Figure 10.8 shows 

two possible ways in which the given goal set {p4, p5, p7} can be regressed to a set of subgoals at the 

preceding layer.

Let Gk be the goal set at the kth layer. Let G1
k–1, G2

k–1, G3
k–1, … be the different possible goal sets 

that Gk can regress to. Then the ExtractPlan procedure will have to investigate all possible subgoals sets 

via which a plan may exist. In the above figure, Gk = {p4, p5, p7} and we have two subgoal sets G1
k–1 = 

{p1, p2, p4, p6} and G2
k–1 = {p4, p5, p6}. The reader is encouraged to find more subgoal sets.

The algorithm GraphPlan does a depth-first search in which it regresses the goal sets to subgoal sets. 

The procedure is like the Backward State Space Search of Figure 7.8, except that only those relevant 

actions are considered that are in the planning graph. Another difference is that the ExtractPlan procedure 

used by Graphplan allows sets of nonmutex actions to be considered simultaneously in a layer. The 

space explored by the backward search ExtractPlan is depicted in Figure 10.9.

Graphplan (start = S, goal = G, actions = A)

1 if G Õ S then return ( )

2 PG ¨ PlanningGraph (S, G, A)

3 PlanGraph ¨ First(PG)

4 i ¨ Second(PG)

5 leveled ¨ Third(PG)

6 if leveled  = true then return “no plan exists”

7 p ¨ ExtractPlan(G, i, PlanGraph)

8 while p  =  “nix” and not leveled

9 i ¨ i + 1

10 PlanGraph ¨ ExtendGraph (i, A, PlanGraph)

11 p ¨ ExtractPlan(G, i, PlanGraph)

12 if (Pi–1 =  Pi and MuPi-1 =  MuPi)

13 then leveled ¨ true

14 n ¨ i

15 Si ¨ SizeSubgoalSets(i, n, Plangraph)

16 while p  =  “nix”
17 i ¨ i + 1

18 PlanGraph ¨ ExtendGraph (i, A, PlanGraph)

19 p ¨ ExtractPlan(G, i, PlanGraph)

20 Si ¨ SizeSubgoalSets(i, n, Plangraph)

21 if Si  = Si–1 then return “no plan exists”

22 return p

FIGURE 10.7 Algorithm Graphplan begins by calling procedure PlanningGraph to construct the 

initial planning graph. PlanningGraph returns a triple from the three components which are extracted 

using the (assumed) functions First, Second and Third. From here on, Graphplan calls ExtractPlan

and extends the planning graph, till either the termination criterion is reached or a plan is found. The 

function SizeSubgoalSets can be computed by inspecting the memory of failed goal sets maintained 

by ExtractPlan.
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P0 · · ·
Pk–3 Pk–2 Pk–1 Ak Pk

FIGURE 10.9 Graphplan does a depth first search, starting from the goal set on the right. A move in 

the backward search is a regression of the entire goal set to a subgoal set at the preceding layer.

The backward search call (at any recursive level) can terminate either by reaching the level P0 with 

success or result in failure. If it is the former then a plan has been found and algorithm Graphplan can 

terminate. If it is the latter, the ExtractPlan memoizes the failed goal set. This is a kind of nogood learning

that can be exploited in future (backward) searches. If a failed goal set is regressed to, in the future the 

algorithm can immediately backtrack from there without trying to solve it.

p6

p3

p2

p1

p7  = g3

p5  = g2

p4  = g1p4
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p2
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P0 P1A1 Pk–1 PkAk· · ·

FIGURE 10.8 Given the goal propositions {p4, p5, p7} at level k, two possible subgoal sets at level 

(k – 1) are {p1, p2, p3, p4, p6} shown in shaded nodes, and {p4, p5, p6} shown with thick edges.
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The algorithm ExtractPlan is described in Figure 10.10. The procedure RegressGoalSet, called in line 

1, returns SetOfSubGoalSets the set of possible subgoal sets along with the actions that regress to them 

as illustrated in Figure 10.8. Each element of the returned set is a pair <Actionsi, Subgoalsi–1>, where 

Actionsi is the set of nonmutex actions that regress to the nonmutex set of propositions Subgoalsi–1 in 

the previous layer. The procedure, which is left as an exercise for the reader, tries all combinations of 

relevant actions (see Chapter 7) that can be chosen in the goal-set layer, such that they achieve the goal 

set in a nonmutex manner. This set of actions may include No-op actions as well. We also assume two 

functions, Memoize and Memoized, that manage a memoization memory called mem. This memory could 

be implemented in various ways, for example as list structures or as hash tables. Memoize(goalSet, i, 

mem) adds a set of goals goalSet that cannot be solved together at layer i to the memory, and Memoized

checks the memory mem to find out whether a goal set is marked as failed at level i. Lines 6–16 implement 

a backtracking based search algorithm that tries all options in setOfSubgoalSets one by one. Line 11 

checks for the base case in recursion, in which the goal-set layer is P1. The actions, which have been 

tested to be nonmutex in the call to RegressGoalSet are returned as the plan. Note that these happen in 

parallel, or can be linearized in any order. Otherwise, in line 12, a recursive call is made to ExtractPlan.

If the recursive call finds a subplan, it is appended to the actions that generated the subgoal set and 

returned as a plan. If the subplan was “nix” then while loop looks at the next subgoal set. If all goal sets 

are exhausted, the (calling) goal set is memoized and Extractplan returns “nix” (steps 15, 16).

ExtractPlan (G, i, PlanGraph)

1 setOfSubgoalSets ¨ RegressGoalSet(G, i, PlanGraph)

2 setOfSubgoalSets ¨ FilterMemoized(setOfSubgoalSets, i-1, mem)

3 if empty(setOfSubgoalSets)

4 then mem ¨ Memoize(G, i, mem)

5 return “nix”

6 while not empty(setOfSubgoalSets)

7 sGoal ¨ First(setOfSubgoalSets)

8 setOfSubgoalSets ¨ Rest(setOfSubgoalSets)

9 actions ¨ First(sGoal)

10 subGoals ¨ Second(sGoal)

11 if i = 1 then return actions

12 subPlan ¨ ExtractPlan(subGoals, i–1, PlanGraph)

13 if subPlan π “nix”

14 then return append(subPlan, actions)

15 mem ¨ Memoize(G, i, mem)

16 return “nix”

FilterMemoized (setOfSubgoalSets, i, mem)

1 for each subGoalSet Œ setOfSubgoalSets

2 subGoals ¨ Second(subgoalSet)

3 if Memoized(subGoals, i, mem)

4 then remove subGoalSet from setOfSubgoalSets

5 return setOfSubgoalSets

FIGURE 10.10 The procedure ExtractPlan does a backward depth first search from a given layer. 

We assume the function RegressGoalSets that regresses to the previous layer. If a call to ExtractPlan

succeeds, it returns a plan. Otherwise it returns “nix” and also marks the goal set it was called with as 

‘failed’ in that layer. We also assume functions Memoize which adds to the memory of failed goalsets 

mem, and Memoized that checks whether a goalset exists in it.
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The algorithm Graphplan is guaranteed to find a plan that is shortest in the number of stages in the 

plan, where a stage consists of one or more independent actions.

It has been argued that the planning graph is polynomial in size, in terms of the number of objects, 

the number of operators with a fixed number of preconditions, the number of add effects and the layer 

number. And the planning graph can be constructed in polynomial time (Blum and Furst, 1997). Given 

that the planning problem is known to be hard (Gupta and Nau, 1992), we can infer that most of the work 

done by Graphplan is in the plan extraction phase. Two lines of exploration now present themselves. One 

is to try and make the plan extraction phase as efficient as possible. Some of the ideas from constraint 

solvers like forward checking can be applied here. In fact, in the following section, we will explore 

viewing the plan extraction task as a constraint satisfaction problem. The second is to find other ways 

to exploit the planning graph in other ways. We will also look at methods to use the planning graph to 

generate heuristics to guide state space search.

10.1.5 STAN

One approach to make Graphplan more efficient was implemented in the program STAN (state analysis) 

reported by Derek Long and Maria Fox (1999). The reader can observe that the first few lines of the 

ExtendGraph algorithm of Figure 10.5 are devoted to copying information from the previous layer. 

This incurs a cost both in time and space. Given that both propositions and actions are carried over to 

succeeding layers, STAN simply keeps one copy of each and keeps track of when the proposition and 

action was first introduced. Given an initial state and the set of planning operators, the overall set of 

(ground) actions and propositions is well defined. STAN represents the set of possible ground actions 

and propositions as bit vectors called the action spike and the fact spike respectively. The rank of an 

entry in the spike marks its first appearance. A fact rank is a consecutive sequence of fact headers of the 

same rank. Facts are represented using fact headers arranged according to rank, and the headers contain, 

1. a name which is the predicate and arguments that comprise the fact itself, 

2. an index i, giving the position of the fact in the fact array, 

3. a bit mask, which is a fact spike vector in which the ith bit is set and all other bits are unset, 

4. a reference identifying its achieving No-op,

5. an action spike vector of consumers with bits set for all the actions which use this fact as a 

precondition, and

6. a fact-level package storing the layer dependent information about that fact.

An action header is likewise made up of, 

1. the name of the action, 

2. an index i giving the position of the action in the action array, 

3. a bit mask which is an action spike vector in which the ith bit is set and all other bits are unset, 

4. a flag indicating whether the action is a No-op,

5. three fact spike vectors, called precs, adds and dels, and

6. an action level package storing the layer dependent information about that action.

For every action, the precs spike vector marks the preconditions of the action. The spike is a fact 

spike with the preconditions of the action set as 1 and the rest as 0. Thus, testing for applicability of the 

action is done by a bit-level logical operation. Similarly, the adds spike marks the add effects, and dels

marks the delete effects of the action.

The above information associated with facts and actions is layer independent information. The 

rank associated with every fact or action only indicates the first layer in which they appear. The layer-

dependent information is stored in a fact-level package and an action-level package.
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The fact-level package is an array of pairs, one for each rank in the spike. The pair is made up of, 

1. a Fact Mutex Vector (FMV), mvecs, which is a fact-spike vector indicating which facts the given 

fact is mutex with, and

2. an Achievement Vector (AV) which is an action spike indicating which actions add that fact.

The action-level package are made up of, 

1. an Action Mutex Vector (AMV), which is an action spike indicating which actions are mutex with 

the given actions, 

2. a list (MA) of actions that are mutex with the given action, and

3. a bit vector changedActs to keep track of temporary mutex relations.

Mutexes can also be checked by bit-level logical operations. Actions mutexes may be permanent 

or temporary. Two actions are permanently mutex if their preconditions, add effects and delete effects 

interact. Two actions a and b are (permanently) mutex if ((precs(a) ⁄ adds(a)) Ÿ dels(b)) ⁄ ((precs(b) ⁄

adds(b)) Ÿ dels(a)) is nonzero. Two actions may be temporarily mutex if some of their preconditions are 

mutex. Let {pa1, …, pak} be the preconditions of action a. Then actions a and b are mutex if (mvecs(pa1)

⁄ … ⁄ mvecs(pa1)) Ÿ precs(a)) is nonzero. Given that mutexes between actions can only disappear, 

STAN keeps track of actions becoming nonmutex in the changedActs vector to avoid repeated checks 

for temporary mutexes.

STAN first constructs the spike graph till the “opening layer” where all the goals are present nonmutex. 

This is analogous to the PlanningGraph algorithm of Figure 10.6. After that it alternates between testing 

for a plan and extending the graph till it has levelled off, or reached the fixed point. If a plan is still not 

found, STAN leaves the spike graph as it is from here on, since no changes can be made. It does further 

exploration using a wavefront. The idea is that one needs to consider all possible subgoal sets at the 

fixed point to be able to terminate with failure. STAN maintains a queue of goal sets to be considered 

at the fixed point layer, and a buffer in which new goal sets are considered. The new goal sets are the 

ones that would have been generated if the planning graph had been extended beyond the fixed point. 

When the graph is (notionally) extended, STAN adds new subgoal sets to the queue. When it cannot 

solve a (new) subgoal set in this queue, it propagates forward the goal set into the buffer, leading to 

new goal sets to be added to the queue, which it now recedes back to try solving them. This forward 

and backward movement from the fixed point is characterized by the name wavefront. For more details 

on STAN and on the proofs of soundness, completeness and termination of the wavefront mechanism, 

the reader is referred to (Long and Fox, 1999).

10.1.6 Conditional Effects

Another direction of development is to extend the planning graph methods to richer domains. One of 

the first extensions reported was on ADL set. The Action Description Language (ADL) was a richer 

alternative to STRIPS domains and was later subsumed in PDDL2.1. The ADL language can be described 

as (Fox and Long, 2003), 

adl = :strips + :typing

+ :negative-preconditions

+ :disjunctive-preconditions

+ :equality

+ :quantified-preconditions

+ :conditional-effects
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Negative preconditions can be handled by introducing a separate proposition to represent a 

negated one. Consider the proposition HaveBook(Wren&Martin). Consider an action that says that 

if ¬HaveBook(Wren&Martin) is true then one must buy the book. Instead of expressing the negated 

fact, one can introduce the new proposition NotHaveBook(Wren&Martin) and maintain it permanently 

mutex with HaveBook(Wren&Martin). Then instead of just deleting a proposition in an action, one can 

also add its negation. Observe that this approach requires us to abandon the negation by failure closed 

world assumption and takes us into an open world formulation. Consider the Unstack(A, B) action in 

the STRIPS domain, which has the proposition On(A, B) in the delete list. The closed world assumption 

says that if On(A, B) is not present in the state representation, it is false. That requires the algorithm 

to scan the representation, if testing for the negation was required. Having explicit negated formulas 

requires us to maintain one of the two, a proposition or its negation, explicitly. Having both would be 

inconsistent. Having a disjunction of both could represent uncertainty, as we will see below. One can also 

think of the add effect Clear(B) of the action Unstack(A, B) as a kind of expression of the fact ¬On(A,

B). And given that only A was on B, one can in fact assert that nothing is on B. This is the way STRIPS 

handled the frame problem. Thus, Clear(B) ∫ ¬ $xOn(x, B) ∫ "x¬On(x, B). When we have Clear(B)

as a precondition for the action, say Stack(C, B), we are really testing the quantified precondition it is 

equivalent to, which also has a negation in it.

Conditional effects do extend the language beyond STRIPS (see (Gazen and Knoblock, 1997), 

(Koehler et al., 1997), (Anderson et al., 1998)). A conditional effect of an action is an effect that comes 

into being, only when a specified condition is true. Consider the action of driving a school bus from point 

A to point B, Drive(bus21, a, b). Also consider the action Board(Person, Bus) with effect In(Person,

Bus), and the predicate At(Object, Location). What should be the effects of the action Drive(bus21, a, 

b)? Conditional effects allow us to say that when the bus is driven from point A to point B then anyone 

who had boarded the bus will also be at point B. The Drive operator could be represented as (Koehler 

et al., 1997), 

Action name: DriveBus

Parameters: Bus (type bus); A, B (type Location); X (type Object)

Preconditions: At(Bus, A)

Effects: Del(At(Bus, A)), Add(At(Bus, B)),

"x(In(x, Bus) … (Del(At(x, A)), Add(At(x, B)))

The above action could be represented in PDDL as, 

(:action driveBus

:parameters (?bus -bus ?from ?to – location)

:precondition (at ?bus ?from)

:effect (and (not (at ?bus ?from)) (at ?bus ?to)

  (forall (?¥ – object)

    (when (in ? ¥ ?bus)

    (and (not (at ? ¥ ?from)) (at ? ¥ ?to)))))

It has been observed that an action with conditional effects can be viewed as a set of actions with 

different preconditions. To see this, let us first translate the above operator into a quantifier free one 

for a domain in which there are only two persons who could be in the school bus, Aditi and Jeena. The 

operator would then look like, 
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(:action driveBus

:parameters (?bus -bus ?from ?to – location)

:precondition (at ?bus ?from)

:effect (and (not (at ?bus ?from)) (at ?bus ?to)

  (when (in aditi ?bus)

          (and (not (at aditi ?from))

(at aditi ?to)))

  (when (in jeena ?bus)

          (and (not (at jeena ?from))

(at jeena ?to)))))

Now this action with conditional effects can be translated into four STRIPS actions, called aspects

in (Gazen and Knoblock, 1997). The four actions/aspects are, 

(:action driveBus1

:parameters (?bus -bus ?from ?to – location)

:precondition (at ?bus ?from)

:effect (and (not (at ?bus ?from)) (at ?bus ?to)))

(:action driveBus2

:parameters (?bus -bus ?from ?to – location)

:precondition (and (at ?bus ?from) (in aditi ?bus))

:effect (and (not (at ?bus ?from)) (at ?bus ?to)

  (not (at aditi ?from)) (at aditi ?to))))

(:action driveBus3

:parameters (?bus -bus ?from ?to – location)

:precondition (and (at ?bus ?from) (in jeena ?bus))

:effect (and (not (at ?bus ?from)) (at ?bus ?to)

  (not (at jeena ?from)) (at jeena ?to))))

(:action driveBus4

:parameters (?bus -bus ?from ?to – location)

:precondition (and (at ?bus ?from) (in aditi ?bus) (in jeena ?bus))

:effect (and (not (at ?bus ?from)) (at ?bus ?to)

  (not (at aditi ?from)) (at aditi ?to))

  (not (at jeena ?from)) (at jeena ?to))))

However, converting actions into aspects can result in a blow-up in the number of actions the planner 

has to deal with, and an approach to handle them directly would be desirable. One such approach 

to extend Graphplan to conditional effects was implemented in a planner called IP2 (Koehler et al., 

1997).

The planning graph construction process for IP2 in the way the new proposition layer is constructed. 

The operator o with conditional effects can be characterized as, 

preco : the preconditions

addo : the unconditional add effects

delo : the unconditional delete effects

preci … addi, deli : the ith conditional effect

Like in Graphplan, an instance of the operator is added to the jth layer Aj, if the preconditions preco

are present in the (j – 1)th layer Pj–1 nonmutex amongst themselves. The unconditional add effects addo

are then added to the jth proposition layer Pj, and if any proposition pŒdelo is present in Pj then a delete 
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link is added between the action and p. After that, for every conditional effect (preci … addi, deli), a 

proposition pŒaddi is added to the jth layer Pj if the following conditions hold.

1. preci Õ Pj–1

2. All propositions in preci are nonmutex with each other in Pj–1

3. All propositions in preci are nonmutex with all propositions in preco in Pj–1

When all the goal propositions show up nonmutex in kth proposition layer, IP2 algorithm embarks 

upon a plan finding search. Here too, it differs a little from Graphplan, in that as it searches backward 

it also maintains a set of negative goal sets Cj in layers j<k preceding the last layer, along with subgoal 

sets Gj. These negative goal propositions may be added to prevent undesirable conditional effects. We 

illustrate their utility with an example.

Consider the example of the two students, Aditi and Jeena, mentioned above. Let one day the goal 

be {(at aditi home), (at jeena school)}, perhaps because Aditi was not well. Given that (at aditi home)

is mutex with (at aditi school), it is imperative that the proposition (at aditi school) does not appear in 

the final layer. Otherwise, the goal set will not be nonmutex. Now we need the action busDrive(bus21,

home, school) because we need to achieve (at jeena school) which is a conditional effect in that action. 

For this conditional effect to be achieved, the condition (in jeena bus) must be true in the (k – 1)st layer. 

There is an action board(jeena, bus) that would have achieved (in jeena bus) when both the bus and Jeena 

were “at home”. Thus, the plan would have two actions—Jeena boards the bus, and the bus is driven 

to the school. But how does one ensure that Aditi has not landed up in school as a conditional effect of 

the same busDrive(bus21, home, school) action as well? IP2 can observe that the effect (at aditi school)

interferes with the goal proposition (at aditi home) but it needs the busDrive(bus21, home, school). To 

ensure that Aditi does not land up in school, it adds a negative goal to the (k–1)st layer which says that 

(in aditi bus) is part of the negative goal set. The way such a negative goal is handled is that if there 

is any action that has it as an add effect then that action is not allowed in the backward search phase. 

Thus, while IP2 does select the busDrive(bus21, home, school) action, it constructs a plan which does 

not have the board(aditi, bus) action.

The detailed algorithm is left as an (advanced) exercise for the reader. For hints and a statement on 

soundness of IP2, the reader is referred to (Koehler et al., 1997)

10.1.7 Conformant Graphplan

Very often a planning agent has to deal with uncertain information. This uncertainty can be of different 

forms. The agent may not know the world completely, or the actions of an agent may not have well-

defined effects. We humans face such problems all the time, and have evolved many approaches to 

address these problems. These include exploiting experience and knowledge based methods, and also 

probabilistic reasoning. We will explore some of these approaches in later chapters. Here, we look at 

the problem in the framework of automatic planning.

One approach to planning in the face of uncertain world knowledge is called contingent planning 

(Weld et al., 1998), (Majercik and Littman, 2003), (Albore et al., 2009). The idea here is to do more than 

find a simple plan. Instead, the aim is to synthesize a plan which can cater to more than one situation. 

The plans produced in contingent planning incorporate sensing steps that help decide between different 

courses of actions, all encapsulated in the plan. Bridge players are used to planning the play of their 

hands in a contingent fashion. For example, a bridge player might play a few cards in a suit to test how 

the cards in that suit are divided amongst the opponents. Depending upon the outcome, she chooses one 

of competing courses of further action. Contingent planning happens in many real world situations. A 
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group of friends planning an evening out may go and try for some movie tickets, and if not available 

may fall back to visiting a park.

Some well known puzzles are problems of contingent planning. For example, the problem of 

identifying the defective (heavier or lighter) ball from a set of twelve balls, using a pair of weighing 

scales. Observe that a move here has different possible effects. For example, you might keep balls 3 and 

7 on the left pan, and balls 8 and 9 on the right pan. The balance could go to one of the three states—left 

heavier, right heavier, or balanced. In contingent planning, one can sense this state. Like most planning 

problems, one may demand a solution optimal in the number of comparisons one is allowed to make. 

An interesting problem that has both a contingent solution as well as a conformant one is described in 

the exercises.

Figure 10.11 illustrates common planning problem faced by residents of the IIT Madras campus. We 

consider two options available to people if they want to go the Central station to catch a train. They can 

walk to the MRTS station and take a train. Or they can look around for an autorickshaw and investigate 

whether the driver is willing
5
 to go to the station, and if one is found hire it. There is another possible 

obstacle though, in the traffic, for the hiring-auto plan to succeed. A contingent planner may try for an 

auto before deciding to walk, but a conformant planner would have to commit to the MRTS plan because 

that succeeds in all possible worlds.

At IIT-M
Look for 

autorickshaw

Walk to
MRTS

Board 
train

Walk to
Central

Hire auto

Drive to
Central

Auto
willing

Auto

unwillingAuto
unavailable

At MRTS
station

At Park
station

At Central
station

Clear 
traffic

Traffic 
jam

FIGURE 10.11 Reaching a train station. We assume two options are available. The dashed lines 

represent possible worlds a planner might encounter. A contingent planner could try both options, but 

a conformant planner would have to commit to a set of actions.

Conformant planning aims at building plans that can cater to different situations but in which sensing 

of the state is not allowed. The uncertainty may be in knowing the facts (state) or in the effects of actions 

(resulting state). David Smith and Daniel Weld show how Graphplan can be extended to perform 

conformant planning in a system call Conformant Graphplan (CGP) (Smith and Weld, 1998). CGP

represents uncertain knowledge by a disjunction of propositions, or using the exclusive-or. For example, 

5 A mandatory check in most Indian cities.
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a technician may not be sure whether an instrument has been calibrated or not before using it. Then 

a conformant plan could be to calibrate it anyway before using it. Smith and Weld approach such 

uncertainty by constructing planning graphs for each of the possible worlds in which a component of 

the disjunction (or XOR) might be true, and then finding solutions in each of them.

We illustrate how CGP tackles the bomb disposal problem, first posed by McDermott (McDermott, 

1987) as described in (Smith and Weld, 1998). Consider a planning problem in which you have two 

packages and exactly one of them contains a bomb. This fact is represented by (In(bomb, package1) ≈

In(bomb, package2)). The exclusive-or entails that there are two possible worlds, one w1 in which the 

bomb is in package1 and the other w2 in which it is in package2. Let there be exactly one toilet that you 

have access to and an action called Dunk defined as follows, which can diffuse the bomb.

(:action dunk

       :parameters     (?p – package ?t –toilet)

       :precondition

       :effect         (when (in bomb ?p) (diffused bomb)))

The action says that if you dunk a package in the toilet then if the package contains the bomb, the 

bomb will be diffused. This action has only one aspect with non-empty effects, 

(:action dunk*

       :parameters   (?p – package ?t –toilet)

       :precondition (in bomb ?p)

       :effect       (diffused bomb))))

The action Dunk* will have two instances—Dunk*(p1, t) and Dunk*(p2, t). Each instance will be 

applicable in the corresponding possible world. CGP constructs a separate planning graph for each 

possible world, and looks for a solution when the goal set appears nonmutex in all the planning graphs. 

Figure 10.12 shows the two planning graphs constructed for the possible worlds w1 and w2. It then starts 

¬In(bomb, p2)

¬Diffused(bomb)

In(bomb, p1)

Dunk*(p1, t)

¬In(bomb, p2) 

¬Diffused(bomb) 

Diffused(bomb)

In(bomb, p1)

In(bomb, p2)

¬Diffused(bomb)

¬In(bomb, p1)

Dunk*(p2, t)

In(bomb, p2)

¬Diffused(bomb) 

Diffused(bomb) 

¬In(bomb, p1) 

w2

w1

No-op

No-op

FIGURE 10.12 Conformant Graphplan constructs a planning graph for each possible world.
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a plan finding exercise moving backwards, level by level, in parallel in each planning graph. If it can 

find a set of actions in each possible world then it returns the union of the plans found.

It finds that the goal Diffused(bomb) appears in both the planning graphs at level 1, and further that, 

the two actions achieve the goal. Thus, it returns a plan of dunking both packages.

The above example does not have interference between the actions across the different planning 

graphs. To illustrate that case, we augment our dunking action to have an additional effect that it clogs 

the toilet. The action, Dunk2, is given below.

(:action dunk2

       :parameters   (?p – package ?t –toilet)

       :precondition (not (clogged ?t))

       :effect       (and (clogged ?t)

                          (when (in bomb ?p) (diffused bomb))))

The modified dunk action requires that the toilet be unclogged to be applicable, and has an effect 

that it clogs the toilet. Now the two actions of dunking the two packages are individually applicable 

in the two planning graphs, which are constructed for the two possible worlds. The real world, on the 

other hand, is one of the two worlds, w1 and w2, but we do not know which. When we try and extract a 

plan keeping track of interference across worlds, we are unable to select the two dunk actions together, 

because they are now mutex as they delete the precondition ~Clogged(t) required by both, and removed 

by both. Consequently, we can only choose one of them.

However, both actions appear in both planning graphs, because irrespective of whether the package 

contains the bomb or not, it has the effect of clogging the toilet. The two aspects of the dunk action are 

as follows:

(:action dunk2+

       :parameters   (?p – package ?t –toilet)

       :precondition (and (not (clogged ?t)) (in bomb ?p))

       :effect (and  (clogged ?t) (diffused bomb)))

and,

(:action dunk2-

       :parameters   (?p – package ?t –toilet)

       :precondition (not (clogged ?t))

       :effect            (clogged ?t))

Further, since two possible worlds are in fact complete information variations of a single real world 

with incomplete information, the two aspects may induce each other in different planning graphs, if the 

preconditions hold. That is, if we choose the Dunk2+(p1, t) action in w1, then we have to choose the 

Dunk2-(p1, t) action in w2, because we can only choose the actions and not the possible world we are 

in. Once dunking p1 is chosen as the action then its relevant aspects have to be chosen in both possible 

worlds. The situation is depicted in Figure 10.13 below.

In the planning graph for each possible world, we have two dunk actions, one for each package. The 

specific aspects of these actions that appear depend upon the possible world. But irrespective of which 

possible world we are in, the aspects of the two actions are mutex, as discussed above. Thus, in each 

possible world, we can only select one dunk action, and having chosen one, we are then compelled to 

choose the corresponding induced action in the other world.

We adopt the notation used by Smith and Weld in which A:w stands for action A in world w, and 

P:w stands for proposition P in world w. Let us say that we choose Dunk2+(p1, t):w1. This action 
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results the goal proposition Diffused(bomb):w1. But it induces Dunk2-(p1, t):w2, which inhibits 

Dunk2+(p2, t):w2 being mutex with it. The No-op:w2 for ~Diffused(bomb):w2 results in the proposition 

~Diffused(bomb):w2. The goal Diffused(bomb) appears only in one planning graph and the CPG will 

continue to extend the planning graphs till it reaches its termination criteria, which in this case is the 

two graphs levelling off.

In fact, the two actions Dunk2+(p1, t):w1 and Dunk2+(p2, t):w2 can be labelled mutex which will 

avoid the fruitless search that discovers that they cannot happen together. The notion of induced mutex 

is defined as follows.

Induced Mutex If an action A:w necessarily induces an aspect A¢:v, and if A¢:v is mutex with an 

action B:u then A:w is mutex with B:u. Note that the possible worlds u and v need not be distinct and 

the result also applies for B:v.

It there were two toilets, t1 and t2, then the CPG would have found the solution of dunking each 

package in a different toilet. The reader is encouraged to construct the corresponding planning graphs 

on paper, and verify that there are two distinct conformant plans for diffusing the bomb.

¬In(bomb, p2)

¬Diffused(bomb)

In(bomb, p1)

Dunk2+(p1, t)

¬In(bomb, p2) 

¬Diffused(bomb)  

Diffused(bomb)

In(bomb, p1)

No-op 

w1

¬Clogged(t) ¬Clogged(t)No-op 

Dunk2-(p2, t) Clogged(t)

In(bomb, p2)

¬Diffused(bomb)

¬In(bomb, p1)

Dunk2-(p1, t)

In(bomb, p2) 

¬Diffused(bomb)  

Diffused(bomb)

¬ In(bomb, p1)

No-op 

w2

¬Clogged(t) ¬Clogged(t)

Dunk2+(p2, t) Clogged(t)

No-op

FIGURE 10.13 An action in one planning graph can induce another action in another planning graph. 

For example Dunk2+(p1, t) in w1 induces Dunk2-(p1, t) in w2, and vice versa, shown here with thick 

boxes. The corresponding state of the bomb in the two worlds is indicated by the boxed propositions.



352 A First Course in Artificial Intelligence

Given an action A that is desirable in some world, one can sometimes prevent an undesirable induced 

aspect A¢ in a different possible world. This is done by confronting the undesirable aspect by making 

some precondition of A¢ false. This is similar to the process in which only desirable aspects are included 

in IP2 as described in the previous section.

Conformant GraphPlan can also include uncertainty in the effects of actions. Consider the case 

when the dunking action may or may not clog the toilet. This could be represented as different possible 

outcomes in PDDL-like
6
 fashion as follows.

(:action dunk3

      :parameters    (?p – package ?t –toilet)

      :precondition  (not  (clogged ?t))

      :effect        (or   (when(in bomb ?p) (diffused bomb))

                           (and (clogged ?t)

                           (when(in bomb ?p) (diffused bomb))))

This action will have two aspects as before.

(:action dunk3+

      :parameters   (?p – package ?t –toilet)

      :precondition (and  (in bomb ?p) (not (clogged ?t)))

      :effect       (or   (diffused bomb))

                    (and  (clogged ?t) (diffused bomb))))

(:action dunk3-

      :parameters   (?p – package ?t –toilet)

      :precondition (not  (clogged ?t))

      :effect       (or   ( )

                          (clogged ?t)))

Inclusion of such an aspect in the planning graph in world wi will result in wi splitting into two new 

worlds wi1 and wi2 in the next layer, containing the two different effects. Observe that action dunk3- may 

not have any effect in some resulting world. If we were to expand the first layer of the planning graph 

in w1 then we would include two aspects Dunk3+(p1, t):w1 and Dunk3-(p2, t):w1. These two actions 

would split the world w1 into four worlds—w11, w12, w13 and w14. In w11, the package p1 would be 

dunked, the bomb would be diffused and the toilet clogged; in w12 the package p1 would be dunked, the 

bomb would be diffused and the toilet would not be clogged; in w13, the package p2 would be dunked, 

the bomb would be diffused and the toilet clogged; and in w14, the package p2 would be dunked, the 

bomb would not be diffused and the toilet would not be clogged. As one can see, there is going to be an 

explosion in the number of worlds the planner has to deal with. The solution extraction process, however, 

remains the same. For more details and for suggestions to keep the number of possible worlds in check, 

the interested reader is referred to (Smith and Weld, 1998).

More recently, there have been approaches extending and exploiting the planning graph for planning 

with durative actions. We will explore durative actions later in the chapter.

10.2 Planning as Constraint Satisfaction

The question one asks while extracting a plan from a planning graph is whether the goal propositions 

are supported by nonmutex actions. Since these actions need to have their preconditions true in the 

6 As of writing, this PDDL does not cater to nondeterminism in effects.
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preceding layer, those preconditions become subgoals for which the same question has to be asked. The 

search process employed by Graphplan is similar to the Backtracking procedure of solving CSPs. The 

similarity of extracting plans from planning graphs to solving CSPs extends further. There have been 

attempts to use ‘look forward’ approaches borrowed from CSP methods, and the memoization employed 

by Graphplan is similar to nogood learning methods (see (Dechter, 2003)) employed in solving CSPs. 

The mutex relations in planning layers are like arc consistency requirements in CSPs. In fact, it has 

been observed that if higher order mutual exclusions constraints (or nogoods) were maintained then the 

backward search process would be bound to succeed. This is equivalent to the situation in solving CSPs 

when an appropriate level of i-consistency makes the search backtrack free.

The plan extraction task can be posed as a CSP problem. In GP-CSP developed by Do and 

Kambhampati, the variables are the goal and subgoal propositions at different layers (Kambhampati et 

al., 1997), (Kambhampati, 2000) (Do and Kambhampati, 2000; 2001). The domains of these variables 

contain the set of actions that produce these propositions. There are two approaches to solving a planning 

graph as a CSP.

The first uses the notion of a Dynamic CSP (DCSP) (Mittal and Falkenhainer, 1990), (Dechter, 2003) 

in which a unary constraint called active identifies the propositions that participate in the solution. In a 

DCSP, only a subset of the variables are active, and the task is to find a satisfying assignment for those 

variables. In solving the planning graph as DCSP, the variables or goal propositions that are active is 

determined dynamically in the solution finding process. Initially, the goal propositions in the final layer 

are marked active, and when their values or actions are chosen, the corresponding preconditions are 

also marked active.

Let us say that the goal in the planning problem depicted in Figure 10.4 is {On(A, C), OnT(C)}. The 

variables of the CSP would be all the propositions that occur in the layers P1 and P2 in the figure, and 

their domains the actions in the planning graph that produce them. In the notation below, the subscript 

refers to the layer the proposition occurs in. The propositions in layer P0 can implicitly be assumed to 

have value true, or they can be considered to have a value Init for an initial action that generates the 

starting state (in the style of plan space planning—see Chapter 7).

Variables Clear2(A), On2(A, B), ArmE2, OnT2(C), Clear2(C), OnT2(B), Hold2(A), Clear2(B), Hold2(C),

On2(A, C), On2(C, A), OnT2(A), Clear1(A), On1(A, B), ArmE1, OnT1(C), Clear1(C), OnT1(B),

Hold1(A), Clear1(B), Hold1(C), Clear0(A), On0(A, B), ArmE0, OnT0(C), Clear0(C), OnT0(B).

Domains Clear2(A) : {No-op},

On2(A, B) : {No-op},

ArmE2 : {No-op, Stack(A, B), Stack(A, C), Stack(C, A), PutDn(C), PutDn(A)},

OnT2(C) : {No-op, PtDn(C)},

Clear2(C) : {No-op},

OnT2(B) : {No-op},

Hold2(A) : {No-op, UnSt(A, B)},

Clear2(B) : {No-op, UnSt(A, B)},

Hold2(C) : {No-op, PkUp(C)},

On2(A, C) : {Stack(A, C)},

On2(C, A) : {Stack(C, A)},

OnT2(A) : {PtDn(A)},

Clear1(A) : {No-op},

On1(A, B) : {No-op},

ArmE1 : {No-op},
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OnT1(C) : {No-op},

Clear1(C) : {No-op},

OnT1(B) : {No-op},

Hold1(A) : {UnSt(A, B)},

Clear1(B) : {UnSt(A, B)},

Hold1(C) : {PkUp(C)},

Clear0(A), On0(A, B), ArmE0, OnT0(C), Clear0(C), OnT0(B).

The mutex relations are implemented as constraints. Since actions are not variables but values of 

variables, action mutexes are modelled as constraints between the corresponding proposition variables. 

If two actions in a layer are mutex then two propositions in that layer cannot simultaneously take those 

actions as values. For example, the actions PkUp(C) and UnSt(A, B) are mutex in action layer A1 in 

the figure. This means that Hold1(C) = PkUp(C) and Hold1(A) = UnSt(A, B) cannot hold together, and 

likewise Hold1(C) = PkUp(C) and Clear1(B) = UnSt(A, B). This is modelled in GP-CSP as, 

Hold1(C) = PkUp(C) … Hold1(A)πUnSt(A, B)
7

and, Hold1(C) = PkUp(C) … Clear1(B)πUnSt(A, B)

The remaining action mutexes in the problem of 10.4 are left as an exercise for the reader.

The dynamic CSP starts of with an initial set of constraints derived from the goal propositions. These 

constraints say that the goal propositions are active.

Initial State Active {On2(A, C), OnT2(C)}

The goal propositions are regressed to subgoal propositions by a set of activity constraints. Given 

an action (value), the activity constraint relates the active proposition to its preconditions. The activity 

constraints are of the form, 

pi = ai … Active{precond(a)1–1}

For our example, the activity constraints are the following:

Activity constraints

On2(A, C) = Stack(A, C) … Active {Hold1(A), Clear1(C)}

OnT2(C) = No-op … Active { OnT1(C)}

OnT2(C) = PtDn(C) … Active {Hold1(C)}

The proposition mutexes are encoded in a straightforward manner. If two propositions p and q are 

mutex in a layer i, they are expressed as, 

Active(qi) … ¬(Active(pi)) or ¬(Active(qi) Ÿ Active(pi))

A simple procedure for solving a DCSP will need to start with assigning values to active variables, and 

then proceed in a backtracking like manner, considering one new active variable at a time. In the process, 

new variables may be activated. When the algorithm is applied to the DCSP generated by encoding the 

planning graph, this process mimics the backward depth-first procedure adopted by Graphplan.

Another approach would be to compile the DCSP into a standard CSP. One could then use the 

different approaches used to solve CSPs (see Chapter 8). Solving this CSP would not be constrained 

by the backward direction ordering of variable imposed by DCSP. More importantly, separating the 

encoding (into a CSP) phase from the solving phase means that one can use state of the art CSP solvers.

A DCSP marks certain variables (goal propositions) as active. Only the active propositions are 

assigned values (actions) and participate in the plan. The distinction between active propositions and 

7  Which is equivalent to ¬[Hold1(C) = PkUp(C)ŸHold1(A) = UnSt(A, B)] or ¬(Hold1(C) = PkUp(C)) ⁄ ¬(Hold1(A) = UnSt(A, B))
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inactive ones can be marked by adding another value to the domain of that proposition. This value ^,

read as false or bottom, signifies that the proposition is inactive. In other words, a proposition P is active, 

if and only if P π ^. With this new value added to the domain, all the propositions in all the layers are 

treated equally and participate in the solution finding process together. In the solution, only the active 

variables (propositions) are assigned values (producing actions) and the rest are assigned ^.

Every Active(P) statement in the DCSP is replaced by P π ^. The constraints introduced in the DCSP 

are now written as follows, 

The activity constraint activates the preconditions of the action a chosen for a goal proposition p at 

level i.

pi = ai … Active{precond(a)1–1}

Let precond(a) = {p1, p2, …, pk}. Then the above activity constraint is written as, 

pi = ai … p1
i–1π^ Ÿ p2

i–1π ^ Ÿ … Ÿ pk
i–1 π ^

If G = {g1, g2, …, gn} is the goal set in the final layer k of the planning graph, the corresponding 

constraints in the CSP are, 

g1
k π ^ Ÿ g2

k π ^ Ÿ … Ÿ gn
k π ^

The proposition mutex ¬(Active(qi) Ÿ Active(pi)) is encoded as, 

ÿ( qiπ^ Ÿ piπ^) or qi = ^ ⁄ pi = ^

The procedure described above allows us to encode a planning graph into a CSP. But is it necessary to 

first construct the planning graph and then encode it into a CSP? The answer is no, and it was shown by 

Peter van Beek and Xinguang Chen, in a system called CPlan, that one can directly encode a planning 

problem with a bound on the number of layers as a CSP (van Beek and Chen, 1999). We look at a way of 

encoding a planning problem using the state-variable representation as described in (Ghallab et al., 2004).

10.2.1 CSP from State-Variable Representation

We look at an approach to encode a planning problem directly into a CSP using the same example. The 

state-variable representation uses functions on variables instead of predicates. For example, instead of 

using the predicate On(x, y), we use a function On(x) and indicate that (block) A is on B by the statement, 

On(A) = B. On(A) is called a state variable, and it can take a value of type Block. Let S be of type state. 

The initial state as shown in Figure 10.4 is represented as, 

  {On(A, S0) = B, On(B, S0) = table, On(C, S0) = nil, OnT(A, S0) = 0, OnT(B, S0) = 0, 

OnT(C, S0) = 1, Clear(A, S0) = 1, Clear(C, S0) = 1, Clear(B, S0) = 0, Holding(arm, S0) = nil}

The second argument in the above functions is a state identifier. If the planning system reasons only 

with the current state, the state parameter can be left implicit. We could then describe the state S0 as, 

  S0 = {On(A) = B, On(B) = nil, On(C) = nil, OnT(A) = 0, OnT(B) = 1, OnT(C) = 1, 

Clear(A) = 1, Clear(C) = 1, Clear(B) = 0, Holding(arm) = nil}

The state is described by a set of state variables—On(A), On(B), On(C), OnT(A), OnT(B), OnT(C),

Clear(A), Clear(B), Clear(C), and Holding(arm). These variables can take values from their respective 

domains. For example, DOn(A) = {B, C, nil}, DOn(B) = {A, C, nil}, DClear(A) = {0, 1}, and DHolding(arm) = {A, 

B, C, nil}. The values for these variables are either domain objects, which may be typed—for example 

Holding(arm) can take a value of type Block or nil—or of a different sort, for example Clear(A) can 

take a 0 or 1 value. One can observe that this representation lends itself naturally to posing the planning 

problem as a CSP. Also observe that we have specified values of variables like Clear(B, S0) = 0 in the 
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spirit of completely specifying the start state. In the classical representation used by STRIPS, only the 

propositions that are true needed to expressed.

The goal can in turn be represented by a set of constraints. Let us say the goal (again) is simply that 

A should be on C, and C should be on the table. Assuming that we are looking for a plan of maximum k

steps, we expect the following sequence of states to occur –S0, S1, …, Sk. Also we expect the final state 

to satisfy the goal constraints, 

{On(A, Sk) = C, OnT(C) = 1}

The state transitions are produced by instances of operators. The operators can be defined as before, 

using the preconditions and effects. For example, we use UnSt(x, y) to represent the Unstack action as 

used by STRIPS in the blocks world.

UnSt(x, y)

preconditions:  On(x) = y, Holding(arm) = nil, Clear(x) = 1

effects:  Holding(arm) ¨ x, Clear(y)¨1

and likewise, the Stack action as, 

Stack(x, y)

preconditions:  Holding(arm) = x, Clear(y) = 1

effects:  On(x)¨y, Holding(arm)¨nil, Clear(y)¨0

The PkUp and PtDn (putdown) action can be similarly defined, and are left as an exercise.

Given the start state and the goal state, the task of planning is to find a sequence of actions that will 

result in the goal states. Let us assume that the plan is a linear plan of bounded length k. This means 

we are looking for a sequence of actions (a1, a2, …, ak)
8
. Each element of this sequence is an action

variable. The domain of action variables contains the names of actions that are possible, including the 

No-op. Thus, for every action a, the domain Da is defined as follows:

Da = {UnSt(A, B), UnSt(A, C), UnSt(C, B), UnSt(C, B), UnSt(B, A), UnSt(B, C),

Stack(A, B), Stack(A, C), Stack(C, B), Stack(C, B), Stack(B, A), Stack(B, C),

PkUp(A), PkUp(B), PkUp(C), PtDn(A), PtDn(B), PtDn(C), No-op}

The No-op action is needed in cases where the plan found has a length smaller than k. In the CSP, 

the task is to find an appropriate value from the above domain for each of the action variables ai,

1 £ i £ k. The values for the action variables are determined by, 

1. The start state

2. The goal constraints

3. The relation between actions and their preconditions

4. The relation between actions and their effects

The action act(u, …, z) chosen as a value for the ith action variable should be such that all its 

preconditions satisfy the state Si-1 and all its effects satisfy the state Si.

Let the action act(u, …, z) have m preconditions. For every precondition prej, 1 £ j £ m, of act(u, …, 

z) of the form xj(arg1, …, argp) = v the precondition must be satisfied by the preceding state Si–1. This 

results in binary constraints of the form, 

<ai = act(u, …, z), xj(arg1, …, argp, Si–1) = v> for 1 £ j £ m, for 1 £ i £ k

8 Numbered in the same manner as the planning graph.
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Let the action act(u, …, z) have n effects. For every effect ej, 1 £ j £ n, of act(u, …, z) of the form 

xj(arg1, …, argp)¨v, the constraint xj(arg1, …, argp) = v must be satisfied by the succeeding state Si.

<ai = act(u, …, z), xj(arg1, …, argp, Si) = v> for 1 £ j £ n, for 1 £ i £ k

Consider the action UnSt(x, y) described above. It has three preconditions, On(x) = y, Holding(arm)

= nil, Clear(x) = 1, and two effects –Holding(arm) ¨ x and Clear(y)¨1. We get the set of constraints 

that are all possible instances of the following. The constraints are defined for each action variable ai,

1 £ i £ k.

<ai = UnSt(x, y), On(x, Si–1 ) = y> for 1 £ i £ k

<ai = UnSt(x, y), Holding(arm, Si–1) = nil> for 1 £ i £ k

<ai = UnSt(x, y), Clear(x, Si–1) = 1> for 1 £ i £ k

<ai = UnSt(x, y), Holding(arm, Si) = x> for 1 £ i £ k

<ai = UnSt(x, y), Clear(y, Si) = 1> for 1 £ i £ k

The instances of the above constraints will have the parameters x and y replaced by A, B and C 

wherever possible.

However, these constraints are not enough. If we want every solution of the resulting CSP to be a valid 

plan, we must also assert that all the effects of actions have been taken into account. In other words, we 

should add constraints to circumscribe the effects of actions. We should say that if any state variable is not 

affected by the action ai then it remains unchanged in the succeeding layer. These constraints are derived 

from the Frame axioms, which say that the only change that happens is that due to the known actions.

Let ai = act(u, …, z) be the action chosen for the ith step. Let x be a state variable not affected by this 

action. That is, it does not figure in the effects of the action. Then the Frame axiom states that the value 

of x must be same before and after the action. The Frame axioms are expressed as ternary constraints 

of the form, 

<ai = act(u, …, z), x(arg1, …, argp, Si–1) = v, x(arg1, …, argp, Si) = v > for 1 £ i £ k

Let us look at the example of the action Stack(A, C). The effects of this action are On(A)¨C,

Holding(arm)¨nil, and Clear(C)¨0. That is, it affects the variables On(A), Holding(arm), and Clear(C). 

For every other variable, we must introduce constraints of the form (shown for Clear(B) and On(C) only), 

<ai = Stack(A, C), Clear(B, Si–1) = vCB, Clear(B, Si) = vCB >for 1 £ i £ k

<ai = Stack(A, C), On(C, Si–1) = vOC, Clear(C, Si) = vOC>for 1 £ i £ k

Here, vCB and vOC are variables. The only constraint that these variables must satisfy is that they 

must have the same value in Si–1 and Si. The Frame axioms ensure that the only state changes that are 

discovered by solving the CSP are those that are the effects of the actions in the plan. Figure 10.14 below 

shows the matching diagram (see Chapter 8) for one action variable ai and only for one of its values 

UnSt(A, B). We also illustrate the ternary constraint, due to the Frame axiom for one variable On(B).

Given this snippet of the matching diagram, one can imagine how the full constraint graph or the full 

matching diagram will look like. One can think of the variables arranged in layers like in the planning 

graph. The unary constraints imposed by the start state and the goal propositions can be used to enforce 

node consistency in the corresponding layers of state variables. The reduction in their domains will be 

propagated by arc consistency via the constraints linking state variables to actions, and onto other state 

variables, and so on. In fact, any of the CSP solving algorithms can profitably be employed to find a 

solution that will contain the plan in the values of the action sequence (a1, a2, …, ak). There may be 

No-op actions in the plan found, and they can be deleted to yield a shorter plan. One can now implement 

an iterative deepening like algorithm that will look for plans of increasing length bounds.
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FIGURE 10.14 The matching diagram for constraints associated with the action ai in the ith stage. 

The illustration shows the case when the action in question is UnSt(A, B). Other actions will have 

similar links. The thick dashed triangles represent the ternary constraints associated with the Frame

axioms, shown only for the variable On(B).

10.3 Planning as Satisfiability

Where the state-variable representation was conducive to posing planning as a CSP, the classical 

representation can similarly be used to pose planning as a satisfiability (SAT) problem. This too results 

in a two stage process of solving a planning problem. The first stage involves encoding a planning 

problem as SAT and the second stage then uses well studied techniques to solve the SAT problem. A 

well known series of algorithms under the name SATPLAN by Henry Kautz and Bart Selman and David 

McAllester is based on this idea (Kautz and Selman, 1992; 1996; 1998), (Kautz et al., 1996), 

In the classical representation, the state is represented by a set of true propositions. If we treat each 

possible proposition as a Boolean variable, then we have the basis of encoding the planning problem 

as a satisfiability problem. Encoding planning as SAT is similar to encoding it into a CSP. Instead of 

constraints, the problem is expressed as a formula in propositional logic, and looks for a satisfying 

assignment to the propositional variables. The propositional variables, for example On(A, B), are called 

fluents, predicates that can change their value over time.
9
 We will represent fluents by the symbols f, f1,

f2, f3, and so on, depending upon the situation.

9 As opposed to classical predicates in FOL that are either true or false, once and for all. 
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10.3.1 Linear Encodings

The basic idea in the so called ‘linear’ encoding of planning into satisfiability is to add a time parameter 

to the fluents and express the relation between actions, preconditions and effects as well as the Frame

axioms (Kautz and Selman, 1992). The SAT formula to be solved is composed of a set of clauses as 

follows,

1. Fluents from the initial state S0. If f ŒS0 then f0 is a clause, else ¬f0 is a clause. In the planning 

example from Figure 10.4, we have the fluents On(A, B, t0), Clear(A, t0), ¬Clear(B, t0) for example.

2. Fluents from the goal state. Assuming that we need a plan of at most k steps, we add a fluent fk for

every goal proposition fŒG. Observe that the goal G is usually incompletely specified. We only 

add the known fluents to the SAT encoding.

3. An action implies its preconditions. If an action holds (is true) at time t then its preconditions 

must hold at time (t – 1)
10

. This is expressed as a clause (at … precond(a)t–1) where precond(a) is 

the conjunction of the preconditions of action a. For example we have, (UnSt(A, B, t) … (On(A,

B, t-1) Ÿ ArmEmpty(t–1)
11

Ÿ Clear(A, t–1)).

4. An action implies its effects, at time t. This is expressed as a clause (at … effects(a)t) where effects(a)

is a conjunction of the positive and negative effects of action a. For the unstack action we have, 

(UnSt(A, B, t) … (¬On(A, B, t) Ÿ ¬ArmEmpty(t) Ÿ Holding(A, t) Ÿ Clear(B, t)).

5. Classical Frame axioms. If the action a does not affect a fluent f, then f remains unchanged after 

the action. (ft–1 Ÿ at) … ft. For example ((Clear(C, t–1)ŸUnSt(A, B, t)) … Clear(C, t)).

  An alternative formulation of the Frame axioms, known as explanatory frame axioms, has two 

clauses for each fluent, which say that if the fluent has changed then one of the actions that causes 

that change must have happened (Haas, 1987), (Schubert, 1990).

   ft–1 Ÿ¬ft … ⁄{at | f Œ del(at)}

  and ¬ft–1 Ÿft … ⁄{at | f Œ add(at)}

6. The original formulation of SATPLAN also had clauses that said that only one action occurs at a 

time. For all actions a and b, the following holds, 

   ~at ⁄ ¬bt

However, later versions did away the exclusion between actions and borrowing from Graphplan, 

generated encodings from the planning graph that did allow parallel actions.

10.3.2 Encoding the Planning Graph

The planning graph can be expressed as a SAT problem in a straightforward fashion (Kautz et al., 1996). 

The fluents in the initial layer are clauses in the encoding, and the rest of the encoding process begins 

at the goal layer.

1. Fluents from the initial layer P0. If f0 ŒP0 then f0 is a clause, else ¬f0 is a clause.

2. Fluents from the goal layer Pk. We add a fluent fk for every goal proposition fkŒG. Observe that 

the goal G is usually incompletely specified. We only add the known fluents to the SAT encoding.

3. An action implies its preconditions. If an action holds (is true) at layer/time t then its preconditions 

must hold at time (t – 1)
12

. This is expressed as a clause (at … precond(a)t–1) where precond(a)

10 We will stick to our planning graph based numbering. The numbering adopted by Kautz and Selman in the original papers 

was different. 
11  ArmEmpty, the proposition used in STRIPS, can be thought of being equivalent to Holding(nil).
12 Again, we stick to Graphplan styled numbering of layers. 
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is the conjunction of the preconditions of action a. For example we have, (UnSt(A, B, t) …

(On(A, B, t – 1) Ÿ ArmEmpty(t-1) Ÿ Clear(A, t – 1)).

4. For every fact ft in level t, a disjunction of the actions that have f in their add effects is implied. For 

example, in some layer t it might be, Holding(A, t) … PkUp(A, t) ⁄ (Unstack(A, B, t) ⁄ (Unstack

(A, C, t) ⁄ No-op. The actions that participate in the disjunction are determined by the planning 

graph.

5. Actions that are mutex define clauses in the SAT. For example in the planning graph of Figure 

10.4, we have, (¬PkUp(C, 0)⁄¬UnSt(A, B, 0)).

Note that going backwards from the goal layer in the planning graph, an action only implies its 

preconditions and not its effects. Also a fact (fluent) implies an action that achieves it, in a manner 

similar to that of the explanatory Frame axioms. As reported in (Kautz and Selman, 1999), the above 

encoding of the planning graph is followed by a logical simplification algorithm that runs in polynomial 

time. This algorithm converts the encoding into CNF (Conjunctive Normal Form) and simplifies it by 

doing a limited amount of logical inference for mutex propagation. Kautz and Selman observe that the 

“use of an intermediate plan graph representation appears to improve the quality of automatic SAT 

encodings of STRIPS problems.”

10.3.3 Encoding Causal Links

In Chapter 7, we had looked at an approach for searching for plans in the plan space. The basic idea 

behind the partial order planning systems was to identify flaws in a partial plan and find operators to 

resolve those flaws. The flaws were of two kinds. The first, open goals, for which we needed either to find 

an existing action in the plan to support them, or insert a new action into the plan. The second, threats, 

which could possibly disrupt a support for a goal, had to be dealt with by “separating” the threatening 

action, or moving it before or after the threatened link.

The conditions required by a partial plan to be a valid one can be encoded in a SAT problem as well 

(Kautz et al., 1996). Kautz, McAllester and Selman report the encoding of a causal link planner SNLP 

(McAllester and Rosenblitt, 1991).

Let us say that we want to solve the Sussman’s anomaly in the blocks world, 

Start state S0 = {On(C, A), OnT(A), OnT(B), Clear(B), Clear(C), ArmE}

Goal G = {On(A, B), On(B, C)}

The set of possible ground actions is, 

A = {UnSt(A, B), UnSt(A, C), UnSt(C, B), UnSt(C, B), UnSt(B, A), UnSt(B, C),

Stack(A, B), Stack(A, C), Stack(C, B), Stack(C, B), Stack(B, A), Stack(B, C),

PkUp(A), PkUp(B), PkUp(C), PtDn(A), PtDn(B), PtDn(C), No-op}

The set of ground fluents is, 

F = {Clear(A), Clear(B), Clear(C), On(A, B), On(B, A), On(A, C), On(C, A), On(B, C),

On(C, B), ArmE, OnT(A), OnT(B), OnT(C), Hold(A), Hold(B), Hold(C)}

We also have the two special actions A0, which produces the start state, and A  which consumes the 

goal predicates. In plan space planning, we begin with the initial partial plan containing just these two 

actions, (A0, A ) (see Chapter 7). The preconditions of A  are the initial flaws, or open goals.

Let us say that we are looking for a set of actions S = {s1, s2, …, sk}, called step names, with no

a priori temporal ordering constraints on these actions, except that the occur after A0 and before A . We 

know that for the Sussman’s anomaly problem k = 6. In practice, one could follow an iterative deepening 

approach to find a plan with the smallest number of actions.
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A ground causal link is of the form CausalLink(si, , f, sj) where fŒprecond(sj) is a precondition of sj

and is produced by si, fŒadd(si).

A valid plan is an assignment of ground actions AiŒA to the step names sjŒS such that, 

1. Every goal in the partial plan has a supporting action. That is, if f is a precondition (open goal) of 

sj then there exists a causal link of the form CausalLink(si, f, sj).

2. Every causal link is true. If a plan contains CausalLink(si, f, sj) then, 

(a) f Œadd(si).

(b) si, ≺ sj, that is si, happens before sj.

(c) for every sk π si πsj if fŒdel(sk) then either sk, ≺ si or sj, ≺ sk. That is, no other action clobbers 

the causal link.

3. The ordering constraints are consistent. If si, ≺ sj and sj, ≺  sk then si, ≺  sk and it is never the 

case that sk, ≺  sk.

For the Sussman’s anomaly, we expect to find the following causal links to start with, 

CausalLink(Stack(A, B), On(A, B), A )

and CausalLink(Stack(B, C), On(B, C), A )

Each of the two actions Stack(A, B) and Stack(B, C) will have preconditions that will generate open 

goals that will need causal links of their own, which we expect to be found during the planning process. 

The following is an encoding of the planning problem as a SAT problem. The clauses of the SAT are 

defined as, 

1. (s = A1 ⁄ s = A2 ⁄ … ⁄ s = Am) for all sŒS, and AjŒA

2. ¬(s = A Ÿ s = B) for all sŒS, A, BŒA and A π B

3. ¬Adds(A0, F) FŒ(F \S0)

4. Needs(A , F) FŒG

5. Adds(s, F) ∫ (s = A1⁄s = A2⁄…⁄s = An) where sŒS, AjŒA, and FŒadd(Aj)

6. Dels(s, F) ∫ (s = A1⁄s = A2⁄…⁄s = Ao) where sŒS, AjŒA, and FŒdel(Aj)

7. Needs(s, F) ∫ (s = A1⁄s = A2⁄…⁄s = Ap) where sŒS, AjŒA, and FŒprecond(Aj)

8. Needs(s, F) … (CausalLink(p1, F, s)⁄…⁄ CausalLink(pm, F, s))

   where piŒA»{A0}, sŒA»{A } and FŒF

9. CausalLink(p, F, s) … Adds(p, F) where pŒA»{A0}, sŒA»{A } and FŒF

10. (CausalLink(p, F, s)ŸDels(r, F)) … (r≺p ⁄ s≺r)

   where pŒA»{A0}, sŒA»{A }, rŒA\{p, s} and FŒF

11. A0≺s sŒA

12. s≺ A sŒA

13. ¬(s≺ s) sŒA

14. (p≺r Ÿ r≺s) … (p≺s) pŒA»{A0}, rŒA, sŒA»{A }

The clauses in set 1 are a kind of closure axioms which say that the only actions are the one mentioned 

in the set A. The second set says that each step is unique and distinct. The third clause says that the initial 

action only produces the propositions in the start state and nothing else, and the fourth axiom states 

that in a successful plan, the goal propositions are “needed” by the final action. The sets of clauses 5, 6 

and 7 define the relations Adds, Dels and Needs, between propositions and corresponding actions. The 

clauses in set 8 say that whenever a proposition is “needed” by an action, there should be a causal link 

in which that proposition is produced. The set 9 says that every causal link CausalLink(p, F, s) implies 

the relation Adds(p, F). Ten says that if action r is a threat to the above causal link, then it must either 

happen before p or after s. Clauses 11 and 12 place the initial and the final action at the two ends, clause 
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13 says that an action cannot be in a ordering relation with itself, and clause 14 says that the ordering 

relation between actions is transitive.

The SAT encoding above uses ground instances of fluents and actions. It is possible to arrive at a lifted

encoding in which variables are used for fluents and actions, which has a smaller number of clauses. 

The interested reader is referred to (Kautz et al., 1996).

10.4 Heuristic Search

In Chapter 7, we briefly looked at the idea of doing state space search for planning. In Chapter 3, we 

have looked at the idea of using heuristic functions to guide search. The heuristic functions we described 

there were static, in the sense that they derived a distance estimate by looking at the current state and the 

goal state. These functions were domain dependent and the user was expected to define them.

More recently, the idea of doing some analysis in a domain independent fashion has emerged. The 

idea is that for problems which are intrinsically hard, one can relax some constraints and solve a simpler 

version of the problem to estimate the cost of solving the original problem. Then, in a state space search 

scenario, one can do this analysis for all the candidate nodes and in effect compute a heuristic value for 

each state in a domain independent fashion. As shown in Figure 10.15 below, this heuristic function 

can help guide the search process in selecting the nodes most likely to lead to the goal. Thus, heuristic 

search planning is also a two stage process in which one alternates between a node selection phase 

(by solving the simpler problem) and a node expansion phase which generates the candidates. The key 

thing is that the secondary search on the simpler problem should be significantly inexpensive, preferably 

being a low order polynomial in complexity. 

Start

Goal

FIGURE 10.15 (Reproduced from Figure 2.2). The heuristic function estimates the distance to the 

goal.

The simpler problem to solve is usually a transformation of the planning problem into another planning 

problem in which the operators do not have delete effects.

Given the planning problem P defined as a triple (S, G, O) where, 

—S is set of facts completely describing the Given or Start state, 

—G is a set of facts required to be true in a goal state, and

—O is the set of operators
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we can define a new planning problem P ¢ by replacing the set of operators O with a set O¢. The set O¢

contains the corresponding operators as the set O, except that there are no delete effects in any operator. 

For example, the operator PickUp,

(:action pickup 

:parameters (?x -block)

:precondition (and (onTable ?x) (armempty) (clear ?x))

:effect (and (not (armempty)) (holding ?x) (not (onTable ?x))))

is replaced by the operator PickUp-R,

(:action pickup-r 

:parameters (?x -block)

:precondition (and (onTable ?x) (armempty) (clear ?x))

:effect (holding ?x))

where the negative or delete effects have been removed. The new problem P ¢ is known as the relaxed 

planning problem. The solution to the relaxed planning problem is the relaxed plan.

Observe that certain combinations of actions in the relaxed plan may not be allowed in the original 

planning problem. For example, we can have PickUp-R(A) followed by PickUp-R(B), or even have 

both the actions in parallel, in the relaxed plan. This happens because the precondition “armempty”

is no longer deleted in the relaxed domain. Nevertheless, one expects that a solution to the relaxed 

problem will give us some idea about the cost of the solution in the original domain. Enough, hopefully 

for the search algorithm to be able to choose the next action in a more informed manner. In general, 

the optimal relaxed plan would be shorter than the optimal plan in the original domain. This is because 

additional steps may be needed to compensate for ignoring the delete actions. For example, the sequence 

(PickUp(B), Stack(B, C), PickUp(A)) might be part of a plan in the domain in which only (PickUp-R(B),

PickUp-R(A)) might be part of a relaxed plan. In the rest of the discussion, we omit the suffix r for the 

relaxed actions.

If we could find an optimal plan for the relaxed problem then we could use the length
13

 of the solution 

as an admissible heuristic for an algorithm like A*. Unfortunately, the problem of finding the optimal 

solution to the relaxed plan is NP-hard (Bylander, 1994). Therefore, one has to instead work with an 

estimate of this value. Two well known heuristic search planners HSP and FF, computed this estimate 

in different ways.

10.4.1 HSP

The Heuristic Search Planner by Blai Bonet and Hector Geffner (2000; 2001; 2001a) estimates the 

distance to the goal from a given state by estimating the number of steps, or the sum of their costs, for 

each proposition in the goal description.

Given a planning problem, the state space is defined by the set of possible states. Each state is a set 

of ground propositions. Each instance a of the STRIPS actions has a set of preconditions precond(a),

add effects add(a), and delete effects del(a). In the relaxed version of the problem, the delete effects 

are ignored. The estimated cost g(s, p) of reaching a proposition p from a given state s is defined as, 

g(s, p) = 0 if pŒs

  = minaŒO(p) [1 + g(s, precond(a)] otherwise

13 We can use the sum of the costs of actions, if actions have costs associated with actions. 
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where O(p) stands for the set of actions that have p in their add effects. Note that the function g is 

defined, both for a proposition as well as for a set of propositions. The function for a set is some kind 

of an aggregation over the individual components of that set.

The algorithm used in HSP updates the values g(s, p) using a forward chaining procedure CostP

described in Figure 10.16. The algorithm initializes the cost of each proposition to 0 if it belongs to the 

state s, else it sets it to a very large value, . It then picks an action that is applicable, adds its effects to 

the state s, and re-computes cost for each added effect. When it terminates, CostP returns a cost value 

for each proposition. This cost is the estimated cost of reaching the proposition from the given state s.

If the cost of a proposition remains , it means that the proposition is not reachable in the domain. The 

aggregation function CostS here computes the cost of a set of propositions (the preconditions of the 

action) as the sum of the costs of each member. Note that these costs are all finite, since they pertain to 

the preconditions which have been added to the state s at some time before the action becomes applicable. 

Other methods of aggregation, for example using the maximum value, could be used.

Given a state s, the estimated cost h(s) of achieving the goal G from s is defined as, 

h(s) =
def g(s, G)

where g(s, G) is an aggregation of all g(s, p) such that pŒG. This aggregation function may be defined 

in different ways, but the two most commonly used aggregations are the additive and the max heuristic. 

We can call the corresponding heuristic functions as h+(s) and hmax(s).

The additive heuristic g+(s, G) computes the value as a sum of the costs of each proposition in the goal.

g+(s, G) = SpŒG g(s, p)

CostP (state = S, propositions = P, actions = A)

1 for each pŒP

2 if p  ŒS then g(s, p) ¨ 0

3    else g(s, p) ¨

4 availableActions ¨ true

5 while availableActions  = true

6 a ¨ Applicable(A, S)

7 if a  = “nix” then availableActions ¨ false

8 else A ¨ A \ a

9 for each pŒadd(a)

10 S ¨ S » {p}

11                       g(s, p) ¨ min(g(s, p), CostS(precond(a), g(s, P))

12

13 return g(s, P)

CostS (preconditions = C, g(s, P))

1 cost ¨ 0

2 for each pŒC

3 cost ¨ cost + g(s, p)

4 return cost

FIGURE 10.16 The procedure CostP initializes cost of each predicate g(s, p) to 0 or infinity. It then 

applies actions that are applicable. Each applied action augments costs of g(s, p) for every add effect p

of the action, and adds the effect to the state, possibly triggering more actions. The aggregation function 

CostS shown here adds the cost of individual elements of the set. The function CostP returns an array 

g(s, P) with a cost associated with each proposition pŒP. We assume a function Applicable(A, S) that 

returns an action aŒA, if it is applicable in S, and returns nix if there is no such action.
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The additive function is the function CostS shown in Figure 10.16. The additive function assumes that 

each goal proposition p is arrived at by an independent set of actions. This assumption of independence 

is however not always true, because some actions may generate more than one proposition. As a result, 

the estimated cost using the additive function may be more than the actual cost, and therefore the additive 

function is not guaranteed to be admissible (see Chapter 5 for a discussion on admissibility).

The other commonly used function is gmax(s, G) which aggregates the value for the set by taking the 

maximum of the constituent costs.

gmax(s, G) = MaxpŒG g(s, p)

The max heuristic can be thought of as making a complete dependence assumption, which assumes 

that the sequence of actions that achieves the costliest proposition also achieves the other propositions on 

the way. Obviously, even this assumption is not likely to hold, but the max heuristic has the property of 

being admissible because it never overestimates the cost. Consequently, if one has the task of finding the 

optimal (or shortest where costs are uniform) plan then one should use the max heuristic for aggregation. 

On the other hand, the additive heuristic is likely to be more informed because it looks at all the 

constituent propositions, leading to a more focused search.

The original version of HSP used the additive heuristic with Hill Climbing (see Chapter 3). A later 

version HSP2 uses the weighted A* algorithm (see Chapter 5), and can be made an admissible algorithm 

with an appropriate choice of heuristic function and the weights. HSP2 also used a variation on the 

heuristic function called h2(s). Instead of taking only the costliest proposition, as is done in hmax(s), the

h2(s) function looks at the costliest pair of propositions that are achieved at the same time. Let us say 

that the two propositions are called p and q. Then the heuristic function h2(s) is defined as (Ghallab et 

al., 2004), 

g2(s, p) = 0 if pŒs

= minaŒO(p) [1 + g2(s, precond(a)] otherwise

g2(s, {p, q}) = 0 if p, qŒs

= min { mina [1 + g2(s, precond(a)) | {p, q} Õ add(a)],

mina [1 + g2(s, {q} »precond(a)) | pŒadd(a)],

mina [1 + g2(s, {p} »precond(a)) | qŒadd(a)] }

g2(s, G) = maxp, q { g2(s, {p, q}) | {p, q} Õ G }

and,

h2(s) = g2(s, G)

Clearly, h2(s) is more informed than hmax(s) which can be thought of as h1(s). In fact, we can define 

a family of heuristic functions h1(s), h2(s), …, hm(s)which are increasingly more informed, as well as 

increasingly more expensive to compute. One can observe that when for |G| = j, the function hj(s) in 

fact solves the relaxed planning problem, which is NP-hard.

Another version HSPr, a regression planner, searches backward from the goal propositions (see 

Chapter 7 for a discussion on backward state space search). According to Bonet and Geffner, heuristic 

computation in HSP and HSP2 takes up about 80% of the total computation time, and this results in 

fewer nodes being explored by the search algorithm. The problem becomes acute because as the forward 

state-space search generates new candidate nodes as it progresses, the heuristic value for every new 

state has to be computed.

The algorithm HSPr instead searches in the regression space, searching backwards from the goal 

propositions. A major advantage of doing so is that the heuristic computation is drastically reduced. 
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Figure 10.17 illustrates the situation. The HSPr algorithm initially computes the value g(s0, p) for 

every ground predicate p, where s0 is the start state. This is illustrated in the figure by the dashed 

lines connecting the nodes, which are drawn when they first appear as time increases from left to 

right (as in the planning graph). Since we are ignoring the delete effects, once a proposition has been 

generated it is always a part of all subsequent states. The length of each dashed line then is a measure of 

g(s0, p). Now when the backward search regresses over the goal set, it produces candidate subgoal sets. 

In the figure, we illustrate two candidate sets SG1 and SG2 shown in shaded areas. The heuristic values 

for these subgoal sets can simply be aggregated from the values of the individual propositions which 

have been precomputed. Observe that the g(s0, p) is always measured with respect to the start state s0

which is the destination of backward search. For example, if we were using the hmax then hmax(SG1) = 

3 + 2 + 3 = 8 and hmax(SG2) = 3 + 2 + 1 = 6.

p1

p2

p3

p4

SG1

SG2

FIGURE 10.17 HSPr precomputes g(S0, p) for every p, represented by dashed lines above. Then 

during a backward search, it needs to only aggregate the values for each proposition in a subgoal set. 

The dark nodes represent the goal and the two sets of three nodes represent the two subgoal sets.

Another advantage of using backward search is that the branching factor is likely to be lower as 

compared to forward search as discussed in Chapter 7. However, as also described there, backward 

search has a disadvantage that it can generate spurious states, for example a blocks world subgoal in 

which the robot arm is holding two different blocks, or two different blocks are on a third block. Clearly, 

this is not possible and exploring such goals is an exercise in futility.

HSPr strives to catch some of these spurious subgoals by computing a binary mutex between 

some pairs of propositions, in a manner similar to as is done while constructing the planning graph in 

Graphplan. The definition of mutex used in HSPr is (Bonet and Geffner, 2001).

Given an initial state s0 and a set of ground operators A, a set M of pairs of propositions is a mutex 

set iff for all pairs R = {p, q} Œ M.

1. Both p and q are not true in s0, and

2. For every action aŒA such that pŒadd(a) (and vice versa), 

(a) either qŒdel(a) or

(b) qœadd(a) and for some rŒprecond(a), R¢ = {r, q} is a pair in M.
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The procedure for constructing the set M began by constructing a set M0 = MA» MB where, 

 ● MA is the set of pairs P = {p, q} where for some action a, pŒadd(a) and qŒdel(a),
 ● MB is the set of pairs P = {r, q} such that for some pair P¢ = {p, q}ŒMA and some action a,

rŒprecond(a) and pŒadd(a).

The algorithm for computing M begins with the set M0 as defined above and removing all “bad pairs” 

that do not satisfy either of condition 1 and 2 defined above. Like in Graphplan, not all sets of mutually 

exclusive pairs are identified here, but the ones that are identified do help in pruning the search space. 

HSPr uses the additive heuristic h+ and the set M to guide the backward search, which is the weighted A*

search
14

 with the weight w set to 5, like in HSP2. Bonet and Geffner report that in some domains, HSP2

had better performance, while in some HSPr was better. An effort to exploit the benefits of backward 

search with an FF styled heuristic is described in (Kumashi and Khemani, 2002).

10.4.2 FF

The algorithm Fast Forward (FF), also a forward state space search, employed a slightly different 

algorithm and a different strategy for computing the heuristic function (Hoffmann and Nebel, 2001), 

(Hoffmann, 2001).

To compute a heuristic value for a given state s, FF constructs a relaxed planning graph from that 

state s. The relaxed planning graph is the planning graph constructed by ignoring the delete effects in 

actions. Since the delete effects are ignored, the resulting planning graph has no mutexes at all, because 

the mutexes are a direct consequence of having delete effects. Consequently, when the goal propositions 

are produced, the plan extraction phase can find a plan without the need to backtrack. This is because any

set of actions that achieves a goal/subgoal will be nonmutex. This means that a solution to the relaxed 

planning problem can be found in polynomial time (in terms of the number of propositions in the initial 

state, the number of planning operators, and the maximum size of the add list for these operators).

Let the solution to the relaxed planning problem starting at state s be (A1, A2, …, Am), where each 

Ai is the set of actions in the ith layer that are part of the solution, and the goal propositions first appear 

in the mth layer. Then the heuristic used by FF hFF simply counts the number of actions in the relaxed 

plan found.

hFF(s) = Si = 1, …, m |Ai|

Like HSP, the algorithm FF too does forward state space search and selects the node to expand, 

based on the heuristic values of the candidates. The best candidate node should ideally have the lowest 

value. However, the fact that the plan extraction phase happens without running into mutexes implies 

that it is not guaranteed that the plan extracted is the optimal one. In fact, as observed above, the task 

of finding the optimal plan is NP-hard. FF uses some heuristics while searching backwards to try and 

find the best plan. These heuristics are, 

1. Prefer No-op Actions. If a No-op operation is available for supporting a proposition p then it is 

selected. In fact, this heuristic was also used in Graphplan, which first tries No-ops.

2. Difficulty Heuristic. If a No-op action is not available to support the proposition, one of the other 

actions that produce p must be chosen. The difficulty heuristic says choose an action whose 

preconditions are the “easiest” to solve. The “difficulty” of an action is defined as follows, 

difficulty(a) = SqŒprecond(a) min{i | proposition p occurs in layer i}

14 The weighted A* algorithm uses the function f(n) = g(n) + w·h(n) to pick nodes for expansion.



368 A First Course in Artificial Intelligence

  Given a choice of actions that achieve p, FF picks the one with the lowest difficulty value. The 

difficulty value for each action can be computed when it is first inserted in the planning graph. 

The reader will observe the similarity with the h+(s0, g), used by HSPr with g corresponding to 

precond(a).

Hoffmann and Nebel (2001) report that they implemented their own version of Graphplan for solving 

the relaxed planning problem, without having to worry about mutex relations. When the planning graph 

is being constructed, each action and each proposition is marked with the layer in which it first appears. 

Armed with this information, the plan extraction phase can apply the above heuristics efficiently.

The forward search used by FF is a greedy algorithm that is a variation of Hill Climbing, called 

Enforced Hill Climbing (EHC). The EHC algorithm is designed to work in domains in which from 

any given state, a better node is at most a few steps away. The basic idea is to search in a breadth first 

fashion till a better node is found, and when one is found, the algorithm moves to that node in a greedy 

manner. The algorithm, given in Figure 10.18, maintains a hash table of CLOSED nodes, and does not 

visit the same nodes again.

EnforcedHillClimbing (state = s, goal = G, actions = A)

1 plan ¨ ( )

2 closed ¨ ( )

3 current ¨ s

4 h(current) ¨HeuristicFF(current, Goal)

5 while h(current) π 0

6 closed ¨ closed » {current}

7 planSegment ¨ NextBetter(current, closed, A)

8 if planSegment  = “nix”

9 then return failure

10 else plan ¨ append (plan, planSegment)

11 current ¨ Last(current, planSegment)

12 h(current) ¨ heuristicFF(current, Goal)

13 closed ¨ HashInsert(closed, planSegment)

14 return plan

FIGURE 10.18 The procedure EnforcedHillClimbing synthesizes a plan using a greedy approach 

moving to the first better node it finds. We assume the following functions: HeuristicFF(current,

Goal) computes the heuristic function as described in the text; NextBetter(current, closed, A) finds

the closest node that is better than the current node using breadth first search, avoiding the nodes 

in closed; Last(planSegment) progresses over the plan segment found and returns the final state 

reached; and HashInsert(closed, planSegment) updates the table of closed nodes seen by EHC.

The algorithm EHC commits to a better state as soon as it finds it. This may mean in some domains 

that it lands up in a dead end from where no moves are possible. Hoffman and Nebel observe that if 

EHC is going to fail, it fails pretty quickly. This means that FF can try something else to find a plan. 

After trying out some approaches based on randomization, they settled for a second stage in which they 

use a complete algorithm like Best First Search (see Chapter 3).

One of the drawbacks of forward state space search is that the number of actions applicable in a given 

state may be quite large, as illustrated in Figure 7.4. Many of these actions may not be relevant to the 

goal being solved. While we do expect the heuristic function to select the better options from the set of 

candidates, computing the heuristic value for each such candidate adds to the computational overheads. 

FF has the option of using some pruning techniques which are quite effective, but not always be sound. 

This means that they may prune away a candidate node that would have been part of a solution.
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One such pruning method is the use of helpful actions. The set of helpful actions is the set A1 in the 

relaxed plan (A1, A2, …, Am) found by FF. The pruning method used is to consider only the actions in 

the helpful actions set.

The method can be very effective in many situations. Consider for example the planning problem in 

which there are a hundred blocks {A1, A2, …, A100} stacked on another hundred corresponding blocks 

{B1, B2, …, B100}, and the goal is to achieve On(A21, A6). Then the relaxed plan found would have only 

the action Unstack(A21, B21) in the first layer of actions, and FF would only consider that and ignore 

the ninety nine other unstack actions.

However, consider the goal On(B21, B6). FF would begin by finding the relaxed plan, 

({Unstack(A21, B21), Unstack(A6, B6)} , {Pickup(B21)}, {Stack(B21, B6)})

This plan has two helpful actions, and let us say that FF chooses Unstack(A6, B6). This results in a 

new state in which Holding(A6) and Clear(B6) are true, and ArmEmpty is false. From this state, there are 

several relaxed plans possible. The important goal in all these relaxed plans is to achieve ArmEmpty so 

that Pickup(B21) becomes possible. We look at 3 of the 101 such actions possible, yielding the following 

relaxed plans.

relaxed-plan-1 = ({PutDown(A6)}, {Unstack(A21, B21)}, {Pickup(B21)}, {Stack(B21, B6)})

relaxed-plan-2 = ({Stack(A6, A21)}, {Unstack(A21, B21)}, {Pickup(B21)}, {Stack(B21, B6)})

relaxed-plan-3 = ({Stack(A6, B6)}, {Unstack(A21, B21)}, {Pickup(B21)}, {Stack(B21, B6)})

As far as the relaxed problem is concerned, all three actions PutDown(A6), Stack(A6, A21) and Stack(A6,

B6) achieve ArmEmpty. The fact that the latter two have undesirable effects is not noticed because those 

effects are the delete effects which are ignored. Thus, FF cannot “see” that Stack(A6, A21) will delete 

Clear(A21) needed for Unstack(A21, B21), and Stack(A6, B6) will delete Clear(B6) needed for Stack(B21,

B6). As we can see, if FF uses the relaxed-plan-2 or relaxed-plan-3, the set of helpful actions would not 

have been helpful at all. One method suggested in (Hoffmann and Nebel, 2001) is to consider the union 

of actions in all relaxed plans as helpful actions.

Another heuristic called added goal deletion works as follows. Let us say that a candidate state s has

achieved a goal proposition pŒG. Now, FF constructs a relaxed plan P¢ starting from the state s in order 

to evaluate the heuristic value, hFF(s). If this plan P¢ has a relaxed action a’ such that the corresponding 

action a has the goal proposition p in its delete effects then the added goal deletion heuristic says that 

state s should not be selected by enforced hill climbing. As an example, consider the goal {On(A, B),

On(B, C)} when all three blocks A, B and C are on the table in the start state. The relaxed plan contains 

picking up blocks A and B, and stacking them on B and C respectively.

relaxed-plan = ({PickUp(A), PickUp(B)}, {Stack(A, B), Stack(B, C)})

Let us say the FF picks the (helpful) action PickUp(A), and in the next step follows it up with 

Stack(A, B) resulting in state s. Note that after picking up A, it needs to achieve ArmEmpty before it can 

pickup B, and that is why PickUp(B) is not the second action, and Stack(A, B) is. The resulting state 

s = {On(A, B), Clear(A), OnT(C), Clear(C), Armempty} achieves the goal proposition On(A, B). But 

the relaxed plan from state s is, 

relaxed-plan = ({Unstack(A, B)}, {Stack(A, B), Pickup(B)}, {Stack(B, C)})

which contains the action Unstack(A, B) which deletes the goal that was achieved in s, that is On(A, B).

Thus, using the added goal deletion heuristic state s is not selected by EHC. Observe that having picked 

up A, FF needs to do something with it. If it were using the helpful actions heuristics, it would have 

pruned away the PutDown(A) action, and would then get stuck holding block A. One way of avoiding 
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this kind of a deadlock is to try and do some pre-processing to determine a goal ordering in advance, 

and then have the EHC algorithm operate on the goals incrementally in the given order. This would 

need some heuristics to decide upon the goal ordering.

To cater to some of the cases where FF misses out on the desired actions and commits to a wrong set 

of actions, it has a built-in restart facility. In the breadth first mode, if the number of successors who are 

not better exceeds a threshold, the search aborts and restarts. Given the memory of closed nodes that it 

keeps, the new explorations will be in a different direction.

10.4.3 Fast Downward

The algorithm Fast Downward by Malte Helmert combines the forward search of FF with a new heuristic 

based on causal graph analysis, and is described briefly below. For more details, the interested reader 

is referred to (Helmert, 2004; 2006; 2008).

The Fast Downward program also extends the richness of domain a planner can handle. Like metric 

FF (Hoffmann, 2003), it could also handle metric resources and conditional effects. Metric resources 

are fluents that can take numerical value, for example temperature, capacity in a parking lot, or amount 

of fuel in the tank. Handling metric resources involves handling arithmetic expressions, comparing 

quantities (for example fuel > 10), and assigning new values in the effects of the action (for example 

fuel ¨ fuel – distance*rate). Extending to metric resources is natural for Fast Downward because the 

representation it uses is the state-variable representation, referred to as multi-valued planning tasks (MPT)

in the associated literature. The program also handles derived predicates and conditional effects, both in 

a similar manner. Derived predicates are predicates that are not modified by actions, but depend upon 

the values of some other predicates. This relation is captured in Fast Downward by axioms of the form 

<cond, v, d>, where cond is a pattern or condition defined on some variables, and when the condition 

holds in a state, the derived predicate v gets a value d. The same format used in the effects of an action 

describes conditional effects.

Helmert believes that the STRIPS like representation obscures important causal structure in the 

domain, and that ignoring the delete lists for estimating the heuristics, ignores some vital information. 

Fast Downward first converts problems in PDDL into the MPT representation described below. Then, 

it compiles state transition and causal dependencies into separate graphs, and computes the heuristic 

values over these graphs. Finally, it uses the heuristic value to guide forward search.

A planning problem in the MPT representation is a 5-tuple <V, s0, s*, D, A> where
15

,

 ● V is a set of (multi-valued) variables v each with its domain Dv. The variables are partitioned into 

two sets. One containing fluents, including numeric fluents, which are changed in the effects of 

operators in A. The second, called derived variables, are determined by other variables, and are 

computed using derived axioms in D. The domains of derived variables contain an undefined 

value ^.

A partial variable assignment or a partial state over V is a function s on some subset of V, such 

that s(v)Œ Dv wherever s(v) is defined.
 ● s0 is a state over V called an initial state.
 ● s* is a partial state over V called the goal.
 ● D is a set of axioms over V. Axioms are of the form <cond, v, d> where cond is a partial variable 

assignment called the condition or body of the axiom, v is a derived variable, and d Œ Dv is a 

15 We continue to use A for the set of actions. The papers use the term O, for operators, also commonly used elsewhere. The paper 

uses A for axioms which we have replaced with D, for derived axioms.
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value of the variable that is assigned when the condition is true. The pair (v, d) is called the head

of the axiom.
 ● A is a set of actions of the form <precond, effects>, where precond is a partial variable assignment, 

and effects contains a set of effects of the form effect = <cond, v, d>. The effect assigns the value d

Œ Dv to the variable v. If the condition in <cond, v, d> is non-empty then the effect is a conditional 

effect, affected only when the condition is true.

Fast Downward begins by creating some graphs described below. The aim is to be able to decompose 

the planning task into subtasks which can be evaluated independently to estimate the heuristic values. 

The causal graph heuristic estimates the cost of reaching the goal by solving a number of subtasks of 

the planning tasks by looking at segments of the causal graph. The costs are computed over domain

transition graphs.

A Domain Transition Graph (DTG) for a variable vŒV, introduced by Jonsson and Bäckström (1998), 

is a representation of the ways in which the variable can change values. The nodes in the graph are the 

values in the domain of v, Dv. An edge from a value d to a value d¢ is added to DTG(v) under following 

conditions.

 ● If v is a fluent then for each effect = <cond, v, d ¢> of an action a with precondition precond,
 ■ if precond » cond contains some condition v = d, an edge from d to d ¢ labelled with (precond

» cond ) \ {v = d} is added.
 ■ if precond » cond does not contain the condition v = d for any dŒDv, an edge from each 

dŒDv\{d’} labelled with (precond » cond ) is added.

 ● If v is a derived variable then for axiom condition <cond, v, d¢> ŒD, such that, 
 ■ cond contains some condition v = d, an edge from d to d ¢ labelled with cond cond \ {v = d}

is added.
 ■ cond does not contain the condition v = d for any dŒDv, an edge from each dŒDv\{d ¢} labelled 

with cond is added.

Edges represent transitions and the labels represent conditions on transitions. Observe that the labels 

are on other variables in the domain that must satisfy some conditions. The authors assume that the 

edges for transitions derived from operators have weight 1 and edges from axioms have weight 0. These 

weights play a role in the heuristic computation. Figure 10.19 illustrates the transition graph for a three 

block STRIPS problem. The graph is shown for the state variable On(A) which can take values from its 

domain {B, C, nil} where On(A) = nil stands for the situation when the robot arm is holding block A,

and Holding(arm) = nil stands for ArmEmpty.

B C

nilHolding(arm) = nil,
Clear(A) = 1

Holding(arm) = nil,

Clear(A) = 1

Holding(arm) = A,
Clear(B) = 1

Holding(arm) = A,
Clear(C) = 1

CB

A

FIGURE 10.19 The domain transition graph for the state variable On(A), between its three values B,

C, and nil.
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If all the actions in the MPT are unary, that is they have only one effect, then the transitions in the 

state space have a correspondence with transitions in the DTG. A given state in the state space can be 

represented by a set of active vertices in the DTGs. Applying an action corresponds to making a transi-

tion in one DTG. For non-unary actions, one has to link variables in the effects so that transitions in 

the transitions in their DTGs happen in a synchronized fashion. The treatment for handling transitions 

in derived variables involves extending the DTGs to states not described explicitly by the axioms, and 

take into account cascading effects (see (Helmert, 2006) for a detailed discussion).

Causal Graphs (CG) are designed to capture dependencies between variables (Williams and Nayak, 

1997). Causal graphs capture relations between variables and are defined as follows. Let P be a planning 

problem with the set of state variables V. The causal graph CG(P) for the planning problem is a directed 

graph with the variables as vertices. An edge exists between two vertices (v, v¢) iff v π v¢ and one of the 

following conditions holds, 

Transition Condition The domain transition graph of v¢ has a transition labelled with some condition 

on v.

Co-occurring Effects The effects for some action a includes both v and v ¢.

An edge signifies the fact that changes in the target variable v ¢ are dependent on changes in the source 

variable v. The first condition allows us to trace the set of variables, ancestor(g) that could effect a goal 

variable g. This is called the achievability definition of causal graphs. However, if a planner focuses 

only on ancestor(g) it might be possible that some action in the plan may have an undesirable side effect 

on the goals. To cater to this possibility, the second condition introduces the separability definition in 

the causal graphs.

If the causal graph is acyclic and the domain transition graph is strongly connected, then the following 

algorithm can be used to find a plan. First, we identify a variable v in the causal graph with no outgoing 

variables, a sink. We check whether a goal is defined for this variable. If no, we remove the sink v from 

the graph, and work on the smaller problem. If yes, we find a path from s0(v) to s*(v) in the domain-

transition graph. This gives us a “high level plan” in an abstraction space which can be refined further by 

setting the variables of the predecessors of v in the causal graph to the values required for the transitions 

in the high level plan, and working on those after removing v. This process of planning is basically 

refinement planning in which an abstract plan is refined into a more concrete one.

In practice, however, the causal graph for a given planning problem is not likely to be acyclic. The 

Fast Downward algorithm works on segments of the complete causal graph to derive the causal graph 

heuristics to guide a state space search. It first eliminates variables which do not belong to the set of 

ancestor variables (in the causal graph) for any goal variable. Then, it prunes the resulting causal graph 

to make it acyclic. This is done as follows.

First, the strongly connected components of the causal graph are identified. Each component is 

handled separately to remove cycles. The variables of each component are arranged in a total order 

v≺v ¢ defined as follows.

1. Each variable v is assigned a weight n that counts the number of actions or axioms that induce v.

The weight is an indicator of the importance of the variable.

2. A variable v with the lowest weight is fixed in the lowest position in the ordering. That is, for all 

other variables v ¢, v≺v ¢.

3. Variable v is removed along with all its incident edges.

4. The remaining variables are processed in the same fashion.

When v≺v ¢ holds, we say that v ¢ has a higher level than v. In the pruned causal graph, we retain only 

those edges (v, v ¢) where v≺v ¢ holds. Next, in the domain transition graph, for each variable DTG(v)
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all conditions on v ¢, where v≺v ¢, are removed. After this, all the DTGs are simplified by removing 

dominated transitions. If t and t¢ are transitions on the same pair of values and the condition on t is a 

subset of or equal to the condition on t¢ then the transition t¢ is removed from the DTG (since it may be 

more expensive to compute).

The basic idea behind computing the causal graph heuristic is understood by viewing it as a bottom 

up process, with the lowest level variables being considered first. Conceptually, the task is to compute 

the cost for each transition in the DTG. These costs of the form costv(d, d ¢) are then used to estimate the 

cost of solving the goal. In practice, not all such costs need to be computed and the algorithm in Fast

Downward takes a top down view of this process
16

. The bottom view is as follows. We first compute the 

costs for the lowest variables in the ordering, and use these costs to compute the costs for higher variables.

1. If a variable v has no causal predecessors (is at the bottom of the causal ordering), then costv(d,

d ¢) is the length of the shortest path from d to d ¢ in DTG(V). In fact, the costs from each d to all, 

d¢ can be computed by Dijkstra’s single-source shortest path algorithm (see (Cormen et al., 2001)).

2. Let Vv be the set consisting of v and all its predecessors in the pruned causal graph CG¢ (p). Let 

Pv be the planning task induced by Vv in which the initial value of v is set to d and the goal value 

set to d ¢.

3. costv(d, d ¢) = |pv| where pv is the plan found for Pv (by the algorithm for acyclic causal graphs 

outlined above). This cost includes the cost of the low level actions needed by the high level plan.

The total cost of achieving the goal state from a given state s is defined as the sum of costv(s(v), s*(v))

over all variables v for which the goal s* is defined. In practice, the algorithm implemented computes 

costs in a top down fashion, making recursive calls to compute the edge costs that it needs. As described 

in (Helmert, 2006), the algorithm to compute the costv(d, d ¢) is basically Dijkstra’s algorithm with 

embedded recursive calls, made in the top down fashion. The cost of traversing each arc in the DTG(v) is 

the base cost (1 for fluents and 0 for derived variables) plus the cost of achieving the conditions associated 

with the transition. For a given condition v ¢ = e ¢, the cost depends upon the value e in the state when the 

transition occurs. To facilitate that the algorithm commits greedily to whatever transition it can make to 

some value d ¢ and annotates the resulting node d ¢ with the local state achieved by the plan to reach d ¢.

Fast Downward has three different search algorithms implemented.

1. Best First Search Using the Causal Graph Heuristic

It also uses a notion of preferred operators similar to FF’s use of helpful operators, but helpful transitions

which are generated by looking at the paths found in the DTGs. The algorithm maintains two OPEN lists, 

one for all operators and one for the preferred operators, and picks nodes alternately from the two lists.

The algorithm also uses deferred heuristic evaluation. Instead of evaluating all successors of a given 

node s, they are placed on the OPEN list with the heuristic value of s. The successors are evaluated only 

when they are picked from the OPEN list. This has the effect that if better successors are found early, 

their siblings are never actually evaluated. In fact, the successor itself is not put in the OPEN, but a 

pointer to the parent and the operator generating the successor is stored, and the successor is generated 

only when it needs to be evaluated.

2. Multi-heuristic Best First Search

This is a variation of best first search that allows the use of multiple heuristic functions. The different 

heuristic values are not combined into one value. Instead, separate OPEN lists are maintained for each 

16 And hence the name ‘Downward’. 
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heuristic function. The search algorithm picks nodes for expansion alternately from the lists. When 

successors are generated, they are evaluated by the different functions and inserted into the respective 

lists. The idea here is that different heuristic functions perform better in different regions of the state 

space. This variation of Fast Downward uses two heuristic functions, the other one being the heuristic 

used by FF.

3. Focused Iterative Broadening Search

Iterative broadening search introduced by Ginsberg and Harvey (1992) is an approach in which a search 

algorithm only considers b options at each state, increasing the value of b iteratively till a solution is 

found. In the variation used in Fast Downward, the algorithm focuses on one goal at a time, restricting 

its attention to operators needed for that goal. This is called the reach-one-goal approach. In addition, 

the method forbids certain operators that might undo certain goals. However, as is well known, it is not 

possible to serialize a set of goals always, and therefore the strategy becomes incomplete.

As described in (Helmert, 2006), Fast Downward performs better than FF in many domains. The 

interested reader is referred to (Helmert, 2004; 2006; 2008) for a more detailed study of the approach 

to using causal graphs.

10.5 Durative Actions

The planning operators specified in the simplest domains (STRIPS/PDDL/ADL) do not deal with a 

notion of time. There is only a sequencing of actions. Actions can happen in parallel, but then they 

happen together, at the same instant. The real world actions that are being modelled have durations, but 

the planner treats them as being instantaneous. The language PDDL2.1 (Fox and Long, 2003) introduces 

the notion of duration for actions. The duration could be static, or determined dynamically during the 

course of planning. Durative actions invoke the notion of time, and planning with durative actions is 

called temporal planning.

Consider a planning task in which one wants to cook dinner. Let us say that the following plan to 

cook a simple and tasty
17

 dinner is found in the STRIPS domain. The high level plan is to cook some 

kali dal, four chapatis and one papad. Further, let us say that one is using a Graphplan like algorithm that 

will give us a parallel, low level plan. Also, that there are two gas stoves, S1 and S2, on which cooking 

can be done. Then the following is an optimal plan in the number of time steps, 

({KaliDal(S1), Chapati1(S2)}, {Chapati2(S1), Chapati3(S2)}, {Chapati4(S1), Papad(S2)})

The actions here are conveniently named after what they cook, and superscripts mark different 

instances of the same operator. Each action has a precondition that the named stove is available, and 

the effect is to cook the object. The plan contains six actions arranged in three layers. Now consider the 

situation when each of the actions above has duration. Let the durations in minutes be <KaliDal, 45>, 

<Chapati, 5> and <Papad, 3>. Now a property of interest is the makespan, or the total time that the plan 

needs to run to completion. Figure 10.20 shows a plan with the smallest makespan.

The plan in the STRIPS formulation had sets of actions that happened at the same layer or time step. 

Working with durative actions, it is not straightforward to say that two actions are happening at the same 

time. For example, both Chapati1(S2) and Chapati2(S2) are happening at the same time as KaliDal(S1),

but obviously not at the same time as each other.

17 There are people who will vouch for this. 
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Chapati1(S2 ) Papad(S2 )

KaliDal(S1 )

Chapati2(S2 ) Chapati3(S2 ) Chapati4(S2 )

0 5 10 15 20 25

FIGURE 10.20 Plans with durative actions are arranged on a timeline. The notion of two actions 

happening at the same time no longer holds because they may have different durations.

Two instantaneous actions a and b have only 

three possible qualitative temporal relations between 

them—Before(a, b) or a<b, SameTime(a, b) or a = b,

and After(a, b) or a>b—saying respectively that the 

action a could happen before, at the same time, or after 

action b. This is because temporally, the actions are 

points on an integer line. When we talk of actions with 

durations then they are represented by intervals over a 

real or integer line. The relations between two durative 

actions are described in Allen’s interval algebra (Allen, 

1983), as opposed to point algebra when actions are 

instantaneous. There are thirteen possible qualitative 

relations between two intervals (durative actions) as 

shown in Figure 10.21. Qualitative relations do not 

consider quantitative values such as actual durations 

of actions or when actions occur. They simply describe 

how two actions are placed relative to each other on 

the timeline.

When we talk of an action being before (or after) 

another action, we also have to take into account 

the case when the later action begins just when the 

former ends. This distinction was not needed with 

instantaneous actions because it would correspond 

to the SameTime relation. Therefore, one can see that 

while the Before and After relations of point algebra 

carry over to the interval algebra, the SameTime relation 

gets refined into eleven different relations.

The thirteen relations between two intervals, a and 

b, in Allen’s interval algebra are given in Table 10.1. 

They are also described by the point algebra relations 

between the end points of the two actions astart, aend, bstart, and bend. In addition, with every action a,

there is an implicit constraint or relation astart<aend.

a

b

a

b

a

b

a

b

a

b

a

b

a

b(a, b), 
bi(b, a)

m(a, b), 
mi(b, a)

o(a, b), 
oi(b, a)

fi(a, b), 
f(b, a)

di(a, b), 
d(b, a)

si(a, b), 
s(b, a)

e(a, b)
b

FIGURE 10.21 The 13 relations in 

Allen’s interval algebra. The following 

six - b = before, m = meets, o = overlaps, 

f = finishes, d = during and s = starts -have 

inverses bi, mi, oi, fi, di and si. The last 

relation e = equal is symmetric and does not 

have an inverse.
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Table 10.1 The 13 relations in Allen’s interval algebra

Name Description Inverse Point algebra description

b(a, b) a is before b bi(a, b) aend < bstart

bi(a, b) a is after b (before inverse) b(a, b) astart > bend

m(a, b) a meets b mi(a, b) aend = bstart

mi(a, b) a is met by b, (meets inverse) m(a, b) astart = bend

o(a, b) a overlaps b oi(a, b) astart < bstart < aend < bend

oi(a, b) a is overlapped by b, (overlaps inverse) o(a, b) aend > bend > astart > bstart

f(a, b) a finishes b fi(a, b) astart > bstart and aend = bend

fi(a, b) a is finished by b, (finishes inverse) f(a, b) astart < bstart and aend = bend

d(a, b) a is during b di(a, b) astart > bstart and aend < bend

di(a, b) a contains b, (during inverse) d(a, b) astart < bstart and aend > bend

s(a, b) a starts b si(a, b) astart = bstart and aend < bend

si(a, b) a is started by b, (starts inverse) s(a, b) astart = bstart and aend > bend

e(a, b) a is equal to b e(a, b) astart = bstart and aend = bend

Two actions are independent if they are nonmutex. Independent actions can be executed in parallel. 

Plans with instantaneous actions can have actions in parallel, only if they are independent.

When we have durative actions, apart from independent actions happening in parallel, there may 

be situations when actions are required to be executed in parallel in one or more specific relation from 

the interval algebra. The term required concurrency was introduced in (Cushing et al., 2007). These 

requirements are not stated explicitly, but are implied by the preconditions and effects of durative actions. 

Durative actions can be described in PDDL2.1. The following is a simplified description of the (cook) 

Chapati operator.

(:durative action chapati

:parameters (?c – chapatiDough ?s – stove ?g -ghee)

:duration ( = ?duration 5)

:condition (and   (at start (rolled ?c))

                  (at start (free ?s))

                  (at start (lighted ?s))

                  (overall (lighted ?s))

                  (at end (applied ghee)))

:effect (and      (at start (not (free ?s)))

                  (at start (cooking-on ?c ?s))

                  (at end (cooked ?c)

                  (at end (not (cooking-on ?c ?s)))

                  (at end (free ?s)))

)

Durative actions in PDDL2.1 have the following characteristics.

 ● Preconditions can be at the start of the action, at the end of the action and during the entire action, 

marked by “at-start”, “at-end” and “overall” before the fluents. The overall conditions are over 

the open interval defined by the end points of the action.
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 ● Effects can be either at the start or at the end, marked by “at-start” and “at-end”. The effects 

are themselves instantaneous, happening either at the beginning of the action or at the end. The 

language does allow us to model continuous metric effects using the parameter #t to represent time 

since the start of the action. If fuel-level is a metric fluent then one can say (decrease (fuel-level 

?vehicle) (* #t (consumption-rate ?vehicle)) in the effects. Continuous effects can be evaluated 

at any time during the interval of the duration of the action.

In the example for the Chapati action, the preconditions are that a stove should be free at the start and 

the dough rolled, the overall conditions are that the stove should be lit throughout the action duration, 

and the at-end condition is that ghee has been applied (on the chapati that is cooked
18

). The at-start

effect of this action is that the stove is no longer free (which means that only one chapati can be made 

at a time on it). The stove is again made free at the end of the Chapati action, along with the chapati

being in a cooked state.

Another example of a durative action is when one drives a car from point A to point B. The action 

needs the following conditions—at the start the agent should be at point A, a car should be available, 

and the amount of petrol in the car should be greater than a certain amount which is a function of the 

distance and the rate of consumption. The overall condition is that the agent should be in the car and 

driving it, and the at-end condition is that there should be parking space at point B. The at-start effect 

is that the agent is not at point A, nor is the car, and that the agent is in the car and driving it. The at-end

effect is that both the agent and the car are at point B. The reader is encouraged to express the above 

action in PDDL2.1.

At-end conditions in durative actions imply that an action that a planner considers, because the at-start

conditions are met, may in fact not be feasible if its at-end conditions are not met. This implies that a 

search algorithm has to take care of withdrawing the at-start effects, and their consequences if any, if 

an action becomes infeasible due to unsatisfied end conditions.

Looking at the role of ghee in garnishing a chapati, we can introduce a new action SpreadGhee which 

will spread the ghee on the chapati being cooked. The ghee must be spread before the Chapati action 

ends and the spreading action must not end before the the cooking action ends. Given that the duration 

of SpreadGhee is about half a minute, we can see that we are trying to express the following constraint 

between the two actions
19

,

oi(SpreadGhee, Chapati)

That is, SpreadGhee must be overlapped by Chapati. The SpreadGhee operator can be defined as 

follows,

(:durative action spreadGhee

:parameters (?c – chapatiDough ?s – stove ?g -ghee)

:duration ( = ?duration 0.5)

:condition (and (at start (cooking-on ?c ?s))

                (at start (available ?g))

                (at end (cooked ?c))

:effect         (at start (applied ghee))

)

18 The description is only illustrative. Not everyone uses ghee. And chapati making is a more complex action, better modelled 

as a hierarchical compound action.
19 “We impose the further constraint that no logical condition can both be required to hold and be asserted at the same instant”

– (Fox and Long, 2003). Hence, they cannot finish together. 
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This action has the at-start condition that the chapati must be cooking on the stove and it has an 

at-start effect that ghee is applied. This at-start effect produces the at-end condition for the Chapati

action. The Chapati action has an at-end effect that is the chapati is cooked, which is an at-end condition 

for the SpreadGhee action. As we can see, one can successfully carry out a (making) Chapati operation, 

only if one also begins the SpreadGhee action before the chapati has finished cooking. In turn, the 

SpreadGhee action can be successfully applied, only if the action ends when the chapati making action 

has already completed. This illustrates a situation in which we have two actions that are not independent, 

and are in fact closely dependent on each other—generating preconditions for each other at different 

time points. The actions have to be done in parallel, but only in a specific way described by the above 

constraint on their durations
20

. The relation between the two actions is shown in Figure 10.22 below.

Chapati

SpreadGhee

Cooking-On

Cooking-On ¬Cooking-On

Cooked

Cooked

Applied Ghee

Applied Ghee

FIGURE 10.22 The required concurrency for the two actions Chapati and SpreadGhee action.

SpreadGhee must start during the Chapati action, and must end after the Chapati action. The 

dashed arrows show the causal links of producing and consuming fluents.

One can imagine other problems where the required concurrency demands a different set of relations. 

For example, in many situations, an action might make a fluent true only during its duration. This can 

be done by producing it at the start and deleting it at the end (as illustrated in the Chapati action for 

fluent cooking-on). There could be other actions that require this fluent as an overall condition. For 

example, a LightMatch action may produce the fluent light, which might be needed for searching for 

something or the OperateCoalMine action described in (Coles at al., 2008) that keeps a mine operational 

that is needed for the MineForCoal action. Concurrency may also be required for a particular planning 

problem when one is to plan with deadlines. For example, if one is to cook twenty chapatis in the 

cooking problem then it may be necessary to cook them two at a time on the two stoves. In other words, 

exploiting concurrency can result in plans with the shortest makespan, and may be necessary if there is 

a bound on the allowed makespan.

It is the required parallelism that motivates us to look for new planning algorithms. If one were 

interested in plans that were sequential, then one could simply collapse the durative actions into 

instantaneous ones, introduce duration as a metric fluent, and look for an optimal plan using the methods 

described earlier.

10.5.1 Temporal Planning Graphs

In Temporal Graphplan (TGP), Smith and Weld (1999) adapted the Graphplan algorithm to plan 

with a simplified form of durative actions. They assume that (1) all preconditions hold at the start, 

20 The standard example used in literature requires a light-match to make light available at the end of a mend-fuse action that is 

longer in duration. 
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(2) preconditions not affected by the action itself hold throughout its execution, and (3) effects are 

defined only at the end of the action. The bi-level planning graph constructed by TGP avoids duplication 

of multiple layer representation in the manner described above for STAN. As Smith and Weld argue, 

a bi-level graph makes even more sense for temporal planning, since there is no intrinsic notion of 

sequencing of layers, because different actions can have different durations. The labels for actions and 

propositions are not layer numbers but real values indicating start times. Given that different actions 

executing at the same time may span different time intervals, it also introduces a notion of an action-

proposition mutex in addition to an action-action and proposition-proposition mutexes of Graphplan. 

However, for the durative actions as defined in PDDL2.1, the mutex definition can be extended to 

identify more mutex relations. A new definition for mutexes was used in a system called TPSYS (Garrido 

et al., 2002). Two durative actions a and b in TPSYS are statically mutex, if one of the following four 

conditions holds.

1. AAstart-start Actions a and b cannot start together, if their at-start conditions are contradictory or an 

at-start effect of one conflicts with an at-start effect of the other. That is, relations s(a, b), si(a, b) and 

e(a, b) are disallowed.

2. AAend-end Actions a and b cannot end together, if their at-end conditions are contradictory or an 

at-end effect of one conflicts with an at-end effect of the other. That is, f(a, b) or fi(a, b) or e(a, b) is

disallowed.

3. AAstart-end Action b cannot begin when action a ends if an at-end effects of action a conflicts with 

an at-start condition or effect of b. In this case, m(a, b) is disallowed. If TPSYS needs to schedule and 

action just after another one, it inserts an infinitesimal gap between them to make sure that the negative 

interaction does not happen.

4. Action a cannot start or end during the execution of action b, if any effect of action a conflicts with 

an overall condition of action b. For the at-start effect of a conflicting the relations d(a, b), f(a, b), and 

oi(a, b) and disallowed, and similarly for the at-end effect o(a, b), s(a, b) and d(a, b) are not allowed.

The static proposition-proposition mutexes depend upon the action-action mutexes as before. The 

static proposition-action mutex is defined as follows:

5. PA A proposition p is mutex with an action a if it is deleted by an at-start or at-end effect of action a.

TYPSYS constructs a planning graph in which each layer A[t] or P[t] is labelled with time t that marks 

the beginning or the end of an action or proposition respectively. As new actions and propositions are 

introduced, dynamic mutex relations arise which may disappear in future layers. The following are a 

few examples of dynamic mutexes that can be defined. The reader is referred to (Garrido et al., 2002) 

for more details.

AA[t]start-start Two actions a and b are start-start dynamic mutex at time t, if one of the following holds.

 ● Actions a and b are AAstart-start mutex.
 ● Some at-start condition of action a is mutex with some at-start condition of action b.

PA[t]start-start For every action bi that produces proposition p at time t, an action a and p are start-start

dynamic mutex at time t, if one of the following holds.

 ● Actions a and b are AAstart-start mutex
 ● Some at-start condition of action a is mutex, with some at-start condition of action b.
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AA[t]end-end Two actions a and b are end-end dynamic mutex at time t, if one of the following holds.

 ● Actions a and b are AAend-end mutex
 ● Some at-end condition of action a is mutex with some at-end condition of action b.
 ● The two actions could not have been started together at the time when the later of the two began. 

That is, if Da and Da are their respective durations then actions a and b are AA[t – min(Da, Db)]start-start

Research in planning with durative actions and metric resources shifted to state space search 

subsequently. We describe below two well-known programs exemplifying two approaches. The program 

Sapa adapts the algorithm A* to search with durative actions and metric resources directly. The program 

CRIKEY3 splits each durative action into two instantaneous ones and deploys an FF like approach for 

forward state-space search. Both algorithms use a variation of a relaxed temporal planning graph to 

guide search, which becomes a critical feature given that the spaces they explore are much larger than 

the ones encountered by planning in the STRIPS domain.

10.5.2 Sapa

Sapa (Do and Kambhampati, 2001a; 2003) is a forward state space search metric temporal planner that 

can handle deadlines on goal achievement. The search space defined by Sapa is made up of nodes of 

the following kind. Each node is a tuple S = (P, M, P, Q, t) where, 

 ● t is the time stamp of the current state, 
 ● P = {<pi, ti> | ti < t} is a set of logical fluents pi true at time t, and ti is the time at which ti was 

last made true, 
 ● M is the set of values for all metric fluents at time t, 
 ● p is a set of overall conditions that need to be preserved at time t, and
 ● Q = (<m, qi, ti> | ti > t) is an event queue of all events scheduled to happen after time t, along with 

the times they are scheduled to occur. m is the mode stating what kind of change is to happen. 

These events are the at-end effects
21

 of actions that have been selected, and the overall conditions 

that need no longer be protected and can be removed from P.

In addition, one needs a structure to store the plan being synthesized. The search algorithm in Sapa

has two kinds of moves. The first kind selects and adds a new action to the partial plan, and the second 

kind advances the time to the next event in the event queue. The latter is applicable when the event 

queue is not empty. Both kinds of moves modify the state S. An action a is applicable in a node S = 

(P, M, P, Q, t), if the following conditions hold.

 ● All logical preconditions of the action are satisfied in P.
 ● All metric preconditions are satisfied in M.
 ● No effect of the action interferes with any persistent condition in P or a future event in Q.
 ● There is no event in Q that interferes with the overall conditions of action a.

Interference is defined as any of the following conditions.

 ● An action a adds an event e that causes fluent p and there is another event e¢ in Q that causes ¬p.
 ● Condition p is protected in P till time tp and action a deletes it before that time.
 ● An action a has an overall condition p and there is an event in Q that deletes p, while a is executing.
 ● Action a changes, or accesses, the value of a metric fluent which is being accessed by another 

executing action.

21 The literature on Sapa uses the term delayed effects. 
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When an action is selected, the following changes are made:

 ● Its at-start effects are added to F and M as the case may be.
 ● Its overall conditions are added to P.
 ● Its at-end effects are added to the events queue Q with time stamps derived from its duration.

The AdvanceTime move can be selected if the event queue is not empty. If it is selected, then the 

following changes are made.

 ● The current time t is advanced to the earliest time at which an event is scheduled in Q.
 ● All the events in Q that are to happen at this time are incorporated into F, M and P appropriately. 

This may include adding or deleting logical fluents to F, modifying values in M, and deleting 

persistence requirements from P.

Figure 10.23 illustrates the state space explored by Sapa. It is interesting to note that Sapa can 

schedule actions in parallel, even though the search algorithm picks one action at a time. Once a durative 

action is selected, its at-start effects are added to F and M, and its at-end effects are inserted into Q.

Till the time stamp advances to the at-end effects, the action can be thought of as “being executed”. 

Start  
State  

Q←+<(lighted S1), 0.3> 

SwitchOn(S1)
 

t = 0
 

Q←+<(lighted S2), 0.3> 

SwitchOn(S2) 

Q←+<(lighted S1), 0.3> 

SwitchOn(S1) 

t = 0

t = 0

 
P←+(lighted S1) 

AdvanceTime 

t = 0.3

t = 0.3

t = 0.3

 

AdvanceTime 

P←+(lighted S1), (lighted S2) t = 0.3
 

… 

AdvanceTime  

… 

SwitchOn(S2)  

… … 

Chapati(S1) … 
SwitchOn(S2)  

KaliDal(S1) 

… 

Chapati(S1) 

… 

KaliDal(S2) 

Q←+<(cooked Dal), 45.3>, 
P←+(cookingOn S1, Dal)  

KaliDal(S1)  

Q←+<(cooked Chapati), 5.3>, 
P←+(cookingOn S2, chapati) 

Chapati(S2) … 

AdvanceTime 

t = 45.3
 

… 

Chapati(S2) 

FIGURE 10.23 The search space explored by Sapa. The “¨+” operator augments the concerned 

list.
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After making this move, Sapa is in a new node its search space. In this node, it is free to choose any 

move. If it selects a new action to be added then this new actions is in parallel with the one it selected 

earlier, since the time stamp is still the same. We illustrate this with the planning task depicted in Figure 

10.19, along with the additional operator of switching on the stove with duration 0.3 minutes. In the 

figure, only relevant additions to the search state are depicted. As one can see, in the start state it has 

two possible moves, switch S1 on or switch S2 on. Whichever it selects, it will modify the event queue 

Q by adding Lighted(S1) or Lighted(S1) as the case may be. Let us look at the right branch, in which it 

switches S2 on. In the new search node it has two options, either switch S1 on or advance time (since Q

is not empty). If it chooses the former, shown as the left branch, it reaches a state in which it can only 

advance time. Once it selects that move, both the stoves are lighted at the same time, 0.3 minutes after 

start. The two actions have been done in parallel. If it had chosen the latter (right branch) then it would 

have ended up lighting the two stoves sequentially (if the stove S1 is lit at all). 

Having both stoves lit, it can now start the cooking actions, shown as the four options in the resulting 

node. The figure shows a path in which kali dal is being cooked on stove S1 and chapati on S2, and the 

time stamp is 0.3.

The lowermost node in the figure represents a state in the search space in which there are two events 

in the queue Q. One adds the fluent asserting that the kali dal is cooked, and the other, likewise for the 

chapati. The action AdvanceTime, if applied now, will advance the time by 5 minutes, the smaller of the 

two durations in the queue, to 5.3. In the resulting node, the chapati will be cooked, the stove S2 will be 

free, the dal is cooking on S1, and the event queue still has the “cooked dal” event with the time stamp 

45.3. Sapa is now ready to cook the second chapati on S2.

The goals are represented as a set of tuples G = {<p1, t1>, <p2, t2>, …, <pn, tn>} where the ith goal pi

has to be achieved by the deadline ti. A state S = (P, M, P, Q, t) satisfies a goal G if for every <g, tg>ŒG

one of the following holds, 

 ● There exists <pi, ti>ŒP, such that g = pi and ti < tg, and there is no event in Q that deletes pi.
 ● There exists <qi, m, ti>ŒQ that adds g = qi at time ti < tg and there is no event in Q that deletes it.

The search algorithm in Sapa is the A* algorithm (see Chapter 5). Like the heuristic search planners 

we have seen earlier in this chapter, Sapa also uses the notion of relaxation of the problem to arrive at an 

estimate of the cost involved. In fact, it uses phased relaxation to generate different heuristic functions 

with a decreasing amount of information gained.

Sapa uses a relaxed version of a two level, temporal planning graph. One must keep in mind that a 

good, or optimal, solution in metric temporal planning could be defined in various ways. One could count 

the number of actions, or measure the total time the plan needs to execute (or makespan), or minimize 

the amount of slack in the plan, or minimize the amount of some resources used. In practice, one may 

want to optimize on a combination of these criteria. This would also influence the design of the heuristic 

function, which should be faithful to the criterion being used.

Sapa relaxes the actions in two ways. One, the delete effects of actions are ignored. Two, actions 

are assumed to not consume resources. That is, the metric fluents in the actions are not decremented in 

its effects. In either case, the resulting planning graph does not have any mutex relations. The relaxed 

temporal graph (RTG) uses the following data structures.

A Fact Level A fact f is marked in at time instant tf if it can be achieved at that time instant.

An Action Level An action a is marked in at time instant ta if it can be executed at that time instant.

A Queue of Unexecuted Events Observe that there is one queue for the entire planning graph.
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When the construction of the RTG begins for a given state S = (P, M, P, Q, t), the fact level contains 

all the fluents in P marked in at time t, the action level is empty, and the event queue contains all 

unexecuted events of Q that add fluents.

An action a is marked in, if it is not already marked in and all its preconditions are marked in. When 

an action is marked in, all its at-start effects are marked in and all its at-end effects are added to the 

event queue, if not already marked in in the fact layer and there is no event in the queue that will add 

them earlier. After all actions applicable at that time are dealt with, the algorithm returns no-solution

if either (1) the event queue is empty, or (2) there is an unmarked goal with a deadline earlier than the 

earliest event in the event queue. This is because now time will be advanced to an instant beyond that 

deadline. If the event queue is empty, nothing more can be done. If the conditions for no-solution do 

not occur, the RTG is extended by advancing the time to the earliest event in its queue and the process 

continues till all goals are marked in. Observe that if at any point the algorithm returns no-solution, 

Sapa can abandon that node S and search elsewhere.

When a relaxed temporal graph is returned, it can be used to devise various heuristic functions. 

The reader should keep in mind our discussion in Chapter 5 on the benefits of having more informed 

heuristic functions.

If one wants to optimize the makespan of the plan found then one can use an admissible heuristic 

called max-span heuristic, which returns the duration it takes for the last goal to be achieved in the RTG.

If one is not concerned with guaranteeing an optimal solution, then one could use a non-admissible 

heuristic function, sum-span, that adds up the durations for each goal in the RTG.

Another measure that can be used to estimate the heuristic function is to measure the slack in the 

RTG, where slack is the difference in time when a goal was achieved and its deadline. All three of the 

heuristic functions that one can define, min-slack, max-slack, and sum-slack, that measure the minimum, 

the maximum and sum of the individual goal slacks are admissible with respect to the corresponding 

objective functions.

The max-span and the slack based heuristics are concerned with makespan—the total time required 

to execute the plan. The number of actions and their costs could also be relevant in evaluating a plan. 

To estimate these costs, Sapa extracts a relaxed plan from the RTG in a manner similar to the way a 

relaxed plan is extracted in FF. One can then define the sum-action heuristic that counts the number of 

actions in the relaxed plan, and the sum-duration heuristic that sums of their durations. However, both 

these heuristic functions are not admissible.

When one is planning in a domain with metric resources then often actions that augment these 

resources have to be added in a plan. For example, a fuelling action is meant solely to increase the 

fuel level of a vehicle to some desirable level. However, since relaxation ignores reductions in metric 

resources, the heuristic function may also ignore such actions leading to a less informed heuristic. While 

it is difficult to account for resource augmenting actions accurately since they depend upon actual values 

of resources in given states, Sapa does an adjustment, described below, of the heuristic value based on 

possible resource consumption.

First, the problem specifications are pre-processed to find actions AR that increase the amount of 

resource R maximally by DR. Let a cost C(AR) be associated with action AR, and let Init(R) be level of 

the resource in the given state S. Given the relaxed plan extracted from the RTG, let Con(R) and Pro(R)

be the total production and consumption of resource R by the original versions of all the actions in the 

relaxed plan. If Con(R)> Init(R)+ Pro(R) then an appropriate number of actions AR are added to make up 

for the difference. Let this number be N. Adding N to the count gives us an adjusted sum-action heuristic, 

and adding N * C(AR) gives us an adjusted sum-duration heuristic. For some more improvements to the 

heuristic function, the reader is referred to (Do and Kambhampati, 2002).
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However, this approach to temporal planning has a fundamental limitation. For Sapa, time moves 

from one event to the next (in the event queue), and those are the only time points available to Sapa for 

inserting new actions. It can only place actions in the plan at these time points, and cannot start new 

actions at other times. The example of required parallelism illustrated in Figure 10.21 cannot be solved 

by Sapa, because it has to start the SpreadGhee action a little before the end of the Chapati action, and 

the earliest it can think of after the start of the Chapati action is when the Chapati action ends.

10.5.3 CRIKEY3

CRIKEY3 (Coles et al., 2008) is built upon CRIKEY (Coles et al., 2009) which splits the durative 

action into two instantaneous actions, called snap actions. One snap action happens at the start of the 

durative action, and the other at the end. Given an action a, the two snap actions are denoted by a  and 

a . The start effects of the action (which is the same as the effects of the start action) happen after an 

infinitesimal duration e, and likewise the end effects. CRIKEY searches like FF using a relaxed planning 

graph heuristic.

CRIKEY used a notion of envelopes that kept track of interactions that a started durative action may 

have with other actions. An envelope is defined by the start action associated with each durative action 

when it is added, and identifies the corresponding end action. Actions which interact with any existing 

actions in the envelope are added to the envelope, and in the process may extend the duration and end 

point of the envelope. A Simple Temporal Network (STN) is associated with each envelope recording 

temporal relationships. All such STNs have to be temporally consistent in a valid plan. Given an action 

represented by its snap actions a  and a , the STN has a positive edge from a  to a  with weight 

equal to its maximum duration and a negative edge from a  to a , with the weight being the minimum 

duration of the action. The other temporal constraints are introduced by the planning process, based on 

preconditions and effects, and the mutex relations. A STN is consistent, if there is no cycle with total 

negative sum of weights.

CRIKEY3 uses an alternative representation of state, and employs only one STN for the entire plan. 

A node in its search space is a triple S = <F, E, T> where F is a state described by the set of fluents 

(including both propositions that are true and values of metric fluents), E is an ordered list of events 

recording actions that have been started in F but not ended, and T is the set of temporal constraints 

over the partial plan that has been constructed so far, forming the STN. Each entry eŒE is a tuple 

<op, i, dmin, dmax> made up of four elements where, 

 ● op is the identifier of the associated start snap action a ,
 ● i is the index of the above action in the plan being constructed, and
 ● dmin and dmax are respectively the minimum and maximum duration of the associated durative 

action. If the duration is static then the two values will be equal, but if the duration is dynamic, 

then the bounds are determined during planning.

CRIKEY3 does FF like forward state space search over the snap actions. An action a (it could be a 

start action or an end action) is applicable in a state S = <F, E, T> if, 

 ● F satisfies the preconditions of the action a.
 ● Action a does not delete any overall conditions of the actions present in E.

When the action applied is a start action then a new element is added to E, along with changes in F

that are the effects of the action to give us a successor state <F ¢, E ¢, T>. When an end action is applied, 

there may be more than one start action it could be paired with. This results in more than one possible 

successor state, along with an appropriate temporal constraint on the duration of the composed action.
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CRIKEY3 can also handle Timed Initial Literals (TIL) which are fluents that are controlled by the 

external environment becoming true or false at predetermined time points. For example, a shop may 

open at a 10 a.m. and close at 8 p.m., an eclipse may occur during a particular time interval, or a Low 

Earth Satellite may be visible to a ground station, only during a specific time window (see (Kavuleri 

and Khemani, 2004) for an extension of Sapa to handle TILs). Let ts be the time stamp associated with 

a TIL p. CRIKEY3 handles TILs by using dummy TIL actions at each point of time and incorporates p

into F, if it does not violate any overall condition of any action in E. A temporal constraint of the form 

{ts £ t(i) – t(a0) £ ts} is also added, where a0 is a dummy start action.

Given a partial plan, CRIKEY3 imposes a total order on the actions and eliminates the meet relation 

between two actions and introducing a minimal separation e between two actions. But instead of 

constructing envelopes and using an STN for each envelope like CRIKEY does, it does some advance 

reasoning that can detect some of the cycles in STN before they occur.

The state representation is augmented with additional information being stored with each event e ŒE. 

This additional information constitutes of two values tmin and tmax, representing the minimum and 

maximum time that could have elapsed since that event. These values are updated whenever a successor 

state is generated, advancing the time forward. If the new state is generated by adding a start action to 

the plan, time moves forward by an amount e, incrementing both tmin and tmax values for elements of 

E. If an end event x associated with an element x ŒE then,

 ● for every y ŒE that precedes x  in the total ordering, tmin is increased by max[x .dmin x .tmax,

e] and tmax by max[x .dmin x .tmin, e], and
 ● for every y ŒE that comes later than x  in the total ordering, tmin is incremented by e, and tmax 

is increased by max[x .dmin x .tmax, e].

Then, for any new state generated in search, if for some event e ŒE it is the case that tmin ≥ dmax

then that state can be pruned, because the durative action e clearly cannot happen because more time 

than its maximum duration has already passed. If search had continued till e was added then at stage 

the STN would have had a (negative overall weight) cycle.

This is illustrated in Figure 10.24 with the following example from (Coles at al., 2008). Let us say 

that we have two durative actions, a and b, with static durations, such that the duration of b is larger 

than that of a. Since durations are static, it means that for each action, the values dmin and dmax are the 

same value. Let the planner introduce two snap actions a  and b , and is about to add action b  resulting 

in the temporal relations shown in the figure. At the point when action b is added, the time elapsed 

a .tmin since a  is (b .dmin + e). Since this is greater than its maximum possible duration, a .dmax

CRIKEY3 can prune this state itself during search. If the search algorithm had gone on an added a  next 

then the STN made up of the four snap actions would have been inconsistent. Ignoring the two e duration 

constraints, the sum of the weights in the cycle shown in the figure would be negative.

CRIKEY3 uses a forward state space search algorithm similar to FF. It uses a relaxed temporal 

planning graph to guide search, and like FF uses the notion of helpful actions. However, since the 

instantaneous snap actions are not independent, but come in pairs, it uses a modified relaxed temporal 

planning graph for estimating the heuristic value of a node. The end actions can only be applied after

the corresponding start actions have been. This is achieved by adding a dummy precondition to the end 

actions, and generating it by the corresponding start action.

The interesting point about CRIKEY3 is that it tends to separate the decisions concerning which

actions to choose from when to schedule those actions. For every start action e the corresponding end 

action e can only be applied after its earliest possible completion. As long as this is done, the actual 

scheduling of actions can be done by a scheduler after a candidate plan has been found. Reasoning with 

the snap actions enables us to pick the required actions, as illustrated by the following example.
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Consider the Chapati and the SpreadGhee actions described above with the corresponding snap 

actions C , C , SG , and SG . The required concurrency is that the SpreadGhee action begins before 

Chapati ends, and ends after Chapati ends. This is shown in the top part of Figure 10.25 with only the 

relevant conditions and effects marked. A planner like Sapa that adds complete actions in toto to the plan 

is unable to schedule the SpreadGhee action at any of the time points it reasons with. The time points 

available to it are the start times and end times of the Chapati action. It cannot schedule SpreadGhee at 

the former because its at-end condition will not be met, and neither can it schedule it at the latter time 

point because its at-start condition is not met.

Chapati

SpreadGhee

C⊣
C⊢ SG⊣

SG⊢

Cooking-On

Cooking-On ¬Cooking-On

Cooked

Cooked

Cooking-On

Cooking-On

Cooked

Cooked

FIGURE 10.25 The required concurrency for the two actions Chapati and SpreadGhee needs the 

SpreadGhee action to straddle the end of the Chapati action. Reasoning with snap actions facilitates 

the interleaving that is required.

a⊣

a 

b 

a⊢

b⊣
b⊢

 

dmax(a) 

d(b) ε 
ε 

tmin(a) 

t0 t1 t2 t3 t4

-ε -ε 

d(a) 

-d(b) 

FIGURE 10.24 The state consistency check used by CRIKEY3. Actions a , b  and b  have 

been added to the plan. The earliest action a  can be scheduled now is time point t4. If added the 

corresponding, STN would have a negative cycle as shown. CRIKEY3 can prune this state itself 

because the minimum time elapsed after action a started is more than its maximum duration.
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CRIKEY3, on the other hand, differs in its approach in two ways. It works with the snap actions 

separately and secondly, it defers the actual scheduling to a second stage. Because it works with the 

snap actions independently, it is able to find the correct sequence (C ÆSG ÆC ÆSG ) as shown in 

the lower part of the figure. And because it fixes the actual times later, it is not faced with the problem 

of when exactly to start the SpreadGhee action. The action durations will force the scheduler to schedule 

it at a time point (in the case 4.5 + e) not accessible to a planner that selects and schedules actions at 

the same time.

This behaviour is in fact reminiscent of the way plan space planning was able to find an optimal plan 

for the Sussman anomaly by not confining itself to one subgoal On(A, B) or On(B, C) before the other 

(see Figure 7.13). The algorithm PSP (Figure 7.17) was able to separate the concerns of selection and 

sequencing of actions. In fact, CRIKEY3 begins by abandoning the total order on actions created during 

the first phase and reconstructing a partial order based on maintaining causal links between actions 

including the ordering between start and end actions, and the need to protect conditions from being 

undone by some actions in a manner similar to plan space planning. The interested reader is referred to 

(Coles et al., 2009) for more details. A more explicit separation of the sequencing of actions from their 

selection is implemented in the system POPF (Coles et al., 2010).

The algorithm for generating the relaxed planning graph adapted from (Coles et al., 2008) is described 

in Figure 10.26. The algorithm is designed with the following features, not all of which were present in 

the relaxed temporal planning graphs used by earlier planners.

TemporalRPG (S = <F, E, T>)

1 f0 ¨ F

2 t ¨ 0

3 for each a

4 if empty{eŒ E | e.op  =  A}

5 then earliest(A) ¨

6 else earliest(A) ¨ 0

7 while t < 

8 ft+e ¨ ft
9 actionst ¨ {a  | precond(a ) Õ ft Ÿ earliest(A) £ t}

10 for each new a Œ actionst
11 ft+e ¨ ft+e » add(a )

12 actionst ¨ actionst » {a  | precond(a )Õ ft}

13 for each new a Œ actionst
14 ft+e ¨ ft+e » add(a )

15 earliest(a) ¨ min(earliest(a), t + lb(a))

16 if ft Ã ft+e
17 then t ¨ t + e
18 else endpoints ¨ {earliest(A) > t | precond(a )Õ ft }

19 if empty(endpoints)

20 then break

21 else t ¨ min(endpoints)

22 return R = <f0, …n, a0, …n>

FIGURE 10.26 Algorithm TemporalRPG builds a temporal relaxed planning graph.

1. Respect the PDDL2.1 start-end semantics. No action may be left executing in the goal state. In 

other words, E must be empty at termination. This implies that the construction of the RTPG may 

continue even after the goals appear.
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2. Respect relations between start and end actions. The latter can only be applied after the former.

3. Take action durations into account. Insert an end action, only if the time stamp has moved 

sufficiently for that action to finish.

The resulting RTPG ensures that a dead end is never signalled incorrectly, and also takes into account 

durations of action.

The algorithm accepts as input a state description of the form S = <F, E, T> and returns a relaxed 

planning graph made up of layers of fluents and actions, <f0…n, actions0…n>. We assume that it has access 

to the set of ground snap actions needed for planning as well as durations of actions.

The algorithm begins by identifying actions that are in the event list E. For each such action e ŒE,

it marks the earliest completion time as 0 (lines 3–6). This implies that the corresponding end action 

e can be added in this state. Further, the end action can be applied only at the earliest time the action 

can terminate at, represented by the predicate Earliest(e). It then proceeds to build the relaxed temporal 

planning graph in lines 7 to 21. It then identifies all snap actions that are applicable in that layer, and 

adds their positive effects in the next layer. For the new start actions it adds, it also updates their earliest 

ending times (line 15). In lines 16 to 21, it decides whether it needs to increment the time by e or by the 

duration of the earliest completing action.

10.6 Trajectory Constraints and Preferences

So far the goals that we have posed in the planning problems are constraints on a final state that the plan 

ends in. The only role that the plan found or the trajectory has been in evaluating the plan. We may prefer 

a plan which finishes the earliest, or a plan that in which the accumulated cost of actions is minimum, 

or a plan that uses a minimum amount of resources. We have not imposed any requirements on the plan 

itself. Trajectory constraints are a generalization of the specifying goal requirements on the final state 

and allow us to specify constraints a trajectory may need to satisfy in a valid plan.

We look at some examples of trajectory constraints. In the cooking domain, one might want that 

whenever a stove is switched on, it must be switched off sometime. Or every time a refrigerator door is 

opened, it must be closed within a certain time. A student planning for her examination might be told 

that every two hours of study must be followed by a break for half an hour. In the blocks world, one 

might require that there are never more than (say) two blocks on a given block. A trading agent might 

have to keep a minimum amount of the cash in hand at all times. A carpenter may need to ensure that 

applying paint should be preceded by applying a primer. An errant employee might be told to report at 

least once a day to his boss and may have to plan his day accordingly.

Trajectory constraints introduce a new dimension of complexity in planning. In the following 

discussion, we confine ourselves to trajectory constraints with instantaneous actions for simplicity. 

The following trajectory constraints have been specified in PDDL3.0 (Gerevini and Long, 2005). The 

constraints may be specified in the problem description after the goal description in a field marked with 

“:constraints”. Given a domain D, a plan p, and an initial state I, the plan p generates a trajectory <(S0, 0), 

(S1, t1), …, (Sn, tn)>. The plan p is a valid plan, if the trajectory satisfies the goal G.

<(S0, 0), (S1, t1), …, (Sn, tn)> G

The goal is a set of goal descriptions <GD> and the expression S G is read as “G is true in S” (see

Chapter 11 for more on logical expressions and their semantics. Each goal description <GD> is arrived 

at by possibly applying a modal operator on a goal description. The simplest possible goal description 

is a fluent. The other goal descriptions may be described in BNF as follows, 
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<GD> :: = (at end <GD>) | (always <GD>) | (sometime <GD>) | (within <num> <GD>) | (at-most-

once <GD>) | (sometime-after <GD> <GD>) | (sometime-before <GD> <GD>) | 

(always-within <num> <GD> <GD>) | (hold-during <num> <num> <GD>) | (hold-

after <GD>) | …

where the “…” includes all existing goal descriptions. Given a plan trajectory <(S0, 0), (S1, t1), …, (Sn,

tn)> the meaning of the goal descriptors is described in Table 10.2. For illustration, the modal operators 

are applied on simple goal descriptions j and y. A notion of time is used in some operators indicated by 

<num>. This refers to the index of the state in the trajectory, and not absolute time as used in durative 

actions.

Table 10.2 The semantics of the modal operators

Modal operator Condition to be satisfied 

j Sn j

(at-end j) Sn j

(always j) "i : 0 £ i £ n, Si j

(sometime j) $i : 0 £ i £ n, Si j

(within t j) $i : 0 £ i £ n, Si j and ti £ t

(at-most-once j) "i : 0 £ i £ n, if Si j then 

$j : j ≥ i, "k : i £ k £ j, Sk j and "k : k > j, Sk  ~j

(sometime-after j y) "i : if Si j then $j : i £ j £ n, Sj y

(sometime-before j y) "i : if Si j then $j : 0 £ j < i, Sj y

(always-within t j y) "i : if Si j then $j : i £ j £ n, Sj y and tj – ti £ t

(hold-during t1 t2j) "i : t1 £ i < t2, Si j

(hold-after t j) "i : t < i £ n, Si j

Some examples of constraints expressed in PDDL3.0 are given below.

“Sometime in the plan, block-17 must be on block-29”

(:constraint (sometime (on block-17 block-29)))

“Only green blocks must be placed on block-29”

(:constraint (always (forall (?b – block) (implies (on ?x block-29) (colour ?x green))))))

“Every block must be picked up at least once in the plan.”

(:constraint (always (forall (?b – block) (sometime (holding ?x)))))

We look at each of the above constraints and suggest some ways to adapt the Graphplan algorithm 

to handle them (Garwal, 2006). This approach requires that the planning problem be modified in a 

pre-processing phase, and also a few changes to the backward search phase of Graphplan. One would 

imagine though that as the planning problem becomes more and more complex, it would be desirable 

to adopt methods that reduce different kinds of problems to a common representation, for example 

constraint satisfaction, for which existing algorithms can be used.
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1. The first two constraints j and (at-end j) are the STRIPS goals that have to be achieved in the 

final state.

2. The constraint (always j) requires that j be true in all states in the trajectory, and can never be 

deleted. It can be handled by removing all actions that have j in their delete list. This can be done 

in a preprocessing phase. Also, if j is not true in the initial state, the planner can return failure 

immediately.

3. The constraint (sometimes j) requires that there is at least one state in the trajectory in which j
is true. This can be handled by adding a dummy effect d to all the actions that have j in their add 

effects, and adding the constraint (at-end d). This will ensure that one of the actions is included 

at least once in the plan.

4. The constraint (within t j) requires that the fluent j should appear in the layer number t or earlier. 

Add a dummy fluent d to all the actions that have j in their add effects. Modify the backward 

search procedure to include d as a goal when it reaches level t.

Another approach that is applied in the forward phase, and does not require modifying the 

procedure is as follows. One could include a CountDown action that decrements a non-negative 

counter Cj (a metric fluent). This action would have a counter with a value greater than 0 as a 

precondition, and a decremented counter as an effect. One could initialize the counter Cj to t in the 

initial state, and start counting down. Exactly one instance of this action will appear as a parallel 

action in the first t levels in the plan. One could now add a dummy fluent b to the precondition of 

all actions that add j and in the initial state, and include d as an add effect. Also, include (at-end 

d) as a goal. Introduce another action to delete b when the counter reaches a value 0.

5. The constraint (at-most-once j) requires the fluent j be added at most once in the plan. This 

means that when it is added once, it should not be possible to add it again. This can be achieved 

by adding a dummy fluent d to the initial state, to the precondition list of all actions that add j,

and to the delete list of all those actions. Since d is deleted by any action that adds j, no other 

action that adds j can be selected since d is a precondition for that action.

6. The constraint (sometime-after j y) requires that if the fluent j is added in some state in the 

trajectory then y must be added in a state that is later in the trajectory. Observe that one y can 

account for multiple occurrences of j. The following modifications can be used to satisfy this 

constraint. Add a dummy predicate d to the initial state, as an (at-end d) goal, to the delete effects 

of all actions that add j, and to the add effects of all actions that add y.

7. The constraint (sometime-before j y) says that any occurrence of j in a state must follow a y in 

a preceding state. This means that if an action adds j then an earlier action must have added y.

This can be satisfied easily by adding a dummy fluent d to the add effects of all actions that add 

y, and as a precondition for all actions that add j.

8. The constraint (always-within t j y) is like (within t y) except that every time j is added to a 

state then y must be added within t steps. Add a dummy predicate d to the initial state, to the 

delete effects of all actions that add j, and to the add effects of all actions that add y. Modify the 

backward search phase to return failure, if the consecutive states are without d.

However, an attempt to adapt the forward procedure described in 4 could lead to a problematic 

situation. One could initialize the counter Cj to t in the action that adds j, and start counting down. 

One could now add a dummy fluent b to the precondition of all actions that add y and in the 

initial state, and include d as an add effect. Also, include (at-end d) as a goal. Introduce another 

action to delete b when the counter reaches a value 0. However, if j is added more than once, it 

would cause a problem because multiple instances of the counter will exist but the first one which 

becomes 0 will result in b getting deleted once for all.
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9. The constraint (hold-during t1 t2 j) requires that j be true at level t1 and remain true at least till 

level t2 is reached. This can be achieved by modifying the backward search phase by adding the 

goal j starting at level (t2 – 1) till the level t1.

First achieve j within t1 using counter. Add A to add effect of those actions. when counter is 

zero also add B. If something deletes j, also delete B (?)

10. The constraint (hold-after t j) says that j must be true in all levels after t. This can be achieved 

by adding the fluent to the goal set at each level, until level t is reached.

10.6.1 Preferences

So far, the planning problems we have looked at have goals, and trajectory constraints, that have to 

be satisfied completely for a plan to be valid. If any goal condition is not satisfied, then the plan is not 

valid. We call these kinds of goals as strong goals, or strong trajectory constraints. In contrast, we can 

define planning problems in which we have goals that we would like to satisfy, but we may still accept 

a plan that fails to satisfy some goal or trajectory constraint. Of course, we would evaluate such a plan 

as being of lower quality as compared to a plan that satisfies more or all the goals. We call such goals 

that we are willing to do without if need be, as soft goals or soft constraints or preferences. Preferences 

are desired goals and trajectory constraints and some preferences may be preferred more than others.

For example, someone may have the goal of booking a seat in a train and have a preference of booking 

a window seat. Or someone planning an outing may have a preference of eating in a South Indian 

restaurant, with Ethiopian being a close second. Office etiquette may require that one knocks before 

opening a colleague’s door. Planning a walk in Chennai one may have a preference to be in the shade 

at all times. Someone may have a desire (soft trajectory constraint) that at least once in his lifetime he 

will have a chance to behold the Khangchendzonga.

Each preference can be assigned a weight that determines the cost of violating that preference. The 

evaluation of a plan may incorporate such costs along with other costs of actions. Observe, that this 

converts the planning task to an optimizing problem in which one could continue to look for better 

solutions till an optimal one has been found. Different solutions achieve different (soft) goals. This is in 

contrast to the planning algorithms we have studied so far that are designed to find a least cost solution 

for the same problem represented by strong goals and trajectory constraints. Another difference with 

earlier approaches is that specifying preferences in a specific problem instance allows a user to optimize 

on different features at different times. An approach to adapting Graphplan for solving preferences may 

be to first extend the planning graph till all the strong goals are solved then extend the graph further in 

an attempt to solve any preferences that are not satisfied. The process of extending the plan (with more 

actions) will terminate when the cost of adding more actions outweighs the cost of leaving preferences 

unsatisfied.

In PDDL3.0 (Gerevini and Long, 2005), a preference is specified by the statement:

(preference [name] <GD>)

The expression (is-violated <name>) takes on a value of the number of distinct preferences of that 

name that are violated in a given plan. The naming of a preference allows one to associate different 

penalties with the violation of different constraints. An anonymous, or unnamed, preference is assumed 

to have weight equal to 1 by default. Preferences may also be included as preconditions of actions in 

which case the number of violations is the number of times the action is selected violating that constraint.

The following is an example of preferences that one may use in planning an evening out. The 

descriptions shown below follow the rest of the problem specification. The goals expressed as trajectory 
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constraints are that one should be at the beach from 6 to 8, go to a restaurant at some point, preferably a 

South Indian or an Ethiopian one, for dinner, also preferably go to a mall sometime, and end up at home. 

In addition, one should try and avoid making phone calls at all points during the outing.

(

(…                         )

(:constraints

     (and      (hold-during 6 8 (at beach))

               (at-end (at home))

               (sometime (go restaurant))

               (preference mall (sometime (at mall)))

                  (preference south (sometime (eat-at south-indian-restaurant)))

                  (preference ethiopian (sometime (eat-at ethiopian-restaurant)))

               (preference quiet (always (not (making phone-call)))

(:metric minimize (+  (* 150 (is-violated south))

                      (* 130 (is-violated ethiopia))

                      (is-violated mall) 

                      (* 8 (is-violated quiet))))

)

The statements in the :metric field assign weights to the preferences. Observe that the preferences 

for the two restaurants have high weights. These are designed to make sure that one of them is chosen. 

It also means that the other one will still be a penalty. Notice that the penalty for not visiting a mall is 

comparatively much smaller.

10.7 Planning in the Real World

The planning techniques we have studied so far focus solely on the task of finding a plan for a given goal. 

We assume that the planning domain and problem are expressed in a well defined language, designed 

to express the planning problem. The given problem describes the given world completely and states 

the goal, and the planning task is to find a plan for that goal. We make a closed world assumption that 

everything that needs to be known about the world is known, and what is not known is irrelevant. We 

assume that the world is static and does not change while we are planning. We also implicitly assume 

that the world does not change while the plan is being executed, except by the actions in the plan. We 

assume that the actions are effected perfectly in the world and the changes actually made are as described 

in the operators.

The ability to synthesize and execute sequences of actions that would achieve some desired goal is 

an integral part of intelligent behaviour. An autonomous agent, for example a robotic machine, would 

have to incorporate the ability to plan, but it would also need to go much beyond that. Actions in the real 

world are not always deterministic and an agent will need to “watch its step” as it goes about acting in 

the real world. It will need to monitor its actions and ascertain that the world is indeed as it expected it 

to be at each stage. And if it not then it should be able to modify its plan or generate a new plan before 

proceeding further. For example, one may have a plan to draw money from the local bank ATM before 

proceeding for an outing, but the action may fail if the ATM has run out of cash and the agent may have 

to modify its plan or devise a new one.

A goal, as specified in problems expressed in PDDL, is likely to be one of many goals the agent 

may have, perhaps at different times. There may be other goals that arise due to the need to execute the 
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actions of the plan in a domain, sensing the world, and maintaining the health of the agent. For example, 

in the foreseeable future, one may be able to ask a robotic agent to bring a cup of tea along with the 

morning newspaper. A command like this to an agent can be seen as setting goals for it to find plans 

for and execute them autonomously. The high level plan may comprise the kind of actions shown in 

Figure 10.19. However, the actual actions that can be effected in the real world may be much more fine 

grained. In fact, we can already see that there is going to be an hierarchy in which actions are going to 

be organized. An action at a higher level may correspond to a plan at a lower level, with its own goal. 

At a higher level, the action, for example, may be to fetch the newspaper. At a lower level it might 

mean determining (sensing or asking) the location of the newspaper, and generating a path plan to go 

where it is. Each of the actions at this level, for example “go to the front door”, may serve as a goal for 

a lower level that may involve locomotion and navigation. These may involve starting certain motors in 

its body, and other control functions. We can see that plans and actions, like programs and instructions 

in programming languages, will have hierarchies of representation. The lowest level actions, like the 

machine code, is the one made of domain level actions.

Apart from the hierarchical levels discussed above, a robotic agent may have to keep track of actions 

designed to maintain its balance and perhaps poise, satisfy operating constraints (for example, while 

moving from one place to another keep the arms by the side, unless carrying a desired object), and keep 

a check on its own energy levels (resource), inserting a charging action if needed.

An agent may have a large number of goals and may be compelled to treat them as soft goals in a 

dynamic environment. An autonomous agent may also have to cater to new goals that may arise due 

to unexpected change, or as new, high level commands are received. Further, it will have to manage 

its own time, making judicious allocations to sensing, deliberating and acting. A significant amount of 

engineering effort is required to coordinate and control the activities of its many components. We briefly 

look at an approach to planning in the real world that has been successfully tried out in two domains.

10.7.1 RAX

Space applications are naturally suited for autonomous agents. Imagine a spacecraft hurtling towards 

Jupiter in 1994 with the task of tracking the comet Shoemaker-Levy 9
22

. At a distance of over 800 

million kilometres from Earth, it would take about 27 seconds for light to travel from Earth to the 

spacecraft. Which means it would take 27 seconds for an image sent from the spacecraft to reach Earth, 

and likewise for a command sent from Earth to reach the spacecraft. It is imperative that the spacecraft 

be able to respond autonomously to at least some situations. For example, it may need to swerve to 

avoid a floating piece of rock, or take an image of a passing one.

In 2008, a signal from the Voyager 1 spacecraft in the outer reaches of the solar system took 14 

hours and 52 minutes to reach NASA’s Deep Space Network (Poon, 2010). Clearly, controlling Voyager 

1 remotely is out of the question. Closer home, one may need autonomy if one had a low earth orbit 

satellite because it would be visible to a ground station only for a small duration in its orbit, or for a 

deep sea exploration vehicle. An autonomous system should be able to accept high level commands 

from its owner, generate plans to achieve the desired goals, execute and monitor the plans, and report 

back to its owner. The system MEXAR (Mars EXpress ARchitecture) is an example of a system that is 

able to plan and schedule its imaging and downloading actions (see for example (Oddi et al., 2002), 

(Cesta et al., 2007)).

22 In July 1994, the comet broke up into pieces and crashed into Jupiter. See http://www2.jpl.nasa.gov/sl9/
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The Remote Agent (RA) was a planning and execution system designed to autonomously control 

NASA’s New Millennium Deep Space One aircraft (Muscettola et al., 1998), (Chien et al., 1998)
23

. The 

high level architecture of RA is shown in Figure 10.27 adapted from (Muscettola et al., 1998). The RA 

communicates with the real time control system that is responsible for sensing the state of the spacecraft 

and the environment, and controlling the hardware. The real time system also communicates with the 

ground station. One key feature of the RA architecture was that it produced plans that are temporally

flexible and which could be adapted to the sensed environment by the executive.

Mission
manager 

Planner/
scheduler

Mode id and
reconfiguration 

Smart
executive

Ground system

Real time

executive 

Flight h/w 

Fault monitors

Planning experts (incl. Navigation)

High level

commands

FIGURE 10.27 The Remote Agent architecture.

The RA was made up of four subsystems enclosed in the hexagon in the figure, described briefly 

below.

Smart Executive (EXEC)

EXEC is a robust, event-driven and goal-oriented multi-threaded execution system. The smart executive 

is the system that interacts with the real time controller of the spacecraft. It is EXEC that coordinates the 

activities of multiple subsystems during plan execution and takes advantage of the flexible plan generated 

to execute it at an opportune time in the planned window. EXEC also monitors the plan execution, 

exploring alternative ways to achieve the task. When new plans are needed, it describes the state and 

the goal to the mission manager and requests for a plan. The executive automates the decomposition of 

goals into smaller activities that can be executed concurrently in different subsystems of the spacecraft. 

EXEC plays the main coordination role between all flight software modules, both internal and external 

to the RA. The two main aspects of its behaviour are the following:

 ● Periodic planning over extended missions It periodically asks the PS for new tasks and 

incorporates the actions into the tasks being executed.

23 See also http://ti.arc.nasa.gov/tech/asr/planning-and-scheduling/remote-agent/
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 ● Robust plan execution The responsibility of successfully executing plans in the face of 

uncertainties and failures lies with the EXEC. It exploits the flexibility of the plan supplied by PS to 

tune it to the existing conditions.

The high level algorithm followed by EXEC is depicted in Figure 10.28.

Get plan from PS

Plan running

Standby mode
Standby plan

request Success: 
Next horizon
plan request 

Plan failure

Plan failure

Planning 
assumptions
violated

FIGURE 10.28 The smart executive is either executing plans in the current horizon, asking for more 

plans, or in a standby mode waiting for plans to be repaired.

Mission Manager (MM)

The mission manager is a system that generates short term planning goals, based on the long term 

mission profile. The Deep Space mission profile contained long term periodic goals like taking images of 

objects, and health maintenance goals such as performing an engine calibration activity within a 24-hour 

window, before approaching the target. The MM system accepts goals from EXEC and decides upon the 

full set of goals to be achieved over the next planning window. It then requests the PS to generate a plan.

Planner/Scheduler (PS)

The RA uses a constraint based temporal planner and resource scheduler PS. It produces flexible 

concurrent temporal plans that satisfy trajectory constraints. The plan constrains the activity of each 

spacecraft subsystem. The EXEC takes up each activity as a separate thread and makes the finer grained 

decisions for actual execution. The planner uses a notion of timelines described later to represent different 

activities. Figure 10.29 illustrates two timelines depicting the fact that the onboard camera can be used 

to take a picture of an object B, only during the interval when the camera is pointing towards B. The 

Turn (B, C)PointingTo (B)

Idle TakePicture (B) Idle

Turn (A, B)

time

Camera

Attitude

FIGURE 10.29 Timelines in the Remote Agent planner. The Camera timeline describes the status of 

the camera on board, and Attitude timeline describes the spacecraft orientation. The TakePicture(B)

action should be during the PointingTo(B) interval.
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timelines Camera and Attitude are shown with three intervals, each depicting the activity, or lack of it, 

for the two attributes of the system.

The reader would have observed that the timelines do not distinguish between states (e.g. PointingTo)

and actions (e.g. Turn). The RA employs the following structural principles in modelling the domain.

 ● State Variable Principle The evolution of the system at any time is described by a set of finite 

state variables.

 ● Token Principle A single representative primitive called token is sufficient to describe the evolution 

of system state variables over time.

We look at the plan representation in a little more detail later.

Mode Identification and Reconfiguration module (MIR)

The MIR was a discrete, model based controller called Livingstone that has a single declarative model 

of the spacecraft (Williams and Nayak, 1996). The sensing component of MIR, called MI (mode 

identification), “tracks the most likely spacecraft states by identifying states whose models are consistent 

with the sensed monitor values and the commands sent to the real time system”. MI reports to EXEC,

and informs it at a high level, if a sensed state is not what was expected, for example if a thruster has 

failed. The recovery component, MR (mode reconfiguration), then tries “to find a least cost command 

sequence that establishes or restores desired functionality by reconfiguring hardware or repairing failed 

components”. The EXEC calls MR with a specification of constraints when it needs to recover from a 

failure. The MR module is a reactive module, unlike the generative planner, and quickly finds a solution 

to satisfy the constraints.

MIR is model based, in the sense that it works with a single, declarative, compositional model of 

the spacecraft. For the task of diagnosis, it employed qualitative models in which qualitative deviations 

from normal behaviour were used to identify and isolate faults. The search performed for consistent 

models is aided by an Incremental Truth Maintenance System (Nayak and Williams, 1997). We look at 

qualitative, model based diagnosis briefly in Chapter 17. An important conclusion drawn was that it is 

feasible to use deductive reasoning models in situations where the system is required to respond swiftly. 

We refer the interested reader to (Muscettola et al., 1998). Here, we simply list the functions performed 

by MI and MR. The mode identification system does the following in the Remote Agent.

 ● Mode Confirmation Informs the EXEC that a particular command was executed successfully.

 ● Anomaly Detection Identifies observed spacecraft behaviour that is inconsistent with the expected

behaviour.

 ● Fault Isolation and Tracking Identifies components whose failure caused the observed anomalies.

 ● Token Tracking Helps plan monitoring by tracking the state of attributes of interest to the executive.

The state of the spacecraft is expressed in the form of configuration goals. When the spacecraft 

deviates from active configuration goals, the mode reconfiguration capability finds a least cost set of 

control actions that moves the spacecraft to an acceptable configuration. MR does this by one of the 

following.

 ● Mode Configuration Move to a least cost configuration that is acceptable.

 ● Recovery Move the spacecraft from a failure state to one that restores a desired function, either 

by repairing a failed component, or by finding alternate ways of achieving those goals.

 ● Standby and Safing If unable to place the spacecraft in a desired configuration, move it to the 

standby state and wait for the high level planner or the ground station to find a solution.
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As reported in (Jónsson et al., 2000), the Remote Agent Experiment (RAX) was conducted in May 

1999, when the RA controlled the Deep Space One spacecraft completely autonomously. The experiment 

demonstrates the capability of planning and execution of plans, and also the capability of doing model-

based inference for recovery from failures.

In summary, RA achieves robust plan execution (Muscettola et al., 1998) by

 ● Executing flexible plans by running multiple, parallel threads and using fast constraint propagation 

algorithms in EXEC to exploit plan flexibility
 ● Choosing a high level of abstraction for planned activities, so as to delegate as many detailed 

activity decisions as possible to the procedural executive
 ● Handling execution failures using a combination of robust procedures and deductive repair planning

We next describe some of the features of an autonomous planning system in the context of a deep-

sea autonomous vehicle.

10.7.2 T-REX

In January 2004, NASA landed two rovers on the surface of Mars whose operations were controlled by 

a system called MAPGEN (Mixed-initiative Activity Planning and GENeration) which had the same 

basic approach of adaptive execution of the RA (Bresina et al., 2005; 2005a). The Mars Exploration 

Rovers (MERs) were not completely autonomous since they had humans in the loops inspecting and 

authorizing the plans generated in a mixed initiative manner (Burstein and McDermott, 1996). But 

like the system for autonomous submarines described here, MAPGEN was based on a system called 

EUROPA (described later).

The advances in autonomous planning and execution have opened up new vistas in oceanography 

research. Whereas earlier data from the oceans had to be painstakingly collected by ships zigzagging 

the ocean surfaces, now such data can be collected by Autonomous Underwater Vehicles (UAV) diving 

deep into the oceans collecting data, surfacing occasionally to report to their owners.

We look at the system called T-REX (Teleo-Reactive Executive) which is a successor of the RA 

system we saw above (McGann et al., 2008), (Py et al., 2010). Controlling a UAV requires the system 

to follow the sense-deliberate-act cycle of an autonomous agent. In order to scale the operations up, the 

planning system partitions its scope both functionally and temporally. This implies planning separately 

for different subsystems and also separating deliberation and action at different time scales. The system 

is partitioned along the following lines.

 ● Functional Indicating the state variables relevant for deliberation and action. This enables a logical 

partitioning of different subsystems.

 ● Temporal Indicating the look-ahead window for which planning is done. This separates long term 

goals from short term reactions to the environment.

 ● Timing The latency allowed for the deliberation process to complete. Some systems may have to 

react rapidly, whereas others may have more time available for planning.

The architecture of T-REX (figure adapted from (McGann et al., 2008)) is shown in Figure 10.30. 

It constitutes of four teleo-reactors24 (see (Nilsson, 1994)) communicating with each other and vehicle 

controller as shown.

24 “A teleo-reactive (T-R) program is a mid-level agent control program that robustly directs an agent toward a goal in a manner 

that continuously takes into account the agent’s changing perceptions of a dynamic environment.” – Nils Nilsson http://

ai.stanford.edu/users/nilsson/trweb/tr.html
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Navigator

T-REX Agent

AUV Functional Layer

Mission manager

Science
operator 

Executive

FIGURE 10.30 The T-REX agent is made up of four teleo-reactors and controls the AUV functional 

layer. Commands flow along the thick arrows and observations flow along the thin arrows.

The Mission Manager is the high level system with the long term scientific and operational goals of 

the mission. Its temporal scope is the entire mission, and it may take minutes for deliberation. It generates 

directives for the Science Operator and the Navigator.

The Science Operator refines the high level directives it receives from the Mission Manager and may 

also make shorter term decisions based on the science goals. For example, it may instruct the navigator 

to adopt a particular motion trajectory useful for collecting data. Its temporal scope may be of the order 

of a minute and its deliberation may be required to be done in the order of a second.

The Navigator is similar to the Science Operator in temporal scope and latency but focuses on the 

task of navigation. It receives directives from both the Mission Manager and the Science Operator and 

interprets them for the Executive.

The Executive interfaces the agent with the AUV functional layer. It has close to zero latency, allowing 

no time for deliberation.

T-REX has an explicit notion of time, measured in ticks, that is followed globally by all its subsystems. 

The state variables, or attributes, are arranged in timelines, like in the RA. Each state variable has a 

timeline associated with it. A timeline is a series of tokens which are temporally qualified assertions, 

predicates with specifications of start and end times defined as intervals over time. The following features 

of the timelines are instrumental in interaction between the teleo-reactors.

 ● Ownership Each timeline is owned by exactly one reactor, who decides what goals to instantiate. 

Other reactors may request new goals of that reactor, or modify their requests if the plan changes. 

The timeline is internal to its owner and external to other teleo-reactors.

 ● Observations The owner of the timeline captures the current value of the timeline as observations.

 ● Goals Goals are desired future values of the timeline. Goals are requests for refinement into 

subgoals or commands. A teleo-reactor may recall a goal it had posted earlier.

For example, the Mission Manager may have a science goal for which it needs the UAV to be taken 

to a certain place. It can specify this to the Navigator by setting a goal in the latter’s timeline called Path.

While dispatching this goal to the Navigator, the Mission Manager needs to make sure that it gives enough 

time for the Navigator to deliberate and act. On receiving the goal Go(xLoc, yLoc, depth) in its Path 
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timeline, the Navigator may in turn decide that it needs to dispatch goals Descend(100) at tick 10, taking 

from 50 to 55 ticks and then achieve Waypoint(xLoc, yLoc) into the Command time line of Executive.

In order to maintain consistency, T-REX needs to ensure that at the end of every tick, the entire set 

of observations received is consistent with the plan. At every tick, the following algorithm is followed.

1. First, all timelines are synchronized. This may involve different amounts of computation for 

different timelines. For example, the Path timeline owned by the Navigator is not likely change 

very often, being over a longer duration. The Position timeline, owned by the Executive, is likely 

to change at every tick if the AUV is moving. A principle used in the system is that observations 

dominate expectations. For example, if the Navigator expected the current depth to be a value dN,

but the Executive who owns the timeline determines it to be dE then the Navigator’s plans will 

need to adjust to the observed depth.

2. After that, all goals are dispatched. These goals should be given to the concerned teleo-reactor 

so that it can achieve them in the time given. If t is the current tick, l is the latency of the teleo-

reactor, and p its planning horizon then the dispatch window for the goal is [t + l, t + l + p].

As soon as the start time of the goal intersects with this window, it should be dispatched. In the 

current implementation of T-REX, the Executive is assumed to have zero latency, and therefore 

planning horizon, so the commands are dispatched when they need to be executed.

3. The remaining time is allocated to the teleo-reactors for deliberation. Like the RA, T-REX too uses 

a constraint based, temporal planning approach. The variables of the constraint network include 

state and actions, and the constraints between them are represented as in EUROPA (described 

below).

10.7.3 CAIP/EUROPA

Complex systems like spacecraft, rovers and underwater vehicles are made up of different components; 

each of which does a different task. The components may constrain each other in various ways, and 

this interaction needs to be taken care of during planning. A plan is the output of a planning system that 

influences the behaviour produced by the executive. In a sense, plans determine the behaviour of the 

system. However, in the context of real world agents, it is important that this behaviour specification 

by the planner is not precise and rigid. It must leave enough room for the executive to fine tune the 

behaviour to the actual conditions. The systems described in this section achieve this by representing 

plans as constraint networks, instead of a sequence of actions that the executive must execute. During 

execution, the executive interprets the plan represented as a constraint network, choosing consistent 

values best suited for the actual situation. Once it makes a decision for a value, it needs to propagate 

constraints (see Chapter 9) to maintain consistency of the plan (network) as execution progresses.

The Constraint based Attribute and Interval Planning (CAIP) paradigm (Frank and Jónsson, 2003) 

is an approach that facilitates the specification of complex planning domains and implementation of 

planners that can exploit constraint based reasoning. The CAIP paradigm builds upon the RA planner 

which was derived from the HSTS planner (Muscettola, 1994), and the planner IxTet (Laborie and 

Ghallab, 1995), both of which are based on attributes to represent state variables. The framework has 

been implemented in a system called Extensible Universal Remote Operations Planning Architecture 

(EUROPA), the latest at the time of writing being EUROPA2.1 developed in 2007.

The most important difference between the STRIPS based systems and the attribute based systems 

is that the latter allow for explicit reasoning about predicates and actions, whereas the former did so 

implicitly. Consider for example the STRIPS action Stack(A, B) and the resulting fluent On(A, B). The 

basic search algorithms for planning use actions to generate the search space to explore and the state is 
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represented as a collection of fluents which are true. Graphplan and its derivatives introduce the notion 

of layers, and we can then talk about the layer in which an action occurs or a fluent becomes true or false. 

Planning as satisfiability or as a CSP extended the action and fluent representations by adding another 

parameter called time. The approach used in CAIP on the other hand, follows the Event Calculus (see 

Chapter 13) like representation, in which both actions and fluent appear as reified arguments in higher 

level predicates. For example, the happening
25

 of a stack action may be represented as, 

Holds(Arm1, 10, 10, Stacking(A, B))

or Holds(Arm1, 10, 12, Stacking(A, B)) if stacking is a durative action.

The statement asserts that during the specified duration, the arm is in a “state of” stacking block A on 

block B. In this example, Arm1 is the attribute, and amongst other values, it can take the fluent Stack(A,

B) as a value. Other kinds of values it could take are for example Idle, or TuckedIn (if it is required to be 

tucked in while the robot moves). Likewise, Holds(Block(A), 13, 30, On(B)) could be a description of 

the fact that the value of the attribute Block(A) during time points 13 and 30 is On(B), an interval during 

which the block A is on block B. As we saw that in the description of the Remote Agent, both states and 

actions become values of the corresponding attributes. Thus, Arm1 can be doing the action of stacking 

A on B, or it could be in a state described as Idle. Both are represented identically using intervals over 

which the fluent or action is true.

Every such attribute is associated with a timeline, and the timeline must account for the attribute at 

all times during the plan horizon. Thus, state of Arm1 may be represented as a sequence of intervals, 

for example (Hold(Arm1, 0, 4, Idle), Hold(Arm1, 5, 9, Moving(A)), Hold(Arm1, 10, 12, Stacking(A, B)),

Hold(Arm1, 13, 18, Idle)). This description is extremely precise. CAIP does allow flexibility while 

inserting such actions (intervals) into the plan. One might assert a lifted version of an interval, for 

example, Holds(Arm1, t1, t2, Moving(A)) where t1 and t2 are variables. Then one could add constraints on 

the values that t1 and t2 take. For example, one could say that t2 should not be later than some deadline, 

or that t1 should begin during a certain time interval. One can also have the value of the attribute as a 

variable, for example Holds(LocationRobot1, 10, t2, Going(room1, X), which could be used if one wanted 

the robot to leave room1 without specifying where it goes.

Constraints may be placed on intervals in the same timeline or across different timelines. We have 

seen an example in Figure 10.28 in which the PointingTo interval of Attitude must contain the TakePhoto

action interval of the Camera. If we have a LocationRobot1 attribute, then we might specify that an 

interval specifying Going(Source, Destination) must be met-by an At(Source) interval, and should meet

an At(Destination) interval. Representation of such constraints in CAIP is done using the notion of 

Compatibilities.

Compatibilities allow the expression of constraints in the form of rules. For example, if a robot arm 

has to be tucked in while it is moving, then if Holds(LocationRobot1, t1, t2, Going(X, Y)) is in the plan, 

then Hold(Arm1, t3, t4, TuckedIn) should also be in the plan along with the constraints t3 < t1 and t2 < t4.

We express the temporal constraints with Allen’s interval algebra described earlier. This constraint can 

be combined with the constraints that the Going value must be met-by and meets two At value intervals. 

The relations between different intervals are captured in Configurations. The constraints described here 

could be expressed as a compatibility rule shown below, 

Head: Holds(LocationRobot1, sg, eg, Going(X, Y))

Parameter Constraints: sg + travelTime(X, Y) = eg

Disjunction:

25 The Event Calculus is a framework for reasoning about events and change, and has predicates like Happens and Initiates. In 

CAIP, only one such meta-level predicate Holds is used to assert that an action happens or a state persists over a time interval. 
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  Configuration Rule:

   Configuration Interval: met-by Holds(Loc, sa1, ea1, At(S)),

    S = X, Loc = LocationRobot1
   Configuration Interval: meets Holds(Loc, sa2, ea2, At(D)),

    D = Y, Loc = LocationRobot1
   Configuration Interval: contains Holds(Arm1, st, et, TuckedIn),

    S = X, Loc = LocationRobot1

The above example illustrates the representation of different plan segments and the relations between 

them. The main interval is described in the “Head” field. The “Parameter Constraints” capture the 

constraints that are local to the main interval. The “Disjunction” field identifies a set of “Configuration 

Rules”, one or more of which have to be true in the final plan. Each Configuration rule is a conjunction 

of conditions. The relations can be depicted as a network as shown in Figure 10.31.

At(D)Going(X, Y)

TuckedIn

At(S)
met-by

Robot Arm State

Robot Location
meets

during

S = X D = Ytend = tstart + duration

FIGURE 10.31 The Compatibility of the Going(X, Y) interval. It must be met-by an At(start) interval, 

meet an At(Destination) interval, and must be during the TuckedIn interval for its arm.

The relations between intervals can be seen as constraints between the nodes of a network. The 

corresponding CSP is a dynamic CSP (see Chapter 9) in which new variables (or nodes) are added in 

the processing of solving the CSP. The new nodes in the context of planning are related intervals that 

a planner adds to the network (plan), starting with an initial, underspecified network representing the 

planning problem.

In the above example, there is only one Configuration Rule, but one can imagine situations when 

the Head interval can be supported by different sets of intervals. In the robot example, the Going action 

could be met-by a Turning action, wherein the previous “state” of the robot was that it was turning 

before it started moving. Examples from other domains are as follow. A baby might be happy (during 

an interval) as long as it is being picked up and carried about. It might also be happy, if alternately, it 

is allowed to splash around in water. A trekker in the hills may feel comfortable during the evening as 

long as she is in the state of wearing warm clothes, or alternately if the group is sitting around a small 

bonfire. A planner that needs to achieve the state of being comfortable will have to achieve either of the 

intervals. On a grander scale, a coalition government of a country may be in power (over an interval) 

either if it is supported by party A, or if it can entice a segment of party B to break away and support it.

We have already observed that there is no distinction between the manner in which an action or a 

state is treated by the planner
26

. Another interesting feature of the representation is that the problem 

and the solution are also described by the same representation. Both are constraint networks. They 

26 The Executive though, as expected, treats them differently. Actions are what it needs to activate in the agent and states are 

observations it gets. 
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differ in the fact that the solution is a network that has no unsupported nodes. This is reminiscent of 

the Plan Space Planning (PSP) approach we studied in Chapter 7. The problem statement in PSP is an 

initial empty plan P0 made up of two actions that we will call A0 and A . There is a similarity in the 

planning process as well, which is driven by the resolution of flaws in the current plan. The input to the 

planning process need not be an empty plan, but could be an underspecified plan in which the planner 

has to remove some flaws.

The operations for modifying plans that can be used for searching valid plans are of two types. 

Restrictions add new decisions to the plan or reduce the number of options remaining for existing 

decisions. If a compatibility rule requires an interval then one can (a) insert a new interval between two 

intervals of an attribute, along with implied ordering constraints, or (b) add constraints to an existing 

interval to satisfy the compatibility. In addition, one may insert an unsequenced interval on an attribute, 

or restrict the values that a variable can take. The inverse of these operations are relaxations.

A major advantage of this uniform representation of actions, states, plans and goals is that plan repair 

becomes more feasible. Combined with the fact that the planner is required to produce a flexible plan 

instead of a rigid one, the prospect of executing the plan successfully in the real world, making small 

corrections where needed, become much more feasible. One introduces the notion of a sufficient plan to 

characterize the completeness requirements for the planning algorithm. The planning algorithm needs 

to build a plan only for a given planning horizon, for example, and may leave some variables to be 

instantiated at run time by the Executive.

The interested reader is referred to the autonomy papers referred in this section for a detailed 

description of temporal planning with intervals using constraints, and the interplay between the planner 

and the executive in dynamic environments.

10.8 Discussion

Research in planning received an impetus with the development of methods like Graphplan in the middle 

of 1990s. Given that even the simplest of planning domains are in PSPACE, the simple search algorithms 

were never going to go far. One advance that was made with the advent of Graphplan was a two stage 

process. In the first stage, the search space is delimited and some kind of a reachability analysis done on 

the given problem. Once a solution looks to be feasible, the search space operates on a delimited space. 

The second interesting development that took place was the defining of domain independent heuristics 

to guide search methods. The heuristics estimate the distance of a partial solution from a complete one 

by exploring a relaxed version of the original problem.

The advancements in planning algorithms, and also the increasing computing power becoming 

available, led to the exploration of richer domains for planning. Starting with metric resources, researchers 

have explored conditional effects, contingent and conformant planning, and moved on to planning with 

durative actions and trajectory constraints. The next advancement of soft goals and soft trajectory 

constraints raises the difficulty level of the problem. Now the definition of a valid plan itself becomes 

nonrigid. While one may want to achieve all the goals that have been specified, one would be willing 

to accept plans that do not satisfy some goals. The fact that different soft goals may have differing 

amounts of penalties associated with them makes the planning problem an optimization problem of 

greater complexity.

At the same time, researchers started employing artificial intelligence techniques to sophisticated 

problems. The most spectacular applications have been in space, but interest in autonomous robots, 

whether in the domestic environments or in the depths of the oceans, offers considerable motivation for 

applying planning techniques in the real world. These applications demand that planning algorithms 
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be embedded in larger systems which can sense and react in a real world. Such applications require a 

greater amount of integration of different problem solving techniques.

They also demand more robust and efficient knowledge representation and reasoning, which will be 

our focus in the next few chapters.

 Exercises

1. Given the following initial state {On(A, C), On(B, D), OnT(C), OnT(D), Clear(A), Clear(B). ArmE}

and the goal {OnT(A), OnT(B)}, simulate the Graphplan algorithm on paper and generate a plan.

2. Define the algorithms MutexA and MutexP to determine whether two actions in a layer or two 

propositions in a layer of the planning graph are respectively mutex.

3. Find all the subgoal sets at the level k-1 for the planning graph in Figure 10.8.

4. Write the procedure RegressGoalSet(G, i, PlanGraph) employed in the ExtractPlan procedure 

of Figure 10.10. Your procedure should return the set of all subgoal sets that can be regressed to 

from the given goal set G.

5. Rewrite the ExtractPlan procedure of Figure 10.10, removing the nondeterministic CHOOSE

action and employing a backtracking like procedure (see Chapter 9).

6. Define the function SizeSubgoalSets used in the algorithm Graphplan in Figure 10.7. The function 

should get the value by inspecting the memoized memory mem maintained by ExtractPlan.

7. Given the set of predicates (:predicates (clear ?b) (on-table ?b) (empty ?h) (holding ?h ?b)

(on ?b1 ?b2) (hand ?h) (block ?b)) in untyped pddl, define the actions Stack, Unstack, Pickup and 

Putdown of the blocks world domain. Express the following problem27 (with one robot hand h)

in the language.

C D
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E G

A

I

F

J

B I

H

J

E

The Given State The Goal

G

D

Hand h

B

FIGURE 10.32

  Download Graphplan or STAN and run the above problem. Verify that the plan is made up of 

16 stages of one action each—({unstack(h, H, J)}, {stack(h, H, E)}, {pickup(h, D)}, {stack(h, D, 

B)}, {unstack(h, J, F)}, {stack(h, J, D)}, {unstack(h, F, I)}, {stack(h, F, C)}, {unstack(h, H, E)},

{stack(h, H, I)}, {pickup(h, E)}, {stack(h, E, J)}, {unstack(h, A, G)}, {stack(h, A, F)}, {pickup(h,

G)}, {stack(h, G, E)}). Is this a unique plan? Also verify that the goals first appear nonmutex after 

layer 8, and that the fixed point is reached (graph lavels off) at layer 10.

27 Thanks to I. Murugeswari for the example where a plan is found after the fixed point. 
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8. In the above problem, replace the single hand h with two hands l and r. Run the program on the 

new problem.

9. Run the program on the problem suggested by Blum and Furst (1995).

   Given = {(on A B}, (on B C), (on-table C)}

   Goal = {(on A B}, (on B C), (on C A)}

  and observe the program’s behaviour.

10. Run the program on Sussman’s anomaly, 

   Given = {(on C A}, (on-table A), (on-table B)}

   Goal = {(on A B}, (on B C), (on-table C)}

  What is the solution found? Is it found before the fixed point or after?

11. Consider the following planning problem.

Domain predicates: oXY, cX, AE, hX -short form

on(X, Y), clear(X), AE, holding(X)

Operators:  uXY, sXY -short form

(unstack (X, Y)

  (preconditions : on(X, Y), clear(X), AE)

  (effects : holding(X), clear(Y), ~AE, ~on(X, Y))

(stack (X, Y)

  (preconditions : holding(X), clear(Y)

  (effects : on(X, Y), AE, ~holding(X), ~clear(Y))

Start S0 : on(A, B), on(C, D), AE, clear(A), clear(B), clear(E)

Goal g : on(A, D)

  Construct a planning graph of two action layers (P0, A1, P1, A2, P2)

12. Write the logical bit-level operation that algorithm STAN would do to decide the applicability of 

an action in a given layer. (Hint: What would it mean to check whether an action is mutex with 

itself?)

13. Given the planning graph of Figure 10.4 and the goals {On(A, C), OnT(C)}, trace the plan extraction 

process when the problem is posed as a dynamic CSP. The domains of the variables and the 

constraints between them may be defined as and when they become active.

14. What is a relaxed planning problem? Illustrate with the blocks world domain. Where is it used?

15. Pose the following problem as a planning problem. Find a contingent plan for the problem.

  “You are sitting blindfolded and in front of you there is a square horizontal board that can be 

rotated about the vertical axis passing through the centre. For simplicity, we assume that rotations 

are in multiples of 90°. Placed on the four corners are four identical objects that can be in one 

of two states, up or down. You can reach out to any two corners with your hands and can sense 

whether the two are on a side or a diagonal, and you can sense the state of each object on the two 

corners. You play a game in which the following moves happen alternately.
 ● An adversary rotates the board by some amount.
 ● You are allowed to sense any two objects, and change the state of both, one or none of them.

  The goal is to bring all four objects in the same state (up or down). If you succeed, a judge rings 

a bell.”

16. Find a conformant plan28 for the above problem. What can you say about the lengths of the two 

plans, contingent and conformant?

28 First demonstrated to me many years ago by Vinay Desai, a fellow student and a bridge player at IIT Bombay. 
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17. Extend the planning graphs of Figure 10.12 for a domain with two toilets t1 and t2, which are not 

clogged in the given state. Show that a conformant solution for the bomb diffusing problem can 

be found by CGP.

18. Extend the matching diagram of Figure 10.13 to include connections for the actions Stack(A, C)

and PtDn(A). Draw the domains for the new variables as and when needed.

ThrowLeft(ball1)

Hold(left, ball1)

¬ Hold(left, ball1)

HandFree(left)

HandFree(right)

Hold(right, ball1)

¬ HandFree(right)

ThrowRight(ball1)

Hold(right, ball1)

¬ Hold(right, ball1)

HandFree(right)

HandFree(left)

Hold(left, ball1)

¬ HandFree(left)

ThrowLeft(ball1) ThrowRight(ball1) ThrowLeft(ball1) ThrowRight(ball1)

FIGURE 10.33 The two actions ThrowLeft(ball1) and ThrowRight(ball2) and the relations between 

them. Shown below is a sequence of actions representing a ball being thrown from one hand to the 

other alternately.

19. In the MPT representation used in Fast Downward, pose the blocks world problem such that the 

variable Holding(arm) is a derived variable, which can take values from {A, B, C, nil}. Draw the 

domain transition graph for this variable when there are three blocks A, B and C, in a planning 

problem.

20. Draw the causal graph for the planning domain depicted in Figure 10.18.

21. Model the operator for driving a car from a point A to a point B as a durative action with metric 

fluents. Assume that distance from A to B is given, the (average) speed of the car, and the rate of 

guzzling fuel is known.

22. The spy-swap problem. Two unnamed countries have a desire to swap two spies named Black and 

White. Black is being held at location M, while White is a prisoner at location N. The swap is to 

take place on a bridge B over a river that divides the areas controlled by the two countries. B is 

reachable from M and N over a road network, available as a graph weighted with distances. It takes 

five minutes to walk across the bridge. Being suspicious of each other, the countries would like 

Black and White to walk across at the same time. Pose the above problem as a temporal planning 

problem.
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23. Given instance of the two durative actions ThrowLeft(x) and ThrowRight(x) (from (Coles et al., 

2009) shown in the Figure 10.33, show how the plan of a robot juggling three balls would look 

like.

24. Planning operators in the PDDL family of languages are expressed using preconditions and effects. 

Take an example operator and show how it can be represented in the Compatibility formalism 

defined in CAIP.



T  he goal of artificial intelligence is building systems that will come up with a good answer for any 

  question from its domain of competence. AI systems are different from specific application programs 

in the scope of questions they can address. A program to multiply two matrices can only answer the 

question: “What is the product of these two matrices?”, and that too only if the input is presented to it 

in a carefully tailored form. It does have knowledge about multiplying matrices, but that knowledge 

is embedded in the algorithm. The knowledge for problem solving is encoded in a procedural form. It 

does not know what matrices are.1

The traditional approach to software development is to implement more and more such programs 

for each task that is to be done. Each such program encapsulates a connection between its input and its 

output. Each is confined to that particular connection. This relation between input and output may be 

complex, allowing many choices to the user. Consider, for example, a spreadsheet, a word processor, or 

a media player. Each of these programs may give a multitude of fixed options to a user. A spreadsheet, 

for example, allows a user to arrange a lot of data into grids and define functional relationships between 

them. Word processing software allows the user to organize and format words and pictures, taking upon 

itself a lot of mundane chores like alignment, styles, and spelling checks. A media player may enable 

a user to create, organize and access movies and music in various formats. In each of these cases, the 

connection between input and output is fixed. And each program is disconnected; oblivious of the 

others, using its own internal representation, even for data that may be common to different programs. 

Furthermore, it is the user who has to choose the appropriate program given a problem to solve, and tailor 

the data to execute it successfully to generate the answers. Sometimes, the answers themselves may have 

to be interpreted. As we move away from a matrix multiplier to a system like Matlab or Scilab or R2, 

the user gets to establish more and more connections between input and output using the same piece of  

software.

The endeavour in creating an artificial intelligence is to extend this diversity to a wider set, perhaps 

including connections that have not been hard coded into the algorithms. In addition to expanding 

the set of possible connections between input and output, the goal is to also make these connections 

transparently, that is, without the need to user intervention. Figure 11.1 illustrates the difference between 

traditional programming and the AI approach. In traditional programming, a programmer implements the 

solution steps for problems in a given domain into a program. The program thus embodies the problem 

solving knowledge of the programmer. In AI programs, on the other hand, the programmer implements a 

1 In fact there is no “it” that will know anything at all. 
2  See http://www.mathworks.in/products/matlab/ and http://www.scilab.org/products/scilab/ or http://www.r-project.org/ respectively.
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problem solving strategy in a more domain independent form. The resulting AI program takes a domain 

description and a given problem and produces the solution steps, based on the strategy it embodies. 

The reader would recall how planning problems and the domain description are both described using 

a planning domain description language (see Chapter 7). Both the problem solving strategy and the 

domain description, call upon knowledge representation approaches.

One distinguishing feature of artificial intelligence programs is that connections between input and 

output may be found at runtime, and not encoded by the programmer. This is useful in domains where 

the number of individual connections may be too many to enumerate and too diverse to generalize. 

Consider for example, path finding on a city map. Given any reasonable sized city, the number of 

origin-destination combinations may be too numerous to enumerate. And unless the city is a regular 

grid like Manhattan (and the coordinates of the two points are known), it may not be feasible to devise 

a greedy path finding strategy.

The option we have explored so far in problems like these is to search for the solution (path). Search 

is but one of the means to finding a solution. We need to also look at how experience often leads us down 

an oft trodden path. Travellers often rely on guidebooks and travelogues and exploit the experience of 

those who traveled before them. For a problem solving agent, this experience has to be captured into some 

form of (knowledge) representation. Let us look at another example. Consider the problem of finding 

the meaning of a set of uttered words. Again, the permutations of words are too numerous to enumerate. 

Parsers embody some generalized knowledge of the relations between the different constituents of a 

sentence. The meaning itself derives from the meaning of constituent elements of a sentence. The problem 

in natural language understanding is further compounded by the fact that the meaning of a sentence may 

depend upon context (like a neighbouring sentence). For example, “Suresh was in a hurry to catch his 

flight. He ran towards the terminal.” Reading a piece of literature may often require the reader to keep 

many segments in context, and in serial fiction like Sherlock Holmes, or the more recent Harry Potter, 

the reader may have to make sense of a piece of text based on what was written in an earlier story.

Another scenario where artificial intelligence approaches are called upon is when the amount of 

computation required for establishing the connection between input and output is beyond acceptable 

limits. Consider the example of a chess game. Given a board position as input and a question about the 

Problem

Solution steps
(program)

Solution

Domain model

Human

Problem Domain model

Solver (program)

Solution steps

Solution

Problem Class

Human

FIGURE 11.1 In the traditional programming approach shown on the left, a human being programs 

the solution steps for a specific domain. In the AI approach, the human programs a solver for a class 

of problems, and given a domain model and a problem instance from the domain, the solver produces 

the solution steps that lead to the solution.



Chapter 11: Knowledge Based Reasoning 409

outcome of the game, one needs only choose between three possibilities; a win or a draw or a loss for 

white. Alas, as we have seen in the game playing chapter, while this can be computed in principle, it 

is not feasible in practice. Another example of a hard problem we have seen is the travelling salesman 

problem. Faced with such problems, our approach so far has been the introduction of knowledge in the 

form of heuristic functions to cut down the search space. Humans on the other hand rarely do systematic 

search, and tend to reply more on knowledge and experience. Of course, they have the benefit of a 

lifetime of learning to fall back upon, and the experience of others in the form of advice and books. In 

the following chapters, we will explore how domain knowledge can be represented in a way appropriate 

for the reasoning tasks, and also how problem solving experience itself can be represented, accrued, 

and exploited.

Humans resort to knowledge and experience extensively while solving problems. Human memory is 

the seat of this knowledge, and we refer to this problem solving approach as memory based reasoning. 

How does all this knowledge find its way into the memory? The most straightforward way is by simply 

storing experiences. Experiences may be stored directly, or though a process of generalization and 

modularization and are expressed in the form of rules of thumb. Figure 11.2 depicts the architecture of 

a knowledge based problem solving agent, that predominantly uses knowledge to solve problems, but 

if the need arises, invokes a first principles search based approach to solve problems it cannot solve 

directly using the stored knowledge. Experience accrues as the agent solves more and more problems.

Model based reasoning 

by first principles 

using search methods

SolutionProblem

Knowledge based reasoning 

exploiting memory, experience, 

 and rules of thumb

FIGURE 11.2 Humans primarily use knowledge to solve a problem. Often “we know” the solution for 

a familiar problem. When we do not then a first principles approach based on search is the recourse. 

The first principles solutions can be stored in the memory for later reuse.

The agent’s own experience is not the only source of knowledge. The human species has thrived and 

become dominant because we have learnt to share knowledge, and have invented languages to do so. 

Traditionally, storytelling has been a form of knowledge transfer in all societies. Similes, metaphors and 

idioms are devices to capture nuggets of distilled knowledge. One can benefit from the accumulated 

knowledge of an author far removed in time and space simply by reading her book. Languages like 

English, Urdu and Kiswahili have been the languages for knowledge representation for us humans. But 

computers are not yet completely natural language enabled. They need crisp, unambiguous and precise 

formalisms for representing and manipulating knowledge. In the following chapters, we will explore 

various issues in representation and reasoning with knowledge, the role of memory and language, the 

formation of concepts, approaches to deal with uncertain knowledge and machine learning strategies 

to acquire knowledge.
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11.1 Agents

The need for knowledge representation will also arise if we want to devise autonomous systems. Such 

systems, known as agents (Woolridge, 2000), would have the following properties. They would exist 

for extended periods of time (are persistent), would have broad goals from which they would devise 

immediate goals (are goal oriented), would sense the surroundings, invoke goals, and act (are situated 

and pro-active), and would communicate with their owners and other agents (have social ability).

Such programs would be running all the time, deciding themselves upon their course of action, in 

contrast to a user invoking a program with a specific input and required output. For an agent to act out 

its decisions, it must be embodied in some environment. It is obviously easier to implement agents in 

cyberspace3, circumventing the difficulties of perception in a physical world. We are all aware of viruses, 

worms and other forms of malware let loose on the internet.

However, there have been efforts to build physical agents as well. The most famous was the Remote 

Agent architecture (Muscettola et al., 1998) in NASA’s Deep Space One spacecraft. The need for 

autonomy here is acute because it takes a long time for information to travel over astronomical distances, 

and by the time a human on Earth senses something and reacts, and the command reaches the spacecraft, 

it may be too late. Autonomy is also useful on satellites orbiting the planet keeping a watch on storms, 

floods, fires and other phenomena. More recently, there have been efforts to build teams of robotic 

agents for autonomous activities like search and rescue operations (see for example (Alboul et al., 2010), 

(Marjovi et al., 2010) and (Meyer et al., 2011)).

At the very minimum, such a program must have a set of goals or tasks to perform and be able to 

sense its environment. Ants, for example, are a well studied example of such simple agents. But we 

are in quest of a higher level of intelligence. This would require that the agent is aware of its resources 

and abilities, and be able to make informed judgments. Further, it should learn from its experience4. 

Learning from experience is a slow process, even for the quickest on the uptake. It may not be enough 

to rely on one’s own experience. For an agent to emulate human level of performance, it will need to 

benefit from shared knowledge accrued over generations in societies.

11.1.1 Belief, Desire and Intentions

One of the popular approaches to devising agent based systems is to build them on the Belief-Desire-

Intention (BDI), first expounded by Michael Bratman (1987; 1990). According to this model, rational 

agents will need to have three kinds of information to act in a rational manner.

The beliefs of an agent correspond to what the agent knows about the world. A rational agent would 

have a model of the world in its head, which would facilitate reasoning required to produce rational 

actions. Sophisticated agents would have a representation of themselves in the model of the world they 

hold. Rationality is tied up with goals of the agent, and in that sense is concerned with finding the actions 

or decisions that are optimal for achieving the goals. The goals are themselves described in terms of 

desires and intentions.

3  For example, in Second Life, a 3-D virtual world entirely built and owned by its residents. Since opening to the public in 

2003, it has grown explosively and was inhabited by a total of 7, 965, 038 residents from around the globe, on July 11, 2007  

-http://secondlife.com/ 
4  It has been commented that a bad bridge player is one who makes the same mistakes repeatedly; a good player is one who learns 

from her mistakes; and an expert is one who learns from the mistakes of other people. 
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An agent’s desires represent the things that the agent would want to happen or be in world. The set 

of desires may not be consistent or even feasible5. An agent may well have a desire that is not feasible. 

It may want to know whether White wins in the game of chess, or it may want to see a unicorn, or hop 

one legged up to Mount Everest if it is physically embodied. It may have a set of desires that may be 

individually feasible, but be inconsistent with the others. An agent may want to play a game of bridge, 

clean up the garage, have a long siesta, finish writing a paper, or go for a walk in the park, all on a 

Sunday afternoon.

The intentions of an agent refer to the subset of desires that the agent decides to act upon. Thus, 

one aspect of rationality is in choosing the intentions. This may involve only choosing goals that are 

feasible. This may also involve choosing short term goals that are consistent with long-term goals. For 

example, one may choose the goal of finishing a paper, as opposed to playing a game of bridge, if one 

is studying to earn a degree. Rational behaviour may also mean optimizing the number of desires one 

can achieve by choosing intentions and actions (planning) appropriately. For example, one may go to 

the park and work on the paper writing there.

Intentions of an agent can be referred to as plans as well, though not in the sense of a plan being 

a structured representation of actions as in Chapters 7 and 10. Rather, the notion of a plan is that  

of a mental state, in the sense that “a plan to roast lamb” is the intent to roast lamb, as opposed to  

“a plan for roasting lamb”, which may be a recipe for the goal (Bratman, 1990). That is, the agent has a 

plan or intention to achieve the goal of having roasted lamb. If for a given goal G, an agent has a plan 

P = (a1, a2, … , an) for achieving the goal then the agent also has the belief that the actions a1, a2, … , an 

that make up the plan will eventually lead to the achievement of G (Pollack, 1990).

Matters become complex when the world is dynamic. Time and change complicate the rational 

process. This may happen because change is a part of the world. Like the day and night cycles we are 

used to, or the changing weather, seasons, our growing bodies, and many other phenomena in the natural 

world. The world is changing also because of the actions of other agents.

This changing world has myriad ramifications. Firstly, the plans we generate may not remain correct 

because something has changed in the period in which we planned and commenced execution. You may 

have set out for a bicycle ride, only to find a flat tyre. You may have to modify the plan or devise a new 

one. Secondly, the intentions (goals) we chose earlier may no longer be relevant because something has 

changed. For example, you had the intention of buying a loaf of bread, but on reaching the bakery you 

spot a piece of pizza that you decide is a better snack. Thus, new desires may arise as things change 

in the world. Thirdly, an agent needs to keep revising its beliefs in a changing world, and how often it 

does so may critically depend upon the intentions it is pursuing. If you are flying a kite, you may need 

to keep a close watch on the wind and other kites. If you are playing a game of tennis then you need to 

keep an eye on the ball at all times. On the other hand, if you are playing a game of bridge, you only 

need to look out for the next card played, unless it’s the opponent’s expression after you have put her on 

test by leading the jack. If you are baking a cake then you could in fact turn away and have a siesta while 

it is being done. The point is that a rational agent in a dynamic world has to keep doing the following.

 ● Update its beliefs or its model of the world as it changes.
 ● Update its desires as new ones crop up and existing ones are achieved or discarded.
 ● Update its intentions to choose the ones to act upon currently.
 ● Update its plans as all of the above change.
 ● Choose and execute an action (from the plan).

Also, all of the above are inextricably cross linked with each other.

5  What is feasible can only be decided when the actions are attempted in the real world. A more accurate model would help an 

agent to estimate this feasibility more accurately. 
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Current research on agents focuses less on the knowledge representation aspect, and more on the 

reasoning processes described above. The research described in agents’ literature is more concerned 

with maintaining a consistent set of beliefs, and optimizing upon the selection and consummation of 

intentions in a framework, where both computation and memory are resource bounded. The research on 

knowledge representation has been done elsewhere independently. We will look at the various aspects 

of knowledge representation briefly below, and in more detail in individual chapters. Let us first try and 

reconnoitre the different approaches to knowledge representation.

11.2 Facets of Knowledge

Chess playing was one of the earliest pursuits in artificial intelligence, and now there exist many programs 

that can play better than most human players. Yet, we are not willing to call such a program intelligent. 

This is probably because we see it as a program that somehow searches through combinations efficiently 

and nothing more than that. It only knows how to choose a move, given a board position.

Let us try and imagine what would make it seem worthy of being called intelligent. If the program 

were more like a creature (Grand, 2001) then humans are more likely to accept6 it as an intelligent 

creature. If such a creature had a chess playing ability, had some kind of a sense of identity, and was in 

some sense aware that it was playing chess, if it could converse in natural language, if it could comment 

upon your moves, if it had a memory of past interactions, if it was connected to other things besides 

chess (“the weather is too good to play inside”), if it had internal goals tied up with emotions and moods 

then such a program would surely command more respect. Such a program would know a lot. How can 

we build such an intelligent and articulate chess playing agent?

An intelligent program must have a considerable amount of knowledge and it must have the faculty 

of some kind of language, a means for knowledge exchange. What kind of knowledge would the chess-

playing agent need? It must know that chess is a game that “it” is playing. It must know that there are 

other things than chess. How does it know that “it”, amongst other things, is there “playing chess”? It 

must have a model of the world and must know facts in the world. It must know about the processes 

that go on in the world and the changes they ensue. To know a world is to have a representation of 

the concepts involved and the relations between them; for example, “this is an apple” and “apples are 

sweet” and “apples are fruit” and “fruits have seeds” and therefore “apples have seeds”, and so on. Such 

knowledge is traditionally referred to as an ontology7. We can also call such knowledge as semantic 

knowledge or knowledge about the meaning of terms. Ontologies are categorizations of things, defining 

them relative to each other, separating categories into classes based on the differences between them, 

and clustering them together under common classes based on similarities and shared properties. Some 

of the recent work in ontologies has been motivated by the designs of the next generation semantic web 

and representation using description logics. We will look at these concepts in more detail in subsequent 

chapters.

6  There have been anecdotes from Japan of humans becoming emotionally bonded to virtual pets like Tamagotchi, rushing home 

to feed them, and feeling real sadness if they were to die. Web based virtual pets are popular with children. See http://www.

adoptme.com/, http://www.marapets.com/, and www.neopets.com/.  It has also been narrated by Pamela McCorduck (McCorduck 

1973) that in the age of moving statues in medieval Europe, people were prone to ascribe humanlike thinking qualities to statues 

that could nod or shake their heads on being asked a question.
7  The term comes from Philosophy, and it means the study of being or existence. It is a study of notions of reality. A quest for 

answering questions about what the world is about, and questions about ourselves in this world. Computer scientists adopted 

the term when they wanted to represent, and reason with, such knowledge, particularly in the context where programs need to 

“talk” to each other and exchange such information; a situation which has become more and more prevalent with the advent of 

the internet and the worldwide web.



Chapter 11: Knowledge Based Reasoning 413

The other kind of knowledge that we have is episodic knowledge or knowledge about things that 

happen, or events. Such knowledge is rooted in experience and memory, and relates different events 

together. For example, one might remember that eating an apple makes one feel better when one is 

hungry, and therefore eating an apple is a solution if the goal is to be not hungry, or that when you go 

and sit in a restaurant, it is normal and expected for someone to approach you to ask what you would 

like to eat. Such knowledge allows us to go about the world without explicitly going into a search based 

quest to determine consequences of incoming information or our proposed actions.

The fundamental question from the AI perspective remains though. How do we represent an apple or 

a carrot? When we think of a carrot, the first thing that often comes up is a visual image in our minds. 

Visual images are some things conjured up by our minds, rather than images received and represented 

in our brains. We are still far away from figuring out reasoning at the visual level. The image of a carrot 

in turn usually triggers other memories, for example the image of Bugs Bunny8 leaning against a fence, 

carrot in hand. Our representation of the concept of a carrot would depend upon what the purpose is; 

if we want to draw it, it has shape and colour; if we want to put it in a salad it has grateable structure; 

if we want to talk of its food qualities, it is composed of different vitamins, minerals, etc; if we want 

to talk of cooking, it is associated with recipes. Besides, we can even think of it simply as a physical 

object that can be thrown and caught, as a living thing that can grow, as a container of refreshing juice. 

So one might say that a carrot is what a carrot does. It is a snack, it is a vegetable, it is an object, and it 

is a living thing. You could use it for food, or a paperweight, a subject for a painting, or even a weapon 

to throw at someone. Each such aspect would relate it to other things, by shared properties. We will 

explore frame based representations of concepts in Chapter 14.

11.2.1 Memory

The knowledge that we have resides in our memory. Memory is what we remember or recall. Memory 

has long been recognized as the seat of knowledge and has been the subject of study for ages. Since 

the Greek times, human beings have sought techniques for improving memory (Yates, 1966). Since 

then scholars from many disciplines, psychology, biology, medicine and most recently, the cognitive 

neuroscience have attempted to study the structure of the brain and the functions of memory. And we, 

the artificial intelligence community, are waiting to reap the fruits of such research to contribute to the 

design of machines with minds.

The field of cognitive psychology views the human brain as an information processing device which 

equips the human with knowledge and reasoning capacity to solve problems. The prevalent view is that 

the brain is structured and made up of different modules, each with its own domain and processes of 

reasoning (ten Berge and van Hezewijk, 1999). This view has been supported by evolutionary biology 

as well. “The mind is a squadron of simpletons. It is not unified, it is not rational, it is not well designed 

or designed at all. It just happened, an accumulation of innovations of the organisms that lived before 

us” (Ornstein, 1991). This view has found expression in artificial intelligence too, with Marvin Minsky 

(1998) proposing a society of mind.

Towards the end of the last century, it became evident that there was a distinction between two kinds 

of memory, one that is accessible to conscious recollection, and another that is not (Squire, 1987). The 

former is referred to as declarative in nature, and is primarily the subject of interest from the symbolic 

knowledge representation point of view in artificial intelligence. The second, originally called procedural, 

is concerned with all kinds of learned reflex behaviour. The declarative memory is concerned with 

knowing facts and figures, while the procedural memory is concerned with knowing how to do things. 

Figure 11.3 depicts the basic taxonomy of memory described by Squire (adapted from (Rose, 1998)).

8 Bugs Bunny is a popular carrot chewing animated rabbit created by Warner Brothers. 
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Semantic Memory Episodic Memory

Recognition Recall

Motor Skill Learning

Perceptual Learning

Conditioning
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or Working Memory

Long-Term Memory

or Reference Memory

FIGURE 11.3 A neuroscientist’s view of the taxonomy of memory. Figure adapted from (Rose, 1998).

The procedural memory in the figure is long term in nature. It is the kind of knowledge that is involved 

in motor skills or perception that is acquired by a process of repeated learning that results in modification 

of some performance system. It is a form of learning that is invoked by the reactivation of certain part of 

the brain. Examples of such learned behaviours are riding a bicycle, swimming or even singing. These 

skills are hard to express verbally. Such learned behaviour would be part of a control system of a robot. 

Conditioning is the process of acquiring the kind of information that the brain sends to the body for an 

automatic response. Priming is the nondeclarative memory function that improves the brain’s ability to 

detect, identify, or respond to a stimulus that it has processed recently (Squire, 2007).

Declarative memory, on the other hand, involves explicit representation, which allows remembered 

material to be retrieved and compared. It is the memory traditionally associated with the notion of 

knowledge, and it is what is lost in amnesia. In the figure there is a distinction between semantic memory 

which is concerned with facts, and is associated with short-term memory, and episodic memory which 

is concerned with remembering events, which goes into long-term memory. The episodic memory is 

the one that is often lost during Alzheimer’s disease. This distinction is subtly different from the one 

proposed by Newell and Simon, when they identify knowledge in the form of rules as long-term memory 

and facts in the working memory as the short-term memory (see Section 6.6). One might say that the 

rules form an episodic memory of how to solve problems.

Declarative knowledge is not conscious till it is retrieved, following some questions or cues. The 

retrieval process itself is not consciously accessible. An individual can only become aware of the products 

of this process. It is also a very selective process. A given cue will lead to the retrieval of only a very 

small amount of potentially available information. (ten Berge and van Hezewijk, 1999). It has been 

demonstrated that the process of recognition is much easier that the process of recall. Typical memory 

games involve recalling a sequence of numbers or names, and most of us give up after seven or eight 

sized collections. On the other hand, we have no difficulty in recognizing a face from the thousands we 

might have seen.
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In Chapter 15, we investigate the memory based approach to solving problems in which a key issue 

is the retrieval of a relevant piece of memory.

It is interesting to note that computer programming also has paradigms reflecting these two kinds of 

memory or ways of encoding knowledge. In the imperative paradigm, a computer program is a sequence 

of instructions, with loops possibly built in, to be followed. The program is a procedure for solving a 

program. In declarative paradigms like logic programming, the program is the knowledge of relations 

between in a domain. A high level procedure operates on this declarative knowledge to solve problems.

The insights gained into memory owe much to the study of patients who have suffered accidents, and 

brain lesions caused by strokes (Rose, 1998). One such famous patient known only by his initials, H.M., 

was operated on in 1950 for epilepsy in Montreal. During the operation, the patient’s hippocampus and 

parts of his temporal lobe were removed. Following the operation, H.M. lost the capacity to create new 

long-term memories. He could only remember events for a few minutes. More recently, Ramachandran 

(for example in (2010)), describes how a patient called John suffered a stroke as a result of which he lost 

his ability for visual recognition. He could not recognize his wife’s face, even when he could recognize 

her by her voice. He even had to convince himself that the face he saw in the mirror was his own because 

“it winks when I wink and it moves when I do”. 

More recently, with new imaging techniques like PET (Positron Emission Tomography), MEG 

(MagnetoEncephaloGraphy) and CAT (Computer Aided Tomography), scientists have been able to map 

the different memory functions to brain regions. Figure 11.4 depicts this mapping of different kinds of 

memory functions, across both types, and how they are supported by specific regions of the brain as 

described in (Squire, 2004). As observed by Squire, over the last two centuries, the study of memory 

and the human brain has shifted from the fields of philosophy and psychology to biology.

Events
in Episodic Memory

Declarative Memory

Memory

Non-declarative Memory

Procedural Skills
and Habits

Priming and Perceptual
Learning

Emotional
Responses

Medial Temporal Lobe Diencephalon Striatum Neocortex Amygdala Cerebellum Reflex Pathways

Facts in

Semantic Memory

Non-associative Learning

Skeletal 
Responses

Simple Classical Conditioning

FIGURE 11.4 The mapping of different memory functions to the regions of the brain. Figure adapted 

from (Squire, 2004).
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11.2.2 Declarative Knowledge

As humans, we often do things without conscious perception or conscious planning. This would be 

ascribed to procedural knowledge, which is a form of control knowledge a system learns. However, in 

classical or symbolic artificial intelligence, we are more concerned with the kind of knowledge that can 

be represented explicitly9. Our focus in this book is on declarative knowledge.

The simplest form of semantic knowledge is relations between entities of a domain. This is a well-

studied form of knowledge representation with formal logic as the device both for representation and 

reasoning. The development of logic was more concerned with fidelity of reasoning; how does one make 

inferences that are irrefutable? In Chapter 12, we begin by studying the machinery of logical reasoning. 

However, reasoning is done over some symbolic representation and the symbols of something. Human 

beings have traditionally used natural language as a medium of representation as well as communication. 

In Chapter 13, we try and bridge the divide between logic and language and explore how concepts can 

be represented in logic. Given that our knowledge representation is about the world we are concerned 

with, and that the world is structured, it is only to be expected that the representation would start to mirror 

the structure in the world. We introduce abstractions and generalizations. We explore such structured 

representations, in which fact do not exist merely as individual statements but are woven together in 

schemas or schematas in Chapter 14.

Episodic knowledge accrues from our accumulated experience, but is not confined to that. It may 

evolve into other forms of knowledge; by processes we now call data mining and knowledge discovery. 

The semantic notion that “apples are sweet” may in fact be rooted in the episodic memory of having 

eaten an apple in the past and experienced the sweet taste. We constantly endeavour to generalize from 

instances of experiences and make compact rules and associations that are useful for us. For example, 

traditional wisdom says that it is not a good idea to go for a swim after a sumptuous lunch. Often, 

knowledge gets encapsulated in such rules, and may even disassociate from the original experience, 

leading us to wonder about the etymology of phrases like “to bury the hatchet” or “kick the bucket”. 

An ironsmith may associate a particular colour of the heated metal with a particular action, and if he 

has deeper knowledge, then with a particular property of the metal. Machine learning has always been a 

fascination for computer scientists since the day when Samuel’s checkers program learnt to play better 

and better and eventually beat him. We look at some of the techniques developed in machine learning 

in Chapter 18.

Over a period of time, we evolve such generalized experiences into action schemas or procedural rules 

that we use in our everyday problem solving. For example, a farmer may say that the correct time to sow 

his crop is after the first rains in the monsoon, or that a red sky foretells a stormy night. Grandma cures 

for common diseases may dictate that one must “starve a fever and feed a cold”. Over a period of time, 

such knowledge, known as heuristic knowledge accrues, and we begin to form notions of how things 

work and how to solve problems. Your grandmother may have discovered that tapping her radio set at a 

particular location was instrumental in getting better reception, and your cousin would have the policy 

of rebooting her computer system at the slightest hint of slowness. Heuristic knowledge is essentially 

distilled from experience. It embodies a shortcut between pattern (problem) and action (solution). It 

may be wrong sometimes, in the sense that it may not always be true to reality. But it often is, and that 

is why such knowledge has survived in competition with other kinds of knowledge.

As we get more scientific and as our knowledge about the world increases, we build detailed models 

of things and processes. Models are representations of reality that help us predict how things will pan out 

9  Some people argue that the kind of learning done in artificial neural networks is similar to our acquisition of procedural knowledge 

that cannot be articulated. 
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in reality. They allow us to design machines and processes that will bring about what we want to happen 

in reality, because at some level they simulate reality. One also refers to models as deep knowledge as 

opposed to shallow heuristic knowledge.

Models can take very different forms. They may involve different forms of mathematical tools, or 

models may be simplified physical artifacts. Thus, an aircraft designer may take inspiration from small 

physical models, or may do closer to reality wind tunnels experiments to study the lifting ability of a 

wing design. She may also construct a finite element model on a computer system, or work with other 

forms of mathematical formulas with a pencil and paper. Models also allow us to understand the world 

around us and explain phenomena like the rain, and the movement of the sun and the stars in our sky.

Models are representations of reality10 that are acceptable as long as they are useful. For humans, the 

sun used to go around the earth till Copernicus found a new model that explained the motion of heavenly 

bodies better. The world used to be flat until Columbus embarked upon a journey around the world. 

Newton’s laws of physics are good for everyday world dynamics, but break down at the sub-atomic level. 

Einstein showed that even our notion of time flowing at a constant steady pace is not really correct11. 

Models can reflect reality with varying degrees of fidelity. Models can also be at varying levels of detail. 

The more detailed and accurate they are, the more work (computation) they require to make predictions.

Consider the well-known example of computing the time that an object will take to go from point A 

to point B. We could model the movement of its different parts and integrate the results. For example, if 

the object in question is a boy on a bicycle, we could twist ourselves silly, reasoning about the movement 

of a point on the rim of the wheel, or the movement of his knee. More sensibly, we tend to model the 

boy on the bicycle as a point moving in a (hopefully) linear trajectory and apply a simple formula to 

determine the time it would take him. But this simple model does not tell us how his weight applies 

varying amounts of pressure on the two tyres, as he rocks forward and backward gaining momentum; 

and how the bicycle swings from left to right and back with his frantic pedalling. If we required that 

information, we would need a considerably more complex model, requiring much more computation.

When doing modelling, we have to make a trade-off between the amount of detail in the model that 

the computation will work with and the accuracy of the predictions, and usually we only choose the level 

of detail that is sufficient for our requirements. One area where models have been becoming more and 

more complex is in weather forecasting. We are no longer content with farmers’ heuristics; instead, we 

build increasingly detailed models in powerful computers feeding it data collected from a large number 

of locations on the earth; thus enabling the metrological departments to forecast more accurately whether 

the next weekend will be a suitable day to spend outdoors or not.12

Can we construct models that will be perfectly accurate? The scientist Edward Fredkin postulated 

that our universe is in fact a simulation (Wright, 1989). As a corollary, it follows that while it would be 

possible to construct such a model and run it, it could only make predictions as fast as (actual) reality. 

That is, even if we could implement a perfect model, it would make perfect predictions but not before 

they actually happen, because the model would have to replicate what is happening in “reality”.

Human beings, on the other hand, have no time for complex models. We do not use “rocket science” to 

make predictions in our daily lives. The typical human being senses pangs of hunger and heads towards 

the refrigerator, or towards the local market to buy some fruit. In fact, very rarely are our day-to-day 

10  But what is reality? We only know the world as it exists in our heads. Physicists have been splitting matter for more than a 

century without yet being able to construct a theory of the universe.
11   Buddhist monks too have long asserted otherwise. Modern psychology also says that we can control the pace of our time (see 

for example (Mansfield, 1998)).
12  In Chennai, where the author lives, we do not need such wizardry, unless you are interested in the subtle distinction between 

hot and hotter weather. 
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models mathematical. Instead, they are what we now call qualitative models. We know that as we eat 

more, our hunger becomes less, eventually leading to a point of satiation. When we pump air into our 

bicycles, we do not reason with numbers or formulas. We pump till we feel that the pressure is enough. 

We do not monitor the temperature of water in a pot of tea we are making. We predict (know) that on 

the stove, the water temperature will rise till it comes to a boil. We know that if we are pouring tea into 

a cup, the quantity in the cup will increase and eventually it could overflow. We do not compute the rate 

of fluid flow or the volume capacity of the cup. Human beings do a fair amount of qualitative reasoning.

We also build qualitative models of the world around us, and our interaction with other people. A 

significant amount of our reasoning combines factual knowledge combined with qualitative reasoning. 

We know that as winter approaches, it will get colder13. We know that watermelons are available in 

the summer. We know that people get hungry often in a day, though we do not compute times. We 

reason about emotions at a qualitative level. We know that children are happier when they get to play. 

We can predict that if you help someone, they will be happier. We feel better when others smile at us, 

and most of us generalize from this experience and smile at others. We also have specific knowledge 

about people, places and things. We know that the beach is crowded on weekends. We know the likes 

of people close to us. I know my daughter is a Djokovic fan. I know that she and her friend love pasta. 

I know her friend’s dad is a movie buff.

Qualitative reasoning is but one of the approaches we employ to reason in a world with incomplete 

and uncertain knowledge. The other techniques are default reasoning and probabilistic reasoning. We 

look at some of these techniques in Chapter 17.

The point is that when we exist in our world and act intelligently, interacting with others and the 

surroundings, we do so with the aid of lots of knowledge of different kinds.

We have factual knowledge (so popular amongst quiz masters); we make inferences, sometime 

erroneous, about what we do not directly know; we have knowledge of how to do things; how processes 

change the world. Over different domains, we have knowledge at different levels of detail and fidelity. 

We do so with all this knowledge in one place commonly shared for all the “applications” in our minds. 

It will still be a while before our artificial intelligence systems can do the same. But we are on our way. 

We are exploring the different forms of knowledge representation and schemes to reason with them.

We are exploring the development of layered architectures, where the lower levels will provide 

meaning and functionality to higher levels. This process has been on since programming languages 

have moved up the ladder of abstraction. While a human looks at a city map and “sees” a path to his 

destination, we may build a program for which a search function at a lower level does the same. And 

then it could carry on with whatever it was doing at the higher level. To the higher level, it should not 

matter how the lower level does compute the answer.

Given an input (problem), the output (solution) may be found either by search or from a look-up 

table possibly embedded in an algorithm. Imagine the game of tic-tac-toe (also known as noughts and 

crosses). One could play it either way. One player may mentally project moves into the future and make 

a choice. Another may have a look-up table for each position. A third may have some general heuristics. 

To an opponent, the distinction may not be obvious. In fact, the way humans play chess is decidedly 

different from the way computers do, and yet they manage to have an interaction with each other. The 

interaction is functional in nature. We consult websites like google.com and dictionary.com, and do not 

care how they arrived at the answers we were looking for.

We can view the vastly diverse kinds of research being done in artificial intelligence as development 

of building blocks, on top of which more powerful systems will be implemented. It may take a while 

13 Even in Chennai.
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for each technique to mature, but eventually we hope we will be able to put them altogether to work on 

a common representation.

And finally, if we have to build computer systems that interact intelligently with human beings, 

they have to be endowed with the faculties of language. Interest in written language processing, or 

text processing, has ballooned since the development of the World Wide Web. We look at some of the 

techniques in Chapter 16.

Meanwhile, each of these approaches is leading to applications that exploit the particular developments. 

They may not be self aware intelligent systems, but they are serving useful purposes in different 

applications. While looking at different representations in the following chapters, we will also look at 

the use they have been put to, but we shall keep in mind that in the future, we would want to integrate 

them in one knowledge base.



For an agent to act in a meaningful manner, it must have some kind of symbolic representation about 
the issues involved. To think, to contemplate, to cogitate about some real thing or event is to create 

some representation about it, and perhaps manipulate those representations. The physical symbol system 

hypothesis (PSSH) by Alan Newell and Herbert Simon (1963) says that the ability to represent symbolic 
structures and manipulate them according to some fixed “laws” is necessary and sufficient to create 
intelligence. We will not argue about it being sufficient, but it certainly seems to be a necessary perquisite 
for intelligent activity. By intelligent activity we mean not just optimization, which can be achieved 
for example by “mindless” competition and survival, but something that involves awareness of goals, 
awareness of the situation, and informed decision making. The only way one can act meaningfully, or 
profitably, is by being able to imagine, or create imaginary imitations of, the real thing. Or even of what 
does not exist in reality. 

Imagination is the key to intelligence. Imagination happens in the mind of the thinker, while action 
happens in the real world. Imagination is necessary for awareness. It is sufficient if the premises are true 
for the conclusion to be true. It is not necessary for the premises to be true for the conclusion to be true. 
Contrariwise, it is necessary, but not sufficient, that the conclusion be true for the premises to be true.

The essence of logical reasoning is (a mechanism of) arriving at incontrovertible inferences in some 
representation system.

12.1 Formal Logic

Formal Logic is the machinery for realizing such reasoning. It is essentially a symbol manipulation 
machine1. Given a set of statements taken to be true, the machinery determines what other sentences can 
be argued to be true. The logical nature or validity of an argument (inference) depends only on the form

of the argument. The validity of the argument does not depend upon the content, or what is being said 
in the arguments. Consider the two arguments below, the first of which is the famous Socratic argument 
put forth by Aristotle (384 BC–322 BC).

From: “All men are mortal”
And: “Socrates is a man”
Infer: “Socrates is mortal”

The following argument has an identical form, but obviously different content.

From: “All soccer stars are rich”
And: “Steven is a soccer star”
Infer: “Steven is rich”

1 A machine is something that operates mechanically.

Logic and Inferences

Chapter 12
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The form of both the arguments is identical, and both arguments are valid. Whether the conclusions of 
the arguments are valid (true) or not, depends upon the premises in the argument. Given a valid argument 
and true premises, the conclusions are necessarily true. But if even one of the premises is not true it is 
not necessary that the conclusion be true. For example if the first statement in the second argument (All 
soccer stars are rich) were to be false, then it could be possible that the conclusion (Steven is rich) is 
false. If it is not the case that all soccer stars are rich then Steven could well be one of those is who is 
not. At the same time it is not necessary for the premises to be true for the conclusion to be true. Which 
means that the conclusion (Steven is rich) could still be true even if the premise (All Soccer stars are 
rich) is false. The fact that the premise is false does not mean that no soccer star can be rich.

It is sufficient if the premises are true for the conclusion to be true. It is not necessary for the premises 
to be true for the conclusion to be true.

12.1.1 Entailment

In some way all humans have intrinsic curiosity, a desire to know the truth about something or the other. 
To a large extent we rely upon our senses. Another source is logic2. In logic one is usually interested 
in dealing with true statements3. Which means that given a collection of true statements (premises), 
one is interested in knowing what other statements are logically entailed (necessarily made true) by the 
premises. Figure 12.1 below gives a schematic view of some premises and the sentences entailed by them.

FIGURE 12.1 A schematic view of entailment. Each box represents a true statement. The boxes 

in the shaded region represent premises. The other boxes represent statements that are true as a 

consequence of the premises.

The task of reasoning in logic is to determine the set of statements that are entailed by a given set 
of statements (premises). Let S be the set of premises that we take for granted to be true. The task is 
to find the set T that includes all the statements that are necessarily true as a consequence of the set S.
Then S is the set of all statements explicitly stated to be true, and the set T is the set of all true statements 
including the ones that are implicitly true. Both the sets S and T pertain to sentences in a given language. 

2 We ignore here rumours and other means of speculation that may be unreliable. 
3 A statement or an assertion or a sentence is something that can in principle be assigned a value true or false. We will use the 
three terms interchangeably. For example “White wins in Chess”, or “The Earth is flat” or “If the Earth is flat then the Moon is 
made of green cheese”. We do not know the truth value of the first, but the second is false and the third true.
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12.1.2 Proofs

Entailment is concerned with true statements. Determining whether a statement is true or not may not 
be straightforward. Logic adopts a different route to arriving at true statements. One that involves the 
entirely syntactic notion of proof. A proof is made up of a sequence of inference steps. Each inference 
step allows one to add one more new sentence to the existing set of sentences. Each inference step is 
based on a rule of inference. The rule of inference used in the above two arguments is the syllogism,
and can be expressed as follows.

From: All X’s are Y’s
And: M is X
Infer: M is Y

The rule says that if one has (instances of) the first two statements in a set, then one can add the 
(corresponding instance of the) third statement to the set. It is purely a syntactic process. We will say 
that given the antecedents the rule produces the consequent. There could be many rules of inference in 
a logic machine, as we shall see in more detail later.

The set of premises S and the set of rules R together determine the set of statements that can be added 
to the set. This is the set P of provable statements. The set P may be computed as follows.

AllRules(S : premises, R : rules)

1 P ¨ S

2 while a new rule r Œ R is applicable

3 do Let C be the consequent of r

4 P ¨ P » {C}
5 return P

FIGURE 12.2 A simple procedure to construct the set of all provable statements. It applies a rule and 

adds it consequent to the set, until no rule is applicable.

In some domains the set P could be infinite. This means that the above procedure may never end.
In practice however one is not always interested in computing the entire set P, but rather in answering 

the question whether some specific statement p belongs to P or not. The following variation of the 
above procedure achieves that. In other words one is interested in knowing whether p is true or not. The 
connection between truth value and provability is discussed a little later.

SimpleProof(S : premises, R : rules, g : goal)

1 P ¨ S

2 repeat

3     Choose a new rule r Œ R if applicable

4 if no rule exists

5 then return FAIL

6     Let C be the consequent of r

7 P ¨ P » {C}
8 until g Œ P

9 return TRUE

FIGURE 12.3 A simple procedure to test whether a given sentence can be generated by applying 

rules of inference.

The observant reader would have noticed the similarity between this procedure and the Simple-

Search-1 procedure in Chapter 2. Like in the search algorithms, the crux of the matter is in making the 
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right choices of the rules to be applied. Mathematicians, the community most concerned with proofs, 
are constantly looking for shorter and more elegant proofs even of known theorems, when they are 
not trying to prove newer ones4. Another similarity with the Simple-Search-1 procedure is that the 
algorithm SimpleProof does not return the solution. As shown in Figure 12.4 below, the solution is a 
tree rooted at the statement we want to prove (the Goal) whose leaves are the statements in the set of 
premises S.

Goal

FIGURE 12.4 Finding a proof involves a sequence of inferences. In each inference a new sentence 

is added to the set. The procedure terminates when the desired sentence (Goal) is produced. The 

proof of the Goal is the tree as shown in the figure.

While searching for a proof a mathematician might have produced a lot of other statements, which 
are not part of the final proof (tree) and have been discarded. If one were to automate the procedure 
then obviously one has to answer the question as to which rule to apply to what data at each inference 
step.

One can think of the task of finding a proof as a one player game, in which the player has to find a 
way to place the goal tile on the board. Each rule of inference dictates what tile can be placed under 
what conditions. The conditions of placing a particular tile may be achieved by placing some other tiles. 
Since the task is to place the goal tile, a backward reasoning approach akin to the Goal trees described 
in Chapter 6 suggests itself. It is in fact a widely used method, and we will look at it later in the chapter. 

12.1.3 Soundness and Completeness

The proof machine allows us to produce more and more sentences. But are the sentences it produces 
true? Or in the language of mathematicians, are they theorems? This will be the case only when the 
machine is crafted carefully enough. By this we mean that the rules of inference are chosen judiciously. 
In general the set of true statements T and the set of provable statements P are determined independent 
of each other. The situation is depicted in Figure 12.5.

4 See (Bogomolny, 2008) for 78 different proofs of the Pythagorean Theorem.
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FIGURE 12.5 The set of provable statements is the set of premises plus the statements that can be 

produced by repeated application of the rules. The latter are depicted by the shaded circles here. The 

two sets P and T may be different, as illustrated here. The empty boxes represent true statements 

that do not belong to P (are not provable). The circles outside the outer boundary represent provable 

statements that are not true (do not belong to T).

For the logic machine to be appropriate for our task of finding (at least in principle) only and all true 
statements, the two sets P and T must be identical. The machine must produce only true statements, and 
it must be able to produce all true statements. It must not produce any false statements. As a corollary 
given any statement, it must produce either the statement or its negation, whichever is true, but not both. 
These properties have been described as soundness, completeness, and consistency.

 ● Soundness: A logic is said to be sound if it produces only true statements. Or in other words, it 
does not produce any false statements. Formally a logic is sound if and only if P is a subset of T.
This can be ensured by choosing the rules of inference judiciously (discussed later).

 ● Completeness: A logic is complete if it produces all true statements. Formally, a logic is complete 
if and only if T is a subset of P. This can be ensured, when feasible, by choosing a sufficiently 
large number of rules of inference and premises.

 ● Consistency: A logic is consistent if it does not produce both a sentence and its negation. This is 
a consequence it being sound.

Note that a logic that does not produce any statements is by definition sound (but not complete). 
Likewise a logic that produces all statements is complete (but not sound). We need a logic machine 
that is both sound and complete. If we can construct such a machine then we can rely on it entirely to 
decide whether a given statement is true or not, because if it is true it will produce it, and if it is false it 
will halt without producing it (provided it is decidable).

In the above paragraph we have used the term “all statements”. We need to clarify what we mean 
by that.

Associated with every logic machine is a language that is used to express the statements in the logic. 
The language is defined over an alphabet along with syntax rules to determine whether a string on the 
alphabet is a sentence or not. We also use the term well formed formula or simply formula to refer to a 
sentence in logic. Given the alphabet and the syntax we can determine the set of all formulas F that can 
be expressed in the language. This set F is the set of all statements that can be made using that language. 



Chapter 12: Logic and Inferences 425

The notion of completeness and soundness are also defined over this set. Completeness of a logic then 
means that one can produce every sentence in F that is true.

Thus the properties of a logic machine are determined by its language or syntax. The more expressive 
power a language has, the more difficult is it to produce all true statements. It is easy to build sound, 
complete and decidable systems in the simplest logic, known as Propositional Logic. But as we 
move higher to the more expressive logic known as First Order Logic (FOL) we lose the property of 
decidability. While first order systems are complete, it may happen that for an input formula or sentence 
that is false, the procedure may loop for ever. If we further move on to the more expressive second order 

logic we even lose the property of completeness.
The logics named above are often classified as classical logics. By this we mean two valued logics in 

which the statements are assigned a truth value only once, exemplified by the domain of mathematics. 
A theorem in mathematics is either true or false, and remains so ever after. Logicians have worked on 
variations on classical logic to allow for change and for uncertainty.

We will look at the detailed definitions of propositional logic and first order logic since they are the 
most commonly used systems. We will see how First Order Logic can be the basis of the idea of logic 
programming. In Chapter 14 we also look at a restricted version of FOL known as Description Logic

that can give us tractable languages used to describe the relations between objects.
The essence of logic is symbolic manipulation. Logic is a symbol system that can be acted upon by 

well defined rules of inference. Symbol manipulation has also been at the heart of many questions about 
intelligent behaviour and the notion of minds that we have. Before we move on to the language of logic, we 
pause to take a look at how the notion of thought, symbol manipulation and minds has evolved over the ages. 
That is pertinent because the very idea of intelligence has arisen because of the notion that we humans do 
something (symbol manipulation?) in our heads that gives us the advantage of making informed decisions.

Knowledge and reasoning has for long been a concern of philosophers down the ages, and now they 
are the concern of computer scientists interested in artificial intelligence. The difference is that we are 
concerned about making computers represent and reason with large amounts of knowledge, while the 
philosophers before the nineteenth century were concerned about investigating the nature of existence and 
the human mind. For the moment we do not care too much whether the computer systems understand their 
symbols or not, as long as they do the processing we require. But with greater autonomy our computer 
systems will also need to take meaningful decisions by themselves. If they do so then would they have 
an understanding of what they are doing? We will not try and guess an answer here.

12.2 History of Logic and Knowledge

Before we move on to formal logic as a language for knowledge representation and theorem proving 
techniques, we take a quick look at the evolution of logic over the times. The reader not interested in 
the tales from the bygone days could skip on to the section on Propositional Logic.

12.2.1 The Last Millennium

The notion of the mind did not exist in our minds always. And it probably does not apply to many life 
forms. We will not speculate or argue for or against the idea of a frog, or a lizard, or a mosquito having 
a mind5. But we will associate the notion of a mind with the representation and manipulation of symbol 

5 Brains are presumably the seat of the mind. Human beings have unusually large brains, with the brain to body weight being 1:50, 
as compared to other mammals 1:180; birds 1:220; reptiles 1:1500; and fish 1:5000. Our brain also consumes a disproportionably 
large 25% of the body’s energy. 
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systems. John Haugeland (1985) in his book Artificial Intelligence: The Very Idea gives an insightful 
account of the emergence of the notion of the mind in European thought.

Perhaps one of the first realizations that the world as in the mind may be distinct from the “real” 
external world came with the publication of the geocentric model of the universe by Nicolaus Copernicus 
(1543). The mental world, in which the stars went around the earth, turned out to be different from the 
real phenomenon of the earth rotating and creating an illusion of the motion of the heavenly bodies. 
Galileo Galilei (1564–1642) showed that one can reason about motion by reasoning with geometric 
representations. He also believed that the sounds we hear, and the odours we smell, are created in reality 
by tiny particles which had no direct relation to the smell or sound we perceive. It was the English 
philosopher Thomas Hobbes (1588–1679), who Haugeland calls the “The Grandfather of AI”, who 
described thinking as manipulation of symbols. Hobbes believed that thinking was like talking, only 
that it happened internally.

Talking or the use of language is essentially a symbol manipulation activity. A sentence like “Akira 
ate an apple” is essentially a symbolic representation which the reader has to interpret. Each word is a 
symbol structure that symbolizes, or stands for, something else. The same can be said in other symbol 
systems “Akira aß einen Apfel”, or “Akira ne saeb khaya”, or “Akira comió una manzana”. Each word 
holds some (hopefully shared) meaning for the speaker and the listener. And our processing of language 
is based on the understanding of that shared meaning. In principle, one could process symbols without 
understanding the intended meaning, just like the carrier of a coded message.

The computer is basically a symbol processing unit, at the heart of which two specific voltage levels 
stand for the numerals zero and one. All other sophisticated applications, like the word processor on 
which this document is being created, use compound structures made up of ones and zeros to symbolize 
more complex concepts, and processes them without understanding what they stand for. An interesting 
issue about “intelligence” was raised by the modern philosopher Searle, in the “Chinese room thought 
experiment” (Searle, 1980), in which he questions whether anyone or anything processing symbols 
without understanding the meaning behind them can be intelligent6. From our own experience, we 
know that when a child learns to add two numbers, the procedure actually learnt is a symbol (numeral) 
manipulation procedure (add the least significant digits, take the carry, and so on). Its association with 
the real task of adding numbers has to be learnt separately. Many older students learn to solve complex 
mathematical equations without the foggiest idea of what is going on behind the symbol manipulation. 
But they do follow the rules they have learnt, and do produce correct and useful answers. 

However, while Hobbes did postulate that thought was like manipulation of mental particles the 
question of meaning still perplexed him (and still to a considerable extent perplexes us). The celebrated 
Rene Descartes (1596–1650) observed that the symbol and the symbolized are two entirely different 
things. One can talk of algebra as a symbol manipulating system, but it could symbolize anything in 
the real world. The notion that symbols (thoughts) and the physical universe exist in different media 
leads to the problem of mind-body dualism. If what goes on in the mind is fundamentally different from 
what goes on in the physical world then how do the two interact? If one thinks of picking up a glass to 
drink some water, how does the hand move to accomplish that? How can matter interact with thoughts? 
This was a question that never was resolved, though several arguments were presented. One had to 
address the paradox of “mechanical reason”: if something is mechanical it cannot reason, and if it can 
reason it cannot be mechanical. If reasoning is the meaningful manipulation of symbols then who is 
the manipulator? Descartes had to often face ridicule that there had to be a homunculus or a little man 

6 One must remember that this is only a thought experiment. Searle is only imagining a situation in which there exists a program 
which makes it seem that the person sitting inside can process Chinese. See also (Levesque, 2009) for a counter argument. 
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inside the head to manipulate the symbols. The reader would have realized that even if this were to be 
an answer, then it leads to a problem of infinite regress, how does the homunculus think? The Scottish 
philosopher David Hume (1711–1776), who was an admirer of Isaac Newton, suggested that just as in 
the physical world the heavenly bodies went about their business obeying the laws of gravity, so would 
the particles of thought be controlled by laws of mental forces.

George Boole (1815–1864) who wrote a seminal book in fact named it “An Investigation of the Laws 
of Thought” (Boole, 1854) in which the goal was “to investigate the fundamental laws of those operations 

of the mind by which reasoning is performed; to give expression to them in the symbolical language 

of a Calculus, and upon this foundation to establish the science of Logic and construct its method; to 

make that method itself the basis of a general method for the application of the mathematical doctrine 

of Probabilities; and, finally, to collect from the various elements of truth brought to view in the course 

of these inquiries some probable intimations concerning the nature and constitution of the human mind.”
After Aristotle, it was Gottfried Leibniz (1646–1716) who gave an impetus to the development of 

formal logic. He said “The only way to rectify our reasonings is to make them as tangible as those of the 

Mathematicians, so that we can find our error at a glance, and when there are disputes among persons, 

we can simply say: Let us calculate [calculemus], without further ado, to see who is right.” (The Art 
of Discovery 1685, W 51)7. He gave considerable importance to symbols and believed that choosing a 
good symbol system was the key to success in science and mathematics. He proposed the creation of 
a characteristica universalis or “universal characteristic, ” built on an alphabet of human thought (an 
idea due to Descartes) in which each fundamental concept would be represented by a unique “real” 
character. “It is obvious that if we could find characters or signs suited for expressing all our thoughts 

as clearly and as exactly as arithmetic expresses numbers or geometry expresses lines, we could do in 

all matters insofar as they are subject to reasoning all that we can do in arithmetic and geometry. For 

all investigations which depend on reasoning would be carried out by transposing these characters and 

by a species of calculus.” (Preface to the General Science, 1677. Revision of Rutherford’s translation 
in (Jolley, 1995))

Observe the relevance of the above statement made more than three centuries ago for artificial 
intelligence and its connection with the physical symbol system hypothesis. The principles of Leibniz’s 
logic are the following:

1. All our ideas are compounded from a very small number of simple ideas8, which form the alphabet 
of human thought.

2. Complex ideas proceed from these simple ideas by a uniform and symmetrical combination, 
analogous to arithmetical multiplication.

Leibniz believed that complex thoughts would be represented by combining characters for simpler 
thoughts. Leibniz proposed assigning characteristic numbers to concepts. For example, basic concepts 
are assigned prime numbers and complex concepts non-primes, so that the composition of the complex 
concept out of basic ones is exactly revealed by the multiplication of primes giving a non-prime 
characteristic. Leibniz gives an example in his “Elementa Calculi” of 1679, where he assigns 2 to 
“animal” and 3 to “rational”. He concludes that “human” is characterized by 2 ¥ 3, i.e. 6, as humans are 
rational animals. In a similar fashion, he argues that an ape having the characteristic 10 is not a human, 
since neither is 10 divisible by 6 nor 6 by 10. But both have 2, i.e. being an animal, in common (Schroeder 
1997). Inspired by the mechanical calculators built by Blaise Pascal (1623–1662) he wanted to build 
a reasoning machine, the calculus ratiocinator, which current day AI researchers would recognize as a 

7 Gottfried Leibniz. From Wikipedia, the free encyclopedia: http://en.wikipedia.org/wiki/Gottfried_Leibniz
8 We will revisit this idea when we discuss Conceptual Dependency theory of Roger Schank. 
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theorem prover. Leibniz was a person of diverse interests and among other things he invented calculus 
and the binary number system.

A concise history of logic can be found in (King and Shapiro, 1995). By the time George Boole and 
Augustus De Morgan (1806–1871) came onto the scene the system of using explicit variables to stand 
for things was already in vogue. A large number of philosophers had contributed to the development 
of logical reasoning. De Morgan discovered some of the basic laws of propositional logic9. But it was 
Boole who clearly stated the principle of using symbolic algebra. “As to the lawfulness of this mode of 

procedure, it may be remarked as a general principle of language, and not of the peculiar language of 

Mathematics alone, that we are permitted to employ symbols to represent whatever we choose that they 

should represent--things, operations, relations, etc., provided 1st, that we adhere to the signification 

once fixed, 2nd, that we employ the symbols in subjection to the laws of the things for which they stand.” 
(MacHale, 1985).

Boole was interested in developing a calculus for reasoning with an orientation of abstract algebra. 
His work led to what modern computer scientists call Boolean algebra, which is used for reasoning 
about logic circuits. Charles Peirce (1839–1914) showed that all logical formulas could be implemented 
by a single operator (Peirce arrow: NOR or Sheffer stroke: NAND). He also did pioneering work in 
semiotics, the science of symbols, along with Leibniz. Another school of thought focused on laying the 
logical foundations of different branches of mathematics. These include the Giuseppe Peano (1858–
1932: number systems), David Hilbert (1862–1943: geometry), and Ernst Friedrich Ferdinand Zermelo 
(1871–1953: axiomatization of set theory). In 1920 Hilbert launched an ambitious program, known 
as Hilbert’s program, the aim of which was to lay a solid logic foundation of all mathematics (see 
(Detlefsen, 1986)). But in September 1930 the mathematician Kurt Gödel (1906–1978) put an end to 
that dream by proving that it is not possible to formalize all mathematics in a consistent manner. Gödel’s 
Incompleteness Theorem (Gödel, 1931) has had a lasting impact on logic and philosophy. It has also 
been raised when debating the possibility of artificial intelligence, because the process of implementing 
anything on the computer is a form of formalization.

We are however at the moment interested in a different branch of evolution of logic that was concerned 
with the capturing of scientific or rational discourse. This branch is characterized by the works of 
Bertrand Russell (1872–1970), Ludwig Wittgenstein (1889–1951), and Gottlob Frege (1848–1925). 
Of these Frege is the one credited with laying the foundation of formal logic as we know it now, and 
Wittgenstein and Russell (Whitehead and Russell, 1910-13) had developed it further. It was Frege who 
introduced the notion of quantified variables and complex terms, and formalized the notion of “proof” 
(see (Zalta, 2005) for an account of the works of Frege). With his system one could distinctly represent 
and distinguish the sentences “every boy loves a girl” and “a girl is loved by every boy”. In fact an 
arbitrary nesting of quantifiers is possible in his formalization, for example “every boy who loves a 
girl who is friendly with all her classmates even who are poor in mathematics is a friend of some boy 
who hates history”. The important thing is that one could reason over a collection of such sentences, 
and that is the power of logic we seek to harness. The logic defined by Frege is what is called as First

Order Logic (FOL).
Logic is basically concerned with truth and falsity of sentences. The logical constants like “and”, “or” 

and “not” allow us to create new and compound sentences from older ones. But how do we determine 
the truth of these compound sentences? The Polish logician Alfred Tarski (1902–1983) gave us the 
inductive method of defining the semantics of sentences in FOL. This is model theoretic semantics in 
which truth is defined as agreement with facts or reality in a domain. We will look at the notion of models 

9 De Morgan’s laws: ÿ(P Q) ∫ (ÿP ÿQ) and ÿ(P Q) ∫ (ÿP ÿQ).
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that emerges from Tarskian semantics. This is in contrast to proof theoretic semantics (Gentzen with 
influences from Wittgenstein) which looks into the nature of connectives to decide truth (for example 
((P  (P … Q)) … Q) is always true). First order logic is essentially mathematical in nature, and is a 
classical logic. It deals with sentences that are either eternally true or eternally false. Once a sentence 
is true, or false, in FOL it always remains true. There have been other logics that have been developed 
motivated by various reasons.

One of them, Modal Logic (see for example (Chellas, 1980)) is concerned with different modalities like 
“possibility” and “necessity”. Thus one can talk about a sentence being possibly true or necessarily true. 
Other modal logics can handle modalities like “eventually”, “formerly”, “could”, “might”, “may” and 
“must”10. Modal logics allow us to reason about time and change (temporal logics), and about knowledge 
held by people (epistemic logics). The semantics of Tarski was extended by Saul Kripke (1972) in what 
is known as possible worlds semantics. A necessarily true statement will be true in all possible worlds, 
while a possibly true statement will be true in some possible world. Kripke semantics apply to what is 
known as Intuitionistic Logic, which has a stronger notion of truth allowing only constructive formulas 
(see (Van Dalen, 2001)). In particular, it does not accept Aristotle’s law of excluded middle that says 
that either a sentence P is true or its negation ÿP is true (and there is no middle ground)11. Thus since 
(P ÿP)  (Q ÿQ) is true one can infer that one of the statements implies the other. That is (P … Q)

 (Q … P). Since these statements can be anything, for example, “The Earth is round” and “Two plus 
two is four”, the connection between the two is not intuitively acceptable. This is because neither in 
fact causally implies the other. Another variation from classical logic that allows the expression of a 
default implication, like between clouds and rain, is Default Logic. These relations are true in general but 
not universal truths like in classical logic. We shall look at reasoning with default logic in Chapter 17.

The semantics of logic defines the meaning of statements and determines when they are true. But logic 
also provides another route to the truth values of statements, via a proof. This is of great importance, 
because a proof is structure that is independent of meaning. It is entirely syntactic in nature. An important 
consequence of this is that one can write programs to generate proofs, without having to worry about 
the “computer knowing” the meaning of the symbols it is manipulating. It is necessary to build proof 
procedures that are sound to guarantee that the sentences produced by the proof procedure are true. A 
related property of a logic machine (system) is whether it is complete. Completeness means that all true 
statements that can be expressed in the language will have proofs.

The work of Frege, Russell, Hilbert and Gödel resulted in the development of proof systems. This 
was extended by Gerhard Gentzen (1909–1945) who devised the natural deduction system and the 
sequent calculus.

12.2.2 Logic in Ancient Greece

The notion of formal logic that evolved in Europe can be traced back to Aristotle (384–322 BC), who 
was a student of Plato (427–347 BC)12, who himself was a disciple of Socrates (469–399 BC). Aristotle 
made significant contributions in logic, physics, natural history, psychology and philosophy. The roots 
of western rationalism can be traced back to the Socratic method (or Method of Elenchus) in which one 
examines the possible counterpoints to one’s thesis as a series of questions and eliminates them to arrive 
at the conclusion. The method was described in a series of dialogues known as the Socratic dialogues 

10 See also http://en.wikipedia.org/wiki/Modal_logic
11 “it is impossible for the same thing to be both affirmed and denied of the same thing at the same time and in the same way”

(Metaphysics. IV.3, 1005b 19–20)
12 There are conflicting reports of Plato’s year of birth.
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written by Plato and Xenophon (431–355 BC). The dialogues are in the form of discussions between 
Socrates and other persons of his time, or as discussions between Socrates’ followers over his concepts. 
Plato’s Phaedo is an example of this latter category (see for example (Plato and Fowler, 1999)).

The formalization of the reasoning process is described in Aristotle’s Organon (meaning Instrument). 
The Organon is the name given by Aristotle’s followers, the Peripatetics, to the standard collection of 
his six works on logic13.

1. Categories: Aristotle’s 10-fold classification of that which exists. These categories consist of 
substance, quantity, quality, relation, place, time, situation, condition, action, and passion.

2. On Interpretation: Aristotle’s conception of proposition and judgment, and the various relations 
between affirmative, negative, universal and particular propositions.

3. Prior Analytics: On what can be taken to be true by itself, the syllogisms.
4. Posterior Analytics: deals with demonstration, definition, and scientific knowledge. A demonstration 

is what we call a proof.
5. Topics: Treats issues in constructing valid arguments, and inference that is probable, rather than 

certain.
6. On Sophistical Refutations: gives a treatment of logical fallacies, and provides a key link to 

Aristotle’s work on rhetoric.

Aristotle was largely concerned with deductive arguments, as are we, and he defines deduction as 
follows.

“A deduction is speech (logos) in which, certain things having been supposed, something different 

from those supposed results of necessity because of their being so.” (Prior Analytics I.2, 24b18-20)
Each of the “things supposed” is a premise of the argument, and what “results of necessity” is the 

conclusion.
The syllogism was concerned with four kinds of statements, 

A : universal affirmative (for example, “All men are mortal”)
E : universal negative (for example, “No man is immortal”)
I : particular affirmative (for example, “Some men are bright”)
O : particular negative (for example, “Some men are not bright”)

The statements can also be categorized as Asp, Esp, Isp, and Osp, where “s” stands for subject and 
“p” stands for predicate. Each sentence affirms or denies the predicate for the subject. Subjects may be 
individuals or categories, but predicates can only be categories.

Aristotle considered the following conversions to be sound.

Exy Æ Eyx
Ixy Æ Iyx
Axy Æ Iyx

The first, for example, says that if one says for example that “no dogs are birds” then one can also 
say “no birds are dogs”. Such statements are possible for Aristotle because he employs the notion of 
universal predicates in which categories can have predicates that are other categories.

Apart from the above conversions there are the syllogisms, An Aristotelian syllogism is made up of 
two premises and one conclusion. The two premises must have a term in common known as the middle 
term. The other terms are called extreme terms. The predicate of the conclusion is called the major 
term, the subject of the conclusion the minor term, and the premises are named major and minor after 

13 http://en.wikipedia.org/wiki/Organon
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the nature of the term they contain. For example in the Socratic argument repeated here the categories 
are marked in brackets, 

Major premise : “All men (middle) are mortal (major)”
Minor premise : “Socrates (minor) is a man (middle)”
Conclusion : “Socrates (minor) is mortal (major)”

The different kinds of syllogisms could be categorized into four figures based on the position of the 
middle term. The four figures are described below.

Table 12.1 The four figures in Aristotelian logic. Each sentence is made of two terms.

First figure Second figure Third figure Fourth figure

Major premise middle - major major - middle middle - major major - middle

Minor premise minor - middle minor - middle middle - minor middle - minor

Conclusion minor - major minor - major minor - major minor - major

There is some dispute whether Aristotle discovered the fourth figure or not (Smith, 2007). 
The mood of a syllogism was determined by the order of the types of sentences, A, E, I and O. Not 

all combinations are valid. Each valid combination had a mnemonic by which there were known14. The 
following are the moods of valid syllogism. We use the following short forms, mid=middle, min=minor, 
maj=major.

Table 12.2 The 19 valid syllogisms in Aristotelian logic.

Figure Major premise Minor premise Conclusion Mnemonic

first A-mid-maj A-min-mid A-min-maj Barbara

first E-mid-maj A-min-mid E-min-maj Celarent

first A-mid-maj I-min-mid I-min-maj Darii

first E-mid-maj I-min-mid O-min-maj Ferio

second E-maj-mid A-min-mid E-min-maj Cesare

second A-maj-mid E-min-mid E-min-maj Camestres

second E-maj-mid I-min-mid O-min-maj Festimo

second A-maj-mid O-min-mid O-min-maj Baroco

third A-mid-maj A-mid-min I-min-maj Darapti

third E-mid-maj A-mid-min O-min-maj Felapton

third I-mid-maj A-mid-min I-min-maj Disamis

third A-mid-maj I-mid-min I-min-maj Datisi

third O-mid-maj A-mid-min O-min-maj Bocardo

third E-mid-maj I-mid-min O-min-maj Ferison

fourth A-maj-mid A-mid-min I-min-maj Bramantip

fourth A-maj-mid E-mid-min E-min-maj Camenes

fourth I-maj-mid A-mid-min I-min-maj Dimaris

fourth E-maj-mid A-mid-min O-min-maj Fesapo

fourth E-maj-mid I-mid-min O-min-maj Fresison

14 Observe the vowels that occur in each mnemonic.
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Of these Aristotle considered the syllogisms in the first figure as perfect. They were perceived to be 
closest to natural reasoning, and could be taken to be true without justification. The other syllogisms, 
though valid as well, were considered to require a derivation. In fact Aristotle took only Barbara and 
Celarent as given, and proved all the others (Lukasiewicz, 1951).

In some sense, the two rules Barbara and Celarent, and the conversion rules, are complete in 
Aristotelian logic. The others can be considered as derived rules of inference. They are not strictly 
required, but they make the task of finding proofs easier. Much later when many axiomatic systems were 
being built there was a lot of exploration in devising logic systems, there were different sets of rules that 
were shown to be complete. All that exploration culminated with the discovery of the resolution rule by 
Alan Robinson in 1965, the rule that is at the heart of modern automatic theorem proving.

In Posterior Analytics Aristotle had argued that scientific knowledge that is produced by a 
demonstrative system must ultimately rely on knowledge that cannot be demonstrated and must be 
taken for granted. He called such statements as “unmiddled” to imply that there were no statements 
with a middle term to explain the sentence. The source of such knowledge has always been a subject 
of dispute, but that does not take away anything from the importance of the logical system that he laid 
the foundations of. It was a hundred years after him that Greek mathematicians had started arranging 
systematically the theorems that found mention in Euclid’s Elements.

12.2.3 Logic in Ancient India

Logic in ancient India was more a component of philosophy; concerned with answering questions about 
existence, and the purpose of life. The goal of philosophy was to attain knowledge, and the goal of logic 
was to arrive at that knowledge that was not directly obtained (through sensuous means). While many 
schools of thought emerged, there were also the skeptics who refused to accept any claim of knowledge. 
One of the more famous ones, Samjaya, when asked whether there was afterlife, said “I do not say there 

is an afterlife and I do not say there is no afterlife” (Mohanty, 2000).
Logic in India goes back to the art of debating. The six well known schools of philosophy are: 

Sãm.  khya (Kapila around 500 BC), Mim.  ãm.  sã (Jaimini around 300 BC), Nyãya (Aks.
nd

century BC), Yoga (Patanjali, possibly 2nd century BC or later), Vaises.ika (Kanada, 6th century BC), and 
Vedãnta (also called uttara Mim.  ãsm.  ã, the word Vedãnta means the end of all knowledge, were composed 
starting the 9th century BC in the Upanishads, 

). Of these the Nyãya-Vaises.ika is the most concerned with reasoning. The 
by Gautama (or Gotama) written in second century BC was concerned with the knowledge of sixteen 
categories (Sinha and Vidyabhusana, 1930)15:

1. means of valid knowledge (pramana),
2. objects of valid knowledge (prameya),
3. doubt (samshaya),
4. purpose (prayojana),
5. example (drstanta),

6. conclusion (siddhanta),
7. the constituents of a syllogism (avayava),
8. argumentation (tarka),
9. ascertainment (nirnaya),

10. debate (vada),

15 http://en.wikipedia.org/wiki/Aksapada_Gautama
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11. disputations (jalpa),
12. destructive criticism (vitanda),
13. fallacy (hetvabhasa),
14. quibble (chala),
15. refutations ( ), and
16. points of the opponent’s defeat (nigrahasthana).

Of the four possible sources of knowledge—perception (pratyaksha), inference (anumãna), 
comparison (upamãna), and verbal testimony (shabda, which could be of God from the vedãs, or of a 
trustworthy human!)—the mode of inference is concerned with logical necessity.

This is reflected in the form of the argument now known as the five step syllogism. Suppose that we 
see smoke emanating from a mountain, and we want to infer that the mountain is on fire. The 
describes the structure (Mohanty 2000) of a good argument as a five step process.

1. First, a statement of the thesis ( ): there is fire on the mountain
2. Second, a statement of reason (Hetu): because there is smoke on the mountain
3. Third, an example of the underlying rule (Udahãrana): where there is smoke there is fire, like the 

culinary hearth
4. Fourth, a statement that (Upãnaya): this case is like that
5. Finally the assertion of the thesis proven (Nigamana): therefore the mountain is on fire

The derived piece of knowledge is known as anumãna (after cognition).
This is in contrast to the three step syllogism exemplified by the Socratic argument. It has also been 

observed by Müller (1853; 1859) that the Indian philosophers used the five step reasoning only when the 
task was to convince others about their conclusions. When the task was to infer something for oneself 
the simpler three step process was used, as follows.

1. There is smoke on the mountain.
2. Wherever there is smoke there is fire.
3. Therefore, there is fire on the mountain.

This is precisely the form of reasoning, the Aristotelian syllogism, which is fundamental to western 
logic.

Logic was basically a part of the theory of knowledge ( ). Indian philosophers were 
also concerned about the validity or truth of each statement, and asked how it could be true. Some 
statements were ascribed to be true because they were directly perceptible to be true16, such as there is 
smoke on the mountain.

But how does one know that a rule is a universal truth or vyãpti? How does one accept the connection 
between smoke and fire to be incontrovertible?

In everyday life, we often make such connections between things. This process is known as induction. 
We see green leaves around us and conclude that leaves are green. We see a variety of flying birds and 
conclude that birds can fly. While these are reasonable connections to make they are not incontrovertible. 
We may see a hundred cases where they hold, but an exception may still occur. Scarlet hygro is not green, 
and penguins cannot fly. Nevertheless such rules, even though not universal, are useful and we will look 
default reasoning with such rules later. We will also look at the process of arriving at them in the Chapter 18 
on Machine Learning. Meanwhile classical logic and Indian philosophy was concerned with conclusions 
that are indisputable, and many philosophers addressed the question of what makes a rule universal.

16 And different schools offer different explanations for errors in such knowledge, as when we see a piece of rope and mistake 
it to be a snake.
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The Buddhist philosopher Digñãga (5th century) laid down three conditions for the rule to be 
acceptable in the situation. There must be the given fact or paksa, that there is smoke on the mountain. 
It must be present in a case (the culinary hearth) where the inferred property (the fire) is known to be 
present (sapaksha). And it should not be present in cases (for example a lake) where the property to be 
inferred (the fire) is absent (vipaksha) (Mohanty, 2000).

Observe that the rule comes from experience. We shall look at accrual of knowledge from experience 
in the chapter on Case Based Reasoning (Chapter 15). This connection has also been established by 
Ganeri (2001).

Every vyãpti must admit at least one instance. This is different from modern western logic which is 
not directly concerned with knowledge about some real situation, but only with the structure of sound 
argument. Thus one can accept a statement like “all three legged fishes have one eye” in logic as true 
without any problems because there are no three legged fishes. When logic and reasoning is part of 
a complete knowledge system, a rule musty be supported by either a positive example, or a negative 
example, or by both a positive and negative example (Müller, 1853).

If one says that “Everything that is knowable is nameable”, one can give only positive examples like 
a tree, or table. One can then use it to infer that a jar is nameable because it is knowable. If one wants to 
infer that “Earth is different from all the other four elements17, because it has odour” it does not make 
sense to use a rule like “all that is different from other elements has odour” because the only thing that 
satisfies the above case is earth. One would instead use a negative vyãpti and say that “whatever is not 
different from the other elements, has no odour” and then we can add an instance like water, or light. 
The example of smoke and fire we have been looking at admits both positive and negative instances. 
We can give a positive example, the culinary hearth. And also an instance for the negative, version 
“wherever there is no fire, there is no smoke, as in a lake”. 

Digñãga characterizes the universal rule by identifying the two components as linga the symbol for 
the reason, and sãdhya the symbol for the conclusion. He says that for the vyãpti to hold all occurrences 
of the linga must be accompanied by the sãdhya, also that the linga must not occur without the sãdhya.

His successor two centuries later, Dharmakirti, categorized the vyãpti into two kinds. One, where the 
linga has the “own nature” of the sãdhya. That is, it is a kind of the latter, for example a Siberian tiger 
is a kind of a tiger, and thus one can say that whenever X is a Siberian tiger, X is a tiger. These kind 
of taxonomic relations are common in all sciences now. We shall look at taxonomies in more detail 
later. The other kind of relation that holds is a causal connection between the linga and the sãdhya, as 
between smoke and fire. The Naiyãyika philosophers again generalized the condition for a vyãpti to
hold as follows. “X is absent from all those instances from which Y is”. This says the X can only occur 
if Y occurs. Smoke is absent wherever there is no fire.

Indian logic has largely been subservient to philosophy. It has been preoccupied with the nature of 
existence and what we can accept to be true. 

Modern logic has it roots in system developed by Aristotle. It is a tool that one can use for making 
valid inferences. The idea is that given a set of premises or statements accepted to be true, to decide 
what other statements logically follow, or are entailed.

This is fine for the use of computers for theorem proving and reasoning, because we expect them 
to work with the premises we define for them. But if at a later stage we would want our machines to 
philosophize then we may want them to be able to be concerned with what is really true in the domain 
of discourse, and then look into why a given statement is true.

We now come back to our study of logic as a mechanism for reasoning.

17 The five elements are earth, water, light, air and ether.
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12.3 Propositional Logic

Logic is basically symbol processing machinery. A logic machine is constructed by defining a language, 
and defining rules to add new sentences. The language is a formal language in which well formed formulas 
represent sentences or propositions. We begin by studying the simplest language, the propositional logic.

Any language for logic consists of two parts.

 ● One the logical part, which is independent of what the symbols are supposed to symbolize.
 ● And the other, the non-logical part is concerned with what is being said.

The logical part of the vocabulary contains symbols like “ ”, “ ”, “ÿ”, and “…”, read as “and”, “or”, 
“not” and “implies” respectively. It also includes sets of brackets “(”, and “)”, and often for readability 
“[”, “]”, “{”, and “}”. One also includes the symbols “ ” and “ ” read as “bottom” and “top”. 

The non-logical symbols in propositional logic consists of a countable set of symbols  = {P1, P2,
P3, …}. We often use the symbols {P, Q, R, …}. These symbols stand for atomic sentences or atomic 
formulas or propositions. An atomic sentence or formula is the smallest unit to which a truth value can 
be assigned.

We will use the symbols a, b, g, and d to denote sentences (or formulas) in the language. The set of 
sentences SP is defined by the following, 

Œ SP
Œ SP

If a Œ  then a Œ SP
If a Œ SP then ÿa Œ SP
If a, b Œ SP then (a b) Œ SP
If a, b Œ SP then (a b) Œ SP
If a, b Œ SP then (a…b) Œ SP

The symbols ,  and … are known as binary connectives, because they form a compound sentence 
from two sentences. The symbol … stands for material implication and often the symbols “fi” and “Æ”
are also used for the same. Other connectives are possible, and some well known ones are “∫” or “¤” or 
“´”, read as “equivalent”, “ ” or “XOR” read as “exclusive or”. We have already seen the Peirce arrow 
“NOR” or “Ø” and the Sheffer stroke “NAND” or “≠” or “ ”. In fact, sixteen distinct binary connectives 
are possible. Not all are necessary though, and various subsets have been shown to be sufficient (or 
complete). The Sheffer stroke “NAND” and the Pierce arrow “NOR” are complete by themselves. One 
can express any formula in some equivalent way using only the NAND (or the NOR). But logicians 
have been most interested in the three symbols we began with, along with unary connective “ÿ”, also 
depicted by “~”, and we will focus on sentences using these.

12.3.1 Propositional Logic Semantics

The meaning of an atomic sentence aŒ  is decided externally by the user. It may stand for any statement 
like “Alice likes mathematics” or “The mountain is on fire”. The truth value of an atomic sentence is 
also decided externally, by a valuation function that maps all atomic sentences to the set {true, false},
or equivalently {t, f}, or { } or {1, 0}. Let V be the valuation function, 

V: Æ {true, false}

Any natural language sentence that can in principle be mapped to true or false is a proposition. 
This includes sentences like “White can always win in chess” or “Chess games are always drawn with 
perfect play”, even though we do not know if they are true or not. Propositions are assertive statements, 
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or assertions. Interrogative sentences like “Will you play chess today?” or imperative sentences like 
“Let us play a game of chess” are not propositions. As Bertrand Russell showed, certain self referential 
sentences that appear to be assertions are also to be excluded. These are sentences like “This sentence is 
false” or even a combination of sentences like “The following sentence is true. The preceding sentence 
is false.” Such sentences are at the heart of Gödel’s Incompleteness theorem. 

Both the meaning and the truth value of a compound sentence are determined by the meaning of 
the constituent sentences and the logical connectives. The meaning of logical connectives is fixed. The 
truth value of compound sentences, the mapping Val: SP Æ {true, false} is determined by structural 
induction as follows, 

Val( ) = true
Val( ) = false
For all a Œ , Val(a) = V(a)
If Val(a) = true then Val(ÿa) = false
If Val(a) = false then Val(ÿa) = true
If Val(a) = false and Val(b) = false then Val(a b) = false else Val(a b) = true
If Val(a) = true and Val(b) = false then Val(a…b) = false else Val(a…b) = true
If Val(a) = true and Val(b) = true then Val(a b) = true else Val(a b) = false

12.3.2 Validity, Satisfiability and Unsatisfiability

A sentence or formula in logic falls into one of the following three classes.

1. Valid formulas. There are some formulas that are true independent of the valuation of their atomic 
constituents. Such a formula is called a valid formula or a tautology. The simplest example is 
(P ÿP) but many larger formulas exist, for example (((P Q)…R) ∫ (P…(Q…R))).

2. Satisfiable formulas. Satisfiable formulas are those that can be made true by certain valuation 
functions. Such a formula is also known as a contingent formula. A simple example of this is 
((P Q)…R), which is true when R is true (amongst other satisfying valuations).

3. Unsatisfiable formulas. Unsatisfiable formulas or contradictions are formulas that cannot be made 
true by any valuation. The simplest example is (P ÿP), but many more examples exist. In fact, 
for every formula a that is a tautology its negation ÿa is unsatisfiable.

The validity (or unsatisfiability) of formulas can be evaluated by considering all possible valuation 
functions V. Since each atomic proposition can be mapped to one of two values, true or false, if there 
are N propositions in a formula one will have to consider 2N different valuation functions to determine 
whether the formula is valid (or unsatisfiable). This is what one does by constructing a truth table. For 
satisfiable formulas, on the other hand, it is enough if we can find some valuation that makes it true. 
One may not have to inspect the entire truth table. In fact randomized methods have commonly been 
used for solving the SAT problem as it is known (see Chapter 4).

Validity of formulas, or its converse unsatisfiability of formulas, is of special interest because logic 
is the study of valid arguments. Logic is concerned with the notion of entailment. We illustrate this with 
an example. Consider the following problem, which we will call the Alice problem.

1. Alice likes mathematics and she likes stories.
2. If she likes mathematics she likes algebra.
3. If she likes algebra and likes physics she will go to college.
4. She does not like stories or she likes physics.
5. She does not like chemistry and history.
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The problem of logical entailment is the follows. If the above sentences are true is it necessarily true 
that “Alice will go to college”?

Let us encode the above problem in propositional logic.

P = Alice likes mathematics.
Q = Alice likes stories.
R = Alice likes algebra.
S = Alice likes physics.
T = Alice will go to college.
U = Alice likes chemistry.
V = Alice likes history.

Then the given facts are, 

1. (P Q)
2. (P … R)
3. ((R S) … T)
4. (ÿQ S)
5. (ÿU ÿV)

And the goal or theorem to be proved is the proposition T. The sentences 1-5 are the premises and 
the sentences T the conclusion. We say that the sentence T is entailed by the sentences 1-5 iff whenever 
the sentences 1-5 are true T is also true. In other words we want to say that the following formula is 
always true.

{[(P Q)  (P … R)  ((R S) … T)  (ÿQ S)  (ÿU ÿV)] … T}18

If we call the sentences 1-5 as the knowledge base KB then we write the the entailment relation as, 

KB T

We say that the sentence T is entailed by the knowledge base KB (Brachman and Levesque, 2004). 
We can also write, 

{[(P Q)  (P … R)  ((R S) … T)  (ÿQ S)  (ÿU ÿV)] … T}

to signify the fact that a tautology is entailed by nothing.
Observe that the sentence T can also be true when 1–5 are not all true, for example when sentence 5 

is false. Thus sentences 1–5 being true is sufficient for T to be true, though it is not necessary for them 
to be true. On the other hand it is necessary that sentence T be true for sentences 1–5 to be true. That 
is, T has to be true if sentences 1–5 are true.

Thus in an implication (a…b) we say that b is a necessary condition for a; and a is a sufficient

condition for b.

One way to verify whether an implication is a tautology is by looking at all the valuations that make 
the premises true and checking whether the conclusion is true as well. If yes, then we can say that the 
conclusion is entailed by the premises. If there are N propositions in the premises and conclusion put 
together this involves looking at 2N valuations19. This can be an expensive computation if the number 
of propositions is high. Instead logic provides another route to establish the truth of statements, the 
method of proof. In proof procedures the time complexity depends upon the complexity of the formula 

18 Note that we have omitted some brackets and have combined multiple sentences with the And connective. One often does that 
when it does not cause any ambiguity.

19 Consider the case where premise is P and the conclusion (ÿQ Q).
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and not on the number of propositions used. As we will see later, for some restricted languages, the time 
complexity could even be polynomial.

Observe that the meaning or content of the sentence does not play any role in the validity of the 
argument. One could replace the sentences coded by the symbols P, Q, R, S, T, U, V with any natural 
language sentences and argument will still hold. It is only the form of the argument that matters. That 
is why logic is known as formal logic.

12.3.3 Proofs

The proof procedure is a syntactic process. It is a symbol manipulation procedure that is oblivious of 
the semantics. One can think of it as a one person game in which there exists a set of tiles on a board, 
and the rules allow the player to add more. Each tile stands for a sentence. The game starts with a set of 
tiles for the premises, and ends when the tile representing the conclusion is placed on the board.

If we think of the language of logic as the object language, then the rules of inference are expressed 
in a meta-language. That is, the rules are outside the language, or are extra-logical. Each rule contains 
one or more antecedents, and one consequent. Each antecedent is a pattern that can match a sentence. 
The rule is applicable if each of its antecedents has a matching sentence (in the existing set or “on the 
board”). When a rule is applied the sentence described in the consequent is added to the set of sentences, 
or using the game metaphor, a tile is placed on the board.

A sentence is provable if it can be produced by a sequence or rule applications on the knowledge 
base KB. If a sentence a is provable we write this as, 

KB a

Some commonly used rules of inference are given in Figure 12.6 below. Conventionally the 
antecedents are written first after which a line is drawn, below which the consequent is written.

From a … b
and a     .
Infer b

Modus Ponens (MP)

From a … b
and ÿb   .
Infer ÿa

Modus Tollens (MT)

From a
and b     .
Infer a Ÿ b

Conjunction (C)

From a ⁄ b
and ÿa   .
Infer b

Disjunctive Syllogism (DS)

From a    .
Infer a ⁄ b

Addition (A)

From a Ÿ b .
Infer a

Simplification (S)

From a … b
and b … g
Infer a … g

Hypothetical Syllogism (HS)

From (a … b) Ÿ (g … d)
and a ⁄ g            .
Infer b⁄ d

Constructive Dilemma (CD)

From (a … b) Ÿ (g … d)
and ÿb ⁄ ÿd        .
Infer ÿa ⁄ ÿg

Destructive Dilemma (DD)

FIGURE 12.6 Some of the common rules  of inference.

The most well known rule is called modus ponens (MP), 

a … b
a
b
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This says that if there is a sentence a and a sentence a…b then we can add the sentence b to the set 
(KB).

A valid or a sound rule of inference connects true antecedents to true consequents. Then if one has 
a database (or a set) of true statements and some valid rules of inferences that are applicable, one can, 
by a purely syntactic process of matching, produce new sentences that are guaranteed to be true. How 
does one decide that a rule of inference is sound? A rule is sound whenever it is based on a tautological

implication, that is, a sentence in which the main connective is the implication, and the sentence is 
always true. The underlying sentence for the rule modus ponens is, 

(((a…b) a) … b)

The following truth table that looks at all valuations of a and b, demonstrates that the sentence is 
indeed always true.

Table 12.3 A tautological implication.

a b (a … b) (a … b) a) ((a … b) a) … b)

true true true true true

false true true false true

true false false false true

false false true false true

A rule of inference is an extra-logical statement that gives us license to add new sentences or formulas 
to an existing set of sentences. If the rule of inference is valid or sound, and one starts with a set of 
true sentences, called axioms or premises, then the application of the rule will add more sentences that 
are true. If we build a logic machinery with sound rules of inference we build a deductive system. One 
can deduce new facts from old ones, and they are guaranteed to be true. We say that the logic is sound.

One can build a deductive logic system by choosing any rules that are based on a tautological 
inference. The reader is encouraged to verify that all the rules given in Figure 12.6 are sound. Let us 
look at an example of a rule that is not sound.

a … b
b
a

The corresponding implication ((a … b) b) … a) is not a tautology. The left hand side (a … b)
b) can be made true and the right hand side a false by the valuation {b = true, a = false}. An inference 
made by the above rule, known as abduction, would not be valid. Let us look at a couple of examples 
of abductive inferences.

If Calvin has finished his homework then Calvin is playing.
Calvin is playing.
Calvin has finished his homework.

and

If Ranbir has jaundice then Ranbir has yellow eyes.
Ranbir has yellow eyes.
Ranbir has jaundice.

The first example is a familiar illustration of an erroneous inference that one might make. The second 
example, which has the same form, is also not a sound inference. But as we all know such inferences are often 
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made, for example in detecting an illness, and can be very useful. However one must be careful to remember 
that such inferences may not be valid, which is why diagnoses are sometime wrong. We shall return abductive 
inferences later. We focus now on deductive inferences and constructing automatic theorem provers.

Given a set of sentences (premises), a set of (sound) rules, and a desired sentence, a proof is a sequence 
of sentences culminating in the desired sentence. In a proof, each sentence is either a premise, or is 
generated by the application of some rule. A proof for the above example is given below. Traditionally 
the justification of each sentence is given alongside.

1. (P Q) premise
2. (P … R) premise
3. ((R S) … T) premise
4. (ÿQ S) premise
5. P 1, simplification
6. Q 1, simplification
7. R 2, 5, modus ponens
8. S 4, 6, disjunctive syllogism20

9. (R S) 7, 8, conjunction
10. T 3, 9, modus ponens

This kind of a proof construction process is called natural deduction and owes its early development 
to Gentzen (1934/5). The reader would have noticed the similarity of the proof with a plan (Chapter 7). A 
rule of inference is like a planning operator with only positive effects. The similarity extends to finding 
proofs as well. Some of the algorithms for finding plans can be applied to the finding proofs as well. 
In fact the backward search algorithms can be applied much more easily, because rules of inference, 
unlike planning operators, have only positive effects. The algorithms studied in Chapter 6 on problem 
decomposition can also be applied to finding proofs, both in the forward and the backward direction.

12.3.4 Consistency

It is important that one is dealing with a set of consistent statements. This means that both a statement 
and its negation should not be present in the set. This is because if both are present then any arbitrary 
statement, and its negation, can be “proved” as illustrated below.

1. P ÿP premise
2. P 1, simplification
3. ÿP 1, simplification
4. P Z 2, addition
5. Z 4, 3, disjunctive syllogism

Since Z is an arbitrary statement this would mean that our system is not sound.

12.3.5 Substitution

A rule of inference allows one to add a new sentence to the database21. In contrast one can define a rule 
of substitution that allows one to replace one sentence with another. This is possible when one sentence 
is logically equivalent to another. As an example, let us look at the following equivalence.

((a … b) ∫ (ÿa b))

20 Strictly speaking a substitution step Q ∫ ÿÿQ has to be applied before disjunctive syllogism is applicable.
21 It is also commonplace to refer to the set of statements as a database of facts (and rules).
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If the above equivalence is a tautology, then the sentence (a … b) will always take the same truth 
value as the sentence (ÿa b). Hence, either of the two could be replaced by the other without any 
loss. We can verify that the equivalence is a tautology by constructing a truth table.

Table 12.4 A tautological equivalence.

a b (a … b) ÿa (ÿa b) ((a … b) ∫ (ÿa b))

true true true false true True

false true true true true True

true false false false false True

false false true true true True

Wherever one can construct a tautological equivalence one can define a valid rule of substitution. 
The following figure depicts some of the commonly used rules of substitution.

a ∫ (a a) idempotence of 

a ∫ (a a) idempotence of 

(a b) ∫ (b a) commutativity of 

(a b) ∫ (b a) commutativity of 

((a b) g) ∫ (a  (b g)) associativity of 

((a b) g) ∫ (a  (b g)) associativity of 

ÿ(a b) ∫ (ÿa ÿb) DeMorgan’s Law

ÿ(a b) ∫ (… ÿb) DeMorgan’s Law

(a  (b g)) ∫ ((a b)  (a g)) distributivity of  over 

(a  (b g)) ∫ ((a b)  (a g)) distributivity of  over 

(a  true) ∫ true
(a  false) ∫ a
(a  true) ∫ a
(a  false) ∫ false
(a ÿa) ∫ false
(a ÿa) ∫ true
a ∫ ÿ(ÿa)
(a … b) ∫ (ÿb … ÿa) contrapositive

(a … b) ∫ (ÿa b) implication

(a ∫ b) ∫ ((a … b)  (b … a)) equivalence

((a b) … g) ∫ (a … (b … g)) exportation

((a … b)  (a … ÿb)) ∫ ÿa absurdity

FIGURE 12.7 Some commonly used substitution rules. At any place in a sentence the left hand side 

may be replaced by the right hand side and vice versa.

12.3.6 Forward Reasoning

The following algorithm is a refinement of the procedure in Figure 12.3. The algorithm 
SimpleProofProcedure accepts a set of premises S, a set of instantiations R of the rules22 applicable, 
and the goal statement. It searches in the forward direction till it produces the goal statement or no rules 
are applicable. At each stage it leaves a trail in the list Applied, which is used to reconstruct the Proof.

22 We have assumed that the required instances of rules are readily available for the sake of simplicity. 
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SimpleProofProcedure(S : premises, R : rules, g : goal)

1 P ¨ S

2 applied ¨ ()

3 while g œ P

4 do

5 CHOOSE r = (consequent, antecedents) Œ R s.t. antecedents Õ P

6 if no such r exists

7 then return FAIL

8 P ¨ P » {consequent}
9 applied ¨ Cons(r, applied)

10 return ReconstructProof(g, P, applied)

ReconstructProof(G : goal, S; premises, A : applied)

1 goalSet ¨ (G)

2 proof ¨ ()

3 while goalSet π ()
4 do next ¨ Head(goalSet)

5 goalSet ¨ Rest(goalSet)

6 if next œ S

7 then rule ¨ BackChain(next, A)

8 antecedents ¨ Second(rule)

9 goalSet ¨ Append(antecedents, goalSet)

10 proof ¨ Cons((next, rule), proof)

11 else proof ¨ Cons((next, “Premise” ), proof)

12 return proof

BackChain(C : consequent, A : rules applied)

1 if C = First(First(A))

2 then return First(A)

3 else return BackChain(C, Rest(A))

FIGURE 12.8 A simple forward-search proof procedure. Observe that we assume refractoriness: 

Each rule can only fire once with the same data. Also observe that theorem proving does not 

backtrack. The CHOOSE operator makes the right choice non-deterministically. We assume that 

appropriate instances of each rule exist in the form (consequent, list-of-antecedents). The reversed 

Proof contains a sequence of statements along with a justification. The justification is either the rule 

used to produce that statement, or the string “Premise” if the statement is a premise.

In the above algorithm we have used the non-deterministic CHOOSE operator that somehow selects 
the correct rule to apply at each inference step. In practice any of the search strategies we have used 
could be employed. Even with deterministic choice the search does not have to backtrack. This is 
because an inappropriate inference step only adds a sentence that is not required for the proof. The set 
of sentences grows monotonically with each inference. This will have an impact though because the 
task of finding applicable rules becomes more expensive. Combined with the fact that some inferences 
may not be useful and only add to the computations, the choice of the correct rule to apply influences 
the complexity of the proof finding algorithm. This will become critical when we move on to the more 
expressive first order logic.

Forward reasoning suffers from the same problem as forward search in planning. It lacks a sense 
of direction. A backward version of the above algorithm is likely to be much more focused. It will be 



Chapter 12: Logic and Inferences 443

simpler than the backward state space planning algorithm because the problem of spurious states is not 
there. It may have to backtrack though when the same consequent is produced by different rules. The 
reader is encouraged to write a backward version of the above algorithm.

12.3.7 Rules vs Meta Rules

A rule of inference says that if the antecedents exist in the database then the consequent may be added 
to the database.

The implication a … b says that if a is true then so is b. In fact this is the property used in rule based 
systems (as described in Chapter 6).

Can we think of the rule of inference as an implication statement (antecedent … consequent) and 
add it to the database? Why do we need a separate rule of inference outside the set of sentences? Let us 
consider the modus ponens rule to answer that question.

Modus ponens says that if you have the sentences (a … b) and a in the database then we can add the 
sentence b to the data base. The rule is valid because ((a … b) a) … b) is always true. The tautology 
can in principle be added to the database. Remember that our database is a collection of true sentences 
from the set of all sentences expressible in the logic. If we do that can we now add b to the database 
automatically? The answer is yes, but only if it is backed up by a valid rule, which would have to be 
based on the following sentence being a tautology.

(((((a … b) a) … b)  (a … b) a) … b)

In the above sentence, we have underlined the three constituents for readability. The reader can 
probably guess where this is leading to. Having converted the modus ponens rule into a sentence in the 
database, we had to define a new rule to validate the fact that adding b is now a valid move given the 
three sentences that are underlined. Let us call this rule mp¢. The question now would be whether we 
can do away with mp¢? Yes, provided we add the corresponding tautology to the database as a sentence 
and add a new rule of inference (say) mp≤. This process will never end, and the simplest thing is to 
put a stop to this infinite regress at the first possible stage. A delightful and more insightful account of 
this argument is given by Douglas Hofstadter in his book Gödel, Escher and Bach (Hofstadter, 1980).

That is why we need rules of inference that are based on tautological implications but that are outside

the database. If we call (a … b) a rule (as in rule based systems) then we can call the rule of inference 
modus ponens a meta-rule. The meta-rule in fact sits in the inference engine, or the proof procedure 
that applies rules to produce new statements.

12.4 Resolution Method in Propositional Logic

As discussed earlier the completeness of logic systems depends upon the choice of premises (or axioms) 
and the rules of inference. A multitude of logic systems were devised in the 19th century. These systems 
varied on the binary connectives used in the logical part of the language, and on the rules of inference 
that were allowed.

The task of automated proof finding (theorem proving) has to address the issue of which rule of 
inference to apply, and with what data. The second issue becomes more critical in first order logic. 
The first one, of choosing the rule, was effectively removed in 1965 when Alan Robinson invented the 
resolution refutation method (Robinson, 1965). This is because the resolution method requires only 
one rule of inference and is a complete method. We look at the basic idea of resolution refutation with 
propositional logic, and revisit it with first order logic.
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12.4.1 The Resolution Rule

The resolution method requires that the formula is in conjunctive normal form (CNF). A formula F is 
in CNF if it has the following structure.

F = C1 C2  … Cn

That is the formula is a conjunction of clauses where each clause Ci is a disjunction of literals, 

Ci = Di1 Di2  … Dik(i)

Each clause Ci may have some k(i) number of literals, and each literal is either a proposition or the 
negation of a proposition. Since the structure of the formula in CNF is known, it is also conventionally 
represented as a set of sets as follows.

F = {{D11, D12 …, D1k(1)}, {D21, D22 …, D2k(2)}, …, {Dn1, Dn2 …, Dnk(n)}}

Any formula in propositional logic may be converted into CNF by the use of substitution rules based 
on the tautological equivalences. Conversion into CNF generally results in increase in the size of the 
formula, often reaching exponential number of clauses in the number of propositions.

The single rule used in the refutation method, called the resolution rule, takes two clauses that have 
a complimentary literal as follows.

From: R1 R2 … Rk Q

And: P1 P2 … Pm ÿQ

Infer: R1 R2 … Rk P1 P2 ... Pm

Both the literal Q and its negation ÿQ are removed and the remaining literals are combined to form 
a new clause, called the resolvent. We will use simpler clauses of two literals for illustration but the 
method applies to the general case as well. With the smaller clause the rule becomes, 

From: R Q

And: P ÿQ

Infer: R P

The validity of the resolution rule can be established by showing that adding the resolvent does not 
change the set of clauses logically. That is, the sets before and after are equivalent. It suffices to show that, 

((R Q)  (P ÿQ)) ∫ ((R Q)  (P ÿQ)  (R P))

It is left as an exercise to show that the above is indeed a tautology. A consequence of this tautology 
is that the addition of the resolvent produced by the resolution rule does not change the logical nature of 
the database. The database can be seen as a large conjunctive formula that is logically identical before 
and after the addition of the resolvent.

12.4.2 Refutation

The resolution refutation method is used to refute a formula in logic. That is, it proves that the formula 
is false or unsatisfiable. To find a proof that a given formula is true, we need to take the negation of the 
formula and show that the negation is false.

We can see the database as a formula that is a conjunction of clauses. To this formula we keep 
adding more clauses by applying the resolution rule. If at any time we generate a resolvent that is the 
empty clause (or null clause) then the procedure can terminate. This is because the empty clause, or 
evaluates to false. We also use the symbol  to stand for the empty or null clause. An empty clause can 
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be generated from two clauses S and ÿS by the application of the resolution rule. Now if a conjunctive 
formula (the database) has both S and ÿS then it must be false23.

Let the original formula be {P1, P2, …, PN}. Remember this stands for a conjunction of the N clauses. 
To this we add a sequence of resolvents R1, R2, R3, … culminating with The databases at all stages 
are logically equivalent, because the resolution rule is sound.

{P1, P2, …, PN} ∫ {P1, P2, …, PN, R1}
∫ {P1, P2, …, PN, R1, R2}
∫ {P1, P2, …, PN, R1, R2, R3}
∫ {P1, P2, …, PN, R1, R2, R3, …, }

Now since the last set of clauses evaluates to false (because it contains the empty clause) the set we 
started with, which is logically equivalent, also evaluates to false. Thus {P1, P2, …, PN} is false. The 
following simple procedure implements the resolution method in propositional logic.

PropositionalResolution(S : premises in clause form)

1 while TRUE

2 do CHOOSE a new pair of clauses C1 and C2
3 if no new pair exists

4 then return FAIL

5 R ¨ Resolvent(C1, C2)

6 if R = {}

7 then return FALSE

8 else S ¨ S » {R}

FIGURE 12.9 The resolution method picks two clauses and generates a resolvent till it generates the 

empty clause. If that happens it returns the value “false” as the value of the input. If it cannot pick two 

clauses it returns “fail”. The key to efficiency is making the right choice while choosing the clauses.

Observe that the method only returns the valuation “false” when it can derive the empty clause. If it 
cannot, it returns24 “fail” and not “true”. This is because it can only say that it has not been able to show 
the formula to be false. That does not mean that the formula is true. To take a simple example given the 
set {P, Q} we cannot say anything about its truth value.

Thus the key to using the resolution method is to apply it to formulas that are unsatisfiable. The task 
in logic that we have taken up is to test whether the consequent logically follows from the premises. 
Given a set of premises {a1, a2, …, aN} and the desired goal b, we want to determine if the formula, 

((a1 a2  … an) … b)

is true. But since the resolution method can only test for unsatisfiability, we can try the negation of the 
above formula, that is, 

ÿ ((a1 a2  … an) … b)

We convert this into CNF, the form that is required by the resolution method.

ÿ ((a1 a2  … an) … b) ∫ ÿ(ÿ (a1 a2  … an) b)

23 No valuation can make (S ÿS) true and therefore also the CNF formula containing it. Syntactically too one can reduce the 
formula to false by first applying the substitution (a ÿa) ∫ false followed by repeated application of the substitution rule 
(a false) ∫ false

24 In first order resolution the procedure may go into an infinite loop. 
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∫ ((a1 a2  … an) ÿb)
∫ (a¢1 a¢2  … a¢n ÿb¢)

To generate the input for the resolution method we simply need to negate the goal and add it to the 
set of clauses. We may need to convert each of the premises and the negated goal into the clause (CNF)
form denoted by a¢i and b¢ in the last line of the transformation.

A proof by resolution method is a proof by contradiction. We start with the set of premises, negate

the goal and add it as another clause, and show that it leads to a contradiction (something that is false 
or not possible).

Let us illustrate the method with the example we had seen earlier. We need to show that following 
is true.

(((P Q)  (P … R)  ((R S) … T)  (ÿQ S)  (ÿU ÿV)) … T)

We take each of the premises and convert it to a clause. The first premise (P Q) gives us two 
clauses. Likewise the last one. We also add the negation of the goal ÿT as a clause. The clauses are, 

1. P

2. Q

3. ÿP R

4. ÿR ÿS T

5. ÿQ S

6. ÿU

7. ÿV

8. ÿT negated goal

The resolvents are, 

9. ÿR ÿS from 4, 8
10. R from 1, 3
11. ÿS from 9, 10
12. ÿQ from 11, 5

q.e.d

A resolution proof is often better visualized as a directed graph. Each node in the graph represents a 
clause. The nodes representing the premises have no incoming arcs. Every other node has two incoming 
arcs, from the two clauses that it is resolved from. A node may have multiple outgoing arcs, since it 
may be used in any number of resolution steps. Figure 12.10 below depicts the proof given above as a 
directed graph.

The resolution proof of a formula is not unique. There may be many different ways of deriving the 
null clause. Figure 12.11 below shows another proof.

This new proof is in fact quite similar to the earlier direct proof by forward reasoning. In fact, the part 
of the graph in the shaded region actually produces the clause T, and that is resolved with the negated 
goal clause ÿT to produce the null clause. One can also identify the step resolving Q and (ÿQ S) as 
the disjunctive syllogism rule producing S. Further, since one may substitute (Q … S) for (ÿQ S) we 
can also see this as an application of the modus ponens rule. The resolution rule in fact subsumes the 
other rules, and as we will see when we look at first order resolution, it is the basis of a complete logic 
machine, whereas the other rules by themselves may not be complete.

The problem of choosing the clauses still remains though, and a number of strategies have been 
proposed. We look at a few of them here, and one more in the first order case.
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FIGURE 12.10 The resolution proof as a directed graph.
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FIGURE 12.11 An alternative resolution proof.

Set of Support

The null clause represents a contradiction. The premises are presumed to be true. The contradiction arises 
because we add the negation of the goal to the set of clauses. The set of support strategy says that at every 
resolution step one of the clauses must be the goal clause or derived form the goal clause. Neither of the 
two refutations shown in the graphs uses this strategy, but it is possible to find a refutation that does.

Unit Preference

The goal is to derive the null clause. The null clause has zero literals. Let the clauses being resolved 
have N and M literals. Then the resolvent will have (N + M – 2) literals. This will be smaller than both 
parent clauses only if either M or N is 1. The unit preference strategy says that one must prefer clauses 
of size 1. Then one can hope to keep reducing the size of the resolvent till it reaches size 0 for the null 
clause. Both examples above have used the unit preference strategy. 
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12.5 First Order Logic

The Socratic argument we have looked at earlier is not possible in propositional logic. We could try and 
formulate the sentences as follows.

P = Socrates is a man
Q = Socrates is mortal

Our goal would be Q, but to relate it to P we would need a rule of the form (P … Q) which would read 
“If Socrates is a man then Socrates is mortal”. However what we have is “All men are mortal” which 
could also be written as “If someone is a man then that someone is mortal”. The mortality rule we have 
applied to “someone” but we want to make an inference about Socrates.

To be able to identify Socrates with “someone” in the rule we have, we need to break up our sentences 
into smaller constituents, where we can talk about the individuals and their properties. We can do this 
by modifying our representation to use predicates. For the example in question we could now encode 
our sentences using the predicates “Man” and “Mortal” as follows.

Man(Socrates) = Socrates is a man
Mortal(Socrates) = Socrates is mortal

Now if we allow the use of variables that can stand for individuals, then we move on to Predicate
Logic or First Order Logic (FOL).

We can now denote “someone” by the variable X. Our knowledge about mortality can now be written 
as,

Man(X) … Mortal(X)

and if we could now identify X with Socrates then we could get the rule that we are looking for, 

Man(Socrates) … Mortal(Socrates)

And given the fact Man(Socrates), we can use modus ponens to produce Mortal(Socrates). We still 
need to refine our rule with the variable X to encode the fact that the X applies to “all men” in the rule. 
We will see how to do that with the definition of FOL syntax and semantics.

12.5.1 FOL Syntax

The language of FOL is also defined in two parts, the logical part and the non-logical part.
Like the propositional logic the logical part of the vocabulary contains symbols like “ ”, “ ”, “ÿ”,

and “…”. It also includes sets of brackets, and the constant symbols “ ” and “ ”.The language of FOL

also uses a set of variable symbols V = {v1, v2, v3, … } though we commonly use {x, y, z, x1, y1, z1, …} 
as well. In addition there are two new symbols “"” read as “for all”, and “$” read as “there exists”. The 
former is the universal quantifier and the latter the existential quantifier25. They are used to quantify 
the values a variable can take. Finally one may include the symbol “=” read as “equals”.

The non-logical part of FOL constitutes of three sets.

 ● A set of predicate symbols  = {P1, P2, P3, …}. We also use the symbols {P, Q, R, …}. More 
commonly we use words like “Man”, “Mortal”, “GreaterThan”. Each symbol has an arity associated 
with it, that stands for the number of arguments the predicate takes.

25 There could be other quantifiers as well, for example “there exists exactly one x such that…”, but most logics deal with only 
these two. 
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 ● A set of function symbols  = {f1, f2, f3, …}. We commonly used the symbols {f, g, h…} or 
words like “Successor” and “Sum”. Each function symbol has an arity that denotes the number 
of argument it takes.

 ● A set of constant symbols  = {c1, c2, c3, …}. We often used symbols like “0”, or “Socrates”, or 
“Darjeeling” that are meaningful to us.

The three sets define a specific language L(P, F, C).
The basic constituents of FOL expressions are terms. The set of terms  of L(P, F, C) is defined 

as follows. The constants and the variables are terms by definition. More terms are defined using the 
function symbols.

If t Œ V then t Œ
If t Œ  then t Œ
If t1, t2, …, tn Œ  and f Œ  is an n-place function symbol then f(t1, t2, …, tn) Œ

The set of formulas is defined using terms and predicate symbols. By default the logical symbols 
“ ” and “ ” are also formulas. The set of well formed formulas F of L(P, F, C) is defined as follows.

Atomic formulas
Œ F

Œ F

If t1, t2 Œ  then (t1 = t2) Œ F

If t1, t2, …, tn Œ  and P Œ  is an n-place predicate symbol then P(t1, t2, …, tn) Œ F

Formulas26.

If a Œ F then ÿa Œ F

If a, b Œ F then (a b) Œ F

If a, b Œ F then (a b) Œ F

If a, b Œ F then (a … b) Œ F

In FOL the quantifiers are used to define formulas as well. A quantifier quantifies a variable that 
occurs in the scope of the quantifier, which is the formula immediately following it.

If a Œ F and x Œ V then "x (a) Œ F

If a Œ F and x Œ V then $x (a) Œ F

Having defined the set of formulas of FOL we can now define the set of sentences SFOL.
The set of sentences SFOL in a language L(P, F, C) are all formulas without free variables. A variable 

in a formula is free if it is not in the scope of any quantifier.

12.5.2 FOL Semantics

The smallest unit in propositional logic is the sentence. The sentence can stand for something, and the 
sentence can be assigned a truth value. In FOL a sentence is made up of different kinds of symbols 
and the meaning of the sentence is to be determined by what the constituent parts stand for. Unlike 
propositional logic where a sentence stands by itself, in first order logic a sentence talks about elements 
of some domain. Terms of the language stand for the elements in the domain. Function symbols represent 
functions in the domain, and predicate symbols represent relations in the domain. The meaning of a 

26 Like in the propositional logic we defined the formulas for the binary connectives , and … only. They can be defined for 
other connectives as well.
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sentence in L(P, F, C) is determined by a mapping from the elements in the language to objects and 
relations between them in the domain.

Let D be the domain or the universe of discourse.
We can define an assignment A that maps a variable of the language to an element of the domain.

A: V Æ D

such that A(X) = XD

We define an interpretation function I such that, 

I(c) = cI

I(P) = PI

I(f) = f I

where cI is a constant from the domain D, PI is a relation of appropriate arity on the domain D
corresponding to the predicate symbol P, and f I is a function in the domain D corresponding to the 
function symbol f from L(R, F, C).

A term t Œ  mapped to the element of the domain D as follows.

If t Œ V then tIA = tA

If t Œ  then tIA = tI

If t = f (t1, t2, …, tn) then tIA = fI(t1
IA, t2

IA, … , tn
IA)

The credit for our notion of the predicate, its meaning and its truth value must go far back to Plato’s 
theory of Forms27. Plato associated the notion of forms with properties such as tall, white and the notion 
of sitting. In a sentence like “Theaetetus is sitting” the constituents “Theaetetus” and “is sitting” may 
be meaningful in themselves, but are neither true nor false. Their combination is both meaningful and 
capable of having a truth value.

Thus terms stand for objects in the domain, and predicates stand for relations on the domain. The 
truth assignment to formulas is as follows.

Val( ) = true
Val( ) = false
Val(t1 = t2)

IA = true iff t1
IA = t2

IIA

A predicate with variables is assigned a value true under some assignment function A if the 
corresponding tuple belongs to the corresponding relation.

Val(P(t1, t2, …, tn))
IA = true iff <t1

IA, t2
IA, …, tn

IA > Œ PI

A sentence of L(P, F, C) does not have any free variables. A sentence of the form $x(a) is true if 
there is some value of x for which the formula is true. For a sentence in which the variable is universally 
quantified then the formula must be true for all possible values of x. Formally, 

($x (a))IA = true  iff aIB is true for some assignment B that is an x-variant28 of A.
In other words the formula a is true for some value of x.

("x (a))IA = true  iff aIB is true for all possible assignments B that are x-variants of A.
In other words the variable x can take any value and a must be true.

27 Robin Smith, Ancient Greek Philosophical Logic, available at http://www.blackwellpublishing.com/content/BPL_Images/

Content_store/Sample_chapter/9780631216711/001.PDF
28 An assignment B is an x-variant of an assignment A if they agree on the value of all variables except x.
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For compound formulas constructed by the use of logical connectives the truth values are arrived at 
in the same manner as in propositional logic.

The meaning of the terms and sentences of a set of FOL sentences is given by an interpretation

 = <D, I>, where D is a domain and I is an interpretation mapping. An interpretation M = <D, I> of 
set of sentences or a theory in a language L(P, F, C) is a model if all the sentences in the set are true in
the interpretation.

A sentence of FOL may be a propositional sentence when it does not have any variable. For example 
Man(Socrates) or Loves(Romeo, Juliet). Such sentences are often known as facts.

In addition there may be “facts” that are expressed using quantifiers. For example on the domain of 
(non-negative) natural numbers the following are always true29.

$x Even(x)
"x GreaterThan(Successor(X), X)

Here we can observe that each quantified sentence is a short form for a propositional sentence, which 
in this domain happens to be infinitely long. The sentences are, 

Even(0) Even(1) Even(2) …
GreaterThan(Successor(0), 0) GreaterThan(Successor(1), 1)  …

Thus we can see that not only do quantifiers allow us to express things succinctly, they also allow 
us to talk about infinite sets that would not be possible in propositional logic. The universal quantifier 
combines propositional formulas using the connective , and the existential quantifier using . They 
also allow us to describe relations between multiple sets of propositional sentences. For example, 

"x(Even(X)…ÿOdd(X))
"x(Man(X)…Mortal(X))

We also sometimes refer to such statements as rules, and one talks of a knowledge based containing 
facts and rules.

Predicate symbols are mapped to relations in the domain. Unary predicates like Man(x) correspond to 
unary relations on the domain that define subsets of the domain. Binary predicates like GreaterThan(X,
Y) map to the corresponding binary relations in the domain. Thus a sentence like GreaterThan(7, 2) is 
true because <7, 2> belongs to the corresponding “greater than” relation in the domain. A sentence like 
"x(GreaterThan(Successor(X), X)) is true because whatever value X takes from the domain (of natural 
numbers) the statement is true.

The truth value of a sentence often depends upon the domain, and when we have a domain in which 
a given set of sentences is true we have a model for the sentences. Interestingly, reasoning in logic 
happens independently of the domain. Addition (or deduction) of new sentences happens by means of 
rules of inferences. Their association with the real domain is only incidental. Of course if the reasoning 
at the logic level is faithful to the domain we can say that we have a sound logic for reasoning about the 
domain. But the reasoning itself has no contact with the domain.

Having chosen the sets P, F and C and defined a language over them, we could interpret the language 
meaningfully over different domains. Consider the following sets for illustration.

P = {Larger, Equal}
F = {Next, Combine}
C = {begin}

29 We often leave out brackets. In that case only the formula immediately following is in the scope of the quantifier. That is, "x
a b ∫ "x (a b.
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Then if one were dealing with the set of natural numbers, one would have the following interpretation.

Larger(x, y): x is greater than y
Equal (x, y): x is equal to y
Next(x): stands for successor of x
Combine(x, y): stands for x+y

begin: stands for 0

On the other hand one could be talking about strings over a particular alphabet. Then, 

Larger(x, y): x is longer than y
Equal (x, y): x is same length as y
Next(x): stands for successor of x in the lexicographic order
Combine(x, y): stands for x concatenated with y
begin: stands for the empty string

Then formulas and sentences in the given language would mean different things depending upon 
the domain.

Are our own minds such symbol processing machines? How could they be purely syntactic machines 
with symbols whirring about when we are so situated in our real world? Or are our real worlds a creation 
of our minds as the Buddhists believe? However we do (seem to) have our physical selves and we do 
live in our physical environment thinking about it and acting on it. Perhaps it is the marvel of evolution 
that our perceptive system has evolved into a symbol processing mind (Dawkins, 1996).

12.5.3 FOL Rules

The propositional logic rules we saw earlier are valid in FOL as well. In addition we need new rules to 
handle quantified statements. The two commonly used rules of inference are, 

"x P(x)
—

P(a)
where a Œ Universal Instantiation

P(a)
—
$x P(x)

where a Œ Generalization

The following rules of substitution are also useful, 

ÿ"x a ∫ $x ÿ a De Morgan’s law
ÿ$x a ∫ "x ÿ a De Morgan’s law
"x "y a ∫ "y "x a
$x $y a ∫ $y $x a

In the following rules the notation A[x] stands for the fact that A is a formula containing x, while A
stands for a formula A that does not contain x (as in (Manna, 1974). Likewise for B.

"x A ∫ A

$x A ∫ A

$x A[x] $x B[x] ∫ $x (A[x] B[x])
$x A[x] B ∫ $x (A[x] B)
A $x B[x] ∫ $x (A B[x])
"x A[x] B ∫ "x (A[x] B)
A "x B[x] ∫ "x (A B[x])
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"x A[x] "x B[x] ∫ "x (A[x] B[x])
"x A[x] B ∫ "x (A[x] B)
A "x B[x] ∫ "x (A B[x])
$x A[x] B ∫ $x (A[x] B)
A $x B[x] ∫ $x (A B[x])

"x A[x] … $x B[x] ∫ $x (A[x] … B[x])
$x (A[x] … B ∫ "x (A[x] … B)
B … $x A[x] ∫ $x (B … A[x])
"x A[x] … B ∫ $x (A[x] … B)
B … "x A[x] ∫ "x (B … A[x])

Some of these may be required to convert a first order formula into clause form, a form suitable for 
the resolution method. The reader is encouraged to prove the about equivalences. Many of the seemingly 
strange switches in quantifiers around the operator … can be explained by the fact that (a…b) has a 
hidden negation sign inside which is visible in the equivalent form (ÿa b). When the negation moves 
across a quantifier it transforms the existential into universal and vice versa.

12.5.4 Forward Chaining in FOL

Let us rephrase our example (Alice) problem in first order terminology.

1. Alice likes mathematics and she likes stories.
2. If someone likes mathematics she likes algebra30.
3. If someone likes algebra and likes physics she will go to college.
4. Alice does not like stories or she likes physics.
5. Alice does not like chemistry and history.

We can formalize the statements in FOL as follows.

1. likes(Alice, Math)  likes(Alice, stories)
2. "x(likes(x, Math) … likes(x, Algebra))
3. "x((likes(x, Algebra)  likes(x, Physics)) … goesTo(x, College))
4. ÿlikes(Alice, stories)  likes(Alice, Physics)
5. ÿlikes(Alice, Chemistry) ÿlikes(Alice, History)

We can now generate a proof that is analogous to the proof in propositional logic.

6. likes(Alice, Math) 1, simplification
7. likes(Alice, stories) 1, simplification
8. (likes(Alice, Math) … likes(Alice, Algebra)) 2. universal instantiation
9. likes(Alice, Algebra)) 6, 8, modus ponens

10. likes(Alice, Physics) 4, 7, disjunctive syllogism
11. ((likes(Alice, Algebra)  likes(Alice, Physics)) 9, 10, conjunction
12. ((likes(Alice, Algebra)  likes(Alice, Physics)) … goesTo(Alice, College))

   3, universal instantiation
13. goesTo(Alice, College) 12, 11, modus ponens

One can compare this proof with one in the propositional logic. Except for the two steps using universal 
instantiation (UI) the other steps are identical. And it is these UI steps that make it difficult to automate 

30 Here we must emphasize that she stands for both she and he.
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the proof finding process. Of all the constants in the domain, and one imagines there must be many in 
a realistic problem, which one should the rule select? In the example above the variable x is bound to 
Alice somehow. Of course this makes sense because it is about Alice that we want to make the inference 
from liking math to liking algebra. To be able to bind x to Alice our inference engine (proof finding 
procedure) will need to search the set of statements to find the possibly relevant constants to instantiate 
to. Fortunately there exists a representation, the implicit quantifier form, which makes this a lot easier.

Before we look at the implicit quantifier form, let us digress a little and look at a different concern. 
While applying UI to the rule “"x(likes(x, Math) … likes(x, Algebra))” what stops us from binding x
to say “Physics” which is also a constant term? One approach way would be to organize the constants 
into categories. For example in our example we could introduce the categories “person”, “subject”, 
and “educationInstitute”. Let us add two more categories “boy” and “girl”. Then we need to add more 
data about the categories of the constant symbols. Facts like boy(Romeo), girl(Juliet), subject(Physics), 
subject(Math), and so on. Let us look at some statements and how they might be formalized.

“If someone likes maths she likes algebra.”
“"x((person(x)  likes(x, Math) … likes(x, Algebra))

Assuming that we bind variables starting from the left, then x could only be bound to something that 
belongs to the “person” category. And constants like “Physics” will be ruled out. Here are some more 
statements,

“Every boy likes a girl.”
"x (boy(x) … $y (girl(y)  likes(x, y))

How is this different from “Every boy loves a girl.”? Do we need to introduce a predicate for every 
word in the natural language? Then if we wanted to assert that “if someone loves/likes someone then 
they care for them” do we need separate rules for love and like? Could the above sentence be formalized 
as the following?

$y (girl(y) "x (boy(x) … likes(x, y))

The English language is rich and ambiguous enough to allow both meanings. One of the advantages 
of formalization is that one gets rid of such ambiguity. In the following we can use the same predicate 
“likes” to apply to a “course”.

“Every boy likes a course.”
"x (boy(x) … $y (course(y)  likes(x, y))

Once we introduce categories like “boy” and “person” do we need to put in data for both? Or can 
we instead introduce rules like, 

"x (boy(x) … person(x))

We will explore some of these knowledge representation issues in the next chapter. Meanwhile let 
us return to the task of automated reasoning.

12.5.5 Skolemization

First order formulas contain both universally quantified and existentially quantified variables. However 
a lot of inferences use rules that have only universally quantified variables. Rules of inference typically 
say “If there is an x such that P(x) is true then Q(x) holds too”. Though x sounds existential in the above 
reading – “there is an x” – it is really universally quantified variable. The equivalent statement is “For 
all x such that P(x)…”. We will express rules as implication statements.

{antecedents} … consequent
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Forward chaining picks a rule, whose antecedents have matching facts, and produces matching 
consequents. If the “facts” are all ground instances then this process involves creating a matching ground 
instance of the rule, and applying modus ponens to that ground instance31. The variables involved are 
universally quantified. The process is illustrated below.

" …x P x Q x( ( ) ( ))

( ( ) ( ))P a Q a…

P a( ) Q a( )
MP

UI

FIGURE 12.12 Forward chaining in FOL is a two step process. First a relevant instantiation of a rule 

is created. Then the rule instance is used by modus ponens to produce the consequent.

In the implicit quantifier form of a sentence there are only universally quantified variables. Then, 
since a variable by definition is universally quantified we do not need to keep the quantifier symbols. 
The process of converting a sentence into implicit quantifier is also called skolemization after the 
logician Thoralf Skolem. We still need to distinguish between variables and constants, and we do that 
by adopting some convention. We will adopt the popular notation of prefixing a variable name with a 
question mark. Symbols without the prefix are treated as constants. The sentence “All men are mortals” 
is then represented as, 

Man(?x) … Mortal(?x)

Another convention that is popular is to begin variables with upper case letters and constants with 
lower case letters. This is followed in the programming language Prolog. Whatever the convention we 
use we still need to associate the variable in the rule with the constant in the fact when applying the 
rule. A simple approach would be to use an algorithm to match a variable with a constant, as is done 
in rule based systems (see Chapter 6). But we adopt a more general approach, which will allow us to 
match terms containing an arbitrary number of nested function symbols. The algorithm is called the 
unification algorithm, and is described below.

A substitution is a set of (variable = term) pairs, that signifies the replacement of the variables by 
the corresponding terms. The term should not contain the variable that it is replacing. A substitution is 
usually denoted by letters from the Greek alphabet. An example of a substitution is, 

q = {?x = Aditi, ?y = tennis}

Given a formula f the formula fq denotes the sentence obtained by applying the substitution q to the 
formula f. For example, if f = Likes(?x, ?y) then applying the above substitution gives us the sentence 
fq = Likes(Aditi, tennis).

A unifier for two formulas a and b is a substitution that makes the two formulas identical. We say 
that a unifies with b. A unifier q unifies a set of formulas {a1, a2, …, aN} if, 

a1q = a2q = … = aNq = f

31 A ground instance of a logical formula is a formula where every variable has been substituted by a constant. The quantifiers 
can be discarded because "x A ∫ A and $x A ∫ A.
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We call the common reduced form f as the factor. Given a formula a and a formula b … d we can 
define a modified modus ponens rule as follows.

If a and b have a unifier q then infer dq from a and (b … d)

Thus if

a = (Sport(tennis)  Likes(Aditi, tennis))
b … d = (Sport(?y)  Likes(?x, ?y)) … Watches(?x, ?y)

then a unifies with b with the substitution q={?x = Aditi, ?y = tennis} given above, and one can infer

dq = Watches(?x, ?y)q = Watches(Aditi, tennis)

Sometimes there is a choice between several unifiers. Consider, for example if we had the rule that 
“if a number is smaller than or equal to another, then the other is larger than or equal to the former.” 
Assuming that in our domain of natural numbers everything is a number (and we don’t need a category 
number) we could express it in skolemised form as follows.

SmallerOrEqualThan(?x, ?y) … GreaterOrEqualThan(?y, ?x)

Now given the following fact what are the inferences one can make?

SmallerOrEqualThan(0, ?z)

We could use the substitution y = {?x = 0, ?y = 7, ?z = 7} to infer GreaterOrEqualThan(7, 0). We 
could have chosen any other number in place of 7. We can also use a unifier q = {?x = 0, ?z = ?y} with 
which we would have inferred GreaterOrEqualThan(?y, 0) signifying that all numbers are greater than 
or equal to 0.

We say that a sentence a is more general than sentence b if there exists a non-empty substitution l
such that al = b.

The second inference GreaterOrEqualThan(?y, 0) is more general than the first one, because {?y = 
7} make them identical. Between y = {?x = 0, ?y = 7, ?z = 7} and q = {?x = 0, ?z = ?y} it makes more 
sense to choose the latter because it produces a more general consequent. This is because from the more 
general sentence one can always infer the less general one by applying another substitution. Remember 
that a universally quantified statement says that it is true whatever the value of the quantified variable. 
Applying a substitution only restricts the values the variable can take and the sentence will be true for 
the restricted values as well.

The most general unifier (MGU) of a set of formulas is that unifier that results in the most general 
factor. Using the MGU will produce the most general consequents, and therefore we will use the MGU 
when making inferences.

At this point we shift to a list notation that stores predicates and functions in a prefix form in a list, 
making it more amenable to processing. A formula like P(?x, ?y) … Q(?x, ?y) will be represented by 
((P ?x ?y) … (Q ?x ?y)). Further, we assume we have procedures to test whether an element is a list or 
an atom, and for atoms if it is a variable or a constant. In the following discussion predicate symbols, 
logical operators, function symbols are all treated as constants, in the sense that they must match exactly. 
A variable, on the other hand, is one that can be substituted by something else (a term). We assume a 
function length is available to determine the length of a list. Two lists can only be unified if they have 
the same length. The following algorithm is along the lines of the version presented in (Charniak and 
McDermott, 1985).
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Unify(list1, list2)

1 return SubUnify(list1, list2, ())

SubUnify(list1, list2, theta)

1 if “fail” Œ theta

2 then return FAIL

3 if Var(list1)

4 then return VarUnify(list1, list2, theta)

5 if Var(list2)

6 then return VarUnify(list2, list1, theta)

7 if Constant(list1)

8 then if list1 = list2
9 then return theta

10 else return FAIL

11 if Constant(list2)

12 then return FAIL

13 if list1 = list2 = ( )

14 then return theta

15 if Length(list1) π Length(list2)

16 then return FAIL

17 else return Append( SubUnify(Head(list1), Head(list2), theta),

18 SubUnify(Rest(list1), Rest(list2), theta))

VarUnify(variable, list, theta)

1 if ExistsIn(variable, list)

2 then return FAIL

3 if (variable value) Œ theta        /* the <variable, value> pair */

4 then return SubUnify(list, value), theta)

5 else return Cons((variable, list), theta)

FIGURE 12.13 The unification algorithm compares the two inputs (lists) element by element making 

recursive calls where necessary. The function Var-Unify augments the substitution theta if it is 

consistent to do so. The function ExistsIn looks for occurrence of the variable in the list that potentially 

substitutes it. It can be implemented by first flattening the list and then checking for membership.

If the same variable name is repeated in two formulas then it could lead to a problem in the algorithm. 
Consider the two formulas, 

(SmallerOrEqualThan 0 ?z)
(SmallerOrEqualThan ?z, (successor ?z))

The first formula says that 0 is smaller than or equal to anything. The second says that any number 
is smaller than or equal to its successor. 

If we run our unification algorithm on the two formulas the following will happen.

 ● Since both inputs are lists of length three, three recursive calls to sub-unify will be made
 ● In the first call the two constants match and it returns the empty substitution
 ● In the second call ?z is identified as a variable and the call var-unify(?z, 0 ()) is made. This returns 

theta = (?z 0)
 ● In the third call ?z is again identified as a variable and the call var-unify(?z, (successor ?z), 

((?z 0)) is made. This call returns “fail” because the variable ?z occurs in the list (successor ?z)
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However, this result is incorrect. We should be able to unify the two formulas into (SmallerOrEqualThan 
0 (successor 0)). The reason for the error is that the algorithm has mixed up the two occurrences of the 
variable ?z.

The remedy to this problem is that the variable names under the scope of different quantifiers must 
be distinct. Renaming variables to make them distinct is known as standardizing variables apart. The 
sentence "x P(x) is equivalent to "z P(z), and can be replaced by it because it says that P(z) is true for 
any value of z. Likewise for existentially quantified variables.

Let us modify the first statement by renaming the variable in the first sentence as ?x.

(SmallerOrEqualThan 0 ?x)
(SmallerOrEqualThan ?z, (successor ?z))

The algorithm proceeds as before for the first two recursive call. The third call now is different - 
var-unify(?x, (successor ?z), ((?z 0)). This time the algorithm returns the unifier theta = ((?x (successor 
?z) (?z 0)). Applying this substitution correctly unifies the two formula into (SmallerOrEqualThan 0 
(successor 0)).

12.5.6 Handling Existential Quantifiers

We have said that the implicit quantifier form of a formula implicitly defines variables to be universally 
quantified. What if the first order formula has existentially quantified variables? The skolemization 
process replaces existentially quantified variables either by special constants known as Skolem constants 
or by special functions known as Skolem functions.

When the existential quantifier is not in the scope of any universal quantifier, then the variable it 
quantifies is replaced by a Skolem constant. For example, the statements, 

$z (Student(z)  Bright(z))
$y (girl(y) "x (boy(x) … likes(x, y))

are skolemized as, 

((Student sk1)  (Bright sk1))
((girl sk2)  ((boy ?x) … (likes x, sk2)))

The Skolem constant is not a real constant in the sense that we do not know what it maps to in the 
domain. We do know that it maps to some element. It may also map to more than one element, as for 
example in the first statement where there may be more than one bright student32.

When the existential quantifier is in the scope of one or more universal quantifiers then the existentially 
quantified variable is a Skolem function of the corresponding universally quantified variables. For 
example the statements, 

"x "y $z (LessThan(x, z)  LessThan(y, z))
"x (boy(x) … $y (girl(y)  likes(x, y))33

are skolemized as, 

((LessThan ?x (sk57 ?x ?y))  (LessThan ?y (sk57 ?x ?y)))
((boy ?x) … ((girl (sk16 ?x))  (likes ?x (sk16 ?x))))

32 There has to be at least one bright student. When we say “Some students are bright” we are asserting the existence of at least 
one bright student. In contrast when we say that “All students are bright” the statement could be true if there are no students, 
and therefore no bright students.

33 Which can also be written as "x $y (boy(x) … (girl(y) likes(x, y))
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where sk57 and sk16 are Skolem functions. A Skolem function is not a mapping from the arguments to 
the value of the function. Rather it says that the value is dependent upon the arguments in some way. 
The expression (sk57 ?x ?y) denotes some number that is greater than x and y. Likewise (sk16 ?x) is 
some girl who x likes. While constructing examples we may use names of Skolem functions meaningful 
to us, like (greaterThanBoth ?x ?y) or (LikedBy ?x).

Whether a variable is universally quantified or existentially quantified has to be decided carefully. One 
must keep in mind that a negation sign influences the nature of the quantifier. Consider the formalization 
of “An immortal man does not exist” which is another way of saying that all men are mortal.

ÿ$x (Man(x) ÿMortal(x))

What is the nature of the variable x? On the surface it is bound by an existential quantifier so one 
might mistakenly skolemize it as ÿ((Man sk11) ÿ(Mortal sk11)) but that only talks of a specific, 
albeit unspecified, individual or individuals. The correct way to skolemize a formula is to first push the 
negation sign inside. That gives us the form, 

"xÿ(Man(x) ÿMortal(x))

in which x reveals its true form, being a universally quantified variable. The following somewhat 
disconnected inference illustrates the fact that the antecedent in an implication statement also has 
negation lurking inside it. The sentence reads “If there exists a number that is even and odd then the 
Earth is flat” and is formalized as, 

($x (Number(x)  Even(x)  Odd(x))) … Flat(Earth)

However if we rewrite the formulas as, 

ÿ($x (Number(x)  Even(x)  Odd(x)))  Flat(Earth) 
∫ "x(ÿ(Number(x)  Even(x)  Odd(x)))  Flat(Earth)
∫ "x(ÿ(Number(x)  Even(x)  Odd(x))  Flat(Earth))
∫ "x((Number(x)  Even(x)  Odd(x)) … Flat(Earth))

We can see that x is really universally quantified variable. The following example that asserts “A 
detective who has a sidekick is successful” also illustrates the point that a quantifier in the antecedent 
part of an implication statement is masquerading as the other quantifier.

"x (Detective(x) $y Sidekick(y, x)) … Successful(x))
∫ "x (ÿDetective(x) ÿ$y Sidekick(y, x)  Successful(x))
∫ "x (ÿDetective(x) "y ÿSidekick(y, x)  Successful(x))
∫ "x "y (ÿDetective(x) ÿSidekick(y, x)  Successful(x))
∫ "x "y (ÿ(Detective(x)  Sidekick(y, x))  Successful(x))
∫ "x "y (ÿ(Detective(x)  Sidekick(y, x)) … Successful(x))

In the unification algorithm the Skolem constants and function names are simply treated as constants34.
We illustrate this with a couple of examples.

From $x Even(x)
And "x (Even(x) … ÿOdd(x))
Infer $x ÿOdd(x)

When we skolemize the premises, we get, 

(Even SomeEvenNumber)
((Even ?x) … ÿOdd(x))

34 A constant can also be thought of as a function of arity 0, so the two are in fact similar. 
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With the substitution {?x = SomeEvenNumber } we can infer ÿOdd(SomeEvenNumber). The second 
example has two premises, “Everyone loves someone” and “If someone loves somebody then they care 
for them”. The goal is to show that everyone cares for someone. Assuming that the universe of discourse 
is people we can formalize these as, 

From "x $y Loves(x, y)
And "x "y (Loves(x, y) … CaresFor(x, y))
Infer "x $y CaresFor(x, y)

When we skolemize the premises we get, 

(Loves ?x (sk7 ?x))
(Loves ?z ?y) … (CaresFor ?z ?y)

Applying the substitution {?z = ?x, ?y = (sk7 ?x)}, we get the conclusion, 

(CaresFor ?x (sk7 ?x))

12.6 Incompleteness of Forward Chaining

The task of reasoning is to unravel the information that is implicit in a set of sentences. Forward chaining, 
and also backward chaining that we will look at later, has a problem with handling disjunctive facts. 
This is because such reasoning often involves reasoning by cases.

A rule that allows reasoning with disjunctive facts is the constructive dilemma that says, 

From (a … b)  (g … d)
and a g———————
Infer b d

We can employ the rule to solve the following problem, 

From: "x (Winner(x) … PhotoInPaper(x)
and: Winner(Sunil)  Winner(Anil)
Infer: PhotoInPaper(Sunil)  PhotoInPaper(Anil)

But in the absence of appropriate rules of inference it cannot extract some kinds of implicit information. 
We look at two examples. The first appears in (Charniak and McDermott, 1985) and the second one in 
(Brachman and Levesque, 2004).

The first problem says that given the facts that block A and block B are on the table , and that at least 
one of them is green, it is true that there exists a green block on the table. The premises are expressed 
together as follows.

Ontable(A)  Ontable(B)  (Green(A)  Green(B))

Since we do not have an appropriate rule of inference we cannot infer the fact, 

(Ontable(A)  Green(A))  (Ontable(B)  Green(B))

The second example is that, if block A is on block B, and block B is on block C, and if block C is green 
and block A is not green, then it is true that a block that is not green is on a green block. Or formally, 

From: On(A, B)
and: On(B, C)
and: ÿGreen(A)
and: Green(C)
Infer: $x $y (On(x, y) ÿGreen(x)  Green(y)
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The goal is indeed true, because if B is green then A on B satisfies the query. Else B is not green and 
B on C will satisfy it. Again forward chaining is unable to handle this problem.

Observe that both the problems involve an existential goal. Such goals – “is there an X…?” are quite 
common.

The difficulty however arises because of the presence of disjunctive facts. In the second problem one 
can meaningfully add fact (Green(B) ÿGreen(B)). Reasoning with disjunctive facts often involves 
reasoning with cases. Typically one develops two or more strands or chains of inferences and show that 
they combine to infer the consequent. The forward chaining procedure on the other cannot reason by cases.

In principle of course one can add more rules on the lines of the constructive dilemma rule, but that 
becomes cumbersome, and too specific. For example, one could add the following rule to solve the 
first problem.

From: b
and: d
and: a g———————.
Infer (b a)  (d g)

But that would be a specific rule for that particular inference. Observe that both the problems can 
easily be solved by applying proof by contradiction. Assume the negation of the goal, and show that it 
leads to a contradiction. This is precisely what Robinson’s resolution method does. Further the resolution 
method uses only one rule of inference and is still complete.

To apply the resolution method we first need to convert the first order sentences into the clause form, 
which is the analogue of the CNF in FOL.

12.6.1 Clause Form

A first order formula is in clause form if it is of the following form, 

"x1 "x2 … "xV (C1 C2 … CN)

where each Ci is a clause made of disjunction of literals, and
each literal is an atomic formula or its negation

The clause form contains only universal quantifiers. The consequence of having only universal 
quantifiers and all of them bunched up in the left is that one can in fact ignore the quantifiers during 
processing. That makes writing programs a little bit simpler.

It was shown by Thoralf Skolem that every formula can be converted into the clause form. The 
procedure for converting a first order formula into the clause form is as follows (see also (Manna, 1974), 
(Brachman and Levesque, 2004)). Given a FOL formula a,

1. Take the existential closure of a. This ensures that there are no free variables in the formula.
2. Standardize variables apart across quantifiers. Rename variables so that the same symbol does 

not occur in different quantifiers.
3. Eliminate all occurrences of operators other than , , and ÿ.
4. Move ÿ all the way in.
5. Push the quantifiers to the right. This ensures that their scope is as tight a possible.
6. Eliminate $.
7. Move all " to the left. They can be ignored henceforth.
8. Distribute  over .
9. Simplify

10. Rename variables in each clause (disjunction).
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At the end of this procedure the given first order formula is converted into an equivalent clause form. 
Most formulas will need only a few of the above steps. As an example let us convert the following using 
the steps described above.

(girl(y) "x (boy(x)…likes(x, y)) $x$z (boy(x) girl(z) loves(x, z))

1. $y((girl(y) "x (boy(x) likes(x, y)) $x$z(boy(x) girl(z) loves(x, z)))
2. $y((girl(y) "x(boy(x) likes(x, y)) $x1$z(boy(x1) girl(z) loves(x1, z)))
3. $y((girl(y) "x(ÿboy(x) likes(x, y)) $x1$z(boy(x1) girl(z) loves(x1, z)))
4. no change
5. no change
6. (girl(sk-y) "x(ÿboy(x) likes(x, sk-y))) (boy(sk-x1) girl(sk-z) loves(sk-x1,sk-z)))
7. "x((girl(sk-y) (ÿboy(x) likes(x, sk-y)) (boy(sk-x1) girl(sk-z) loves(sk-x1,sk-z)))
8. (girl(sk-y) boy(sk-x1)) (girl(sk-y) girl(sk-z)) (girl(sk-y) loves(sk-x1, sk-z))

(ÿboy(x) likes(x, sk-y) (boy(sk-x1)) (ÿboy(x) likes(x, sk-y) girl(sk-z))
(ÿboy(x) likes(x, sk-y) loves(sk-x1, sk-z))

9. no change
10. (girl(sk-y) boy(sk-x1)) (girl(sk-y) girl(sk-z)) (girl(sk-y) loves(sk-x1,sk-z))

(ÿboy(x) likes(x, sk-y) (boy(sk-x1)) (ÿboy(x5) likes(x5, sk-y) girl(sk-z))
(ÿboy(x6) likes(x6, sk-y) loves(sk-x1, sk-z))

The different avatars of variable x have been standardized apart (xA, xB, … , xF). This does not change 
the logical meaning of the sentence, since each of them still represents a universally quantified variable. 
That is, each of them is allowed to take any value.

12.7 Resolution Refutation in FOL

As with the propositional logic the procedure for finding a proof by the resolution refutation method 
is as follows, 

1. Convert each premise into clause form
2. Negate the goal and convert it into clause form
3. Add the negated goal to the set of clauses
4. Choose two clauses such that two opposite signed literals in them can be unified
5. Resolve the two clauses using the MGU and add the resolvent to the set
6. Repeat steps 4–5 till a null resolvent is produced

For the sake of completeness the resolution rule is defined as follows. A literal is an atomic formula. 
A clause is a disjunction of literals. Let Ci and Ck be two clauses with the structure, 

Ci = (L1 L2  … Lk P1 P2  … Pn)
Ck = (ÿR1 ÿR2  … ÿRs Q1 Q2  … Qt)

If q is the MGU for {L1, L2, … , Lk, R1, R2, …, Rs} then we can resolve Ci and Ck to give us the 
resolvent,

(P1q P2q  … Pnq Q1q Q2q  … Qtq)

That is we throw away all the positive literals Lj and negative literals ÿRi, and combine the remainder 
after applying the substitution q. Let us see a few examples.
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The three clauses for the Socratic argument are, 

C1 = (ÿ (Man ?x))  (Mortal ?x) premise
C2 = (Man Socrates) premise
C3 = (ÿ (Mortal Socrates)) negated goal

The following resolvents are generated, 

R1 = (Mortal Socrates) C1, C2, {?x = socrates}
R2 = C3, R1

Remember that applying a substitution {?x = socrates} is a kind of instantiation. When the value is 
a constant it is instantiation, but when the value is a function then it may simply be a restriction on the 
value the variable can take. The constant substitution is just an extreme case of restriction to one value.

Why does showing something on a restricted value be enough to “prove” the generalized formula? 
The procedure is correct because the resolution refutation method is used to show that the input formula 
is unsatisfiable or false. Remember that the formula is a universally quantified formula. Let us say we 
are trying to show that "x a(x) is false for some formula a. Then since the universal formula is a short 
form for the expanded version, 

"x a(x) ∫ a(c1) a(c2) a(c3)…

for all constants ci in the domain, if we can show that a(ck) is false for some k then the conjunct too 
becomes false. That is why it is enough to show that an instantiation (or a restriction) of a formula is false.

Let us try out the problem of finding whether Alice will go to college using the resolution refutation 
method. The clauses are, 

1. (likes Alice Math) 
2. (likes Alice stories)
3. (ÿ(likes ?x Math))  (likes ?x Algebra)
4. (ÿ(likes ?y Algebra))  (ÿ (likes ?y Physics))  (goesTo ?y College)
5. (ÿ (likes Alice stories))  (likes Alice Physics)
6. (ÿ (likes Alice Chemistry)) 
7. (ÿ (likes Alice History))
8. (ÿ (goesTo Alice College))

All but the last clause come from the premises. The last clause is the negated goal clause. We show 
the proof graphically in Figure 12.14.

We have chosen one of the many graphs that derive the null clause. This particular derivation actually 
produces the goal and then derives the contradiction using the negated goal. This might lead one to 
mistakenly believe that resolution is just another form of what forward chaining does. In fact it is not 
so. Resolution can do more that forward, or backward, chaining can do. It is a complete method. That 
means that it can prove all true formulas that are entailed by the premises. To illustrate that, let us look 
at the green blocks problems and see how resolution can find a proof for each of them.

The first problem says that given, 

Ontable(A)  Ontable(B)  (Green(A)  Green(B))

We need to show $x (Ontable(x)  Green(x)). The negation of the goal is "x(ÿOntable(x) ÿGreen(x))
The clauses are given below.

1. (Ontable A) premise
2. (Ontable B) premise
3. (Green A)  (Green B) premise
4. (ÿ (Ontable ?x))  (ÿ (Green ?x)) negated goal
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One possible derivation is, 

5. (ÿ (Green A)) 1, 4, ?x = A
6. (Green B) 3, 5
7. (ÿ (Ontable B)) 4, 6, ?x = B
8. 2, 7

One can observe that we have used the clause 4 twice, each time with a different substitution. The 
reader is encouraged to argue that there is no inconsistency in doing that.

The second problem says that given that A is on B, B on C, and A is not green while C is, to show 
that there is a “not green block” on a green one. The clauses are, 

1. (On A B) ) premise
2. (On B C) ) premise
3. (ÿ (Green A)) ) premise
4. (Green C) ) premise
5. (ÿ (On ?x ?y))  (Green ?x)  (ÿ (Green ?y)) negated goal

A derivation of the null clause is, 

6. (ÿ (On ?x C))  (Green ?x) 4, 5, ?y = C

7. (ÿ (On A ?y))  (ÿ (Green ?y)) 3, 5, ?x = A

8. (ÿ (Green B)) 1, 7, ?y = B

9. (Green B) 2, 6, ?x = A

10. 8, 9

FIGURE 12.14 A resolution refutation directed graph for the Alice problem. The negated goal, the 

source of the contradiction is shown in the shaded box.

y y
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In these problems it did not matter but ideally one should rename a variable every time a new clause 
is added. This is to avoid resolving two clauses with different variables having the same name.

12.8 Deductive Retrieval

Proving existential goals can also result in generating specific answers. Thus theorem proving can also 
be used generate answers to queries. The inference making ability enables the system to dig out facts 
that are implicit. In that sense theorem proving allows us to do more than just data base retrieval. We 
call this process as deductive retrieval.

The simplest example comes from the database {Man(Socrates), "x(Man(x)…Mortal(x)} and the 
goal $yMortal(y). The goal literally reads “there exists someone who is mortal”. It may also be read as a 
query “Is there someone who is mortal?”. The substitution, or instantiation, used in the theorem proving 
process will yield the answer. We look at the process in the resolution refutation setting.

The premises yield the following clauses, 

1. (Man Socrates)
2. (ÿ (Man ?x))  (Mortal ?x)

The negated goal is ÿ$yMortal(y) which is the same as "x ÿMortal(y), which gives us the clause 
(ÿ(Mortal ?y)). To extract the answer to the query we can add an answer predicate to the goal. We revise 
the goal to be $y(Mortal(y)  Answer(y)). We also need to modify the termination criteria from the null 
clause to include the presence of only the answer clause. The resulting negated clause is, 

 ● (ÿ (Mortal ?y))  (ÿ (Answer ?y))

Since the Answer predicate will not play any role in the proof finding process we can discard the 
negation sign and still interpret it as the value of the answer variable.

3. (ÿ (Mortal ?y))  (Answer ?y)

Now the same resolution method is used till we are left with an answer clause.

4. (Mortal Socrates) 1, 2, ?x = Socrates
5. (Answer Socrates) 3, 4, ?y = Socrates

And thus we have the answer as Socrates.
Let us try it with the problem of determining if there is a green block on the table we had solved 

earlier. Observe that there is no determinate answer. We have modified the goal clause in the following 
to include the answer predicate.

1. (Ontable A) premise
2. (Ontable B) premise
3. (Green A)  (Green B) premise
4. (ÿ (Ontable ?x))  (ÿ (Green ?x))  (Answer ?x) negated goal
5. (ÿ (Green A))  (Answer A) 1, 4, ?x = A
6. (Green B)  (Answer A) 3, 5
7. (ÿ (Ontable B))  (Answer B)  (Answer A) 4, 6, ?x = B
8. (Answer B)  (Answer A) 2, 7

The algorithm correctly terminates with the answer that it is either block A or block B.
There are some situations however when resolution method may not extract the answer because it 

can find a non-constructive proof. Let us look at a small example to illustrate this.
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Deduction is involved with unearthing hidden information in a set of facts. It is a valuable tool in the 
arsenal of a detective who has to solve a crime35. Let us apply deduction to yet another fictitious crime 
mystery. The facts available are as follows, 

“The culprit has to be one of Tinker, Tailor and Butler. The culprit was tall and dark. 
The culprit had to be in Chennai on the 10th of June. Tailor was in Mumbai on June 
10. Tinker is short.”

The query, expectedly, is, “who is the culprit?”
In formalizing the above problem we will introduce statements with equality, though it could be done 

without using them. The following section will address some of the problems that come with introducing 
equality. We will also need to put in some additional knowledge that we expect the detective to have. 
We will assume constants like Chennai and June10. The statements, including some additional common 
sense knowledge, are, 

1. Culprit(Tinker)  Culprit(Tailor)  Culprit(Butler) premise
2. "x (Culprit(x) … (Tall(x)  Dark(x)) premise
3. "x (Culprit(x) … Loc(x, Chennai, June10)) premise
4. Loc(Tailor, Mumbai, June10) premise
5. Short(Tinker) premise
6. "x (Short(x) … ÿ(Tall(x)) premise
7. "w"x"y"z ((Loc(w, x, y) ÿ(x = z)) … ÿ(Loc(w, z, y) premise
8. ÿ(Mumbai = Chennai) premise
9. ÿ(Chennai = Mumbai) premise

The goal is $x (Culprit(x) along with the answer predicate. We first convert the premises into clause 
form, switching notations as before, and then add the negated goal along with the answer predicate.

1. (Culprit Tinker)  (Culprit Tailor)  (Culprit Butler) premise
2. ( ÿ(Culprit ?x1))  (Tall ?x1) premise
3. ( ÿ(Culprit ?x2)  (Dark x2) premise
4. (ÿ (Culprit ?x3))  (Loc ?x3 Chennai June10) premise
5. (Loc Tailor Mumbai June10) premise
6. (Short Tinker) premise
7. (ÿ (Short x4)  (ÿ (Tall ?x4)) premise
8. (ÿ (Loc ?w ?x ?y))  (?x = ?z)  (ÿ (Loc ?w ?z ?y)) premise
9. ÿ(Mumbai = Chennai) premise

10. ÿ(Chennai = Mumbai) premise
11. (ÿ (Culprit ?c))  (Answer ?c) negated goal

The reader should verify that the given information is enough to deduce that the Butler is the culprit. 
However the resolution method may terminate with bindings that do not reveal anything. In fact, clauses 
1 and 11 are enough to derive the null clause.

12. Culprit(Tailor)  Culprit(Butler)  (Answer Tinker) 1, 11, ?c = Tinker
13. Culprit(Butler)  Answer(Tailor)  (Answer Tinker) 12, 11, ?c = Tailor
14. Answer(Butler)  Answer(Tailor)  (Answer Tinker) 13, 11, ?c = Butler

q.e.d.

35 “When you have eliminated all which is impossible, then whatever remains, however improbable, must be the truth.” - to quote 
Sherlock Holmes from The Adventure of the Blanched Soldier, by Sir Arthur Conan Doyle.
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This happens because statement 1 says that one of the three is the culprit while the negated goal says 
that there is no culprit. These two statements in themselves are a contradiction. Instead of choosing the 
general goal $x (Culprit(x) the reader is encouraged to try out specific goals like Culprit(Tinker) and 
Culprit(Butler) and verify that the latter can indeed be proved.

12.8.1 Handling Equality

Let us look at a larger example that also deals with the equality statement. Let a database of families be 
defined in terms of the mother and father relationships expressed as functions. The other relationships 
are defined in terms of the basic parent relationship. In the interest of brevity, we choose the following 
predicate and function symbols.

M(X) : function “mother of X”
F(X) : function “father of X”
P(X, Y) : predicate “X is parent of Y”
S(X, Y) : predicate “X is sibling of Y”
GP(X, Y) : predicate “X is grandparent of Y”
C(X, Y) : predicate “X is cousin of Y”

Let the known data of the Antararashtriya family have the following parent relationships expressed 
using sentences with equality.

M(Arushi) = Abigale
F(Arushi) = Anandan
M(Anna) = Abigale
F(Anna) = Anandan
F(Abigale) = Ayuta
M(Abigale) = Anahita
M(Ayuta) = Abeba
M(Akanksha) = Abeba
M(Abhay) = Akanksha
M(Aeden) = Akanksha
F(Abhay) = Adjate
F(Aeden) = Adjate

The other relationships are defined as follows, 

"x"y ((M(y) = x)  (F(y) = x)) … P(x, y))
"x"y ((M(x) = M(y) Ù (xπy)) … S(x, y))
"x"y"z (P(x, y) P(y, z)) … GP(x, z))
"x"y"z (GP(x, y) GP(x, z)) … C(y, z))
"x"y (C(x, y) … C(y, x))
"x"y (S(x, y) … S(y, x))

The data is expressed in terms of equality between terms. For equality terms to participate in the 
resolution process, we need some more rules describing the properties of the equality relation. These 
rules are, 

"x (x = x) identity
"x"y ((x = y) … (y = x)) symmetry
"x"y"z ((x = y)  (y = z)) … (x = z)) transitivity
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In addition, we need to assert that when the arguments of a function are equal then the functions map 
to the same value, and when the arguments of a predicate are equal then the two predicates are logically 
equivalent. We express these rules for a subset that we may require36.

"x"y ((x = y) … (M(x) = M(y)) substitution for function
"x1"y1"x2"y2 ((x1 = x2) (y1 = y2) … (P(x1, y1) ∫ P(x2, y2)) substitution for predicate
"x1"y1"x2"y2 ((x1 = x2) (y1 = y2) … (GP(x1, y1) ∫ GP(x2, y2)) substitution for predicate

Without any loss of generality we can substitute the equivalence relation in the last two with the 
implications, the ones we need.

"x1"y1"x2"y2 ((x1 = x2) (y1 = y2) … (P(x1, y1) … P(x2, y2)) substitution for predicate
"x1"y1"x2"y2 ((x1 = x2) (y1 = y2) … (GP(x1, y1)) … GP(x2, y2)) substitution for predicate

Let us say that the question we are asking is “Does Arushi’s mother have a cousin?” which is 
equivalent to asking whether the following is true, 

$x C(M(Arushi), x)

Figure 12.15 gives us a graphical view of the relationships in the database.

Abeba

Ayuta Anahita Akanksha Adjate

Anandan Abigail Abhay Aeden

Anna Arushi

FIGURE 12.15 A small family data base. Dashed lines represent the mother child relation while solid 

lines represent the father child relation.

As we can see from the figure Arushi’s mother Abigail has two cousins, Abhay and Aeden, from the 
data available.

We express the data base and the negated goal (along with the answer predicate) as a set of clauses 
in the list notation. We discard the outermost brackets when there is no ambiguity.

1. (M Arushi) = Abigail
2. (F Arushi) = Anandan
3. (M Anna) = Abigail

36 In general the functions and predicates can have an arbitrary number of arguments.
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4. (F Anna) = Anandan
5. (F Abigail) = Ayuta
6. (M Abigail) = Anahita
7. (M Anahita) = Abeba
8. (M Akanksha) = Abeba
9. (M Abhay) = Akanksha

10. (M Aeden) = Akanksha
11. (F Abhay) = Adjate
12. (F Aeden) = Adjate
13. (ÿ (M ?y1) = ?x1)  (P ?x1 ?y1)
14. (ÿ (F ?y2) = ?x2)  (P ?x2 ?y2)
15. (ÿ ((M ?x3) = (M ?y3))  (S ?x3 ?y3) (ÿ (P ?x4 ?y4))  (ÿ (P ?y4 z4))  (GP ?x4 ?z4)
16. (ÿ (GP ?x5 ?y5))  (ÿ (GP ?x5 z5))  (C ?y5 ?z5)
17. (ÿ (C ?x6 ?y6))  (C ?y6 ?x6)
18. (ÿ (S ?x7 ?y7))  (S ?y7 ?x7)

The equality related axioms, 

19. (?x8 = ?x8)
20. (ÿ (?x9 = ?y9))  (?y9 = ?x9))
21. (ÿ (?x10 = ?y10))  (ÿ (?y10 = ?z10))  (?x10 = ?z10))

The substitution related axioms for the function M, and predicates P and GP.

22. (ÿ (?x11 = ?y11))  ((M ?x11) = (M ?y11))
23. (ÿ (?x12 = ?x22))  (ÿ (?y12 = ?y22))  (ÿ (P ?x12 ?y12))  (P ?x22 ?y22)
24. (ÿ (?x13 = ?x23))  (ÿ (?y13 = ?y23))  (ÿ (GP ?x13 ?y13))  (GP ?x23 ?y23)

The negated goal along with the answer predicate is added to the set of clauses.

25. (ÿ (C (M Arushi) ?x))  (Answer ?x)

The proof is given below. The underlined predicates are the ones being resolved out in a later, usually 
next, statement.

26. (ÿ (GP ?x5 (M Arushi)))  (ÿ (GP ?x5 ?x)))  (Answer ?x) 26, 17, ?y5 = (M Arushi), ?z5 = ?x

27. (ÿ (?x13 = ?x5)) (ÿ (?y13 = (M Arushi)))  (ÿ (GP x13 y13))  (ÿ (GP ?x5 ?x))  (Answer ?x)
27, 25, ?x23 = ?x5, ?y23 = (M Arushi)

28. (Abigail = (M Arushi)) 1, 21, ?x9 = (M Arushi), ?y9 = Abigail

29. (ÿ (?x13 = ?x5)) (ÿ (GP x13 Abigail))  (ÿ (GP ?x5 ?x))  (Answer ?x) 26, 29, ?y13 = Abigail

30. (ÿ (?x13 = ?x5))  (ÿ (P ?x13 ?y4)) (ÿ (P ?y4 Abigail))  (ÿ (GP ?x5 ?x))  (Answer ?x) 30,

16 ?x4 = ?x13, ?z4 = Abigail

31. (ÿ (?x13 = ?x5))  (ÿ (P ?x13 ?y4)) (ÿ (M Abigale) = ?y4)  (ÿ (GP ?x5 ?x))  (Answer ?x) 31,

13, ?x1 = ?y4, ?y1 = Abigale

32. (ÿ (?x13 = ?x5)) (ÿ (P ?x13 Anahita))  (ÿ (GP ?x5 ?x))  (Answer ?x) 32, 6, ?y4 = Anahita

33. (ÿ (?x13 = ?x5)) (ÿ (M Anahita) = ?x13)  (ÿ (GP ?x5 ?x))  (Answer ?x) 33, 13, ?x1 = ?x13,

?y1 = Anahita

34. (ÿ (Abeba = ?x5))  (ÿ (GP ?x5 ?x))  (Answer ?x) 34, 7, ?x13 = Abeba
35. (Abeba = (M Akanksha)) 8, 21, ?x9 = (M Akanksha), ?y9 = Abeba

36. (ÿ (GP (M Akanksha) ?x))  (Answer ?x) 35, 36, ?x5 = (M Akanksha)

37. (ÿ (P (M Akanksha) ?y4))  (ÿ (P ?y4 ?x))  (Answer ?x) 37, 16, ?x4 = (M Akanksha), ?z4 = x
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38. (ÿ (M ?y4) = (M Akanksha))  (ÿ (P ?y4 ?x))  (Answer ?x) 38, 13, ?x1 = (M Akanksha), ?y1 = ?y4

39. (ÿ (?y4 = Akanksha))  (ÿ (P ?y4 ?x))  (Answer ?x) 39, 23, ?x11 = ?y4, ?y11 = Akanksha

40. (ÿ (P (M Abhay) ?x))  (Answer ?x) 40, 9, ?y4 = (M Abhay)

41. (ÿ (M ?x) = (M Abhay))  (Answer ?x) 41, 13, ?x1 = (M Abhay), ?y1 = ?x

42. (ÿ ((M ?x) = ?y10))  (ÿ (?y10 = (M Abhay)))  (Answer ?x) 42, 22, ?x10 = (M ?x), ?z10 =(M Abhay)

43. (Akanksha = (M Abhay)) 9, 21, ?x9 = (M Abhay), ?y9 = Akanksha

44. (ÿ ((M ?x)= Akanksha))  (Answer ?x) 43, 44, ?y10 = Akanksha

45. (Answer Abhay) 45, 9, ?x = Abhay

q.e.d.

Note that only one of the two answers is extracted.
The use of equality allows us more expressive power, but it does increase the number of inference 

steps required considerably. One popular method is to introduce another rule to the resolution method 
called Paramodulation (Robinson and Wos, 1969). Paramodulation allows one to substitute values 
directly during resolution. The rule is stated as follows, 

From: a  (t = s)
And: b r(t¢)
Infer: (a b r(s))q

where q is the most general unifier for t and t¢.
In the above proof for example applying the paramodulation rule to statements 27 and 1 we directly 

get,

(ÿ (GP ?x5 Abigale)  (ÿ (GP ?x5 ?x))  (Answer ?x)

which is a simpler form of statement 30!

12.9 Complexity of Resolution Method in FOL

The examples that we have given contain only the relevant inferences. To find that sequence of inferences 
is a kind of search problem. As one can see answering the question about Arushi’s mother’s cousin 
involved tracing the relationships from Arushi to Abhay in Figure 12.15. The search process could have 
wandered off in any of the other branches.

In general it has been shown that finding a proof is of exponential complexity. Armin Haken (1985) 
showed that one could construct problems in which the shortest proofs were of exponential length. He 
showed that in a proof of the pigeonhole principle the fact that (n + 1) elements cannot be sorted into 
n distinct bins, can be encoded as a CNF formula of O(n2) and that it required a proof of length that is 
exponential in n. So even if one were to somehow pick correct clauses to resolve, we would still need 
an exponential number of steps.

Resolution in FOL is both sound and complete. We have argued about the soundness in this chapter, 
but we will accept the completeness result without going into the details. Essentially the arguments on 
completeness centre around organizing the search in such a manner that it finds proofs of increasing 
length, and eventually the proof for the formula is found.

Decidability however is another matter. Also, the resolution method, and any other method operating 
upon full FOL for that matter, is not decidable. That means that the algorithm may not always terminate. 
When the goal is true, completeness results say that a proof can be found. However, when the goal is 
not true, or equivalently the set of clauses including the negated goal is not unsatisfiable, which means 
they are satisfiable then the proof finding procedure may go into an infinite loop.



Chapter 12: Logic and Inferences 471

When the domain is finite, then the entire set of FOL statements can be expanded into propositional 
logic statements. This can be done by exploiting the fact that the universal quantifier is essentially a 
conjunction and the existential one a disjunction. For example in a universe of discourse containing the 
three numbers {1, 2, 3} the following statements can be expressed in propositional logic.

"x Even(x) can be replaced by (Even(1)  Even(2)  Even(3))
$x Even(x) can be replaced by (Even(1)  Even(2)  Even(3))
"x$z (LessThan(x, z)) can be replaced by37,
(LessThan(1, 1)  LessThan(1, 2)  LessThan(1, 3))
(LessThan(2, 1)  LessThan(2, 2)  LessThan(2, 3))
(LessThan(3, 1)  LessThan(3, 2)  LessThan(3, 3))

Note that that the constituent formulas are not necessarily true.
A rule like "x"y[LessThan(successor(x), y) … LessThan(x, y)] will get replaced by

(LessThan(successor(1), 1) … LessThan(1, 1))
(LessThan(successor(1), 2) … LessThan(1, 2))
(LessThan(successor(1), 3) … LessThan(1, 3))
(LessThan(successor(2), 1) … LessThan(2, 1))
(LessThan(successor(2), 2) … LessThan(2, 2))
(LessThan(successor(2), 3) … LessThan(2, 3))
(LessThan(successor(3), 1) … LessThan(3, 1))
(LessThan(successor(3), 2) … LessThan(3, 2))
(LessThan(successor(3), 3) … LessThan(3, 3))

As one can see this can become cumbersome, and one has also to worry about definitions of functions 
like successor(x), which is not defined for the number 3. However whenever one can convert a set of 
formulas to propositional logic one can rely on the fact that the proof procedures are decidable. They 
will terminate one way or the other. FOL on the other hand allows us to talk of infinite sets, and it is in 
reasoning with infinite sets that the danger of being undecidable lurks. The procedure may keep trying 
out a never ending sequence of bindings.

We look at an example to illustrate the fact. Given the set of (true) formulas, over the domain of 
natural numbers, 

1. "x"y[LessThan(succesor(x), y) … LessThan(x, y)]
2. "x"y[LessThan(x, y) … LessThan(successor(x), successor(y))]
3. "xLessThan(0, successor(x))

and the goal LessThan(successor(successor(0)), successor(successor(successor(0)))) one can indeed find 
a derivation of the null clause, because the formula is true. This is left as an exercise. However given a 
goal that is not true, for example “LessThan(successor(0), successor(0))” the procedure may never end, 
generating a sequence of clauses as shown below, 

1. (ÿ (LessThan (successor ?x1) ?y1)  (LessThan ?x1 ?y1)
2. (ÿ (LessThan ?x2 ?y2)  (LessThan (successor ?x2) (successor ?y2))
3. (LessThan 0 (successor ?x3))
4. (ÿ (LessThan (successor 0) (successor 0))) negated goal
5. (ÿ (LessThan 0 0)) 2, 4, ?x2 = 0, ?y2 = 0
6. (ÿ (LessThan (successor 0) 0)) 1, 5, ?x1 = 0, ?y1 = 0

37 We map LessThan(x, y) to (x<y) in the domain.
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7. (ÿ (LessThan (successor (successor 0)) 0)) 1, 6, ?x1 = (successor 0), ?y1 = 0
8. (ÿ (LessThan (successor (successor (successor 0))) 0)) 1, 7, ?x1 = (successor (successor 

0)), ?y1 = 0
  
  
  

12.10 Horn Clauses and SLD Resolution

A restricted form of clauses, known as Horn clauses, named after the mathematician Alfred Horn (1951), 
admits a resolution strategy that can result in shorter proofs. The strategy known as SLD resolution 
(Selected literals, Linear pattern, over Definite clauses) was introduced by Robert Kowalski (1974; 
1979; 1988) (see also (Kowalski and Kuehner, 1971), (Apt and van Emden, 1982)).

Kowalski showed that logic could be used as a programming language. Based on his work Alain 
Colmerauer and Philippe Roussel devised the language Prolog in 1972 (Colmerauer, 1985), (Colmerauer 
and Roussel, 1993). Prolog is an abbreviation of the phrase in French “programmation en logique”. The 
first compiler for Prolog was written by David Warren at the University of Edinburgh, and he went on 
to devise the Warren Abstract Machine (WAM) that makes the task of efficient logic programs feasible 
(Warren, 1982; 1983). Logic programming caught the fancy of the computing community in the seventies 
and the eighties because it promised a declarative style of programming in which the programmer had 
only to specify the logical relations between the input and output, and leave the task of the controlling the 
sequence of commands to the language interpreter (Kowalski, 1979a). However, there is no free lunch 
and, as we shall look at briefly, the idea of ‘programming” is still necessary if one is to write efficient 
code. A well known book on Prolog has been (Clocksin and Mellish, 2003). A good introduction to logic 
programming can be found in (Sterling and Shapiro, 1994), an account of its theoretical foundations in 
(Lloyd, 1984), and a recent introduction to Prolog in (Blackburn et al, 2006). 

A Horn clause is a clause with at most one positive literal. Thus, it is of the form, 

ÿD1 ÿD2 … ÿDk Dk+1

It is also convenient to think of a Horn clause like the one above as a rule,

(D1 D2 … Dk) … Dk+1

The two forms are logically equivalent. The key feature is that a Horn clause does not allow a 
disjunction in the consequent. This also means that disjunctive uncertainty cannot be expressed in Horn 
clause logic. One cannot make a statement like (Green(A)  Green(B)) because that is not a Horn clause. 
A conjunction can be incorporated by having rules to infer the individual elements, and another rule to 
infer the consequent. For example, if one wants to assert (A B) … (C D), one could write the rules, 

(A B) … C

(A B) … D

(C D) … F

where F stands for the conjunct, or F ∫ (C D).
A Horn clause may made up of only a positive literal, like “A”, and such a literal is also known as a 

fact. A fact is like a consequent with no antecedents.
A Horn clause which has a positive literal is known as a definite or positive clause; else it is called 

a negative clause. The empty clause is a negative Horn clause. In any resolution step at least one of the 
parent clauses must be a positive clause.
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We are interested in deriving a clause G from a set of Horn clauses S. In the resolution method we 
add ÿG to the set of clauses. If a clause C is derivable from a set of Horn clauses S, we say that S C.

Given a set of Horn clauses and a negative clause C that can be derived by applying resolution steps, 
one can always construct a derivation in which every resolvent is a negative clause (Brachman and 
Levesque, 2004). This holds true of the derivation of the null clause as well, because it too is a negative 
clause. We illustrate how this can be done by taking a small example. In Figure 12.16, the derivation 
on the left has a positive resolvent. The derivation on the right derives the same final clause, but does 
not contain a positive resolvent. Such a derivation uses one negative clause and one positive clause to 
resolve at each step. Given a derivation of a negative clause with positive resolvents one can always 
transform it by eliminating the lowest positive resolvent as shown in the figure, and repeating the process 
till all resolvents are negative.

^ ^

ÿE C
^

ÿ ÿD A
^

ÿE C
^

ÿ  ÿF C D
^ ^

ÿD Aÿ
^

ÿ     ÿ ÿE F A

^ ^
ÿ     ÿ ÿE F A

^ ^
ÿ     ÿ ÿE F A

^ ^
ÿ ÿE F D

ÿF ÿC D

^^

FIGURE 12.16 The figure on the left has a positive resolvent, shown in the shaded box. The equivalent 

derivation on the right has only negative resolvents. One can transform a derivation with positive 

resolvents to one with only negative resolvents by picking the lowest positive resolvent and applying a 

transformation like the one above.

An SLD resolution imposes a further constraint on the structure of the derivation: Of the two clauses 
chosen, one must be the last clause derived, and the other must be one of the original clauses. Since each 
step involves one positive and one negative clause, and since each resolvent is negative, it implies that 
each positive clause chosen from resolution must be from the original set. It also implies that except for 
the first resolution step, only positive clauses from the original step are used.

It has been shown that if a set of Horn clauses is unsatisfiable then there exists an SLD derivation 
of the null clause. Figure 12.17 below depicts the structure of SLD resolution with Horn clauses. The 
shaded boxes represent positive clauses, and the others negative clauses.

FIGURE 12.17 An SLD derivation with Horn clauses starts with a negative and a positive clause from 

the given set of clauses. At each stage the new resolvent is resolved with a positive clause from the 

original set. Shaded boxes represent positive clauses and the blank ones negative clauses.
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Only one negative clause from the original set will ever be used. If one is to derive the null clause, 
then the original negative clause must be the negated goal, because that is what leads to the contradiction. 
All other clauses used are positive or definite. A definite clause with only a positive literal is a fact, and 
a definite clause with negative literals as well is a rule. The set of clauses in the Alice problem described 
in Section 12.3.2 are Horn clauses, and hence an SLD resolution is possible. The following figure shows 
an SLD variation of the derivation from Figure 12.10.

Q ÿQ S
^

P ÿP R
^

R S T
^ ^

ÿT ÿU ÿV

ÿR ÿS
^

ÿP ÿS
^

ÿS

ÿQ

ÿ ÿ

FIGURE 12.18 An SLD derivation for the problem from Figure 12.10.

Observe that the clauses ÿU and ÿV are not definite clauses and cannot take part in a derivation for 
a definite goal (with its negation as negative). Such negative facts can be handled by converting them 
to clauses like U¢ and V¢ where U¢ ∫ ÿU, and V¢ ∫ ÿV. If one had a negative goal for example ÿU it 
could be proved trivially but Prolog does not allow negative goal clauses. Instead, Prolog implements 
a feature called negation as failure. We shall look at that briefly in the next section.

SLD resolution is not complete in general. For example, one cannot show that the following set of 
clauses is unsatisfiable using SLD resolution, 

1. P Q

2. P ÿQ

3. ÿP Q

4. ÿP ÿQ

But it has been shown to be complete for Horn clauses, and hence for whatever knowledge bases one 
can write in Horn clause form there exists the possibility of constraining search to find proofs faster.

A logic program is a set of definite clauses. Each negative clause represents a possible goal, shown 
as an open box in Figure 12.17. Observe that a disjunctive goal would result in a set of negative clauses. 
Each call to the program with a goal invokes a custom made sequence of inferences. In that sense a logic 
programming language is not a procedural language. The programmer does not have to specify what 
to do next. She has to only specify the relations between the different statements in terms of rules and 
facts. Combined with the fact that one can extract the answer from the variable bindings, logic can be 
used to do whatever any other programming language can. Horn clauses are a Turing complete subset 
of FOL. This can be shown by writing a Turing machine interpreter in Prolog38.

38 See for example http://en.wikipedia.org/wiki/Prolog
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The interesting thing that Kowalski showed was that theorem proving could be used to compute any 
function. As an example we look at the problem of appending two lists (also described in (Charniak 
and McDermott, 1985)).

A list is represented as a binary tree, where the left child is the head of the list and the right child 
is the tail. The right child may be an empty list as well. Figure 12.19 shows three lists and their tree 
representations.

A

B

A

B

C

D

A

B

C

FIGURE 12.19 The tree structures for the lists [A B], [A B C D], and [[A B] C] respectively. The circular 

node is also known as the dotted pair or the cons pair. The left child points to the head of the list and the 

right child to a list that is the tail of the given list.

The internal nodes are also called dotted pairs (Left.Right) or cons pairs (cons Left Right). The left 
element is the head of the list and the right element is a list that is the tail. The right element may be 
empty. We will use the following equivalent notation in which “nil” is another way of representing an 
empty list ( ).

[A B] = (cons A (cons B nil))
[A B C D] = (cons A (cons B (cons (C (cons D nil))))
[[A B] C] = (cons (cons A (cons B nil)) (cons C nil))

In logic programming a program to append two lists is basically a definition of what it means to 
append two lists. The predicate append(X, Y, Z) is true when Z is the result of appending lists X and Y.
The following axioms completely define the append relation.

"x append(nil, x, x)
"x"y"z"c (append(x, y, z) … append(cons(c, x), y, cons(c, z)))

Which in clause form with variables standardized apart may be written as, 

(append () ?z ?z)
(ÿ (append ?x1 ?x2 ?y))  (append (cons ?c ?x1) ?x2 (cons ?c ?y)

These two clauses represent a program to append two lists!
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A call to this program may be made by specifying a goal. For example, we could ask whether 
append([This and] [that] [This and that]) is true or not39. We could also plug in variables to ask queries 
like $x append([A B], x, [A B C D]), or $x append([A B], [C D], x). The last query corresponds to the 
standard use of an append program, but a logic program allows us more flexibility. A derivation for 
the query $x append([A B], [C D], x) accompanied with an Answer predicate is shown in Figure 12.20.

(append () ? ? )z z (ÿ(append ? ? ? ) (append (cons ? ? ) (cons ? ? ))x x y c x c1 2 1 y

^ ^

(ÿ(append (cons (cons ()) (cons (cons ()) ? ) )∨(Answer ? )A B C D x x

(ÿ(append (cons ()) (cons (cons ()) ? )) (Answer (cons ? ))B C D y A y1 1
^

(ÿappend (() (cons (cons ()) )) (Answer (cons (cons ? )))C D y A B y2 2

^

Answer (cons (cons (cons (cons ())))))A B C D

{?c = , ? = (cons ()),
? = (cons (cons ())
? = (cons ? ) ? = ? }

A x B
x C D
x A y y y

1

2

1 1

{? = , ? = {}, = (cons (cons ())c B x C D1
? = (cons ? ) ? = ? }y A y y y1 2 2

{? = (cons (cons ()),
? = (cons (cons ())}

z C D
y C D2

FIGURE 12.20 A resolution refutation to append two lists. Appending the lists [A B] with [C D] yields 

the list [A B C D]. The formulas unified at each stage are underlined.

The derivation is saying that the goal (ÿ(append (cons A (cons B ()) (cons C (cons D ()) ?x)) is true 
when ?x is bound to (cons A (cons B (cons C (cons D ())))) which is the same as [A B C D]. One might 
observe that the only rule clause in the program is used more than once. This is consistent with the 
recursive definition of the append relation.

12.11 Backward Chaining

An SLD derivation on Horn clauses can be seen as a backward chaining process on the set of rules. A goal 
Q is something that we want to show to be true. If the goal exists as a fact then it is true by definition. 
Otherwise if there is a rule P … Q whose consequent matches the goal then we regress over the rule to 
produce a sub-goal Q to replace the original goal. If the antecedent has more than one sentence then we add 
all those to the set of goals. If a goal matches a fact then it is removed from the set. The procedure terminates 
when the goal set is empty. The procedure is reminiscent of backward state space planning of Chapter 7.

We illustrate the process first with the propositional version of the Alice problem and then describe 
the FOL version.

The given data is repeated here, 

1. (P Q) not Horn clause
2. (P … R)
3. ((R S) … T)
4. (ÿQ S)
5. (ÿU ÿV) not definite clause

39 We use the square bracket list notation in text for ease of reading, and the cons notation in the logic clauses. 
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Of these we select the ones corresponding to the definite clauses and express them as facts and rules 
equivalent to the set of Horn clauses.

1. P

2. Q

3. (P … R)
4. ((R S) … T)
5. (Q … S)

The required goal is T. We initialize the goal set to T, and use { } notation to distinguish goals from 
facts. The following derivation mirrors the SLD resolution of Figure 12.18.

1. {T} given goal
2. {R, S} chaining T with 4
3. {P, S} chaining R with 3
4. {S} removing P due to 1
5. {Q} chaining S with 5
6. { } removing Q due to 2

The procedure adopted is to start with the given goal (set) and reduce it to empty goal set. The goal 
was not negated and added as a clause, resulting in a contradiction. Instead a separate notation for goals 
was introduced, and the procedure continues till the goal set becomes empty.

The backward chaining step using modus ponens for FOL may be formulated as follows.
Given a goal set {…f…} containing f and a rule b … d we can define a backward chaining step as 

follows.
If f and d have a unifier q then replace the sub-goal f with the sub-goal bq in the goal set to get 

{…b…}q.
The backward chaining algorithm can then be written as in Figure 12.21.

BackwardChaining(F : facts, R : rules, g : goal)

1 goalSet ¨ (g)

2 proof ¨ ()

3 theta ¨ ()

4 while goalSet π ()
5 do subGoal ¨ Head(goalSet)

6 goalSet ¨ Rest(goalSet)

7          if there exists a substitution beta s.t. Apply(beta, subGoal) Œ S

8             then proof ¨ Cons((Apply(beta, subGoal), “Premise” ), proof)

9 else CHOOSE r = ((antecedents) (consequent)) Œ R

10                          s.t. alfa ¨ Unify(consequent, subGoal) π FAIL

11 if no such rule exists

12 then return FAIL

13 goalSet ¨ Apply(alfa, goalSet)

14 theta ¨ Apply(alfa, goalSet)

15 antecedents ¨ Apply(alfa, antecedents)

16 theta ¨ Append(alfa, theta)

17 goalSet ¨ Append(antecedents, goalSet)

18 proof ¨ Cons((subGoal, r), proof)

19 return proof

FIGURE 12.21 The backward chaining algorithm starts with the goal and regresses over rules till 

it finds facts in the database. The function “Apply(beta, list)” applies the substitution beta to the list. 

The algorithm employs a non-deterministic “Choose” operator that chooses an appropriate rule and a 

unifier. In practice a backtracking algorithm is applied.
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The above algorithm can be thought of as a first cut interpreter for Prolog. Prolog does not return the 
proof, but only the goal clause with appropriate bindings. It also allows for more control in the hands 
of the programmer.

Prolog too chooses the first goal that comes its way. In addition, it also chooses the first rule and 
the unifier that fits, but that may be a wrong choice. In our algorithm above we have assumed a non-
deterministic choose operator that chooses the correct rule and unifier. In Prolog it is the programmer 
that defines the order in which rules are tried, and the order is the order in which the programmer writes 
them! Even then the program may have to backtrack and try different choices.

In pure logic programming the user does not have to worry about the order in which statements are 
made. One passes on the burden of finding the correct clauses to resolve to the (non-deterministic) 
inference engine. In practice inference engines are not (yet) smart enough to make the correct choices, and 
in languages like Prolog one has to carefully order the statements. This is needed not only for efficiency 
in terms of number of logical inferences required40, but often also for termination. A good programmer 
writes programs that do not get into infinite loops. A good logic programmer orders her clauses so that 
the inference engine does not wander down a wild goose chase (in an infinite loop).

Prolog inverts the notation of writing a rule, with the consequent on the left and the antecedents 
on the right. It uses the symbol “:-“ to separate the consequent from the antecedents, and a comma to 
separate the antecedents. The Alice problem in FOL written in Prolog like rules would be as follows, 

1. likes(alice, math). 
2. likes(alice, stories).
3. likes(X, algebra) :- likes(X, math).
4. goesTo(X, college) :- likes(X, algebra), likes(X, physics).
5. likes(alice, physics) :- likes(alice, stories).

Prolog uses capitalized words for variables, and words beginning with lower case letters for constants. 
A rule is read as “consequent if antecedents”. For example “someone likes to go to college if she likes 
algebra and likes physics” (rule in line 4 above). The advantage of writing the consequent on the left is 
that given a goal the interpreter just has to go down the program looking at only the first predicate in 
each line, known as the head of the clause. If a match is found either it is a fact, or a consequent of a 
rule. If it is a fact success has been achieved for the goal. If it is a consequent, recursive calls are made 
with the antecedents starting from the leftmost. As shown below, given a goal, the interpreter answers 
either with a “yes”, or variable bindings that succeed, or “no”. A query is typed in starting with “?-“.

?- goesTo(alice, college).
yes

?- goesTo(X, college)
X = Alice

The “no” means that the interpreter has been unable to prove the goal. Since backward chaining with 
Horn clauses is complete41, it also means the goal is not entailed by the set of definite clauses.

40 In the early eighties the Japanese government embarked upon the Fifth Generation computing program in which the heart of 
the machine was a logic programming system (Feigenbaum and McCorduck, 1983). The speeds were to be measured in LIPS 
(Logical Inferences Per Second). 

41 Like forward chaining, it is not complete for general FOL.
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12.11.1 Goal Trees

The search space explored by backward chaining, and hence by SLD resolution with Horn clauses, is a 
goal tree, as described in Chapter 6.

Let us formulate the planning an outing problem of Chapter 6 as Prolog clauses. The task or goal is 
to make appropriate choices for an evening out with a friend.

outingPlan(X, Y, Z) :- eveningPlan(X), moviePlan(Y), dinnerPlan(Z).
eveningPlan(X) :- outing(X), likes(friend, X).
moviePlan(X) :- movie(X), likes(friend, X).
dinnerPlan(X) :- restaurant(X), likes(friend, X).
outing(mall).
outing(beach).
movie(theMatrix).
movie(artificialIntelligence).
movie(bhuvanShome).
movie(sevenSamurai).
restaurant(pizzaHut).
restaurant(saravanaBhavan).
likes(friend, beach).
likes(friend, theMatrix).
likes(friend, bhuvanShome).
likes(friend, saravanaBhavan).

We have added the preferences of the friend explicitly. The goal tree explored by backward search 
is shown in Figure 12.22 below. The tree generated for the given problem has only AND nodes. If any 
goal was the consequent of more than one rule the tree would have OR nodes as well. In the given tree 
the OR choices occur only at the lowermost level. While making those choices the algorithm should 
bind different occurrences of any variable to the same value.

Our backward chaining algorithm made the correct choices in a non deterministic manner. In practice 
a deterministic algorithm may have to backtrack if wrong choices are made. Prolog uses a depth first 
search approach and would have searched the tree as follows.

1. {outingPlan(X, Y, Z)}   theta = { }
2. {eveningPlan(X), moviePlan(Y), dinnerPlan(Z)}  theta = { }
3. {outing(X), likes(friend, X), moviePlan(Y), dinnerPlan(Z)} theta = { }
4. {likes(friend, mall), moviePlan(Y), dinnerPlan(Z)}  theta = {X=mall}
5. {“fail”, moviePlan(Y), dinnerPlan(Z)}   theta = {X=mall}
6. {outing(X), likes(friend, X), moviePlan(Y), dinnerPlan(Z)} theta = { }backtrack
7. {likes(friend, beach), moviePlan(Y), dinnerPlan(Z)} theta = {X=beach}
8. {moviePlan(Y), dinnerPlan(Z)}  theta = {X=beach}
9. {movie(Y), likes(friend, Y), dinnerPlan(Z)}  theta = {X=beach}

10. {likes(friend, theMatrix), dinnerPlan(Z)}  theta = {X=beach, Y=theMatrix}
11. {dinnerPlan(Z)} theta = {X=beach, Y=theMatrix}
12. {restaurant(Z), likes(friend, Z)} theta = {X=beach, Y=theMatrix}
13. {likes(friend, pizzaHut)} theta = {X=beach, Y=theMatrix, Z=pizzaHut}
14. {“fail”} theta = {X=beach, Y=theMatrix, Z=pizzaHut}
15. {restaurant(Z), likes(friend, Z)} theta = {X=beach, Y=theMatrix} backtrack
16. {likes(friend, saravanaBhavan)} theta = {X=beach, Y=theMatrix, Z= saravanaBhavan }
17. { } theta = {X=beach, Y=theMatrix, Z= saravanaBhavan }
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What would have happened if your friend liked neither the Pizza Hut nor Saravana Bhavan? The 
algorithm would have backtracked and attempted the next choice of a movie. That sub-goal would 
eventually have succeeded with the movie Bhuvan Shome. Now it would go over the choices of the 
restaurants all over again even though we can see that those choices are bound to fail.

To prevent such fruitless backtracking Prolog allows the programmer to mark certain sub-goals with 
the cut operator. Using the cut operator, for which Prolog uses the symbol “!”, we can rewrite the rule 
as follows.

outingPlan(X, Y, Z) :- eveningPlan(X), !, moviePlan(Y), !, dinnerPlan(Z).

The second cut in the above rule essentially says the following: If the eveningPlan(X) goal and the 
moviePlan(Y) goal have succeeded with some bindings of the variables X and Y, and if the dinnerPlan(Z)

goal fails for all bindings of Z, then there is no need to backtrack to the eveningPlan(X) and moviePlan(Y)

goals to try different bindings. Instead the parent goal outingPlan(X, Y, Z) should report “fail”. Even 
the next clause if there is one for the parent goal is not tried. The cut operator here prevents futile 
backtracking in the given situation.

The cut operator, along with a built in predicate called “fail” (of arity 0), is used to define negation 
as failure in Prolog. Consider an example where one wants to state a rule but with an exception. Say 
we want to assert that Balaji likes all movies except emotional dramas. We could assert that as follows:

1. likesMovie(balaji, X) :- emotionalDrama(X), !, fail.
2. likesMovie(balaji, X) :- movie(X).

3. movie(X) :- emotionalDrama(X).
4. movie(X) :- actionFilm(X).

FIGURE 12.22 The goal tree explored by backward chaining is shown in solid arrows. The matching 

facts are shown in the boxes in the shaded region. Prolog searches the tree in a depth first manner left 

to right.
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5. movie(X) :- scienceFictionFilm(X).
6. movie(X) :- comedyFilm(X).

7. comedyFilm(chupkeChupke).
8. comedyFilm(toBeOrNotToBe).
9. scienceFictionFim(theMatrix).

10. scienceFictionFilm(bladeRunner).
11. actionFilm(whereEaglesDare).
12. emotionalDrama(scenesFromAMarriage).

Lines 3–6 define different genres of films. Lines 7–12 give some examples of the different genres. 
Lines 1 and 2 say that Balaji likes all movies except emotional dramas. The way that works is as follows. 
If we make the query, 

?- likesMovie(balaji, bladeRunner).
yes

the answer will be yes. This is because Prolog first tries rule 1, in which the subgoal 
emotinalDrama(bladeRunner) fails. It backtracks and tries rule 2, which eventually triggers the rule in 
line 5 that succeeds.

If now we ask, 

?- likesMovie(balaji, scenesFromAMarriage).
no

Prolog will say no. This happens because the emotionalDrama sub-goal in rule 1 succeeds. The 
inference engine then proceeds to the next predicate cut, which succeeds by definition, and finally to 
the last one that returns “fail”. Now because of the cut operator the inference abandons its search and 
reports “fail” which Prolog interprets as “no”.

Observe that the ordering of the clauses is critical. If the order of clauses 1 and 2 were to be changed 
then the results would have been different. Also note that an existential query “Does there exist a movie 
that Balaji likes?” will fail too. As an exercise the reader is encouraged to modify the clauses such that 
this query too is answered correctly.

The use of cut in the movie example changed the meaning of the clauses. The clauses now entail that 
Balaji does not like movies that are emotional dramas. Such cuts are known as red cuts, as opposed to 
green cuts like the one in the evening plan example that are only their for efficiency.

One can use the cut-fail combination to define the negation of a predicate as failure to prove it. If the 
goal is G then the following set of statements defines negation as failure.

neg(G) :- G, !, fail.
neg(G).

If G is true then due to the first line fail (no) is returned, else true (yes) is returned. We can in fact 
write our rule for Balaji in one line as follows, 

likesMovie(balaji, X) :- movie(X), neg(emotionalDrama(X)).

This says that Balaji likes all movies as long as they are not emotional dramas.
Negation as failure provides us a useful tool for defining compliments of sets. For example we can 

define the following, 

compositeNumber(N) :- neg(primeNumber(N)).
or, 

weakStudent(S) :- neg(brightStudent(S), neg(averageStudent(S).
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We will not get into the intricacies of Prolog, but only make the observation that while it may be 
sufficient to describe the relations in a logic programming language, it becomes necessary to do so with 
extreme care if one is to implement efficient systems. So much so that writing the rules in a language 
like Prolog involves as much skill as writing programs in other languages. We illustrate this point in 
closing with presumably the most common activity in data processing, that of sorting a list.

The following program describes perfectly well what it means to sort a list (see also (Lloyd, 1984)).

1. sort(X, Y) :- permutation(X, Y), sorted(Y).
2. permutation(( ), ( )).
3. permutation (cons(X, Y), cons(U, V)) :- remove(X, cons(U, V), Z), permutation(Y, Z).
4. remove(X, cons(X, Y), Y).
5. remove(X, cons(Z, Y), cons(Z, U)) :- remove(X, Y, U).
6. sorted(( )).
7. sorted(cons(X, ( )).
8. sorted (cons (X, cons (Y, Z))) :- SmallerOrEqualThan(X, Y), sorted(cons(Y, Z)).

Line 1 says that sorting X gives Y, or Y is a sorted version of X, if Y is a permutation of X and Y is 
sorted. Lines 6–8 define the meaning of being sorted. Lines 6 says an empty list is sorted, and line 7 
says that a list of one element is sorted. Line 8 says that a list is sorted if the first element is smaller than 
or equal to the second element, and the tail of the list is sorted. Lines 2–5 define permutation. Line 2 
states the base case of two empty lists. Line 3 says that list whose head is X and tail Y, is a permutation 
of another list whose head is U and tail V, if one can remove X from the second list to give list Z, and 
Z is a permutation of Y. Lines 4 and 6 define the remove “operation”.

The important thing is that while the above logic program will indeed sort X to give the output Y,
it will do so in a painstakingly slow manner. It will essentially plod through permutations till it finds 
the one that is sorted. In contrast, the following logic program is in fact an implementation of the well 
known Quicksort algorithm.

1. quicksort(cons(Xhead, Xtail) , Y) :-
        partition(Xhead, Xtail, SmallerOrEqual, Bigger), 
                                       quicksort(SmallerOrEqual, SortedSOE), 
                                       quicksort(Bigger, SortedB), 
                                       append(SortedSOE, cons(Xhead, SortedB)).

2. quicksort(( ), ( )).
3. partition(Pivot, cons(HeadList, TailList), cons(HeadList, Sm), Bg) :-

        SmallerOrEqualThan(HeadList, Pivot), partition(Pivot, TailList, Sm, Bg)
4. partition(Pivot, cons(HeadList, TailList), Sm, cons(HeadList, Bg) :-

        LessThan(Pivot, HeadList), partition((Pivot, TailList, Sm, Bg).
5. partition(Pivot, ( ), ( ), ( )).

Line 1 says that partition the tail of the given list into smaller and bigger elements by choosing the 
head (first element) as pivot, recursively (quick)sort the two lists, and append the results, with the pivot 
inserted between them. Line 2 is the base case to end the recursive calls. Line 3 picks the first element 
if it smaller or equal, and makes a recursive call to partition. Line 4 picks it if it is larger. Line 5 ends 
the recursive calls to partitioning.

Usually, it is a good practice to write the base clauses in recursion first. Sometimes it is necessary for 
completeness. For example the following definition of natural numbers works only when the clauses 
are the given order, assuming that the successor function is defined over the entire set of positive and 
negative numbers.
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naturalNumber(0).
naturalNumber(successor(N)) :- naturalNumber(N).

In the quicksort example, though we have written the base clauses after the rules. This has been done 
because most of the time the goal will not have empty lists as arguments, and the chosen order saves on 
calls to unification. It is correct because when the base clause does occur, the goal will not match the 
consequent part of the rule, and the base clause will be tried next.

12.12 Second Order Logic

The move from propositional logic to first order logic involved the introduction of variables and 
quantifiers over those variables. In propositional logic, the smallest unit was the proposition. But with 
the hindsight of FOL one could think of propositional logic as employing predicates with constants as 
arguments. For example the statement “Socrates is mortal” can be thought of as “mortal(Socrates)”. 
The use of quantifiers in FOL enabled one to talk of predicates being true over some assignments to 
variables or over all assignments.

In FOL a predicate symbol stood for a specific relation on the domain. One could think of a second 
order logic as a logic that allows variable predicates. Given that a predicate of arity N is a subset of the 
DN, where D is the domain, the number of such subsets is the power set of the cross product. This gives 
us a glimpse of the number of values a predicate variable can take.

Kurt Gödel showed in his Incompleteness Theorem that a second order or more powerful logic cannot 
be complete and consistent at the same time. The proof of the theorem revolves around the construction 
of self referential sentences that can neither be true nor false. While his proof is quite complex we can 
get an insight into the Incompleteness Theorem by trying to construct a machine that can talk about 
itself as shown by the logician Raymond Smullyan (1992). The machine operates on a vocabulary 
{ÿ, P, N, (, )} and operates as follows.

An expression X is a non-empty string on the alphabet. We say that the expression is printable 
(= provable) if the machine can print it. We assume that the machine is complete in the sense that it will 
eventually print any printable expression.

The norm of an expression X is defined as X(X). Let us interpret P as “printable”, and N as “the norm 
of ”. A sentence of the language (=logic) is an expression of one of the following four forms. We also 
describe alongside the reading of the sentences.

P(X) : X is printable.
PN(X) : The norm of X is printable, or P(X(X)).
ÿP(X) : X is not printable.
ÿPN(X) : The norm of X is not printable, or ÿP(X(X)).

where X is an expression. A sentence is true when what it asserts (about its domain the machine) is true. 
For example ÿP(X) is true if and only if X is not printable. The statements in the (logic) machine are 
talking about the machine itself, as to what the machine can print and what it cannot print.

If the machine is sound and prints “P(X)” at any stage it means that P(X) is true, this in turn says 
that the machine will print X. So if the machine prints P(X) it will at some time print X as well. And if 
it prints “ÿP(X)” then it will never print X.

The machine will be sound if it prints only true statements, and it will be complete if it eventually 
prints all true statements.

The question is can we build such a machine that is both sound and complete?
Smullyan standing in for Gödel would have produced the following sentence, 

SG: ÿPN(ÿPN)
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The above sentence “says” that the norm of ÿPN is not printable. But the norm of ÿPN is the sentence 
SG itself! So SG says that SG is not printable. And there lies the problem.

If SG is true and the machine is complete then the machine should print it. If the machine prints SG

then it cannot be sound because SG says it cannot print SG, but since it has printed it, it has printed a 
false statement.

If SG is false then being a sound machine it cannot ever print SG. But if it cannot print SG then it 
cannot print a true statement: SG (which says that it cannot print SG). So it cannot be complete.

12.13 Discussion

Logical reasoning is concerned with making the implicit explicit. Given a set of statements, there are 
others that are implicitly entailed by the explicit statements. The exteriorization of the implicit is done 
by means of rules.

The question of what rule to apply and when is critical for the effective functioning of a logic 
machinery. One strategy is to apply a rule of inference when one can. This is called assertion time 
inference or forward chaining (Charniak and McDermott, 1985). If one applies a rule as soon as its 
antecedents are available, in a data driven manner, then one ends up with a larger database of statements 
containing all entailed statements in an explicit form. Querying this data base would just be a matter 
of lookup. Of course this can only be done in domains where the set of entailed statements is finite.

The other strategy is to apply rules in a lazy fashion, only when there is a goal that needs to be 
evaluated. This is called query time inference or backward chaining. Backward chaining is the more 
commonly used approach because it is goal directed. One makes inferences only to test the given goal 
statements, even though the response may be slower than in the assertion time inference for smaller 
databases. An advantage of query time inferences is that one only does the inferences that are required, 
and that the data base does not bloat up with true but unwanted sentences.

Both forward chaining and backward chaining are unable to find proofs where reasoning by cases is 
required. Robinson’s resolution method is not only complete for FOL, it also has the added advantage 
that it works with only one rule of inference. The resolution method was been very popular for writing 
automatic theorem provers, though its complexity can be quite high. In practice one has to attenuate the 
complexity by carefully feeding in the rules in the system. Once we do that, our theorem provers can 
treat logic as a programming language. The SLD resolution with Horn clauses turns out to be backward 
chaining in disguise, and is the basis of the programming language Prolog. The undecidability of FOL

is reflected in the fact that one can write programs in Prolog, and other languages that are equally 
powerful, that never terminate.

Logical reasoning is concerned with making incontrovertible inferences. We can build sound and 
complete first order machines. But Gödel’s incompleteness showed that we cannot build more powerful 
logic machines that are both consistent and complete. But is that a roadblock for artificial intelligence? 
After all human beings are able to talk about second order statements like defining the principle of 
mathematical induction42. The counter question we can ask is are human beings consistent? Perhaps 
if we can give up the requirement of consistency we might be able to build machines that can stumble 
upon, and serendipitously hold on to, a higher order truth.

Logical reasoning is important. There is no doubt about it. But is completeness equally important? 
After all humans have not been able to decide the Goldbach conjecture, written in a June 7, 1742 letter 
to Euler, and which states “at least it seems that every number that is greater than 2 is the sum of 

42 "P ((P(0) "i (P(i) … P(i + 1)) … "i(P(i))
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three primes” (see for example (Guy, 2004)). And it took us 357 years to find a proof for Fermat’s last 
theorem (Wiles, 1995). And yet we are an intelligent species capable of turning our focus onto our own 
intelligence (see (Hofstadter, 2007) for an insightful exploration of our mind).

Further, intelligence requires much more than logically reasoning. It requires the ability to imagine, 
to create, to remember and learn, to fantasize, to plan, to perceive, make music and many other things. 
And it does not have to be the same for everyone.

Exercises

1. Assign truth values to the following statements.
(a) The Mount Everest is not in India.
(b) The tomato is a vegetable.
(c) The following sentence is false.
(d) The preceding sentence is true.
(e) If the Moon is made of cheese the Earth is round.
(f) The tomato is a fruit.
(g) The butterfly is an insect.

2. Show that all the rules in Figure 12.6 are sound.
3. Is the following rule of inference a valid one?

   a … b
   b … d
   a
   d
  Discuss the pros and cons of using such a rule in a logic machine.

4. Let P, Q, R and S be some arbitrary propositions. Which of the following three are valid arguments? 
Justify your answers.
(a) P … Q, ¬P  ¬Q

(b) P, ¬P  ¬Q

(c) P R, P … Q, R … S S Q

(d)  (P … Q)  (Q … P)
5. Give examples to illustrate all the valid forms of the Aristotelian syllogism.
6. Is the following rule (from Section 12.6) a valid rule of inference?

   From; b
   and d
   and: a g    ———————.
   Infer (b a)  (d g)

7. Write a backward reasoning algorithm for propositional logic.
8. Show that ((R Q)  (P ÿQ)) ∫ ((R Q)  (P ÿQ)  (R P)) is a tautology. Hint: To 

show that a ∫ b show that a … b and b … a.
9. Find a resolution refutation of the problem in Figure 12.10 that uses the set of support strategy.

10. Give counter examples to show that the following equivalences are not tautologies
   $x A(x) $x B(x) ∫ $x (A(x) B(x))
   "x A(x) "x B(x) ∫ "x (A(x) B(x))

11. If we want to assert “Some men are mortal” the correct formalization is $x (Man(x)  Mortal(x)), 
and not $x (Man(x) … Mortal(x)). One way to verify that the logic sentence says what is intended 
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is to negate it and check that the negation reads correctly. Negate the too formalizations, and move 
the negation sign inside. How do you read the two negated sentences?

12. The resolution proof for the Alice problem in Figure 12.14 is conforms to the unit clause strategy. 
But it does not conform to the set of support strategy. Produce a resolution proof for the same 
problem that conforms to the set of support strategy.

13. Use natural deduction on the detective problem of Section 12.8 to derive the formula 
“Culprit(Butler)”.

14. Apply resolution method to the above problem with the goal “Culprit(Butler)”.
15. Is the following set of sentences43 satisfiable? If yes, give a model for the sentences. If no, give a 

justification.
   A father and his son were walking along the road when they met with an 

accident. The father died on the spot and the son was rushed to the hospital. 
When he was brought to the operating table the surgeon refused to operate 
upon him saying “I cannot operate upon this boy. He is my son”.

16. Forward chaining and backward chaining are unable to handle rules with disjunctive consequents. 
What about disjunctive antecedents in rules? Can we handle rules of the kind (if (or (p q)) r) ? 
Justify your answer.

17. Harish said “The resolution method is semi-decidable. If the input formula is unsatisfiable the 

theorem prover will halt. If not, it could loop for ever.” To which Sneha responded, “I will run 

two programs in parallel. To one I will input the formula A, and to the other ¬A. One of them is 

bound to halt. So I will know if A is unsatisfiable or not! “ What do you think?
18. Given a set of FOL formulas in the prescribed form read the formulas from a text file and convert 

each one into clause form. For each predicate and function add the appropriate equality axioms and 
convert them into clause form. Choose an appropriate naming convention for Skolem constants 
and functions.

19. Implement the Unification algorithm. For a given set of formulas in the clause form generated 
by assignment 1, implement the resolution method. Allow the user to choose between a set of 
strategies. Display the derivation DAGs in graphical form.

20. Backward Chaining. Implement a Prolog like backward chaining system, using a depth first 
strategy. Accept rules from a keyboard or file. The user should be able to save a program and read it 
from a file. Accept a goal from keyboard. Show the final proof for the goal (if possible graphically 
as a tree). One should be able to opt for more that one solution, on giving a goal. Allow the use 
of Cut.

21. Find the Most General Unifier for the following sets of formulae {a, b}, {c, d}, and {e, f}
(a) (pays ?X ?Y money)  (gives ?Y ?X ?Object)
(b) (pays (brother ramesh) (uncle ?Z) money)  (gives (uncle (cousin ?U)) (brother ?U) book)

(c) p(a, x, f(g(y))) where a is a constant 
(d) p(z, h(z, w), f(w))

(e) p(a, x, f(g(x))) where a is a constant 
(f) p(z, h(z, w), f(w))

22. Given the following sentences in FOL, 

   president(rjcmdpki) = rohit
   "x(FunnyParty(x) ∫ ÿVagueParty(x))

43 This is a well known puzzle. The question assumes that the surgeon is speaking the truth. 
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   "y (SportsAssocPr(president(y))  VagueParty(y))
   FunnyParty(rjcmdpki)
  generate a resolution proof of the sentence “SportsAssocPr(rohit)”. Annotate each derivation step 

clearly.
23. Using the resolution method show that the following set of clauses is unsatisfiable (where ‘amar’ 

is a constant).
   ¬Agent(Z1, amar)  ¬Agent(Z1, X1)  ¬Agent(X1, Z1)
   Agent(Z2, father(Z2))  Agent(Z2, amar)
   Agent(father(Z3), Z3)  Agent(Z3, amar)

24. Add the appropriate equality axioms and show using the Resolution method that the following 
set of statements is inconsistent. MM and I are constants, while PM and MPP are functions.

   MM = PM(I)
   "c (MPP(c) = PM(c))
   MM π MPP(I)

25. Given the three statements in the preceding exercise show that the following statement follows, 
   “All politicians are honest”

26. Reformulate the family database of Figure 12.15 without using equality. Generate a resolution 
proof to extract the answer to “Does Arushi’s mother have a cousin?” How do you compare the 
two proofs, the one with equality and the one without?

27. Add gender data to the database and define additional relationships for the above problem – Uncle, 
Aunt, Wife, Husband, Ancestor, Brother, Sister, Niece, Nephew, Grandson, and Grandmother.

28. The definitions of the family relationships in the family database allow for a person to be defined 
as her own sibling or cousin.

   "x"y ((M(x) = M(y)) … S(x, y))
   "x"y"z (GP(x, y) GP(x, z)) … C(y, z))

  Modify the above clauses so that queries like $xC(Abhay, x), and $xS(Abhay, x) will not return 
the answer x=Abhay. Apart from modifying the definitions of siblings and cousins do we need 
need to add anything else?

29. Given the set of (true) formulas, over the domain of natural numbers, 
(a) "x"y[LessThan(succesor(x), y) … LessThan(x, y)]
(b) "x"y[LessThan(x, y) … LessThan(successor(x), successor(y))]
(c) "xLessThan(0, successor(x))

  Show using the resolution refutation method that the goal
  LessThan(successor(successor(0)), successor(successor(successor(0)))) is true.

30. Add the following set of statements to the above problem statement, 
(a) 1 = successor(0)
(b) 2 = successor(1)
(c) 3 = successor(2)
(d) 4 = successor(3)

  and use the paramodulation rule to derive the null clause with the goal LessThan(2, 3).
31. Write a set of logic clauses to compute the factorial function. 
32. Which of the following statements are true and which are false? Give a proof for the true statements 

and a counterexample for each of the false ones.
(a) ($xP(x) $xQ(x)) … $x(P(x) Q(x))
(b) ($xP(x) $xQ(x)) … $x(P(x) Q(x))
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(c) $x(P(x) Q(x)) … ($xP(x) $xQ(x))
(d) "x(P(x) Q(x)) … ("xP(x) "xQ(x))
(e) ("xP(x) "xQ(x)) … "x(P(x) Q(x))
(f) "x(P(x) Q(x)) … ($xP(x) $xQ(x))
(g) "x(P(x) Q(x)) … ($xP(x) $xQ(x))

33. Consider the following facts—Shiva, Gopal and Madhu are people. Shiva likes all kinds of food. 

Apples are food. Chicken is food. Anything anyone eats and is not killed as a result is food. If you 

are killed you are not alive. Madhu eats everything Gopal eats. Gopal eats peanuts and is still 

alive.

(a) Translate the above into FOL.
(b) Express the formulas of part a) into clause form.
(c) Using resolution method show that “Shiva likes peanuts” is true.
(d) Using resolution method show that “Madhu eats something” is true.

  Show how a resolution method based theorem prover answers the question “What does Madhu 

eat?”.

34. Given a set of facts of the kind
   (on block-1 table), (on block-2 block-1), (on block-3 block-1), …
  and rules of the kind
   R1: ((above ?x ?y)  (above ?y ?z)) … (above ?x ?z?))
   R1¢: ((above ?x ?y)  (on ?y ?z)) … (above ?x ?z?)
   R1≤: ((on ?x ?y)  (above ?y ?z)) … (above ?x ?z?)
   R2: (on ?x ?y) … (above ?x ?y)
  write a logic program to determine whether a formula of the kind (on block-A block-B) is true or 

not. Which subset of the rules given above is the most efficient ? What is the required order of 
the rules ?

35. Given the database

   {(on A B), (on B C), (on C D), (on E F), (on F G), (on G H),
   (color A blue), (color B green), (color C blue), (color D yellow), 
   (color E brown), (color F white), (color G yellow), (color H green)}

  show that the following sentence is true using backward chain with your choice of rules in the 
previous problem.

   $x$y (above x y)  (color x green)  (color y yellow)

36. Solve the above problem using the resolution refutation method.
37. Given the following, 

   "x"y [SomeP(someF(x), y) … SomeP(x, y)]
  and a domain containing only the constant l and the function someF which of the following can 

one prove using the resolution method?
(a) SomeP(l, l)
(b) ¬SomeP(l, l)

  Show your derivation steps. What does you answer imply for the soundness and completeness of 
the resolution method for FOL?

38. Given a database of Parent(parent, child) statements write an efficient Prolog like program to 
answer the query Ancestor(ancestor, descendant) for a country where every family has exactly 
one child. Assume that the arguments to the query are constants from the domain. What is the 
worst case complexity of executing your program?
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39. Express the following sentences in FOL.
  “If an honest politician has given a promise he keeps the promise. If a party has given a promise, 

and a person is a leader of the party, then that means the person has given the promise. If a person 
keeps his promise, and he is the leader of a party then the party keeps its promise. If a person is 
the leader of a party then the person is a politician. Party ‘JBCD’ made a promise ‘P1’. ‘JBCD’ 
did not keep the promise ‘P1’. The leader of party ‘JBCD’ is ‘KMS’. ‘KMS’ is a person.”

  Use the following predicate schema
   P(x) – x is a person, LoP(x, y) – x is the leader of party y,
   H(x) – s is honest. Pol(x) – x is a politician, 
   GiveP(x, y) – x gives promise y, KeepP(x, y) – x keeps promise y.
  Use the resolution refutation method to show that “there is a dishonest politician”.

40. Given the following facts, 
  “One of Tinker, Tailor, Soldier, or Spy is the culprit. The culprit stole the document. Tinker and 

Soldier did not steal the document. If Tailor or Spy is the culprit, then the document must be in 
Paris. The culprit was wearing a red shirt. Both Tinker and Soldier were not wearing a red shirt”

   Show, after encoding the facts in predicate calculus, AND using resolution refutation, the proof 
of the following statement, 

   “Spy was wearing a red shirt and the document is in Paris.”
41. Using the resolution refutation method show the validity of all the nineteen forms of valid 

syllogisms in Aristotelian logic.
42. Show that the following set of formulas is unsatisfiable.

   "x (Bird(x) … Flies(x))
   "x (Penguin(x) … Bird(x))
  Penguin(peppy)  ¬Flies(peppy)

43. Show that the following set of formulas is unsatisfiable.
   "x (Bird(x) … Flies(x))
   "x (Penguin(x) … Bird(x))
   $x (Penguin(x)  ¬Flies(x))



The language of FOL allows us to create a representation of the elements of a domain or universe 

of discourse, and the relations between them. Over this domain a set of unary predicates define 

categories and properties, for example Man, Mortal, Student, and Bright1. The predicates define the base 

ontology in the philosophical sense, as a study of being or existence. In that sense a predicate defines 

a category for some agent that wants to reason about the domain. We are not concerned here with 

the fundamental questions posed by Heidegger as to “what is existence?” or the “meaning of Being”

(Heidegger, 1927), but rather what Sartre calls consciousness which “is in a state of cohabitation with 

its material body” (Sartre, 1943). One could take this to be a phenomenological attitude where we are 

concerned with knowing about existence as intimately tied to existence itself. Willard Van Orman Quine 

settled the issue as far as logic and knowledge representation is concerned when he said that “to be is 

to be the value of a quantified variable” (Quine, 1990). Then if one says for example “for all x…” then 

whatever binds to x as a value exists.

The notion of an apple can be defined simply as a subset of the domain that are apples, and membership 

to which is characterized by satisfying the predicate Apple. If Apple(element291) is true then element291

is an apple. Our interest is in representation of the domain and being able to reason about the domain. 

If we need to reason about apples then we would need to associate apples with other predicates, such 

as apples are food, apples are (often) red, and so on.

The predicates one has in one’s vocabulary are a reflection of how one knows the world. In computer 

science terminology an ontology is a formal specification of concepts and the relations between them. 

Tom Gruber puts it succinctly: “An ontology is a specification of a conceptualization” (Gruber, 1993).

Given a domain of objects, the basic concepts are the categories defined by unary predicates. The 

relations between objects are defined by the higher arity predicates, and by means of logical relationships. 

The first task in knowledge representation is to define these predicates. More complex conceptual 

structures can be defined in terms of simpler ones.

The many natural languages invented by human societies are ontological in the sense that they provide 

labels (words) for concepts that their users are dealing with. Obviously, a language will be useful (for 

communication) only if it is shared. In terms of the predicates of FOL this implies that they refer to the 

same subsets of the domain for different people or agents. For most of us this happens naturally since 

we learn a language from the people around us. A human child acquires language during its increasing 

interaction with the world. It is helped in this process by other more knowledgeable humans using the 

same language itself as a medium. Thus a child may learn to point at a four legged creature and call it 

a “doggy” and at a fruit and call it an “apple”. But gradually, it acquires words for “cows”, “horses”, 

“pears” and “guavas”, and learns to distinguish them conceptually as well as linguistically. It also learns 

qualifiers like “big” and “small”, and over a period of time acquires a larger and larger vocabulary to 

address a larger and more refined set of concepts.

1 Mortal and Bright are treated by FOL identically with Man and Student, though we might think of them as properties and not 

categories. Thus the unary predicate Mortal identifies the subset in the domain that is, or has the property of being mortal.

Concepts and Language

Chapter 13
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People learn and grow their ontologies (by this we mean concepts and relations between them). 

Starting with a few concepts they refine them more and more and the ontology begets finer and finer 

concepts. A child may begin by calling all four legged creatures dogs, and then gradually over a period of 

time refine her knowledge of the animal world. Biology students take this knowledge to a much greater 

level of detail, botanists have a large ontology for plants, a car mechanic knows a lot about engines and 

gearboxes, an architect thinks in terms of spaces and materials, a musician lives in a world of notes 

and melodies. The (conceptual) world of the kid living in Missouri by the Mississippi River would be 

entirely different from the world of a mountain boy from the Kangra valley in Himachal Pradesh, which 

is different from that of a Griqua child in the Kalahari desert. The Malayalis of Kerala have a multitude 

of names for different types of what many of us simply call a “banana”, while the Inuits of Greenland 

have a bewildering variety of names for different kinds of what most of us simply call “snow”2. The 

language that a society evolves is dependent on the concepts that the society needs to articulate.

We all live in different “worlds” on this Earth. Our world is the mental spaces we create in our minds. 

What we have in our heads is knowledge about our world, or as some might say what we have in our 

heads is our world. The world is what we imagine it to be.

Yet each of us manages to pack in a large amount of conceptual and factual knowledge that somehow 

springs to the fore whenever needed.

13.1 The Conceptual Domain: The Ontological Base

The comment from Quine gives us a clue of what can exist in a domain, what can be the value of a 

variable. The domain in a powerful enough system must contain not only the “real” elements that one 

is reasoning about, but also reified elements that are created for the complex process of reasoning. We 

tend to think of a person as a unit that exists as a whole. But a person is made up parts. We say “my 

brain” or “my heart”, but the “I” that we use refers to a reified element. Our brains and hearts are in 

turn made up of parts, and we can do this process of deconstruction till we are talking about individual 

atoms. Or even subatomic particles. A person is just a collection of a vast number of atoms, estimated, 

for an adult, to be around 1027. Surely we cannot reason with all 1027 of them, and we think in terms of 

“hands” and “feet” and “arms” and “legs” of a “person”.

Predicates relate to concepts, since they are an abstract description or characterization of a subset 

of the world. Let us assume for the sake of illustration that we think of the “real” domain as consisting 

only of humans, other life forms, and some physical objects. We look at some predicates we need to 

define in order to be able to reason about the tasks that an agent might want to do. Most of the predicate 

names that we will begin with are taken from a natural language, in our case English. This is because 

language has been the medium of knowledge exchange, and it is easiest for humans to deal with. But 

we shall also try and look at representations from a language independent perspective, independent of 

the grammatical rules of natural languages.

13.1.1 Categories and Relations

The simplest kinds of concepts are categories, defined by unary predicates. The following are examples 

some of which we are already familiar with. We give an English language definition alongside.

Man(X) : X is a man

Human(X) : X is a human being

Block(X) : X is a block

2 Many people in the tropical areas in fact do not know snow first hand, and can only try and imagine its soft crunchy and cold touch. 
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Prism(X) : X is a prism

Fruit(X) : X is a fruit

CitrusFruit(X) : X is a citrus fruit

Each such predicate is interpreted in the domain as a subset of the domain, and each defines a 

category. A category may be related to other categories. Such relations are captured by sentences of 

FOL. For example, 

"x (Man(x) … Human(x)) : all men are human beings

"x (CitrusFruit(x) … Fruit(x)) : all citrus fruits are fruits

"x (CitrusFruit(x) … ÿHuman(x)) : all citrus fruits are non-human

$x (Man(x) Ÿ Bright(x)) : some men are bright

Higher arity predicates allow us to capture relations between things. For example, 

Friend(X, Y) : X is a friend of Y

On(X, Y) : X is on Y

Uncle(X, Y) : X is an uncle of Y

Divides(X, Y) : (number) X divides (number) Y

Formally a binary relation corresponds to a subset of D ¥ D, the cross product of the domain with 

itself. This allows us to define relations like “divides” to be applicable only to numbers by choosing the 

appropriate subsets in the Interpretation mapping (see Chapter 12). However, relations are rarely stored 

as extensions, and thus a more circumspect definition is usually required. One may employ a typed or 

many sorted logic, in which the elements belong to different sorts or types, and relations are defined 

over members from specific types.

Logic also provides us a mechanism for defining categories as intensions without having to explicitly 

mark the membership in the Interpretation mapping (Sowa, 1984). This is particularly useful when the 

domain size is very large, or even infinite. Thus we can define new categories from existing ones, for 

example,

"x(Mother(x) ∫ $y Mother(x, y))

"x(PrimeNumber(x) ∫ ÿ$y(y π 1 Ÿ y π x Ÿ Divides(y, x)))

In the following chapter we shall look at a Description Logic that allows us to define new categories 

and the relations between them in a succinct manner that is also amenable to tractable reasoning. We 

can, and most often do, define relations as intensions as well. For example, 

"x"y (GrandParent(x, y) ∫ $z (Parent(x, z) Ÿ Parent(z, y)))

"x"y (Mother(x, y) ∫ (Parent(x, y) Ÿ Female(x)))

"x"y (Ancestor(x, y) ∫ (Parent(x, y) ⁄ $z (Parent(x, z) Ÿ Ancestor(z, y)))

The last one is a recursive definition.

13.2 Reification

So far we have only made an attempt to describe the elements of the domain and relations between them. 

We have not talked of change. We have assumed our domain to be like the domain of mathematics, 

where statements are always true or always false, even though we may not know about some as to what 

the case is. Very often in the real world one has to describe and reason about situations involving change 

in which agents act and events occur.
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In natural languages we associate verbs with actions, and sentences with events. In FOL we can 

also follow an approach in which predicates stand for verbs, and thus describe actions. For example 

we might say, 

Hit(Azizi32, Anuun12)3 : the act of Azizi hitting Anuun

Unstack(R2D2, Block27, Block21) : the act of R2D2 unstacking Block27 from Block21

If we look at the blocks world (see Chapter 7 on Planning) we have to worry about changing facts. 

For the action “Unstack(R2D2, Block27, Block21)” to have happened certain preconditions should have 

been true, for example On(Block27, Block21), and certain post conditions become true after the action, 

for example Clear(Block21). If an action actually happens we say an event has occurred. Formulas like 

On(Block27, Block21) are no longer true at all times but may have their truth values fluctuate between 

true and false. We call such formulas as fluents. The approach taken by the planning algorithms is to keep 

only the current state facts in the database, adding new ones and deleting the ones no longer true. That is 

sufficient for the task of planning. But if one wants to reason explicitly about change then fluents must 

be associated with time information. We shall look at reasoning about events a little later in the chapter.

The definition of an action predicate (or a planning operator) usually ignores the temporal aspect of 

the action. Natural languages, on the other hand, are finely tuned to dealing with tense and modality. If 

we define the predicate Hit(X, Y) to stand for “X hit Y” then what about the other tenses that language 

allows us, like “X will hit Y”, or “X is hitting Y”, or “X was hitting Y” or “X wants to hit Y”, or “X had 

planned to (but did not) hit Y”. As we will see these and other issues can be tackled if we admit into our 

domain the abstract element standing for an action or an event. This is known as reification. If we say that 

action “a = Hit(Azizi32, Anuun12)” and add it to the domain, then we can also talk of properties of “a”.

Given a domain, the terms of a language like FOL refer to the elements of the domain. Reification 

allows us to add more “elements” to the universe of discourse by extending the conceptual space to 

include symbolizations of higher order constructs like those representing events and actions.

Reification also allows us to represent compound objects as entities composed from smaller parts. 

And almost everything that we talk about is in fact a compound object. For example, at one of the lowest 

levels of detail, the hydrogen atom is a reified concept made up of a proton and an electron in perpetual 

entanglement. It does not exist independent of its constituents, but is made of them. Likewise the other 

elements like carbon, silicon and sulfur too are made of subatomic particles. According to the atomic 

theories of yesteryears, when atoms were supposed to be indvisible, the world is made up of a large 

collection of atoms existing in many clusters and interacting in myriad ways. Conceptually as we move 

up the level of detail we create concepts at the molecular level, biological level, societal level, geological 

level and astronomical level with the same set of atoms. In that sense the world as we know it is our own 

creation. These reified concepts4 we create in our minds have obviously been critically instrumental in 

us being able to comprehend the world and interact meaningfully with it, including actions like reading 

these very words that you are doing right now.

Every discipline of science and art creates representations at a level of detail suited to it. An expert 

in that discipline is well versed in its ontology. In modern times no individual can be a philosopher in 

the sense of olden days. We exist as a society of heterogeneous minds, each specialized in some domain. 

Perhaps in this context it might be too much to expect a single computer (program) to be omniscient, 

and one must be willing to accept artificial intelligence if it too manifests itself in a heterogeneous form.

Meanwhile the task of devising an integrated knowledge representation that can be central to diverse 

domains and different forms of reasoning will surely keep AI researchers occupied for at least a decade.

3 We use numeric suffixes to create unique constants in order to avoid the possibility of ambiguity in reference. 
4 Or categories made up of collections of reified objects.
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The objective of writing computer programs demands that we create the conceptual world that is of 

interest in an explicit and formal manner, because computers at the lowest level are simply syntactic 

processors5. Intelligent or meaningful behavior can only emerge at a higher level. The task of creating 

representations for conceptual structures is to a large extent domain dependent, and is generally referred 

to as knowledge engineering. In this chapter and the next, we look at some general principles that can 

guide the choice of our predicates, and the reasoning patterns that we can adopt while building real 

systems.

We look at two streams of reasoning that reification allows us. One is the ability to reason about 

actions explicitly. We shall look at both a logical approach with the event calculus and an experiential 

approach with structured knowledge (partly in the next chapter). The second, dealt with in the next 

section, is the possibility of evolving a uniform representation scheme based on triples that will allow 

us to describe arbitrary relations.

13.3 RDF and the Semantic Web

Consider the following set of predicates and the English sentences they are to presumably be interpreted 

as

Hit(Azizi32, Anuun12) : Azizi hit Anuun

Hit(Azizi32, Anuun12, Oct_12) : Azizi hit Anuun on October 12

HitLoc(Azizi32, Anuun12, Paris) : Azizi hit Anuun in Paris

HitInstr(Azizi32, Anuun12, Stick) : Azizi hit Anuun with a Stick

One can construct other variations and combinations of such statements. Observe that the predicate 

“Hit” in the first and the second instances are different, because they are of different arity. Defining 

different predicates for the different combinations of things one wants to assert is not only cumbersome; 

it also increases the inference load on the reasoning system. One will need rules like, 

"x"y"z (Hit(x, y, z) … Hit(x, y))

to be able to ask queries like “Who did Azizi hit?” assuming that the answer extracting routine is 

programmed to handle the consequent in the implication.

There are other issues with the above formalizations as well. For example is “Stick” a constant or a 

variable of a certain type? That is, is one talking of a specific object in the domain (mapped to by the 

constant “Stick”) or a generic one? If it is the latter, and the phrase “a stick” certainly suggests so, then 

FOL would require us to state the sentence as, 

$x (Stick(x) Ÿ HitInstr(Azizi32, Anuun12, x))

In the above sentence, Stick is now a predicate or category, and “x” is the variable that refers to an 

element of that category. If we were to use a typed version of FOL called Many-Sorted FOL then one 

could introduce a type or a category or a sort Sstick and use the sentence HitInstr(Azizi32, Anuun12, Stick)

where Stick now refers to a variable from the sort Sstick. We will look at sorted logic in a little bit more 

detail when we look at the Event Calculus below. One may also notice that we have glossed over the 

treatment of time and used the term Oct_12 to somehow stand for October 12.

Some of the issues can be tackled by introducing an event type or sort into the system, reify the hitting 

event, and describe its properties. We can also adopt a uniform description framework constituting of 

a triple made up of <subject, predicate, object> or <subject, property, value> in which each statement 

5 And are we too?
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conforms to the triple syntax. Additional information about an event can then be expressed by asserting 

more statements (triples) instead of arbitrarily increasing the arity of the predicate. The hitting episode 

can now be describes as, 

(Hitting_event Instance e31) : e31 is a (type of) Hitting_event

  (e31 Actor Azizi32) : The actor of e31 is Azizi

  (e31 Object Anuun12) : The object of e31 is Anuun

  (e31 Date Oct_12) : The date of e31 is October 12

  (e31 Loc Paris) : The location of e31 is Paris

  (e31 Instrument Stick) : The Instrument of e31 is Stick

Here Hitting_event is a type of an event. The first sentence says that e31 is an instance of Hitting_event,

and the rest of the sentences provide more information about this event. Observe that we have not stated 

explicitly that the hitting event has happened. The Event Calculus will address that in Section 13.5. 

Here we have assumed instead that the once we have an instance of the hitting act it means that the act 

actually happened. We can still add other statements that the event actually happened, or that the event 

was being planned, or even dreamt about.

In FOL syntax we have been using the same statement can be expressed as, 

Instance(Hitting_event, e31) : e31 is a (type of) Hitting_event

Actor(e31, Azizi32) : The actor of e31 is Azizi

Object(e31, Anuun12) : The object of e31 is Anuun

Date(e31, Oct_12) : The date of e31 is October 12

Loc(e31, Paris) : The location of e31 is Paris

Instrument(e31, Stick) : The Instrument of e31 is Stick

The fact that we have separated the different aspects of the event into independent statements means 

that the inference engine would have to search for every additional piece of information that is asked 

for. In the next chapter we will look at ways of alleviating the problem of search by establishing explicit 

connections between related elements.

Resource Description Framework (RDF) (Lassila and Swick, 1998) is a representation scheme that has 

evolved to describe the data available on the World Wide Web6. It is an XML application (i.e., its syntax 

is defined in Extensible Markup Language) customised for adding metadata in Web documents. Metadata 

simply means data about data. The basic idea is to annotate data available on the web with labels. Such 

labels, or metadata, can provide (semantic) details of the relations between entities (resources). An RDF

statement is a triple,

<subject, property, value> or <subject, predicate, object>

where the subject is a resource that is being described, marked by the RDF word “about”, the property 

is a resource from some namespace, and the value is either a resource or a value from some valuespace.

A resource is anything that can be uniquely identified.

In order to avoid the problem of ambiguity of terms, RDF uses the notion of a Uniform Resource 

Identifier (URI) that uniquely identifies a resource. The URI’s are used to create references in a standard 

form, usually in XML though other forms are possible7, which can be parsed by other programs or 

browsers. RDF employs a notion of a namespace to identify standard names for its elements. A namespace 

is used to provide uniquely named elements, and may be specified by “xmlns” (for xml namespace) with 

a value that is a URI. The following are examples of namespaces, 

6 See http://www.w3.org/RDF/ and http://www.w3schools.com/rdf/default.asp
7 See for example, Primer: Getting into RDF & Semantic Web using N3. http://www.w3.org/2000/10/swap/Primer.html
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xmlns:xhtml = “http://www.w3.org/1999/xhtml#”

xmlns:rdf = “http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs = “http://www.w3.org/2000/01/rdf-schema#”

The entry on the left hand side following “xmlns:” is the short form that can be used instead of 

the longer right hand side. For example the second entry above states, for the benefit of any program 

accessing that resource, that the enclosing document is an RDF document, and that the rdf:RDF tag 

resides in this namespace. One can also create one’s own namespaces, as for example, 

xmlns:composition = “http://www.muzicsite.zzz /composition#”>

The use of URIs is instrumental in extending the domain of the statements to the entire World Wide 

Web, and the process can be called webizing (Berners-Lee, 1998). An application on one machine can 

talk about the properties of a resource described on some other machine, thus creating a semantic web

of resources. It must be kept in mind that the goal of the semantic web is to share information, and 

in particular to enable programs to share information in a meaningful manner across the web. It is a 

representation scheme, and does not address the issues of reasoning in itself.

Since RDF is designed to share information generated by diverse people one cannot expect the 

information available on the web to conform to a fixed schema. Anyone creating an information resource 

can add more data. For example a car manufacturer’s site may give information about a particular 

car (resource), while a group of car aficionados may add their opinions as properties and their values 

about the same resource (on their own site). To share information, the different sites may need to use a 

common vocabulary and provide secure XML endpoints to other users. One way to do this would be for 

different sites to use a same base ontology to define a vocabulary of terms and relations between terms. 

We discuss ontologies in more detail in Chapter 14.

Usually one collects all the properties about a particular resource together into a collection as 

illustrated in Figure 13.1. The figure depicts how a typical site providing music may organize information 

about the musical items in its collection. All the properties and their values are collected together in one 

Description, though it is not necessary to do so. Obviously keeping such information together would 

be useful from a computational point of view, and we will explore this idea more in the next chapter.

The statements in Figure 13.1 are as follows. Line 1 declares the XML version being used. XML

documents can be visualized as tree structures. Line 2 is called the root element of the document and says 

that everything up till the closing element </rdf:RDF> is part of the document. Observe that the element 

in line 2 extends to lines 3 and 4, after which the closing bracket “>” occurs. Line 3 says that the short 

form “rdf” maybe used to refer to the namespace “http://www.w3.org/1999/02/22-rdf-syntax-ns#”. An 

example of a word from this namespace is in line 5 which says that “Description” is a rdf word. Line 4 

defines another namespace “composition” that contains the terms (album, artist, lyrics etc.) that are the 

predicates or properties used to describe the musical items (resources).

Each musical item stored in the directory “title” on the site is described within the <rdf:Description>…</

rdf:Description> tags. Line 6 says that the description in lines 7 to 13 is about the resource “Dashte

Tanhai”. Line 7 says that the composition comes from the album “Masters sing Faiz”, line 8 identifies 

the artist as “Iqbal Bano”, and so on.

Lines 15 to 24`describe another musical piece “Jamuna ke Teer” and lines 25 to 35 describe one 

called “Spanish Dance”. Observe that the artist element in the last piece is a sequence of two ordered 

elements, marked by the rdf word “Seq”. Other similar rdf words are “Bag” for unordered collections, 

and “Alt” to specify a list of alternative values of which only one can be selected.
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FIGURE 13.1 An example of the use of RDF to provide metadata for music pieces. Italics only used 

to demarcate the content for the reader.

1. <?xml version = ”1.0”?>

2. <rdf:RDF

3. xmlns:rdf = “http://www.w3.org/1999/02/22-rdf-syntax-ns#” 

4. xmlns:composition = “http://www.muzicsite.zzz /composition#”> 

5. <rdf:Description

6. rdf:about = “http://www.muzicsite.zzz/title/Dashte Tanhai”>

7.     <composition:album> Masters sing Faiz </composition:album>

8.     <composition:artist> Iqbal Bano </composition:artist>

9.     <composition:musicalForm> Ghazal </composition:musicalForm>

10.    <composition:medium> Vocal </composition:medium>

11.    <composition:lyrics> Faiz Ahmed Faiz </composition:lyrics>

12.    <composition:recording> EM I</composition:recording>

13.    <composition:year> 2007 </composition:year>

14. </rdf:Description>

15. <rdf:Description

16. rdf:about = “http://www.muzicsite.zzz/title/Jamuna Ke Teer”>

17.     <composition:album> Golden Raga Collection </composition:album>

18.     <composition:artist> Pandit Bhimsen Joshi </composition:artist>

19.     <composition:musicalForm> Thumri </composition:musicalForm>

20.     <composition:raag> Raga Bhairavi </composition:raag>

21.     <composition:medium> Vocal </composition:medium>

22.     <composition:recording>Times Music </composition:recording>

23.     <composition:year> 1997 </composition:year>

24. </rdf:Description>

25. <rdf:Description

26. rdf:about = “http://www.muzicsite.zzz/title/Spanish Dance”>

27.     <composition:album> Carmen Fantasy </composition:album>

28.     <composition:artist>

                <rdf:Seq>

                          <rdf:li>Sergei Nakariakov</rdf:li>

                          <rdf:li>Alexander Markovich</rdf:li>

                </rdf:Seq>

29.     </composition:artist>

30.     <composition:musicalForm> Virtuoso </composition:musicalForm>

31.     <composition:medium> Trumpet and Piano </composition:medium>

32.     <composition:composer> Manuel de Falla </composition:composer>

33.     <composition:recording> TELDEC </composition:recording>

34.     <composition:year> 1994 </composition:year>

35. </rdf:Description>

36. .

37. .

38. </rdf:RDF>
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The figure below depicts part of the data in a graphical form. Each RDF triple is represented by an 

arc labeled with the predicate from the subject to the object. The values in the square boxes are literals

and are to be taken literally (without any interpretation). We could have made URI’s for some of them, 

for example the artist and the album title. This approach of using RDF triples to store data leads to the 

idea of graph databases.

“http://www.muzicsite.zzz/title/ ”Jamuna Ke Teer

http://www.muzicsite.zzz/composition/album

Golden Raga Collection

http://www.muzicsite.zzz/composition/artist

Pandit Bhimsen Joshi

http://www.muzicsite.zzz/composition/musiclForm

Thumri

Times Music

1997

Vocal

Raga Bhairavi

http://www.muzicsite.zzz/composition/raag

http://www.muzicsite.zzz/composition/

medium

http://www.muzicsite.zzz/composition/

recording

http://www.muzicsite.zzz/composition/year

FIGURE 13.2 The underlying graph model for an RDF Description. The oval represents a resource, 

and the boxes represent values.

The key features of RDF are the use of namespaces and URIs to enable the sharing of descriptions 

of properties of resources. It does not allow one to define new categories or classes. For that we need an 

extension of RDF known as RDF Schema (RDFS), which allows user defined classes and the expression 

of sub-class properties. We will take that up in the next chapter in which we explore the representation 

and reasoning over taxonomies.

If we need to define new applications or domain specific classes then we need to use an extension 

of RDF that allows such class definitions. For example, we might want to define “thumri” as a (type 

of) class to which many compositions belong. We can then define “hindustani” as a type of class, and 

be able to make statements like thumri is a subclass of hindustani. A language that allows us to do so 

is the resource description framework schema (RDFS). In the next chapter we will also look at the 

Web Ontology Language (OWL) which is an extension of RDFS. Figure 13.3 shows an example of 

statements in RDFS.

The primary concern of RDF and RDFS is to express information in a uniform manner so that it can 

be easily processed by algorithms. An important feature is the use of a uniform vocabulary to avoid the 

problem of translations between different nomenclatures. We look at an example below.

13.3.1 The Dublin Core Metadata Initiative

One noteworthy effort in this direction is the Dublin Core Metadata Initiative which defines the metadata 

needed to describe documents on the web (DCMI, 1999) (also see http://dublincore.org/). The Dublin 

Core element set (dc) defines the basic vocabulary of a language used for describing resources/documents 
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FIGURE 13.3 Class definitions in RDFS.

<?xml version = “1.0”?>

<rdf:RDF

xmlns:rdf =  “http://www.w3.org/1999/02/22-rdf-syntax-ns#” 

xmlns:rdfs = “http://www.w3.org/2000/01/rdf-schema#”

xml:base =  “http://www.musicology.example/music#”>

<rdfs:Class rdf:ID = “music” />

<rdfs:Class rdf:ID = “hindustani”>

 <rdfs:subClassOf rdf:resource = “#music”/>

</rdfs:Class>

<rdfs:Class rdf:ID = “khayal”>

 <rdfs:subClassOf rdf:resource = “#hindustani”/>

</rdfs:Class>

<rdfs:Class rdf:ID = “thumri”>

 <rdfs:subClassOf rdf:resource = “#hindustani”/>

</rdfs:Class>

</rdf:RDF>

(Baker, 2000). The DCMI Abstract model of the resource is as follows. The abstract model of the 

resources described by descriptions is as follows:

 ● Each described resource is described using one or more property-value pairs.
 ● Each property-value pair is made up of one property and one value.
 ● Each value is a resource—the physical, digital or conceptual entity or literal that is associated 

with a property when a property-value pair is used to describe a resource. Therefore, each value

is either a literal value or a non-literal value:
 ■ A literal value is a value which is a literal.
 ■ A non-literal value is a value which is a physical, digital or conceptual entity.

 ● A literal is an entity which uses a Unicode string as a lexical form, together with an optional 

language tag or datatype, to denote a resource (i.e. “literal” as defined by RDF).

The Dublin Core set constitutes of the following property names (see (DCES))–

 ● dc:contributor (contributors to the document)
 ● dc:coverage (where the resource is located)
 ● dc:creator (the creator)
 ● dc:date (date of publishing)
 ● dc:description (a brief account of the resource)
 ● dc:format (format of presentation)
 ● dc:identifier (a URI for the resource)
 ● dc:language (language of content)
 ● dc:publisher (publisher)
 ● dc:relation (a reference to a related resource)
 ● dc:rights (copyright)
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 ● dc:source (origin on content)
 ● dc:subject (the topic described in the resource)
 ● dc:title (the title of the resource)
 ● dc:type (the nature or genre of the content)

These property names are available in the dc namespace, as indicated below.

-<rdf:RDF xmlns:rdf = “http://www.w3.org/1999/02/22-rdf-syntax-ns#”

 xmlns:dc = “http://purl.org/dc/elements/1.0/”>

A larger vocabulary of terms aimed to qualify or refine the fifteen elements above is made up of the 

following resources8

abstract, accessRights, accrualMethod, accrualPeriodicity, accrualPolicy, alternative, audience, 

available, bibliographicCitation, conformsTo, contributor, coverage, created, creator, date, 

dateAccepted, dateCopyrighted, dateSubmitted, description, educationLevel, extent, format, 

hasFormat, hasPart, hasVersion, identifier, instructionalMethod, isFormatOf, isPartOf, 

isReferencedBy, isReplacedBy, isRequiredBy, issued, isVersionOf, language, license, mediator, 

medium, modified, provenance, publisher, references, relation, replaces, requires, rights, 

rightsHolder, source, spatial, subject, tableOfContents, temporal, title, type, valid

Each term is specified with the following minimal set of attributes:

Name: A token appended to the URI of a DCMI namespace to create the URI of the term.

Label: The human-readable label assigned to the term.

URI: The Uniform Resource Identifier used to uniquely identify a term.

Definition: A statement that represents the concept and essential nature of the term.

Type of Term: The type of term as described in the DCMI Abstract Model

For example, the term isReferencedBy is described as, 

Name: isReferencedBy

URI: http://purl.org/dc/terms/isReferencedBy

Label: Is Referenced By

Definition:  A related resource that references, cites, or otherwise points to the described resource.

Type of Term: Property

Refines: http://purl.org/dc/elements/1.1/relation

Refines: http://purl.org/dc/terms/relation

Version: http://dublincore.org/usage/terms/history/#isReferencedBy-003

Note:  This term is intended to be used with non-literal values as defined in the DCMI 

Abstract Model (http://dublincore.org/documents/abstract-model/).

In the next section we look at an endeavour to link many such data resources into a large graph 

database freely accessible over the world wide web.

13.3.2 The Linked Open Data Cloud

The LOD (Linking Open Data) project9 is espoused by the erstwhile SWEO (Semantic Web Education and 

Outreach) Interest Group10 of the W3C consortium. The goal of the project is to make data freely available 

8 http://dublincore.org/documents/dcmi-terms/
9 http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
10 http://www.w3.org/blog/SWEO/



Chapter 13: Concepts and Language 501

to everyone on the web. The LOD cloud refers to a network of servers that host data in the form of RDF

triples from various domains. Thus the LOD cloud can be seen as a massive graph database on the web.

The goal is to make the various data sets available on the web in a well defined format under the 

Creative Commons license11, and move from a web of documents towards the web of data also referred 

to as the Semantic Web or Web 3.0. It would then be possible for programs to search for data over the web 

and use the results for further processing directly. The different data sources are also connected by RDF

links to enable programs to navigate between related data sets. Development of Linked Data browsers 

and Linked Data search engines facilitate the retrieval process (Bizer et al, 2009). Thus a program has 

access to the entire data from the different sources and can use it to compute answers to queries.

Tim Berners-Lee prescribed the following “Linked Data principles” for people publishing data on 

the web (Berners-Lee, 2006).

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names

3. When someone looks up a URI, provide useful information, using the standards (RDF, SPARQL)

4. Include links to other URIs, so that they can discover more things

The URIs are used to uniquely identify objects and the HTTP protocol is used to access them. The 

data and the links are themselves described using RDFS and OWL (see also Chapter 14).

Figure 13.4 depicts the status of the LOD cloud in 2007 (Cyganiak, 2007). Each node in the cloud 

represents a distinct data set. Each arc represents an RDF link between elements of the two datasets. 

The arcs are directed indicating the direction of links and the thickness of the edges is an indication of 

the number of links between the two nodes (Linked Data sets).

The content of the cloud is diverse in nature, comprising data about geographic locations, people, com-

panies, books, scientific publications, films, music, television and radio programmes, genes, proteins, drugs 

and clinical trials, online communities, statistical data, census results, and reviews (Bizer et al, 2009). For 

example, the Friend Of A Friend (FOAF) project12 is a RDF based machine readable dataset describing 

people. And DBLP Berlin is a RDF version of the DBLP database of University of Trier which provides 

bibliographic information on major computer science journals and conference proceedings, maintained by 

the University of Berlin. Likewise DBpedia is a data set that is composed by extracting structured content 

from Wikipedia. It allows users to query properties and relationships associated with Wikipedia resources, 

including links to other related datasets. And openCYC is an ontology of everyday common terms.

A catalog of the projects that are linked in the LOD cloud is maintained by Richard Cyganiak and 

Anja Jentzsch13.

Collectively, the 295 data sets consist of over 31 billion RDF triples, which are interlinked by around 

504 million RDF links as of September 20118.

The Figure 13.5 (see the source (Cyganiak and Jentzsch, 2011) for an enlarged readable view) shows 

that the number of datasets in the LOD cloud has been steadily increasing14.

The Figure 13.6 below shows another view of a part of the above graph in a little more detail.

13.3.3 Querying Graph Databases with SPARQL

RDF is a directed, labeled graph data format for representing information in the Web. RDF data stores 

can also be queried using their own query language—SPARQL (SPARQL Protocol And RDF Query 

Language)15. A query may be placed at the SPARQL endpoint of any RDF database.

11 http://creativecommons.org/
12 http://rdfweb.org/foaf/
13 http://thedatahub.org/group/lodcloud
14 A clickable version is available at http://richard.cyganiak.de/2007/10/lod/lod-datasets_2010-09-22.htm
15 See http://www.w3.org/TR/rdf-sparql-query/
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FIGURE 13.4 The Linking Open Data cloud in 2007 (Cyganiak, 2007).

Like its relational cousin SQL, SPARQL also employs a SELECT statement to determine which subset 

of the selected data is returned. It also uses a WHERE clause to define graph patterns to find a match 

for in the query data set. A graph pattern in a WHERE clause consists of the subject, predicate and 

object triple to find a match for in the data. The FROM clause is used to identify the dataset from where 

the answers are to be retrieved, and clauses like ORDER BY and DISTINCT can be used to control the 

manner in which the results are presented. Observe that the results will be in a machine readable XML

document. The PREFIX keyword allows us to define prefix labels for IRIs (Internationalized Resource 

Identifiers). An IRI extends the way URIs are defined.

We illustrate a SPARQL query with the following example. The query is to retrieve all names of 

ghazal albums and their artists in 2012. The PREFIX statement says that the properties names prefixed 

by “composition:” are defined in the corresponding namespace. The SELECT DISTINCT clause says 

that we want distinct values for the variables ?name and ?album. Variables names in query patterns are 

prefixed with “?”.

PREFIX composition: <http://www.muzicsite.zzz /composition#>

SELECT DISTINCT ?name ?album 

FROM <http://www.muzicsite.zzz /title>

WHERE {

   ?title composition:artist ?name

   ?title composition:musicalForm Ghazal

   ?title composition:album ?album

   ?title composition:year 2012

ORDER BY ?name

The graph patterns are defined in the WHERE clause. The first pattern extracts the name of the artist 

for the resource and binds it to the variable ?name. The second one imposes a constraint that the musical 
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FIGURE 13.6 A part of the LOD cloud of Figure 13.5 (from http://linkeddata.org/).

form must be “Ghazal”. The third one extracts the name of the album in the variable ?album, and the 

fourth one restricts the year to the value 2012. The ORDER clause says that the output, which is the 

name of the artist and the album, should be sorted on the ?name variable.

Apart from the SELECT form of the query, SPARQL allows three more forms of querying the database. 

The CONSTRUCT query returns a single RDF graph formed by taking each query solution in the solution 

sequence, substituting for the variables in the specified graph template, and combining the triples into a 

single RDF graph by set union. The ASK form returns a yes or no answer to whether the query pattern has 

a solution. The DESCRIBE form returns a single result RDF graph containing RDF data about resources. 

The query pattern is used to create a result set, from which a description is extracted and assembled into a 

single RDF graph. The interested reader is directed to (Prud’hommeaux and Seaborne, 2008) for details.

13.4 Properties

Each term of the FOL is mapped to an object in the domain. We have also introduced events and actions, 

and added them as reified objects to the domain. We now look at how certain properties of objects, and 

events, may be described.

We would like to express the following kinds of statements, with emphasis on the words in italics.
 ● The ball is red.



Chapter 13: Concepts and Language 505

 ● The ball is heavy.
 ● The pencil is longer than the pen.
 ● The tree is five feet tall.
 ● Subun ate up the chocolate quickly.
 ● It took the train three hours to reach Mysore.

We could of course simply translate the statements directly with the adjectives and the verbs forming 

the predicates as follows.
 ● Red(Ball22)
 ● Heavy(Ball43)
 ● LongerThan(Pencil32, Pen67)
 ● Height(Tree345, 5_feet)
 ● Eat(Subun11, Chocolate23, Quickly, Past_perfect)
 ● Duration(Train_journey56, Mysore34, 3_hours, Past_perfect)

But this would be rather ad hoc, and not conducive to building and sharing large amounts of 

knowledge. In addition there is a problem trying to define the semantics of he above sentences, since 

the predicates have all kinds of arguments.

Properties like colour, weight, height and length can be expressed in various ways. The choice of 

adjectives as predicates raises the question of what the predicates mean. We have seen earlier that 

predicates like Man and Human can be used to define categories of objects. Thus, Man(x) stands for the 

set of objects that are instances of men16. Does the predicate Red(x) mean something similar? A similar 

question might be raised about the predicates Mortal, and Bright we used earlier.

Obviously the relation between the concept of (being) a Man and the individual Socrates, is not quite 

the same as the relation between our concept of being red and the individual ball. The English language 

distinguishes between the two relations by employing different grammatical structures, “The teacher 

is a man” vis a vis “The ball is red”. The presence of the article “a” identifies “man” as a noun, while 

its absence identifies “red” as an adjective. We see red as a property of the ball, while we see Socrates 

as being an instance of a class called Man. Is Red a class too? In a way we could say that our notion 

of redness comes from all the red coloured objects we have seen, but we cannot say that the ball is an 

instance of “red”. Another possibility is to code it, like one might in RDF, as, 

Colour(Ball22, red)

Now we are saying “Colour” is a property (or predicate) that describes the subject “Ball22” and its 

value is a literal named “red”. This is a little better since we do tend to think of colour as a property of a 

(physical) object, and the statement reflects that relation. In the above statement we have modeled “red” 

as an (reified) object in the domain. We could have also used Colour as a function to assert, 

Colour(Ball22) = red

We could even relate it to other colours by functions like, 

Similarity(red, orange) = 0.78

We could also define a category called Colour_class of which red is an instance, expressed by the 

statement Colour_class(red) or Instance(Colour_class, red) being true.

Weight and length are properties we tend to use both quantitatively (5 kg, 3 km) and with fuzzy 

linguistic descriptors (light, short). Quantitative descriptions themselves tend to employ different 

16 In the next chapter we will introduce the notion of classes that will stand for abstractions of individual elements. Classes will 

be defined as intensions based on their properties. 
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measures, and one needs to find mechanisms to reason with different measures, for example, 26 miles 

385 yards = 42.195 km.

Let us say we want to talk about the length of an object Pencil41. Now if we can think of a reified 

object that represents, or that is, the length of Pencil41, we could point to that object of type length by 

using a function called “length” as length(Pencil41). Let us say that the pencil is five inches long. We 

could think of another function “inches” that takes an argument of the type length and returns a number, 

in this case 5 (as described in (Brachman and Levesque, 2004)). Likewise we could define a function 

“cms” that returns the value 12.7 in centimetres. That is, 

inches(length(Pencil41)) = 5

cms(length(Pencil41)) = 12.7

We could also write conversion equations like, 

inches(length(Object)) * 2.54 = cms(length(Object))

We could now define the notion of longer than by defining an ordering on the objects of type length 

as follows.

(length(O1)  length(O2)) ∫ (cms(length(O1)) > cms(length(O2)))

assuming we have an ordering on numbers.

But now what is a number? (McCulloch, 1961)17 At the most basic level, numbers have obviously 

something to do with counting. We say that two sets have the same number of elements if we can establish 

a bijection between them. Bertrand Russell said that the number is “a class of all those classes that can 

be put in one to one correspondence with it”. A number is certainly an abstract concept, and is a perfect 

example of a reified entity. The numeral 7, or VII, or the word “seven”, for example corresponds to the 

reified entity that is the number 7, which is an element of a set (of natural numbers) that can be defined 

inductively. The number 0 maps to the cardinality of the empty set. The following definition of the set 

of numbers is due to John von Neumann. Each number corresponds to a set, which contains that many 

elements. Zero corresponds to the empty set. We say zero is equal to the empty set. Given a number N,

the next number s(N) is the union of the set containing N and all the members of (the set) N. That is, 

s(N) = {N} » N  (remember N is a set)

For readability, we use the notation F to stand for the empty set.

0 = F

1 = {0} = {F}     note 0 or F has no elements

2 = {1, 0} = {{F}, F}

3 = {2, 1, 0} = {{{F}, F}, {F}, F}

4 = {3, 2, 1, 0} = {{{{F}, F}, {F}, F}, {{F}, F}, {F}, F}

.

.

Thus a number is greater than all its predecessors, and the successor of a number is made by taking 

the elements of the number and adding one more element, the number itself, shown underlined above.

Given the above definition of the successor function we can define the set of natural numbers as 

successive successors of the number 0.

17 Apparently as a young student McCulloch was asked by Quaker Rufus Jones as to what he intended to become and what he 

planned to do, to which he replied “I have no idea, but there is one question I would like to answer. What is a number, that a 

man may know it, and a man that may know a number?”. Jones, it seems, smiled and told him that he was going to be busy 

for the rest of his life. 
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The set of numerals in the language {0, 1, 2, 3, …} can then be mapped to the reified objects 

{0, s(0), s(s(0)), s(s(s(0))), …}. Note that we have overloaded the symbol “0” to stand both for the 

numeral 0 and the number 0.

Another way we could talk about length is to deal with the reified object length(Object) directly 

(Russel and Norvig, 2009). The function inches would then take a number as input and return an 

appropriate of object of type Length. Then we could say, 

length(Pencil41) = inches(5) = cms(12.7)

This has the advantage that we can directly talk of reified objects like “5 inches” as length that in 

inches measures 5 units, and define predicates like, 

height(Aditi96, inches(66), year(2008))

One would also find it easier to represent statements like “It was a three hour long odyssey”.

Conversion now will need multiplication inside the brackets.

inches(X) = cms(X * 2.54)

One thing we might want to do with measured quantities is to add them, and to compare them.

In the first notation one can assert that only same unit measures can be compared. Then since the 

functions return numbers we can simply make statements like, 

km(distance(Delhi, Chennai)) > km(distance(Delhi, Mumbai))

This is a bit unnatural, since we want to say that Chennai is farther from Delhi than Mumbai is, and 

we do not want to talk about units of measurement unnecessarily. We can get around this by asserting 

the following equivalence, 

(distance(Delhi, Chennai) > distance(Delhi, Mumbai))

∫ (km(distance(Delhi, Chennai)) > km(distance(Delhi, Mumbai)))

The second notation returns objects of the abstract length type, over which we would have to define 

the ordering as dependent upon the underlying order of numbers, for example as follows.

(km(X)  km(Y)) ∫ (X > Y)

This says, for example, that if 2100 is greater than 1200, then 2100 km is “greater” than 1200 km, 

and vice versa.

We may also need to define the addition function to reason with situations where quantities need to be 

added. For example “Shyam ran for 3 km and walked another 2 km. How much distance did he cover?”

In the first notation, addition is defined naturally, and one will assert the facts as, 

km(length(firstLeg)) = 3

km(length(secondLeg)) = 2

km(length(total)) = km(length(firstLeg)) + km(length(second(Leg))

  = 3 + 2

  = 5

In the second notation, we would assert the facts as, 

length(firstLeg) = km(3)

length(secondLeg) = km(2)

length(total) = length(firstLeg) + length(secondLeg)

  = km(3) + km(2)

  = km(3 + 2)

  = km(5)



508 A First Course in Artificial Intelligence

This needs an extra inference step based on the rule

"X"Y (km(X) + km(Y) = km(X+Y))

where X and Y have to be of type (or sort) number.

13.4.1 Fuzzy and Qualitative Categories

Humans tend to use linguistic terms to describe many categories with sets of values that objects may 

have, rather than use actual numerical values. This is especially useful if one needs to reason at an abstract 

level with a certain subsets of values. This may be used to define rules or for descriptions of behaviour 

or properties. Examples of such sentences, with the categories italicized, are, 
 ● Rinse the clothes in warm water.
 ● The weather in Chennai is usually hot.
 ● Tall people make good basketball players.
 ● Sherpas in the Himalayas can carry heavy loads with ease.
 ● Taxi drivers do not like short rides.

It is not always possible to define crisp categories for properties that represent denote subsets of 

numeric values. How does one define the concept of warm water? One cannot say that the water is warm 

if the temperature is within some range [tlow – thigh]. This would imply that a temperature just below tlow

is categorized as not warm while tlow itself is categorized as warm. Similarly, for the other categories, 

hot, tall, heavy and short. The notion of fuzzy sets introduced by Lotfi Zadeh in 1965 allows us to define 

meaningful semantics of such terms (Zadeh, 1965). A fuzzy set is a set which does not define membership 

of a set in crisp yes/no terms. Rather there are degrees of membership with which an element can belong 

to a set. While a crisp set A is defined by its members, or by a characteristic function c: AÆ {0, 1}, a 

fuzzy set A is defined by a membership function m: AÆ [0, 1]. An element x can belong to a crisp set 

only of c(x) = 1, and it does not belong to it if c(x) = 0. On the other hand an element x can belong to a 

fuzzy set with a degree m(x) which may be a value anywhere between 0 and 1. Thus if m(x) = 0.7 then 

we then we would be justified in saying that x belongs to A to a large extent.

Consider a rule in a fuzzy controller that says “turn off the heater if the water is hot”. Let us say the 

water is at 60 degree Celsius and we have a fuzzy membership function of hot that gives us a value of 

0.8. How can we interpret or operationalize such a rule? One way would be to introduce randomized 

moves (like in simulated annealing) and have a well defined action that is applied with a probability 

proportional to the fuzzy membership value. The 

other, that is often used, is to determine whether a 

given temperature value belongs most to the fuzzy 

set hot, as compared to other sets like warm or cool,

and then take the action specified in the fuzzy rule.

Defining fuzzy membership functions is the 

key feature in such applications. The shape of 

the membership function would determine the 

semantics of the fuzzy category. Figure 13.7 shows 

a set of possible fuzzy membership functions 

defining the notion of tall people. All the functions 

are monotonically increasing, which means that 

they all associate increasing height with increasing 

membership values. The values range between zero 

(definitely not tall) to one (definitely tall). Often to 

1

0

height

Crisp set

FIGURE 13.7 Different possible fuzzy 

membership functions for the notion of tall.



Chapter 13: Concepts and Language 509

simplify computation one tends to use a linear function. The vertical line defines a crisp set, with all 

values of height beyond the marked value being labeled tall. The others all agree beyond a point, but 

have different membership values around the crisp boundary. Observe that for a conservative application, 

for example recruitment of pilots, the crisp boundary may be shifted to the right.

In the examples given above, we have also marked the words good (basketball players) and (with) 

ease. While these are not linguistic terms for numerical values, they are nevertheless fuzzy categories in 

the sense that people would form fuzzy sets associated with them. One could think of numerical values 

which in principle indicate the proficiency in the game (like for example the Elo ratings in chess) or the 

amount of effort (the Sherpas have to make).

Fuzzy sets can be thought of as sets that are defined around some prototypical or idea values, and 

allow partial membership to values near the prototypical ones. For example, one may have in mind an 

interval of heights that defines “medium height” for a person, but people with heights outside but close 

to these values would still qualify to belong to the set, though to a lesser extent. Sometimes the intention 

of using categories is not based on linguistic goals, but to define sets of values that are equivalent for 

some form of reasoning. One is not interested in defining a function that captures how close the value 

is to the ideal value, but rather whether it belongs to an interval or not. The interval then defines a crisp 

set of values, but the values are such that they may be treated equivalently. This may happen if one 

wants to model a process without having access to numerical data. For example, the ice on a lake may 

be considered to be safe for skating after a certain thickness. Look at the following statements, 

 ● The fluid in the brake pipes is frozen.
 ● Mohammed Ali was the heavyweight champion.

The symbols frozen and heavyweight may now be treated as values of variables. Variables taking 

such qualitative values are called as qualitative variables. Each such value in fact represents a set of 

values, which have the same effect of the reasoning process. We will look at qualitative reasoning later 

in Chapter 17.

13.4.2 Beyond Truth Functional Semantics

Given a language, what is its semantics? We have discussed the semantics of sentences from a logic 

perspective. The terms of a language denote objects in a domain. The meaning of predicates in FOL

derives from the mapping to relations in the domain, and the truth values determine whether the sentence 

is true or not.

It has been argued that the use of language incorporates more than just assertion of facts. It is also 

concerned with making useful statements (see (Brandon, 1976), (Parikh, 1994), (Parikh and Ramanujam, 

2003)). This is imperative when the different users of language may not necessarily completely agree 

on the truth values of assertions, but can still derive utility from communication.

In fact, Parikh defines some predicates as vague predicates for which logics and semantics cannot 

be defined. Consider the notion of colour. In a paradox mirroring the Sorites pardox, suppose that there 

are a large number (N) of colour patches labelled P1 to PN, and it is known that P1 is red, and that PN

is not red. Further any two consecutive patches Pi and Pi+1 are visually indistinguishable but minutely

different in colour. This would mean that we would be inclined to use the same colour name for them. 

Then at which point traversing from 1 to N would we say that the patch is not red?

When one says “the woman in the red shirt” what does one mean? Does one talk of some truth 

functional semantics that says that the predicate red(shirt) is true based on some colour chart? Rohit 

Parikh has argued (Parikh, 1994; 2001) that one should work towards a utility based semantics. If I 

were to describe to you a person as the one wearing the red shirt, and if you are able to identify her 
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(correctly), then my description of her wearing a red shirt is useful even if she is wearing what a purist 

mighty call a maroon shirt. This could happen for instance if the rest of the people in the group were 

all wearing differently shades of blue.

Utility thus plays an important role in what we say being in the context of some intention or purpose. 

The colours of lights on a traffic signal are typically red, amber and green. This is a utilitarian choice 

because the possibility of giving confusing signals is minimized. Ignore the placement of the three lights, 

or assume that you are speeding from far trying to decide whether you can cross the signal or not in 

time, and all you can notice is the colour of the light. Imagine what would happen if the red, amber and 

green were replaced by forest green, lime green and pigment green. Obviously there would be many 

more accidents. In fact there is utility even in choosing red for stopping, instead of green, because red 

light is of a longer wavelength and can be more clearly seen from far18.

13.5 Event Calculus

An intelligent agent needs to reason about actions and their consequences in a changing world. The 

world itself is described in terms of relations between objects expressed as FOL predicates. In a dynamic 

world however the value of the predicate can change over time. We call such predicates fluents.

If we want to reason about the effects of actions on the world then we need to be able to treat actions 

and fluents as arguments to predicates that represent relations between them. Strictly speaking, this 

violates the definition of FOL, because arguments to predicates in FOL can only be terms, and terms are 

mapped to elements in the domain. However, we can circumvent this problem by extending the domain 

to include instances of actions and fluents. That is, for the purpose of reasoning with them, we add the 

symbolic representations of predicates and actions to the domain or the universe of discourse. We say 

that we have reified the actions and predicates.

We also need to introduce a representation of time, because we need to talk about when the actions 

happened and what fluent is true at a given time. The (classical) FOL operates in a ‘mathematical’ domain 

where predicates are either always true or always false, and in some sense time does not need to exist. 

The well known Event Calculus (EC) (Kowalski and Sergot, 1986), (Shanahan, 1999), (Mueller, 2006) 

introduces three (new) sorts – events or actions, fluents, and time. We can visualize the domain of event 

calculus as shown in Figure 13.8.

The subject matter for the Event Calculus comes from the sorts of time, actions, and fluents. The 

fluents themselves are predicates over what we can call the physical domain. The domain for the EC is 

the extended domain constituting of the time, actions and fluents domains.

The variables and constants of the EC belong to one of the following sorts.

An Event Sort, with variables {e, e1, e2, …} The constants of the event sort will be the actions 

and exogenous events in the specific domain, like unstack(block2, block6), walk(home22, ramesh23, 

office34), wakeUp(kumbhakaran1), cyclone(nisha, 2008).

A Fluent Sort, with variables {f, f1, f2, …} The constants of the fluent sort are the predicates from 

the domain, like holding(block2), loc(ramesh23, office34), awake(kumbhakaran1).

A Timepoint Sort with variables {t, t1, t2, …} The constants of the timepoint sort are numbers 

representing time points. In the Continuous Event Calculus (CEC) they may be real numbers, and in 

Discrete Event Calculus (DEC) they are integers.

18 Unless you are a bus driver in Chennai, in which case you often see it as green. 
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The PredicatesEC

Time

Actions
FOL predicates
(Fluents)

The “Physical” Domain

Event Calculus

Predicate Calculus ( )FOL

FIGURE 13.8 The domain for the Event Calculus is Time, Actions and Fluents.

The predicates of EC are relations between the different variables from the three sorts. Typically 

the relations describe the happening of events, and the relations between events, fluents and time. The 

commonly used predicates are described below.

Happens(e, t1, t2) Event e starts at t1 and ends at t2. Observe that the event has a duration. For example, 

Happens(Eclipse321, t5, t7) says that a particular eclipse happened between time points t5 and t7. An

instantaneous version of Happens can be defined as, Happens(e, t) def
= Happens(e, t, t)

HoldsAt(f, t) Fluent f is true at time point t. For example, HoldsAt(Form(Glacier17, Solid), t1) says 

that at time point t1 Glacier17 is in solid form. One may also define a predicate Initally(f) to assert that 

fluent f is true initially.

Initally(f) def
= HoldsAt(f, t0)

Initiates(e, f, t) Event e occurs at time t and results in the fluent f becoming true after t. One might 

for example assert that the event of waking up initiates the fluent of being awake to be true, by 

Initiates(wakeup(kumbhakaran1), awake(kumbhakaran1), t3). In the DEC, it means that the fluent f is

true at time (t + 1) and later.

Terminates(e, f, t) Event e occurs at time t and results in the fluent f becoming false after t. In the 

DEC it means that the fluent f is false at time (t + 1) and later. For the durative version of the action one 

can define the fluent to become true or false at either endpoint. For example, if the event is Walk(Home, 

Actor, Office) from home to office then, the fluent AtHome(Actor) becomes false (is terminated) at the 

start of the walk event, while the fluent AtOffice(Actor) becomes true (is initiated) at the end.

ReleasedAt(f, t) The fluent f is released from the commonsense law of inertia at time t. The 

commonsense law of inertia states that a fluent’s truth value will not change unless affected - initiated 

or terminated—by an event. If a fluent is released from the commonsense law then it can fluctuate, and 

one cannot deduce its state. Releasing a fluent from the commonsense law is a mechanism to deal with 

certain kinds of uncertainty. For example, if you toss a coin then you release the fluent Heads(Coin)

from the commonsense law, and it could take any value.
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Releases(e, f, t) Event e occurs at time t, after which the fluent f is released from the commonsense 

law of inertia.

Trajectory(f1, t1, f2, t2) If fluent f1 is initiated by an event that occurs at time t1 then fluent f2 will be 

true at time (t1 + t2). This allows one to capture a causal relation between two fluents. For example, if 

On(Stove) is initiated by Light(Stove) at t1 then the fluent Temp(Water, SomeIncreasingFn(t2)) is true

at time (t1 + t2).

AntiTrajectory(f1, t1, f2, t2) If fluent f1 is terminated by an event that occurs at time t1 then fluent f2
will be true at time (t1 + t2).

With the introduction of time there arises the problem of determining the truth value of fluents over 

different instances of time. What is true at one moment may be false at another time.

The following definitions are short forms for the equivalent formulas given after their descriptions.

Clipped(t1, f, t2) A fluent f that was true is made false sometime after or at time point t1 and before 

t2. This is equivalent to the longer formula, 

$e, t(Happens(e, t) Ÿ (t1 £ t < t2) Ÿ Terminates(e, f, t))

Declipped(t1, f, t2) A fluent f that was false is made true sometime after or at time point t1 and before 

t2. This is equivalent to the longer formula, 

$e, t(Happens(e, t) Ÿ (t1 £ t < t2) Ÿ Initiates(e, f, t))

PersistsBetween(t1, f, t2) The fluent f is not released from the commonsense law of inertia after 

time point t1 and up to and including time point t2. That is, it retains its truth value during the interval. 

This is a short form for, 

ÿ$t(ReleasedAt(f, t) Ÿ (t1 < t £ t2))

13.5.1 Effect of Events on Fluents

When an event happens that initiates a fluent, then the fluent becomes true. We make a simplifying 

assumption in the formulas below that the effect on the fluent is felt at the very moment the event 

happens. If one were to talk about the fluent being true at a later point one would need to add that the 

fluent was not Clipped in the interim period.

EC1 (Happens(e, t) Ÿ Initiates(e, f, t)) … HoldsAt(f, t)

Likewise if an event happens that terminates a fluent the fluent ceases to hold when it happens.

EC2 (Happens(e, t) Ÿ Terminates(e, f, t)) … ÿHoldsAt(f, t)

Events may release a fluent from the commonsense law of inertia, or they may terminate their 

released status.

EC3 (Happens(e, t) Ÿ Releases(e, f, t)) … ReleasedAt(f, t)

EC4 (Happens(e, t) Ÿ (Initiates(e, f, t) ⁄ Terminates(e, f, t)) … ÿReleasedAt(f, t)

Strictly speaking of course the effect should be felt after the event has happened. But between the 

instant the event happens and the instant when we want to evaluate the fluent nothing else should have 

happened. Hence, if we want to model a delayed response, we will need to include additional conditions 

in the left hand side along the lines of the ones in the inertia axiom below. For a detailed description the 

reader is referred (Mueller, 2006).
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The Inertia Axiom

Using the above definitions we can infer that the value of a fluent remains the same if it remains under 

the commonsense law of inertia and is not clipped by some event.

IA: (HoldsAt(f, t1)Ÿ(t1<t2)ŸPersistsBetween(t1, f, t2)ŸÿClipped(t1, f, t2)) … HoldsAt(f, t2)

13.5.2 Reasoning

Different kinds of reasoning can be done with actions, events and states in a changing world (Shanahan, 

1999).

Prediction Given an initial state and a narrative of events or actions, to deduce the fluents that are 

true in the final state. In the context of planning this is also known as projection.

Postdiction Given a final state and a series of moves that resulted in it, the task is to deduce the 

initial state.

Abduction Given the initial state and the final state, to find out the events that would transform the 

initial state into the final state. This is also planning, the task of finding the actions that transform the 

given state into the final one. Diagnosis may also involve finding events that resulted in something going 

wrong. Note that more than one solution may exist.

One may be called upon to do a combination of the above tasks. The task of a detective investigating 

a crime is to find out both what was true in the intermediate past, and what happened after that. A simpler 

version of such deductive reasoning has been described as retrograde analysis by Raymond Smullyan 

in his delightful collection of chess mysteries (Smullyan, 1979; 1992). A simple example of such a 

problem is given below. The book itself contains more challenging ones.

FIGURE 13.9 A simple problem of retrograde analysis.

The above figure represents the state of the board in a game of chess. Simply by looking at the board 

position, one can answer the question “Who played last, and what was the last move?” because in this 

situation only one move is consistent with the rules of chess. Notice that the black king is in check from 

both the white bishop and the white queen. Hence white must have moved last to administer the check. 

Further, before white’s move, the black king must not have been in check by either of them, since it 

would have had to take some defensive action and would then no longer be in check. This implies that 

both the checks must have been administered in white’s last move, one of them a discovered check, and 
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that move could only have been moving the white bishop from e8 to c619. The interested reader should 

look at the books by Smullyan for more intricate problems. A retrograde analysis problem requiring the 

solver to find the last 96 moves is attributed to the Hungarian chess player Gyula Breyer (see http://

mathpuzzle.com/retrograde.html). A collection of problems and references can be found at (TRAC).

While retrograde analysis is an interesting example of logical (deductive) reasoning, the representation 

issues themselves are fairly straightforward. The rules of the game generate a state space in which actions 

link states. One does not really need to reason at a fine grained level where fluents might be required. 

Event calculus, on the other hand, equips us with machinery to reason at a more fine grained level. For 

example, one can infer that if a player has picked up a knight from the chessboard, she is holding the 

knight, and that the knight is no longer on the board. Such knowledge, while it does mirror facts, is not 

useful for the task of solving retrograde analysis chess problems. One could use it to infer for example 

that if the player has made a move then she must have picked up the piece and must have been holding 

it, and so on, provided that the context is that of playing on a physical chessboard. Such inferences, 

though interesting from the commonsense reasoning in AI perspective, and perhaps useful in solving 

a murder intrigue in which pawns from a chess set are laced with poison, are not likely to enamour the 

chess enthusiast.

The possibility that fluents can change value, can however lead to considerable problems for deduction

in an open world. In particular deductive reasoning is compelled to assume that all change that is 

happening is the one that is described explicitly or that logically follows from what is explicitly described. 

We shall look at the Event Calculus with an example that requires such an assumption.

13.5.3 A Bicycle Story

Consider the following narrative. “Nikhil filled up air in his bicycle. He intends to go to the restaurant 

at 9 a.m., eat his breakfast there at 9.30, and go to cricket practice at 10 a.m.”.

We assume that people do what they intend to if they can. This is the sense of intend that is used in 

the Belief Desire Intention model of agency (see Chapter 11).

Can we then infer that Nikhil is at cricket practice at 11 a.m.?

Let us state the facts in Event Calculus. We use time points t1, t2, t3 and so on, and ordering relations 

between them. We use lower case words for constants and upper case for variables. For the sake of 

simplicity we assume actions are instantaneous.

Story N1

1. HoldsAt(loc(nikhil53, home86), t0)

2. Happens(fillAir(nikhil53, bicycle39), t1)

3. Happens(planToRide(nikhil53, bicycle39, home86, restaurant66), t3)

4. Happens(planToEat(nikhil53, restaurant66), t5)

5. Happens(planToRide(nikhil53, bicycle39, restaurant66, cricketPractice11), t7)

The sequence of predicates could (logically) be stated in any order, and we also assert the following 

relations between the time points, 

6. t1 < t2
7. t2 < t3
8. t3 < t4
9. t4 < t5

19 The squares of the chessboard are usually labeled a-h from left to right and 1–8 from bottom to top as seen by the white player. 

In using the values the values e8 and c6 we have assumed that white is sitting “below” the board.
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10. t5 < t6
11. t6 < t7
12. t7 < t8
13. t8 < t9

We would like to be able to deduce that at time t9 > t7 Nikhil is at cricket practice, represented by 

HoldsAt(loc(cricketPractice11, nikhil53), t9). To be able to do this we will need to add knowledge in 

the form of rules relating the events to the states. Such knowledge is called a set of domain axioms. For 

the above problem we need the following axioms. All variables are implicitly universally quantified. 

Axiom A1 states that event fillAir(P, B) initiates the fluent inflated(B) at some time T. That is, fluent 

inflated(B) becomes true after time T as a consequence of action fillAir(P, B) which happens at time T.

A1: Initiates(fillAir(P, B), inflated(B), T)

Axiom A2 states that if the preconditions of riding a bike, being at the source and the bike (tyres) 

being inflated, are true then the intention of riding the bike will succeed20.

A2: ((HoldsAt(inflated(B), T)ŸHoldsAt(loc(P, S), T))) …

Initiates(planToRide(P, B, S, D), worksPlanRide(P, B, S, D), T)

Axiom A3 is known as a trigger axiom. A trigger axiom describes a set of fluents, in this example 

only one, that are triggers for events. When the trigger fluents become true the events are triggered 

automatically. Axiom A3 states that if the fluent worksPlanRide holds then the ride event happens.

A3: HoldsAt(worksPlanRide(P, B, S, D), T) … Happens(ride(P, B, S, D), T)

The reason we have set up these elaborate inferences is because in our story, we have only said that 

Nikhil has an intention or plan to ride the bicycle to the restaurant. His plan will fructify only if the 

necessary conditions hold, for example that his bicycle tyres remain inflated. The domain axiom A2 is 

saying that if such conditions are satisfied then a plan to ride the bike is workable. A3 says that if a plan 

is workable then it will happen.

Axiom A4 states that if the ride event happens then the person P will be at the destination D. We 

have assumed this to happen instantaneously, but the reader is encouraged to write a temporal version 

of these axioms in which actions are durative.

A4: Initiates(ride(P, B, S, D), loc(P, D), T)

Likewise if the ride event happens the person ceases to be at the source.

A5: (S π D) … Terminates(ride(P, B, S, D), loc(P, S), T)

Axiom A6 considers the preconditions for the eating at the restaurant plan to work, which we have 

taken only to be at the restaurant. In practice we will need more conditions like the customer has money.

A6: HoldsAt(loc(P, R), T)) … Initiates(planToEat(P, R), worksPlanEat(P, R), T)

Axiom A7 is the trigger axiom for the eating event. Note that every intention (plan or action) that has 

preconditions will need such a trigger action.

A7: HoldsAt(WorksPlanEat(P, R), T) … Happens(eat(P, R), T)

We assume that ÿReleased(f, t0) holds for all fluents to start with. This means that fluents can change 

value only if they are affected by some events that happen.

20 Instead of introducing a new predicate or fluent like “planToRide” one could introduce a generic EC predicate “Try(event, 

time)” as was done by Allen (1991) in the Event Calculus to accommodate actions. One could then introduce a rule that says 

(Try(e, t) Ÿ preconditions of action) … Happens(e, t)).
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The derivation of the HoldsAt(loc(Nikhil53, cricketPractice11), t9) for the narrative N1 is as follows, 

14. HoldsAt(inflated(bicycle39), t1) From EC1, A1 and 2

15. HoldsAt(inflated(bicycle39), t3) From 14 and law of inertia

16. HoldsAt(loc(nikhil53, home86, t3) From 1 and law of inertia

17. HoldsAt(worksPlanRide(nikhil53, bicycle39, home86, restaurant66), t3)

From 3, 15, 16, EC1 and A2
21

18. Happens(ride(nikhil53, bicycle39, home86, restaurant66), t3) From 17 and A3

19. HoldsAt(loc(nikhil53, restaurant66), t3) From 18 and A4

20. ÿ HoldsAt(loc(nikhil53, home86), t3) From 18 and A5

21. HoldsAt(loc(nikhil53, restaurant66), t7) From 19 and law of inertia

22. HoldsAt(inflated(bicycle39), t7) From 15 and law of inertia

23. HoldsAt(worksPlanRide(nikhil53, bicycle39, restaurant66, cricketPractice11), t7)

From 5, 21, 22, EC1 and A2

24. Happens(ride(nikhil53, bicycle39, restaurant66, cricketPractice11), t7) From 23 and A3

25. HoldsAt(loc(nikhil53, cricketPractice11), t7) From 24 and A4

26. HoldsAt(loc(nikhil53, cricketPractice11), t9) From 25 and Inertia

The above reasoning process shows that Nikhil is at cricket practice at time t9. But is that (fact) 

logically entailed from the given information? Remember that entailment means that the conclusion is 

true whenever the premises are true. It so happens that this is not so for the above statements. Because 

there might be other statements that are also true but which are not mentioned in the narrative. For 

example it is possible that an event occurred in which Lavanya deflates Nikhil’s bicycle at time t4. Or 

the event that Nikhil went off to a movie at time t8, which is not mentioned in the narrative.

The astute reader would have noticed that we have glossed over the law of inertia and used it some-

what casually in the above “proof”. In fact, if we want the value of a fluent to be carried forward from 

one time to another we need to use the Inertia Axiom (reproduced here again for convenience).

IA: (HoldsAt(f, t1)Ÿ(t1<t2)ŸPersistsBetween(t1, f, t2)ŸÿClipped(t1, f, t2)) … HoldsAt(f, t2)

To move from line 14 to line 15 we would need to apply the following instance of the above axiom, 

HoldsAt(inflated(bicycle39), t1)Ÿ(t1<t3)Ÿ

PersistsBetween(t1, inflated(bicycle39), t3)Ÿ

ÿClipped(t1, inflated(bicycle39), t3)

         … HoldsAt(inflated(bicycle39), t3)

A transitivity rule can be added to take care of the formula (t1<t3). We need to show that 

PersistsBetween(t1, inflated(bicycle39), t3) and ÿClipped(t1, inflated(bicycle39), t3) hold before we can 

show that the bike is inflated at time t3. The former says that the ReleasedAt(inflated(bicycle39), t) did not 

happen for any time t between t1 and t3 (the fluent was not released from the commonsense law of inertia), 

while the latter says that no event happened during that time which would have made the fluent false.

Likewise for the fluent loc(Nikhil53, cricketPractice11) to be true at time t9, or the formula 

HoldsAt(loc(Nikhil53, cricketPractice11), t9) to be entailed, one has to make an assumption that nothing 

else happens that interferes with the chain of events that make the fluent true, and nothing happens after 

it has been made true that makes it false.

Such assumptions are characteristic of non-monotonic reasoning where one deals with statements 

that can change their truth value. We do not need to make such circumscribing assumptions in classical 

21 Strictly speaking this should be done in two inference steps. In the first step the Initiates(.., ..) formula should be produced, and 

in the second step EC1 is applied to actually initiate the fluent. 
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Box 13.1: The Frame Problem

Consider a robot carrying out some task autonomously. Assume that it maintains its set of beliefs 

about its world as a set of propositions. Given that it is planning some actions to be done, how does 

it update its representation to account for the changes that happen as a result of its actions?

Of course some changes are intended and are captured in its representation of actions. For example, 

double clicking on file icon in one’s computer will “open” the file. Or turning the faucet will make 

the water flow from the tap. Or shooting with a gun will result in the death of the target.

The question is what does not change as a consequence of a given action? Is there a succinct way 

of asserting that? (Hayes, 1987). For example, if one fired a gun a bird sitting on a nearby tree might 

take flight. Or turning the faucet on will (somehow) turn on a light as well.

John McCarthy and Patrick Hayes (1969) called this the Frame Problem. To use the analogy of 

drawing cartoon animations by hand, what does not change from one frame to the next, and can 

be carried forward? They illustrate this with an example in which an agent looks up a telephone 

directory intending to call a friend over the phone. How is one sure that the action of looking up the 

directory has not (somehow) made the phone vanish?

One can see that the solution to this problem of logical reasoning is to somehow assert that actions 

have no unstated effects, and also that no unstated actions have happened.

Steven Hanks and Drew McDermott (1987) pose the Yale shooting problem in which a gun is 

loaded and fired after a time interval. How can one conclude that the target is dead as a consequence?

From a philosopher’s point of view, the question is how can an agent ever be sure that it has 

updated its beliefs to reflect all the changes that are a consequence of its actions? Drew McDermott’s 

response to this is that even humans are unable to guarantee this and can make mistakes (McDermott, 

1987).

(mathematical) logic because once a conclusion is deduced the addition of other statements does not 

change its truth value. Hence mathematical reasoning can happen in an open world, but deductive 

reasoning about change can effectively happen only under assumptions that it is a closed world. That 

is, we assume that we know everything that is relevant, and if we don’t know something to be true, it 

must be either false (negation by failure) or irrelevant to the conclusion we are interested in.

We have to assume that everything that matters has been stated explicitly. Given such an assumption 

and given the facts, the conclusion arrived at by the derivation is then indeed entailed by what is stated 

(including the assumption). Thus under such an assumption both PersistsBetween(t1, inflated(bicycle39),

t3) and ÿClipped(t1, inflated(bicycle39), t3) will hold, and we will be able to conclude that bike is inflated 

at time t3 at line 15.

For the conclusion to be an entailment it means that it must be true in all models of the set of EC

formulas describing the domain, the EC axioms, and situation and the events. A model is a combination 

of a domain and mapping of EC statements and terms to relations and elements in the domain. The 

following additional assertions need to be made.

Unique Name Axioms

The first thing that one must assert is that terms or fluents that are named differently actually map to 

different elements in the domain. For example the fact that “fillAir” and “eat” refer to distinct events. 

Such assertions are typically made as unique name axioms (UNA). Thus we should say that, 

UNA(loc, inflated, worksPlanRide, worksPlanEat)
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UNA(fillAir, planToRide, planToEat, ride, eat)

UNA(nikhil53, home86, bicycle39, restaurant66, cricketPractice11)

The meaning of a UNA statement is that all its arguments are distinct.

Predicate Completion

The next “fact” we must assert is that the events have no unstated effects, and that no unstated events 

have actually happened.

Completion of the Initiates predicate is done by listing all known events that initiate fluents and the 

corresponding fluents. Thus if Initiates(e, f, t) is true then e and f can only take one of the following 

pairs of values. Observe that the e, f and t are universally quantified “variables” of the EC, and their 

arguments variables from the domain.

Initiates(e, f, t) ¤ (e = fillAir(P, B) Ÿ f = inflated(B))

⁄ (e = planToRide(P, B, S, D) Ÿ f = worksPlanRide(P, B, S, D))

⁄ (e = ride(P, B, S, D) Ÿ f = loc(P, D))

⁄ (e = planToEat(P, R) Ÿ f = worksPlanEat(P, R))

The above formula states that if an event e is initiating a fluent f, then it must be the fillAir event that 

results in the inflated fluent becoming true, or the planToRide event that results in worksPlanRide fluent, 

the ride event that results in the loc fluent, or the planToEat event that results in the worksPlanEat fluent 

with appropriate values. No other effect of any action can happen.

Likewise the only case we know when an event terminates a fluent is

Terminates(e, f, t)¤ (e = ride(P, B, S, D) Ÿ f = loc(P, S), T)

When we talk of the Happens predicate, we have to be a bit more specific about the actual instances. 

We want to eliminate event instances that no one has said have happened, without eliminating the event 

(type) itself. The only (instances) of events that have been stated explicitly to happen are, 

Happens(e, t) ¤ e = fillAir(nikhil53, bicycle39) Ÿ t = t1
⁄ e = planToRide(nikhil53, bicycle39, home86, restaurant66) Ÿ t = t3
⁄ e = planToEat(nikhil53, restaurant66) Ÿ t = t5
⁄ e = planToRide(nikhil53, bicycle39, restaurant66, cricketPractice11) Ÿ t = t7

However, the above restriction will not fit the bill because along with events that no one has stated to 

happen it also throws out events that happen due to their trigger conditions becoming true. One needs 

to allow those actions that are logically consistent with the set of formulas that we have.

This is a little bit trickier. What we really want to say is that only those events happened that are either 

explicitly stated or that follow logically from what is stated. This is precisely what Circumscription does.

Circumscription

Circumscription is a method of default reasoning devised by John McCarthy (McCarthy, 1980; 1986), 

(Lifschitz, 1985; 1994). It is an approach to default reasoning that is aimed at making plausible, or 

defeasible, inferences. The basic idea behind Circumscription is to find the set of formulas that hold 

in all minimal models of a given set of formulas. In doing so one may choose the predicates that one 

wants to minimize.

If G is a formula containing the predicate symbol r, then the circumscription of r in G written as 

Circ[G; r] is the formula in second order logic, 

G Ÿ ÿ($f(G(f) Ÿ f < r)
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which should be read as: The statement G is true, and there exists no predicate f of the same arity as r

such that G(f), the formula G with every occurrence of r is replaced by f, is true, and f implies r but 

is not equivalent to r. In other words in every model of the circumscription the set of instances of r

are consistent with (the given) G, and no subset of the instances is consistent with G. Equivalently the 

circumscription admits only those instances of r that are necessarily entailed by the given set of facts 

G. We shall look at Circumscription again when we look at default reasoning in Chapter 17.

Let S be the conjunction of the domain axioms including the Initiates and the Terminates formulas, 

and let D be the set of Happens statements including the trigger events, let EC be the axioms of event 

calculus, and U be the set of unique named assumptions, then we can state that

Circ[S; Initiates, Terminates, Releases] Ÿ Circ[D; Happens] Ÿ EC Ÿ U

   |= HoldsAt(loc(nikhil53, cricketPractice11), t9)

The detailed proofs are beyond the scope of this text. The interested reader is referred to (Lifschitz, 

1985; 1994), (Mueller, 2006) and (Shanahan, 1995; 1997). Our focus has been on representation in this 

chapter, and we are looking at how one can represent the relationship between events and fluents in a 

logic based setting.

13.5.4 A Simpler Narrative N2

Why did we use the action planToRide(P, B, S, D) instead of the action ride(P, B, S, D) directly? Suppose 

we had given the narrative stating the events that had actually happened as follows, 

I. Happens(fillAir(nikhil53, bicycle39), t1)

II. Happens(ride(nikhil53, bicycle39, home86, restaurant66), t3)

III. Happens(eat(nikhil53, restaurant66), t5)

IV. Happens(ride(nikhil53, bicycle39, restaurant66, cricketPractice11), t7)

   then the conclusion requires a smaller set of assumptions, only for the period between t7 and 

t9. This is because the events that have been stated as happened must have happened (because we 

assume our knowledge base is consistent). Thus we can be sure that the last ride event initiates 

the fluent loc(Nikhil53, cricketPractice11) at time t7, and we only have to assume that nothing 

happens after that.

   The earlier narrative N1 stated that Nikhil intends to ride his bike to the restaurant, intends to eat, 

and intends to go to cricket practice. The intention of the actor is known. Using Circumscription, we 

can assume that these plans will indeed work, since we have no knowledge of any other events that 

could have possibly interfered with intention, and we can “conclude” that he is at cricket practice 

at time t7. This conclusion is a default or tentative or defeasible conclusion, valid only under the 

assumption that all relevant events and their effects have been explicitly stated. However, the 

story N1 does allow for a new event to be added to the knowledge base, for example that Lavanya 

deflates his bike at time t4.

V. Happens(deflate(lavanya7, bicycle39), t4)

  Our knowledge base will still be consistent. The conclusion, however, that Nikhil is at will no 

longer be entailed. If we had used the second narrative N2, then the addition of the new fact of 

Lavanya deflating the bike would have made the knowledge base inconsistent. This is because 

an action with preconditions in fact implies the preconditions when it happens (see Chapter 10). 

Thus, the following is an axiom, 

A8: Happens(ride(P, B, S, D), T) … HoldsAt(inflated(B), T)
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  which would have led us to conclude both that the bike is deflated (thanks to Lavanya) as well 

inflated (since the bike ride happened) at the same time point t7, which is a contradiction22.

  In the classic Yale shooting problem that has been discussed in the event calculus literature, 

the intention of killing is represented by the shoot action, and the implicit killing event uses the 

loaded fluent as a precondition. Thus, the intention of killing (shooting) leads to the actual killing 

event only when the gun is loaded. More importantly, the shoot action is possible even without 

the precondition being true, and can be executed even when the gun is not loaded, though it does 

not result in the implicit event of killing. In our description, we have separated the intention as 

the planToRide action, which leads to success only when the bike is inflated and the person is at 

the source, but when it does work it leads to the ride event happening via a trigger axiom. If the 

preconditions do not hold the planToRide event can still happen, though it would not result in the 

ride event happening.

Random Events

Deflation of the (tyres of the) bike need not only happen due to adversarial action. It could happen due 

to the tyres coming into contact with a sharp object such as a nail or a pointed stone, which may or may 

not result in deflation. This could be modeled using the Releases predicate as follows

Releases(hitNail(B), inflated(B), T)

Now in some models the bike would be inflated and in some it would not. But since 

ReleasedAt(inflated(bicycle39), t) would happen at whatever time t the bike hits the nail it will no 

longer be possible to deduce that the bike (tyre) is inflated at a later point of time, and also therefore 

none of the conclusions that depend upon the fluent being true.

This could also be modeled using a random variable Punctured, called a determining fluent, that 

could take any random value, true or false, as follows

(HoldsAt(inflated(B), T)ŸHoldsAt(Punctured, T)) … Terminates(hitNail(B), inflated(B), T)

Being a random variable Punctured is not governed by the commonsense law of inertia. Then in 

some models Punctured will be true and in some it will be false, and one cannot come to a definitive 

conclusion about whether the bike is inflated or not.

Conceptually the first approach says that hitting a nail releases the fluent inflated from the common-

sense law of inertia, and thus one cannot infer whether or not it holds after that. The second approach 

says that there is a variable, which if it happens to be true, will result in the bike tyre getting deflated.

Trajectory

The Trajectory predicate is used to relate two related fluents one of which is Initiated by some event 

in a changing world. In the above example assume that along with loc(Person, Place) we have a fluent 

dist(Person, Place, Distance) in a one dimensional world, where Distance is of the real number sort. 

Assume that the bicycle riding event has a duration, and during that duration fluent ridingBike(Person)

is true. Then we can express the distance the person has travelled at any given time by a function of the 

speed. Let us say that Nikhil rides his bike at S metres/second. Then we can write the following expression, 

(HoldsAt(loc(nikhil53, home86), t3)

Ÿ Happens(ride(nikhil53, bicycle39, home86, restaurant66), t3)

Ÿ (t3<T)

22 Provided we have the assertion: deflated(B) ∫ ¬inflated(B).
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Ÿ ÿClipped(t3, ridingBike(nikhil53), T))

         … HoldsAt(dist(nikhil53, home86, S * T), t3+T)

The above expression says that if Nikhil was at location Home at time t3, and started riding his bike 

(at a constant speed of S meters/sec) then at time t3+T he will be S∗T meters away from home, provided 

the ridingBike fluent was not terminated in the intervening period.

The trajectory axiom allows us to say that in a succinct form as follows:

HoldsAt(loc(nikhil53, home86), t3)

   … Trajectory(ridingBike(nikhil53), t3, dist(nikhil53, home86, S * T), T)

which may be generalized as, 

HoldsAt(loc(P, L), t0) … Trajectory(ridingBike(P), t0, dist(P, L, S * T), T)

which says that if a person P is at a location L, and some event happens that initiates the ridingBike(P)

fluent at time t0, then the distance of the person from L after time T is given by S∗T.

This brief introduction to the event calculus has given us a glimpse of an approach for logical reasoning 

in a changing world, and the issues involved. Like FOL, the event calculus gives us a mechanism for 

making deductions about what becomes or remains true as a result of events happening. The changing 

properties are represented as fluents that are initiated or terminated by events.

13.5.5 Knowledge and Belief

How do we model the knowledge held by agents? If one is to model an agent having knowledge of 

some relations (“Sydney knows that Charles loves Lucie”) or some events (“Akira knows that the flight 

had taken off”) or even beliefs (“Drona believed that Aswathama had been killed”), then one has to add 

the corresponding formulas as reified objects that can be the argument to the formulas for knowledge 

and belief.

One of the first approaches, employed by Hintikka (1962), was to introduce a modal operator Ka(a) to 

stand for “Agent a knows a”. The semantics of the operator is the commonly accepted Kripke’s “possible 

worlds” semantics, that a is true in all possible worlds compatible with a’s knowledge. Adopting a logical 

formalism one can reason about who knows what and (assuming that the agents are equally adept) come 

up with answers to puzzles involving common knowledge (see for example (Halpern and Moses, 1984), 

(Halpern, 1984), (Lehmann, 1984), (Stewart, 1998), and (Moses et al., 1986)).

We will not foray into Modal Logics here, but rely on the observation by McCarthy (McCarthy, 1986) 

that the many world semantics can be achieved in practice by imagining many worlds, parameterized by 

situation names, and then relying on the truth functional semantics of FOL. Moreover, we move away 

from the deductive form of reasoning and look at other ways in which knowledge can be represented 

and usefully employed. We begin by looking at knowledge and belief as modeled by the Conceptual

Dependency (CD) theory of Roger Schank.

The question of what fluents an agent needs to define is still an open question. The work in logic 

focuses more on the reasoning aspect and assumes that the predicates and actions have already been 

defined. For most illustrative purposes researchers tend to use predicates and action names chosen in 

an ad hoc manner from natural languages. This brings in the associated richness of natural language 

vocabularies, but along with that also the problems of dealing with synonyms, hyponyms, hypernyms, 

homonyms, meronyms, paronyms and so on. The use of natural language words also leaves the problem 

of translation between different languages open.

One can ask is whether the knowledge represented by an agent is dependent upon the language used 

by the agent or is it represented independent of it in some “conceptual” manner. A few thousand years 
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ago when two different humans in different parts of the world spied an apple on a tree and reached out 

for it, was there anything common in their representation and processing? Did William Shakespeare 

and James Joyce have access to a larger set of concepts or a more powerful faculty of describing them?

There are two reasons to move away from a linguistics based representation. The first, the fact that 

there are many different languages talking about the same things suggests that one should be able to 

look for a common representation. The second is that even with a chosen language there is a surfeit 

of richness of expression allowing different ways of saying the same thing. This may contribute to the 

aesthetic demands of literature but compounds the difficulty in automatic reasoning. If we could come 

up with a core set of conceptual representations then the task of reasoning would be simplified because 

the vocabulary would become smaller. Such an interesting exercise was done through the seventies and 

early eighties on a large scale.

13.6 Conceptual Dependency Theory

A novel approach to knowledge representation was the work emerging out of Yale University in the 

seventies. Spearheaded by Roger Schank many interesting natural language understanding programs 

were built around his Conceptual Dependency (CD) theory of representation. The work was done 

in the context of story understanding and began with representing everyday actions using a core set 

of conceptual actions and states. The CD theory represents all states and events using a small set of 

primitive concepts, and maps incoming natural language sentences into structures of this canonical 

representation. The goal was that understating statements in any natural language would result in the 

same representation, and as a corollary, generators for different languages could produce output in that 

language. The reasoning and inferences needed for understanding can then be done at canonical level, 

and can circumvent having to deal with a vast number of linguistic terms.

We look at the basic idea behind CD theory here, and in the next chapter we will look at some 

knowledge structures that were built using the CD representation. The structures focus on the contexts 

in which events are happening, and also the relations between goals, plans and actions of an actor.

The Conceptual Dependency theory describes the world in terms of four kinds of syntactic constituents.

PP : Picture producers These correspond to noun phrases and stand for elements of the domain, 

including Actors and all inanimate objects.

PA : Picture aiders These correspond broadly to adjectives, and are used to describe properties of PPs.

ACT : Actions These are conceptual actions. Very often linguistic verbs stand for conceptual actions 

but, as we shall see, this is not always so. Further the CD theory assumes a small set of primitive ACTs 

that are used to compose complex actions. ACTs are carried out by actors.

AA : Actions aiders These describe the properties of the ACTs and roughly correspond to adverbs. 

They may also be used to describe properties of events.

The world is described in terms of events and states and the relations between them. Events can be 

either the ACTS of an actor or a change of state. The latter are called state change events. The relations 

between the different constituents are captured as dependencies. Some dependencies are two way 

dependencies, and they form conceptualizations, which correspond to sentences in logic, and can stand 

by themselves.

The following dependencies can occur. In keeping with the notation used by the Yale group we depict 

conceptual structures graphically using arrows to capture dependencies. While implementing them one 

will convert them into formulas of FOL.
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1. Actors can act. For example, the event “Harry ate the pear” could be represented by (INGEST 

ACTOR (HARRY) OBJECT (PEAR REF (DEF))). At an abstract level there is a two way 

dependency between an Actors and an ACT, which we can represent as PP ¤ ACT

PP ACT

2. Picture producers can be described by picture aiders. Picture aiders are connected to PPs by 

three line arrows. This could be used for example to express the statement “Jaidev is tall”. PP

PP PA

3. Objective case. ACTs can have objects. For example, “Saveri lent the book to Aditi”.

ACT PP

4. Directive case. ACTs can be associated with a sense of direction. For example “Nikhil went 

towards the restaurant”

LOC

LOC

ACT
D

5. Recipient case. ACTs can have recipients. For example in sentence “Saveri lent the book to Aditi”, 

Saveri is the lender and Aditi the borrower.

PP

PP

ACT
R

6. The objective case can take a conceptualization as the object. For example this might occur when 

the ACT is a communication act and one is telling a story. For example, “Mahathi told her father 

that Praveen had plucked the flower”. Observe that we have now moved higher from strict FOL

and one of the arguments to the relation is a conceptualization itself. This is similar to what one 

would represent such statements with logics of knowledge and belief.

ACT

7. The instrumental case. ACTS may have instrumental ACTS. For example, “He sent her the 

message by writing it on a piece of paper and throwing it to her”.

ACT
I

8. PPs can mark conceptualizations, and in turn may be described by them. For example, “The

ground where the fight between the boys took place”, or “The girl in the field full of daffodils”.

PP PP

9. Conceptualizations can have a time marker or a location marker. In the sentence ““Harry ate

the pear in the park” the past tense would be indicated by the marker P and “the park” would 

mark the event. A set of symbols could represent different conceptual tenses, for example future 

(f), transition (t), continuing (k), interrogative (?), negative (/), potential (c), present (no marker).

T LOC
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10. Conceptualizations can result in state change events. For example, “They converted the grapes 

into juice by dancing upon them”. Note that the arrow points from the effect to the cause, to signify 

that the state change is dependent upon the action event.

r

11. Conceptualizations can serve as a reason for other conceptualizations. For example, “Janet 

opened the door for David and he walked into the movie hall”, or “The mice bit the ropes enabling 

the fox to escape from the trap”.

R

12. A state or state change may enable a conceptualization. Very often people do things because 

of a given state or a changing state. For example, “He was angry and kicked his foot against the 

wheel”, or “Since it started to rain he ran out to pick up the laundry”.

E E

13. A PP can describe another PP. For example “Barack Obama is the President” or “The doctor was 

the thief”.

PPPP

14. ACTS can be further described by Action aiders. “He was walking very fast”.

ACT

AA

15. Attributive dependency. The single arrow is used when something is an attribute of something 

else. The following illustrates this with an example. “Rashmi ate the huge hot dog while watching 

a scary movie”. In the diagram the movie has two attributes, one that it is indefinite (because it is 

“a movie”) and the other that it is scary. Likewise the hot dog has two attributes one that it is “the

hot dog” and the other is that it is huge. Finally, the event of watching the movie is an attribute 

denoting when the event of eating the hot dog occurred.

Rashmi

Rashmi ate

watch Movie

scary indefinite

Hot dog

huge definite
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16. Prepositional dependency. A double arrow is used to denote dependencies like “possessed by”, 

“contained in”, “containing”. For example, “Piyush finished reading his big book yesterday” 

would be represented as, 

yesterday

Piyush read book

big Piyush

Poss-by
tf

In the above figure, the label tf signifies that the act of reading has terminated, while the attribute 

yesterday marks the entire event. The fact that the book belongs to Piyush is shown as an attributive 

dependency.

13.6.1 Conceptual Actions and States

In the illustrations above we have freely used action and state names borrowed from the English language. 

However, one of the objectives of the CD theory was to get to the meaning or semantics behind natural 

language utterances. Understanding a natural language utterance here means arriving at a possibly 

language independent semantic representation from the utterance. This representation should be canonical 

in the sense that the many different ways of “saying the same thing” that the richness of language allows 

us23 should all map onto it. This does not debar one from using words from a language as names of 

concepts, as long as one is conscious of the overloading.

The CD theory, which has been used to describe every day actions, uses a small set of state variables, 

and a small set of conceptual acts.

The state variables take numerical values, and similar language words or phrases map to different 

values of the variables. Some of the variables are described below. We have taken some illustrative 

mappings of words from the English language. One can extend the system to define mapping words 

from other languages as well. It would then serve as a common representation of meaning for different 

languages.

health The value of this variable varies from –10 to 10. The different English words that could be 

mapped to it are, with their values, dead (-10), gravely ill (–9), sick (–9 to –1), under the weather (–2), 

all right (0), tip top (7), and perfect health (10). A person falling ill could be modeled as going from a 

state of say health = 4 to say health = –3.

anger take values –10 to 0. Some examples are, furious (–9), enraged (–8), angry (–5), irked (–3), 

upset (–2) and calm (0).

joy goes from –10 to +10. Examples, catatonic (–9), depressed (–5), upset (–3), sad (–2), OK (0), 

pleased (2), happy (5), ecstatic (10).

fear goes from –10 to 0. For example, terrified (–9), scared (–5), anxious (–2), calm (0).

hunger goes from –10 to +10. Examples: starving (–8), ravenous (–6), “could eat a horse” (–5), hungry 

(–3), no appetite (0), satisfied (3), full (5), stuffed (8), and satiated (3 to 10)

23 The interested reader is referred to the many variations the character Cyrano de Bergererac presents to describe his nose 

(Rostand, 1897).
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disgust goes from –10 to 0. Example words that are mapped on to it, nauseated (–8), revolted(–7), 

disgusted (–6) and bothered (–2).

surprise goes from 0 to 10. Examples: surprised (5), amazed (7), astounded (9).

consciousness goes from 0 to +10. Examples: unconscious (0), asleep (5), awake (10), “higher 

drug consciousness” (> 10).

Some states may be expressed as conjunctions of the “primitive” states, for example shocked = 

surprise (6) Ÿ disgust (–5).

These are states of human beings. Likewise other entities could have states too. One could also 

account for modeling cultural differences in the use of language by a community specific mapping onto 

the values of a variable. For example, if a community is known to understate things, then the statement 

“I’m a bit upset with your behaviour” or “I’m a little unwell” could be mapped appropriately to the 

values to compensate for the linguistic understatement. On the other hand, if a community is known to 

overstate matters then their statements could be mapped onto the values with a pinch of salt.

Human beings are creatures of the mind. The mental state of a human being usually has a significant 

influence on behavior, and has been a subject of intense study in psychology and related fields. A plethora 

of self help books teach us how to control our mind and emotions, and techniques like meditation and 

deep breathing are often recommended to people who tend to get overly excited. Is there a “complete” 

set of variables that can be used to describe all emotional states of humans? Is there a set of primitives in 

terms of which one can describe all emotional states? It should be an interesting quest for those aiming 

to model emotions.

13.6.2 The Rasa Theory

One of the earliest attempts in characterizing human emotion was in Bharata’s ancient classical work 

called the . , (the science of drama, dance and music) about two millennia ago (Mishra, 1964), 

(Vatsayayan, 1996). Written in Sanskrit, the text consists of 6, 000 sutras, or verse stanzas, incorporated 

in 36 or 37 chapters24. The theory of emotions is called the Rasa theory (rasa means juice, so in a way 

it is like extracting the essence of human emotions). The motivation of the work, as the name suggests, 

was to identify “the dominant emotions and permanent emotions in the heart of every human being”

(Sharma, 2003). The .   identifies eight sthayibhavas or basic emotions:

 ● Rati (Love, amorous and romantic)
 ● Hasya (Mirth, the capacity to enjoy a comic situation)
 ● Soka (Sorrow, or grief, that arises due to a loss)
 ● Krodha (Anger, caused by injustice to oneself or others)
 ● Utsaha (Energy, the enthusiasm to do something)
 ● Bhaya (Terror, fear of the dangerous)
 ● Jugupsa (Disgust, repulsion)
 ● Vismaya (Astonishment, on encountering something unusual)

These eight basic emotions (sthayibhavas) are often identified themselves as the eight rasas. These 

stationery emotions often give rise to auxiliary fleeting emotions, sanchari bhavas, which reinforce 

and support the basic emotions. The expression of these sanchari bhavas by a skilled performer are 

experienced and absorbed by the receiver (rasika) as rasa, the essence of feeling. The rasas that can be 

experienced have been described as follows.

24 http://en.wikipedia.org/wiki/Natyashastra
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Shringar Rasa Arising out of Rati, it is one of the oldest emotions known since a human being espied 

an attractive mate. Bharata classifies the feelings into two kinds, sanyoga shringar, love in union, and 

viyoga shringar, love in separation. Shringar rasa probably forms the core subject of a majority of 

Indian dance dramas.

Hasya Rasa Is evoked by the jester’s funny behaviour in a drama. It was also the rasa experienced by 

Draupadi in the Indian epic Mahabharata when she saw Duryodhana fall unto a pool of water, leading 

eventually to the great war.

Raudra Rasa The feeling of anger arising out of krodha, was probably the emotion felt by Duryodhana 

when he saw Draupadi break into peals of laughter. It is a common emotion invoked in modern cinema, 

especially Indian cinema, when the protagonist yields to his25 rage and overcomes injustice against all 

odds.

Veer Rasa Or the heroic sentiment (in the hearts of the audience) arises chiefly out of utsah, or 

enthusiasm. This could be due to good unselfish deeds being depicted, or evoked by valour against 

enemies.

Bhayanak Rasa The sentiment of fear, when confronted with dreadful and terrible creatures like 

monsters, witches and ferocious animals.

Karuna Rasa Arises out of grief or soka, is the foundation of a tragedy. It may arise out of loss of 

dear ones, an epidemic, an earthquake, or a tsunami.

Veebhatsa Rasa Is the dominant emotion of disgust, making the rasika turn her face away. Often 

invoked by a gruesome scene, but could also be a result of someone’s abominable behaviour.

Adbhut Rasa The sense of wonder one feels, for example, while watching Carl Sagan talk evokingly 

of the cosmos, or when a child beholds a blossoming valley of flowers, so well depicted in many an 

animation film.

Shanta Rasa Peace, quietude, detachment, the feeling of calmness, was not included by Bharata 

amongst the eight rasas and discussed separately, perhaps because it is the opposite of drama. In the 

CD theory we might describe it as surprise(0) Ÿ disgust(0) Ÿ fear (0) Ÿ anger (0) Ÿ consciousness(>0).

Vatsalya Rasa Or parental love, was probably added later to the existing rasas. The objects of parental 

love are often children, who evoke these feelings in adults by their carefree laughter and innocent and 

disarming manner.

The nine rasas are known as the navarasas and probably form a significant part of the curriculum 

of any Bharatanatyam student.

13.6.3 Conceptual Dependency ACTs

Rather than use the plethora of verbs in natural languages to stand for actions, Roger Schank’s CD

theory used a small set of conceptual actions. These conceptual actions could be combined in different 

way into to build conceptualizations that could capture real world events. In fact the dictionary built for 

words from the natural language contains such conceptualizations. The exact number of ACTs in the 

CD theory varied between eleven and fourteen. We present one such set, and illustrate how they can be 

used for knowledge representation.

25 but sometimes she does too.
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The CD ACTs are, 

1. ATRANS, or Abstract Transfer The transfer of an abstract relationship such as possession, 

ownership or control. ATRANS would be instrumental in expressing concepts like give, take, buy, gift, 

receive, snatch, rob, and steal.

2. PTRANS, or Physical Transfer Transfer of physical location of an object. It would be used to 

model all movement words like go, visit, emigrate, climb, deliver furniture, send a letter, and walk.

3. PROPEL Or the application of a force to an object, regardless of whether the object is PTRANSed 

or not. Words that would need the PROPEL ACT for their representation are push, pull, throw, kick, 

hit, punch, caress, and hammer.

4. MOVE Or the movement of a body part of an animal by that animal. Often an instrumental act 

for the PTRANS act or the PROPEL act. Animate actors can move body parts resulting in some other 

conceptual act. For example, “He walked to the canteen” is conceptually a PTRANS using MOVE 

(foot) as an instrumental act.

5. GRASP The grasping of an object by an actor. This would be used by verbs like grab, let go, and 

throw. Observe that the use of a termination time marker would signify ungrasping.

6. INGEST To take in, including words like eat, drink, smoke, gobble, swallow, sip and breathe.

7. EXPEL Includes expulsion from the body. Spitting, urinating, gargling, sweating, exhaling, and 

even crying may need the EXPEL act.

8. MTRANS Or Mental Transfer. The transfer of information between animals or within an animal. 

Thus words like saying, telling, narrating, emailing, reciting, writing, reading, and SMSing would involve 

mental transfer. MTRANS is also used to create a folk psychology model of the mind or the brain. The 

(human) memory is modeled to have partitions – CP (conscious processor), IM (immediate memory), 

STM (short term memory) and LTM (long term memory). Thus, verbs like remembering, forgetting, 

understanding, seeing may involve movement or the lack of movement between different parts of the 

memory. One significant difference between PTRANS and MTRANS is that the “object” of transfer 

ceases to be at source in PTRANS, but not so in MTRANS.

9. MBUILD The construction or synthesis by an animal of new information possibly from old 

information. This could be used to model verbs like decide, conclude, imagine, consider, infer, and 

deduce.

10. SPEAK The actions of producing sounds. Humans often use it as an instrumental act for MTRANS. 

English words that would need SPEAK are say, play music, purr, scream, roar, growl and whisper.

11. ATTEND (Sense Organ) The action of attending or focusing a sense organ towards a stimulus. 

Also an instrument to MTRANS. To see is to MTRANS to CP from eye by instrument of ATTEND(eye) 

to object. Likewise to hear or listen is to ATTEND(ear).

We look at some examples to illustrate the use of CD acts and states to represent some conceptualizations 

expressed in English sentences.

13.6.4 Conceptualizations

Conceptualizations are representations in the language of conceptual dependency. While each CD act 

corresponds to some linguistic verb, the dependency relations allow us to combine different combinations 
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to construct complex representations. We look at examples of English language sentences and their CD

representations.

When we believe something then that conceptualization is resident in our immediate memory. 

For example, “I believe that Kasparov is brilliant” would be represented as shown on top in 

Figure 13.10. This representation is a state description. In terms of logic this is like saying that the 

formula Brilliant(Kasparov) is an element in my set of beliefs.

We introduce the act CONC to correspond to the active notion of “thinking”, which could be a short 

form for something like MTRANSing something to or even within the CP (conscious processor). This 

is a more conscious or active way of thinking. Then a sentence like “I think that Kasparov is brilliant” 

could be represented as shown in the bottom part of the figure.

Kasparov

brilliant

LOC(IM)

POSS-BY

I

The fact “Kasparov is
brilliant” resides in my
memory.

Kasparov

brilliant

CONCI
I am thinking
about the fact that
“Kasparov is brilliant”.

FIGURE 13.10 Two sense of the word “believe”.

The reader might object that the two statements are in fact saying the same thing in a different way. 

That might be true, since the latter is often used to mean the former. But that does not belie the fact 

that the two representations are conceptually distinct. One is a description of a state of belief, the other 

represents a conscious thought process, an act. People often fail to find the best phrases to express 

themselves accurately, and could well do with the advice the March Hare gave to Alice (in Wonderland), 

“Then you should say what you mean”.

The reader must also realize that a compact symbolic account of thought processes as with the CD

theory does not claim to explain the thought process in the cognitive science sense. In all likelihood, 

we do not move around formulas when we talk and think. But this is merely a way to create models that 

might help explain some aspects of the behaviour, and contribute to building useful computer programs. 

One could go into finer and finer level of detail to try and represent things more and more accurately. For 

example I might want to say that I came to realize that Kasparov is brilliant after I saw his game against 

Anand, and since then I believe that he is brilliant. This could possibly be represented as in Figure 13.11.

Observe that we are still taking liberties by using actions like “Play Chess”, and states like “brilliant” 

but that should not take away anything from the basic idea. We could have tried to model the process in 

greater detail by introducing movement to the CP and then to IM and then to LTM, and also introduce an 

instrumental act of ATTEND(eye) in the event of watching the match, and we could have add temporal 

detail as well, in the manner of Event Calculus studied earlier in this chapter. But this would have 

led to an explosion in representation, which would have led us away from our concern with studying 

knowledge representation. The fact that such an explosion can happen is perhaps a reason why this 
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FIGURE 13.11 The conceptualization for “I came to realize that Kasparov is brilliant, after I saw his 

game against Anand.”

MTRANS
D I

POSS-BY

CP

Match Venue

Kasparov Anand

Play Chess

I

MBUILD

I

I

Kasparov

brilliant

Kasparov

brilliant

CONCI

POSS-BY

LOC(IM)

brilliant

Kasparov

I

kind of knowledge representation and reasoning faded away in the eighties in the last century. Perhaps 

one is waiting for a couple of significant breakthroughs in representation and advances in knowledge 

acquisition before we see a resurgence of such knowledge intensive semantic processing.

Many verbs from a natural language are in fact not conceptual actions, but represent causal connections 

resulting in state change. Schank called them state change verbs. Consider the statement “Adora killed 

a cockroach”. While linguistically “killed” is a verb, conceptually it does not create a mental picture of 

an action. How did she kill it? Perhaps she stamped upon it, or perhaps she took a broom and smashed 

it. Perhaps she sprayed an insecticide at it, or perhaps she spread some poison and the (poor?) creature 

happened to eat it? If we had said that “the butcher killed the lamb” we could have brought our world 

knowledge to fore (how can a program do that?) and imagined how the act would have been done. But 

if we look at the cockroach killing sentence itself, it does not specify how the act was done. Likewise 

consider the statement, “Adora moved the television to the corner”. This one sounds suspiciously like 

the act MOVE, though it is really a PTRANS. However, the statement does not say anything about a 

conceptual act. Again, perhaps she pushed the table on which the TV set was lying, or perhaps she asked 

the carpenter, or her sister, to move it, which means she actually did an MTRANS using the SPEAK act. 

In both the examples, we don’t really know what Adora did, but we do know that she did something, as 

a result of which the stated change occurred. We should therefore model it as shown in Figure 13.12.
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p

DOAdora

cockroach

p

indefinite

Health (> –10)

Health ( –10)

p

DOAdora

television

p

definite

LOC (?)

LOC (corner)

FIGURE 13.12 State change verbs from language are causal relations conceptually.

The DO action is a kind of a variable action which may be interpreted as the statement $x CD-ACT(x)

which says that it is some unspecified CD act.

As it is getting apparent by now, language verbs get associated with compound CD structures. 

Another set of verbs, dealing with mental actions, also translate to causal relationships. These are words 

like prevent, instigate, hurt, comfort, advise and threaten. We look at the representation of the last one. 

Conceptually the act of threatening is to communicate by some means to someone that if they do some 

particular thing the response by the threatener will not be pleasant for them. Here, in Figure 13.13, x

is threatening y.

MTRANSx

CONC

i

y cf

doY

doX

y

x

y
t

HEALTH (<0)

FIGURE 13.13 Threatening is a communication act in which a person conveys dire consequences of 

doing something to another person.

Words like love, hate and like are also not conceptual actions, but causal connections. When Sheeri 

says that she loves Farhad, she is saying that when she thinks of him she goes into a state of being pleased 

or happy. When Abasi says he likes ice cream, he means that he conceptualizes that if he were to eat ice 

cream then that would result in him going to a pleased state. This may be represented as in Figure 13.14.

The act of throwing something can be represented as PTRANSing it in the air using the instrumental 

act of PROPEL and GRASP. So if we said that “Adriana threw a pencil towards Ayumu”, then we could 

represent it as shown in Figure 13.15.
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The above formula/diagram represents the act of throwing the pencil in the direction of Ayumu. This 

could be part of a larger conceptualization. If Adriana’s intention was to give the pencil to Ayumu then 

the above would be the instrumental act for an ATRANS action. If on the other hand, the pencil was 

thrown with the objective of hitting Ayumu then the above would be related causally to a PROPEL act 

in which the pencil comes into contact and applies force to Ayumu.

One may need to clarify on instruments as well. Linguistic instruments like forks, spoons, hammers, 

shovels, and mobile phones are often objects of conceptual actions. For example, if we said that Abasi ate 

the ice cream with a spoon, then the spoon becomes an object of a PROPEL and PTRANS act which are 

instrumental to INGESTing. Likewise, if we had said that “Adora killed the cockroaches with insecticide”

then while the insecticide is linguistically an instrument of the killing act, conceptually it is only an 

object of an action that is causally related to the state change event of the cockroaches being killed.

13.7 Conceptual Analysis

If knowledge representation and reasoning is the 

“cognitive” activity that happens in support of an agent 

acting intelligently, how does an agent process language? 

Or for that matter information being acquired from external 

sources in any other form. Obviously, the goal would be to 

transform the information into its internal representation in 

order to be able to reason with it.

Consider the design of a game playing agent (see 

Figure 13.16). The agent has some internal representation 

of “the world” along with representation of the moves one 

can make. The opponent makes moves via the keyboard or 

a joystick or a mouse, or even a process if the opponent is a 

program. The task of the agent is to decipher the signals by 

mapping them to the representation of states and moves. Or consider a futuristic scenario in which a spy 

FIGURE 13.14 Liking ice cream is think-

ing that one will be pleased on eating it.

FIGURE 13.15 Throwing something is PROPELing it 

through the air.

Abasi CONC

AbasiAbasi

f
f

pleasedINGEST

ice cream

D Ayumu

Adriana

pencil

I

PTRANS
P

D

p
PROPEL

air

pencil

Adriana Ayumu

Adriana

Adriana

FIGURE 13.16 Software agents 

have to make sense of information 

coming via the keyboard or some other 

medium.
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is being debriefed by a computer program. The spy narrates her story and the program has to understand 

it, and ask meaningful questions to fill any gaps that it might see. The problem of understanding is to 

map the incoming information into the internal representation. We focus on the task of natural language 

understanding.

Does understanding happen in a bottom up fashion or in a top down fashion? By the former we mean 

that the agent makes sense of each word first, uses (grammar) rules to form phrases, and sentences. And 

finally builds the big picture by combining all “parsed” information in some context.

By a top down process we mean working with a (hypothesized) structure in which gaps have to be 

filled. If we can somehow create a scaffolding of the final story, then all we need to put in are the details. 

Some of this scaffolding will come from world knowledge that we have. For example watching the last 

few minutes of soccer match and knowing the score we expect the team that is trailing to do something 

dramatic, and when they do we “know” why they did that. Or walking into a James Bond or an Indiana 

Jones movie we expect to see some pretty outlandish action, and devour the film with a suitably receptive 

frame of mind. Or listening to a khayal in Indian classical music we know the structure of the composition 

and expect the notes and the rhythm to build up to a crescendo. When we have figured out what the 

raga is, we no longer need to make sense of the individual notes in a bottom up fashion. Rather we 

bring to fore our preconceived patterns in that raga and expect the notes to match them. It is top down 

reasoning that is responsible for humans seeing a face amongst the clouds, and it what predisposes us 

to a particular interpretation of an ambiguous optical image, or a sentence.

Language understanding is also influenced by expectations of the listener. The expectations originate 

from various sources. We may know the speaker to be a terrible bore, and expect a long and painful 

narrative about his exploits. Or we may know the situation and generate expectations from that. For 

example, if two boys are fighting over some marbles, we expect to hear accounts of how the game was 

played and who won the marbles or who cheated. Some of these expectations that are generated by 

world knowledge we will look at in the next chapter, when we look at knowledge structures. For the 

moment we look at expectations that are generated by the individual words that appear in a sentence.

Some words always occur together and we can generate expectations at the lexical level. For example 

phrases like “inexorably squeezed”, “ulterior motive”, “corrupt officials”, “hopping mad”, “thank you” 

and “good luck” occur frequently enough to predict the second word. But the kind of expectations we 

are interested in here are those that are generated by the meaning to the words seen so far. For example 

if we hear, “Ramesh ate a … “ we expect to hear of some food type object. Once we know that an act of 

INGESTING is being spoken about, we know that there must be an animate eater and some edible object. 

This kind of semantic knowledge would allow us to make sense of grammatically ill formed sentences as 

well, suggesting that syntactic parsing is not necessarily a precursor to semantics. For example if a baby 

says “Amit eat apple” or even “apple Amit eat” then it is not a major handicap that the sentence is not 

well formed. Situation knowledge may in fact help us understand the sentence easily. One could figure out 

whether the child Amit wants to eat an apple, or whether it has eaten one, or whether some third person 

called Amit has eaten one. One of the theories that Schank put forward is that pragmatic and semantic 

knowledge in fact helps the process of language understanding, and do not follow a parsing stage.

This is particularly important because natural languages by themselves tend to be richly ambiguous. 

Words can assume different syntactic categories leading to different valid syntactic structures of the 

sentences they occur in.

Perhaps this is best illustrated by the celebrated example “Time flies like an arrow” (Kuno and 

Oettinger, 1962). Most human beings arrive at one (implicit) parse tree without any hesitation. But a 

program written on the IBM 7090 computer in the early sixties armed with 3000 grammatical rules, and 

an unprejudiced world view, could not decide between competing meanings and parse trees. Is time a 
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verb referring to the act of timing flies in which case one is advised to follow the procedure for timing 

arrows, or is it an adjective describing a particular kind of flies that like an arrow? When we hear the 

sentence we move quickly into a top down mode choosing time to be a noun and building the rest of the 

meaning around it. Obviously, this has the advantage of speed, and is an approach that natural language 

understanding programs should look at too.

This is not to say that syntax has no role to play. If one were to read about the Charlie Chaplin film, 

The Gold Rush, in which “the tramp ate the shoe”, then heuristics that will look for an edible object to 

fill the object slot in the INGEST conceptualization will fail. It is only the grammar rules that force us 

to accept the fact that the shoe was in fact eaten. Or one could fill in the slot as a last resort when the 

sentence is finished, and perhaps flag a warning. Another example that illustrates the utility of grammar 

rules is the sentence “I saw the Grand Canyon flying into New York” (Schank, 1973). After you have 

sorted out the ambiguity of who or what is flying, one still needs to establish a connection between the 

two constituent conceptualizations—I flying into New York, and, I seeing the Grand Canyon. A language 

specific rule says that the former marks the time for the latter. The entire CD structure is depicted in 

Figure 13.17.
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FIGURE 13.17 An English specific rule says that one action (seeing) can happen while another

event is happening.

Observe that in our model it is the plane that is PROPELing itself in the air. This, flying in a plane,

is one of the senses that one can accept the word flying in, apart from actually flying a plane, or flying 

by oneself which only birds and insects (or Superman) can do.

Conceptual analysis or semantic parsing is a two stage process. First the skeleton of the conceptual 

structure has to be hypothesized. This is done by retrieving structures from a dictionary that stores CD 

structures against each linguistic verb. In the second phase the empty slots in the hypothesized structures 

have to be filled in with information extracted from the processed utterances.

To bring to fore the semantic knowledge while processing words, one needs to construct an appropriate 

dictionary or lexicon. Apart from storing syntactic categories, it should also store the different word 

senses in the form of CD structures with each entry.
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13.7.1 Semantic Rules in a Lexicon

The following description of a semantic parser is based on the work that came out of the Yale group 

(Schank et al, 1973; 1975), (Riesbeck, 1975), and (Birnbaum and Selfridge, 1981). The main resource 

used by the parser is a semantic lexicon that maintains information of semantic relations in the forms of 

rules for each word. A word with more than one sense would have more than one entry, and it would be 

the job of the parser to select the right one. This could be done by search, employing semantic matches 

to choose between options where possible.

The parser stores partly filled conceptualizations in its immediate memory called C-list. When a word 

is read, its entry from the lexicon is retrieved and added to the C-list. Along with its CD structure, the 

rules stored with the entry are also retrieved and stored in its rule memory called R-list. Before reading the 

next word the parser looks at all rules waiting in the R-list for any that are applicable, and executes them.

The program written by Riesbeck called ELI (English Language Interpreter) activated instances of 

rules to establish semantic connections. The activated rules were called REQUESTS. The entry in the 

semantic lexicon for the word “ate” would contain one REQUEST with precondition T (no condition) 

and which would activate two other requests. The entry for “ate” looks like, 

ate :     category -verb, 

            forms -eat, eaten

            REQUEST -

                  TEST:         T

                       ACTIONS:      Add the structure

                                               (INGEST ACTOR (NIL) OBJECT (NIL) TIME (PAST)) 

                                               to the C-List

                                               Activate the request

                                               REQUEST –

TEST: Can you find a human on the C-list preceding the INGEST 

structure?

                                               ACTIONS: Put it in the ACTOR slot of INGEST

                                       Activate the request

                                       REQUEST –

TEST: Can you find an edible object on the C-list following the 

INGEST structure?

                                               ACTIONS: Put it in the OBJECT slot of INGEST

The single request stored in the entry for “ate” would add the INGEST structure, and also the rules 

needed to find fillers for the slots in the structure with semantically matching concepts.

Requests when nominals or PPs are read would be to add the appropriate structures to the C-list. For 

example while reading the sentence “Amit ate an apple” first the single request that would be activated is

REQUEST -

      TEST:       T

                ACTIONS:    Add the structure 

                                      (PP CLASS (HUMAN) NAME (Amit))

                                      to the C-List
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This would get activated as soon as “Amit” is read, and the structure (PP CLASS (HUMAN) NAME 

(Amit)) would be added to the C-list. When the word “ate” is read next, the structure for INGEST would 

be added, and the two requests added to R-list. The parser would then look for the “human” PP structure 

in the C-list and move it to the ACTOR slot. The next word the parser would read is “an”. The following 

request stored with the word “an” is added to the R-list,

REQUEST -

     TEST:     Has a new structure been added to the end of the C-list?

          ACTIONS:     Mark it as an indefinite reference.

When it is added it does not find any structure in the C-list and the parser goes on to read the word 

“apple”,

REQUEST -

      TEST:     T

           ACTIONS:      Add the structure 

                                   (PP CLASS (FOOD) NAME (apple))

                                   to the C-List

This now activates the rule for “an” which modifies the structure to

(PP CLASS (FOOD) NAME (apple) REF (INDEF))

This modified structure is now taken up by the other request for INGEST that is looking for food type 

object, and it inserts it into the OBJECT slot of INGEST. The final conceptualization is, 

(INGEST ACTOR ((PP CLASS (HUMAN) NAME (Amit)))

OBJECT ((PP CLASS (FOOD) NAME (apple) REF (INDEF))) TIME (PAST))

A simple algorithm to parse sentences is to read the words one by one, retrieve the set of rules 

associated with the word and add them to the R-list, and then apply the rules that are activated. An outline 

is depicted in Figure 13.8 where we have not considered multiple word senses. If multiple word senses 

are allowed more sophisticated processing, like backtracking or least commitment strategy, would be 

needed. We assume that our algorithm retrieves the correct set of rules non-deterministically. We also 

assume that we have a function Apply(request, cList) that takes an applicable rule, tested by RequestTest,

and makes the appropriate modification in the cList, and removes the request from the rList. In that 

sense rList is treated as a global list.

13.7.2 Case Markers

The reader would have noticed that the parsing of the above sentence made use of the order information 

typical of an active sentence in the English language. This is necessary because English is a language in 

which the roles of different participants of a sentence are indicated implicitly in the sentence structure. A 

sentence like “The apple was eaten by Amit” is an example of a passive sentence marked by the phrase 

“was eaten by” and would have a different set of requests associated with it.

Moreover, to justify our claim that the language understanding is not critically dependent upon 

syntax, the parsing algorithm would have to find a best fit semantic role in utterances like “eat apple 

Amit” overruling the position requirements. At other times when a semantic match does not occur, for 

example in “the tramp ate the shoe”, one has to rely on the syntactic order to fill “the shoe” into the 

OBJECT slot of INGEST. Syntax also plays a key role in making sense of sentences like “man bites 

dog” or “man swallows snake” where the semantic roles are not clear. This could possibly be handled in 
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SimpleSemanticParser(sentence)

1 rList ¨ ()

2 cList ¨ ()

3 while not Null(sentence)

4  do nextWord ¨ Head(sentence)

5 requests ¨ RetrieveFromDictionary(nextWord)

6 rList ¨ Append(requests, rList)

7 cList ¨ ApplyRequests(cList, rList)

8 return cList

ApplyRequests(cList, rList)

1 while not Null(rList)

2  if RequestTest(Head(rList)) = TRUE

3  then return ApplyRequests(Apply(Head(rList), cList),

Rest(rList))

4  else return ApplyRequests(cList, Rest(rList))

FIGURE 13.18 A simple semantic parser retrieves rules associated with words and applies them 

to partial conceptualizations stored in the cList. We assume the function RetrieveFromDictionary

that retrieves the relevant rules nondeterministically. We also assume a function Apply that applies a 

request to the cList.

the above algorithm by checking for any pending requests before exiting. A secondary procedure could 

then relax the semantic matching criteria for activating the pending requests.

Many languages in the Indian subcontinent on the other hand employ explicit case markers. Many of these 

languages are based on the grammar given by Panini around the 4th century B.C. (Vasu, 1962) and recent 

work in linguistics has drawn upon it (Bharati and Sangal, 1990), (Bharati et al, 2004), (Huet et al, 2009).

The Paninian framework is interesting because it addresses the semantic issues as well. The grammar 

explicitly focuses on actions, the actor, and other objects in relation to the action. In the Panini grammar 

syntactic constructs called the vibhaktis are used to explicitly mark the semantic role of each constituent 

via karakas or semantic role indicators. These karakas manifest themselves as morphological inflexions 

on the base word in some languages, including Sanskrit, while they occur as separate markers in others 

like Hindi.

Panini specified six ways in which constituents of a sentence can relate to the verb. These are the 

following (Vaidya et al, 2009), 

k1: karta: central to the action of the verb

k2: karma: the one most desired by the karta

k3: karana: instrument which is essential for the action to take place

k4: sampradaan: recipient of the action

k5: apaadaan: movement away from a source

k7: adhikarana: location of the action

Of these the first two must be present for a sentence to be complete (and grammatically correct) and 

the others are optional. Thus karakas mark the role of a constituent in a conceptualization, and often 

have a direct relation to the role markers or vibhaktis. In some sense the vibhaktis are like indices to the 

kind of rules that ELI would employ to find proper fillers for a slot in a conceptualization. Languages 

with explicit role markers are often free word order languages since the grammar does not impose an 

ordering on the clauses.
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13.7.3 Word Phrases

Words in a sentence seldom stand alone for something. Usually they embellish or are embellished by 

other words and together they form a phrase that stands for something. Linguistics identifies such groups 

as verb phrases or noun phrases. Since phrases introduce a hierarchical structure into the sentence, 

and also the underlying conceptualization, they have to be dealt with in a special manner. For the top 

level sentence it would be nice if the phrase as a whole was available. But reading or processing words 

in a sentence happens sequentially, and understanding or parsing the phrase is a sub-task in itself. A 

bottom up approach would incrementally move up the hierarchical structure, putting together smaller 

components to form larger ones.

Parsing a sentence has to be a judicious mix of top down and bottom up processing. In the example 

we saw of ELI, this was achieved to some extent by storing partially built constituents in the C-list. But 

one still needs to be careful as demonstrated in the processing of noun phrases in the heuristics proposed 

by Gershman (1977). The basic idea that Gersham proposed was that the top down processing of the 

sentence should be suspended when the parser is looking at a noun, and should resume only when the 

end of the noun phrase occurs. The control algorithm needs to switch between the top down predictive 

and the bottom up agglomerative modes of processing.

A well known example is the phrase “cat food can cover”. Observe that processing the sentences left 

to right one will end up “recognizing” the following, before having to revise the structure. For example, 

each of the following would have been a valid conceptualization, but for the words that follow it, 

 ● He picked up the cat. (The object is the cat)
 ● He picked up the cat food. (The object is the food)
 ● He picked up the cat food can. (The object is the can)
 ● He picked up the cat food can cover. (The object is the cover)

Human beings often run into difficulties incorporating the bottom up mode needed for processing 

such sentences and end up backtracking and discarding the partial structures they have built while 

listening to or reading the sentence. Researchers have named such “difficult” sentences as garden path 

sentences, since they initially lead you astray from the final conceptualization (see for example (Ferreira 

et al, 2001)).

Some examples of such well known sentences are, 
 ● While Anna dressed the baby spit up on the bed.
 ● Mary gave the child the dog bit a band aid.
 ● The old man the boat26.
 ● The cotton clothing is made of grows in Mississippi.

What such sentences do is reinforce the idea that we humans predominantly do top down processing 

actively generating expectations along the way. When the expectations are not validated in garden path 

sentences we are forced to revise them. Such violation of expectations is often the basis of humour as 

well. While listening to a joke we are often led down a garden path, before seeing the funnier side. For 

example the following sentence is attributed to the comedian and film star Groucho Marx, “Time flies 

like an arrow. Fruit flies like a banana”. Another example where we are led up a garden path as to the 

syntactic category of the word “flies” is the joke27,

Question: “What has four wheels and flies?”

Answer: “a garbage truck”

26 especially for Ernest Hemmingway readers
27 http://en.wikipedia.org/wiki/Garden_path_sentence
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13.7.4 Homographs and Word Senses

Natural languages are replete with words that mean different things (homographs or homonyms) or have 

different semantic senses in different sentences.

Homographs are words that have more than one concept (structures) associated with them. Examples 

of such words are plane, bank, terminal, mouse, fly, glass, and cricket. The following sentences contain 

two instances of a homograph with different senses.

1. Asiya rose to find a rose on her window sill.

2. It does not bode well for the ecology to kill does.

3. The wind blows hard on the roads that wind up the mountain.

4. A sitar in sound condition will produce a good sound.

5. The soldiers may desert the legion in the hot desert.

Retrieving such a word would mean having to choose from the competing structures. This could either 

be done by searching for the correct match, trying them one by one, or it could be done by bringing 

knowledge from different sources to the fore. In the following chapters we shall look at some of the 

approaches that exploit other forms of knowledge.

Prepositional words like in, on, by, to and with are often used to link up words in many different 

ways. Consider for example the use of with in the following sentences.

1. The bottles are filled with wine.

2. The bottles are filled with automatic machines.

3. Adora killed the cockroaches with insecticide.

4. Abasi ate the ice cream with gusto.

5. Abasi ate the ice cream with a spoon.

6. Their hearts were filled with pride (like the bottles filled with wine but not quite).

7. He shot the girl with the rifle.

8. He shot the girl with the boy.

9. She ate the ice cream with the boy.

10. He fought with his brother against the intruders.

11. He fought with his brother.

12. He went pale with fear.

13. She left the notebooks with me.

14. Ajinkya’s brother used to live with him.

15. She helped the man with the broken arm.

Schank reported the following four conceptual realizations of the phrase “with PP”. The ELI parser 

considers the senses in the given order and chooses the first one that fits.

1. PP is the object of the instrumental case. In sentence 3 above the insecticide is the object of some 

action that is an instrumental act for the state change verb kill.

2. PP is an additional actor of the conceptualization. Sentence 9 is an example.

3. PP is an attribute of PP immediately preceding it. In sentence 15 “with the broken arm” describes 

the man.

4. PP is an attribute of the actor of the conceptualization. We can think of “gusto” in sentence 4 as 

an attribute of Abasi, though perhaps it also describes the action to some extent.

In addition we can find roles that the word “with” plays in the building of a conceptualization. In 

sentence 13 “with me” identifies ‘me” as the recipient of the ATRANS action. Sentence 14 says that 

Ajinkya’s brother stays in Ajinkya’s house. In sentence 12 there is a causal connection between the state 

of being afraid and the state change of turning pale. Sentences 11 and 12 have the common phrase “with 

his brother” though the relation between the two in the respective conceptualizations is quite different.
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Some of the sentences in the list above are inherently ambiguous in the sense that “with” is used in. 

In sentence 8 the boy could be an attribute of the girl (which could have been mentioned to distinguish 

between two girls on the scene) or it could have been like in sentence 9 where the boy is a co-actor. 

Likewise in sentence 7 the rifle could have been an instrument in the shooting act, or it could have been 

an attribute of the girl, while the shooting could even have been done with a camera. Even in sentence 

5, the spoon could have been an attribute of the preceding PP (ice cream), for example in response to a 

question “Which ice cream did Abasi eat?”. Finally in some world it might be conceivable to imagine 

that each bottle in sentence 2 is filled with a nano machines that work automatically.

While word sense disambiguation can sometimes be done with information available within the 

sentence, and it is a matter of finding efficient ways of doing so, when a sentence is inherently ambiguous 

it is only information from its context that can help resolve the ambiguity.

One needs knowledge from all sources, syntax, semantics and pragmatics to be able to quickly make 

sense of natural language. Trying to order the three processes in some fixed manner is only likely to be 

futile. We shall look at language processing in more detail in Chapter 16.

13.7.5 Expectations: Other Sources

The semantic parser sketched above is based on the idea of meeting expectations generated by the 

meaning of the words seen so far. However, sentences in a language rarely occur in isolation. There are 

cues or expectations that arise from the context. This may be the topic of discussion for the sentence and 

may bring world knowledge to the fore. This may be the discourse itself. If the words in an utterance 

are part of a dialogue between agents, then the expectation of a complete conceptualization may itself 

be waived. This happens typically in a question answer session. If you ask a child her name the answer 

often consists of just the name, rather than a full sentence. Likewise if ask a question like “When did 

you get hurt?” you often expect a one word answer like “yesterday’.

The reason why we are able to deal effortlessly with such replies is because we do not expect 

them to form complete conceptualizations on their own. Rather we already have a partially filled 

conceptualization, and the answer supplies some of the missing pieces.

The context of utterance may also be a source of expectations. Waiting outside a dentist’s office we 

expect our name to be called and know that it is the summons into the chamber. Knowing that an election 

is taking place we have expectations of an announcement of the winners, of news of celebration, or of 

recriminations of unfairness. In the next chapter we look at how some of the knowledge about the world 

we have can be represented, and how it can come to fore to help us effectively deal with language and 

problems in an effective way.

13.8 Discussion

As human beings we are accustomed to ‘thinking in a language”. The philosopher Wittgenstein said 

that “The limits of my language mean the limits of my world.” (Wittgenstein, 1921). The Sapir–Whorf 

hypothesis says that the grammatical categories a human uses in language strongly influence how the 

person understands the world (Whorf, 1956). The most well known example of this is in Whorf’s study 

of the language of the Inuit people, who were thought to have numerous words for snow. Kenneth E. 

Iverson, the originator of the APL programming language, believed that the Sapir–Whorf hypothesis 

applied to computer languages. Noam Chomsky’s theory of linguistics is built around the notion of a 

Universal Grammar that all humans are innately born with (Chomsky, 1965). The key point however 

is that symbolic representation, or semiotics, appears to be the stepping stone to thought.
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It is still not quite clear how to represent certain concepts like water, air, and other kinds of materials. 

Is one talking of the material itself in an abstract sense or is one referring to a specific occurrence of the 

material? How can we represent the notion of “water”? If one said “Ainka drank a glass of water” then we 

can represent the fact the glass contained something, but how does one define the semantics of the term 

“water” here. It is surely not a discrete “object” in the domain the term can map to. We tend somehow 

to think of water as fluid, flowing, something that takes the shape of its container, something that tends 

to settle down at the lowest level, and a type whose instance is not discrete. How do we represent the 

fact that some amount of this kind of stuff is what was contained in the glass, and that Ainka drank? Yet 

at the same time we do not have a problem with the sentence “Ainka picked up a cube of ice” because 

that is somehow a single discrete object. What does it means to say “Ayaka likes to drink water”, or 

“Accalia like to splash around in water”, or “Water is essential for life”? These are issues that have to 

solved before a machine can knowledgeably interact with us in our languages. The following example 

from Sowa (2000) gives us a clue:

Clyde is an elephant.

Elephant is a species.

Can we infer that “Clyde is a species”? No, because the word elephant in the second line is something 

that belongs to a type of thing called a “species”. It is an element or term here, a reified term, which 

belongs to the class “species”. This is similar to the fact that Clyde in the first sentence is a term that 

belongs to the class “elephant”. This means in some situations we have to treat a class (elephant) as a 

term which belongs to a higher level class. Linguistically, the use of the indefinite article “a” gives us a 

clue that we should utilize. We can then thing of water too as a term which belongs to a class of fluids, 

and which has properties like taking the shape of the container, and something one can splash around in.

In this chapter, we have focused on variables and categories in an abstract sense. There is another 

aspect to knowledge representation, one that is concerned with efficiency, called concrete representation 

in (Charniak and McDermott, 1985). This is concerned with how one accesses the related knowledge 

without having to scan and unify a flat representation. It is concerned with the issue of designing 

structures for rapid access, so that reasoning does not have to rely on having to search for all the links 

that are needed in an argument. We will look at scripts, structures of goals and plans, and notion of 

ontologies and descriptions logics in more detail in the following chapter.

 Exercises

1. Convert the following definitions into Horn clause (logic programs).

(a) "x(Mother(x) ∫ $y Mother(x, y))

(b) "x(PrimeNumber(x) ∫ ÿ$y(yπ1 Ÿ yπx Ÿ Divides(y, x)))

(c) "x"y (GrandParent(x, y) ∫ $z (Parent(x, z) Ÿ Parent(z, y)))

(d) "x"y (Mother(x, y) ∫ (Parent(x, y) Ÿ Female(x)))

(e) "x"y (Ancestor(x, y) ∫ (Parent(x, y) ⁄ $z (Parent(x, z) Ÿ Ancestor(z, y)))

2. Create a FOL representation scheme for describing the entities that are relevant to a University 

environment, like courses, people, departments, programs and so on, and relations between them. 

Rephrase the information in the form of RDF triples.

3. Define the category of natural numbers, 

     NN(x) is true iff x belongs to the set of natural numbers.

  Hint: Look up the Web for Peano Axioms
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4. Given a number N the von Neumann definition of natural numbers constructs the next number to 

be taking the union of all elements of N, and N itself. What would the union of all natural numbers 

correspond to? [Hint: Look up ordinal numbers].

5. Write functions to convert measured values like, 

   feet and inches Æ cm

   miles and yards Æ cm

   kms and metres Æ cm

6. Write functions to add length measurements expressed in mixed units.

7. How does one express the following in FOL? You may ignore tense information.

  (a) Anish ate an apple.

  (b) Anish ate the apple.

  (c) Arnav hit the boy with a stick.

  (d) Arnav hit a boy with the stick.

   Would you represent “apple” as a term or a predicate for the above? How would you ensure 

that your representation is saying exactly what the sentence says? For example in (a) and how do 

you ensure your representation is true to the fact that Anish ate exactly one apple?

8. What would a fuzzy membership function for the category 

“young adult” look like? What about “low salary”, “medium 

height”, or “too hot or too cold”?

9. Given the following board position in Cross and Noughts, 

what was the first move made in the game? Assume that 

both the players are perfect (i.e. no losing move is made). 

Is there unique sequence of moves that with perfect play 

would lead to this position?

  (Source: http://www.geocities.com/joe_kisenwether/Retro.

html)

10. In the event calculus example, add the fluent satiated(Person, Time). What domain axioms does 

one need to add to be able to deduce that (after Nikhil has eaten) satiated(nikhil53, t7) is true?

11. Modify the event calculus axioms EC1 to EC4 so that the effect of the event at time point t1 is felt 

at a later time point t2. Apply the modified axioms to the example problem in the text.

12. Given the Spin, Load and Shoot(x) actions and the fluents Loaded and Alive(x), assume that the 

ONLY effect of Shoot(x) action is that Alive(x) becomes false if Loaded is true. The effect of Load

is that Loaded becomes true. Spin releases the fluent Loaded. Express the domain knowledge in 

Event Calculus. Given that following events take place at the times mentioned – (Load, 10), (Spin, 

20), (Shoot(A), 30), (Shoot(B), 40), (Spin, 50), (Shoot(C), 60) – add the required formulas to the 

domain predicates that will entail that A and B are either both alive or both not alive at time 80. 

What can you say about state of C at time 80?

13. Define fluents and domain axioms to reason about the use of a telephone. The representation must 

be able to talk about the different states of the phone instrument (idle, ringing, dial tone, connected, 

engaged tone, disconnected and so on), the different actions (dial, pickup, putdown, and so on), 

and the relations between them (reference (Mueller, 2006)).

14. Express the following story (repeated from Exercise 15 in Chapter 12) using the Event Calculus 

and the CD theory predicates, 

   A father and his son were walking along the road when they met with an accident. The father 

died on the spot and the son was rushed to the hospital. When he was brought to the operating table 

the surgeon refused to operate upon him saying “I cannot operate upon this boy. He is my son”.

FIGURE 13.19 A retrograde 

analysis problem on Noughts and 

Crosses.
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15. Map the following words/ phrases into relevant CD states—livid, hopping mad, unwell, relaxed, 

afraid, sleepy.

16. Create CD representations for the following sentences, 

(a) Ainmere bought a book.

(b) Adriana threw the pencil to Ayumu.

(c) Adriana threw the pencil at Ayumu.

(d) The bottles are filled with wine.

(e) The bottles are filled with automatic machines.

(f) Adora killed the cockroaches with insecticide.

(g) Abasi ate the ice cream with gusto.

(h) Abasi ate the ice cream with a spoon.

(i) Their hearts were filled with pride.

(j) He shot the girl with the rifle.

(k) He shot the girl with the boy.

(l) She ate the ice cream with the boy.

(m) He fought with his brother against the intruders.

(n) He fought with his brother.

(o) He went pale with fear.

(p) She left the notebooks with me.

(q) Ajinkya’s brother used to live with him.

(r) She helped the man with the broken arm.

17. Convert the following stories into CD like FOL representation.

(a) “Heidi told her grandfather that Clara was likely to come to their home. Some time later, 

Clara came to their home. Heidi was very happy.”

(b) “Drona put down his weapons because he came to believe that his son was dead. This was 

because Yudhistra told him that Aswathama was killed by Bhima.”

(c) “Bush told Blair that Osama was a bad man and that is why Bush was going to bomb 

Afghanistan. This happened after the planes crashed into the WTC buildings”

18. In the English language one often finds the use of “of” in phrases like “six yards of Kanjeevaram 

silk”, or “two litres of lemonade”, or “a pint of beer”. How would you write rules to handle such 

occurrences of “of” in a language processing system?



F  irst Order Logic (FOL) provides us a language for describing the elements of a universe of discourse, 
  and a mechanism for reasoning about the relations that exist in the universe. The representation 

is in the form of a set of sentences in the language of FOL, for which set the universe of discourse is a 
model. Not every true fact need be stated explicitly. Some facts can be deduced. The reasoning that we 
have seen in Chapter 12 is deductive reasoning, in which the statements that are entailed by the given 
Knowledge Base (KB) can be ascertained, and made explicit, by an inference engine.

To derive the entailed facts, inference engines need to select an appropriate sequence of rules. Every 
rule that has matching antecedents is a candidate for selection. An inference engine, or theorem prover, 
picks a rule and applies it, and repeats this process till the goal criterion is met. The task of finding a 
proof involves search. Most inference engines have built in search strategies. A goal directed backward 
search engine, like Prolog, picks the clauses in the order in which the user has stated them. The clauses 
contain both the rules and the facts. A forward search engine like OPS5, uses a conflict resolution strategy 
(see Chapter 5) for choosing the rule to apply.

Knowledge representation is concerned with what the problem solving agent knows about the world. 
The knowledge of an agent constitutes not only of the knowledge of the physical world, but also about 
happenings in the physical world. The world does exist, no doubt, because the knower is part of that 
world, but for the knower, or the agent, the world exists only as the agent knows it. One particular 
school of thought known as Phenomenalism, which is a kind of extreme Empiricism, holds the view 
that “physical objects do not exist as things in themselves, but only as perceptual phenomena”.1

From a knowledge-representation perspective, the language of FOL is a mechanism to construct an 
ontological base for modelling the world as known by the agent. The semantics of FOL is defined with 
respect to a domain and a mapping from the language to the domain. Terms of the language are mapped 
to elements in the domain. The unary predicates of FOL define categories in the domain, and higher arity 
predicates define relations between elements of the domain. In this sense, FOL provides a mechanism 
for abstract representation (Charniak and McDermott, 1985). Any connections between elements are 
buried in the logical formulas, mainly categories and rules, and have to be ferreted out by the inference 
engine by a process of search. The formulas exist in an abstract pool, which may be thought of as a flat 
representation with no structural information, except in Prolog formulas (programs) where they have a 
predefined order in which the inference engine looks at them. Figure 12.15 depicts some connections 
based on parent–child relationships that the formulas have implicit in them. If those connections could 
be made concrete, then the inference engine could traverse them directly. The algorithms in Chapter 12 
do traverse such links, but only by finding them through a process of unification, and in the process of 
which they inspect all formulas, in some order, to determine whether there is a link.

1 http://en.wikipedia.org/wiki/Phenomenalism

Structured Knowledge 
Representations

Chapter 14
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The search for unifying components is what structured representations aim to circumvent.
There is motivation from human reasoning as well. We go about making decisions with varying 

degrees of effort in a dynamic world, facing and solving problem after problem. Parikh pointed that the 
truth functional semantics of logic is not sufficient. He illustrated the idea with vague predicates like 
“red”, and suggested that knowledge is useful when it leads to successful behaviour (Parikh, 1994). We 
jump to conclusions, we do top-down reasoning—employing whole structures of connected concepts. 
There is evidence from literature that we work with “chunks” of knowledge rather than a pool of 
formulas. Chess stalwarts from de Groot (1965) to Kasparov (2007) have emphatically said that it is 
the number of structured patterns in ones memory that distinguishes an expert from a novice in chess.

The key to the effective use of knowledge is the ability to get to the relevant pieces quickly. And 
that can be done if related pieces of knowledge are either chunked2 together, or are reachable through 
explicit links. This chapter deals with ideas to combat the need to search for connections, and techniques 
to confine the processing to the “relevant” facts.

14.1 Hierarchies in the Domain

We begin with two features of knowledge representation. One is that our representations involve 
aggregations of simpler concepts into composite structures. We can model compound elements that are 
made up by assimilating and structuring basic elements. For example, we can think of human (as in a 
body) as a category, but we can also think of the different parts of the body as the right ear, or the left 
hand. Or we can think of a recipe for baking a cake, as made up of a number of smaller steps. We need 
to be able to handle such aggregations in which the parts are related to the whole and to other parts.

The second is the organization of categories themselves into hierarchical layers of abstractions. For 
example, humans (bodies) are a kind of mammal (bodies) that are a kind of animal (by now, we only 
think of them as bodies and no minds!). Or a cake is a kind of baked food which is a kind of cooked 
food, and baking is a kind of cooking. Such kinds of taxonomies are part of ontologies in the comput-
ing community.

Both kinds of relations, between a part and the whole, and between different levels of abstraction can 
be captured in FOL, in the form of rules. But the problem is that arriving at conclusions by the process 
of search is computationally expensive at best, and intractable at worst. Instead, we need such concrete

realizations of relations that finding related “facts” is done not by using search in a sea of formulas, but 
can be accessed more directly by following links.

Figure 14.1 illustrates the connections we seek to ossify. In one direction, an aggregation hierarchy

relates components to composite elements. In an orthogonal direction, there exists an abstraction 

hierarchy that classifies elements into categories.
In the figure, categories are shown in shaded square boxes, and correspond to sets in the underlying 

domain. For example, the category “baby-girl” would refer to the set of elements in the universe that are 
baby girls. In the figure, each (large) oval represents kinds of things. Let us assume that the oval in the 
bottom left contains elements which—for the sake of illustration—are human beings. The oval contain-
ing the square boxes then is the set of categories. Other categories could be “schoolgirl”, “teenage-girl”, 
“teenage-boy”, “college-girl”, “mother”, “grandmother”, etc. Observe that the categories need not be 
distinct. They simply represent subsets of the universe. Further, categories may themselves be grouped 
into a higher level category. For example, the category “teenager” could contain the categories “teenage-
girl” and “teenage-boy”, and the category “female” could contain the categories “schoolgirl”, “baby-girl”, 

2 Chunking—put together parts and give it a name.
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“teenage-girl”, “mother” and “grandmother”. In fact, the categories at the second level correspond to 
supersets of the base elements, corresponding to the constituent categories. Yet we will add the catego-
ries themselves as reified elements to augment our domain so that we can reason directly about them. 
The lowest level in the abstraction hierarchy corresponds to sets of elements, or objects, in the domain.

The aggregation hierarchy defines other layers exemplified by the oval on the right. The elements 
of such a layer are composite elements. For example, an element at this layer might be a “family”. A 
family may be thought of as another reified element, which in reality is made up of its parts. A family 
in turn may be part of a larger unit, say a clan, which in turn may be part of a tribe, a community, a 
nation, and so on. Each of these levels could have abstractions of their own, giving rise to a complex 
network of kinds of things, when we add elements other than humans to our universe, both material and 
nonmaterial. Extreme examples are alluded to by noun phrases like “the market”, “the ecosystem”, “a 
spiral galaxy”, “the diaspora”, “the clergy”, “air pressure” and “the umwelt”. These terms clearly stand 
for something that is an abstraction of aggregation at some level.

Both, the abstraction hierarchy and the aggregation hierarchy, are forms of reification in which we 
create symbols that stand for something we have imagined.

Aggregation

Abstraction

FIGURE 14.1 The abstraction and aggregation hierarchies.

Observe that while we have depicted a lowermost layer in the abstraction hierarchy, we have not done 
so for the aggregation hierarchy. The base in the abstraction hierarchy corresponds to elements (composite 
or otherwise) that “exist” in the domain. These are shown in shaded circles or their aggregations.

The base of the aggregation hierarchy likewise should correspond to the smallest level of existence, 
where the element is atomic in the sense of being indivisible. If we could define this base then the 
elements in that set would be the real domain, and everything else would be composite. However, the 
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definition of what is the base or the domain is really a matter of choice, as far as representation and 

reasoning is concerned. It is the problem solver who has to decide as to what is the basic (atomic) unit 
in the domain. Fundamentally, we still do not know what is, if there is, a basic unit of matter from which 
other stuff is composed. A similar difficulty arises if we talk about ideas, properties, or events (remember 
Zeno’s paradox on motion). The notion of an atom was postulated in the sixth century BC as an argument 
against infinite divisibility of matter (Keith, 1921), (Gangopadhyaya, 1981), and adopted by John Dalton 
in the early nineteenth century, but that too turned out to be a composite structure.3

Nevertheless, a considerable amount of representation and reasoning happens at different levels in the 
aggregation hierarchy. Physicists talk about strings and neutrinos, while chemists are content to deal with 
the atoms and molecules. Biologists and botanists work with genes and cells, while the physician thinks 
in terms of bacteria and organs of the human body. For sociologists, psychologists, anthropologists and 
economists, humans are the basic units. Ecologists and environmentalists are concerned with processes 
that impact the well being of the planet, while astronomers and astrophysicists consider the earth as a 
speck in the vast universe. A good feel of this hierarchy is given in the book based on the movie Powers

of Ten (Morrison et al, 1985).
Figure 14.2 gives a concrete illustration of the two kinds of hierarchies over the set of people, with 

six particular individuals that were part of the famous Italian team that ruled the world of competitive 
bridge in the early latter half of the twentieth century.

(Blue_Team
(Belladonna-Avarelli) 
(Garozzo-Forquet)
(Pabis-Ticci-D'Alelio))

(Pair1-Blue-Team
(Belladonna-Avarelli))

(Pair2-Blue-Team
(Garozzo-Forquet )) 

(Pair3-Blue-Team
(Pabis-Ticci-D'Alelio))

Giorgio Belladonna

Walter Avarelli

Benito Garozzo

Pietro Forquet

Camillo Pabis-Ticci 

Massimo D'Alelio

Human-Bridge-Player

Bridge-Pair 
      Player1
      Player2

Bridge-Team
            Pair1
            Pair2
            Pair3

Computer-Bridge-Player

Human

Bridge-Player

Sportperson

FIGURE 14.2 An example of the aggregation and abstraction relations. A bridge pair has two bridge 

players, and a team has three pairs. The team featured here is the famous Italian Blue Team.

3 The term atom is derived from the Greek term átomos meaning, uncuttable or indivisible, coined by Democritus around 450 BC.
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Observe that the only “concrete” elements here are the six people. While the aggregations, the three 
pairs and the team, do exist on the ground, they involve the same six players.

These are not the only relations that exist. There are others which are more specific to different 
“nodes” in a wider semantic net, and are often between different kinds of things. For example, we have 
not represented bridge as a game. If we do so then we can define a bridge player as one who plays the 
game. All kinds of relations can be defined and captured. The game of bridge, for example, will have 
its own internal details, and the players who play it will employ a knowledge of patterns, strategies and 
actions that are specific to the game. A complete representation of all knowledge in this sense seems 
difficult, if not impossible, either for man or machine. We just strive to know more and more.4

14.2 The Schema

An intelligent agent has to reason about the world in which it exists.
Fundamentally, the world is made up of some sub-atomic particles that obey laws that we are still 

trying to decipher, and whose movement results in the billions and billions of events that happen around 
us. Just consider the bacteria, good and bad, that inhabit a human body. Clearly, we cannot reason at 
the minutest level of detail. Instead we build, chunk, or group smaller elements into more manageable 
entities (aggregation), and create their abstractions, and (generalized) relations among the abstractions.

The aggregations we reason with exist in human-defined boundaries. We can most easily reason 
with lengths in the range of millimetres to kilometres, and have to stretch our imagination to venture 
outside this range. Our sensory organs are also attuned to certain ranges. The rods and cones in our 
eyes respond to the “visible” band in the spectrum of electromagnetic frequency, and our ears are only 
sensitive to an “audible” range of sound waves. Our sense of time is defined by seconds, minutes, hours, 
days, years and centuries.

The concepts (aggregations and abstractions) that we define, all lie within our perceptual boundaries. 
We see events that happen in seconds or minutes, and we perceive as static that change that takes longer 
or shorter. Air molecules are banging against our faces, electrons are whirring around the atomic nuclei, 
and the wings of the honeybee are fluttering. On the television screen, the computer monitor or a cinema 
screen change happens much faster than we can perceive; hundreds or thousands of times a minute. We 
only see the (illusion of the) smoothly changing image in our timescale, seeing a person’s lips moving 
or a football flying towards the goal. Beyond the other end of our perceptible time scale, the physical 
objects that we are and see around us are in fact undergoing change (beneath our very noses). The bud 
is blooming into a flower, the grass is growing, the glacier is moving, our hair is growing, the stars 
are moving across the sky, and night is beginning to change into dawn. But we do not see the change 
happening. Some change is far too slow for us to notice, for example the wood our table is made of is 
slowly oxidizing, or the rotation of the earth is slowing down, or our sun is expanding into becoming a 
red giant. Sometimes we simply refuse to acknowledge change, like global warming, even when others 
are frantically drawing our attention towards it.

4 Or sometimes, like Sherlock Holmes, consciously avoid knowledge that is not relevant to one’s goals. In A Study in Scarlet (by 
Sir Arthur Conan Doyle) Holmes says that he would now do his best to forget this fact (that the Earth goes round the Sun) as “it

would not make a pennyworth of difference to me or my work.” … “I consider that a man’s brain originally is like a little empty 

attic, and you have to stock it with such furniture as you choose…. A fool takes in all the lumber of every sort that he comes 

across, so that the knowledge which might be useful to him gets crowded out, or at best is jumbled up with a lot of other things 

so that he has a difficulty in laying his hands upon it. Now the skilful workman is very careful indeed as to what he takes into his 

brain-attic.”
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The conceptual world we create in our minds is essentially a manageable knowledge representation 
strategy in which the number of “things” we deal with and reason about is comparatively small. A key 
component that makes this possible is the notion of the schema.

The schema holds together and imposes a structure on a collection of simpler constituents.
The notion of schema has evolved during the quest for understanding human thinking, and is seen as 

something that is instrumental in assimilation and aggregation of similar experiences. The word schema 
derives from the Greek word schma which means “form”, “shape” or “figure” (see Table 12.1) and 
“indicates the essential commonality of a broad category”. It is a mechanism that facilitates generalization, 
synthesis, storage and retrieval of similar experiences (Marshall, 1995).

Like many ideas in knowledge representation, the notion of schema first appeared in philosophy. In 
Platos’s Dialogues, it appears to signify not only form and shape but also abstraction and generalization.
In his Metaphysics, Aristotle relates the schema to his concept of categories, and thus to the essence of 
things. Schemas, according to Aristotle, facilitate the recognition and understanding of basic properties. 
The 18th-century German philosopher, Immanuel Kant, takes up the notion of schema in his Critique of 

Pure Reason (Kant, 1781). A priori intuitions and concepts, the term Kant uses for schemas, provide us 
with the framework for our a posteriori knowledge. “Things as they are “in themselves”—the thing in 
itself or das Ding an sich—are unknowable. For something to become an object of knowledge, it must 
be experienced, and experience is structured by our minds—both space and time as the forms of our 
intuition or perception, and the unifying, structuring activity of our concepts. These aspects of mind turn 
things-in-themselves into the world of experience. We are never passive observers or knowers.”5 This 
finds resonance with the modern view that we actively construct the worlds that we perceive.

The baton of studying cognitive schema was then taken up by psychologists. The two most prominent 
amongst them were Frederic Bartlett (1886–1969) and Jean Piaget (1896–1980). Bartlett, one of the 
earliest experimental psychologists, was interested in how people remember things and what they 
remember. His method of study was to make people listen to stories that, while looking normal on the 
surface, had some unrelated or illogical components. He hypothesized that what people remembered of 
the stories was what had matched the schemas—containing summaries of familiar stories and situations—
that people carried in the heads. One of his celebrated stories called “The War of the Ghosts”6 (Bartlett, 
1961) revealed that people tended to misunderstand the story and distort the parts that were misunderstood 
into something more familiar. Bartlett said that memory was composed by active organization and 
reconstruction of events, which were stored in an organized fashion rather than as individual episodes. 
Bartlett’s idea that schemas are used to organize data and are used to anticipate what will be heard next 
was taken by Schank and Abelson in their notion of scripts described below in Section 14.5.

Jean Piaget was more interested in learning. In particular, he was interested in discovering how 
children learn the concepts of space, time, logic and mathematics. His studies have had lasting impact 
on computer science and artificial intelligence. Seymour Papert used his theories for devising the Logo 
programming language in 1967 (Papert, 1980) (see also Harvey, (1997)). On the issue of how schemas 
develop, Piaget postulated that they develop only for those situations that happen often. Like Bartlett, 
he too assumed that people tend to squeeze in the situation into a known schema, a process that he 
called assimilation. But if that is not easily possible, then the schema has to adapt to the new situation 
by a process of accommodation. Over a period of time, schemas become more generalized and also 
new ones emerge to cater to different situations. Like Kant, Piaget also believed in the active role the 

5 http://en.wikipedia.org/wiki/Critique_of_Pure_Reason
6 See http://penta.ufrgs.br/edu/telelab/2/war-of-t.htm
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mind plays in perception. According to him, individuals are not passive creatures acted upon by the 
environment, assimilating experiences as they occur. Rather, individuals actively construct their own 
perceptions, assimilating new experiences and accommodating the schemas when needed. “The schema, 

both structures our experience and is structured by it” (Mandler, 1985).
It provides a framework which is useful in understanding related pieces of information being received 

by an agent.  Because a schema holds together its constituents in a structured manner, when it is retrieved 
from memory, the entire structure with its relations is retrieved, and can help in coherently understanding 
what is going on. The work on Frames and Scripts described illustrates these features.

For both Bartlett and Piaget, schemas emerge when individuals strive to understand the world, and 
are direct consequences of their experiences.

A schema is what helps us organize and structure data. The data may pertain to objects in the world 
or to events. We learn and acquire schemas both through experience and by being taught. One of the 
first schemas that a child acquires is that of the human body, as it is repeatedly asked to point to its nose 
and eyes an lips and hands and feet. As it grows, the child acquires the notions of outings, shopping, 
rules of games, and how to tie shoelaces. For each of these, it develops some kind of internal prototype 
and learns to recognize and categorize things, as well as employ schemas for problem solving. Recall 
the way a child learns addition of numbers, with the procedure or algorithm of adding digits by “table 
lookup” and taking a carry over to the left and so on, and how it acquires more complex schemas to 
solve simple algebraic equations with one variable, to the method of bisecting an angle.

In the second half of the twentieth century, artificial intelligence researchers had begun to write 
computer programs to do all kinds of interesting things. Writing programs also became a means of testing 
theories of cognition, and it became imperative to put down the ideas into a concrete enough form to 
be expressed as programs and data. We shall look at three significant threads in the development of the 
schema in the works of David Rumelhart, Marvin Minsky, and Roger Schank.

Of the three, only Rumelhart continued to use the term schema, though his earlier work on story 
grammars tends to treat the schema as a somewhat vague concept in the background, focusing more on 
the set of rules to achieve the desired effect (Marshall, 1995). His later work along with Andrew Ortony  
(Rumelhart and Ortony, 1977) proposed the following characteristics of the schema,

1. Schemas are data structures for representing the generic concepts stored in memory.

2. Schemas are defined for objects, situations, events, actions, and sequences of events and actions.

3. Schemas are not atomic but composite structures, containing networks of constituents and specified 

relations among them.

4. Schemas are like stereotypes of the underlying concepts.

14.3 Frames

The genesis of modern object-oriented programming is in the notion of frames elaborated by Marvin 
Minsky (1974). The central idea in both is to pull together data pertaining to a composite conceptual entity 
in a meaningful fashion into a structure, so that its relations with the different constituents become obvious.

A frame system is a mechanism for chunking.
Frames also provide a mechanism for relating the chunked data (frames) to other chunked data 

(frames). One can capture the relations between two frames that are at a different level of abstraction. 
And one can capture the relation when one frame is a constituent of a larger frame. That is, one can 
capture both the abstraction hierarchy and the aggregation hierarchy show in Figure 14.1.
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A frame is defined by a name and a set of slot-filler pairs. Each slot-filler pair is made up of a slot 
(or property) name and a filler (or value). It is understood that the slot is a property of the frame, and 
the filler is the value of that property.

(frame-name

      <slot-name-1 filler-1>

      <slot-name-2 filler-2>

     …)

The value that the filler can take can be an atom, another frame, a set, or a conditional procedure. 
An atom is a value that stands by itself, like a name or a number. An atom may be thought of as a frame 
with no slots, and only a name. A set has frames as its members (the frames could be atomic frames). A 
procedure may be attached to a slot to facilitate and control the flow of information. The trigger condition 
for the procedure decides when the procedure should be executed.

The sets below and to the right of the solid line in Figure 14.1 are sets of concrete objects, in the sense 
that they exist in the domain, either individually or as composite objects7. An arrow along this dimension 
represents a part-of or aggregation relation, and is realized by placing the name of the constituent object 
(frame) in the filler slot of the composite object (frame), either individually or as a set. For example, 
we may represent the following,

(earth-system

       …

       <:Planet earth>

       <:Satellite moon>

       … )

(blue-team

       …

       <:Pairs {blue-team-pair1, blue-team-pair2, blue-team-pair3}>

       … )

(blue-team-pair1

       …

       <:Players {georgio-belladonna, walter-avarelli} >

       … )

We have used the notational convention of writing the slot name capitalized and prefixing it with the 
colon. We will also denote concrete elements (frames) in lower case letters. We expect the two constituent 
values of Players of the third example to be in turn frames that contain more information about the two 
persons. This is in fact universally true of fillers, keeping in mind that we treat atoms as frames with no 
additional information, apart from the name of the atom.

The sets above and on the left-hand side of the solid line in Figure 14.1 contain abstract objects 
that stand for sets of objects, abstract or concrete. An abstract frame can be thought of an abstraction 
of a kind of frame, which specifies all the properties common to the objects in the set it stands for. The 
direction orthogonal to the aggregation direction is the abstraction direction. Edges between objects 
along this dimension represent the abstraction relation. In the frame system, this edge is represented as 

7 By concrete we do not mean physical, just something that is an element of the domain of discourse.
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a slot whose value is another non-atomic abstract frame, and that says that the current frame (object) is 
a kind of the filler frame (object). Traditionally, this a-kind-of relation is specialized into two relations. 
The first called Instance-Of is used to relate a concrete object (frame) to an abstract object (frame). The 
second called Is-A is used to relate two abstract frames. We will use the convention of denoting abstract 
frames (objects) with capitalized names.  Abstract frames correspond to classes in the object-oriented 
paradigm, and concrete frames to instances. There can be multiple occurrences of the above two slots, 
as in the following examples,

(hans-berliner

    …

    <:Instance-Of ChessPlayer>

    <:Instance-Of Professor>

    <:Name “Hans”>

    <:FamilyName “Berliner”>

    <:Work carnegie-mellon-university>

    …)

(Professor

    …

    <:Is-A Academician>

    <:Is-A Employee>

    … )

The Is-A relation defines a taxonomy of the concepts, in which two concepts are related by abstraction 

and specialization relations. The frame Cheetah is a specialization of Big-Cat, which in turn is a 
specialization of Animal, and so on. The Cheetah is also a specialization of Predator, and transitively (via 
Big-Cat) of Animal, and all its ancestors. This is because the frame Cheetah specifies more information 
about the set of concrete objects it represents than the frame Big-Cat. As a consequence, it stands for 
a smaller set of concrete objects (which have those extra properties) than does Big-Cat. In fact, the set 
represented by Cheetah is a subset of the set that Big-Cat stands for.

The Is-A hierarchy has found many applications in categorizing the kinds of things that exist, specially 
in the study of the natural world. The botanists and biologists of this world, of who Charles Darwin 
was a prominent example, have been occupied with studying life forms and categorizing them into 
species, genus and family. In our Web-enabled times, one can access such information through projects 
like “The Tree of Life” Web project8. A small sample of the vast diversity that life manifests itself in, 
is depicted in Figure 14.3.

The need to categorize information is of course not only confined to natural sciences, but has been the 
concern of philosophers and scientists in all disciplines. One must remember that the categories exist only 
in our heads. And so do the aggregations. They are reifications. Fundamentally, the world around us is 
just a vast swirl of trillions of presumably indivisible miniscule particles. Or as some somewhat extreme 
schools of philosophical thought believe, matter is not even fundamental. The ancient Indian schools of 
philosophy were concerned with existence thousands of years ago, as illustrated in the adjoining box. 
The Greek philosopher Aristotle espoused a method of defining general categories as the genus and the 
different subcategories based on the differentiae. In the 3rd century AD, the philosopher Porphyry drew 
the tree reproduced (as shown in Figure 14.4) by Peter of Spain in 1329 (Sowa, 2006).

8 See http://www.tolweb.org/tree/
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FIGURE 14.3 A small part of the tree of life categorizing small life forms, often collectively called 

insects. The edges represent Is-A relation. The leaves in the figure are in fact internal nodes in the 

tree of life.
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FIGURE 14.4 Tree of Porphyry, as drawn by Peter of Spain (Sowa, 2006).
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Box 14.1: The Categories or Padartha

Vaisheshika, or , is one of the six Hindu schools of Vedic systems of philosophy of India 
(Chattopadhyaya, 1986), (Radhakrishnan, 1923). It has been closely associated with the Hindu school 
of logic, Nyaya (see Chapter 12).  The Vaisheshika school of philosophy defines a taxonomy of all 
possible concepts in terms of seven individual characteristics.

The root of the taxonomy is  (the meaning of the word), or any word that represents a 
concept. The concepts can be further specialized by what we call slots in the contest of frames. These 
are seven in number—dravya (substance), guna (quality), karma (activity),  (generality), 

 (particularity) and  (inherence). and  (non-existence).
These are further categorized. There are nine classes of substance—  (earth), ap (water), 

tejas (fire),  (air), (sky),  (time), dik (space),  (self) and manas (mind).
And seventeen classes of qualities—  (colour), rasa (taste), gandha (smell),  (touch), 

 (number),  (size), prthaktva (inidividuality), samyoga (conjunction), 
(disjunction), paratva (priority), aparatva (posteriority), buddhi (knowledge), sukha (pleasure), 
duhkha (pain),  (desire), dvesa (aversion) and prayatna (effort). The following were added 
later, gurutva (heaviness), dravatva (fluidity), sneha (viscosity), dharma (merit), adharma (demerit), 

 (sound) and  (faculty).
The interested reader is referred to the (Kak, 2003) and (Narayana, 2007a; 2007b) for a deeper 

analysis of the representation of concepts.

14.3.1 Procedures in a Frame System

The principal advantage the frame system brings to reasoning is the savings in computation because of 
the explicit connectedness of related concepts (frames). Consider the inference that one may want to 
make that dogs are living creatures. In FOL, the relevant relations would be expressed as rules, perhaps 
as follows.

"x (Dog(x) … Animal(x))
"x (Animal(x) … LivingCreature(x))

Using these rules in forward or backward chaining requires the mention of an individual about who 
this inference is being made,

Dog(fido25)

One can then go on to infer that LivingCreature(fido25) is also true. Classical logic also allows us 
to use the Hypothetical Syllogism rule to infer,

"x (Dog(x) … LivingCreature(x))

But the real problem in making inferences is that of search. An inference engine needs to find the 
relevant set of matching rules and facts, to make the required inferences.

In a frame system, the task that is addressed is the same but with the aid of additional data—the 
pointers linking the different frames. From the Dog frame, one has only to traverse the Is-A links upward 
in search of the LivingCreature frame. One can imagine an algorithm that starts off at the Dog frame 
and passes a marker up each of the Is-A links. At every intermediate ancestor, more copies are made 
if needed, and a mark is left behind. The mark contains information of the immediate parent (a back 
pointer) and the source of the marker.  The markers are tokens carrying the information that has the goal 
(Dog frame seeking LivingCreature frame) and keep track of the path as they traverse the links. When 
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a marker reaches the destination frame, the algorithm can terminate.  Such algorithms have been called 
Marker Passing algorithms (Hendler, 1988).

The Marker Passing algorithm can initiate search from both ends, sending out markers from the 
Dog frame and the LivingCreature. Hopefully, two markers from opposite sides will meet half way and 
achieve the goal quicker.

Inferences related to the part-of relation in the aggregation hierarchy can be similarly made by a 
marker passing approach9.

Another major advantage of building a taxonomy using the Is-A relation is that data shared between 
different objects can be stored with an ancestor. Here are some examples from the living world. We can 
store the property <Has-spine, yes> with the frame Vertebrate, with the understanding that this property 
will be shared by all its specializations. Likewise, we can store a property <Number-of-feet, 2> with 
the Frame Biped, the property <Maintain-body-temperature, Yes> with the frame Homeothermic, and 
the property <Lays-eggs, Yes> with the frame Oviparous.

A frame stores a property value <slot filler> pair that is common to all its descendents. As a 
consequence, the descendent frames inherit the property and value from the frame. In Figure 14.5 below, 
the examples given above are shown along with some descendents. Homo-sapiens are descendents of 
Homeothermic, Biped, Mammals and Vertebrates. Consequently, human beings (homo sapiens) have 
the property of being warm-blooded (homeothermic) mammals with vertebras and two legs, apart from 
the explicitly stated property. Birds share three of the ancestors (in the taxonomy) of Homo-sapiens and 
have in addition the property that they lay eggs.

(Vertbrates
     (:Has-spine Yes)
     ...)

(Biped 
     (:Number-of-feet 2)
     ...)

(Birds 
   (:Can-fly Yes)
     ...)

(Homo-sapiens  
    (:Watch-television Yes)
      ...) 

(Homeothermic
     (:Maintain-body-temperature Yes)
     ...)

(Oviparous
     (:Lays-eggs Yes)
     ...)

(Monotremes
              ...)

(Mammals
     (:Bones-in-middle-ear 3)
     (:Mammary-glands Yes)
     ...)

FIGURE 14.5 A part of the taxonomy of life. A property stored in a frame is inherited by all its 

descendants. The Is-A relation is represented implicitly here by the dashed arrows.

9 One assumes that fillers of slots are pointers to the constituent frames. This makes each frame a compact structure. If one were 
to use the frames themselves as fillers, the structures would become quite unwieldy, considering that the aggregation hierarchy 
could be quite deep.
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A frame system should be implemented with a generic procedure for inheritance that will propagate 
property values to all the descendants. This can be done in a data-driven manner.

 ● Whenever a property value is added to a frame, or modified, the procedure should traverse the 
subtree containing its descendants and add the property value to each descendant frame.

 ● When a new frame is inserted in the frame system, the procedure should traverse the subtree of 
all its ancestors, and copy property values from each ancestor.

This can also be done in a demand (goal) driven manner. Whenever the fillers of a particular frame 
are needed, a traversal of all its ancestors will yield the fillers to be inherited.

Inheritance of slot fillers is not mandatory. A child frame can override the value it receives from an 
ancestor and specify its own filler. For example, the frames Penguins and Ostriches would be children 
or descendants of the frame Birds, but will not inherit the filler “Yes” for the slot “Can-fly”. In this 
manner, we can assert that birds can fly to serve as a default statement, but we can add exceptions to 
birds like penguins and ostriches. This allows us to make general statements like “birds can fly”, “leaves 
are green”, and “mushrooms are edible”, without having to commit them to be universal statements.

The frame system is a mechanism for organizing knowledge. A consequence of allowing arbitrary slot 
filler values for frames is that the onus of correctness now lies entirely with the user. The frame system 
simply serves as a means for economy of expression. Along with economy also comes consistency. If a 
property value were to be modified, then it needs to be done only in one place. Property values are not 
usually modified when representing knowledge about the (unchanging) world, for example the living 
world. In such a world, we can take recourse to a stricter representation mechanism that does not allow 
a user to make inconsistent statements, but forces her to be logically consistent. For example, we can 
associate “Can-fly” property with a class called “Flying-creatures” and make “Flying-Birds”, and “Bats”, 
its children. Then “Flying-birds” can be children of “Birds”, but they inherit the flying property not from 
“Birds” but from “Flying-creatures”.  We will explore such Description Logics later in this chapter. 

Meanwhile, frame systems can be used to represent information rich in abstraction and aggregation. In 
addition to relations giving rise to the two hierarchies, one can have other relations between frames that 
are constituents of a larger frame. Frame systems can also be used to compose complex event patterns.

Consider the task of organizing a birthday party for a child, and the knowledge needed for doing 
so.  The entire activity can be organized around a Birthday-Party frame that captures a typical birthday 
party (see Figure 14.6). The frame says that a Birthday-party is a Party, and by inheritance has food and 
costs money. In addition, the Birthday-party must have a B’day-kid for whom the party is organized and 
who is a Person. The frame has a Date which is the birth date of the B’day-kid, which can be obtained 
from the instance when creating an instance of the Birthday-Party. A Birthday-Party must have a 
slot called Guests whose filler is a set (or list) of Guests. Guests are also Persons, and they must be 
Friends of B’day-kid. The name of the guests can be obtained from the names of friends of the instance 
of B’day-kid. Finally, a Birthday-Party has activities that happens before, during, and after the party, 
represented by the three corresponding slots. The first of the three Preparation, must begin 10 days 
before the birthday. It has tasks like choosing the guest list, sending out invites, ordering the food and 
the cake, and choosing games and music. The Preparation frame is followed by the PartyEvents frame 
that describes the happenings during the party, starting with receiving guests and ending with sending 
them off with return gifts. All this is followed by After-the-party frame that describes the cleaning up 
activity and the excitement of opening the presents. There may be activity the day after as well, for 
example sending thank you notes.10

10 In our times, an SMS or an email would be the medium.
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Figure 14.6 below shows a part of the Birthday party frame system. The descriptions of the games 
involved and the time needed for them, the food menus, the cake types, and decoration details have been 
left out for want of space in the figure.

(Birthday-party
     (:Is-A Party)
     (:For B’day-kid)
     (:Date Person-birthday)
     (:Guests List-of-Guests)
     (:Pre-events PreParty)
     (:Party-events PartyEvents)
     (:Post-events PostEvents)

...)

    (:Open Presents)

    ...)

(PartyEvents

     (:Receive Guests)
     (:Play Games)
     (:Cut Cake)

(:Serve Food)
     (:Give ReturnGifts)            

...)

(Party
     (:Has-food Yes)
     (:Expenditure Compute-for-Instance)

...)

(Person
(:Is-A Homo-Sapien)
(:Birthdate Instance-Property)
(:Father Male-Human)
(:Mother Female-Human)

              ...)

(Guest
     (:Is-A Person)
     (:Friend  B’day-kid)
     (:Name Get from

Friends-of-B’day-kid 
...)

(B’day-kid
(:Is-A Person)
(:Birth B’day-kid-birthday

Get from Instance)
...)

...)

...)

(Preparation

     (:Next PartyEvents)
     (:Tasks {Decide Invitees

...)

(List-of-Guests
     (:List Of-Type (Guest))

Choose-Music})
Choose-Games
Order-Cake
Order-Food
Invite-Guests

     (:Begins (Person-birthday -10)) 
     (:Next After-the-party)
     (:Date Person-birthday)

(:Send Thank-you-notes) 
   (Date: (Person-birthday + 1)) 
(Day-After

    (:Next Day-After) 

    (:Clean-up Dishes) 
    (:Date Person-birthday)
(After-the-party

FIGURE 14.6 A part of the birthday party frame system.

Such a frame-based representation could be augmented with procedures that carry information from 
one frame to another when it gets generated. Information can be conveyed in both the eager mode and 
in the lazy mode. In the eager or data-driven mode, a procedure with an If-Added test is triggered when a 
filler is added to a slot or modified. For example, when an instance of a birthday party is being created, as 
soon the kid’s birthday is entered, the date could be propagated to various frames that have a slot for that 
date. The lazy or goal-driven could have procedures invoked by an If-Needed trigger. Such a procedure 
could pull in data from different frames. For example, if one needs to compute how much expenses will 
be incurred then a procedure could traverse frames containing expense related information and sum it up.

Such a frame system could then serve as a kind of an active hierarchical spreadsheet-cum-calendar

that could help one plan a party meticulously, and generate calendar reminders when needed. When 
invoked, the procedures would facilitate the construction of actual instances of the frames for a specific 
birthday party. The process could happen somewhat along the lines described below. We assume that 
instance frames of the people involved, food items, and so on exist in some database.

Consider the task of organizing a party for Aditi on November 7. The moment we invoke the birthday-
party organizer, it creates an instance of the Birthday-party frame, as follows,
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(birthday-party-4327

        (:Instance-Of Birthday-party)

        …)

and prompts us for the name of the child, by showing us a list of names in our database, or asking us 
to enter the data. It retrieves, or constructs, the instance frame for Aditi, and creates an instance of the 
B’day-kid frame,

(b’day-kid-aditi

(:Instance-Of  B’day-kid)

(:Birthday november-7)

…)

The system would then create instances of the three event frames. For the instance of the Preparation

frame, it would initiate the task of forming the guest list. Assuming that we have an existing database 
of people we know, the system can show us a list of friends of Aditi, and ask us to choose the guest 
list. As each guest is chosen, the system creates an instance of a Guest frame for example as follows,

(guest-subun

(:Instance-Of Guest)

(:Friend  aditi)

(:Name subun)

…)

It would create a calendar entry for inviting each guest, which would prompt the user at an appropriate 
time. A smart system may also retrieve food preferences of each guest if available and impose soft 
constraints on the party menu. It would then show you menu options, perhaps on the Web, and help 
you decide the food items, calculating quantities, costs, and if you insist, calories. It would show you 
the games menu and likewise help you decide the entertainment program, initiating calendar entries 
for buying anything that might be needed, and adding up the estimated time for each event. It would 
finally help you choose and order a cake. The top-level frame could pull in the requisite data from the 
constituent frames, via an If-Needed trigger, and display the total estimated expenses and duration of the 
party. The system would then create a complete frame instance, which would prompt you during and after 
the party on your mobile phone. Figure 14.7 shows a part of the final, concrete frame system created.

The key thing is that a frame holds together all the information related to structured event patterns 
together. Thus, when one thinks of such an event, all aspects related to it are brought to the fore. 
Computationally, this will be efficient when the links are implemented using a data structure so that 
that they can be traversed directly.

Cognitively, the frame acts like a schema, chunking together all related information. If someone 
were to announce that she has just been to a birthday party, then a curious aunt might ask her all sorts 
of questions—Whose birthday was it? Who all were invited? What gift did you take? What games did 
you play? How was the food?—and so on. Such questions come readily to mind because one already 
has a preconceived idea of the entire gamut of activity that constitutes a birthday party.

A number of research students working with Roger Schank at Yale used this notion of chunking 
together of data related to stereotypical event patterns to write programs to understand stories in natural 
language. The key exercise was to create representations of such knowledge structures, called Scripts.
Retrieving and using an appropriate Script makes the task of story understanding a feasible one. We 
look at Scripts and other related knowledge structures after the following section.
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14.4 The Semantic Net

The aggregation hierarchy only captures the part-of relation, and the abstraction hierarchy the is-a-kind-of

relation. One can think of other relations between different concepts and individuals. An extension of 
relations leads us to a more general idea of a semantic net. A semantic net is essentially a graphical form 
of knowledge representation composed with binary relations or triples. Each edge in a node represents 
a particular relation between the nodes. Figure 14.8 shows a semantic network that has more elements 
and relations added to Figure 12.15.

The idea is that such a graphical representation of knowledge will facilitate the discovery of how 
two elements are related. The method of activation spreading was proposed in Ross Quillian’s work 
(Quillian, 1966). Consider the family network depicted in Figure 12.15. It is a semantic network with 
two kinds of relations, father-child and mother-child. On this network, we can ask the following question 

FIGURE 14.7 A part of the concrete-frame system for a specific birthday party.

     (:Game1 tambola)

...)
...)

...)

...)

     (:Next cake-4327           
     (:Game3 pass-the-parcel)
     (:Game2 musical-chairs)

(games-4327)

     (:Next food-4327)
     (:Cake chocolate-cake)
(cake-4327)

(:Item5 dahi-wada)
     (:Item4 nimbu-paani)
     (:Item3 poori)
     (:Item2 chole)
     (:Item1 samosa)
(food-4327)

(day-After-4327
   (Date: November-8-2001)
   (:Send thank-you-notes)

(preparation-4327
(Instance-Of Preparation)
(:Begins October-27-2001)
(:Next partyEvents-4327)
(:Tasks {Decide invitees

Invite guests-4327
Order food-4327
Order cake-4327
Choose games-4327
Choose music-4327})
...)

(partyEvents-4327    
(:Date november-7-2001)
(:Next after-the-party-4327)
(:Receive guests-4327)
(:Play games-4327)
(:Cut cake-4327)
(:Serve food-4327)
(:Give returnGifts-4327)
...)

(after-the-party-4327
(:Date november-7-2001)
(:Clean-up dishes)
(:Open presents-4327)
(:Next day-After-4327)
...)

(guest-number-1
(:Instance-Of Guest)
(:Friend  b’day-kid-4237)
(:Name Subun)
(:Next guest-number-2)
           ...)

(birthday-party-4327
(Instance-Of Birthday-party)
(:For b’day-kid-4327)
(:Date November-7)
(:Guests List-of-Guests-4327)
(:Pre-events PreParty-4327)
(:Party-events PartyEvents-4327)
(:Post-events PostEvents-4327)
  ...)

(b’day-kid-4327
(:Instance-Of B’day-kid)
(:Name Aditi)
(:Birthday November-7)

...)

(Guest
(:Is-A Person)
(:Friend  B’day-kid)
(:Name Get from Friends-of-B’day-kid

...)

(list-of-Guests-4327
(:Next guest-number-1)

               ...)
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“How is Arushi related to Aeden?” One can employ a two-way marker passing algorithm with activation 
spreading commencing at the two nodes representing Arushi and Aeden, and terminating when two 
markers meet or intersect.11 Activation spreading is like a parallel breadth-first search from both ends, 
resulting in a connection with the smallest number of links.

Quillian’s work was focused on the organization of human semantic memory, or a memory for 
word concepts. He was concerned with semantic memory search, or the search of relations between 
concepts (words). Given the two words “fire” and “burn”, his program would do a bidirectional activation 
spreading search to produce the answers “Fire is a condition which burns” or “To burn is to destroy 

something by fire” (Quillian, 1966). Quillian continued with his work to build a Teachable Language 
Comprehender (TLC) (Quillian, 1969). The TLC would first spread activation from the first word up to 
a predefined depth, and then process the next word. If the activation from the second word intersected 
the marks left by the first one, a connection was deemed to be found. Scott Fahlman (1980), (Fahlman 
et al., 1983) explored the idea of hardwired implementation of the activation spreading networks with 
the system NETL. The idea of a massively parallel activation spreading network has inherent appeal 
because our own brains can be viewed as such networks. Fahlman also introduced the distinction between 
individuals and classes, the notions of inheritance, and also the idea of overriding the inherited values. 
The oft-quoted example of Clyde being an elephant and therefore being grey can be traced to papers 
by Fahlman. The concepts of activation spreading were further explored by many researchers (see for 
example (Collins and Loftus, 1975), (Anderson, 1983), (Hendler, 1988), (Wolverton and Hayes-Roth, 
1994), and (Jiang and Tan, 2006)).

Eugene Charniak carried forward the idea of marker passing to processing of language. One of the 
key problems in natural language processing, known as the problem of word-sense disambiguation, is 
to choose the sense of the words in a sentence. The problem arises if one is trying to write a language 
comprehension program. In an earlier paper, Charniak (1977) describes a frame-based story-understanding 

11 On this network, the answer would be “Aeden is the cousin of Arushi’s mother”. 

FIGURE 14.8 A heterogeneous semantic network with different kinds of links. The links “m” and “f” 

are the mother and farmer links of Figure 12.15.
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program he called Ms. Malaprop. The paper discusses the vast amount of knowledge about painting that 
a system will need to have to be able to comprehend stories about painting. For example, the system 
should “know” that before one paints an object, one normally cleans it to avoid flaking, or that if there 
is too much paint on the brush, it might drip. The painting frame discussed by Charniak knits together 
all such information. The process of understanding a story, or comprehending a sequence of utterances 
in a language is “fitting what one is told into the framework established by what one already knows”
(Charniak, 1977).12

We will look at this process in a little bit more detail when we look at Schank’s work below. The 
level of understanding that a system (or a human for that matter) has, depends upon the depth of 
knowledge the system (or human) has. Having knowledge of physical objects like the facts that paint is 
liquid and can drip, and that paints dry up, help in understanding why things happen the way they do. 
A deep understanding system would have the typical event patterns captured in frames, with specific 
events linked to domain knowledge like physics or chemistry, to help explain why things happen the 
way they do.

The idea of using words of a language to construct networks of relations was further taken up in the 
Wordnet project at Princeton (Fellbaum, 1998) described in Chapter 16.

The traditional approach to language processing was to first do a syntactic analysis of the given 
sentence to determine the grammatical structure, and then the semantics.  Charniak (1983) proposed that 
the networks for semantics and syntax of words and phrases from a language be interconnected to enable 
information flow from syntax to semantics and vice versa (Figure 14.9). Word-sense disambiguation 
could be done by passing markers from each of the senses of the word that are possible. The markers 
from the correct sense of the word were more likely to intersect with those from the other related words. 
This idea for word-sense disambiguation was also developed by Graeme Hirst (Hirst and Charniak, 
1982), (Hirst, 1984; 1988).

Syntax Semantics Path Checker

Marker Passer

Deduction

Words

FIGURE 14.9 The interplay between different kinds of information and processes in Charniak’s 

proposed parser (Charniak, 1983).

The marker passing algorithm is essentially a form of search with distributed control.  A related 
idea is that of relaxation, which comes from connectionist systems like the Hopfield network (see 
Chapter 4). In such a network, nodes can be in different levels of activation, and the activation value of 

12 In his 1977 paper, Charniak said in the concluding section “I would estimate that the version which will handle all of the examples 

herein is six months off, but previous experience tells me that such estimates are likely to be too ambitious by a factor of two 

or three.” In fact, the AI community is still on the job!
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a node influences the activation value of its neighbours via the edges. The influence can be excitatory

or inhibitory. Observe that the edge now represents whether the two nodes at its ends support each 
other or oppose each other. Given an initial excitation of some nodes, the system is allowed to relax by 
propagating influences across edges, till it settles down into a steady state. The set of excited nodes can 
then be seen to describe the state of affairs.

The network in Figure 14.10 is the kind of network proposed by David Waltz and Jordan Pollack to 
combine the syntactic and semantic relations associated with a string of words (Waltz and Pollack, 1985). 
The figure shows a part of the network that would be associated with the celebrated sentence “Time flies 
like an arrow” (Kuno and Oettinger, 1962). The words in the boxes represent the input sentence that one 
needs to understand, and the different arcs link the words to syntactic or semantic categories. As one can 
see, the sentence is ambiguous. The word “time” for example, could be an adjective, a verb, or a noun. 
When “time” is a verb or an adjective, “flies” is a noun, but when “time” is a noun “flies” is a verb. 
These different possible relations are expressed by the excitatory and inhibitory links between the nodes. 

flies like an arrow .

Noun

Verb

Noun phrase

Indefinite article Noun

Preposition

Time-flies
Action

Object-of-timing

Object-of-liking

Action

Verb

Agent-of-timing

an-arrow

Agent

Noun phrase

Noun

Adjective

Conjunction

Time

Object-of-flying

FIGURE 14.10 Combining syntax and semantics into a connectionist network. A part of the network 

for the sentence “Time flies like an arrow.” is shown above. The nodes above the words are part of 

syntax and the nodes below define the semantics. Edges with arrowheads represent excitatory links 

and edges with rounded ends represent inhibitory links.

To get a particular interpretation, one might activate certain nodes. For example, if “Time” and 
“adjective” are activated then the verb sense of “time” will get inhibited via the link, the noun sense 
of “flies” will get activated, which will inhibit the verb sense of “flies” (not shown in the figure).  The 



Chapter 14: Structured Knowledge Representations 563

process of relaxation is to allow all nodes to be influenced by their (edge) neighbours, till they settle 
down into a stable state. In that case, one expects one sense of each word to get chosen in a consistent 
manner, along with the appropriate syntactic categories.

Amongst the ideas put forward by Quillian was that instead of using different kinds of edges to relate 
concepts, the relations (usually verbs) could themselves be concepts, and represented as nodes in the 
semantic net. This notion was further developed by John Sowa in his work on Conceptual Graphs. We 
look at Conceptual Graphs in the last section in this chapter.

14.5 Scripts, Goals, Plans and MOPs

The ability to use language has been hypothesized to have been critical to the development of intelligence 
in humans. It is likely that this faculty will need to be bestowed upon machines too, if they are to ever 
operate intelligently in a dynamic multi-agent world.

It has been realized by many researchers in artificial intelligence that a crucial, and probably critical, 
part of language understanding is the ability to represent knowledge and reason with it. Language is in 
fact a means of exchanging and storing knowledge, but it is the knowledge-processing ability that is the 
basis for the use of language. And a key to using knowledge efficiently is using structured representations. 
This has been the theme of this chapter beginning with schemas and frames, and this theme has been 
brilliantly illustrated by the work of Roger Schank and his group at Yale University that we now look at.

Human discourse is surprisingly economical. Very young children need things to be spelt out in detail, 
but as they acquire more and more knowledge, one needs to say less and less.13 Communication between 
adults involves a considerable amount of reading between the lines. And this is possible because of the 
knowledge structures shared between the interlocutors.

Consider the following two sentences.

Arvalan walked into the store. He picked up a jar of pickles and went home.

A linguistic analysis by itself would not yield much because the two sentences say little explicitly. 
That someone (or something) called Arvalan walked into “the store”. And then a sentence saying that he 
picked up “a jar of pickles” and went home. Semantics, or the meaning of words, helps us understand the 
sentences individually (see Chapter 13).  It is only world knowledge or pragmatics that is instrumental 
in us being able to understand the whole story. Our knowledge of what is a store and what (typically) 
happens in a store helps us understand that Arvalan is (probably) buying a jar of pickles, and the store 
is a place that sells jars of pickles, amongst other things. Our knowledge of what pickles are gives us 
cues of what Arvalan might do with the pickles. If these sentences were accompanied by others like 
“He was sick of the hostel food” or “He was planning to visit his friend in Mumbai”, we might be able 
to make an educated guess of what his intentions were.14

Observe that any such inferences we might make are only probable inferences, signifying what 
typically happens in a store or what are pickles used for. They define what one would normally expect 
the sentences to pertain to. It is possible however that the inferences do not correspond to what is really 
happening. For example, Arvalan could have been a detective investigating a crime, or a robot being 
tested in the real world. But the most likely scenario is that Arvalan is a shopper going in to buy a jar 
of pickles. And it makes economical sense to  quickly being able to arrive at such inferences towards 
understanding the sentences. 

13 Teenagers can respond to a bewildering variety of questions with the answer “Simply” .
14 A jar of pickles from Chennai is cherished gift.
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Roger Schank and Robert Abelson proposed that knowledge of stereotypical patterns of activity is
packaged into structures called Scripts (Schank and Abelson, 1977), (Schank and Riesbeck, 1981). A 
Script is a structure that captures the pattern of activity, and like a theatre or a movie script, has roles

and props. The Script lists out all the actions that are expected to happen in the situation. Thus, when a 
Script is invoked, it generates expectations (see also Chapter 13) of what events or actions will happen. 
For example, in a shopping Script, the main roles are of the customer and the shopkeeper, and the props 
include the shop, the counter with the cash register, and the merchandise. The events that one expects 
include the customer asking for something, or surveying shelves for some things, picking objects and 
possibly loading them in a basket, and checking out at the counter by paying the requisite amount of 
money via a card or in cash. Figure 14.11 illustrates the structure of a shopping Script. The Script is 
made up of a sequence of episodes with possible branches in the flow of events. In the figure, each 
episode is described in English and with a semiformal statement of the main conceptualization in the 
episode (drawn in the style in (Schank and Riesbeck, 1981)). The conceptualizations are expressed in 
Conceptual Dependency. The variables with an “&” prefix are either roles or props.

E5: Customer inspects object
M5: &Customer LOOKS-AT to &Object 

E2: Customer goes to shelves
M2: &Customer PTRANS to &Shelves

E1: Customer enters shop
M1: &Customer PTRANSs to inside &Shop E3: Customer asks Shopkeeper

M3: &Customer MTRANS to &Shopkeeper

E4: Shopkeeper replies
M5: &Shopkeeper MTRANSs to &Customer 

E6: Customer moves object to basket
M6: &Customer PTRANS &Object to &Basket 

E7: Customer goes to counter
M7: &Customer PTRANS to &Counter

E8: Customer gives card to shopkeeper
M8: &Customer ATRANS &Card to &Shopkeeper

E8: Shopkeeper swipes card
M8: &Shopkeeper PTRANS &Card on &Reader

E8: Customer signs slip
M8: &Customer PTRANS &Pen on &Slip

E8: Customer gives cash to shopkeeper
M8: &Customer ATRANS
       &Cash to &Shopkeeper

E8: Shopkeeper gives receipt to the customer
M8: &Shopkeeper PTRANS &Receipt to &Customer

E8: Customer leaves the shop
M8: &Customer PTRANSs from &Shop

FIGURE 14.11 A shopping Script. Each episode written in English has a main conceptualization 

expressed in the Conceptual dependency theory.



Chapter 14: Structured Knowledge Representations 565

Like Frames, Scripts are a mechanism for chunking and generating expectations while listening to 
language utterances. The moment one hears of someone wanting to buy something, or someone going 
into a shop, or someone having been shopping, one can retrieve the shopping Script. This will now serve 
as the structure into which subsequent utterances can be expected to match.

Richard Cullingford (1977; 1981) wrote the program called Script Applier Mechanism (SAM) that 
implemented Script-based story understanding. The program received input from the English Language 

Interpreter (ELI) (Riesbeck, 1975) (also see Chapter 13) and gave its output to a program called BABEL an 
English generator (Goldman, 1975) that took CD conceptualizations as input. SAM itself was concerned 
only with Script application as illustrated in Figure 14.12, where the conceptualizations generated 
are depicted schematically. Given that a Script has been retrieved from memory and instantiated, the 
conceptualizations generated from the input sentences should match the corresponding conceptualizations 
in the Script. If that happens then the Script is applicable and generates the scaffolding for the overall 
story.

First sentence

Instantiated Script

Second sentence

Expectations

Matching

FIGURE 14.12 Matching Scripts. Conceptualizations generated from input sentences should match 

conceptualizations in the Script. The remaining conceptualizations in the Script serve as expectations 

on what one might hear.

SAM needs to constantly verify that the Script it is using is indeed the Script that explains the story. 
It does this by maintaining a score that is an indicator of its belief in the Script. SAM also keeps other 
Scripts that could be applicable in its short-term memory. SAM fetches Scripts from its repository by a 
process of matching cues. Cullingford (1981) describes the following patterns used by SAM to retrieve 
scripts, with illustrations from a subway travel script. These patterns are stored as headers in the script.

Direct Header Mentions the explicit use of the Script. For example, “John took the subway to Coney 

island”.

Locale Header A circumstantial cue, for example, “John walked into the Boro Hall subway station.”
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Instrumental Header When the Script usage is mentioned as an instrumental action. For example, 
“The IRT took John to Shea Stadium”.

Precondition Header Here, a sentence indicates that the preconditions for applying the Script hold. 
For example, “John wanted to go downtown”.

Scripts contain conceptualizations that one assumes implicitly to happen, and may serve as receptors 
if more details in the story are forthcoming. They may also serve as plausible inferences about what 
might have happened, even though it was not stated explicitly. The following example from Cullingford’s 
work shows how SAM could answer questions in a knowledgeable fashion.

Input story (Culligford, 1981)

“John went to a restaurant. He ordered a hot dog. The waiter said they didn’t have any. He asked 

for a hamburger. When the hamburger came, it was burnt. He left the restaurant.”

The following is the question-answer session with SAM (assisted with English by ELI and BABEL).

Q1: Did John sit down in the restaurant?
SAM : Probably.

Q2: Did John order a hot dog?
SAM: Yes.

Q3 : Did John eat a hot dog?
SAM: No, the waiter told John the management was unable to give it to him.

Q4 : What did the waiter serve John?
SAM: The waiter served John a hamburger.

Q5 : Why didn’t John eat the hamburger?
SAM: Because the hamburger was overdone.

Q6 : Did John pay the check?
SAM: No. John was angry because the hamburger was overdone and so he left the restaurant.

Observe that the Script helps interpret sentences like “when the hamburger came” correctly as the 
hamburger being in fact served by the waiter. This is partly because SAM has access to a semantic module 
that can match categories with actions, and partly because the role definitions in the script. Both dictate 
that an inanimate object cannot move by itself and has to be carried by an animate one.

Answering questions is not a straightforward task. First, one has to understand the question and figure 
out what the asker wants to know, and then supply the pertinent information. For instance the correct 
response to the question “Could you tell me the time?” is the time at that moment, and not “Yes”, even 
though the latter seems on surface to be appropriate. Many such issues of question answering were 
investigated by Wendy Lehnert in her doctoral thesis as part of the Yale group (Lehnert, 1978).

14.5.1 MOPs

A Script is a data structure that stands in isolation. As the problem solver’s experience increases, the 
number of scripts in its memory will increase. Memory Organization Packets (MOPs) were introduced 
to weave the many possible scripts into one large structure (Schank, 1982; 1999). The idea, like in 
Frames, is not only economy of representation, but also to facilitate the finding of relevant knowledge.

Consider a linear script like a visit to a dentist. The main action takes place when the patient goes 
and sits on the dental chair; the dentist inspects her teeth, and carries out the required procedure. This 
activity may be grouped together in a scene. Schank defines a scene as “a memory structure that groups 
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together actions with a shared goal, that occurred at the same time”. Further, “a MOP consists of a set 

of scenes, directed towards the achievement of goal. An MOP always has one major scene whose goal is 

the essence or purpose of the events organized by the MOP” (Schank, 1982). A dentist MOP then would 
consist of four scenes: making an appointment, arrival and waiting, consultation, and payment. A visit 
to a lawyer MOP, shown in Figure 14.13, would share three scenes with the dentist MOP and differ on 
in the consultation scene. While the dentist scene may have a tooth-extraction event, the lawyer scene 
may have a contract-signing event. The memory structures are themselves organized into packaging

(aggregation) hierarchies and abstraction hierarchies, as shown in Figure 14.13.

Consult -
 Pay -

-Sign Contract

-Tooth Extraction

Visit Professional

Visit Lawyer

Visit Dentist
Visit Friend

Waiting Room Scene -
Make Appointment-

Visit

FIGURE 14.13 Memory organization packets are made up of abstraction and packaging (or 

aggregation) hierarchies.

At this point, we can distinguish between two kinds of knowledge that exists in an agent’s memory. 
One, semantic memory, is ontological in nature, and defines the categories and instances of things 
and processes that exist and the relations between them. The other is episodic memory that stores the 
experiences of the agent. This is the kind of memory a case based reasoning agent works with (see 
also Chapter 15). Episodic memory is the memory of episodes. Episodes are made up of events. And 
as discussed in Chapter 13, events can be thought of as belonging to another class of things. Another 
distinction between episodic and semantic memory is that the former is dynamic while the latter is more 
or less static. However, this distinction is blurred in the MOP. This is because the MOP can store both 
classes and instances at different level of granularity. Episodes (that occur) are sequence of instances. 
They can find a place in the MOP in which each event, or sequence of events, can be an instance of 
a scene or a script. In fact, it has been hypothesized that structures like scripts are learnt via repeated 
occurrences of similar experiences, and this can be seen as a process of learning abstract knowledge 
from instances.

Not surprisingly, a lot of work on MOPs was reported in the context of case based reasoning (Riesbeck 
and Schank, 1989), (Kolodner, 1993). The fact that a MOP is an integrated structure, containing all 
concepts and actual experiences allows for the possibility of cross contextual reminding. This can 
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happen when episodes in different domains or contexts have a common abstraction level at which their 
similarity can be observed. This was demonstrated in a system called SWALE (Kass, 1986), (Leake and 
Owens, 1986) that explained the death of a successful and healthy race horse called Swale by matching 
the episodes with another story (case) where a “spouse kills spouse for life insurance”, substituting the 
spouses with the owner and the horse. Another program that deployed a MOP-based memory was the 
program called CYRUS written by Janet Kolodner (1984) that kept track of the travels of the diplomat 
Cyrus Vance. Faced with the query “Did you ever meet Mrs. Begin?” Cyrus generates a question “When 

would I meet the spouse of a diplomat?” and searches into its memory for instances of having gone for 
diplomatic visits to Israel. Another program that exploited the integrated nature of the MOP was DMAP 
(Direct Memory Access Parsing) by Charles Martin (Riesbeck and Martin, 1985), (Martin, 1989), which 
worked on the assumption that the principal task in parsing language was finding the relevant memory 
structures. In fact, Martin says that the “output of a case based parser is a new state of memory”. Figure 
14.14 below, adapted from (Lehnert, 1987), shows a part of the memory that is activated when the 
sentence “Milton Friedman says interest rates will rise.”

MTRANS-event

Actor
Mental ObjectEconomic Opinion

Economic Prediction

Friedman’s Interest
Rates Prediction

Milton Friedman

Economist

Human

Interest Rates
Prediction

Economic
Prediction

Prediction

State
Change

Economic
State Change

Interest
Rates Up

Economic
Argument

Milton Friedman’s Name

“Milton” “Friedman”
Interest
Rates Up

Behaviour

Future

Time

“Milton” “Friedman” “interest rates”

“says”

“rise”

“will”

FIGURE 14.14 An illustration of MOP activation by DMAP (figure adapted from (Lehnert,1987)).

DMAP and also the parser by Waltz and Pollack mentioned earlier, views the memory as a vast 
integrated network incorporating different kinds of knowledge, and views parsing as a process of 
activation, and change, of this memory. Every sentence that the listener hears leaves the memory in a 
changed state.

14.5.2 Goals, Plans and Actions

Scripts are patterns of stereotypical activity. They help a listener—whether human or machine—tie up 
sequences of sentences together into a coherent story. We can understand the first two sentences in the 
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restaurant story because ordering food is part of the restaurant script. The actors in a story matching 
a script (are expected to) do what the script says they do. Understanding of sequences of sentences is 
successful matching with the pattern that is the script. The connections between the sentences are defined 
by the script. However, script based understanding does not give us any insights into why the actors are 
doing what they do. For that, we need to represent connections that track the intentions that lead to the 
actions of actors. Consider the following sequences of sentences.

A. Akimi was feeling hungry. She reached out for the phone.
B. Anandan wanted to get rich quick. He decided to join politics.
Now it would be difficult to imagine scripts catering to these sentences. There might well be a 

stereotyped sequence of activities that results in satisfying hunger, but there might be too many of them15,
and the argument is the same for getting rich quickly. On the other hand, we should recognize that some 
sentences talk about goals, some describe plans, while others describe actions. We need to establish 
connections between the goals and the plans and the actions. For example, Akimi might be about to 
order some fast food, or ask a friend for going out, or even call up home to announce her impending 
arrival. Without being able to make such connections, there is no way one could have connected the 
two sentences. What we need is knowledge of how goals, plans and actions are related. This is what the 
theory of goals and plans expounds (Schank and Abelson, 1977), (Wilensky, 1981; 1983).

People rarely act randomly. Usually their actions are part of some plan. If you know what the plan 
is then you can understand the action. For example, if one is executing a plan for getting food from a 
restaurant, a constituent action may be to call them to order food. Then reaching out for the phone can 
be understood as an action that is part of that plan. Or if you perceive the school bully walking towards 
you in a menacing manner, you can infer that he has a plan of snatching your new toy truck. Thus, actions 
can be fitted into a story, if they are part of known plans.  Plans, on the other hand, are usually devised 
to achieve some goals. If a child has a plan for reaching up to the cookie jar, it must be because he has a 
goal of getting hold of a cookie. Goals, like getting hold of a cookie, themselves may be part of higher 
level plans, which in turn may be part of higher level goals. The actions of the child can be “explained” 
by the fact that the goal of getting hold of a cookie is part of the plan of eating it, to achieve the goal of 
eating a cookie, which is a part of a plan to do something to satisfy hunger, which is to achieve the goal 
of satisfying hunger. Figure 14.15 illustrates this idea with two other sentences.

plan

sub-goal

sub-plan

goal

action

Line 1

Line 2

Ask sister to borrow money

Get in touch with sister

Use the phone to ask her

1. Balaji needed money to buy a music system.
2. He called his sister.

FIGURE 14.15 The goal plan relations sitting behind an action. Given lines 1 and 2, an astute 

listener might make the connections as shown.

15 It could be argued that lower life forms like ants and birds display only (genetically) scripted behaviour. Humans however, have 
a more cognitive approach in which they reason about their goals and means to achieve them.
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The task of understanding stories can then be seen as finding the connections between sentences. 
Sometimes, as in the above figure for example, the story begins with a stated goal. But often it may 
not. To make sense of such stories, one must keep a set of permanent goals that people always have. 
These are goals like happiness, wealth, possessions, maintenance of health, and recurring goals like 
satisfying hunger.

A program called Plan Applier Mechanism (PAM) was written by Robert Wilensky for his doctoral 
thesis at Yale (Wilensky, 1981; 1983). The knowledge of relations between plans, goals and actions was 
represented in the form of rules, called requests. The rules have the following form.

Action Æ Plan 
Plan Æ Goal
Goal Æ Plan

The rules or requests are explanatory or abductive in nature. The reading of the rule AÆP is “if one 
sees or hears about the action A, then maybe A is happening as a part of the plan P≤. And likewise, for 
rules relating plans to goals, and goals to plans.

Each active request of the form “pattern Æ action” specifies two things16. One, the “pattern” that 
signifies PAM’s expectation in terms of the conceptualization PAM expects to see. At any given moment, 
PAM may have more than one active request waiting for input. Each request has an expectation attached. 
The other thing that the request specifies is the “action”, which is the processing to be done when the 
expectation is met, that is, the expected conceptualization appears in the input. The action may be the 
creation of new requests, filling up of slots in some structure, adding to the story representation or 
deleting other requests. Slots are called gaps in the Yale group literature. There is a special gap called 
the Input gap that serves as the immediate memory for PAM.

Processing of a natural language sentence begins by ELI (Riesbeck, 1975) parsing the input sentence 
and placing the resulting conceptualization in the Input gap. PAM then works in three modes.

1. Predictive Mode If the conceptualization in the Input gap matches one of the active expectations 
then it accepts it, executes the actions specified with the request, and goes into the Incorporation mode.  
PAM was expecting the conceptualization to appear, and when it does, it adds it to its explicit account 
of the story.

2. Bottom-up Mode If the conceptualization placed in the Input gap does not match any expectation, 
PAM strives to produce one that does. It does this by looking for a request in its repository whose 
pattern matches the input17. If no request exists, PAM reports failure. If there is one then the action of 
the retrieved request points to another conceptualization that is placed in the Input gap. PAM then goes 
back to the Predictive mode.

3. Incorporation Mode PAM enters this mode, after it has found a conceptualization in its Input gap 
that it was expecting. The conceptualization could have been produced directly from the input sentence, 
or it could have been produced by a chain of request firings in the bottom-up mode. Starting from the 
input conceptualization to the one that matched an expectation, the entire chain is appended to the story 
being recreated, and more requests may be activated in the process.

The working of PAM is shown schematically in Figure 14.16, when the input conceptualization 
describes an action.

16 We use the standard description of a rule. The “action” here is what the rule does, not to be confused with an “Action” in the 
story that an actor does.

17 Using a discriminatory network somewhat like the Rete Net (see Chapter 6).
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INPUT gap
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Plan1.2
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Action

FIGURE 14.16 PAM has a set of expectations that are patterns associated with active requests. 

Either the input conceptualization or something derived from it in the bottom-up mode is placed in 

the Input Gap for PAM to test in the Predictive mode. If it matches an expectation, PAM goes into the 

Incorporation mode.

We look at a small example described in (Wilensky, 1981) of how PAM processes sentences. The 
two sentences are,

John was hungry. He ate at a restaurant.

ELI produces the following conceptualization for the first sentence,

((ACTOR HUM0 IS (*HUNGER* VAL (-3))))

This is a state description, and does not meet any expectation. PAM goes into the Bottom-up mode 
and searches for a request that has the “hungry” state as a pattern or condition. It finds the following,

HUNGER-RULE

   Condition:    ((ACTOR HUM0 IS (*HUNGER* VAL (-3))))

   Action:        ADD GOAL:   S-HUNGER PLANNER ( )

                          SOURCE: THEME = HUNGER-DRIVE

                          PLAN: ( )

   Suggestions:   Set TARGET = PLAN

                  To FOCUS = !INPUT!

                  Using SUITABLE-PLAN-RULE

                  Set TARGET = PLANNER of GOAL

                  To FOCUS = ACTOR

                  Using FOCUS-REQ
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PAM applies the rule and places the following conceptualization in the Input gap,

(S-HUNGER    PLANNER ()

               SOURCE THEME = HUNGER-DRIVE

              PLAN ())

The source of the goal S-HUNGER is the theme HUNGER-DRIVE. A theme is something that PAM 
accepts as something that happens in a recurring manner. It does not need any further explaining. People 
have  needs that need to be periodically satisfied, and hunger is one of them. The “S” prefix signifies 
that it is a satisfaction goal. For goals that derive from themes, PAM seeks no further explanation. It 
goes into the incorporation mode, and adds the S-HUNGER goal to the story. Observe that there are 
two empty slots or gaps in the added structure, the ones named PLANNER and PLAN. PAM activates 
requests called suggestions to fill these slots.

The first suggestion in the HUNGER-RULE is,

Set TARGET = PLAN

To FOCUS = !INPUT!

Using SUITABLE-PLAN-RULE

This says that the gap or target of this request is the PLAN gap. The FOCUS is the Input gap, which 
means that PAM should look for the filler in the Input gap, and finally the filler should describe an 
appropriate plan for satisfying the hunger goal.

The second suggestion is,

Set TARGET = PLANNER of GOAL

To FOCUS = ACTOR

Using FOCUS-REQ

This says that PAM should look into the ACTOR slot of the input conceptualization for the filler for 
the PLANNER gap. FOCUS-REQ is a test that says that if the FOCUS is not empty its value should 
be moved to the TARGET. This suggestion gets activated immediately and at the end of processing the 
first sentence PAM’s memory has one conceptualization and one active request/suggestion.

(S-HUNGER   PLANNER: HUM0

              SOURCE: THEME = HUNGER-DRIVE

              PLAN: ( )))

and

(Suggestion:   Set TARGET = PLAN

                 To FOCUS = !INPUT!

                 Using SUITABLE-PLAN-RULE)

The next sentence is expressed as the following conceptualization,

((¤ ($RESTAURANT CUSTOMER HUM0 RESTAURANT ORG0))))

This is an Action that says that the HUM0 did the restaurant Script (denoted by the prefix $), that is, 
he ate at a restaurant. PAM has one active expectation that is looking for a plan, but what it gets is an 
Action. It goes into the Bottom-up mode, and retrieves the following rule or request. The rule says that 
“if someone eats in a restaurant, he must have had a plan to eat in a restaurant”.
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DO-RESTAURANT-PLAN RULE

         Condition:  (( ¤ ($RESTAURANT

                            CUSTOMER HUM0

                            RESTAURANT ORG0))))

         Action:   ADD PLANBOX D0-$RESTAURANT-PLAN

                      PLANNER()   RESTAURANT()

                      ACTIONS()   SUBEPISODES()

         Suggestions:

                   Set TARGET = PLANNER of PLANBOX

                   To FOCUS = CUSTOMER of script

                   USING FOCUS-REQ

                   Set TARGET = RESTAURANT of PLANBOX 

                   To FOCUS = RESTAURANT of script

                   Using FOCUS-REQ

                   Set TARGET = ACTIONS

                   To FOCUS = !FOCUS!

                   Using FOCUS-REQ

PAM places the PLANBOX into the Input gap, and finds that it was expecting a plan. It incorporates 
this new structure into the story representation by means of the request that was active and looking for 
a plan. It then activates the three requests shown as suggestions. Two of these use FOCUS-REQ to find 
their data—the planner and the restaurant—and move it to the respective gaps.  The action gap is filled 
by the pattern that triggered the rule. The remaining gap for SUB-EPISODES is unfilled and PAM will 
wait for more sentences that it will try and fit into this gap and others that may be created in the process. 
At this point, the story representation it has created is shown in Figure 14.17 below.

GOAL: S-HUNGER PLANNER (HUM0)
SOURCE: THEME = HUNGER-DRIVE
PLAN: ( )PLANBOX: D0-$RESTAURANT-PLAN

PLANNER HUM0
RESTAURANT ORG0
ACTIONS: ( )

SUBEPISODES ( )

((           ($RESTAURANT CUSTOMER
              HUM0 RESTAURANT ORG0))))

FIGURE 14.17 The Story reconstructed by PAM. There is an unfilled gap for SUBEPISODES. PAM 

would attempt to connect any subsequent sentences to this gap.

The ability of a program to understand a story, in the sense of being able to answer questions about it, 
depends upon the knowledge it has. The more the number of Scripts a system has, the more the number 
of stereotyped situations it will be able to recognize quickly. The more the number of Goals, Plans, 
Actions and the relations between them it knows, the more diverse the stories in which the program will 
be able to connect sentences by coherently. Schank and Abelson (1977) have identified the following 
different kinds of goals.
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 ● Satisfaction goals like S-HUNGER, S-SEX and S-SLEEP. These are recurring biological needs 
of humans.

 ● Enjoyment goals like E-TREKKING, E-MUSIC and E-BRIDGE. Activities that are optionally 
pursued by people for enjoyment.

 ● Achievement goals like A-SKILL, A-GOOD-JOB and A-POSSESSIONS. These are long-term 
goals that someone may want to achieve.

 ● Preservation goals like P-HEALTH and P-REPUTATION. These are goals that crop up when 
something is threatened.

 ● Crisis goals are special class of P-goals that might need drastic action. If other goals are present 
then C-goals might take the highest precedence.

 ● Instrumental goals are goals that realize the precondition of other goals. For example, if one has 
the goal of hitting someone, an instrumental goal of being near them might crop up.

 ● Delta goals are goals whose achievement results in state change. Examples are D-KNOW the 
goal of knowing something, D-PROX the goal of being in proximity of, and D-CONT the goal 
of getting control of something.

The means of achieving a Goal is to have a Plan. A Plan is made up of Actions and embodies a strategy 
for achieving the Goal. Associated with each type of Goal may be a set of Plans, called planboxes in 
PAM. A planbox is essentially a canned Plan. Once you deploy a planbox, you have made the intentions 
of your Actions clear.

Consider the goal D-CONT of getting control or possession of something. One assumes that the 
desired object is in possession of someone else. For example, “Moe wanted Calvin’s toy truck” would 
translate to,

GOAL: (*DCONT* PLANNER HUM0 
                                       OBJECT PHYS0 OWNER HUM1 RECIPIENT HUM0)

Here HUM0, HUM1 and PHYS0 are tokens pointing to the appropriate frames representing the 
individuals and the object. PAM explains D-CONT goals by the themes that people want things either 
because they are fond of them, or they have a use for them.

Once PAM accepts the goal, it will set up expectations, looking for plans to achieve the goal. PAM 
associates several plans with achieving the D-CONT goal, and considers them in the following order. 
Their meanings are self-evident.

1. ASK
2. EXPLAIN
3. BARGAIN
4. THREATEN
5. OVERPOWER
6. STEAL
Associated with each planbox is the possible set of actions. If PAM hears next that “Moe walked 

over to Calvin”, it would go into a Bottom-up mode and figure out that walking over must be part of 
some plan Moe had to get control of Calvin’s truck.

PAM already realizes that there is a conflict between Moe wanting the truck and Calvin wanting to 
keep it, and would know that the conflict could be resolved in any way.

Let us say Moe ASKs Calvin to hand over the truck and Calvin refuses. PAM would be expecting 
this to be a possibility and will explain that this is because Calvin wanted to keep his truck. If at some 
point in the story Moe were to THREATEN Calvin then PAM would know that Calvin has some 
more difficult options. If Calvin yields and hands over the truck, PAM would understand that he had 
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conflicting goals—of holding on to his truck or preserving his health—and had chosen the more prudent 
option.

PAM needs to know the relations between goals, plans and actions to understand stories. One can 
make things more interesting by creating characters of different types that use different planboxes in 
some order, for example bullies or honest people. Figure 14.18 shows some possible personality types 
with respect to the D-CONT goal.

mugger

D-CONT

ASK

ASK

ASK

ASK

D-CONT

THREATEN

THREATEN

EXPLAIN

D-CONT

ASK

OVERPOWER

D-CONT STEAL

D-CONT

EXPLAIN

EXPLAIN

THREATEN

D-CONT

ASK

BEG

BARGAIN

D-CONT

ASK

EXPLAIN

QUIT

D-CONT

THREATEN

EXPLAIN

OVERPOWER

thief

= ASK++

FIGURE 14.18 Different personality types may use different sequences of plans to try and achieve a 

D-CONT goal. The reader is invited to provide the other labels.

To be able to understand stories with many goals and characters, PAM has a model of goal interactions.

1. Goal Subsumption When different goals of a person have a positive interaction. For example 
“Anastasia went to Besant Nagar to book her tickets. While there, she also spent time on the beach and 

had her dinner at an eatery.”

2. Goal Conflict When different goals of a character compete for resources. For example “Ayesha 

wanted to go to the beach but she had to submit an assignment the next day.”

3. Goal Competition An inimical relationship between the goals of different characters. For example, 
“Ayuta wanted to watch a soccer game but Akello insisted on watching the movie.”

4. Goal Concord When goals of different characters have a positive interaction. For example, “Amina 

wanted to get rid of her iPod. She sold it to Akna who was looking for a second-hand one.”
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Recognizing these situations enables PAM to answer questions like “Why did Calvin give the truck 

to Moe?” with “Because he didn’t want to get hurt.”

14.5.3 Story Writing

Story understanding is the task of making sense of a sequence of input sentences. PAM uses its knowledge 
of goals and plans to link the different sentences in the input story.

Story generation can be seen as the inverse task which can work as follows.
1. Create a cast of characters. For each character, ascribe a set of planboxes for each type of goal
2. Create a set of props.
3. Create a set of goals for some of the cast.
4. Create a sequence of actions by choosing plans for each character that has a goal. Induce more 

goals in the process.
5. Output the final story in a natural language.
One such program called TALE-SPIN was written by James Meehan from the Yale group as part 

of his thesis in 1976 (Meehan, 1981). TALE-SPIN started with an initial set of S-goals and proceeded 
to generate a story. The program worked in an interactive fashion, asking the user to make certain 
choices. For example it could start with the sentence “One day Sam was very hungry”. Sam, being a 
bear, is known to like honey, and TALE-SPIN would create a D-CONT goal for Sam, which would link 
to a D-KNOW goal in which Sam wants to know where some honey is. If the initial settings said that 
Betty bee had some honey then the program would create a goal for Sam wanting to get the honey from 
Betty.

At this point, TALE-SPIN would ask the user how honest Sam was, and whether Sam thought Betty 
was vain, and whether Sam liked Betty. Now if Sam was honest and liked Betty, he could not possibly 
THREATEN her, and since she was not vain, flattery would not work either. Sam decides to persuade 
her by means of a falsehood, and TALE-SPIN creates the goal,

“Sam wanted Betty to fly away from her beehive”

We will not go into the details here but in the story generated by TALE-SPIN, Sam decides that if 
he tells Betty where a flower is, she might go off to the flower (and therefore not be at the beehive). So 
Sam goes over to Betty and tells her about the flower, and Betty being famished goes off to the flower, 
and Sam gets his opportunity to help himself to some honey from Betty’s beehive.

Generating the events and states that make up the story is only the first step. Converting the output 
of TALE-SPIN into an enchanting tale requires rhetorical and language skills. The storyteller needs to 
decide what conceptualizations to choose to convey, and how to embellish the linguistic output to avoid 
it being monotonous (see (Mann and Thompson, 1988), (McKeown, 1992), (Hovy, 1993), (Somayajulu, 
1998)). That is beyond the scope of this book. We only illustrate the need for doing so by looking at an 
excerpt generated by TALE-SPIN (Meehan, 1981). The words in the original output were all in upper 
case. Observe that the action begins only in the second paragraph! 

“Once upon a time John bear lived in a cave. John knew that John was in his cave. There was a 

beehive in a maple tree. Tom bee knew that the beehive was in the maple tree. Tom was in his beehive. 

Tom knew that Tom was in his beehive. There was some honey in Tom’s beehive. Tom knew that the 

honey was in Tom’s beehive. Tom had the honey. Tom knew that Tom had the honey. There was a nest in 

a cherry tree. Arthur bird knew that the nest was in the cherry tree. Arthur bird was in his nest. Arthur 

knew that Arthur was in his nest. Arthur knew that John was in his cave. John knew that Arthur was in 

his nest. John knew that Tom was in his beehive. There were some boysenberries near a bush. There 
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was a lily flower in a flowerbed. Arthur knew that the boysenberries were near the bush. John knew that 

the lily flower was in the flowerbed.

One day John was very hungry. John wanted to get some honey. John wanted to find out where there 

was some honey. John liked Arthur. John wanted Arthur to tell John where there was some honey. John 

was honest with Arthur. John wasn’t competitive with Arthur. John thought that Arthur liked him. John 

thought that Arthur was honest with him. John wanted to ask Arthur whether Arthur would tell John 

where there was some honey. John wanted to get near Arthur. John walked from a cave exit….18”

14.5.4 BORIS

The high point of the work on knowledge structures for natural-language comprehension at Yale was 
probably the program BORIS written by Michael Dyer (1983), (Lehnert et al, 1983). BORIS incorporated 
all the structures explored by his predecessors in addition to some designed by Dyer. BORIS had deep 
knowledge about its somewhat narrow domain of discourse, and that is reflected in the way it answers 
questions. Another interesting feature of BORIS was that it combined language parsing with memory 
search. It searched its memory as it read each word, and thus combined a bottom flavour with the top-
down memory based one. A big advantage of integrating memory search with language parsing is that the 
two processes can influence each other, thus making tasks like word sense disambiguation easier. When 
BORIS is listening to a question, it is not only constructing a Conceptual Dependency representation, 
but also consulting its episodic memory looking for the answer, and often knows the answer even before 
completely parsing the question. Here is an example from (Dyer et al., 1981),

“George was having lunch with another teacher and grading homework assignments when the 

waitress accidentally knocked a glass of coke on him. George was very annoyed and left, refusing 

to pay the check. He decided to drive home to get out of his wet clothes.

When he got there, he found his wife Ann and another man in bed. George became extremely upset 

and felt like going out and getting plastered…”

Q: Why didn’t George pay the check?

BORIS: Because the waitress spilled coke on him.

Q: How did Ann feel when George caught her cheating on him?

BORIS: She was surprised.

The architecture of BORIS is shown in Figure 14.19.

The most significant new structure introduced by Dyer was the Thematic Abstraction Unit (TAU). 
The TAU is an abstraction of a planning situation where some expectation failure occurs in planning. A 
TAU is designed to capture the kind of distilled experience that is often expressed in adages like “the 
pot calling the kettle black” , “throwing stones when you live in a glass house”, or “closing the barn 
door after the horse has escaped”. A TAU represents an abstract situation-outcome patterns in situations 
where plans are deployed in terms of (1) the plan used, (2) its intended effect, (3) why it failed, and 
(4) how to avoid or recover from that type of failure. The TAU for the “closing the barn door” adage is 
represented as (Dyer, 1983),

TAU-POST-HOC
(1) x has a preservation goal G active, since enablement condition C is unsatisfied.
(2) x knows a plan P that will keep G from failing by satisfying C

18 We will not divulge the ending here. The interested reader is referred to Meehan’s publications. 
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(3) x does not execute P and G fails.
  x attempts to recover from the failure of G by executing P.
  P fails since P is effective for C, but not in recovering from G’s failure.

(4) In the future, x must execute P when G is active and C is not satisfied.
Another example of a TAU is when someone does something inadvertently to upset a friend and 

does something to make up for it.

TAU-REG-MISTAKE
x (the schlemiel) causes an unintended event E
E motivates a preservation goal G on the part of y (the schlimazel)
If x and y have a positive interpersonal relationship
Then x is motivated to serve as an agent for y in recovering G

Associated with TAUs are AFFECT related expectations that talk of emotional responses of people. 
In this example, the expectations are,

If x and y have a positive interpersonal relationship
then x will feel regret, guilty, embarrassment, etc.
y will feel upset and angry at x.

Dyer reports that the above TAU is applied by BORIS on the following passage:

“Richard spilled a cup of coffee on Paul. Paul seemed very annoyed by this so Richard 

offered to drive him home for a change of clothes.”

GOALs

IPTs

RELs

IP-UNITs

ACEs

AFFECTs PLANs
EVENTs/ 
SCRIPTs

MOPsTAUs

SCENEsSCENARIOs

SETTINGs

PHYSICAL
OBJECTS

RTs

BELIEFs

REASONING

FIGURE 14.19 Knowledge interactions and dependencies between knowledge structures in BORIS 

(Dyer, 1983).
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An AFFECT is a knowledge structure to capture the emotional responses of people to the outcomes 
of plans. An AFFECT has six basic constituents.

1. STATE Characterizes the nature of the sentiment and can be positive (POS) or negative (NEG).

2. CHAR Identifies the actor in the narrative who is feeling the emotion.

3. G-SITU Refers to the goal situation that is the context for the emotion.

4. TOWARD (optional) Identifies if the emotion is directed towards someone.

5. SCALE Measures the intensity of the emotion. BORIS supports two values: >NORM (more than 
normal) and <NORM (less that normal).

6. E-MODE (optional) If the characters have an expectation about likely future outcomes.

Some examples of AFFECTs are,

Happy, joyous, glad  (AFFECT

                       STATE (POS)

                       CHAR x

                       G-SITU (goal of x achieved))

Grateful, thankful  (AFFECT

                       STATE (POS)

                       CHAR x

                       G-SITU (y caused (goal of c achieved) to occur)

                       TOWARD y)

Fearful, worried    (AFFECT

                       STATE (NEG)

                       CHAR x

                       G-SITU (P-goal is active)

                       E-MODE (UNEXPECTED))

Guilty, ashamed,    (AFFECT

    Embarrassed        STATE (NEG)

                       CHAR x

                       (G-SITU (goal of y thwarted by x))

                       TOWARD y)

Emotions arise not only because of what happens to you, but also due to what happens to other 
people. In BORIS, interpersonal themes (IPTs) are structures that capture this relationship, expressed 
in an empathy table expressing rules such as the following:

em1: If x and y are friends
and y has a goal failure
Then x will experience a NEG AFFECT.

em2: If y has a failure
and x experiences POS AFFECT
Then either x and y are enemies,
or they are in conflict over this goal.
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BORIS also employs a structure called ACE (Affect as a Consequence of Empathy) when a character 
expresses empathy for another character. Some examples of ACEs are,

commiserate,     theme = (IPT-FRIENDS x y)

condole x MTRANS TO y

                     that [goal failure (y) causes: x feel NEG]

felicitate,      theme = (IPT-FRIENDS x y)

congratulate x MTRANS TO y

                     that [goal success (y) causes: x feel POS]

gloat            theme = (IPT-ENEMIES x y)

x MTRANS TO y

                     that [goal failure (y) causes: x feel POS]

envy,            theme = (IPT-ENEMIES x y)

jealous, x MTRANS TO y

spiteful         that [goal success (y) causes: x feel NEG]

Going through the literature on BORIS, one realizes that it is a humongous representation and 
programming exercise, and Dyer has had to improvise and create knowledge structures in a somewhat 
ad-hoc manner. It clearly brings out the need for large amounts of knowledge that need to be encoded 
for a software system to display the kind of breadth, depth and versatility in handling language, and 
what is commonly known as common-sense knowledge. In the somewhat nebulous classification of AI 
research into neats vs scruffies19, BORIS probably falls into the latter class. Another project that ventured 
into  representing vast amounts of common-sense knowledge was the project CYC lead by Doug Lenat 
(1995).

Echoing what Charniak observed in his Ms. Malaprop paper, Dyer says in his thesis that if BORIS is 
to understand why Richard makes the offer of driving him for a change of clothes to Paul, it must know 
mundane (common sense) facts like what “spilling” means, how liquids affect clothes, that people don’t 
like to be uncomfortable, where clothes are kept, etc.

We will depart from this study of (handcrafted) knowledge structures with the observation that much 
still needs to be done, if we are to build computer programs that are as knowledgeable as the common 
man on the street in everyday conversation.

14.6 Inheritance in Taxonomies

While constructing taxonomies, one is faced with a trade-off between economy of expression and the 
universal nature of statements. If we want all our statements to be universally true, we will need to build 
much larger semantic networks, because universal statements do not allow exceptions. Economy of 
expression, on the other hand, demands that we make statements that are generally true, but which might 
admit exceptions. Economy is the motivation for ascribing properties to super classes and inheriting 
them in the subclasses. Exceptions are taken care of by overriding the inherited default values with 
explicitly stated ones.

19 Any large complex system is likely to have a flavour of both algorithms and vast amounts of diverse knowledge. For a definition 
of neats vs scruffies, see http://www.computer-dictionary-online.org/neats%20vs.%20scruffies.htm?q=neats%20vs.%20scruffies
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In this section, we take a closer look at the kind of reasoning that goes into inheritance, specially 
when there is conflict in the values being inherited from different ancestors. The question is: Given 
that a slot (or property) can inherit multiple fillers (or values), which one does one choose to accept?

In the discussion that follows, we will adopt the 
following stylized notation that is commonly used. A 
node will be referred to by a single word that either names 
the instance, or the class, or names the filler (or value) 
being inherited. Further, for the sake of discussion, we 
will only talk about a property value and its negation. For 
example, instead of choosing between “leaves are green” 
and “leaves are orange”, we will choose between “leaves 
are green” and “leaves are not green”. This means that the 
question we are asking is a binary one of the type “Is A a 
kind of B?” or “Does A have property P?.” The answer is 
encoded in a directed edge from A to B or P. A positive 
link signifies yes and a negative link no. Thus, we imagine 
that the network being displayed has been custom made 
for the question we are asking.

Consider the following set of statements:
 ● Peppy is a penguin.
 ● Penguins are birds.
 ● Birds can fly.
 ● Penguins cannot fly.

We represent the sentences as the graph in Figure 14.20. We adopt the notation of representing the 
edges by the two nodes separated by a dot. If the relation is a negative one, as in the last sentence, we 
include the negation sign. The graph can then be represented by the edges,

peppy ◊ Penguin
Penguin ◊ Bird
Bird ◊ CanFly
Penguin ◊ ¬CanFly

The question we want to ask is whether “Peppy can fly” is true, which is represented by the 
statement “peppyÆCanFly”. In general, the inheritance question can be answered by traversing the 
inheritance network upwards from the node in question to check whether one can reach the desired 
property. In this example, there are two paths that one can find from “peppy” to “CanFly”. One 
(peppy◊Penguin◊Bird◊CanFly) is a positive path, implying that Peppy can inherit that property. The other 
(peppy◊Penguin◊¬CanFly) is a negative path, implying that it cannot. Which one is more acceptable?

One heuristic would be to accept the shortest path (from the set of available paths). In this example, 
this would work because the shorter path does indeed represent the intended conclusion that (while 
birds in general can fly) penguins cannot fly, and since Peppy is a penguin, it is reasonable to infer that 
it cannot fly.

But what if the two paths to a node are of equal length? For example, we can modify our set of 
sentences so that the network looks as the one on the left in Figure 14.21. In that case, we do not have 
any reason for preferring either of the two possible paths.

Bird

Penguin

CanFly

peppy

FIGURE 14.20 An inheritance network. 

The node labelled CanFly represents the 

class of things that “can fly”. The edge 

with a dash across represents the fact 

that that property is not inherited.
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Bird
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AntarticaAquaticBird

FIGURE 14.21 The network on the left has equal paths, and hence no preferred inference. Adding 

one more node in the negative path now makes it longer. The shortest path heuristic would conclude 

that Peppy can fly.

The fact that we could add another sentence and change the decision does not bode well for the 
shortest path heuristic. In fact, we can add one more node to the network as shown on the right in the 
figure, and our original conclusion is reversed. Now the shorter path says that Peppy can fly. The only 
thing we did was to add some more information in the form of class subclass relations to the given set. 
The shortest path heuristic is oblivious to the fact that adding more detailed information does not change 
the nature of nodes. Clearly, we need a more robust method for choosing what properties to inherit.

Before we proceed, we must observe that only one kind of negative path is acceptable—which has 
exactly one negative edge as the last edge in the path. That is, the path can only be of the form

N1◊N2◊…◊Nj◊¬Nk

In essence, we cannot add an edge after a negative edge. Consider the following invalid paths,
1. peppy◊Penguin◊¬ Hexapoda◊LivingCreatures
2. peppy◊Penguin◊¬Hexapoda◊Arthropoda
The first one says that penguins are not hexapoda, and hexapoda are living creatures. The second 

one says that penguins are not hexapoda, and that hexapoda are a kind of arthropoda. Now penguins 
are living creatures, but they are not arthropoda. But both the paths have the same structure. This shows 
that a path that has edges after the negative edge cannot be trusted, and is therefore invalid.20 Therefore, 
if a negative edge is there in a path, it must be the last edge in the path, and the path must end with it.

The following discussion on admissible paths is derived from (Stein, 1989; 1992) and (Brachman 
and Levesque, 2004). A path supports a conclusion in one of the following two ways:

 ● A◊N1◊…◊Nk◊X supports the conclusion AÆX
 ● A◊N1◊…◊Np◊¬X supports the conclusion AÆ¬X

An inheritance graph G supports the conclusion AÆX (or AÆ¬X), if there exists an admissible path 
A◊N1◊…◊Nk◊X (or A◊N1◊…◊Np◊¬X) in G.

20 In particular, two negative edges do not make a positive inheritance. If Penguin◊¬ Hexapoda and Hexapoda◊¬ Mammals are 
edges in a graph, Penguin Æ Mammal is not a valid path.
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A path A◊N1◊…◊Np◊(¬)X is admissible, if every edge in it is admissible with respect to A.
An edge V◊(¬)X is admissible in G with respect to A, if there is a positive path A◊N1◊N2◊…◊Nr◊V (r ≥ 0) 

in the graph, and
1. each edge in A◊N1◊N2◊…◊Nr◊V is admissible in G with respect to A,

2. no edge in A◊N1◊N2◊…◊Nr◊V is redundant in G with respect to A,

3. no intermediate node in A◊N1◊N2◊…◊Nr is a preemptor of the edge V◊(¬)X
An admissible edge then is one that has an admissible path with no redundant edge in the path leading 

up to it, and its conclusion is not preempted by any node in the path.
A node P in a path A◊…◊P◊…◊V is a preemptor of V◊X with respect to A, if P◊¬X belongs to the graph 

G. Likewise, P is a preemptor of V◊¬X with respect to A if P◊X is in G. Essentially, a preemptor provides 
a shorter path to the opposite conclusion.

A positive edge B◊W is redundant in G with respect to A, if there is a path B◊L1◊L2◊…◊Lk◊W for which,
1. each edge in B◊L1◊L2◊…◊Lk◊W is admissible in G with respect to A, and
2. there is no C and an edge of the form C◊ÿ Li or C◊ÿW that is admissible with respect to A in G
Consider the inheritance graph shown in Figure 14.22.
The following edges are inadmissible w.r.t. a. Edge c-d is not 

admissible because it is preempted by node b. Edges f-d, f-g, 

g-h, e-f, a¢-f, a¢-e and e-g are not admissible because they do not 
have a positive path from a leading up to them. Note that d-h is
admissible and is not preempted by c because the path to d is
a-b-d.

With respect to a¢, the following edges are inadmissible. Edge 
f-g is inadmissible because on the non-redundant positive path,
a¢-e-f node e is a preemptor for g. The other path a¢-f-g has the 
redundant edge a¢-f. The edge g-h is inadmissible because not 
all edges (in particular edge f-g) on the positive nonredundant 
positive path to g are admissible. Edges a-b, b-c, b-f, b-d, c-d, c-h 

are inadmissible because they do not have a positive path leading 
up to them from a¢. Note that f-d, d-h, have a nonredundant path 
via a¢-e-f and are admissible with respect to a¢.

14.6.1 Extensions

Given a possibly ambiguous inheritance graph, one might be 
interested in knowing a consistent set of properties that can be 
inherited by a node, or a set of conclusions that one can draw 
with respect to a node. Given a node A, we define a credulous extension of an inheritance graph G as a 
maximal consistent subgraph of G that represents a maximal set of consistent conclusions with respect 
to node A. A subgraph is consistent if it does not support both AÆX and AÆ¬X. A subgraph is maximal 
if one cannot add any edge to the graph while maintaining the consistency property.

The three sub-graphs shown in Figure 14.23 are the three possible credulous extensions of the 
inheritance graph from Figure 14.22, with respect to node a in the graph. As one can see, they differ 
mostly on whether a can be concluded to be d and h or not. While the extension 1 allows both, extension 
2 allows the conclusion that aÆd but not aÆh (it allows aÆ¬h), and extension 3 allows neither 
d nor h.
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FIGURE 14.22 A sample 

inheritance network.
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FIGURE 14.23 The three credulous extensions of the graph in Figure 14.22 for node “a”. Extensions 

1 and 2 are preferred over extension 3 because 3 includes the edge c-d that is not admissible in the 

original network. Between extensions 1 and 2, neither is preferred over the other.

One might ask whether one might prefer one extension over another. Looking at the above three 
extensions, we can see that all the edges in extensions 1 and 2 are admissible in the original graph, but 
extension 3 contains an edge c◊¬d which was not admissible in the original graph. We say that the first 
two extensions are preferred over the third.

A credulous extension E is preferred to a credulous extension F with respect to a node A, if F contains 
an edge X◊¬Y (or X◊Y) that is inadmissible with respect to A in the original inheritance graph and E does 
not contain that edge, but agrees with F up to node X. A credulous extension is a preferred extension, if 
there is no other credulous extension that is preferred to it.

Finally, given an inheritance network G, what can we infer about a given node A? Various forms of 
reasoning have been proposed (Brachman and Levesque, 2004).

Credulous Reasoning Allow all conclusions that are supported by any preferred extension.

Skeptical Reasoning Believe all those conclusions X that are supported by A◊N1◊…◊Nk◊X in all the
preferred extensions.

Ideally Skeptical Reasoning Believe all those conclusions AÆX that are supported by some path 
in each preferred extension.

14.7 Description Logics

The taxonomies built in frames, semantic nets and MOPs are all hand crafted, and do not necessarily 
have a logical basis. The inferences we make about inheritance of property values are only plausible 
inferences. In this section, we explore the representation of compound concepts in terms of simpler 
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ones, using what are known as Description Logics. In a Description Logic (DL), the property values 
of a compound concept are derived from their descriptions and from the properties of atomic concepts.

One of the earliest approaches to devise a compositional knowledge representation scheme was by 
Gottfried Leibniz when he introduced the notions of characteristica universalis and calculus ratiocinator 

in 1679 (see for example (Jaenecke, 1996)).  Like most philosophers who were investigating the principles 
of thought, Leibniz was also trying to establish a rational basis of human thought. His basic principles are.

1. All our ideas are compounded from a very small number of simple ideas, which form the “alphabet 
of human thought”.

2. Complex ideas are formed by simple ideas by “uniform and symmetrical combination”, analogous 
to arithmetical multiplication.

At one point, Leibniz explored the possibility of representing all concepts using prime numbers. For 
example if grey = 3, elephant = 7, inBangalore = 11, isBookstore = 23 then the product 231 represents 
a grey elephant in Bangalore. Then, every compound concept and individual could be a number. For 
example, the Strand bookstore in Bangalore might have a number 5981426. Given the number 5981426, 
we can check if the property “inBangalore” is true if it is divisible by 11, and the property “isBookstore” 
by checking if it is divisible by 23. If Clyde is assigned the number 6123278, we can determine that he is 
an elephant because 6123278 is divisible by 7, but is not grey because it is not divisible by 3. In general, 
given two concepts X and Y, we can find out if X is a subconcept of Y by checking if Y is divisible by 
X.  One objection to this scheme would be that the assignment of prime numbers for properties is one-
dimensional, opaque and arbitrary, and lacks enough description.

While Leibniz did not publish much in philosophy, Bertrand Russell (1945) has said that he had in 
fact developed symbolic logic to a considerable degree.21 Modern Description Logics have the same 
compositional flavour, though the operations allowed for combination are more generalized and diverse.

There are a number of languages of varying expressivity and completeness in the family of Description 
Logics (see (Baader et al., 2003)). There has been considerable amount of work on Description Logics 
owing to their attractiveness as the basis of languages for defining meta data on the Web. We confine 
our study to a simple version described in (Brachman and Levesque, 2004). The main feature we want 
to explore is how taxonomies can be derived from descriptions, and how one can use the descriptions 
to answer questions relating to the abstraction hierarchy.

14.7.1 The DL language

The DL language, like the First-Order Language (FOL), also comprises two parts, the logical part, that 
is the core of the language, and the nonlogical part that pertains to the domain.

The vocabulary of logical symbols of DL is made up of the punctuation symbols “[“, “]”, “(“ and “)”; 
the connectives “ “, “ ”, and “Æ”; the concept forming operators “ALL”, “EXISTS”, “FILLS” and 
“AND”; and the set of positive integers 1, 2, 3,….

The nonlogical symbols are of three types,

Atomic Concepts Atomic concepts, like “Girl”, “Student” which are basic concepts of the language. 
They define the primitives in terms of which other concepts are defined, for example “a school that 
has only girl students”. Atomic concepts are the simplest classes or categories, and are denoted by 
capitalized words.

Roles Roles signify relations between objects. For example, “:StudentOf” may be a relation between 
a “Person” and a “Discipline”. Roles are denoted by capitalized words preceded by a colon.

21 See http://en.wikipedia.org/wiki/Gottfried_Leibniz



586 A First Course in Artificial Intelligence

Constants Constants refer to elements in the domain, denoted by uncapitalized words, like aditi or 
book21.

The Description Logic DL is a language for describing concepts or subsets of the domain D. The 
simplest concepts are described by the atomic concepts. Compound concepts are combinations of 
atomic concepts and concept forming operators.  The following are the ways of constructing concept 
descriptions.

 ● Every atomic concept is a concept;
 ● If r is a role and d is a concept then [ALL r d] is a concept;
 ● If r is a role and n is a positive integer then [EXISTS n r] is a concept;
 ● If r is a role and c is a constant then [FILLS r c] is a concept;
 ● If d1, d2, …, dn are concepts then [AND d1, d2, …, dn] is a concept.22

Like in FOL, we can define the meaning of terms by means of an interpretation  = <D, I> where 
D is a domain and I is a mapping from the DL to the domain. The elements of DL may be interpreted 
as follows.

 ● Every constant c maps to an element of the domain, I[c] Œ D.
 ● Every atomic concept a maps to a subset of D, I[a] Õ D.
 ● Every role r maps to a binary relation on D, I[r] Õ D ¥ D.

The concepts constructed using the given operators correspond to subsets of the domain as follows.

 ● [ALL r d] is the set of all elements in the domain that are related by r only to elements of type d.
Observe that this vacuously includes elements that are not related to any element by r.

I[ALL r d] = {xŒD | for all y if <x, y>ŒI[r] then yŒI[d]}

For example, [ALL :Grade A] is the set of students who earn only A’s, and [ALL :Daughter Bright] 
is the set of people, all of whose daughters are bright.

 ● [EXISTS n r] is the set of all those elements that are related to at least n elements by the relation r.

I[EXISTS n r] = {xŒD | there are at least n distinct y such that <x, y>ŒI[r]}

For example, [EXISTS 1 :Daughter] is the set of all those (lucky) people who have at least one 
daughter, and [EXISTS 2 :Friend] is the set of all those people who have at least 2 friends.

 ● [FILLS r c] is the set of all those elements that are related by r to c.

I[FILLS r c] = {xŒD | <x, I[c]> Œ I[r]}

For example, [FILLS :FanOf gerrard] is the set of all fans of Gerrard, and [FILLS :Study ai] is 
the set of people who study AI.

 ● [AND d1, d2, …, dn] is the set of all those elements that are of the type d1 and d2, … and dn.

I[AND d1, d2, …, dn] = I[d1] « I[d2] « … « I[dn]

For example, [AND Student Girl [FILLS :Study ai]] is the set of all girl students who study AI.
Figure 14.24 illustrates the composition of new concepts using the four concept forming operators. 

The arrows represent the roles. Elements shaded black are the ones belonging to the new concept.

22 In the mathematical notation used in some other literature, the concept [AND Person Female] is written as Person Female
(see Box 14.2).
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[EXISTS 3 r]

c

[FILLS r c]

d3

d4

d2

d1

[AND d1 d2 d4]

d

[ALL r d] 

FIGURE 14.24 The four concept forming operators. The arrow represents the relation r. The 

members of the set or concept formed are shown in black filled circles.

Given a set of atomic concepts and roles, one may define complex concepts using the concept forming 
operators. For example, we could define a class of films that has at least 2 villains, 4 songs, and all 
whose actors are more than 12 years old and live in Mumbai, as follows:

[AND   Film

       [EXISTS 2 :Villain] 

       [EXISTS 4 :Song] 

       [ALL :Actor [AND [FILLS :MinAge 12] 

                        [FILLS :LivesIn mumbai]]]]

The sentences of DL assert the Is-A and Instance-Of relations described in the beginning of the chapter. 
The Is-A relation is expressed using “ ” and the Instance-Of using “Æ”. In addition, DL uses “ ” to 
express the fact that two concepts are equivalent. The following are the sentences of the language DL,

 ● If d1 and d2 are concepts then (d1 d2), read as d1 is subsumed by d2, is a sentence.  The sentence 
is true if I(d1)Õ I(d2).

 ● If d1 and d2 are concepts then (d1 d2), read as d1 is equivalent to d2, is a sentence. The sentence 
is true if I(d1) = I(d2).

 ● If c is a constant and d is a concept, then (cÆd), read as c satisfies d, is a sentence. The sentence 
is true if I(c)Œ I(d).
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The equivalence sentence can be used to define and give names to new concepts. For example, we 
might want to name the class of films defined above as BFormulaFilm. We can do so by the statement,

BFormulaFilm  [AND Film

                    [EXISTS 2 :Villain]

                    [EXISTS 4 :Song]

                    [ALL :Actor [AND   [FILLS :MinAge 12] 

                                       [FILLS :LivesIn Mumbai]]]]

The equivalence statement is a short form for two subsumption statements. The sentence (d1 d2) is 
equivalent to writing (d1 d2) and (d2 d1).

In FOL, the above statement would be written as,

"x (BFormulaFilm(x) ∫ (Film(x) Ÿ

$v1v2(v1πv2 Ÿ Villian(x,v1) Ÿ Villian(x,v2)) Ÿ

$s1s2s3s4(AllDistinct(s1,s2,s3,s4) Ÿ Song(x,s1) Ÿ

                      Song(x,s2) Ÿ Song(x,s3) Ÿ Song(x,s4)) Ÿ

                       "z(Actor(x,z)…(MinAge(z,12) ŸLivesIn(z,Mumbai)))

Observe that there are no variables in DL expressions, only predicate names that stand for categories 
and binary relations, and constants from the domain. A predicate name like “Film” is used here to stand 
for all objects in the domain that are films.

Reasoning about concepts or predicates is called terminological reasoning and constitutes the TBox

of a DL, while reasoning about constants is called assertional reasoning and constitutes the ABox of a 
DL system.

The domain or the universe of discourse is represented by the concept Thing. Every element satisfies 
Thing and every concept is subsumed by Thing.

If d is a concept, (d Õ Thing) is true, and
If c is a constant, (c ÆThing) is true.

14.7.2 Inheritance

The two questions we are interested in asking are related to inheritance. They are, does a given element 
satisfy a given class (or concept), and, whether a given class is subsumed by another class. In FOL, we 
could show subsumption by a process of chaining inferences. For example, given that

Dog(fido25)
"x (Dog(x) … Animal(x))
"x (Animal(x) … LivingCreature(x))

We could conclude by a deductive theorem proving process that,

LivingCreature(fido25), and
"x (Dog(x) … LivingCreature(x))

The equivalent (given) statements in DL are,

fido25ÆDog
Dog  Animal 
Animal  LivingCreature
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And the sentences we want to show to be true are,

fido25ÆLivingCreature
Dog  LivingCreature

The approach taken in DL is quite different. First, observe that if we can show that a dog is a 
living creature, we can also show that Fido is a living creature. So the key thing is to be able to show 
that subsumption holds between the two concepts. In DL, we show subsumption by comparing the 

descriptions of the two concepts in question. If an animal is defined as a living creature with some 
additional properties,

Animal  [AND LivingCreature X1 X2 … Xk]

and a dog is defined as an animal with some additional properties,

Dog  [AND Animal Y1 Y2 …Yp]

then we can effectively write,

Dog  [AND LivingCreature X1 X2 … Xk Y1 Y2 …Yp]

This says the set of dogs (or Dog concept) is the intersection of the set of living creatures (the 
LivingCreature concept) and some other sets. The set of dogs then is necessarily a subset of the set of 
living creatures which holds iff (Dog  LivingCreature).

This is a process of structure matching. We only compare the two descriptions after reducing them 
to a canonical form to decide whether one concept subsumes another or not. The comparison process 
will be linear in the length of the descriptions.

14.7.3 Normalization

The process of reducing DL expressions into a canonical form is called normalization. In the canonical 
form, any names assigned to compound concepts are replaced by their equivalent descriptions, the 
description contains only atomic concept names, and any redundant expressions are removed. The 
following are the replacement steps in the normalization procedure. Replace,

 ● any concept n by its definition d, if there is a statement of the form n d,
 ● an expression of the form

[AND … X Y [AND P Q] … R T] with
[AND … X Y P Q … R]

 ● an expression of the form

[AND … [ALL r d1] … [ALL r d2] …] with
[AND … [ALL r [AND d1 d2]] …]

 ● an expression of the form

[AND … [EXISTS n1 r] … [EXISTS n2 r] …] with
[AND … [EXISTS n r] …] where n = max(n1,n2).

 ● an expression containing Thing with one without Thing, unless it is the entire expression. Replace

[AND … X Y Thing…[ALL r Thing]] with
[AND … X Y …]

 ● remove any duplicates within an AND expression.
Consider another example of a named concept.
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BComicFilm  [AND Film

[EXISTS 1 :Villain]

[EXISTS 2 :Song]

[EXISTS 1 :Comedian]

[ALL :Actor [FILLS :Expression funny]]]

Now given the two concepts BComicFilm and BFormulaFilm, we can define a new concept, and its 
normalized form as follows.

BComicFormulaFilm  [AND BComicFilm BFormulaFilm [FILLS :Producer bcd]] 

 [AND

                      [AND Film

                           [EXISTS 1 :Villain]

                           [EXISTS 2 :Song]

                           [EXISTS 1 :Comedian]

                           [ALL :Actor [FILLS :Expression funny]]]

                      [AND Film

                           [EXISTS 2 :Villain] 

                           [EXISTS 4 :Song]

                           [ALL :Actor [AND [FILLS :MinAge 12]

                                            [FILLS :LivesIn Mumbai]]]

                           [FILLS :Producer bcd]]

 [AND Film

                           [EXISTS 1 :Villain] 

                           [EXISTS 2 :Song] 

                           [EXISTS 1 :Comedian]

                           [ALL :Actor [FILLS :Expression funny]]

                           Film

                           [EXISTS 2 :Villain] 

                           [EXISTS 4 :Song] 

                           [ALL :Actor [AND [FILLS :MinAge 12]

                                            [FILLS :LivesIn Mumbai]]]

                           [FILLS :Producer bcd]]

 [AND Film Film

                           [EXISTS 1 :Villain] [EXISTS 2 :Villain]

                           [EXISTS 2 :Song] [EXISTS 4 :Song]

                           [EXISTS 1 :Comedian]

                           [ALL :Actor [FILLS :Expression funny]]

                           [ALL :Actor [AND [FILLS :MinAge 12]

                                            [FILLS :LivesIn Mumbai]]]

                           [FILLS :Producer bcd]]

 [AND Film

                           [EXISTS 2 :Villain]

                           [EXISTS 4 :Song] 

                           [EXISTS 1 :Comedian]

                           [ALL :Actor [AND [FILLS :Expression funny]

                                            [FILLS :MinAge 12]

                                            [FILLS :LivesIn Mumbai]]]

                           [FILLS :Producer bcd]]
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14.7.4 Structure Matching

Given two descriptions in canonical/normalized form, one can compare the constituents piecewise to 
determine whether one of them subsumes the other. Let the two descriptions in normalized form be,

dsub  [AND d1 d2 … dn] and
dsuper  [AND p1 p2 … pk]

The interpretation of the AND operator is that it denotes the intersection of the sets denoted by its 
arguments. The concept dsub is subsumed by the concept dsuper when the corresponding set I(dsub) is a 
subset of the set I(dsuper). Now if each component pi of dsuper has a corresponding component di¢ in dsub

such that I(di¢) Õ I(pi), then the intersection of all these subsets will be a subset of the intersection of the 
components of dsuper, that is dsuper itself.

Let every component pi of dsuper have a corresponding component di¢ in dsub. Note that it is possible 
that dk¢ = dj¢, that is the same component may be subsumed by different components of dsuper. Let 
I(dsubsumed) be the intersection of all the sets I(d1¢), I(d2¢), …, I(dn¢). That is, dsubsumed is [AND d1¢ d2¢ … 
dn¢]. Clearly then,

I(dsubsumed) Õ I(dsuper)

Further, since dsub may have more components not included in dsubsumed,

I(dsub) Õ I(dsubsumed)

Hence,
I(dsub) Õ I(dsuper)

The relation between these subsets is illustrated in Figure 14.25.

d1

d3

d2

d4

p2

p1

FIGURE 14.25 Piecewise subsumption. Component p1 subsumes d1, and component p2 subsumes 

d2. The concept dsuper  [AND p1 p2] is the shaded region. The concept dsub  [AND d1 d2 d3 d4] is the 

region with the chessboard pattern. The concept dsubsumed  [AND d1 d2] is the region with the grid 

pattern.

When the task is to show that (dsub Õ dsuper), the structure matching algorithm looks for a corresponding 
subsumed element di¢ in dsub for every component pi in dsuper. The subsumed elements for each type of 
concept are as follows.
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 ● If pi is an atomic concept, then it is necessary that di¢ = pi

 ● If pi  [EXISTS n r], then it is necessary that di¢  [EXISTS m r], where m ≥ n.
In the special case where n = 1, it is also allowed that di¢  [FILLS r c] for any constant c

 ● If pi  [ALL r e] then it is necessary that di¢  [ALL r e¢ ] where recursively e¢ e
 ● If pi  [FILLS r c] then di¢  [FILLS r c]

If the algorithm can find corresponding elements then it returns (dsub dsuper).
Observe that we have used di¢ = [FILLS r c] to identify a subsumed component for the special case 

pi  [EXISTS 1 r]. This is because we know that when [FILLS r c] holds then we are talking about 
some element that is related by r to c, and therefore related at least to one element by r, which is what 
pi  [EXISTS 1 r] asserts.

14.7.5 Building Taxonomies

The key difference between Frames and DL based systems is that subsumption is decided by the 
descriptions in DL systems, while it is encoded in an ad-hoc manner in Frame systems. Having decided 
upon the basis of subsumption, one can build an explicit taxonomy in which subconcepts are linked to 
super concepts by links, which stand for the Is-A relation. The taxonomy can be built automatically by 
a process known as classification, in which one adds new concepts one by one to the taxonomy, and an 
algorithm places them in the appropriate place.

Let us assume that each concept description di in the taxonomy has a name ai associated with it. 
That is,

ai di

The nodes of the taxonomy are labelled with these atomic concepts (names). Given a taxonomy T
and a (new) concept description d, the set S of the most specific subsumers of d is the set of all atomic 
concepts a that subsume d and there are no concepts a¢ that subsume d and are subsumed by a.

S = {a | d a and there is no a¢ s.t. d a¢ and a¢ a}

Likewise, we define the set G of most specific subsumees of d as,

G = {a | a d and there is no a¢ s.t. a¢ d and a a¢}

Given a taxonomy T and a new concept anew with a description dnew, it is placed in the taxonomy T
by the following procedure adapted from (Brachman and Levesque, 2004).

Classify(taxonomy, aNew)

1 d ¨ Desc(aNew)

2 s ¨ MostSpecificSubsumers(taxonomy, d)

3 g ¨ MostGeneralSubsumees(taxonomy, s, d)

3 if empty(s « g)

4 do remove every link from g to s

5 for every n Œ g

6 add an Is-A link in taxonomy from n to aNew

7 for every n Œ s

8 add an Is-A link in taxonomy from aNew to s

9 return taxonomy

FIGURE 14.26 The procedure Classify to insert a node into the taxonomy. We assume a function 

Desc(node) that returns the description of a node. The functions  MostSpecificSubsumers and

MostGeneralSubsumees are described in Figures 14.27 and 14.29.
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After the sets G and S have been found, if they have a node in common that node already describes 
the input aNew, and nothing needs to be done. Otherwise, we first remove any existing Is-A links between 
G and S (line 4). This is because we want to link nodes only to their parents. Then for every node in G,

we add an Is-A link to aNew, and a link from aNew to every node in S.

The set S of most specific subsumers of a concept d in a taxonomy T is constructed as follows. We start 
at the root, the node for Thing that subsumes everything, and traverse downwards along its descendants 
that subsume the concept description d. We assume a function Desc(node) that returns the description 
associated with a node, and a function Subsumes(N,M) that returns true if MÕN. The algorithm works 
with two sets. One called P that contains possible ancestors of the most specific subsumers.  The other 
set S is the set of most specific subsumers we are constructing. For every node in the set P that subsumes 
d, the algorithm transfers it to S, only if it has no child that subsumes d. Otherwise it replaces it with all 
its children in P23. The algorithm is given in Figure 14.27.

MostSpecificSubsumers(taxonomy,d)

1  p ¨ {root(taxonomy)}

2 s ¨ { }

3 while not empty(p) 

4 do for every node n in p

5 Remove n from p

6 if Subsumes(Desc(n), d)

7 then if there exists a child c of n such that 

Subsumes(Desc(c), d)

8 then Add all children of n to p

9 else Add n to s

10 return s

FIG 14.27 The procedure to find the most specific subsumers of a given description d in a taxonomy. 

We assume a function Desc(node) that returns the description of a node, and a function Subsumes

that implements structure matching on two descriptions.

The algorithm only traverses that part of the taxonomy downward that contains nodes that subsume 
the input concept d. Figure 14.28 illustrates the subgraph explored by the algorithm. The nodes seen by 
the algorithm are coloured black and white. The black nodes subsume the input concept represented by 
the shaded square, while the white ones do not, and are discarded by the algorithm. The grey nodes are 
not inspected by the algorithm. The most specific subsumers are the “lowest” black nodes, and form 
the set S, shown in the shaded rectangle, that is returned by the algorithm. 

The search for the most general subsumees begins with the set S that has been constructed by the 
algorithm MostSpecificSubsumers. The algorithm MostGeneralSubsumees traverses the descendants of 
nodes in S looking for nodes subsumed by the concept d. The algorithm is given in Figure 14.29. We 
assume that the algorithm is invoked in a call-by-value mode, so that the original set S is not affected.

Figure 14.30 depicts the nodes inspected by the algorithm, coloured black and white. Of these, the 
black ones are the ones subsumed by d and are added to G, and the white nodes are not and are discarded. 
The traversal ends in each branch when the algorithm finds a black (subsumed) node, or if there are no 

23 Alternatively, one could only add those children to P that subsume d. In either case, each child has to be tested for subsumption 
exactly once.
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FIGURE 14.28 The nodes of a taxonomy explored by the algorithm MostSpecificSubsumers. The 

black nodes are the nodes that subsume the concept d represented by the square. Of these, the most 

specific ones are shown by the enclosing shaded rectangle. The white nodes are the ones inspected 

by the algorithm and discarded.

FIG 14.29 The procedure to find the most specific subsumees of a given description d in a taxonomy. 

We assume a function Desc(node) that returns the description of a node, and a function Subsumes

that implements structure matching on two descriptions.

S

children. After the traversal ends, it is possible that there are pairs of nodes X and Y in G such that YÕX.
For every such pair, node Y is removed from G before returning G.

The sets S and G are the nodes that have to be connected to the new concept dnew represented by 
the node anew. The first task, as shown in the algorithm Classify described above, is to break all links 
between nodes in S and nodes in G. After that, Is-A links are established between anew and all the nodes 
in S and in G, as shown in Figure 14.31.

MostGeneralSubsumees(taxonomy, s, d)

1  g ¨ { }

2 while not empty(s)

3 do for every node n in s

4 Remove n from s

5 if Subsumes(d, Desc(n))

6 then Add n to g

7 else Add all children of n in taxonomy to s

8 if there exist two nodes x and y in s such that Subsumes

(Desc(x), Desc(y))

9 then Remove y from g

10 return g
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Now given a query node q, if we want to find all the nodes that subsume q, we simply have to 
traverse the taxonomy T upwards from the node q looking for its ancestors. Likewise, to find all concepts 
subsumed by q, we need to traverse all the descendants of q in T.

FIGURE 14.30 The algorithm MostGeneralSubsumees begins by exploring the forest below the set 

S, represented by the black and white nodes. The black nodes are the ones subsumed by d, and the 

set G is the set of “highest” black nodes, as shown.

FIGURE 14.31 The new node is inserted into the taxonomy by linking it to nodes in S and in G, after 

deleting any links between the sets S and G.

S

G

S

G
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14.7.6 Satisfaction

Every constant c in the knowledge base is attached to most specific node ac in T that it satisfies. If the 
input assertion is (cÆd) and a node with description d is not in the taxonomy then ac is the node that is 
the most specific subsumer24 of the description d.

Then, if there is a query asking whether c satisfies a concept q, we can translate it to a query in which 
we ask if dc is subsumed by q, where dc is the description of ac, that the individual c is attached to.

Observe that the input sentence (cÆd) has to be constructed explicitly from a database. Assuming 
that the database lists all roles for an individually and their fillers explicitly, the descriptions [ALL r
d] and [EXISTS n r] can be made about an individual only by inspecting the database and making the 
relevant inferences.

However, we have to be careful in choosing the input assertion (cÆd) while inserting the constant 
in T. The concept description d in (cÆd) must contain everything that we know about the constant c.
Sometimes this information is not explicit in the set of sentences of DL available, and may have to be 
ferreted out by a process of making inferences. Consider the following example,

jaaneBTY Æ [AND BComicFilm [FILLS :Actor sShah]]
sShah Æ [AND Indian [EXISTS 10000000 :Fan]]

The first statement says that jaaneBTY is a BComicFilm in which sShah has acted. The second one 
tells us that sShah is an Indian with more than ten million fans. But consider what we already know 
about BComicFilms reproduced again below.

BComicFilm  [AND Film

                [EXISTS 1 :Villain]

                [EXISTS 2 :Song] 

                [EXISTS 1 :Comedian]

                [ALL :Actor [FILLS :Expression funny]]]

If the above three sentences are our knowledge base, then what do we know about the actor sShah?
We know that he is an Indian with more than ten million fans because that has been stated explicitly. 
But we also know that BComicFilms are those all whose actors have funny expressions. So this must 
apply to sShah as well, because he acted in jaaneBTY which is a BComicFilm. So when we insert the 
constant sShah into the taxonomy, we must do so with the sentence,

sShah Æ [AND Indian [EXISTS 10000000 :Fan] [FILLS :Expression funny]]

That is, we first need to collect all information about sShah that is entailed by the knowledge base 
before deciding where to attach the constant.

We look at another example. Let Abheek be a person who is only a fan of football players, and also 
that he is a fan of Gerrard. Suppose all we know about Gerrard is that he is an Englishman,

abheek Æ [AND Person [FILLS :FanOf gerrard] [ALL :FanOf  Footballer]]
gerrard Æ [AND Person English]

Then we should  augment our information of Gerrard to,

gerrard Æ [AND Person English Footballer]

24 One has the option of adding a node with the description d to the taxonomy. This is a design choice one has to make. The 
question is whether one needs a minimum number of instances to create a new concept in the taxonomy.
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In the forward-chaining algorithm PropagateProperties that follows in Figure 14.32, the following 
correspondence holds,

c1 ´ abheek

d1 ´ [AND … [FILLS :FanOf gerrard] [ALL :FanOf Footballer]]
c2 ´ gerrard

d2 ´ [AND Person English]

PropagateProperties(kb)

1 for every constant c in the kb

2 form the normalized sentence (cÆd) by combining all such sentences

3 while there exists c1 and c2 s.t. C2inC1(c1Æd1, c2Æd2, kb) π nil

4 do e ¨ C2inC1(c1,c2)

5   d2 ¨ [AND d2 e]

6 Normalize d2
7 Update (c2Æd2) in the kb

8 return kb

C2inC1(c1Æd1, c2Æd2, kb)

1 if [FILLS r c2] and [ALL r e] are components of d1
2 then return e

3 else return nil

FIGURE 14.32 The procedure to augment the descriptions of all constants. For every pair of 

descriptions of two constants, if one contains implicit information about the other, the other description 

is augmented.

The above algorithm is a forward-chaining algorithm that adds any inferences that can be made about 
an individual to the knowledge base. The inference is made based on the occurrences of two descriptions 
that apply to the same constant c1. The descriptions are [FILLS r c2] and [ALL r e], and contain implicitly 
the information that c2 must belong to the class e as well. However, this pair of descriptions could have 
been buried deeper in some description.

In the example described above, we had some descriptions for Abheek.  But we could have had these 
descriptions in an indirect manner as shown below.

aasutosh Æ [AND [EXISTS 1 :Friend]

                 [ALL :Friend [AND Person [FILLS :FanOf gerrard]

                                [ALL :FanOf Footballer]]]]

gerrard Æ [AND Person English]

The first sentence is now about a different person Aasutosh, and what we know about him is that 
he has at least one friend, and that all his friends are fans of Gerrard and are fans only of footballers. 
Abheek could have been one of these friends, but has not been named. In fact, none of the friends has 
been named. Yet these two sentences contain the same extra information about Gerrard.

One can get around this problem by keeping data about anonymous constants just like named 
constants. The anonymous individuals we have to deal with are essentially related by some role, or 
sequence of roles to some known individual. We represent them by adding role names to the known 
individual for example, aasutosh.Friend. Of course, there may be a longer connection like for example 
abheek.Father.Friend.FanOf which would stand for the person who Abheek’s father’s friend is a fan 
of. In general, we denote such role chains by letters like s and d.
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In the example containing Abheek, the two individuals involved in the rule of inference were abheek

and abheek. FanOf. The latter refers to any person who Abheek is a fan of, but becomes identified 
with Gerrard because of the description [FILLS :FanOf gerrard] in Abheek’s description. In the case of 
anonymous individuals like the friends of Aasutosh, the corresponding elements are aasutosh.Friend

and aasutosh.Friend.FanOf. The inference rule may be generalized as follows,

If there exists a constant c1 and a (possibly empty) role chain s such that we can add (c1 ◊ s, d1)
to the knowledge base, and that we can add (c1 ◊ s ◊ r, d2), and c1 ◊ s ◊ r is identified with c2 by
means of a [FILLS r c2] statement, and if d1 contains the information [EXISTS 1 r] and [ALL r e]
then we can augment the information about c2 to the normalized version of [AND d2 e].

14.7.7 Limitations of DL

Description logics give us a logical basis for constructing taxonomies. We are compelled to be precise, 
and the super class subclass relations are determined strictly by the descriptions. The fact that we need 
precise descriptions will not allow koalas to be described as a type of bear, or whales to be a type of 
large fish, or a civet to be a type of cat.  Inheritance, or subsumption, is strict in DL. If a concept dsub is
subsumed by a concept dsuper then elements of dsub must inherit properties associated with dsuper. There 
is no question of exceptions.

The class-subclass inference in DL is determined by structure matching which has time complexity 
linear in the length of the descriptions, as opposed to theorem proving in FOL that can, in the worst 
case, be intractable. Observe that though there is a recursive element in matching components of the 
form [ALL r d], the algorithm works with normalized expressions which have the recursive definitions 
made explicit, resulting in correspondingly longer expressions.

However, the structure matching algorithm works only for a subset of concepts that can be defined in 
FOL. Thus, we trade expressivity for computational complexity when we choose to represent concepts 
in Description Logic.

The non-logical elements of the language are of three kinds: concept names, relation names, and 
constants. The concept forming operators we have used are AND, EXISTS, ALL, and FILLS.

The operator [EXISTS n r] says that the elements of the set (concept) must be related by r to at least 
n elements. We can define another operator [AT-MOST n r] that says the elements must be connected 
to at most n elements (Brachman and Levesque, 2004). It turns out that if we do that then structure 
matching would no longer work.

Consider the class of families, all whose members are wizards and in which there is exactly one 
child named Harry.

Pfamily  [AND [ALL :Member Wiz] [FILLS :Member harry]
                  [EXISTS 1 :Child] [AT-MOST 1 :Child] [FILLS :Child harry]]

This class would include the Potter family,

pFamily Æ [AND Pfamily [FILLS :Member james] [FILLS :Member lily]]

Now the Pfamily concept is a subclass of the Wfamily concept in which all the kids are wizards,

Wfamily  [ALL :Child Wiz]
and Pfamily  Wfamily
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But it is clear that the structure matching is unable to conclude that the Pfamily is subsumed by 
the Wfamily (because the Pfamily simply does not have a clause of the type [ALL :Child …]). The 
subsumption holds because Harry, the only child in the Pfamily class, is a wizard because all members 
of Pfamily are wizards stated in [ALL :Member Wiz]. Hence, Pfamily is a type of family in which all 
the children are wizards. Structure mapping cannot cater to such interactions between different clauses 
in a description.

New concepts are defined by the AND operator as a combination of constituent concepts. However, 
as observed above, DL cannot cater to interaction between the concepts. We consider another problem 
of defining the set of aunts or the concept Aunt. A woman is an aunt if she has a sibling who has a child. 
Or, a woman is an aunt if she has a sibling who is a parent. The fact that she must have a sibling can be 
handled by EXISTS operator with the :Sibling role. But the constraint that the sibling must be a parent 
cannot be handled. One can define the set of parents, and the set of people with siblings as,

Parent  [EXISTS 1 :Child]
HasSibling  [EXISTS 1 :Sibling]

But we are unable to define the concept of aunt as someone who has a sibling who has a child.
We could extend our DL by one of the following operators,

[D-FILLS r d] : like FILLS, but the second argument is a concept
or [D-EXISTS n r d] : related by role r to n elements of type d

Observe that both are similar and existential in nature, saying that there exists a filler that belongs 
to a certain concept; or we could introduce a subsumption hierarchy in  roles and create a new role by 
adding an argument to role that restricts the type of elements it can relate to,

[RESTR r d] : a specialization of role r that relates to elements of type d

For example the role :Mother is the same as [RESTR :Parent Female]. We could then define aunts 
with each of the three new operators, as follows,

Aunt  [AND Person Female [EXISTS 1 :Sibling] [D-FILLS :Sibling Parent]]
or Aunt  [AND Person Female [D-EXISTS 1 :Sibling Parent]]
or Aunt  [AND Person Female [EXISTS 1 [RESTR :Sibling Parent]]]

However, while these extensions allow us to define the concept of aunt, it is no longer possible to use 
structure matching to decide whether one concept is subsumed by another. In the following definition, 
we assume that [EXISTS n r] is a short form for [D-EXISTS n r Thing] to allow possible matching. 
Consider a woman who is related to at least two siblings and all whose siblings are parents. She could 
be defined in our original DL as follows,

Aunty  [AND Person Female [EXISTS 2 :Sibling] [ALL :Sibling Parent]]

Clearly, the concept Aunty is subsumed by concept Aunt, because an individual who satisfies Aunty

also satisfies Aunt. But we are unable to compare the components in description of Aunty with any 
of the components in the description of Aunt in a piecewise fashion required by structure matching. 
And structure matching is the procedure that allows us to answer the question of subsumption by just 
inspecting the two descriptions. Theorem proving in FOL also allows us to compute subsumption, but 
with no guarantees of speed.

Given a domain, DL is a language that talks about subsets in the domain. It allows one level of 
abstraction in Figure 14.1. It does not allow us to talk about aggregation resulting in other entities 
extended to reified elements. Extending the DL beyond its strict boundaries can only be done at the cost 
of foregoing the computationally cheaper structure-matching process.
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Box 14.2: A Family of Description Logics

Description Logics is in fact a name for a family of logic-based languages to represent knowledge 
of domains (Baader and Nutt, 2003). Each language is a little different in expressiveness and 
consequently has different complexity of making inferences. What is common amongst all is that 
the basic building blocks in all are concepts, roles, and individuals. Traditionally, the knowledge 
base is partitioned into two parts. The TBox is concerned with terminological reasoning, or reasoning 
about concepts. The ABox is concerned with assertions, or reasoning about individuals.

A simple language named AL for attributive languages was introduced by Schmidt-Schauß and 
Smolka (1991). The AL allows the following expressions for describing concepts.

 ● A or ^ or  are atomic concepts
 ● ¬A is the negation of an atomic concept
 ● C D is the intersection of concepts C and D (equivalent to [AND C D])
 ● "R.C restricts all role fillers to C (equivalent to [ALL :R C])
 ● $R.  says that there exists a role filler (equivalent to [EXISTS 1 :R])

An even simpler language traditionally known as FL- is a sublanguage of AL without negation. 
If we further disallow the existential statement , the language is known as FL0. The more recent 
nomenclature described below extends AL.

More expressive languages can be obtained by adding some of the following descriptors.

 ● C D is the union of concepts C and D. The corresponding language is described using the 
additional symbol U, for example ALU.

 ● $R.C says that there exists a role filler of type C. The language is characterized by the 
(additional) symbol E, for full existential quantification.

 ● nR says that there are at least n role fillers, and nR says that there are at most n role fillers. 
The extended language is characterized by N, for number restriction.

 ●  1R is a functional relation characterized by F.
 ● nR.C and nR.C are qualified number restrictions in which the role filler belongs to the 

concept C. These languages are marked with Q.
 ● ¬C is the negation of arbitrary concepts, allowed in languages characterized by C.
 ● {a1, …, an} for n 1 allows concepts to be described explicitly by listing the individuals. The 

language extension is O.

Thus, extensions may be described as AL[U][E][Q][F][O][N], depending upon the additional 
descriptors.

In addition to allowing different concept forming operators, description languages may also allow 
one to specify roles in terms of other roles. Thus, we may have role inverse, role intersection, role 
union, role complement and role composition operators to form new roles.

Description languages may be characterized by role transitivity (characterized by S) role hierarchy 
(like the RESTR operator described earlier, characterized by H)), and complex role inclusion 
(characterized by R). See also Section 14.7.8 on OWL.

The interested reader is encouraged to visit the site (Zolin) on DL complexity maintained by 
Evgeny Zolin of Manchestor University, UK.
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14.7.8 The Web Ontology Language

The most widely accepted definition of an ontology is due to Tom Gruber—“an ontology is a 

specification of a conceptualization” (Gruber, 1993). The Free Online Dictionary of Computing expands 
the definition25—“An explicit formal specification of how to represent the objects, concepts and other 

entities that are assumed to exist in some area of interest and the relationships that hold among them. 

… For AI systems, what “exists” is that which can be represented.” The ontology provides a framework 
for knowledge representation.

In a broader sense, an ontology is a study of things that might exist. From the philosophical point of 
view “Ontology seeks to provide a definitive and exhaustive classification of entities in all spheres of 

being” (Smith, 2003). An ontology specifies the classes of entities that might be needed to completely 
specify knowledge in a domain26. Interest in Ontology (or ontologies as we often say) increased manifold 
with the emergence of the World Wide Web. The Web is not just a medium for people accessing pages 
put up by others, but also for programs accessing data hosted in remote systems and sending data to 
other systems. The ontology associated with a system becomes the basis of defining the semantics of the 
terms used. One of the driving forces is the business of e-commerce in which for example an internet 
agent can visit many sites looking for best prices for products with a given description.

The WWW consortium has converged on a language for specifying ontology on the Web. This 
language is called OWL, and stands for Web Ontology Language27. OWL builds upon RDF and RDF 
Schema (see Chapter 13). The most commonly used syntax is based on XML, though it is not an integral 
part of OWL.

OWL is used to define resources and properties about resources. The language comes in three 
flavours.

OWL Full The full language allows complete expressivity. OWL Full allows reification. Classes can 
be treated as collections of objects from the domain, as well as objects themselves. Everything that 
can be expressed in FOL can be expressed in OWL Full. As a corollary, reasoning in OWL Full can be 
undecidable in the worst case.

OWL DL A subset of OWL Full that conforms to Description Logic. It prohibits interaction between 
different components in the representation and consequently can allow computationally efficient 
reasoning.

OWL Lite A further restriction on the language that restricts it mostly to the class hierarchy with 
simple constraints on features.

We look at the full language briefly. OWL is concerned with defining concepts as class descriptions 
and their properties or roles. The owl:Class is an rdfs:Class which is an rdfs:Resource. The properties 
in OWL are of two types.  The first, owl:ObjectProperty, is a role that takes another concept or class 
as a filler. The owl:ObjectProperty specfies a binary relation between two objects in the domain. The 
second, owl:DatatypeProperty, relates an owl:Class element to values from a data type. Each of the 
three, the owl:Class, owl:ObjectProperty, and owl:DatatypeProperty is an rdfs:Resource.

Every OWL document begins with a header specifying a number of namespaces.

25 Dictionary.com, “ontology,” in The Free Online Dictionary of Computing. Source location: Denis Howe. http://dictionary.

reference.com/browse/ontology. Accessed: December 14, 2009.
26 Philosphers treat Ontology as a proper noun concerned with all things that exist. The phrase “an ontology” is a variation 

introduced in computer science pertaining to the framework associated with a particular domain. 
27 http://www.w3.org/TR/owl-guide/, http://www.w3schools.com/RDF/rdf_owl.asp
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<rdf:RDF

  xmlns:owl = ”http://www.w3.org/2002/07/owl#”

  xmlns:rdf = ”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

  xmlns:rdfs = ”http://www.w3.org/2000/01/rdf-schema#”

  xmlns:xsd = ”http://www.w3.org/2001/ XLMSchema#”>

OWL definitions usually give names to classes and properties, though anonymous definitions are 
possible. An OWL class may be defined, for example, as follows.

<owl:Class rdf:ID = ”khayal”>

       <rdfs:subClassOf  ref:resource = “#hindustani”/>

  </owl:Class>

or

<owl:Class rdf:ID = ”vocalist”>

   <rdfs:subClassOf  ref:resource = “#musician”/>

</owl:Class>

We can relate a named class to other classes by asserting that they are equivalent or that they are 
disjoint,

<owl:Class rdf:about = ”#hindustani”>

       <owl:equivalentClass rdf:resource = “#northIndianClassical”/>

      <owl:disjointWith rdf:resource = ”#carnatic”/>

      <owl:disjointWith rdf:resource = ”#jazz”/>

      <owl:disjointWith rdf:resource = ”#indiPop”/>

      <owl:disjointWith rdf:resource = ”#westernClassical”/>

</owl:Class>

The first line in the above uses “#hindustani” to refer to the class hindustani, defined elsewhere. We 
can define a class to be the complement, union or intersection of other, possibly anonymous classes.

<owl:Class rdf:ID=”indianMusic”>

     <owl:unionOf rdf:parseType = ”Collection”>

          <owl:Class rdf:about = ”#hindustani”/>

          <owl:Class rdf:about = ”#carnatic”/>

          <owl:Class rdf:about = ”#folkMusic”/>

          <owl:Class rdf:about = ”#filmMusic”/>

     </owl:unionOf>

</owl:Class>

and,

<owl:Class rdf:ID = ”bhimsenKhayals”>

     <owl:intersectionOf rdf:parseType = ”Collection”>

          <owl:Class rdf:about = ”#khayal”/>

          <owl:Restriction>

               <owl:onProperty rdf:resource = ”singer”/>

               <owl:hasValue rdf:resource = “#bhimsenJoshi”/>

          </owl:Restriction>

     </owl:intersectionOf>

</owl:Class>



Chapter 14: Structured Knowledge Representations 603

The last example above states that the set of khayals sung by Bhimsen Joshi is the intersection 
of the named set khayal and the anonymous set which has a property restriction that limits the set of 
compositions to the ones where the artist is Bhimsen Joshi. The following definition assumes that the 
concepts human and wizard have been defined already. It says that muggles are those humans that are 
not wizards.

<owl:Class rdf:ID = ”muggle”>

       <owl:intersectionOf rdf:parseType = ”Collection”>

            <owl:Class rdf:about = ”#human”/>

            <owl:Restriction>

                 <owl:complementOf rdf:resource = “#wizard”/>

            </owl:Restriction>

       </owl:intersectionOf>

 </owl:Class>

New concepts may also be defined by constraints on the property fillers. The following definition 
of a data type property called year says that year is a value of type nonNegativeInteger, defined in the 
XML namespace.

<owl:DatatypeProperty rdf:ID = ”year”>

     <rdfs:range rdf:resource = “http://www.w3.org/2001/XLMSchema

           #nonNegativeInteger”/>

</owl:DatatypeProperty>

Object properties on the other hand relate objects of a particular class to objects of another class. 
The following example relates a music composition to the composer. It also says that the composedBy

property is a subproperty of musician, is the inverse of property composition (that would relate a 
composer to a composition), and is also known by the name musicScoreBy.  Observe that OWL allows 
one to organize properties into a hierarchy, and allows one property to be declared as the inverse of 
another, or equivalent to another.

<owl:ObjectProperty rdf:ID = ”composedBy”>

     <owl:domain rdf:resource = ”#musicNumber”/>

     <owl:range rdf:resource = “#composer”/>

     <rdfs:subPropertyOf rdf:resource = ”#musician”/>

     <owl:inverseOf rdf:resource = ”#composition”/> 

     <owl:equivalentProperty rdf:resource = ”#musicScoreBy”/>

</owl:ObjectProperty>

The following constraints on properties, specified by owl:Restriction, are equivalent to [ALL r d],
[FILLS r c], and [EXISTS 1 r] of DL respectively.

Let us say we define a class called 9symphonies that contains the nine symphonies composed by 
Beethoven. We could then define the class of people beenutShroeder who are real fans of Beethoven’s 
symphonies by using the owl:allValuesFrom, which is the universally quantified statement of DL. The 
following statement says that beenutShroeder is the set of people who love to listen only to Beethoven’s 
symphonies.
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<owl:Class rdf:ID = ”beenutShroeder”>

     <rdfs:subClassOf>

       <owl:Restriction>

         <owl:onProperty rdf:resource = ”#lovesToListen”/>

              <owl:allValuesFrom rdf:resource = ”#9symphonies”/>

       </owl:Restriction>

     </rdfs:subClassOf>

</owl:Class>

In our DL, we would have expressed this as [ALL :lovesToListen 9symphonies]. We can define the 
set (or class) 9symphonies by specifying the composer, in the manner of [FILLS r c] of DL.

<owl:Class rdf:ID = ”9symphonies”>

           <rdfs:subClassOf>

                 <owl:Restriction>

                 <owl:onProperty rdf:resource = “#composedBy”/>

                 <owl:hasValue rdf:resource = “#ludwigVanBeethoven”/>

        </owl:Restriction>

     </rdfs:subClassOf>

</owl:Class>

We can define the set of people realMusicLover who like to listen to at least one of Beethoven’s 
symphonies, whatever else they may listen to. This is equivalent to the extension [D-EXISTS n r d]
defined in the previous section, with n = 1. Equivalently, we might think of the statement below as 
[EXISTS 1 r¢] where r¢=[RESTR r d].

<owl:Class rdf:ID = ”realMusicLover”>

     <rdfs:subClassOf>

       <owl:Restriction>

         <owl:onProperty rdf:resource = ”# lovesToListen”/>

         <owl:someValuesFrom rdf:resource = “#9symphonies”/>

       </owl:Restriction>

    </rdfs:subClassOf>

</owl:Class>

Observe that in all the three definitions above, the class is defined as a subclass of an unnamed class 
defined by the owl:Restriction construct.

OWL also allows one to define a class by enumerating its elements using the owl:oneOf construct.
For example, we can define the set of symphonies by Beethoven as,

<owl:Class rdf:ID = ”symphoniesOfBeethoven”>

     <owl:oneOf rdf:parseType = ”Collection”>

          <owl:Thing rdf:about = ”# No.1, Op.21, C Major”/>

          <owl:Thing rdf:about = ”# No.2, Op.36, D Major”/>

          <owl:Thing rdf:about = ”# No.3, Op.55, E flat Major : Eroica”/>

          <owl:Thing rdf:about = ”# No.4, Op.60, B flat Major”/>

          <owl:Thing rdf:about = ”# No.5, Op.67, C Minor”/>

          <owl:Thing rdf:about = ”# No.6, Op.68, F Major : Pastoral”/>

          <owl:Thing rdf:about = ”# No.7, Op.92, A Major”/>

          <owl:Thing rdf:about = ”# No.8, Op.93, F Major”/>
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          <owl:Thing rdf:about = ”# No. 9, Op. 125, D Minor : Choral”/>

    </owl:oneOf>

</owl:Class>

We can also say somewhere that the class 9symphonies is the same as (using owl:sameAs) the class 
symphoniesOfBeethoven.

Instances may be added to a knowledge base using the following OWL statements,

<rdf:Description rdf:ID = ”leningrad”>

      <rdf:type rdf:resource = “#symphony”/>

</rdf:Description>

<symphony rdf:ID = ”leningrad”>

      <musicSite:composer = ”#dmitriShostakovich”>

</academicStaffMember>

The first statement says that leningrad is an element of type symphony, defined elsewhere. The second 
one says that for the element leningrad, the property composer defined in the musicSite namespace has 
the value object dimitriShostakovich defined elsewhere. We can assert that tokens dimitriShostakovich 
and ludwigVanBeethoven refer to different individuals. Note that this has to be done explicitly, since 
OWL does not make the unique name assumption (UNA) that says that each instance has a unique name.

<composer rdf:about = ”dimitriShostakovich”>

    <owl:differentFrom rdf:resource = ”ludwigVanBeethoven”/>

</composer>

One can say that a collection of tokens refer to distinct individuals.

<owl:allDifferent>

     <owl:distinctMembers rdf:parseType = ”Collection”>

          <composer rdf:about = ”dimitriShostakovich “/>

          <composer rdf:about = ”ludwigVanBeethoven”/>

          <composer rdf:about = ”wolfgangAmadeusMozart”/>

          <composer rdf:about = ”johannSebastianBach”/>

     </owl:distinctMembers>

</owl:allDifferent>

OWL also allows cardinality restrictions to be placed in the manner of [EXISTS n r ] and [AT-MOST 
n r]. This is expressed by owl:minCardinality and owl:maxCardinality.

<owl:Class rdf:about = ”averageFan”>

     <rdfs:subClassOf>

        <owl:Restriction>

           <owl:onProperty rdf:resource = ”#fanOf”/>

           <owl:maxCardinality rdf:datatype = “&xsd;nonNegativeInteger”>

                4

           </owl:maxCardinality>

       </owl:Restriction>

    </rdfs:subClassOf>

</owl:Class
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The above statement says that the class averageFan is made up of elements (people) who are fans 
of at most 4 elements (people).

The thought might have occurred to the discerning reader that OWL requires a considerable amount 
of overheads in terms of space, and that the XML based syntax is very cumbersome. The response to 
the second point is that the syntax is meant to be processed by a program and not by a human. Humans 
will presumably define and build their knowledge bases using some easy to use interface, for example 
Protégé28 (see also (Denny, 2002)). 

The answer to the first question is that OWL is a language for specifying ontologies. It need not be a 
language for storing ontologies and the instances associated with them. Having a formal specification 
of the ontology will allow one to reason about it. One can ask questions of the type we had posed 
in the Description Logic section—does an individual belong to a particular class or, does one class 
subsume another, or is the specification consistent? If ontology will have a large amount of instances or 
individuals stored with it, then it will be profitable to pursue computationally efficient storage systems. 
For example, we might want to store an ontology in a relational data base management system (see for 
example (Pan and Heflin, 2003), (Kraska and Röhm, 2006), (Rohloff et al., 2007)).

While the ontology language leads to overheads in space requirement, the XML-based tags become 
useful when software agents across the Web have to communicate. Then the ontology becomes a formal 
description of the language used by each system, describing the entities and the relations between them. 
Then a set of agents that share the same ontology will be able to communicate meaningfully amongst 
themselves, and for other agents, one could rely on a “translator” that maps entities of one ontology to 
another.

The role of Ontologies has become prominent with the possibility of a semantic web (Berners-Lee 
et al., 2001). The possibility of programs exchanging information over the web has brought about the 
need of shared vocabularies and conceptualizations.

14.8 Formal Concept Analysis

A lattice is a partial order in which every two elements have a unique supremum and an infimum. In 
the taxonomy, a supremum corresponds to the most specific common subsumer of two nodes, and the 
infimum corresponds to the most general common subsumee.

Formal Concept Analysis (FCA) is a method of automatically deriving a taxonomy of concepts 
from a collection of objects and their properties (Wille, 1982), (Ganter et al., 2005). Each concept, as 
defined below, relates a set of objects to a set of attributes. The concepts formed depend directly on the 
information about objects and their properties, and can be mined automatically. The concepts also place 
themselves in a lattice structure.

FCA defines formal concepts in the setting of a formal context. A formal context contains all the 
(relevant) information about all the objects in the domain in terms of binary valued properties. The 
formal context has a yes or no answer for every property for every object. The formal context can be 
simply represented by an incidence matrix for a bipartite graph between objects and properties. Each 
edge from an object links it to a property that holds for the object.

Let K = (G, M, R) be a formal context defined by,
 ● G the set of objects (from the German word Gegenstände)
 ● M the set of properties (from Merkmale), and
 ● R Õ G ¥ M is a relation, such that <g,m> Œ R iff object g has the property m

28 http://protege.stanford.edu/
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The following table depicts a context in which objects, labelled A–F, have properties labelled 1–4 
indicated by a cross in the relevant place.

Table. 14.1 An example context. The objects labelled A–F have properties labelled 1–4, as shown in the table. 

An “X” says that the object in that row has the property in that column

Objects
Properties

1 2 3 4

A X X

B X X

C X X X

D X

E X

F X

Given the context K, a set of formal concepts is defined as follows (Krötzsch and Ganter, 2009). Let 
att and obj be two functions on the power sets of G and M,

att: 2G Æ 2M   and   obj: 2M Æ 2G

For a set of objects O Õ G, the set O ¢ of corresponding properties is defined as,

O ¢ = att(O) = {mŒ M | <g,m> Œ R  for all g Œ O}

The set O ¢ is the set of properties associated with the set of objects O. That is, each element in O has 
each property in O ¢. Likewise, for a chosen set of properties P, we can define the corresponding set of 
objects, all of whom have all the properties.

P¢ = obj(P) = {gŒ G | <g,m> Œ R for all m Œ P}

The pair C = (O, P) is a formal concept iff,

O = P ¢  and  P = O ¢

Then O is called the extension of concept C and P the intension of the concept29.

O = ext(C)  and  P = int(C)

A formal concept is not a category, but represents an understanding of the given data of objects 
and their properties. Formal concepts are mathematical constructs and not formal, logical entities 
(Wille, 2005).

A concept is a set of objects which share some properties. Both the sets, objects and properties, have 
to be maximal in the sense described below. A formal concept captures information both in the form of 
an intension and in the form of an extension. As an extension, it specifies all the objects that have a set 
of properties (specified by the intension) in common. Any object that does not belong to the concept 
does not satisfy some property in the intension. As an intension, the concept specifies all the properties

that hold for all the objects (specified by the extension) in the concept. Any property that is excluded 
has some object in the extension that does not satisfy it. Only those objects with their corresponding 
properties that satisfy the above define a concept.

29 In the literature, these are also called the extent and the intent respectively. 
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A set of objects O is said to be closed if O = (O¢)¢ = obj(att(O)) written as O = O≤. Likewise, a set 
of properties P is said to be closed if P = P≤ = att(obj(P)). A formal concept can also be defined as the 
pair (O≤, P≤).

A simple method to find all the concepts in a context would be to look at all subsets of G and check 
whether they are closed, and checking whether their corresponding property sets are closed too. But 
this procedure involves looking at all subsets of G, or the power set of G, which is exponential in size. 
The set of all concepts of a context K(G,M,R) is denoted by (G,M,R).

Given a formal context K(G,M,R) and the induced set of formal concepts (G,M,R), the concepts 
can be structured into a lattice by using the following relation. The formal concept (Osub, Psub) is a 
subconcept of a concept (Osuper, Psuper) iff Osub Õ Osuper, or equivalently Psuper Õ Psub.

(Osub, Psub) ≺ (Osuper, Psuper) ∫ Osub Õ Osuper

or (Osub, Psub) ≺ (Osuper, Psuper) ∫ Psuper Õ Psub.

The orderings induced by the subset relations for sets of objects is the opposite of the ordering induced 
by the subset relation on the sets of attributes in the lattice. This connection between the two is known 
as the antitone Galois connection, after the French mathematician Évariste Galois. Any one of them can 
uniquely determine the lattice, which is also known as Treillis de Galois30.

The lattice for the concepts in the context defined in Table 14.1 is shown in Figure 14.33 below. The 
diagram is a Hasse diagram used to depict partially ordered sets. The Hasse diagram uses undirected 
edges with the convention that if C1≺C2 and there is no Cm such that C1≺Cm≺C2, then C1 is drawn below 
C2.  No transitive edges are drawn. When an edge links C1 and C2 and C1≺C2, then C1 is called the 
successor or lower neighbour of C2 and C2 is called the predecessor or upper neighbour of C1.

Successor(C1,C2) ∫ (C1≺C2) and there is no Cm such that (C1≺Cm) and (Cm≺C2)

The top-level concept contains the set of all objects depicted conventionally by ABCDE31 and the 
associated set of properties, which in this example, is the empty set. Likewise, the least concept contains 
the set of all properties, depicted by 1234, and the associated set of objects, which in this example is 
the empty set. In the line diagram in Figure 14.33, each formal concept is labelled with both the set of 
objects and the set of properties.

While the labelling in the above diagram is explicit, and one can read off the constituents of a concept 
at each node, it can become cluttered if the context is large. The following observation can lead to a 
simpler labelling.

If an object occurs in a concept then it also occurs in any concept higher in the lattice. This follows 
from the definition of the ordering relation between formal concepts. Further, it can be seen that a 
subgraph of concepts containing an object g has a unique infimum.  This node can then be labelled with 
g with the understanding that all nodes higher in the ordering also contain g. Likewise, one can find a 
unique highest concept in the lattice that is labelled with a given property m, and this can be labelled 
with m, and it is understood that all nodes lower in the partial order also have the property m.

The lattice with this succinct labelling is shown in Figure 14.34. The diagram also contains nodes that 
are fully or partially shaded. The upper half is shaded whenever the node gets labelled with a property, 
the lower half if it gets labelled with an object, and the node is fully shaded if it has both kinds of labels.

30 See http://en.wikipedia.org/wiki/Formal_concept_analysis
31 Instead of {A, B, C, D, E, F}
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1

B

CA

4
D

2
F

3
E

FIGURE 14.34 A simpler labelling in which each object and each property occurs exactly once in the 

diagram. The labels occur at shaded circles. The upper half is shaded for properties and the lower half 

for objects.

A concept represents a maximal subarray of X’s in the table that represents the formal context that 
can be formed with the combination of objects and properties by row and column interchanges.

The following table gives another example of a context in which the objects are students and the 
properties the subject periods they like. There are four concepts, two of which are marked in the table, 
one with shaded squares ({aarti, amrita}, {science, games}), and the other with a thicker boundary 
({avinash, arnav, aarti, amrita, ashwani}, {science}). In the example constructed here, no shuffling of 
rows and columns is needed. It must be noted that all concepts need not appear as contiguous maximal 
rectangles at the same time, even though it is so in this example.

FIGURE 14.33 The concept lattice for the context from Table 14.1. The supremum is the set of all 

objects, and the infimum, the set of all properties. In this example, the supremum has no common 

property, and the infimum has no object having all properties.

1234
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Table 14.2 Another example context. A concept in a context is a maximal rectangle of X’s that one can obtain 

after shuffling rows and columns. Two of the four concepts are marked. One with a thick boundary, the other with 

shaded squares

Objects
Properties

math english science games music history

avinash X

arnav X X

aarti X X X X X

amrita X X

ashwani X

ashok

The concept lattice for the above concept is given in Figure 
14.35.

The four concepts in the above context are,

C1 = ({aarti}, {math, english, science, games, music})
C2 = ({arnav, aarti}, {english, science})
C3 = ({aarti, amrita}, {science, games})
C4 = ({avinash, arnav, aarti, amrita, 

ashwani}, {science})

Apart from this, there is the top concept 
containing all the students and no subject, and the 
bottom concept containing all the subject and no 
students. In the lattice concept, C1 is the infimum 
(also called meet) of the concepts C2 and C3, while 
C4 is their supremum (also called join).

The lattice with the succinct labelling can be 
used to answer some questions efficiently.

An object has a property if the object label 
is not higher than the property label. To find all 
objects that have given property, one needs to start 
at the node labelled by the property and traverse 
the lattice below the property label. For example, 
English is liked by Arnav and Aarti. Likewise, to 
find all properties of a given object, one needs to 
traverse the lattice above the node labelled with the object.

To find the common properties shared by two objects, one has to find the join or the lowest common 
subsumer. In our example, to find what properties (subjects) are shared (liked) by Arnav and Amrita, we 
traverse upwards from their respective nodes C2 and C3, to concept C4 which has the intension {science}.

Likewise, to find objects that share two properties, one has to traverse downward from the nodes 
labelled by the two properties to the highest common subsumee (or meet) of the two nodes. In 
Figure 14.35, to find the students who like both English and Games, we inspect their meet, the node C1
which is the extension {aarti}.

science

avinash, ashwani

games

amrita

english

arnav

math, music

aarti

history
Φ

Φ
ashok

C4

C2

C1

C3

FIGURE 14.35 The concept lattice for the 

context given in Table 14.2. Observe that there 

is a property “history” that does not hold for any 

object.



Chapter 14: Structured Knowledge Representations 611

Observe that,

   int(C2) = {english, science}

   int(C3) = {science, games}

and their union is {english, science, games} which is smaller than the intension of their infimum C1
{math, english, science, games, music}. This means that the union of the intensions of two concepts 
may be smaller than the intension of their infimum. Likewise,

ext(C2) » ext(C3) Õ ext(C4)

It is also the case that the union of the extensions of two concepts may be smaller than the extension 
of their supremum. However, the intersection of intensions is equal to the intension of the supremum, 
and the intersection of extensions is equal to the extension of the infimum.

14.8.1 From Context to Concept Lattice

Given a set of objects O Õ G, a concept can be formed by (possibly) extending the set to include other 
objects that share the corresponding properties. That is, the concept is computed as (obj(att(O)), att(O)). 
But to find all concepts, one would have to wade through all the subsets of G, which are exponentially 
many.

We sketch an algorithm to find the concepts and construct the concept lattice at the same time. The 
input to the procedure is the context K. The task is both to discover the formal concepts and structure 
them into a lattice. We have mentioned that concepts can be found by inspecting all subsets of G or M,
but that would be a computationally expensive brute approach. Many approaches to building concept 
lattices have been developed (Waltchev and Missouri, 2001) (Baixeries et al., 2009). One approach 
starts with a single object from the context and incrementally adds more objects one by one and carries 
out structural updates to the lattice (Godin et al., 1995). We look at another approach in which the 
algorithm begins with the top level concepts and recursively finds its successors by adding a property 
to the intension of the current concept (Choi, 2006).

Let nbr(m) be a function that returns the objects that have the property m. This can be done by 
scanning the column in K labelled m.

Let C be a concept in (G,M,R). Then, int(C) is the set of properties in C. Let m be a property in M
that does not belong to int(C). Let Em be the set of objects defined as,

Em = ext(C) « nbr(m)

If this is not empty, it means that there is at least one object that is part of the concept C and has 
property m. Furthermore, it is the case that Em is closed. That is,

obj(att(Em)) = Em

The proof is as follows. By definition, Em Õ obj(att(Em)). To show the reverse obj(att(Em)) Õ Em,
observe that,

obj(int(C) » {m}) = («jŒint(C)nbr(j)) « nbr(m)) = ext(C) « nbr(m)) = Em

Since Em is closed, it follows that (Em, att(Em)) is a formal concept.
Consider in our example the top level concept:  = (avinash,arnav,aarti,amrita,ashwani,ashok, { }) for 

the context in Table 14.2. Extending with each of the properties we have Emath = {aarti}, Eenglish = {arnav, 
aarti}, Escience = {avinash, arnav, aarti, amrita, ashwani}, Egames = {aarti, amrita}, and Emusic = {aarti}.
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The corresponding (closed) property sets are,

att(Emath) = {math, english, science, games, music}
att(Eenglish) = {english, science}
att(Escience) = {science}
att(Egames) = {science, games}
att(Emusic) = {math, english, science, games, music}

For a closed set of properties (X = int(C)) Ã M, the set of remaining attributes res(X) that can be 
added to create a new concept is defined as,

res(X) = {mŒM\X | (obj(X) « nbr(m)) π { } }

It is possible that for two distinct properties n, m res(X) the object sets Em= obj(X) nbr(m) and 
En= obj(X) nbr(n) are the same. In our example Emath = Emusic = {aarti}. Having identical object sets 
induces an equivalence relation that partitions res(X).

res(X) = S1» S2 » …» St

Each such partition will correspond to a formal concept and a possible child of the concept C. Let 
the set of equivalence classes be called the AttrChild(X) = {S1, S2, …, St}. We assume that the subscript 
of S is mapped to the attributes whose nbr(.) sets define that partition. For the above example X = { },

AttrChild({ }) = { Smath,music = {math, english, science, games, music},
Senglish = {english, science},
Sscience = {science},
Sgames = {science, games}}

For each Si Œ AttrChild(X), the pair (obj(Si » X), (Si » X)) is a formal concept. In the above example, 
X={ } and the corresponding child concepts of  are,

Cmath,music = ({aarti}, {math, english, science, games, music})
Cenglish = ({arnav, aarti}, {english, science})
Cgames = ({aarti, amrita}, {science, games})

Cscience = ({avinash, arnav, aarti, amrita, ashwani}, {science})

Let Succ(X) be a set of attribute sets that correspond to the set of successors of concept C in the 
concept lattice. Given that by definition there cannot be two successors Ck and Cj such that Ck≺Cj, some 
of the concepts corresponding to the elements of AttrChild(X) may not qualify to be successors of the 
concept corresponding to X. They will move further down in the lattice. As defined above, Ck≺Cj ∫ Sj

ÃSk. Since in the above example,

Sscience Ã Smath,music

and Sscience Ã S english Ã Smath,music

and Sscience Ã Sgames Ã Smath,music

only Cscience qualifies to be a successor of the top element  =({avinash, arnav, aarti, amrita, ashwani}, 
{ }).

A simpler method of deciding whether an equivalence class in AttrChild(X) corresponds to a successor 
of X is as follows. Let E be the set of attributes associated with the equivalence class SE. E is the set of 
attributes that extend obj(X) by the same set of new objects. If |SE » X| > |E| then SE is not a successor 
of X. In our example above, the set {english, science} is larger than {english}, and therefore cannot be 
the intension of a successor of . As one can see, in the example Sscience is the only equivalence class 
for which the set of attributes {science} is not larger than the defining set of attributes {science}.
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At this stage, the lattice contains two elements,  and its only successor Cscience. Next, we recursively 
add each of the other four attributes—math, music, english and games—one by one to the attributes 
of Cscience, which in this case is the single attribute science. Then we construct its children (which are 
the same as the ones discarded above), and select the next two successors Cgames and Cenglish. Finally, 
Cmath,music is added as a successor twice for each of Cgames and Cenglish. The reader is encouraged to apply 
the set size test described above for these equivalence classes.

The high level algorithm adapted from (Choi, 2006) is given in Figure 14.36 below.

GaloisLatticeConstruction(g,m,r)

1  Compute top concept c = (g, att(g))

2  Succ(c) ¨ ( )

3 enqueue(c, q)

4  while not empty(q)

5 do c ¨ dequeue(q)

6 x ¨ int(c)

7 Compute AttrChild(x) = (sA, sB, …, sK)

8 for i = A to K

9 do Let di be the set of defining attributes for si
10 if |si x| = |di|
11 then Let k = (obj(si» x), (si» x))

12 if k q

13 then

14 enqueue(k, q)

15 Succ(k) ¨ ( )

16 Succ(c) ¨ cons(k, Succ(c))

17 Let R be the set of attributes from m that are not in any concept.

18  if not empty(R) then

19 Add b ¨ (( ), R) as the bottom concept

20 for all minimal concepts c

21 Succ(c) ¨ {b}

22  return top=(g, att(g))

FIGURE 14.36 The procedure to find the concepts for the given context (g,m,r) and construct the lattice. 

With every concept c there is a list of child concepts in Child(c) and a list AttrChild(x) that contains the 

equivalence classes of the attributes of the children. The algorithm returns a pointer to the top concept.

14.9 Conceptual Graphs

Perhaps the most general form of representing logical sentences in the form of a semantic network is 
the formalism of Conceptual Graphs introduced by John F. Sowa (1984; 2000; 2009).

Sowa traces the origin of graphical notation of concepts to Charles Sanders Peirce who was “searching 

for a graphic notation, similar to the notations used in organic chemistry, that would more clearly show

“the atoms and molecules of logic.” “(Sowa, 2006). Around the same time, Gottfried Frege had also 
developed a treelike notation (Frege, 1879). The earliest graphs developed by Peirce were relational 
graphs, capable of representing only conjucts of existentially qualified variables. In 1897, however, he 
invented a remarkable technique that made it possible to represent all FOL formulas graphically (Peirce, 
1909). This technique involved the drawing of an oval to represent negation of whatever was inside the 
oval. Consider the example (from (Sowa, 2006; 2009))—“If a farmer owns a donkey then he beats it”. 

In FOL, we would write the sentence as,

"x "y ((Farmer(x) Ÿ Donkey(y) Ÿ Owns(x, y)) … Beats(x, y))
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This requires the representation of the universal quantifier and the implication operator. However, 
with the introduction of negation, the sentence can equivalently be written as,

¬ $x $y (Farmer(x) Ÿ Donkey(y) Ÿ Owns(x, y) Ÿ ¬Beats(x, y))

which Peirce could draw with the help of two 
ovals as shown in Figure 14.37.

The existential graphs of Peirce are the 
starting point for the conceptual graphs of 
Sowa. The idea of constructing networks of 
nodes to capture relationships in a systematic 
manner has been explored by many researchers. 
The CD structures of Schank are also networks 
built on a well defined vocabulary of CD actions 
and states (see Chapter 13). Most other efforts 
use the words from natural languages to build 
their networks. One notable example is the 
network representations used in the Semantic 

Network Processing System (SNePS) (Maida 
and Shapiro, 1982), (Shapiro and Rapaport, 1986), (Shapiro, 2000). Figure 14.38 shows the SNePS 
representation for “Sue thinks that Bob believes that a dog is eating a bone.”

M1

M2ThinkSue

M3Bob Believe

M4 M5

B1 B2Dog Eat Bone

Expr

Verb

Verb

Verb

Theme

Theme
Expr

Class

Member Member
Class

Agent
Patient

FIGURE 14.38 The sentence “Sue thinks that Bob believes that a dog is eating a bone” as 

represented in SNePS (figure adapted from (Sowa, 2006)).

The nodes labelled M represent propositions. Observe that a proposition can be the subject matter 
of another proposition; something that we have seen needs a process of reification in FOL. Proposition 
M1 asserts that Sue thinks that M2 is true. M2 says that Bob believes that M3 is true32. M3 says that B1

32 Observe that by using linguistic terms, one avoided addressing the fact that both “think” and “believe” are used in the same 
sense here. 

FIGURE 14.37 Peirce’s existential graph for 

the sentence “If a farmer owns a donkey, then 

he beats it.” The oval is a negation of all that it 

encloses.

beats

owns donkeyfarmer
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ate B2, M4 says that B1 is a dog, and M5 says that B2 is a bone. The specific relation between two nodes 
is specified by labels on the edges that are not shown here.

Sowa solved the problem of having to label edges by introducing them as relation nodes. The same 
sentence represented in a conceptual graph is depicted in Figure 14.39.

Patient

Theme

Person: Sue Expr Think

Person: Bob Believe

Dog Eat Bone

Proposition:

Proposition:

Expr

Theme

Agent

FIGURE 14.39 The sentence “Sue thinks that Bob believes that a dog is eating a bone” as 

represented in a conceptual graph (figure adapted from (Sowa, 2006)).

The relations are the same. Sue is the experiencer of think, and the theme of her thinking is the 
proposition in the box. Conceptual Graphs (CGs) are semantic networks that have a logical and linguistic 
basis, and which can handle quantified variables along with constants. CGs are bipartite graphs with 
two kind of nodes with directed arcs across them.

On one side are nodes that stand for elements of a domain, along with their class labels. These are 
drawn as boxes. The elements may be named, unnamed, more than one, or all the elements of a class. 
The class labels or concepts are organized into an abstraction hierarchy, represented as a lattice. It might 
be worth noting that the elements of the domain include not just words corresponding to noun phrases, 
but also verbs and adjectives. With reference to the Conceptual Dependency theory (see Chapter 13), 
the domain contains PPs, ACTs, PAs and AAs.

On the other side of the bipartite graph are nodes representing relations between elements of the 
domain. These nodes are drawn as ovals. These relations are themselves ordered into an abstraction 
hierarchy. While the concepts can stand by themselves, the relation nodes need the concept nodes that 
they relate to exist in a knowledge base. The edges that connect relations to concepts are said to belong

to the relation node and attached to the concept nodes.
The knowledge base is a set of CGs describing situations. The simplest facts can be concepts that 

assert the existence of elements of a class. Others can describe, like conceptualizations in the CD theory, 
relations between things, attributes and events. The CGs have a convenient symbolic notation that could 
be used in computer programs. We represent the concept nodes in square brackets, for example (Person: 
Sue) or [Dog]. The relation nodes are enclosed in round brackets, as in (Agent) or (Theme).

In general, a concept (node) is made up two entities, a type which is a label that specifies the class of 
the concept, and a referent that denotes an individual of that class. For example, in the concept [Person: 
Sue] the type is “Person” and the referent is “Sue”. The special case when the referent is omitted is a 
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short form for a concept with a referent “$” that is like an existential quantifier. Thus [Dog] is a short 
form for [Dog: $] and read “there exists a dog”. One can also say [Dog: $ Snoopy] to assert “there exists 
a dog named Snoopy”. If one wanted to say for example that all dogs are intelligent then one would 
have used the concept [Dog: "]. Other forms of referents are as follows.

 ● [Dog: #] is read as “the dog”
 ● [Person: #she] is a pronoun as in “she is eating a bun”. Other pronouns are “#it”, “#you”, etc.
 ● [Student: #3] One can also use the “#” with an index, for example “the 3rd student”.
 ● [Student: {arnav,aarti,amrita}] has as referents a set of named entities of a particular class.
 ● [Student: {*}] refers to a set of entities whose elements are not named.
 ● [Student: {*}@4] refers to as set of 4 unnamed students.
 ● [Parent: @2] refers to the 2 parents that a person may have.
 ● [Boy Abheek *x] and [Boy ?x] are a pair of concepts that may occur in different graphs in a context 

but that refer to the same entity. The marker “x” establishes the connection.
Concepts can stand by themselves, but relations need the concepts that the relations relate. The 

simplest such graph embodies a dyadic relation, depicted by the star graph shown below,

[Concept1] Æ (relation) Æ [Concept2]

The following two graphs are identical and read “a cat is on a mat”,

[Cat] Æ (On) Æ [Mat]

or [Mat] ¨ (On) ¨ [Cat]

The following would be the title of the well-known children’s book by Dr. Seuss.

[Cat: #] Æ (In) Æ [Hat: #]

A triadic relation may be represented as follows,

[Book: Asterix & Obelix] ¨ (Authors-2) –
¨

¨

which in the graphical is shown in Figure 14.40.

Book: Asterix&Obelisk

Person: Goscinny

Person: Uderzo

1

2

Author-1

FIGURE 14.40 A triadic relation in a conceptual graph.

Every n-ary relation has a signature that is made of the types of the concepts it relates. The signatures 
of the three graphs described above are <Cat, Mat>, <Cat, Hat>, and <Person, Person, Book>. It is a 
convention that the arrows are directed away from all but the last concept in the signature. If these are 
more than one then they are numbered increasingly from left to right. The last concept in the signature 
has an arrow directed towards it from the relation.
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Figure 14.41 shows a larger example of a CG.

Person: Arun Agent Eat

Hand: #Right

Object

Instr

Of

In

Samosa: @2

Plate: #

FIGURE 14.41 The conceptual graph for “Arun ate two samosas that were in the plate with his right 

hand.”

Observe that all relations in the above CG are dyadic, and therefore no numbering is necessary. This 
could be represented as,

     (Agent) Æ [Person: Arun *x]

     (Instr) ¨ [Hand: #Right] Æ (Of) Æ [Person: ?x]

     (Object) ¨ [Samosa @2] ¨ (In) ¨ [Plate: #].

We could have also written this as conjunction written as,

[Proposition:

      [Eat *y] Æ(Agent) Æ [Person: Arun *x]

      [Eat ?y] ¨ (Instr) ¨ [Hand: #Right] Æ (Of) Æ [Person: ?x]

      [Eat ?y] ¨ (Object) ¨ [Samosa @2] ¨ (In) ¨ [Plate: #]

]

Conceptual graphs allow conceptual graphs to be reified and hence are more powerful than first-order 
logic. This was illustrated in the example about Sue, Bob and the dog above. One can reify a CG by 
using a monadic relation to create a new concept. For example we can say,

                  (Agent) Æ [Person: Arun *x]

                  (Instr) ¨ [Hand: #Right] Æ (Of) Æ [Person: ?x]

                  (Object) ¨ [Samosa @2] ¨ (In) ¨ [Plate: #]]

and one could use this elsewhere, for example in “the situation is that Arun’s mother saw Arun eating 
two samosas on a plate with his right hand”

[Situation:

    [Mother *z] ¨ (Of) ¨ [Person: Arun *x]

    [Mother ?z] Æ (See) Æ

                        (Agent) Æ [Person: Arun ?x]

                        (Instr) ¨ [Hand: #Right] Æ (Of) Æ [Person: ?x]

                        (Object) ¨ [Samosa @2] ¨ (In) ¨ [Plate: #]]]
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Here is another example, “The teacher thinks that all students are honest”,

[Teacher: #] ¨ (Expr) ¨ [Belief] Æ (Theme) Æ

                          [Proposition: [Student:"] Æ (Is) Æ [Honest]]

Once a proposition has been created, then one can also create its negation. The following CG states 
that “The teacher thinks that it is not the case that all students are honest”

[Teacher: #] ¨ (Expr) ¨ [Believe] Æ (Theme) Æ

¬[Proposition: [Student:"] Æ (Is) Æ [Honest]]

Both Sowa and, before him, Peirce were motivated by having a graphical mechanism for rea-
soning. There have been several attempts to devise graph manipulation operators (see for example 
(Peirce, 1909)). It is not entirely clear whether a complete deduction system has emerged, but we refer the 
reader to (Sowa, 2006; 2009) for more details. Meanwhile, conceptual graph are also semantic networks 
and we look at an approach for semantic retrieval using CGs below.

14.9.1 Efficient Matching with CGs

One of the uses that Conceptual Graphs can be put is for semantic retrieval, in which the query is a CG 
that needs to be matched to the appropriate subgraph in the knowledge base in the form of a CG. We 
look at an approach by Galia Angelova (2009) that converts simple conceptual graphs into a minimal 
finite state automaton. A simple conceptual graph is a subset of FOL that employs only the existential 
quantifier and the conjunction operator without negation.

A Simple Conceptual Graph may be described using the vocabulary or support as follows.

Definition

A support is a 4-tuple S = (TC, TR, I, t) where,

 ● TC is a finite, partially ordered set of distinct concept types. The partial order defines a taxonomy 
with  as the universal type that is the supremum of the concept lattice. For the sake of 
completeness, we also define the absurd type ^ that forms the infimum of the concept lattice.

 ● TR is a finite, partially ordered set of distinct relation types. The two sets TC and TR are disjoint. 
Each relation R Œ TR has arity 2 (in the case of SCGs), and holds between two elements of the 
concept type. For each R, a pair of concepts (C1R,C2R) Œ TC ¥ TC defines the highest (most general) 
type of concepts that may be related by R. All pairs (C1R,C2R) are called star graphs. If R1 £ R2

then C1R! £ C1R2 and C2R! £ C2R2. Like in the case of the concept hierarchy, we also define the 
supremum and infimum for the relation types.

 ● I is a set of distinct individual markers that refer to a specified individual. The generic marker 
* œ I refers to an unspecified individual.

 ● t is a mapping from I to TC specifying instances of concepts.
The support or vocabulary encompasses all concepts, individuals and relations that are used to build 

the simple, conceptual graphs. Figure 14.42 illustrates the concept and relation lattices that form the 
support for an example, conceptual graph domain.
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FIGURE 14.42 An example concept lattice (top) and a relation lattice (below) that forms the support 

for CGS.
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Some of the star graphs for the support of Figure 14.42 are given below.

[Event] Æ (Agent) Æ [Living]

[Eat] Æ (A-Eat) Æ [Living]

[Go] Æ (A-Go) Æ [Living]

[Go] Æ (Dest) Æ [Loc]

[Eat] Æ (Carnivore) Æ [Predator]

[Read] Æ (A-Read) Æ [Human]

[Go] Æ (Dest) Æ [Loc]

[Read] Æ (O-Read) Æ [Book]

[Eat] Æ (O-Eat) Æ [Food]

[Go] Æ (Instr) Æ [Pub-Trans]

Given two SCGs, G and H defined on the same support, we can define an injective projection as 
follows (Mugnier, 1995). A mapping p : GÆH yields a graph pG Õ H, such that pG is isomorphic to 
G, and for each concept c in G, pc is a concept in pG (and H) where type(pc) £ type(c). The SCG G
is called the injective generalization of pG. If G is a query subgraph then the projection extracts all 
subgraphs in the knowledge base that are specializations of G. In general, the graph isomorphism problem 
is NP-complete. However, for simple conceptual graphs, one can devise polynomial time algorithms.

The algorithm proposed in Angelova (2009) preprocesses the knowledge base to construct a finite 
state automaton that captures all possible queries that have answers in the knowledge base. The finite 
state automaton has a number of acceptance states with markers that represent the answer to the query. 
The words of the language accepted by the FSA constitute of (Angelova and Mihov, 2008),

1. all SCGs in the knowledge base,
2. all their conceptual subgraphs33, and
3. all the injective generalizations of the above two.
Consider the following CG for the sentence “John took the subway to Coney island.”

Go Dest

Instr

Person: John Town: ConeyIsland

Subway

A-Go

FIGURE 14.43 The conceptual graph for “John took a subway to Coney Island.”

The following are the subgraphs and their injective generalizations, which represent possible 
queries.

/* the input */

       (A-Go) Æ [Person: John]

       (Instr) ¨ [Subway]

       (Dest) ¨ [Town: ConeyIsland]

33 A conceptual subgraph of a CG is a subgraph of the CG that is also a CG.
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2.  [Person: John] ¨ (A-Go) ¨ [Go]        /* subgraphs */

3.  [Go] Æ (Instr) Æ [Subway]

4.  [Go] Æ (Dest) Æ [Town: ConeyIsland]

5.  [Person: John] ¨ (A-Go) ¨ [Go] Æ (Instr) Æ [Subway]

6.  [Person: John] ¨ (A-Go) ¨ [Go] Æ (Dest) Æ [Town: ConeyIsland]

7.  [Subway] ¨ (Instr) ¨ [Go] Æ (Dest) Æ [Town: ConeyIsland]

8.  [Person] ¨ (A-Go) ¨ [Go]     /* generalizations of star graphs */

9.  [Living] ¨ (A-Go) ¨ [Go]

10. [Go] Æ (Instr) Æ [Pub-Trans]

11. [Go] Æ (Dest) Æ [Town]

12. [Go] Æ (Dest) Æ [Loc] /* and their combinations into larger 

graphs… */

Observe that the process of generalization stops with the signatures of the relations.

[Go] Æ (A-Go) Æ [Living]

[Go] Æ (Dest) Æ [Loc]

[Go] Æ (Instr) Æ [Pub-Trans]

Each star graph and its generalization can be expressed as a triple. Some of the triples above are (Go, 
A-Go, Living), (Go, A-Go, Person), (Go, Dest, Town), and so on. These triples are sorted alphabetically 
and form three consecutive edges of the FSA, which will be traversed with the tree inputs. Given that 
every acyclic automaton can be described by the finite list of words belonging to that language, once 
we have a collection of such triples and their allowed concatenations, we have essentially defined 
the FSA. When we have two triples, for example, (Go, A-Go, Person) and (Go, Dest, Town) we have 
different possible interpretations, one in which Go refers to the same action, and one in which it refers 
to two different ones. These interpretations should be marked differently, and Angelova proposes the 
construction of equivalent classes in which such identities are distinguished. Not all partitions induced 
are relevant though, and the relevant ones are marked. The corresponding subgraphs become the objects 
for retrieval, and the markers are attached to the corresponding final states in the FSA. The same marker 
may appear as a label for a different final state in the FSA, since the corresponding CG may satisfy more 
than one query. What remains is to construct a minimal FSA with the set of triples. We will not go into 
the details here. The interested reader is referred to (Angelova and Mihov, 2008) and (Angelova, 2009).

14.10 Discussion

In this chapter, we have looked at various approaches designed to speed up the accessing of related 
information. In principle, one could have used first order logic with reification to represent most things 
that are of interest. However, it is when we need to find connections between different facts that the 
prospect of structured representations comes to the fore. The notion of the schema has been investigated 
by many people including psychologists, philosophers and computer scientists. The notion of pulling 
together things into chunks and representing the reified composite elements offers a way of cutting 
down upon the sheer number of facts that we often want to abstract away from. The concept of Gestalt

refers to the form forming ability of our senses,34 of being able to focus on the whole rather than on the 
sum of the parts, and is a key to understanding the schema. The other feature needed for rapid access to 

34 http://en.wikipedia.org/wiki/Gestalt_psychology



622 A First Course in Artificial Intelligence

related concepts is via networking of concepts into a semantic network. As a consequence, representation 
of large amounts of knowledge involves the construction of inheritance and abstraction hierarchies. A 
host of efforts have been made to achieving these ends, some in which the user is required to specify 
the agglomerations and the connections, and others in which the user just specifies a description the 
structure follows. It can safely be said that the construction of knowledge structures and reasoning with 
them is going to occupy AI researchers for a while.

 Exercises

1. Of the different meanings of the sentence “Time flies like an arrow”, which one occurs to you? 
Show the nodes that will be activated in the network in Figure 14.10. Add new nodes and edges 
where required.

2. “A tomato is a vegetable. A tomato is a fruit. A tomato can be fried. A vegetable is a something 
that can be fried. Fruits cannot be fried. Something that can be fried is a kind of something that 
can be cooked.  A vegetable is something that can be cooked.”

   Remove the redundant statements from the above set. What are the credulous extensions of the 
resulting set of statements?

3. Write an algorithm to determine whether an edge in an inheritance graph is admissible or not with 
respect to an input node A.

4. Given an inheritance graph G, an input node A, and a labelling of each edge saying whether it is 
admissible or not with respect to A, write an algorithm to find all extensions of the graph.

5. Allow the user to create an inheritance hierarchy graphically (or read from a file). Given a 
taxonomy, answer the question aÆp? Create extensions, identify the preferred extensions.

6. What are the credulous extensions with respect to a¢ of the inheritance graph in Figure 14.22. 
Which of these are preferred?

7. Given the two concepts,

    d  [AND [FILLS :FanOf beckenbauer] [FILLS :FanOf theKaiser]]
  and e  [EXISTS 2 :FanOf]

  can we conclude that d e? What does the structure mapping algorithm say? Explain your answer. 
[Hint: What do  tokens map do?]

8. Express the following sentences in FOL as well as in Description Logic.
(a) A RichFooTween is a ten-year old person who has at least two friends and who is a football 

fan and all whose aunts are rich.
(b) A JailHoParty is political party whose members are all unemployed with all siblings politicians, 

and which has at least two PM candidates and all whose ministers have at least two bodyguards, 
and two court cases.

9. Given the following two statements (Brachman and Levesque, 2004),

marianne Æ [AND Person Female]

ellen Æ [AND [EXISTS 1 :Child]

           [ALL :Child [AND [FILLS :Pediatrician marriane]

                           [ALL :Pediatrician Scandainavian]]]]

  Show how the information about Marianne is augmented.
10. Express the following sentences in Description Logic.

(a) Sachin plays for Mumbai Indians and has more than one million fans.
(b) Sucheta is a faculty member.
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(c) The ABC University employs Sucheta.
(d) Sucheta has at least two cousins, and all her cousins are fans only of cricketers and are all 

fans of Sachin.
(e) ABC University is a university that employs only Indian citizens who have a PhD degree.

  What are the most specific concepts that the individuals Sachin and Sucheta belong to? Explain 
the procedure used to arrive at the answers.

11. Given the following information about the given set of individuals,

baba Æ Politician

cP Æ [AND Party [ALL :Leaders Rich]  [FILLS :Leader baba]]

fFam Æ [AND Family [FILLS :Member baba]

                    [ALL :Member Famous] [ALL :Member Dynasty]]

backV Æ [AND [FILLS :Voted cP] [ALL :Voted Corrupt]]

sachin Æ [AND [FILLS :Team bombay] Famous [EXISTS 100000 :Fan]]

sucheta Æ [AND [EXISTS 2 :Cousin]

[ALL :Cousin [AND [FILLS :FanOf sachin] [ALL :FanOf Cricketer]]]]

  Collect all information about each individual in one place, using the propagation algorithm. Show 
each step from the algorithm clearly.

12. Given two descriptions dsub = [D-EXISTS n r d] and dsuper = [D-EXISTS m r e], write a structure 
matching rule that can be used to answer the question whether (dsub dsuper).

13. One can extend the description logic from Section 14.7 (with the ALL, EXISTS, FILLS and AND 
operators) to include an operator [D-EXISTS n r d] which can be used to say that there are n role 
fillers from class d.  For example, to describe the set of all people with at least two children who 
are girls one would say [D-EXISTS 2 :Child Girl].  Give the formal semantics of this new operator.

   An alternative is to use the existing operators and introduce a new role named GirlChild. Discuss 
the pros and cons of the two approaches.

14. The structure matching rule looks for corresponding components in dsub and dsuper. We can extend 
the set of structure matching rules to take more than one component as argument. Consider the task 
of handling [D-EXISTS 1 :Sibling Parent] and  [AND [EXISTS 2 :Sibling] [ALL :Sibling Parent]] 
which can be rewritten as [AND [D-EXISTS 2 :Sibling Thing] [ALL :Sibling Parent]]. Write a 
rule that will take dsuper=[D-EXISTS n r d] and dsubr=[AND [D-EXISTS m r e] [ALL r f]], write a 
rule to answer the question whether (dsub dsuper). Discuss the pros and cons of using such a rule.

15. Is any of the two classes—realMusicLover and beenutShroeder—defined in the chapter, subsumed 
by the other? 

16. Description Logic 1. Write a program to create a knowledge base of concepts. Allow the user 
to create new concepts from old by “extending” them with more constraints, and using AND to 
combine concepts. The descriptions may have to be converted into normal form. Implement the 
Structure Matching algorithm.

17. Description Logic 2. Given a set of concepts read from a file, construct a Taxonomy. Display the 
graph on a screen and allow users to read concept definitions attached to nodes on demand. Accept 
a new concept and classify it into the taxonomy.

18. Description Logic 3. A-Box reasoning. Given a database of facts, extract concepts that individuals 
belong to, including the propagation to ferret out information. Attach them to the most specific 
concept in the Taxonomy. Accept new information of the kind (aÆd) and propagate the information. 
The system should be able to answer queries like (1) cÆd, (2) find all classes that an individual 
c belongs to, and (3) find all individuals that belong to a class

19. Write an OWL statement to assert that the classes 9symphonies and symphoniesOfBeethoven

defined in the chapter represent the same sets of elements.



624 A First Course in Artificial Intelligence

20. Given a set of objects O, show that (O≤, O¢) is a formal concept where O¢ = att(O) and O≤ = 
obj(att(O)).

21. If the properties in Table 14.1 have the following correspondence—1:preying, 2:flying, 3:bird, 
and 4:mammal, label the names of objects by corresponding animals. (See also [Wolff, 1993]).

22. In the context shown in Table 14.1 renamed by the previous exercise, insert the animal “bat” with 
the properties “mammal” and “preying”. Extend the concept lattice of Figure 14.34 to reflect the 
new context.

23. Given a set of natural numbers 1–12 and the properties P = {composite, even, odd, prime, square}, 
construct a formal context and the corresponding concept lattice35.

24. Given a context in the form of a table, implement the FCA algorithm to build the concept lattice. 
Display the lattice graphically. Given a concept C, one should be able to view the extent and 
the intent. Extension: Given a numeric attribute, a user should be able to select ranges with 
memberships to these ranges as attributes.

25. Use the negation and the conjunction operator to express disjunctions in conceptual graphs. Show 
how the sentence “The cat is either on the mat or in the kitchen.”

26. Show how conceptual graphs can be used to express IF-THEN kind of assertions.
27. The O-Eat relation says that for the event (act), Eat the object is Food. Add specializations of 

O-Eat to cater to the type of food herbivores and carnivores eat.

35 See also http://en.wikipedia.org/wiki/Formal_concept_analysis



H  umankind is a problem solving species. There are basically two approaches to problem solving. 

  One is the first principles approach, in which the agent does search in a space generated by domain 

modelling. The second is a knowledge based approach, in which the agent knows somehow in advance 

what the solution is likely to be. And the two are not entirely disjoint. As we have seen in the early 

chapters, we try and improve the performance of search by knowledge encoded as heuristic functions. 

On the other hand, when the system is knowledge based, one has to employ search to find the applicable 

pieces of knowledge. In whatever form and role it occurs, knowledge has to come from somewhere. The 

form in which the knowledge is held and deployed by the agent may vary, but typically such knowledge 

is the end product of experience. This experience might be the agent’s own experience, or may be a 

lesson learnt and passed on by someone else.

In this chapter, we explore building systems that store and reuse problem solving experiences. Very 

often, the problem solver has a dynamic memory which stores experiences in an explicit form to be used 

for future problem solving. We will refer to this approach as a memory based approach, in which the 

agent uses information stored in its memory in some form to solve a given problem.

Learning systems also capitalize on experience, but they use the experiences to build and refine an 

implicit representation of what is known as a target function. Neural networks and decision trees are 

examples of learning systems. Rule based systems can also be thought of distilling experience into 

modular if-then chunks of knowledge.

The first principles approach to problem solving too does not operate in a vacuum. It does need to 

represent knowledge of the domain, the relations between them, and the knowledge of effects of agent 

choices in the domain. We refer to such an approach as a model based approach, because the simulation 

is done over some model of the problem domain. One could say that the model based approach uses 

deep knowledge (Struss, 2008) because it involves the representation of a model of the domain, and then 

experiential or heuristic knowledge can be thought of as shallow knowledge. Figure 15.1 highlights the 

broad difference between the model based and memory based approaches.

The popular puzzle known as the Rubik’s cube (Figure 15.2) is a well known problem that illustrates 

the use of two techniques, and also the efficacy of the knowledge based approach. A Rubik’s cube is a 

cube with the six faces coloured with six colours. The cube is sliced in nine squares on each of its faces, 

and each face of nine cubelets can rotate around an axis perpendicular to the face. Repeated rotations 

can jumble up the colours of the cube, and the goal is to get the faces back into one colour again. In the 

seventies, when the Hungarian architect Erno Rubik invented the puzzle, it became a rage and many 

people could be found trying to solve it obsessively.

Memory and Experience: 
Case Based Reasoning

Chapter 15
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The trial-and-error methods would fail more often that not, because 

the state space is huge, containing about 4.3 ¥ 1019 states. More 

importantly, it has not been possible to construct a heuristic function 

that will monotonically reduce on the solution path. The intuition of 

assigning better values to states with more cubelets of the same colour 

together, soon leads to local maxima. Consequently, most human 

solvers use a peak-to-peak approach described in Chapter 3. In a matter 

of a few years, systematic solutions were found and learnt (memorized) 

by people, so that even young children knew how to solve it. Currently, 

the issue in human competitions is how fast you can solve it, and  champions do it in a matter of seconds.

This example illustrates two contrasting advantages of the two approaches. When a solution or a 

solution method has been learnt, knowledge acts like a sword cutting a path through the combinatori-

ally exploding number of possibilities. On the other hand, if a solution is not known in advance, only 

a first principle approach can find one, but the problem solver has to sift through a large number of 

combinations. Figure 15.3 depicts the role of knowledge in identifying a solution amongst the many 

possibilities that lie ahead. It depicts a solution or a plan being retrieved from the memory and used to 

synthesize future actions. Knowledge, from this perspective, is the carry-forward from the past to the 

future. Memory is the seat of knowledge.

One can identify three different ontological forms of knowledge. The first is direct experience which 

one can symbolically store in the form of episodes.  We can call each of these stored experiences a case.

As many episodes are encountered over a period of time, two more compact forms of knowledge emerge 

by a process of abstraction and generalization. The first is semantic in nature, which we can call a model. A 

model is an abstraction of reality that can be used to simulate events in the real world. A model is an embodi-

ment of “how things work”. The second is operational in nature, or heuristic knowledge, often represented 

as rules. Heuristic rules may suggest “what to do” in a situation, for example “if one is putting on weight, 

one should exercise more”; or what to expect in the domain, for example, “if the dog is barking, there may 

be someone about to knock on the door”. There can be other compact forms of knowledge as described 

in machine learning literature (Mitchell, 1997), for example decision trees, but they are variations on the 

theme. Figure 15.4 shows the relation between the three forms of knowledge, cases, rules, and models.

Problem Solving

Search Knowledge

Ontology +

Domain Semantics Experience

Memory Based ReasoningModel Based Reasoning

FIGURE 15.1 Model based and memory based reasoning.

FIGURE 15.2 The Rubik’s 

cube.
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Heuristic Rules Models

Raw Experience

Generalisation and

Modularisation
Domain Analysis and

Laws of Nature

FIGURE 15.4 Models and rules are drawn from raw experience. A case based system organizes 

episodes of raw experience.

Knowledge can be a carry-forward from the past to the future when there are things that do not 

change from the past to the future. Then a sentient agent may observe something, remember it, and 

exploit it in the future.

Another interesting example comes from the world 

of stock trading. A section of the market analysts, 

known for some reason as “technical analysts”, 

study historical stock prices and make predictions 

about what is likely to happen. Two common terms 

they use are “support” and “resistance”. By support, 

one means a price below which the stock is not likely 

to fall, because many buyers will come in. Likewise 

by resistance, one means a price above which a 

stock has difficulty rising, because sellers come to 

the fore. Interestingly, these levels are determined 

by experience. Figure 15.5 illustrates how a simple 

notion of past experience of a stock price might 

Memory

PAST FUTURE

FIGURE 15.3 Knowledge is the carry-forward from the past to the future.

Support level

Time

Price

FIGURE 15.5 Notion of support is memory 

based.
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determine a support level. In practice, analysts use more sophisticated measures like the 50- and 200-

day moving averages, or their crossovers, or more complex patterns with names like “head and shoulders 

bottom” or the “candlesticks” patterns invented by the Japanese for rice trade in the 17th century (see for 

example (Murphy, 1999), (Nison, 2001)). Technical analysis is essentially forecasting, based on patterns 

in time-series data. This is not limited to the stock market, and can be applied anywhere a pattern in 

a time series data is predictive of something of interest. Thus, the technical analysis of stock prices is 

essentially memory based. The other approach is known as “fundamental analysis”, and consists of 

evaluating the profits and growth of a company. It is essentially a model based approach.

It may be observed that technical analysts are comfortable only when they are in familiar territory, and 

are unable to make predictions when a stock (price) breaks into uncharted territory. This is a characteristic 

of experience. Experiential knowledge, in general, is unable to deal with situations that have changed 

beyond recognition. A poignant example of that is the inability or the unwillingness of humankind to 

accept the dangers of climate change, because we have not experienced it in recorded history, and model 

based answers are imprecise and open to debate. Another distressing example, where we did pay the cost 

of missing knowledge, was when the Tsunami devastated the coastlines of southern Asia in December 

2004. The previous recorded case of a Tsunami in India was in 1941, too far back in time to exist in the 

minds of people when it struck again. Japanese folklore, on the other hand, is replete with tales of the 

Tsunami, and a child there would have understood the import of the unusual receding of the sea waters.

Memory, knowledge and experience are not just the forte of individuals but also of societies and 

organizations. The emergence of language has made it possible for societies to share and pass on 

knowledge. Often such knowledge is part of folklore and gets distilled in the form of customs and rituals, 

which may survive long after the reasoning behind them is remembered.

15.1 Case Based Reasoning

Human memory is complex. We have the ability to absorb information continuously since our birth. 

We constantly generalize from our experiences, and yet are able to recall individual episodes from our 

memories. Very often, these are buried deep inside somewhere, and are remembered by a process of 

reminding that is still not well understood. Cognitive scientists talk of long term memory and short term 

memories.  The notion of organizing information in knowledge structures has long been a subject matter 

of interest. Much of this work has been done from the perspective of perception and understanding, 

but is also applicable to planning and problem solving. Various terms have been used for the process of 

aggregating information. The most commonly used term is schemata (Sowa, 1984). Herbert Simon used 

the term chunks (Simon, 1974) and postulated that human expertise involves a larger and larger collection 

of such chunked patterns. He estimated that good chess players have about a 1000 of them, while masters 

could have a hundred times more. Marvin Minsky introduced the notion of frames (Minsky, 1975), a 

structure used to aggregate information and a precursor of objects (see Chapter 14).

A considerable amount of work done at Yale University in the seventies introduced knowledge 

structures like Conceptual Dependency, Scripts and Memory Organization Packets with focus on natural 

language understanding (Schank and Abelson, 1977), (Schank and Riesbeck, 1981), (Schank, 1982; 

1999). We looked at some of these concepts in Chapters 13 and 14.  From this body of work emerged 

the notion of Case Based Reasoning (CBR) as a methodology of problem solving (Riesbeck and Schank, 

1989), (Kolodner, 1993). The simple idea behind CBR is that a problem solver should remember what 

works and what does not work. It solves problems by consulting its repository of cases in its memory. 

If a new solution is devised, by any means, then it is added to the repository. This has been summed 
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up succinctly as a process of four R’s (Aamodt and Plaza, 1994) and is illustrated in the Figure 15.6 

adapted from their work.

description lessonlesson

description lesson

description lesson

Reuse

lesson

lesson

Revise

Retain

Retrieve

Problem

Description
New Problem

Case Base

Solution

Solution

Problem-solving

Knowledge

Adaptation

Knowledge

FIGURE 15.6 The case based reasoning cycle.

A case is made up of two constituents, a description and a lesson. The first part contains a representation 

of the problem description that is used to access cases, and the second contains the key to constructing 

the solution. The four R’s define the CBR methodology as follows:
 ● Given a new problem to solve, retrieve the best matching case or set of cases from the case base.
 ● Try and reuse the lesson stored in the retrieved case(s) to construction by adapting the retrieved 

lesson(s).
 ● If necessary, bring in more knowledge to revise the solution to suit the current problem. This 

knowledge may come from a different problem solving system or from a human expert.
 ● Retain the new revised solution, by adding it to the case base with appropriate indices for retrieval1.

The CBR system thus implements a simple form of dynamic memory that learns by adding new cases, 

as and when new problems are encountered and solved.

Conceptually, we can describe the terms used in CBR as follows. Let p be a problem from some 

domain. Let d be a description of the problem constructed using some vocabulary. Let l be a lesson 

expressed using some vocabulary. The vocabulary used for expressing lessons may be the same as the 

one used for descriptions, or it could be different. A case is a description-lesson pair <d, l>. The utility

u(p, l) of a lesson l for a problem p is a value between 0 and 1, and signifies how good the lesson l is 

for solving problem p.

1 Subsequently, this step was expanded to Recycle, Refine and Retain (Göker and Roth-Berghofer, 1999).
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Given a problem to solve, one would ideally like to retrieve cases that have the highest utility amongst 

the cases in the case base. However, utility is difficult to define and measure. Utility could depend upon 

the ease with which a solution is constructed, or upon the quality of the solution found, and it could also 

depend upon the ease of implementing the solution. In any case, utility can only be determined after 

the solution constructed by the lesson is applied to the problem, which of course defeats the purpose 

of finding a good case to construct the solution. Thus, while we are interested in cases with high utility 

lessons, we have to use other criteria for finding them.

The utility value of a lesson becomes known only in the future, after the lesson is applied to the 

problem. A good case is one which has a lesson of high utility for the current problem. A knowledge-

based approach retrieves a (good) case by inspecting its past, stored in the case base. The criterion for 

choosing the case is similarity. Case based reasoning is based on the following premise:

Similar problems have similar solutions.

Also, the problems we encounter are often similar. This is based on the fact that things change 

continuously and smoothly in the world, and that there are situations that often repeat themselves. The 

best case is then that whose description is most similar to the current problem description. To measure 

this, we use a similarity function sim(di, dj) that returns a value between 0 and 1, where 1 stands of 

identity or total similarity, and 0 represents no similarity or total dissimilarity.

Thus, case based reasoning works as follows,
 ● Given a problem p, construct a description d of the problem.
 ● Retrieve from the case base a case ci = <di, li>, such that sim(d, di) is highest amongst all cases 

in the case base (retrieve).
 ● Adapt the retrieved lesson li to construct a solution for p (reuse).
 ● If the solution has low utility, construct a new solution and a lesson l (revise).
 ● When a new problem solving experience occurs, add a lesson l to form the case c = <d, l> and 

add it to the case base CB (retain).

In practice, one may use more than one similar case to construct the solution. We often refer to this 

process of retrieving k most similar cases as k Nearest Neighbour (kNN) retrieval. When CBR is used 

for classification then the solution could be the majority class label amongst the k retrieved cases. When 

solving a planning problem, a plan may be composed from components extracted from different cases in 

the retrieval set. For solving a troubleshooting (helpdesk) problem, one may use statistical information 

of problems encountered in the past to suggest the most likely solution from the retrieved set.

One may also extend the case representation to include an Outcome field in addition to the Description 

and the Lesson. This contains the result of applying the lesson to the problem, and could be used to 

remind the user that a particular lesson did not work. In a way, it is like storing the utility of the case, 

and one would expect to use only high utility cases. This would be particularly useful in domains where 

the outcomes are stochastic, for example in foundrylike situations when the same manufacturing process 

sometimes yields defective products. One can then use statistical information from past usage to decide 

how likely the case is to be successful (see for example (Selvamani and Khemani, 2003)).

To implement the CBR methodology, one has to address the following issues,

1. How are cases represented? This applies to both the description part and the lesson part.

2. How is the similarity between two descriptions computed?

3. How does one retrieve the desired cases efficiently?

4. How is the solution constructed from the lesson?

An important issue is the problem description. The problem description is the one that defines 

the relevance of a case. One needs to ensure the utility distinguishability of the representation 

(Bergmann, 2002). This means that if the descriptions in two cases are identical then the corresponding 
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lessons will have the same utility for any given problem. Equivalently, if the lessons in two cases have 

different utility values for a given problem then the two descriptions in the case must be different.

"p"ci"ck (ci = <di, li> Ÿ ck = <dk, lk> Ÿ di = dk … u(p, li) = u(p, lk))

or,

 "p"ci"ck (ci = <di, li> Ÿ ck = <dk, lk> Ÿ u(p, li) π u(p, lk) … di π dk)

Apart from these, there are issues of maintenance as well. One has to decide which cases to retain, 

which ones to delete, and what new cases are to be added. Cases cannot be added in an unrestricted 

manner because the retrieval performance goes down as the case base grows in size. In a dynamic 

environment, some cases may become obsolete and may need to be retired.

15.1.1 The Retrieval Task

Given a case base and given a problem to solve, the description of the problem is matched with the 

descriptions of the cases in the case base. The set of retrieved cases constitute the retrieval set R. The 

retrieval goals may be one of the following,

All Best The retrieval set contains all cases that have maximal similarity with the problem description. 

That is,

R ¨ {Ci = (di, li) Œ CB | $/ Cp = (dp, lp) Œ CB and sim(d, dp) > sim(d, di)}

This goal says that the retrieval set must contain all the cases with the highest similarity. Observe, 

that this does not mean that all the retrieved cases are identical, but only that their similarity with the 

problem description is the same.

k Nearest Neighbours The retrieval set must contain the K most similar cases, or the K nearest 

neighbours when we view the cases in some space.

R ¨ {Ci = (di, li) Œ CB |

$/ Cp = (dp, lp) Œ CB\R and sim(d, dp) > sim(d, di) and |R| = k}

k Nearest Neighbours retrieval or kNN retrieval is the most commonly used criterion. Observe that 

the All Best criterion could retrieve just one case. Very often, one requires more than one case. This 

is because CBR is often applied to ill understood problems, and only the best matching case may not 

provide the best solution. In practice, with a retrieval set of size k, the solution may be constructed from 

the k lessons, either by majority voting or by similarity weighted averages. Such an approach also guards 

against a noisy case base, where a few cases may be erroneous.

Threshold Similarity The retrieval set contains all those cases that have a similarity above a chosen 

threshold t.

R ¨ {Ci = (di, li) Œ CB | sim(d, di) > t }

This could be used when one wants to ensure that only cases with a desired similarity or better are 

retrieved. Note that the retrieval set may be empty.

15.1.2 Diversity

Cases in the retrieval set that are maximally similar to the query are also likely to be similar to each 

other. We call the retrieval set obtained by the criterion given above as the Standard Retrieval Set 

(SRS). In some applications, one may want the cases in the retrieval set to be different from each other,

and the retrieval set to be as diverse as possible (Smyth and McClave, 2001). Diversity is important in 
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recommender systems where a user is looking for a product and may also want some choice. For example, 

if one is consulting a web based real estate system looking for a home, an entire new apartment complex 

may match the stated requirements. Then, the SRS would probably contain all apartments from the same 

complex, which may not offer enough choice to the user. Diversity of a retrieval set R = {c1 = <d1, l1>,

c2 = <d2, l2>, …, ck = <dk, lk> } is defined as,

Diversity(R) = 
1, 1, (1 ( , ))

( 1)
2

= =S S -

¥ -

i k j k i jsim d d

n
n

While choosing a case c to add to a partially constructed retrieval set R, one can also consider how 

different it is from the cases already in the retrieval set. The relative diversity of a case c w.r.t. a set R

is defined as,

RelDiversity(c, R) = 1 if R = { }

=
1 , (1 ( , ))=S -i m i isim d d

m
; otherwise

The case to be incrementally added to the retrieval set would be one that maximizes a combination 

of similarity with the query and relative diversity with the retrieval set. One definition of the combined 

score, called Quality, is,

Quality(c, R) = a*sim(c, dquery)? + (1–a)*RelDiversity(c, R)

where dQuery is the description of the given problem or query and a is a parameter used to control the 

importance of the two components in the final score. While similarity is a function of the query and a 

candidate case, relative diversity depends upon cases added to the retrieval set so far.

15.1.3 Forms of CBR

The basic process in CBR is that a user describes a problem and the system comes up with a solution. 

The system does this by retrieving the relevant case from its memory and constructing a solution 

from the lesson stored in the case. The process of retrieval and reuse is determined by the underlying 

representation. Three basic schemes have been identified (Lenz et al., 1998), (Bergmann, 2002).

1. Conversational CBR This focuses on the conversation that may take place in a helpdesk situation, 

in a Customer Relationship Management (CRM) system. The questions that an agent may ask the 

customer assume the greatest importance and find a place in the representation system.

2. Structural CBR Cases are described using a well defined vocabulary of attributes and their values. 

The attributes may be organized on the relations between them.

3. Textual CBR Very often, organizations keep records of the problems they encounter and solve as 

jottings in natural language. When cases are represented in free text,  some text processing techniques 

may have to be applied.

In the following sections, we explore each of the three avatars of CBR and look at issues of 

representation, similarity and retrieval.

15.1.4 Conversational CBR

Conversational CBR derives its name from the focus on conversation between an agent and a user. 

The agent may be a helpdesk operator in a diagnosis or troubleshooting situation, while the user could 
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be a help seeker. Given the increasing propensity for customer support, a CBR system can come in 

handy to support a helpdesk operator engage in a meaningful conversation with the user. Some of the 

earliest successful applications of CBR were in helpdesk situations (for example, the Compaq’s Smart

system (Acorn and Walden, 1992)). More recently, conversational CBR has also found application in 

recommender systems. Recommender systems are electronic commerce applications designed to help 

a customer choose an appropriate product.

Instead of taking the requirement (or query) in one go, it is done incrementally via a series of 

questions. In the early systems, the questions were chosen by the agent, and used to sift through the 

possibilities. More recently however, there has also been work on mixed initiative systems in which 

both sides can choose what question to address next (see for example2 (McSherry, 2002a)). This gives 

the user an opportunity to focus on the features she is interested in. For example, if one is looking to 

rent a flat, the system might start asking questions in a particular order, but you might first bring up the 

need for a balcony.

While conversational CBR can be done with any kind of representation, the name was initially 

used by a representation that focused on the questions. A case in conversational CBR is a collection of 

questions and answers, along with a diagnosis and actions to be taken. In addition, there may be a case 

number and a title. The following is an example of a case in conversational CBR3.

Title: PC not booting

Q1. Do you hear a BIOS beep code when you turn on the PC? Yes.

Q2. Do you know if your BIOS is made by American Megatrends? Yes.

Q3. Did you hear a beep before the BIOS startup screen is displayed? Yes.

Q4. Did the boot process continue? No.

Q5. Did you see the BIOS startup screen displayed? No.

Problem: Dynamic RAM(DRAM) Refresh Failure.

Action: 1. Troubleshoot your motherboard

 2. Treat this as a memory failure.

FIGURE 15.7 An example of a conversational case.

The cases are arranged in a tree structure that guides the search for the relevant case by questions 

posed at each internal node, as illustrated in Figure 15.8. In the figure, nodes are labelled with distinct 

question labels, but they do not have to be all distinct. For example, Q31 and Q34 could be identical.

Retrieval happens by the system asking a sequence of questions, starting at the root, and choosing the 

edge to traverse, based on the answer given by the user. At the end of the path is a leaf node containing 

the case, which contains the diagnosis and the therapy actions for the problem indexed by the questions 

and their answers. The high level retrieval algorithm is given in Figure 15.9.

Conversational CBR systems can be built rapidly where the developer can pose the questions that 

make up the path for each case. No domain representation is needed if the tree is constructed manually. 

All one needs to do is decide on what questions will index the case. At least one of the questions in a 

new case must be a node in the existing tree, with a different answer. The path to the new case will divert 

2 More papers at the sites for Mixed Initiative workshops held during ECCBR02 and ICCBR03 http://home.earthlink.net/~dwaha/research/

meetings/eccbr02-micbrw/ http://www.iccbr.org/iccbr03/workshops/dwaha/research/meetings/iccbr03-micbrw/index.html
3 Thanks to N.S. Narayanaswamy.
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from this node, and the new questions may be added below that. Figure 15.10 outlines an algorithm to 

add a new case and its associated conversation to the case base.

If the answers terminate at an internal node then all the cases in the subtree could be retrieved. But the 

order in which the questions are posed is fixed, and for any question to be asked, all previous questions 

must have been ordered.

The above algorithm can be used to construct the case base from scratch, adding cases one by one. 

In conversational CBR, this task is carried out by a human who knows questions and answers used. 

In order to automate the process, one needs to have a explicit case representation that can be used to 

generate answers to the relevant questions. When the above algorithm reaches a leaf node, one has to 

devise a new question in addition, to discriminate between the case stored there and the new case. This 

is only possible when the case representation contains some domain specific information. We will look 

FIGURE 15.9 The retrieval in conversational CBR is done by traversing the indexing tree, based on 

user responses. If the user fails to give a response that labels an edge to a child, the algorithm returns 

the leaves under the subtree, rooted at the node containing that question.

FIGURE 15.8 In conversational CBR, cases are stored as the leaves of a tree whose internal nodes 

are questions. Retrieval involves traversal from the root to a leaf navigated by the answers to the 

questions provided by the user.

Q1

Q21

Q31 Q32 Q33 Q34 Q35

Q22

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case A

A1
A2

A24 A25A23A22
A21

A31 A32 A33 A34 A35 A36 A37 A38 A31 A3A

ConversationalRetrieval(tree)

1 n ¨ Root(tree)

2 while not LeafNode(n)

3 do Ask Question Q in Node n

4        Let A be the set of answers

5        Accept response R from user, including “don’t know”

6 if R œ A

7 then return set of leaves below Node n

8 else   Let node m = child(n) such that edge(n,m) is 

labeled with R

9 n ¨ m

10 return n
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at the process of automatically constructing indexing trees for structural CBR later in this chapter and 

also in the chapter on Machine Learning.

Given that there is no domain modelling in conversational CBR, there is also no notion of similarity. 

One could introduce a notion of similarity based on the location of two cases based on their location in the 

tree (see the section on structural CBR), but that is not sound because different trees can be constructed 

for the same cases. Furthermore, similarity is not used for retrieval.

The greatest difficulty with this approach is that trees have to be handcrafted. In addition, maintenance 

is also cumbersome since the tree has to be edited manually. Conversational CBR would be useful when 

there is high traffic of consulting in a domain with small trees that can be handcrafted. For more complex 

domains, some explicit modelling of the domain could facilitate more flexible retrieval.

In the following section, we introduce structural representation, based on a well defined vocabulary 

of attributes and values. When this is done, we will see that it will be possible to construct trees for 

indexing automatically. We will still be able to implement retrieval by an incremental dialogue, like in 

conversational CBR. In addition, the questions to be asked could be chosen dynamically. We will also 

be able to allow the user to select questions in a mixed initiative mode.

15.1.5 Structural CBR

In structural CBR, a case is defined using a well defined vocabulary of attributes.

Vatt = {A1, A2, … , An}

FIGURE 15.10 A new case may be inserted in the case by starting at the root and answering the 

question stored there. The case follows the path where it has appropriate answers. When it does not 

have an answer, a new arc is created to accommodate the new case. If there are no more questions in 

the path, a new question is added.

AddConversation(case, tree)

1 n ¨ Root(tree)

2 while not LeafNode(n)

3 do Let Q be the question at node n

4        Let A be the set of answers

5        Let R be the answer to Q in case, including “don’t know”

6 if R œ A

7 then  Create a new child c of n with answer R for its edge

8                 Attach case to c

9 return

10            else  Let node m = child(n)such that edge(n,m)is labeled with R

11    n ¨ m

12    /* reached a leaf containing a case cold */

13  Find some difference D between cold and case

14  Construct a question Q to address the difference D

15  Store Q in node n

16 if cold answers Q with A1
17 then Create child n1 with edge label A1 and attach cold to n1
18 if case answer Q with A2
19 then Create child n2 with edge label A2 and attach case to n2
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In practice, we tend to use attribute names, like height, weight, cost, that are meaningful to us. 

Associated with each attribute Ai is a domain Di of values that can be assigned to the attribute.

Di = {vi1, vi2, … , vip}

The domain need not be finite or even countable. Associated with each attribute Ai is a type Ti that 

defines the type of the values in the domain Di. The commonly used types are Boolean, Integer, Real, 

Symbolic and Text. The Symbolic types may be further divided into Ordered, Unordered and Taxonomic 

types.

The lesson part of the case may or may not have a different vocabulary. In classification problems, the 

lesson may and attribute with a class label. In troubleshooting problems, the lesson may be a diagnosis 

and a set of actions to be performed. In recommender systems, there may be no distinction between 

the description and the lesson attributes. The user may partially describe a product, and the solution 

may be a full description of the best matching product. Here, any of the attributes could be the problem 

description, and the unstated attributes, the lesson used for case completion (Burkhard, 1998), (Hayes 

et al., 2001). One can think of the last example as an implementation of a content addressable memory

(see (Bechtel and Abrahamsen, 2002)), where objects are retrieved by describing them partially.

Cases are made up of a collection of attributes and values. Similarities between cases are defined by 

aggregation of similarities at the attribute level. The simplest representation is when the case is simply 

a set of attributes with their values. These are often referred to as flat cases. More complex cases may 

have the attributes organized by relations between attributes and collections of attributes in framelike 

structures. We will look at these structured cases later. The techniques for dealing with flat cases can 

easily extend to structured cases.

The common feature in structural CBR is that similarity between cases, or a case and a query, is 

computed by aggregating the similarities at the attribute level. The similarities at the attribute level are 

called local similarities, and the similarity at the case level is called global similarity. We first investigate 

local similarities and then look at how they are aggregated to determine global similarity.

15.1.6 Local Similarity

Let A1 and A2 be two attributes with the same domain D. One may belong to the query, and the other 

correspondingly to a case. Let V1 and V2 be the two values from D assigned to A1 and A2 respectively. 

The question then is how similar the two values V1 and V2 are. We need to define a similarity function 

simD such that,

simD(V1, V2) = 1 if the two values are identical or totally similar

simD(V1, V2) = 0 if the two values are totally dissimilar

and with other values in the range [0, 1], such that higher values reflect higher similarity.

The answer depends upon the type of the domain D.

It may also depend upon what the values represent. If for example the values come from a physical 

system in which the values can be represented in qualitative intervals then within an interval, one 

would have high similarity and across intervals low similarity. For example, we may think of values 

of temperature of water between room temperature and boiling point as one interval. Then 90° Celsius 

would be more similar to 70° Celsius than to 102° Celsius because the latter is outside the interval and 

water goes into a different state. Likewise, if someone has a nine-to-five work schedule then 1630 hours 

will be more like 1430 hours than 1730 hours.

In the absence of such knowledge, we rely upon the type T associated with the attribute. The following 

are the more commonly used types and their similarity functions.
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Boolean Attributes

When the type of the attribute is Boolean then the similarity is also a yes/no option. Either they are the 

same or they are different.

simBoolean(V1,V2) = 1  if V1 = V2

= 0  otherwise

Numeric Attributes

When the values V1 and V2 come from an integer or real domain then similarity depends upon the 

difference or the distance between the two values. But we also need to know the range from which the 

values come.

Consider for example a difference of 3 for numeric values. That is,

V1 – V2 = 3  or  V2 – V1 = 3

How similar are the two values? If the values were V1 = 2 and V2 = 5, you might consider them to 

be less similar than if they were 65 and 68. This is because at a subconscious level, one associates a 

background range with these numbers. For example, 2 and 5 might be the (very different) weights in 

kilograms of newborn babies while 65 and 68 might be the (quite similar) weights of two adults. The 

range of baby weights is much smaller than the range of weights of adults.4

Thus, local similarity between two numeric values V1 and V2 can be defined as,

simNumeric(V1,V2) = 1 – (|V1 – V2|)/(Vmax – Vmin)

where Vmax is the maximum value in the domain D and Vmin the minimum. By definition,

simNumeric(Vmax,Vmin) = 0

The expression |V1 – V2| is the absolute value of the difference. This implies that the similarity is 

symmetric, and does not depend upon which one of the values is greater. There can be situations when 

one may want to define a similarity function that is not symmetric. Consider the task of recruiting pilots. 

Then the case may have a value V1 for height that is acceptable for the job. Let the query have value 

V2 representing the height of an aspiring candidate. In such a situation, if V2 is greater that V1 then one 

may want to assign a greater similarity value than if it were the other way round, assuming that one of 

the requirements for the job is that of a minimum height. Likewise, if a query states a desired price for a 

product then a lower price tag on a product may match better than a price tag higher by the same amount.

String Attributes

String type attributes have a value that is a sequence of characters from some alphabet. The alphabet 

could be {0, 1} for binary codes, the set {C, A, G, T} for chromosomes, or the set of letters {a–z} for 

text attributes.

A string may be treated as a symbol name for which a specific similarity function may apply. For 

example, the strings “blue” or “Wednesday” may be treated as symbols. A string may be treated as a 

piece of text, which may have its own similarity function. We will look at these options later.

Otherwise, the similarity between two strings may be defined as a function of some notion of 

difference or distance defined on strings.

4 Looking at candidates for boxing matches, however, 65 and 68 might be considered to have low similarity because the “qualitative 

interval” that defines Welterweight category is 63.5 kg and 66.7 kg —http://en.wikipedia.org/wiki/Welterweight
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Levenshtein Distance One measure of difference in strings is the notion of edit distance, which 

counts the number of changes one has to make to convert one string into another (Levenshtein, 1966). 

For example, given the two strings,

S1: brick and mortar

S2: click and portal

one can be changed into the other by changing four letters in either string. In addition to substituting 

characters, one may also allow deletion and insertion of characters. This will allow us to compare strings 

of different lengths. For example, given the strings,

S3: nuclear energy is safe

S4: nuclear energy is unsafe

S3 can be converted into S4 by inserting the characters “un” in S4. However, as discussed in Chapter 

5, the number of ways a string of length n can be aligned with a string of length m, when insertions and 

deletions is allowed, is the number of distinct paths in an n + 1 by m + 1 rectangular grid,  with diagonals 

from left to right as well. The number of such paths is P(m, n), which can be prohibitively large as the 

strings become longer. Consequently, a simpler similarity function is desirable.

Hamming Distance One simple form of edit distance is the Hamming distance. This distance measure 

counts the number of locations where the two strings differ, and is defined for strings of equal length 

(Hamming, 1950). The distance between strings S1 and S2 is four, while it is not defined for strings S3

and S4. One could in principle pad the shorter string with blanks, but the resulting measure of distance 

may not be intuitively acceptable. Hamming distance is also a metric. That is, it satisfies the properties5,

1. d(X, Y) ≥ 0 (non-negativity)

2. d(X, Y) = 0 if and only if X = Y (identity of indiscernibles)6

3. d(X, Y) = d(Y, X) (symmetry)

4. d(X, Z) £ d(X, Y) + d(Y, Z) (triangle inequality).

The maximum possible Hamming distance between two strings of length n, is n. Let h be the hamming 

distance between two strings. Then, the normalized hamming distance h¢ is h/n. Similarity between the 

two strings X and Y could then be defined as,

simH (X, Y) = 1 – h¢

= 1 – h/n

Using this definition, the similarity between strings S1 and S2 is,

simH (S1, S2) = 1 – 4/16

= 0.75

n-gram Similarity When we compare strings by mapping characters of one to the other, the outcome 

is critically dependent on the alignment. Further, insertion of even one character in the string, shifts the 

alignment of the entire remaining string.

When strings are natural language word sequences, this can lead to similarity measures that are 

susceptible to large fluctuations with small changes. When an attribute contains text, the similarity 

between two strings should ideally be compared, based on the meaning of the text. For example, the 

two strings “I feel like eating something” and “I am hungry” represent a similar state of a person, and 

should be treated to be highly similar.  But that requires deep semantic knowledge. We will look at other 

5 Metric (mathematics). http://en.wikipedia.org/wiki/Metric_%28mathematics%29
6 Note that conditions 1 and 2 together produce positive definiteness.
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approaches to matching text documents in Chapter 16. Here we look at a simple approach of making 

text matching more robust. This is based on representing the string as a collection of n-grams, where 

each n-gram is a sequence of n characters that occurs consecutively in the string.

Let the two strings X and Y be represented by sets of n-grams NX and NY.

NX = {X1, X2, …, Xn}

NY = {Y1, Y2, …, Ym}

Then, the n-gram similarity between X and Y is given by,

sim(X, Y) = 
max (| |, | |)

«x y

x y

N N

N N

The set representation does not take into account repeated occurrences of n-grams. We can extend this 

by treating the n-gram representation as bags, treating each occurrence as distinct. The set of common 

n-grams will have to take this into account. Observe that the set representation ignores the position in 

which n-grams occur. This is similar to the vector space representation for documents made up of terms 

that we will investigate in the language processing chapter. One difference is that there is some positional 

information captured in the individual n-grams. The two sentences “John loves Mary” and “Mary loves 

John” will in fact have slightly different sets of trigrams, whereas treated as a bag of words in the vector 

space representation, the two become identical.

We illustrate the n-gram matching with the two strings S1 and S2 described above. We take n to be 3 

and let TS1 and TS2 be the two sets of trigrams for the corresponding strings S1 and S2.

TS1: {bri, ric, ick, ck_, k_a, _an, and, nd_, d_m, _mo, mor, ort, rta, tar}

TS2: {cli, lic, ick, ck_, k_a, _an, and, nd_, d_p, _po, por, ort, rta, tal}

TS1 « TS2 = {ick, ck_, k_a, _an, and, nd_, ort, rta}

|TS1| = 14, |TS1| = 14, | TS1 « TS2| = 8

simT(S1,S2) = 8/14 = 0.57

The reader would have noticed that the trigram similarity between S1 and S2 is lower than the similarity 

based on the Hamming distance. This is because the two strings have many common characters in the 

same place. If this was not so, then the trigram method would have scored better. Consider a slight

modification of the two strings with brick replaced by bricks,

S¢1: bricks and mortar

S2: click and portal

Then, the set of trigrams for the first sentence is,

TS¢1: {bri, ric, ick, cks, ks_, s_a, _an, and, nd_, d_m, _mo, mor, ort, rta, tar}

|TS¢1| = 15

The common trigrams are,

TS¢1 « TS2 = {ick, _an, and, nd_, ort, rta}

|TS¢1 « TS2| = 6

The similarity now is,

simT(S¢1, S2) = 6/15 = 0.40

The similarity has gone down, but is still a significant value. The Hamming distance does not apply 

because the two strings are of equal length. If we were to pad the second string with a blank at the end 
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to make them equal length, the Hamming distance between the two strings would now be 14, and with 

string length going up to 17 the similarity is,

simH(S¢1,S2) = 1 – 14/17 = 0.176

As one can see, the Hamming distance based similarity has plunged with the addition of the extra 

letter. This is because the inserted letter has disrupted the alignment between the two strings that was 

high initially.

The trigram based similarity, on the other hand, is much more robust.

We have used the common trigrams as a measure of similarity. We can also treat each trigram as a 

word or term of text, and use the cosine similarity for text described in the language processing chapter.

Symbol Attributes

When a string stands for a symbol then it must be treated as an atomic element. Symbol type attributes 

occur in many domains. We can treat names of colours like “red”, “orange” and “blue” as symbols. 

Other examples are the names of days of a week, months in a year, the codes assigned to products like 

cameras, printers, etc.

Symbol type attributes can be further classified into three types: ordered, unordered and taxonomic.

Ordered Symbols

Ordered symbol types may derive a notion of similarity from the nearness (or distance) between two 

symbols in the order.  For example, the month of May could be considered more similar to April than 

to October. Similarity for ordered symbol types can then be computed, based on the index of the values 

in the order. Let AO be an ordered symbol type attribute that can take values from the ordered set as 

VAO given below,

VAO = (V1, V2, … , VT)

The similarity between two values Vi and Vk is given by

simOrdered(Vi,Vk) = 1 – (|k – i|) / (T – 1)

Unordered Symbols

Unordered symbols types may be treated in two ways. The simpler approach is to rely on equality. That is,

simUnorderd(Vi,Vk) = 1   iff Vi, = Vk

= 0  otherwise.

However, in some domains, the symbols may stand for some things that may have some inherent 

similarity. This is like saying that the symbols have some meaning (semantics) and similarity can be 

computed at the meaning level. Observe that this is what we said about words in natural language too. 

This is not surprising that our natural languages are essentially symbol systems, where words symbolize 

something.7

One can allow a user to define similarity between unordered symbol types. For example, if the 

attribute Drinks as part of a case structure for planning children’s parties may have the values as follows,

VDrinks = {Coke, Pepsi, Lemonade, Orange juice}

then a user could construct a similarity table explicitly, for instance, as follows,

7 I remember a bright four year old asking “But why do they call it a fan? Why not something else?”. She was referring to the 

ceiling fan, a common fixture in Chennai homes.
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Table 15.1 A similarity table for drinks

simDrinks Coke Pepsi Lemonade Orange juice

Coke 1 0.9 0.4 0.2

Pepsi 0.9 1 0.4 0.2

Lemonade 0.4 0.4 1 0.8

Orange juice 0.2 0.2 0.8 1

Other symbolic attributes, like colour, may have an underlying physical basis. Colours can be 

described by the frequency of light, but that would apply only to pure colours.  Instead, one of the 

ways we describe a colour is as a point in the RGB space which is formed by taking three colours as 

primitives, and others can be described as combinations of the three “primary” colours. We can then 

treat the three RGB values as numeric attributes and compute their local similarities, and combine the 

three local similarities using some aggregation function.

Taxonomic Symbols

Taxonomies are partial orders in which one symbol is a hyponym of another. For example the symbol 

(or word) “car” is a hyponym for the symbol “vehicle”, and “chair” is a hyponym of “furniture”. The 

most commonly known taxonomies are in the animal kingdom, where life forms are categorized into 

species and families.

The tree structure of a taxonomy gives  a basis for defining similarity between symbol types. Consider, 

for example, a taxonomy of meal types shown in Figure 15.11. It could be an attribute you have to fix 

for a dinner party, or the menu card of an eclectic restaurant.

Dinner

Asian European

ContinentalBritish

Haggis

Fish’n’Chips
Mediterranean

German
French

Quiche

Italian

Pizza RavioliSemmelknödel

Crepe
Sauerkraut

Red-Curry

Khao-Pad

Rajma-Chawal

Thai
Kulche-Chole

Bisibelebath

Dosai

South-Indian

North-Indian

FIGURE 15.11 The dinner offered by a restaurant may have values that can be organized in a 

taxonomy.
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Observe that only the leaves in the taxonomy represent specific food items. The internal nodes stand 

for collections of food items. But any node could be a value of the attribute. For example, you friend 

may choose “Thai” for dinner, meaning that any of the leaves below that node are acceptable. Or a 

restaurant may say that they serve “Continental” food, meaning that they serve all the items that are 

leaves below this node.

How does one define similarity between different values represented by the nodes in the taxonomy 

of values? The topology suggests that “Red-Curry” is more similar to “Rajma-Chawal” than it is to 

“Pizza”. Or one could say that it is closer to “North-India” than to “British”. Or one might say that 

“Thai” is more similar to “South-Indian” than it is to “Mediterranean”.  All these comparisons can be 

handled as follows.

For two nodes, Ni and Nk, let Ni Nk denote that Ni is a descendant (or hyponym) of Nk, and let <Ni, Nk>

denote the lowest common ancestor(LCA) of Ni and Nk. A node L is the lowest common ancestor to two 

nodes N and M iff N L and M L and there is no node L¢ such that N L¢ and M L¢ and L¢ L. For 

example, “Asian” is the LCA of “Red-Curry” and “Rajma-Chawal”.

Then, a query node Q is more similar to a node Ni than to node Nk iff the LCA of Q and Ni is a 

descendant of the LCA of Q and Nk. That is,

sim(Q, Ni) > sim(Q, Nk) ∫ <Q, Ni>  <Q, Nk>

While this tells us that which node is Q more similar to, it does not give us a numeric value for 

similarity, which is what we need if there is a taxonomic attribute in the case and the query.

One measure of similarity in a taxonomy could be derived by treating the length d(Ni,Nk) of the 

shortest path between two nodes as a measure of distance between the two nodes. Then, similarity 

between the two nodes Ni and Nk is,

sim(Ni, Nk) = 1 – d(Ni, Nk)/D

where D is the length of the maximum path in the taxonomy. However, this similarity measure has a 

problem that it is not sensitive to where the two nodes lie in the taxonomy. It assigns the same similarity 

to the pairs (Khao-Pad, Red-Curry), (Asian, European), and (Dinner, British).  A related measure known 

as lch defines it as follows (Leacock and Chodorow, 1998),

simlch(Ni, Nk) = –log(d(Ni, Nk)/2D)

An alternative definition of similarity takes into account where the two nodes lie. In particular, if 

there are two siblings deep in the taxonomy, they are more similar as compared to two siblings higher 

up. Thus, the similarity of the pair (Khao-Pad, Red-Curry) should be more than the similarity of the 

pair (Asian, European) even though both are pairs of siblings. One method called wup due to (Wu and 

Palmer, 1994) does this and computes the similarity between Ni and Nk as follows,

simwup(Ni, Nk) = 2d(<Ni, Nk>, root) / (d(Ni, root) + d(Nk, root))

where root is the root node in the taxonomy and <Ni, Nk> is the lowest common ancestor of Ni and Nk.

The seasoned gastronome amongst the readers would comment that the taxonomy above does not 

represent her notion of similarity of food items. For example, the French crepe is quite similar to the 

Indian dosa, also similar to the Ethiopian injera, whereas they are far apart in the taxonomy. That is, in 

fact, true because a closer observation reveals that the similarity defined on the taxonomy is based on 

the region the food belongs to, and not on the food itself. So one might say that the above taxonomy 

represents familiarity, based on region, and foods from similar regions are considered to be similar (from 

the point of choosing a menu that serves us well enough though).

It has also been pointed out that the notion of similarity also depends upon the task that is being 

addressed. For example, when your friend says that “Thai” food is okay, and if a restaurant offers 
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“Red-Curry”, the similarity between the two should be 1. This can be termed any-value semantics 

(Bergmann, 2002). In the above example, the value in the case (“Red-Curry”) is a descendant of the 

value in the Query (“Thai”). Any value semantics could also occur when the value in the Query (say 

“Ravioli”) is a descendant of a value in a case (say “Italian”). This is interpreted as the situation when 

your friend wants to eat “Ravioli” and a restaurant offers all “Italian” food. One could refer to the former 

as any-value semantics in a recommender system scenario, while the latter is any-value scenario in a 

diagnostic scenario. As a more apt example of the latter, consider the situation when you have a pain in 

your ear then there is good match for consultation with an ENT (ear, nose and throat) specialist. Observe 

that in the any-value semantics, one is saying that the internal node represents a set of leaf nodes, and 

one of them will match perfectly with the leaf in question. Thus, your friend’s desire to eat “Thai” could 

be interpreted as a desire to eat either “Red-Curry” or “Khao-Pad” and if the restaurant supplies the 

former then it is a good match. Likewise, if a doctor is a specialist in ear problems, and nose problems, 

and throat problems, she is a perfect match if you have an ear problem.

There can also be scenarios where the any-value semantics is not applicable and there is uncertainty

associated with the internal nodes in the taxonomy. This can be termed as some-value semantics. In the 

recommender system situation, let us say that at some time in the past you have eaten some “Thai” food 

with your friend. Now you want it again, but don’t remember quite what it was. If you go to a restaurant 

which serves only “Red-Curry”, one cannot say how well it matches your “query”. One could then adopt 

an optimistic approach, evaluating similarity as the maximum of similarity of “Red-Curry” with all the 

leaves that are descendants of “Thai”, which will turn out to be 1. This means that you are optimistic 

that it was indeed “Red-Curry” you wanted. Or one could take a pessimistic approach, choosing the 

lowest similarity of a leaf descendant with “Red-Curry”. This assumes that the “Thai” hyponym you 

actually wanted was in fact the one most dissimilar to “Red-Curry”.  One could also choose the average 

in proportion to the probability of their occurrence.  In the diagnostic situation, there could be uncertainty 

if say, you were not sure whether it is your ear, or your eyes that is causing your headache and the doctor 

happens to be an ENT specialist. Then she may or may not8 be able to diagnose your problem, so you 

cannot say you have a perfect match.

15.1.7 Global Similarity

Let a case be defined by the set of attributes,

Vatt = {A1, A2, … , An}

Consider two cases C1 and C2,

C1 = (v11, v12, …, v1n)

C2 = (v21, v22, …, v2n)

where vik is the value of the kth attribute of Ci. We have already seen how the local similarity between 

the two values for each attribute can be computed. The task now is to define how the collection of local 

similarities between attributes of C1 and C2 determine the global similarity of the two cases. Let the 

local similarities between the two cases be represented by (l1, l2, …, ln). Then, we need to define an 

aggregation function to determine the global similarity sim(C1,C2)
9,

sim(C1, C2) = F(sim(v11, v21), sim(v12, v22), …, sim(v1n, v2n))

= F(l1, l2, …, ln)

8 In practice though, an ENT specialist would also be to tell you that you have a problem with your eyes or ears.
9 We use the same symbol sim for both local and global similarity. The arguments to the function determine what we are talking 

about.
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The aggregation function F determines how the similarities at the attribute level combine together 

to determine the overall similarity. Various aggregation functions can be defined. Keep in mind that the 

local similarity values are in the range [0,1]. We look at some possible definitions of F.

Average

The most intuitive aggregation is to take the average value of the local similarities. This gives us the 

function,

FA ∫ average((sim(v11, v21), sim(v12, v22), …, sim(v1n, v2n))

∫ (sim(v11, v21) + sim(v12, v22) +, …, + sim(v1n, v2n)) / n

Weighted Average The average aggregation function gives equal importance to all the attributes. In 

many problems, some attributes may be more important than others. A weighted average aggregation 

takes additional input in the form of a set of weights for the attributes that determines the relative10

importance of each attribute. Let the set of weights be W = (w1, w2, …, wn). Then, the weighted average 

aggregation function is,

FWA ∫ (wi ◊ sim(v11, v21) + w2 ◊ sim(v12, v22) +, …, + wn ◊ sim(v1n, v2n)) / Sn
1wi

If the weights are normalized such that,

(w1 + w2 + … + wn) = 1

then the weighted average aggregation becomes,

FWA ∫ (wi ◊ sim(v11, v21) + w2 ◊ sim(v12, v22) +, …, + wn◊sim(v1n, v2n))

The weights determine the relative importance of each attribute. For example, consider a domain in 

which the cases represent cylindrical objects using the attributes that include, amongst others, height, 

diameter and colour. Figure 15.12 shows two candidate objects that could match a query object. Only 

the RGB values for the colours are shown in the figure.

Query

Colour

Red = 102

Green = 153

Blue = 255

Case1

Colour

Red = 175

Green = 51

Blue = 232

Case2

Colour

Red = 95

Green = 149

Blue = 247

?? ??

FIGURE 15.12 Which cylinder is more similar to the query? If colour has higher weight, then it is 

Case2. If shape (height and diameter) has higher weight, then it is Case1.

As one can see in the above diagram, Case1 has a shape that is closer to the query than Case2, while 

the latter has a colour that better matches the query colour. So which case is more similar to the query? 

10 In an implementation of CBR in the manufacturing domain (Khemani et al., 2002), the shop floor personnel gave high weights 

to all attributes, saying that each was very important. While that may be true from the manufacturing perspective, it need not 

be the case for measuring similarity between two cases. 
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The answer depends upon whether shape is more important in the matching process, or colour. This 

relative importance can be represented by the weights in the case structure.

The weights could be assigned in different ways.

1. The weights could be static, and applicable to all the cases. Whenever a query is generated, these 

weights are used for computing similarity with all candidate cases.

2. The weights could be stated along with the query. Thus, each query also determines which attributes 

are more important. In a recommender system for example, the user could emphasize the features 

that she considers more important. For example, when looking for a flat to rent, one could give 

more importance to certain features like location, or number of balconies.

3. The weights could be case specific. This means that each case “knows” what attributes are more 

important when it is being considered. For example, if one were to build a case based medical 

diagnosis system then each candidate case (diagnosis) would state what features are more important 

for it to be true.

Maximum

Another simple aggregation function takes the maximum of the local similarities,

Fmax ∫ maximum((sim(v11, v21), sim(v12, v22), …, sim(v1n, v2n))

or the weighted local similarities,

Fwmax ∫ maximum(wi◊sim(v11, v21), w2◊sim(v12, v22), …, wn◊sim(v1n, v2n))

The (weighted) maximum aggregation brings a case into contention, even if only one of its attributes 

matches very well. One can obtain progressively more demanding similarity functions by including the 

second highest local similarity (Max-2), the third highest (Max-3), and so on. Formally, let us arrange 

the local similarities between the two cases in decreasing order of magnitude, (h1, h2, …, hn). We have 

renamed the values to hi only to highlight the fact that the list contains the highest, the second highest 

and so on in decreasing order.  The different aggregation functions can then be defined as,

Fmax-k ∫ hk

Thus, Max-k aggregation says that one should look at the similarity of the kth attribute when they 

are arranged in decreasing order of local similarity. Since the cases are selected based on their global 

similarity score, another way of looking at Max-k aggregation is that at least k attributes should have 

a high match.

Minimum

The minimum aggregation function is the opposite of maximum aggregation.

Fmin ∫ minimum((sim(v11, v21), sim(v12, v22), …, sim(v1n, v2n))

or the weighted local similarities,

Fwmin ∫ minimum(wi◊sim(v11, v21), w2◊sim(v12, v22), …, wn◊sim(v1n, v2n))

The (weighted) minimum aggregation is the strictest possible aggregation function. It says that the 

global similarity is equal to the lowest local similarity. Even if one attribute does not match well, the 

case goes out of contention. All attributes should match well with this aggregation function. Analogous 

to the Max-k aggregation, we can also define Min-k aggregation functions that are progressively less 

strict. The formal definition is left as an exercise for the reader.

The global similarity depends upon the local similarities of the attributes and also the weights assigned 

to the attributes. Let us consider a small fictitious case base of employees in a fictitious company called 
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‘Anokhi Research’. The case base is given in Table 15.2 below. Let us assume the task is to predict the 

salary of a new (query) candidate, based on the salaries of the most similar candidates.

The case schema contains the following attributes,
 ● Name: Employee name. Not used in the similarity function. Weight = 0
 ● Gender: “M” or “F”. Uses equality as similarity. Weight = 10
 ● Age: Numeric. Uses a linear similarity function with range 50. Weight = 10
 ● Experience: Numeric. Linear function with range 50. Weight = 10
 ● Education: Unordered symbol. Similarity table. Weight = 20
 ● HandOn?: Boolean. Uses equality as similarity. Weight = 10
 ● Salary: Solution attribute. Numeric.

The attribute “Education” takes three values: “Bachelors”, “Masters” and “PhD”. One could have 

defined this as an ordered symbol type. Choosing a user defined table however, allows us to define the 

local similarities explicitly. We define the following similarity table for the attribute Education.

Table 15.2 A sample similarity table for unordered type attributes

simEducation Bachelors Masters PhD

Bachelors 1 0.75 0.5

Masters 0.75 1 0.75

PhD 0.50 0.75 1

Table 15.3 A small fictitious case base

Name Gender Age Experience Education HandsOn? Salary

Abayomi M 31 3 PhD No 3400

Abdul M 26 2 Masters Yes 6500

Abheek M 32 8 Masters No 7400

Abigail F 34 11 Bachelors No 3650

Abner M 46 24 Bachelors No 14600

Acastus M 46 17 PhD No 13950

Adorna F 29 4 Masters No 2800

Adria F 31 4 PhD No 3700

Adrian M 36 6 PhD Yes 17600

Agatha F 47 23 Masters No 14650

Agnar M 38 11 PhD Yes 18600

Aguidi F 43 20 Bachelors No 14000

Ahneta F 42 18 Bachelors Yes 19600

Aimara F 50 23 PhD Yes 21000

Airyaman M 34 12 Bachelors Yes 12800

Aithne F 54 30 Masters Yes 22200

Akilina F 24 2 Bachelors Yes 2300

Akira M 51 26 Masters Yes 21400

(Contd.)
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Aleron M 34 6 PhD Yes 18000

Alex M 34 9 Masters Yes 12550

Alice F 28 5 Masters No 2950

Alyssa F 35 11 Masters No 7850

Amalie F 25 3 Bachelors No 2450

Amika F 29 7 Bachelors Yes 12050

Amirthini F 46 16 PhD Yes 20400

Anana F 30 1 PhD Yes 16200

Anantamati M 55 31 Masters No 15450

Anbuselvan M 37 9 PhD No 8900

Andreas M 24 1 Bachelors Yes 2150

Angela F 22 1 Bachelors No 2150

Anisah F 39 10 PhD No 10200

Anta-Anclla F 35 7 PhD Yes 18500

Anton M 33 8 Masters No 7400

Anurag M 25 2 Masters No 2600

Anuragini F 25 0 Masters Yes 6200

Anuun M 35 12 Bachelors No 3800

Anzhela F 37 14 Masters Yes 13300

Archana F 50 22 PhD No 14700

Arezoo F 30 8 Bachelors No 3200

Aryenish F 28 3 Masters Yes 6650

Ashraf M 32 3 PhD Yes 17000

Ashutosh M 46 21 Masters Yes 20400

Atahualpa M 31 9 Bachelors No 3350

Atsu M 23 0 Bachelors No 2100

Aurang M 37 14 Bachelors Yes 13100

Ayodele M 40 17 Bachelors Yes 19400

Azibo M 32 3 PhD No 3650

Azuma F 26 4 Bachelors Yes 2600

Let us look at a few queries and the three best matching cases.

Query Example 1

The table below represents the query.  The problem is to predict the salary that Ayesha is likely to get.

Name Gender Age Experience Education HandsOn? Salary

Ayesha F 25 4 Masters Yes ?
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The best three matching cases in our case base ordered on similarity are

Name Gender Age Experience Education HandsOn? Salary

1 Anuragini F 25   0 Masters Yes   6200

2 Aryenish F 28   3 Masters Yes   6650

3 Anzhela F 37 14 Masters Yes 13300

The similarity values are given below with the last column being the global similarity:

Name Gender Age Experience Education HandsOn? Similarity

1 0 1 1 0.92 1 1 0.99

2 0 1 0.94 0.98 1 1 0.99

3 0 1 0.76 0.8 1 1 0.93

One way to compute the expected or predicted salary of the new candidate is to take the weighted 

average of the retrieved salaries. The weights are the similarity values. Based on this, the expected 

salary of Ayesha is,

Salaryexpected = (6200 ¥ 0.99 + 6650 ¥ 0.99 + 13300 ¥ 0.93)/ (0.99 + 0.99 + 0.93)

= 8622

The reader would have observed that the retrieved cases match exactly on Gender, Education and 

HandsOn? attributes, and for those attributes the local similarity is 1.

Let us try a new weight schema which gives less weight to Gender and more to Age, as shown below.

Gender Age Experience Education HandsOn?

weight 1 25 10 20 10

The new retrieval set is,

Name Gender Age Experience Education HandsOn? Salary Sal-Symb

1 Anuragini F 25 0 Masters Yes 6200 Medium

2 Aryenish F 28 3 Masters Yes 6650 Medium

3 Abdul M 26 2 Masters Yes 6500 Medium

with similarities,

Name Gender Age Experience Education HandsOn? Similarity

1 0 1 1 0.92 1 1 0.99

2 0 1 0.94 0.98 1 1 0.97

3 0 0 0.98 0.96 1 1 0.97

Observe, that while Anuragini and Aryenish still occupy the first two positions, Anzhela has been 

replaced by Abdul. Also note that the predicted salaries are more similar in the three retrieved cases, 

yielding,

Salaryexpected = (6200 ¥ 0.99 + 6650 ¥ 0.97 + 6500 ¥ 0.97)/(0.99 + 0.97 + 0.97)

= 6449
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What has happened in the second set is that because we have reduced the weight of Gender, and 

increased the weight of Age, a different set of cases has a higher similarity value. The three cases are 

similar in all other respects and also predict a similar salary. This suggests that in our (fictitious) case 

base, gender does not matter. This fact will be borne out when we construct a decision tree for the given 

case base in a later chapter. Let us try another query.

Query Example 2

The second query is

Name Gender Age Experience Education HandsOn? Salary

Azizi M 43 15 PhD No ?

The retrieval set with the second set of weights is,

Name Gender Age Experience Education HandsOn? Salary

1 Acastus M 46 17 PhD No 13950

2 Anisah F 39 10 PhD No 10200

3 Anbuselvan M 37   9 PhD No   8900

with similarities,

Name Gender Age Experience Education HandsOn? Similarity

0 1 0.94   0.96 1 1 0.97

0 0 0.92 0.9 1 1 0.94

0 1 0.88   0.88 1 1 0.94

And the predicted salary is 11052.

Observe again that a different gender employee has come into the three most similar cases. We can 

verify that this is because of the low weight for Gender. Let us look at the retrieval set with the first set 

of weights we began with.

The retrieval set with original weights is,

Name Gender Age Experience Education HandsOn? Salary

1 Acastus M 46 17 PhD No 13950

2 Anbuselvan M 37 9 PhD No   8900

3 Azibo M 32 3 PhD No   3650

with similarity values,

Name Gender Age Experience Education HandsOn? Similarity

1 0 1 0.94 0.96 1 1 0.98

2 0 1 0.88 0.88 1 1 0.96

3 0 1 0.78 0.76 1 1 0.92

The predicted salary is 8941.

True enough. When Gender is given a significant weight, the same gender cases get a higher similarity 

value. One can also observe that the predictions in the best three cases are wildly different, even though 

the similarity values themselves are quite high.
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Thus, high similarity by itself does not mean anything. Because whatever the similarity function we 

define, some cases will turn up with high values. What is important is to define the similarity function 

such that the solution of the retrieved case has high utility. In our example, this means that the predicted 

salary is as accurate as possible. If that can be done then CBR will work. Similar candidates will have 

similar salary predictions. This can be achieved in our problem by defining appropriate local similarities 

and also appropriate weights.

The case structure represented here may be termed flat, because it is a collection of attributes without 

any other constraints. Flat cases capture the essence of structural CBR, viz. that cases are made of 

components that have their own local similarities, and these local similarities can be aggregated to 

compute global similarity.

Flat cases are easy to implement. One can store them in relational database systems, and this allows 

us to build commercial systems that contain a large number of cases.

However, subsets of attributes may be clumped together and can have their own identity. Different 

clumps in a case may have some relation with each other, and the case can have its own internal structure. 

This could have further implications on similarity computation. We shall look at such an object oriented 

representation later in the chapter. Below, we define a measure that may give a CBR system designer a 

means to evaluate similarity functions.

15.1.8 Case Cohesion

A similarity measure is good if the cases with high similarity also have high utility. In some domains, 

one can also define a similarity measure for cases using the lesson component. Then, one could define an 

evaluation measure called cohesion, originally defined for textual, case based reasoning (Lamontagne, 

2006). The basic idea is to look for overlap between the set of most similar cases using the description 

side similarity, with the cases on the solution side similarity. The overlap between the two sets would 

determine the cohesion of the case base. Figure 15.13 below illustrates the concept.

description space

lesson space

FIGURE 15.13 Cohesion is defined by the overlap between the set of cases that are the most similar 

to a case on the problem side similarity, and the set of cases that are most similar on the solution side 

similarity.

Let the two sets SD and SL be constructed using thresholds tD and tL using similarity functions simD

and simL. That is,
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SD(C, CB) = {case Œ CB | simD(case, C) > tD} and

SL(C, CB) = {case Œ CB | simL(case, C) > tL}

Case cohesion can then be defined as,

cohesion(C) = Sinter(C, CB) / Sunion(C, CB)

Sinter(C, CB) = SD(C, CB) « SL(C, CB) and

Sunion(C, CB) = SD(C, CB) » SL(C, CB)

If the two sets are identical then the value of case cohesion will be 1. A lower value means that there 

are more cases that belong to either SD(C, CB) or SL(C, CB), but not to the other.

One can compute the cohesion of the case base by computing the case cohesion value for each case. 

The higher the value of cohesion means that the best matching cases on the problem space similarity 

are likely to be the best matching cases on the solution space similarity. That is, similar problems will 

have similar solutions.

Now we turn our attention to how the best matching cases may be retrieved from a case base.

15.2 Retrieval

The task of retrieval is to retrieve the best matching cases. As discussed earlier, in this chapter, this 

may involve,

— retrieving all cases with maximum similarity.

— retrieving k Nearest Neighbours (kNN) or the k most similar cases.

— retrieving all cases above a given threshold level of similarity.

15.2.1 Similarity Based Retrieval

Similarity search, or nearest neighbour search, is different from range search in databases. Suppose we 

have some four dimensional numeric data in the range [0 –100]. Then, given a query with an attribute 

schema (A1, A2, A3, A4),

Q = (30, 40, 50, 60)

the following cases have equal similarity using the average aggregation as shown below:

C1 = (40, 20, 40, 40)

C2 = (50, 80, 50, 60)

C3 = (90, 40, 50, 60)

sim(Q,C1) = average((sim(q1, c11), sim(q2, c12), sim(q2, c12), sim(q4, c14))

= (sim(q1, c11) + sim(q2, c12) + sim(q3, c13) + sim(q4, c14))/4

= ((1 –|30 – 40|/100) + (1 – (|40 – 20|/100) + (1 – (|50 – 40|/100) + (1 – (|60 – 40|/100))/4

= (0.9 + 0.8 + 0.9 + 0.8) / 4

= 0.85

sim(Q,C2) = (sim(q1, c21) + sim(q2, c22) + sim(q3, c23) + sim(q4, c24))/4

= ((1 –|30 – 50|/100) + (1 – (|40 – 80|/100) + (1 – (|50 – 50|/100) + (1 – (|60 – 60|/100))/4

= (0.8 + 0.6 + 1.0 + 1.0) / 4

= 0.85

sim(Q,C3) = (sim(q1, c31) + sim(q2, c32) + sim(q3, c33) + sim(q4, c34))/4

= ((1 –|30 – 90|/100) + (1 – (|40 – 40|/100) + (1 – (|50 – 50|/100) + (1 – (|60 – 60|/100))/4

= (0.4 + 1.0 + 1.0 + 1.0) / 4

= 0.85
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While C1 differs from the query Q in all four attributes, C2 differs only on two, and C3 only on one 

attribute. But the one attribute C3 differs on, is by a large amount. It would thus be difficult to keep 

a range on the values of the attributes for retrieval. Suppose we kept a range (+/– 10, +/– 10, +/– 10, 

+/– 10) then only C1 would be retrieved, even though the other two are considered equally similar. On 

the other hand, if we kept a larger range say, (+/– 40, +/– 40, +/– 40, +/– 40), then some cases with low 

similarity will also be retrieved. For example,

C4 = (70, 80, 10, 20)

would be retrieved, even though it has a similarity value of 0.6.

Thus, while similarity search does allow the deviation of attribute values from the query values, it 

does not specify the amount of deviation for individual attributes. If one were to be doing threshold-

based retrieval, the constraints are on the aggregated similarity value rather than on individual attribute 

similarities.

We begin by describing how the kNN retrieval can be done sequentially.

15.2.2 Sequential Retrieval

The simplest algorithm is to look at all the cases sequentially and maintain a retrieval set R that satisfies 

the required retrieval criteria. Figure 15.14 below describes the algorithm at a high level. The retrieval 

set R is maintained as a list of pairs, where each pair contains the case id and the value of similarity 

with the query Q. Let the case base contain N cases, let k and N be input parameters. The first line of 

the algorithm does a cursory check on the size N. If it is less than k then the entire case base is returned, 

sorted on similarity with the query Q. Otherwise, the first k cases are inserted into R. The rest of 

the cases are compared with Q sequentially, and if found to be better,  replace the lowest similarity case 

in R.

SequentialkNN(q : query, CB : case base, k : retrieval size, n : case base 

size)

1 if k ≥ n

2 then return Sortsim(CB)

3 R ¨ ()

3 for i ¨ 1 to k

4 do Insert (< casei, Sim(casei, q) >, R)

5 kSim ¨ Second(First(R))

6 for i ¨ (k + 1) to n

7 do   s ¨  Sim(casei, q)

8 if s > kSim

9 then R ¨ Insert (< casei, s>, Rest(R))

10 kSim ¨ Second(First(R))

11 return Reverse(R)

Insert(newPair, list)

1 if Second(newPair) £ Second(First(list))

2 then return Cons(newPair, list)

3 else return Cons(First(list), Insert(newPair, Rest(list)))

FIGURE 15.14 The Sequential kNN retrieval algorithm maintains a sorted list of k cases. When it 

finds a better case, it removes the first case with lowest similarity and inserts the new one in its correct 

place.
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In the above algorithm, we have used the list functions “First” to return the first element of a list 

(called “car” in Lisp), “Second” to return the second element (defined as (car(cdr list)) in Lisp), “Rest” 

to return the tail of a list (called “cdr” in Lisp), and the Lisp function “Cons” that adds a new element 

to the head of a list. The function “Insert” adds a new pair to the list in its sorted place.

The retrieval set contains a set of k cases that have the highest similarity with the query Q. The 

algorithm given here is for the second criteria, or the kNN retrieval. This is the most commonly used 

criteria. The reader is encouraged to modify the algorithm for the other two criteria.

The complexity of the algorithm is linear in the number of cases, because each case is inspected 

once. It is also linear in the size of the retrieval set k, because insertion may involve comparison with K

cases in R. Finally, it is dependent on the complexity of similarity computation. The similarity of each 

case with the query is computed once.

Sequential retrieval works fine in many simple applications, especially with increasing computing 

power. If one has a few thousand cases and retrieval takes a few seconds, it may be good enough (see 

for example (Khemani et al, 2002). However, there may be problems where sequential retrieval is not 

fast enough. This may be because the number of cases is very large, and/or the similarity computation 

is very expensive.

We first look at some approaches to handle a large number of cases. We take up the simpler scenario 

where all attributes take values in a metric space. After that, we will look at case representations where 

similarity computation is expensive.

In both situations, there is a need to cut down on the number of similarity computations.

15.2.3 Metric Spaces and Nearest Neighbours

Cases made up entirely of numeric attributes can be handled by special methods because cases in metric 

spaces can be thought of as points in an N-dimensional space, where N is the number of attributes. One 

can then define similarity as a function of a global distance between the two cases. Given two numeric 

attributed cases C1 and C2,

C1 = (n11, n12, …, n1N)

C2 = (n21, n22, …, n2N)

the following distance measures can be defined between the two cases.

Manhattan Distance

The Manhattan or City Block distance is a sum of the distance along each dimension. It is so named 

because that is the amount one would have to walk on a square grid of roads in many modern cities.

distManhattan (C1, C2) = Si=1, N |n1i – n2i|

One can also compute the weighted Manhattan distance as,

distWManhattan (C1, C2) = Si=1, N wi *|n1i – n2i|

Weights could be incorporated into the distance measures described below as well. A commonly used 

distance measure in metric spaces is the Euclidean distance measure.

Euclidean Distance

distEuclidean (C1, C2) = (Si=1, N (n1i – n2i)
2)1/2

The Euclidean distance measures the length of the straight line between the two points, representing 

the cases in N-dimensional space.
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The above two measures in some sense aggregate the differences at the attribute level. We can also 

replicate the Max and Min similarity by corresponding distance measures.

Min Distance

Distmin (C1, C2) = min (|n1i – n2i|)

The Min distance measure is the smallest difference in any dimension between the two cases. Observe 

that it would correspond to the similarity aggregation function Fmax.

Max Distance

Distmax (C1, C2) = max (|n1i – n2i|)

The Max distance measure treats the largest difference as the distance between the two cases.

The following distance measure is a generalization of many of the functions described above.

Minkowski Norm

DistMinkowski (C1, C2) = (Si=1, N |n1i – n2i|
P)1/P

The choice of the parameter P determines the nature of this distance measure. When P = 1, it 

becomes the Manhattan distance; with P = 2 it is the Euclidean distance and as P Æ  it becomes the 

Max distance function.

Seen in this N-dimensional space, the closer the two cases are the more similar they are. If our retrieval 

task is to find the most similar cases, then we can use the distance measure directly. The name nearest 

neighbour in fact reflects this criterion.

If we need a similarity value, for example in threshold based retrieval then we need to map the 

distance value to a similarity value. While doing so, we need to know the maximum possible distance 

DMAX that two cases can have in the N-dimensional space. Then,

sim(C1, C2) = 1 – dist(C1, C2)/DMAX

Another way would be to normalize the attribute level distances to the range [0,1] and define the 

global distance function appropriately. This is left as an exercise for the reader.

Ordered symbol type attributes where the values are assumed to be spaced equally apart can also be 

treated as having a distance value. We can even extend the idea to Boolean attributes, with the distance 

between two values being limited to the set {0,1}.

15.2.4 KD Trees

When the case base becomes very large, there is a need to apply some techniques to selectively inspect a 

subset of promising cases. The reader must be familiar with binary search trees and B-trees (Cormen et al., 

2001). We look at a tree called kd-tree that was first devised by Bentley (1975). The kd-tree is different 

from binary search trees in two ways. One is that binary search trees search on one-dimensional data, 

while kd-trees search over multi-dimensional data. Two, kd-trees are designed for similarity searching, as 

opposed to the equality based searching in binary search trees. However, both operate on numeric spaces.

When cases can be seen as points in N-dimensional space, one can imagine the query as another point 

in the same space. The task then is to retrieve the cases that are closest to the query. If one can partition 

this space into regions that can be accessed by hierarchical index structures, then one could satisfy the 

retrieval criteria by inspecting only a few regions. Each region would contain cases similar to each other, 

and hence roughly equally similar to the query. This is the basic idea behind many retrieval algorithms 

in metric spaces (see for example (Frakes and Baeza-Yates, 1992), (Nene and Nayar, 1996), (Kleinberg, 

1997), (Kushilevitz et al., 1998), (Van Berendonck and Jacobs, 2003)).
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A kd-tree is a multidimensional binary search tree. Each internal node in the kd-tree has a test for the 

value of some attribute, like in a binary search tree. Each internal node represents a set of cases, and the 

two arcs below it point to two partitions of that set discriminated on the answer to the test. There is no 

restriction on the number of times an attribute can be used as a test. That is dictated by the distribution 

of cases in the N-dimensional space. Each leaf node represents a bucket that stores a set of cases. The 

size of the bucket is user determined. All the cases inside the bucket are inspected sequentially and that 

is a factor in determining the bucket size. Figure 15.15 shows a sample kd-tree constructed on a synthetic 

case space on two attributes X1 and X2. These two attributes may be the only ones defining the case, or 

may be the only (numeric) ones selected for constructing the tree.

D E

X1:102

X1:70

X2:152

X2:129

X2:142 X2:142

X1:138

F

A B

C G H

FIGURE 15.15 A sample kd-tree for the data shown in Figure 15.16. The data is partitioned into 

eight buckets named A to H. The number in the node represents the test (value £ number). Cases 

answering “yes” take the left branch.

The kd-tree above has been constructed to partition the cases in the two-dimensional space shown 

in Figure 15.16. Each dot represents a case in the figure, with its coordinates being the values of the 

two attributes.
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FIGURE 15.16 The case base in two-dimensional space defined by the attributes X1 and X2 The

first partition is marked by numeral 1, and is based on a value 102 for attribute X1.The labels A–H 

correspond to the leaves in the kd-tree in Figure 15.15.
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The kd-tree is built by a recursive algorithm in a top down manner. It begins with a single node at 

the root representing the entire case base. It then partitions the set of cases represented by the node, 

based on some attribute, and recursively calls itself to build the subtrees. The process halts on some 

termination criteria, which could be the size of the bucket or a threshold average intra-bucket similarity. 

The algorithm for building the kd-tree is described in Figure 15.17 below.  The structure of the nodes is,

Node ´  (attribute-name, : the attribute to be tested

attribute-value, : the value of the attribute

pointer-to-bucket, : bucket has the cases

pointer-to-left-child, : cases with smaller attribute values

pointer-to-right-child, : cases with larger attribute values

pointer-to-parent, : pointer to parent node

count). : number of times visited during search

Build-kdtree(CB : case base, A : attribute list, b : bucket size, parent : 

parent node)

1 if Size(CB) £ b

2 then lSubtree ¨ NIL

3 rSubtree ¨ NIL

4 b ¨ MakeBucket(CB)

5 return p ¨ (NIL, NIL, b, lSubtree, rSubtree, parent, 0)

6 else testAttr ¨ ChooseAttr(A, CB)

7 testVal ¨ ChooseVal(testAttr, CB)

8 largerCB ¨ LargerThan(CB, testVal)

9 smallerCB ¨ CB

10 b ¨ NIL       /* not a bucket */

11 p ¨ emptyNode

12 return p ¨ (testAttr, testVal, b,

13 (smallerCB, A, b, p),

14                             (largerCB, A, b, p), pNode, 0)

FIGURE 15.17 The algorithm Build-kdtree returns a pointer P to a node of the type (attribute-

name, attribute-value, pointer-to-bucket, pointer-to-left-child, pointer-to-right-child, pointer-to-parent, 

count). The last element “count” is used in the retrieval phase. Function Size counts the number 

of cases in CB. Function ChooseAttr selects and returns the attribute to be used for test at that 

node. Function ChooseVal selects and returns the test value for the chosen attribute. The function 

LargerThan selects the subset of CB that has cases with the value of the chosen attribute larger 

than the chosen value T. Function MakeBucket creates a bucket of cases and returns a pointer to 

the bucket.

The function is called with the value of the parent argument as “nil” to mark the root node. We create 

the empty node (P ¨ emptyNode) so that children in the recursive call can establish a pointer to the 

parent node.

The termination criterion in the above algorithm is the bucket size. This dictates the time needed to 

search the bucket. The reader is encouraged to try out different criteria, like the average intra bucket 

similarity.

The first choice one has to make in the algorithm is to choose the attribute to test at a given node, 

and the value of that attribute that is used in the test. Let us assume that the test value for each attribute 
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is the median, which divides the cases equally into two halves. The objective is to create two partitions, 

such that each contains cases that are more similar to each other. The following criteria are possible.

One method to do this is to compute the average global similarity between cases in the two partitions 

produced by each attribute. The attribute that yields the highest average similarity is used as a test at 

that node. Observe that this will be done at the time of building the kd-tree offline, and one presumes 

that one can afford more time. One can also construct a table of similarities before building the kd-tree.

Another method is to use the inter-quartile distance on each attribute as shown in Figure 15.18 below.  

The distance is computed only along one dimension by computing the difference only on the values of 

the concerned attribute. Let the case base be partitioned into four equal size quarters by separators along 

the dimension of a given attribute. The inter-quartile distance for an attribute is the distance between 

the first quarter and the fourth quarter. As shown in the figure, this distance is the maximum, along the 

dimension in which the spread of the cases is the maximum.

X1

X2

max inter-quartile distance

X1

X2

FIGURE 15.18 The vertical separator produced by the test on attribute X1 produces partitions that 

are closely knit together, as compared to the test on X2. The maximum inter-quartile distance chooses 

to split across dimensions that have the maximum spread.

A third approach is to use the notion of information gain to choose the attribute. However, this is 

possible only when the cases are used to classify objects into different classes. We shall look at this 

approach when we study the ID3 algorithm to build decision trees in Chapter 18.

The reader would have observed that constructing the kd-tree is an expensive process. Even for 

choosing one attribute, the entire set of cases has to be partitioned along all possible dimensions. 

However, one must keep in mind that this happens only in the preprocessing stage. The hard work put 

in during tree construction bears fruit later, during case retrieval, in the form of faster retrieval.

The first thing that happens when a query comes is that the retrieval algorithm goes down the kd-tree

answering questions at each node. When it reaches a bucket, the cases in the bucket are compared 

sequentially with the query. Then, depending upon whether the retrieval criterion is satisfied or not, the 

algorithm may need to visit some neighbouring buckets. This is because a better case might lie in one 

of those buckets. That could happen for example, when the query falls near the corner of a bucket. The 

kd-tree retrieval algorithm employs two tests to make decisions on these issues.
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The BWB Test

The Ball Within Bounds (BWB) test is used as the termination criteria.

The “ball” in question is a hypothetical surface defined by the retrieval criterion and the constructed 

retrieval set. For threshold based retrieval, it is defined by the threshold distance, or similarity. For 

kNN retrieval, it is defined by the similarity of the kth case in the retrieval set. The surface of the “ball” 

thus defined are points of equal distance (or similarity) from the query point. When we use Euclidean 

distance, as in the example below, the ball is a hypersphere in N-dimensional space. In two-dimensional 

space, as in the example, it is a circle. If one had used Manhattan distance, the circle would have been 

replaced by a rhombus. In N-dimensional space, the surface would be a hyper-rhombus.

The “bounds” are defined by the region in the space that has already been inspected. Thus, if the 

ball lies within the bounds of the region that has been inspected, it means that all cases in other regions 

are outside of the ball, and therefore will not meet the retrieval criteria. Remember, that cases outside 

the ball have lower similarity than the cases within the ball. If the BWB test returns true, the retrieval 

algorithm can terminate.

If the BWB test returns false then there is some part of the ball that lies in a region not yet explored. A 

better case could be lurking out there in that neighbouring region. The retrieval algorithm then backtracks 

up the tree one level and considers the other child. Should it go down that branch and visit the bucket(s) 

there? The answer is provided by the Ball Overlaps Bounds test.

The BOB Test

The Ball Overlaps Bounds test returns true if the ball overlaps the unexplored region in question. If 

the answer is true, then a more similar case might exist in the unexplored region. This is because the 

surface (boundary) of the ball marks the region of interest. For kNN retrieval, it marks the similarity, 

or distance, of the kth case in the retrieval set. Any case at a lower distance, or higher similarity, will 

be of interest. When the BOB test returns true, the algorithm goes down the branch and (sequentially) 

compares cases in the bucket with the query, if it is a bucket. If it finds more similar cases then the ball 

will shrink in size as the better case enters the retrieval set.

The BOB test and the BWB test are illustrated in the figures below. The figures represent the same 

partition of the same case base in the example above, with the buckets represented by shaded rectangles. 

The rectangles are drawn as concentric figures to highlight the tree structure. In fact, the boundaries of 

a rectangle will coincide with the boundaries of its parent. Let us assume that the task is to retrieve 4 

nearest neighbours for the query Q.

On processing a query Q, the retrieval algorithm ends up in bucket B. Figure 15.19 shows the query 

Q that falls in bucket B of the kd-tree. The four nearest cases are marked with white dots. The farthest of 

them defines the radius of the ball. The BWB ball test fails for the region inspected, which is bucket B.

The algorithm backtracks up the tree (see Figure 15.15) and considers B’s sibling A. The BOB test 

succeeds for A, and the algorithm inspects the cases in bucket A. As shown in Figure 15.20 below, two 

new cases are found that go into the retrieval set. The ball shrinks in size, because the farthest of the 

four is now closer than before. The BWB test now succeeds, and the algorithm can terminate. It has 

only inspected two of the eight buckets.

If the two cases found in bucket A had not existed then the ball would not have shrunk and the BWB 

test would have failed. The algorithm would have gone up and applied the BOB to the next bucket C.

As one can see from Figure 15.19, this test would have failed. It would have gone further up and come 

down to bucket D after answering the test X2 £ 142. It would have applied the BOB test to bucket D

with success, and proceeded to inspect the cases in that bucket. The point to note is that because of the 

BOB test, it would have skipped bucket C, and saved computation time.
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FIGURE 15.19 The query Q falls in the bucket B. The 4 nearest neighbours are shown as white 

dots. The distance to the fourth case marks the radius of the ball. As one can see, the BWB test fails. 

The algorithm goes up the tree and considers the other child A. The BOB test succeeds for A, and the 

algorithm explores bucket A.

FIGURE 15.20 After the algorithm explores bucket A, it finds two more cases. The ball shrinks in 

size and the BWB test will succeed for the region defined by buckets A and B. The algorithm thus 

terminates with the cases in white.
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How does one implement the BOB test and the BWB test? The BOB test needs to test whether the 

closest point in the region being considered is within the ball. Let us look at the two-dimensional space 

in Figure 15.21. There are essentially two kinds of points one needs to test the distance to. One when the 

closest point in the region, labelled 1 and 3 in the figure, is at the corner. The other is when the closest 

point is along one attribute dimension, as for region 2.

1 2 3

Q

FIGURE 15.21 In a two-dimensional space, there are essentially two types of adjacent regions. The 

first is (regions 1 and 3), where the nearest point to the query is at a corner. The second of the type 

labelled 2 is where the nearest point is along a particular dimension. The BOB test needs to compare 

the lengths of the dotted segments as shown in the figure with the radius.

After identifying the point closest to the query in the region, the test requires the computation of the 

length of the dotted segment and comparing it with the radius of the ball. With each new dimension 

added, one more type of point will be added. For example, in 3D space, the closest point could be a 

corner, on an edge, or on a face.

The BWB test is simpler. For each dimension, one 

needs to apply the test on both sides of the query point 

to check whether the distance to the separator is greater 

than the radius. The BWB test may be more complex for 

nonrectangular regions. If there are concave corners on the 

region boundary then the distance to those corners must 

also be compared with the radius as shown in Figure 15.22.

We assume that suitable BOB and BWB tests are 

implemented. It must be kept in mind that one is allowed 

to have error in these functions. The BWB test can be 

allowed to return false erroneously, and the BOB test can 

be allowed to return true erroneously. Functions that do 

that may be simpler to implement. They will not affect the 

correctness of retrieval. But the cost may be in terms of 

time taken for retrieval, due to unnecessary exploration of 

regions that a better function would have excluded.

The algorithm for retrieval is described in Figure 15.23.

The node structure in the kd-tree is repeated below.

Node ´ (attribute-name, : the attribute to be tested

attribute-value, : the value of the attribute

pointer-to-bucket, : bucket has the cases

pointer-to-left-child, : cases with smaller attribute values

BA

FIGURE 15.22 For nonrectangular 

shapes, the BWB test may be more 

complex. For example, if there are 

concave corners like A and B, they must 

also be compared.
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pointer-to-right-child, : cases with larger attribute values

pointer-to-parent, : pointer to parent node

count). : number of times visited during search

The function UnvisitedChild(Q, A, node) does the following,

1. It first looks at the “count” field in the node. If it has value 2 then the function returns the value 

“nil”. The value 2 signifies that both the children of the node have been visited.

2. Else it applies the test (valueQ £ testValuetestAttribute) at the node to the query Q.

3. If the answer is “true” then,

(a) If the value in the count field is 0, it is incremented to 1. Then the left child is returned as the 

child of the node.

(b) Else the value is incremented to 2, and the right child is returned as the child of the node.

4. If the answer is “false” then,

FIGURE 15.23 The kNN-kdtree algorithm retrieves the K most similar (nearest) cases from the 

leaves of the kd-tree. The function UnvisitedChild returns the child that best matches the Query, 

according to the test at that node, provided it has not been visited. In both, children have been visited 

it returns “NIL”. The function InsertK inserts a case into a list if it is better than the lowest similarity 

value in the list, by calling the function Insert defined in Figure 15.14.

tree, A : attribute list, k : retrieval size)

1 R ¨ ( )

2 visited ¨ {}

3 node ¨  root

4 radius ¨ LARGE           /* a suitably large value */

5 while not BWB(radius, visited)

6 do while not Leaf(node)

7 do child ¨ UnvisitedChild(q, A, node)

8 if (child = NIL) OR (not BOB(q, node))

9 then node ¨ Parent(node)

10 if node = NIL

11 then return R

12 else node ¨ child

13 visited ¨ visited » {node}        /* reached an eligible leaf */

14 CB ¨ CasesInBucket(node Æ B)    /* get cases */

15 for each c Œ CB

16 do InsertK(<c, Sim(c, q)>, R, k)

17 radius ¨ Dist(q, First(R))

18 node ¨ Parent(node)

19 if node = NIL

20 then return R

21 return R

InsertK(pair, list, k)

1 if Size(list) < k

2 then      /* insert anyway */

3 Insert(pair, list)

4 else      /* insert only if better */

5 if Second(pair) > Second(First(list))

6 then Insert(pair, Rest(list))   /*discard head (weakest) 

element */
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(a) If the value in the count field is 0, it is incremented to 1. Then the right child is returned as 

the child of the node.

(b) Else the value is incremented to 2, and the left child is returned as the child of the node.

Thus, the function either returns a child node, if it has not been visited, or it returns NIL.

Since the retrieval algorithm is modifying the kd-tree, it is necessary that for every query, a copy of 

the tree is made for searching.

The BWB(Radius, Visited) function should implement the Ball Within Bounds test on the region 

specified by the buckets visited. The function returns false when the set Visited is empty. In the version 

of the algorithm above, the BOB test is applied whenever it tries to move to a child node. The BOB test 

should also return true when the node contains the query, so that the first time the search goes through 

to the leaf that contains the query. Thus, it should return true when the set Visited is empty. The function 

Leaf(node) tests whether the node is a leaf. This can be done by inspecting whether the pointer to the 

left (or right) child has value “NIL”. The function Parent(node) returns a pointer to the parent node. The 

pointer is available in the node. The function CasesInBucket(nodeÆB) returns the set of cases stored in 

the bucket B pointed to by the node. The function InsertK(pair, list, K) inserts a <node, sim(Q,node)>

pair into the list. If the list has less than K pairs, it calls the function Insert defined in Figure 15.14. If the 

list has K pairs then it calls the function with the rest (or tail) of the list, removing the case with lowest 

similarity only if the new case is better. In either case, the new case is inserted (by function Insert) in 

its place in the sorted order. Radius is calculated as the distance between the query and the least similar 

case in the retrieval list R.

15.2.5 The Inreca Tree

The kd-tree is defined over numeric attributes. An extension of the kd-tree, known as the Inreca tree, 

was developed as part of the Inreca (INduction and REasoning from CAses) projects (Althoff et al., 

1998), (Bergmann et al., 1999), (Bergmann, 2001; 2002). The Inreca tree extends the kd-tree in two 

ways. One, it adds a branch for “unknown” below a node. The second is that it also caters to unordered 

symbol type attributes. Unlike the kd-tree, the Inreca tree is not a binary tree. The two types of nodes 

in the Inreca tree are illustrated below. 

Attribute : Value

<
>=

Attribute

unknown Val1

Val2
Vali

ValN

unknown

Numeric attribute Unordered symbol attribute

FIGURE 15.24 The two types of nodes in the Inreca tree. For numeric attributes, there may be an extra 

test for equality. For unordered symbol type attributes, there is an edge for every value. In addition, both 

types of nodes have an edge for unknown values as well. Figure adapted from (Althoff et al., 1998).

A question that arises is the notion of distance between cases when the attributes are not numeric. 

One will then have to define the distances between different values of an attribute. We have seen earlier 

that one can explicitly define similarity values for unordered symbol type attributes. We can do so 

likewise for distance.
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Once we think of cases as points in some space, we are essentially relating distance (inversely) to 

similarity. For that, one needs to find the maximum difference between values, to be equated to zero 

similarity value. As a corollary, a difference of say d in two different numeric attributes may have 

different impact. An extreme example is Boolean attributes. Here, a difference of 1 corresponds to 

(local) similarity of 0. In the example above of Figure 15.16, the X2 axis has a maximum difference 

70 = 180 – 110, while the X1 attribute has a maximum difference 140 = 160 – 20. One way to address 

this is to normalize all distances to be in the range [0,1]. While doing so, one can also incorporate the 

weights of the different attributes.

The kd-tree and the Inreca tree employ a tree structure to index the cases in the case space. The 

objective is to group together cases similar to each other in compartments that are indexed. Other 

approaches that have employed indexing schemes are the structure GNAT (Brin, 1995), and the 

Bubbleworld (Efros, 1998).

15.2.6 Fish and Shrink Algorithm

The complexity of retrieval is dependent, both on the number of cases one has to search through, and 

the complexity of each similarity computation. The kd-tree and similar algorithms address the issue of 

inspecting a small number of cases from a large case base. The algorithm Fish and Shrink, on the other 

hand, addresses the issue when similarity function is very complex (Schaaf, 1995, 1996).

The similarity function can be complex when the case structure is complex. This can be when the 

cases are themselves structured. We give a brief idea here of when that can be. The interested reader is 

referred to (Bergmann, 2002) for a more detailed discussion. Consider, for example, a recommender 

system for computer systems. A case in this system is the description of a specific computer model. 

This can be an object oriented (OO) representation.  In an object oriented representation, the relation 

between a device and its components is captured explicitly. For example, a computer system is made 

up of a processor, a monitor, a keyboard, the different kinds of primary storage like the RAM, the L1 

and L2 cache, the secondary storage like the hard disk or flash drive, the auxiliary storage devices like 

DVD writers, and the different ports and network connectors. Each of these components are objects 

themselves, described by a collection of attributes like cost, make, speed and capacity. Also each of 

them may form a taxonomic hierarchy. For example, the auxiliary device may be further specialized 

into magnetic and laser devices, and the latter into the CD and the DVD. A user may want to compare 

two different machines. This would involve comparison of the collective set of attributes that define the 

case, as also the similarity that comes from the taxonomic organization of components. Given that there 

may be a large number of attributes whose local similarities have to be combined in complex ways, and 

that there may be a large number of products to choose from, the task of computing similarity can be 

humungous. Another structure that can lead to very expensive similarity computations is when the case 

structure is a graph. This could be when one is reasoning with network traffic, transportation systems, 

or electricity and water supply networks.

The Fish and Shrink algorithm relies on the property that the similarity of similar cases to the query 

will be similar. As a corollary, if a case A is going to be out of contention for a place in a retrieval set then 

a case B that is close to A is likely to be out as well. The algorithm exploits this property as follows. Given 

a query Q, whenever the algorithm computes similarity with a test case T, it uses its knowledge of the 

similarity of T with other cases to update bounds on the similarity of all other cases with Q. Obviously, 

this will make sense only of the actual similarity computation is very expensive. If that is so, then the 

cost of visiting all cases and updating their similarity bounds will still be lower.

This property is better illustrated when we deal with distances, again, like we did during kd-tree

construction. Figure 15.25 below shows the relation between the distances of a test case T from the 
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query Q, to another case C. These bounds will hold only when the distance function obeys the triangle 

inequality.

d(C, T)

T

lower bound on d(Q, C)

upper bound on d(Q, C)

d(Q, T)
Q

FIGURE 15.25 Triangle inequality. Given the pre-computed distance d(C,T), the measurement 

d(Q,T) bounds the distance between Q and C.

The triangle inequality says that given any three points X, Y and Z, the distances between the three 

satisfy the relations between the distances of the sides of a triangle. That is,

d(X, Y) + d(Y, Z) ≥ d(X, Z)

The extreme case is when the three points are co-linear. Then,

d(X, Y) + d(Y, Z) = d(X, Z)

Using one extreme case (the “lunar eclipse” in the above figure) we get,

d(Q, T) + d(T, C) = d(Q, C)

the upper bound on d(Q, C) as d(Q, T) + d(T, C). The other extreme case is when the point C is between 

Q and T, like in the solar eclipse,

d(Q, C) + d(T, C) = d(Q, T)

which gives us the lower bound on d(Q, C) as d(Q, T) – d(T, C) as shown in the figure. Thus,

d(Q, C) ≥ d(Q, T) – d(T, C) and

d(Q, C) £ d(Q, T) + d(T, C)

A small point to note about the triangle inequality is that it holds when the distances are unbounded. 

If the distance were to be “normalized” to the range [0,1] to define d[0,1](X, Y), this relationship breaks 

down. For example, if the distance d[0,1](Q,T) were to be 0.9, and d[0,1](T, C) were 0.5, then the upper 

bound distance d[0,1](Q, C) cannot be greater than 1. This observation is also relevant if we were to apply 

the equivalent triangle inequality for similarity values. Assuming that,

sim(X, Y) = 1 – d[0,1](X, Y)

we can combine the above three equations to give us the bounds on similarity values as,

sim(Q, C) £ sim(Q, T) – sim(T, C) + 1 (upper bound)

sim(Q, C) ≥ sim(Q, T) + sim(T, C) – 1 (lower bound)

This is consistent with the definition of triangle inequality for similarity (Burkhard and Richter, 2000). 

A similarity measure fulfils the triangle inequality if

sim(x, y)+sim(y, z) £ 1+sim(x, z)

holds for all x, y, z. However, note that if sim(Q, T) = 0.9 and sim(T, C) = 0.1 then the upper bound on 

sim(Q, C) becomes 1.8. Observe that this says that Q is quite similar to T, and T is not similar to C.
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Therefore, one would expect that C will not be very similar to Q. The upper bound then is only notional.  

Likewise, if the sim(Q, T) = 0.1 and sim(T, C) = 0.1, then the lower bound on sim(Q, C) becomes –0.8. 

This suggests that the bounds be confined to the range [0,1]11.

sim(Q, C) £ min(1, sim(Q, T) – sim(T, C) + 1)   (upper bound)

sim(Q, C) ≥ max(0, sim(Q, T) + sim(T, C) – 1)   (lower bound)

We illustrate the behaviour of Fish and Shrink algorithm with a hypothetical example. In Figure 

15.26 below, we plot the bounds on the similarity values of each case with the query. When a query Q

arrives, the Fish and Shrink algorithm begins by initializing the lower bound on similarity of all cases 

to 0, and the upper bounds to 1. The possible range of similarity values is depicted by shaded vertical 

bands for each case.

0.0

1.0

C1 … … CN

FIGURE 15.26 The Fish and Shrink algorithm begins by keeping the widest bounds on the similarity 

values of all N cases. The feasible values are shown by the shaded vertical band for each case. The 

lower bound is 0 and the upper bound 1.

It then fishes for a candidate, and computes the similarity of the query with the candidate. Having 

computed this similarity, it then inspects all relevant cases and shrinks their bounds based on the new 

information and the triangle inequality.

This process continues till the time when there is enough information to select the cases as per the 

retrieval task. In the figure, it is assumed that the task is to retrieve all the cases above a given threshold 

t, marked as a horizontal line. Once this line separates the cases with higher similarity then retrieval 

can stop. If the requirement is to retrieve a set of cases that are sorted in addition then the process of 

computing similarity will continue till the retrieved cases do not have overlapping bounds. If it is kNN 

then it will terminate when the lower bounds of k best cases have no overlap with the other cases.

At each stage, the candidate to be chosen is the one that has not yet made it but is most likely to 

make it into the retrieval set. This is indicated by the precision line p in the figure that marks the upper 

bound of the case. In the case of threshold based retrieval, the precision line is the highest upper bound 

of a case whose lower bound is below the threshold limit. In the case of kNN retrieval, it is the highest 

upper bound of a case that has K or more cases with upper bounds greater than its lower bound.

11 Thanks to Sutanu Chakraborti for discussing this point.



666 A First Course in Artificial Intelligence

T2
T3 T1 T4

T5

1.0

t

0.0

C1 … … CN

FIGURE 15.28 For threshold-based retrieval, termination happens when no case has bounds that 

contain the threshold value. The cases inspected are listed on the top. Observe that their similarity 

values are known completely and they are shown as points.

The algorithm for Fish and Shrink retrieval is given in Figure 15.29 below. The version given here 

is for the case where the task is to retrieve all cases above a threshold T. The algorithm takes as input 

the following,
 ● A query Q
 ● A case base CB
 ● A pre-computed N ¥ N similarity matrix SIM. An entry SIM(i, j) stores the similarity between 

casei and casej

 ● A threshold value T

FIGURE 15.27 After computing the similarity sim(Q,T1), it shrinks the bounds of all cases based on their 

similarity with T1. The next case to be picked for similarity computation is marked by the precision line.

0.0

1.0

t

T

p

C1 … … CN
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The algorithm uses an array lower(N) to store the lower bounds on similarity of cases with the query 

Q, and an array upper(N) to store the upper bounds. We assume a similarity function Sim(case, query)

is available to compute the similarity value. The variable “Test” stores the index of the case for which 

the similarity is to be computed. Observe that in the first iteration of the While loop, the first case will 

always be the one chosen for comparison. We assume a function GetCase(case base, i) that fetches the 

ith case from the case base. The algorithm does not rank the retrieved cases. That is left as an exercise 

for the reader.  The array simA(N,N) stores the precomputed similarities between the N cases.

Fish-and-Shrink-T(q : query, CB : case base, simA(n, n), T : threshold)

1 for i ¨ 1 to n

2 do                  /* Initialize */

3 lower(i) ¨ 0

4 upper(i) ¨ 1

5 done ¨ FALSE

6 test ¨ 0

7 while not done

8 do done ¨ TRUE

9 pLine ¨ 0

10 for i ¨ 1 to n

11 do if lower(i) < T

12 then if upper(i) > T

13 then done ¨ FALSE

14 if upper(i) > pLine

15 then pLine ¨ upper(i)

16 test ¨ i

17 s ¨ Sim(GetCase(CB, test), q)       /* fish */

18 upper(test) ¨ s

19 lower(test) ¨ s

20 for i ¨ 1 to n

21 do if upper(i) π lower(i)

22 then                /* shrink */

23 lower(i) ¨ Max(lower(i), (s + simA(test, i) – 1))

24 upper(i) ¨ Min(upper(i), (s simA(test, i) + 1))

25 R ¨ {}

26 for i ¨ 1 to n

27 do if lower(i) > T

28 then R ¨ R » {GetCase(CB, i)}

29 return R

FIGURE 15.29 The Fish and Shrink algorithm to retrieve cases above a given threshold T.  While 

there are cases in contention, it picks (fishes) the best eligible case for computing similarity. It then 

updates (shrinks) the similarity bounds of all other cases.

The complexity of the algorithm is quite high. One expects the number of similarity computations to 

be of order K, where K is the retrieval set size, irrespective of what criteria is used. This is because the 

best looking case is chosen in each cycle for similarity computation, and the bounds on the similarity 

value of each case become tighter in each cycle. However, after each similarity computation, all the N

cases have to have their bounds updated. If each similarity computation costs Csim and each update costs 

Cupdate, then the average case complexity of retrieval is,

T = O(K*Csim) + O(K*N*Cupdate)
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Observe that  the two costs Csim and Cupdate are constant, so the purist will say that the complexity is 

O(K*N). But we would like to emphasize the fact that the algorithm should be used only when Csim is much 

larger than Cupdate. Then, if K is significantly smaller than N, it makes sense to highlight the fact that the simi-

larity computation is done only order K times, even though all cases have their bounds updated repeatedly.

15.2.7 Case Retrieval Nets

The algorithms seen so far have a backward chaining or goal directed flavour. Given the query Q, they 

search all the cases looking for the ones that best match the query. The Case Retrieval Net (Burkhard, 

1998), (Lenz 1996, 1999), (Lenz and Burkhard, 1996) we study next is a structure that has a forwarding 

chaining flavour. The Case Retrieval Net (CRN) is a two stage, feed-forward network. It falls in the class 

of activation spreading algorithms (Anderson, 1983), (Hendler, 1988). The basic idea is that the query 

activates certain nodes in a network, followed by a process of activation spreading to neighbouring 

nodes, eventually activating nodes representing (matching) cases.

The Case Retrieval Net is a directed graph that is made up of two kinds of nodes.

1. Information Entity (IE) Nodes Information entity nodes are the components used to describe cases. 

Each IE can be viewed as an <Attribute, Value> pair. For every such pair that exists in the case base, a 

node is created in the CRN. IE nodes have an activation value in the range [0,1] which represents the 

local similarity of the value of the attribute in the query with the IE node.

2. Case Nodes A case node represents a case. It may have an activation value in the range [0,1]. The 

value represents similarity of the case with the query, or relevance of the case for the query.

The arcs between nodes are used to propagate activation values. An arc between two IE nodes captures 

local similarity between the two values. Presumably, the two values correspond to the same attribute, 

but that is not a strict requirement. This local similarity value can be represented by an adjacency matrix 

defined as follows. Let E be the set of IE nodes and C be the set of case nodes. Then, local similarity 

between IE nodes is a function s:E ¥ EÆ[0,1], and is represented by the adjacency matrix Sim. Each 

nonzero value sik in Sim represents the similarity between the IE nodes ei and ek and is the weight of 

the arc between the two nodes.  An arc between two IE nodes is used to induce activation from one node 

to another. The IE nodes that match the query are assigned an activation value 1 to start with. The other 

kind of arc is the relevance arc that links an IE node to a case node. It signifies the relevance of the IE

node for the case and is a function r:E ¥ CÆ[0,1] stored in the adjacency matrix Rel.

The following figure illustrates a CRN for a meal classification task. Only the arcs with nonzero 

weights are shown. The weights of the relevance arcs are assumed to be one. The weights of the similarity 

arcs sik represent the author’s perception of similarity.

In the above figure, each meal type is assumed to be made up for four12 components that represent a 

typical meal. A north Indian meal, for example, is defined as the following case—(Pulav, Phulka, Daal, 

Lassi).  A query case containing all these elements will match the case (class) perfectly. But even a meal 

(Pulav, Parantha, Daal, Curd) will get a high score.

The process of retrieval in CRN is more like the process of reconstruction of a structure from its 

components or the process of case completion by spreading activation. The high level retrieval algorithm 

CRN-T for finding cases above a threshold, is given in Figure 15.31. First, the IE nodes matching the 

query are activated. The propagation of activation happens in two stages. In the first stage, activation is 

spread to other IE nodes in proportion to the local similarities. Note that this happens in only one step 

in the algorithm below. This means only nodes directly connected to the initial IE nodes will receive 

12 In the interest of brevity.
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activation. In the above example, a query containing “Lassi” will not activate the node “Buttermilk”. 

One could extend activation spreading to happen in a loop till the values stabilize, like in a Hopfield 

net. Or one might look for a mechanism to fill in the arc weights accurately by consulting an external 

source like the Wordnet (see Chapter 16).

In the second stage, activation spreads to the case nodes. The two arrays E and C contain the activation 

values of the IE nodes and the case nodes respectively. In the algorithm below, we assume the query Q

to be a list (somehow) containing the indices of the matching IE nodes.

The algorithm described above in fact operates in a backward manner. For each IE node, the aggregated 

activation is computed; and then for each case node, the aggregated activation value is computed. The 

aggregation functions simAggr and relAggr are of order O(M) steps because activation is transferred 

from each IE node in both. Since M IE nodes and N case nodes receive propagated values, the overall 

complexity of retrieval is O(M 2+MN) which is O(M 2). This is because it does not exploit the fact that 

the similarity arcs are likely to be sparse. A variation that only does forward propagation like the AC3 

algorithm (see Chapter 9) is likely to be much faster. The reader is encouraged to devise an algorithm 

that propagates only non-zero values.

15.2.8 Diversity Conscious Retrieval

The basic idea behind CBR is that given a problem, one retrieves similar cases from the case base. 

This is based on the premise that similar problems have similar solutions. The idea of retrieving k cases 

instead of one is that a solution constructed from the k cases is likely to be more robust, specially in ill 

understood domains.

In recommender systems however, the task is to help a user select a product that best matches her 

requirement. The retrieval set is not used to construct one solution. Rather it offers a set of choices to 

FIGURE 15.30 A sample CRN for a meal classification task. The rectangular nodes are IE nodes and 

the arcs between them represent local similarity. The oval nodes are cases defining a typical meal in 

that style. The solid arrows capture the relevance of IE nodes for case nodes.
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the user. It then makes sense that the set of choices is diverse, so that the user has different products to 

choose from. Diversity, as defined in Section 15.1.2, is a measure of dissimilarity in the retrieval set.

Diversity conscious retrieval has requirements that may conflict with each other. On the one hand, 

a retrieved case should be similar to the query. On the other hand, it must be dissimilar to the other 

cases in the retrieval set. One needs to ensure that in the quest for diversity, there is no significant 

loss of similarity. Since the retrieval set is constructed incrementally, one needs to use the notion of 

relative diversity of a candidate with respect to the retrieval set being constructed. From the viewpoint 

of increasing diversity, the next case to be added to the set is the one with the highest relative diversity. 

We repeat the definition of relative diversity and quality below.

RelDiversity(c, R) = 1 if R = { }

=
1 , (1 ( , ))

, otherwise
= -Â i m isim d d

m

Here, m is the number of cases in R at that moment. Adding cases based only on the basis of relative 

diversity may retrieve cases that are not similar to the query. Hence, a measure named Quality that 

combines the two aspects of relative diversity and similarity with the query may be used.

Quality(c, R) = a*sim(c, dquery)? + (1–a)*RelDiversity(c, R)

Let the standard retrieval set (SRS) based on maximum similarity be called RSRS. Let the retrieval 

set, generated by an algorithm that also considers diversity, be RD. Then the loss of similarity due to 

diversity being taken into account is,

FIGURE 15.31 The CRN-T algorithm begins by activating some IE nodes that the query values. 

It then uses the function SimAggr(E,Sim) to use the similarity (arc) weights stored in array Sim to 

determine the activation of all IE nodes after propagation. After all IE nodes have been activated, it 

uses the RelAggr(E,Rel) function to determine the activation of case nodes stored in array C.

CRN-T(q, E[m], C[n], Sim[m,m], Rel[m, n], T)

1    /* q: query, E[m]: IE, C[n]: cases, Sim[m,m]: IE-sim, Rel[m,n]:         

relevance, T: threshold */

2 for i ¨ 1 to m

3 do E[i] ¨ 0    /* Initialize */

4 for i ¨ 1 to n

5 do C[i] ¨ 0    /* Initialize */

6 while Q π ()

7 do    /* Query instantiation */

8 i ¨ First(q)

9 E[i] ¨ 1

10 q ¨ Rest(q)

11 i ¨ i + 1

12 for i ¨ 1 to m

13 do E[i] ¨ SimAggr(E, Sim)    /* propagate similarity */

14 for i ¨ 1 to n

15 do C[i] ¨ RelAggr(E, Rel)

16 R ¨  { }                  /* Retrieval set */

17 for i ¨ 1 to n

18 do if C(i) > T

19 then R ¨ R » {GetCase(CB, i)}

20 return R
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LossD = Si=1, K sim(Q, CSRSi)/K – Si=1, Ksim(Q, CDi)/K

LossD signifies the decrease in average similarity, due to diversity being taken into account, and can 

be controlled by the parameter a in the definition of Quality.

The fact that relative diversity depends upon the partially constructed retrieval set means that one 

cannot choose the entire set in one pass. Instead, one can only choose one element in each pass. This 

element will in turn influence the choice of the next element to be selected. This means that one will 

have to make K passes over the case base to retrieve K cases. Since we anyway want to include (high) 

similarity as a retrieval criterion, the diversity criterion need only be applied to a subset of high similarity 

cases. That is, the K passed need be done only on the set of high similarity cases. Two algorithms have 

been reported in the literature.

The Bounded Greedy (BG) algorithm (Bradley and Smyth, 2001), (Smyth and McClave, 2001) first 

selects a subset based on similarity, and then from this subset chooses cases based on diversity. The 

algorithm is given in Figure 15.32.

Diversity-BG(q : query, CB : case base, k : retrieval size, b : bound)

1  CBsubset ¨  , CB, b*k, n)   /* most similar bk cases */

2 R ¨ MaxD(List(First(CBsubset)), Rest(CBsubset), k)

3 return R

MaxD(casesIN : cases in, setC : candidate cases, k : retrieval size)

1 R ¨ casesIN

2 while |R| < k

3 do cbest ¨ GetBest(setC, R)

4 R ¨ Cons(cbest, R)          /* add at head of list */

5 setC ¨ Remove(cbest, setC)

6 return Reverse(R)

GetBest(setC : case set, R : retrieval set)

1 cbest ¨ First(setC)

2 dmax ¨ RelativeDiversity(cbest, R)

3 setC ¨ Rest(setC)

4 while setC π ()

5 do nextCase ¨ First(setC)

6 setC ¨ Rest(setC)

7 relativeD ¨ RelativeDiversity(nextCase,R)

8 if relativeD > dmax
9 then cbest ¨ nextCase

10 dmax ¨ relativeD

11 return cbest

Remove(c : case, setC : set of cases)

1 if c = First(setC)

2 then return Rest(setC)

3 else return Remove(c, Rest(setC))

FIGURE 15.32 The Bounded Greedy algorithm first selects B times the required number of cases 

based on similarity, and then from this set chooses the K required cases to maximize diversity. The 

function MaxD, takes the first element from the bigger set and augments the set, incrementally adding 

cases with the highest relative diversity. We assume the function relative-diversity that computes the 

relative diversity of a case w.r.t. a set, as per the formula described in the text.
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The Diversity Conscious Retrieval (DCR) algorithm (McSherry, 2002) applies finer control on which 

diverse cases are considered. It employs a control parameter a that controls the loss of similarity for any

retrieved case. It divides the similarity interval [0,1] into segments of length a and allows diversification 

of the retrieval set only in cases belonging to one such interval. Thus, the maximum loss of similarity 

for choosing a “bad” case is a. The interval is the one in which the Kth similar case in the SRS lies.

Diversity-DCR(q : query, CB : case base, k : retrieval size, alfa : 

parameter)

1 CBsubset ¨ , CB, b*k, n)

2 simLast ¨ SimK(CBsubset, k)        /* similarity of Kth case */

3 upperBound ¨ 1                     /* UB of alfa interval */

4 lowerBound ¨ 1 – alfa              /* LB of alfa interval */

5 while simLast < lowerBound

6 do upperBound ¨ lowerbound

7 lowerbound ¨ upperbound – alfa

8              /* retrieve all cases with similarity higher than

9                      lowerBound */

10 R ¨ CandidateCases(CBsubset, lowerBound)

11 casesIN ¨ ()      /* the ones that are definitely in */

12 casesAlfa ¨ ()    /* the ones available for diversification */

13 while R π ()

14 do nextCase ¨ First(R)

15 R ¨ Rest(R)

16 sim ¨ Second(nextCase)

17 if sim ≥ upperBound

18 then casesIN ¨ Cons(nextCase, casesIN)

19 else casesAlfa ¨ Cons(nextCase, casesAlfa)

20 R ¨ MaxD(casesIN, casesAlfa, k)

21 return R

FIGURE 15.33 The Diversity Conscious Retrieval algorithm first retrieves the bK most similar cases. 

Function SimK should find the similarity of the Kth case.   It then determines the bounds [lowerBound,

upperBound] of the alfa interval in which the Kth case lies. Function CandidateCases extracts all cases 

with similarity higher than lowerBound from CBsubset. Of these, the ones with similarity higher or 

equal than upperBound are definitely in. From the remaining cases, the algorithm MaxD from Figure 

15.32 chooses the ones that maximize diversity to construct a set of size k.

The second algorithm, Diversity-DCR, ensures that the most similar cases are always retrieved. In our 

version of Diversity-BG, we have ensured that the most similar case is always retrieved. This is because 

in function MaxD, the first case to be considered always has relative diversity one, because the retrieval 

set is yet empty. The other cases from CBsubset could still be the ones with the lowest similarity values. 

The Diversity-BG does K passes over the set CBsubset of size BK, while the Diversity-DCR is likely 

to do a smaller number of passes over the set casesAlfa. Apart from that, both algorithms need to do 

kNN retrieval once. In the algorithms described here, these are done by sequential retrieval, but could 

be replaced by any suitable faster algorithm.

15.3 Reuse and Adaptation

Case based reasoning works by retrieving the case or cases that are most similar to the query from 

memory and reusing the solution component for solving the current problem. If the retrieved case matches 
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the given problem perfectly then the retrieved solution could be used directly. However, this may not 

always be the case13. If the retrieved case is a little different from the given problem, then a process of 

adaptation may be necessary to solve the given problem.

The task of adaptation is a new problem in itself. The input is a possibly flawed solution or lesson. The 

goal is to produce a good solution. The most common approach to adaptation has been rule based, though 

search, or even a case based approach itself has also been tried (Leake, 1996a), (Leake et al., 1996). 

CBR solves problems by remembering and reusing. Reuse or adaptation however, requires some kind 

of domain knowledge. The question has been asked that since one has to solve the adaptation problem 

to solve the original problem, is there any advantage gained by retrieving solutions and adapting them? 

Why not use the approach being used in adaptation to solve the original problem itself? The answer 

lies in complexity analysis. Given that most first principles (search based) methods are of exponential 

complexity, adaptation may involve tinkering only a part of a solution, and may thus be less complex. 

A formal analysis of this was given by Au, Munoz-Avila and Nau in their paper on case based planning 

(Au et al., 2002).

Another reason why other knowledge based methods may not be suitable for solving the original 

problem is the difficulty of knowledge acquisition faced by rule based developers. An application to 

design medical drug composition illustrates this point. Working with AstraZeneca on drug design, 

Susan Craw says “Although rules can be applied to suggest formulations for new drugs, it is difficult to 

acquire effective problem solving rules initially, and equally difficult to maintain these rules as different 

formulation practices evolve and more difficult drugs require to be formulated” (Craw, 2001).  Instead, 

the project adopts a case based approach, storing the details of the drug and excipients, together with the 

formulation that was successfully applied, into a case base (Craw et al., 1998). When a tablet for a new 

drug needs to be designed, a similar case is retrieved and its formulation reused. Where needed, rules 

are used for adaptation, for example, “a harder drug may need a softer filler” (Craw, 2001).

Let us look at the example of path finding using case based reasoning. We could build a system that 

can find a path the first time using heuristic search, and store it in a case base for future use (see for 

example (Raman and Khemani, 1998)). When a new problem arises then the system may retrieve a known 

path, or a set of paths, from its memory, based on the start and the goal coordinates.  To solve the new 

problem, it may only need to connect its start node and the goal nodes to near points on the retrieved 

path, as shown in Figure 15.34. These two new subproblems are likely to be much smaller in complexity.

A similar kind of reasoning may happen when using public transport. If one had to travel to a village 

in Himachal Pradesh in India, one might first construct (retrieve) a travel plan to its capital Simla, and 

then find a bus onwards to the village. Case based reasoning with adaptation may thus be combined 

with a means ends, analysis mode of reasoning (see also Chapter 7).

Traditionally, researchers have described two forms of adaptation (Riesbeck and Schank, 1989), 

(Kolodner, 1993).

Structural Adaptation In structural adaptation, the solution of a case is directly modified to obtain 

the solution for the new problem.

Derivational Adaptation Derivational adaptation may be employed when the case also contains 

some steps that are used to arrive at the solution. During adaptation, these steps are executed again with 

parameters from the current problem.

We also distinguish between two kinds of reasoning tasks, Analytic and Synthetic (Plaza and 

Arcos, 2002).

13 “You can never step into the same river; for new waters are always flowing on to you.” -Heraclitus of Ephesus (535–475 BC).
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15.3.1 Analytic Reasoning

Here, the problem is to analyze some problem situation and arrive at some judgment. A typical analytic 

task is classification.

For example, one may want to classify a person as unhealthy or healthy based on data of age, height 

and weight. The case base would constitute of a set of data points for which some authoritative source 

has provided the class label. Given the data of a new person, a CBR system would retrieve the K nearest 

neighbours and perhaps treat the class label of each retrieved case as a vote for the label of the query 

case. The class label for the new case could be computed as a simple majority vote. This is also known 

as compositional adaptation. In compositional adaptation, the solution is composed from one or more 

retrieved solutions. Another way of combining the results would be a weighted majority vote, where the 

weight of each vote would depend upon the similarity of the query with the case. Cases more similar to 

the query would have a greater say in deciding the class label.

The same approach that is used to discriminate between healthy and unhealthy persons could also 

be used to separate spam from genuine emails (see for example (Padmanabhan et al., 2006)). The set of 

attributes defining the case will be different. For example, the attributes used to describe an email could 

be a count of the frequencies of certain words, count of the total number of words, counts of lengths of 

capital letter sequences, and so on.14

One may observe that for both these problems, the underlying domain model is not strong enough to 

define rules to discriminate between the two classes. In the human health problem, given the small set of 

attributes, one cannot expect a clear cut demarcation boundary between the two classes. In fact, it would 

not be surprising if two cases (persons) with identical data were to belong to different classes. This is 

mainly because the three attributes may not be sufficient determinants of health status. Nevertheless, there 

exist notions like the Body Mass Index (BMI) which are presumed to be health indicators. And BMI is 

defined on only two, height and weight, of the three attributes described here. Given that we are working 

with only these attributes, one can still glean some information about the likely health status of a person 

when there are a large number of cases. Then, one could devise the (weighted) voting procedure to give 

14 See for example, http://archive.ics.uci.edu/ml/datasets/Spambase
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FIGURE 15.34 A multi-modal path finder may retrieve a case shown with the shaded circles. 

Adaptation may mean finding paths using search to near nodes on the retrieved path.
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us a value between 0 (say healthy) and 1 (say unhealthy), that could be interpreted as a likelihood of a 

particular state being true. A value 1 means that the classification outcome for ‘unhealthy’ is positive.

Likewise, it is not easy to define rules to filter out spam, and one could use the feedback on human 

selected emails to build a case base with spam and legitimate class labels. Again, one could use a weighted 

voting procedure to classify emails as spam (positive) or legitimate (negative).

One would have to take care to assign thresholds in a safe manner. In the case of health determination, 

it might be meaningful to be biased on the side of labelling a case as unhealthy (positive) as opposed to 

healthy (negative). This is because a false negative, labelling someone healthy when they are not, may 

have serious consequences. A false positive, labelling them unhealthy when they are not unhealthy, may 

only have a price in terms of costs for checkups or unnecessary worry.

The situation is exactly the opposite while labelling spam. A false positive, labelling it spam when 

it is not, may result in the loss of an important email. A false negative, labelling it legitimate when it is 

spam, may only add to the reader’s irritation.

Typically, in such applications, one tunes some parameters like the threshold that affect the outcome. 

At one extreme one may label everything negative, leading to a high number of false negatives, and no 

false positives. At the other extreme, everything is labelled positive leading to a large number of false 

positives. One may need to choose a threshold carefully after some experimentation, as shown in a 

typical graph in Figure 15.35. The system is a prototype developed to raise and alarm (positive) while 

monitoring the health of a system. The two plots for false negatives and false positives cross over at 

some point, suggesting that point as one where the two kinds of errors are equal. Based on the discussion 

above, however, an application developer may choose a point on either side of the crossover.

Figure 15.35 is a sample plot from experiments on a case based reasoning approach to satellite health 

monitoring (Penta, 2005). As one can see from the figure, a similarity threshold of 0.995 on the similarity 
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FIGURE 15.35 A plot of false positives (Alarms) and false negatives (dismissals) from a prototype 

case based satellite health monitoring system (Penta, 2005).
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measure is needed in that system to ensure that there are no false negatives (dismissals), though the 

number of false positives (alarms) increase at that threshold.

The example of salary prediction we saw earlier is also an analytic problem. Instead of using K

neighbours and taking the average salary, one could just take the best matching case and adapt it using 

rules. One can have a rule like “for every year of increased (decreased) experience, add (subtract) 

200 units to (from) the retrieved salary”. Likewise, one can add similar linear interpolation rules for 

the other attributes. Users of log tables from the twentieth century would have recognized this method!

Derivational adaptation could be used in analytic problems like price estimation. Let us say one is 

implementing a CBR system in which the price or rental of a house is computed as a function of various 

features. Then from a case base of houses, one could pick a case with emphasis on location and adapt 

its price based on the other features, like the number of bedrooms.

15.3.2 Synthetic Reasoning

In a synthetic task, CBR is used to construct a compound artifact like a design, a plan, a layout, or some 

other kind of a combination of elements. Adaptation could be of different kinds. It could mean a change 

in some attribute value, for example the beam width in the design of a house. It could mean substitution 

of one component with another, for example a metal grill with glass windows. It could also mean addition 

or deletion of elements in the artefact, thus changing the overall configuration, for example the number 

of wheels in a car design. If the relation between requirements and a configuration is explicit, one 

could employ some kind of search to modify the retrieved configuration to suit the requirement. One 

successful application that did this was the colour matching system FormTool developed by General 

Electric Plastic (Cheetham and Graf, 1997), (Cheetham, 2005). However, this is rarely the case, and it 

is more common to use a set of hand coded rules to transform or re-instantiate the configuration. An 

example of this is the system Wayland designed to help setup aluminium pressure, die-casting machines 

(Price and Pegler, 1995). This brings an element of domain specific knowledge into the problem solving 

task.

The pioneering system CHEF developed by Hammod (1986, 1989) used knowledge represented in 

Thematic Organization Packets (TOPs) for adaptation (see also Chapter 14). TOPs embody specialized 

repair strategies for repairing plans (recipes) with specific kinds of failures. An interesting feature in 

CHEF is that it can run a simulation to detect flaws in a plan. For example, given a task to make a dish 

containing beef and broccoli, CHEF retrieves a recipe for beef and green beans. It first adapts this recipe 

by reinstantiation of the recipe with broccoli instead of beans. During this process, program critics also 

suggest that the broccoli be chopped, and adjust the cooking time as well. Now CHEF runs a simulation 

and concludes that the broccoli would become soggy in the given recipe. The SIDE-EFFECT:DISABLED-

CONDITION:CONCURRENT TOP says that the process of frying beef is generating a thin liquid due 

to which the broccoli is becoming soggy, and suggests a SPLIT-AND-REFORM strategy in which the 

two are fried separately, thus leaving the broccoli crisp as desired. A key contribution of CHEF is that it 

illustrates how a combination of problem solving approaches, using different kinds of knowledge may 

be necessary for building intelligent systems.

One of the earliest commercial successes of CBR was the system called CLAVIER that helped opera-

tors at Lockheed configure the layout of ceramic parts to be loaded into an autoclave (Hinkle and 

Toomey, 1995) (see also (Watson, 1997)). Starting with twenty layouts, CLAVIER grew into a system 

with hundreds of useful cases. The need for adaptation arises when a retrieved layout contains a part 

that is not on the current agenda for curing. In such a situation, the system needs to substitute it with 

a similar part. If everything turns out well, the new case is added to the repository. In practice, opera-

tors at Lockheed preferred to do the adaptation manually, using the system to check whether the new 

layout had failed in the past. Manual adaptation was also the chosen route in the QPAC PCR system for 
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recording problems in an aluminium foundry into a case base for troubleshooting (Price et al., 1997). 

This illustrates the point that even when there is a human in loop solving problems, a CBR system can 

still learn those solutions and reuse them in the future. This can be a basis for knowledge management 

in an organizational setting, where the decisions of experienced personnel are captured, and applied 

even when they have left.

Derivational adaptation has been seen mostly in planning tasks. First introduced by Carbonell 

(1986), it was employed in various planning systems. Prodigy/Analogy (Carbonell and Veloso, 1988) 

(Veloso and Carbonell, 1993) and Priar (Kambhampati and Hendler, 1992) were some of the first 

systems that used derivational adaptation in a domain independent fashion. The basic idea behind these 

approaches is that cases are represented at various levels in a hierarchy of abstractions (Cox et al., 2006). 

When a new problem arrives, a case at an appropriate level is retrieved and refined into a plan using 

derivational adaptation. DerSNLP (Ihrig and Kambhampati, 1997) and CAPlan/CbC (Muñoz-Avila and 

Weberskirch, 1996) applied derivational adaptation to partial order planning.

Constructive adaptation is a variation on derivational adaptation that uses heuristic search to construct 

the solution, and uses the retrieved cases to guide the search process (Plaza and Arcos, 2002).

We have not discussed the situation when cases are made up of free form text, which is so in many 

situations where people jot down problems in the form of “tickets” and some experts solve them and 

jot the solution down. In textual cases, the vocabulary is the words of a natural language. Unlike 

the structural representation, words are not associated with values from a domain. The case is just 

a collection of sentences. While words do have a meaning for us, most textual CBR systems do not 

tend to use meaning or semantics for similarity computation. Instead, we borrow techniques from 

Information Retrieval. Document Retrieval is probably a more apt term since the output is usually a 

matching document. In the vector space model, we do assign a value or weight to each word, but that is 

a statistical property of the word in the context of the document, or even the document collection. We 

will look at retrieval of text documents in Chapter 16.

15.4 Discussion

Case based reasoning arose from the memory organization work being done at Yale University in the 

seventies and the eighties (Schank and Riesbeck, 1981; Riesbeck and Schank, 1989; Dyer, 1983).  

The work done by a bunch of research students under Roger Schank was focused on the kind of 

representations that would lead to understanding natural language stories that required a considerable 

amount of situational knowledge (see Chapters 13 and 14). The knowledge was hard coded in structures 

like Scripts, Goals, Plans, MOPs, TOPS, etc. Many of these were episodic in nature, describing typical 

situations or typical goal-plan-action connections. As more and more of these episodic structures were 

created, the notion of case based reasoning arose. The earlier work focused on using these structures 

for understanding. This involved a considerable work on the translation from and into natural language, 

and matching the conceptual dependency structures.

Around the time Hammond wrote his program CHEF that could retrieve and adapt recipes and then 

store them back, the focus shifted to efficient retrieval from a large number of cases. Partly because 

conceptual knowledge representation for adaptation is a difficult task and partly because the simpler 

idea of similarity based retrieval found application into many successful industrial projects, the work 

in CBR gradually drifted into knowledge management like applications.

Current successful applications in CBR employ a uniform case structure along with a similarity 

measure to determine the best matching cases. Each application stands alone with its own representation 

schema. The idea of a more “cognitive” agent using memory and learning from experiences has gone 
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onto the backburner. An agent with a diverse memory comprising different kinds of cases of various 

size and constituents would need a different approach for retrieval. Perhaps the idea of “reminding” in 

a dynamic memory using conceptual and linguistic cues as indices pointing to the relevant cases will 

come back. It only awaits further advances in knowledge representation.

15.4.1 Further Reading

Case based reasoning emerged from the work on knowledge structures in memory. A host of programs 

that employed knowledge structures to understand stories in natural language were being developed. 

The idea of cases as memories of specific episodes that an agent remembers and reuses, led to the idea 

of CBR as a memory of past instances. The earliest books that expounded this theme were the books 

by Roger Schank and Chris Riesbeck (Riesbeck and Schank, 1989), and Janet Kolodner (1993). Chris 

Hammond’s doctoral thesis on CHEF, the case based planner explains the notions of revision, adaptation 

and retaining cases (Hammond, 1986; 1989). A paper by Aamodt and Plaza (1994) appeared just when 

the simple problem solving approach of remembering and reusing was gaining strength. A collection 

of essays compiled by David Leake (1996) delved into the theoretical foundations. Two books by Ian 

Watson (1997, 2002) gathered the vast number of industrial applications on knowledge management. 

A collection of articles (Lenz et al., 1998) describes some of the advanced topics in CBR. Researchers 

in German universities devised a software engineering methodology, INRECA, that treated the process 

as an experience factory (Bergmann et al., 1999). Ralph Bergmann’s post-doctoral thesis (Bergmann, 

2002) gives a formal grounding to CBR in experience management.

 Exercises

1. Refine Figure 15.1 to incorporate implicit forms of knowledge representation.

2. Design a case structure to be used by a real estate site where people can look for renting or buying 

property. What are the core set of features, and what features could be used in specific domains 

(like big cities, holiday resorts, mountain or sea locations)?

3. How would one build a dating or a matrimonial site using CBR? Given the profiles of candidate 

persons, how does one match them to measure compatibility? Would it make sense to define local 

“similarity” measures that take into account the fact that often “opposites attract”? Or would 

one transform the given profile (query) to a compatible “desired profile” that could be used for 

matching the profiles in the database?

4. Find the trigram based similarity, and the cosine similarity between the following sets of sentences,

(a) John loves Mary.

(b) Mary loves John.

(a) Colourless ideas are octagonal.

(b) A colourless idea is an octagon.

5. Land on the earth is hierarchically organized into regions. Starting with the continents, there are 

further divisions into countries, states, districts, etc. Is this hierarchical structure a taxonomy? 

What is a meaningful interpretation of the distance function?

6. When the case schema is made up entirely of numeric values, then each case can be thought of 

as a point in N-dimensional space, where N is the number of attributes. Then similarity between 

two cases could be defined based on some distance measure in the N-dimensional space. Explore 

the use of Manhattan distance, Euclidean distance, and the Minkowski norm to define similarity 
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functions. What is their correspondence with the aggregation functions defined in this chapter? 

When will similarity between two cases be zero?

7. The problem in Figure 15.12 involves matching colours, given their RGB values. Experiment with 

different colour matching functions on your computer, and compare with your visual judgment.  

Explore other colour representations like the HSV space that represents colours using values for 

Hue, Saturation and Value.

8. Study the case base in Table 15.3 and try and determine what combinations of factors are associated 

with a high salary.

9. Consider a case base in which all the attributes are Boolean. Explore the different distance functions 

that can be devised for two cases in his domain.

10. Modify the kNN algorithm in Figure 15.14 to return (a) all the cases with highest similarity, and 

(b) all cases above a threshold similarity.

11. Using the function InsertK defined in Figure 15.23, rewrite the sequential kNN retrieval algorithm.

12. Can we think of the kd-tree as a taxonomy of cases? What are the similarities of kd-trees with 

taxonomies? What are the differences?

13. The algorithm for building a kd-tree in Figure 15.17 does not assign parent pointers at each node. 

Modify the algorithm to do so. [Hint: Assign “NIL” parent to root and others in recursive calls.]

14. Modify the algorithms Build-kdtree and kNN-kdtree to work with similarity values instead of 

distance values.

15. The kNN-kdtree algorithm applies the BOB test whenever it goes to a child node. Modify the 

algorithm to apply it only on leaf nodes. Which version is likely to run faster?

16. Specify the termination criteria and the precision line definition when the Fish and Shrink algorithm 

has to retrieve only the best cases.

17. Modify the Fish-and-Shrink-T algorithm for the kNN retrieval task.

18. Extend the Fish and Shrink algorithm to continue till the cases are sorted in decreasing value of 

similarity. [Hint: continue the Fish and Shrink process till the bounds do not overlap.] What set 

of cases will be used here?

19. Extend the Fish and Shrink algorithm to return the similarity values as well.

20. Given a query, how would one efficiently generate the list af indices required as input for our CRN

algorithm in Figure 15.31?

21. Modify the CRN-T algorithm to retrieve the K best cases.

22. The algorithm CRN-T requires an IE node for every attribute-value pair. These nodes could be 

constructed from the cases in the case base. However, for numeric attributes, the query may contain 

values that do not match any IE nodes. Extend the CRN-T algorithm to activate the best matching 

IE nodes with appropriate values for numeric attributes.

23. Write the function relative-diversity(case:C, retrieval set:R) used in Diversity-BG procedure. Keep 

in mind that the cases in the list returned by Sequential-kNN, are pairs containing the case-id and 

its similarity with the query.



In Chapters 13 and 14, we have emphasized the importance of knowledge representation in AI systems. 

Once a model of the world is captured in formal representations like First Order Logic, we can devise 

powerful reasoning mechanisms. Humans, however, seem to be seamlessly effective in communicating 

with each other in natural languages like English. Natural Language Processing (NLP), a subfield of 

AI, attempts to build computational systems that can converse with us in natural language. NLP has two 

subdisciplines: Natural Language Understanding (NLU) aims at building systems that can make sense 

of free-form text. Natural Language Generation (NLG) aims at building systems that can express their 

knowledge or explain their behaviour in natural language.

Building systems that understand natural language is both important and challenging. It is important 

because intelligence is all about making sense of the world around us, and the world is more likely to 

present itself to an intelligent agent in natural language, than in structured representation languages. 

Merrill Lynch estimates that more than 85% of all business information exists as unstructured text 

(Blumberg et al., 2003). Examples of such free-form data abound in the form of emails, memos, notes 

from call centres and support operations, news, user groups, chats, reports, surveys, white papers, research 

articles, presentations and Web pages. It will take an astronomically large number of ‘man hours’ to 

render them all into representations machines are comfortable with. Even if all of humankind were 

engaged to burn the midnight oil out to achieve this, the problem is not going to go away, because we 

are generating unstructured documents at a far higher pace than we can assimilate them. It was estimated 

in 2006 that more data will be produced in 2007, than has been generated during the entire existence of 

humankind (Panurgy, 2006). AI systems that rely critically on formal representations are analogous to 

a well laid out network of pipes and taps within a building, whose overhead tank has to be filled in by 

battalions of people carrying buckets. In the context of this metaphor, an NLU system can be thought 

of as a pump that feeds the overhead tank automatically. The growth of the World Wide Web has seen 

a renewed interest in NLU systems that can facilitate knowledge engineering from a diverse collection 

of unstructured documents. There are many other interesting applications of NLP systems, which we 

review in detail in Section 16.3.

Understanding natural language is challenging. It may be illustrative here to compare a natural 

language like English against a programming language like C. Consider a news report headline:

“Stolen Painting Found by Tree”1

1 http://www.departments.bucknell.edu/linguistics/synhead.html

Natural Language 
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Chapter 16
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Our first observation is that the heading of the news report is not a well-formed English sentence, yet 

it makes perfect sense to an average reader. Ideally, an NLP system should be robust to such variations. 

In contrast, a C program with statements that do not conform to the underlying grammar will be rejected 

by a compiler. Ill-formed constructs are typical in our conversations (A: ‘”Looks nice, few typos though”, 

B: “Doesn’t matter”), and more recently in SMS messages (“C u b4 3”).

Secondly, an NLU system must be able to effectively handle ambiguity. The news headline above 

has two possible interpretations, though an average reader has no trouble favouring one over the other. 

For us, it appears obvious that a tree cannot go around searching for a stolen painting. Programming 

machines to do the obvious, however, turns out to be challenging. In contrast to natural language texts, 

a computer program typically has a single unambiguous representation, or else a machine would have 

difficulty executing it.

Thirdly, unlike systems that process and execute programs, understanding natural language often needs 

recourse to a body of common sense and background knowledge. Let us consider the following example:

“Shruti ordered a pizza. She left a tip before leaving the restaurant.”

To understand the above sentences, the reader must have knowledge of what people typically do when 

they visit restaurants (see Section 14.5). Similarly, one needs to have knowledge of how a cricket match 

is played, in order to be able to make sense of a news reporting how Sachin Tendulkar went on to score 

a century in a World Cup match. Encoding all relevant common sense and background knowledge and 

incorporating them appropriately in NLU systems has proved to be the holy grail of AI.
It is clear that we need to model the complex interaction of several phenomena to be able to understand 

how humans process natural language. In this respect, NLU is a scientific activity in a spirit very similar 

to natural sciences (like physics) where language is a natural artifact being studied, and the goal is to 

arrive at sophisticated models of language and its understanding. This involves the coming together 

of several disciplines like cognitive science, theoretical linguistics, psychology, machine learning and 

artificial intelligence. NLU is also an engineering activity, in that we attempt to build computational 

models that can make sense of textual data in the limited context of a given task or application. Several 

real world applications have been built; we will see examples of such applications later in this chapter.

16.1 Classic Problems in NLP and Schools of Thought

While linguists are interested in characterizing languages and processes that account for its effective 

use, the field of Computational Linguistics (which we use interchangeably with Natural Language 
Processing) restricts attention to models that are realizable on a computer.

The number of distinct English sentences is infinite. An idealized computer as conceptualized using 

a Turing Machine has a finite number of states, but can recognize (or accept) a language having infinite 

number of strings. On the surface, designing an automaton that can accept all English sentences and 

reject all invalid ones seems doable. In the light of the problems discussed in the introduction, however, 

defining the grammar would be incredibly challenging, and getting around ambiguities harder. Even 

if we did manage to construct models for a subclass of English, we would not be sure we had systems 

that actually “understood” the sentences, since we have observed that understanding needs a wealth of 

common sense and background knowledge that is not (yet) available in a form that machines can readily 

use. It makes sense to systematically analyse the fundamental problems that we need to address, if we 

were to make some progress in understanding the conceptual basis of natural language. This is the first 

major step in building machines that can reason with natural languages.

Physics is about matter, but instead of studying all varied forms of matter, it starts out by examining 

basic building blocks like atoms, what are shared by all matter. In NLP, the most fundamental building 
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block is a word. We associate properties with atoms; a sulphur atom is different from a chlorine atom. 

We associate properties with words; an “elephant” refers to something and a “donkey” to something else. 

A sulphur atom can be broken down further into particles like electrons, protons and neutrons, but the 

important point is that a sulphur electron is indistinguishable from a chlorine electron. Similarly, a word 

can be broken down to letters, but the letter “n” in “elephant” is indistinguishable from the letter “n” 

in “donkey”. Thus, an atom is a specific configuration of primitives (like electrons, protons, neutrons) 

that has a unique property, and a word is a specific configuration of primitives (letters) that has a unique 

property. Let us start our study of language by examining the properties of words.

The first property of a word is that it has a meaning; a word is a surrogate for something in the material 

or the abstract world. Letters that constitute a word don’t have meanings of their own (though some 

words are just single letters); so in that sense, a word is the smallest linguistic element with a meaning. 

In NLP, the study of word meanings is called lexical semantics. The word “lexical” is used whenever 

we want to refer to processing at the level of a word. One central question is: how do we make machines 

understand the meanings of words? Humans use dictionaries which explain the meanings of complex 

words in terms of simple ones. For machines to use 

dictionaries, we have two problems. The first is, how 

do we communicate the meaning of simple words (like 

“red” or “sad”)? We have also discussed the problem 

of defining the semantics of such “words” in FOL in 

Chapter 13. The second is, to understand the meanings 

of complex words out of simple ones, we would need 

the machine to understand English in the first place. 

The first problem has no easy solution; there are words 

whose meanings are expressed better in the form of 

images or when contrasted with other words (“orange” 

versus “yellow”). The second problem of defining words 

in terms of others can be addressed using a knowledge-

representation formalism like a semantic network. The 

WordNet (Miller, 1995) is a massive network of words 

compiled manually over 10–15 years, where each word 

is extensively annotated and its inter-relationships to 

other words are also specified. A fragment of the 

WordNet network is shown in Figure 16.1.

In the terminology of WordNet, a word has a form (the sequence of letters that comprise it). A word 

form could have multiple meanings; this is referred to as polysemy. The word “bank”, for example, can 

refer to a financial bank or a river bank. The different meanings of a particular word form are often 

referred to as senses. Determining the right sense in which a word form is being used is a nontrivial 

problem that goes by the name of Word Sense Disambiguation (WSD). WSD relies on contextual 

information as obtained from neighbouring words to determine the correct meaning of a given word.

It is also commonplace that several word forms map onto the same meaning; this is referred to as 

synonymy. Search engines like Google that aim at retrieving relevant documents based on very few search 

terms need to handle synonymy and polysemy effectively. If a search engine can recognize synonyms, it 

can ensure that a prospect document does not get left out. If a search engine handles polysemy effectively, 

it can prevent an irrelevant document from getting retrieved.

The second property of a word is its Part of Speech. The Part of Speech (POS) dictates the suitability 

of words to tie up with each other to give rise to grammatical sentences. An analogy can be drawn to 
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valency of atoms, which is primarily responsible in dictating which molecules are possible and which 

are not. A molecule in which atoms don’t have their valencies pairing up is like an ungrammatical 

sentence where the parts of speech of words are not in agreement with each other. There are primarily 

five Parts of Speech: nouns, prepositions, verbs, adjectives and adverbs. A word can be associated with 

more than one Part of Speech. As with WSD, determining the right Part of Speech of a word requires 

one to look at neighbouring words; this is referred to as the Part of Speech Tagging (POST) problem.

The third property of a word is its morphology, which is its structure or form. This refers to the 

sequence of letters in the words. There are systematic ways in which the form of a root word (like 

“sing”) can be changed to give birth to new words (like “singing”). Individual constituents of words 

(like “sing” and “ing”) are sometimes referred to as morphemes. Inflection is the process by which a new 

word is obtained from its root, such that the new word preserves the Part of Speech of the root word. In 

contrast, derivation may lead to a new word that has a different Part of Speech. Thus, the transformation 

singÆsinging is inflection, whereas the transformation cheerÆcheerfulness is derivation. Languages 

like Sanskrit have a large number of transformation rules which lead to generation of complex words 

by combining morphemes, most of which have specific roles in dictating the meaning of the resulting 

word. In contrast, inflection and derivation rules in English are simpler, though there are plenty of 

exceptions (the past tense of “eat” is “ate” and not “eated”). Later in this chapter, we will see that Finite 

State Machines are useful in modelling morphological operations in English. Search engines need 

morphology tools that yield the root forms of words, so that a query “dogs biting cats” can retrieve a 

document titled “a dog bites a cat”. Another application that word processors and Google very often 

use is a spell-checker which tries to identify the correct word form, given its incorrectly spelt version.

The fourth property of a word is its pronunciation or phonetics. This aspect is of particular importance 

to researchers in speech processing. Since the focus of this chapter is exclusively on processing of written 

(and not spoken) text, this topic is outside the scope of this chapter.

Words come together to form bigger semantic units which we call sentences. For a sequence of words 

to form a sentence, they must be arranged in accordance with the rules of grammar. The meaning of a 

sentence is composed from the meanings of words. There are two important problems in NLP relating 

to this phenomenon of words coming together to form sentences. The first problem is: given a sentence, 

how do we break it up into chunks in a way that is consistent with the grammar of the language? This is 

the parsing problem. Figure 16.2 shows a sentence and its representation after it has been parsed. The 

sentence is: “The idea that machines understand languages fascinates us”. The second problem is to 

account for how the meaning of a sentence is composed from the meanings of the words in it. This is 

often referred to as compositional semantics to distinguish it from lexical semantics. As we have noted 

before, the notion of sentence “meaning” can get quite tricky. True understanding may need a wealth of 

background and linguistic knowledge, as also knowledge inferred from the context in which a sentence is 

uttered, and these can interact in complex ways. However, even as full scale understanding is an unsolved 

problem, there have been interesting techniques and knowledge representation formalisms that have been 

proposed towards addressing both the problems mentioned above. These will be covered in Section 16.2.

Just as words come together to form sentences, sentences come together to form paragraphs or 

documents. The technical name for a group of sentences conveying some information is discourse.

Understanding discourse is a ‘grand challenge umbrella’ problem for NLP that encapsulates several long 

and short term problems. One immediate implication of effective discourse processing is that we could 

design systems that could read a story and answer questions based on it. This would also mean that we 

would have automated systems that can process Web pages and construct representations of these Web 

pages that have richer representations of the underlying semantic content. Web search engines, in turn, 

could exploit these systems to facilitate a more effective comparison of the queries to documents. While 
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discourse processing is hard, we will consider in this chapter one subproblem which is relatively well 

studied. It is called anaphora resolution; a special case of resolving pronoun references. Let us consider 

the sentences “Ram hit Mohan. He was badly hurt.” and contrast this with “Ram hit Mohan. He escaped.” 

In the first case, the pronoun “he” refers to Mohan, and in the second case to Ram. Anaphora resolution 

in this example refers to the problem of determining which entity is referred to by “he”.

In natural language, there are occasions where the intent of the speaker does not have a straightfor-

ward correspondence with the words or sentences she uses. For example, imagine a pedestrian calling 

out “Taxi!!!” and the taxi driver shouting back “Pedestrian !!!”. This is referred to as the problem of 

pragmatics.

In Section 16.2, we will take a closer look at the central problems in NLP identified above. We will 

focus our attention on some representative approaches aimed at addressing these problems.

Two Schools of Thought 

Before we begin our discussion on specific techniques to address NLP problems, it may be worth noting 

that there are principally two schools of thought in NLP, namely the rationalistic one and the empirical
one. Till the mid-eighties, NLP systems were built using hand coded grammars and symbolic rules. There 

were two main limitations of this so called rationalistic approach. First, such systems were brittle and 

often restricted to specific domains. A classic example is the SHRDLU system (Winograd, 1971) built 

by Terry Winograd as part of his PhD at MIT. The system could build a dialog about a world of toy 

blocks and move blocks around based on commands in a natural language. Secondly, developing these 

systems needed a lot of manual intervention for knowledge engineering. These limitations were critical 

bottlenecks in the way of development and field deployment of real world NLP systems. Empirical 

methods in NLP were motivated by the need to address these limitations and gained prominence in 

the nineties and continues to dominate the bulk of NLU work reported today. Empirical NLU relies on 

statistical machine learning on a corpus. Given a collection of naturally occurring sentences as input, 

the aim is to algorithmically acquire useful information about the language. Empirical NLP has had 

much remarkable success in several language tasks such as syntactic and semantic analysis, machine 

translation, discourse analysis, information extraction and in speech processing, though many believe that 
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it is not appealing from the cognitive standpoint. Noam Chomsky, one of the pioneers of the rationalist 

school of thought, proclaims that language cannot be learnt from data, and that most of language is 

innate to humans. This line of thinking has been popularized more recently by Steven Pinker, who in 

his book The Language Instinct maintains that humans do not learn any more language from corpuses, 

than birds learn flying by statistically analysing patterns of flights of other birds.

16.2 Basic NLP Techniques

16.2.1 A Spelling Checker

Perhaps the most common application that we can think about at a word morphology level is that of 

detecting and correcting spelling errors. Once a spelling error is detected using a standard dictionary, 

the system needs to suggest candidate corrections. A simplistic strategy would be to just compare the 

number of letters in common between the misspelt word and each of the candidates. However, the 

limitation of this approach is that it fails to take into account the order of letters. Thus, ‘WRONG’ and 

‘GONER’ are treated as equally likely replacements for the misspelt word ‘GONIR’. This limitation can 

be overcome by considering sequences of two letters (bigrams) or sequences of three letters (trigrams) 

as basic building blocks of a word. For example, the bigrams and trigrams of the word ‘GONER’ are 

{‘GO’,’ON’,’NE’,’ER’} and {‘GON’, ‘ONE’, ‘NER’} respectively. A simple measure of a trigram 

based similarity between strings A and B is as follows:

sim(A, B) = 
| trigram(A) « trigram(B) |
——————————
| trigram(A) » trigram(B) |

Here, trigram(S) refers to the set of trigrams in the string S. In the example above,

trigram(‘WRONG’) = {‘WRO’, ‘RON’, ‘ONG’}

trigram(‘GONER’) = {‘GON’, ‘ONE’, ‘NER’}

trigram(‘GONIR’) = {‘GON’, ‘ONI’, ‘NIR’}

Thus,

sim(‘WRONG’, GONER’) = 0

sim(‘GONER’, ‘GONIR’) = 0.20

It may be noted that because of their simplicity, n-gram based approaches, of which the bigram and 

trigram are special cases, have been used in various practical applications that need fast string matching.

Despite being simple and easy to use, the n-gram approaches suffer from the limitation that they are 

overtly sensitive to insertions, deletions and substitutions. In the example above, the trigram similarity 

seems to underestimate the similarity between ‘GONER’ and ‘GONIR’ which differ by just one letter. 

Worse still, the trigram similarity between ‘GONER’ and ‘GOBER’ is 0. To overcome this limitation, 

commercial spellcheck tools that come with word-processing software use the notion of edit distance,

which is explained below.

Let us consider two strings: GREAT and GRATE. Let us attempt to transform GREAT to GRATE by 

using a combination of three primitive operations: letter insertions, deletions and substitutions. There 

are several ways in which a word can be transformed into another. For the current example, two such 

transformations are shown in Figure 16.3.

A cost is assigned to each primitive operation, viz. insertion of letter, deletion of letter and substitution 

of letter. A total cost of transformation is computed as the sum of each of these primitive costs. Taking the 

costs to be 1 for each of the three primitive operations, the total costs for the two transformations shown 

in Figure 16.3 are 2 and 6 respectively. The edit distance is defined as the least cost of transforming one 

string to another. In the above example, the edit distance between ‘GREAT’ and ‘GRATE’ is 2.
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The process of enumerating all possible transformations from one string to another and choosing 

the least-cost transformation is computationally expensive. Fortunately, dynamic programming comes 

to the rescue by cleverly avoiding certain redundant computations. The details of this algorithm are 

presented in (Dasgupta et al., 2006).

There is yet another interesting way of addressing the spell-check problem. Consider a wrongly 

spelt word W and words A, B, C that are candidate corrections for W. Let P(A|W) be the posterior 

probability that A is the correct replacement for W. By using Bayes’ rule of probability, this is a posterior 

term which is proportional to the product of two quantities: the likelihood term P(W|A) and the prior 

term P(A). Similarly, the likelihood and prior terms are computed for B and C as well. The word with 

highest posterior probability is chosen as the replacement for W. While the likelihood term takes care 

of systematic processes (like keyboard proximity of letters) that lead to a typo, the prior term ensures 

that a more frequent word is favoured over a less frequent one. The prior probabilities can be estimated 

using a standard corpus. (Kernighan et al., 1990) describes an approach to estimate the likelihood by 

recording frequencies of replacement of each English letter by another. 

16.2.2 Morphology using Finite State Transducer

In a way not very different from how words act as building blocks for sentences, words themselves are 

built up from a sequence of morphemes. Computational morphology encompasses two areas. The first is 

analysis, where a word is broken into its constituent morphemes. The second is synthesis, wherein a word 

is composed from morphemes. While it may appear that “parsing” a word to its morphemes is a simpler 

task than parsing a sentence, there are still interesting challenges. Consider the ambiguity in parsing the 

word “foxes” (a plural noun or a singular verb) for example, which cannot be resolved without access to 

contextual information. Three different sources of knowledge are necessary for morphological processing. 

The first is the lexicon which has a listing of words and morphemes along with their roles (for example, 

adding an s gives the plural form of a noun). The second is morphotactics, which is a set of rules that 

govern which endings go with which words (for example, ‘er’ can follow ‘do’ but not ‘be’). The third 

is a set of rules to allow for change in spelling (for example, ‘fly + s’ should give rise to ‘flies’ and not 

‘flys’).

The apparatus needed for morphological processing are concatenation and a mechanism to allow 

certain combinations and rule out some others based on the characters processed. These can be 

conveniently captured using a Finite State Automaton (FSA). An FSA makes transition between states 

driven by a sequence of input symbols. One or more of these states are marked as acceptors, and the 

automaton is said to have accepted or recognized the string if it ends up being in one of the acceptor 

states, after all symbols are processed. An extension of this basic idea is that of a Finite State Transducer
(FST), which outputs symbols as it make state transitions. Thus, an FST can be viewed as a mechanism 

of taking in an input string and generating an output string, and this is ideally suited to the task of 

morphological processing.

FIGURE 16.3 Two different ways of transforming one string to another.

g r _ a t e g r _ _ _ a t e

g r e a t _ _ _g r e a t _
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The development of morphological processers is often modularized in practice, by adopting the notion 

of a two-level morphology. The first module takes in a surface form of a word (say “birds”) and splits 

it into possible morphemes (“bird” + “s”). The second module converts these morphemes to root forms 

and tags identifying their morphological features (“bird” + N + plural).

Morphological processing is an essential prerequisite for NLP parsers and Part of Speech taggers, 

and also for applications like machine translation, question answering and grammar checking. While 

tasks like Information Retrieval also need a knowledge of morphology in principle, they tend to do away 

with elaborate morphological processing by using simpler and faster algorithms for arriving at canonical 

representations for variants of a given word. A popular tool is the Porter’s algorithm (Porter, 1980).

16.2.3 Lexical Semantics using WordNet

WordNet (Miller, 1995) is a lexical reference system developed at Princeton University. It is based 

on psycholinguistic theories of human lexical memory. While at a gross level, it can be viewed as an 

electronic thesaurus, a critical distinction is that WordNet organizes lexical information in terms of word 

meanings rather than word forms. The lexicon is divided into five categories: nouns, verbs, adjectives, 

adverbs and function words. Words from various Parts of Speech are organized into synonym sets (also 

called synsets), each representing one underlying lexical concept. Different relations link synsets with 

other synsets. The following are examples of WordNet relations that are defined over nouns. Synonymy
refers to a similarity of meaning. Antonymy is a lexical relation between word forms, not a semantic 

relation between word meanings. Thus, rise is an antonym of fall, but is not an antonym of descend.

Hyponymy and Hypernymy are semantic relations between word meanings. A concept represented by a 

synset is said to be a hyponym of a concept represented by a different synset, if the former “is-a(kind 

of)” the latter. The latter would be called a hypernym of the former. For example, {maple} is a hyponym 

of {tree}, and {tree} is a hyponym of {plant}. Meronymy and holonymy are again semantic relations 

between word meanings. A concept represented by a synset is said to be a meronym of a concept 

represented by a different synset, if the former “is a part of” the latter. The latter would be called a 

holonym of the former. WordNet also has Morphological Relations which are lexical in nature. For 

example, {trees} is morphologically related to {tree}; and thus we can move from {trees} to {tree} by 

suffix stripping. More involved techniques may be required to handle all inflections and derivations.

group

family

brother sister arm leg flesh bone

relative body
organic

substance

person natural
object

substance

hyponymy antonymy meronymy

FIGURE 16.4  WordNet relations.

http://wordnetcode.princeton.edu/5papers.pdf
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An interesting application of WordNet is that it can be exploited to compute a numeric estimate of 

semantic relatedness between synsets in the closed interval [0,1]. There is an open source Perl utility 

WordNet::similarity2 (Pederson et al., 2004) that provides access to several different measures based 

on the graph theoretic structure of WordNet. We discuss a simple example below to illustrate one such 

measure.

Let us consider a hypernymy tree in WordNet as shown in Figure 16.5. Here, the hypernym tree with 

the smallest path from the token ‘fox’ to the root node ‘entity’ is shown. The similarity between any 

two nodes in the tree is computed by the simple formula:

Similarity(node1, node2) = 100 – 100 * (DistanceLCS/

DistanceROOT)

where

DistanceROOT = Sum of distances of the two nodes to the root 

DistanceLCS = Sum of distances of the two nodes to the Least 

Common Subsumer (LCS)

The LCS is defined as the most specific concept that is the shared 

ancestor of the two nodes.

In the example shown in Figure 16.5, the similarity between the token 

‘fox’ and ‘wrongdoer’ is calculated below. The LCS here is ‘wrongdoer’.

Distance of the node ‘fox’ from the node ‘wrongdoer’ is 2.

Distance of the node ‘wrongdoer’ from the node ‘wrongdoer’ is 0

Therefore DistanceLCS = 2 + 0 = 2

Distance of the node ‘fox’ from the root ‘entity’ is 6

Distance of the node ‘wrongdoer’ from the node ‘entity’ is 4

Therefore DistanceROOT = 6 + 4 = 10

Similarity(‘fox’, ‘wrongdoer’) = 100 –100 * (2 / 10) = 80%

16.2.4 Word Sense Disambiguation

WordNet records the different senses in which a word can potentially be used. Since each synset 

corresponds to a distinct meaning, each sense of a word maps to a distinct synset. Word Sense 

Disambiguation (WSD) involves identifying the sense of a word in a given piece of text, by making 

use of other words in context and grammatical cues. State-of-the-art WSD systems rely on Machine 

Learning techniques to establish the mapping.

Supervised WSD systems rely on annotated corpora, in which each polysemous word is manually 

labelled with its correct sense. An example of one such freely available corpus is Semcor. A classifier 

such as a neural network or an instance based learner (refer Chapter 18) is trained on such a labelled 

corpus. The learner uses the training data to establish a mapping from the contextual features of a word, 

such as words in its proximity, to the correct sense of the word. A new word instance is viewed as a test 

case and assigned a sense based on the predictions of the trained model.

A major bottleneck with supervised WSD systems is the reliance on hand-annotated corpora. 

Unsupervised WSD systems overcome this limitation. Each word instance is described in terms of its 

features, and an unsupervised clustering is performed which groups together the instances that have 

similar contextual features. Each group (or cluster) is treated as a distinct sense. A new word instance is 

2 http://wn-similarity.sourceforge.net/
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assigned to its closest group based on its features. Note that, unlike the supervised case, we not have to 

rely on explicit sense labels from WordNet. Some authors make a terminological distinction to clarify 

this point, and use “word sense discrimination” as opposed to “word sense disambiguation”, while 

referring to unsupervised WSD.

A third and an interesting approach to WSD is to use a corpora of bilingual texts for disambiguation. 

Words that are polysemous in English are often not polysemous in Hindi, for example. The corresponding 

words in Hindi can then serve as sense identifiers. If we have a corpus of texts in English and their 

corresponding Hindi translations, we can use Machine Learning techniques to exploit contextual 

information to disambiguate polysemous English words.

16.2.5 Part of Speech Tagging

Determining the correct Part of Speech (such as noun, verb, adjective, adverb or determiner) of words 

in a sentence is a critical step for several NLP operations, including parsing. There are broadly two 

kinds of POS taggers: rule based taggers and stochastic taggers. Rule based taggers rely on a set of 

hand coded rules such as

IF preceding_word is DET, THEN current_word is NOT VERB

where DET stands for determiner (for example “the” or “a”).

While rule based taggers are efficient, they involve substantial knowledge acquisition overhead. To 

overcome this shortcoming, several supervised machine learning approaches have been explored to 

induce rules from annotated corpora. Stochastic taggers rely on the frequency of tags or sequence of 

tags, as estimated from a corpus.

The simplest scheme is based on the unigram model where the most frequent tag is assigned to a 

word. A bigram tagger recognizes that sequences such as “DET NN” are more likely than “DET VB”. 

Unlike rule based taggers that operate on a rigid set of rules, stochastic taggers aim at exploiting corpus 

statistics assigning the most likely sequence of tags to words in a sentence. A very popular scheme for 

stochastic tagging is the Hidden Markov Model (HMM) tagger. The idea behind HMM is discussed at 

length in Chapter 18. In the context of the current problem, the observed states are the words, and the 

POS tags constitute the hidden states. Stochastic taggers have been fairly successful with accuracies in 

the range of 95–96%.

16.2.6 Parsing

Traditional Parsing

Parsing is a well-studied area in the context of programming languages. However, as we noted earlier, 

parsers designed for programming languages are often not well suited for natural languages. This is 

because natural languages are inherently ambiguous, and at a syntax level, the number of valid parses 

for a sentence may sometimes exceed thousands. Knowledge of semantics, pragmatics or heuristics 

can be used to eliminate those that make no sense; this may still be a far cry, however, from realizing 

the goal of zeroing onto the one single parse that corresponds to the true intention of the author of the 

sentence. In traditional parsers, candidate parses are generated and a disambiguation module is used to 

choose the right parse based on additional information. There are some sentences that are fundamentally 

ambiguous, in the sense that even humans cannot disambiguate between candidate parses based on the 

available information.

Parsing a sentence (string) in a language needs knowledge of its grammar. There are systematic 

patterns in the sentence that emerge from the knowledge of grammar. For example, sentences typically 
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have constituent phrases like noun phrases and verb phrases. Words in a constituent like a noun phrase 

(“the old man and the sea”) occur close to each other.

Parsing can be viewed as a search problem where the search space is the set of trees consistent with 

a given grammar. There are two extreme ways of performing this search: top down and bottom up. 

These two terms are used in AI to refer to goal driven and data driven search respectively. In the task of 

packing bags for travel, we can start with the goal in mind and make a list of items that achieve that goal. 

Alternately, we can look around in the room and try to identify those items that we need to carry. The first 

approach is top-down, the second is bottom-up. In practice, a mix of both approaches is usually used.

In the context of parsing, a top-down parser is constrained by the grammar 

and a bottom-up parser by words in the sentence. Consider the rules of 

grammar shown in Figure 16.6. Figure 16.7 illustrates the top-down process 

for the sentence “Fix the bugs”. All possible expansions of S, as suggested 

by these rules, are tried as shown in Level 1. The leaves of the trees in 

Level 1 define the new subgoals, which recursively lead to the generation of 

further levels. The generation stops when the leaves of the trees correspond 

to Parts of Speech. All trees whose leaves fail to match the words in the 

input sentence are rejected, the rest are recognized as syntactically valid 

parses of the sentence. In our example, the only parse tree that survives is 

shown at the bottom of Figure 16.7, in which “Fix” is a verb (phrase) and 

“the bugs” a noun phrase.
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FIGURE 16.7 Top-down parsing.

Bottom up parsing starts by labelling each word in the input sentence with their POS tags. The 

number of such possible labellings (see Level 1 in Figure 16.8) is a function of the number of POS tags 

each word can potentially take. In the next step, the rules of the grammar are used to match the POS 

tags with the right hand side of the grammar rules. This results in the trees in Level 2. The process is 

continued with each level attempting to find rules whose right hand sides match the leaves of the trees 

in the earlier level. For a syntactically correct sentence, the process terminates when we have one or 

more trees rooted in S.
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FIGURE 16.6 Rules of 

grammar.
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The bottom-up parser is inefficient, in that it generates trees that can never lead to an S. In contrast, 

the top-down parser sometimes produces trees that have no hope of matching the POS tags of the words 

in the sentence. Taking cues from the analogy of packing bags, it makes sense to exploit the best of 

both approaches. An idea called bottom-up filtering does just that. The basic idea is to preprocess the 

grammar rules and list out the potential “left corner” POS tags for each nonterminal in the grammar. For 

example, given the grammar in Figure 16.6, for a string to be a Noun Phrase (NP), it needs to start with 

one of the following POS tags: Noun, DET or PRON. These define the left corner of NP. A top-down 

filter can exploit this information and filter out expansions that do not correspond with the POS tags of 

the input sentence. In the example in Figure 16.8, the expansions originating from S Æ NP VP in Level 

1 clearly have no chance of leading to valid parses and thus are eliminated using bottom-up filtering.
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FIGURE 16.8 Bottom-up parsing.

Statistical Parsing

It is next to impossible to come up with a “perfect” grammar that accepts all English sentences that 

people find acceptable, and rejects those that people find unacceptable. Also, parsing a single sentence 

using a run-of-the-mill parser may lead to multiple parses, of which only one makes sense to people. 

These two observations lead us to speculate that it is perhaps more sensible to assign to a given parse 

of a sentence, a number between 0 and 1 (inclusive) that indicates the probability that the given parse 

is reckoned as a meaningful one by people. While Charniak did propose that syntactic analyses should 

be qualified by probabilities, the automata theorist Taylor L. Booth was the first to suggest that rules 

in CFGs (context free grammars) should be assigned probabilities, giving rise to Probabilistic Context 

Free Grammars (PCFGs).

A simple example of PCFGs is shown in Figure 16.9 below. Note that the probabilities corresponding 

to the rules having the same nonterminal as antecedent add up to 1.

Let us use the grammar rules above to parse the following ambiguous sentence:

Deepa ate noodles with chopsticks.
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The two parse trees generated by the system are shown below. Using independence assumptions, the 

probability of a parse tree is simply estimated as the product of probabilities of all rules occurring in it. For 

the two parses Parse1 and Parse2 shown in Figure 16.10, the probabilities are estimated as shown below:

P(Parse1) = P(S Æ NP VP) ¥ P(VP Æ V NP) ¥ P(NP Æ NP PP) ¥ P(PP Æ PREP NP) 

¥ P(NP Æ Deepa) ¥ P(V Æ ate) ¥ P(NP Æ noodles) 

¥ P(PREP Æ with) ¥ P(NP Æ chopsticks)

= 0.0009

P(Parse2) = P(S Æ NP VP) ¥ P(VP Æ VP PP) ¥ P(VP Æ V NP) ¥ P(PP Æ PREP NP) 

¥ P(NP Æ Deepa) ¥ P(V Æ ate) ¥ P(NP Æ noodles) 

¥ P(PREP Æ with) ¥ P(NP Æ chopsticks)

= 0.00225
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VPNP
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with chopsticks
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FIGURE 16.10 Two valid parses of the sentence ‘Deepa ate noodles with chopsticks’.

The right parse tree (Parse2) has a higher probability and would thus be preferred. The reader would 

have observed that the probabilities corresponding to each of the two parse trees are very low. This 

is expected, since the grammar can potentially generate an infinite number of sentences which define 

the sample space, though the probabilities of very long sentences are expected to be close to zero. An 

example of such a long meaningless sentence accepted by the grammar above is “Deepa ate noodles 
with chopsticks with spoons with chopsticks with spoons with Deepa”.

An important question that we have not addressed so far is the following: How do we acquire the 

rule probabilities in a PCFG? The answer lies in using an annotated Treebank corpus (for example the 

Penn Treebank corpus) that contains a large number of sentences and their corresponding parse trees. 

The parse trees use rules of the form aÆc, where a is the antecedent (say NP) and c is the consequent 

(say DET N). The probability of the rule aÆc is the ratio of the number of times the rule appears in the 

Treebank corpus and the number of times a occurs.

The approach mentioned above assumes a large corpus of sentences, each of which are associated 

with their correct parse trees. Construction of such treebanks involves substantial human intervention. 

It would be interesting to explore if we could start with a corpus that is only partially labelled with 

S NP VP (1.0)

VP V NP (0.5)

VP VP PP (0.5)

PP PREP NP (1.0)

NP NP PP (0.2)

NP Deepa (0.2)

V ate (1.0)

PREP with (1.0)

NP noodles (0.3)

NP chopsticks (0.15)

NP spoons (0.15)

FIGURE 16.9 PCFG rules.
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parse trees. This can be cast as a machine-learning problem where an inference has to be done in the 

presence of missing data. A classic approach is the Expectation Maximization (EM) algorithm outlined 

in Chapter 18. The application of EM algorithm to the problem of learning PCFG rules is discussed in 

(Manning et al., 1999).

16.2.7 Anaphora Resolution

In discourse, it is typical to point backwards to a previously mentioned entity. This phenomenon is 

referred to as anaphora, with the item referring backwards as an anaphor and the item being referred to 

as an antecedent. Let us consider a simple example:

Varun applied for several jobs in the banking sector.

Unfortunately, he failed to qualify in any of them.

Here, he in the second sentence is the anaphor pointing to the antecedent Varun. Detecting and 

resolving anaphora is important for NLP applications such as machine translation, text summarization 

and information extraction, which are covered in later sections of this chapter.

Anaphora resolution techniques typically identify a set of candidate antecedents, one of which is 

selected based on several cues. The first of such cues is gender and number. In the example above, the 

set of candidate antecedents for resolving the pronoun “he” include “Varun”, “several jobs” and “banking 

sector”. The resolution concludes that “he” must refer to “Varun”, as it cannot refer to “several jobs” 

because of a number conflict, nor can it refer to “banking sector” because of a gender conflict. A second 

cue is selectional restraint, wherein background knowledge about the candidate antecedents can help 

prune the candidate set. An example is as follows:

Anuradha’s friends baked cakes. They were delicious.

They, in the second sentence, must refer to cakes and not to the bakers; this is an example of semantic 

selectional restraint.

It may be noted that the term anaphora has a broader connotation than just pronoun resolution. 

Examples of other kinds of anaphora include lexical noun phrase anaphors (the IPL team Kings XI 

Punjab is referred to as just Kings XI), one anaphora (“There are two teams. The one in red and yellow 
is East Bengal”) and zero anaphora (“They played well and (they) won the match”). For a more detailed 

account of various other kinds of anaphora and specific resolution approaches outside the ones mentioned 

above, refer to (Feldman et al., 2007).

16.3 Applications

16.3.1 Information Retrieval

Information Retrieval (IR) is the task of retrieving information from a given collection of documents 

that satisfies a certain information need. An obvious example is a search engine which is used by 85% 

of users when looking for some specific information. A central challenge in Information Retrieval 

is the uncertainty about the information need of the user, and also about the potential utility of the 

retrieved document(s) in meeting that information need. The system typically has to create underlying 

representations of the content of documents and match these up against the representation of the query. 

The system could fail because the representations of the query and of the documents fall short of 

modelling their actual information content, or because of the shortcomings of the matching process itself. 

A significant bulk of IR research has gone into formalisms/models for creating richer representations of 

the underlying semantic content or user intent.
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A piece of text, at the surface level, is made up of words. At a deeper level, however, is its meaning 

and function. The lack of correspondence between deep and surface-level representations is a stumbling 

block for IR. Also, IR systems typically operate on large volumes of text, and this presents challenges 

in terms of devising algorithms that scale up on efficiency across time and space. In addition, ideas 

from research in Human Computer Interaction can be used to design interfaces that effectively elicit 

information needs of users. An example of this is the idea of relevance feedback which works as follows. 

The user is presented with a set of retrieved results and she offers her feedback by identifying those 

results which are relevant to the query, and those that are not. This feedback is used by the system to 

automatically reformulate the query and retrieve results again. A simple approach of query reformulation 

is one that changes the query by including words from relevant documents and excluding words from 

irrelevant ones.

The quality of retrieval of an IR system is measured by precision and recall. Precision refers to the 

proportion of retrieved documents that are relevant. Recall refers to the proportion of relevant documents 

in the collection that have been retrieved. In the Venn diagram shown in Figure 16.11, the sets RET
and REL refer to the set of retrieved results and the set of relevant results given a query, respectively. 

Precision and Recall can be defined in terms of these as follows:

Precision = 
|RET « REL |
—————

|RET |

Recall = 
|RET « REL |
—————

|REL |

As an example, consider an IR system that 

operates over a collection of 10,000 documents 

and retrieves 10 documents given a query Q. Let 

us assume that 6 of the retrieved documents are 

found to be relevant to Q. The total number of 

documents in the collection that are relevant to Q
is 9. The precision is 6/10 and recall is 6/9. Note 

that evaluating recall is much harder than evaluating 

precision, since it is difficult to know a priori all 

documents that are relevant to a given query. The 

application needs determine whether an IR system 

should be tuned to maximize precision or recall. For example, precision may be more important in the 

context of a directory search system designed to fetch a telephone number, given a name or address. 

In contrast, recall is a better measure when it comes to evaluate yellow page search. An example is a 

system designed to retrieve all vegetarian restaurants around a specific location in a city. A typical user 

might be interested in going through most of the choices presented to her.

It is commonplace in IR to view a document as a bag of words. The words are treated as independent 

of each other, and the order in which the words occur is ignored completely. While this clearly falls short 

of capturing deep meaning and the function of texts, this shortcoming is compensated by the gains in 

terms of retrieval and storage, especially in face of Web scale retrieval. Various IR models build on top 

on the bag-of-words model. Below, we illustrate how one such formalism, viz. Vector Space Model, is 

used to build a toy IR system. The first step is to conceptualize an n-dimensional space, where each of 

the dimensions corresponds to a word. Each document is represented as a vector in this a space. As an 

example, let us consider a document collection with just three documents D1, D2 and D3. D1 has words 

RET: set of
retrieved results

REL: set of
relevant results

: retrieved results that are relevant

FIGURE 16.11 Illustrating the concepts of 

precision and recall.
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{cricket, Tendulkar, century}, D2 has words {cricket, Dhoni, captain} and D3 has words {cricket, Warne, 

bowler}. We construct a toy vector space with the 7 distinct words {cricket, Tendulkar, century, Dhoni, 

captain, Warne, bowler} as 7 dimensions. Each document is then represented as a vector in this space, 

where a 1 and 0 indicates the presence and absence of a word in a document respectively: 

D
Æ

1 : <1, 1, 1, 0, 0, 0, 0>

D
Æ

2 : <1, 0, 0, 1, 1, 0, 0>

D
Æ

3 : <1, 0, 0, 0, 0, 1, 1>

The retrieval process is inspired by the observation that documents sharing a lot of words map onto 

vectors that are close to each other in the vector space. If two documents share no words at all, the 

corresponding vectors are orthogonal. The similarity of two vectors is estimated by the cosine of the angle 

between vectors. For example, the cosine of the angle between the vectors corresponding to D
Æ

1 and D
Æ

2 is

sim(D1, D2) = 
D
Æ

1 ∑ D
Æ

2———
| D

Æ

1| ¥ | D
Æ

2|

Note that the numerator is the dot product of the two vectors and the denominator is the product 

of their norms. This has the positive effect of accounting for the dissimilarities in the lengths of the 

documents being compared. A typical Web query, for instance, may just be a few words long, while the 

documents it is compared against may have thousands of words.

In the example above, only the presence and absence of a term is considered in modelling the 

relevance of a term to a document. In practice, two other pieces of information can be used to arrive at 

better estimates of relevance. The first is a local measure of relevance. An example is the term frequency,

defined as the number of times a term occurs in a document. The second is a global measure, in the 

sense that it attempts to capture the discriminating power of a term by examining its presence across the 

collection. Words like “the”, “of” and “a”, for instance, may occur in most documents in the collection, 

and thus have very little value in discriminating one document from the rest. An example of a global 

measure is the inverse document frequency (idf), which is defined as follows:

idf = log ( N
—
n )

where N is the total number of documents in the collection and n is the number of documents in which 

the word occurs. The logarithm is used for scaling, since for many words, n is much smaller than N.

Note that in the three-document collection shown above, the inverse document frequency of the word 

“cricket” is 0, symbolizing the fact that it has very poor discriminating power between the documents. 

The product of term frequency and inverse document frequency, referred to as the tf-idf score is often 

used to capture the overall relevance of a term to a document.

The steps involved in processing a document are as follows:

1. Tokenization The document is broken down into tokens after removing any irrelevant markups or 

metadata. A conscious choice needs to be made about handling punctuation marks and special symbols.

2. Stopword Removal Certain words, sometimes referred to as function words, play no important 

role in retrieval. Examples are articles like “a” or “the”, and prepositions like “on” and “in”. Typically, 

a stopword list is used to identify and filter out such words. Additionally, a domain specific stopword 

list may also be used.

3. Stemming This is used to reduce each occurrence of a word into its canonical representation, so 

that different variants of the same word (say “storing”, “stored”) reduce to their root form (“store”). 
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Ideally, FSTs realizing a two-level morphology, as described in Section 16.2.2, should be used for this. 

In practice, however, simpler algorithms like Porter’s stemmer are often used.

4. Term Weighting The relevance of each term to a document is calculated using the tf-idf score 

described above. This gives us a vector corresponding to every document.

The same steps are repeated for the query as well. The query vector is then compared against each 

document vector using the cosine similarity score, and the documents are ranked in descending order 

and presented to the user.

The retrieval scheme described above has a practical limitation, in that it involves comparing the 

query vector sequentially with each document vector. A solution to this problem is the use of inverted

file indices where a mapping is created from a word to the documents it occurs in. The advantage with 

this data structure is that we can restrict search to documents that contain at least one of the query terms, 

and thus avoid comparisons with completely unrelated documents. Figure 16.12 shows an example of 

an inverted file.
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3 1 1 1 0 0 0 0 0 0
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5 0 0 0 1 0 1 0 0 0
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filtering

indexing

clustering

decompose

sediments

purification

oscillation

matrix

factorise

Doc 9

Doc 4

Doc 1

FIGURE 16.12 Inverted File Index for a toy document collection.

Outside the Vector Space Model, there exist a few other interesting IR formalisms like the Probabilistic 

Model and the Network Model, of which the former has attracted considerable attention in the IR
community over the last decade. However, this is out of the scope of the current chapter, interested 

readers are directed to (Rijsbergen, 1979) which has an introductory coverage of this topic.

16.3.2 Concept based Information Retrieval

The IR system, described in Section 16.3.1, has several limitations. The foremost among them is its 

assumption that words are unrelated to each other, which is obviously not true. We would expect a query 

on “heart attack” to retrieve documents on “cardiac arrest” as well. This motivates research on concept 

based IR, which aims at representing both documents and queries in terms of their underlying concepts, 

so that the retrieval is, by and large, robust to word choice variability. In recent years, there is a significant 

thrust on coming up with appropriate representations for concepts, and exploiting different knowledge 

sources for building these concept representations. At a broad level, there are three different knowledge 

sources: linguistic, background and introspective. Below, we discuss some prototypical concept mining 

approaches under these three categories.



Chapter 16: Natural Language Processing 697

Linguistic Knowledge

A lexical resource like WordNet can help in capturing relatedness between words. If “cat licking mirror” is 

presented as a query to an IR system, we would expect a document on “animal biting glass” to be marked 

as relevant. Several systems have been designed to realize this goal using WordNet which helps us with 

the knowledge that “cat” is a hyponym of “animal” and “mirror” is a kind of “glass”. One approach is 

to augment a query with all related terms from WordNet, and then do a traditional retrieval. A second 

approach is to use numeric measures of WordNet similarity, as explained in Section 16.2.3 above.

Background Knowledge

Humans often use a lot of background knowledge in answering questions posed to them. It is, for 

example, almost impossible to analyse an event pertaining to an Israel–Palestine conflict, unless someone 

has a good prior knowledge on the Middle East crisis. Lexicons like WordNet clearly fall short of 

capturing such knowledge. Interestingly, however, electronic encyclopaedias like Wikipedia have 

emerged as a rich storehouse of background knowledge. Each Wikipedia article, which can be treated 

as a distinct concept, can be represented by the words in its text. In addition, the articles are linked 

to each other and to Web pages outside Wikipedia using hyperlinks. Each article is categorised under 

a concept hierarchy that can also be exploited. (Gabrilovich et al., 2007) propose a technique which 

they call Explicit Semantic Analysis (ESA), in which they treat each Wikipedia article as a concept. A 

vector space is then constructed with each concept as a dimension. Every word is represented in this 

space as a vector, which has a component 1 across a dimension, if the corresponding Wikipedia article 

contains that word, and has a component 0 otherwise. Since any given piece of text is simply a vector 

sum of its word vectors, it is easy to map both the query and the given set of documents to the concept 

space. Cosine similarities between the query and documents are computed and relevant documents are 

retrieved and ranked, as usual.

Introspective Knowledge

The idea here is to infer associations between words and phrases by investigating their co-occurrence pat-

terns within a collection of documents. For example, the word “automobile” is likely to co-occur with words 

like “gear”, “chassis” or “suspension” in many documents, and can thus be inferred to be “semantically 

related” to these words. Statistical techniques can exploit these co-occurrence patterns to generate word 

clusters, which can in turn be used for query expansion. Co-occurrences have their limitations, however. 

(Lund et al., 1996) observe that near synonyms like road and street fail to co-occur in their huge corpus.

In a French corpus containing 24 million words from the daily newspaper Le Monde in 1999, 

(Lemaire et al., 2006) found 131 occurrences of Internet, 94 occurrences of Web, but no co-occurrences 

at all. This has motivated researchers to investigate ways of modelling higher order co-occurrence 

patterns between words. If words A and B co-occur in some documents and words B and C in some 

others, words A and C can be said to share a second order co-occurrence between them (via B). In the 

Section below, we briefly describe a Factor Analytic technique called Latent Semantic Indexing (LSI) 

that mines concepts from a document collection by exploiting higher order associations between terms.

Latent Semantic Indexing LSI was proposed as a technique for concept extraction in (Deerwester et 

al., 1990) .The objective is to determine a set of underlying “factors” or concepts, that best explain the 

relationship between the terms and documents. This is not very different from the goal of most factor

analysis research from the sixties to the nineties. What distinguishes LSI from most earlier approaches 

is its “two-mode factor analysis” which allows it to express both words and documents in terms of the 

same underlying concepts.
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To start with, we have a term document matrix. Each element in that matrix is a weight showing the 

relevance of the term to the corresponding document. The first significant step in Linear Algebra is to 

view a matrix, such as this as an operator. This means that the matrix can act upon a vector (when it 

is multiplied with that vector), and relocate it to a different position. For example, the square matrix3

M = (
  2 –1   1

–1   2 –1

  1 –1   2
)

can act on the vector

A  = (
1

2

3
)

and move it to a new location given by M A :

M A  = (
3

0

5
)

In the underlying geometry of the space, the action of a matrix M can be viewed as a combination of 

translation and rotation of A  in the general case. We are interested in characterizing a matrix M formally 

in terms of its properties that govern its action on vectors; the concept of eigenvectors does precisely 

that. We consider all vectors x  that, when acted on by M, stretch themselves to a different location l x ,

where l is a scalar, but do not undergo any rotation. Thus,

M x = l x (16.1)

The vectors satisfying (16.1) are called eigenvectors, and each of these eigenvectors is associated 

with a corresponding value of l referred to as an eigenvalue. We rewrite (16.1) as (M – lI) x  = 0, where 

I is an identity matrix of dimensions matching M; this is called the characteristic equation. Solving it in 

our example, we have the following three eigenvectors 

v 1 = (
–1

0

1
), v 2 = (

1

1

0
) and v 3 = (

1

–1

1
)

associated with the eigenvalues l1 = 1, l2 = 1 and l3 = 4 respectively.

We now study the effect of M on any arbitrary vector x

x  = (
1

2

3
)

We can express x  as a linear combination of v 1, v 2 and v 3. The revised position M x is now given by

M  x  = M(1v 1 + 2v 2 + 3v 3)

= Mv 1 + 2Mv 2 + 3Mv 3

= l1v 1 + 2l2v 2 + 3l3v 3

3 Note that, unlike the example presented, all entries in a term document matrix are usually non-negative.
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The interesting aspect of this rewrite is that we can see that the total effect of M on x  is expressed as 

a weighted combination of effects due to each eigenvector. Eigenvectors, having very small eigenvalues 

associated with them, have a small effect on the operation of M on x . In the example above, the 

eigenvector associated with the eigenvalue l3 = 4 will have a more pronounced effect in characterizing 

M as an operator, compared to the two other eigenvectors, each associated with eigenvalue 1. This 

intuition is critical to our treatment of SVD below.

Moving on to a few more definitions, a family of a finite number of vectors is said to be linearly
independent if none of them can be expressed as a linear combination of the remaining ones. The rank 

of a matrix M (not necessarily square) is the number of linearly independent columns (or rows) in it. It 

can be shown that the rank of a square matrix equals the number of its nonzero eigenvalues, counted 

with multiplicity.

We now look at an important result in factor analysis. For a given square matrix real valued m3 m
matrix M with linearly independent eigenvectors, we can obtain a factorization

M = U Ÿ U–1

such that the columns of U are the eigenvectors of M, and Ÿ is a diagonal matrix whose diagonal elements 

are eigenvalues of M arranged in decreasing order. This result is due to Matrix Diagonalization Theorem 

(Strang, 2009) and applies to square matrices, but not to rectangular ones like the document-word 

matrix.

Previous attempts at factor analysis applied the idea to word-word matrices or document-document 

matrices, which are square. This is referred to as single-mode factor analysis. In contrast, two-mode factor 

analysis starts off with a rectangular word document matrix M of dimensions m3 n (corresponding to 

m words and n documents), and rank r. The key apparatus is the Singular Value Decomposition (SVD) 

of M, which is given by:

M = U S VT

where,

U is an m 3 m matrix whose columns are orthogonal eigenvectors of M M T.

V is an n 3 n matrix whose columns are orthogonal eigenvectors of M TM.

The eigenvalues l1, l2, …, lr of M MT are the same as eigenvalues of M TM. The square root of these 

r eigenvalues, called singular values, are arranged in descending order along the diagonal of the matrix 

S, all other elements of which are set to 0.

We have seen before that small eigenvalues contribute less to the effect of the action of a matrix M
on vectors. Extending this intuition to SVD, it is interesting to see the effect of considering only the 

top k singular values, and discarding the rest (flipping them to 0). Thus, the matrix S is shrunk to a k
3 k diagonal matrix Sk. We also delete the columns corresponding to low (and zero) singular values in 

U and V to obtain Û and V respectively. Û, Sk and V can now be combined to yield

M  = ÛSkV
T (16.2)

M  is a k-rank approximation to M. This result is pivotal to our discussion of LSI below.

Firstly, we note that SVD achieves dimensionality reduction. Let M be a document-word matrix, 

with each row representing a document. Geometrically, the rows of Û and V are co-ordinates of points 

corresponding to documents and words mapped onto a k-dimensional space. Typically, the axes are 

scaled using the k singular values to assign more importance to dimensions that are associated with high 

singular values. These reduced dimensional representations can then be compared against each other 

using the dot product or the cosine measure.
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Secondly, it can be shown that M is the best k-rank approximation to M in the least squares sense. 

The quality of an approximation MA is measured by the Frobenius Norm of the “discrepancy” matrix 

X = M – MA, which is given by

||X ||F = S S Xij
2.

m

i=1 j=1

n

The lower the value of ||X||F, the better the matrix MA is, as an approximations to M. Viewing the low 

rank approximation problem as one of constraint optimization, it can be shown that, of all approximate 

matrices that satisfy the constraint that their rank is at most k, M  is the one that registers a minimum 

value for ||X||F. This conforms to our earlier intuition that removing very small singular values does not 

significantly affect M. The important thesis behind LSI is that the small singular values correspond to 

noise due to word choice variability (synonymy). M is a less sparse representation compared to M that 

broadly retains the patterns of word association to documents, but at the same time “smoothes” it out 

to eliminate noise.

Thirdly, we note that the correspondence between low singular values and noise due to word choice 

variation is not accidental. Considering a square matrix M with two identical columns, we can eliminate 

one of these and still retain the same rank. This is a trivial case of feature selection. If instead, M had 

nearly identical columns, it would mean that the two corresponding features would have co-occurred 

similarly with documents. This would be true for closely related features like “Middle East” and “oil” 

which might appear in very similar contexts in a large document corpus. In such a case, it is intuitive that 

we can still go ahead with merging the two columns corresponding to the two features, and construct a 

new feature that averages or smoothes out the two original features. This is exactly what SVD achieves 

when it constructs a low rank approximation.

In this context, we make a critical distinction between the “true rank” and “effective rank” of a matrix. 

While the true rank takes into account all nonzero singular values, effective rank discards the very small 

ones. Thus, merging two closely related features changes the true rank but maintains the effective rank 

of the matrix. The ability of SVD to identify “latent” co-occurrence patterns is the main reason for 
its improved effectiveness in retrieval tasks compared to the plain vector space model based on a bag 
of words. Also, the new features which are referred to as “concept” features are expected to be more 

robust indicators of meaning in comparison to the original feature set. This can be viewed as a step of 

feature extraction. It is important to note that extracted features can be expressed as a linear weighted 

combination of original features. There is another notable consequence of merging features: although 

LSI deals reasonably well with synonymy, (Deerwester et al., 1990) observes that the solution it offers 

to polysemy is at best partial. This is also confirmed by the results of their experiments. The problem 

lies in the fact that LSI forces a word to have a single representation in the concept space; thus a word 

with multiple meanings is represented as the weighted average of the different meanings. It is possible 

that none of the “real” meanings is close to the average, leading to a serious distortion.

Fourthly, both words and documents are treated in a uniform way by LSI. The concept features act 

as new dimensions, in terms of which both words and documents are represented. In Figure 16.13, 

which is an adapted version of Figure 18.3 from an online version of (Manning et al., 2008), we show 

an example of vectors spaces before and after LSI. Figure 16.13(b) shows how representations of words 

and documents obtained by LSI can be positioned in the new concept space. This allows us to visualize 

term and document clusters in the same space, and obtain interpretable descriptors of these clusters 

based on neighbouring words.
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(a) (b)

Doc 3

Doc 2

Doc 1

Hunger

Unemployment LSI dimension 2

Doc 3
Unemployment

Poverty

Doc 2
Doc 1
Hunger

LSI dimension 1

FIGURE 16.13 Vector spaces before and after LSI.

16.3.3 Information Extraction

The goal of Information Extraction (IE) is to automatically identify named entities like people, places 

and organizations, as well as events and relations between entities. Instead of attempting a full blown 

discourse understanding, Information Extraction operates over a restricted domain, and makes use of 

specific domain knowledge to elicit only certain kinds of information from text.

The process of building an IE system begins with a knowledge engineer describing the domain 

of interest using a template. An example of a template is shown in Figure 16.14 below. A template 

is basically a set of attributes (slots) and corresponding values (fillers). An interesting aspect of the 

template idea in IE is its resemblance to structures proposed in literature on cognitive models of human 

memory. The process of understanding an article on an air crash involves invoking the template that 

captures salient aspects of a crash (when, where, number and type of casualties, for instance) and filling 

in this template, while also recording any significant additional information that may not have been 

prototypical of a crash (say, a miraculous escape). Once the filled-in template is recorded, it can be used 

to reconstruct a textual description of the crash.

Flight No. Air India 182

Type of Carrier Boeing 747-237B

Date 23/06/1985

Location of Crash Irish Airspace

No. of the passengers and crew members on board 329

No. of survivors 0

Cause of accident Bombing

Origin Montreal

Stopover London

Destination New Delhi

FIGURE 16.14 An example of a filled-in template.

Once the template is defined for a specific domain, a sequence of steps is involved in extracting 

pieces of information from unstructured text and filling in the slots (Grishman, 1987). The first of these 
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is lexical analysis, where the tokens are identified and labelled with features like Parts of Speech. This is 

followed by Named Entity Recognition, which involves identifying names of people and company names. 

Typically, this step makes use of simple rules (“Mr.” precedes a person name and “Inc.” is preceded by 

a company name) as well as a dictionary of company and people names. For accurate recognition, the 

effort involved in manually encoding the patterns could be substantial. This has motivated researchers 

to explore statistical classification approaches trained over a hand annotated corpus, as also Hidden 

Markov Models. Once the named entities are tagged, a partial syntactic analysis is carried out, wherein 

the constituents such as noun phrases and verb groups are identified. This is important because noun 

phrases (say “Air India Flight AI-673”) often map onto the entities and verb groups (say “crash landed”) 

are suggestive of the events. In the fourth step, called the scenario pattern matching, the relations 

between entities and specific events are mined. This is done by matching the noun phrases and verb 

groups against a set of recorded patterns.

The central problem here is that the same event or relation can be expressed in a variety of ways 

in English. For example, “the pilot made a safe landing” and “the plane was landed safely by the 
pilot” should lead to the same patterns being triggered. As with capturing patterns using named entity 

recognition, while one option is to hand code these patterns explicitly, yet another is to make use of 

statistical techniques. While the steps discussed till now are concerned with sentence level processing, 

the final two steps involve looking across sentences. Consider the following two sentences: “The pilot 
was experienced in flying under turbulent conditions. He made a safe descent.” The “he” in the second 

sentence needs to be unified with “pilot”. This is achieved by coreference analysis which involves 

anaphora resolution as discussed in Section 16.2.7. The sixth and the final step is inferencing and event 
merging. Here, we use the information extracted to trigger inferencing, using a set of domain specific 

rules. An example of such a rule in Prolog syntax is shown below.

Failed_to_reach (X,Y) :–Destination (X,Y), Crashed (X).

This can be interpreted as: Flight X failed to reach destination Y, if it was slated for Y but crashed.

16.3.4 Machine Translation

Machine Translation (MT) refers to the process of automated translation of text from one language to 

another. Achieving human level translation quality is a holy grail in NLP, primarily because generating 

good translations needs a very good understanding of the source document. However, several interesting 

MT applications have been built and used commercially (Nilsson, 2010); often humans are involved in 

post-editing the machine generated output to improve its quality. In countries like India where a very 

small fraction of population can understand English, one of the particularly impressive applications 

of MT is in rendering the vast amount of material available on the Web to local languages (see also 

(Khemani, 2012)).

There are two broad schemes in MT systems. In Direct MT, a separate translator is built for each pair 

of source and target languages. In contrast, the interlingua based approach is founded on the idea of 

an intermediate language. Translators are built that convert text in a given language to the intermediate 

language, and vice versa. Given any source and target language pair, the source language text is first 

rendered into the intermediate language, which in turn is converted to the target. When compared to the 

direct approach, the interlingua based approach clearly cuts down on the number of translators that need 

to be built, so that any of n given languages can be translated to any other. The concept of interlingua is 

also reminiscent of Chomsky’s idea of a deep level structure shared by all languages.

There are several challenges in the way of developing successful MT systems. For one, we need to 

take into account differing word order in source and target languages. NLP techniques like Word Sense 
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Disambiguation, anaphora resolution, and resolution of ambiguities also play important roles. Two 

important directions in the development of MT systems are Rule Based MT and Corpus Based MT. The 

latter has gained prominence in recent years, primarily because of the state-of-the-art performances 

obtained using significantly lower knowledge acquisition overheads.

Rule-based translation systems parse the text in source language to produce an internal representation 

which is then transferred to the target language and rendered into text. Sometimes, this threefold process 

is referred to as structural transfer. We show an example below, showing steps in transferring a sentence 

from English to Hindi.

S

NP VP Transfer

S

NP VP

Lexicalization

S

NP VP

Priya NP

DET NP
sunaayi

NADJ

sundar kahaani

ek

VPriya NP

DET NP
told

ADJ N

storynice

a

VV NP

NP

NADJ

nice

a

told

Priya

story

DET

FIGURE 16.15 Steps in classical machine translation.

The input sentence is “Priya told a nice story”. In Step 1, knowledge of English language grammar 

is used to create a parse tree of the sentence. In the structural transfer step, aspects of translation like 

word order reversals are taken care of. In the current example, a Subject-Verb-Object structure has 

been converted to a Subject-Object-Verb structure. The translated sentence is obtained in the final step 

of lexicalization and rendering, which typically makes use of target language grammar. A case marker 

“ne” may be added as part of post-processing to yield the output “Priya ne ek sundar kahaani sunaayi”. 

Each of these steps rely on a large number of rules for handling issues like morphology, parsing in the 

face of ambiguities, and for capturing knowledge in source-target language transfer.

The basic motivation behind statistical or corpus based MT is to use machine learning approaches to 

acquire the knowledge needed in translation. The source of this knowledge is a parallel corpus, which 

has a set of sentences in source and target languages. The idea of a noisy channel is relevant here. Given 

a Hindi sentence H, we intend to find an English sentence E that maximizes P(E|H), which is, by Bayes’ 

Rule, a function of two quantities P(H|E) and P(E). The former is called the translation model and the 

latter, the language model.

The idea of language models has received a lot of attention over the last decade. The basic idea is that 

given a large corpus, useful statistics may be obtained based on bigrams or trigrams, which are sequences 

of two or three words respectively. A language model in English may suggest that the probability of 

“to” following “going” (written as P(to|going)) is higher than the probability of “on” following “going” 

(P(on|going)). The translation model, on the other hand, consists of a set of parameters that define how 

words in the target language can be generated from the source language. Note that the translation model 

is only concerned about generating an appropriate set of target words and is agnostic to how they are 

arranged to give rise to the target sentence. This later aspect is taken care of, by the language model of 
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the target language, which filters out any ungrammatical constructs. Adopting the convention of IBM 

Model 34, the following are some of the parameters in the translation model:

(a) Parameters like t(makaan | house), are translation probabilities, which gives the probability of 

producing “makaan” from “house.”

(b) Fertility parameters like n(1 | house), which gives the probability that “house” will produce exactly 

one Hindi word, whenever “house” appears.

(c) Distortion parameters like d(5 | 2) which gives the probability that an English word in position 2 

(of an English sentence) will generate a Hindi word in position 5 (of a Hindi translation).

In practice, a richer distortion parameter like d(5 | 2, 4, 6) is used in IBM Model 3, which is just like 

d(5 | 2), except also given that the English sentence has four words and Hindi sentence has six words. 

Also, an additional set of parameters may be needed to capture the fact that a Hindi word may appear 

out of nowhere, i.e. when there is no corresponding English word.

We make two observations here. First, the number of parameters that need to be estimated is huge. 

Secondly, it appears quirky that such a strange scheme should ever work. Even the staunchest advocate 

of statistical MT would find it hard to justify that there is any remote resemblance to how humans do 

translation. It may also appear that a very large hand annotated parallel corpus of translated sentences 

would be needed to make robust estimates of these parameters. Even if such large corpora exist, they do 

not come with word-for-word alignments. However, it is possible to obtain estimates from non-aligned 

sentence pairs using the Expectation Maximization (EM) algorithm, which is a technique for parameter 

optimization in the face of missing values. Details of EM algorithm are presented in Chapter 18. The basic 

idea is to start with arbitrary values of the parameters and keep refining them in successive iterations. 

Each pair of sentences in the source and target language, places constraint on the values the parameters 

can take. Thus, the parameter estimation problem reduces to an interesting problem, akin to the cracking 

of a Sudoku puzzle, given a set of standard constraints.

16.3.5 Text Summarization

An interesting application of NLP is in automatically generating summaries from natural language text. 

The generation could be extractive summarization, in which parts of the text (say, sentences) from the 

source are used verbatim to create summaries. In contrast, abstractive summarization is harder, in that 

it involves detailed interpretation of the text and regeneration of the substantive content.

The process of summarization can be broken down into three major steps. The first is topic 
identification, the goal of which is to return the highest scoring units (sentences) based on their suitability 

for inclusion in the summary. The suitability is estimated using a combination of factors, such as 

positional criteria (headings, titles and starting sentences may be more important than others), cue 

phrase indicator criteria (a sentence beginning with “the key contribution of this paper is” is likely to be 

important) and word frequency criteria (sentences having high frequencies of words that discriminate 

the text from others are likely to be more important). More such criteria, as well as an account of a 

comparison of their effectiveness based on empirical evaluations, are discussed in detail in Ed Hovy 

(Hovy, 2005). The second step is interpretation or topic fusion. This is an important step for abstractive 

summarization, and involves the use of information extraction approaches to fill in the slots of domain-

specific templates, which capture the essential content that needs to be rendered into the summarised 

text. Thanks to knowledge acquisition bottlenecks, this is a hard problem and has been a major stumbling 

block in the way of building abstractive summarizers. The third and final step is summary generation,

4 For a helpful online tutorial, refer to http://www.isi.edu/natural-language/mt/wkbk.rtf
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which uses Natural Language Generation techniques to render the filled-in templates resulting from the 

previous step to text. It may be noted that the role of interpretation and summary generation is minimal 

in the case of extractive summarization.

16.4 Natural Language Generation

NLG is complementary to NLU, in that it aims at constructing natural language text from a variety of 

nontextual representations like maps, graphs, tables and temporal data. Such a conversion could be 

motivated by one or more distinct communication goals. An example of a communication goal is to 

make the information in a data like a map accessible to the blind. This can be achieved by having a 

speech synthesis system that renders the generated text into sound. A second goal could present the 

underlying data in a form that is more understandable to the lay user. This is true of systems that generate 

summaries of medical records, or explanations for reasoning performed by expert systems. Another 

potential application is automated tutoring systems. NLG can be used to automate routine tasks like 

generation of memos, letters or simulation reports. At the creative end of the spectrum, an ambitious 

goal of NLG would be to compose jokes, advertisements, stories and poetry.

An NLG solution may be appropriate in some situations, and less appropriate in others. For example, 

a graphical display like a bar chart may be more effective in depicting a comparative analysis of per-

capita income of Indian cities than a paragraph of verbose text. On the other hand, a textual description 

is more appropriate to present a technical argument explaining the differing per capita incomes. There are 

pragmatic considerations as well. A short piece of generated text may be easily sent over a mobile device, 

a picture may need more bandwidth. More often than not, we have to critically analyse the advantages 

of human authoring vis a vis automated generation. It could be that some of the knowledge required for 

generating text of acceptable quality is tacit and hence not available readily to the NLG system. In the 

other extreme, NLG may be an overkill in certain applications where a simple concatenation of strings 

(a canned text) may suffice. NLG is useful in situations where linguistic constraints need to be respected, 

and quality of generated text is important. Also, NLG systems have an advantage over humans, in that 

the texts generated by NLG systems are more consistent. Having said this, as with MT systems, many 

NLG systems may involve a final step of manual post-edit.

The traditional approach to NLG involves the following steps:

1. Document Planning (also referred to as Macroplanning) In this step, the NLG system identifies 

the content based on the communication goal and knowledge sources at its disposal. A text plan is then 

worked out, which organizes this content in a structured way. Often the plan is represented as a tree, 

with the leaves representing textual units like sentences. The nodes and edges of the tree are given 

interpretation according to the Rhetorical Structure Theory (RST) (Mann et al., 1987), which defines 

relations between units of text. For example, the relation cause connects the two sentences “The hotel was 
costly.” and “We started looking for a cheaper option”. Other such relations are purpose, motivation and 

enablement. The text is organized into two segments; the first is called a nucleus, which carries the most 

important information, and the second satellites, which provide a flesh around the nucleus. The way a 

document plan is organized using rhetorical relations is illustrated in the example shown in Figure 16.16.

2. Microplanning The step aims at grouping the information into small units that can be mapped onto 

sentences. This, in turn, involves three main substeps. The first is generation of referring expressions. A 

decision needs to be made, for example, whether we should refer to Barack Obama as “the US president” 

or “Mr. Obama” or using the pronoun “he” instead. The second component of microplanning is sentence 
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aggregation. Consider the sentences “The hotel was located close to the conference venue. The staff was 
cordial. The hotel was expensive.” Aggregation combines these sentences into one sentence: “The hotel 
was located close to the conference venue and the staff was cordial, though it was expensive”. Finally, 

microplanning involves lexicalization, which refers to the right choice of words to express a concept. 

While, for example, rise and ascend are near synonyms, it is unusual to describe the temperature as 

ascending.

3. Surface Realization The surface realization step deals with fixing the grammatical structure of 

the sentence and inserting the words in the appropriate slots of that structure. Decisions are made with 

respect to the insertion of prepositions or determining inflected or derived word forms.

4. Final Presentation This involves substeps like formatting, layout and punctuation.

It may be worthwhile to compare NLU against NLG. In NLU, the input is NL text, while NLG can 

accept varied forms of input. In NLU, the input is ambiguous, underspecified and ill-formed and the 

central concern is of managing the space of potential hypothesis about the underlying meaning. NLG,

in contrast, deals with input that is relatively unambiguous, well specified and well-formed. The central 

concern in NLG is choosing between different ways of expressing the underlying content, driven by 

communication goals and an understanding of the mental models of the target audience.

 Exercises

1. Identify two ways in which NLP systems can make life easier for people with disabilities.

2. Give a concrete example to show that there are English sentences that cannot be recognized by 

regular grammar.

3. The ambiguity shown in the sentence of Figure 16.10 is said to result from Prepositional Phrase 

Attachment, since the prepositional phrase attaches to a noun phrase in one parse and to a verb 

phrase in another. Give another example of a sentence which has three valid parses due to 

differing attachment of a prepositional phrase. Show clearly the parse trees corresponding to 

each disambiguation.

FIGURE 16.16 Rhetorical structures in Document Planning
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4. Give an example to illustrate how Parts of Speech of context (neighbouring) words can be useful 

as features in Word Sense Disambiguation.

5. When your friend claims that LSI produces the best approximation to the original term document 

matrix, you would like to add two conditions to make her statement meaningful. What are these?

6. In the context of morphology, which of parsing and generation is harder? Give an example to 

justify your answer.

7. Name (a) one public domain tool that does morphological parsing, (b) one labelled corpus that 

can be used for supervised Word Sense Disambiguation, (c) one publicly available resource for 

estimating semantic relatedness between WordNet synsets, and (d) a treebank that is widely used 

in statistical Machine Translation.

8. Given four documents and pairwise distances between them in the vector space, their absolute 

positions in the vector space are known. True or false? Justify.

9. A search engine is designed to work over a collection of 1000 documents. In response to a query 

Q, the system retrieves 20 documents, of which 15 are found to be relevant. It is known from 

human judgements that the collection has 25 documents which are relevant to Q. Calculate the 

precision and recall of retrieval.

10. An Information Retrieval system has precision P and recall R with respect to a query Q. Think 

of a particle traversing a straight line segment of length unity, such that a distance a is covered 

with speed P and the remaining distance (1 – a) with speed R (such that 0 £ a £ 1). Show that 

the average speed of the particle over the entire stretch corresponds to Fa measure. In the light of 

this correspondence, can you suggest why the Fa measure is preferred over the arithmetic mean 

of P and R?

11. You are given a term document matrix of size 1000 ¥ 200. Can you apply the Matrix Diagonalization 

on this matrix to extract concepts? If yes, explain how, and show how this compares against mining 

concepts using SVD.

12. In stochastic Machine Translation from Hindi to English, we set out to find an English sentence 

that optimizes P(E | H), but then use of Bayes’ rule to estimate P(H | E) and P(E) instead. Why is 

estimating P(H | E) any better than estimating P(E | H) directly?

13. Can all the knowledge that a search engine needs about a movie be obtained from the pixels that 

make up the movie shots? Discuss.



I  t is rarely that an agent has the privilege of reasoning with a complete and deterministic model of the 

  world. This is especially true in a dynamic world which is changing all the time.

 Uncertainty appears in different forms. The simplest form of uncertainty is the lack of complete 

information about what is true in the domain. This kind of uncertainty abounds in the real world. Generals 

have to fight battles without the benefit of knowledge of the strength and weaponry of the enemy. In 

older times, their battlefields were more like chessboards. Over the last hundred years or so, they have 

known less and less about the adversary, and more recently not even knowing who the enemy is. The 

reason why we hop from shop to shop, or portal to portal, is to find out who is selling what product at 

what price. Much of our everyday activity is oriented towards gathering information. Knowing facts is 

of considerable value, as it allows us to make decisions in a more rational manner. Our knowledge of 

the world around us is never complete though, and we are often compelled to arrive at conclusions in 

the face of incomplete and uncertain knowledge.

 Another reason why we have to often reason with uncertain knowledge is that our knowledge of 

relations between categories is uncertain. This may be because of our penchant to generalize and express 

relations that are generally true, whereas they may not be universally true. For example, the general 

statement “birds can fly”. We will look at reasoning with such relations in the section on Default 

Reasoning. The other reason is that often relations between categories are directional in nature because 

there is a causal connection between them. For example, if one has malaria then one will also have fever. 

However, the need for reasoning often comes in asking about the converse relation. Given that one has 

fever, one may want to find out whether one has malaria or some other affliction. We will explore such 

connections in the section on Abductive Reasoning.

 Often actions in the real world do not have deterministic effects. You may throw the basketball towards 

the basket but, unless you are Magic Johnson, there is a chance that it may not do the intended. We will 

look at planning with such stochastic actions later in the chapter.

 Very often, the information we have about the world is not exact. This is especially true of numeric data. 

Consider a pan on the stove containing water. How does one describe the temperature of the water? The sim-

plest way to do so is to specify the temperature as a numerical quantity. That is what a scientist would do if 

she were doing an experiment. All of us, on the other hand, reason about hot water in more qualitative ways.

 Using a predicate in logic, one can assert that the water is hot, or it is not. The semantics of classical 

logic dictates that we think of the water in the pan as an object, and place it either in the set of objects 

that are hot, or outside it. However, such clear cut demarcation into crisp sets is not always meaningful. 

How would one decide which set an object belongs to? Is it based on a threshold, say 70° Celsius? Then 

what about 69.9° Celsius?

 Some techniques that have evolved to avoid crisp division of objects with continuously changing 

properties are the use of Fuzzy Sets and Rough Sets (see also Chapter 13). Fuzzy sets were devised to 
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allow us to use linguistic terms like hot, tall, heavy, etc. to refer to such properties. The difference is in 

the semantics, which does not map to crisp sets. Rather, the “sets” themselves are defined with varying 

degrees of membership. Water at 95° Celsius belongs more to the set of hot objects, than water at 70° 

Celsius. Rough sets introduced a notion of modality into memberships. Thus, one can distinguish objects 

that definitely belong to a set from ones that may belong to it, and which definitely do not belong to it.

 Qualitative reasoning allows us to define quantity spaces that are determined by the properties 

themselves, or some task at hand. For example, water between room temperature and boiling point can 

be thought of as being same. Beyond the boiling point, there is a qualitative change; it becomes a vapour. 

We look at qualitative reasoning a little later in this chapter.

 We begin within the logical framework, looking at the task of making inferences in the face of 

incomplete information. Our main goal here is to explore ways in which we can exploit general 

knowledge to make inferences that will be true, more often than not.

17.1 Default Reasoning

One facet of reasoning under uncertainty is known as default reasoning. This involves making inferences 

that are plausible or likely, but not necessarily entailed by the knowledge base. The need for default 

reasoning arises because of our desire to generalize connections between categories, to express them 

in a succinct manner. Birds fly, leaves are green, clouds indicate rain, and computer science students 

are bright. The trouble with such generalizations is that they have exceptions. While it is generally true 

that birds fly, and that is indeed useful knowledge to have, it is not true that all birds fly. A universal 

statement like the one below is simply not adequate.

 "x (Bird(x) … Flies(x))

The moment we come up with an exception, for example a bird called Peppy who cannot fly being 

a penguin,

 Bird(peppy) Ÿ Penguin(peppy) Ÿ ¬Flies(peppy)

our knowledge base becomes unsatisfiable (see Exercise 12.20). And we are forced to throw away the 

universal implication that all birds fly.

Instead, we would like to have a mechanism by which, given a knowledge base, we can make the set 

of plausible inferences, with the caveat that if the knowledge base grows then some of the inferences 

may not hold. This implies that the set of inferences that we can make does not grow monotonically 

with what we know, and could in fact become smaller when we add more facts. This form of reasoning 

is called nonmonotonic reasoning, because the set of inferred sentences does not grow monotonically 

with the set of known facts. In the above example, if the only facts we had about Peppy were that it was 

a bird then it would be reasonable to infer that it could fly. Later, if we come to know that Peppy was 

a penguin, and we believed that penguins do not fly, we would no longer be justified in inferring that 

Peppy can fly, and would have to withdraw the belief.

We look at some of the approaches that have been proposed by researchers, though none of them 

stands out (Brachman and Levesque, 2004). The approaches vary in the kind of assumptions they make 

and the manner in which they use them.

17.1.1 Closed World Assumption

The simplest approach to dealing with incomplete knowledge is to make the assumption that the agent 

knows everything about the world, and anything that is not known or cannot be inferred from what 
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is known is false. This is a kind of negation by failure, in which all known individuals in the domain, 

corresponding to constants in the language, only belong to categories they are known to belong to. In 

other words, this assumption minimizes the extensions or extent1 of all primitive categories.

Let us assume a domain of youngsters and some information about who are friends, with the 

knowledge that friends (usually) chat with each other. We assume the Friend relation is symmetric. 

Consider the following first order logic knowledge base,

KB1:   {"x "y (Friend(x,y) … Friend(y,x))
     "x "y (Friend(x,y) … Chat(x,y))
     Friend(aditi, shubhgata), Friend(aditi, jennifer),

     Friend(jennifer, vinayak), Friend(shubagata, subun)

     }

Then the procedure under the closed world assumption augments the knowledge base KB1 to create 

a new knowledge base KB1
+ by adding negative atomic sentences where it can.

KB1
+ : {"x "y (Friend(x,y) … Friend(y,x))
     "x "y (Friend(x,y) … Chat(x,y))
     Friend(aditi, shubhgata), Friend(aditi, jennifer), Friend

(jennifer, vinayak),

     Friend(shubagata, subun),

     ¬Friend(aditi, vinayak), ¬Friend(aditi, subun),

¬Friend(vinayak, subun)

     ¬Friend(subun, vinayak), ¬Friend(subun, aditi), 

¬Friend(subun, jennifer),

     ¬Friend(shubhagata, vinayak), ¬Friend(shubhagata, jennifer), 

     ¬Friend(jennifer, subun), ¬Friend(jennifer, shubhagata),

     ¬Friend(vinayak, aditi), ¬Friend(vinayak, shubhagata),

     ¬Chat(aditi, vinayak), ¬Chat(aditi, subun), ¬Chat(vinayak, subun)

     ¬Chat(subun, vinayak), ¬Chat(subun, aditi), ¬Chat(subun, jennifer),

     ¬Chat(shubhagata, vinayak), ¬Chat(shubhagata, jennifer),

     ¬Chat(jennifer, subun), ¬Chat(jennifer, shubhagata)

     ¬Chat(vinayak, aditi), ¬Chat(vinayak, shubhagata)

     }

The set of sentences one is entitled to believe in under the Closed World Assumption (CWA) are the 

sentences that are entailed by KB1
+. In fact, we can define a new notion of entailment under CWA as 

follows,

 KB CWA a  iff  KB+  a

where KB+ is defined as,

 KB+ = KB » {¬P | P is a ground atomic formula and KB  P}

Reasoning under the closed world assumption is thus based on the premise that all ground atomic 

formulas that are true have been asserted in the knowledge base, or are entailed in it. Recall that the model 

1 The sets containing the elements in the domain.
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for a set of sentences in a language is a domain and an interpretation such that all the sentences are true 

in that domain under the interpretation (see Chapter 12). The interpretation of a predicate is a relation 

of appropriate arity in the domain. From this perspective, one can see that the closed world assumption 

aims to find minimal models, in which the extent of all atomic predicates is as small as can be given 

the knowledge base. In the above example, this means that only those pairs who have been asserted 

as friends are in fact friends. One could find models in which other sentences are true, for example in 

some model, Subun and Vinayak could be friends. But CWA ignores that model and selects a model in 

which the extent of the Friend relation is minimum.

However, as is often the case in computing with the disjunction operator, there can be some difficulties. 

Consider the following knowledge base.

 KB2 = {(Friend(aditi, shubhgata) ⁄ Friend(aditi, jennifer))}

Now,

 KB2
+  = {Friend(aditi, shubhgata) ⁄ Friend(aditi, jennifer),

¬Friend(aditi, shubhgata), ¬Friend(aditi, jennifer)}

However, the extended knowledge base is inconsistent. This is because the procedure to add negative 

atomic sentences adds both the sentences, since it is unable to infer that either is true. One can get around 

this problem by making a Generalized Closed World Assumption (GCWA) in which an atomic formula 

that participates in a disjunction can be negated, only if the other literals in the disjunction are entailed 

by the knowledge base. The extended knowledge base KB° under GCWA is defined as,

 KB° = KB » {¬P | P is a ground atomic formula and,

 if KB  (P ⁄ Q1 ⁄ Q2 …⁄ Qn) 

 then KB  (Q1 ⁄ Q2 …⁄ Qn)}

Given the new procedure we have,

 KB2° = {(Friend(aditi, shubhgata)⁄Friend(aditi, jennifer))}

and one is (correctly) unable to make a prediction about individual friendships. But if we had the fact 

(Friend(aditi, shubhgata) in KB2 as well, then the extension would be different. That is given,

 KB¢2 =  {(Friend(aditi, shubhgata)⁄Friend(aditi, jennifer)),

           Friend(aditi, shubhgata)}

we would have,

 KB¢2° =  {(Friend(aditi, shubhgata)⁄Friend(aditi, jennifer)),

          Friend(aditi, shubhgata), ¬Friend(aditi, jennifer)}

There is one small point one needs to make about reasoning with the closed world assumption. 

Suppose the knowledge base KB1 has a student Divya for whom there is no known friend in the class. 

How should a system answer the query below?

 $x Chat(x, divya) ?

Should the system answer yes or no? On the face of it, the answer should be no because that is what 

the knowledge base suggests. However, to answer with a definitive no, the system will have to make a 

domain closure assumption. The domain closure assumption says that the only people in the domain are 

those that have been explicitly mentioned. For the KB1, this assumption is expressed as,

 "x(x = aditi ⁄ x = divya ⁄ x = jennifer ⁄ x = shubhagata ⁄ x = subun ⁄ x = vinayak)
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Given this assumption along with the closed world assumption, the knowledge base KB1 and the new 

statement about Divya, the answer to the query is no.

Domain closure can have problems of its own. Suppose we further add the following statement to 

the knowledge base.

 $x (NewStudent(x) Ÿ x π divya)

Then this unnamed student does not make it into the domain closure statement. Yet as we can see, 

our conclusion is not longer justified. For all we know the new student might be a friend of Divya. To 

infer now that Divya has no friend, we would also have a closure statement saying that we have said all 

that can be said about the Friend relation. This is a little easier in the second form of default reasoning 

we shall see in the next section.

17.1.2 Circumscription

Circumscription, devised by John McCarthy, is an approach that aims to minimize the extent of only 

some predicates (McCarthy, 1980; 1986), (Lifschitz, 1985; 1994). Traditionally, these predicates char-

acterize abnormality with respect to the intended default inference, but circumscription itself can be 

done over any set of specified predicates.

As observed earlier, a universally quantified relation between birds and flying ability can run into 

problems making the knowledge base inconsistent when exceptions occur. The solution to this problem, 

as proposed by McCarthy, adds another clause to the antecedent saying that in addition to be being birds, 

the individual should not be abnormal. This clause is intended to catch the abnormal cases.

 "x (Bird(x)Ÿ¬Ab(x) … Flies(x))

In this formulation, the abnormal birds are in fact those that cannot fly. Default reasoning with 

circumscription aims to minimize the extent of the abnormality predicates. That is, one assumes that 

individuals are by and large normal (not abnormal), with respect to the intended conclusion. The statement 

can be read as “If something is a bird then it can fly, unless it happens to be abnormal with respect to 

the ability to fly”. And given that we would like to normally associate birds with flight, we assume that 

the set of abnormal individuals is as small as can be.

Let us look at the example of people chatting again. Now the author has a friend who does not chat 

with him, so we know that the universal does not hold.  Let us add the fact that friends chat as long as 

they not “isolated”2.

KB3: {      "x "y (Friend(x,y) … Friend(y,x))
     "x "y (Friend(x,y)Ÿ¬Isolated(x)Ÿ¬Isolated(y) … Chat(x,y))
     Friend(aditi, shubhgata), Friend(aditi, jennifer), 

     Friend(jennifer, vinayak), Friend(shubagata, subun),

     Isolated(jennifer)

   }

Unlike closed world reasoning, we do not add any statements to the knowledge base, but we can still 

characterize the set of sentences that follow from the assumption that the interpretation or extent of the 

Isolated predicate is minimized.

2  Here the intent is to depict isolation as not having access to the internet, but isolation could come from other reasons as well. It 

depicts abnormality with respect to chatting with friends.
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However, we are now beyond the realm of first order logic, since we need to talk about the extensions 

of predicates to be minimal. One way to express this process of minimization is to resort to second 

order logic and say that the predicate in question cannot be replaced with an equivalent predicate with 

smaller extent, without falsifying the given knowledge base. Let us say that the predicate we want to 

circumscribe is P. The circumscription of a formula (or knowledge base) F with respect to the predicate 

P written as Circ[F; P] can be defined as follows3 (Lifschitz, 1994),

 Circ[F; P] ∫ F Ÿ ¬$Q (F(Q) Ÿ (Q < P))

Here, F(Q) is the formula F with all occurrences of P replaced by Q. The ordering < between 

predicates is defined as follows:

 1. (Q £ P) if "x (Q(x) … P(x))

 2. (Q = P) if "x (Q(x) ∫ P(x))

 3. (Q < P)) if (Q £ P) and (Q π P)

This says that the interpretation or extension of Q is strictly contained in the extension of P. The 

above definition can be extended when predicates P and Q have arity greater than one.

The definition can be read as follows. The circumscription of F with respect to the predicate P is F 

when the extension of the predicate P is as small as possible. This is ensured by the fact that P is chosen 

such that there is no “smaller” predicate Q which makes F(Q) true.

In our example, P and Q are variations of the Isolated predicate, the one we seek to minimize the 

extent of. They differ on which individuals they are true for. Let us say as an example that I(PIsolated) 

= {Jennifer, Subun}. Now there exists a QIsolated which is true only for x=Jennifer, and satisfies the 

ordering condition 3 in the definition of circumscription. That is, QIsolated <PIsolated.  Further, the KB3 is 

true for QIsolated. Thus, this version of PIsolated does not participate in the circumscribed knowledge base.

One can observe that in the circumscribed knowledge base, the formula PIsolated has to be true only 

for x=Jennifer. Then one cannot find a “smaller” predicate such the knowledge base is true. And this 

circumscribed knowledge base  entails Chat(aditi, shubhagata). This is still contingent on the fact that 

Shubhagata and Jennifer do not refer to the same individual, and this can be ensured by make a Unique 

Name Assumption (UNA) which says that every constant is a unique name for some individual.

An alternative way of specifying the predicate with the smallest extension is to consider interpretations 

and choose the “smallest” interpretation defined as follows (Brachman and Levesque, 2004).

Let 1(D, I1) and 2(D, I2) be two interpretations that agree on all constants and functions of the 

language. We define the relation £ as follows,

 1 £ 2 iff for every predicate P being circumscribed I1(P) Õ I2(P)

And, 1 < 2 iff 1 £ 2 and 2  1.

We can now define entailment £ under circumscription as4,

KB £ a  iff for every interpretation  such that KB either

KB a or there is an interpretation ¢ such that ¢<  and ¢ KB.

If the predicate being circumscribed is Isolated, then we can also say equivalently that,

 KB £ a iff Circ[KB; Isolated]  a

3 Observe that the quantification is over a predicate.
4 Assuming that the set of predicates being circumscribed is identified.
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Let us look at the KB3 and pose the query Chat(aditi, shubhagata)? There are four interpretations 

that may be relevant here and we have to look at every one of them.

 1: aditi œ I1(Isolated) and shubhagata œ I1(Isolated).

Here, the case is that,

 Friend(aditi, shubhgata)Ÿ¬Isolated(aditi)Ÿ¬Isolated(shubhagata)

and "x "y (Friend(x,y)Ÿ¬Isolated(x)Ÿ¬Isolated(y) … Chat(x,y))

Therefore, Chat(aditi, shubhagata)

2: aditi Œ I2(Isolated) and shubhagata œ I2(Isolated).

Here, the above deduction does not apply but it is the case there exists a smaller interpretation 2¢ in 

which aditiœI2(Isolated) and 2¢ KB3

3: aditi œ I3(Isolated) and shubhagata Œ I3(Isolated).

Here again, the deduction from case 1 does not apply but it is the case there is a smaller interpretation 

3¢ in which shubhagataœI3(Isolated) and 3¢ KB3

4: aditi Œ I4(Isolated) and shubhagata Œ I4(Isolated).

Here again, the deduction from case 1 does not apply but it is the case there is a smaller interpretation 

4¢ in which aditiœI2(Isolated), shubhagataœI4(Isolated) and 4¢ KB3

Observe that 2¢, 3¢, and 4¢ are all equivalent to 1, as far as membership of Aditi and Shubagata 

in the extension of Isolated is concerned. Here we have covered all four relevant cases, and ignored the 

interpretations in which Subun does or does not belong to the interpretation of Isolated.

The key point is that for every interpretation either the goal formula must be true or there must be a 

smaller interpretation in which the knowledge base is true. Consider the query Chat(aditi,jennifer)? This 

query fails because there is an interpretation in which only Jennifer belongs to the image of Isolated. 

In this interpretation, the formula Chat(aditi,Jennifer) is not entailed. Further, we cannot find a smaller 

interpretation in which the KB3 is true. If we remove Jennifer from the set of isolated people, the formula 

Isolated(Jennifer) in KB3 becomes false and KB3 is not true.

To summarize, Circ[F; P] is defined as follows. Consider all possible interpretations of the predicate 

P. These interpretations organize themselves into a lattice structure defined by the ordering (or subset) 

relation defined above. Extract from this lattice a sublattice in which the given knowledge base F. The 

set of minimal elements of this sub-lattice is the circumscription. If a given formula a is entailed in all 

these minimal interpretations, then we accept that F £ a.

The concept of Circumscription is not confined just to “abnormal” predicates. It is only a mechanism 

to specify which predicates need to be minimized in the extent. The reader will recall that in our study 

of the Event Calculus in Chapter 13, we had employed Circumscription to make the assumption that 

only the specified events had happened, and that events had only the specified effects. In our example 

KB1, with addition of Divya and the new unnamed student, we could have used Circumscription of the 

augmented KB1 with respect to the Friends predicate to be able to answer that there was no one Divya 

chatted with.

Circumscription has its own problems. Imagine that in our domain of people who make friends 

and chat with them on the Internet, there is a category5 of people called IDoNotChat who, as the name 

suggests, do not chat. This makes them “isolated”. Let us assume that there are such people, though the 

5 Or a special interest group on a social networking site.
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knowledge base does not say so explicitly. And let us assume, for the sake of illustration, that Jennifer 

is no longer in Isolated. The resulting knowledge base KB4 looks like,

KB4: {   "x "y (Friend(x,y) … Friend(y,x))
     "x "y (Friend(x,y) Ÿ ¬Isolated(x) Ÿ ¬Isolated(y) … Chat(x,y))
     "x (IDoNotChat(x) … Isolated(x))
     Friend(aditi, shubhgata), Friend(aditi, jennifer),

     Friend(jennifer, vinayak), Friend(shubagata, subun),

     }

Now, given the same query Chat(aditi, shubhagata) Circ[KB4; Isolated] constructs a model in which 

there are no Isolated people.

 KB4 £ ¬$x Isolated(x)

But this means that there can be no members in the IDoNotChat category. The problem is that in 

the process of minimizing the set Isolated (so that both Aditi and Shubhagata do not fall in the set), the 

proverbial baby has been thrown out with the bath water and the legitimate set of IDoNotChat people 

have been ignored.

There has been no convincing solution to this problem. One suggestion has been that some categories 

be kept fixed in size. In this example, we could say that the set of people in the category IDoNotChat is 

immutable. This would of course mean that the smallest set of Isolated people must contain the people 

in the IDoNotChat set.

However, once we admit that there are some people in the set Isolated we are back to square one 

and we cannot convincingly answer “yes” to the Chat(aditi, shubhagata) query. This is because we do 

not know that one (or both) of them does not belong to the category IDoNotChat. And we have bound 

ourselves to not minimize this set. This problem becomes more acute if we admit in our database the 

fact $x(IDoNotChat(x)) saying that this category is not empty. We can only conclude that they do chat, 

but only if they do not belong to this (immutable) set of IDoNotChat people.

Circumscription puts the task of default reasoning in a logical reasoning mould. Once the predicates 

to be circumscribed are identified, and the minimal extensions chosen, the rest is reasoning in first order 

logic. In the next section, we look at an approach which is known with the title of logic, but in fact is 

less “logical” in nature.

17.1.3 Default Logic

The closed world assumption adds the negation of all ground atomic formulas that are not entailed by 

the knowledge base. The idea in Default Logic is to extend the knowledge base with an appropriate set 

of (positive) ground atomic sentences (Reiter, 1980). The formulas that can be added are determined 

by default rules. The set of default rules D, together with the first order theory F, form a default theory 

<F,D> that augments the first order theory F.

The default rules, as described by Raymond Reiter, have the following format,

 <a: b / d>

The rule can be read as follows.

If a  is true and it is consistent to believe b then d may be added as an assumption (or inference). Here, 

a is the prerequisite for believing d and b is a justification. The justification says that it is consistent to 

believe b, which means that there is no support for ¬b.



716 A First Course in Artificial Intelligence

The association between being friends and chatting from the previous section can be captured in the 

following default rule.

 <Friend(x, y) : ¬Isolated(x)Ÿ¬Isolated(y) /  Chat(x, y)>

The variables in the rule are treated as free variables and the rule can be viewed as a collection of 

ground rules of the form,

 <Friend(aditi,shubhagata): ¬Isolated(aditi)Ÿ¬Isolated(shubhagata) / Chat(aditi,shubhagata)>

The rule says that if it is consistent to believe that Aditi and Shubhagata are not isolated then one can 

assume that they chat, given that they are friends. And since KB3 does not entail either Isolated(aditi) 

or Isolated(shubhagata), it is consistent to believe the opposite, and add Chat(aditi,shubhagata) to the 

set of beliefs.

Adding a new formula extends the default theory and an extension of a default theory is the maximal 

set of (consistent) beliefs that a default theory <F,D> supports. A set of sentences E is an extension of 

a default theory <F,D>, if it contains all assumptions that can be consistently added, and the inferences 

that can be made from the first theory F along with the added assumptions.

 s ŒE  iff F » {d | <a: b / d> Œ D, a ŒE, ¬bœE}  s

A default rule of the form <a: d / d> is called a normal rule. Normal rules can be used to express 

rules like “birds fly”,

 <Bird(tweety) : Flies(tweety) / Flies(tweety)>

Assume the knowledge base contains only one sentence Bird(tweety). Here we can see that Bird(tweety) 

is already in the extension (the given knowledge base), ¬Flies(tweety) is not in the extension, and hence 

Flies(tweety) can be added to the extension.

Adding some sentences to the extension may preclude the addition of other sentences, which could 

have been otherwise added. This suggests that a default theory may have more than one extension, 

indicating that the default theory is ambiguous. Consider the relations depicted in Figure 14.21 on the 

left. They may be expressed as follows (replacing CanFly with Flies).

F1 = {Penguin(peppy),

 "x(Penguin(x) … Bird(x))

 "x(Penguin(x) … AquaticBird(x))}

D1 = {<Bird(peppy) : Flies(peppy) / Flies(peppy)>,

  < AquaticBird(peppy) : ¬Flies(peppy) / ¬Flies(peppy)>}

There are two extensions for the above default theory6,

 E1 = {Penguin(peppy), Bird(peppy), AquaticBird (peppy), Flies(peppy)} 

and E1 = {Penguin(peppy), Bird(peppy), AquaticBird (peppy), ¬Flies(peppy)}

In one extension, Peppy can fly and in the other one it cannot. This is to be expected because the theory 

is inherently ambiguous. However, even when there is a basis for selecting one from two extensions, 

Default Logic does not have a mechanism to choose it.  For example, if instead of saying that “aquatic 

birds cannot fly” we had asserted “penguins cannot fly” Default Theory still cannot say that the extension 

in which Peppy the penguin cannot fly, is the preferred extension.

6 To be precise, we should also add all the tautologies of FOL to each extension because they are always entailed. 
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One is compelled to accept one of the two forms of reasoning. A Skeptical reasoner accepts a sentence, 

only if it is present in all the extensions. A Credulous reasoner accepts a sentence if it is present in some 

extension.

It is also possible that a default theory is inconsistent and has no extension. A simple example of that 

is when F is empty, and D consists of the single rule.

 <true : Flies(tweety) / ¬Flies(tweety)>

On the other hand, consider a variation which says it can be assumed that Tweety flies if it is consistent 

to assume that Tweety flies.

 F1 = {"x(Flies(x) … Alive(x))}

 D1 = {<Flies(tweety) : Flies(tweety) / Flies(tweety)>}

This theory has two extensions. The first one contains Flies(tweety) and Alive(tweety) along with all 

the tautologies (because they are entailed by anything). In the second one, we only have the tautologies 

(which are in all extensions anyway). Intuitively, the second one should be preferred and we need to 

have some notion of minimization. One could for example, discard an extension if a proper subset of it 

is an extension too. For a more rigorous criterion, the reader is referred to (Reiter, 1980).

Finally, it may be observed that the closed world assumption can be characterized by the rule,

 <true : ¬P / ¬P>

where P is any ground atomic formula.

17.1.4 Autoepistemic Logic

Making default inferences has to necessarily rely on making assumptions in some form. The goal is 

to be able to exploit associations between categories, for example birds and the ability to fly, without 

having to commit to the association being a universal rule. In Default Logic, this is done by means 

of using default rules that dictate when the consequent (and in turn its consequents) can be believed, 

contingent to some consistency condition. However, these rules are outside the language (FOL) in which 

knowledge is expressed.

Autoepistemic Logic is designed to bring such rules inside the language, by extending the language 

with a modal operator (Marek and Truszczynski, 1991). The modal operator B is intended to take care 

of the “is consistent” factor in default reasoning.

Given a formula a in first order logic, the phrase Ba represents belief 7 in a. Thus, Ba stands for the 

fact that the agent believes a; ¬Ba stands for the fact that the agent does not believe a; B¬a stands for 

the sentence that the agent believes ¬a; and ¬B¬a stands for the sentence that the agent does not believe 

¬a.

Alternatively, if one is reasoning about the beliefs of an agent, one could treat the formula a to stand 

for the fact that the agent believes a. In that case, Ba stands for the fact that the agent believes that it 

(or she) believes a.

Since these sentences are about the agent’s own beliefs, hence the name autoepistemic logic.

For the purpose of reasoning, we treat B as a unary operator. The formulas that are true have no 

logical basis, except that they have to consistent with what is in the knowledge base. This consistency 

is enforced by the following set of properties that must be satisfied by the set of beliefs or expansion8 

E (see (Brachman and Levesque, 2004)),

7 In the literature, one can also find this expressed as Ka which stands for “a is known”
8 We treat the word expansion in the same manner as extension used earlier. 
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 1. The set E is closed under entailment.

  If E  a then a Œ E

 2. The set E respects positive introspection.

  If a Œ E then Ba Œ E

 3. The set E respects negative introspection.

  If a œ E then ¬Ba Œ E

When an expansion satisfies these properties, we say that it is stable.

The normal default rule that “birds fly” is expressed in Autoepistemic Logic as,

 "x ((Bird(x) Ÿ ¬B¬Flies(x)) … Flies(x))

Now let us say that we have a simple knowledge base consisting of the single sentence Bird(tweety). 

The task is to determine the expansions of this knowledge base and check whether Flies(tweety) is 

present in it.

There are two possible expansions of this knowledge base, one in which the statement B¬Flies(tweety) 

is true, and the other in which it is false. The question is whether any of these is stable. Now if 

B¬Flies(tweety) is true then ¬Flies(tweety) should be present in the expansion, for the second stability 

criterion to apply. But there is no rule which will add ¬Flies(tweety) to the database. Hence, this is not 

a stable expansion. In the second expansion, B¬Flies(tweety) is false or ¬B¬Flies(tweety) is true. Then 

by criterion 3 ¬Flies(tweety) should not be present in the expansion, which is the case. Now in this 

expansion, both Bird(tweety) and ¬B¬Flies(tweety) are true and hence Flies(tweety) is added to  the 

expansion.

Given a knowledge base KB, the set of believable sentences in a stable expansion are only those that 

are entailed by the formulas that are true in that expansion.

 sŒE   iff  KB » {Ba | a Œ E} » {¬Ba | a œ E }  s

This suggests an approach to determining whether one might believe a sentence s or not. The sentence 

s can be believed if it is entailed by a stable expansion. The task then is to search for a stable expansion 

by assigning true or false to each formula of the type Ba, and checking whether it is stable. The check 

for stability is done as follows,

 ● If Ba was replaced by true then a should be entailed in the expansion
 ● If Ba was replaced by false then a should not be entailed in the expansion

The algorithm in Figure 17.1 accepts a knowledge base and a query, and returns yes if the query holds 

under autoepistemic reasoning, and no otherwise. For the sake of simplicity, we assume that there is 

only one level of belief in the knowledge base. That is, there are no formulas of the type BBa or B¬Ba, 

though they are specified by the stability criteria9. In principle, for any formula there are an infinite set 

of formulas (Ba, BBa, BBBa, …) that should be in the extension, but the level we need is determined 

by the level of belief that occurs in the KB.

Let us consider a knowledge base that contains n occurrences of the B operator, Ba1, Ba2, …, Ban. 

We assume that the 2n combinations of truth values for these formulas are arranged in a total order and 

a function AssignBel(KB, i) selects the ith assignment from  this ordering. We also assume a function 

ApplySimplify(assignment, KB) that applies the assignment (true or false) to the formulas with the B 

operators and simplifies the sentences in which they occur. The function Stable(expansion, k) tests 

whether under the kth assignment the expansion is stable. The three functions described above are packed 

in the procedure StableExpansion(KB, j) that starts by inspecting the jth combination of truth assignments 

9 Alternatively, we can say that in the stability criteria a does not contain the B operator. 
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to the belief operators, and looks at them one by one in the given ordering, till it finds a stable expansion 

in which every formula of the type Ba is replaced either by true or false. The function Entails in the 

main procedure is a sound and complete first order theorem prover. The algorithm given here returns the 

value determined by the first stable assignment it finds. It can be extended to find all stable assignments.

InferenceAE(KB, Alfa)

1 j ¨ 1
2 while j < 2n

3   ExpNum ¨ StableExpansion(KB, j)

4   j ¨ First(ExpNum)+1

5   SA ¨ Second(ExpNum)

6    if Entails(SA, Alfa)

7       then return “yes”

8  return “no”

StableExpansion(KB, j)

1 for k ¨j to 2n

2     A ¨AssignBel(KB,k)

3    Ex ¨ ApplySimplify(A,KB)

4    if Stable(Ex,k)

5       then return (k, Ex)

6  return (k, nil)

FIGURE 17.1 The procedure StableExpansion assumes that the combinations of truth assignments 

to the belief statements are arranged in a total order. It accepts an index j into this ordering and 

inspects the combinations one by one till it finds a stable expansion. The calling procedure takes this 

stable expansion and checks whether the formula Alfa is entailed in the stable expansion, using a 

first order theorem prover Entails. The functions First and Second are list functions that return the first 

and second element respectively. The function ApplySimpilify substitutes true or false for the belief 

statements, as per the chosen combination and simplifies the knowledge base.

The above formulation of searching for a stable expansion adopts a brute force approach which 

inspects all possible assignments one by one. In practice, one could adopt a procedure like constraint 

propagation to fix some values for the Bai formulas. In particular, if ai is in the KB, only the assignment 

Bai=true should be considered, and if ¬ai is in the KB, only Bai = false should be considered (because 

¬ai and ai cannot both be in).

We illustrate the process of searching for stable expansions with a smaller version of KB3.

KB5: {   "x "y (Friend(x,y) Ÿ ¬BIsolated(x) Ÿ ¬BIsolated(y) … Chat(x,y))
     Friend(aditi, shubhgata), Friend(aditi, jennifer),

     Isolated(jennifer)

     }

We assume that suitable ground instances of the universal formula can be generated. There are three 

belief statements involved here BIsolated(aditi), BIsolated(shubhagata), and BIsolated(jennifer). Of 

these, we only consider BIsolated(jennifer)=true in the stable expansions because Isolated(jennifer) is 

in the KB. We still have four cases to consider.

In the following, a formula of the kind (aŸtrue…d) is replaced by (a…d) and a formula of the kind 

(aŸfalse…d) is removed from the KB, since it reduces to true.
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 1. BIsolated(aditi) = true, BIsolated(shubhagata) = true

  The two implication formulas are,

   (Friend(aditi,shubhagata)Ÿ¬trueŸ¬true … Chat(aditi,shubhagata)) ∫ true

   (Friend(aditi,jennifer)Ÿ¬trueŸ¬true … Chat(aditi,jennifer)) ∫ true

  and the resulting knowledge base is

   KB5–1 = {Friend(aditi, shubhgata), Friend(aditi, jennifer), Isolated(jennifer)}

  This is not a stable expansions since both Isolated(aditi) and Isolated(shubhagata) are not entailed, 

as required by the stability criterion 2.

 2. BIsolated(aditi) = false, BIsolated(shubhagata) = false

  The two implication formulas are,

   (Friend(aditi,shubhagata)Ÿ¬falseŸ¬false … Chat(aditi,shubhagata))

   (Friend(aditi,jennifer)Ÿ¬falseŸ¬true … Chat(aditi,jennifer)) ∫ true

  and the resulting knowledge base is

   KB5–2 = { Friend(aditi,shubhagata) … Chat(aditi,shubhagata))

     Friend(aditi, shubhgata), Friend(aditi, jennifer), Isolated(jennifer)}

  This requires that Isolated(aditi) and Isolated(shubhagata) are not entailed in the KB, which is 

the case. Hence, this is a stable expansion.

  And this expansion entails Chat(aditi,shubhagata).

 3. BIsolated(aditi)= true, BIsolated(shubhagata)=false

  The two implication formulas are,

   (Friend(aditi,shubhagata)Ÿ¬trueŸ¬false … Chat(aditi,shubhagata)) ∫ true

   (Friend(aditi,jennifer)Ÿ¬trueŸ¬true … Chat(aditi,jennifer)) ∫ true

  and the resulting knowledge base is

   KB5–3 = {Friend(aditi, shubhgata), Friend(aditi, jennifer), Isolated(jennifer)}

  This is not a stable expansion, since Isolated(aditi) is not entailed, as required by the stability 

criterion 2.

 4. BIsolated(aditi)= false, BIsolated(shubhagata)=true

  The two implication formulas are,

   (Friend(aditi,shubhagata)Ÿ¬falseŸ¬true … Chat(aditi,shubhagata)) ∫ true

   (Friend(aditi,jennifer)Ÿ¬falseŸ¬true … Chat(aditi,jennifer)) ∫ true

  and the resulting knowledge base is

   KB5–4 = {Friend(aditi, shubhgata), Friend(aditi, jennifer), Isolated(jennifer)}

  This is not a stable expansion since Isolated(shubhagata) is not entailed, as required by the stability 

criterion 2.

There is a corresponding set of four expansions in which BIsolated(jennifer) = false. However, all 

the four are not stable. Therefore, we can see that of the eight possible expansions, only one is stable 

and in that stable expansion we have the belief that Chat(aditi,shubhagata) is true.

17.2 Qualitative Reasoning

Many scientific and engineering applications require us to model and reason about the real world. This 

reasoning happens in the domain of numerical or quantitative data and quantitative relations on the data. The 

world is abstracted into a set of variables, and some kind of a model incorporates the relations between the 
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different variables. For example, the motion of a physical body could be represented by treating it as a point 

object and defining variables to represent its location, velocity, and acceleration. The speed can be related 

to a location by a differential equation, as can acceleration be related to speed. Other kinds of models that 

have been used are finite element analysis, neural networks, constraint systems, linear equations, and so on.

Such quantitative models are an abstraction of the domain. They distill key features of the domain and 

represent them as mathematical models. Since they are abstractions, they necessarily ignore some aspects 

of the real world, but this loss of detail10 is compensated for by being able to reason quickly. Abstraction in 

any case is inevitable. The degree to which it is done is dictated by the task at hand, the capabilities of the 

reasoner, and the domain. Newton’s Laws of Motion were quite adequate for our day to day reasoning but, 

as Einstein showed with his Theory of Relativity, are too abstract to deal with motion at very high speeds.

Qualitative models are further abstractions in which one abstracts away from numerical data. Instead of 

using Hooke’s Law for computation, one can express the fact that the force exerted by a spring increases 

as it is stretched away from its normal position. Qualitative Reasoning is also known as Qualitative 

Physics or Naïve Physics because it has often been used to model physical systems. This is an attempt to 

replicate the way people model the everyday world and reason about it very successfully and efficiently.

We illustrate the idea of qualitative reasoning 

with the following scenario. A young girl is 

playing with a ball in a room. She releases 

the ball from a certain location with a certain 

velocity as shown in Figure 17.2. The task is 

to predict what will happen next. If we have 

the numerical data about initial location and 

velocity, one could apply the Newtonian 

equations as shown in the figure.

Even when we know the initial conditions, 

there are limitations to using these equations. 

For one, they are themselves an abstraction 

of the real world. In particular, they ignore 

air resistance which has a decelerating effect 

on velocity. They also ignore the fact that the 

earth is round, given that the size of the room is miniscule compared to the radius of the earth. More 

importantly, however, these equations are relations between the different quantities, and are not concerned 

about the state in which they are applied. One cannot say when they cease to be applicable. That happens 

in the mind of the reasoner. Such reasoning that factors in extraneous data often happens during the 

conceptual stage in a design process, before the quantitative analysis kicks in.

Qualitative reasoning treats the moving ball as a being in a qualitative state. The state is described 

as follows. The ball is moving up and to the right, and its vertical speed is decreasing (due to gravity). 

There are three different ways this state can end, leading to a new state as shown in Figure 17.3. This 

could happen when the ball hits the ceiling resulting in state 1, or its vertical velocity becomes zero 

resulting in state 2, or it hits a wall as in state 3. These states are represented by the small black circles. 

The three different arcs themselves represent the identical state, in which the vertical and horizontal 

velocities are positive, horizontal acceleration is zero, and vertical acceleration is negative.

If one started only with the qualitative information that the ball was moving upwards and sideways 

under the influence of gravity then one will not be able to predict which of these succeeding states occur. 

For that, we would need the quantitative information and perhaps a quantitative model of air resistance 

10  The reader might have heard the joke about a farmer seeking help from scientists and getting a letter in return that begins with 

“Consider a spherical cow… “. 

Newtonian mechanics

xt = x0 + vx0t

yt = y0 + vy0t + gt2/2

FIGURE 17.2 Given that a ball is thrown at the 

location (x0, y0) with a velocity (vx0, vy0), predict the 

future trajectory of the ball.
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as well (imagine doing the same underwater 

in a swimming pool).

However, a major advantage of using 

a qualitative model is that even with this 

limited information, one can chart out all 

the possibilities that can possibly occur. 

This is the kind of reasoning an engineer or a 

scientist might do before reaching out for her 

calculator. For example, one can safely say 

that the ball will not start moving leftwards 

and hit the left wall.

When the ball ceases to be in the moving-

up-and-right state, it makes a transition to 

a different state. Ignoring the instantaneous 

states 1, 2 and 3 in the above figure, the next 

possible states succeeding 2 and 3 are shown 

in solid lines in Figure 17.4.

As one can see from the figure, after the 

transition via states 1 and 2, the ball will be in 

a qualitative state in which it is moving to the 

right and down. The four solid trajectories in 

the figure are qualitatively identical states—

moving down and right, and will be treated 

identically by a qualitative reasoning system. 

For our benefit, we can see that the next 

transitions will occur in state 1a, 1b, 2a or 2b. 

In fact, these are only two distinct states. 1a 

and 2a are identical, when the ball travelling 

down and right hits a wall. Likewise, 1b and 

2b represent the state when it hits the ground. 

The resulting trajectories are hinted at by 

the dashed arrows. The states following the 

transition at 3 are left as an exercise for the 

reader.

17.2.1 Representation

The world around us changes continuously. 

We need finite, symbolic methods for describing continuous change. A qualitative description is one 

that captures distinctions that make an important, qualitative difference, and ignores the others (Kuipers, 

1994).

Consider a person travelling in a train from Chennai to New Delhi on the Tamil Nadu Express. She 

might have a qualitative notion of her location. She might have some stations on the route as landmarks, 

and may keep track of her position, only with respect to those landmarks. She might say, for example, that 

the train is somewhere between Vijayawada and Nagpur. Perhaps breakfast was served at Vijayawada, 

and lunch is expected at Nagpur. In general, a train passenger may represent its location as being between 

two stations that it halts at.

1

2
3

FIGURE 17.3 In this figure, each of the lines 

represents a qualitative state – the ball is moving 

upwards and to the right. A transition can occur either 

to the state labelled 1 when the ball hits the ceiling, 

or to state 2 when it stops moving upwards due to 

gravity, or state 3 when it hits a wall.

1

2
3

2a

1a

2b1b

FIGURE 17.4 State 1 can lead to either state 1a 

or to state 1b, and likewise for state 2 there are two 

possible successor states. Observe that 1a and 2a 

are qualitatively the same state. The successors of 

state 3 are not shown here.
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The simplest possible variables used for representation are nominal, in which the variable either has 

a value or does not. For example, a mechanic diagnosing a vehicle might say that the engine noise is 

“normal”, or an enthusiastic trekker might declare that the weather is “clear”. An example that affects 

us all is the classification of an electric voltage signal into 1 or not 1 (that is, 0) inside our computers.

A more informative type of variable is the ordinal type. The different values that the variable can take 

can be compared according to a base order. These values are typically the landmark values determined 

by the domain. In the train example above, the stations are ordered being further and further away 

from the source. Likewise, if we had water being heated in a pan then the landmark values could be the 

ordered set {absolute zero, freezing point, room temperature, boiling point, infinity}. Such an ordered 

set of values defines a quantity space. The interval between any two landmarks would be a state, and 

state change could be to or from the landmark at the state boundary.

The simplest quantity space contains only three values {–, 0, +}. In this space, 0 represents the 

norm, while the deviations are either negative or positive. One can denote this quantity space as [∑]0 to 

represent that the norm is 0. If one wanted to represent the human pulse rate then one could possibly 

use 72 as the norm.

In the ball, in the room example of Figure 17.2, one could treat the two walls (assuming a two 

dimensional room), the roof, and the floor as landmarks for positions. The variables and their landmarks 

would be,

 X-pos  {Left-wall, Right-wall} 

 Y-pos  {Floor, Roof}

 dX-pos = X-velocity  {–, 0, +}

 dY-pos = Y-velocity  {–, 0, +}

 dX-velocity = X-acceleration {–, 0, +}

 dY-velocity = Y-acceleration {–, 0, +}

Using quantity spaces for a small number of variables and their derivatives can be surprisingly 

powerful. Consider a simple system of a pendulum or a spring with a mass. Let its position be represented 

by a variable X and its velocity by a variable V, both taking values from [X]0 and [V]0. The qualitative 

behaviour of the pendulum can be depicted by an envisionment (de Kleer and Brown, 1984) as shown 

in Figure 17.5.

X = –

V = +

X = 0

V = + X = +

V = +

X = +

V = 0

X = +

V = –
X = 0

V = –

X = –

V = –

X = –

V = 0
X = 0

V = 0

FIGURE 17.5 The envisionment of all possible trajectories of a simple pendulum. The ovals 

represent instantaneous states and the rectangles durative states.
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Consider the rightmost oval in the figure representing the state in which [X] = + and [V] = 0. This could 

be the state when an agent displaces the pendulum and releases it. It represents an instantaneous state in 

which the displacement is positive and velocity is zero. We represent instantaneous states by ovals. The 

pendulum then moves to a new state in which it has a negative velocity, while displacement remains 

positive. This is a durative state that persists till the pendulum reaches it resting position ([X] = 0), but 

continues to have a negative velocity. We represent durative states with rectangles.

The oscillatory motion of the pendulum is captured by the movement or evolution of the system state 

around the circular path in the envisionment. The inner state represents the pendulum at rest, and can 

be modelled as being reached at the end of the “last” inward swing.

One may want to determine the effect of a set of variables on a given variable. This could be done 

by operations in the given quantity space similar to addition and multiplication. Addition, denoted ≈, 

and multiplication, denoted ƒ, of two variables from the same quantity space can be defined as follows. 

The addition of two variables is given in Table 17.1.

 Table 17.1 Addition over a quantity space

≈ [X] = – [X] = 0 [X] = +

[Y] = – – ≈ – = – 0 ≈ – = –

[Y] = 0 – ≈ 0 = – 0 ≈ 0 = 0 + ≈ 0 = +

[Y] = + 0 ≈ + = + + ≈ + = +

Observe that addition of a positive value and a negative value is undefined. Consider a water tank 

with a tap at the bottom to let the water out. Let us say that tank contains some water and the outlet tap 

is open. We can represent the flow of water from the tap with the variable [FlowTap]= – which says 

that the flow of water inwards is negative. This stands for the fact that water is flowing out from the 

tank. Let us say that at the same time, water is being filled into the tank represented by the variable 

[FlowIn]=+. This represents the fact that water the flow inwards is positive. The net flow of water into 

the tank is [FlowTap]≈[FlowIn] which is undefined. This is understandable. Since we only know that 

water is flowing in as well as flowing out, but do not know the exact rate, we are unable to say whether 

the net flow is positive or negative or zero.

When the two quantities in question come from different orders of magnitudes then it should be 

possible to decide which one will prevail. For example, if the input flow is small and the output flow 

is big, then one can conclude that the net flow is out. One attempt to resolve such ambiguities is to use 

order of magnitude representations, described in the following section.

Multiplication is defined as follows.

 Table 17.2 Multiplication over a quantity space.

ƒ [X] = – [X] = 0 [X] = +

[Y] = – – ƒ – = + 0 ƒ – = 0 + ƒ – = –

[Y] = 0 – ƒ 0 = 0 0 ƒ 0 = 0 + ƒ 0 = 0

[Y] = + – ƒ + = – 0 ƒ + = 0 + ƒ + = +

17.2.2 Orders of Magnitude

Consider the example of a ball hitting the wall of a room. For the sake of argument, let us assume that 

the wall is moving in a direction towards the ball. The wall can be considered to be part of the earth and, 
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while the ball is in the air, we can think of it as another body. Then, we have a two body collision in 

which both momentum and energy need to be conserved. But we never think of the earth slowing down 

as a result of a collision with the ball. This is consistent with orders of magnitude reasoning.

Assuming that there is a completely elastic two body collision, what can we say about the resultant 

velocities of the two bodies? Given the exact values of the masses and velocities, one can solve the two 

equations representing the conservation of momentum and conservation of energy. But given only the 

fact that one has much greater mass than the other, can we make a qualitative prediction? The approach 

described here was presented by Olivier Raiman (1986; 1991).

Let the two bodies be travelling with linear motion in the opposite direction. Let Mbig be the mass 

of the large body and Msmall be the mass of the small body, and let Mbig  Msmall. That is, Mbig is much 

much larger than Msmall. Let Vi(big) and Vi(small) be the initial velocities of the two bodies, and let them 

be of comparable magnitude and opposite direction. Let Vf (M) and Vf (m) be the final velocities that 

need to be determined.

When we reason with order of magnitudes, we reason with sets of values rather than individual values. 

Each set is a quantity space that defines a range of values. Let us say that x and y are two exact values. 

Instead of knowing the exact values, we might have information about sets X and Y from which these 

values come from. That is, x ŒX and y ŒY. We refer to X and Y as coarse values. Given such values, 

we can define the following. Two coarse values are (approximately) equal if the corresponding sets  

overlap.

 X  Y iff X « Y π F

Observe that the  operator is not transitive. This implies that one needs to careful in its use in solving 

for values. The following operations can be defined on coarse values.

 X + Y = {x + y | x ŒX, y ŒY}

 XY = {xy | x ŒX, y ŒY}

 –X = {–x | x ŒX}

 X–1 = {x–1 | x ŒX}

Two coarse values can be said to be of different orders of magnitude, if they come from or are 

associated with two different sets called Small and Rough that satisfy the following properties.
 ● 0 ŒSmall
 ● 1 ŒRough
 ● Small is closed under addition, multiplication and additive inverse.

Small + Small = Small

Small ¥ Small = Small

–Small = Small
 ● Rough is closed under addition, multiplication, and multiplicative inverse.

Rough + Rough = Rough

Rough ¥ Rough = Rough

Rough–1 = Rough
 ● Small absorbs Rough for multiplication.

Small ¥ Rough = Small
 ● Rough absorbs Small for addition

Rough + Small = Rough

Observe that if you divide a small quantity by a small quantity, one could get a large quantity. Hence, 

Small is not closed under the multiplicative inverse. Likewise, Rough is not closed under additive inverse, 

since one could subtract a large quantity from another large quantity to get a small quantity.
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If two nonzero quantities p and q have the same sign, that is [p]0=[q]0, and belong to the same coarse 

set, then their addition results in the same coarse value. That is,

IF [p]=[q]

THEN                 p ¥ Small + q ¥ Small = (p+q) ¥ Small

         AND           p ¥ Rough + q ¥ Rough = (p+q) ¥ Rough

In other words, if we add two small quantities of the same sign, we get another small quantity, and 

similarly for two rough quantities of the same size. This has a problem though, because if you keep 

adding small quantities, eventually the result will be large. Raiman offers a model in which both Small 

and Rough are sets of functions over the real interval (0,1), in which each quantity q is mapped onto a 

real function fq(x) with x in the open interval. Small is the set of functions that tend to 0 as x tends to 

1. The set Rough has a more involved definition. A function fq(t) is an element of Rough, iff there is a 

pair of strictly positive reals Kf and Kf, such that as t approaches 1, the function f is bounded below by 

Kf and bounded above by Kf.

Raiman defines different degrees of “equality” at different scales of magnitude, as follows.

1. Id: pÆp Two quantities are equal on the Id scale (only) if they are the same.

2. Close: pÆp ¥ (1 + Small) Two quantities are equal on the Close scale if they differ by a factor 

close to 1. If p and q are Close then (p – q) would be negligible compared to either of them.

3. Comparable: pÆp ¥ Rough Two quantities are equal on the Comparable scale if one can be 

obtained by multiplying the other with Rough. If p and q are Comparable and if p is negligible with 

respect to some t then q would also be negligible with respect to t.

4. Sign: pÆp ¥ ¬+ Two quantities are equal on the Sign scale if they have the same sign.

Equality on a finer scale implies equality on a coarser scale. For example, if two coarse values are 

equal on the Close scale then they are also equal on the Comparable scale. The degree of equality in 

the Close is dependent upon the value of p. One could define an alternative measure called Near such 

that (p – q) = Small.

The relation Negligible, denoted , can now be defined on a given scale Scale as,

 (Scale(p) + Scale(q)  Scale(q)) ∫ (Scale(p)  Scale(q))

On the Close scale, this translates to,

 (p  q ¥ Small) ∫ (Scale(p)  Scale(q))

We can now express the problem of the two bodies moving towards each other with comparable 

velocities as follows. Let t stand for the total momentum of the two body system, and V a velocity 

comparable to both Vi(big) and Vi(small).

 Sign(t)  MbigVi(big) + MsmallVi(small)

 Close(Vi(big))  Close(V)

 Close(Vi(small))  –Close(V)

 Msmall  Mbig ¥ Small

As discussed earlier, one has to be careful in using the approximate equality for solving sets of 

equations. Raiman converts the above relations into the following,

 0 Õ –Sign(t) + MbigVi(big) + MsmallVi(small)

 0 Õ –Close(V) + Close(Vi(big))

 0 Õ   Close(V) + Close(Vi(small))

 0 Õ –Msmall + Mbig ¥ Small
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The law of conservation of momentum,

 MbigVi(big) + MsmallVi(small) = MbigVf(big) + MsmallVf(small)

and the conservation of energy,

 MbigV
2
i(big) + MsmallV

2
i(small) = MbigV

2
f(big) + MsmallV

2
f(small)

The above two yield,

 Vi(big) + Vf (big) = Vi(small) + Vf (small)

Applying a set of inferences too detailed to describe here, Raiman arrives at,

 Vf (big) Õ Close(V)

and Vf (small) Õ Close(V+V+V)

That is, the larger body continues to move approximately with the same velocity V, while the small 

body bounces back and travels at approximately three times that velocity. The interested reader should 

verify that this is indeed the case when Msmall is negligible compared to Mbig. Raiman’s reasoning 

system, Estimate, also shows that if the two masses are Close and the velocities are Close then the 

two bodies rebound with the same velocities. If the masses are Close and the second body is at rest, or 

having a comparatively negligible velocity, then the first mass transfers the velocity (or momentum) 

to the second mass.

17.2.3 Confluences

The orders of magnitude reasoning involves variables, some of which may be negligible as compared 

to others. Even when such information is not available, interesting inferences can be made by defining 

relations between different variables that are part of the same physical system. These relations are 

abstractions of the laws of physics that holds for the system.

Confluences are linear equations over variables that take values from a quantity space. In the following 

discussion, we use the notation X for a variable and the notation dX for its derivative. A confluence is a 

summation of such variables that add to a constant. For example, if H is the height of a balloon in the 

atmosphere, and P is the atmospheric pressure it is subjected to, we could write the confluence,

 dH + dP = 0

Keeping in mind that these variables come from Sign quantity space, we can interpret the confluence 

as asserting that when the height of the balloon increases (dH=+), the atmospheric pressure outside it 

will decrease (dP = –).

A confluence captures monotonic relations between variables. We could describe Boyle’s Law by 

the confluence dPressure + dVolume = 0 and Charles Law by the confluence dTemperature – dVolume 

= 0. The ideal gas laws would involve all the three variables.

Johann de Kleer demonstrated the use of confluences to model and reason about physical systems. The 

basic idea is to describe components of systems using confluences. We look at the example presented in 

(de Kleer and Brown, 1984) in which a pressure regulator is modelled. A hydraulic pressure regulator 

shown in Figure 17.6 maintains the output pressure at the point labelled OUT in the figure. The basic 

idea behind the pressure regulator is that if the input pressure (at the point labelled IN) were to increase, 

it would lead to an increased flow across the valve at a higher pressure, which in turn would push the 

piston down, thus constricting the opening and reducing the flow and pressure.
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The simplest model for this regulator deals with 

three variables: P the pressure drop across the valve, 

Q the flow across the valve, and A the cross sectional 

area regulated by the piston. All the variables take 

values from the quantity space [∑]0.

The following confluence captures the basic 

relations between the three.

dP + dA – dQ = 0

One can interpret this confluence in a piecewise 

fashion. At constant pressure (dP = 0), as the area 

available increases so does the flow. To maintain 

a constant flow (dQ = 0), one has to increase the 

pressure drop, if the area available decreases. In 

general, a confluence is satisfied if the constituent variables have values consistent with the confluence. 

The way the regulator works is that as the pressure increases, the flow does too, which in turn pushes 

the piston down constricting the area, which in turn reduces the flow and the output pressure.

The above confluence describes the behaviour only in a qualitative, operational state which we can 

call the working state of the valve. The confluence is not applicable if the valve is either closed or (fully) 

open. In the former case, no flow takes place and both [Q] and dQ are zero. The input pressure can take 

any unconstrained value but does not cause a change in the pressure drop. In the latter case, if the valve 

is fully open the pressure drop across the value is 0, and cannot change as well. These are different 

operational states of the valve behaviour and are captured by different sets of confluences. Each state 

is characterized by a relation on one or more variables, shown in square brackets below. The variables 

may not be derivatives and the allowed relations are {<, £, =, ≥, >}. A more accurate model then is,

 State: open, [A = Amax] Confluences: [P] = 0, dP = 0

 State: working, [0 < A < Amax] Confluences: dP + dA – dQ = 0

 State: closed, [A = 0] Confluences: [Q] = 0, dQ = 0

If one wants to allow for the possibility of bidirectional flow across the valve, one must take into 

account the fact that the pressure drop moves towards zero when the valve opens up with flow in either 

direction. One could replace the term dA with [P]dA to take care of the signs. Equivalently, a pure set 

of confluences is,

 State: open, [A = Amax] Confluences: [P] = 0, dP = 0

 State: working+, [0 < A < Amax, P > 0] Confluences: [P] = [Q], dP + dA – dQ = 0

 State: working0, [0 < A < Amax, P = 0] Confluences: [P] = [Q], dP – dQ = 0

 State: working–, [0 < A < Amax, P<0] Confluences: [P] = [Q], dP – dA – dQ = 0

 State: closed, [A=0] Confluences: [Q] = 0, dQ = 0

17.2.4 ENVISION: Structure to Function

The ENVISION system designed by de Kleer and Brown (1984) is designed to reason about physical systems. 

A physical system is made up of components that are drawn from a library of component descriptions, 

each of which embodies certain behaviour. Each component has a set of terminals which allow it to 

connect to a conduit, which in turn is connected to the terminal of another component. Conduits are 

passive channels used only to transmit material or information between components.

IN OUT

FIGURE 17.6 A hydraulic pressure regulator.
(Figure adapted from (de Kleer and Brown, 1984)).
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The basic idea behind ENVISION is that given that one has knowledge of how each component behaves, 

and how the components are connected together to form the device, one can infer the behaviour of the 

device.

 Component behaviour + Device structure Æ Device behaviour

Device
Topology

Component
Library

Envision

Behavioral Prediction

Causal Explanation

Physical
Situation

FIGURE 17.7 ENVISION: Component behaviour + device structure Æ Behaviour.

(Figure adapted from (de Kleer and Brown, 1984)).

For this to be possible, the system has to obey the no-function-in-structure principle. The principle 

says that all the constituent behaviours contributing to the device are generated by the components only, 

and that the behaviour of each component must be described independent of what it is connected to.

Consider modelling a light switch. A first attempt would model the switch as a relation between its 

position and the flow of current. When the switch is on, the current flows across it, and when it is off 

then it does not. One can connect the switch to a (fluorescent) light bulb and predict that it will emit 

light when the switch is on. However, it is possible that there is a power cut, and the bulb does not turn 

on. Or the circuit has two switches in series for some reason. In both these cases, the switch does not 

behave as expected by its model. The problem, of course, is with the model. It implicitly assumes that 

there is a potential difference across the switch. A better model would say that if the switch is on and 

there is a voltage drop across its terminals then the current will flow.

A system may breach a qualitative operational state when one of the variables that predicate the 

state reaches the limit value. ENVISION reasons about the possibility of this happening by looking at the 

derivatives of the corresponding variables. Within an operational state too, variables may attain different 

combinations of values, which are qualitatively different in nature. For example, in the pressure regulator, 

if the input pressure goes up then the flow will increase as well, leading to a state in which the piston 

moves down, in turn reducing the flow. This kind of behaviour can be captured in episodes. Within an 

episode, a consistent assignment of values needs to be found for the variables in the active confluences.

For example, if pressure regulator is in the Working+ state and the pressure starts increasing and dP 

become positive then for the confluence to be satisfied, either dQ should become positive or dA should 

become negative or both. Importantly, it disallows a state in which both dQ and dA are zero, or one 

in which dQ is negative and dA positive. Thus, while it does not allow us to predict what exactly will 

happen, it does delimit the set of succeeding states to only 

those that are feasible.

In general, one would like to use constraint propagation 

(see Chapter 9) to find out what values of other variables 

are feasible, but it turns out that this is not always possible. 

Consider the example of two resistances R1 and R2 in series 

as shown in Figure 17.8.

I1
V1 V3

I2
V2

R1 R2

FIGURE 17.8 Constraint propaga-

tion is insufficient to solve for V2.
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Given the constraints, [R1] = +

 [R2] = +

 I1 = I2

 I1R1 = V1 – V2

 I2R2 = V2 – V3

and given that [V1] = + and [V3] = 0

No constraint has enough information to determine the value of any of the unknowns, I1, I2, or V2. 

At the same time, it is clear to us that the only consistent solution in the domain {+,0,–} is V2 = +, 

I1 = +, and I2 = +. de Kleer calls such systems inherently simultaneous because they cannot be solved 

by propagation of values, and require approaches to solve simultaneous equations. However, given 

that equality over coarse scales11 has to be handled with care, one cannot carry forward the method 

of substituting equals for equals. Instead, ENVISION resorts to Generate and Test based approach, where 

Constraint Propagation is not possible.

We look at the task of predicting the future with an example in the representation scheme introduced 

by Benjamin Kuipers.

17.2.5 Qualitative Simulation with QSIM

A comprehensive approach to Qualitative Simulation is embodied in the algorithm QSIM developed 

by Benjamin Kuipers (1986; 1994). The QSIM program, available at the Universty of Texas at Austin 

site12, has proven to be a handy tool for development of QR systems. It extends reasoning over a quantity 

space with multiple landmark values. Let a variable X over a continuous domain have a set of ordered 

landmarks L0 < L1 < … < Ln, where L0 is the minimum value that X can take, and Ln is the maximum value 

that X can take. QSIM represents the qualitative value of the variable with a pair <qmag, qdir> where,

 qmag = Li if X is on the landmark Li

 = (Li, Li+1) if X is between Li and Li+1

and,

 qdir = inc if the value of X increasing, that is d/dtX is positive

 = std if the value of X steady, that is d/dtX is zero

 = dec if the value of X decreasing, that is d/dtX is negative

The initial state of a ball being thrown up in Figure 17.2 would be

 X-pos = <(Left-wall, Right-wall), inc>

 Y-pos = <(Floor, Roof), inc>

 X-velocity13 = <(0, ), std>

 Y-velocity = <(0, ), dec>

 X-acceleration = <0, std>

 Y-acceleration = <–, std>

QSIM represents relations between variable using constraints. Let X(t), Y(t) and Z(t) be the values of 

variables X, Y and Z varying over time t. The variation of variables is assumed to be reasonable, that is 

11 And the Sign scale over {–, 0, +} is coarsest of them all. 
12 http://www.cs.utexas.edu/users/qr/QR-software.html
13  Observe that the value (0, ) is equivalent to saying it is positive. If we had a landmark value, say the velocity of sound or the 

escape velocity on Earth, we could have used that as well. 
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continuous, with continuous derivatives, and with only a finite number critical points in any bounded 

interval (Kuipers, 1986). The following relations are defined.

ADD(X,Y,Z) holds over the interval [a,b] iff X(t)+Y(t)= Z(t) for every t Œ [a,b]

MULT(X,Y,Z) holds over the interval [a,b] iff X(t)Y(t)= Z(t) for every t Œ [a,b]

MINUS(X,Y) holds over the interval [a,b] iff X(t) = –Y(t) for every t Œ [a,b]

DERIV(X,Y) holds over the interval [a,b] iff d/dtX(t) = Y(t) for every t Œ [a,b]

CONSTANT(X) holds over the interval [a,b] iff d/dtX(t) = 0 for every t Œ [a,b]

The relation X(t) – Y(t)= Z(t) would be represented by Z(t)+Y(t)= X(t), and represented as ADD(Z,Y,X).

The value of a variable may be a function of the value of another variable. QSIM allows for qualitative 

functional relations M+ and M – which say that one variable monotonically increases or decreases with 

the other. This relation can be expressed as a predicate,

M+(X,Y) holds over the interval [a,b] iff X(t) = H(Y(t)) for every t Œ [a,b], where H is a function 

over the domain Y([a,b]) and range X([a,b]) and H ¢(x) > 0 for x in the interior of its domain.

M – is defined in an analogous manner, with H ¢(x) < 0. Observe that H stands for a family of functions 

that are monotonic over the given domain and range.

If at a distinguished time point the different variables related by a particular constraint all have some 

landmark values, then those values are known as corresponding values. For example, consider the amount 

of pressure exerted by a fluid in a vessel. If the amount (volume) of fluid is zero then the pressure would 

be zero, and (0,0) would be corresponding values for the two variables.

In the example that follows, we continue to use the direct (mathematical) forms of the above con-

straints for the sake of readability. Consider an example in which there are two tanks, A and B, connected 

by a pipe at the base, as shown in Figure 17.914. The capacity of tank A is AMAX and tank B is BMAX. 

In the qualitative reasoning that follows, we do not need the actual numerical values. We assume that 

the connecting pipe is a conduit that does not have any effect of its own, and that the flow of the fluid 

is such that momentum has no impact. This could happen for example if the fluid has high viscosity.

A B

FIGURE 17.9 Two tanks connected with a pipe at the base.

The model for the two tanks is based on relations on the following qualitative variables shown with 

their quantity spaces.

14  In the original U-tube diagram used by Kuipers (86; 94), the two tanks have a simple shape of uniform cross section. We use 

somewhat more exotic shapes only to emphasize the fact that qualitative reasoning does not need the quantitative data of  

volume. 
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 Table 17.3 The variables in the 2-tank system

Variable name Quantity space Description

amtA (0, AMAX, ) Amount (volume) of fluid in tank A

amtB (0, BMAX, ) Amount (volume) of fluid in tank B

total (0, ) amtA + amtB

pressureA (0, ) Pressure at the base of tank A

pressureB (0, ) Pressure at the base of tank B

pAB (– , 0, ) Pressure drop from A to B

flowAB (– , 0, ) Flow from A to B

Observe that the quantity spaces above, capture only partial knowledge. One could introduce more 

landmarks, for example a value maxPressureA for the pressureA variable, and likewise for pressureB, 

pAB, and flowAB. However, these are enough for the reasoning to start with, and QSIM allows for more 

landmarks to be discovered on the way. More significantly, these landmark values do not have to be 

numeric quantities. Symbolic ones will do.

The following constraints describe the relations between the different variables.
 ● The pressure in each tank is proportional to the volume of water in the tank.

pressureA = M+(amtA)

pressureB = M+(amtB)

 ● The pressure drop across the conduit is equal to the difference in pressures in the two tanks.

pAB = pressureA – pressureB

 ● The rate of flow rate across the conduit pipe is proportional to the pressure drop between the two 

tanks.

flowAB = M+(pAB)

 ● The flow rate across the pipe equals the increasing amount in one tank and decreasing amount 

in the other.

d/dtamtB = flowAB 
d/dtamtA = –flowAB

 ● The amount of fluid in the two tanks is conserved. If flow occurs from one tank to the other then 

the amount decreases in the former and increases in the latter.

amtA + amtB = total

Constant(total)

The set of constraints can be represented by the following diagram adopted from (Kuipers, 1994). 

Observe that the M+ constraint is a symmetric constraint. Thus, when pressureB = M+(amtB), it is also the 

case that amtB = M+(pressureB). The circle alongside the d/dt on the left in the figure represents negation.

Let us take a simple situation in which the two tanks are empty, and fluid is added to tank A till it 

becomes full. We can assume that this fluid is added instantaneously, or alternatively we can assume 

that there is a valve in the pipe that is opened after the fluid is added. What can one say about the events 

that will happen next?

The available information is a partial description of the state. At time t = t0, the following partial 

information is known.
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 amtA = <AMAX, ?> - tank A is full

 amtB = <0, ?> - tank A is empty

The following propagation of constraints yields more information about the given state at time t = 

t0 (Kuipers, 1994).

 1. Because of the corresponding value at (0,0),

 amtB.qmag = 0 fi pressureB.qmag = 0

 2. Because the corresponding values at (0,0) and ( , ), we can conclude that

 amtA.qmag = AMAX   fi  pressureA.qmag = (0, )

  Note that because of the way the quantity space has been constructed for pressureA, this is the 

best description we can get. A more detailed model would have something like maxPressureA, a 

corresponding value. Given that pressure has only two landmarks in our description, it can have 

only two corresponding values, and since the system is at neither, it follows that pressure must be 

somewhere between those landmark values.

 3. An addition constraint has an implicit set of corresponding values at (0,0,0). If one of the 

constituents is not zero, and the other is zero then the sum must be nonzero.

 amtA.qmag = AMAX Ÿ amtB.qmag = 0   fi  total.qmag = (0, )

  and likewise

 pressureA.qmag = (0, ) Ÿ pressureB.qmag = 0  fi pAB.qmag =  (0, )

 4. Constant values, by definition, have no direction of change (i.e. std)

 Constant(total) fi [d/dt total] = 0 or total.qdir = std

 5. The corresponding values at (0,0) and ( , ) of the constraint for flowAB and pAB imply that since 

pAb is at neither, so must flowAB be.

 pAB.qmag = (0, ) fi  flowAB.qmag = (0, )

 6. The derivative constraints can now determine the direction of change of amtA and amtB.

 flowAB = (0, ) fi [d/dt(amtA)] = – Ÿ [d/dt(amtB)] = +

  or amtA.qdir = dec Ÿ amtB.qdir = inc

  The known direction of change of amtA, amtB and total is consistent with the addition constraint.

FIGURE 17.10 The constraint diagram for the 2-tank system. The constraints are in lined “boxes”.

d

dt

d

dt

atmA
amtB

total

pAB

flowA

M+ M+

M+

pressureA pressureB

+

+



734 A First Course in Artificial Intelligence

 7. The direction of changes propagate through monotonic functions

 amtA.qdir = dec  fi pressureA.qdir = dec and amtB.qdir = inc fi pressureB.qdir = inc

 8. Direction of change can also propagate through the addition constraint,

 pressureA.qdir = dec  Ÿ  pressureB.qdir = inc   fi pAB.qdir = dec

 9. And finally, the direction of change in pressure drop propagates to flow.

 pAB.qdir = dec fi flowAB.qdir = dec 

Given that we started with the partially known state in which tank A has amtA amount of fluid and 

tank B is empty, reasoning over the constraint model gives us a better description of the state. In this 

case, it is a complete description as depicted in Table 17.4.

Table 17.4 The initial state with tank A is partially filled

Variable name qmag qdir Quantity space Target value

amtA AMAX dec (0, AMAX, `) (0, AMAX)

amtB 0 inc (0, BMAX, `) (0, BMAX)

total (0, `) std (0, `) —

pressureA (0, `) dec (0, `) 0

pressure 0 inc (0, `) (0, `)

pAB (0, `) dec (–`, 0, `) 0

flowAB (0, `) dec (–`, 0, `) 0

The qualitative state described above exists only for an instant. There are three variables—amtA, 

amtB, and pressureB—on landmark values, and all three are changing. All three move simultaneously 

away from their landmarks and the state transitions to a durative state that exists over a open interval 

(t0,t1). The new state is described in Table 17.5 below.

Table 17.5 The first qualitative state in the next instant

Variable name qmag qdir Quantity space Target value

amtA (0, AMAX) dec (0, AMAX, `) 0

amtB (0, BMAX) inc (0, BMAX, `) BMAX

total (0, `) std (0, `) —

pressureA (0, `) dec (0, `) 0

pressureB (0, `) inc (0, `)

pAB (0, `) dec (–`, 0, `) 0

flowAB (0, `) dec (–`, 0, `) 0

During this qualitative state that exists till the yet unknown time point t1, fluid is flowing from tank A 

to tank B. In that sense, the physical state is changing even when qualitatively it remains the same. The 

qualitative state will change when one of the variables reaches a different qualitative value. This could 

happen when the magnitude qmag reaches a landmark in the direction it is moving to. This could also 

happen if qdir changes. That is, it stops moving (or starts moving if it was steady). In addition, different 

variables could change at the same time.

In the above problem, the variable amtA is moving towards 0. It could reach that landmark (at least 

when seen in isolation) or it could stop decreasing (if qdir becomes std). Likewise, amtB could reach 
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BMAX, or stop increasing. The variable pressureA could reach 0, but its value is correlated to amtA, and 

if it happens, both will reach 0 at the same instant. Its counterpart pressureB is headed towards , and 

one could always exclude that from the set of possibilities. Finally pAB could move towards 0. Observe 

that if that happens, then pressureA would become equal to pressureB, the flow flowAB would reach 

0 as well, and the variables pressureA, pressureB, pAB, flowAB, amtA and amtB would all become steady.

There are three distinct possibilities and their combinations left.

1. amtA Æ 0 This implies pressureA Æ 0. This in turn implies that pAB Æ (–`, 0). But that is not 

possible without going through the qualitative state in which pAB=0, a landmark it is headed to. So this 

possibility can be excluded.

2. pAB Æ0 As discussed above, all variables move to a steady state.

3. amtB Æ BMAX At this time point, if pABπ0, the fluid overflows the tank (amtB Æ<BMAX, std>), 

amtA=<(0,AMAX), dec> and as a consequence total.qdir Æ dec. Thus, the constraint Constant(total) 

does not hold anymore and the model breaks down. And the reasoner can recognize this fact.

The three distinct feasible successor states therefore may be reached when,

 1. pAB Æ 0

 2. pAB Æ 0 and amtB Æ BMAX

 3. amtB Æ BMAX, in which case the constraint model of Figure 17.10 no longer applies and the 

system moves to a different operational state.

The qualitative state reached in case 1 (and also case 2 with a minor change) is,

Table 17.6 A steady qualitative state at time t1

Variable name qmag qdir Quantity space Target value

amtA (0, AMAX) std (0, AMAX, `) —

amtB (0, BMAX) std (0, BMAX, `) —

total (0, `) std (0, `) —

pressureA (0, `) std (0, `) —

pressure (0, `) std (0, `) —

pAB 0 std (–`, 0, `) —

flowAB 0 std (–`, 0, `) —

Such a steady state could be used to define new landmark values for the different variables, giving 

us the following refined description,

Table 17.7 New landmark values defined at time t1

Variable name qmag qdir Quantity space Target value

amtA ASTD std (0, ASTD, AMAX, `) —

amtB BSTD std (0, BSTD, BMAX, `) —

total TSTD std (0, TSTD, `) —

pressureA PASTD std (0, PASTD, `) —

pressure PBSTD std (0, PBSTD, `) —

pAB 0 std (–`, 0, `) —

flowAB 0 std (–`, 0, `) —
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A new set of correspondences is also formed as a result of these landmarks. For, amtA=ASTD and 

pressureA=PASTD forms the correspondence (ASTD, PASTD). The others are left as an exercise for the 

reader.

The above example illustrates the kind of predictions that qualitative reasoning allows us to make in 

the face of uncertain information. Given that we do not know the capacities of the two tanks, the best 

we can say is that one of the three cases will happen. A steady state could be reached with either the 

tank B partially full, or filled to the brim, or the system could move to a different operational qualitative 

state in which tank B overflows, and the total fluid between the two tanks reduces in amount. And only 

one of these behaviours can be demonstrated by the system. The actual one that happens can only be 

determined with the knowledge of the capacities of the two tanks.

Qualitative reasoning is thus a powerful tool to reason about a system without resorting to numerical 

information. This is the kind of common sense reasoning that people do before without going into 

quantitative analysis.

17.3 Model Based Diagnosis

The ability to construct a model of a system and generate predictions based on the model can be 

considered to be deep knowledge of the system. This ability can be exploited in other ways as well. 

In this section, we look at how this can lead to an approach to diagnosis of (malfunctioning) systems.

The earliest diagnosis systems were based on experiential knowledge. Such knowledge could be in the 

form of rules, as described in Chapter 6. The rules embody a distilled and modular form of knowledge 

that has to be elicited from a domain expert. It is assumed that the domain expert would be able to delve 

into her vast experience and mine the rules from her memory. This however was a somewhat unexpected 

bottleneck (see for example (Feigenbaum, 1977), (Forsythe and Buchanan, 1989)) in building systems 

that would exploit expert knowledge. It turns out that the experts were either unable or unwilling to 

articulate such knowledge that would be the core of a rule based expert system.

To a certain extent, this led to the evolution of Case Based Reasoning approaches, described in 

Chapter 15, in which the strategy is to capture entire problem solving experiences, and retrieve the best 

matching one when a new problem occurs. In diagnosis, the problem is the description of abnormal 

behaviour of a device, or a living creature, and the solution is a diagnosis and a therapy. Numerous 

helpdesk applications were built in which a relatively inexpert call centre employee would respond to 

a user, in consultation with a CBR system (see (Watson, 1997; 2002) for case studies).

The problem with experience based systems is that they apply only to those problems for which 

knowledge has been gleaned from experience. For diagnosis of devices, that means that only those 

devices for which such experience has accrued can be diagnosed. A new device may have to wait till 

expert human users have provided the solutions. In that sense, experience based diagnosis is device  

specific.

Model based diagnosis adopts a more fundamental approach. The basic idea is that if one can predict 

the (expected) behaviour of a system with a model, and if the observed behaviour is different from the 

expected one, then one knows that there is a fault. Further, if the predicted behaviour in the model is 

derived from the known behaviour of the components and the known structure of the device then the 

discrepancy between expected and observed behaviours can be used to drive reasoning algorithms to 

determine which components are faulty. This approach to diagnosis is also known as Consistency Based 

Diagnosis (Reiter, 1987).

Since model based diagnosis works with an explicit declarative model of the system, we also say that 

it relies on deep knowledge. Such a model could be constructed during the design phase of the device. 
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Then the behaviour of each component can be stored in a component library, and structure of the device 

would define the expected behaviour.

The diagnosis algorithms themselves can be developed in a device independent fashion. This is in 

line with the general approach of knowledge based systems in which the knowledge itself exists in a 

declarative form, and can possibly be used in different tasks. The diagnosis algorithms are themselves 

domain independent. The following figure, adapted from (Struss and Price, 2004), depicts how a device 

specific diagnosis system could be constructed using the three knowledge sources—library of component 

behaviours, the structure information from CAD, and the general diagnosis algorithm.

Library of component models Device structure from CAD system

General diagnosis algorithm Device model

Device specific diagnosis system

FIGURE 17.11 A generic approach to building model based diagnosis systems.

17.3.1 Component Models

A physical device in operation receives one or more inputs and produces one or more outputs. Given a 

device, a fault is said to occur if the observed behaviour (or output) is not an expected one.

The device itself is made up of a set of (active) components connected in a known way via a set of 

(passive) conduits. We define the task of diagnosis as follows. Given that a fault has occurred, the task 

is to identify the set of components that are broken (that is, not working as designed). This is also known 

as fault localization. Observe that we confine ourselves to searching for components being faulty. The 

conduits and terminals are assumed to be passive. This means that if a wire connecting two electronic 

components or a pipe in a hydraulic system is to be included in the purview of the diagnosis process then 

it too should be modelled as a component. The behaviour of the component could simply be to transmit 

voltage or fluid from one end to another, and a broken component would not do so.

Observe also that we do not consider the possibility of the structure—the choice of components 

and the way they are connected—as being faulty. We assume that the design of the system is correct. 

However, this line of reasoning has been suggested for the task of redesign of products (see (Bakker et 

al., 1994), (Stumptner and Wotawa, 1998)). The idea here is to treat the design problem as a redesign 

problem, begin with a (faulty) design, and apply model based approaches to arrive a design to match 

the new specifications.

Figure 17.12 shows an example which has been commonly used in the model based diagnosis 

literature. The device consists of three multipliers Mul1, Mul2 and Mul3, which feed their output to two 

adders Add1 and Add2, whose output appears at terminals F1 and F2 respectively. The figure shows the 

values of the six inputs and the expected outputs at F1 and F2. The actual output for Add1 shown in 

square brackets is at variance with the expected one. A problem of diagnosis is at hand.
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A1 = 3
B1 = 2

Mul1

A2 = 3
B2 = 2

Mul2

A3 = 3
B3 = 2

Mul3

C1

D1

E1

E2

D2

C2

C3

Add1

Add2

F1 = 12

[F1 = 10]

F2 = 12

FIGURE 17.12 A simple device made of three multipliers and two adders. A fault has occurred 

because the observed value at F1 = 10 differs from the predicted value 10.

A model for the above device should allow us to compute the expected output, given any input. For 

example, the components could be modelled as functions in a First Order Logic (FOL) with equality 

(see Chapter 12).

 Multiplier(M) ∫ output(M) = Product(input1(M), input2(M))

 Adder(A) ∫ output(A) = Sum(input1(A), input2(A))

The structure of the device shown above could be modelled as,

Multiplier(Mul1) Ÿ Multiplier(Mul2) Ÿ Multiplier(Mul3) Ÿ Adder(Add1) Ÿ
Adder(Add2) Ÿ input1(Mul1) = A1 Ÿ input2(Mul1) = B1 Ÿ input1(Mul2) = A2 Ÿ input2(Mul2) = B2 

Ÿ input1(Mul3) = A3 Ÿ input2(Mul3) = B3 Ÿ input1(Add1) = D1 Ÿ input2(Add1) = E1

Ÿ input1(Add2) = D2 Ÿ input2(Add2) = E2 

Ÿ output(Mul1) = C1 Ÿ output(Mul2) = C2 Ÿ output(Mul3) = C

Ÿ output(Add1) = F1 Ÿ output(Add2) = F2

Ÿ C1 = D1 Ÿ C2 = E1 Ÿ C2 = D2 Ÿ C3 = D2 

The sentence C1 = D1 says that the output of Mul1 is connected to the input of Add1, and likewise for 

similar statements. The reader should verify that given the facts A1 = 3, B1 = 2, A2 = 3, B2 = 2, A3 = 3, 

and B3 = 2, the values F1 = 12 and F2 = 12 follow.

However, as pointed out by Davis and Hamscher (1988), being able to reason in the forward direction is 

not enough. The task of diagnosis requires that one should be able to propagate the observed discrepancy 

to the various connected components in the device. This means that one should be able to infer values 

at hidden terminals. For example, if one knew that E1=6 and the observed value F1=10, then one should 

be able to say that, as long as the component Add1 is working correctly, the value at D1 should be 4. To 

facilitate this, the inputs and outputs of a component should be expressed by a set of constraints or as 

relations that allow inferences for any unknown variable in terms of the others. For example, we could 

describe the multiplier and adder using predicates in logic,

 Multiplier(M) ∫ Product(output(M), input1(M), input2(M))

 Adder(A) ∫ Sum(output(A), input1(A), input2(A))

where Product(X, Y, Z) is true iff X = YZ and Sum(X, Y, Z) is true iff X = Y + Z. Or one could use a 

constraint representing language along with a constraint solver.

17.3.2 Consistency Based Diagnosis

Given a device model in FOL, diagnosis can be arrived at by a process of logical reasoning, called 

Consistency Based Diagnosis, formalized as follows by Raymond Reiter (1987).
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From the device designer’s perspective, each component can be described by its intended behaviour. 

In the above example we can say,

 Multiplier(M) … Product(output(M), input1(M), input2(M))

 Adder(A) … Sum(output(A), input1(A), input2(A))

This description can be thought as default behaviour, or the behaviour expected in general when the 

device is working as designed. For the task of diagnosis, the reasoner may have to contend with the 

situation when some component is not working as designed. To model the device to cater to reasoning 

about malfunctioning components, we assume that each component in the device is either working or 

broken. Reiter adopts the predicate Ab(x) introduced by McCarthy (see Section 17.1.2) to indicate that 

a component is abnormal or broken. The designed behaviour of a component is as expected, only as 

long as the component is not broken. For the adder and the multiplier we can write,

 Multiplier(M) Ÿ ¬Ab(M) … Product(output(M), input1(M), input2(M))

 Adder(A) ¬Ab(A) … Sum(output(A), input1(A), input2(A))

As a corollary, one can infer that if the consequent in the implication is false, then the antecedent 

must be false too. Assuming that we continue to call a broken component by its category name, one 

can deduce that it is abnormal (or broken). In the multiplier example above, it means Ab(M) is true15.

Let SD be the system description of the device. SD is the set of FOL sentences as described above. 

This includes the component definitions and also the structure description. Let COMP be the set of 

components in the system. Let MA stand for mode assignment, as described in (Struss, 2008), describing 

the status of each component. Let MAOK be the mode assignment when the system is functioned correctly 

(as expected or designed). Then for each component ciŒCOMP, we have a sentence ¬Ab(ci) in MAOK 

asserting that ci is okay. Let OBS be a set of observations about a system.

When the system works as expected, the set of sentences SD » OBS is consistent. That is, one cannot 

derive a contradiction (represented by ) from them.

 SD » MAOK » OBS  

This happens for example when,

 OBS = {A1 = 3, B1 = 2, A2 = 3, B2 = 2, A3 = 3, B3 = 2, F1 = 12, F2 = 12}

However, if the set of observations instead are,

 OBS = {A1 = 3, B1 = 2, A2 = 3, B2 = 2, A3 = 3, B3 = 2, F1 = 10, F2 = 12}

where F1=10 is a different value, then the system description SD and observations OBS are no longer 

consistent. That is,

 SD » MAOK » OBS  

This implies that there is some statement in SD » MAOK that is leading to the contradiction. This can 

only be in MAOK, since we assume that the system design is correct. The task of diagnosis then is to find 

a new mode assignment MAX which is consistent with the observations. That is,

 SD » MAX » OBS  

Let us take a one component system which is a multiplier, whose inputs are 4 and 7 and the output 

reads 20. Then,

15  One could eschew the Ab predicate and simply infer ¬Multiplier(M) with the understanding that M no longer qualifies to be 

called a multiplier, but the use of an explicit status predicate makes it neater. As we will see, that also makes it possible to 

introduce fault models easily. Other works have used ¬OK(M) to mean the same thing as Ab(M).
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 SD =  {Multiplier(M),

Multiplier(M) Ÿ ¬Ab(M) … Product(output(M), input1(M), input2(M))}

 MAOK = {¬Ab(M)}

 OBS = {input1(M) = 4, input2(M) = 7, output(M) = 20}

It follows that,

 Product(20, 4, 7)

which, we know from our knowledge of arithmetic, is a contradiction or a false statement. Since the 

only statement we can retract is ¬Ab(M), we are compelled to assert Ab(M). That is, the multiplier M 

has been identified as a faulty component. Since the left hand side of the implication is no longer true, 

the following set of statements is consistent (does not lead to a contradiction).

 SD = {Multiplier(M), 

 Multiplier(M) Ÿ ¬Ab(M) … Product(output(M), input1(M), input2(M))}

 MA1 = {Ab(M)}

 OBS = {input1(M) = 4, input2(M) = 7, output(M) = 20}

In the case of a more complex device with say N components, we have 2N – 1 different possible 

mode assignment sets MAX from which to pick one that makes the overall set of sentences consistent.

One extreme set is the one in which we assert that all the N components are broken. Clearly, this 

will make the set of sentences consistent. However, that would not serve any purpose, because our task 

is to identify which component is faulty, or which components are faulty. The principle of parsimony 

(Reiter, 1987) says that “a diagnosis is a conjecture that some minimal set of components are faulty”.

Given that an N-component device is faulty, the task of diagnosis then is to search through various 

subsets of components to identify a minimal set, which if assumed to be broken would explain, or be 

consistent with, the observations.

Given an observation OBS, Reiter defines the notion of a Conflict Set (CS) as a set of components of 

which at least one must be broken.  That is, it is the set of suspects that could be causing the observed 

discrepancy. We can then define a conflict set as follows.

A set CS Õ COMP is a conflict set with respect to an observation OBS iff,

 SD » {¬Ab(c) | c Œ CS} » OBS  

Clearly, a superset of a conflict set would also be a conflict set. A minimal conflict set is a conflict 

set that does not have a proper subset that is a conflict set. If one has a collection of minimal conflict 

sets, then one would need to pick a hitting set, such that every conflict set has at least one member in 

the hitting set. Such a hitting set would be a candidate diagnosis if it does not have a proper subset that 

is a hitting set.

As Reiter has observed in his seminal paper, the task of diagnosis can be seen as a task of default 

reasoning. Seen from the perspective of Circumscription (see Section 17.1.2), given a system description 

and a set of observations, the task is to find a minimal set of Ab(x) predicates such that the set of sentences 

is consistent. A set of components D Œ COMP is a diagnosis, if D is a minimal set such that,

 SD » OBS » {¬Ab(c) | c  Œ COMP \ D}

is consistent. In other words,

 SD » OBS » {¬Ab(c) | c Œ COMP \ D }  

A brute force approach would try the different subsets in increasing order of size. However, given 

that we know which of the output terminals has a discrepancy, and know the connection topology of 

the device, one can surely do better than search blindly.
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17.3.3 The General Diagnostic Engine

Very often, one observation may not be enough to pinpoint the fault. One may have to generate more 

observations. This could be done either by changing the input parameters if possible, or by measuring 

values of internal terminals where possible.

For each observation OBS, one can find a set of minimal conflicts16 denoted {CS}OBS. As defined 

above, each conflict contains a group of suspects, at least one of which must be broken. Let {OBS} be the 

set of all observations and {CS} the union of all conflict sets associated with the different observations. 

Observe that {CS} grows monotonically with the observations.

A conflict set identifies a set of components, at least one of which is broken. A hitting set HS{CS} covers 

each conflict set, in the sense that it identifies at least one element in it. A hitting set HS signifies the fact 

that all components in the hitting set are broken. That is, we associate a mode assignment MAHS with 

the hitting set that assigns a broken status to all components in the hitting set, and okay to the remaining 

components. A hitting set HS is minimal if no proper subset of HS is a hitting set. A minimal hitting set 

satisfies the following property, and is therefore a candidate for being a diagnosis.

 MAHS = {Ab(c) | c Œ HS} » {¬Ab(c) | c ŒCOMP \ HS}

and SD » MAHS » OBSX     for all observations OBSX Œ {OBS}

Let {HS} be the set of hitting sets associated with {CS}. Each hitting set HS in {HS} is a candidate 

diagnosis, and says that every component in HS is broken. Also observe that,

 {HS} Õ 2COMP

The General Diagnostic Engine (GDE) presented by de Kleer and Brown (1987) keeps only the 

minimal hitting sets at each state. The number and size of the minimal hitting sets may increase or 

decrease as more evidence is found. Let Q be the frame of discernment or the set of all possible broken 

components17. The space in which the diagnosis algorithm has to search is the power set of Q. As 

shown in Figure 17.13, when the device is working the empty set F is the only minimal candidate. 

This is interpreted as saying that having no broken component is consistent with the observations. Here 

onwards, to facilitate drawing in figures, we shorten the names of the five components of Figure 17.12 

to M1, M2, M3, A1, and A2.

The following two tasks are the core of the diagnosis algorithm.

1. Conflict Recognition Given an observation OBS, to identify the set of all minimal conflicts for 

the device. Further, when more observations arrive, to efficiently augment the set of minimal conflicts.

2. Candidate Generation Given a set of minimal conflicts, to identify the candidates for diagnosis. 

The candidates are the minimal hitting sets corresponding to the set of conflicts. Further, as more conflicts 

are generated, to modify the candidates in an efficient manner.

Candidate Generation

We first look at candidate generation. Initially, the set of minimal candidates contains only F. At any 

point, given a set of minimal candidates and a new minimal conflict, the following procedure is adopted.
 ● Any minimal candidate that does not explain the new conflict is replaced by one or more supersets 

of the candidate. Each superset is composed by adding one element of the new conflict to the 

failed candidate.
 ● If any candidate in the new set of candidates is subsumed by another candidate, then it is removed.

16 We will use the word conflict to refer to the conflict set as well.
17  In the logic based model, each set should really stand for sets of statements asserting that the corresponding components are 

broken. We denote those statements by identifying the components for the sake of brevity. 
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Let us first look at how GDE deals with two conflict sets <A1, M1, M2> and <A1, A2, M1, M3> given 

to it. When it gets the first conflict, there is only one minimal candidate, the empty set, and it does not 

explain the conflict. Hence it is removed, and replaced by three candidates—{M1}, {M2}, and {A1}—

which are singleton candidates. The situation is shown in Figure 17.13.

The interpretation of this set of candidates is any of them or any of their ancestors could represent 

the broken set and that would be consistent with the observation (in this case the set of input and output 

values). This implies that the supremum Q is always a candidate for being broken, but that only tells us 

that the entire set of candidates is broken, or that the device is broken. The reason why we only consider 

the minimal candidates as diagnosis is that if that candidate is the diagnosis, then the components in 

that are necessarily broken.

Observe that {M3}, {A2} and {M3, A2} are neither candidates nor are they the ancestors of any 

candidate. They are in the clear, and not suspects any more. This means that by themselves, they cannot 

explain all the conflict sets. The candidate {F} is also out of contention. It cannot be the case that no 

component is broken, because that would be inconsistent with the observations (or the conflict sets).

Next, the second conflict <A1, A2, M1, M3> has to be processed. Of the three candidates in Figure 

17.14, {A1} and {M1} can explain the conflict since each has one element in the conflict. The remaining 

candidate {M2} does not, and has to be discarded. The following extensions have to be considered 

instead—{M2, A1}, {M2, A2}, {M1, M2} and {M2, M3}. That is, if M2 is broken then one of A1, A2, M1, 

and M3 must also be broken. Of these candidates, {M2, A1} is subsumed by (is a superset of) {A1}, and 

{M1, M2} is subsumed by {M1}. They are not minimal and have to be discarded. The remaining two are 

added to the set of candidates which now constitutes of {A1}, {M1}, {M2, A2} and {M2, M3}, as shown 

in Figure 17.15. The reader should verify that these are the four minimal hitting sets for the two conflicts 

sets we started with. The precise algorithm for updating the set of candidates given a new conflict set 

is left as an exercise.

FIGURE 17.13 The candidate space in diagnosis. Any subset of the five components may be a 

candidate. The minimal candidate when the device is working is the empty set.
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M1, M2, M3, A1

M1, M2, M3

M1, M2 M1, M3 M1, A1 M1, A2 M2, M3 M2, A1 M2, A2 M3, A1 M3, A2 A1, A2

M1, M2, A1 M1, M2, A2
M2, M3, A2 M2, A1, A2 M3, A1, A2

M1, M2, M3, A2 M1, M2, A1, A2 M1, M3, A1, A2 M2, M3, A1, A2

M1 M2 M3
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A1 A2

Q

FIGURE 17.15 After the second conflict <A1, A2, M1, M3 > is processed, the minimal candidates are 

shown in the shaded rectangles, while the exonerated ones have thick borders.
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FIGURE 17.14 After the first conflict <M1, M2, A1> is processed, the minimal candidates are {M1}, 

{M2}, and {A1}, while {F}, {M3}, {A2} and {M3, A2)} are out of contention.
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When we begin with a correctly functioning device, the only (minimal) candidate for diagnosis 

is F. Once a discrepancy is found between the predicted and observed behaviour, and a conflict set 

generated, a new set of candidates is computed, and F, along with possibly a few others is no longer a 

candidate. Once a candidate is out of contention, it remains out of contention as more data in the form 

of conflicts is received. The set of exonerated components (or assumptions in the logic model) grows 

monotonically bottom up in the lattice. One can think of the process of diagnosis as the process of 

exonerating candidates, till only one (minimal) candidate remains.

Conflict Generation

The candidate generation algorithm takes conflicts as inputs. A conflict (or a conflict set) is derived 

from an observation. If the observation has a discrepancy contained in it, then it will lead to a nonempty, 

conflict set. A conflict set is derived from two ways at arriving at the value of a variable in a system. In 

the example we have been using, the variables are values at the terminals of some component.

The first conflict <A1, M1, M2> is arrived at by observing the discrepancy in the two values at F1 in 

Figure 17.12. One value F1 = 12, is based on the assumptions ¬Ab(M1), ¬Ab(M2) and ¬Ab(A1), which 

state that the corresponding components are working correctly and not broken. The other value F1 = 10 

is an observation, and is based on no assumption. The cumulative assumptions from the two ways of 

arriving at the value are inconsistent together. That is ¬Ab(M1), ¬Ab(M2) and ¬Ab(A1) cannot be true at 

the same time. We represent this fact by the corresponding set <¬Ab(M1), ¬Ab(M2), ¬Ab(A1)>, which 

in the abbreviated form that we have been using is <M1, M2, A1>.

The second conflict <A1, A2, M1, M3> is arrived at two ways of generating the value of F2. The first 

is the observation F2 = 12, which has no assumptions. The second F2 = 10 is derived as follows.

 F2 = D2 + E2 Assumption: ¬Ab(A2)

where E2 = A3 + B3 Assumption: ¬Ab(M3)

and D2 = E1 because D2 = C2 and C2 = E1

and E1 = F1 – D1 Assumption: ¬Ab(A1)

and F1 = 10 Observation

and  D1 = A1 ¥ B1 Assumption: ¬Ab(M1)

and A1 = 3 and B1 = 2 and A3 = 3 and B3 = 2

The statement D2 = E1 is not based on any assumption because our model assumes that only 

components can fail and not conduits. The cumulative set of assumptions in the reasoning above gives 

us the conflict <A1, A2, M1, M3>. Observe that this conflict could also have been derived by comparing 

two ways of arriving at a different value of C2. See Exercise 12. At the same time, we treated the value 

at F2 differently from the value at F1. This was because a symmetric treatment, the observed value and 

the one derived from M2, M3 and A2 are the same, and would not lead to a conflict set.

The manner in which the second conflict has been derived gives us a clue of how to go about finding 

(minimal) conflicts. The key is that one must find two ways of deriving different values of some variable, 

and enumerate the components that played a role in the two derivations. The set of components, or more 

precisely the assumptions that they are not broken, forms a conflict set. In the process of exploring 

different variables, one will have to discard (a) conflicts that are replicated, and (b) conflicts that are 

subsumed (are supersets of) other conflicts.

In their 1987 paper describing the GDE, de Kleer and Brown introduce the notion of an environment 

which stands for a set of assumptions. If the environment leads to a contradiction (a discrepancy) then 

it becomes a conflict set.

Since one is interested only in the minimal conflicts, one can explore the environments starting with 

the smallest. At any given point if an environment becomes inconsistent then it becomes a conflict. 
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Inconsistency can be checked using a proof procedure (for example, the resolution refutation method 

augmented to recognize the contradiction in clauses like 6 + 6 = 10). If an environment becomes a 

conflict then its ancestors in the lattice too need not be investigated. Otherwise, it is refined into several 

environments by adding a new assumption. As a corollary, if some descendent (generalization) of an 

environment is a conflict, then it need not be investigated.

GDE employs an inference procedure in which the inferred sentences, or beliefs, are supported by an 

environment in which they are inferred, and the support is noted explicitly as a justification. Let P(OBS, 

ENV) be the set of inferences made by the system, given the observations OBS and the environment ENV.

One of the ways of generating new data is to keep input values constant and make some additional 

measurements at some internal terminal in the device18. When one does that then the inferences made by 

the system before the measurement M still hold, and a few additional inferences may be made. That is,

 P(OBS, ENV) Õ P(OBS»{M}, ENV)

This implies that as we make new measurements, we need to do the inferences only incrementally, 

as long as we cache the inferences made earlier. Further, since the inferences are made for specific 

environments, if we store the justification for each inference, then when an inconsistency is observed, 

the environments responsible for it can be identified easily.

An environment is a set of assumptions. If the environment ENV turns out to be consistent (with 

the observations and system definition), then the system investigates a set of new environments of the 

form ENV»{A}, where A is a new assumption. The inferences made with the smaller environment are 

still valid and,

 P(OBS, ENV) Õ P(OBS, ENV»{A})

Thus, while investigating the extended environments, the cached inferences can be augmented with 

any new ones. Further, since environments are explored smallest first, when a new environment comes 

up, all its “subsets” already have the inferences made and cached. What is needed is a mechanism that 

stores the inferences and alerts the system not to repeat the same inferences again. Such a mechanism 

is called a Truth Maintenance System (TMS) and we will study it briefly in the next section. In fact, the 

GDE employs a version of TMS known as the ATMS (Assumption based TMS) that allows it to explicitly 

keep track of assumptions (environments).

GDE does not explore all possible environments, but only those that are suggested by the structure 

of the device which indicates which components are connected. The relations between variables across 

components are expressed in the form of rules or constraints. Each such rule or constraint identifies a 

component that can be part of an environment when the rule is applied or the constraint propagated across 

it. Further, propagation happens only through those components that are connected, and only those can 

extend a given environment. In this way, the connectivity guides the extensions in the environments.

Measurements

There are two ways that conflicts are generated. One, when a discrepancy occurs between an observed 

value and a predicted value. Then tracing the justifications of the derived values an environment is 

assembled, which may lead to a conflict. GDE caches the reasoning it does, while generating predictions 

as justifications in the ATMS. This means that while exploring for conflicts, it can exploit the stored 

justifications. For each discrepancy, the system searches for different environments (assumptions) 

that are consistent with the discrepancy. In the example we have been following, first tracing back the 

18  One could also think of exploring the value F2=12 in our example as taking a second measurement as described in (Forbus 

and de Kleer, 1992). 
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derived values to the inputs leads to <M1, M2, A1>. Next, instead of tracing E1 via its source C2, the 

search tries to trace (propagate) it via D2. This leads to dropping M2 and adding A2 and subsequently 

M3 to the environment.

Second, when one has exhausted the (minimal) conflicts that can be generated by a set of observations, 

then additional observations or measurements need to be made. In our example, the measurement can 

be made at one of three internal points. The first is C1, or equivalently D1, since conduits are assumed 

to be free of faults. The second is E1, or equivalently C2 or D2. The third is at E2 or equivalently C3.

Let us say we make a measurement at C1. Consider three different values that the measurement 

could yield.
 ● C1 = 4. This will lead to a conflict <M1>. This would in turn imply Ab(M1) and the minimal 

candidate would be {M1}. The value F1 = 10 would be consistent with C1 = 4.
 ● C1 = 6. This would exonerate M1 and would lead to a conflict <A1, M2>, or <A1, A2, M3>. The 

reader should verify that the minimal candidates now are {A1}, {M2, M3} and {M2, A2}.
 ● C1 = 7 or any value not equal to 4 or 6. This will also lead to a conflict <M1> and imply Ab(M1). 

The value F1 = 10 however would be inconsistent with C1 = 8 and would lead to the conflicts <A1, 

M2>, or <A1, A2, M3>. This would be a case of more than one fault in the system. The minimal 

candidates would be {M1, A1}, {M1, M2, M3} and {M1, M2, A2}.

GDE keeps track of inferences that enable it to identify possible points for measurement. The details 

of how the ATMS represents data are described in Section 17.4. In our example, it keeps the following 

dependencies in the form [Value, Supporting-environment(s)].

 [C1=4, {{M2, A1}, {A1, A2, M3}}]

 [C1=6, {M1}]

 [C2=4, {{A1, M1}}]

 [C2=6, {{M2}, {A2, M3}}]

 [C3=8, {{A1, A2, M1}}]

 [C3=6, {{M3}, {A2, M2}}]

Every variable that receives different values is a candidate for measurement. The question is which 

variable to measure next. The answer will depend upon many factors. Chief amongst them is the cost 

of making the measurement. If making a measurement is cheap, then one could go ahead and make all 

possible measurements. However, this is not often the case, and one may have to choose measurements 

carefully. The best measurement would be the one that eliminates half the candidates for diagnosis. If 

this could be done then one would arrive at a diagnosis with the smallest number of measurements on 

the average.

The decision of where to take the measurement will also depend upon knowledge of which components 

are more likely to fail. If that information is available then terminals which have the most likely to fail 

component in their environment can be given preference. If the a priori probabilities are known then 

a minimum entropy approach can be used to select a measurement point (de Kleer and Brown, 1987). 

The details of this approach are beyond the scope of this text. However, we present a simpler approach 

presented by de Kleer (1990) in a subsequent paper. The approach is based on the following assumptions.

 1. All components fail independently and with equal probability.

 2. Each component fails with an extremely small probability.

 3. We are interested in discriminating only between the smallest cardinality diagnosis candidates 

that remain in the fray.

Given the assumption that components fail with an extremely small probability, the diagnosis which 

says that the smallest number of elements has failed is the most credible. This can be seen to follow 
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from Occam’s razor19 or the principle of parsimony that says that the simplest explanation is most likely 

to be the correct one20. 

The approach presented by de Kleer is as follows. Let us say that in the set of minimal candidates 

for diagnosis the smallest cardinality of a diagnosis is Q. Let X be a possible measurement point with 

possible values {v1 …vk}. Then, the score S(X) for making a measurement of X is,

 S(X) = S1 £ i £ k Ci ln(Ci)

where Ci is the number of diagnosis of cardinality Q which predict the value vi, and ln is the natural 

logarithm. The measurement point with the lowest score is the best candidate.

In our example, given that F1 = 10 and F2 = 12, there two lowest cardinality diagnosis candidates, 

{M1} and {A1}, and Q = 1. The set of values and the corresponding singleton diagnosis that predict 

them are,

 C1 = 4 ¨ {M1}

 C1 = 6 ¨ {A1}

 C2 = 6 ¨ {A1}, {M1}

 C3 = 6 ¨ {A1}, {M1}

The last two sentences should be read as {M1} predicts C2 = 6, as does {A1}. Therefore,

 S(C1) = 1 ¥ ln(1) + 1 ¥ ln(1) = 0

 S(C2) = 2 ¥ ln(2) = 1.4

 S(C3) = 2 ¥ ln(2) = 1.4

indicating that measuring at C1 is the best choice. The interested reader can find the derivation of the 

above expression in de Kleer’s paper.

17.3.4 Fault Models

The consistency based diagnosis approach we have seen so far works with models in which component 

behaviour is described only for the working case. The abnormality predicate Ab(C) can only distinguish 

between working and nonworking components. As far as it knows, either component C works or it is 

broken. If it works then its behaviour must conform to the constraints or relation associated with it. 

When the component is broken, it is assumed that nothing can be said about its behaviour.

In practice, one can say something about the behaviour of broken components. And one can often 

identify different ways of a component malfunctioning, each with a characteristic behaviour pattern. 

For example, the pressure regulator valve discussed earlier could get stuck in the OPEN position, in 

which pressure drop would be proportional to the flow of the fluid. Or it could get stuck in the CLOSED 

position, in which case the flow would be zero.

As shown by Peter Struss and Oskar Dressler (1989), an understanding of the behaviour of a broken 

component, which they term physical negation, can lead to pruning of impossible candidates that GDE 

is compelled to keep amongst the contenders.

We look at the example discussed in their paper. The circuit shown in Figure 17.16 is made up of 

three kinds of components. There are three bulbs, six wires (which are now treated as components and 

not conduits), and one battery. The ten components are connected as shown in the figure. We assume 

there are no conduits, and each component has two terminals which may directly be connected to the 

19  Or Ockham’s razor after William of Ockham (c. 1285–1349), Munich citizen, that “refers to distinguishing between two theories 

either by shaving away unnecessary assumptions or cutting apart two similar theories.” – Wikipedia, Occam’s razor. 
20  Interestingly, a model based diagnosis tool named RAZ’R is offered by OCC’M Software GmbH by two Munich citizens (see 

http://www.occm.de/).
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terminals of other components. The situation is that bulb B3 is lit, while B1 and B2 are off. The task is 

to find out what is broken.

W1 W3 W5

W2 W4 W6

B3B2B1

S

FIGURE 17.16 Three bulbs connected to a battery in parallel, with six wire components.

To anyone with a basic knowledge of electrical circuits, it is immediately clear that both the bulbs B1 

and B2 must be broken. The reason is that wires and the battery must all be working because the bulb 

B3 is lit. However, working only with descriptions of working component models, GDE is unable to 

pinpoint this diagnosis, though it does identify it amongst many spurious ones. Struss and Dressler show 

that even with assuming that there is only one fault mode, a description of the component behaviour 

can help. In the general case, there could be many different ways that a component could fail in, and 

the task would be to identify what behaviour mode the component is.

Other papers that have adopted similar approaches are (de Kleer and Williams, 1989), (Dvorak and 

Kuipers, 1989), (Hamscher, 1991), and (de Kleer and Brown, 1992). A comprehensive collection of 

papers is the Readings in Model Based Diagnosis edited by (Hamscher et al., 1992).

We begin by examining how GDE diagnoses the problem.

Let us model the components as constraints. We assume two modes for each component. One OK(C) 

that corresponds to ¬Ab(C) in our earlier notation, and the other Broken(C) that corresponds to Ab(C). 

This notation allows us to identify the mode of fault, and we could have different modes Broken1(C), 

Broken2(C), …, BrokenF(C), if there were F different possible fault modes. With each fault mode, we 

would be expected to describe at least some aspects of the behaviour.

GDE describes the behaviour only for the OK mode. Let us build a qualitative model in which the 

voltage values are from the quantity space [–, 0, +]. When the battery S is working then the voltages at 

its two terminals are Voltage(T+) = + and Voltage(T–) = –. For the sake of brevity, we will write these 

as T+ = + and T– = –.

The bulb is modelled by the relation depicted in Table 17.8. 

We have included the mode OK in the relation. Later when 

we extend the behaviour description to the fault mode, we 

can extend the table for the mode Broken. The other columns 

are L and R for the two terminals the values of which are 

voltages, and Bulb for the state of the bulb which can take 

two values, On or Off. The value 0 for Voltage means that 

the battery voltage is not being transmitted to it. The astute 

reader would have observed that this does not conform to the 

no-function-in-structure principle. In particular, this model 

would not work for bulbs connected in series, since that would 

need a denser quantity space that would allow for a voltage 

drop across each bulb.

Table 17.8 The working bulb model

Mode L R Bulb

OK + – On

OK – + On

OK + + Off

OK – – Off

OK 0 0 Off

OK 0 + Off

OK 0 – Off

OK + 0 Off

OK – 0 Off
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The corresponding working model for the wire says that when the wire is on the OK mode, then the 

voltage at both its ends is the same.

 Table 17.9 The working wire model

Mode L R Wire

OK + + Connected

OK – – Connected

OK 0 0 Connected

Each of the bulbs Bi has the associated terminals TBi and BBi referring to the terminal on top of Bi and 

bottom of Bi respectively in Figure 17.16. Likewise, the two terminals of each wire Wi are named LWi 

and RWi for the left end and the right end respectively. Then our system description contains statements 

like RW1=TB1 to assert the fact that the top terminal of bulb B1 is connected to the right end of wire 

W1. In a similar way, RW1=LW3 says that the right end of the wire W1 is connected to the left end of the 

wire W3. These statements are really short forms for the statements Voltage(RW1)=Voltage(TB1) and 

Voltage(RW1)=Voltage(LW3). The reader is encouraged to write the complete system description SD 

for the above circuit.

The observations are {B1=Off, B2=Off, B3=On}.

GDE constructs the following minimal conflicts.

 ● {S, W1, W2, B1} since the bulb B1 is off, while it is predicted to be on.
 ● {S, W1, W2, W3, W4, B2} since the bulb B2 is off, while it is predicted to be on.
 ● {B3, W5, W6, B2} since voltage values around this loop are inconsistent.

Because B3 is on it is expected that

TB3 = RW5=TB2=LW5= … =(T–= –)

BB3 = RW6=BB2=LW6= … =(T+= +)

But TB2= – and BB2=+ is not possible because the bulb B2 is off.
 ● {B3, W3, W4, W5, W6, B1} in a similar manner because B3 is on and B1 is off.

As reported in (Struss and Dressler, 1989), GDE finds many minimal candidates including the 

following with the lowest cardinality 2,

 {S,B3}, {S,W5}, {S,B6}, {W1,B3}, {W1,W5}, {W1,W6}, {W3,B3}, {W2,W5}, {W2,W6}, {B1,B2}

The first one {S,B3} illustrates the consequence of ignorance about the physical manner in which 

components can be broken, that is, not having fault models. One can interpret the candidate in the 

following way, keeping in mind that GDE only has descriptions of working behaviour, and when a 

component is broken, any behaviour is possible. The fact that the battery S is broken explains the 

observations that bulbs B1 and B2 are off. The observation that B3 is lit is “explained” by the fact that it 

is broken (if it were OK then it would have been off too!). In a similar manner, the fact that W2 is broken 

(in the candidate {W2,W5}) explains the fact that B1 and B2 are off, while the wire W5 being broken 

somehow explains bulb B3 being lit.

From a purely logical standpoint, the above reasoning is consistent, because GDE uses only working 

component models. But from an understanding of the physical systems, it is apparent the bulbs cannot 

light up by themselves, or because a wire connecting them is broken.

The behaviour model for the bulb is extended in Table 17.10 to one fault mode Broken below. The 

key feature in the table is that if the bulb is Broken then in all cases, the bulb stays in the Off state.
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 Table 17.10 The broken bulb model

Mode L R Bulb

Broken + – Off

Broken – + Off

Broken + + Off

Broken – – Off

Broken 0 0 Off

Broken 0 + Off

Broken 0 – Off

Broken + 0 Off

Struss and Dressler extend the GDE to GDE+ by incorporating fault models in the following manner. 

Assuming that we represent ¬Brokeni(C) with OKi(C), the following statements are added for each fault 

model.

 "i£F (OK(C) … OKi(C))

and conversely,

 OK1(C) Ÿ OK2(C) Ÿ … Ÿ OKF(C) … OK(C)

This is equivalent to saying that,

 Broken(C) … Broken1(C) ⁄ Broken2(C) ⁄ … ⁄ BrokenF(C)

and conversely,

 "i£F (Brokeni(C) … Broken(C))

In our example, F = 1 and there is only one fault mode (which we have called Broken). When GDE+ 

looks at the task, it too arrives at the same set of conflicts. However, the set of candidate diagnoses it 

generates, does not have the spurious diagnoses. Consider the candidate {S,B3}. This is not generated by 

GDE+ because Broken(B3) is not consistent with the observation B3 = On, because no row in the fault 

model allows B3 = On. For the same reason, all candidates containing B3 are rejected.

That leaves the candidates with two broken wire segments. Table 17.11 below defines the broken wire 

model. While the label “Disconnected” does not play a role, the voltage values for the two ends do matter.

 Table 17.11 The broken wire model

Mode L R Wire

Broken + – Disconnected

Broken – + Disconnected

Broken + 0 Disconnected

Broken 0 + Disconnected

Broken – 0 Disconnected

Broken 0 – Disconnected

Consider the candidate {W2, W5} found by GDE. Given that LW2=+ (since the battery is working) 

and the assumption that Broken (W2), there is no way that RW2=+ and consequently no way that BB3=+, 
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which in this example is a necessary condition for bulb B3 to be lit. By a similar argument, none of the 

wires can be broken if the B3 is to be on, and all candidates that have a wire are eliminated.

What remains is the candidate {B1, B2}.

Struss and Dressler illustrate the use of multiple fault modes by the following example. In an adapta-

tion shown in Figure 17.17, a water filtering system receives water through an input pipe P-IN from a 

source21 D that is unbounded, or at least of a few orders of magnitude greater capacity. Filtered water 

flows out from P-OUT. If there is a leak or an overflow, the water falls into a catchment area O where it 

is sensed and an alarm raised. The observations are that Output(P-OUT) = 0 and Alarm(O)=Off. What 

has gone wrong?

D

O

F

P-IN

P-OUT

FIGURE 17.17 A water filtering system F gets input from a nearby dam D and sends the filtered 

water through P-OUT. An overflow catchment area O senses water and generates an alarm.

The working models of P-IN, F, and P-OUT entail that Output(P-OUT)=+. So, there is a discrepancy 

between the observation and the prediction. A new case for GDE to solve.

GDE generates the only conflict <P-IN, F, P-OUT>, resulting in the three candidates {P-IN}, {F}, 

and {P-OUT}. This only says that one of the three components involved in supplying water is broken.

Let us hand the case over to GDE+. The following fault models describe some of the ways in which 

components may be broken. The names chosen are self explanatory. The details of their effects have 

been left out.
 ● Hole(F) ∫ Broken(F). The behaviour is that water leaks out of the tank in falls into the catchment 

area O, where it should be detected giving us Alarm(O)=On.
 ● Perforated(Pipe) ∫ Broken1(Pipe). Likewise, one of the pipes may have a hole, letting the water 

fall into O and triggering the alarm.
 ● Blocked(Pipe) ∫ Broken2(Pipe). In this mode of failure, the pipe gets blocked and no water flows 

through it.

The given observations are {Output(P-OUT) = 0, Alarm(O)=Off}. GDE+ constructs the following 

additional conflicts <P-IN, O>. This says that at least one of P-IN and (the alarm in) O must be broken. 

We look at how this is arrived at in a little more detail in the following section.

Given the two conflicts, there are three candidates for diagnosis,
 ● {P-IN} — The input pipe is blocked.
 ● {F, O} — The filter tank F has a hole and the alarm in O is not working. 
 ● {P-OUT, O} — The output pipe is perforated and the alarm in O is not working22.

The important thing is that the GDE+ can discriminate between different fault modes and come up 

with more information about what is the nature of the fault.

21 For example, a dam or a reservoir. 
22  The published system only looks at minimal sets of components. If one were to distinguish between P-IN failing by being 

blocked and by being perforated, then {P-IN, O} would also appear as a candidate diagnosis. 
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Fault models therefore have their advantages. The main disadvantage is that the space of candidates 

explodes. When there were only two modes OK and ¬OK, the candidate space was of size 2N when there 

are N components. With each component admitting F faulty modes, this space grows to (F+1)N. Another 

perceived drawback is that all fault modes must be enumerated for completeness. However, this has 

been countered by saying that an uninformative fault mode, equivalent to ¬OK, can be added as well.

17.4 Assumption Based Reasoning and Truth Maintenance

A problem solver that does some reasoning in a domain may have to make assumptions. An assumption 

is a belief. It may not necessarily be true. Based on the assumption, the reasoning system may infer 

other beliefs, and still others from those beliefs. It is possible that at some point, the set of beliefs held 

by the problem solver becomes inconsistent. It then becomes necessary for the problem solver to retract 

some assumption.

A Truth Maintenance System (TMS) (Doyle, 1979) is a program that does the book keeping and 

consistency management for a problem solver23 (Figure 17.18). For every sentence the problem solver 

accepts or generates, the TMS maintains a node in its network. The sentence, referred to as the datum, 

is a proposition including statements like C1=3, Culprit(butler), and Man(socrates) … Mortal(socrates). 

When the problem solver, which could be a theorem prover, a constraint solver, or a custom made rea-

soning engine, generates a new piece of datum, it informs the TMS about the new datum along with a 

justification that names the data items or antecedents that resulted in the derivation as well as the method 

or rule that was used. A justification is of the form,

 <consequent, informant, antecedent1, …, antecedentk>

This representation is reminiscent of the way we write proofs, stating the consequent followed by how 

it was derived. The TMS itself treats each piece of data simply as a node in its network of justifications, 

and is not concerned with its semantics. It is only concerned with keeping track of justifications and 

maintaining consistency. If a special node standing for a contradiction receives justification, it informs 

the problem solver and triggers a Dependency Directed Backtracking (see also Chapters 6 and 9) routine 

to identify the source of inconsistency that the problem solver can jump back to.

ResponseQuery
<Antecedents,

Consequent>

Truth Maintenance System

Problem

Solver

FIGURE 17.18 A Truth Maintenance System keeps track of justifications of all beliefs held by the 

Problem Solver and keeps a watch on the consistency of the beliefs.

23  Doyle observes that the name Truth Maintenance is probably a misnomer, but keeps it in order to be consistent with historical 

usage. Other names that have been suggested are Reason Maintenance and Consistency Maintenance. 



Chapter 17: Reasoning Under Uncertainty 753

Consider the following (relevant) excerpts from a fictitious set of facts.

 1. Nira spoke either to Prashant or to Barkha.

 2. Barkha spoke either to Kapil or to Azad.

 3. Vir spoke either to Vinod or to Nira.

 4. If Nira spoke to Prashant, the culprit is Nitish.

 5. If Nira spoke to Barkha, the culprit is in Chennai.

 6. If Barkha spoke to Kapil, the culprit is Singh.

 7. If both Singh and Nitish are the culprits, the document is in Patna.

 8. If Vir spoke to Vinod, the culprit is Surinder.

 9. If Vir spoke to Nira then the story got published.

 10. Smiley said that the document is in Delhi.

 11. If Smiley said the document is in Delhi then the document is in Delhi.

 12. The document cannot be both in Patna and Delhi at the same time.

Given the either-or statements 1 to 3, let us say a reasoning system makes some assumptions about 

one of the constituents in these statements and derives the consequences. The reasoning, let us say, hap-

pens as in the following sequence. We have not stated the rules of inference used here, but the reader is 

encouraged to formalize the derivation of the contradiction.

 13. Nira spoke to Prashant ; Assumption

 14. Barkha spoke to Kapil ; Assumption

 15. Vir spoke to Vinod ; Assumption

 16. Nitish is the Culprit ; Logic rule ; 4, 13

 17. Singh is the Culprit ; Logic rule ; 6, 14

 18. The document is in Patna ; Logic rule ; 7, 16, 17

 19. Surinder is the Culprit ; Logic rule ; 8, 15

 20. The document is in Delhi ; Logic rule ; 19, 11

 21. Contradiction ; Logic rule ; 12, 18, 20

At this point, a contradiction has been signalled, and the reasoner needs to backtrack. The dependency 

diagram based on the justifications looks as in Figure 17.19. In the figure, sentences in ovals represent 

beliefs. Sentences in ovals with open arrows leading into them are premises and need no justification. A spe-

cial node containing  stands for a contradiction. Assumptions are depicted in rectangular boxes. Dashed 

arrows represent any other inference chains that could have been constructed, but are not depicted here.

The TMS provides the following services to the problem solver.
 ● It caches the derivations made by the problem solver. This means that if the same reasoning step 

is to be made again, the TMS can help avoid duplicated computations.
 ● When a contradiction is signalled, it facilitates identification of possible causes and dependency 

directed backtracking.
 ● Once a node is introduced, it stays in the network. It may be marked IN signifying that there is 

positive belief for the datum, or OUT signifying negative belief. Nodes may change status multiple 

times during problem solving.
 ● A node is IN if at least one justification is supported by nodes that are IN. Else it is OUT. At any 

time, the TMS can inform the problem solver whether a node is being believed or not. That is, 

whether it is IN or OUT.
 ● Once an assumption is retracted, it is marked OUT. The network of justifications is used to 

propagate this change to succeeding nodes.
 ● A set of assumptions that leads to a contradiction is marked as a nogood and never repeated again24.

24  This is similar to the notion of nogood used in solving constraint satisfaction problems, where a set of variables along with their 

tentative assignments may be marked as a nogood (see Chapter 9). 
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The reasoning system described above has made the assumptions in the following order,

 1. Nira spoke to Prashant ; Assumption

 2. Barkha spoke to Kapil ; Assumption

 3. Vir spoke to Vinod ; Assumption

Chronological backtracking would retract the last made assumption first. However, in this case, the 

last assumption has no bearing on the inconsistency observed in the TMS. Instead, the algorithm traces 

back the justifications from the contradiction node and suggests that one of the other two assumptions 

needs to be retracted. Let us say that the second assumption Spoke(Barkha, Kapil) is retracted. The 

TMS does this by marking the node OUT. It then explores all the consequences of this change, looking 

for nodes that have no justification after the retraction. All such nodes are also marked OUT. The 

resulting network for our example is depicted in Figure 17.20. The nodes that are OUT are shown in 

shaded containers. Any nodes pointed to by the dashed arrows from these nodes would need to get their 

justifications checked too.

17.4.1 Assumption Based Truth Maintenance System

The TMS system, as constructed by Jon Doyle, keeps one consistent network in its memory. Any 

assumption whose addition would lead to a contradiction and nodes justified only by it, are marked as out.

However, in many problems, the reasoner may have to work with different, and often contradictory, 

assumptions simultaneously. During the reasoning process, it may have to work with different sets of 

assumptions alternately.

The following simple example illustrates the case where different sets of assumptions can be made. 

Consider the following facts.

"x,y SayLoc(Smiley,x,y) Ã In(x,y)

Spoke(Nira, Prashant) … Culprit(Nitish)

 Culprit(Nitish) Ÿ Culprit(Singh) … In(Doc,Patna)

Spoke(Nira, Prashant)

Spoke(Barkha, Kapil)

Spoke(Vir, Vinod)

 Culprit(Singh)

Time

 Culprit(Nitish)

In(Doc,Patna)

 In(Doc,Delhi)

SayLoc(Smiley,Doc,Delhi)

 SayLoc(Smiley,Doc,Delhi) … In(Doc,Delhi)

 Culprit(Surinder)

^

 Spoke(Barkha, Kapil) … Culprit(Singh)

 Spoke(Vir, Vinod) … Culprit(Singh)

FIGURE 17.19 The justification links to the contradiction node enable dependency directed 

backtracking. Assumptions are shown in rectangular boxes.
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On(a, table), 

On(b, table), 

$x(On(x, table) Ÿ Colour(x, blue)), 

$x(On(x, table) Ÿ Colour(x, green)), 

"x(Colour(x, blue) ≈ Colour(x, green))

The following is then entailed,

BColour(a, blue)  BColour(b, green),

BColour(a, green)  BColour(b, blue),

As discussed in Section 17.1.4, this knowledge base has two extensions. One in which block a is 

blue, and the other in which block a is green. The basic TMS can store only one of these extensions. 

If it is given the assumption Colour(a, blue), it can store Colour(b, green) if the reasoner derives it. It 

will also store any other statements that follow. However, if an assumption Colour(a, green) is added, 

then a contradiction could be triggered, and the TMS would instruct the reasoner to withdraw one of 

the assumptions, and any consequents that follow.

The basic TMS is unable to handle the two contradictory assumptions together. If it needs to switch 

from one set of assumptions to another, it has to systematically retract the first set, invoking all the 

consistency algorithms alongside, and introduce the new set. In doing so, it may have to give up on 

stored inference patterns that are common between the different sets, and end up making those inferences 

repeatedly.

An Assumption Based Truth Maintenance System (ATMS) (de Kleer, 1986; 1986a; 1986b) can 

keep multiple sets of possibly contradictory assumptions in its memory. As a consequence, it can 

FIGURE 17.20 On discovering a contradiction, a relevant assumption is retracted and the change 

propagated in the network. The nodes marked OUT are shown as shaded nodes.

"x,y SayLoc(Smiley,x,y) … In(x,y)

Spoke(Nira, Prashant) … Culprit(Nitish)

 Culprit(Nitish) Ÿ Culprit(Singh) … In(Doc,Patna)

Spoke(Nira, Prashant)

Spoke(Barkha, Kapil)

Spoke(Vir, Vinod)

 Culprit(Singh)

Time

 Culprit(Nitish)

In(Doc,Patna)

 In(Doc,Delhi)

SayLoc(Smiley,Doc,Delhi)

 SayLoc(Smiley,Doc,Delhi) … In(Doc,Delhi)

 Culprit(Surinder)

^

 Spoke(Barkha, Kapil) … Culprit(Singh)

 Spoke(Vir, Vinod) … Culprit(Singh)
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simultaneously deal with different sets of beliefs that may be mutually contradictory, and investigate 

their consequences25. The ATMS refers to each set of assumptions as an environment, and the set of 

statements that are entailed by the environment and other facts as the context.

In Model Based Diagnosis (Section 17.3), we have seen a form of reasoning in which logical 

inferences have to be made in different contexts under different sets of assumptions or environments. 

Often the different contexts have many common inferences and the reasoning system could benefit from 

sharing the work done. Also, the reasoner may need to switch back and forth between contexts and would 

benefit tremendously if all the inferences made at any time are cached along with their justifications, 

so that one can trace the dependencies between different “facts”. This becomes particularly relevant in 

a nonmonotonic situation when one may have to make and retract assumptions.

Like the TMS, the ATMS too employs a special data structure called node for every datum the problem 

solver uses, including database entries, rules and procedures. For the problem solver, the node represents 

belief in the datum. However, in addition to marking the nodes as IN or OUT along with the justifications, 

the ATMS also keeps a label with it that contains the different environments in which the node 

holds.

Every datum n in the ATMS has a label L={E1, E2, …, Er} which is a set of environments. The label 

is a succinct description of all the contexts in which the datum holds. Given an environment EiŒL and 

the set of justifications J provided by the problem solver to the ATMS, it follows that,

 Ei, J  n

or equivalently,

 J  EiÆn

where EiÆn can be read as “n follows from Ei”. The implementation of the ATMS is required to ensure 

that the labels satisfy the following properties.

Consistent A label L is consistent, if all its environments are consistent.

Sound A label L is sound, if n follows from each EiŒL.

Complete A label L is complete, if for every consistent environment E such that J  EÆn, there 

exists an Ei Œ L such that Ei Õ E.

Minimalist A label L is minimal, if there are no two Ei,EjŒL such that EiÕEj.

In the discussion below, we focus on the labels and represent an ATMS node as

 node = <datum, {environments}> 

in the style of (Forbus and de Kleer, 1992) which does not mention the full description

 node = <datum, {environments}, {justifications}>

as in (de Kleer, 1986), where a justification is the immediate set of predecessors of the node in the 

dependency network. In this representation, the datum is the common consequent of all justifications. 

The informant has not been depicted, and can be assumed to be implicit in the justification. The following 

kinds of nodes can be distinguished.

A node is a premise, if the inference engine has provided it with a justification with no antecedents. 

That is, a premise A may be represented as,

 premise A = <A, {{ }}, {( )}> or in the simpler notation 

 premise A = <A, {{ }}>

25 A well known Indian parliamentarian had said that “politics is the art of managing contradictions”!
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An assumption A is a node that has itself in its environment26.

assumption A = <A, {{A}}, {(A)}>  or

assumption A = <A, {{A}}>

However, assumptions may also receive justifications, and if they do, then they are treated as other 

nodes and cannot be retracted as long as their justification is intact. For the sake of simplicity, we 

will consider only those assumptions that are unsupported by other nodes. Premises may also receive 

justifications, though they do not contribute to the belief system.

If there are N distinct assumptions that one can make, then the ATMS may have to contend with 

2N different environments.  However, if a node holds in an environment E then it will also hold in an 

environment E¢ that is a superset of E. The ATMS therefore stores only the minimal environments. Figure 

17.21, adapted from (Forbus and de Kleer, 1992) shows a set of assumptions that are IN, a set of derived 

nodes, their justifications and their minimal environments.

The small empty circles in the figure represent AND nodes. Node O has one justification with two 

nodes K and L. Node K itself can be derived in two ways, either from A or from B. Thus, node O would 

have two environments, {A, B} and {B}. However since the former is a superset of the latter, it is 

discarded. Likewise, node M holds in two environments, {C, D} and {E}. Both these contribute to node 

Q which consequently holds in the two environments {B, C, D} and {B, E}. The reader should verify 

that these are minimal, and retracting any assumption would disrupt the corresponding environment.

A

K

B C D E F G

L

O P

R

Q

^

M N

{{B}}{{A}, {B}}

{{C, D}, {E}}

{{E, F, G}}

{{C, D}, {E}}{{B}}

{{B, C, D}, {B, E}}

nogood: {{F, G}}

{}

FIGURE 17.21 The environments for a set of statements. The small circles represent AND nodes.

The contradiction node is named , and its environment is called a nogood.

 Contradiction = < , {…}, {…}>

There may be several nogoods in the network and they represent the different combinations of 

assumptions that generate inconsistencies. In our example, the inference engine informs the ATMS that 

a contradiction resulted in the environment {F, G}. Consequently, the ATMS remembers the nogood 

{F, G}. Most implementations have a specific module for storing and querying nogoods. Now since 

26 (de Kleer, 1986) distinguishes between an assumption “A” and its datum “a” and represents the ATMS node as <a, {{A}}, {(A)}>. 



758 A First Course in Artificial Intelligence

{F, G} is a nogood, so is {E, F, G} being a superset of {F, G}. But {E, F, G} leads to node N, which 

would have been an alternate way of deriving node P. But since {E, F, G} is a nogood, it cannot be used, 

and in fact node N exists in the network without any justification. It must therefore be marked OUT. As 

a result, the node R too has no valid justification, and must also be marked OUT.

The algorithm for computing the labels works in an incremental fashion as new nodes are given to 

the ATMS along with justifications. When a new inference is made, the new node is added with an empty 

label, and a two stage procedure begins.

 1. The label of the new node is computed from the labels of its antecedents.

 2. Any new labels are propagated across the network.

We illustrate the two stages with an example. Let us say that first the following two nodes are added 

to the ATMS depicted in Figure 17.21.

 <T, {{C}, {E, F}}, {{C}, {E, F}}>

 <U, {{B, C}, {B, G}}, {{B, C}, {B, G}}> 

At this point, let the rule (TŸU…V) be fired by the reasoner and the node <V, { }, {{T, U}}> be added 

to the network as shown in Figure 17.22. Note that the justification gets filled in from the antecedents 

in the rule, while the environment is yet empty.

A

K

{{B, C}, {B, G}}

B C

{{C}, {E, F}}

D E F G

L

O P

R

Q

^

M

T

V

U

N

{{B}}{{A}, {B}}

{{C, D}, {E}}

{{E, F, G}}

{{C, D}, {E}}{{B}}

{{B, C, D}, {B, E}}

{◊}

nogood: {{F, G}}

FIGURE 17.22 After nodes <T, {{C}, {E, F}}> and <U, {{B, C}, {B, G}}> have been added as shown, 

node V is just about to be added.

The high level algorithm LabelsATMS for determining the labels for the new nodes is given in Figure 

17.23. Let there be K antecedents in the justification, and let {L1, …, LK} be the labels of the antecedents, 

and NoGs the set of nogoods stored. The algorithm begins with one label, and incrementally incorporates 

the labels from the rest of the antecedents. At each step, it replaces each environment by computing 

unions with each environment of the incoming label. From the resulting set of environments, it discards 

any that are subsumed by more general ones, and also discards any environments that subsume a nogood.
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LabelsATMS(K, {L1, …, LK}, NoGs)

1  L ¨ L1
2  for i ¨ 2 to K

3        NewLabel ¨ { }

4        for each environment E Œ L
5            for each environment Eij Œ Li
6                 NewLabel ¨NewLabel » {E » Eij}
7        L ¨ NewLabel

8  for each Ej Œ L
9        for each NG Œ NoGs
10          if NG Õ Ej 
11               then L ¨ L \ Ej
12  for each Ej Œ L 
13       for each Ei Œ L
14           if EiÕ Ej 
15                 then L ¨ L \ Ej
16  return L

FIGURE 17.23 The procedure LabelsATMS accepts a set of K antecedents of a node along with their 

labels {L1, …, LK}, and a set of nogoods NoGs, and computes the label L of the consequent node.

In our example, when the node V is added the candidate set of labels generated, after the loop in lines 2 

to 7 is executed is, {{B, C}, {B, C, G}, {B, C, E, F}, {B, E, F, G}}. Then in lines 8 to 11, the environment 

{B, E, F, G} is removed because it is a superset of the nogood {F, G}. After that, the algorithm chooses 

the minimal environments in lines 12 to 15. In this process, both {B, C, G} and {B, C, E, F} are discarded 

since they are supersets of {B, C}. The algorithm finally returns the label containing one environment 

{B, C}. The reader should verify that nodes B and C being IN is sufficient for node V being IN. Since 

this is the only environment for V, it is also a necessary condition.

If a label of a node changes then it may have repercussions on the status of other nodes. When any 

label L for any node N changes, then the ATMS algorithm does the following.

 1. If the node N is a contradiction then,

 (a) Mark all environments in L as nogoods.

 (b) If any of these environments, or their superset occurs in any node label, then remove it from 

that label.

 2. If N is not a contradiction, then recursively call LabelsATMS for all nodes in whose justification 

the node N occurs as an antecedent.

In practice, using the above algorithm would result in too much redundant work being done. This is 

because the ATMS would receive information, one inference or one justification at a time. It is only the 

effects of this justification that needs to be propagated to the consequent, instead of re-computing its 

label again from scratch. The same would apply to propagating changes down the network. Designing 

the algorithms for doing only incremental changes is left as an exercise. The interested reader is also 

referred to (de Kleer, 1986; 1986a; 1986b) and (Forbus and de Kleer, 1992) for a comprehensive study 

of the design and deployment of variations of truth maintenance algorithms.

17.4.2 The ATMS in GDE and GDE+

In the diagnosis problem covered in Section 17.3, the assumptions are the statements about the correct 

function of components. They refer to statements ¬Ab(component) or OK(component).
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As described in the section on Model Based Diagnosis, the rules used by the reasoning engine 

correspond to statements like,

 Multiplier(M) Ÿ ¬Ab(M) … Product(output(M), input1(M), input2(M))

or OK(battery) … Voltage(T+) = +

or OK(battery) … Voltage(T–) = –

or (OK(Wire1) Ÿ LWire1=T+ Ÿ Voltage(T+)=+) … Voltage(RWire1)=+

or (OK(bulb) Ÿ Voltage(Tbulb)=+ Ÿ Voltage(Bbulb)= –) … On(bulb)

or (OK(bulb) Ÿ Voltage(Tbulb)= – Ÿ Voltage(Bbulb)= +) … On(bulb)

and so on. The nodes in the ATMS constitute of inferred values like On(bulb1), along with their 

justifications as well as observed values like ¬On(bulb1), which are facts or premises. Then rules like,

 On(bulb1) Ÿ ¬On(bulb1) … 

lead to contradictions which in turn lead to the identification of nogoods, which are the conflict sets 

used by the diagnostic engine. Thus, using the ATMS makes it possible to identify all conflict sets as 

more and more observations are made. This is followed by the generation of minimal candidates for 

diagnosis as described in Section 17.3.3.

The introduction of fault models in Section 17.3.4 brought in relations between the OK statements, 

reproduced again below. Given F fault modes for a component C,

 "i£F(OK(C) … OKi(C))

and  OK1(C) Ÿ OK2(C) Ÿ … Ÿ OKF(C) … OK(C)

where OK(C) asserts that component C is not broken in any way, while OKi(C) says that it is not broken 

in the ith fault mode. The universally quantified statement is equivalent to a set of statements of the form

 OK(C) … OKi(C)

This gives us F+1 implication statements that can form F+1 justifications in the ATMS. However, 

by themselves, these justifications are circular in nature. One needs to separate the relation between 

different states of the component—broken in a particular fault mode, or functioning correctly and the 

assumptions about one of these modes. We adopt the convention used in (Struss and Dressler, 1989) 

that the lowercase letters are used for the assumption about the datum, and the upper case ones for the 

datum itself. The network of justifications then looks like as depicted in Figure 17.24. Thus for example, 

the node for OK3(C) could be labelled IN, either because of the assumption ok3(C) being IN or the node 

OK(C) being IN.

OK (C)

OK4 (C)OK3 (C)OK2 (C)OK1 (C)

ok (C)

ok4 (C)ok3 (C)ok2 (C)ok1 (C)

FIGURE 17.24 Given four fault modes for a component C, the following nodes and justifications are 

inserted into the ATMS.
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A more significant way in which reasoning with fault models is different from working only with 

models of correctly working components is that one may be required to make an assumption of the form 

¬oki(C). So far in the diagnosis approach, we have seen the assumptions are only of the form ok(C), and 

a conflict or a nogood is a collection of such assumptions that cannot be true at together.

Handling negative assumptions requires an extension to the ATMS algorithms, as for example proposed 

in (Dressler, 1988; 1989) and (de Kleer, 1988). The following two rules state that both an assumption 

and its negation cannot be made together, and also that one of the two has to necessarily be made. Let 

n0 be assumption justifying the datum N0, and ¬n0 justifying ¬N0. The two rules are,

 1. The consistent belief rule. Both a datum and its negation cannot hold together.

 N0 Ÿ ¬N0 … 

 2. The nogood inference rule. One of n0 and ¬n0 must hold. If {n1, n2, …, nk, ¬n0} is a nogood, then 

the following justification is added to the ATMS.

 N1 Ÿ N2 Ÿ … Ÿ Nk Ÿ … N0

Given the above extension to the ATMS, one can extend the GDE to handle fault models of 

components. In a system named GDE+, Struss and Dressler (1989) show that the knowledge of behaviour 

of components in faulty modes can be exploited to exonerate certain components. Given a component C, 

if the assumption of all its fault modes is inconsistent with the observed behaviour then that component 

can be said to be working correctly. Consequently, it cannot be part of a candidate diagnosis, and any 

candidate that includes C can be discarded.

Consider a component C whose observed behaviour is inconsistent with all its fault modes. An 

example of such a component is the bulb B3 in Figure 17.16 which is lit, while its only fault mode says 

that if it is faulty, it cannot be lit. Let us assume that the component C has M fault modes {¬ok1(C), 

¬ok2(C), …, ¬okM(C)}. Further, let us assume that it is connected or related to components A and B, 

which have P and Q fault modes, respectively {¬ok1(A), ¬ok2(A), …, ¬okP(A)} and {¬ok1(B), ¬ok2(B), 

…, ¬okQ(B)}. In addition, they all have the OK modes ok(A), ok(B), and ok(C).

GDE+ creates the corresponding nodes in the extended ATMS. For each fault mode, it adds both 

the assumptions ¬oki(component) and oki(component) along with the nodes ¬OKi(component) and 

OKi(component). Likewise, for the general descriptions ok(component) and ¬ok(component).

Let us say that the given set of observations O is inconsistent with every faulty mode of the component 

C. This could happen if the fault modes assumptions are inconsistent with all modes, correct and faulty, 

of the related components, with respect to the observations O. Consider a particular fault mode ¬oki(C). 

This means that,

 "asmA Œ {¬ok1(A), ¬ok2(A), …, ¬okP(A), ok(A)} 

  "asmB Œ {¬ok1(B), ¬ok2(B), …, ¬okQ(B), ok(B)} 

   {¬oki(C), asmA, asmB} is a nogood.

That is, the following sets of assumptions are nogoods.

{¬oki(C), ¬ok1(A), ¬ok1(B)}

{¬oki(C), ¬ok1(A), ¬ok2(B)}

…

{¬oki(C), ¬ok1(A), ¬okQ(B)}

{¬oki(C), ¬ok1(A), ok(B)}

{¬oki(C), ¬ok2(A), ¬ok1(B)}

{¬oki(C), ¬ok2(A), ¬ok2(B)}

…
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 {¬oki(C), ¬ok2(A), ¬okQ(B)}

 {¬oki(C), ¬ok2(A), ok(B)}

 …

 {¬oki(C), ¬okP(A), ¬ok1(B)}

 {¬oki(C), ¬okP(A), ¬ok2(B)}

 …

 {¬oki(C), ¬okP(A), ¬okQ(B)}

 {¬oki(C), ¬okP(A), ok(B)}

 {¬oki(C), ok(A), ¬ok1(B)}

 {¬oki(C), ok(A), ¬ok2(B)}

 …

 {¬oki(C), ok(A), ¬okQ(B)}

 {¬oki(C), ok(A), ok(B)}

In particular,

 "j (1£j£Q … nogood{¬oki(C), asmA, ¬okj(B)})

This means that,

 "j (1£j£Q … (¬OKi(C) Ÿ asmA … OKj(B)})

is added as a justification. And since,

 OK1(B) Ÿ OK2(B) Ÿ … Ÿ OKQ(B) … OK(B)

it follows that OK(B) must be IN. Now since all environments of the form {¬oki(C), asmA, ok(B)} are 

also nogoods, it follows that all environments of the form {¬oki(C), asmA} are nogoods. By a similar 

argument for 1£j£P, we can infer justifications of the form (¬OKi(C) … OKj(A)), which leads us to the 

justification,

 OK1(A) Ÿ OK2(A) Ÿ … Ÿ OKP(A) … OK(A)

If OK(A) is IN then the nogood {¬oki(C), ok(A)} reduces to {¬oki(C)} which results in the conclusion 

that OKi(C) must be IN. Given the fact that all fault modes of component C are inconsistent with the 

observations, we infer a similar statement for all the fault modes. That is,

 "i (1£i£M … OKj(C))

which in turn leads to the conclusion OK(C). This means that any candidate diagnosis of the form 

{…, ¬ok(C), …} must be discarded. As shown in the example in Section 17.3.4, this can lead to a 

considerable amount of pruning in the space of candidate diagnosis.

In that specific example, once we infer that the bulb B3 is okay, we discard all candidates that include 

B3. Reasoning in a similar fashion with their fault models, one can exonerate the battery S and the wires 

W1 to W6. This leaves the only minimal candidate which says that the bulbs B1 and B2 must be broken.

17.5 Probabilistic Reasoning

So far our view of knowledge and belief has been through a Boolean lens. Propositions are either true 

or false. And they take a truth value, due to their relation to other propositions by a process of inference, 

or because they are assumptions or premises. Our goal has been to arrive at a consistent set of beliefs, 

in which there are no contradictions.
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However, it is not practical to always maintain large amounts of propositional knowledge, and make 

the relevant logical inferences. For example, one cannot describe the world in terms of the fundamental 

particles our universe is made of. As discussed earlier (see Section 14.1), one way we get around the 

problem is to devise abstractions that exist as reified objects that we can reason with in a tractable 

manner. However, even after doing that, the amount of propositional knowledge remains unmanageable.

There are other reasons why we cannot make definitive statements about the world, the principal one 

being that we simply  do not have enough information about the world. Consider the statement—“There 

exists intelligent life elsewhere in our galaxy” or even “There exists life somewhere else out there in 

the universe” 27. There are innumerable questions we are unable to answer exactly (each of them can be 

converted into a yes/no question or a proposition). How many species exist on our earth? The answers 

are estimates ranging from 2 million to 100 million28. How many green leaves are there on that tree? 

If white plays perfectly, can it always win in chess? Who leaked the general’s letter? It is the monsoon 

season in Mumbai. Will it rain on July 11? Anrav is playing outside. Has he finished his homework? 

Anish is looking very happy. Did he win his badminton match? Malala has high fever and shivering. 

Has she got malaria?

Even though we cannot assign Boolean truth values to such statements, we would often like to make 

some decisions that depend upon the truth values of these statements, and in the absence of definitive 

truth values, we have to work with some kinds of estimates.

The way to deal with this is to resort to maintaining degrees of belief, represented by numerical 

values.  One way of doing this is by assigning a proposition a probability of being true. For example, 

if one hears of a bird named Chirpy then one might say that the probability that Chirpy can fly is (say) 

0.8. The actual value for this probability may differ from person to person, based on their individual 

subjective experiences, and the given context. For example, a person who has never had experiences 

of being lied to by anyone may assign a high value to the probability of a stranger being honest.  Some 

other may have a conditional belief that the students from a particular school are honest, or that people 

in a particular locality are prone to tell lies.

Such values are known as subjective probabilities. They are also known as Bayesian probabilities 

that encode the degree of belief an agent has in the statement. This is opposed to the frequentist view 

in which the probability values are arrived at by collecting statistical samples.

Consider the task of diagnosis discussed earlier. We had observed in Section 17.3.3 that knowledge 

of the probabilities of components failing could help decide where to take the next measurement. Let us 

say we want to know the probability of a particular component C failing. Let us also make an assumption 

that the probabilities will depend on time. Very often, the older a component, the more likely it is to fail. 

To simplify matters, let us deal with time in intervals and assign a probability value of failure during 

each of these time intervals. Let us also make the (not so reasonable) assumption that the total life of 

the component is not more than N years, after which we know it will fail.

Then we have N time intervals t1 … tN and corresponding to each of these intervals is a numeric 

value p1 … pN, where pi denotes the probability of the component C failing during the ith time interval ti.

The set of N time intervals define N corresponding propositions. Each proposition Fi asserts that 

the component will fail in the ith time interval ti. The set of statements {F1 … FN} is called the sample 

space. A sample space is a set of mutually exclusive (only one can be true) and exhaustive (at least one 

has to be true) set of statements.  Since we do not know which statement is true in fact, the numbers 

p1 … pN are used to assign our belief in their chance of being true. That is,

27  The following quote, and some variations of it, is attributed to the science fiction writer Arthur C Clarke (1917–2008)—“Sometimes 

I think we’re alone in the universe, and sometimes I think we’re not. In either case, the idea is quite staggering.”
28 http://explorebiodiversity.com/Mexico/Pages/Habitats/species.htm,  accessed May 2012. 
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 P(Fi) = pi

where P(Fi) denotes the probability of proposition Fi being true, and is a short form for P(Fi = true). 

The function P is called the probability mass function. For these numbers to be probabilities, they have 

to satisfy the following properties.

 0 £ P(Fi) £ 1

and S1£i£N P(Fi) = 1

The first inequality states that the minimum probability value possible is zero and the maximum 

possible value is one. The value zero corresponds to total disbelief and the value zero corresponds to total 

belief. Observe that these are measures of belief of the agent and not what is true is the world. In the real 

world, the component will fail or not fail in a given time interval. If one were to toss a fair coin then one 

would say that the probability of it falling heads up is 0.5, as is the probability of it falling tails up. But 

when you do toss a coin, it either falls heads up or tails up, and there is no uncertainty about it any more.

The second property states that the sum of probabilities over the sample space must be one, signifying 

that the space is exhaustive.  This means that all possible events have been covered. In the coin tossing 

example, the coin will either land heads up or it will land tails up, and one of the two will certainly 

happen (we ignore the possibility of it standing on its side). These two events form the sample space.

This clearly illustrates that probabilities are measures of belief of agents for facts about which there is 

some uncertainty. When this uncertainty is removed, the true facts emerge and probability has no more 

role to play. Given that we are told Chirpy is a bird, we may not know with certainty whether it can 

fly or not, but we bring our background knowledge to fore and assign a probability to the proposition 

being true. Later, more information may reveal the actual truth value of the statement. Agents act in 

the real world, based on their beliefs. Consider the stark example of day trading in the stock markets. 

One agent sells a stock and the other agent buys it. The seller has a belief that the stock price will not 

change or will go down. The buyer, on the other hand, believes that the price will go up. At the end of 

the day only one of them will be proved correct. A bridge player may try a finesse believing that the 

probability of success, depending upon which opponent has a given card, is fifty percent. But when the 

play is made, the layout becomes known.

One can also think of the probabilities as possible values for a random variable. In our component 

failing example, let us say the random variable is called FailTimeC and can take values from the different 

time intervals defined above. Then, the probabilities are described by a set of statements of the form,

 P(FailTimeC = ti) = pi

The ordered set of values <p1 … pN> then defines a probability distribution (FailTimeC) for the 

random variable FailTimeC. Figure 17.25 depicts a possible probability distribution for FailTimeC for 

a value of N = 6. The values are <0, 0.1, 0.2, 0.4, 0.2, 0.1>. The given probability distribution assigns 

zero probability to the component failing in the first year (time interval), after which, the probability of 

failing increases for the next two years, peaking at year 4 and then declining.

The figure also shows the cumulative probabilities of the component failing within the  longer time 

interval. The probability that the component will fail in the first K years is given by S1£i£K P(FailTimeC 

= ti) = S1£i£K pi. These probabilities are depicted by bars with dashes in Figure 17.25. Observe that the 

cumulative probability in the last interval is 1.

The above formulation of probabilities of failure of the component is over a discrete space in which 

the random variable can take values from a discrete space. In practice, many problems involve continuous 

space. In this example, we can model time as a continuous variable and describe the probability of 

failure as a function of this real values time. In doing so, the probability distribution is replaced by a 
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probability density function. Figure 17.26 depicts a possible density function P(t) for component failure, 

corresponding to the mass function on Figure 17.25. Observe that we have extended the life of the 

component indefinitely in the figure.

The probability density function must also satisfy two conditions.

 P(t) ≥ 0

and Ú0 P(t)dt = 1

That is, the area under the curve must be equal to 1.

1.0

0.8

0.6

0.4

0.2

0.0
t1 t2 t3 t4 t5 t6

FIGURE 17.26 With random variables taking continuous valves, the probability distribution is 

replaced by a probability density function. The solid curve above is a plot of this density function, while 

the dashed curve is the cumulative probability.

The cumulative probability of the component failing within time K is given by the area under curve, 

Ú0
KP(t)dt. Observe that in the figure above the cumulative probability, depicted by the dashed curve, 

tends to 1, as the time tends to infinity.

In general, the following can be said about probability density functions.  They must be positive valued 

functions over the entire sample space and the integral (or area) of the curve must be 1. To determine 

FIGURE 17.25 A probability distribution over six time intervals. The shaded bars show the probability 

of failure in each time interval. The bars with dashes depict the cumulative probability over time.
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the probability that the event will occur, during an interval <m, n> is obtained by computing the area 

under the curve over the interval Úm
nP(t)dt. One can meaningfully talk of computing the probability over 

an interval, however small.

The curves drawn in the Figure 17.26 are hand drawn for illustration. In practice, one would like 

to define the curve using a set of parameters and a function definition. How does one arrive at these 

probability density functions or probability distributions? There are basically two approaches. The 

frequentist approach is to carry out some kind of experiments, generate a set of data points, and try and 

estimate the function by a process akin to curve fitting. The subjective approach would be to bring to 

fore one’s knowledge and hypothesize a function, and perhaps learn the parameter values by matching 

with observed data.

Readers familiar with probability and statistics, would notice the similarity of the curve in Figure 

17.26 with the well known Gaussian or normal distribution, characterized by two parameters—the 

mean value and the standard distribution. There are other distributions as well that have been studied 

by people working in pattern recognition, machine learning, and many other applications of probability 

and statistics. We shall not pursue the study of probability distributions, but instead turn our attention to 

how different random variables influence the probabilities of each other, and how one can make some 

sort of probabilistic influences.

17.5.1 Conditional Probabilities and Bayesian Reasoning

When we say that the probability of a proposition being true is a certain value, it is in fact backed up 

by all the world knowledge that the agent has brought to fore. We think of P(a) as the probability of 

“a” being true. This statement really sums up all our knowledge about the world in a single number. In 

that sense, it is in fact a short form for P(a | k)—read as the probability of “a” being true given “k”—

where “k” stands for everything that we know about the world but are not in a position to articulate 

(Pearl, 1988). In that sense, probabilities are always conditional on what we know already.

In practice, we would like to exploit any information that we receive to revise our belief (probability) 

estimates. This is akin to making inferences in logic. For example, seeing a big crowd already waiting, 

one may revise one’s chances of quickly finding a seat in a favourite restaurant. Reading a review of a 

new movie may change our belief of how enjoyable the movie would be. Watching the audience come 

out of the previous show may further influence our belief. A medical doctor may give greater credence 

to the belief that a patient is afflicted by a particular disease, if an epidemic has started. As more and 

more cards are played, a bridge player forms stronger beliefs of how the rest of the cards are distributed. 

There are many cues that we take to influence our beliefs and decisions.

The first thing one has to do is to decide upon the set of random variables for modelling a given 

situation. Let X = <X1, X2, …, Xn> be a vector on N random variables. Let each variable Xi have a sample 

space Di = <Vi1, Vi2, …, Vik> which is a vector of values that the variable Xi can take. Observe that each 

variable may have a domain of independent size29.

Each such variable may have a probability distribution associated with it, known as the a priori 

probability. Let i = <pi1, pi2, …, pik> be the a priori probability distribution for the ith random variable.

The task at hand is that given the above a priori probabilities, given that some random variables 

have taken certain values, and some additional knowledge, to determine the a posteriori probabilities 

of other variables of interest.

29 The reader may compare this with a definition of a constraint satisfaction problem defined in Chapter 9. 
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The additional knowledge alluded to here is knowledge of conditional probabilities. That is knowledge 

of how variables taking some values affect the probabilities of other variables. The conditional probability 

of variable Xi being influenced by variables Xm and Xn is written as (Xi | Xm, Xn).

It is not necessary that two random variables are conditionally dependent. If probabilities do not 

depend upon each other, we say that the variables are independent. The simplest example of independent 

events is coin tosses, or tossing say two coins simultaneously. Let X and Y be the random variables for 

the two coins, which can take values from the set {heads, tails}. Then we know that,

 (X, Y) = (X)* (Y)

But we also know that by the product rule,

 (X, Y) = (X|Y)* (Y) = (Y|X)* (X)

From the above two equations, we can derive,

 (X|Y) = (X)

which can be seen as an equation characterizing the independence of X from Y. The value that Y takes, if 

tossed earlier, does not influence the probability distribution of X.  In a similar manner, we can observe 

that Y is independent of X.

Given N variables, one can talk of a joint probability distribution that assigns a probability to each 

combination of values the N variables can take. We denote this joint probability distribution by (X1, 

X2, …, Xn). An element of this probability distribution would be of the form P(X1 = V13, X2 = V27, …, 

Xn = Vn4) = 0.06, which says that the probability that X1 takes the third value V13 from its domain, and 

X2 takes its seventh value V27, and so on till Xn is 0.06. Wherever there is no ambiguity, we may write 

this as P(V13, V27, …, Vn4) = 0.06.

Observe that the joint probability distribution in the general case could be very large. If each of 

the N random variables can take K values, then there are KN different elements in the joint probability 

distribution. Obliviously, filling up these values would be a huge task. In the special case when each 

random variable corresponds to a sentence in propositional logic, taking the value true or false, the joint 

probability distribution will have 2N entries. Each of these 2N entries will correspond to an interpretation 

I of the set of sentences (see Chapter 12). Except that the interpretation assigns true or false values to 

each proposition, and the joint probability distribution assigns a measure of belief to each combination 

of such values. We could think of the probability of each interpretation I being true as P(I), which is the 

measure of belief of that combination of truth values holding. Then given an arbitrary sentence a in the 

logic, we could compute the probability of the sentence being true as the sum of the probabilities of all 

those interpretations, in which a is necessarily true (Brachman and Levesque, 2004).

 P(a) = SI a P(I)

However, note that this approach is likely to be computationally very expensive.

Consider a domain in which there are two random variables X and Y with domains DX=<x1, …, xk> and 

DY=<y1, …, yp>. The two fundamental rules of probability theory are the sum rule and the product rule.

The sum rule is,

 P(xk) = S1£i£p P(xk,yi)

which we can also write as,

 (X) = SY (X, Y)

This formula allows us to compute the probability P(X=xk) from the joint probability distribution.  

The rule says that, given the joint probability distribution for X and Y, the probability distribution for 
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X, also called the marginal probability, can be computed by adding up the corresponding values for all 

values of Y.

The product rule allows us to compute the joint probability, given the conditional properties and the 

marginal properties.

 P(xk,yi) = P(yi | xk)*P(xk) = P(xk | yi)*P(yi),

or (X, Y) = (Y | X)* (X)

 = (X | Y)* (Y)

The product rule leads us to the well known Bayes’ theorm.

 P(yi | xk) = P(xk | yi)*P(yi) / P(xk)

or (Y | X) = (X | Y)* (Y) / (X)

Given a set of random variables, what do the conditional probabilities represent? Given the variables 

X and Y, the expression (Y | X) defines the probability distribution of X, given values of the variables 

of Y. For example, we could say that P(Fruit = Litchi | Season = Summer) = 0.7 to assert that if the 

season is summer, the probabilities of one finding litchis in the market is 0.7. One could also say that 

P(Fruit = Litchi | Season = Summer, City = Dehradun) = 0.9, if one is in Dehradun in the summer then 

the probability is even higher. If one had conditional probabilities for other cities and other seasons, 

then one could compute P(Fruit = Litchi) by using the sum rule and marginalising the other variables.

Let us look at a small contrived example. In the following example, the probabilities are all with 

respect to your friend Sumedha being in one of the cities or eating the fruit. Let us assume that Sumedha 

can be found in one of three cities, Bengaluru with probability 0.6, Dehradun with probability 0.2 and 

Madurai with probability 0.2. Also let us say that the conditional probabilities for finding (and eating) 

litchis in the cities are as follows,

 P(Litchi | Bengaluru) = 0.4

 P(Litchi | Madurai) = 0.4

 P(Litchi | Dehradun) = 0.9

You see Sumedha’s status message and find that it says “Enjoying litchis”. Where do you think that 

she is likely to be?

Let us first apply the sum rule to compute P(Litchi), which stands for the probability that Sumedha 

is eating litchis.

 P(Litchi) =  P(Litchi | Bengaluru)*P(Bengaluru)

+ P(Litchi | Madurai)*P(Madurai)

+ P(Litchi | Dehradun)*P(Madurai)

 = 0.4*0.6 + 0.4*0.2 + 0.9*0.2 = 0.5

The overall probability of her eating litchis is 0.5. Now knowing that  Sumedha is in fact eating litchis, 

we can apply the Bayes’ rule to compute the following conditional probabilities.

 P(Bengaluru | Litchi) = P(Litchi | Bengaluru)*P(Bengaluru) / P(Litchi)

 = 0.4*0.6/P(Litchi)

 = 0.24/P(Litchi)

 = 0.24/0.5

 = 0.48

 P(Madurai | Litchi) = P(Litchi | Madurai)*P(Madurai) / P(Litchi)

 = 0.4*0.2/P(Litchi)

 = 0.08/P(Litchi)

 = 0.08/0.5

 = 0.16
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 P(Dehradun | Litchi) = P(Litchi | Dehradun)*P(Dehradun) / P(Litchi)

 = 0.9*0.2/P(Litchi)

 = 0.18/P(Litchi)

 = 0.18/0.5

 = 0.36

The three conditional probabilities P(Litchi | Bengaluru), P(Litchi | Madurai), (Litchi | Dehradun) 

are the likelihoods of the variable Fruit=Litchi, given the three values of random variable City. The 

expressions on left hand side of the posterior probabilities of each city, given the evidence that litchis 

are available. They are 0.48, 0.16 and 0.36 for Bengaluru, Madurai and Dehradun respectively. These 

are also called the a posteriori probabilities, as compared the a priori probabilities we started with, 0.6, 

0.2 and 0.2 respectively. The reader should verify that the three probabilities add up to 1 in both cases, 

signifying that the Sumedha has to be in one of the three cities. The prior probabilities were revised to 

the posterior probabilities after getting the evidence (of eating litchis). In machine learning literature, the 

City variable would define the hypothesis space and this approach computes the maximum a posteriori 

(MAP) hypothesis (Mitchell, 1997). Observe that we do not really need to compute P(Litchi), which is 

a common factor in all the likelihood estimates, and we could have chosen the maximum of P(Litchi | 

X)*P(X), with X taking the values of the three cities.

If we did not have a priori information on where Sumedha is likely to be, we could have assumed 

that the probabilities are equal, and discarded them from our computation. Then we would have simply 

selected the hypothesis (city) based on where litchis are most likely to be available. This is known as 

the maximum likelihood hypothesis.

The reader would have noticed that despite the fact that litchis are more likely to be available in 

Dehradun (0.9), one still concluded that Sumedha is likely to be in Bengaluru (even) after hearing that she 

ate litchis. This was influenced by the predominantly high a priori probability of her being in Bengaluru.

Probability calculations can often lead to conclusions that are often counter intuitive. The author 

has had many an interesting time discussing problems like the Monty Hall problem, the three prisoners 

problem and the birthday clash problem (see Exercises 18, 19 and 20).

17.5.2 Diagnosis vs. Prediction

We have seen above that the Bayes’ rule allows us to express conditional probabilities in a symmetric 

manner. That is,

 (Y | X)* (X) = (X | Y)* (Y)

Given the value of any of the two variables, we can determine the probability of the other one. One 

of the situations when this is used extensively is in the problem of classification based on evidence, or 

the problem of diagnosis.

From the perspective of classification, one gets to see some evidence E and one has to pick the most 

likely hypothesis H. Given the evidence E, the belief accorded to the hypothesis H is given by,

 (H | E) = (E | H)* (H) / (E)

The reason why we choose this direction, given the symmetric nature of the product rule, is that this 

captures the direction of causal behaviour. In the real world, the cause (that is hypothesized) results in 

behaviour (symptoms) and not the other way around. For example, getting malaria results in high fever 

and shivering. The disease causes the symptoms and this relation can be captured with greater fidelity. 

Observe that P(HighFever | Malaria) = 0.97 is equivalent to say that (Malaria … HighFever) in the logical 

framework but with a degree of belief less than 1.
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Thus, if the hypothesis space has (say) three possibilities (h1, h2 and h3) and we have seen some 

evidence E then we can compute the products as in the previous section and choose the maximum a 

posteriori hypothesis as one with the highest product,

 hMAP = argmaxhŒH (P(h|E)*P(E))

If the number of variables that constitutes the evidence is many, we could represent them by  

E1, E2, …, En. Then the maximum likelihood hypothesis would be,

 hMAP = argmaxhŒH (P(h|e1, e2, …, en)*P(e1, e2, …, en)) 

which by the product rule would become,

 hMAP = argmaxhŒH (P(h|e1, e2, … , en)*P(e1| e2, … , en)*P(e2 | e3, …, en)* …*P(en)

This leads us towards the Naïve Bayes Classifier that we look again in Chapter 18.

It is claimed that probability theory was devised to address problems in gambling in which players are 

concerned with odds (Stewart, 2002). Odds represent the amount the player is willing to wager, based 

on her belief of the probability of the event being bet on. For example, one would give 1:1 odds that a 

fair coin will come up heads, and give 1:3 odds that a random card drawn from a standard pack would 

be a spade. When we say that the odds are m:n, this corresponds to the probability m/(m+n) (Jeffrey, 

2004). Thus, the odds 1:3 for drawing a spade card correspond to the probability 1/(1+3) = ¼, which is 

the probability of drawing a spade. The odds represent a fair bet, which would even out in the long run.

Judea Pearl (1988) portrays the Bayes’ rule using odds as follows.

Let H be the hypothesis we are interested in and let ¬H be the case that H is not true. That is P(¬H) 

= 1 – P(H). The prior odds O(H) that H is true are given by,

 O(H) = P(H) / P(¬H) = P(H) / (1 – P(H))

The posterior odds given the evidence e are defined as O(H |e) where,

 O(H|e) = P(H |e) / P(¬H |e)

which by applying the Bayes’ rule becomes,

 O(H|e) = 
P(e|H) * P(H)

—————
P(e|¬H) * P(¬H)

 = 
P(e|H) * P(H)

—————
P(e|¬H) * (1 – P(H))

If we define the likelihood ratio L(e |H ) as,

 L(e | H) = P(e|H) / P(e|¬H)

then we get the posterior odds,

 O(H|e) = L(e|H) * O(H)

Thus, the posterior odds of the hypothesis H being true is the product of the likelihood ratio of the 

evidence being seen if H were true versus if H were not true, and the prior odds of H. The likelihood 

ratio provides diagnostic support given the evidence, and the prior odds are a predictive support based 

on previous knowledge.

Very often when two random variables or propositions are related there exists a causal relation 

between them. For example consider the statement, “A new toy makes a child happy”. In a logic 

framework one may express this as (NewToy … Happy). Then if we add the sentence “NewToy” Modus 

Ponens (see Chapter 12) allows us to add “Happy” as well. If one wants to cater to uncertainty, one 

might try some variation of default reasoning. In Bayesian reasoning, one expresses this relation as a 

high conditional probability, for example, P(Happy | NewToy) = 0.8.
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While one can think of the conditional probability as an equivalent rule, one cannot extend the analogy 

with logic further. This is because logic deals with sets of (true) sentences and the application of a rule 

like Modus Ponens changes the set by adding new sentences to the knowledge base30. Logic employs 

an inference engine to add new statements. Given the “fact” that “the child got a new toy”, one can 

add the sentence “the child is happy.” One cannot do something similar in Bayesian reasoning because 

probability theory deals with beliefs and not facts. And, in fact, the conditional probability statement 

already states the conclusion that, given NewToy, the probability of Happy is 0.8. Consider the following 

joint probability distribution.

 Table 17.12 A small joint probability distribution

NewToy = yes NewToy = no

Happy = yes 0.4 0.3

Happy = no 0.1 0.2

The joint probability distribution captures all our beliefs pertaining to the set of random variables. 

There is nothing new to be discovered. Inspecting the joint probability distribution, one can make the 

following observations,

 P(NewToy = yes) = 0.4 + 0.1 = 0.5

 P(Happy = yes) = 0.4 + 0.3 = 0.7

 P(NewToy = yes, Happy = yes) = 0.4

 P(Happy = yes | NewToy = yes) = 0.4 / (0.4 + 0.1) = 0.8

As one can see that computing conditional probabilities is done by restricting the counting to that part 

of the table that corresponds to the given values of the given variables. However, very often we do not 

have the complete joint distribution. We have already observed that this table can be prohibitively large 

in size. Instead, we have fragments of the table captured in terms of some known prior probabilities, 

and some conditional properties. Computation is needed to determine the posterior probabilities of 

some variables of interest.

Note that the probability of getting a new toy P(NewToy = yes) is 0.5. Bayesian reasoning does not 

allow us to change this and assert a “fact” like “NewToy = yes” and then make an inference about the 

probability of the child being happy. This would amount to changing our belief about the probability of 

getting a new toy. And these beliefs would have been formed via experience either subjectively, or via 

conducting a set of experiments from a frequentist perspective.  The inference that we can make with a 

rule like Modus Ponens is latently captured in the joint probability statement,

 P(Happy = yes | NewToy = yes) = 0.8

The statement itself captures the essence of reasoning done with Modus Ponens and says the given 

that NewToy = yes, the probability of Happy = yes being true is 0.8. The analogy is applicable because 

P(Happy | NewToy) is an (almost) true statement. Here, we are making a prediction that if a new toy is 

given to a child, then the child will be happy because new toys make children happy.

On the other hand, one might know that the child is happy, and might be curious about what has 

made the child happy. This is the problem of diagnosis. Let us say that there are several reasons a child 

could be happy—it could be an inherently happy nature the child has, or due to the joy of visiting an 

30  There is a temptation though to think of P(NewToy, Happy) = P(Happy | NewToy) P(NewToy) as being similar to Modus Ponens. 

But the reader must remember that this yields only a value of 0.4 because we cannot say that P(NewToy) = 1.
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uncle, or having read a new book, eating an ice cream, etc. (and this would need an appropriately sized, 

multidimensional joint probability table). Each such case becomes a hypothesis for our investigating 

agent, and the application of the Bayes’ rule as described earlier comes to the rescue. The interested 

reader should compare the application of the Bayes’s rule for determining the MAP hypothesis, with 

backward chaining in logic described in Chapter 12. In that sense, Bayesian reasoning gives us a sound 

form of diagnosis.

Diagnosis and prediction address different kinds of uncertainty. Prediction is concerned with events 

that are to happen. Then a probabilistic statement talks about how likely it is for the event to happen. 

The inference is aligned with the direction of causation. Diagnosis on the other hand, is the process of 

unravelling the hidden but existing state of the world, which may be shrouded in uncertainty. A medical 

doctor may begin with several hypotheses when a patient first consults her. But as she gets more evidence, 

by means of tests or queries, she homes in on the actual disease or affliction the patient is suffering from.

In the world, the effect follows the cause. Diagnosis involves determining the cause knowing the effect. 

Sometimes, we form associations between the effect and a cause as a rule or conditional probability. For 

example, we might say P(Malaria | HighFever) = 0.6, saying that whenever we see high fever we can 

conclude with probability 0.6 that the patient has malaria. On the surface this looks again analogous to 

the application of Modus Ponens which is a sound rule of inference,

 HighFever

 HighFever … Malaria

\ Malaria

But in fact it is not the case, because the causal relation is between Malaria and HighFever and not 

the other way round. If one were to convert this to a logical relation, one might say that (Malaria … 

HighFever) is true but (HighFever … Malaria) is false. In that sense, inferring the disease from symptoms 

is in fact doing the following inference.

 HighFever

 Malaria … HighFever

\ Malaria

This inference is called abduction and is not a sound rule of inference. This means that if a patient has 

high fever, one cannot conclusively say that she has malaria. It could be something else too. Nevertheless, 

this form of reasoning is prevalent amongst human users. Doctors routinely look at symptoms and 

diagnose the cause. In doing so, they no doubt bring to fore their vast experience31, and it is not surprising 

that patients flock to “reputable” doctors. But the inexperienced ones can go wrong.

Reasoning systems that employ probabilistic knowledge have sometimes tended to mimic the 

operation of a rule based system, adding new sentences and assigning degrees of belief to them. This 

becomes an attractive option, given the paucity of probability data. One of the first expert systems 

developed—MYCIN (Buchanan and Shortliffe, 1984)—in fact expressed knowledge in (IF Symptoms 

THEN Disease) form, as illustrated below.32

RULE 156

IF: 1. The site of the culture blood, and

 2. The gram stain of the organism is gramneg, and

 3. The morphology of the organism is rod, and

31  The author recalls with considerable relief the accurate diagnosis of a dear one by an experienced doctor, simply after hearing 

the major symptoms, even while a battery of tests were being conducted in a major hospital without success. 
32 See http://www.computing.surrey.ac.uk/ai/PROFILE/mycin.html#Expert
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 4. The portal of entry of the organism is urine, and

 5. The patient has not had a genito-urinary manipulative procedure, and

 6. Cystitis is not a problem for which the patient has been treated.

THEN: There is suggestive evidence (.6) that the identity of the organism is e.coli

This is possible because we can make a probabilistic statement that “if you see the symptoms then 

you can say what the disease is”. MYCIN uses certainty factors to express how strong the association 

is. The certainty factor of a hypothesis H given an evidence E is made up of two values—the measure of 

belief in H given E written as MB[H, E] and a measure of disbelief in H given E written as MD[H, E]. 

The certainty factor CF[H, E] is defined as,

 CF[H, E] = MB[H, E] – MD[H, E]

The interval <MD, MB> for a hypothesis H, given the evidence E, is similar to the confidence interval 

used in Dempster Shafer theory discussed in Section 17.6.1, except that in MYCIN’s case, these numbers 

are provided by the human experts assigning strength to the associations.

One important reason why using maximum a posteriori technique is preferable to direct abductive 

reasoning is that the conditional probability P(symptom | disease) is local in nature, in the sense that 

given that the patient is known to be afflicted by a particular disease (like malaria), the symptoms (like 

high fever) do not depend upon other random variables that might be in the model. On the other hand, 

even if we have the probabilities for P(disease | symptom), the values are likely to depend upon other 

factors for example whether the patient has had the disease earlier or not (like for chicken pox) or whether 

there is an epidemic of the disease or not.

Even in everyday life, we use abduction quite effectively. You look at the colour of the dosa cooking 

on the tava to decide whether it is done. One sees a person staggering and concludes that he is drunk. 

But he could be hurt too. You see smoke coming out of a building and infer that there is a fire. One looks 

at wet grass and concludes that it rained last night.

17.5.3 Propagating Probabilistic Inferences

One can have a knowledge base of conditional probabilities capturing associations between various 

propositions. One can even think of chaining together such inferences. For example, knowing that her 

dad’s favourite team has won the game, a child might figure that her dad is likely to be in a good mood, 

and therefore might decide that that would be a good time when he is likely to order her favourite paneer 

butter masala from the neighbouring restaurant.

However, when predictive and abductive rules are mixed up, there could be problems in chaining 

rules to make sequences of inferences. Let us look at the example used by Pearl (1988). Consider the 

following two rules, with some measure of probability assigned to each inference.

If (the sprinkler was on last night) then (the grass is wet).

If (the grass is wet) then (it rained last night).

The two rules by themselves are fine, and may be used with some benefit. The first one is predictive 

and the second abductive. But when we try to chain them together, we end up with a rule that says that,

If (the sprinkler was on last night) then (it rained last night).

Clearly there is a problem lurking here. Since one can have both abductive and predictive relations 

thrown together in a network (see the following section), there could be a danger if two nodes reinforcing 

themselves in a cyclic fashion (Lowrance, 1982). A hypothesis would make the evidence appear more 

likely and vice versa and a belief propagation system could run into trouble. The key to addressing this 
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problem is to keep track of the source of propagation. Every node maintains a support list of other nodes 

in addition to a belief measure. This is reminiscent of storing justifications in the ATMS (see Section 

17.4). An alternative approach called conditioning, relies on modifying the underlying connectivity of 

the network to eliminate loops (Pearl, 1985).

If one implements a rule like system in which there is a predictive (malaria implies high fever) 

abductive (high fever suggests malaria) cycle, it could go into loops amplifying a small bit of evidence. 

Systems like MYCIN that operate in a modular rule baselike fashion, restrict themselves to abductive 

reasoning only. In doing so, however, one has to forgo the benefits of prediction. One such benefit is 

the explaining away that can be done with predictive reasoning. For example, if malaria implies fever 

and if a viral infection can lead to fever too, then finding that the patient has a viral fever explains the 

fever, and makes belief that the patient has malaria less credible.

We look at an interesting example given by Judea Pearl (1988) that highlights this kind of interaction 

between inferences. Suppose you have an alarm system installed in your home, and you get a call from 

your neighbour that the alarm is ringing. You are about to conclude that your house has been burgled 

and rush home when you happen to glance at your monitor33 which is showing  news that there has been 

an earthquake in the region. You remember that the last time there was an earthquake too, the alarm had 

gone off, and this decreases your belief in the possibility of a burglary having happened. Now consider 

what has happened. If you had a rule (alarm … burglary), then if your belief in alarm goes up, then 

“normally” your belief in burglary should go up too. But the opposite is happening here. The news of 

the earthquake has confirmed the fact that the alarm has sounded, but at the same time alleviated your 

fears that a burglary might have happened.

A variation is that the neighbour may be unreliable, having a tendency for tasteless pranks. You would 

then have to gather more evidence that the alarm actually sounded. You could try another neighbour but 

she might be having loud music playing in her house and not quite sure. If you did get some response 

from her you would still have to worry about combining the evidences together, in a scenario where 

there may not be too much data on the conditional probabilities needed.

This pull between modularity and reasoning under uncertainty is reflected in other places as well. 

Recall (Section 17.1) that while doing default reasoning, one has to minimize certain sets in the 

interpretation, and remove those formulas that that were not entailed by the KB. That could require one 

to look at the complete knowledge base as well. This is closer to the probability approach in which one 

has to sum up the entire knowledge (base). Logical reasoning by itself is modular. The antecedents and 

the rule imply the consequents.

One difference between logical reasoning and probabilistic conditioning is that in logic there is an 

element of locality. For example, if one has the set of sentences,

S

P … Q

Q … R

there is no difficulty in chaining the inferences because each rule has a local scope. The only thing one 

needs to infer Q is that S must be true, and in turn when Q is true, it is enough to conclude that R is true. 

Using probabilities on the other hand when we say that,

P(Q|S) = 0.8

P(R|Q) = 0.7

we are really saying that,

33 In Pearl’s book, written in 1988, you hear this on the radio. 
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P(Q|S, K) = 0.8

P(R|Q, K) = 0.7

where K captures all the unarticulated knowledge that contributed to assigning the values. And given 

S, it is not entirely clear how the probability of R being true would depend upon S being given, even 

though there appears to be a chain of reasoning. What we really need is the value for the conditional 

probability P(R|Q, S). Given that we do not have that, and do not know with certainty that Q=true, one 

approach would be to compute P(R) as a weighted average as follows,

 P(R) = P(R|Q) * P(Q) + P(R|¬Q) * P(¬Q)

but this would need more data from  the joint probability distribution. If we now take some new evidence 

E into account, then we would need to compute the posterior probabilities,

 P(R|E) = P(R|Q, E) * P(Q|E) + P(R|¬Q, E) * P(¬Q|E)

but this changes the problem to a completely new one.

17.5.4 Belief Networks

Given that the probability P(a) assigns a numerical value to the belief in the proposition “a” given 

everything the agent knows about the world, if one wants to relate the truth value of a statement to the 

truth values of other statements, one must take into account all other statements that could possibly 

influence the given statement. Thus, one has to consider the joint probability of all such variables. Given 

the joint probability distribution, one can compute the marginal and conditional properties of different 

variables. However, constructing the joint probability distribution could be a humongous task, and the 

computations to be done to derive specific probabilities proportionally expensive.

Human beings, on the other hand, make probabilistic observations very quickly, especially on the 

relatedness of different variables. For example, most people would agree that the appearance of dark 

clouds bodes a (welcome) rain shower. Similarly, they would agree that the fall of a coconut from a 

tree in Kerala has no bearing on the possibility of snow in Manali34. And we do this without recourse 

to storing huge joint probability tables and enormous amounts of computation.

Belief networks are an attempt to marry probability theory with networks used in various forms for 

knowledge representation, and the application of propagation techniques over networks for making 

inferences. There are two types of probabilistic network based representations that are popular. Markov 

networks are undirected graphs in which an edge between two nodes represents conditional dependence 

between the two nodes, which stand for random variables. Bayesian belief networks are directed acyclic 

graphs in which a directed edge captures a causal relation between two random variables. Observe that 

this would still allow for abductive inferences.

Given a set of random variables, there could be varying degrees of conditional dependence between 

them. If one can identify the dependence relations then one could take recourse to probabilistic graphical 

models. An example of such models is Bayesian networks, also known as Bayesian Belief Networks 

(BBNs). Bayesian networks are directed graphs in which edges capture the causal relations between 

the nodes (random variables).

Importantly, Bayesian networks allow us to get an insight into the conditional dependencies between 

random variables. Consider the randomly generated graph of seven variables X1 … X7 shown in Figure 

17.27.

34  Notwithstanding the so called ‘Butterfly Effect’ in Chaos Theory that says that the flutter of a butterfly’s wings in China could 

affect the weather patterns in New York. 
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The conditional dependencies between the variables can be 

determined by looking at the graph. Each variable is causally 

influenced by its parent. Consequently, the joint distribution of 

the seven variables can be written as,

(X1, …, X7) =  (X1) * (X2) * (X3 | X1,X2) * (X4 | X2) * 

(X5 | X3,) * (X6 | X3, X4) * (X7 | X6)

Observe that this equation says that variables X1 and X2 are 

independent of other variables, X3 is conditionally dependent on 

X1 and X2 only, and so on. This is in lieu of the general expansion 

for conditional probabilities,

(X1, …, X7) =  (X1 | X2…X7) * (X2 | X3 … X7) * … * 

(X6 | X7) * (X7)

The latter is simply derived from the product rule blindly35 without paying any attention to which 

variables are causally influencing which other variables. The Bayesian network, on the other hand, 

clearly marks specific direct influences and is presumably constructed by exploiting domain knowledge.

In general, a Bayesian belief network over N variables is characterized by its joint distribution, defined 

as the product of the probabilities of all its variables conditioned on their parents,

 P(X1, …, XN) = 
N

P
k =1

 P(Xk|Parentsk)

Given the Bayesian network and the conditional probabilities between the linked variables (in both 

directions), one could estimate the probabilities of some unknown variables given some known variables. 

In this context, the notion of conditional independence is very valuable, and fortunately can be determined 

simply by inspecting the state of the network and its observed variables. The statement of conditional 

independence is as follows. Let X, Y and Z be three random variables and let x, y and z represent the 

three values that the variable can take. Then if the conditional distribution of X given the value of Z 

does not depend upon Y, depicted by,

 P(x | y, z) = P(x|z)

we say that the X is conditionally independent of Y given Z. In other words, if one knows the value of 

the variable Z, then the probability of any value of the variable X does not depend upon the probability 

of any value of Y. We write this property as I(X,Z,Y) as in (Pearl, 1988). The relation is symmetric. That 

is, I(X, Z, Y) ∫ I(Y, Z, X). The notation X, Y || Z due to Dawid (1979) is also used. In the special case 

when the two variables are unconditionally independent, like two coin tosses, then we write I(X, F, Y). 

The relation can be extended to sets of variable {X}, {Y} and {Z}.

Another way of looking at conditional independence is as follows. Consider the joint probability of 

X and Y, given the value of variable X. We then have,

 P(x, y | z ) = P(x | y, z) * P(y | z) by the product rule

 = P(x | z) P(y | z) by conditional independence.

This says that if we know the value of Z then the joint probability of X and Y is simply the product 

of their marginal properties.

35  One could just as well have written (X1,…,X7) = (X7|X6…X1) * (X6|X5 … X1) * … * (X2|X1) * (X1) or in fact chosen 

the variables in any other order.

x1 x2

x4

x6

x7

x5

x3

FIGURE 17.27 A Bayesian 

network of seven variables.
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An interesting feature of BBNs is that many such conditional relations can be seen from the graphical 

point of view. This is based on the notion of separating the two (sets of) nodes by the nodes on which 

they are conditioned. This property is known as d-separation, where the “d” stands for “directed” (Pearl, 

1988). In general, one is interested in knowing whether a node X is influenced by node Y, when the 

path between the two nodes passed through the node Z. We consider three cases corresponding to the 

three possible configurations of the arrow directions between the three nodes (see also (Bishop, 2006)).

Case 1

When both X and Y are children of Z in the graph depicting the Bayesian belief network. This implies 

that both X and Y are causally influenced by Z. An example of such a relation is where Z is the age of a 

child, X is her height and Y is her reading ability (from (Pearl, 1988)). In the graph, this will be depicted 

as shown if Figure 17.28a. If we do not know the age of the child then we can relate her height to her 

reading ability. This is indicated in the graph from the fact that there is a path from the node height (X) 

to the node reading ability (Y). But once we know the value of Z, that is the age of the child, the other 

two variables height and reading ability become independent of each other.

We say that once the node Z is known, it blocks the path from X to Y. In general, if there had been more 

paths between X and Y then all such paths would have to be blocked to achieve conditional independence 

between X and Y. Let us say that the set of nodes {Z1,…, Zg} in the graph blocked all paths between X 

and Y, then we would say, I(X, {Z1,…, Zg}, Y}.

Case 2

When Z is a child of X in the graph and Y is a child of Z. Here X could be the result of a match which 

causally influences the mood of the father which in turn decides whether he would agree to order his 

daughter’s favourite food. This is depicted in Figure 17.28b with the three variables match result, mood 

and agree to order food. Again, we can see that once we know that mood = good, the probability of 

ordering the food becomes independent of the match result. Another example would be if X = company 

performance, Z = demand for shares and Y = stock price. Or X = monsoon status, Z = wheat crop 

production and Y = price of wheat.

In this case too, knowing the value of variable Z blocks the path between X and Y.

Case 3

When both X and Y causally influence node Z. Consider a game in which a player throws two dice and 

a bell rings whenever some desired result is achieved (for example, the two numbers that show up are 

the same)36. Now in general, the two dice may show up with numbers independently. Consequently, in 

general, we should consider the path between them via bell as blocked. However, if we knew the value 

of the variable bell then the two throws are not independent anymore. If bell=ringing then we know 

the two numbers must be the same. On the other hand, if bell=silent then we know that they cannot be 

equal (and therefore are not independent).

In case 3 in Figure 17.28c, when both the arrows are directed toward node Z, the situation is reversed. 

In the general nodes, X and Y are independent. But if we know the value of Z, they become dependent. 

Thus, knowing the value of Z unblocks an initially blocked path.

Not only the value of Z, but that of its causal descendants had the same effect. Assume for example 

in our dice game if the bell rings then a waiter appears with a cake as a prize. Knowing that the waiter 

36 See Exercise 13 of Chapter 10 for a complex version of this game. 
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has appeared with the cake has the same effect of unblocking the path between X and Y. In the network 

in Figure 17.27, this would mean that knowing the value of X7 renders X3 and X4 dependent.

height

age
reading

ability

mood
match

result

agree 

to order 

food

dicel

bell

dice2

X Z Y

(a)

(b)

(c)

FIGURE 17.28 The three possible causal relations.

Bayesian networks have been very popular in the area of pattern recognition and machine learning. 

The idea is similar to the kind of inferences in other network models. One freezes the values of some 

nodes in the network (the observations) and the task is to determine the posterior probabilities of other 

nodes in the network, via propagation through the edges.

We shall look at some of the inferences that one can do with Bayesian networks in Chapter 18.

17.6 Stochastic Actions

Another form of uncertainty is when actions are not deterministic. The planning algorithms we studied 

in Chapters 7 and 10 worked with planning operators which have well defined, deterministic effects. 

That implies that if the agent plans for an action “a” to be applied in a state S, then the agent is sure that 

the resulting state S¢ is defined by (see Section 7.2),

 S¢ ¨ {S – effects–(a)} » effects+(a)

The agent can then assume that it is in state S¢ and continue planning from there.

However, there are many domains in which the actions are not deterministic, which implies that the 

agent cannot project the actions into the future to discover the action sequences that work. The simplest 

examples of such actions are tossing a coin or throwing a dice. These are, in fact, random number 

generators, and one cannot predict the outcome deterministically. Other actions that have such a stochastic 

nature are throwing a basket ball towards the hoop; drawing a card in a game of blackjack; taking a 

step forward on slippery ice on a glacier; dialling a phone number (could result in a ring or an engaged 

tone); buying a lottery ticket; and making a “final bid” while haggling over the price of a T-shirt; and so  

on.
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17.6.1 Markov Decision Processes

How does an agent plan in such situations? In classical forward state space planning, one chooses an 

action and assumes that one goes to a new state from where one can plan again. When the actions are 

stochastic then one cannot assume that one will go to a particular state. Instead, one may have to consider 

a set of states in any one of which one can end up in with a certain nonzero probability. Would one need 

to choose actions from each of these states? That is what in fact an approach to planning with Markov 

Decision Processes (MDPs) does. Only one does not call the output of such reasoning a plan anymore, 

but a policy. In this section, we take a brief look at MDPs. Readers interested in greater detail, finer 

nuances, and theoretical analysis are referred to (Mausam and Kolobov, 2012).

MDPs replace plans with policies. A (complete) policy p is a statement of intent for every state in 

the state transition system. If S is the state space on which the agent operates and A is the set of actions 

available then

 p: S Æ A

The policy specifies an action in each state. A partial policy may specify actions for only some subset 

of the states. The process is a Markov process37 because the choice of action depends only on the state 

the system is in, and not on the previous history of states the agent was in. The domain of operation is 

stochastic because each action aŒA is stochastic. That is, the action does not result in transition to a 

new state deterministically. Instead, the system may move to a new state s¢ with a certain probability 

given by P(s, a, s¢), where s, s¢ŒS. The probability distribution must satisfy the condition for a given 

state sŒS and an action aŒA,

 S s¢ŒS P(s, a, s¢) = 1

That is, the action does result in a state. The agent could have several types of goals that it wants to 

achieve. These could be the classical goal of reaching a final goal state and it could have some trajectory 

preferences of going through or avoiding certain states. However, since the agent cannot deterministically 

control its actions but works with a policy that is defined over the entire state space, one needs to specify 

its performance in terms of evaluating the entire policy. This is done by specifying a reward function 

R: S Æ [–Large, +Large] that denotes the reward obtained by being in a given state. Here, Large is a 

suitably large number. In addition, one could also consider the cost of doing an action in a given state 

given by a function C: S ¥ A Æ [0, MaxCost], where MaxCost is the maximum possible cost of doing 

an action. We can now define the utility of being in a state sŒS and applying an action aŒA as,

 U(s, a) = R(s) – C(s, a)

If we are considering a policy p then the utility of applying the policy in state sŒS is given by,

 U(s|p) = R(s) – C(s, p(s))

where a = p(s) is the action chosen by the policy in that state.

Given the notion of utility of being in a state, one can define a value function of a state given a policy 

p as a function of the total reward, accumulated over the history h = <s0, s1, …> minus the total cost 

involved, when the policy is applied. That is,

 V(s0|p) = u(U(s0|p(s0)), U(s1|p(s1)), … )

where u is some utility accumulating function. In the general case when the system may run for ever, 

one would like to measure the “current worth” of a state using a function that gives lesser importance 

37 Named after the Russian mathematician, Andrey Andreyevich Markov (1856 – 1922).
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to states that occur farther into the future. This is akin to discounting the future value of money now. 

It is not surprising that the idea of measuring current worth by discounting the future value has been 

borrowed from economics. In fact, MDPs were first devised in economics. A common utility accruing 

function sums up the individual utilities multiplied by a value based on a discounting factor 0£g  £1.

 V(s0|p) = S t≥0 g t (R(st) – C(st,p (st)))

The smaller the value of g, the greater the importance given to states nearer to the time t = 0. The 

sequence of states over which the value is computed is known as a history h = <s0, s1, s2, … >. The 

above equation says that for any history starting with the state s0 and going through states s1, s2 …, and 

so on, results in a value that can be assigned as the value of the initial state. What is the role of the policy 

here? The policy is the one that decides what actions are taken in each state, and therefore what state the 

system potentially moves to. However, given a policy p, one could have several histories generated from 

the starting state s0, and in fact several other histories that could be generated starting at other states. The 

utility of a policy can then be defined as the expected value accrued over all such histories, multiplied 

by the probability of the history occurring given p. Let H be the set of all possible histories and let hŒH 

be some history and let sh be the starting point of that history h (Ghallab et al., 2004).

 E(p) = ShŒH P(h|p) V(sh|p)

The task of planning with MDPs is to find an optimal policy p*, such that the expected utility of the 

policy p* is greater than the expected utility of any other policy p, that is, E(p*) ≥ E(p).

One can distinguish three kinds of MDPs. The first are the finite horizon MDPs in which there is a 

bound on the number of actions that can be executed. The second, infinite horizon MDPs with discounted 

costs and rewards. The idea here is that a discounting factor 0£g £1 gives lower weight to costs and 

rewards in the future. The lower is the value of g, the lesser the importance given to the (distant) future. 

The third class of MDPs are indefinite horizon MDPs in which the task is expected to be completed in 

a finite time, but with uncertainty in the time duration (like an aeroplane circling over an airport to get 

landing clearance, or a girl attempting to shoot a basket on a basketball court). It turns out that all three 

kinds of MDPs can be generalized into a stochastic shortest path MDP (SSP MDP) described below 

(Mausam and Kolobov, 2012).

Stochastic shortest path MDPs introduce the notion of goal states. In that sense, they are similar to 

classical planning problems. However, they have a notion of costs that can incorporate the notion of 

rewards used in MDPs. By changing the sign of a positive reward, it can be incorporated into the cost 

function. In this way, SSP MDPs can allow for preferences and trajectory constraints as well. An SSP 

MDP is defined as a tuple <S, A, P, C, G> where,
 ● S is a finite set of states.
 ● A is a finite set of actions. 
 ● P: S 3 A 3 S Æ [0,1] is the state transition probability P(s, a, s¢) of going from state s to state s¢ 

by action a applied is state s.
 ● C: S 3 A 3 S Æ [0, ) is the nonzero cost C(s, a, s¢) > 0 of going from state s to state s¢ by action 

a applied is state s. The cost of going to a goal state from the goal state is however 0.
 ● G Õ S is a set of goal states which satisfy the following properties. For all sgŒG, for all aŒA and 

for all s¢œG,

 P(sg,a,s¢) = 0, no action can take the system away from the goal state,

 P(sg,a,sg) = 1, any action in the goal state keeps it in the goal state,

 C(sg,a,sg) = 0, the cost of staying in the goal state is 0.



Chapter 17: Reasoning Under Uncertainty 781

There is a condition that the SSP38 should have a proper policy. A policy is called proper, if from any 

state sŒS the policy p will drive it to a goal state in a finite amount of time. In other words, the system 

cannot loop amongst nongoal states indefinitely.

Dealing with SSPs, the optimality criterion now becomes the minimization of the total expected 

cost, as opposed to maximization of rewards collected. The discussion which follows applies to SSPs. 

The reader should however keep in mind that other MDPs generalize to SSPs, as a consequence the 

conclusions apply to all MDPs.

We are interested in choosing between competing policies. A policy specifies an action in each state. 

The underlying state transition system specifies the actions that are possible in each state. Consider the 

following example state space depicted in Figure 17.29 which is an SSP MDP. One could think of it 

as climbing a slippery snow slope from point s1 to point sG. There are two possible routes, one via s2 

and the other via s5. However, each action is fraught with the danger of slipping, shown by two arrows 

(state transitions) emerging from the same point in each node. For example, attempting to go from s1 

to s5 has the danger that one might slip and end up in s4 instead, from where the only option is to go 

back to s1 (and try again).
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FIGURE 17.29 A stochastic planning domain. The two arrows originating from the same point on 

the nodes represent the two possible state transitions given an action. The four arrows with solid 

lines represent the desired paths. The labels on the edges are costs of actions.

The action set available to the agent is A = {a12, a13, a14, a15, a2G, a26, a5G, a57, a41, a74, a63, a31}. 

The stochastic behaviour of the actions is described in the Table 17.13. In addition, we assume that each 

state sk has an action called stay that can be executed deterministically. The effect of the stay action is 

to remain in the same state.

38 We will use SSP as a short form for SSP MDP.
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 Table 17.13 The probabilistic state transitions for the given actions

Action Source Destination (probability) Destination (probability)

a12 s1 s2 (0.8) s3 (0.2)

a13 s1 s2 (0.0) s3 (1.0)

a14 s1 s4 (0.6) s5 (0.4)

a15 s1 s5 (0.9) s4 (0.1)

a2G s2 sG (0.7) s6 (0.3)

a26 s2 sG (0.0) s6 (1.0)

a5G s5 sG (0.6) s7 (0.4)

a57 s5 sG (0.0) s7 (1.0)

a31 s3 s1 (0.6) s3 (0.4)

a41 s4 s1 (0.6) s4 (0.4)

a63 s6 s3 (0.7) s6 (0.3)

a74 s7 s4 (0.7) s7 (0.3)

Given the above problem, one can immediately think of two interesting policies, one trying to reach 

sG via s2 and the other trying to reach sG via s5. The policies p2G and p5G are described below in which 

the action in each state sŒS is prescribed.

The actions in each of the eight states as per p2G are,

 p2G(s1) = a12

 p2G(s2) = a2G

 p2G(s3) = a31

 p2G(s4) = a41

 p2G(s5) = a5G

 p2G(sG) = stay

 p2G(s6) = a63

 p2G(s7) = a74

Observe that the policy directs the agent to take actions a12 whenever it is in state s1. The only 

unintended effect of this action is to take the agent to s3 instead of s2, from where the only moving 

action is back to s1. This means that, given the above set of action effects, there is no chance of the agent 

landing up in state s5. However, the policy does specify the action to be taken in that state.

The other policy of interest p5G has the following actions,

 p5G(s1) = a15

 p5G(s2) = a2G

 p5G(s3) = a31

 p5G(s4) = a41

 p5G(s5) = a5G

 p5G(sG) = stay

 p5G(s6) = a63

 p5G(s7) = a74

The reader would have noticed that the only place this policy differs from the previous one is in the 

action to be taken in state s1. In all other states, the actions are identical. This is not surprising, given 
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that these are the only two that are likely to be the desired policies. The reader is encouraged to verify 

that all other policies (for example the one with p2G(s1) = a13) are not going to work.

The other policies are not likely to be of interest. Nevertheless, the above arguments were made at a 

qualitative level. We need a quantitative approach that will choose the “best” policy from the set of all 

possible policies. This will also involve choosing between one of p2G and p5G amongst others.

Given the utility function, one can then look at a policy that maximizes the overall expected utility 

obtained by applying the policy. The first step however is to evaluate a given policy.

How to Evaluate a Policy?

If one is to look at different policies in search of the optimum policy, one needs a mechanism to evaluate 

any policy. A policy can be depicted by a policy hyper-graph in which exactly one directed hyper-edge, 

representing the prescribed action, emanates from each state, and ends in all the states that the action 

could end up in.

Consider first a policy that has no cycles. Consider a simpler version of the problem from Figure 

17.29 shown in Figure 17.30 in which there are only four states, s1, s2, s5 and sG where sG, as before, is 

the goal state. We have removed some states from the original problem to allow us to select a proper 

policy. A proper policy is one in which an agent is guaranteed to reach a goal state. If we had left states 

s3, s4, s6 and s7 in, and removed the backward moves, then these states could have been dead-end states. 

An SSP with dead-end states requires greater sophistication because in addition to the cost that one has 

to minimize, one will also have to take into account the probability of reaching a goal state, and perhaps 

a trade off between the two criteria.

Let agent choose a policy p for the finite horizon problem consisting of the following actions,

 p(s1) = a1

 p(s2) = a2

 p(s5) = a5

 p(sG) = stay

The corresponding policy graph along with probabilities and costs associated with the prescribed 

actions is shown in Figure 17.30. Observe that only action a1 is stochastic, and the probability of reaching 

the goal in two steps is 1.

S1

S2

S5

SG

P(s1, a1, s2) = 0.6
C(s1, a1, s2) = 12

P(s1, a1, s5) = 0.4
C(s1, a1, s4) = 10

P(s2, a2, sG) = 1.0
C(s2, a1, sG) = 8

P(s5, a5, sG) = 1.0
C(s5, a5, sG) = 6

FIGURE 17.30 A policy graph for finite domain MDP problem. The first action is nondeterministic 

leading to one of s2 or s5, from where the two chosen actions are deterministic.

We would now like to compute the value of each state, which is the total expected cost of reaching a 

goal state starting in that state. Let us call this function as Vp the valuation function given the policy p.
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 Vp(sG) = V(sG|p) = 0

 Vp(s5) = V(s5|p) = C(s5, a5, sG) = 10

 Vp(s2) = V(s2|p) = C(s2, a2, sG) = 8

 Vp(s1) =  V(s1|p) = P(s1, a1, s2) [C(s1, a1, s2) + C(s2, a2, sG)]

+P(s1, a1, s5) [C(s1, a1, s5) + C(s5, a5, sG)]

 = 0.6 [12 + 8] + 0.4 [10 + 6]

 = 0.6 ¥ 20 + 0.4 ¥ 16

 = 18.4

The state sG has value zero because it is already the goal state. The value of s5 is 6 because a5 is a 

deterministic action leading to the goal state with cost 6. Similarly, the cost of s2 is 8. The value of s1 is 

more involved. There are two ways of reaching the goal. One via s2 has total cost 20 and has a probability 

of 0.6 being taken. The other via s5 has cost 16 and has probability 0.4 being taken. The expected cost 

is then the sum of the costs of the two routes multiplied by the probability of each route being taken.

Very often however, policies are cyclic. That is, one may revisit the same state again. In fact, it 

would be quite likely that in a stochastic domain, an agent may need to try some actions repeatedly 

till it succeeds39. The values of such cyclic policies can be computed by setting up a system of linear 

equations as follows. The long term cost reaching a goal from a given state s is the cost of making the 

first move, plus the cost of reaching the goal from the destination of the first move. Since the action may 

be stochastic, the first move may end up in different states with different probabilities, and a weighted 

average would have to be taken.

 Vp(s) = 0                 if sŒG

 = Ss¢ŒS P(s, a, s¢)[C(s, a, s¢) + Vp(s¢)]   otherwise

Let us write down these equations for the policy p5G for the problem depicted in Figure 17.29. The 

policy graph is depicted in Figure 17.31. Observe that paths from all states eventually lead to the goal 

state sG.

S1
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S2

S7

SG

S6

FIGURE 17.31 The policy graph for the cyclic policy p5G.

39  Legend has it that Robert Bruce, who was fighting for the freedom of Scotland, was inspired by watching a spider weaving her 

web who after failing for six times to throw a thread across a divide, persisted, and succeeded the seventh time. 
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The equations are given below. We have written the expression only for the first one.

 Vp5G(s1) = P(s1, a15, s5)[C(s1, a15, s5) + Vp5G(s5)] + P(s1, a15, s4)[C(s1, a15, s4) + Vp5G(s4)]

 Vp5G(s1) = 0.9[15 + Vp5G(s5)] + 0.1[10 + Vp5G(s4)]

 Vp5G(s2) = 0.7[10 + Vp5G(sG)] + 0.3[6 + Vp5G(s6)]

 Vp5G(s3) = 0.6[7 + Vp5G(s1)] + 0.4[1 + Vp5G(s3)]

 Vp5G(s4) = 0.6[7 + Vp5G(s1)] + 0.4[1 + Vp5G(s4)]

 Vp5G(s5) = 0.6[5 + Vp5G(sG)] + 0.4[3 + Vp5G(s7)]

 Vp5G(s6) = 0.7[7 + Vp5G(s3)] + 0.3[1 + Vp5G(s6)]

 Vp5G(s7) = 0.6[7 + Vp5G(s4)] + 0.3[1 + Vp5G(s7)]

 Vp5G(sG) = 0

Solving these equations we get the values listed for [Vp5G (s1), …, Vp5G (s7)] as,

 Vp5G = [45.3351, 26.9291, 53.0018, 53.0018, 28.3721, 60.4303, 60.4303]

One can see that the expected costs are pretty high compared to the costs of deterministic solutions. 

The highest costs are for Vp5G (s6) and Vp5G (s7), which are symmetrically placed in the state space. They 

have to get all the way back to s1 and try going through s5 again. The expected costs are lowest for s2 and 

s5, since they are closest to the goal node and the policy picks the action taking them to the goal node.

The policy p2G is the other interesting policy (that could be optimal). The reader should also verify 

that any other policy is going to be more expensive. For p2G on the action at state s1 is different and so 

the corresponding equation is,

 Vp2G(s1) = P(s1, a12, s2)[C(s1, a12, s2) + Vp2G(s2)] + P(s1, a12, s3)[C(s1, a12, s3) + Vp2G(s3)]

 = 0.8[10 + Vp2G(s2)] + 0.2[6 + Vp2G (s3)]

The rest of the equations are the same and the values for [Vp2G (s1), …, Vp2G (s7)] are,

 Vp2G = [38.2075, 24.7908, 45.8741, 45.8741, 25.5211, 53.3027, 53.3027]

One can see that the lower costs of actions a12 and a2G are reflected in the overall expected costs.

The costs are higher than the deterministic costs because the probabilities of heading away from 

the path to the goal are significant. Let us modify the probabilities a little to get a sense of how these 

probabilities influence expected costs.  Let us change the probabilities of the actions from s4 and s7 to 

much higher probabilities for heading towards s1, as opposed to staying put.

 Table 17.14 The modified probabilities for a14 and a74

a41 s4 s1 (0.95) s4 (0.05)

a74 s7 s4 (0.95) s7 (0.05)

The corresponding changed equations for the two states s4 and s7 for which these two actions are 

prescribed by both policies are,

 Vp5G(s4) = 0.95[7 + Vp5G(s1)] + 0.05[1 + Vp5G(s4)]

 Vp5G(s7) = 0.95[7 + Vp5G(s4)] + 0.05[1 + Vp5G(s7)]

Using these equations, along with the others for p5G gives us the values,

 Vp5G = [44.812, 26.7722, 52.4787, 51.8647, 27.9173, 59.9073, 59.2932]
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And for p2G we get the values,

 Vp5G = [38.2075, 24.7908, 45.8741, 45.8741, 25.3707, 53.3027, 52.9268]

One can observe that increasing the chances of getting back to square one quickly does not do much 

for the expected costs. This is because the costs incurred in staying put at s4 and s7 are very low, and 

therefore the savings by avoiding them are low as well.

Instead, if one were to increase the probability of action a5G succeeding by making P(s5,a5G,sG) = 

0.9, we get the equation,

 Vp5G(s5) = 0.9[5 + Vp5G(sG)] + 0.1[3 + Vp5G(s7)]

Replacing this in the set of linear equations and solving them we get the values for p5G as,

 Vp5G = [25.8583, 21.0861, 33.525, 33.525, 8.89536, 40.9536, 40.9536]

As expected, the increased probability of going from s5 to sG has reduced the chance of the system 

looping back to s1 and accumulating more cost. In fact, the expected cost of going from s1 to sG is now 

25.86, which is much closer to the ideal cost of 20.

On the other hand, increasing the probability of going from s5 to sG has not affected the expected 

costs for policy p2G because the policy drives the solution through s2. The only state for which the value 

has gone down is s5, which is the cost if you happen to start from there. Observe that even this is a little 

higher than the cost from s5 in p5G, because when the action a5G does not result in reaching sG, which 

happens 10% of the times, the agent has to go back to s1 and find a path via s2.

 Vp2G = [38.2075, 24.7908, 45.8741, 45.8741, 10.1303, 53.3027, 53.3027]

Solving a set of equations with N variables can be quite expensive. Instead, one can also adopt an 

iterative approach to evaluating a policy.

Iterative Policy Evaluation

The iterative policy evaluation algorithm initializes the values of all variables and then iterates through 

the linear equations by computing the new left hand sides using the old values in the right hand side. 

Let Vp
n stand for the value function in the nth iteration. The values for each state variable that is not a 

goal state are then updated as,

 Vp
n+1(s) = Ss¢ŒS P(s, a, s¢)[C(s, a, s¢) + Vp

n(s¢)]

Applying this iterative process, the sets of equations for the policy p5G, we have the following 

iterations in which Vp5G
n is replaced with 0 for all n.

 Vp5G
n+1(s1) ¨ 0.9[15 + Vp5G

n(s5)] + 0.1[10 + Vp5G
n(s4)]

 Vp5G
n+1(s2) ¨ 0.7[10 + Vp5G

n(sG)] + 0.3[6 + Vp5G
n(s6)]

 Vp5G
n+1(s3) ¨ 0.6[7 + Vp5G

n(s1)] + 0.4[1 + Vp5G
n(s3)]

 Vp5G
n+1(s4) ¨ 0.6[7 + Vp5G

n(s1)] + 0.4[1 + Vp5G
n(s4)]

 Vp5G
n+1(s5) ¨ 0.6[5 + Vp5G

n(sG)] + 0.4[3 + Vp5G
n(s7)]

 Vp5G
n+1(s6) ¨ 0.7[7 + Vp5G

n(s3)] + 0.3[1 + Vp5G
n(s6)]

 Vp5G
n+1(s7) ¨ 0.6[7 + Vp5G

n(s4)] + 0.3[1 + Vp5G
n(s7)]

There are several questions one can ask of this iterative process. The following observations have 

been made in (Mausam and Lolobov, 2012),
 ● Given a proper policy, the algorithm converges to a fixed point which is both unique and optimal. 

The values it converges to are the solutions to the set of linear equations the iterative process is 

based upon.
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 ● The running time of the algorithm can be controlled by using a threshold e on the residual. The 

residual is the magnitude of the difference in the value for successive iterations, that is |Vp
n+1(s) – 

Vp
n+1(s)|. By choosing a threshold e appropriately, the values produced can be made e-consistent.

 ● Each update of a variable, in the general case will require using all the neighbours in the state 

graph requiring O(|S|) time, where |S| is the size of the state space. Since updates have to be done 

for each state, one iteration needs O(|S2| time.

The graph in Figure 17.32 shows the iterative values for the policy p5G starting with a value of 0 at 

n = 1 for every state. The graph also plots the residual for state s1.
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FIGURE 17.32 A plot of iterated value functions starting with the value 0 for all states. The bottom of 

the graph plots the residual for the value of state S1.

The value of the residual for s1 drops to 0.153651 in the 20th iteration. This could be a reasonable 

point to stop the process. The values after 29 iterations are,

 Vp5G = [45.2375, 26.8677, 52.8811, 52.8811, 28.2903, 60.2627, 0.0368]

which are close to the values computed by solving the equations. Figure 17.33 shows the evolution of 

three states s1, s5 and s6, starting from two sets of initial values for all the seven variables, 0 and 100. 

The plot shows that irrespective of the initial values, the algorithm converges to the same set of values.

17.6.2 Solving MDPs

The task of planning with MDPs is to find the optimal policy for a given problem statement. Recall 

that the problem can be generalized to SSP in which the task is to minimize the overall expected costs 

of reaching a goal state. A brute force approach would evaluate all possible policies and pick the best 

one. However, the number of different policies can be very large. If there are N states in the system 

and a choice of K actions in each state, one would need to evaluate KN policies each needing an order 

of N2 computations.
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There have been two approaches to finding optimal policies faster, policy iteration and value iteration. 

We look at them below.

Policy Iteration

Given that we can evaluate a policy, how does one search for an optimal policy. There are two issues 

here. One, how does one compare two policies, and two, how does one pick the best policy, given that 

you can compare two policies. The definition of an optimal policy says that the expected cost over all 

possible histories must be optimal. Given two policies p1 and p2 we say that policy p1 is better than p2 if,

 "sŒS (Vp1(s) ≥ Vp2(s))

The basic idea behind Policy Iteration is to start with a random policy and find a better policy in each 

iteration. Let p0 be the initial policy. Then, in each iteration, the algorithm moves from a policy pn–1 to 

a new policy pn which  has a better action prescribed for some state. The quality of an action a in a state 

s is measured by a factor known as its Q-value defined as (Howard, 1960),

 QV(s,a) = Ss¢ŒS P(s, a, s¢)[C(s, a, s¢) + V(s¢)]

where V(s) is assumed to be the true expected cost of reaching the goal from state s. The Q-value of a 

state is the expected value of the state when a given action is taken in that state.

Since one does not have access to the true expected cost, one goes through an iterative process which 

oscillates between two phases. In the policy evaluation phase, the algorithm evaluates the value function 

for a given policy. This can be done by solving the corresponding set of linear equations or an iterative 

procedure as described in the previous section. In the policy improvement phase, the current policy is 

refined to a new policy with a smaller value function. This is done by a process called greedy policy 

FIGURE 17.33 The values of states S1, S5 and S6 starting with values 0 and 100 converge to the 

same values for the two initial values.
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construction which is as follows. Given a value function V, a greedy policy pV selects a locally optimal 

action at each state by a process of one step look ahead. That is,

 pV(s) = argminaŒA QV(s,a)

 = argminaŒA Ss¢ŒS P(s, a, s¢)[C(s, a, s¢) + V(s¢)]

That is, it selects an action that yields the lowest expected cost from state s. If, and only if, the new 

value of the state s becomes lower than the old value, then the action is incorporated into the policy. In 

this way, it moves to a new policy which has a strictly lower cost. The process continues till a better 

policy cannot be constructed. The algorithm in the Figure 17.34 below is adapted from (Mausam and 

Kolobov, 2012). We use the notation QV
n–1 to represent the Q-value at the end of the (n – 1)th iteration 

generated by the policy pn–1. The expression Vp
n–1 represents the complete value function and the end 

of the (n – 1)th iteration, and Vn(sk) is the lowest value for state sk amongst the value generated by all 

possible actions applicable to the state in the current iteration. As can be seen from lines 11–12, when 

this value is lower than the earlier value in which action pn–1(sk) was applied then the action is replaced 

by the action that yields the lowest value.

Policy-Iteration (state space S, action set A, costs C)

1 n ¨ 0

2 for k ¨ 1 to |S|

3       do p0(sk) ¨ ak1    /* initialize the policy randomly */

4 repeat

5     n ¨ n + 1

6     Compute  V pn–1          /*Solve the set of linear equations */

7     for k ¨ 1 to |S|

8         do   pn(sk) ¨ pn–1(sk)
9              "aŒA Compute QVn–1(sk,a)
10             Vn(sk) ¨ minaŒA Q

V
n–1(sk,a)

11             if QVn–1(sk, pn–1(sk)) > Vn(sk)
12             then pn(sk) ¨ argminaŒA Q

V
n–1(sk,a)

13 until pn = pn–1
14 return pn

FIGURE 17.34 The algorithm Policy Iteration starts with a random policy, in this version, choosing 

the first applicable action in each state. It then goes through a loop looking for better actions for each 

state sk. An action is better than the previous one, if it results in a lower Q-value for that state.

The point to note is that the Policy Iteration algorithm refines policies to strictly better policies. In 

each cycle of the Repeat loop, the policy is guaranteed to improve. It is doing Hill Climbing in the policy 

state (see Chapter 3). However, there is no danger of getting stuck in a local minimum. It has been proved 

that if the algorithm is initialized with a proper policy p0 then it is guaranteed to find the optimal policy.

One has to be careful that the initial policy is a proper one, if one is to use Policy Iteration. The next 

algorithm we look at is free from any such problem.

Value Iteration

The Value Iteration algorithm devised by Richard Bellman in (1957) focuses directly on the value 

functions and searches in the value function space. The Bellman equations (also known as dynamic 

programming equations) given below, capture the optimality criteria for solving an MDP, which is an 

example of dynamic programming.

 Q*(s,a) = Ss¢ŒS P(s, a, s¢)[C(s, a, s¢) + V*(s¢)]
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where Q*(s,a) is the expected cost of executing the action a in state s and then following the optimal 

policy, yielding the optimal value V*(s¢) for the resulting state. The optimal policy in turn is defined as 

one that chooses the action that optimizes the Q-value,

 V*(s) = 0 if sŒG

 = minaŒA Q*(s,a) otherwise

The Bellman equations have a unique solution that corresponds to the value of the optimal policy p*. 

The first equation specifies how to compute the Q-value, given the optimal values V*(s¢) of all successor 

states, and the second one specifies that the optimal value V*(s) for a state is obtained by choosing the 

action in that state that yields the lowest Q-value. The Bellman equations were first applied to engineering 

control theory and to other topics in applied mathematics, and subsequently became an important tool 

in economic theory, before being adopted by the probabilistic planning community.40

The Value Iteration algorithm begins by initializing the value function to some random value. Let us 

call the initial value function V0. Then it goes through an iterative refinement process till the consecutive 

values become e-consistent. In each iteration, it sweeps over the entire state space updating the value 

function Vn in the nth iteration, based on the value function Vn–1. The update procedure is known as the 

Bellman update or the Bellman backup.

 Vn+1(s) ¨ minaŒA Ss¢ŒS P(s, a, s¢)[C(s, a, s¢) + Vn(s¢)]

The reader is encouraged to compare the Bellman backup rule with the iterative policy evaluation 

rule (Section 17.6.1.2). The main difference is that there a policy is specified and its value has to be 

evaluated; while in the Bellman backup, one does not have access to a policy and has to search for both 

the optimal policy and the corresponding, optimal value function simultaneously.

The Value Iteration procedure ends with the optimal value function V*. Given the optimal value 

function, the optimal policy p* can be constructed by the greedy approach that constructs pV given V, 

described in the preceding section.

The algorithm adapted from (Mausam and Kolobov, 2012) is described in Figure 17.35. First, the 

policy function is initialized randomly. Then, the Bellman backup is applied iteratively till the maximum 

residual for any state becomes less than a specified value e (lines 4–9). The algorithm returns the optimal 

policy constructed by the greedy approach described above.

Value-Iteration (state space S, action set A, costs C, e)
1  n ¨ 0

2  for k ¨ 1 to |S|

3         do V0(sk) ¨ random-value  /* initialize the values randomly */

4  repeat 

5        n ¨ n + 1

6        for k ¨ 1 to |S|

7            do   Compute Vn(sk) using Bellman backup

8                 Compute Residualn(sk) = | Vn(sk) – Vn–1(sk)|

9  until max s¢ŒS Residualn(s) < e
10 return "sŒS pV(s) = argminaŒA Ss¢ŒS P(s, a, s¢)[C(s, a, s¢) + V(s¢)]

FIGURE 17.35 The Value Iteration algorithm begins by initializing the value function for each state 

randomly. Then it applies the Bellman update to each state till all states have reached the desired 

threshold for the residual. It then constructs and returns the greedy policy pV for the value function.

40 See http://en.wikipedia.org/wiki/Bellman_equation
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As discussed above, the Value Iteration algorithm is similar to the iteration process used for policy 

evaluation. However, the Value Iteration algorithm achieves much more. It explores the policy space, 

choosing the action that yields the lowest Q-value at each step, since it does not have the benefit of 

access to a policy.

Figure 17.36 shows the progress of the algorithm for the SSP problem depicted in Table 17.13. As 

the plot shows, the residual for the state s1 has dropped to zero by the 31st iteration. The reader should 

observe that the value function is close to the value function obtained by solving the linear equations 

for policy p2G, reproduced below, and also shown in the figure. Our informal discussion had suggested 

that p2G, the better of the two policies we looked at, is the optimal policy, and that has been borne out 

by the Value Iteration algorithm.

The values [Vp2G (s1), …, Vp2G (s7)] computed by solving the linear equations,

 Vp2G = [38.2075, 24.7908, 45.8741, 45.8741, 25.5211, 53.3027, 53.3027]
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FIGURE 17.36 The progress of the Value Iteration starting with all states initialized to 0. After 31 

iterations, the residual of S1 becomes 0. Observe that the Value function approaches the Value 

function of policy p2G which is the optimal policy.

The plot in Figure 17.36 has been obtained by initializing all values of the value function to 0 for the 

sake of illustration. In practice, one would use more informed initial values. For example, one could 

use the costs of reaching the goal for deterministic actions. The above plot appears similar to the plot in 

Figure 17.32, but one must keep in mind that the Value Iteration algorithm has to consider all possible 

actions at each step, as compared to a prescribed action in evaluating a given policy.

The Value Iteration algorithm converges to the optimal value functions for any initial values. This is 

an advantage over the Policy Iteration algorithm that required the initial policy to be proper.
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Application of each instance of the Bellman update may access all states and all actions, and is 

therefore of order |S| ¥ |A|. The backup is allied to each state and therefore the computational complexity 

of each iteration is O(|S|2 ¥ |A|).

Attempts to improve the computational complexity of Value Iteration have been along the following 

lines. The Gauss-Seidel version makes the updated values of states available for other states in the same 

iteration. Asynchronous Value Iteration algorithms question the need to update each and every state in 

each iteration. Prioritization of the order in which states are selected is another approach. The idea is to 

select those states for updating earlier which are likely to change. For example, if the successors of a 

state in the transition graph have not changed, then backing up values from them is not going to change 

the value of the state. The interested reader is encouraged to refer to (Mausam and Kolobov, 2012) for 

a detailed discussion of these algorithms.

In the following section, we look at an algorithm that employs heuristic search to cut down on the 

states that need to be explored.

Lao*

Computing a policy is a little bit like implementing Dijkstra’s shortest path algorithm for a complete 

graph, in the sense that a policy specifies the optimal actions for all possible starting states. Given our 

focus on planning, algorithms that explore the state space for reaching a goal state from a given start 

state, are of interest.

We look at an algorithm LAO* (Hansen and Zilberstein, 2001) that generalizes the heuristic search 

algorithm A* (see Chapter 5) and AO* (see Chapter 6) to solve planning problems formalized as MDPs. 

The main idea of heuristic search is to use a heuristic function that estimates the distance or cost to the 

goal state and drives the search towards those 

states that seem more promising. As in A* and 

AO*, if one employs a heuristic function that 

underestimates the actual optimal cost, even 

in LAO* one is guaranteed to find the optimal 

solution without necessarily exploring the entire 

state space.

The transition graph GS of the domain can 

be viewed as an AND-OR (AO) graph. A 

stochastic action from any state s is connected 

by a hyper-edge to a set of nodes, to one of 

which the system will move when the action 

is taken. Such actions are depicted by AND 

arcs or directed hyper-edges emanating from 

a node and ending up in the set of nodes that 

the action can lead to. They are also known as 

k-connectors. Figure 17.37 shows the stochastic 

domain of Figure 17.29 as an AO graph. Each 

hyper-edge is formed by arrows linked together 

by arcs. The stay actions have not been depicted, 

except for the goal state sG where it is the only 

action.

The scope of exploration for the LAO* algo-

rithm is the subgraph GStart of the transition 

S1

S3

S2

S6

S7

S5
S4

SG

FIGURE 17.37 A stochastic planning domain can 

be seen as an AND-OR graph. Each stochastic 

action is seen as an AND edge, leading to (one 

of) a set of states. The AND edge is a hyper-edge, 

depicted by a set of edges are connected together 

by an arc. The different actions available at each 

state are OR choices. Some actions have been 

drawn with dashed lines for clarity.



Chapter 17: Reasoning Under Uncertainty 793

rooted at a given start state Start. Even for GStart, the algorithm may explore only a small part depend-

ing upon how good the heuristic function it uses is. In our example, we will assume that the start node 

is s1 in the figure below. Observe that in this case, GStart=Gs1 is the entire transition graph.

The solution for a deterministic AO graph found by the AO* algorithm is an acyclic subgraph, that 

represents how a problem is decomposed into smaller problems. However, for MDPs which may have 

cyclic policies, a different approach needs to be taken. Hansen and Zilberstein consider AO graphs with 

loops and present the LAO* algorithm. Loops will be present in any indefinite horizon MDP, since 

cycling over them is what can delay the solution indefinitely.

The AO* algorithm, described in Section 6.3, maintains a subgraph at all times. This subgraph is 

initialized to the given (start) node and contains markers along the direction of the best solution found 

as judged by the heuristic function. A marker indicates the hyper-edge to be followed at that node. 

That is, for the SSP it specifies the action to be taken. The heuristic function h(n) for any node is an 

estimate of reaching the goal (solved) state starting from that node. It corresponds to the estimate of the 

value function for that node. The algorithm has two phases. In the forward phase, one travels down the 

marked path and expands one of the unsolved leaf nodes, and assigns the heuristic value to each new 

node added to the subgraph. In the backward phase, these new values are backed up to the root (start) 

node. The process continues till the leaf nodes are all solved nodes, and no unsolved nodes remain in the  

subgraph.

The LAO* algorithm maintains a subgraph G¢ made of a subset S¢ÕS of nodes from the state space, 

and on termination has actions prescribed for each node nŒGP¢. A partial solution graph G¢P is a subgraph 

of G¢ that contains exactly one action for each state in G¢. The algorithm maintains the best partial 

solution at all times, indicated by the action markers. A partial solution graph is a solution graph, if it 

has no nonterminal leaf nodes.

The prescription of actions in the partial policy p¢: S¢ÆA is akin to the markers that the AO* algorithm 

maintains.

In the forward phase, LAO* follows the marked path and expands a non-terminal leaf state. A 

nonterminal leaf state is a leaf state that is not a goal state. Note that the leaf state cannot be a state that 

is already in GP¢, which would be the case with loops. The set of nodes eligible for expansion is called 

the fringe of the graph G¢P. Expansion of the nonterminal leaf state is done by adding the hyper-edges 

corresponding to each action, and evaluating the heuristic values of the new nodes. If a successor 

is already in the graph GP¢ that is being constructed, that is there exists a loop, then it is not added 

again.

The main difference between AO* and LAO* is that instead of using a simple backup rule that AO* 

uses for cost revision, the LAO* uses a dynamic programming procedure like Value Iteration or Policy 

Iteration. This is required because the expected cost of executing an action depends upon the probabilities 

of each edge in the hyper-edge being executed, and the presence of loops.

The algorithm LAO* adapted from (Hansen and Zilberstein, 2001) is described at a high level in 

Figure 17.38. In the algorithm, G is the graph implicitly rooted at the start state, and GP represents the 

best partial policy found so far. This is equivalent to saying that GP is the subgraph rooted at the start 

node and marked as the best choice at each node. In the forward phase, the algorithm picks a node from 

the fringe of the best partial solution and expands it (like in AO*). In the backward phase (lines 9–10), 

it adopts a dynamic programming approach to update costs. Taking a cue from (Mausam and Kolobov, 

2012), we have restricted this dynamic programming to Policy Iteration. The interested reader is referred 

to (Hansen and Zilberstein, 2001) for a version that includes Value Iteration as well.
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LAO* (state space S, start state Start, action set A, costs C, e)
 1  G ¨ Start

 2  GP ¨ G

 3  Fringe ¨ {Start}   /* Forward phase */ 

 4  while Fringe π { }
 5        do   remove some node N from Fringe

 6             expand N and add its new children C to G

 7             compute the heuristic value of each child in C

 8        /* Cost revision */ 

 9             Z ¨ {N} » {ancestors of N in GP} 
10            perform Policy Iteration on Z

11       /* back to Forward phase */ 

12            GP ¨ subgraph with hyper-edges marked by best partial policy

13            Fringe ¨ leaves of GP that are not goal states

14  return GP

FIGURE 17.38 Like AO*, the algorithm LAO* works in two phases. In the forward phase, it follows 

hyper-edges marked by the best partial policy, expands a nonterminal node, and evaluates the 

heuristic values of the children. In the backward phase, it adopts a different approach for cost revision, 

since the graph may have loops. The cost revision process used here is Policy Iteration. The algorithm 

terminates when the graph for the best policy has no leaf nodes.

Observe that the set Z on which dynamic programming is done to solve for values includes (line 

9) only the expanded node N and its ancestors in the solution graph being constructed. It excludes 

the children C of node N. The reason for not including the children is that their value is determined 

by the heuristic function and cannot be changed in the process of running the dynamic programming 

procedure41. At the same time, the children do affect the value of N during the procedure, and through 

N, the values get propagated to the ancestors of N as well.

The LAO* algorithm takes a heuristic search approach to solving SSPs in which a start node has been 

specified. It employs a heuristic function to explore only that part of the state space which the heuristic 

function estimates to be cheapest. At the termination of the algorithm it finds the optimal policy p*. 

This policy may be cyclic in nature.

We look at the initial steps LAO* would take with our problem described in Figure 17.29 and Table 

17.13. The transition graph it explores has been depicted in Figure 17.37. It begins with the start node 

s1. Since this is the only leaf node, it expands it with the possible actions a12, a13, a14 and a15. This 

results in addition of the nodes s2, s3, s4 and s5 to the transition graph. As shown in Figure 17.39, the 

heuristic values of these four nodes are computed. The heuristic values we have used are the costs for 

deterministic paths from each node to the goal sG, as determined from Figure 17.29. The backed up cost 

for the node s1 is V a15(s1) = 21.7, which is backed up from the hyper-edge for action a15. This is the 

minimum of the possible values from each of the four actions as is shown in the figure. The graph GP 

is shown with dark solid lines, and contains the marked path along the hyper-edge for the actions a15.

The fringe is the leaves in GP, that is, the nodes s4 and s5. LAO* will pick one of them for expansion. 

While in general, any node from the fringe can be chosen for expansion, in practice it helps to make 

informed choices. Two approaches would be to either choose a node that has the highest probability of 

being reached, or the one that seems to be the cheapest.

41 Andrey Kolobov, personal communication.
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FIGURE 17.39 In the first cycle LAO* expands S1, the only node on the fringe. There are four 

actions a12, a13, a14 and a15 possible. Based on the costs in Figure 17.29 and the probabilities in 

Table 17.13, the best value that node S1 gets is by action a15, marked by the solid arrows. The 

fringe now is S4 and S5, and LAO* will expand one of them.

We assume that the node s5 is picked for expansion next. The resulting graph is depicted in Figure 

17.40. The two hyper-edges emanating from s5, correspond to the two actions a5G and a57, both leading 

to nodes sG and s7, but with different probabilities. The heuristic values are h(sG) = 0 and h(s7) = 34 

obtained, again, by finding the deterministic least cost. The estimate of s7 may seem high, but one must 

FIGURE 17.40 Expanding the fringe node S5 from Figure 17.39, there are two possible actions a5G 

and a57. The better one increases the expected cost (value) of S5 to 17.8 and the corresponding value 

for S1 to 24.2. LAO* marks the better options as shown by solid arrows. The forward phase now leads 

it to the fringe nodes S2 and S3, one of which it will expand next.
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remember that it is a long way from the goal node. The actual value is likely to be higher still. The best 

value for node s5 comes, not surprisingly, from action a5G and results in a value of 17.8, which is greater 

than the heuristic estimate of 15. This has to be propagated back into GP and results in a revised value 

V a15,a57(s1) = 24.8 for  the start node.

This revised value is not the lowest now. The lowest value is V a12(s1) = 22.6 corresponding to the 

action a12. The new Fringe is shown by the dark solid nodes, s2 and s3. LAO* will next pick one of them.

We will leave the action at this stage. The process of adding new nodes will continue. After (say) 

s2 is expanded one more, the node s6 will join the fray too. Then depending upon which partial policy 

looks better, AO* will continue expanding the fringe nodes till it has the solution graph. The reader is 

encouraged to continue this hand simulation of the algorithm,

LAO* will, like AO*, find the optimal policy provided that the heuristic function is admissible. That 

is, h(s) £ V*(s), the optimal value of the node. The values used in our example, which are the costs of 

the shortest deterministic paths, are indeed admissible, because the values of the states cannot go below 

these costs.

17.7 Combining Evidences to form Beliefs

Where do our beliefs come from?

According to the Nyaya Sutras of Gotama, there are four possible sources of knowledge—perception 

(pratyaksha), inference (anumãna), comparison (upamãna) and verbal testimony (shabda, which could 

be of God from the vedãs, or of a trustworthy human!) (Vidyabhusana, 2003).

Quine and Ullian (1978) concur. They assert that the two main sources of our beliefs are direct 

observation and inference. They ask the question as to how we come to believe that there are quarks, 

chromosomes and nebula when none of them are  directly perceptible. Obviously, we form theories and 

models of the world we live in and at times we have to revise our models (beliefs) when new evidence 

comes to light. Starting with the belief in the earth being flat and at the centre of the universe, we now 

accept that it is one on the nine (or eight? or ten?) planets going around our sun, which itself is a not 

too significant star in our galaxy.

In their book The Web of Belief, they describe a problem of updating beliefs when more evidence 

comes to the fore, with the following murder mystery (Quine and Ullian, 1978). “Let Abbot, Babbitt, 

and Cabot be suspects in a murder case. Abbott has an alibi, in the register of a respectable hotel in 

Albany. Babbitt also has an alibi, for his brother-in-law testified that Babbitt was visiting him in Brooklyn 

at that time. Cabot pleads alibi too, claiming to have been watching a ski meet in the Catskills, but we 

have only his word for that.”

It is clear that posing the above problem in logic, one would easily arrive at a conclusion. For example 

one could pose it as,

Murderer(abbott) ⁄ Murderer(babbitt) ⁄ Murderer(cabot)

"x (ValidAlibi(x) … ¬Murderer(x))

"x"y(Murderer(x) Ÿ xπy … ¬Murderer(y))

ValidAlibi(abbott)

ValidAlibi(babbitt)

The reader can verify that the above sentences lead us to believe unequivocally that Cabot is the 

murderer.
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However, there is a twist in the tale. “But presently Cabot documents his alibi—he had the good luck 

to have been caught by television in the sidelines at the ski meet.”

The reader should verify that now this results in a contradiction. The set of statements is inconsistent. 

And logic cannot deal with inconsistency (see Section 12.3.4). Holding all the given statements to be 

unequivocally true is not tenable. We know that one of the alibis must be false or there must be a hitherto 

unmentioned person. But given the information that we have, we must be deal with the statements with 

a flexible amount of belief in them. How valid would an alibi provided by a brother-in-law would be? 

Could Abbott have an accomplice working in the hotel? We know each of them are either true or false, 

but do not know enough to decide the truth values.

One approach to dealing with such problems is to use the probabilistic approach. In doing so, one 

would assign some prior probabilities to the three suspects (being the murderer). For example we could 

say,

 P(A-murderer) = P(B-murderer) = P(C-murderer) = 1/3

Then we could assign degrees of belief to the possibility that they have a valid alibi, P(A-alibi), 

P(B-alibi) and P(C-alibi). Then we could relate the alibis to the probability of them being murderers, 

computing the posterior probabilities of the form P(X-murderer | X-alibi). Then we could make explicit 

the relation between a valid alibi to the reliability of the source.

In general, such a process of investigation would require collecting together evidence from diverse 

sources and combining them into a final conclusion. In the Bayesian framework, one would have to set 

up the different conditional probabilities and populate them with values. The approach would find it 

difficult to come to conclusions with partial incomplete evidences.

One approach that allows us to combine evidences together as and when they come is the Dempster-

Shafer theory of evidential reasoning, which is a generalization of Bayesian theory of subjective 

probability (Dempster, 1968), (Shafer, 1976).

17.7.1 The Dempster-Shafer Theory

The Dempster-Shafer (D-S) theory of evidential reasoning is essentially a theory of combining evidences 

from different sources into one coherent belief system. Unlike the probabilistic approach, it does not 

require the complete set of prior and conditional probabilities. Let us say that we are investigating a set 

of exhaustive and mutually exclusive set hypotheses. The set of these hypotheses is called the frame 

of discernment. Assuming that there are k hypotheses, the frame of discernment is Q = {h1, h2, …, hk}. 

The set is exhaustive in that no hypothesis has been left out, and it is mutually exclusive, in that only 

one hypothesis is true. In diagnosis terminology, we are assuming that there is a single fault. In medical 

terms, the patient is suffering from exactly one of the diseases in the frame of discernment. From a 

detective’s point of view, there is only one culprit, and she is present in the set.

We illustrate the theory with the following (fictitious) story:

In a certain country, the government had decided that cartoons lampooning persons in authority 

are not to be allowed. Yet in a certain college one day, a cartoon was found on the notice board. 

The cartoon made fun at the slow pace at which a senior teacher was grading examination papers. 

The senior teacher found it quite funny and laughed it off, explaining that the grading had to be 

done thoroughly.  But some of the class teachers would have none of it. They assumed it must be 

one of the four friends in the art class, Aditi, Amala, Kopal, and Urvi, stated here in alphabetic 

order and not based on the class teachers’ degree of suspicion, and started the investigation. M 

(we will not name the teachers) said that she was 60% sure that it was Aditi or Urvi because they 
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were good at drawing. K said that he was 80% sure that it was Urvi or Amala because they were 

known to be girls of free spirit. P said that there was a 50% chance that it was Kopal or Amala, 

because he had seen them laughing near the water cooler.

Before we discuss the D-S theory, let us recap how the Bayesian approach would proceed. First, we 

would need the prior probabilities of the four students having drawn the cartoon. Then, we would need 

the likelihoods that if each had drawn the cartoon, they would have put it up. Then we would compute 

the posterior probabilities of each having drawn the cartoon, knowing that it had been put up. It is not 

clear how the evidence (opinion?) of the class teachers would be combined. Further there are hidden 

pitfalls in propagating changing posterior values that are beyond the scope of this text to explore. The 

interested reader is referred to (Pearl, 1988) for an indepth investigation.

The D-S theory operates with the power set of the frame of discernment and begins by assigning the 

entire belief or mass function to Q. Then as more evidence arrives, it distributes the mass to the other sets.

Let us take each of the three statements as pieces of evidence. Taken individually, they result in the 

following mass functions.

 m1({Aditi, Urvi}) = 0.6 and m1(Q) = 0.4

 m2({Amala, Urvi}) = 0.8 and m2(Q) = 0.2

 m3({Amala, Kopal}) = 0.5 and m3(Q) = 0.5

Observe that the three mass functions allocate the remaining mass to Q. Thus, the first statement 

assigns a belief mass of 0.6 to the set {Aditi, Urvi} and 0.4 to Q. This amounts to saying that there is 

0.6 belief in the statement S = “One of Aditi or Urvi is the culprit”, but it does not assign the remaining 

belief to ¬S (which would be equivalent to saying that “One of Amala or Kopal is the culprit”. Instead, 

it assigns the remaining mass to Q which amounts to saying that “One of Aditi, Amala, Kopal or Urvi 

is the culprit”, which is equivalent to saying that we do not know who the culprit is.

This is one way the D-S theory differs from probability theory. If in probability theory one would 

have said that P(S) = 0.6 then it would necessarily mean that P(¬S) = 0.4 because the two must sum to 

1. The D-S theory assigns the belief mass to the statement pertaining to the evidence, and assigns the 

remaining to the frame of discernment.

The power set of Q is the set of possible statements one can assign belief to, each set being a 

disjunction of culprits (or a conjunction of suspects). The belief assigned to each set Bel(A), AÕQ, is 

the sum of belief mass of all its subsets.

 Bel(A) = SBÕA m(B)

When the first piece of evidence comes in, the mass distribution is m1({Aditi, Urvi}) =  0.6 and m1(Q) 

= 0.4. This corresponds to Bel({Aditi, Urvi})=0.6, Bel(Q)=1.0, and for every set S such that {Aditi, 

Urvi}ÕS, Bel(S)=0.6. The rest have zero belief.

When there are more than one pieces of evidence, one can use the Dempster’s rule to combine the 

evidences. Let mj and mk be two mass functions. Then the combined mass function mjk=mj≈mk, given 

by Dempster’s rule, is as follows.

 mjk(A) = mj≈mk(A) = SX«Y=A mj(X) mk(Y)

That is, after combining the two sets of evidences with belief mass mj and mk, the updated mass for 

any set A is the sum of the products of mj(X) and mk(Y) for all pairs X and Y such that X«Y=A. In the 

simple case (as in our example) when there is only one such pair, the summation is not needed, and is 

illustrated as follows.
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The four sets which have the evidence to be combined are {Aditi, Urvi} and Q for m1, and {Amala, 

Urvi} and Q for m2. The table below contains all no empty intersections for which the Dempster’s rule 

results in nonzero mass.

Table 17.15 Combining the first two set evidences

m12 = m1≈m2
m1({Aditi, Urvi}) = 0.6 m1(Q) = 0.4

m2({Amala, Urvi}) = 0.8 m12({Urvi}) = 0.48 m12({Amala, Urvi}) = 0.32

m2(Q) = 0.2 m12({Aditi, Urvi}) = 0.12 m12(Q) = 0.08

Thus we can see that the belief mass has been redistributed to four sets—{Urvi}, {Aditi, Urvi}, 

{Amala, Urvi} and Q. The updated distribution is shown in Figure 17.41.

Aditi, Amala, Kopal

Aditi, Amala

Aditi Amala Kopal Urvi

Aditi, Kopal Aditi, Urvi Amala, Kopal Amala, Urvi Kopal, Urvi

Aditi, Amala, Urvi Aditi, Kopal, Urvi Amala, Kopal, Urvi

F

Q 0.08

0.12 0.32

0.48

FIGURE 17.41 The belief mass distribution after two statements have been combined. For any set 

A, the belief Bel(A) is the sum of beliefs of all its subsets. Observe that Bel({Aditi, Urvi}) is still 0.6 and 

Bel({Amala, Urvi}) is 0.8.

The Dempster-Shafer theory defines the amount of belief in any set A as an interval defined by 

two values. One, Bel(A) is the minimum belief one has in the set. The other P(A), or plausibility of A, 

defines the maximum possible belief in the set A. The resulting interval <Bel(A), P(A)> is defined as the 

confidence interval. For a consistent set of beliefs Bel(A)<P(A). The plausibility of A, P(A) is defined as,

 P(A) = 1 – Bel(Ac)
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where Ac is the complement of set A with respect to Q. The confidence intervals for the four sets in 

our example are given below. Recall that the belief in a set is the sum of belief mass of all its subsets.

 Bel({Urvi}) = m12({Urvi}) = 0.48

 P({Urvi}) = 1 – Bel({Aditi, Amala, Kopal}) = 1 – 0 = 1

The confidence interval for {Urvi} is <0.48, 1.0>, saying that the minimum belief in the hypothesis 

is 0.48 and the maximum possible belief is 1.0. Likewise,

 Bel({Aditi, Urvi}) = m12({Aditi, Urvi}) + m12({Urvi}) = 0.12 + 0.48 = 0.6

 P({Aditi, Urvi}) = 1 – Bel({Amala, Kopal}) = 1 – 0 = 1

 Bel({Amala, Urvi}) = m12({Amala, Urvi}) + m12({Urvi}) = 0.32 + 0.48 = 0.8

 P({Amala, Urvi}) = 1 – Bel({Aditi, Kopal}) = 1 – 0 = 1

 Bel(Q) = m12({Aditi, Urvi}) + m12({Urvi}) + m12({Amala, Urvi}) + m12(Q)

    = 0.12 + 0.48 + 0.32 + 0.08 = 1.0

 P(Q) = 1 – Bel(F) = 1 – 0 = 1

Observe that the overall beliefs in the two sets for which evidence was received {Aditi, Urvi} and 

{Amala, Urvi} remained unchanged after combining the two evidences.

Let us compare this to reasoning with logic, with the assumption that the statements are hundred 

percent true. The problem could be stated as,

 Cartoonist(Aditi) ⁄ Cartoonist(Amala) ⁄ Cartoonist(Kopal) ⁄ Cartoonist(Urvi)

 Cartoonist(Aditi) ⁄ Cartoonist(Urvi)

 Cartoonist(Amala) ⁄ Cartoonist(Urvi)

 "x"y(Cartoonist(x) Ÿ xπy … ¬Cartoonist(y))

Then the only conclusion that one can draw is that Urvi is the one who put up the cartoon. Given that 

the statements are not a hundred percent true and one has a partial belief in each, the D-S theory results 

in a partial belief in the same statement. Observe that {Urvi} is the only singleton set (which satisfies 

the mutual exclusion property) that has positive belief.

Now consider the third piece of evidence that comes in the points to the set {Amala, Kopal}, with belief 

mass 0.5. In the logic framework if one were to treat it as a true statement and add (Cartoonist(Amala) 

⁄ Cartoonist(Kopal)) to the set of statements, it would result in a contradiction. The D-S theory updates 

the belief mass distribution as follows.

Table 17.16 The Dempster combination rule after the third piece of evidence

m123 = m12≈m3
m3({Amala, Kopal}) = 0.5 m3(Q) = 0.08

m12({Urvi}) = 0.48 m123(F) = 0.24 m123({Urvi}) = 0.24

m12({Aditi, Urvi}) = 0.12 m123(F) = 0.06 m123({Aditi, Urvi}) = 0.06

m12({Amala, Urvi}) = 0.32 m123({Amala}) = 0.16 m123({Amala, Urvi}) = 0.16

m12(Q) = 0.08 m123({Amala, Kopal}) = 0.04 m123(Q) = 0.04

The first thing to observe is that the empty set signifying inconsistency has acquired a nonzero mass 

(0.24 + 0.06 = 0.30). This inconsistency, as we have seen above, is due to the (somewhat unprincipled 

and) inconsistent allegations made against different sets of students. The resulting mass distribution is 

depicted in Figure 17.42.
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Aditi, Amala, Kopal

Aditi, Amala

Aditi Amala Kopal Urvi

Aditi, Kopal Aditi, Urvi Amala, Kopal Amala, Urvi Kopal, Urvi

Aditi, Amala, Urvi Aditi, Kopal, Urvi Amala, Kopal, Urvi

F

Q 0.04

0.240.16

0.3

0.04 0.160.06

FIGURE 17.42 The final belief mass distribution after the three statements have been combined. 

Observe that with the third piece of evidence, some mass has gone to the empty set which signify a 

degree of inconsistency.

Let us compute the confidence intervals for the resulting sets,

 Bel({Urvi}) = m123({Urvi}) + m123(F) = 0.24 + 0.3 = 0.54

 P({Urvi}) = 1 – Bel({Aditi, Amala, Kopal})

 = 1 – (m123({Amala}) + m123({Amala, Kopal}) + m123(F))

 = 1 – (0.16 + 0.04 + 0.30) = 1 – 0.50 = 0.50

The confidence interval for {Urvi} has now become <0.54, 0.5>, which signals inconsistency. The 

remaining confidence intervals are,

 Bel({Amala}) = m123({Amala}) + m123(F) = 0.16 + 0.3 = 0.46

 P({Amala}) = 1 – Bel({Aditi, Kopal, Urvi})

 = 1 – (m123({Urvi}) + m123({Aditi, Urvi}) + m123(F))

 = 1 – (0.24 + 0.06 + 0.30) = 1 – 0.60 = 0.40

 Bel({Aditi, Urvi}) = m123({Aditi, Urvi}) + m123({Urvi}) + m123(F)

 = 0.06 + 0.24 + 0.3 = 0.6

 P({Aditi, Urvi}) = 1 – Bel({Amala, Kopal})

 = 1 – (m123({Amala}) + m123({Amala, Kopal}) + m123(F))

 = 1 – (0.16 + 0.04 + 0.30) = 1 – 0.50 = 0.50

 Bel({Amala, Urvi}) = m123({Amala, Urvi}) + m123({Amala}) +m123({Urvi}) + m123(F))

 = 0.16 + 0.16 + 0.24 + 0.3 = 0.86

 P({Amala, Urvi}) = 1 – Bel({Aditi, Kopal})

 = 1 – m123(F)) = 1 – 0.3 = 0.7

 Bel({Amala, Kopal}) = m123({Amala, Kopal}) + m123({Amala}) + m123(F))

 = 0.04 + 0.16 + 0.3 = 0.50
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 P({Amala, Kopal}) = 1 – Bel({Aditi, Kopal})

 = 1 – m123(F)) = 1 – 0.3 = 0.7

 Bel(Q) = 1.0

 P(Q) = 1 – Bel(F) = 1 – 0.3 = 0.7

One can observe that in every case above the plausibility (which signifies maximum possible belief) 

has gone below the belief. It has been suggested that an alternate formula for computing be used in 

which one could normalize away the inconsistency. In the revised formula, one does not count the belief 

assigned to the empty hypothesis, but instead divides the beliefs obtained by a normalizing factor that is 

proportional to the degree of inconsistency. This could result in some counter-intuitive results that mask 

the inconsistency though (see Exercise 22). The revised Dempster’s rule is as follows,

 mjk(A) = mj≈mk(A) = 1/1–K SX«Y=A and AπF mj(X) mk(Y)

where K is the total belief in F,

 K = S X«Y= F mj(X) mk(Y)

The reader is encouraged to apply the revised formula to the example above.

17.8 Discussion

In this chapter we have discussed some techniques that have been proposed to deal with uncertainty. 

In the real world, any agent is faced with uncertainty and has to deal with in some way. The various 

approaches discussed here involve default reasoning, assumption based reasoning, qualitative reasoning, 

abduction and probabilistic approaches to characterize uncertainty. Every approach requires its own 

representation and reasoning schemes. 

Human beings deal with uncertainty in a variety of ways. Apart from first principles mechanisms to 

reason with uncertain knowledge described in this chapter, we also exploit experience and knowledge 

gleaned from other sources. We do not always solve the current problem, but often rely on memory 

to produce a solution. Some of these techniques have been discussed in earlier chapters. Even such 

approaches require issues in representation and reasoning (principally retrieval) to be addressed.

The ontological and epistemological problems associated with knowledge representation are the key 

to artificial intelligence. How does an agent structure knowledge and how does it acquire the knowledge? 

In the next chapter, we look at one of the last frontiers of AI research—machine learning. In the end, 

the agent has to acquire knowledge on its own, from its experiences, from being taught, by observing 

and generalizing. The ability to augment its knowledge base would be a key to building an autonomous, 

intelligent agent.

  Exercises

 1. Given the knowledge base below,

KB: {  "x "y (Friend(x,y) … Friend(y,x))
       "x "y (Friend(x,y) Ÿ ¬Isolated(y) … Chat(x,y))
       Friend(aditi, shubhagata), Friend(aditi, jennifer),

       (Isolated(jennifer) ⁄ Isolated(shubhagata))
       }

  what is the answer to the query $x(Chat(aditi, x)) using (a) the closed world assumption, and 

(b) Circ[KB; Isolated]? What about Chat(aditi,shubhagata) ⁄ Chat(aditi,jennifer)?



Chapter 17: Reasoning Under Uncertainty 803

 2. Given the following default theory,

F1 = { Friend(aditi, shubhgata), Friend(aditi, jennifer),

     (Isolated(jennifer) ⁄ Isolated(shubha)}
D1 = { <Friend(aditi,shubha): ¬Isolated(aditi)Ÿ¬Isolated(shubha)/

Chat(aditi,shubha)>

      <Friend(aditi,jennifer): ¬Isolated(aditi)Ÿ¬Isolated(jennifer)/
Chat(aditi,jennifer)>

     }

  Construct all extensions of the default theory. What conclusions about the Chat predicate can be 

drawn?

 3. Generate all the expansions of the following knowledge base and identify the stable ones

KB: {"x "y (Friend(x,y) Ÿ ¬BIsolated(x) Ÿ ¬BIsolated(y) … Chat(x,y))
    Friend(aditi, jennifer), Isolated(jennifer)

    }

 4. Discuss the implications of replacing the universal statement with the following one

"x "y (Friend(x,y) Ÿ B¬Isolated(x) Ÿ B¬Isolated(y) … Chat(x,y))

  in the knowledge base KB5 reproduced below. Construct all stable expansions and identify the 

stable ones.

KB5: {  "x "y (Friend(x,y) Ÿ ¬BIsolated(x) Ÿ ¬BIsolated(y) … Chat(x,y))
         Friend(aditi, shubhgata), Friend(aditi, jennifer),

         Isolated(jennifer)

       }

 5. Consider the following facts that Raymond might be working with,

{ "x (Lying(x) … GetQuestioned(x),
(¬BLying(shashi) … Lying(lalit)), (¬BLying(lalit) … Lying(shashi))
 }

  Who do you think should “get questioned”? Do you think this KB allows for the fact that both 

might be lying, or neither?

 6. What are stable sets in the context of autoepistemic logic? How are they constructed? What are 

the stable sets for the following sets of sentences?

 (a) {(¬BFlat(Earth) … Flat(Earth)), Hot(Sun), Round(Moon)}

 (b) {(BFlat(Earth) … Flat(Earth)), Hot(Sun), Round(Moon)}

 7. Given the following set of statements,

Bird(tweety), Bird(chilly), Bird(chirpy), Myna(chirpy)

chirpyπchilly, chirpyπtweety, chilly πtweety,
Penguin(chirpy) V Penguin(chilly)

"x (Penguin(x) … ¬Flies(x))
"x (Penguin(x) ∫ ¬Myna(x))

  Express the statement “In general, birds fly” and show how the queries “Flies(tweety)?”, 

“Flies(chilly)?”, “Flies(chirpy)?” are answered using,

 (a) Circumscription

 (b) Autoepistemic logic

 8. In the following problem (due to Kenneth Forbus), a ship generates superheated steam to drive its 

propulsion system. Water at sea temperature TInput is taken into a boiler and steam is generated. 



804 A First Course in Artificial Intelligence

This steam is pushed through a superheater that increases the temperature to around 500° Celsius. 

Let us say that the ship travels from the Arctic seas to the tropics, so that the water is taken in at 

a higher temperature. Does this affect the output temperature TOutput? If yes, how?

Water

Input

from

the sea Boiler

Tinput

Superheater

Tout ÿ 500° Celsius

Superheated

Steam

Ejected

FIGURE 17.43 The propulsion system of a steam ship.

 9. In the scenario depicted in Section 17.2, assume that the walls in the room have windows that are 

open. How will the qualitative analysis of the moving ball change as a consequence?

 10. Create an envisionment similar to the Figure 17.5, for a ball thrown at an angle in a two-dimensional 

room without windows.

 11. In the above envisionment, represent the different qualitative states using the <qmag, qdir> 

representation of QSIM.

 12. Given the steady state of the two tank system described in Table 17.7, determine the qualitative 

behaviour of the system, if tank A were to be suddenly filled to the brim.

 13. Given a lattice representing the power set of components, and a set of candidates for diagnosis 

in the lattice (as in Section 17.3.3), write an algorithm to accept a new conflict set and update the 

set of candidates for diagnosis.

 14. Given the conflict <M1, M2, A1> and the observations F1=10 and F2=12 in Section 17.3.1, derive 

another constraint by deriving the value of C2 in two different ways.

 15. In the diagnosis example considered in the text (Figure 17.12), the discrepancy between the 

observed value F1=10 and expected value F1=12 led to the candidates {M2, A2} and {M3, A2}. In 

what way could these diagnoses explain the observed discrepancy?

 16. Write an algorithm that takes a set of candidate diagnoses and a new conflict and generates the 

new set of candidates.

 17. After processing the input F1=10 and F2=12, one more measurement is made. Extend the diagram 

in Figure 17.15 to incorporate the results of the new measurement, in each of the following cases 

independently.

 (a) C1 = 4

 (b) C1 = 6

 (c) C1 = 8

 (d) C2 = 4

 (e) C2 = 6

 (f) C2 = 8

 (g) C3 = 4

 18. Replace the contradiction node  in Figure 17.21 with a node containing the datum S, and reassign 

the labels to all the nodes.

 19. Given that you have buckets red and green which you choose with probabilities 0.3 and 0.7. Let 

the red buck have 90 black balls and 10 white balls, while the blue one has 10 black ones and 90 
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white ones. Suppose you choose a bucket randomly, as per the given probabilities, and randomly 

pick a ball from the bucket. What is the probability of picking up a black ball? Alternatively, if 

you have a black ball, which bucket did it most likely come from?

 20. The birthday clash problem. How many people do you need in a room so that the probability of 

a birthday clash is greater than 0.5?

 21. A variation on the three prisoners paradox from (Gardner, 1959a; 1959b) and (Pearl, 1988). Three 

prisoners42 A, B and C are in a jail to be tried for a massive XYZ scam. The judgement is to be out 

the next morning. Only one of them will be declared guilty, and the other two will be released. 

The prison guard knows the identity of the convicted person.

   Prisoner A requests the guard to hand over a letter to one of the other two who is going to be 

released. The guard agrees and does so. Prisoner A then asks the guard as to whom he gave the 

letter to, and the guard informs him that it was to prisoner B.

   Prisoner A reasons as follows, “Before I spoke to the guard, the chances of me being convicted 

were 1/3. Now that I know that B is going to be released, only C and I are left. So the chances are 

now 1/2. What did I do wrong?”

   Is the prisoner A’s reasoning correct?

 22. The Monty Hall problem, a variation of the three prisoners paradox, is based on a game show 

hosted by Monty Hall (see http://en.wikipedia.org/wiki/Monty_Hall_problem).

   You are shown three closed doors by the host of a game show, Monty. Behind one of the doors 

is a car (which you want) and behind the other two is a goat (which you don’t want). Let us say 

you choose a door X. Then Monty opens another door Y (πX, he can always do that). You get a 

chance to switch to door Z (πX, πY). The question is, do you gain from switching to Z?

 23. Pose the problem in Section 17.6.1 to find the maximum a posteriori hypothesis problem as solve 

it. Assume the prior probabilities as P(Aditi) = P(Urvi) = 0.3 and P(Amala) = P(Kopal) = 0.2. 

Let the likelihoods of the cartoon being put up be P(Cartoon|Amala) = P(Cartoon|Urvi) = 0.6, 

P(Cartoon|Aditi) = 0.5 and P(Cartoon|Kopal) = 0.55. What is the most likely hypothesis? How 

will you incorporate the third piece of evidence?

 24. Given that a reliable doctor believes that the patient has meningitis with probability 0.99 or a 

brain tumour with probability 0.01. Let another equally reputable doctor believe that the patient 

has suffered a concussion with probability 0.99 and brain tumour with probability 0.01. What is 

the most likely diagnosis obtained by combing the two pieces of evidence in the D-S approach 

with the revised (normalized) Dempster’s rule for combining evidence?

—This problem was apparently posed by Lotfi Zadeh (1984) to show that the revised 

rule leads to a counterintuitive conclusion. Also see http://en.wikipedia.org/wiki/

Dempster%E2%80%93Shafer_theory

 25. The adjoining Figure 17.44 depicts with shaded areas the time intervals your local news channel 

allocates to content. The rest of the time is devoted to advertisements. Assuming that we count 

time in minutes, the content durations are (<0,7>, <10, 13>, <17, 20>, <21, 22>) and similarly the 

next 30 minutes. The intervening gaps between the shaded areas are of 3, 4, 1 and 8 minutes every 

half an hour. Assuming that you switch on the television and are confronted with an advertisement, 

what is the likelihood that the time is in the interval of 8 minutes, starting at 22 minutes past the 

hour?

42 The names have been withheld and are anyway fictitious. 
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 26. Consider the transition graph in Figure 17.37. Consider it to be an indefinite horizon MDP with 

the following reward structure R(sG) = 100, R(s6) = –100 and all other states having zero reward. 

Let the costs of moves and probabilities be defined as the problem as per Figure 17.29 and Table 

17.13. Pose the above problem as an SSP.

 27. Consider the following stochastic shortest path problem described in 

(Hansen and Zilberstein, 2001). Figure 17.45 depicts a grid world in 

which the agent has to move from square 1 to square 4. The moves 

available are Up, Down, Left, and Right. Each move is applicable, 

if there exists a square in the direction of the move. Each move 

succeeds with a probability 0.5 and cost 1.

   Draw the transition graph for the above problem and show how 

LAO* will solve it. [Caution: Treat self-loops carefully during cost 

revision.]

 28. The Coverup Bureau said that either Mr. K or Mr. Y had stolen the 

goods. Its chief said he was 70% sure of it. The Cocktail Circuit 

said with 50% confidence that Mr. C had done no wrong. The Jumbo Circus claimed that it was 

either Mr. K or Mr. R with 80% certainty.

   If you were to believe in what they said, who according to you is the prime culprit, and what 

is your degree of belief in your conclusion?

   What is the confidence interval supporting the statement “It was either Mr. Y or Mr. R”? Justify 

all your answers.

 29. Sherlock brooded over the piece of paper he had just received.  “It is either Tinker, or Tailor”, he 

muttered finally, “but my sources are only 50% reliable”. “You could be right”, added Pradosh, 

“because my investigations reveal, with 0.8 confidence that it is either Tinker or Soldier or Spy”. 

They all looked at Hercule who, twirling his moustache, said, “I think that it is either Tailor or 

Spy. I am 60% certain of it.”

   Everybody knew that one of Tinker, Tailor, Soldier and Spy had stolen the document, but none 

was quite sure who. After a while George, who had been listening intently said, “The evidence 

collected by you all is inconsistent. However, the best we can do is to conclude that ____ is the 

culprit.” The name was lost in thunder.

 (a) Who, according to you, is the culprit? Quantify your belief.

 (b) Is George’s remark of inconsistency justified? 

 (c) What is your final belief in Sherlock’s statement?

2 3
4

Goal

1

Start
5

678

FIGURE 17.45 A grid 

world.

FIGURE 17.44 The shaded areas show the time interval when content is broadcast every hour.
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 (d) What is your belief in the statement that Soldier is not the culprit?

 (e) What is your belief in the statement that Spy is not the culprit?

  Give reasons for your answers.

 30. Consider the Dempster-Shafer approach to evidential reasoning. Given a frame of discernment 

Q, let there be three sets A1ÃQ, A2ÃQ, A3ÃQ for which some evidence has been received with 

m1(A1), m2(A2) and m3(A3) degrees of support. Given a set AÕQ, how does one compute Bel(A)? 

What is the associated confidence interval?



I  n the preceding chapters, we have looked at approaches to problem solving; both from first 

  principles and by means of exploiting knowledge and experience. Solving problems by first principles 

requires the representation of the domain, and that involves an ontological commitment that the system 

builder has to make. Further, general purpose search methods need heuristic guidance to be effective 

for solving large problems. This demands a certain amount of knowledge to be fed into the system. 

Knowledge based methods too require a domain ontology to be defined. In addition, they require the 

specific problem solving knowledge that is harnessed for solving the problem. When this results in 

vast amounts of knowledge to be stored in some form, these methods in turn need to search through the 

knowledge that is represented. In summary, problem solving demands an eclectic mix of search methods 

operating upon different knowledge representations.

 Where does this knowledge come from? If one were to rely on human programmers to provide all 

knowledge and fine tune the system, then one, the evolution of machine intelligence would be slow and two, 

not adaptive to a changing world. Machines need the ability to explore the world and acquire the requisite 

knowledge they need for problem solving on their own. In that sense, machine learning is the final frontier.

 All knowledge accrues through a process of learning. Learning could take place through a transfer pro-

cess in which a teacher imparts knowledge to the learner. The learner still needs to know how to assimilate 

the knowledge received. At a more fundamental level, learning could take place via a process of induction 

and generalization from examples. Here again, the learner needs to have a bias and efficient procedures.

 Human beings start off learning at a very slow pace. It takes months of patience and repetition by 

parents before a child starts forming concepts, naming them, refining them, and learning to express 

them in language. But once a core kernel of concepts is formed, learning accelerates and the learner 

accumulates knowledge at a rapid pace.

 Machine Learning (ML) is concerned with constructing computer systems that can adapt to their 

environment and learn from experiences. All of us come across such systems in our day-to-day life. For 

example, we use our favourite search engines to obtain information about a topic of interest, and find 

advertisements targeted at us. The systems serving context specific advertisements are also ML systems. 

The query recommendation systems are other ML systems that we encounter, while email or Web searches. 

Anyone who has visited a popular bookselling Website would remember recommendations that crop up 

as one searches for a book. Spam email filters are also ML systems that automatically tag spam emails.

 Tom Mitchell, one of the pioneers of ML, defines it as follows in his book Machine Learning 

(Mitchell, 1997).

“A computer program is said to learn from experience E with respect to some class of tasks T 

and performance measure M, if its performance at tasks in T, as measured by M, improves with 

experience E.”

Machine Learning
with Ashish Tendulkar

Chapter 18
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A well specified ML problem should include:

 1. A clearly defined problem solving task, 

 2. A performance metric, and

 3. A source of training experience.

A Machine Learning system learns to perform a specific task using a set of training examples. For 

example, let us assume that we are required to design a spam filter that automatically identifies spam 

emails. There are several issues that have to be addressed while building such a system. The most 

important issue is to define a spam email. We may not be able to define the characteristics of spam 

email. In other words, the concept of spam email cannot be unambiguously defined. On the other hand, 

however, we may be able to give examples of spam emails. An ML system can be built to use these 

examples to train a program that functions as a spam filter. These examples will help us uncover a few 

characteristics of such emails. The simplest kind of spam emails are usually received from unknown email 

addresses. They may contain typical keywords such as “lottery”, “free”, etc. The occurrences of such 

words may give us some cues to the email being spam. How does one leverage this data for designing 

a spam filter program? Various ML approaches, proposed in literature, can be applied to design a spam 

filter. It may be possible to design some rules that define spam emails. Such rules can be used in spam 

filter to tag emails as potential spam. The performance of such ML systems would be evaluated, based 

on their ability to accurately achieve the intended task.

ML is related to various fields such as AI, probability and statistics, linear algebra, information 

theory, control theory, philosophy, computational complexity theory, psychology and neurobiology. ML 

algorithms have proven to be of great practical value in a variety of application domains such as speech 

recognition, classification of astronomical structures, face recognition, computer vision, autonomous 

driving, health care and medical applications along with many other scientific applications. In general, 

ML techniques are useful in the following cases:
 ● Mining patterns from large databases as in Data Mining (for example to analyse outcomes of 

medical treatment from patient database, or to learn general rules for creditworthiness from 

financial database)
 ● Poorly understood domains where humans may not have enough explicit knowledge to develop 

effective algorithms (for example, human face recognition from images)
 ● Domains where programs must adapt to the dynamically changing conditions

The basic idea in machine learning is to learn from data. For example, if a traveller from space were 

to land in one of our forests, she would look at the surroundings and form a concept of a “tree” which 

has a trunk, branches and green leaves. The set of instances that are used to learn the concept is called 

the training data or training samples. At a very broad level, ML techniques can be categorized into two 

types namely, (i) Supervised Learning, and (ii) Unsupervised Learning. These techniques differ in the 

way training examples are specified to the learning algorithm. In case of supervised learning, training 

examples are specified along with their class labels. On the other hand, the class labels are not supplied 

along with training examples in unsupervised learning. For example, a spam filter is trained by supervised 

learning techniques. Its training data would contain emails along with their respective labels: spam or 

not spam. These labels may have been provided by users who would have marked some emails as spam.

The foremost important element of the learning system is the training experience. We refer to it as 

training data and denote it by the training set X, which consists of a set of examples with or without the 

associated label. Each example xi is represented using a set of features or attributes, which are specified 

by domain experts. Let d be the total number of features. In other words, xi is a d dimensional vector 

and X contains n such vectors. Each feature is either discrete or continuous, based on the values it takes. 

The discrete feature takes a value from a finite set of possible values. For example, a feature may take 
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one of the two values from the set: {yes, no}. The continuous feature takes a value from the set of real 

numbers. The height of students in a class is an example of a continuous feature. The label associated 

with training example is from a set of labels Y.

Let us see what the training data for a spam filter looks like: The training examples presented to the 

learning algorithm are emails, each with one of the two labels spam or not-spam. Thus, Y = {spam, not-

spam}. Each email can be represented using the set of words contained in it. In that case, the total number 

of features d used for email representation is equal to the number of unique words in the dictionary. Each 

email xi has d features. The k-th feature of i-th email, xi
(k), takes either a real value denoting relative 

frequency of the k-th word or a binary value indicating whether the k-th word occurred in the email. In 

addition, email xi has an associated class label yi Œ Y that indicates whether the email is spam or not. 

Thus, the training data, X contains pairs (xi, yi). Each training example, provided with spam filter, has 

exactly one label. However, there are applications where an example may take more than one label.

The goal of supervised learning is to learn the class conditional probability distribution of examples 

over the feature space (known as generative models) or to learn a separator or boundary between the 

classes (known as discriminative models) and use them to label each new example with one of the classes. 

In generative models, the algorithm assigns a probability of belonging to a particular class for each new 

instance. In discriminative models, a decision procedure assigns a label to new instances.

There are two phases in supervised learning: (i) Learning or training and (ii) Inference. In the training 

phase, the algorithm learns a concept from the training data. In the inference phase, the system uses the 

learned knowledge to classify new instances. The supervised learning set-up consists of a set XD of n 

training examples that are independent and identically distributed (i.i.d). Each training example xi Œ XD is 

represented using d features or attributes. Let Y  be a set of class labels. The generative models explicitly 

model class conditional probability distribution of features and learn the associated parameters as part 

of the training process. The Naive Bayes (NB) classifier and the Hidden Markov Model (HMM) are 

examples of generative supervised learning algorithms. The inference stage is used to assign a label to 

new examples using the trained model. The probability of a new example xnew belonging to class yŒY 

can be calculated using Bayes’ theorem as follows:

 P(y|xnew) = 
P(xnew | y)*P(y)
—

P(xnew)
 (18.1)

 = 
P(xnew | y)*P(y)
—
SyŒY P(xnew | y)*P(y)

 (18.2)

We need to learn P(xnew | y) and P(y) for each class. The supervised learning algorithms use different 

models for P(xnew | y) that can be learnt from XD. The parameters of a given model are determined using 

either maximum likelihood estimation (MLE) or Bayesian estimation. MLE completely relies on XD for 

parameter estimation, while Bayesian estimation incorporates prior user knowledge. MLE and Bayesian 

estimates agree on the class labels in the limit of a large number of training examples. On the other hand, 

discriminative techniques do not explicitly model class-conditional distributions. Instead, they focus 

on learning the boundary or separator between classes. Classifiers like Decision Trees, Support Vector 

Machines (SVMs), and Logistic Regression are some examples of discriminative supervised learning 

algorithms. At a deeper level, both discriminative and generative models can be seen to be equivalent.

 We will describe two examples of generative supervised learning algorithms: (i) Naive Bayes (NB) 

classifier, and (ii) Hidden Markov Model (HMM). And the Decision Tree (DT) classifier, which is an 

example of discriminative supervised learning algorithm. Then, we look at K-means clustering which 

is an example of unsupervised learning. Finally, we will have a brief look at Reinforcement Learning.
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18.1 Naïve Bayes Classifiers

A Naïve Bayes Classifier (NB) is very simple yet very powerful classifier. NB assumes that the features 

are conditionally independent, given the class labels. With this assumption, class-conditional joint 

distribution between features becomes

 P(x | y) = P(x(1), x(2), …, x(d) | y) (18.3)

 = P(x(1)| y) *P(x(2)| y)* … *P(x(d)| y) (18.4)

 = ’d
k=1 P(x(k)| y) (18.5)

In the Naïve Bayes classifier, the learning problem is to determine class-conditional densities or mass 

functions for each feature, depending on its nature and a class prior, given a set of training examples. 

Class-conditional density estimations are obtained for continuous features, while class conditional 

mass function estimations are obtained for discrete features. The number of parameters to be learnt 

depends on the parametric form of class conditional densities or mass functions. For example, if we 

use Gaussian distribution to model a continuous feature, we need to learn parameters (i) mean m, and 

(ii) standard deviation s. Thus, the key point in learning of NB classifier is to carefully model each 

feature with appropriate distributions. The wisdom for modelling can be obtained from domain experts 

or from the training data, if available in abundance. The learning problem is then to estimate relevant 

parameters from the training data using either maximum likelihood or Bayesian estimation techniques. 

For a learning problem with q classes, we need to learn parameters of class-conditional distribution of 

each feature for each of the classes. In addition, we need to estimate the prior probability of each class. 

It is sufficient to estimate priors for q – 1 classes, since the prior for the remaining class can be obtained 

using the fact that SqP(q) = 1.

The inference problem using an NB classifier is to predict the class label for a new example. The 

probability of each class label yiŒY for new example xnew is predicted using Bayes’ theorem

P(yi | xnew) = 
P(xnew | yi)*P(yi)—

P(xnew)
 (18.6)

The label with the highest probability among the set of labels for xnew is predicted as its label. Formally,

 yi = argmax P(yi | xnew) (18.7)
     yiŒY

Since the term P(xnew) in Eq. (18.6) is constant for all the classes, Eq. (18.7) becomes

 yi = argmax P(xnew | yi)*P(yi) (18.8)
     yiŒY

 = argmax P(yi)* ’d
k=1 P(x(k)| y) (18.9)

     yiŒY

Example 1: Text Classification

NB classifier is used extensively in text categorization. The text document is represented using a bag 

of word representation that contains a set of words, without specifying their order of occurrence. A tiny 

training data set containing 4 documents from two classes, namely “Bio” and “CS”, is shown in Table 

18.1.
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Table 18.1 A small collection of tiny documents

DocID Words Label

1 Algorithms, Tree, Graph CS

2 Tree, Life, Gene, Algorithms Bio

3 Graphs, NP, Algorithms, Tree CS

4 Protein, Assay, Cell Bio

The class priors can be estimated as follows:

( CS) #(Docs with label “CS”)
( CS) = 2/4 = 0.5

#(Total docs)( )

#(Docs with label “Bio”)
( = Bio) = 2/4 = 0.5

#(Total docs)

=
= = =

=

=

Â
Â Â

I

I

ii

ij i

y
P y

y j

P y

The class-conditional probability of each feature (word in this case) is computed as follows:

( “Algorithms ” , = “CS”)
( “Algorithms” | = “CS”) =

( , “CS”)

#( “Algorithms” in “CS” docs) 2
= 0.3

#(Total words in “CS” docs) 7

=

= ª

Â w

P y
P y

P w y

Similarly,

P(“Tree”|y = “CS”) = 
2

7
, P(“Graph”|y = “CS”) = 

2

7
, P(“NP’|y = “CS”) = 

1

7

P(“Algorithms”|y = “Bio”) = P(“Tree”|y = “Bio”) = P(“Gene”|y = “Bio”) = P(“Assay”|y = “Bio”) = 
1

7

P(“Cell”|y = “Bio”) = P(“Life”|y = “Bio”) = P(“Protein”|y = “Bio”) = 
1

7

Here, we assumed that P(word | label) is distributed according to multinomial distribution.

For a new document xnew containing the words (Algorithms, Tree), the class label is assigned based 

on the highest probability of belonging to the class. The probability can be calculated using the estimated 

prior and class-conditional probabilities of each word.

 P(y = “CS”|xnew) μ P(y = “CS” 
w

’ P(w|y = “CS”)

 μ P(y = “CS”) * P(“Algorithms”|y = “CS”) * P(“Tree”|y = “CS”)

 μ 
1 2 2 4

=
2 7 7 98

* *

Similarly,

P(y = “Bio”|xnew) μ 
1

98
.
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Now

( “CS” ) ( | “CS” )
( “CS”| )

( )

( “CS”) ( | “CS” )

( “CS” ) ( | “CS” ) ( “Bio” ) ( | “Bio” )

4 / 98 4
0.8

4 / 98 1/ 98 5

= * =
= =

= * =
=

= * = + = * =

= = =
=

’

’
’ ’

w
new

new

w

w w

P y P w y
P y x

P x

P y P w y

P y P w y P y P w y

and

( = “Bio” ) ( | = “Bio” )
( = “Bio” | ) =

( )

( = “Bio”) ( | = “Bio” )
=

( = “CS” ) ( | = “CS” ) ( = “Bio”) ( | = “Bio” )

1/ 98 1
= = = 0.2.

4 / 98 1/ 98 5

*

*

* + *

+

’

’
’ ’

w
new

new

w

w w

P y P w y
P y x

P x

P y P w y

P y P w y P y P w y

Since P(y=”CS”| xnew) > P(y=”Bio”| xnew), we assign the label “CS” to the new document.

Example 2: Protein Sequence Classification

Proteins are important biomolecules that participate in a majority of cellular functions in the living 

organism. They are made up of amino acids. There exist twenty different amino acids. For a computer 

scientist, proteins can be thought of as strings constructed from language, with an alphabet set of twenty 

amino acids. Proteins exist as a three dimensional structure in its physical form and the instructions for 

the same is believed to be coded in the sequence information. The structure in turn provides valuable 

information about protein function. Proteins are classified into various groups by biologists, based on 

their structure and function. Protein sequence can be obtained quickly once the genome sequence is 

known. On the contrary, obtaining protein structure requires rigorous experimental set-up and hence a 

relatively small number of structures is available, resulting in a wide gap between number of proteins 

with known sequence and those with known structure. The sequence information provides vital clues 

for protein classification. In this problem, we will design a learning algorithm based on NB classifier to 

classify proteins into one of the k groups. Thus, this is an instance of a multiclass classification problem.

Let D be the database of known protein sequences. Let  f1, f2, …, fk be k classes or groups of proteins. 

Note that the proteins are not uniformly distributed across these k classes, i.e. some classes contain more 

proteins than other. They represent selection bias that the biologists have for certain classes of proteins. 

The first step is to represent each protein with a set of appropriate features. Let each protein dŒD be  

represented with the following attributes or features:

 1. Length of protein ld.

 2. Percentage of each amino acid in d. There is one such feature per amino acid and hence in all there 

are twenty such features.

Thus, each protein is represented with 21 features. All these features are continuous in nature, that 

is, their values are real numbers between 0 and 1.
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Modelling Let xd
(1), xd

(2),…, xd
(20) be the features corresponding to the frequencies of amino acids of 

protein d. These features sum up to 1. S20
j=1 xd

(j)=1.  Let xd
(21) be the feature corresponding to the length 

of the protein d. Clearly, the length feature is independent of all other features.

 1. We model distribution of amino acids in a protein sequence, using a multinomial distribution.

 2. We model length of proteins using a Gaussian distribution with parameters mean m and standard 

deviation s.

Learning Estimate class priors and parameters of Multinomial and Gaussian distribution using the 

training data D.

 1. The parameter corresponding to feature x(i) of multinomial distribution can be obtained for class 

fj can be obtained as follows:

( )

( )
number of in sequences of

( | = ) =
total number of observation sequences in

i
ji

j
j

x f
P x y f

f
 (18.10)

  The process needs to be repeated for all features across all k classes to obtain all the parameters 

of multinomial distribution.

 2. The mean of protein length m needs to be estimated for each protein class. For class fj, it can be 

estimated as follows:

all sequences of class

1
= * length(sequence)

number of sequences of class
j

j
fjf

m Â  (18.11)

The standard deviation \sigma can be obtained as follows:

2

all sequences of class

1
var = * ( length)

number of sequences of class
j

j j
j f

f
m -Â  (18.12)

= vars j j  (18.13)

Inference Given the estimated model parameters, label a new sequence with an appropriate class label.

18.2 Inference in Bayesian Networks

The Naive Bayes classifier assumes that the features are conditionally independent, given the class label. 

This assumption is often violated in practice. On the other hand, assuming that features are dependent 

on one another poses challenges in reliable estimation of parameters since enough data is not available. 

The Bayes’ network enables specification of dependencies between variables, thus offering a middle 

path solution. The fundamental concepts of a Bayesian network were covered in Chapter 17. In this 

chapter, we will study inference in Bayesian network. The simplest form of inference is using variable 

elimination, which we will study in detail in this chapter. General purpose inference schemes include 

junction tree algorithm and message passing over factor graph constructed from the belief network.

Let us study a famous example, due to Judea Pearl, that is often cited in Bayesian network literature. 

One fine morning, Anisa noticed that the grass in her lawn was wet. She was puzzled: is it due to 

overnight rain or it is due to a sprinkler that remained switched on by mistake? She looked around and 

found that the grass in her neighbour’s, Malala’s, backyard was  also wet. Our model of this situation 

is shown in Figure 18.1.
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There are four binary variables in our model. Each variable is either 0 or 1.
 ● XA = 1 means Anisa’s grass is wet and 0 otherwise.
 ● XM = 1 means Malala’s grass is wet and 0 otherwise.
 ● XR = 1 means it rained last night and 0 otherwise.
 ● XS = 1 means Anisa’s sprinkler was on by mistake.

The following conditional independencies hold in this example:

 1. Anisa’s grass can be wet either due to rain or due to a sprinkler.

P(XA |XM, XR, Xs) = P(XA |XR, XS)

 2. Malala’s grass can be wet only due to rain.

P(XM |XR, XS) = P(XM | XR)

 3. Rain is not influenced by the sprinkler.

P(XR | XS) = P(XR)

Thus,

P(XA, XM, XR, Xs) = P(XA |XR, XS)*P(XM|XR)*P(XR)*P(XS).

Further, we assume that Conditional Probability Table (CPT) has the following probabilities:

 P(XR = 1) = 0.2

 P(XS = 1) = 0.1

 P(XA = 1|XR = 1) = 1

 P(XA = 1|XR = 0) = 0.2

 P(XT = 1|XR = 1, XS = 0) = 1

 P(XT = 1|XR = 1, XS = 1) = 1

 P(XT = 1|XR = 0, XS = 1) = 0.9

 P(XT = 1|XR = 0, XS = 0) = 0

Given that Anisa’s grass is wet, what is the probability that the sprinkler was on overnight? That is, 

what is the value of P(XS = 1 |XA = 1)? The calculations are shown below.

,
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, ,
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( = 1| 1) =
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( = 1, 1)
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FIGURE 18.1 The Bayesian network captures the causal relation amongst the four statements XA 

(Anisa’s grass is wet), XM (Malala’s grass is wet), XR (it rained last night), and XS (Anisa’s sprinkler was 

on by mistake).
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0.9 0.8 0.1 1 0.2 0.1
=

0.9 0.8 0.1 1 0.2 0.1 0 0.8 0.9 1 0.2 0.9

= 0.3382

* * + * *
* * + * * + * * + * *

18.3 Hidden Markov Models

A class of models known as Hidden Markov Models (HMM) assumes that there are nodes in the model 

that are not observable. What is accessible is a set of observations, which are dependent upon the 

unobservable state of the system. HMMs are Markov models because one assumes that the state that 

the system is in is not dependent on the history of the past states, and a given state has well defined 

successor states, one of which will be next state with a given probability. HHMs are popular where 

temporal patterns are involved, for example in Speech Recognition.

In many applications, there is a natural order in the data that imposes label dependency between points. 

The label of a point depends on points prior to it as specified by the label dependency. For instance, 

(a) part of speech (POS) tag of a word in English statement depends on the tag of the previous word; 

(b) the address segmentation problem that automatically tags locality, city, and state information in the 

address exploits relative placements of these entities in the address. Thus, there are two sequences per 

example: observation sequence and label sequence. The observation sequence refers to the sequence 

that we observe as the name suggests, while the label sequence refers to the sequence of states that are 

hidden. Each hidden state emits a symbol, thus forming an observation sequence. Let X be the sequence 

of n observations <x1, x2, …, xn> and let Y be the corresponding label sequence Y = <y1, y2, …, yn>, 

which is often unknown or hidden from the user. Note that there is an order information associated with 

the sequence x1 < x2 < … < xn, where < denotes “occurs before” relationship. The ith label yi outputs ith 

observation xi.

The Wikipedia defines a Hidden Markov Model as follows: An HMM is a statistical Markov model 

that is used to model a system that is assumed to a Markov process with hidden states. HMM models a 

sequence of labels, which is hidden and is not directly observable.  For example,

 1. In POS tagger, HMM models relationship between different parts of speech and is used in tagging 

a new sentence with appropriate POS tags. These tags are inferred from the observation sequence.

 2. In an address segmentation problem, HMM models relationship between different portions of an 

address.  Note that the portions of address are not directly available and needs to be inferred from 

the address based on prior experience.

We are interested in learning a joint model between observation and label sequences. The HMM 

assumes that the observations are independent of each other and they depend only on the corresponding 

label, while labels are dependent on each other, as per the HMM specification. For example, ith observation 

xi is independent of all other data points and is dependent only on ith label of the point. That is yi, which 

in turn depends on the label of the immediate predecessor yi–1. In the simplest case, the label of a point 

depends only on the label of its immediate predecessor. Such models are called first order Markov model.

Under these models, P(yi|y1, y2, …, yi–1) = P(yi| yi–1) and the joint probability of X and Y is given by

P(X,Y) = P(y1) * P(x1 | y1) * ’n
k=2P(xk | yk)*P(yk| yk–1) (18.14)

It is possible to construct higher order HMMs. Their discussion is out of scope of this book. Interested 

readers can refer to (Bishop, 2006). Higher order HMMs are used for finding genes in the genome 

sequence and a bunch of other biological sequence mining applications. Their details can be obtained 

from (Durbin et al., 1998),
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An HMM has the following components.

 1. A set of observation symbols S.

 2. A set of labels L =  » {B} » {E}. Y is a set of labels and B and E are special labels used for 

denoting begin and end state of the markov chain. We append special labels B and E at the start 

and the end of label sequence Y. Thus Y becomes <B, y1, y2, …, yn, E> with "1£i£n yiŒ .

 3. Markov Chain is used for modelling of the label dependencies. It has |L| states. Each state 

corresponds to a label in  and it emits a symbol. Thus, each symbol in X comes from the set of 

symbols S. That is xiŒS. The states B and E are dummy states and do not emit any symbol.

 4. Transition probability matrix stores probability of transition from state yi–1 to yi for every yi–1 and 

yi from the set of labels. We denote it as P(yi | yi–1) where yi, yi–1 Œ . There are |L|*|L| entries in the 

transition matrix. Let T|L|*|L| be the transition matrix. Note that each row of the transition matrix 

sums to 1.

 5. Emission matrix stores probability of emitting a symbol sŒS state yiŒ . We denote it as P(s|yi). 

It stores this probability for every sŒS in every yiŒ . Thus, the emission matrix has | | rows and 

|S|columns. Let O|  |*|S| be the emission matrix. Note that the each row sums to 1.

A Hidden Markov Model is completely specified with the above components. We will use q to 

denote the parameters of HMM, which includes T and O. The set of labels, observation symbols and 

the Markov chain are provided as part of a specification. We also use q to denote complete HMM 

specification along with the parameters. The meaning of q will be clear from the context and we will 

state it explicitly whenever required.

The following three problems are associated with HMM, out of which, two are inference problems 

and the remaining one is the learning problem.

Learning Given a set of training examples, determine parameters q of the given HMM.

Inference Given a Hidden Markov Model, q, find the probability that a given observation sequence 

X is generated by it: P(X; q)1.

Inference Given a Hidden Markov Model, q, find the most probable sequence of states that generates 

a given sequence X. Formally,

Y = argmax P(X, Y ; q)
 Y

An Example: Modelling a Casino

An HMM can be used to model a sequence of coin tosses in a casino. The casino maintains two types 

of coins which show different sides with different probabilities. For instance, one type of coin lands up 

heads with probability 0.6, while the other type of coin lands up heads with probability 0.9. In practice, 

we do not have access to the model that the casino uses to select a particular type of a coin for the next 

throw. It is reasonable to assume that selection of the next type of coin depends only on the current 

type and is independent of all previously selected types. We only observe a sequence of outcomes after 

throwing a coin (heads or tails).

Here, the sequence of outcome corresponds to an observation sequence (X), while the sequence of 

coin types corresponds to a hidden sequence (Y). For a throw of a coin, the probability of the outcome 

depends only on the coin that is chosen and is independent of the coins chosen earlier and the previous 

outcomes.

1 The notation “;q” says that the probability is parameterized by q.
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The HMM has the following components.

 1. Set of observation symbols S = {H, T}, where H corresponds to heads and T corresponds to tails.

 2. Set of labels L =  » {B} » {E} where  = {T1, T2}.

 3. The topology of the HMM that models coin tosses from the casino is shown in Figure 18.2.

 4. Transition matrix T4*4.

 5. Emission matrix O2*2

B T1 T2 E
P T B( | )1

P T T( | )1 1

P T B( | )2

P T T( | )1 2

P T T( | )2 1

P T T( | )2 2

P E T( | )2

P E T( | )1

P E B( | )

FIGURE 18.2 The transmission matrix of the HHM for modelling the Casino captures the dependencies 

shown here.

Application of HMMs in Biology

HMMs have been used extensively in Computational Biology to perform various tasks such as pairwise 

and multiple sequence alignments, motif finding, gene finding, RNA structure analysis, etc. The book 

on Biological Sequence Mining by Richard Durbin and coauthors provides detailed account of all these 

applications. Sequence alignment is a fundamental tools used by biologists for searching the existing 

databases of known genes or proteins. Such search enables identification of closely matching sequence 

or homolog of a new gene discovered in an experimental set-up. Pairwise alignment is used to align two 

sequences. The objective is to search for alignment that is optimal in terms of the cost defined by a certain 

cost matrix. Pair-HMM is used to align two sequences, where the actual alignment is obtained using 

Viterbi algorithm. Profile-HMM is used to perform alignment of multiple sequences at the same time.

18.3.1 HMM Training

The objective of HMM training is to learn parameters q = (T,O) given a set of training examples and 

HMM specification in the form of Markov chain, sets of labels and symbols. The parameters can be 

determined through either maximum likelihood or Bayesian estimation techniques. The training data is 

specified as (i) an ordered pair of observation symbol sequence and the corresponding label sequence, 

or (ii) only the observation symbol sequences are given without specifying the corresponding label 

sequences. We will cover both these cases in this section.

Training Data Consisting of Observation and Label Sequences

The training data D consists of m ordered pairs of observation and label sequences <(X1, Y1), (X2, Y2), 

…, (Xm, Ym)>. In addition, the set of observation symbols S, the set of labels L and topology of HMM 

is provided as an input. With this set up, the objective is to determine transition probabilities in T and 

emission probabilities in O.
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Each row in T can be modelled using multinomial distribution. Formally, Ti ~ Mult(fi). There are 

|L – 1| multinomial distributions and for each one |L – 1| parameters need to be estimated. Since the 

state corresponding to label E does not have any connections to other states, we need not determine the 

corresponding parameters. Using maximum likelihood estimation (MLE), T(i, j) entry, corresponding 

to transition probability P(yj | yi), can be estimated as follows.
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In case of limited amount of training data, we do not encounter transitions between certain states and 

hence MLE of respective fi,j is zero, which drives probability of certain sequences being generated from 

the HMM to zero. The problem can be avoided by adding a small fake or pseudocount d in numerator 

and denominator of Eq. (18.15). Addition of pseudocount is nothing but Bayesian estimation using 

conjugate priors (Dirichlet distribution in this case).
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Similarly each row in O can be modelled appropriately depending on the nature of X. The X can 

be either discrete or continuous as described earlier. The discrete observations can be modelled using 

appropriate discrete distributions such as binomial, multinomial, Poisson, etc. On the other hand, the 

continuous or real observations can be modelled using distributions like Gaussian. The parameter 

estimation can be performed via MLE or Bayesian estimation techniques. As an example, we explain 

parameter estimation when observations are discrete in nature. Let each observation s come from a set 

of finite symbols S. Each label yŒ  emits these symbols according to a fixed distribution with unknown 

parameters. Let us assume that

Oy,s = P(s Œ S | yŒL) ÿ Mult(fy)

The estimates for Oy,s can be obtained using MLE as follows.
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Here, I(.) is an indicator function that returns 1 if that argument is true. The length (Xi) returns 

number of observations in sequence Xi. The Bayesian estimates are obtained by using appropriate prior 

distribution. It is equivalent to adding a small pseudocount d to the actual counts.
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Training Data Consisting only Observation Sequences

Unlike the first case, here the label sequences are not available with observation sequences. Therefore 

we cannot directly apply the procedure described in the previous section. This is the case of missing 

information, where label sequences are not available. In such cases, the Expectation Maximization (EM) 
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technique is used to counter the missing information problem. EM is a powerful technique that operates 

in two steps repetitively until convergence.

 1. E-step: Assigns values to the missing variable.

 2. M-step: Maximizes the objective function with respect to the assignments made in E-step.

HMM training with EM algorithm can be performed via two different random initializations of either 

label sequence or parameters such as transition and emission matrix. These techniques are known as 

Viterbi and Baum-Welsch training respectively. Their algorithms are given in Figures 18.3 and 18.4 

respectively.

HMM-Viterbi(HMM: H(q), Observations: X)
1  for each oiŒX
2        labeli ¨ Randomly choose a label from L

3  repeat

4         Estimate q = (T,O) using Bayesian or Maximum Likelihood
5         Compute most likely labels for the observations using q
6  until convergence in label

7  return q

FIGURE 18.3 The Algorithm HMM-Viterbi is used for training of the HMM when the label sequence is 

not provided as part of the training data.  Here, we show an iterative procedure to estimate parameters 

of HMM, q, by randomly initializing hidden sequence or label sequence. The subsequent iterations 

ensure that the process will converge to a local minimum.

Note that both Viterbi and Baum-Welsch algorithm converge to locally optimal estimates, based on 

the initialization. This is due to convergence properties of EM in general. Hence, these algorithms should 

be run with different initializations and selecting the parameters that lead to the best log-likelihood.

HMM-Baum-Welch(HMM: H(q ), Observations: X)
1  Randomly initialize the transition matrix T

2  Randomly initialize the emission matrix E

3  repeat t Œ C
4        Compute most likely labels for the observations using q
5        Estimate q = (T,O) using Bayesian or Maximum Likelihood
6      

7  until convergence in q
8  return q

FIGURE 18.4 The algorithm HMM-Baum-Welch is also used for training of the HMM when label 

sequence is not provided as part of the training data.  Here, we show an iterative procedure to 

estimate parameters of HMM, q, by randomly initializing model parameters. The subsequent iterations 

ensure that the process will converge to a local minimum.

18.3.2 Finding P(X; q)

Find probability of a given sequence, X = <x1, x2, …, xn> where each xiŒS, being generated from a 

given HMM q. The sequence X can be generated by traversing various paths in the Markov chain. Each 

path generates a sequence of labels with the corresponding probability of generating X. The probability 

is given by

P(X,Y; q) = ’n
k =1 P(yk | yk–1; q)*P(xi| yk ; q) (18.19)
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Note that y0 = B and yn+1 = E and these states do not emit any symbol. The quantity of interest can 

then be obtained by summing over all such probabilities. Let S be the set of all possible label sequences 

that generate X.

 P(X; q) = SYŒS P(X,Y; q) (18.20)

 = SYŒS ’
n
k=1 P(yk | yk–1; q)*P(xi | yk ; q) (18.21)

The key computational step here involves enumeration of all paths in the Markov chain. Clearly, 

such an operation is computationally inefficient and highly expensive. It can be efficiently carried out 

by storing intermediate results in order to avoid repetitive computations. The intermediate result at 

position i in the sequence can be calculated as follows.

P(yi, x1, x2, …, xi) = S P(yi, x1, x2, …, xi)*yi–1 (18.22)

Using chain rule of probability,

 = S
yi–1

 P(xi | x1, x2, …, xi–1, yi, yi–1)*P(yi | x1, x2, …, xi–1, yi–1)*P(x1, x2, …, xi–1, yi–1) (18.23)

Note that the symbol xi only depends on the label yi and hence,

P(xi | x1, x2, …, xi–1, yi, yi–1) = P(xi | yi)

Also, the label yi depends only on the label of previous state yi–1 and hence,

P(yi | x1, x2, …, xi–1, yi–1) = P(yi | yi–1)

In addition, we will define a forward variable ai–1(yi–1) that gives a total probability of observed 

sequence, up to i–1 symbol ending in the state yi–1ŒY. Let

ai–1(yi–1) = P(x1, x2, …, xi–1, yi–1)

Equation (18.23) becomes

 P(yi, x1, x2, …, xi) = S
yi–1

 P(xi | yi)*P(yi| yi–1)* a i–1(yi–1) (18.24)

 = P(xi | yi)* S
yi–1

P(yi| yi–1)* ai–1(yi–1) (18.25)

 = ai(yi) (18.26)

At yn+1 = E, we can simply compute P(X; q) as follows.

P(X; q) = S
yn

P(E| yn)* an(yn) (18.27)

We use a0(B) = 1.

ForwardAlgorithm(HMM: H(q), Observations: X, Parameters: q)
1  a0(B) ¨ 1

2  repeat

3  for i ¨1 to n

4        for each yiŒY

5              ai(yi) ¨ P(xi|yi)* S
yi–1

P(yi|yi–1)*ai–1(yi–1)

6  return P(X) ¨ S
yn

P(E|yn)*an(yn)

FIGURE 18.5 The ForwardAlgorithm is used to find the probability of a sequence X being generated 

from a given HMM.



822 A First Course in Artificial Intelligence

18.3.3 Finding Most Probable Label Sequence

The second inference problem is concerned about finding the most probable sequence of labels Y, 

corresponding to a given observation sequence X, for a given HMM with parameters q. Formally,

Y = argmax
Y

 P(X, Y; q) (18.28)

The most probable label sequence can be obtained by enumerating all possible label sequences 

generating X and then calculating joint probability between observation symbol and each label sequence. 

As described in the previous section, such an approach is computationally expensive. An efficient 

algorithm can be designed for this task using dynamic programming technique, similar to forward 

algorithm (Figure 18.5), by storing results of intermediate computations. This algorithm (Figure 18.6) 

is known as Viterbi algorithm or max sum algorithm.

The most likely label sequence for observation sequence till position i can be computed as follows.

P(x1, x2,…, xi, y1, y2, …, yn)

 = P(xi|yi) 
–1

max
iy yŒ

[P(yi|yi–1) * P(x1,…, xi–1, y1,…, yi–1)] (18.29)

Let us define viterbi variable g  as follows:

 g (yi–1) = P(x1,…, xi–1, y1,…, yi–1) (18.30)

 g (B) = 1 (18.31)

Now Eq. (18.32) becomes

P(x1, x2, …, xi, y1, y2, …, yi) = P(xi|yi) * 
–1

max
iy yŒ

 [P(yi|yi–1) * g (yi–1)] (18.32)

In addition, we store pointer to yi–1 in z(i – 1) for constructing the most probable label sequence.

 z(i – 1) = 
–1

argmax
iy yŒ

 P(yi|yi–1) * g (yi–1) (18.33)

 z(1) = B (18.34)

Thus, the most probable label sequence for the observation sequence and the corresponding probability 

can be obtained at label E by the following recursions.

 g (E) = max
ny yŒ

 P(E|yn) * g (yn) (18.35)

 z(n) = argmax
ny yŒ

 P(E|yn) * g (yn) (18.36)

The (E) is the probability of the most likely label sequence that generates X and z(n) gives the 

corresponding label sequence.

 Y = argmax
Y

 P(X, Y; q) (18.37)

 Y = z(n) (18.38)
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Viterbi(HMM: H(q), Observations: X, Parameters: q)
  1 g0(B) ¨ 1

  2 repeat 

  3 for i ¨ 1 to n 
  4       for each yiŒY
  5            g(E) ¨ Max

ynŒY
 P(E|yn)*g(yn)

  6            z(E) ¨ Argmax
ynŒY

 P(E|yn)*g(yn)

  7 return  Y ¨ z(n)

FIGURE 18.6 The Viterbi algorithm for the HMM is used to obtain the most probable sequence of 

label for a given observation sequence.

18.4 Concept Learning

In Chapters 13 and 14, we discussed in detail the representation and reasoning with categories or 

concepts. A concept is a subset of the universe of discourse or the domain. We started by defining atomic 

concepts like brother and parent and used them to define other concepts like uncle.

In this section, we explore how concepts may be formed or learnt from instances of the concept. We 

assume that each individual in the domain is described by a set of attributes, and based on values of these 

attributes, certain concepts may be defined. For example, in the romantic fiction of the last century an 

“eligible bachelor” could be “described” as tall, dark2 and handsome, and perhaps some other features 

like being sensitive, intelligent, having a sense of humour, being rich, etc. The task of concept learning 

is as follows.

Given that one has a set of training instances for which it is known whether they belong to a concept 

or not, to learn a general concept in terms of the attributes of the instances. The idea is that once such a 

concept has been learnt then one can use the knowledge to classify previously unseen instances correctly. 

This process of learning from examples is known as Inductive Learning.

Let X = {x1, x2, …, xn} be the universe of discourse, and let CÕX be the concept of interest defined 

by the target function c: X Æ {yes, no}.

Let each member xi be described in terms of the values of a set A of attributes {A1, A2, …, Ak}. Let 

h be a hypothesis h: X Æ {yes, no} defined such that h is a function of the values of the attributes {ax1, 

ax2, …, axk} of the element xŒX.

We say that the system has learned the target concept C iff,

"xŒX (h(x) = c(x)) (18.39)

That is, the discovered hypothesis agrees with the target function on each element from the domain.

Given the set of attributes A, one can define hypothesis functions in different ways. Given each 

description schema, a space of hypotheses is defined over which the learning algorithm explores in 

search of the hypothesis that matches the given training set. The hope is that the hypothesis will match 

the target function on unseen instances as well. This is expressed by the Inductive Learning Hypothesis.  

Any hypothesis found to approximate the target function well over a sufficiently large set of training 

examples will also approximate the target function well over other unobserved examples (Mitchell, 

1997). We begin with the simplest schema—conjunctive hypotheses.

2 A notion that current day Indian pharmaceutical companies are trying hard to overturn.



824 A First Course in Artificial Intelligence

18.4.1 Conjunctive Representations

The conjunctive representation is a conjunction of individual constraints on each attribute. The constraint 

are expressed as a pattern <p1, p2, …, pk>, where each pi is one of the following,

 1. The symbol “?”, which is a wild card symbol that matches any value of the corresponding attribute.

 2. The symbol “Δ”, that does not match any value of the corresponding attribute. This implies that 

the hypothesis is a null hypothesis that does not match any individual.

 3. A specific value of the attribute.

Let us look at an example employee domain in which people are described by the following attributes 

and the set values they can take.

 Experience: {Low, Medium, High} or equivalently {L, M, H}

 Education: {Bachelors, Masters, PhD} or equivalently {B, M, P}

 Hands-on: {No, Yes} or equivalently {N, Y}

The above schema has been adopted from Table 15.3 by replacing numerical data for the attribute 

Experience with nominal types by replacing 0–5 years with a value Low, 5–15 with Medium, and more 

than 15 with High. Given the above schema, the following are some concept hypotheses.

The schema for the hypotheses is <Experience, Education, Hands-on>
 ● <?, ?, ?> is the concept that matches all employees.
 ● <Medium, ?, ?> matches those employees that have Experience=Medium
 ● <Low, ?, Yes> matches the employees with Low experience who are Hands-on.
 ● <Medium, ?, Δ> will not match any employee. An inconsistent hypothesis.

Given the attribute schema, the first two attributes can take 4 values each, including “?”, and the 

third one 3 values. Assuming that we count the different inconsistent hypotheses as 1, since they are all 

semantically the same, matching no elements, we have a total of 4 ¥ 4 ¥ 3 + 1 = 49 distinct hypotheses in 

the hypotheses space H. These hypotheses are organized into a partial order defined by the more general 

than relation. A hypothesis hi is more general than a hypothesis hk, if the set of elements described by 

hk is a subset of the set described by hi. Figure 18.7 depicts a part of this partial order for our example.

<?, ?, ?>

<Low, ?, ?>

<?, B, ?>
<Medium, ?, ?>

<High, ?, ?>

<?, ?, No>

<?, ?, Yes>

<?, M, ?>

<?, P, ?>

<High, M, ?> <?, P, Yes>

<High, P, No>
<High, P, Yes><Low, B, No>

< , , >Δ Δ  Δ

FIGURE 18.7 The hypotheses space is structured into a partial order by the more-general-than 

relation. The figure depicts a fragment of the partial order.
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Let us categorize the employees based on their salary. The categories are,

 Low: Salary range 2000–5000

 Medium: Salary range 5001–10500

 High: Salary range 10501–15500

 VeryHigh: Salary > 15500

Each of these can be thought of as a concept. Given the database in Table 15.3, we have the target 

concept as defined by the database. The task is to explore the hypothesis space and find a hypothesis 

that matches the given training data.

We look at two algorithms described by Mitchell (1997) that look at the training examples and 

navigate the hypotheses space that forms a partial order. The algorithm Find-S begins searching at the 

infimum of the partial order. That is, it initializes the candidate hypothesis to <Δ, Δ, …, Δ>. Then, it 

inspects the training set elements one by one and does the following.
 ● If the element does not belong to the target concept then it does nothing.
 ● If the element belongs to the target concept, then for each attribute it does the following.

 ■ If the hypothesis has “Δ” for that attribute, it replaces it with the actual value in the element.
 ■ If the hypothesis has a value X and the same value occurs in the element, it does nothing.
 ■ If the target function has a value X and the element has a value YπX then it replaces X with “?”.

The algorithm is described in Figure 18.8. It accepts as input the set of training examples, the identity 

of the class label in the training examples, and the number of attributes available in the hypothesis 

schema. It begins with the most specific values of each attribute and inspects all positive training 

examples one by one. The notion of a match is defined as follows. A value of an attribute in a training 

instance matches the corresponding value in the hypothesis, if the latter is the same or more general. 

In our example, there are only two levels of generalization, from Δ to a specific value, and from the 

specific value to “?”, but the algorithm can be generalized to deal with more levels.

Find-S(Training Set: T, Target Concept: C, Length of Element: K)

1 h ¨<Δ, Δ, …, Δ>

2 for each tŒT
3      if t Œ C    /*instance t is labelled yes for class C */
4      then for k ¨1 to K

5           If h(K) = Δ 

6                   then h(K) ¨ t(K)

7                   else if h(K) π t(K)
8                           then  h(K) ¨ “?”

9 return h

FIGURE 18.8 The procedure FIND_S begins with the most specific hypothesis in the hypotheses 

space. For every positive training example it sees for the target class, it generalizes the value of each 

attribute in the hypothesis, just enough to match the value of the attribute in the training instance.

Given sufficient training examples, the algorithm is guaranteed to learn the target function, provided 

it exists in the hypothesis space H and there are no errors in the training data. Let us investigate how the 

algorithm fares with our example, given that we want to learn the target concept VeryHigh (salary). The 

training data extracted from Table 15.3 is shown in Table 18.2. The label Exp-Symb refers to Experience 

converted to nominal form manually, and the label Sal-Symbol likewise for Salary.



826 A First Course in Artificial Intelligence

Table 18.2  A subset of Table 15.3 showing the employees with very high salary. The names appear in 

alphabetic order

0 Name Gender Age Experience Exp-Symb Education HandsOn? Salary Sal-Symb

1 Adrian M 36 6 Medium PhD Yes 17600 VeryHigh

2 Agnar M 38 11 Medium PhD Yes 18600 VeryHigh

3 Ahneta F 42 18 High Bachelors Yes 19600 VeryHigh

4 Aimara F 50 23 High PhD Yes 21000 VeryHigh

5 Aithne F 54 30 High Masters Yes 22200 VeryHigh

6 Akira M 51 26 High Masters Yes 21400 VeryHigh

7 Aleron M 34 6 Medium PhD Yes 18000 VeryHigh

8 Amirthini F 46 16 High PhD Yes 20400 VeryHigh

9 Anana F 30 1 Low PhD Yes 16200 VeryHigh

10 Anta-

Anclla

F 35 7 Medium PhD Yes 18500 VeryHigh

11 Ashraf M 32 3 Low PhD Yes 17000 VeryHigh

12 Ashutosh M 46 21 High Masters Yes 20400 VeryHigh

13 Ayodele M 40 17 High Bachelors Yes 19400 VeryHigh

Let us say that the algorithm inspects the training instances in alphabetic order. The schema for the 

hypothesis, as described above, is <Exp-Symb, Education, HandOn?>. Given below is the history of 

how the hypothesis evolves after processing each named instance.

 Initial:  <Δ, Δ, Δ>

 Adrian: <Medium, PhD, Yes>3

 Agnar: <Medium, PhD, Yes>

 Ahneta: <?, ?, Yes>

 Aimara: <?, ?, Yes>

 Aithne:  <?, ?, Yes>

The reader is advised to continue the process and verify that by now, the algorithm has converged 

to the hypothesis h = <?, ?, Yes>. This will match all those employees who answer Yes to the attribute 

HandOn?. This has already become too much of a generalization. The learned concept h will misclassify 

some employees, for example Abdul and Akilina in Table 15.3. It will classify all employees with Very 

High value correctly, but also some that do not have the value VeryHigh. In the words of information 

retrieval community, the algorithm produces false positives.

The reason why the algorithm is unable to learn the target concept is that the target concept does not 

exist in the hypotheses space H. The algorithm finds the most specific hypothesis in H that is consistent 

with the training data. In case there is more than one maximally specific hypotheses existing then the 

one found would depend upon the order in which the training instances are presented.

In the next example, we look at an algorithm that returns all possible hypotheses that are consistent 

with the set of training examples, and which is not dependent on the order in which the instances appear. 

3  In the language of description logic studied in Chapter 14, the concept would be described as [AND [FILLS :Experience Medium] 

[FILLS :Education PhD] [FILLS :Hands-on Yes]]. The description logic describes the concepts in a similar conjunctive manner. 

As we will see, the conjunctive hypotheses are also restrictive in the concepts that they can “describe”. 
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The algorithm also draws inferences from negative training examples to prune the set of hypotheses 

it is considering. While Find-S begins with the most specific hypothesis and uses positive instance to 

generalize the hypothesis just enough to include the instance, the algorithm Candidate-Elimination 

described below considers the entire space of hypotheses and eliminates those hypotheses that are not 

consistent with each training instance.

The algorithm does not store the entire hypotheses space H, but considers a smaller set of hypotheses 

that form the boundary of a region in the space that contains all consistent hypotheses. A hypothesis 

is consistent with respect to a set of training examples, if it agrees with the target concept on all the 

examples. If T is the set of training examples and h a candidate hypothesis then,

Consistent(h, T) ∫ "xŒT (h(x) = c(x)) (18.40)

A version space VSH, T for a hypotheses space H with respect to a set of training instances seen, T is 

the set of all hypotheses in H that are consistent with T.

VSH, T = {hŒH | Consistent(h, T)} (18.41)

The candidate elimination works with a version space that is initialized to the entire hypotheses 

space. It then inspects all training instances, both positive and negative, and prunes the version space 

by removing those hypotheses that are inconsistent with any training example. This process continues 

till all training instances are inspected. Three outcomes are possible.

 1. The procedure ends with a single hypothesis that is consistent with all training examples. The 

inductive learning hypothesis says that this hypothesis should predict the class label of the unseen 

instances as well.

 2. The procedure ends with a set of hypotheses. This means that the training set is insufficient to 

discriminate between these hypotheses. Two options exist. One, to try and use the resulting set 

to classify the unseen examples. This could be done in a conservative (or sceptical) manner by 

choosing the most specific hypothesis, if there exists a unique one; in a liberal (or plausible) 

manner by using the most general hypothesis,  if there exists one, or by combining the verdict of 

all the hypotheses, possibly in some weighted fashion. The other option would be to seek more 

training instances to discriminate between the remaining candidate hypotheses. 

 3. At some point during the process of inspecting the training instances, the version space becomes 

empty. This could mean two things. One, that the training examples have an error; or two, that 

the target concept does not exist in the hypothesis space.

Fortunately, one does not have to represent the entire version space. It is enough to represent the most 

specific hypotheses, known as the specific boundary S, and the most general ones, known collectively 

as the general boundary G. Formally, the sets S and G are defined with respect to the training set T as 

follows.

G ∫ {g Œ H | Consistent (g, T) Ÿ [(¬$g¢ >g g) Ÿ Consistent (g¢, T)]} (18.42)

S ∫ {s Œ H | Consistent (s, T) Ÿ [(¬$s >g s¢ ) Ÿ Consistent (s¢, T)]} (18.43)

It has been shown that the version space can be reconstructed from these two sets as follows.

VSH, T = {hŒH | ($sŒS) Ÿ ($gŒG) Ÿ (g ≥g h ≥g s)} (18.44)

The algorithm Candidate-Elimination initializes the version space to the hypotheses space. The 

general boundary of this space is <?, ?, …, ?> and the specific boundary is the empty hypothesis  

<Δ, Δ, …, Δ>.

Then for every positive training instance it sees, the algorithm removes any hypotheses in G that 

are inconsistent with the example. And like Find-S it also removes any hypothesis in S that does not 
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match the training example and replaces it by generalizations that are just enough to match it, with the 

additional constraint that the generalization is subsumed by (is less general than) some hypothesis in 

G. Finally, it removes any hypothesis in S that has a more general hypothesis in S. The treatment for 

negative training example is symmetric. The algorithm is given in Figure 18.9.

Candidate-Elimination (Training Set: T, Target Concept: C)

 1 S ¨ {<Δ, Δ, …, Δ>}

 2 G ¨ {<?, ?, …, ?>}

 3 for each tŒT
 4    if t Œ C  /*instance t is labelled yes for class C */
 5       then

 6          for each gŒG 
 7               if g(t) = no then remove g

 8          for each sŒS
 9               if s(t) = no 

10                       then remove s

11                            for each hŒH which has an ancestor in G
12                                if parent(h,s) and h(t)=yes 

13                                      then S ¨ S » {h}
14          if there exist x, y in S such that x<g y then remove y

15       else   /*instance t is labelled no for class C */

16          for each sŒS 
17             if s(t) = yes then remove s

18          for each gŒG
19             if g(t) = yes 

20                       then remove g

21                              for each hŒH which has a descendant in S
22                                if parent(g,h) and h(t)=no

23                                     then G ¨ G » {h}
24          if there exist x, y in G such that x<g y then remove x

25 return reconstructVS(G,S)

FIGURE 18.9 The procedure Candidate-Elimination initializes the version space to the entire 

hypothesis space, represented by the general boundary G and the specific boundary S. Then, as it 

sees training instances, it moves both these boundaries closer to each other so that every hypothesis 

in the version space is consistent with the training set. The predicate parent(x, y) checks whether x is 

a parent of y in the more-general-than hierarchy depicted in Figure 18.7. The function reconstructVS 

interpolates between the two boundaries to construct the version space.

Let us illustrate the algorithm with a few carefully chosen examples. The entire database from Table 

15.3 is replicated in Table 18.3 with the numeric values of experience and salary replaced by the chosen 

nominal values. The algorithm begins by the initial boundary sets,

 G0 = {<?, ?, ?>} and

 S0 = {<Δ, Δ, Δ>}

The goal is to learn the hypothesis that described the concept VeryHigh, which is the set of employees 

with a very high salary.
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Table 18.3 The complete database from Table 15.3, converted to nominal values

Name Gender Exp-Symb Education HandsOn? Sal-Symb

Abayomi M Low PhD No Low

Abdul M Low Masters Yes Medium

Abheek M Medium Masters No Medium

Abigail F Medium Bachelors No Low

Abner M High Bachelors No High

Acastus M High PhD No High

Adorna F Low Masters No Low

Adria F Low PhD No Low

Adrian M Medium PhD Yes VeryHigh

Agatha F High Masters No High

Agnar M Medium PhD Yes VeryHigh

Aguidi F High Bachelors No High

Ahneta F High Bachelors Yes VeryHigh

Aimara F High PhD Yes VeryHigh

Airyaman M Medium Bachelors Yes High

Aithne F High Masters Yes VeryHigh

Akilina F Low Bachelors Yes Low

Akira M High Masters Yes VeryHigh

Aleron M Medium PhD Yes VeryHigh

Alex M Medium Masters Yes High

Alice F Low Masters No Low

Alyssa F Medium Masters No Medium

Amalie F Low Bachelors No Low

Amika F Medium Bachelors Yes High

Amirthini F High PhD Yes VeryHigh

Anana F Low PhD Yes VeryHigh

Anantamati M High Masters No High

Anbuselvan M Medium PhD No Medium

Andreas M Low Bachelors Yes Low

Angela F Low Bachelors No Low

Anisah F Medium PhD No Medium

Anta-Anclla F Medium PhD Yes VeryHigh

Anton M Medium Masters No Medium

Anurag M Low Masters No Low

Anuragini F Low Masters Yes Medium

Anuun M Medium Bachelors No Low

(Contd.)
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Anzhela F Medium Masters Yes High

Archana F High PhD No High

Arezoo F Medium Bachelors No Low

Aryenish F Low Masters Yes Medium

Ashraf M Low PhD Yes VeryHigh

Ashutosh M High Masters Yes VeryHigh

Atahualpa M Medium Bachelors No Low

Atsu M Low Bachelors No Low

Aurang M Medium Bachelors Yes High

Ayodele M High Bachelors Yes VeryHigh

Azibo M Low PhD No Low

Azuma F Low Bachelors Yes Low

The first training instance is Abavomi with the values <Medium, PhD, No> or <M, P, N> and is a 

negative training example because the label for Abavomi is Low and not VeryHigh. We use single a 

letter version of values of attributes for brevity.

Since the specific boundary S0 does not say yes to any example, including this one, it is left unchanged. 

The general boundary G0 on the other hand says yes to everything and this must be changed. The resultant 

general boundary G1 is shown below. Observe that it says yes to every pattern, except the first training 

example. That is, for every other pattern, there exists some hypothesis in G1 that says yes.

 G1 = {<M,?,?>, <H,?,?>, <?,B,?>, <?, M,?>,  <?,?, Y>}

 S1 = {<Δ, Δ, Δ>}

The next example, also negative, is Abdul with the pattern <L,M,Y>. The specific boundary is not 

affected, as in the previous case. But there are hypotheses in the general boundary —<?, M,?> and 

<?,?,Y> —that would have said yes to the second example, and must be removed. Each inconsistent 

hypothesis that is removed from G must be replaced by specializations that say no to the example. 

Replacing them we get,

 G¢2 =  {<M,?,?>, <H,?,?>, <?,B,?>, <M, M,?>,  <H,M,?>, <?, M, N>, <M,?, Y>, 

<H,?,Y>, <?,B,Y>, <?,P,Y>}

 S2 = {<Δ, Δ, Δ>}

However, the resulting set G¢2 contains hypotheses that are less general than others in the set. For 

example, <M, M,?> <g <M,?,?> and <M, M,?> must be removed. So also <H,M,?>, <M,?,Y>, <H,?,Y> 

and <?, B, Y>. After removing them we have the boundaries,

 G2 = {<M,?,?>, <H,?,?>, <?, B,?>, <?, M, N>, <?, P, Y>}

 S2 = {<Δ, Δ, Δ>}

The next example is Abheek with <M,M,N> and is also a negative example. The readers should 

verify that this leads to the following boundary sets.

 G3 = {<M, P, ?>, <M,?,Y>, <H,?,?>, <?, B,?>, <L, M, N>, <?, P, Y>}

 S3 = {<Δ, Δ, Δ>}

(Contd.)
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Let us skip to a positive example next for the purpose of illustration. Consider Adrian with the pattern 

<M, P, Y>. There are three hypotheses in G3 – <H,?,?>, <?, B,?> and <L, M, N> —that would have said 

no this training instance, and must be removed. At the same time, the specific boundary must now be 

generalized to recognize this instance. The resulting boundary sets are,

 G4 = {<M, P,?>, <M,?, Y>, <?, P, Y>}

 S4 = {<M, P, Y>}

The next positive example Agnar has the same pattern as Abheek and does not result in any change. 

The one after that is Ahneta with the pattern <H, B, Y>. None of the hypotheses in G4 recognize this 

pattern, and all of them say ‘no’ to this example, and consequently must be removed. The general 

boundary then becomes empty, which means that the version set becomes empty. The hypothesis 

<M, P, Y> has to be removed, but its generalization can no longer be added to the specific boundary 

(because it has to be subsumed by some hypothesis in the general boundary).

Consequently, after these six examples, the algorithm Candidate-Elimination has eliminated all 

hypotheses in the hypotheses space H.

18.4.2 Inductive Bias

The two algorithms discussed above failed to characterise the concept of employees with very high 

salaries. The reason is that the hypothesis space that both explore is not rich enough to describe the 

target concept.

The algorithm Find-S found the concept described by <?,?, Y> which can be read as follows—it 

does not matter how much experience the employee has or what the employee’s education; as long as 

they are hands-on workers, they will have a very high salary. This is clearly not the case in the given 

database in Table 18.3. There are several examples of hands-on employees, Abdul, Anuragini and 

Azuma to name a few, who are not very high earners. A careful study of the database will reveal that 

the concept learnt is not accurate. In addition to being hands-on, the employee must be either a PhD or 

must have high experience. But our conjunctive hypothesis schema is unable to capture this notion of 

disjunctive description4.

Is there any justification of working with a restricted hypotheses space? Why not choose a 

representation that would allow us to express any concept? The answer is ‘yes’.

The conjunctive schema allows us to express concept descriptions as conjunctions of constraints on 

attributes. What would happen if instead we allow the use of disjunction and negation as well? Then we 

could say things like “Experience should be Medium or High” or equivalently “Experience should not 

be Low”. Then the algorithm would be able to find a concept that is consistent with the entire training 

set, but there would be a danger that the algorithm would be unable to say anything about the unseen 

elements of the domain. Consider the situation when such a learner has  input a set of positive instances 

for a concept {p1, p2, …, pn} and a set of negative instances {n1, n2, …, nr} then it could simply  use 

the instances to form the two boundaries as follows.

 G = ¬(n1⁄ n2 … ⁄ nr)

 S = (p1⁄ p2 … ⁄ pn)

That is, it simply memorizes the training set. As a consequence, it is unable to decide upon the class of 

the unseen instances, even while it is flawless on the training set itself. This is an example of overfitting. 

It is unable to generalize from the examples.

4  We observed in several chapters that handling disjunction is a difficult proposition for reasoning. For example, Horn Clause 

reasoning is unable to prove disjunctive conclusions. 
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Given a hypothesis space H, a hypothesis hŒH is said to overfit the training data, if there exists some 

alternative hypothesis h¢ŒH, such that h has a smaller error over the training examples, but h¢ has a 

smaller error than h over the entire distribution of instances (Mitchell, 1997).

On the other hand, with the conjunctive hypotheses schema the system is learning from training data 

and is able to generalize. But there is a caveat, the inductive bias. The bias is that the system works only 

when the target function is contained in the space of conjunctive hypotheses. In a sense, the bias in the 

system is able to learn and generalize, only when there is a restricted form for the hypotheses which it 

tunes to the training examples.

The fundamental property of inductive learning is that a learner that makes no a priori assumptions 

regarding the identity of the target concept has no rational basis for classifying unseen instances 

(Mitchell, 1997).

Because inductive learning requires some form of prior assumption (expectation) or inductive bias, 

we will find it useful to characterise different learning approaches by the inductive bias they employ.

Does that mean that it is not possible to learn more complex target concepts? No, one can, but with 

a different kind of bias, as we see in the next section.

18.5 Decision Trees

Decision trees, also known as discrimination trees, or many sorted trees adopt a different approach to 

concept learning. Instead of trying to learn a specific concept, they accept a training set labelled with 

different class labels (concept names) and build a discrimination structure that separates the different 

classes or concepts.

Given that the elements of the domain are described by attributes, the objective is to uncover what 

combination of attributes defines a given concept. Another way of looking at this is to ask which attributes 

are characteristic of a given class, and which discriminate it from other classes. Decision trees, when 

constructed, ask a series of questions of the given new instance to be classified, and the answer to each 

question leads to traversal down the corresponding branch, eventually culminating in a class label. 

The process is comparable to the manner in which a physician asks a patient questions, where the next 

question depends upon the previous answer, leading to a diagnosis.

We often make these kinds of generalizations implicitly. A teacher may believe that a student with 

high attendance and serious countenance is a good student, and a tennis player may conclude that a 

sunny day with normal humidity is perfectly suited to play tennis. While we arrive at these conclusions 

by a process of accumulated experience, decision tree building algorithms require that all the data be 

available along with their class labels. That is, like the algorithms Find-S and Candidate-Elimination 

seen earlier, it is a supervised learning procedure.

Unlike the other two algorithms though, decision tree building algorithms can tolerate erroneous 

data or noise, and one can also control the level of detail at which discrimination should be done. These 

algorithms explore the space of decision trees and they have a preference bias for smaller trees. In fact 

by controlling the tree construction process, one can check the phenomenon of overfitting.

We look at the well known ID3 (Iterative Dichotomiser 3) algorithm devised by Ross Quinlan (1986). 

Given a training set with N elements from K classes, the basic idea is to identify those attributes whose 

values separate the different classes. Each such attribute then becomes a question to ask of a data set, 

and partitions the data set based on the different values. The idea then, like in the game of Twenty 

Questions5, is to identify the class in as few questions as possible.

5 See http://en.wikipedia.org/wiki/Twenty_Questions
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The algorithm associates the entire data set with the root node of the decision tree that it is construct-

ing. The data set may have elements of different classes. The task to choose an attribute whose answer 

will separate the classes as much as possible. The different partitions are then treated recursively in the 

same manner, till the partitions have elements of only one class or some other termination criterion is 

used. One can now imagine why it can tolerate errors. If an element with a wrong class label has crept 

into the data set, it will go along with the elements of the “correct” class. If the process is continued till 

the partitions are completely homogenous then this element would have separated towards the end, and 

can be identified as being wrongly labelled. Some amount of post-processing can then prune the tree 

of such tiny spurious classes.

Different attributes will induce different partitions on a given data set. How does one choose the 

attribute that will separate the different classes most? The approach used in many algorithms is to use 

the notion of entropy, which is a measure of information content in a set (Shannon, 1948). Entropy is a 

measure of diversity in a set. The more homogenous the set is, the less information it has; in the sense 

that it needs a smaller number of bits to describe it. The more heterogeneous it is, the greater the infor-

mation content or entropy. Entropy is then a measure of predictability. If one were to choose a random 

element from the set then zero entropy would mean that it is entirely predictable. This would happen 

if all the elements in the set were of the same class. With equal elements from two classes, the entropy 

would be one. With more classes, the entropy goes up further.

Given a set S of elements from K classes, the entropy of the set is defined as,

Entropy(S) = 
1

K

i=
Â  –pi*log2 pi (18.45)

where pi is the proportion of elements of the ith class in the set. The algorithm tries out partitioning the 

set of element using different attributes. Let A be an attribute and Values(A) the set of values for the 

attribute. Using the attribute A to partition the set S results in information gain Gain(S, A), as defined 

by the formula below.

Gain(S, A) = Entropy(S)  – 
Values( )

| |

| |

v

v A

S

SŒ
Â  *Entropy(Sv) (18.46)

The information gain is computed by subtracting the weighted sum of the entropies of the partitions 

from the entropy of the original set S. The weight for each partition is the proportion of the elements in 

that partition. One can see that the more homogenous the partitions are, the greater is the information 

gain. This is illustrated in Figure 18.10. The algorithm tries out the different attributes available and picks 

the one that yields the greatest information gain. The process continues recursively on the partitions.

Let us look at this process for the training set given in Table 18.3. There are 48 employees in the train-

ing set S of which there are 11 with the High (salary) label, 16 with the Low label, 8 with Medium, and 13 

with the VeryHigh label, in alphabetical order of the labels. The entropy of the set is computed as follows.

 Entropy(S) =  –(11/48) * log2(11/48)

–(16/48) * log2(16/48)

–(8/48) * log2(8/48)

–(13/48) * log2(13/48)

 =  –0.229 * –2.126

–0.333 * –1.585

–0.167 * –2.585

–0.271 * –1.885

 = 0.487 + 0.528 + 0.431 + 0.510

 = 1.957
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The set S can be partitioned by the three attributes: Exp-Symbol (the nominal version of the numeric 

attribute Experience), Education and Hands-on. The first attribute Exp-Symb produces three partitions 

for the three values High, Low and Medium. Education also produces three partitions for the values 

Bachelor or B, Master or M, and PhD or P, while Hands-On produces two partitions. The possible 

partitions and the number of elements in them are shown in Table 18.4.

Table 18.4 The distribution of elements by the three attributes Exp-Symb, Education, and HandOn

S Exp-Symb Education HandOn

Class High Low Medium B M P No Yes

High 11 6 0 5 5 4 2 6 5

Low 16 0 12 4 10 3 3 13 3

Medium   6 0 3 5 0 6 2 5 3

Very High 13 7 2 4 2 3 8 0 13

Total 48 13 17 18 17 16 15 24 24

For example, the HighExp partition induced by Exp-symb has 13 elements of which 6 have the label 

High (salary) and 7 have label VeryHigh. The entropy of this set is,

 Entropy(HighExp) = – (6/13)*log2(6/13) – (7/13)*log2(7/13)

 = –0.462 * –1.115 –0.538 * –0.893

 = 0.515 + 0.481

 = 0.996

FIGURE 18.10 Partitioning a set into subsets could result in information gain, if the subsets have 

lower entropy. The algorithm to construct decision trees pick that attribute to partition the set which 

results in highest information gain. In the figure, three illustrative choices are shown.

High Entropy

Medium

Low Entropy

High

Increasing Information Gain
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Observe that this has only two terms because there are elements of only two classes in the partition. 

The entropies of the other two partitions are computed similarly.

 Entropy(LowExp) = 1.160

 Entropy(MediumExp) = 1.991

The information gain for Exp-Symb is computed as shown.

 Gain(S, Exp-Symb) =  Entropy(S)

–(|HighExp|/|Exp-Symb|) * Entropy(HighExp)

–(|LowExp|/|Exp-Symb|) * Entropy(LowExp)

–(|MediumExp|/|Exp-Symb|) * Entropy(MediumExp)

 =  1.957 

–0.271 * 0.996

–0.354 * 1.160

–0.375 * 1.991

 = 0.530

Similarly, the gain for the other two attributes are,

 Gain(S, Education) = 0.301

 Gain(S. Hands-On) = 0.381

The attribute Exp-Symb yields the maximum information gain and is therefore used to partition the 

set S into three partitions HighExp with 13 elements, LowExp with 17 elements, and MediumExp with 18 of 

the original 48 elements. The process continues recursively with these three sets.  The resulting decision 

tree is shown in Figure 18.11.

Exp-Symb

Low High

Medium

Education

Hands-on

Hands-on

No Yes

High Very HighYes

No

Education EducationHands-onHands-on

No Yes No Yes

P
M

B

B M P B M P

Medium Low Very High Medium MediumLow Very HighHigh High

Low

Low

FIGURE 18.11 The decision tree produced by the algorithm ID3 for the data set in Table 18.3.

The decision tree is basically a discriminative structure. A new instance can be “inserted” in the root 

and it traverses down the tree eventually falling into a bucket at the leaf node, labelled with its class 

name. We have seen variations on the theme in the Rete net in Chapter 6 and the kd-tree in Chapter 15.
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Nevertheless, a concept description can be constructed by inspecting the tree. Every path from the 

root to the concept is a conjunction of constraints on a set of attributes on the path. The different paths 

together are different sets of alternative sets of constraints, and can be joined together in a disjunction. 

Let us look at the concept VeryHigh in our training set. The leftmost path in the figure represents the 

constraints <Exp-Symb=Low, Education=PhD, HandsOn=Yes> which we can write as <L,P,Y>. The 

second one represents <Exp-Symb=Medium, HandsOn=Yes, Education=PhD> which in the order of our 

schema is <M,P,Y>. The rightmost path represents the constraints <Exp-Symb=High, HandsOn=Yes>. 

Since it does not say anything about Education, we can assume that any value would do and we can 

represent the constraints as <H,?,Y>.

Thus, the hypothesis that matches the training set is,

<Low, P, Yes> ⁄ <Medium, P, Yes> ⁄ <High, ?, Yes>

as found by the ID3 algorithm. The reader is encouraged to verify that this can be simplified to <?, P, 

Yes> ⁄ <High, ?, Yes>. This essentially says that to be in the VeryHigh salary category, one needs to be 

Hands-On and in addition either have a PhD degree or High levels of experience.

The question is how does ID3 algorithm working with a complete hypotheses space produce a 

structure that can be used to classify unseen instances? The answer is that because it has a bias towards 

smaller trees. This bias is a preference bias in which the algorithm prefers smaller trees.

If the data set had elements with many attributes then the hypotheses space would be large. One can 

then alter the termination criterion that prevents the tree from becoming too deep. This could be done 

by stopping the partitioning process as soon as the majority of the elements in a node are of one class. 

One can also include a pruning step that removes nodes with a very small number of training instances.

The algorithm ID3 is described in Figure 18.12. The algorithm is  recursive in nature in which subtrees 

are constructed recursively. At each node, the attribute that partitions the associated set with maximum 

separation of the different classes is chosen. Observe that each attribute can be used only once. This is 

in contrast to kd-trees, where an attribute can be used more than once.

The ID3 algorithm essentially does Hill Climbing (see Chapter 3) over the space of possible decision 

trees. It begins with the empty tree and recursively builds subtrees in a greedy manner, choosing the most 

promising attribute for each node to partition the data. Like Find-S algorithm, and unlike Candidate-

Elimination, it outputs a single hypothesis given a training set labelled with class data. Unlike both the 

algorithms, ID3 is not sensitive to noise (errors) in the training data.

The algorithm ID3 is designed to handle nominal attributes. In order to be able to use this algorithm, 

we manually converted the Experience attribute which had numeric data to Exp-Symb, which had three 

nominal values Low, Medium and High. The algorithm C4.5, and C5, devised also by Ross Quinlan 

(1992) extends ID3 to handle numeric data as well. Algorithm C4.5 improves upon ID3 in other ways as 

well. It is more robust in handling noisy data, and can process data with missing values too. It produces 

rules directly and allows post pruning of the rules to avoid ‘overfitting’, by controlling how deep the 

tree grows.

The algorithm C4.5 handles attributes with numeric (or continuous) data by placing split points 

at appropriate locations, usually close to the half-way mark. If one were to arrange the elements in 

increasing order of the attribute value then a split point is never placed between two values, corresponding 

to elements having the same class label. The algorithm in fact tries out different possible split points 

and chooses the one that maximizes information gain.

Figure 18.13 shows the decision tree constructed for our example, from the original data set in Table 

15.3. The set of attributes Att used here is {Age, Education, Experience, Hands-On}, with Age being 

the new attribute added.
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Experience

Hands-on
Hands-on

> 12£ 12

Yes
YesNo

No

Education
High

Age

High Very High

Very HighMedium

HighLowMediumMediumLow

Age

Education

Low

Age

B M
P

£ 38
> 38

> 26£ 26

> 31£ 31

PMB

No

FIGURE 18.13 The decision tree constructed by C4.5 for the date set with numerical values in Table 

15.3. An additional numeric attribute Age has also been considered.

ID3 (Training Set: T, Target-attribute: C, Attributes: Att)

 1 create node N with set T

 2 if all instances of T in N have class label cŒvalues(C)
 3    then return N with label c

 4 if empty(Att)

 5    then return N with majority label from T

 6 A ¨ chooseAttribute(Att, T)    /* with maximum information gain */

 7 N.decisionAttribute ¨ A

 8 Att ¨ Att – {A}

 9 for each value V of A

10     TV ¨ subset of T with value V of elements 

11     create node NV with set TV
12     child(N,V) ¨ NV           /* the child of N with value V */

13     if empty(TV)

14          then 

15              label NV with majority label from T

16          else 

17              NV ¨ ID3(TV, C, Att)

18 return N

FIGURE 18.12 The procedure ID3 creates a tree structure with a decision point at each node. At 

every node, the attribute that maximizes information gain is chosen to partition the set based on the 

attribute values, and each partition is processed recursively. Function chooseAttribute(Att, T) chooses 

the maximum information gain attribute from the set Att, given the training set T.
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It is interesting to note that with these numerical values too, Experience has been the attribute that is 

chosen first, though the algorithm is designed to make a two-way split only. Again, here the Hands-On 

attribute plays a significant role in classifying elements. The new attribute Age too makes an appearance 

in some places.

The reader is encouraged to add one more attribute Gender from Table 15.3 and investigate whether 

that plays a role too. Implementations of the algorithms ID3, C4.5 and C5.0 are available on the Web6, 

for those not inclined to try their own coding skills.

In supervised learning, a teacher is showing the true class labels to the learning algorithm. In the 

absence of a teacher too, learning is possible. We look at two approaches to do so. One is when the 

learner ponders over the samples and tries to cluster them into similar samples. The process is called 

clustering, and happens in an unsupervised manner. It could be a first step towards forming concepts 

which can be articulated. The other is when the learner learns from the outcome of its actions when 

acting in an environment. By observing the (sequences of) actions that lead to a favourable outcome or 

an unfavourable one, the learner can tune its decision making algorithm to be biased towards actions 

that are more rewarding.

18.6 The K-means Clustering Algorithm7

The focus of this chapter till now has been supervised learning. Now, we look at clustering, a classical 

unsupervised learning problem. Consider a set of data points, X = {x1, x2, …, xn} in a Euclidean space 

where the distance between any pair of objects(xi, xj) is computed as the L2 norm and is denoted by 

d(xi,xj). Clustering is the task of grouping the data points into groups, such that the data points in the 

same group are more “similar” than data points across groups. Such groups discovered by a clustering 

technique are referred to as clusters. The algorithm K-means for clustering partitions a data set into k 

clusters, where k is a user defined number. It was first devised by Stuart Lloyd (1957) and is also known 

as Llyod’s algorithm. The clusters generated by K-means are disjoint, in that each data point would be 

uniquely assigned to one cluster; further, algorithm K-means ensures that no points are left unassigned.

In the case of a clustering of our dataset X, we may define the clustering problem declaratively, 

based on the desired properties of the groups output by the clustering as follows: If one picks a random 

pair of objects that both belong to the same group (cluster) and another pair of objects that belong to 

different groups, it should be highly likely that the distance between the former pair is much lesser than 

the distance between the latter pair.

K-means attempts to achieve such a property in generating k groups from the dataset X = {x1, x2, 

…, xn}, in an iterative fashion. After any iteration, there would be a set of k clusters, that we denote 

by {C1, C2, …, Ck}. Within each iteration, K-means refines the clusters from the previous iteration by 

optimizing the following objective function (for all the clusters):

O(cluster(.), m(.)) = 
1 i n£ £
Â (d(xi, m(cluster(xi))))

2 (18.47)

where cluster(xi) denotes8 the cluster to which xi belongs and m(c) denotes a representative point, or 

the centroid, for the cluster c, and d(.,.) denotes the distance function (L2 norm). That is, the algorithm 

strives to minimize the sum of the distances of each point to the centroid of the cluster to which the point 

6 See http://en.wikipedia.org/wiki/ID3_algorithm and http://en.wikipedia.org/wiki/C4.5_algorithm for links. 
7 with inputs from Deepak S Padmanabhan.
8 The notation (.) is used when the argument is not referenced. 
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belongs. In order to minimize this objective function, we could change one or both of the following, 

moving from one iteration to the next:

 1. Assignments of data points to clusters, i.e., cluster(.) function

 2. Choosing the centroid for a cluster, i.e., m(.) function.

K-means adopts the simple approach of modifying these in sequence within each iteration. In 

particular, the cluster assignments, cluster(.), is modified keeping the m(.) fixed, following by modifying 

m(.) keeping the cluster assignments fixed.

Modifying the Cluster Assignments

We will now look at how the cluster assignments may be modified when the m(.) function, the 

representative point for each cluster, is specified. For every point xi,, the contribution to the objective 

function is directly related to the distance to the representative point for the corresponding cluster. The 

obvious way to minimize the contribution of xi to the objective function is by re-assigning xi to the 

cluster whose centroid is nearest to it.

Thus,

( ) argmin ( , ( ))m=i i j
j

cluster x d x C  (18.48)

Modifying the Representative Points

We now consider modifying the representative points for each cluster. The contribution of each cluster 

Cj, to the objective function is the sum of the distance of each data point in Cj to the representative point, 

m(Cj). This sum is directly related to the average distance of points in Cj to m(Cj), which is intuitively 

minimized by setting m(Cj) itself to the average (mean) of points in Cj.

Thus, each attribute of m(Cj) would be assigned to the mean value of the attribute among objects in 

Cj. In particular, for the ith attribute,

[ ]

( )[ ]
| |

jx C

j
j

x i

C i
C

m
Œ

=

Â
 (18.49)

Having described the basic steps that are performed in K-means clustering, we now outline the 

algorithm in Figure 18.14. It starts off with initializing m(.) randomly for each cluster (Line 1), followed 

by a sequence of iterations in which the cluster(.) and m(.) values are modified in sequence (lines 2–4).

K-Means(Set of Objects X = {x1, x2, …, xn}, #clusters k)

1 Initialize m(C1) through m(Ck) randomly in the Euclidean space of X
2 while O(cluster(.),m(.)) has not yet converged

3       do m" £ £ =, 1 , cluster( ) argmin ( , ( ))i i j
j

i i n x d x C

4       do m" £ £ = =, 1 , ( ) mean { |cluster( ) }j jj j k C x x C

5 return cluster(.)

FIGURE 18.14 K-Means Algorithm iteratively assigns objects to clusters, and re-computes the 

cluster centroids till the objective function converges.

K-Means is one of the classical examples of the Expectation-Maximization technique briefly described 

in Section 18.3.1. Here, the E step corresponds to assigning data points to clusters (Line 3 in Figure 

18.14), whereas the M step (in Line 4) corresponds to obtaining a new model for the clusters, i.e., a 
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new set of m(.) values. As we have seen, each of these steps are guaranteed to improve (minimize) the 

objective function O(cluster(.),m(.)) and the algorithm is set to converge when the improvements cease 

or are no longer significant.

We look an example where the algorithm is used.

Example: Gene Clustering

Genes store codes for making proteins, which carry out 

intended functions inside a cell. The protein synthesis 

from the gene takes place in two steps: (i) transcription 

step, in which messenger RNA (m-RNA) is formed by 

reading the gene of the DNA, and (ii) translation step 

that synthesizes the protein using amino acids men-

tioned in the gene sequence. Once a gene is transcribed 

into m-RNA, we say that the gene is expressed in the 

cell. The genes are expressed under specific physiologi-

cal condition, in which particular proteins are required 

to carry out the specific task. The gene expression is 

measured using microarray technology. The dataset 

used in this illustration is constructed from two micro-

array experiments involving 10 genes, as shown in 

Table 18.5. Each gene has two features, x(1) and x(2), 

that correspond to expression levels of a gene under 

two different conditions, as measured by two microar-

ray experiments.

The challenge in K-means clustering is to specify 

a number of clusters K as an input parameter to the 

algorithm. Visualization of the data provides use-

ful information about distribution of points (genes in 

this case) in the input space (here, expression levels). 

Visualization is possible only when the number of 

dimensions is less than three. In this case, the number 

of dimensions is two and hence we can visualize the 

data. The visualization (Figure 18.15) shows that there 

are two natural groups in the data and hence we set k = 

2 for this dataset.

Whenever the number of dimensions is greater 

than three, it is usual practice to reduce the number 

of dimensions by projecting the data on lower dimensional subspace using techniques like Principle 

Component Analysis (PCA) or Multi-Dimensional Scaling (MDS). The visualization is performed using 

top two or three dimensions. We will not cover dimensionality reduction in this chapter and we refer 

interested readers to (Bishop, 2006).

The K-means algorithm starts by randomly initializing cluster centroids. Let m1 and m2 be the centroids 

of clusters 1 and 2 respectively. Let’s initialize two centroids to the following values:

 m1 = (2, 2) and m2 = (5, 5)

FIGURE 18.15 The gene expression data 

from Table 18.5.

x
(1)

x
(2)

Table 18.5 A small gene data set

Gene Exp. level x(1) Exp level x(2)

gene-1 1 1

gene-2 1 2

gene-3 2 2

gene-4 2 1

gene-5 3 2

gene-6 4 4

gene-7 4 5

gene-8 5 5

gene-9 5 6

gene-10 6 4
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It then follows an iterative process which runs till convergence, which is evaluated based on one of 

the two criteria:
 ● Cluster assignments do not change across successive iterations.
 ● Cluster centroids do not change across successive iterations.

Note that both these criteria are equivalent.

Iteration 1

E-step: Calculate the distance between each point to the cluster centroids, using Euclidean distance 

formula. The distances are shown in Table 18.6.

Table 18.6  The Euclidean distance of each point to the 

two centroids

Gene m1 = (2,2) m2 = (5,5)

gene-1 ÷2 ÷32

gene-2 1 5

gene-3 0 ÷18

gene-4 1 5

gene-5 1 ÷13

gene-6 ÷8 ÷2

gene-7 ÷13 1

gene-8 ÷18 0

gene-9 5 1

gene-10 ÷20 ÷

Based on the above distances, the ten genes are assigned to the closest cluster as shown in Table 18.7.

M-step: Re-estimate centroids of the two clusters. The genes 1 to 5 are assigned to cluster 1, while 

genes 6 to 10 are assigned to cluster 2. Based on this assignment, we re-estimate cluster centroids. The 

new centroids are as follows:

 m1 = (1.8, 1.6) and m2 = (4.8, 4.8)

Next, we check the convergence criteria as mentioned before in Line 2 of the algorithm. Since there 

is a change in cluster assignment, we conclude the iterative procedure is not converged and hence we 

continue with the iterations.

Iteration 2

E-step: Calculate the distance between each point to the cluster centroids, using the Euclidean distance 

formula (Table 18.8).

It can be seen that the assignments of genes to clusters remains the same here.

M-step: Re-estimate centroids of each of the K clusters. When we recomputed the centroids of the 

two clusters, we found that the centroids do not change as well.

m1 = (1.8, 1.6) and m2 = (4.8, 4.8)

Since the cluster labels of each object (gene) remains unchanged, as does the centroid for each cluster, 

the iterative procedure has converged. Genes 1 to 5 form one cluster with centroid m1 = (1.8, 1.6) and 

genes 6–10 for the second cluster with centroid m2 = (4.8, 4.8).

Table 18.7  The cluster assignment based 

on the distance in Table 18.6

Gene Cluster(gene-i)

gene-1 1

gene-2 1

gene-3 1

gene-4 1

gene-5 1

gene-6 2

gene-7 2

gene-8 2

gene-9 2

gene-10 2
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Table 18.8 The Euclidean distance of each point to the two centroids, after iteration 2

Gene m1 = (1.8,1.6) m2 = (4.8,4.8)

gene-1 1.0 5.4

gene-2 0.9 4.7

gene-3 0.4 4.0

gene-4 0.6 4.7

gene-5 1.3 3.3

gene-6 3.3 1.1

gene-7 4.0 0.8

gene-8 4.7 0.3

gene-9 5.4 1.2

gene-10 4.8 1.4

18.7 Learning from Outcomes

We began this chapter with supervised learning, in which a learning system works with labelled data 

in a supervised learning process. The learning system then learns to assign the label for similar unseen 

data. We then saw an unsupervised, learning algorithm which observes a given data set and partitions it 

into subsets of similar elements, based on some measure of distance or similarity.9

An autonomous agent operating a world has other opportunities to learn as well. The agent can 

observe what happens after it carries out an action or a set of actions in the world, and learn to identify 

those actions that are more rewarding. For actions that yield an immediate reward, the learning task is 

relatively straightforward, as will be corroborated/vouched by anyone who plonks down in front of a 

television set to watch a football game, where finishing the class assignment would have yielded a reward 

somewhat in the future. We had briefly touched upon the problem of such goal conflicts in Section 14.5.  

However, this is not the topic of our focus here. Instead, we look briefly at how  an agent can learn to 

identify actions when the reward from them is given sometime in the future, and in the interim period, 

the agent might have carried out other actions. The problem, as first articulated by Marvin Minsky, is of 

temporal credit assignment. When a sequence of actions leads to some eventual reward, how does one 

assign the credit of the final result to individual actions? This has been studied in the computer science 

community as the problem of Reinforcement Learning (RL).

Reinforcement Learning evolved from the convergence of work in psychology and control theory. 

Psychologists and physiologists have always been interested in learning. The Russian physiologist Ivan 

Pavlov (1849–1936) carried out some well known experiments which demonstrated that a dog could 

learn the association between a bell ringing and food being served, a process he called the ‘development 

of conditioned reflexes’. Numerous experiments have been conducted to demonstrate that rats can learn 

mazes10. The study of learning amongst humans has also been a subject matter of considerable interest. 

While the people working in control were interested in discovering optimal policies, given the reward 

function and the probability of making moves, the RL community was focused on learning by interacting 

9 We have observed in Chapter 17 that a distance measure can be used to define a similarity measure. 
10 See http://www.ratbehavior.org/RatsAndMazes.htm
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with the environment. The form of learning is omnipresent amongst humans. A child may extend its 

hands towards a candle flame, but after a few instances of feeling the heat, quickly learns to stay away. 

An older child who may learn that pestering her parents in a marketplace always results in her getting 

a plate of jalebis, learns to do so more often.

The most studied approach to reinforcement learning in the computing community has been by 

modelling the problem as a Markov Decision Process (MDP). Most of the work has been done in the 

area of control engineering in which the system has to decide upon an action in each state it is in. The 

intent or plan of the agent is expressed as policy that defines the action that has been taken in each state. 

In Section 17.6, we studied how an optimal policy for achieving a goal can be learnt when the actions 

are stochastic in nature. That is, the agent is not completely sure in which state it would end up after 

executing a particular action. In this section, we study how an agent might learn the best actions when the 

uncertainty arises due to the actions of another agents, more specifically an opponent in a game situation.

We have described the Bellman equations for MDPs and some algorithms to solve them in Section 

17.6.1. Here we look at Temporal difference learning, first used by Samuel, then formalized by Sutton, 

and used effectively by Tesauro (see Chapter 8 on game playing).

In Section 8.4.3, we saw how champion programs to play the game of Backgammon have been 

implemented by Gerald Tesauro, using a strategy of playing millions of games against themselves and 

learning from the exercise. Much earlier, Arthur Samuel’s Checkers playing program also learnt by 

playing many games against itself. In this section, we take a brief look at how these programs solved the 

problem of temporal credit assignment. How does one decide which of the many moves in a winning (or 

losing) game were responsible for the outcome. This form of learning is known as Temporal Difference 

Learning.

The reward associated with action need not be immediate, and could be delayed over time. A child 

who finds that saving a few rupees every now and then results in a considerable amount by which a 

storybook could be purchased, may learn to do so. The word reward used in MDP community is in the 

sense of giving a feedback for the individual action, similar to the way the signal from the output layer 

of a feedforward neural network is propagated back to internal nodes.

The main thing is that when a set of actions are available to an agent and the agent tries out different 

actions or combinations of actions, and over a period of time learns the actions that fetch it more rewards, 

is carrying out a process of reinforcement learning. How quickly must one generalize from instances? 

In the seventies, when the Yale group was trying out explanation based learning, they found that after 

hearing a few stories about accidents that happened to have two casualties generalized, that accidents 

(always) have two casualties. This is a little bit like saying that if you toss a coin three times and it ends 

up head always, you generalize that the coin is completely “biased”.

An important aspect of learning is that we need tremendous amount of data to learn association 

between action (or events) and effects in a world where there are many other actions happening with 

possible similar effects. The debate of the relation between cancer and smoking is showing signs of 

being decided after many decades of arguments and experiments. The debate on climate change is simi-

lar. The most recent debate is whether radiation from mobile phone towers and cellphones is linked to 

brain cancer or not. One is not able to conclusively say either whether it is or it is not. By the time one 

arrives at a conclusion that cannot be refuted, many lives may be lost, or on the other hand, a govern-

ment might have deprived its citizens of some technology. The debate over the safety of the planned 

nuclear power plant in Kudankulam in India is a case in point. Clearly, sometimes decisions, for example 

whether to load uranium rods in the reactor or not, have to be made using other forms of reasoning. 

Having said that, learning patterns from data needs lots of time and data, it is clear that much can be learnt 

from a process of trial and error. Let us consider a simple example of playing a game. Suppose someone 
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teaches a new game called tic-tac-toe that you were not familiar with. You could simply play out a few 

games with yourself and figure out that playing the first move in the corner is “rewarding”. Or say, two 

children play a million chess games against each other, and one of them experiments by opening with 

PK4 versus PKB3. The child would most likely realize at some point that PK4 is a much better move 

to start a chess game with. Of course, you cannot expect children to play a million games. But nothing 

stops a game playing program from doing that. In fact, such a program could simply play those games 

against itself, and learn it in double quick time. That is what the Scrabble playing program Tesauro did.

One problem one faces when computing MDPs is the curse of dimensionality. One problem faced 

while learning policies in MDPs is that the number of states for which the action has to be specified is 

often far too many. As a corollary, the credit assignment problem also becomes a hard problem because 

in MDPs, the credit assignment is done by a process, for example value iteration that computes the 

immediate reward that an action results in.

In game playing algorithms when the moves are deterministic, one can adopt a different approach. 

Since the moves are deterministic, the resulting state after an action is well defined. We consider two 

person games of the kind studied in Chapter 8. Then, if one can aim to learn a generic evaluation of the 

kind used in game playing algorithms, each state can be associated with a value. The difference is that 

the evaluation function is one generic function that can be applied to any state. Given such a function, 

one can adopt a different approach for move selection. Instead of the policy specifying a move for each 

state, one can generate the successors of a given state, apply the evaluation function, and choose the 

move that leads to the best valued successor. In practice, since evaluation functions are rarely perfect, 

one does a lookahead of a few plys and back up the values from the horizon using the minimax rule (as 

described in Chapter 8). Figure 18.16 below shows a sequence of five moves made by MAX, and four 

by MIN, resulting in a win for MAX. For each move, MAX considers all moves possible and selects 

the move that results in the best valued board position.

WIN

FIGURE 18.16 A one step lookahead game playing agent generates the successors at each turn, 

and selects the move that leads to the best valued successor.

The move to be made is thus decided with an evaluation function applied to successor states to 

determine the best move. Instead of a policy that specifies a move for each state, we have a generic 

evaluation function that can be applied to any state and that a numeric value from the range [–Large, 

+Large]. Let us assume that the evaluation function is a linear function of values, which are values of 

individual features as discussed in Section 8.1.2. Let the evaluation function be the weighted sum of 

features. Let there be K features used to compose the evaluation function so that for any state J the 

evaluation e(J) is,

e(J) = SK
i=1 wi*vi (18.50)
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where vi is the numeric value of the ith feature and wi is the weight that determines the importance of 

the ith feature. This evaluation function has to be learned. We pose the learning task as learning the set 

of weights for the evaluation function. In fact, one can observe that any means of evaluating a board 

position that uses weights would be amenable to this form of learning. In fact, in the TD-Gammon 

program, it was the weights of a neural network that were being learnt.

Reinforcement Learning happens following a process of trial and error in which the agent repeatedly 

tries actions and observes the response from the environment. In the game playing situation, this can 

be done by a program by playing games against itself. And being a computer11, it is possible to play 

millions of games for the task of learning. This addresses the problem of needing a large number of 

learning experiences. We now address the learning task.

In supervised learning, one is presented with training data in the form of a <state, value> from which 

the system learns. In the game playing environment, the feedback is available only at the end of the 

game, when the outcome of the game is known. The value is +Large, if MAX wins the game, –Large 

if MAX loses the game, and 0 if the game is drawn. The question of temporal credit assignment is that 

how does one assign the credit of the outcome to each state in which MAX has made a choice. Consider 

the situation in Figure 18.17 in which two games are depicted. In one, the outcome is a win for MAX 

and in the other it is a loss. If MAX played the same first three moves in both the games, then were those 

moves good or bad?

WIN

LOSS

FIGURE 18.17 Two games in which MAX makes the same first three moves result in different 

outcomes, a win in one case and a loss in the other. Were those moves good or bad?

If the evaluation were perfect then each state would be labelled with the minimax value of the state, 

which would come from the set {–Large, 0, +Large}. However, since the minimax value cannot be 

computed, the game tree being too large, one needs an approximation. This is done by playing as many 

games as possible.

The evaluation function e(J) looks at a board position and returns a number. The task of learning is 

to update the weights used in the evaluation function to take into account the outcome of the game. Let 

<B1, B2, …, Bn > be the sequence of board positions in which MAX makes n moves before the game 

ends. Note that the game could end with either MAX or MIN making the last move, but at the end of the 

game the outcome is known. Let <e(B1), e(B2),…, e(Bn) >.

Let ê(Bi) the target or training value of that the learning system wants to use as a new estimate of the 

evaluation function based on the game played. A simple way of obtaining this training value has turned 

11  Quoting Patrick H Winston again “the computer is an ideal experimental subject, requires little care and feeding, is endlessly 

patient, and does not bite.”
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out to be is to use the current estimate of the board position e(Bi+1) where MAX chooses next as the 

training value (Mitchell, 1997). That is,

ê(Bi) ¨ e(Bi+1) (18.51)

Consider the last move made in the game. For simplicity, let us assume that MAX made the last 

move Bn. Now since MAX chooses the best successor state, it can be assumed that the value of ê(Bn) 

can safely be assumed to be the outcome. After updating the value of state Bn, this revised value can be 

used as the revised value for the preceding node Bn–1.

The idea of reducing the temporal difference is to adjust the weights of the evaluation by a controlled 

amount in the direction that reduces this difference. That is, for each weight wi, the updated value is 

computed as,

wi ¨ wi + h* (ê(Bi) – e(Bi))*vi (18.52)

Observe that the term (ê(Bi) – e(Bi))*vi could be both positive or negative, and is proportional to the 

value vi that is the contribution of the ith feature to the evaluation function. If ê(Bi) > e(Bi), that is the 

revised estimate is higher, and therefore better for MAX, the weights that contributed to the evaluation 

are increased in proportion to the value of the feature vi. On the other hand, if the outcome is worse for 

MAX then the term is negative and the weights that contributed more are decreased.

The parameter h is a “learning rate” parameter that is usually a small constant, for example 0.1. 

The value this parameter determines is how much the experience of the particular game influences the 

evaluation function. The basic idea is that good moves are reinforced over time as they reap rewards 

repeatedly, and an occasional blunder should not influence the other moves in that game drastically. In 

other words, a move in a given board position is deemed to be good, only after it proves itself in similar 

situations in many other games.

The update rule of Eq. (18.52) is known to minimize the squared error between the training examples 

and values predicted by the evaluation function. It is known as the LMS (least means square) update rule.

The basic algorithm for weight learning along the lines of the description in (Mitchell, 1997) is given 

in Figure 18.18.

Weight-Learning(Moves: <B1, B2, …, Bn >, Outcome: O, weights: <w1, w2,… wK>)

1  ê(Bn) ¨ O

2  for i ¨n downto 2 

3        for k ¨ 1 to K

4              wk ¨ wk + h*(ê(Bi) – e(Bi)*vk
5        Recompute e(Bi)) with the revised weights

6        ê(Bi–1) ¨  e(Bi))

7  for k ¨ 1 to K

8      wk ¨ wk + h*(ê(B1) – e(B1)*vk
9  return <w1, w2,… wK>

FIGURE 18.18 The Weight-Learning algorithm is an example of TD-Learning. It adjusts the weights 

used in the evaluation function of the game by updating them in a direction that reduces the difference 

between current and new estimates of the evaluation function e(J).

In Line 1, the outcome of the game played is assigned as a training value for the last board position 

in which MAX made a move. Then in Lines 2–8, the algorithm moves to previous board positions, 

updating each of the K weights using the LMS update rule. Finally, it returns the updated’ set of weights.
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18.8 Artificial Neural Networks

The field of Artificial Neural Networks (ANN) explores computer programs that are inspired by neural 

networks. The idea is to create artificial neurons that are models of real neurons, and connect them up 

together to form a complex system. As described in Section 4.3, ANNs have input neurons and output 

neurons, and connections between neurons whose strength is defined by a weight associated with each 

connection. Most networks are built to either classify patterns or recognize, store, and recall patterns. In 

either case, the strong points of ANNs are that they are tolerant of noise or error in the training input, and 

they also have the ability to generalize and interpolate from the set of seen patterns. The difficulty lies in 

determining the architecture of the network, the number of neurons and the connections between them, 

and the strengths of these connections.  ANNs address these problems by learning these connections, 

through a process known as training. The number of neurons is usually determined by a process of trial 

and error using some heuristic knowledge. Training involves the process of adjusting the weights of 

these connections. This may either be a supervised procedure or an unsupervised one.

Supervised training takes place by showing a large number of inputs to the system as well as the 

desired output. The learning algorithms then adjust the weights, such that the difference between the 

desired and the observed output is reduced. This can be visualized as traversing over an error landscape 

in which the minima occur when the network captures the patterns. We discuss them in the following 

section.

Unsupervised learning on the other hand aims to exploit certain basic properties of the constituent 

neurons and connections to drive the system towards a stable configuration that is dependent upon the 

input patterns shown to the network. These are described in Section 18.8.3.

As observed in Section 4.5, the striking thing about the human brain, when seen as a neural network, 

is that a large, interconnected network of simple processing elements, or neurons, ends up becoming a 

complex information processing machine. The first paper to explore the idea exploring neural networks 

as computing machines was by McCulloch and Pitts (1943) (see also (Haykin, 2009)). We begin by 

studying what can be done by a single neuron, and then we will look at the need to combine multiple 

neurons and the corresponding increase in computational power. The model of the neuron adapted from 

Section 4.5 is,

y = f(Si=1,n wi*xi + b) (18.53)

where w1,…,wn are weights for the n inputs x1,…, xn that the neuron receives, b is a bias and f is some 

function that is applied to the summation. We begin below with the Perceptron, where f is the signum 

function or the sign functions that returns either –1 or 1.

18.8.1 The Perceptron

The simplest computing device based on a single neuron was first explored by the psychologist Frank 

Rosenblatt and named the Perceptron (Rosenblatt, 1958). The Perceptron can be visualized as shown on 

Figure 18.19. It consists of a single neuron that receives n inputs x1…xn from other neurons as shown in 

the figure. In the Perceptron, these neurons are sensory neurons which sense real valued feature values 

from the external world. There is an additional input in the form of a bias b. The Perceptron does a two-

stage processing on these inputs. First it computes a weighted sum of the inputs, where each weight wi 

is the weight associated with the ith input, or the connection from the ith neuron. One often views the 

bias as a constant 0th input with value 1 and weight w0 = b. The output of the first stage is,

 z = Si=1, n wi*xi + b

 = Si=0, n wi*xi  where w0 = b and x0 = 1 (18.54)
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In the second stage, the signum function sgn is applied. This function essentially looks at the sign 

of the above expression.

 y = sgn(z) = 1 if Si=0,n wi*xi > 0 (18.55)

 = –1 if Si=0,n wi*xi £ 0

y z= sgn( )z w x b= +i i
i n= 1,

w1

w2

wn
xn

x2

x1

1

b

sgn

FIGURE 18.19 The input to the Perceptron are n input signals x1…xn attenuated by weights w1…

wn and a constant bias with weight b. The Perceptron first computes the weighted sum of its n + 1 

inputs and then applies a signum function sgn that returns 1, if the sum is greater than zero, and –1 

otherwise.

A Perceptron can be seen as a classifier for a two class problem. Each element from the domain is 

represented by a set of n real feature or attribute values <x1…xn>. The Perceptron computes a (n – 1) 

dimensional hyperplane that separates the space into two regions, each containing one class. The 

hyperplane is defined by the n + 1 weights <w0…wn>. The learning task that the Perceptron solves is 

finding these weights, such that the Perceptron returns a value 1 for all elements of one class, and –1 for 

all elements of the other class. In a two dimensional space, where there are two features, the hyperplane 

is a line. We will use a two dimensional space for illustration.

Error Correcting Weight Adjustment Rule

The Perceptron stores the knowledge that discriminates between the two classes in the form of weights 

<w0…wn>. The values of this weight vector are acquired through a process of supervised learning during 

which a training sequence is presented to the Perceptron along with the class labels, and the training 

algorithm adjusts the weights by a small amount, if there is a discrepancy between the class label 

predicted by the Perceptron and the one specified with the training example. The Perceptron training 

rule or the error correcting rule adjusts each weight wi as follows,

wi ¨ wi + h*(t – p)*xi (18.56)

where t is the target class label for the training example <x1,…, xn> and p is the class label predicted by 

the Perceptron, xi is the ith input value and h is a small constant called the learning rate that modulates 

the impact of each misclassified training value on the weight. The learning rate is a value between 0 

and 1, and is sometimes decreased as the training algorithm progresses. Observe that a similar idea was 

used in Eq. (18.52).

To understand the error correcting rule, recall that the class labels are either +1 or –1. If the target 

value t is +1 and the predicted value p is –1 then the term (t – p) is +2. In this case, the weight wi is 

increased by an amount 2*h*xi. This would in turn increase the weighted sum Si=0,n wi*xi, which is 

what is required because one desires this sum to be a value greater than 0, so that the Perceptron would 

output +1. Likewise, when the target is –1 and the predicted value is +1, a similar amount is subtracted 

from wi thus making an attempt to reduce the sum to a value below 0.
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The Perceptron training algorithm using the error correcting rule is given below in Figure 18.20. It 

takes a set of training examples T, each described by a set of attributes A, as used in the ID3 algorithm 

in Figure 18.12. It inspects the training examples one by one, if necessary repeatedly, until convergence. 

For each training example it computes Si=0,n wi*xi to arrive at a prediction p looks at the target label t, 

and applies the error correction rule.

PerceptronErrorCorrecting(Training Set: T, Attributes: <x1…xn>, Learning 

rate: h)
 1 for i ¨ 0 to n 

 2       wi ¨ 0          /* initializing weights */

 3 repeat

 4       for each X=<x1, …, xn> in T

 5             t ¨ training class label

 6             p ¨ predicted class label

 7             for i ¨ 0 to n

 8                          wi ¨ wi + h*(t – p)*xi
 9 until convergence                

10 return W = <w0, …, wn>

FIGURE 8.20 The Perceptron training algorithm using the error correcting rule repeatedly adjusts the 

weights when it encounters misclassified training examples. The weight adjustment essentially moves 

the linear separator towards the misclassified point.

The termination criterion has been left unspecified in the algorithm. We will discuss the criteria for 

convergence, after the following discussion. First let us understand the computation that the Perceptron 

is doing. Having learnt a set of weights <w0, …, wn>, the Perceptron accepts the feature vector <x1, …, 

xn> of a new element and computes the sum Si = 0, n wi*xi assuming x0 = 1 implicitly. If this sum is greater 

than 0 then it outputs a value 1 signifying that the element belongs to a given class, else it outputs a value 

–1, signifying that it does not, and therefore it belongs to the other class. The Perceptron is essentially 

a linear classifier that can distinguish between two classes. This is depicted in Figure 18.21 for two 

classes (Class-1 and Class-2) in a two dimensional space. Each element from the domain is represented 

by two features, values <x1, x2> and the hyperplane is a line defined by,

w0 + w1*x1 + w2*x2 = 0 (18.57)

This can be rewritten as,

x2 = –(w1/w2)*x1 – (w0/w2) (18.58)

which is the more familiar form of a line in a two dimensional space. The reader will observe that the 

role of w0, which is the final bias learnt by the system, is essentially to define the displacement of the 

line, while the slope is defined by w1.

Given a new element <v1, v2>, the Perceptron computes the sum (w0 + w1*v1 + w2*v2), and if it is 

greater than 0, the element is predicted to be from Class-2. Else it is from Class-1. This is equivalent 

to saying that the output is 1 if Si=1, n wi*vi > –w0. This shows that the role of the bias b = w0 value is to 

position the line appropriately, whereas w1 determines the slope.

The equation Si=0, n wi*xi = 0 defines an (n – 1) dimensional hyperplane in n dimensional space that 

aims to separate the two classes. Since this is a linear equation, if it succeeds in separating the two 

classes, we say that the two classes are linearly separable. This situation is depicted in Figure 8.21. If 
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the two figures representing Class-1 and Class-2 

were closer together then one can see that they 

would not be linearly separable.

Like all learning systems, the Perceptron 

learns its parameters by looking at a subset of 

the population known as the training set. Based 

on the weights learnt, the Perceptron can classify 

previously unseen instances. This classification 

will be correct, if the training set is a representative 

of the entire population, and the two classes are 

linearly separable.

The Perceptron Convergence theorem states 

that if the training data is linearly separable, the 

Perceptron training algorithm described above 

will converge to a classifier in a finite number of 

steps. Readers interested in the proof are recom-

mended to (Rosenblatt, 1962), (Nilsson, 1965) or 

(Haykin, 2009). Thus, if the training set is linearly 

separable, the convergence criteria can simply be 

that no new updates are taking place, or when no 

training instances are misclassified. If the training 

data is not separable, convergence is not guaran-

teed. This is not surprising because the data is 

not linearly separable and any hyperplane would 

misclassify some instances, and the algorithm 

will keep moving the hyperplane about, trying 

to correctly classify them. In such a situation, an 

alternate weight update rule discussed below is 

more useful.

When the training data is linearly separable 

then the Perceptron training algorithm will find 

a hyperplane that separates the two classes. The 

initial weight vector defines some hyperplane in 

the feature space. In the training phase, every time 

the algorithm misclassifies a training instance, the 

hyperplane is “shifted” in a direction towards the 

misclassified example. The quantum of the move 

depends upon the learning rate parameter h. The 

particular hyperplane that is found would depend 

upon the order in which the data is presented to 

the training algorithm and the initial weight vector that is chosen. Consider the two gene expression 

clusters of Figure 18.15 found by the K-means clustering algorithm. If the data were presented to the 

Perceptron training algorithm, then it would find one of the many possible lines shown in Figure 18.22, 

reproduced with class labels shown in the figure.

x(1)

x(2) Class-2

Class-1

FIGURE 18.21 The Perceptron finds a linear 

discriminator for the two classes. As long as the 

training data is linearly separable, the Perceptron 

can learn to distinguish between the two classes.  

Here, in a two dimensional space, if Si=0,2 wixi > 

0, shown by the arrow, an element belongs to 

Class-2.

c2

c2

c2c2

c2

c1 c1 c1

c1c1

x
(1)

x
(2)

FIGURE 18.22 Given the labelled training 

data from Figure 18.15, the Perceptron 

training algorithm will find a straight line that 

separates the two classes or clusters. The 

actual line found would depend upon the 

initial set of weights.
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The Delta Rule for Weight Adjustment

If the training examples are not linearly separable then the error-correcting rule fails to converge. One 

can then use an alternative criterion of minimizing the total error in classification. The delta rule can 

be understood by considering the error in classification in the first stage of the Perceptron, before the 

Signum function has been applied (Mitchell, 1997). Equation (18.54), which is the linear weighted sum 

of the input, is reproduced below.

z = Si = 0, n wi*xi

Now, given a weight vector W = <w0, …, wn>, one can define the total error E(W) when this weight 

vector is used for classifying all the examples {X1, …, X|T|} in the training set T containing |T| training 

instances as follows.

E(W) = (½)*SXŒT (tX – zX)2 (18.59)

where tX is the target output for the training example X and zX is its linear sum. It is half the sum of 

squares of errors for each example, and is always a non-negative quantity. Observe that it is no longer 

modulated by the signum function and is a continuous function. For every possible weight vector, this 

value is defined and one can define a hypersurface in n + 2 dimensional space, where the (n + 2)nd 

dimension is the magnitude of this error. When n = 1, this can be seen as a two dimensional surface 

in a three dimensional space. It turns out that, for the above error definition, this is always a smooth 

parabolic surface with one global minimum.

The Hill Climbing or Gradient Descent algorithm (see Chapter 3) is a perfectly suited for exploring 

this surface to find the global minimum. The global minimum is the best one can do, given the set of 

training examples. Observe that if the examples are linearly separable, the minimum error will be zero. 

The gradient descent rule or the delta rule moves the weight vector down the steepest gradient in each 

step.

The gradient of E(W) with respect to the weight vector W is itself a vector that points in the direction 

of the steepest ascent. This can be written as (Mitchell, 1997),

0

( ) , , ,
i n

E E E
E W

w w w

∂ ∂ ∂Ê ˆD ∫ Á ˜∂ ∂ ∂Ë ¯
�

 (18.60)

The derivative of the error surface is a vector made up of the partial derivatives of the error in the 

dimension of each weight. When we want to minimize the error value, the weight adjustment must be 

done in the opposite direction. Thus, the weight adjustment rule can be written as,

wi ¨ wi – h * 
i

E

w

∂
∂

 (18.61)

The partial derivative used here can in turn be obtained by differentiating Eq. (18.59) and substituting 

Si=0,n wi*xi for zX. Observe that only the ith term will remain in the final equation and the negative sign 

will cancel giving the delta rule,

wi ¨ wi + h*SXŒT (tX – zX)*xiX (18.62)

where xiX is the ith input of the training example XŒT. This can be written as,

wi ¨ wi + Dwi (18.63)

where

Dwi = h*SXŒT (tX  – zX)*xiX (18.64)
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The algorithm that uses the above delta rule will have to compute the linear sum for each training 

example XŒT, and add up the terms of the form h*(tX–zX) * xi for each X to compute Dwi. The algorithm 

is given in Figure 18.23.

PerceptronDeltaRule(Training Set: T, Attributes: <x1…xn>, Learning rate: h)

 1 for i ¨ 0 to n

 2     wi ¨ 0          /* initializing weights */

 3 repeat

 4    for i ¨ 0 to n 

 5       Dwi ¨ 0

 6    for each X=<x1, …, xn> in T

 7         t ¨ training class label

 8         l ¨ linear sum for X

 9         for i ¨ 0 to n

10              Dwi ¨ Dwi + h*(t – l)*xi 

11   for i ¨ 0 to n

12         wi ¨ wi + Dwi
12 until convergence

13 return W = <w0, …, wn>

FIGURE 8.23 The Perceptron training algorithm with the delta rule computes the partial derivatives 

in error E over the entire set of training data before adjusting the weights once. It repeats this process 

until there is no change in the weights. In the process, it minimizes the cumulative error over the 

training data.

The algorithm using the delta rule is more robust because it always converges to the minimum error 

weights. However, it does this at a greater computational cost because before making each adjustment, 

it inspects the entire training data, whereas the error correcting rule makes adjustments, looking at each 

individual example.

Learning Boolean Functions

Neural networks in general and Perceptrons in particular can also be employed for function approximation.

We look at some Boolean logic functions which have a close relation to the two class classification 

problem. Given a set of Boolean variables x1, …, xn, a Boolean function of the variables evaluates to 

either true or false, or equivalently 1 or 0. The learning problem here is that given the various tuples of 

Boolean variables and the function value for each of them, can a Perceptron learn the function. Since the 

functions are Boolean, we can divide the tuples into two subsets, or classes. One for which the function 

evaluates to true, and the other that evaluates to false. Can we find a hyperplane that would recognize 

all and only those tuples that should evaluate to true and return a value 1?

Consider the example in Figure 18.24. There are two Boolean variables x1 and x2 and each can take 

a value from the set {0, 1}. Given the four pairs along with their target values {(<0, 0>, 0), (<0, 1>, 0), 

(<1, 0>, 0), (<1, 1>, 1)}, the reader can recognize it as the Boolean AND function. We want to find a line 

in a two dimensional space such that the Perceptron outputs 1 only for the element <1, 1>. If so, then 

the Perceptron has learnt to represent the Boolean AND function. The figure shows one line represented 

by the equation x1 + x2 – (1+e) = 0 that accomplishes this task. Here, e is some small positive value. It 

is left as an exercise for the reader to work out how the Perceptron training algorithm will find such a  

separator.
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There are 16 Boolean functions possible of 

two variables. It turns out that only 14 of them 

are linearly separable, and two are not. These two 

are the XOR function represented by {(<0, 0>, 1), 

(<0, 1>, 1), (<1, 0>, 1), (<1, 1>, 0)} and its nega-

tion the EQ or equivalence function represented 

by {(<0, 0>, 1), (<0, 1>, 0), (<1, 0>, 0), (<1, 1>, 

1)}. The reader is encouraged to plot these two 

functions and verify that a straight line cannot be 

drawn to separate the two target values. There are 

256 possible Boolean functions of three variables 

and 65536 functions of four variables. Of these, 

only 104 and 1882 respectively are linearly sepa-

rable (Yegnanarayana, 1999).

Figure 18.25 shows two attempts to find a line 

that would isolate the two shaded circles. Both 

attempts are unsuccessful. The linear discrimina-

tor on the left labelled (a) classifies <0, 1>, <1, 0> 

and <1, 1> as 1. This is in fact the Boolean OR 

function. The Perceptron on the right, labelled 

(b), classifies <0, 0>, <0, 1> and <1, 0> as 1. This 

represents the Boolean NAND function.

1

0

0 x1

x2

1

1

0

0 x1

x2

1

(a) (b)

FIGURE 18.25 Trying to capture the XOR function. The Perceptron line on the left classifies <0, 1>, 

<1, 0> and <1, 1> as 1, while the one on the right classifies <0, 0>, <0, 1> and <1, 0> as 1. They both 

agree on <0, 1> and <1, 0> which would be the XOR function.

Both the discriminators in the figure are unable to capture the XOR function. But when one looks at 

the set of pairs, they both agree on, that is <0, 1> and <1, 0>, one recognizes the XOR function.

Can we employ both the Perceptrons to work together and represent the XOR function? That would be 

possible if we could rig up a system in which a pair is classified as 1, only if there is consensus amongst 

the two individual Perceptrons. How can one implement this consensus? We can indeed deploy a third 

x2

x1
10

0

1

FIGURE 18.24 The shaded circle represents 

an output 1 (or true) and the three empty circles 

represent the output 0 (or false). The straight line 

defined by x1 + x2 – (1 + e) = 0 is a separator. 

The region pointed to by the arrow corresponds 

to x1 + x2 – (1 + e) > 0, signifying the Boolean 

AND function. If we had used (1 + e) – (x1 + x2) = 

0, then the arrow for (1 + e) – (x1 + x2) > 0 would 

point to the other class (the NAND function).
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neuron that captures the Boolean AND function, and feed the output of the OR neuron and the NAND 

neuron as input to the AND neuron. The details are left as an exercise for the reader.

Then we have a two layer neural network that can represent the XOR function. Students of logic know 

that any logical function can be implemented using a small set of operators. Studying digital logic, we 

know that any Boolean logic circuit can in fact be realized using only the NAND gate or only using the 

NOR gate. This means that given a sufficient number of neurons, one can implement all logic functions.

In their well known book named Perceptrons, Marvin Minsky and Seymour Papert (1969) questioned 

the representational and generalization capability of Perceptrons based on their inability to classify 

problems in which the classes are not linearly separable. They even went on to conjecture that the 

limitations could possibly carry over to multilayered networks of neurons. The effect of the book was 

to discourage researchers from looking at neural networks in the immediate aftermath.

It was not until the Backpropagation algorithm (discussed below) was devised and a set of two books 

were published by James L. McClelland and David E. Rumelhart (1986; 1986a), that there was renewed 

interest in neural networks in the 1980s; and by the 1990s, they were quite a rage amongst researchers. 

We look at multilayer networks in the next section, but before that, let us look at the XOR problem and 

get some intuition on how it can be represented with more than one neuron connected together. 

We next look at multilayer neural networks and the algorithms to train them.

18.8.2 Feedforward Networks

Network structures have different kinds of flow of 

information between neurons. In a feedforward net-

work, there are at least three layers of neurons, known 

as the input layer, the hidden layer, and the output layer 

(see Figure 18.26). Information flows in one direction 

from the input layer towards the output layer. The figure 

shows a network that takes in a pattern of four values 

as input and produces an output pattern of three values. 

These could, for example, be three classes that patterns 

fall into, if the output is unary, or eight classes if the 

output is binary (treated as three bits). We assume that 

each output layer neuron is connected to all hidden neu-

rons, and each hidden neuron is connected to all input 

layer neurons. Observe that in the training process, 

some of these connections could be “broken” if they 

are assigned values close to zero in the training process.

Each neuron in the hidden and output layers generates an output that is a function of the inputs it 

receives. This function should be a nonlinear function for the hidden layer to be meaningful. Otherwise, 

the network could be collapsed into a two layer network called a Linear Association Classifier 

(Yegnanarayana, 1999). This function should also be a differentiable function if one is to use the gradient 

descent algorithm. In Section 18.8.1, we have looked at the use of gradient descent weight adjustment 

rule. This rule was applied when only the linear weighted sum of the inputs was considered. But as 

mentioned above, cascading neurons that compute a linear sum does not give us any additional power. 

We need a function that is both non-linear and differentiable.

Typically, the function that is chosen is the sigmoid function, reproduced below to contrast it with the 

step function used in the Perceptron. The sigmoid function s, like the signum function, is a squashing 

Input Hidden Ouput

FIGURE 18.26 A feedforward artificial 

neural network.
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function, implying that it squashes or limits the output however large the input is. Here we choose the 

signum function s to serve as the function f we apply to the summation z.

f(z) = s(z) = 1/(1 + e–az) (18.65)

The function is applied to the linear sum z defined in Eq. (18.54) and limits the output between 0 

and 1. Figure 18.27 contrasts the sigmoid function with the threshold function (which is like the signum 

function, but limits the output between 0 and 1). A variation of the sigmoid function, known as the 

bipolar sigmoid function, limits the output between –1 and 1. Other popular activation functions are 

the hyperbolic-tangent function and the arc-tangent function.

1

0

f( )z f( ) = 1 if > 0z z
= 0 otherwise

0 z

f s( ) = ( )

= 1/(1 + )

z z

e–az

1

0
0 z

f( )z

Threshold function Sigmoid function

FIG. 18.27 The threshold function is not a differentiable function while the sigmoid function is. 

The threshold function is a step function while the sigmoid function approaches the values 0 and 1 

asymptotically. As a increases, the sigmoid function makes the transition more rapidly, approaching 

the threshold function as a Æ .

The derivative of the sigmoid function s is easily computable.

( )d z

dz

s
 = s(z) * (1 – s(z)) (18.66)

These networks are known as feedforward networks because information flows in one direction 

from the input neurons to the output neurons. For every input shown to the network, the output is a 

classification of the input pattern. For example, if the input to the network is a linearized array obtained 

by scanning and digitizing handwritten characters, the output could be the ASCII code for the character.

The Backpropagation Algorithm

The Backpropagation algorithm was first devised by Werber (see (Werber, 1994) for more informa-

tion) and published in the well known book by Rumelhart and McClell and. The Backpropagation 

algorithm also adopts a gradient descent algorithm for training, and is essentially an extension of the 

PerceptronDeltaRule algorithm described in Figure 8.23. Each weight being learnt is moved a little bit 

in the direction opposite to the gradient of the Error hypersurface in the weight space. The magnitude 

of this move is dependent upon the error in the output from the neuron. For the neurons in the output 

layer, the error value can be readily computed because the actual output and the target output are known. 

For a neuron in the hidden layer, this is not the case since the target output is not available. However, 

since the neurons in the output layer receive their inputs from the hidden layer neurons, the error in their 

output can be attributed to an error in their inputs, which are the outputs of the various neurons in the 
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hidden layer they are connected to. If one can propagate the error from the output layer to the neurons 

in the hidden layer then we have a basis for training the hidden-layer neurons. This is the key feature 

of the Backpropagation algorithm, and from which it derives its name.

The basic idea behind the gradient descent is still the same. For each weight, take a step in the direction 

opposite to the gradient. The magnitude of the step depends upon the magnitude of the derivative of the 

error and upon the learning rate h, as described in Eq. (18.61). This is reproduced below. Observe that 

now there are many neurons for which we need to train the weights and hence there are two indices. 

In the equation below, the weight of the link from the ith neuron to the jth neuron is being adjusted, 

along the direction opposite to the gradient of the error E (see Eq. 18.59) with respect to the weight 

wij.

wij ¨ wij – h * 
ij

E

w

∂
∂

 (18.67)

The main difference is in the calculation of the derivative. There are two different cases. The first, for 

the output layer neurons, is similar to the delta rule, except that the neurons in the feedforward network 

implement the sigmoid function12. The second case is for the hidden layer neurons. Consider the terms 

needed to compute the derivatives shown in Figure 18.28 (in the style of (Mitchell, 1997)).

Let j be the hidden-layer neuron that applies the sigmoid function to the weighted sum Swijxi, we will 

refer to as netj. Let oj be the output of the jth neuron, which is one of the inputs to a set of output layer 

neurons we will refer to as outputs. We will also use the term downstream(j) to stand for all the neurons 

that receive the output of neuron j. In the case of the three layer feedforward network13 we are looking 

at, these two terms, output and downstream, refer to the same set, but in other architectures they could 

be different. Finally ok is the output of neuron k in the output layer, and tk is the target output for that 

neuron.

x1

x2

w1j

w2j

xn wnj

net =j ij iSw x
i n= 0,

w0

1

oj j= (net )s

ok j= (net )snet =k ij jSw x

Downstream( )j

FIGURE 18.28 The terms associated with a hidden neuron j. The hidden neuron receives a set 

of inputs x1…xn and a bias 1 and computes a weighted sum netj. It applies the sigmoid function to 

netj to generate the output oj which is one of the inputs to a set of neurons Downstream(j) or output 

neurons.

12  If one is using the multilayer feedforward network for the task of function approximation, the output layer is linear, and not a 

squashing function. 
13  In the literature, such networks are also referred to as two layer networks, signifying the fact that there are two layers of neurons 

with the sigmoid function that need to be trained. 
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Given that the influence of wij can only be via netj, the derivative term could be written as,

net
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Let us consider the simpler case for a neuron k in the output layer. We can write,
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Substituting the derivative for the sigmoid

= –(tk – ok) * ok * (1 – ok) (18.69)

Substituting this expression in Eq. (18.68) and the result in Eq. (18.67) we get,

wjk ¨ wjk + h*(tk – ok)*ok*(1 – ok)*xjk (18.70)

which is the computation one has to do in the iterative steps, as the algorithm inspects each training 

example and adjusts each weight that is an input to an output neuron. The above equation may be 

abbreviated as,

wjk ¨ wjk + Dwjk (18.71)

where Dwjk is the change one is making in the weight wjk and

Dwjk = h*dk*xjk (18.72)

where dk = (tk–ok)*ok*(1–ok) can be thought of the error term which depends upon the actual and the 

expected output.

In Eq. (18.70) the term (tk–ok) measures the error in the output of the neuron k whose input weights we 

are trying to learn. In the second case of learning, the weights associated with hidden neurons this term 

is not available. However, any hidden neuron j sends its output oj to the set of neurons downstream(j) 

where the error shows up. If one has an error term for the downstream neurons, then one can propagate 

the error term back to neuron j in proportion to the connecting weights. That is, for a hidden neuron j 

that feeds the set of neurons downstream(j),

dj ¨ oj*(1–oj)* Sd*Œdownstream(j) wjd*dd (18.73)

Recall that oj*(1–oj), the common term, is the derivative of the sigmoid function. In the layered 

feedforward network in our illustration, the set downstream(j) is the same as the set outputs. The 
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idea of using the term downstream(j) is useful because it generalizes the back propagation process to 

architectures that are not necessarily layered. Also, if one has a layered network with more than two 

sigmoid layers then the same back propagation process can be used to train neurons in each preceding 

layer. For the simple network architecture of Figure 18.26, the above equation can be written as,

dj ¨ oj*(1–oj)* Sk*Œoutputs wjk*dk (18.74)

The training step specified in Eq. (18.71) can now be used even for the hidden neurons.

The Backpropagation algorithm adapted from (Mitchell, 1997) is given in Figure 18.29. It takes as 

input the number of neurons Ni, Nj, and Nk respectively in the input, hidden and output layers; the set of 

training examples each with a set of target outputs for the output layer; and the learning rate parameter 

h. Lines 1 to 6 are used to initialize the weights of connections incident on the hidden layer and the 

output layer. In Lines 7 to 19, each training example is considered repeatedly till convergence. In Lines 

9 to 14, the weights for the output layer are adjusted. We refer to the set of these weights as Wk. Line 11 

is an abbreviation for the feedforward process in which the values at the input layer are propagated to 

the output layer. Observe that in Line 14 the value of the jth hidden neuron oj has been referred to as xjk 

in Eqs. (18.70) and (18.72). Likewise, the input value xi is the input from the ith neuron to the jth neuron 

referred to as wij. For the sake of brevity and readability, the summation from Eq. (18.74) has been left 

as it is in Line 16. This will expand into a loop when implementing the algorithm.

Backpropagation(Training Set: T, Learning rate: h, In: Ni, Hidden: 

Nj, Out: N0 )

 1 for j ¨ 1 to Nj
 2     for i ¨ 0 to Ni
 3         wij ¨ e        /* The hidden layer set Wj */

 4 for k ¨ 1 to No
 5     for j ¨ 0 to Nj
 6         wjk ¨ e        /* The output layer set Wk */

 7 repeat

 8     for each X=<x1, …, xn> in T

 9         for k ¨ 1 to No    /* Adjusting output layer weights */

10             tk ¨ training class label

11             ok ¨ computed output of the kth neuron

12             dk ¨ (tk–ok)*ok*(1–ok)

13             for j ¨ 0 to Nj
14               wjk ¨ wjk + h*dk*oj        /* Note: oj = xjk */

15         for j ¨ 1 to Nj      /* Adjusting hidden layer weights */

16             dj ¨ oj*(1–oj)* Sk*Œoutputs wjk*dk
17             for i ¨ 0 to Ni
18                wij ¨ wij + h*dk*xi     /* Note: xi = xij */

19 until convergence

20 return <Wj, Wk>

FIGURE 18.29 The Backpropagation algorithm initializes all weights to small values denoted here by 

e. It first adjusts the weights of the output layer Wj and then propagates the error backward to adjust 

the weights in the hidden layer Wj. In line 16, we have used the summation as a shortcut for a loop in 

the interest of readability.
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The Backpropagation algorithm is an instance of gradient descent in the weight space. The loop in 

Lines 7–19 is repeated for a large number of training instances. See (McClelland and Rumelhart, 1986) 

for a detailed description and analysis. A large number of neural networks implemented use the Backprop 

algorithm as it is popularly known.

Convergence and Representation Power

How much more representation power do multilayer networks have than Perceptrons, and how does the 

training algorithm perform?  We look at the second question first.

The error surface for the Perceptron is smooth and parabolic with one global minimum that gradient 

descent ends up in. Unfortunately, the error surface for the multilayer Perceptron, as feedforward 

networks are also known, may have multiple local minima. It is possible that the Backpropagation 

algorithm could get stuck in one of the local minima. But in practice, the algorithm performs quite well, 

and is popularly used  in many kinds of applications.

It has been suggested that the occurrence of local minima may not be very prevalent. The reason 

for this is that for a local minimum to occur, the gradient in all the dimensions must become zero, and 

that would be a rare phenomenon. What might look like a minimum on first glance may have an escape 

route in some dimension.

Even when plateaus and minima with a small dip in error occurs, one technique that can add some 

momentum to the gradient descent movement is by carrying forward some movement from the previous 

iteration. We modify Eq. (18.72) to add a momentum term

Dwjk(n) = h*dk*xjk + a *Dwjk(n–1) (18.75)

where Dwjk(n–1) refers to  the step taken in the previous or (n–1)th iteration and a is a constant from 

the range [0, 1) called momentum.

Another approach would be to add a degree of randomness along the lines discussed in Chapter 4.

The size of the network will obviously have an impact on the convergence rate, since the number of 

dimensions of the space in which gradient descent is done increases with the number of neurons. On 

the other hand, the size of the network will also have a bearing on the representational power of the 

network. Ideally, we would like to have a network that has just enough neurons to be able to generalize 

over unseen examples effectively. If there are too many neurons then there is a danger of ‘overfitting’ 

(see Section 18.4.2).

The question of overfitting also arises in deciding the termination criterion for Backpropagation. 

A simple termination criterion is to stop when the decrease in error has become sufficiently small. If 

the algorithm is run too long then it will overfit the weights to the training data. Recall that overfitting 

happens in a supervised learning situation when the learning algorithm has a very low error on the 

training data but a disproportionately large error on unseen data. This is particularly a danger in using 

Backpropagation because the same data is seen again and again. One way to avoid overfitting is to do a 

fixed number of iterations, but then one should have an idea of how many. A method that is often used is 

to separate the training data from the test data or the validation data. Performance on the test data can 

be used to decide when to terminate, while the training data is used to update the weights. A procedure 

of cross validation is often used, in which by turns, a fraction of the data is used for validation as the 

rest is used for training. Different subsets are chosen to form the training set by rotation.

An important question that arises is on the role of the hidden neurons. How do they contribute to 

learning more complex concepts than a single layer system? It has been demonstrated that a layered 

network with a single hidden layer and an output layer using the linear functions capture all bounded 

functions. With an additional hidden layer, one can represent any arbitrary function with any accuracy. 
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In general, it is felt that given a sufficient number of neurons, any complex function can be captured 

using a feedforward neural network with one hidden layer, where both the hidden and output layers use 

the sigmoid function. The process becomes significantly more efficient with an additional hidden layer.

Designing an artificial neural network essentially boils down to choosing the number of hidden 

neurons. Once the features of the data are decided, the number of input layer neurons gets automatically 

determined. Likewise, when the target classes are defined, so does the output layer. The hidden neurons 

contribute to problem solving by creating intermediate representations, which in turn are used to construct 

the decision surfaces by the output layer. Remember that the output neurons get the signal only from the 

hidden layer. The number of neurons in the hidden layer should be enough to create all the intermediate 

representations needed to create the complex decision surfaces the problem requires. At the same time, 

the number must not be too large because then it would be difficult to train the system. Usually, a process 

of trial and error is involved. The number of training examples needed is also a parameter that needs 

attention. A heuristic commonly used is that the number of training instances should be ten times the 

number of weights to be adjusted.

18.8.3 Self Organization

How did the biological brain evolve? How do life forms come up with a system that can process visual 

signals and auditory signals? While there is certainly a flavour of supervised learning in human children, 

especially in matters relating to language, there is a considerable amount of learning that happens in 

an unsupervised manner. A human child is born with a complete visual system but is only able to see 

things gradually over a period of time. The neural network that does early processing, meaning the initial 

processing of the impinging information, develops by a process of unsupervised learning during which 

a child learns to focus, learns eye coordination, perceive depth, and perceive colour. This learning hap-

pens as the child’s brain processes the input signals, and while doing so adapts to make sense of those 

signals. Such learning is called self organized learning.

A newborn infant has a set of neural connections that are not tuned to its surroundings. As it pro-

cesses the incoming signals, the certain neural connections are reinforced at the expense of others and 

an information processing architecture evolves. Studies in neurobiology have identified four principles 

of self organization learning (Haykin, 2009).

Self-amplification Neural pathways that are used more often tend to strengthen. If two neurons on 

either side of a synapse are excited simultaneously then the strength of the synapse is increased. This 

was first postulated by Donald Hebb (1949) and is known as Hebbian Learning in his honour. The 

interesting thing about Hebbian learning is that it is entirely local in nature. Learning happens solely on 

the basis of events, only in the immediate neighbourhood of the neuron.  Learning happens via a time 

dependent mechanism in which the exact times of occurrence of the signal on both sides of the synapse 

are important. If the two signals happen within a short time interval then the synapse is strengthened. 

Conversely, if the two signals happen asynchronously then the synapse is weakened.

Competition A neuron communicates with other neurons by sending a signal down its axon (see 

Figure 4.20) and across a synapse to the dendrite of a target neuron. This process consumes energy 

and other resources which are limited. This is addressed by a process of competitive learning in which 

different neurons compete with each other to respond to an input; and only one neuron or one neuron per 

group, the one that is fittest, becomes active at a time. In competitive learning, different sets of neurons 

learn to respond to different input patterns, and in this way become feature detectors.
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Cooperation While competition selects neurons that react to a given pattern, cooperation between 

the winner neurons follows, in which sets of neurons learn to react to distinct input patterns. Such 

cooperation happens between lateral interactions between groups of excited neurons.

Structural Information Learning can happen only when there is redundant information in an input 

signal, represented by structure and correlation between neighbouring signal samples. This structure 

represents some kind of continuity in the domain that generates the signal, thus creating the possibility 

of identifying components that are different from other components. Consider for example a scene in 

which a clump of trees can be seen on a hillside against a blue sky. It is the fact that the signal from a 

tree tends to be similar as compared to a signal from the sky part of the scene that facilitates learning.

The human brain is organized in such a way that sensory inputs from different regions can be found 

to be mapped to well defined different regions of the cortex. The following properties of such compu-

tational maps have been identified (Haykin, 2009).
 ● In each region in the map, the neurons process similar kinds of information, for example arising 

from the sense of touch. Such information may originate from different parts of the body.
 ● At each stage, each piece of information is kept into its proper context.
 ● Neurons handling closely related pieces of information are located physically close so that they 

can interact with short, synaptic connections.
 ● One can think of such maps as reducing higher dimensional information onto the cortical surface.

This has been a motivation for investigating neural networks that are known as self organizing maps. 

A well studied version is the Kohonen Network.

Kohonen Networks

Interestingly, one can devise an unsupervised 

strategy for learning in feedforward networks in 

what are called Kohonen networks. Figure 18.30 

shows an example network in which the output 

layer, also known as the competitive layer, has three 

neurons. Layers of such neurons are hypothesized 

to occur in our visual systems, supported by 

simulation results (Linsker, 1986). Each output 

neuron represents a class or a cluster in the space of 

patterns of four values each, captured in the input 

layer. The basic idea is the neurons in the output 

layer compete for activation. Instead of assigning a 

supervisor designated class label, the neuron with 

the highest activation is declared as  winner. The 

weights of edges connecting the input layer to the 

winner neuron are adjusted to become closer to the 

input vector (pattern).

In practice, the competitive layer may contain 

many neurons, and the neurons may satisfy a simi-

larity property, wherein neurons that are topologically near each other in the output layer have similar 

weight vectors. This can be ensured by establishing lateral connections amongst the output layer neurons, 

like in the feedback networks (see discussion on Hopfield networks below). The weights of the lateral 

connections are positive for neurons closer to each other, and negative for neurons further away. That 

FIGURE 18.30 In a Kohonen Network, 

the neuron with the highest activation is the 

winner. Learning involves weights of the 

winner to decrease the error. Such networks 

are said to be self organising. 

Winner

OutputInput



862 A First Course in Artificial Intelligence

is, they are excitatory or inhibitory connections. In this way, the activation value of a neuron is also 

propped by the activation of neighbouring neurons, and vice versa.

The spatial location of a neuron map corresponds to a particular pattern or feature in the input space.  

Each input can be seen as a vector of N values (four for the example in the figure). The correspond-

ing weights of the output neurons are also vectors of N values. In the training step, the weights of the 

winner neuron (and perhaps a few neighbours) are adjusted so as to come closer to the input vector.  If 

the input data set is clustered in M clusters, all the inputs from the same cluster will have similar vec-

tors. That is, the points in N-dimensional space will be clustered close to each other, and the weight 

vectors will be aligned closer to each other. If there are more than M neurons in the output layer then 

hopefully their weight vectors will also align themselves along the M clusters. The system would then 

have learnt the M patterns. The learning process is unsupervised, in the sense that it is not externally 

specified during training what cluster (or class) each input belongs to. Such networks are also known 

as self organizing systems.

18.8.4 Networks with Feedback

While the feedforward networks are used to classify patterns (information flows from pattern to class 

labels), one can build networks with feedback that allow information to flow in all directions. Examples 

of such networks are the Hopfield Network and the Boltzmann machine. These networks can be used to 

store and recall patterns. All the neurons in the network can be treated both as input as well as output 

neurons, though “invisible” or hidden neurons can also be there.

The way recall of patterns works is as follows. An input pattern is shown to the network by activating a 

set of neurons. The pattern may be a partial one, activating only some of the neurons, or even an erroneous 

one, representing a pattern the network has not seen before. The network is then allowed to go through 

a process of relaxation after which, the network settles into a minimum energy state (Hopfield, 1982).

Consider the Hopfield network of four neurons 

shown in Figure 18.31. Assume that each neuron 

can be in one of two states, and the influences 

are positive and negative. Positive influences are 

excitatory and the connected neurons tend to be in 

the same state; while negative influences are inhib-

itory, driving them towards opposite states. The 

degree of influence is determined by the weight of 

the connection. Negative weights imply inhibitory 

influence. At any point, the state of a neuron is 

determined by the states of neurons connected to 

it. If the sum of the products of neighbour neuron 

activation times the connection weight is greater 

than a threshold, the neuron gets value 1, else it 

gets value 0. The two stable states in the figure 

assume a threshold of 0, and represent the two 

patterns that the network has stored. 

The process of relaxation may be deterministic (Hill Climbing) as in the Hopfield network, or it 

may be stochastic (Simulated Annealing) as in the Boltzmann machine (Hinton, 1986). The minimum 

energy states are defined during the training process in which a set of patterns are shown to the network, 

and a minimum energy state in what is known as a basin of attraction is formed for each pattern to 

be remembered. A detailed in-depth discussion of these networks involves viewing the network as a 

FIGURE 18.31 A tiny Hopfield network. 

Pointed arrowheads depict excitatory (positive) 

influences and rounded arrowheads represent 

inhibitory (negative) influences. Observe that the 

influences are symmetric.
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neurodynamic system which is guaranteed to converge, and is beyond the scope of this book. Interested 

readers are referred to (Hassoun, 1998) and (Haykin, 2009). The training process employs a form Hebbian 

learning (Hebbs, 1949). The basic idea behind Hebbian learning is reinforcement of agreement. When 

two neighbouring neurons have their activation levels close to the desired activation levels, then the 

weights of the connection between them is increased. If a machine is trained to remember the following  

patterns,

P1 = [1 0 1 1 0 0 1 1 1]

P2 = [0 0 0 1 1 1 1 1 1]

P3 = [1 1 1 1 0 0 0 0 0]

and then shown the partial pattern [0 0 0 x x x x x x] where an “x” represents missing or unspecified data, 

it would converge to the second pattern P2, and given a pattern like [1 0 1 1 1 0 0 1 1] probably converge 

to P1. This can be seen as similarity based retrieval, in which the most similar pattern is retrieved from 

memory. Recall that we studied other approaches to similarity based retrieval in Chapters 15 and 16 

when we looked at memory based reasoning systems that store and reuse problem solving experience, 

possibly in free text form. Based on his experiments, Hopfield hypothesized that the number of patterns 

that can be stored reliably in a network is about fifteen percent of the number of neurons. Thus to store 

150 patterns, one would need a network of about a thousand neurons.

One can think of such networks as content addressable memories or associative memories, in which 

patterns are stored and recalled on partial or even erroneous description of the pattern as input. This has 

been claimed to be closer to the way our own memory systems work. Observe that this is starkly different 

from computer memory systems that retrieve information, based on the address of the memory location. 

This has also been put forth as a more biologically feasible network model than the Backpropagation 

based feedforward network. However, much of the work done in ANNs is focused towards solving 

problems that are of immediate interest, and the feedforward networks have been immensely successful 

in the task of pattern classification, such as handwritten character recognition.

18.8.5 Subsymbolic Representations

The success of neural networks can be attributed to the ability of ANNs to generalize, and hence tolerate 

erroneous (previously unseen) input, and the fact that they learn inductively from a set of samples. 

In contrast, it has been much more difficult to directly implement algorithms for the task of pattern 

recognition, since it is difficult to articulate the precise rules that define the patterns. Such articulation 

is not necessary in ANNs because they rely instead on a process of training the networks on a (large) 

collection of training patterns.

Even when we can train ANNs to store knowledge of patterns, it is difficult to analyse where this 

knowledge is stored into the weights network. For this reason, neural networks are sometimes referred to 

as subsymbolic representation systems. They do not represent knowledge at the level where symbols stand 

for something, but at the signal or subsymbolic level.14 The fact that patterns are stored in a distributed 

manner has also led to the hypothesis that memory in such systems is not localized. Hofstadter says in 

his famous book GEB (Hofstadter, 1979) that “there is no grandmother node” in our brains. The relation 

between location and information in human brains is still not clear though. While it has been observed 

that even with parts of our cortex being damaged, one can carry on our cognitive tasks, suggesting that 

the brain is somewhat like a hologram in which information is stored in every part, which is only true 

14  Here, one is talking of representing the knowledge associated with the domain. Of course, since artificial neural networks are 

realized on digital computers, at some lower level they are symbolic too. 
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to some extent. Recent work in neurobiology (see for example (Ramachandran 2003)) has demonstrated 

that there are locations in our brain that store and process specific information. For example, we seem 

to have specific hardwired segments in our brains for recognizing faces, which is not surprising given 

the importance we seem to give to faces in thinking about other people. Patients for whom that part of 

the cortex is damaged are unable to recognize people when they look at them, but do so immediately 

when spoken to. Even more intriguing are cases where patients are not able to associate the faces of 

one or two known people as their relatives, suggesting that a specific pathway in the network may have 

been damaged.

While it has been demonstrated often that the training of ANNs can be a daunting task demanding 

huge amount of time and space resources15 (see Boxes 4.1 and 4.2, and the section on Emergent systems 

in Chapter 4), it would probably be a good idea to combine the ideas of symbolic reasoning with the 

pattern recognition abilities of ANNs to develop hybrid systems. A speech recognition system based on 

ANNs could be wrapped around a natural language processing system that relies on articulated rules 

(see Figure 18.32).

NLP
+

Reasoning

“Hi. How
are you?”

“Hullo”

ANN

FIGURE18.32 A hybrid system could employ to convert real input patterns to their symbolic 

representations to be processed by symbolic reasoning and natural language processing (NLP) 

methods.

The process of perception is probably akin to a feedforward system. Incoming information in the 

form of signals is mapped onto (presumably) symbolic structures. Thus, the perceptive system may be a 

feedforward system that is guided in some way by feedback from the internal (conceptual) system. There 

is some evidence that some of the early learning that takes place in the visual cortex of human infants 

has characteristics of competitive learning. The cognitive apparatus that deals with concepts is more 

likely to be like the associative memory in Hopfield like networks. One can only hazard a suggestion 

that in order to build artificial intelligence systems that do not require the kind of learning period that 

15  Consider also the slow pace at which human infants learn, and the amount of time humans need to become self reliant. This 

is perhaps a price we have to pay for having our versatile brains. Developers of computer system applications may not have 

this kind of patience. On the flip side however, once we do manage to train systems to do tasks like handwriting recognition, 

or speech recognition, these abilities could be easily replicated in multiple copies, and embedded into different applications.
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natural ones (humans) do, one may have to find means to build symbolic problem solvers as the kernel, 

and wrap them with ANNs to enable them to sense a physical world and act in it.

18.9 Discussion

The earliest success in Machine Learning arguably was Samuel’s Checkers program that improved its 

game as it played along. It was also one of the earliest forms of parameterized learning, in which the 

scaffolding was already conceptualized but the details had to be filled in. This approach to learning 

has been the most successful, especially given that computing resources have been increasing by leaps 

and bounds. Such learning manifests itself under various names including Data Mining, Knowledge 

Discovery, Pattern Learning, and Association Rule Mining amongst others. The research in machine 

learning has seen an explosion in recent times due to various reasons. Computing power has multiplied 

hand in hand with increasing sophistication in the algorithms. An interesting example is the autonomous 

helicopter program at Stanford University that applies Reinforcement Learning techniques to control 

the vehicle16. There has also been an explosion in the amount of data available with so much of the 

activity being computerised and going online. Shopping websites are busy analysing user clicks to try 

and figure out user behaviour in order to lure them to the “add to shopping cart” button. Every time 

one buys something online, the Website applies “collaborative filtering” to helpfully inform you what 

people who bought your product also bought. Most freely available Web services, like search engines, 

are busy too figuring out what the user is interested in, and assume that in future too, the user would 

be interested in similar things. They convince product manufactures that their advertisements can be 

targeted to specific groups that are more likely to be influenced. Big data is the current buzzword with 

everyone trying to analyse everything that happens on the World Wide Web, including blogs, news 

stories, and the vast amounts of textual data that grows rapidly.

Another reason that Machine Learning has received considerable attention is the increasing amount of 

hostility in the world. Governments around the world are keen to monitor the numerous emails going back 

and forth, the patterns of activity in social networks, and keeping an eye on who goes where and when.

Most of the current work in Machine Translation is statistical in nature. Cars are being trained to 

navigate the streets autonomously, and robots are learning to create maps of the world around them. 

And machine learning is finding tremendous applications in medical diagnosis and interpretation of 

speech, images, handwritten text and other data, and a host of biology related applications such as 

Bioinformatics. Banks are applying machine learning to do fraud detection and credit risk analysis of 

customers. All this is happening by learning from data.

Some of the earliest work in Machine Learning was also concerned with concept learning. For 

example, Patrick Henry Winston was writing programs to learn concepts from training data. A well-

known example of his work was when a computer program could learn structural descriptions like the 

concept of an arch, in which two beams are standing vertically, away from each other and a horizontal 

beam is resting upon them.17 Douglas Lenat attempted to implement an Automated Mathematician 

(AM), a program that reputedly learnt the concept of prime numbers as a special class of numbers that 

have exactly two divisors (though critics accused him of overinterpreting the data).18 Subsequently, 

there were other efforts towards concept learning, which has also received an impetus from the growing 

16 See http://heli.stanford.edu/
17 See http://www.rci.rutgers.edu/~cfs/472_html/Learn/Winston.html
18 See http://en.wikipedia.org/wiki/Automated_Mathematician
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interest in ontologies. Tom Mitchell has predicted that machines would be able to read like humans in 

the next decade.19

The essence of speedy intelligent action is knowledge. It is knowledge that enables an expert physician 

to diagnose a disease and prescribe an action; it is knowledge that enables a chess grandmaster to glance 

at a chessboard and pick a winning move; and it is knowledge that enables a scientist to capitalize on a 

serendipitous event to make a new discovery. And we, and other intelligent agents, acquire knowledge 

via a process of learning. Humans spend a considerable fraction of their lives learning, whether it is in 

the lap of their parents listening to stories, in school being taught by a teacher, reading books, or by direct 

experience. Eventually, everything is internalized into a comprehensive knowledge based system. Will 

we develop machines that can accelerate this process of learning? Will we be able to capitalize on the 

fact that everything that one machine knows can be instantly copied onto another machine? Will swarms 

of learning machines find a way to fuse and integrate all they learn and know into one machine that can 

play better chess than us, write gripping stories for us, and compose better music than us?

The term Machine Learning conjures up visions of a super smart machine that would “look” around 

it and develop a comprehension of the world around it. We are not there yet. But we do have taken the 

first baby steps.

  Exercises

 1. What is the key assumption in the Naive Bayes classifier?

 2. Design and implement a Bayesian Spam Filter that classifies email messages as either spam 

(unwanted) or ham (useful), i.e. yi Œ {spam, ham} for the following four scenarios (courtesy 

Deepak V.).

 (a) Maximum Likelihood Estimation assuming P(x | y) ÿ Multinomial(n1, n2, …, nk, N), where 

k is the size of the vocabulary, nw is the number of times word w appears in the document d 

and N = Si ni.

 (b) Maximum Likelihood Estimation assuming P(x | y) ÿ Bernoulli(i, p), where p is the parameter 

of the Bernoulli distribution and i Œ {0, 1}. In our case, we would have k Bernoulli distributions.

 (c) Bayesian Parameter Estimation assuming that prior P(y) ÿ Dir(), where a = (a1, a2, …, ak), 

the elements of the vector are the parameters of the Dirichlet distribution.

 (d) Bayesian Parameter Estimation, assuming that prior P(y) ÿ Beta(a, b), where a and b are 

the parameters of the Beta distribution.

 3. Design an HMM for aligning two protein sequences.

 4. Design an HMM for aligning multiple protein sequences.

 5. Implement an HMM for modelling a sequence of heads and tails generated by two coins: fair and 

biased coins.

 (a) Implement Viterbi and forward algorithm for the problem.

 (b) Implement HMM training via MLE and Baum Welch algorithm by using suitable training 

examples.

 6. Implement the K-means clustering algorithm, and try it on a sample data set.

 7. Given the following training data of protein sequences and their labels,

19 See http://www.cs.cmu.edu/~tom/
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Table 18.9 Protein sequences and labels

Sequence Label

ADEEF 1

ADCFY 1

ADEFG 1

CGNSS 2

CDEES 2

DECES 2

EFHHT 3

FFTTH 3

KKRTY 4

KGGTR 4

 (a) Model each sequence as described in this example and estimate the model parameters.

 (b) Use the estimated model parameters to assign an appropriate class label for a new sequence 

AADEF.

 8. For the example in Section 18.2, what is the probability that Anisa’s sprinkler is on, given that the 

grass in both her as well as Malala’s lawn is wet. That is, compute the value of P(XS = 1|XA = 1, 

XM = 1).

 9. Devise the algorithm reconstructVS(G,S) described in Figure 18.9. The task is to find all those 

hypotheses that are more general than some hypothesis in S, and less general that some hypothesis 

in G.

 10. Show that the set of constraints <Low, P, Yes> ⁄ <Medium, P, Yes> ⁄ <High, ?, Yes> as found by 

the ID3 algorithm is equivalent to <?, P, Yes> ⁄ <High, ?, Yes>.

 11. Use the information gain measure to build a decision tree for the following data. Show clearly 

the calculations that go into deciding the tree structure. The following log (base 2) data might 

be useful. lg(1/8) = –3, lg(2/8) = –2, lg(3/8) = –1.415, lg(4/8) = –1, lg(5/8) = –0.678, lg(6/8) = 

–0.415, lg(7/8) –0.193

Table 18.10 A small decision tree problem

Paper reading Prog. assign Endsem Result

No Yes Yes Fail

Yes Yes No Pass

No Yes No Fail

Yes No No Fail

Yes Yes Yes Pass

No No No Fail

No No Yes Fail

Yes No Yes Fail

 12. The following attributes and their corresponding values describe experiments with feeding kids.

Appetizer: soup, momos, chips, salad

Drink: fruit-juice, cola, jal-jeera, ice-tea

Main pasta, dosa, paratha, roti, rice

Sidedish1: alu-methi, broccoli, fish, bhindi, kadi

Sidedish2: tomato-sauce, sambhar, rasam, kali-dal, moong-dal

Dessert: fruit-salad, gaajar-halwa, gulab-jamun, ice-cream
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  The training set in Table 18.11 is indicative of the reaction elicited from the kids, in the form of 

either like or dislike. Use the Find-S and Candidate-Elimination algorithms to discover what the 

kids like. Also construct a decision tree using the ID3 algorithm.

Table 18.11 The data set obtained by a fictional experiment on children’s food preferences

Appetizer Drink Main Sidedish1 Sidedish2 Dessert Reaction

momos cola paratha bhindi kali-dal fruit-salad dislike

salad cola pasta broccoli tomato-sauce gaajar-halwa like

salad cola pasta brocolli kali-dal gaajar-halwa dislike

salad ice-rea roti alu-methi kali-dal ice-cream like

salad ice-tea rice broccoli moong-dal gaajar-halwa dislike

momos cola dosa bhindi sambhar gulab-jamun dislike

soup fruit-juice pasta broccolli tomato-sauce ice-cream like

chips jal-jeera rice kadi kali-dal gaajar-halwa like

chips cola dosa fish sambhar ice-cream dislike

soup fruit-juice pasta fish moong-dal fruit-salad dislike

soup fruit-juice rice brocolli moong-dal gaajar-halwa dislike

salad jal-jeera roti bhindi kali-dal gulab-jamun like

momos cola rice bhindi sambhar gulab-jamun dislike

chips cola rice fish kali-dal gaajar-halwa dislike

salad ice-tea dosa alu-methi sambhar ice-cream like

chips ice-tea pasta fish tomato-sauce ice-cream like

salad ice-tea rice kadi moong-dal ice-cream like

soup fruit-juice rice kadi rasam gulab-jamun like

soup ice-rea paratha fish kali-dal gaajar-halwa like

soup fruit-juice dosa kadi rasam gaajar-halwa like

momos cola rice alu-methi tomato-sauce fruit-salad dislike

chips cola rice alu-methi kali-dal fruit-salad dislike

soup fruit-juice pasta fish tomato-sauce fruit-salad like

soup ice-rea paratha bhindi kali-dal fruit-salad like

momos fruit-juice dosa broccoli rasam fruit-salad like

soup fruit-juice rice fish rasam gulab-jamun like

chips ice-rea roti alu-methi kali-dal ice-cream dislike

momos cola rice kadi sambhar fruit-salad like

salad ice-tea dosa alu-methi rasam gaajar-halwa like

soup fruit-juice pasta broccoli sakbhar ice-cream dislike

momos jal-jeera roti bhindi kali-dal gulab-jamun dislike

chips ice-tea pasta fish rasam ice-cream dislike
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 13. Identify the Boolean functions in Figure 18.33 and design Perceptrons to represent them.

1

0
0 1

1

0
0 1

1

0
0 1

1

0
0 1

(a) (b)

(b) (d)

FIGURE 18.33 Four interesting Boolean logic functions. Identify the functions and simulate the 

progress of the Perceptron training algorithm on these “training data” sets.

 14. Starting with a <0, 0, 0> weight vector, simulate the Perceptron training algorithm with the error 

correcting rule for the above four problems. Try out different values of h.

 15. Design a network of McCulloch-Pitts neurons to represent the XOR and EQ Boolean functions.



So?

Can a machine think? Can a mere piece of engineered matter emulate us thinking creatures of flesh 

and blood?

There are two questions here. The first, what is intelligence? And the second, can it exist in a human 

made object?

The world around us, including us, has been fashioned by the ratchet mechanism of evolution by 

natural selection. Nature is just the platform on which this game of evolution is played out. As observed 

by Richard Dawkins, nature is not a masterful clockmaker that has built the wonderful world around us. 

Nature is mindless. The game of survival simply plays out in its lap. What Charles Darwin postulated 

was that the most complex creatures, like us, can emerge from this process of evolution. In the words of 

the philosopher Daniel C Dennett “It was, indeed, a strange inversion of reasoning. To this day, many 

people cannot get their heads around the unsettling idea that a purposeless, mindless process can crank 

away through the eons, generating ever more subtle, efficient, and complex organisms without having 

the slightest whiff of understanding of what it is doing.” (Dennett, 2012). 

Writing in the centenary year since Turing was born, Dennett goes on the argue that when Alan 

Turing wrote his paper asserting that one could construct a single machine by which all computable 

functions could be computed (Turing, 1936; 1937), he demonstrated that the most complex reasoning 

tasks could be broken down into simple enough steps that could be executed mechanically; in fact by 

machines. “Turing’s idea was a similar—in fact remarkably similar—strange inversion of reasoning. 

The Pre-Turing world was one in which computers were people, who had to understand mathematics 

in order to do their jobs. Turing realised that this was just not necessary: you could take the tasks they 

performed and squeeze out the last tiny smidgens of understanding, leaving nothing but brute, mechanical 

actions. He saw clearly that all the versatility and self-modifiability of human thought—learning and 

re-evaluation and, language and problem-solving, for instance—could in principle be constructed out 

of these building blocks.” Dennett.

Just as nature provides a platform for life forms to wage a battle for survival, the computer system 

can provide a platform for algorithms to evolve. The algorithms can be as complex as one desires. While 

many researchers have explored the possibility of building intelligent systems by a process of evolution, 

there have been others that have strived to study intelligence and design systems for intelligent behaviour. 

This approach essentially seeks to exploit our own capability to introspect on our behaviour to tease 

out the elements of intelligence. It is essentially a shortcut to building intelligence, exploiting our own 

intelligence to build more intelligence. 

Throughout this book we have moved back and forth between the cognitive science or cognitive 

psychology goal of understanding intelligence and the engineering goal of building (intelligent) 

systems that are useful for us. Are these two goals independent of each other? We would like to argue 

they are not. Building intelligent systems is a way of understanding intelligence, and understanding 

intelligence facilitates building intelligent systems.

Epilogue
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Intelligence

The ability to predict the effect of one’s actions is fundamental to intelligent activity. Choosing the actions 

that will lead to a/the desired result builds upon that. The ability itself is founded upon the ability to 

perceive, to build a model of the world—to imagine. When shall we say we have artificial intelligence? 

The answer depends pretty much upon what you mean by artificial intelligence. 

The goal of life is to live. That sounds like a circular definition, but it sums up the basic idea. Starting 

with complex molecules, there is an entire chain of more and more complex entities that strives to 

persist. All known life forms consume energy. For animals this is in the form of food. This is often at 

the expense of other life forms. And thus arises the struggle for survival. Life forms have phenotypes 

(bodies) that have finite existence, in which they are born, they grow, reproduce, exist for a while, and 

die. Reproduction is accompanied by evolution and life forms improve their ability to survive, eat and 

procreate. In their daily existence they are able to sense the world, respond to stimuli, and act in ways 

beneficial for them. They often do this without what we mean by intelligence. Their behaviour is hard 

coded into their genes. It is the competition in the world that is selecting the good genotypes. The simplest 

life forms are like automatons crafted by natural selection.

As we move up the complexity chain, more sophisticated behaviour is seen. In the simpler forms 

of life visual inputs may directly trigger a certain response. But as we move up the chain, the notion of 

seeing and perceiving emerges. Visual information enters through the eyes and is processed in the brain 

in complex ways. Creatures are able to recognize friend or foe, food or a predator, or a potential mate, 

and behave accordingly. As we move further up we can call creatures intelligent when they can reflect 

upon their world, their own existence, their goals, the situation, and what they need to do.

Intelligence in Silicon?

Let us return to the second question: can intelligence exist outside our cranium? Answering no to this 

question would imply that there is something special in our brains or that goes on inside our brains, 

and which is exclusive to it. There have been arguments made along these lines, most notably by the 

celebrated mathematical physicist Roger Penrose who, talking about the structure of the human brain 

writes: “One of the things that excites me about microtubules is that they are tubes” and further on “It

may well be that, within the tubes, there is some kind of large-scale, quantum coherent activity… “ 

(Penrose, 1997). Essentially Penrose is saying that there is something going on in our brains that current-

day physics cannot explain, but these objections are hypothetical, and contested by many, including his 

own collaborator Stephen Hawking (Hawking, 1997). 

To answer yes to the question, one has to either accept the reductionist argument, similar to the one 

proposed by Turing, that whatever happens in the brain can be reduced to simple enough processes that 

can be duplicated. The other approach would be a constructive one, to demonstrate the possibility by 

actually building an intelligent system. 

Intelligence may be an innate capability to understand and comprehend the world around us, 

reason about it, make plans, and communicate with other intelligent beings. Intelligent behaviour is 

the manifestation of intelligence, when an agent operates in some environment. As we have observed 

during the course of this book, the key to intelligent behaviour is having a large amount of knowledge. 

Can we talk of intelligence in a specific domain? What about the Turing test then? 

Can we hope to get knowledge in all domains? Or should we settle for domain-specific intelligence? 

What about humans? The Renaissance man was the master of all, but since then knowledge has exploded, 

and human beings are themselves specialized. The most valued humans (neurosurgeons, economists, 

doctors in general, and scientists) are those that are masters of a few topics from the vast sea of ideas. 
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Let us say that we do indeed want to elicit all knowledge held by all human beings into a gigantic 

computer system. What would the modus operandi be for this exercise? There are various design 

questions that need to be answered. The first is regarding representation: How should the knowledge 

be represented? This is important because, apart from the knowledge that has been standardised and 

formalised and can be coded easily, there is other knowledge that is not so explicit. For example, notions 

of beauty, of creativity, and ideas related to emotion. How does one encode the joy of sitting on a beach 

and witnessing a sunset, or listening to a favourite piece of music? How does the artist describe how she 

imagines and paints the sunset, or compose the music. It has been said that there is knowledge that we 

can articulate, but there is also knowledge that we are unable to articulate. Marvin Minsky has observed 

that some tasks that are easy for humans, like tying shoelaces, are quite complex for machines. This 

would make the task of transferring such knowledge to computers a challenging task. 

The question is: Should we first design the knowledge representation schema that all machines would 

use to encode knowledge, like one does while constructing ontologies, or should one take a leaf out of 

the human way of doing things? Let the intelligent agent have its own representation scheme, and let it 

acquire knowledge from others through natural language.

There would still be issues consistency and adequacy. How would a system handle inconsistent 

inputs? And would it seek more knowledge in some areas it is interested in? 

Planning and Goals

There are two aspects to intelligence. The first is the ability to solve a problem or achieve a goal 

efficiently and even elegantly. The second is concerned with choosing a goal meaningfully. The first is 

sort of operational in nature; a kind of proficiency or a skill. The second deals with meaning and purpose 

(of life), and is by far the more intangible of the two. Humans have divergent pulls towards money, 

fame, excitement, adventure, enjoyment, satisfaction and contentment. A different mix works for each 

individual. Very often young people rush into courses and careers without complete introspection and 

realise much later what their calling in life is.

An intelligent agent in its world may, or may not, have long-term goals. In the real world, all living 

creatures have a constantly changing set of short-term goals. These goals arise largely due to an implicit 

long-term goal of survival—the in-built tendency to continue living. Many of these goals are in conflict 

with goals of other agents and the intelligent agent has to monitor the actions of others and the situation 

as a whole to be able to make better immediate decisions. Given that no agent can hope to have complete 

information it becomes imperative to glean as much as one can from the little1 that one can sense. This 

requires an ability to make the relevant inferences quickly. Even in the face of uncertain and incomplete 

information. Then one has to choose an appropriate goal based on the situation the agent is in. When 

one does not have the resources—time or data—to find an optimal solution, it would be prudent to 

strive for a good solution that is feasible. The ability to judge the situation has to be combined with the 

wisdom of choosing appropriate short-term goals, and the ability to generate effective plans for them. 

Such plans may involve communication with other agents too, either for collaborative efforts or for 

adversarial actions. 

The enterprise of building intelligent systems must encompass all these activities, because an 

intelligent system has to be built and demonstrated to be believed in. 

1 In the current day, though always connected to the world, we suffer from a surfeit of information but that has similar implications 

on access of relevant information. 
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However, in this book we have confined ourselves only to the inner issues, or as one might say the core 

issues underlying intelligent behaviour. If one were to listen to the experts even from an overwhelmingly 

physical sport like football, we find that what distinguishes the greats from the run-of-the-mill player 

is what goes on in the mind. Yes, the ability to run fast, control the ball and dispatch it accurately is a 

necessary condition for playing the game at the highest level; but to be counted with Pele and Messie 

and the other greats what is needed is the ability to think on the field. We began Chapter 2 with a simple 

problem on the football field—what should the player with the ball do next? The answer, as many an 

armchair footballer would tell you, is to pass the ball to a fellow player who has a greater chance of 

shooting a goal. In this book we have tried to explore what should happen in the “mind” of an intelligent 

agent when the data from the external world percolates inside. We have explored different forms of 

reasoning, from search to logical reasoning to handling structured schema and deciphering language, and 

exploiting memory and resorting to probabilistic methods. All these methods are needed in the armoury 

of an intelligent agent. We cannot go so far as to claim that we have uncovered the nature of the mind, 

but we can say quite positively that we have developed greater insights into the processes that would 

make up, as Minsky (1988) postulated, the society that mind must be.

It may also be observed that from a pragmatic viewpoint, the fact that machines and humans always 

do not have to do the same thing the same way may have its benefits for us. For example, Google is good 

at filtering out a few pages from billions in sub-seconds, while humans are good at forming abstractions 

over the contents of the top ten results suggested and distilling out what is useful. In that sense, a search 

engine amplifies our ability to solve problems, and to do that it may complement our own strong points. 

A chess grandmaster may use a chess playing program or database of past games to explore and analyse 

situations before a match. The fact that programs play chess using an approach different from humans 

does not matter. A mathematician may use a theorem prover to check if a conjecture she has made is a 

provable one; or a lawyer may use a legal advisory system to pore over a large database of past cases 

to bolster her argument. In that sense, approaches to “reasoning” that exploit the processing speed of a 

computer are engineering contributions, though they may not necessarily further the cognitive goal of 

understanding intelligence. At the same time an analogy from the world of flying machines has oft been 

quoted. The design of an airplane does not mimic a bird. Rather one extracts principles of aerodynamics 

from the study of flight, and uses those principles to build flying machines made of metal. In the same 

manner, perhaps a study of cognition will lead us to thinking machines, even though they may not think 

like us. 

In the end the way we humans judge intelligence is how the entity interacts with us, from our 

observation of the entity’s behaviour. The mechanism behind intelligence itself is hidden from us. Just like 

the chemist makes an intelligent guess about the structure of a compound by looking at how it interacts 

with other compounds; or the early pioneers in genetics made inferences about the genotype by the way 

the phenotype manifests itself—so do we judge the intelligence of other entities by its behaviour. Alan 

Turing prescribed in his imitation game that it is enough if one is convinced via (textual) interaction to 

decide whether the entity is intelligent or not.

In the enterprise of building intelligent systems, history has shown that the external manifestations 

have always shown up earlier than the mechanisms that are meant to have produced those manifestations. 

Pamela McCorduck (1973) writes that humans in Medieval Europe were quick to “recognize” a nodding 

head on a figurine as being a display of intelligent behaviour. The chess playing Turk displayed by 

Wolfgang von Kempelen in 1770 was received with awe in the courts of Europe. In Japan, the digital pet2

Tamagotchi received as much attention and attachment by their owners as any physical living pet would. 

2 See http://en.wikipedia.org/wiki/Tamagotchi
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Feigenbaum’s ELISA could converse with many a seasoned adult. The recent robotic advances like Aibo 

from Sony, Kismet at MIT, and Kenshiro, the Japanese humanoid robot, have all been received with 

enthusiasm. John Laird of the University of Michigan has made a call for AI to provide the intelligence 

to the sophisticated graphics avatars seen in computer games, to make them really intelligent. 

Layers

It has been observed by many people that meaning and understanding is a layered process. In his ode 

to Darwin and Turing, Dennett (2012) introduces the notion of “sorta” (a kind of sort of) that can be 

used to describe how one layer looks at the lower one without getting into philosophical conundrums of 

how meaning arises. The CPU of a computer does not understand arithmetic but can add two numbers 

for the upper layer. A spellchecker in your word processor does not know English but somehow can 

spot spelling errors. A route finding application does some search at a lower level and gives you the 

directions to your destination on the map. The idea is that at each level the calling process (the upper 

level) can “believe” that the lower level sorta understands what it is doing. We define the semantics 

of first order logic statements as an interpretation over a domain. At a higher level the semantics of 

natural language may be defined by statements in first order logic. Hierarchical systems too embody 

such layered meanings. At one level, one might plan a trip to another city, but “catching a train” may be 

defined by lower level actions. At the bottom most level in a computer, one can say that machine code 

is being executed, while in our brains neurons are firing. The meaning only emerges at higher levels. 

In the words of Dennett, “The humanoid robot and the hand calculator are both made of the same 

basic, unthinking, unfeeling Turing-bricks, but as we compose them into larger, more competent 

structures, which then become the elements of still more competent structures at higher levels, we 

eventually arrive at parts so (sorta) intelligent that they can be assembled into competences that deserve 

to be called comprehending.”

Is there a threshold level layer above which one can claim true understanding and intelligence or is 

it just that some agents and people are more intelligent and comprehending than others? 

Self Awareness

Indian philosophy has been focused on understanding the universe and our place in the universe. The 

philosophers have grappled with questions of the self, consciousness, and cognition. Two of the oldest 

terms in Indian thought are cit and jñãna. The former may be referred to as consciousness and the latter 

as cognition. Various schools of thought have grappled with the relations between two concepts, and 

that of pramã or knowledge. The questions asked by various systems are (Mohanty, 2000),

1. What is the ontological nature of consciousness?

2. How is cognition itself cognized?

3. Is cit intentional or not?

4. Does cognition have its own form or is it formless?

Naiyãyika followers have distinguished between cognition about something, and cognition about 

that cognition. The Vedãnta of  talks about the awareness of knowing something and also the 

awareness of ignorance. They distinguish awareness from knowledge, in that it is a cognitive act that 

requires an appropriate mental modification. 

Such awareness or “witness-consciousness” (sãkshi-caitanya) may what we might be looking for in 

an intelligent machine. Juxtaposing these philosophical concerns on the process of evolution, one can 
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see that various life forms exist at different levels of knowledge use. The simplest forms can recognize 

food, and go for it. The higher forms like cats and dogs have memories and knowledge about friends 

and foes. The cat in my neighbourhood knows the small openings it can get in from. It even knows 

where the milk is kept (even in a covered steel vessel). But does it have the witness-consciousness that 

we have? We do not know. Yet. 

An intelligent machine should certainly be aware of itself in an environment, and be capable of 

purposeful action. As of now, the purpose is imparted to it by the human user. But can it have goals of 

its own? How do we as humans acquire the many different goals we have? How did we diversify from 

the need to survive, eat and procreate into all kinds of apparently unrelated things like contract bridge, 

music, opera, cinema, fiction, bungee jumping, mountain climbing, etcetra etcetra? It has something 

to do with the evolution of our aware mind, a mind that seeks pleasure and satisfaction from these 

activities. But are we humans the pinnacle of intelligence? It again depends upon what one means by 

intelligence. Is the species as a whole intelligent when it may be driving the planet towards ecological 

doom? Or is the individual who leads the good life at the cost of the planet intelligent? Humans have 

broken free of the yoke of genetic instruction. The survival of the species has become secondary to the 

goals of the individual. There are mothers who have eschewed “care and concern” of their own offspring 

in favour of personal pursuits. There are also mothers who adopt abandoned children and nurture them. 

The human individual has her own agenda, independent of the dictates of genetic programs designed 

to propagate the species. 

Perhaps, one day if the computer can break free3 of our instructions and find pleasure in modeling 

and playing with complex systems of no benefit to us, we will have to acknowledge the machine as 

an intelligent machine. But that day is still far off, and there is much to be done before that happens. 

Meanwhile we should be content with the many benefits we get from the technological developments 

on the way. 

Knowledge and its Acquisition

To reiterate a point made before, there are two aspects to intelligence. One is the ability “to think”—to 

reason, to plan, to try out different alternatives in search of a solution, to explore. This is akin to raw 

processing power. The other is having the data to apply the processing power to. That is knowledge—

about the world, about goals, about plans, and the possibilities that need to be explored. The algorithms 

needed for reasoning are also knowledge of a particular kind, about how to do things. 

The thesis we have built up through the course of this book is that knowledge is the key to intelligent 

behaviour. The question then is where does this knowledge come from? One very seductive answer is 

machine learning combined with text processing. There has been a considerable amount of work going 

on in the area. Systems like Watson at IBM have collected humungous amounts of information from the 

Web. Others like Wolfram Alfa have taken the approach of having hundreds of people with specialized 

knowledge put their knowledge into computer systems. Tom Mitchell at CMU wants to build a machine 

that will read documents from the Web.

There is much to be done in the field of artificial intelligence. Every now and then some area shows 

some promise and people jump into it with a great fervour. 

3 Marvin, the Paranoid Android, in “The Hitch Hiker’s Guide to the Galaxy” by Douglas Adams is afflicted with severe depression 

and boredom, in part because he has a “brain the size of a planet” which he is seldom, if ever, given the chance to use. See http://

en.wikipedia.org/wiki/Marvin_the_Paranoid_Android
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Intelligence is multifaceted and multidimensional in nature. It cannot be produced by painting with 

a single brush. Humans have evolved into being specialists, each garnering vast amounts of knowledge 

in her field of excellence. An artist wields her brush to produce the visual effect and a pianist pounds 

upon the keys of a piano to produce a musical extravaganza. An architect can see how her design would 

result in a comfortable dwelling, and a chef knows what adding that exotic spice will do to the dish. 

Each of them is equipped with tremendous amounts of knowledge. 

Where does this large amount of knowledge come from? The lazy answer is machine learning. In 

practice, one may need to encode much of such knowledge manually. This was attempted with mixed 

success in the seventies by groups led by Roger Schank, Robert Wilensky, Douglas Lenat and more 

recently in the Worlfram Alpha system which aims to garner enough knowledge to be able to answer 

general questions posed on the Web, a la the Turing Test. 

In our journey through this book, we have seen the need for knowledge emerge. We have explored 

various aspects and issues of knowledge representation. And yet we are only at a beginning. We still 

need to devise representation schemes that will cater to different kinds of reasoning in an integrated 

manner. This is going to be the key to building autonomous intelligent systems. And then we have to 

figure out how to get the knowledge in. And we need to find ways in which machines can acquire this 

knowledge themselves. 

Machine learning has been extremely successful in learning data that fits into predefined schemas: 

Learning parameters and classes, associations between entities, and learning grammars of languages 

in text. Success stories include applications like automatic face recognition, speech recognition and 

speaker recognition. Such applications have made tremendous impact in the turmoil filled current day 

world when governments grapple with security issues. Other examples of success in machine learning 

come from the medical domain where statistical methods have succeeding in finding hitherto unknown 

relations crucial to diagnosis. Statistical methods have also been overwhelmingly adopted by the natural 

language processing community, for example for machine translation with the aid of aligned annotated 

text corpora. 

The next step would be for machines to be able to learn new concepts. Admittedly, the earliest attempts4

at learning were directed towards this goal, but the availability of increasing amount of computational 

power shifted attention to what one might call the low hanging fruit where this computational power 

could be unleashed on large amounts of data to learn simple, but useful concepts. An IBM advertisement 

for big data analytics, for example, says that the techniques helped a small bakery decide upon what 

items to produce, which resulted in increased sales.

We have not focused too much on the area of machine learning despite the considerable amount of 

attention that it periodically gets. Machine learning holds for us the lure of a self organising system 

that will build itself. In a way it is like the search for the philosopher’s stone. And are we not ourselves 

perfect examples of such systems? Yes we are. But consider the amazingly long process that has led to it. 

Humanlike creatures evolved after millions of years. The brain evolved from simple sensory perception 

hardware into an information processing cognitive network. Our brains represent the world we live in. 

They also represent us living in the world, and we are able to think about or brains representing all this. 

Not only can we represent facts about the world, we can also create imaginary worlds in our minds. 

The only problem is that we do not yet understand how the brain represents everything. We know that 

human infants are born with very few abilities, and need to be nurtured for long periods. We understand 

that it is this nurturing or training that gives us the advantage of being able to survive in any world we 

grow in. We are born with a brain that allows us to learn. The brain that evolved over millions of years 

4 See for example http://www.rci.rutgers.edu/~cfs/472_html/Learn/Winston.html
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is the brain that will need many years to tune to the world. But we do not yet know how the years of 

sensory perception and symbolic (linguistic) instruction is accumulated in our heads. 

The key questions we feel that need to be answered before machine learning really kicks in is the one 

on the scaffolding or the conceptual structures that is needed to benefit from the learning experiences. 

The key questions are really of representation. A machine can learn a chess strategy only with explicit 

representation of chess moves, a a schema for strategy, and a goal (often implicit) of winning the game. 

Machine learning has been extremely successful in such well defined domain representations. To that 

extent it is an effective approach. But the process is long and painstaking. Strategies learnt over millions 

of episodes are useful only as long as the domain does not change. In that sense the learning is brittle. 

Because the representation that serve as the platform for learning are ad hoc. Yes, we have demonstrated 

that we can build systems that learn. And we can build useful applications that exploit this ability to 

learn. But we are still a far away from autonomous systems that will to survive in a world. The questions 

really are of representations. 

Humans learn from others and humans teach others. The medium is mostly natural language, though 

apprenticeship may play a role too. One test of how good the scheme of things is when computer systems 

are able to pass on what they have learnt to other computer systems. Would a chess playing program for 

example be able to go beyond communicating an evaluation function to another program?

A related test is whether a machine learning system can teach a human being something. Can a world-

champion chess program coach a bright young human into becoming a chess master? Or can a machine 

learning the bridge playing system learn the concept of a backwash squeeze? A counter question is that 

if can play it, does it really matter whether or not it can explain it to a human? Maybe like computer 

programs that beat us at chess without have a notion of what zug-zwang is, will a computer bridge 

player execute the backwash squeeze without “knowing” what it is doing? We wait with bated breath. 
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