Basic Computation and
Principles of Computer
Programming

An Introduction to Computing

Fourth Edition
WBUT-2015

About the Author

E Balagurusamy, former Vice Chancellor, Anna University, Chennai, and Member,
Union Public Service Commission, New Delhi, is currently the Chairman of EBG
Foundation, Coimbatore. He is a teacher, trainer, and consultant in the fields of
Information Technology and Management. He holds an ME (Honors) in Electrical
Engineering and PhD in Systems Engineering from the Indian Institute of Technology,
Roorkee. His areas of interest include Object-Oriented Software Engineering,
E-Governance, Technology Management, Business Process Re-engineering, and Total
Quality Management.

A prolific writer, Dr Balagurusamy has authored a large number of research papers and several
books. His best-selling books, among others, include

Fundamentals of Computers

Computing Fundamentals and C Programming
Programming in ANSI C, 6e

Programming in Java, 4e

Programming in BASIC, 3e

Programming in C#, 3e

Numerical Methods

Reliability Engineering

A recipient of numerous honors and awards, Dr Balagurusamy has been listed in the Directory of
Who's Who of Intellectuals and in the Directory of Distinguished Leaders in Education.

Basic Computation and Principles
of Computer Programming

An Introduction to Computing

Fourth Edition
WBUT-2015

E Balagurusamy

Chairman
EBG Foundation
Coimbatore, Tamil Nadu

Mc
Graw
Hill
Education

McGraw Hill Education (India) Private Limited
NEW DELHI

McGraw Hill Education Offices

New Delhi New York StlLouis San Francisco Auckland Bogota Caracas
Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokyo Toronto

(Ml McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited
P-24, Green Park Extension, New Delhi 110 016

Basic Computation and Principles of Computer Programming, 4/e (WBUT-2015)

Copyright © 2015, 2014, 2013, 2012, by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers.
The program listing (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for
publication.

This edition can be exported from India only by the publishers,
McGraw Hill Education (India) Private Limited.

ISBN (13 digits): 978-93-392-1916-1

ISBN (10 digits): 93-392-1916-3

Managing Director: Kaushik Bellani
Head—Higher Education (Publishing and Marketing): Vibha Mahajan

Senior Publishing Manager (SEM & Tech. Ed.): Shalini Jha
Assistant Sponsoring Editor: Koyel Ghosh

Editorial Executive: Piyali Chatterjee
Manager—Production Systems: Satinder S Baveja
Assistant Manager—Editorial Services: Sohini Mukherjee
Senior Production Executive: Suhaib Ali

Assistant General Manager (Marketing)—Higher Education: Vijay Sarathi
Assistant Product Manager (SEM & Tech. Ed.): Tina Jajoriya
Senior Graphic Designer—Cover: Meenu Raghav

General Manager—Production: Rajender P Ghansela
Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable.
However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information
published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions, or
damages arising out of use of this information. This work is published with the understanding that McGraw Hill Education (India)
and its authors are supplying information but are not attempting to render engineering or other professional services. If such services
are required, the assistance of an appropriate professional should be sought.

Typeset at Text-o-Graphics, B1/56, Aravali Apartment, Sector 34, Noida 201301 and printed at

Cover Printer:

Preface

Contents

Roadmap to the Syllabus

1. Fundamentals of Computers

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

Introduction 1/

History of Computers 2

Generations of Computers 5
Classification of Computers &

Basic Anatomy of a Computer System
Input Devices 10

Processor 13

Output Devices 14

Memory Management 16

Overview of Operating System /7

Review Questions 23

2. Computing Concepts

2.1
2.2
23
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Introduction 25

Binary Number System 25
Decimal Number System 28
Octal Number System 29
Hexadecimal Number System 30

Conversion from Any Base Number System to Any Other Base Number

Binary Codes 32

Binary Arithmetic Operations 33
Logic Gates 37

Programming Languages 4/
Translator Programs 43
Algorithm and Flow Chart 44
Using the Computer 47

Review Questions 47
Review Exercises 48

10

xi
Xxiii

25

31

vi Contents

3. Constants, Variables and Data Types

3.1 Introduction 49

3.2 Character Set 49

33 CTokens 35/

3.4 Keywords and Identifiers 57

3.5 Constants 52

3.6 Variables 56

3.7 DataTypes 57

3.8 Declaration of Variables 60

3.9 Declaration of Storage Class 63
3.10 Assigning Values to Variables 64
3.11 Defining Symbolic Constants 70
3.12 Declaring a Variable as Constant 7/
3.13 Declaring a Variable as Volatile 71
3.14 Overflow and Underflow of Data 72

Case Studies 73
Review Questions 75
Programming Exercises 77

4. Operators and Expressions

4.1 Introduction 78

4.2 Arithmetic Operators 78

4.3 Relational Operators &1

4.4 Logical Operators 82

4.5 Assignment Operators 83

4.6 Increment and Decrement Operators 85
4.7 Conditional Operator 86

4.8 Bitwise Operators 87

4.9 Special Operators 87

4.10 Arithmetic Expressions 89

4.11 Evaluation of Expressions 90

4.12 Precedence of Arithmetic Operators 9/
4.13 Some Computational Problems 93

4.14 Type Conversions in Expressions 94
4.15 Operator Precedence and Associativity 98
4.16 Mathematical Functions 700

Case Study 102
Review Questions 104
Programming Exercises 107

Contents

5. Managing Input and Output Operations

7.

8.

5.1 Introduction 110

5.2 Reading a Character 111

5.3 Writing a Character 174

5.4 Formatted Input 115

5.5 Formatted Output 724
Case Studies 132
Review Questions 136
Programming Exercises 138

. Decision Making and Branching

6.1 Introduction 740

6.2 Decision Making with if Statement /40
6.3 Simple if Statement /41

6.4 Theif.....else Statement /45

6.5 Nesting of if....else Statements /48

6.6 The else if Ladder 152

6.7 The switch Statement /55

6.8 The ?: Operator 159

6.9 The Goto Statement 16/

Case Studies 165
Review Questions 169
Programming Exercises 174

Decision Making and Looping

7.1 Introduction 177

7.2 The while Statement 179
7.3 The do Statement 182
7.4 The for Statement 184
7.5 Jumps in Loops 191

Case Studies 200
Review Questions 207
Programming Exercises 211

User-Defined Functions

8.1 Introduction 214

8.2 Need for User-defined Functions 274
8.3 A Multi-function Program 2175

8.4 Elements of User-defined Functions 2178

vii

110

140

177

214

viii

Contents

8.5 Definition of Functions 279
8.6 Return Values and their Types 221
8.7 Function Calls 222
8.8 Function Declaration 224
8.9 Category of Functions 226
8.10 No Arguments and No Return Values 226
8.11 Arguments but No Return Values 229
8.12 Arguments with Return Values 232
8.13 No Arguments but Returns a Value 236
8.14 Functions that Return Multiple Values 237
8.15 Nesting of Functions 238
8.16 Recursion 240
8.17 Passing Arrays to Functions 24/
8.18 Passing Strings to Functions 246
8.19 The Scope, Visibility and Lifetime of Variables
8.20 Multifile Programs 257
Case Study 260
Review Questions 263
Programming Exercises 267
9. The Preprocessor
9.1 Introduction 269
9.2 Macro Substitution 270
9.3 File Inclusion 274
9.4 Compiler Control Directives 275
Review Questions 278
Programming Exercises 279
10. Arrays
10.1 Introduction 280
10.2 One-dimensional Arrays 282
10.3 Declaration of One-dimensional Arrays 283
10.4 Initialization of One-dimensional Arrays 285
10.5 Two-dimensional Arrays 289
10.6 Initializing Two-dimensional Arrays 293
10.7 Multi-dimensional Arrays 298
10.8 Dynamic Arrays 298
10.9 More about Arrays 299

Case Studies 300
Review Questions 312
Programming Exercises 315

247

269

280

Contents ix

11. Character Arrays and Strings 318

11.1 Introduction 3/8

11.2 Declaring and Initializing String Variables 379
11.3 Reading Strings from Terminal 320

11.4 Writing Strings to Screen 325

11.5 Arithmetic Operations on Characters 330

11.6 Putting Strings Together 331

11.7 Comparison of Two Strings 333

11.8 String-handling Functions 333

11.9 Table of Strings 338

11.10 Other Features of Strings 340

Case Studies 341
Review Questions 345
Programming Exercises 348

12. Pointers 350

12.1 Introduction 350

12.2 Understanding Pointers 350

12.3 Accessing the Address of a Variable 353
12.4 Declaring Pointer Variables 354

12.5 Initialization of Pointer Variables 355
12.6 Accessing a Variable Through Its Pointer 357
12.7 Chain of Pointers 359

12.8 Pointer Expressions 360

12.9 Pointer Increments and Scale Factor 36/
12.10 Pointers and Arrays 363

12.11 Pointers and Character Strings 366
12.12 Array of Pointers 368

12.13 Pointers as Function Arguments 369
12.14 Functions Returning Pointers 372

12.15 Pointers to Functions 372

12.16 Pointers and Structures 375

Case Studies 378
Review Questions 383
Programming Exercises 386

13. Structures and Unions 387

13.1 History of Computers 387

13.2 Defining a Structure 387

13.3 Declaring Structure Variables 389
13.4 Accessing Structure Members 391
13.5 Structure Initialization 392

14.

15.

Contents

13.6 Copying and Comparing Structure Variables 394
13.7 Operations on Individual Members 396

13.8 Arrays of Structures 397

13.9 Arrays within Structures 399

13.10 Structures within Structures 40/

13.11 Structures and Functions 403

13.12 Unions 405

13.13 Size of Structures 407

13.14 Bit Fields 407

Case Studies 411

Review Questions 414
Programming Exercises 418

File Management in C

14.1 Introduction 420

14.2 Defining and Opening a File 427

14.3 Closing a File 422

14.4 Input/Output Operations on Files 423

14.5 Error Handling During I/O Operations 429
14.6 Random Access to Files 431

14.7 Command Line Arguments 436

Review Questions 439
Programming Exercises 440

Developing a C Program: Some Guidelines

15.1 Introduction 442

15.2 Program Design 442

15.3 Program Coding 444

15.4 Common Programming Errors 446
15.5 Program Testing and Debugging 453
15.6 Program Efficiency 455

Review Questions 456

Solved Question Paper 2012
Solved Question Paper 2013
Solved Question Paper 2014

Bibliography

420

442

458-475
476-489
490-506

507

Preface

is a powerful, flexible, portable and elegantly structured programming language. Since C com-

bines the features of a high-level language with the elements of the assembler, it is suitable for
both systems and applications programming. It is undoubtedly the most widely used general-purpose
language today.

This book is designed for BTech first-year, second-semester students of West Bengal University
of Technology taking the paper on Basic Computation and Principles of Computer Programming
(CS201). This book will also be useful for students taking diploma courses in computer science.

All those who wish to be C programmers, regardless of their past knowledge and experience in pro-
gramming, will find this book very useful for it explains the ‘what’, ‘why’ and ‘how’ of programming
with C in the most easy-to-understand manner.

The writing style uses and emphasizes on the concept of ‘learning by example’. Each major fea-
ture of the language is explained in a comprehensive manner and supported with complete program
examples to illustrate its use. The sample programs are designed to be both simple and educational.
Wherever necessary, pictorial descriptions of concepts are included to improve clarity and facilitate
better understanding.

Salient Features

B 100% coverage and organization as per the WBUT syllabus
Latest WBUT Solved Examination Question Papers (2012, 2013 and 2012)
Provides good understanding of both computing fundamentals and programming nuances
In-depth discussion of operators, expressions, arrays, and pointers
Dedicated chapter providing guidelines for developing C programs
Case studies in every chapter comprise problem, problem analysis and program demonstrating
real-life applications
B Special features include supplementary notes and information in special boxes, ‘Just Remember’
section at chapter-end summarizes the main points
B Rich Pedagogy includes:
* 500+ Review Questions comprising True and False, Fill in the Blanks, Find the Errors, and
Objective-Type Questions
175 Programming Exercises to practice programming applications
105 Solved Examples
22 Case Studies
145 Illustrations

* & o o

xii Preface

Chapter Organization

The contents of the book have been divided into 15 chapters. Chapter 1 introduces the subject
describing the history of computers, the different generations of computers and their classification and
input and output devices. It also gives an overview of operating systems. Chapter 2 introduces the
binary number system and explains the procedure for writing algorithms and flowcharts. Chapter 3
discusses how to declare constants, variables and data types. Chapter 4 is on built-in operators and
explains how to build expressions using them. Chapter 5 details input and output operations. Decision
making and branching is discussed in Chapter 6. It describes the if-else, switch and goto statements.
Further, decision making and looping is discussed in Chapter 7 which covers the while, do and
for loops. Functions are discussed in Chapter 8. Chapter 9 deals with preprocessors. Arrays and
ordered arrangement of data elements, important to any programming language, have been covered
in Chapters 10 and 11. Chapter 11 also explains strings. Pointers, commonly perceived as a difficult
topic in C, are covered in Chapter 12 in the most lucid manner. Chapter 13 is on structures and unions.
Chapter 14 discusses file management. Finally, Chapter 15 is on developing a C program. It provides
a comprehensive understanding of the procedures for the development of a program.

Solved WBUT examination papers (2012 to 2014) are provided for students’ practice and self-
assessment toward the book’s end.

Acknowledgements

I am grateful to the following reviewers for taking out time and sharing their valuable comments after
going through various chapters of the book.

Susanta Mitra Adamas Institute of Technology, Kolkata

Sinthia Roy Guru Nanak Institute of Technology, Kolkata

Debasis Giri Haldia Institute of Technology, Medinipur

Anup Mallick Regent Education and Research Foundation, Kolkata

Rinku Supakar Dr Sudhir Chandra Sur Degree Engineering College, Kolkata
Jayanta Pal Narula Institute of Technology, Kolkata

I am also thankful to the staff of McGraw Hill Education (India) for their cooperation and support
in bringing out this book on time.
Suggestions for improvement are always welcome.

E BALAGURUSAMY

Publisher’s Note

Remember to write to us. We look forward to receiving your feedback, comments and ideas to en-
hance the quality of this book. You can reach us at info.india@mheducation.com. Please mention the
title and author’s name as the subject. In case you spot piracy of this book, please do let us know.

Roadmap to the Syllabus

This textbook is useful for Subject Code:
Basic Computation and Principles of Computer Programming (CS201)

Unit 1 - Fundamentals of Computers

History of computers, generation of computers, classification of computers. Basic anatomy of computer
system, primary and secondary memory, processing unit, input and output devices. Binary and allied
number systems, representation of signed and unsigned numbers, BCD, ASII. Binary arithmetic and logic
gates, assembly language, high-level language, compiler and assembler (basic concepts). Basic concepts
of operating systems like MS DOS, MS WINDOW, UNIX, algorithm, and flow chart.

GO TO Chapter 1 Fundam'entals of Computers
Chapter 2 Computing Concepts

Unit 2 - C Fundamentals
The C character set identifiers and keywords, data types and sizes, variable names, declaration,
statements.

GO TO Chapter 3 Constants, Variables and Data Types

Unit 3 - Operators and Expressions

Arithmetic operators, relational and logical operators, type, conversion, increment and decrement
operators, bit-wise operators, assignment operators and expressions, precedence and order of evaluation.
Input and Output: Standard input and output, formatted output—printf(), formatted input, scanf().

GO TO Chapter 4 Operators and Expressions
Chapter 5 Managing Input and Output Operations

xiv Roadmap to the Syllabus

Unit 4 - Flow of Control
Statements and blocks, if—else, switch, loops—while, for, do while, break and continue, go to and labels.

GO TO Chapter 6 Decision Making and Branching
Chapter 7 Decision Making and Looping

Unit S - Fundamentals and Program Structures

Basics of functions, function types, functions returning values, functions not returning values, auto,
external, static and register variables, scope rules, recursion, function prototypes, C preprocessor,
command line arguments.

GO TO Chapter 8 User-Defined Functions
Chapter 9 The Preprocessor

Unit 6 - Arrays and Pointers
One-dimensional arrays, pointers and functions, multidimensional arrays.

Chapter 10 Arrays
GO TO Chapter 11 Character Arrays and Strings
Chapter 12 Pointers

Unit 7 - Structures, Union and Files
Basics of structures, structures and functions, arrays of structures, bit fields, formatted and unformatted
files.

Chapter 13 Structures and Unions

GOTO Chapter 14 File Management in C

CHAPTER

1

Fundamentals of Computers

1.1 INTRODUCTION

The term computer is derived from the word compute. A computer is an electronic device that takes
data and instructions as an input from the user, processes data, and provides useful information known
as output. This cycle of operation of a computer is known as the input—process—output cycle and is
shown in Fig.1.1 The electronic device is known as hardware and the set of instructions is known as
software.

INPUT OUTPUT .
Data ——F | PROCESS f—— > Information

|

Instructions

Fig. 1.1 Input—process—output concept

The spurt of innovations and inventions in computer technology during the last few decades has led
to the development of a variety of computers. They are so versatile that they have become
indispensable to engineers, scientists, business executives, managers, administrators, accountants,
teachers and students. They have strengthened man’s powers in numerical computations and
information processing.

Modern computers possess certain characteristics and abilities peculiar to them. They can:

(i) perform complex and repetitive calculations rapidly and accurately,
(ii) store large amounts of data and information for subsequent manipulations,
(iii) hold a program of a model which can be explored in many different ways,
(iv) compare items and make decisions,
(v) provide information to the user in many different forms,
(vi) automatically correct or modify the parameters of a system under control,
(vii) draw and print graphs,
(viii) converse with users interactively, and
(ix) receive and display audio and video signals.

2 Basic Computation and Principles of Computer Programming

These capabilities of computers have enabled us to use them for a variety of tasks. Application
areas may broadly be classified into the following major categories.

1. Data processing (commercial use)

Numerical computing (scientific use)

Text (word) processing (office and educational use)
Message communication (e-mail)

Image processing (animation and industrial use)
Voice recognition (multimedia)

SAINAIE b

Engineers and scientists make use of the high-speed computing capability of computers to solve
complex mathematical models and design problems. Many calculations that were previously beyond
contemplation have now become possible. Many of the technological achievements such as landing
on the moon would not have been possible without computers.

The areas of computer applications are too numerous to mention. Computers have become an
integral part of man’s everyday life. They continue to grow and open new horizons of discovery and
application such as the electronic office, electronic commerce, and the home computer center.

The microelectronics revolution has placed enormous computational power within the reach of not
only every organisation but also individual professionals and businessmen. However, it must be
remembered that computers are machines created and managed by human beings. A computer has no
brain of its own. Anything it does is the result of human instructions. It is an obedient slave which
carries out the master’s instructions as long as it can understand them, no matter whether they are right
or wrong.

1.2 HISTORY OF COMPUTERS

The use of computing techniques is over 5000 years old. The Babylonians, Chinese, and Egyptians
had used numerical methods for the survey of lands and the collection of taxes as early as 3000 BC.
Computing history starts with the development of a device called the abacus (Fig.1.2) by the Chinese
around this period. This was used for the systematic calculation of arithmetic operations. Since then
the number system has undergone various changes
and has been used in different forms in computing.
The most significant development in computing was
the formulation of the decimal number system in India
around 800 AD.

Another significant development was the invention
of logarithm by John Napier (a Scottish mathe-
matician) in 1614 which made computing simple. He
also designed a set of bones known as Napier bones
which were used for multiplication. Later in 1620, the
concept of the use of these bones was modified by
Edmund Gunter to produce what was known as the
‘slide rule’. This device consisted of two graduated
scales, one sliding over the other and used the
principle of logarithms. The slide rule which was Fig. 1.2 Abacus

Fundamentals of Computers 3

further improved in 1632 by William Oughtred (an English mathematician) was used by scientists and
engineers until the electronic calculators appeared in the 1960s.

The modern age of mathematics emerged during the 17t century when Johannes Kepler and Galileo
Galilee deduced laws for planetary motion and Sir Isaac Newton formulated the law of gravity. The
subsequent developments in mathematics and other sciences increased the need for new computing
techniques and devices.

The first accounting machine known as Pascaline was built by Blaise Pascal (a French
mathematician and thinker) in 1642. Then came the Leibnitz calculator developed by Gottfried
Wilhelm von Leibnitz, a German philosopher and mathematician in 1671. These machines progressed
in technology and variety and became the standard calculating machines of the business community.
During the beginning of the 19" century, Joseph Marie Jacquard a French textile manufacturer
invented an automated loom operated by a mechanism controlled by punched cards.

The origin of the modern computer can be traced back to 1834, when an English mathematician
Charles Babbage designed an analytical engine. This was considered as the first programmable digital
mechanical computer. This machine contained all the major parts of the modern computer system.
Charles Babbage is therefore known as the ‘father of modern computer’. Lady Ada Lovelace was one
of the strong supporters of Babbage’s work. She wrote many of the operating instructions for the
experimental machine designed by Babbage. She is therefore considered to be the ‘first computer
programmer’. She presented some of the key elements of programming and program design.

Around this time George Boole, a British mathematician, developed an algebra based on variables
that could have only two states, true or false. He published what is known as Boolean Logic in 1854.
All modern computers use this logic.

The first large-scale application of data processing was undertaken by the United States Census
Bureau in 1890. Dr Herman Hollerith (a mechanical engineer) who was employed by the Census
Bureau designed an electromechanical machine that could tabulate data using punched cards. This
formed the basis for the traditional punched card technology.

Later in 1896, Hollerith started the Tabulating Machine Company to manufacture the tabulating
machines. The company, later on became the well-known IBM (International Business Machines)
company.

The dream machine of Babbage was not built until 1944, when Mark I, an electromechanical
automatic computer, was developed by Howard Aiken for IBM. Subsequently, a series of
technological improvements and innovations took place and the design of computers underwent
continuous and dramatic changes.

The first electronic digital computer known as the Electronic Numerical Integrator and Calculator
(ENIAC) was developed by John Mauchly and Presper Eckert of the University of Pennsylvania, in
1946, using vacuum tubes.

The concept of ‘stored program’ was contributed by John von Neuman, a Hungarian born
mathematician in 1945. Computers known as EDSAC (Electronic Delay Storage Automatic
Calculator) and EDVAC (Electronic Discrete Variable Automatic Computer) were built later during
the 1940s based on this concept.

The era of commercial application of modern computers began in 1951 when the UNIVAC
(Universal Automatic computer) became operational at the Bureau of Census in USA. Since then
computers started appearing in quick succession, each claiming an improvement over the other. They
represented improvements in speed, memory (storage) systems, input and output devices and

4 Basic Computation and Principles of Computer Programming

programming techniques. They also showed a continuous reduction in physical size and cost. The
developments in computers are closely associated with the developments in material technology,
particularly the semiconductor technology. Some of the important developments since the slide rule
are given in Table 1.1

Table 1.1 Some Important Developments in Computing Technology

Year Device
1614 Napier bones and logarithms by John Napier
1632 Slide rule by William Oughtred
1642 Pascal calculator, an accounting machine by Blaise Pascal
1671 Leibnitz calculator by Gottfried Wilhelm von Leibnitz
1801 Punched card loom by Joseph Marie Jacquard
1822 Difference engine by Charles Babbage
1834 Analytical engine by Charles Babbage
1854 Boolean algebra by George Boole
1890 Punched card machine by Herman Hollerith
1906 Electronic valve invented by De Forest
1930 Differential analyzer by Vannevar Bush
1936 Paper on computational numbers by Alan Turing
Link between symbolic logic and electric circuit by Claude Shanon
1937 Binary adder built by George Stibitz
1941 First general-purpose computer designed by Konrad Zuse
1943 Colossus machine built to crack German secret codes, by the British
1944 First automatic computer, MARK I designed by Howard Aiken
1945 Critical elements of a computer system outlined by John Von Neumann
1946 First electronic digital computer, ENIAC put to operation by Presper Eckert and John Mauchly
1947 Transistor invented by John Bardeen, William Shockley and Walter Brattain
1951 First business computer, UNIVAC became operational
1956 Second generation computer (using transistors) introduced by Bell Laboratory
1959 Integrated circuits (ICs) demonstrated by Clair Kilby
1964 First third generation computer using ICs developed
1965 First commercial minicomputer, PDP-8 introduced by Digital Equipment Corporation
1971 Intel 4004 microprocessor designed by Ted Hoff
1974 First fourth generation computer (using microprocessors) built by Ed Roberts
1975 First personal computer software created by Bill Gates and Paul Allen
1977 Apple introduced its famous personal computer
1981 IBM PC introduced in the market
1982 Cray supercomputer marketed by Cray Research Company
1984 Apple introduced Macintosh P.C.
1989 Optical Computer demonstrated
1990 Motorola announced 32-bit microprocessor
1992 IBM introduced Thinkpad laptop computer
1995 Intel released Pentium Pro microprocessor
1996 Intel announced 200 MHz Pentium processor
1997 Pentium II microprocessor introduced
1999 Pentium III processor announced by Intel
2000 Pentium 4 released
2006 Intel core 2 processor launched.

Fundamentals of Computers 5

1.3 GENERATIONS OF COMPUTERS

The different computing devices developed over the years can be categorized into several generations.
Each generation of computer is the result of a technological development, which changed the
way computers used to operate. As we proceed from one generation to another, we will see that the
computers have become smaller and cheaper with more efficient computing capability. Computers
can be categorized into five generations:

B First generation (1940-1956)

B Second generation (1956-1963)
B Third generation (1964—1971)

B Fourth generation (1971- till date)
B Fifth generation (1980s - - -)

First-Generation Computers

In this generation of computers, vacuum tubes were used to build the circuitry for the computers and
magnetic drum was used for the memory of the computer. A vacuum tube was a device made up of
glass and used filaments to generate electrons. It was used to amplify the
electronic signals. Figure 1.3 shows a vacuum tube.

The first-generation computers used to perform calculation in
milliseconds. They were the fastest known computers of their time. The
size of these computers was very large, and a single computer was used to
cover the space of an entire room. Since the size of the computers was
very large, they used to consume a great deal of electricity and generated
a large amount of heat. To avoid malfunctioning from overheating, the
rooms where these computers were placed had to be air-conditioned.
These computers were also prone to frequent technical faults and hence
required proper maintenance at regular intervals.

The computers belonging to the first generation used machine
language to perform operations and were capable of performing one
operation at a time. These computers were used to take inputs from punch
cards and paper tapes and displayed the results on paper as printouts. The
computers that fall under the first generation of computers are ENIAC,
EDVAC and UNIVAC. These computers were used for scientific Fig. 1.3 Vacuum tube
calculations.

Second-Generation Computers

In the second generation of computers, fransistors were used instead of vacuum tubes. Transistors
were invented in 1947 by John Bardeen, Willian Shockley, and Walter Brattain. The transistors were
faster and more reliable than vacuum tubes. In addition, the size of the transistors was smaller than
vacuum tubes and they generated less heat as compared to vacuum tubes. Figure 1.4 shows a transistor.

Since transistors replaced vacuum tubes in the second generation of computers, the size and cost
associated with computers had decreased to a considerable extent. The processing speed of the

6 Basic Computation and Principles of Computer Programming

computers had increased and they were more reliable than the
first generation computers. The heat generated by the
transistors was less as compared to the vacuum tubes and
therefore the damage caused to the computers was less.

The second generation computers used assembly language
instead of machine language. The use of assembly language
helped the programmer to specify instructions in the form of
words. The task of the programmer thus became easier with
the development of high-level languages like COBOL and
FORTRAN.

The main characteristic of second generation computers
was that they used the stored program concept, i.e. the
instructions were stored in the memory of the computer. Like Fig. 1.4 Transistors
the previous generation computers, the second-generation
computers also accepted inputs from punch cards and magnetic tapes. The output was either stored in
punch cards or printed on a paper. These computers use magnetic tapes and magnetic disks as external
storage devices. Even though the cost associated with the development of a computer was less as
compared to the first-generation computers, still the cost associated in the commercial production of
these computers was high, because thousands of transistors were assembled manually. IBM 1620,
PDP8 and CDC1604 are examples of second generation computers.

Third-Generation Computers

The third generation of computers were characterized by the development of the Integrated Circuit
(IC), which was developed by Jack Kilby, in 1958. An IC is a silicon chip that embeds an electronic
circuit, which comprises several components, such as transistors, diodes, and resistors. The use of ICs
had increased the speed and efficiency of the computers to
a significant extent.

These computers used a keyboard, which is an input
device, for accepting data from users and displayed the
output on the monitor, which is an output device. Several
programs were developed that helped execute more than
one application at the same time on a computer. With the
introduction of ICs in the development of computers, the
cost of the computers decreased to such an extent that they
were affordable by a large part of the common population.
Figure 1.5. shows an IC. Examples of third generation Fig. 1.5 An IC
computers include IBM 370, PDP11 and CDC 7600.

Fourth-Generation Computers

The fourth generation of computers is characterized by the use of Large Scale Integration (LSI)
circuits and Very Large Scale Integration (VLSI) circuits in the construction of computing
components. In fourth generation computers, LSI and VLSI circuits were further integrated on a single
silicon chip, termed as microprocessor, containing control logic and memory. The major change in

Fundamentals of Computers 7

the fourth generation of computers was seen in
the replacement of magnetic core memories by
semiconductor memories. In addition, two
types of high-speed computer networking were
established for enabling connection and
communication among multiple computers at
one time. The first one is the Local Area
Network (LAN), where multiple computers in a - S E—
local area, such as home, office, or a small ’
group of buildings, are connected and allowed Py~ Sl . v
to communicate among them. The second type — —e———
of networking is the Wide Area Network
(WAN), which facilitates connection and
communication of hundreds of computers
located across multiple locations.

The fourth generation of computers had also seen the inceptions of several new operating systems
including MS DOS and MS Windows. An example of a fourth-generation of computer is the Personal
Computer (PC), which is shown in Fig. 1.6.

A special characteristic of the fourth generation computers is the Graphical User Interface (GUI),
which is a user-friendly interface that provides icons and menus to users to interact with the various
computer applications. Various other characteristics of the fourth generation of computers are:

Fig. 1.6 PC — a fourth-generation computer

B These computers were smaller and cheaper than the computers of the previous generation.

B Unlike computers of the third generation, these computers did not require proper air
conditioning.

B They were more reliable than the third generation computers.

B Unlike computers of the third generation, they had larger primary and secondary storage
memory.

B The fourth-generation of computers used high-level programming languages, which allowed a
program written for one computer to be easily executed in another computer.

During the time period of the fourth-generation computers, more and more computer components
were fabricated on a single chip so that the construction of the processor needed fewer and fewer
chips. What used to need an entire room in the first generation now can be fit in the palm of the hand.
The Intel 4004 chip, developed in 1971, was the first microprocessor for the computers of this
generation. It can locate all the components of the computer—from CPU and memory to Input/Output
controls—on a single chip.

The fourth generation of computers encountered a revolutionary breakthrough when in 1981, IBM
introduced its first computer for the home user, and in 1984, Apple introduced the Macintosh.
Microprocessors also moved out of the realm of desktop computers and entered into many real life
areas. With the enhancement of the computing power of the computers, it was possible to connect the
computers to form networks, which in the long run led to the development of the Internet.

8 Basic Computation and Principles of Computer Programming

Fifth-Generation Computers

The fifth generation of computers is characterized by the Ultra Large Scale Integration (LSI)
technology, which is more powerful as well as faster than the microprocessors used by the computers
of the fourth generation. This generation of computers has also seen the introduction of optical disks,
which have soon emerged as a popular portable mass storage medium. These optical disks are
popularly known as Compact Disk-Read Only Memory (CD-ROM), as they are primarily used for
storing data, which is only readable. The computer communication has also become faster in the fifth
generation of computers due to the use of e-mail. The following are the characteristics of fifth
generation computers:

B The PCs in the fifth generation have become portable, which are much smaller and handy than
the fourth-generation PCs. Users can even use them while traveling.

B The desktop PCs and workstations are several times more powerful than the fourth generation
PCs.

B There is no need of air-conditioning for the portable and desktop PCs of the fifth generation.

B The fifth generation computers are more reliable and there are fewer possibilities of hardware
failures in them as compared to the fourth generation computers.

B The manufacturing of the fifth generation of computers does not require manual assembling of
the individual components, which reduces human labor, thereby making the commercial
production of systems easier and cheaper.

B These computers provide user-friendly interfaces with multimedia features, which help in
making the system more useful in every occupation.

There are some computing devices of the fifth generation still in the development phase, which are
based on artificial intelligence. Glimpses of these systems can be viewed today in the form of voice
recognition systems. In the fifth generation,
introduction of the use of parallel processing and
supercomputers have helped making artificial
intelligence a reality. In addition, advancements in the
quantum computation and molecular technology will
radically change the face of computers in the
forthcoming years. The goal of fifth-generation
computing is to develop devices that can respond to
natural language input and can learn and self-organize.
An example of the fifth generation of computing
devices (Intel Pentium microprocessor chip) is shown
in Fig. 1.7.

Fig. 1.7 Intel Pentium microprocessor chip

1.4 CLASSIFICATION OF COMPUTERS

Computers can be classified into several categories depending on their computing ability and
processing speed. These include

B Microcomputer
B Minicomputer

Fundamentals of Computers 9

B Mainframe computers
B Supercomputers

Microcomputers

A microcomputer is defined as a computer that has a microprocessor as its CPU. The microcomputer
system can perform the following basic operations:

B Inputting — It is the process of entering data and instructions into the microcomputer system.

B Storing — It is the process of saving data and instructions in the memory of the microcomputer
system, so that they can be use whenever required.

B Processing — It is the process of performing arithmetic or logical operations on data, where
data can be converted into useful information. Various arithmetic operations include addition,
subtraction, multiplication and division. Among logical operations, operations of comparisons
like equal to, less than, greater than, etc., are prominent in use.

B Outputting — It provides the results to the user, which could be in the form of visual display
and/or printed reports.

B Controlling — It helps in directing the sequence and manner in which all the above operations
are performed.

Minicomputers

A minicomputer is a medium-sized computer that is more powerful than a microcomputer. An
important distinction between a microcomputer and a minicomputer is that a minicomputer is usually
designed to serve multiple users simultaneously. A system that supports multiple users is called a
multiterminal, time-sharing system. Minicomputers are the popular computing systems among
research and business organizations today. They are more expensive than microcomputers.

Mainframe Computers

Mainframe computers are those computers, which help in handling the information processing of
various organizations like banks, insurance companies, hospitals and railways. Mainframe computers
are placed on a central location and are connected to several user terminals, which can act as access
stations and may be located in the same building. Mainframe computers are larger and expensive in
comparison to the workstations.

Supercomputers

Supercomputers are the most powerful and expensive computers available at present. They are also
the fastest computers available. Supercomputers are primarily used for complex scientific
applications, which need a higher level of processing. Some of these applications include weather
forecasting, climate research, molecular modeling used for chemical compounds, aeroplane
simulations and nuclear fusion research.

In supercomputers, multiprocessing and parallel processing technologies are used to promptly solve
complex problems. Here, the multiprocessor can enable the user to divide a complex problem into
smaller problems. A supercomputer also supports multiprogramming where multiple users can access
the computer simultaneously. Presently, some of the popular manufacturers of supercomputers are
IBM, Silicon Graphics, Fujitsu, and Intel.

10 Basic Computation and Principles of Computer Programming

1.5 BASIC ANATOMY OF A COMPUTER SYSTEM

A computer system comprises hardware and software components. Hardware refers to the physical
parts of the computer system and software is the set of instructions or programs that are necessary for
the functioning of a computer. Hardware includes the following components:

B Input devices — They are used for accepting the data on which the operations are to be
performed. The examples of input devices are keyboard, mouse and track ball.

B Processor — Also known as CPU, it is used to perform the calculations and information
processing on the data that is entered through the input device.

B Qutput devices — They are used for providing the output of a program that is obtained after
performing the operations specified in a program. The examples of output devices are monitor
and printer.

B Memory — It is used for providing the output of a program that is obtained after performing the
operations specified in a program. Memory can be primary memory as well as secondary
memory. Primary memory includes Random Access Memory (RAM) and secondary memory
includes hard disks and floppy disks.

Software supports the functioning of a computer system internally and cannot be seen. It is stored
on secondary memory and can be an application software as well as system software. The
application software is used to perform a specific task according to requirements and the system
software is mandatory for running application software. The examples of application software include
Excel and MS Word and the examples of system software include operating system and networking
system.

All the hardware components interact with each other as well as with the software. Similarly, the
different types of software interact with each other and with the hardware components. The interaction
between various hardware components is illustrated in Fig. 1.8.

1.6 INPUT DEVICES

Input devices can be connected to the computer system using cables. The most commonly used input
devices among others are:

B Keyboard
B Mouse
B Scanner

Keyboard

A standard keyboard includes alphanumeric keys, function keys, modifier keys, cursor movement
keys, spacebar, escape key, numeric keypad, and some special keys, such as Page Up, Page Down,
Home, Insert, Delete and End. The alphanumeric keys include the number keys and the alphabet keys.
The function keys are the keys that help perform a specific task such as searching a file or refreshing

Fundamentals of Computers

11

Magnetic

Tape

Magnetic
Disk

EXTERNAL STORAGE UNITS

A

Input
Media

Memory
Unit

Output
Unit

Output
Media

[

Y

Arithmetic
Unit

-

Control
Unit

CPU

Data and results flow

Control Instructions to units

Instructions to control unit

Fig. 1.8 Interaction among hardware components

Escape Key

Modifier Keys

Alphanumeric

Keys

Function Keys
(F1to F12)

I3 E

a Web page. The modifier keys such as Shift and Control keys modify the casing style of a character or
symbol. The cursor movement keys include up, down, left and right keys and are used to modify the
direction of the cursor on the screen. The spacebar key shifts the cursor to the right by one position.
The numeric keypad uses separate keypads for numbers and mathematical operators. A keyboard is
shown in Fig. 1.9.

Special Keys

Numeric Keypad

4

Spacebar Key

Cursor Movement

Keys

Fig. 1.9 Keyboard

12 Basic Computation and Principles of Computer Programming

Mouse

The mouse allows the user to select elements on the screen, such as tools, icons, and buttons, by
pointing and clicking them. We can also use a mouse to draw and paint on the screen of the computer
system. The mouse is also known as a pointing device
because it helps change the position of the pointer or Wheel
cursor on the screen. ;
The mouse consists of two buttons, a wheel at the | ot Button N L £ Fiont Buten
top and a ball at the bottom of the mouse. When the ~Vad
ball moves, the cursor on the screen moves in the
direction in which the ball rotates. The left button of 4
the mouse is used to select an element and the right _/
button, when clicked, displays the special options such
as open and explore and shortcut menus. The wheel Fig. 1.10 Mouse
is used to scroll down in a document or a Web page. A
mouse is shown in Fig. 1.10.

Scanner

A scanner is an input device that converts documents and images as the digitized images
understandable by the computer system. The digitized images can be produced as black and white
images, gray images, or colored images. In case of colored images,
an image is considered as a collection of dots with each dot
representing a combination of red, green, and blue colors, varying
in proportions. The proportions of red, green, and blue colors
assigned to a dot are together called as color description. The
scanner uses the color description of the dots to produce a digitized
image. Figure 1.11 shows a scanner.

There are the following types of scanners that can be used to
produce digitized images:

B Flatbed scanner — It contains a scanner head that moves
across a page from top to bottom to read the page and converts
the image or text available on the page in digital form. The
flatbed scanner is used to scan graphics, oversized documents,
and pages from books.

B Drum scanner — In this type of scanner, a fixed scanner head is used and the image to be
scanned is moved across the head. The drum scanners are used for scanning prepress materials.

B Slide scanner — It is a scanner that can scan photographic slides directly to produce files
understandable by the computer.

B Handheld scanner — It is a scanner that is moved by the end user across the page to be scanned.
This type of scanner is inexpensive and small in size.

Fig. 1.11 Scanner

Fundamentals of Computers 13

1.7 PROCESSOR

The CPU consists of Control Unit (CU) and ALU. CU stores the instruction set, which specifies the
operations to be performed by the computer. CU transfers the data and the instructions to the ALU for
an arithmetic operation. ALU performs arithmetical or logical operations on the data received. The
CPU registers store the data to be processed by the CPU and the processed data also. Apart from CU
and ALU, CPU seeks help from the following hardware devices to process the data:

Motherboard

It refers to a device used for connecting the CPU with the input and output devices. The components
on the motherboard are connected to all parts of a computer and are kept insulated from each other.
Some of the components of a motherboard are:

e Buses: Electrical pathways that transfer data and instructions among different parts of the
computer. For example, the data bus is an electrical pathway that transfers data among the
microprocessor, memory and input/output devices connected to the computer. The address bus
is connected among the microprocessor, RAM and Read Only Memory (ROM), to transfer
addresses of RAM and ROM locations that is to be accessed by the microprocessor.

e System clock: It is a clock used for synchronizing the activities performed by the computer. The
electrical signals that are passed inside a computer are timed, based on the tick of the clock. As
a result, the faster the system clock, the faster is the processing speed of the computer.

e Microprocessor: CPU component that performs the processing and controls the activities
performed by the different parts of the computer. The microprocessor is plugged to the CPU
socket placed on the motherboard.

e ROM: Chip that contains the permanent memory of the computer that stores information, which
cannot be modified by the end user.

RAM

It refers to primary memory of a computer that stores information and programs, until the computer is
used. RAM is available as a chip that can be connected to the RAM slots in the motherboard.

Video Card/Sound card

The video card is an interface between the monitor and the CPU. Video cards also include their own
RAM and microprocessors that are used for speeding up the processing and display of a graphic.
These video cards are placed on the expansion slots, as these slots allow you to connect the high-speed
graphic display cards to the motherboard. A sound card is a circuit board placed on the motherboard
and is used to enhance the sound capabilities of a computer. The sound cards are plugged to the
Peripheral Component Interconnect (PCI) slots. The PCI slots also enable the connection of networks
interface card, modem cards and video cards, to the motherboard.

14 Basic Computation and Principles of Computer Programming

1.8 OUTPUT DEVICES

The data, processed by the CPU, is made available to the end user by the output devices. The most
commonly used output devices are:

B Monitor
B Printer
B Speaker
B Plotter

Monitor

A monitor is the most commonly used output device that produces visual displays generated by the
computer. The monitor, also known as a screen, is connected as an external device using cables or
connected either as a part of the CPU case. The monitor connected using cables, is connected to the
video card placed on the expansion slot of the motherboard. The display device is used for visual
presentation of textual and graphical information.

The monitors can be classified as cathode ray tube (CRT) monitors or liquid crystal display (LCD)
monitors. The CRT monitors are large, occupy more space in the computer, whereas LCD monitors
are thin, light weighted, and occupy lesser space. Both the monitors are available as monochrome,
gray scale and color models. However, the quality of the visual display produced by the CRT is better
than that produced by the LCD.

The inner side of the screen of the CRT contains the red, green, and blue phosphors. When a beam
of electrons strike the screen, the beam strikes the red, green and blue phosphors on the screen and
irradiates it to produce the image. The process repeats itself for a change in the image, thus refreshing
the changing image. To change the color displayed by the monitor, the intensity of the beam striking
the screen is varied. If the rate at which the screen gets refreshed is large, then the screen starts
flickering, when the images are refreshed.

The LCD monitor is a thin display device that consists of a number of color or monochrome pixels
arrayed in front of a light source or reflector. LCD monitors consume a very small amount of electric
power.

A monitor can be characterized by its monitor size and resolution. The monitor size is the length of
the screen that is measured diagonally. The resolution of the screen is expressed as the number of
picture elements or pixels of the screen. The resolution of the monitor is also called the dot pitch. The
monitor with a higher resolution produces a clearer image.

Printer

The printer is an output device that transfers the text displayed on the screen, onto paper sheets that
can be used by the end user. The various types of printers used in the market are generally categorized
as dot matrix printers, inkjet printers, and laser printers. Dot matrix printers are commonly used in low
quality and high volume applications like invoice printing, cash registers, etc. However, inkjet printers
are slower than dot matrix printers and generate high quality photographic prints. Since laser printers
consist of microprocessor, ROM and RAM, they can produce high quality prints in quicker time
without being connected to a computer.

Fundamentals of Computers 15

The printer is an output device that is used to produce a hard copy of the electronic text displayed
on the screen, in the form of paper sheets that can be used by the end user. The printer is an external
device that is connected to the computer system using cables. The computer needs to convert the
document that is to be printed to data that is understandable by the printer. The printer driver software
or the print driver software is used to convert a document to a form understandable by the computer.
When the computer components are upgraded, the upgraded printer driver software needs to be
installed on the computer.

The performance of a printer is measured in terms of dots per inch (DPI) and pages per minute
(PPM) produced by the printer. The greater the DPI parameter of a printer, the better is the quality of
the output generated by it. The higher PPM represents higher efficiency of the printer. Printers can be
classified based on the technology they use to print the text and images:

B Dot matrix printers — Dot matrix printers are impact printers that use perforated sheet to print
the text. The process to print a text involves striking a pin against a ribbon to produce its
impression on the paper. As the striking motion of the pins help in making carbon copies of a
text, dot matrix printers are used to produce multiple copies of a print out.

B Inkjet printers — Inkjet printers are slower than dot matrix printers and are used to generate
high quality photographic prints. Inkjet printers are not impact printers. The ink cartridges are
attached to the printer head that moves horizontally, from left to right. The print out is developed
as the ink of the cartridges is sprayed onto the paper. The ink in the inkjet is heated to create a
bubble. The bubble bursts out at high pressure, emitting a jet of the ink on the paper thus
producing images.

B Laser printers — The laser printer may or may not be connected to a computer, to generate an
output. These printers consist of a microprocessor, ROM and RAM, which can be used to store
the textual information. The printer uses a cylindrical drum, a toner and the laser beam. The
toner stores the ink that is used in generating the output. The fonts used for printing in a laser
printer are stored in the ROM or in the cartridges that are attached to the printer. The laser
printers are available as gray scale, black and white or color models. To print high quality pages
that are graphic intensive, laser printers use the PageMaker software.

Speaker

The speaker is an electromechanical transducer that converts an electrical signal into sound. They are
attached to a computer as output devices, to provide audio output, such as warning sounds and Internet
audios. You can have built-in speakers or attached speakers in a computer to warn end users with error
audio messages and alerts. The audio drivers need to be installed in the computer to produce the audio
output. The sound card being used in the computer system decides the quality of audio that you listen
using music CDs or over the Internet. The computer speakers vary widely in terms of quality and
price. The sophisticated computer speakers may have a subwoofer unit, to enhance bass output.

Plotter

The plotter is another commonly used output device that is connected to a computer to print large
documents, such as engineering or constructional drawings. Plotters use multiple ink pens or inkjets
with color cartridges for printing. A computer transmits binary signals to all the print heads of the

16 Basic Computation and Principles of Computer Programming

plotter. Each binary signal contains the coordinates of where a print head needs to be positioned for
printing. Plotters are classified on the basis of their performance, as follows:

B Drum plotter — They are used to draw perfect circles and other graphic images. They use a
drawing arm to draw the image. The drum plotter moves the paper back and forth through a
roller and the drawing arm moves across the paper.

B Flat-bed plotter — A flat bed plotter has a flat drawing surface and the two drawing arms that
move across the paper sheet, drawing an image. The plotter has a low speed of printing and is
large in size.

B Inkjet plotter — Spray nozzles are used to generate images by spraying droplets of ink onto the
paper. However, the spray nozzles can get clogged and require regular cleaning, thus resulting in
a high maintenance cost.

B Electrostatic plotter — As compared to other plotters, an electrostatic plotter produces quality
print with highest speed. It uses charged electric wires and special dielectric paper for drawing.
The electric wires are supplied with high voltage that attracts the ink in the toner and fuses it
with the dielectric paper.

1.9 MEMORY MANAGEMENT

The memory unit of a computer is used to store data, instructions for processing data, intermediate
results of processing and the final processed information. The memory units of a computer are
classified as primary memory and secondary memory.

Primary Memory

The primary memory is available in the computer as a built-in unit of the computer. The primary
memory is represented as a set of locations with each location occupying 8 bits. Each bit in the memory
is identified by a unique address. The data is stored in the machine-understandable binary form in
these memory locations. The commonly used primary memories are as follows:

B ROM — ROM represents Read Only Memory that stores data and instructions, even when the
computer is turned off. It is the permanent memory of the computer where the contents cannot be
modified by an end user. ROM is a chip that is inserted into the motherboard. It is generally used
to store the Basic Input/Output system (BIOS), which performs the Power On Self Test (POST).

B RAM — RAM is the read/write memory unit in which the information is retained only as long as
there is a regular power supply. When the power supply is interrupted or switched off, the
information stored in the RAM is lost. RAM is volatile memory that temporarily stores data and
applications as long as they are in use. When the use of data or the application is over, the
content in RAM is erased.

B Cache memory — Cache memory is used to store the data and the related application that was
last processed by the CPU. When the processor performs processing, it first searches the cache
memory and then the RAM, for an instruction. The cache memory can be either soldered into the
motherboard or is available as a part of RAM.

Fundamentals of Computers 17

Secondary Memory

Secondary memory represents the external storage devices that are connected to the computer. They
provide a non-volatile memory source used to store information that is not in use currently. A storage
device is either located in the CPU casing of the computer or is connected externally to the computer.
The secondary storage devices can be classified as:

B Magnetic storage device — The magnetic storage devices store information that can be read,
erased and rewritten a number of times. These include floppy disk, hard disk and magnetic tapes.

B Optical storage device — The optical storage devices are secondary storage devices that use
laser beams to read the stored data. These include CD-ROM, rewritable compact disk (CD-RW),
digital video disks with read only memory (DVD-ROM)), etc.

B Magneto-optical storage device — The magneto-optical devices are generally used to store
information, such as large programs, files and back up data. The end user can modify the
information stored in magneto-optical storage devices multiple times. These devices provide
higher storage capacity as they use laser beams and magnets for reading and writing data to the
device.

1.10 OVERVIEW OF OPERATING SYSTEM

An Operating System (OS) can be defined as the system software that helps in managing the resources
of a computer as well as provides a platform for the application programs running in the computer. In
other words, the operating system acts as an interface between the computer and its application
programs. Some of the popular operating systems include MS DOS, MS Windows, and UNIX.

The primary tasks of an operating system include allocating various resources of the computer,
scheduling processes, managing storage, controlling input and output, tracking files and directories on
the disk, and handling communications with the peripheral devices, such as disk drives and printers.
Apart from these basic tasks, an operating system also exhibits functionality related to network and
security. The operating system supports various network protocols that help in sharing and accessing
the resources of the computer over a network of computers. It also provides some basic levels of
security, which includes securing the computer from the internal programs running on the computer as
well as detection and prevention of intrusion.

Types of Operating Systems

Depending on the characteristics of operating systems, they can be categorized into the following
types:

B Batch operating system — This is the earliest operating system, where only one program is
allowed to run at one time. You cannot modify any data used by the program while it is being
run. If an error is encountered, it means starting the program from scratch all over again. A
popular batch operating system is MS DOS.

B Interactive operating system — This operating system comes after the batch operating system,
where also only one program can run at one time. However, here, modification and entry of data
are allowed while the program is running. An example of an interactive operating system is
Multics (Multiplexed Information and Computing Service).

18 Basic Computation and Principles of Computer Programming

B Multiuser operating system — A multiuser operating system allows more than one user to use
a computer system either at the same time or at different times. Examples of multiuser operating
systems include Linux and Windows 2000.

B Multi-tasking operating system — A multi-tasking operating system allows more than one
program to run at the same time. Examples of multi-tasking operating systems include Unix and
Windows 2000.

B Multithreading operating system — A multithreading operating system allows the running of
different parts of a program at the same time. Examples of multithreading operating system
include UNIX and Linux.

MS DOS Operating System

MS DOS is the short form of Microsoft Disk Operating System, which is marketed by Microsoft
Corporation and is one of the most commonly used members of the DOS family of operating systems.
MS DOS is a command line user interface, which was first introduced in 1981 for IBM computers. Its
last updated official version is MS DOS 6.22, which was released in the year 1994. Thereafter, various
versions of Windows operating systems started replacing MS DOS. Although MS DOS, nowadays, is
not used as a stand-alone product, but it comes as an integrated product with the various versions of
Windows.

In MS DOS, unlike Graphical User Interface (GUI)-based operating systems, there is a command
line interface, which is known as MS DOS prompt. In the MS DOS prompt or the command prompt,
you need to type the various commands to perform the operations in MS DOS operating system. The
MS DOS commands can be broadly categorized into the following three classes:

B Environment command — These commands usually provide information on or affects
operating system environment. Some of these commands are:

e CLS: It allows the user to clear the complete content of the screen leaving only the MS-DOS
prompt.

e TIME: It allows the user to view and edit the time of the computer.

e DATE: It allows the user to view the current date as well as change the date to an alternate
date.

e VER: It allows you to view the version of the MS-DOS operating system.

B File manipulation command — These commands help in manipulating files, such as copying a
file or deleting a file. Some of these commands include:

e COPY: It allows the user to copy one or more files from one specified location to an
alternate location.

e DEL: It helps in deleting a file from the computer.

e TYPE: It allows the user to view the contents of a file in the command prompt.

e DIR: It allows the user to view the files available in the current and/or parent directories.

B Utilities — These are special commands that perform various useful functions, such as
formatting a diskette or invoking the text editor in the command prompt. Some of these
commands include:

e FORMAT: It allows the user to erase all the content from a computer diskette or a fixed
drive.

e EDIT: It allows the user to view a computer file in the command prompt. It also allows the
user to create and modify the computer files.

Fundamentals of Computers 19

MS Windows Operating System

MS Windows stands for Microsoft Windows operating system, which was introduced by Microsoft
Corporation in the year 1985. It was brought in as an add-on to MS-DOS operating system due to the
growing interest of users in GUIs. However, by the early years of 90s it soon became the root cause of
extinction of stand-alone MS-DOS operating system.

The first independent version of MS Windows operating system was the Microsoft Windows,
version 1.0, which was released in 1985. The Windows 1.0 did not provide a complete system; rather
it provided an extended version of MS-DOS with less degree of functionality, which made it less
popular. In 1987, a slightly more popular version, Windows 2.0 was released, but that too was not a
commercial success for the Microsoft Corporation. In 1990, Microsoft released the Windows 3.0,
which was the first Windows operating system to get broad commercial success. Windows 3.0 featured
significant improvements in the user interface and multitasking capabilities.

After the success of Windows 3.0, Microsoft has come up with several new versions of Windows
operating systems and most of them are commercially successful. Some of the popular versions of
Windows operating systems include:

B Windows 95 — Microsoft released Windows 95 operating system in August 24, 1995, which
brought in significant improvements in the series of previous windows versions. During the
development phase, Windows 95 was known as Windows 4.0. Its internal code name was
Chicago. Various new features introduced in the Windows 95 are:

¢ Plug and play: Allows automatic installation of hardware devices into the computer with
proper software.

e 32-bit operating system: Enables the computer to perform in a faster and more efficient
way.

e Registry: Allows easier location of system configuration files.

e Right mouse click: Allows the use of both the buttons instead of one to provide new access
and text manipulation.

B Windows 98 — It is the upgraded version of Microsoft Windows 95 released in June 1998.
Windows 98 is the first Windows operating system to use the device driver framework Windows
Driver Model (WDM). The WDM allows the driver developers to write device drivers, which
are source-code compatible across all Microsoft Windows operating systems. In 1999, Microsoft
also released a second edition of Windows 98, known as Windows 98 Second Edition (SE),
which includes fixes for various minor issues encountered in the first edition. Some of the newly
introduced features in Windows 98 include:

e Protection: Provides additional protection for important files in the computer, for example
allowing automatic registry backup.

e Improved device support: Provides improved support for various new devices, such as
DirectX, DVD, and USB.

e FAT32: Provides the capability to convert a drive to FAT32 without having the risk of
losing any information.

e Internet Explorer: Includes Internet Explorer 4.0.

e Customizable taskbar: Provides new features to customize the taskbar that were not
included in Windows 95.

20

Basic Computation and Principles of Computer Programming

B Windows 2000 — Microsoft released Windows 2000 in February 2000 as a part of its

professional line. Windows 2000 is based on Windows NT kernel and therefore, it is referred as
Windows NT 5.0. There are more than 29 million lines of code, mainly written in C++ in
Windows 2000 where nearly about 8 million lines of codes are written only for the drivers. Some
of the significant features of Windows 2000 include:

e Supports NTFS along with the support for both FAT16 and FAT32
e Protects memory of individual applications and processes so that failure of a single
application cannot bring the system down
e Features encrypted file systems that help in protect sensitive data
e Allows personalization of the menus that help in adapting the menus the way a user works
e Includes greater support for high-speed networking devices, such as cable modems and
native ATM
e Includes high-level interfaces for database access and Active Directory services
Windows Millennium — Microsoft released Windows Millennium in September 2000 as a
consumer version of Windows 2000. Popularly known as Windows Me, Windows Millennium
was released to the public as an upgrade for Windows 95 and Windows 98. The overall look of
Windows Me is somewhat like Windows 98 with some additional affixes and features that are
not available in the previous versions of operating systems. Unlike Windows 2000, Windows
Me is not built on the Windows NT architecture, which at that time was mainly used for
professional versions of operating systems only. Compared to other versions of Windows, the
Windows Me did not continue for a longer period and soon it was replaced with the inception of
NT-based Windows XP operating system. Some of the new features introduced in Windows Me
are:

e Allows automatic restoring of an old backup whenever there are instances of file corruption
or deletion

e Allows a user to protect important system files, which cannot be modified by any type of
other software

e Includes Windows Media Player 7 to provide an advanced and improved way of listening
and organizing media files

Windows XP — Windows XP was released in October 2001, keeping it in line of operating
systems that are developed by Microsoft Corporation for using on general-purpose computer
systems. These computers include home and business desktops, notebook computers, and media
centers. Windows XP was developed as the successor of both Windows 2000 and Windows Me.
The letters “XP” in Windows XP stands for experience. Windows XP is the first consumer-
oriented operating system that is built on the Windows NT kernel and architecture by Microsoft.
There are several editions of Windows. The most common editions of Windows XP are the
Windows XP Home Edition and Windows XP Professional. The Home Edition is targeted for
the home users, while the Professional Edition is targeted for the power users as well as business
clients. Apart from these two editions, the following editions are available for Windows XP:
e Windows XP Media Center Edition: Includes additional multimedia features that enhance
the ability to record and watch TV shows, listen to music and view DVDs.
e Windows XP Tablet PC Edition: Provides the ability to run the ink-aware Tablet PC
platform.

Fundamentals of Computers 21

e Windows XP 64-bit Edition: Released for IA-64 (Itanium) processors.
e Windows XP Professional x64 Edition: Released for x86-64 personal computers.

B Windows Vista — Windows Vista is the latest contribution of Microsoft in the series of
Windows operating systems, which was released in January 2007. Microsoft released Windows
Vista as an upgrade to the Windows XP and Windows 2000. Microsoft planned for Windows
Vista in 2001, before the release of Windows XP. However, it took the longest time (more than
5 years) for Microsoft to actually bring in Windows Vista to life. Windows Vista includes
hundreds of new and re-worked features, some of which include:

A completely new GUI and visual style known as Windows Aero

Improved searching features that provide instant search available through all Explorer
windows

New multimedia creation tools, such as Windows DVD Maker

Newly redesigned networking system, audio, and display sub-system

3.0 version of the .NET framework for developers

Direct X 10 support

Ability to automatically detect and correct problems that are encountered on the computer

UNIX Operating System

UNIX operating system was developed by a group of AT&T employees at Bell Labs in the year 1969.
UNIX is primarily designed to allow multiple users access the computer at the same time and share
resources. In other words, the operating system coordinates the use of resources of the computer by its
users. For example, it can allow one user to create a document while another to format a document.
Furthermore, it can also allow another user to create graphics while letting someone else to edit one
document at the same time. The UNIX operating system controls all the commands generated from the
user keyboards as well as the data generated in such a way that each user believes that he/she is the
only person working on the computer.

The UNIX operating system is written in C language. In UNIX, everything is treated as a file and its
core part is known as the kernel. This operating system is mostly popular among engineers, scientists,
and software professionals due to its properties. The significant properties of UNIX include:

B Multi-user capability — It allows more than one user to access different resources of the
computer at the same time.

B Multitasking capability — It allows a user to run multiple programs concurrently, which can
share both CPU time as well as resources of the computer.

B Portability — It allows a user to execute the operating system code on any machine having
minimum hardware requirements for running the operating system.

B Flexibility — It uses modular programming where reuniting several small software routines
forms a complete application.

B Security — It supports a strong security system that maintains security at various levels and
helps in securely execute a program on the Internet.

22 Basic Computation and Principles of Computer Programming

Architecture of UNIX

UNIX has a hierarchical architecture consisting of several layers, where each layer provides a unique
function as well as maintains interaction with its lower layers. Such a hierarchical or modular
architecture is advantageous for the operating system, as failure of one layer does not disrupt the
functioning of the whole operating system. The layers of the UNIX operating system are:

e Kernel

e Service

e Shell

e User applications

Figure 1.12 shows the various layers of the UNIX operating system.

User Applications

Shell

Service Layer

Kernel

Hardware

(Scheduler, Device Driver, I/0O Buffers)

(Process Management, Memory Management, 1/0
services, and File System

(Library Routines)

Fig. 1.12 The layers of UNIX operating system

B Kernel Kernelis the core of the UNIX operating system and it gets loaded into memory whenever
you switch on the computer. The kernel contains three components, which are:

e Scheduler — It allows scheduling the processing of various jobs.

e Device driver — It helps in controlling the Input/Output devices attached to the computer.

e I/O buffer — It controls the I/O operations in the computer.

The kernel enables a user to access the hardware with the help of system calls, where a system call
is a service request that is passed to the kernel for executing a user program. Various functions
performed by the kernel are:

e Initiating and executing different programs at the same time
e Allocating memory to various user and system processes

Fundamentals of Computers 23

e Monitoring the files that reside on the disk
e Sending and receiving information to and from the network

B Service In the service layer, requests are received from the shell and they are then transformed
into commands to the kernel. In Unix, to access the facilities of the service layer, application programs
use system calls. The service layer, which is also known as the resident module layer, is
indistinguishable from the kernel and consists of a collection of programs providing various services.
These services include:

e Providing access to various I/O devices, such as keyboard and monitor
e Providing access to storage devices, such as disk drives
e Controlling different file manipulation activities, such as reading from a file and writing to a file

B Shell The third layer in the UNIX architecture is the shell, which acts as an interface between a
user and the computer for accepting the requests and executing programs. The shell is also known as
the command interpreter that helps in controlling the interaction with the UNIX operating system. The
primary function of the shell is to read the data and instructions from the terminal, and then execute
commands and finally display the output on the monitor. The shell is also termed as the utility layer as
it contains various library routines for executing routine tasks. The various shells that are found in the
UNIX operating system are:

e Bourne shell — It is the default UNIX shell, which is initiated when a Unix user logs into the
Unix computer. The executable file of Bourne shell is sh and its command prompt is $.

e C shell — It is named after the C programming language, as the syntax of C shell is similar to
that of C language. The C shell is the first Unix shell that introduces the feature of command
history. The C shell also allows a user to provide short names for long command sequences. The
executable file of C shell is e¢sh and its command prompt is %.

e Korn shell — The features of the Korn shell are similar to that of the Bourne shell; however, a
user can use it to avail the facilities of both the Bourne and Korn shells. The executable file of
the Korn shell is ksh and its command prompt is $.

¢ Restricted shell — It is used in secure installations where users need to be restricted to work in
a specific environment. It helps in restricting users from accessing files and directories of other
users. The executable file of the Restricted shell is rsh and its command prompt is $.

B User applications The last layer in the UNIX architecture is the user applications, which are
used to perform several tasks and communicating with other users of UNIX. Some of the important
examples of user applications include text processing, software development, database management
and electronic communication.

Review Questions

1.1 State whether the following statements are true or false.
a. Pascaline was the first digital computer invented by Blaise Pascal.
b. In the second generation of computers, vacuum tubes were used to build the circuitry for the
computers.
c. Transistors were used before the invention of vacuum tubes.

24

503 - 0

—

J-

Basic Computation and Principles of Computer Programming

Magnetic core memories are replaced by semiconductor memories in the fourth generation of
computers.

The PC is a third-generation computer.

Optical disks were introduced in the fourth generation.

There is no need of air-conditioning for portable and desktop PCs of the fifth generation.
The alphanumeric keys are the keys that help perform a specific task such as searching a file or
refreshing the Web pages.

Dot matrix printers are slower than inkjet printers and are used to generate high quality
photographic prints.

The UNIX operating system was written in C language.

1.2 Fill in the blanks with appropriate words in each of the following statements.

1.3
1.4

1.5
1.6

1.7
1.8
1.9
1.10

a.
b.

d.
e.

A wasadevice made up of glass and used filaments to generate electrons.

The size of the. was smaller than the vacuum tubes and generated less heat as
compared to vacuum tubes.
Thegoalof _ computing is to develop devices that can respond to natural language

input and can learn and self-organize.
Mainframe computers are large and expensive in comparison to the
The_ keys include the number keys and the alphabet keys.

What is the name of the first known computing device?

How is the development of computers divided into generations? What are the different generations
of computers?

How were computers of the second generation different from the computers of the first generation?
What is the major change in the fourth-generation computers? What are the various characteristics
of the computers of this generation?

How are computers classified? Explain briefly.

What are input devices? Briefly explain some popular input devices.

What is the purpose of an output device? Explain various types of output devices.

What is an operating system? What are the various categories of operating systems?

CHAPTER

2

Computing Concepts

2.1 INTRODUCTION

Computers store and process numbers, letters and words that are often referred to as data.

e How do we communicate data to computers?
e How do the computers store and process data?

Since the computers cannot understand the Arabic numerals or the English alphabets, we should
use some ‘codes’ that can be easily understood by them.

In all modern computers, storage and processing units are made of a set of silicon chips, each
containing a large number of transistors. A transistor is a two-state device that can be put ‘off” and
‘on’ by passing an electric current through it. Since the transistors are sensitive to currents and act
like switches, we can communicate with the computers using electric signals, which are represented
as a series of ‘pulse’ and ‘no-pulse’ conditions. For the sake of convenience and ease of use a pulse
is represented by the code ‘1’ and a no-pulse by the code ‘0°. They are called bits, an abbreviation
of ‘binary digits’. A series of 1s and 0Os is used to represent number or a character and thus they
provide a way for humans and computers to communicate with one another. This idea was suggested
by John Von Neumann in 1946. The numbers represented by binary digits are known as binary
numbers. Computers not only store numbers but also perform operations on them in binary form.

In this chapter, we discuss how the numbers are represented using what are known as binary codes,
how computers perform arithmetic operations using the binary representation, how digital circuits
known as logic gates are used to manipulate data, how instructions are designed using what are known
as programming languages and how algorithms and flow charts might help us in developing programs.

2.2 BINARY NUMBER SYSTEM

The binary number system is a numeral system that represents numeric values using only two digits,
0 and 1, which are known as bits. Therefore, the base of the binary number system is 2. Each bit
position in a binary number represents a power of the base 2. The internal functioning of a computer
system is carried out in binary number system format. All the decimal numbers that a user enters in a
computer system are first converted into binary numbers and then, the arithmetic operations are performed
on them. The results are again converted into its decimal equivalent and are displayed to the user.

26 Basic Computation and Principles of Computer Programming

The decimal equivalent of the binary number 10010 (written as 10010,) is:
(I x2%+0x2%)+(0x2%+ 1 x2h+ (0 x2°%
=16+0+0+2+0=18
In computer systems, numbers can be represented in two ways, unsigned representation and
signed representation. The binary number system can be used to represent the following two types of
numbers:

B Signed number B Unsigned number
In signed number representation, the Most Significant Bit (MSB) of the number represents the sign of
the number. In a number, if the value of MSB is 0 then the number is considered as a positive number
and if the value of MSB is 1 then the number is considered as a negative number. In signed number
representation, the remaining bits show the absolute value of the number. For example, if we represent
an 8-bit number as a signed number then the MSB of the number represents the sign of the number
and the remaining 7 bits represent the absolute value of the number that ranges from 0 to 127.

In unsigned number representation, the number does not consist of any sign bit and therefore all
the 8 bits represent the value of the number. Table 2.1 shows the signed and unsigned representation
of 8-bit numbers.

Table 2.1 Signed and Unsigned Representation of 8-bit Number

Bit Representation Unsigned Signed
00000000 0 10
00000001 1 +1
01111111 127 +127
10000000 128 -0
10000001 129 -1
11111111 255 —127

2.21 Conversion from Binary Number System to Another Base
Number System

(a) Binary number system to decimal number system

(1) (111001), = 24,
=111001 <« Bit position from right
=1 *29+0*2Y +(0*2H) + (1 *2) + (1 *2H+ (1 * 25
=1+0+0+8+16+32=57

(111001), = (57)4

(i) (1100.1010), = ?4,

={0*2)+*2h+a*2H+ a2 +{a*2H+0*2%+
(1*2H+0*2%)

={0+0+4+8+0.5+0+0.125 + 0)} = (12.625),,

Computing Concepts 27

(b) Binary number system to octal number system

Start from the right from the given binary into a group of three digits. If leftmost group has fewer
bits, attach the required number of leading OS to complete the group and determine equivalent one
octal digit for each group.

() (100110101), = 2,
Step 1 = 100 100 100

M1 M2 M3
Step 2
M1 = (100), = {(0 * 2%) + (0 * 21) + (1 * 22)} = (0 + 0 + 4)g = (4)s
M2 = (110), = {(0 * 2% + (1 * 2 + (1 * 22} = (0 + 2 + 4)3= (6
M3 — (101), = {(1 * 2%+ (0 * 2+ (1 * 2%} =(1+0+ 4)g =(5)g
(100110101), = (M1 M2 M3); = (465)g
@) (1011.1011) , =24
(1011.1011) = (1) (011)-(101)(1)
= (001) (011)-(101) (100)
= {(DHB)-BG)H}
= (13.54),
(c) Binary number system to Hexadecimal number system
The base of the hexadecimal number system is 16, as 16=2*, to convert a binary number to
hexadecimal 4 bit number groups (each bit contains 4 binary bits) are formed in the binary number,
after formatting the groups, each group of 4 binary bits is converted to its hexadecimal equivalent.

@) (01111110), = 24
Step 1= 01111110
M1 M2
Step 2
Ml = (0111), = {1 *2%) + (1 *2H + (1 *2H) + (0*2°)} = (1 +2+4+0);s= T4
M2 — (1110), = {(0 * 2% + (1 *2) + (1 *2%) + (1 *2})} = (0 + 2+ 4+ 8) ;4= (14),5 = (E)
(01111110) , = (M1 M2),~(7E) ;¢

(i) (1011101.1000101) , = 2,4
(1011101.1000101) = (101) (1101)-(1000)(101)

= (0101) (1101)-(1000)(1010)

= {1 *2% + 0 *2h + (1 *2%) + (0 * 2% {1 * 2% + (0 * 2
+ (1% 2%) + (1 * 23} - {(0%2%) + (0% 21) + (0% 2%) + (1 * 2°)}
{00 % 2% + (1 *2Y + (0 * 2% + (1 * 2%)

={1+0+4+0)(1+0+4+8)}-{(0O+0+0+8)O0+2+0+8)}

= (513-810)16 = {(5) (D)-(8)(A)} 6

= (5D-8A) 4

28 Basic Computation and Principles of Computer Programming

2.3 DECIMAL NUMBER SYSTEM

The decimal number system is the number system, which is most commonly used number system. It
allows ten digits (0 to 9), because its base is equal to 10. In this number system, each position
represents a specific power of 10.
2.3.1 Conversion from Decimal Number System to Another

Base Number System

(a) Decimal number system to binary number system
(1) @51)4-?, (i) (14.625);y =7,

2251 A 14)9 =2,
225t 214
P — P A—
P — 0 PR
P — 1 P -
P A— 1 [
2|31 (14),9 =(1110),
P -
[

(251),, =(1111011),
(0.625),, = 2,

Fraction 2 * Fraction = Remainder New Fraction Integer
0.625 0.625 * 2 =1.25 0.25 1 (MSB)
0.25 0.25 *2=10.50 0.50 0
0.50 0.50 * 2 =1.00 0.00 1 (LSB)

(0.625),, = (0.101),
(14.625),, = (1110.101),

(b) Decimal number system to octal number system
(1) (624),0="124 (i) (78.96);y = ?5

8624 878
8|78-------0 8/9--------6
8[9-------6 L —|
81------1 0------ 1
0--1 (78)19 = (116)g
(624),, = (1160),
(0.96), = %
Fraction 8 * Fraction = Remainder New Fraction Integer
0.96 0.96 * 8 = 7.68 0.68 7 (MSB)
0.68 0.68 * 8 =5.44 0.44 5
0.44 0.44 * 8§ =3.52 0.52 3
0.52 0.52 * 8 =4.16 0.16 4
0.16 0.16 * 8 =1.28 0.28 1 (LSB)

(0.96),, = (0.75341)g
(78.96),, = (116.75341),

Computing Concepts

(c) Decimal number system to hexadecimal number system

(1) 951);9= 246 (i) (951.62);9= ?46
16951 16951
16/59----—-- 7
163 11 1?‘% """ /
03 3-mmme11
=eune o O 3
= (3B7)¢ - (3117),4
(0.62);90 = ?16
Fraction 16 * Fraction = Remainder New Fraction
0.62 0.62 * 16 = 9.92 0.92
0.92 0.92 * 16 = 14.72 0.72
0.72 0.72 *16 = 11.52 0.52
0.52 0.52 * 16 = 8.32 0.32
0.32 032 *16 =5.12 0.12
0.12 0.12 * 16 =1.92 0.92

(0. 62),, =(0.914 11851),, = (0.9EB851),,
(951.62),y = (3B7.9EB851),,

2.4 OCTAL NUMBER SYSTEM

Integer
9 (MSB)
14(E)
11(B)

8
5
1(LSB)

29

The octal number system has the base 8, so in this number system only eights are available from

0 to 8. Each position in an octal number represents a power of the base 8.

241 Conversion from Octal Number System to Another Base

Number System

(a) Octal number system to decimal number system

1) (324)3=124,
=@*8)+(2*8h+(3*8)
=@4+16+192)
= (212)y

(i) (324.763)g= 24
= (@8 + (2 8) + B * 8} (T8N + (689 + (3% 87
= {(4 + 16 + 192)-(0.875 + 0.09375 + 0.00585938)}
= {(212)- (0.97460938)},
= (212. 0.97460938),,

(b) Octal number system to binary number system
(i) (724)5= 2,

(724)g = {(M(2)H)}5
{(111), (010), (100),} = (111010100),

30 Basic Computation and Principles of Computer Programming

(i) (34.56)3= 12,
(34.56)g = {(011)(100) - (101)(110)},
=(011100.101110),

(¢) Octal number system to hexadecimal number system

(1) (635)3= 246
To perform the conversion from octal number system to hexadecimal number system, first
of all, the octal number system should convert to binary number system, then from binary
number system to hexadecimal number system, conversion has to be possible.
Step-1 (Octal to Binary conversion)
(635)g = {(110) (011) (101)} = (110011101),
Step-2 (Binary to Hexadecimal conversion)
(110011101), = (1)(1001)(1101) = (0001) (1001) (1101) = {(1)(9)(13)},6= (19D);

(i) (64.57)g= 246
Step-1 (Octal to Binary conversion)
(110)(100) - (101)(111) = (110100)- (101111) = (110100.101111),
Step-2 (Binary to Hexadecimal conversion)
(110100.101111),
= (11)(0100)- (1011)(11) = (0011)(0100) - (1011)(1100)
= {3)@)- (11)(12)} 4= (34-BO) 4

2.5 HEXADECIMAL NUMBER SYSTEM

In the hexadecimal number system, the base is 16 and it allows choice of 16 single digits. The first 10
are the digits of a decimal system (0 to 9) and the remaining six digits are denoted by (A to F).

2.5.1 Conversion from Hexadecimal Number System to
Another Base Number System

(a) Hexadecimal number system to decimal number system
(1) (3B5D)16= 29
(3B5D)4
={D*16% + (5 * 16" + (B * 16%) + (3 * 16°)}
= {(13 * 1) + (5 * 16) + (11 * 256) + (3 * 4096)}
= (13 + 80 + 2816 + 12288) = (15197),,
(ii) gggg)- 5A6B)16= 210
16
={(D *16° + (5 * 16") + (B * 16%) + (3 * 16)}
{(13 * 1) + (5 * 16) + (11 * 256) + (3 * 4096)} = (13 + 80 + 2816 + 12288)
= (15197), (0.5A6B) ¢

={5*16H+(A*16DH)+(6*16°)+B* 164}
= {(0.3125) + (0.0390625) + (0.0014648437) + (0.00016784667)} = (0.35319519037),,
(3B5D- 5A6B);6=(15197.35319519037),,
(b) Hexadecimal number system to binary number system
(i) (7TBA)s=7,
= {(0111)(1011)(1010)}, = (011110111010),
(i) (7D-4A)6=72,

Computing Concepts 31

(7D - 4A) = {(0111)(1101)- (0100)(1010)} = {(01111101)- (01001010)}
= (01111101.01001010),

(c) Hexadecimal number system to Octal number system
To perform the conversion from a hexadecimal number system to octal number system,
first of all the hexadecimal number system should convert to the binary number system,
then from binary number system to octal number system conversion has to be possible.
(i) (TDE);e= 2
Step-1 (Hexadecimal to Binary conversion)
(7DE) = {(7)(D)(E)} = {(0111) (1101) (1110)} = (011111011110),
Step-2 (Binary to Octal conversion)
(011111011110), = (011)(111)(011)(110) = {B)(7)(3)(6)}5 = (3736);
(i) (7B-4A);4=24
Step-1 (Hexadecimal to Binary conversion)
(7B-4A) = (0111)(1011)-(0100)(1010) = (01111011.01001010),
Step-2 (Binary to Octal conversion)
(01111011.01001010),
= (01)(111)(011)- (010)(010)(10) = (001)(111)(011)-(010)(010)(100)
= {(DB)- 2)2)H)} = (173.224)

2.6 CONVERSION FROM ANY BASE NUMBER SYSTEM
TO ANY OTHER BASE NUMBER SYSTEM

(D) (22.11), =7y
(22.11),
=Q*4N+2*4)+ A *4)+ A 4D ={2* 4+ @2 * 1)+ (1/4) + (1/16)}
= (8 + 2 + 0.250.625) = (10.875),,
(i) (578.13)g = %49
(578.13),
=G5*)+T*M+B*9)+(1*9H+(B*92) ={5*8)+(7T*9)+(8*1)
+(1/9) + (3/81)} = (405 + 63 + 8 + 0.111 + 0.0370) = (476.148),,
(i) (4ABC)y5= 2y
(4ABC);5 = {(4 * 15%) + (A * 15%) + (B * 15") + (C * 15%} = {(4 * 3375) + (10 * 225)
+ (11 % 15) + (12 * 1)} = (13500 + 2250 + 165 + 12) = (15927),,
(iv) (320)s=?,
(320)5= {(3*5%) + (2 * 5') + (0 * 5%} = {(3 * 25) + (2 * 5) + (0 * 1)}
= (75 + 10 + 0) = (85),,

(85)10=24
485
421------ 1
4]5-------1
pIT—
0------ 1
=(1111),

(320)5 = (85);p =(1111)4

32 Basic Computation and Principles of Computer Programming

2.7 BINARY CODES

In digital electronics system, various binary codes are used to encode statements that consist of
letters in numeric and symbol forms, written in the computer understandable programming languages.
The commonly used binary codes are:

B Binary Coded Decimal (BCD) code
B American Standard Code for Information Interchange (ASCII) code
Binary Coded Decimal Code

In the BCD code, each decimal digit is represented by a binary code of four bits, and the binary
weights of four bits are 2, 2% 2! and 2°. The decimal numbers and corresponding BCD numbers are
shown in Table 2.2.

Table 2.2 Decimal Numbers and Corresponding BCD Numbers

Decimal Number Binary Coded Decimal (BCD)
2=8 2?=4 2'=2 2°=1
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

Example 2.ﬁ

Decimal number = 127

Equivalent in BCD code = 0001 0010 0111

In the above example, each decimal digit of number 127 is represented by a group of 4 bits in BCD
codes.

American Standard Code for Information Interchange

ASCII is a standard alphanumeric code that represents numbers, alphabetic characters, and symbols
using a 7-bit code format. The standard ASCII character set consists of 128 decimal numbers ranging
from 0 through 127, which are assigned to letters, numbers, punctuation marks, and the most
common special characters. Table 2.3 shows ASCII binary codes for some of the characters.

The extended ASCII character set consists of 128 decimal numbers that ranges from 128 through
255 representing additional special, mathematical, graphic, and foreign characters.

Computing Concepts 33

Table 2.3 ASCII Binary Codes

Character ASCIl Character ASCIl Character ASCIl
binary code binary code binary code
A 01000001 a 01100001 0 00110000
B 01000010 b 01100010 1 00110001
C 01000011 c 01100011 2 00110010
D 01000100 d 01100100 3 00110011
E 01000101 e 01100101 4 00110100
F 01000110 f 01100110 5 00110101
G 01000111 g 01100111 6 00110110
H 01001000 h 01101000 7 00110111
1 01001001 i 01101001 8 00111000
J 01001010 j 01101010 9 00111001
K 01001011 k 01101011 : 00111010
L 01001100 1 01101100 ; 00111011
M 01001101 m 01101101 < 00111100
N 01001110 n 01101110 = 00111101
(6] 01001111 o 01101111 > 00111110
P 01010000 p 01110000 ? 00111111
Q 01010001 q 01110001 SPACE 00100000
R 01010010 r 01110010 (00101000
S 01010011 S 01110011) 00101001
T 01010100 t 01110100 * 00101010
U 01010101 u 01110101 + 00101011
\'% 01010110 v 01110110 s 00101100
w 01010111 w 01110111 - 00101101
X 01011000 X 01111000 . 00101110
Y 01011001 y 01111001 / 00101111
Z 01011010 z 01111010 ” 00100010

2.8 BINARY ARITHMETIC OPERATIONS

Arithmetic operations on binary numbers are performed in the same manner as on decimal numbers.
The basic binary arithmetic operations are:

B Binary addition B Binary subtraction
B Binary multiplication B Binary division
Binary Addition
In the binary number system, the simplest arithmetic operation is binary addition.
Rules of binary addition

The rules applied for adding binary numbers are the same as those applied for decimal numbers. That
is, sum of the columns and the carry of the sum forwards to the next column. The rules of binary
addition are:

B 0 + 0 =0, with no carry
B] + 0 =1, with no carry

, with no carry

[| 1
u = 0, with carry 1

34 | Basic Computation and Principles of Computer Programming

Example 2.2J

Let’s take a simple example of adding two numbers.
10
+100

110

In the above example, starting from the right column, 0+ 0=0,1+0=1,and 0 + 1 = 1. There is
no carry to add in the next significant bit.

Example 2.3j

Let’s take another example of adding two numbers.
11 «———carry
11 <«——number 1
+101 «——number 2

1000

Starting from the right column, 1 + 1 = 0 with carry 1. In the next column, 1 + 1 + 0 = 0 with carry
1. Now in the last column, 1 +1 = 0 with carry 1. As there is no further column to add, therefore 1
(carry from the addition of the previous column) will be the resultant value for the last column.

Example 2.4ﬂ

Let’s take another example.
1111 «———carry
1011 «——number 1
+ 1111 «——number?2

11010

Starting from the right column, 1 + 1 = 0 with carry 1. In the next column, 1+ 1 + 1 =1 with carry
1. Now in the last column, 1 +1 = 0 with carry 1. In last column, 1 + 1 + 1 = 1 with carry 1. There is
no further column to add, therefore 1 (carry from the addition of the previous column) will be the
resultant value for the last column.

Binary Subtraction
In the binary number system, another simplest arithmetic operation is binary subtraction.
Rules of binary subtraction

The rules applied for subtracting binary numbers are the same as those applied for decimal numbers.
The rules of binary subtraction are:

®m 0 - 0 =0, with no borrow

B 0 - | =1, with borrow I from the more significant bit

B | - 0= 1, with no borrow

B 1 -1 =0, with no borrow

Computing Concepts 35

Example 2.5

Let’s take a simple example of subtraction
110
-100

010

In the above example, starting from the right column, 0 —0=0,1-0=1,and 1 —1=0.

Example 2./6J

Let’s take another example of subtraction.
111 «—borrow
110011 «—— minuend
- 10110 «——subtrahend

011101 «— Difference

Starting from the right column, 1 —0 =1, 1 — 1 = 0 and in next column 1 is to be subtracted from
0; therefore 1 is borrowed from the adjacent bit. As 1 is not available as an adjacent bit, you borrow
it from the next column. After borrowing 1 from the next column, the result of subtraction will be 1.
Repeat the same step to solve the rest of the columns.

Example 2.LJ

Let’s consider one more example of subtraction.
11 «—Dborrow
11100 «— minuend
—10111 ¢<—subtrahend

1 0 1 «— Difference

Starting from the right column, 1 is to be subtracted from 0; therefore 1 is borrowed from the
adjacent bit. As 1 is not available as an adjacent bit, you need to borrow it from the next column. After
borrowing I from the next column, the result of subtraction will be 1. Repeat the same step to solve
the rest of the columns.

Binary Multiplication
In the binary number system, the third arithmetic operation is binary multiplication.

Rules of binary multiplication

The same rules applied to the binary multiplication are the same as those applied for decimal
multiplication. For example, two binary numbers x and y are to be multiplied using partial products
process. In the partial product process, each digit of x is multiplied with all the digits of y and for each
digit of x, the product will be written in a new line, shifted leftward. The sum of all lines gives the final
result of the multiplication of two binary numbers. The rules of binary multiplication are:

36 | Basic Computation and Principles of Computer Programming

0*0=0 m0*1=0
1*0=0

|
m | B] * 1 =1, with no carry and borrow bit

Example 2.tﬂ

Let’s take an example of multiplication
110 «——multiplicand
*100 «——multiplier

000
000 «—— Partial products
+110
11000 «—Product
Example 2.ﬂ
Let’s take another example of multiplication
1110
* 1010
0000
1110
0000
1110
10001100

Example 2.10J

Let’s consider one more example.
1010
*1110

0000
1010
1010
1010

10001100

Binary Division
In the binary number system, the fourth arithmetic operation is binary division.
Rules of binary division

Rules for division of binary numbers are the same as those applied for the division of decimal numbers.

Example 2.11

Let’s take an example of division.

Computing Concepts

101 «—Quotient

101 11011 «—Dividend
-101

0011
-000

0111
-101

1 0 «—— Remainder

Example 2.12J

Let’s take another example of division.
1011
100 101101

-100

00110
-100
0101
-100
1

Example 2.13

Let’s take one more example.
1111

100 111101
-100

0111
-100

0110
-100

101
- 100

1

2.9 LOGIC GATES

Logic gates are the basic building blocks of a digital computer. In general, all the logic gates have two
input signals and one output signal. These two input signals are nothing but two binary values, 0 or 1

38 Basic Computation and Principles of Computer Programming

that helps represent different voltage levels. In all logic gates, the binary value 0 represents the low
state of voltage that is approximately 0 volt and the binary value 1 represents the high state of voltage
that is approximately +5 volts. The three basic logic gates are:

B AND H OR
B NOT

All logic gates have a logical expression, symbol, and truth table. The logical expression helps find
the output of the logic gate on the basis of its inputs. A symbol is the pictorial presentation of a logic
gate that can have one or more than one input and one output. The truth table helps find the final
logical state, such as true/false or 1/0 of the logic gate in the form of its output.

AND Gate

The AND gate is one of the basic logic gates that gives an output signal of value 1 only when all its
input signals are of value 1. In other words, the AND gate gives an output signal of value 0 whenever
its one input signal is of value 0.

Logical Expression

The logical expression for the AND function is:

F=A4.B
where, F is the output that depends on inputs, 4 and B. PA—
Symbol
The symbol of the AND gate is shown in Fig. 2.1.
Truth Table Fig. 2.1 AND gate
Table 2.4 Truth Table for AND Gate
Input A Input B Output F
0 0 0
0 1 0
1 0 0
1 1 1
Example 2. h}J
Consider the following system that has two AND gates:
Assuming
I,=1, ,=0 and =0 h o
’
Outputs would be 0,
O,=1., =10=0 L
I3

0,=1,0, =00=0

Computing Concepts 39

Example 2. 15J

Consider the following system 11
with three AND gates: O o
I 2 0
I
Assuming L

L=1,L=1L=1 and I=1
Outputs would be:
O0,=I,-L,=11=1
0,=5-0,=11=1
0,=1,-0,=11=1
OR Gate

The OR gate is another basic logic gate that gives an output signal of value 1 whenever its one input
signal is of value 1. In other words, the OR gate gives an output signal of value 0 when all its input
signals are of value 0.

Logical Expression

The logical expression for the OR function is:
F=4+B
where, F is the output that depends on inputs 4 and B.

Symbol

The symbol of the OR gate is shown in Fig. 2.2 ::E>_.

Fig.2.2 OR Gate
Truth Table

Table 2.5 Truth table for OR Gate

Input A Input B Output F
0 0 0
0 1 1
1 0 !
1 1 1
Example 2.16
]1 O1
Consider the following configuration of OR gates: b 0

40 | Basic Computation and Principles of Computer Programming
When L=1,1,=0 and L=1
Outputs o,=11, =10=1

0,=6L0,=11=1

Example 2.1 77J

Consider the following system three OR gates, I o)
Assuming [,=0,=0,;=1 and L=1 0z
Outputs O,, O, and O; would be s I Os

0,=1,0,=10=1
0y=1,0,=1.1=1

NOT Gate
The third basic logic gate is NOT gate which produces an output of the opposite state to its input. This
logic gate always has only one input signal and one output signal.

Logical Expression
The logical expression for the NOT function is:

F=4
where, F is the output that depends on input, 4.

Symbol

The symbol of the NOT gate is shown in Fig. 2.3 ’—{>Q—‘

Fig.2.3 NOT gate
Truth Table

Table 2.6 Truth Table for NOT Gate

Input A Input F
0 1
1 0

Example 2.187J

. O1=1 O,
Consider two NOT gates configured as shown below: /1
If I,=1,then O,=1=1=0
and therefore [, = O,=0

0,=1,=0 =1

Computing Concepts 41

2.10 PROGRAMMING LANGUAGES

The operations of a computer are controlled by a set of instructions (called a computer program).
These instructions are written to tell the computer:

1. what operation to perform 2. where to locate data

3. how to present results 4. when to make certain decisions

The communication between two parties, whether they are machines or human beings, always
needs a common language or terminology. The language used in the communication of computer
instructions is known as the programming language. The computer has its own language and any
communication with the computer must be in its language or translated into this language.
Three levels of programming languages are available. They are:

1. machine languages (low level languages)
2. assembly (or symbolic) languages
3. procedure-oriented languages (high level languages)

Machine Language

As computers are made of two-state electronic devices they can understand only pulse and no-pulse
(or ‘1’ and ‘0”) conditions. Therefore, all instructions and data should be written using binary codes
1 and 0. The binary code is called the machine code or machine language.

Computers do not understand English, Hindi or Tamil. They respond only to machine language. Added
to this, computers are not identical in design, therefore, each computer has its own machine language.
(However, the script 1 and 0, is the same for all computers). This poses two problems for the user.

First, it is difficult to understand and remember the various combinations of 1’s and 0’s
representing numerous data and instructions. Also, writing error-free instructions is a slow process.

Secondly, since every machine has its own machine language, the user cannot communicate with
other computers (If he does not know its language). Imagine a Tamilian making his first trip to Delhi.
He would face enormous obstacles as the language barrier would prevent him from communicating.

Machine languages are usually referred to as the first generation languages.

Assembly Language

The Assembly language, introduced in 1950s, reduced programming complexity and provided some
standardization to build an application. The assembly language, also referred to as the second-
generation programming language, is also a low-level language. In an assembly language, the Os and
1s of machine language are replaced with abbreviations or mnemonic code.
The main advantages of an assembly language over a machine language are:

B As we can locate and identify syntax errors in assembly language, it is easy to debug it.
M [t is easier to develop a computer application using assembly language in comparison to machine
language.
B Assembly language operates very efficiently.
An assembly language program consists of a series of instructions and mnemonics that correspond
to a stream of executable instructions. An assembly language instruction consists of a mnemonic
code followed by zero or more operands. The mnemonic code is called the operation code or opcode,

42 Basic Computation and Principles of Computer Programming

which specifies the operation to be performed on the given arguments. Consider the following
machine code:
10110000 01100001
Its equivalent assembly language representation is:
mov al, 061h

In the above instruction, the opcode “move” is used to move the hexadecimal value 61 into the
processor register named ‘al’. The following program shows the assembly language instructions to
subtract two numbers:

ORG 500 /Origin of program is location 500 LDA SUB /Load subtrahend to AC

CMA /Complement AC INC /Increment AC

ADD MIN /Add minuend to AC STA DIF /Store difference

HLT /Halt computer MIN, DEC 56 /Minuend

SUB, DEC -2 /Subtrahend DIF, HEX 0 /Difference stored here
END /End of symbolic program

It should be noted that during execution, the assembly language program is converted into the
machine code with the help of an assembler. The simple assembly language statements had one-to-
one correspondence with the machine language statements. This one-to-one correspondence still
generated complex programs. Then, macroinstructions were devised so that multiple machine
language statements could be represented using a single assembly language instruction. Even today
programmers prefer to use an assembly language for performing certain tasks such as:

B To initialize and test the system hardware prior to booting the operating system. This assembly
language code is stored in ROM

To write patches for disassembling viruses, in anti-virus product development companies

To attain extreme optimization, for example, in an inner loop in a processor-intensive algorithm
For direct interaction with the hardware

In extremely high-security situations where complete control over the environment is required
To maximize the use of limited resources, in a system with severe resource constraints

High-Level Languages

High level languages further simplified programming tasks by reducing the number of computer
operation details that had to be specified. High level languages like COBOL, Pascal, FORTRAN, and C
are more abstract, easier to use, and more portable across platforms, as compared to low-level
programming languages. Instead of dealing with registers, memory addresses and call stacks, a
programmer can concentrate more on the logic to solve the problem with help of variables, arrays or
Boolean expressions. For example, consider the following assembly language code:

LOAD 4
ADD B
STORE C

Using FORTRAN, the above code can be represented as: C=4 + B

The above high-level language code is executed by translating it into the corresponding machine
language code with the help of a compiler or interpreter.

High-level languages can be classified into the following three categories:

B Procedure-oriented languages (third generation)
B Problem-oriented languages (fourth generation)
B Natural languages (fifth generation)

Computing Concepts 43

Procedure-oriented Languages

High-level languages designed to solve general-purpose problem are called procedural languages or
third-generation languages. These include BASIC, COBOL, FORTRAN, C, C++, and JAVA, which
are designed to express the logic and procedure of a problem. Although, the syntax of these
programming languages is different, they use English-like commands that are easy to follow. Another
major advantage of third-generation languages is that they are portable. You can put the compiler (or
interpreter) on any computer and create the object code. The following program represents the source
code in the C language:
if(n>10)
{
do
{
n++;
twhile (n<50);
}

Problem-oriented Languages

Problem-oriented languages are used to solve specific problems and are known as the fourth-
generation languages. These include database query language and Visual Basic, which require you to
instruct the computer in a step-by-step fashion. Fourth-generation languages have reduced
programming efforts and overall cost of software development. These languages use either a visual
environment or a text environment for program development similar to that of third-generation
languages. A single statement in a fourth-generation language can perform the same task as multiple
lines of a third-generation language. Further, the programmer just needs to drag and drop from the
toolbar, to create various items like buttons, text boxes, labels, etc. Also, the programmer can quickly
create the prototype of the software application.

Natural Languages

Natural languages are designed to make a computer to behave like an expert and solve problems. The
programmer just needs to specify the problem and the constraints for problem-solving. Natural
languages such as LISP and PROLOG are mainly used to develop artificial intelligence and expert
systems. These languages are widely known as fifth generation languages.

2.11 TRANSLATOR PROGRAMS

Assembler

An assembler is a computer program that translates assembly language statements into machine
language codes. The assembler takes each of the assembly language statements from the source code
and generates a corresponding bit stream using 0’s and 1’s. The output of the assembler in the form
of sequence of 0’s and 1’s is called object code or machine code. This machine code is finally executed
to obtain the results.

A modern assembler translates the assembly instruction mnemonics into opcodes and resolves
symbolic names for memory locations and other entities to create the object code. Several
sophisticated assemblers provide additional facilities that control the assembly process, facilitate

44 Basic Computation and Principles of Computer Programming

program development, and aid debugging. The modern assemblers like Sun SPARC and MIPS based
on RISC architectures, optimizes instruction scheduling to attain efficient utilization of CPU. The
modern assemblers generally include a macro facility and are called macro assemblers.

Assemblers can be classified as single-pass assemblers and two-pass assemblers. The single-pass
assembler was the first assembler that processes the source code once to replace the mnemonics with
the binary code. The single-pass assembler was unable to support advanced source-code optimization.
As a result, the two-pass assembler was developed that read the program twice. During the first pass,
all the variables and labels are read and placed into the symbol table. On the second pass, the label gaps
are filled from the table by replacing the label name with the address. This helps to attain higher
optimization of the source code. The translation process of an assembler consists of the following tasks:

B Replacing symbolic addresses like LOOP, by numeric addresses
B Replacing symbolic operation code by machine operation codes
B Reserving storage for the instructions and data

B Translating constants into their machine representation

Compiler

The compiler is a computer program that translates the source code written in a high-level language
into the corresponding object code of the low-level language. This translation process is called
compilation. The entire high-level program is converted into the executable machine code file. A
program that translates from a low-level language to a high-level one is a decompiler. Compiled
languages include COBOL, FORTRAN, C, C++, etc.

In 1952, Grace Hopper wrote the first compiler for the A-O programming language. In 1957, John
Backus at IBM introduced the first complete compiler. With the increasing complexity of computer
architectures and expanding functionality supported by newer programming languages, compilers
have become more and more complex. Though early compilers were written in assembly languages,
nowadays it has become common practice to implement a compiler in the language it compiles.
Compilers are also classified as single-pass compilers and multi-pass compilers. Though single-pass
compilers are generally faster than multi-pass compilers, for sophisticated optimization, multi-pass
assemblers are required to generate high-quality code.

Interpreter

The interpreter is a translation program that converts each high-level program statement into the
corresponding machine code. This translation process is carried out just before the program statement is
executed. Instead of the entire program, one statement at a time is translated and executed immediately.
The commonly used interpreted language is BASIC and PERL. Although, interpreters are easier to create as
compared to compilers, the compiled languages can be executed more efficiently and are faster.

2.12 ALGORITHM AND FLOW CHART

Algorithms and flow charts are two important methods that help users in solving problems or
accomplishing tasks using a computer. An algorithm is a complete, detailed and precise sequene of
operations for solving a problem independently of the software or hardware of the computer.

Let us assume that the XYZ company gives each of its salespersons Rs 5000 at the starting of the
month for covering various expenses, such as food, lodge, and travel. At the end of the month, the
salesperson must submit the receipts of his/her total expenditures to the company. If the amount is

Computing Concepts | 45

less than Rs 5000, then the remaining amount must be returned to the company. Now, a simple
algorithm can be developed to find out how much money, if any, should be returned to the company.

1. Read the total expenses of the month.

2. Subtract this amount from Rs 5000.

3. If the remainder is greater than 0, return

the amount to the company. Read total expenses

Now to visualize the working of an algorithm,

one needs to take the help of a flow chart, which

is the pictorial representation of the algorithm Subtract expenses)(eiS E;"Spggggs
depicting the flow of the various steps in the 1721 25 S0

algorithm. If we consider the above example of l

the expenses fo the salesperson, then the flow Print “Due amount”

chart of the algorithm can be represented, as

Print “No dues”
shown in Fig. 2.4.

Flow charts are an aid to writing programs (Stop) -
o] Stop
and they serve several other purposes. They

assist in reviewing and debugging of a program, Fig. 2.4 Flow chart representation of an algorithm
provide effective program documentation, and
help in explaining the solution and the program to others.

Example 2.19 | Write an algorithm for finding greatest among three numbers.

Let x, y and z be the numbers. Now, you can follow the algorithm below to determine the greatest
number among the three:
1. Read the three numbers.
2. Ifx>y
a. If x > z, then x is the greatest number.
b. Else, z is the greatest number
3. Else,
a. If y >z, then y is the greatest number.
b. Else, z is the greatest number.

Example 2.20J Write the algorithm for converting the degree in Celsius from Fahrenheit

Let us consider x to be the temperature given in Celsius. Now you need to follow the algorithm below
to determine the temperature in Fahrenheit:

1. Read x

2. Multiply x with 9/5.

3. Add 32 to the multiplied result.

4. Print the final value which is the temperature in Fahrenheit.

Example 2.21 | Write the algorithm for calculating the average of n integers.

The algorithm for calculating the average of n integers is as follows:
1. Read n integers.
2. Calculate the sum of the integers.
3. Divide the sum by the total number of integers, that is, 7.
4. Print the final value which is the average of n integers.

46|

Basic Computation and Principles of Computer Programming

Example 2.2?J Write the algorithm for checking whether a number is odd or even.

The following is the algorithm to determine whether a number is odd or even:

1. Read the given number, say x.

2. Divide x by 2.

3. If the remainder is 1, then print x is odd.
4. Else, print x is even.

Example 2.23
zero.

Write the algorithm to determine whether a number is positive, negative or

1. Read the given number, say x.

2. Ifx#0,
a. If x>0, the value of x is positive.
b. Else, the value of x is negative.

3. Else, the value of x is zero.

Give a flow chart for

Example 2.24 | L ddition of two numbers.

Input x

Input y

Give aflow chart fo print the

Example 2.25 average of three numbers.

Input x Input y
Input z

Sum=x+y+z
Average = Sum/3

Print Average

Give a flow chart for

Example 2.26 Example 2.19

Print
X is the
largest
number

Yes Yes

No

Print
zis the
largest
number,

Print
yis the
largest

zis the
largest

Computing Concepts 47

Give a flow chart for Give a flow chart fo
Example 2.27 | ¢, \\hie 2.22 Example 2.28 | determine the average of

10 numbers.

/ Inputx /

Divide x by
2,i.e x/2

Print

. Average =
X is odd

sum/10

No
Print
X is event
Sum = x + sum
[Stop e i is incremented by 1

2.13 USING THE COMPUTER

Computers can be used to solve specific problems that may be scientific or commercial in nature. In
either case, there are some basic steps involved in using the computers. These are as follows:
Problem analysis Identify the known and unknown parameters and state the constraints under
which the problem is to be solved. Select a method of solution.
Collecting information Collect data, information and the documents necessary for solving the
problem and also plan the layout of output results.
Preparing the computer logic Identify the sequence of operations to be performed in the process
of solving the problem and plan the program logic, preferably using a program flow chart.
Writing the computer program Write the program of instructions for the computer in a suitable
language.
Testing the program There are usually errors(bugs) in it. Remove all these errors which may be
either in using the language or in the logic.
Preparing the data Prepare input data in the required form.
Running the program This may be done either in batch mode or interactive mode. The
computations are performed by the computer and the results are given out.

The use of a particular input/output device depends upon the nature of the problem, type of input
data and the form of output required.

Review Questions

2.1 State whether the following statements are true or false.
(a) Each bit position in a binary number represents a power of base 10.
(b) In the binary number system, the simplest arithmetic operation is binary addition.
(c) In all logic gates, the binary value 0 represents the low state of voltage that is approximately 0
volt and the binary value 1 represents the high state of voltage that is approximately +5 volts.
(d) All logic gates have a logical expression, symbol and truth table.

48

22

23
24
25
26
2.7
2.8
29
2.10
211
2.12

Basic Computation and Principles of Computer Programming

(e) An assembly language, also referred as second-generation programming language, is a high-
level language.

Fill in the blanks with appropriate words in each of the following statements.

(a) In computer systems, numbers can be represented in two ways, _ representation
and representation.

(b) Inthe_ code, each decimal digit is represented by a binary code of four bits.

(c) The standard ASCII character set consists of 128 decimal numbers ranging from
through .

(d) An assembly language instruction consists of a mnemonic code followed by zero or more

() The_ isatranslation program that converts each high-level program statement into
the corresponding machine code.

What types of numbers are represented by the binary number system? Explain briefly.

Explain the binary codes that are commonly used in digital electronics.

What is the range of extended ASCII character set?

What are the rules of binary subtraction?

What do you understand by logic gates? Explain the basic logic gates.

What is assembly language? What are its main advantages?

What is high-level language? What are the different types of high-level languages?

What do you understand by a compiler and an assembler?

What is a flow chart? How is it different from an algorithm?

What are the functions of a flow chart?

Review Exercises

21
22
23
24
25

26
2.7
2.8

29

2.10

Write a program to show the assembly language instructions for adding two numbers.
Write a program in Fortran to show the subtraction of two numbers.
Write a program in C to calculate the sum up to » integer numbers. A o—{>—
Write a program in C to determine the greater of two integers. Be_ |
Consider the following pairs of sequence of bits:

@) 101011 (i) 00111011 (@)

AND E

110101 11100101 4 o——r
How would these pairs of inputs be processed by Be—]>— AND b E
(a) AND gate and (b) OR gate?
How would a NOT gate process the following sequences of bits? (b)
(a) 10111010 (b) 11110011
Find the truth tables for the following logic circuits.
The logic circuit shown below combines two NOT and OR Output
circuits. What will be its output sequence if 4 = 0011 and p
B=1010?
A class of 50 students sits for an examination which has three sections A, B and C. Marks are
awarded separately for each section. Draw a flow chart to read these marks for each student and
print the total marks obtained by each student, the class average for each section, and the number
of stu@ents who hgve scored more thgn 60 marks. ‘ . b+ \/m
Describe an algorithm to solve for X in the quadratic equation where X = ————
If (b* — 4ac) is negative do not calculate the roots but instead print 'NEGATIVE' 24
Draw a flow chart to depict the algorithm pictorially.

CHAPTER

3

Constants, Variables and
Data Types

3.1 INTRODUCTION

A programming language is designed to help process certain kinds of data consisting of numbers,
characters and strings and to provide useful output known as information. The task of processing of
data is accomplished by executing a sequence of precise instructions called a program. These
instructions are formed using certain symbols and words according to some rigid rules known as
syntax rules (or grammar). Every program instruction must confirm precisely to the syntax rules of the
language.

Like any other language, C has its own vocabulary and grammar. In this chapter, we will discuss the
concepts of constants and variables and their types as they relate to C programming language.

3.2 CHARACTER SET

The characters that can be used to form words, numbers and expressions depend upon the computer on
which the program is run. However, a subset of characters is available that can be used on most
personal, micro, mini and mainframe computers. The characters in C are grouped into the following
categories:

1. Letters

2. Digits

3. Special characters
4. White spaces

The entire character set is given in Table 3.1.
The compiler ignores white spaces unless they are a part of a string constant. White spaces may be
used to separate words, but are prohibited between the characters of keywords and identifiers.

50

Basic Computation and Principles of Computer Programming

Trigraph Characters

Many non-English keyboards do not support all the characters mentioned in Table 3.1. ANSI C
introduces the concept of “trigraph” sequences to provide a way to enter certain characters that are not
available on some keyboards. Each trigraph sequence consists of three characters (two question marks
followed by another character) as shown in Table 3.2. For example, if a keyboard does not support
square brackets, we can still use them in a program using the trigraphs ??(and ??).

Table 3.1 C Character Set

Letters

Digits

Uppercase A.....

Lowercase a.

z

, comma

. period

; semicolon

: colon

? question mark
* apostrophe

* quotation mark
! exclamation mark
| vertical bar

/ slash

\ backslash

~ tilde

_ under score

$ dollar sign

% percent sign

Special Characters

White Spaces
Blank space
Horizontal tab
Carriage return
New line
Form feed

All decimal digits O

& ampersand
A caret

* asterisk

— minus sign
+ plus sign

< opening angle bracket

(or less than sign)

> closing angle bracket
(or greater than sign)

(left parenthesis
) right parenthesis
[left bracket

] right bracket

{ left brace

} right brace

number sign

Table 3.2 ANSI C Trigraph Sequences

Trigraph sequence

Translation

7=
27
7?)
77<
77>
M
2
7
7-

number sign
[left bracket

] right bracket
{ left brace

} right brace

| vetical bar

\ back slash

A caret

~ tilde

3.3 C TOKENS

Constants, Variables and Data Types

51

In a passage of text, individual words and punctuation marks are called fokens. Similarly, in a C
program the smallest individual units are known as C tokens. C has six types of tokens as shown in
Fig. 3.1. C programs are written using these tokens and the syntax of the language.

3.4 KEYWORDS AND IDENTIFIERS

C TOKENS

|
——
Keywords Constants
float -15.5
while 100
Identifiers
main
amount

[—

Strings Operators
"ABC" . _
"yearll * 3

Special Symbols

Fig. 3.1 C tokens and examples

_~——
———

Every C word is classified as either a keyword or an identifier. All keywords have fixed meanings and
these meanings cannot be changed. Keywords serve as basic building blocks for program statements.
The list of all keywords of ANSI C are listed in Table 3.3. All keywords must be written in lowercase.
Some compilers may use additional keywords that must be identified from the C manual.

WOV C99 adds some more keywords.

Table 3.3 ANSI C Keywords

auto double int struct
break else long switch

case enum register typedef

char extern return union

const float short unsigned
continue for signed void

default goto sizeof volatile

do if static while

52 Basic Computation and Principles of Computer Programming

Identifiers refer to the names of variables, functions and arrays. These are user-defined names and
consist of a sequence of letters and digits, with a letter as a first character. Both uppercase and
lowercase letters are permitted, although lowercase letters are commonly used. The underscore
character is also permitted in identifiers. It is usually used as a link between two words in long
identifiers.

@ Rules for Identifiers)

1. First character must be an alphabet (or underscore).
2. Must consist of only letters, digits or underscore.
3. Only first 31 characters are significant.

4. Cannot use a keyword.
/ 5. Must not contain white space.

3.5 CONSTANTS

Constants in C refer to fixed values that do not change during the execution of a program. C supports
several types of constants as illustrated in Fig. 3.2.

CONSTANTS
Numeric constants Character constants
Integer Real Single character | | String
constants constants constants constants

Fig. 3.2 Basic types of C constants
Integer Constants

An integer constant refers to a sequence of digits. There are three types of integers, namely, decimal
integer, octal integer and hexadecimal integer.

Decimal integers consist of a set of digits, 0 through 9, preceded by an optional — or + sign. Valid
examples of decimal integer constants are:

123 =321 0 654321 +78
Embedded spaces, commas, and non-digit characters are not permitted between digits. For example,
15 750 20,000 $1000

are illegal numbers.

Constants, Variables and Data Types 53

Note: ANSI C supports unary plus which was not defined earlier.
An octal integer constant consists of any combination of digits from the set O through 7, with a leading
0. Some examples of octal integer are:

037 0 0435 0551

A sequence of digits preceded by Ox or 0X is considered as hexadecimal integer. They may also
include alphabets A through F or a through f. The letter A through F represent the numbers 10 through
15. Following are the examples of valid hex integers:

0X2 0x9F 0Xbcd Ox

We rarely use octal and hexadecimal numbers in programming.

The largest integer value that can be stored is machine-dependent. It is 32767 on 16-bit machines
and 2,147,483,647 on 32-bit machines. It is also possible to store larger integer constants on these
machines by appending qualifiers such as U,L and UL to the constants. Examples:

56789U or 56789u (unsigned integer)
987612347UL or 98761234ul (unsigned long integer)
9876543L or 98765431 (long integer)

The concept of unsigned and long integers are discussed in detail in Section 3.7.

Example 3.1 | Representation of intfeger constants on a 16-bit computer.

The program in Fig. 3.3 illustrates the use of integer constants on a 16-bit machine. The output in Fig.
3.3 shows that the integer values larger than 32767 are not properly stored on a 16-bit machine.
However, when they are qualified as long integer (by appending L), the values are correctly stored.

Program
main()
{
printf("Integer values\n\n");
printf("%d %d %d\n", 32767,32767+1,32767+10);
printf("\n");
printf("Long integer values\n\n");
printf("%1d %1d %1d\n", 32767L,32767L+1L,32767L+10L);
}
Output
Integer values
32767 -32768 -32759
Long integer values
32767 32768 32777

Fig. 3.3 Representation of integer constants on 16-bit machine

Real Constants

Integer numbers are inadequate to represent quantities that vary continuously, such as distances,
heights, temperatures, prices, and so on. These quantities are represented by numbers containing
fractional parts like 17.548. Such numbers are called real (or floating point) constants. Further
examples of real constants are:

54 Basic Computation and Principles of Computer Programming

0.0083 -0.75 435.36 +247.0

These numbers are shown in decimal notation, having a whole number followed by a decimal point
and the fractional part. It is possible to omit digits before the decimal point, or digits after the decimal
point. That is,

215. .95 =71 +.5

are all valid real numbers.

A real number may also be expressed in exponential (or scientific) notation. For example, the value
215.65 may be written as 2.1565¢2 in exponential notation. e2 means multiply by 10°. The general
form is:

mantissa e exponent

The mantissa is either a real number expressed in decimal notation or an integer. The exponent is
an integer number with an optional plus or minus sign. The letter e separating the mantissa and the
exponent can be written in either lowercase or uppercase. Since the exponent causes the decimal point
to “float”, this notation is said to represent a real number in floating point form. Examples of legal
floating-point constants are:

0.65e4 12e —2 1.5¢e +5 3.18E3 — 1.2E-1

Embedded white space is not allowed.

Exponential notation is useful for representing numbers that are either very large or very small in
magnitude. For example, 7500000000 may be written as 7.5E9 or 75E8. Similarly, -0.000000368 is
equivalent to —3.68E-7.

Floating-point constants are normally represented as double-precision quantities. However, the
suffixes f or F may be used to force single-precision and 1 or L to extend double precision further.

Some examples of valid and invalid numeric constants are given in Table 3.4.

Table 3.4 Examples of Numeric Constants

Constant Valid ? Remarks

698354L Yes Represents long integer
25,000 No Comma is not allowed
+5.0E3 Yes (ANSI C supports unary plus)
3.5e-5 Yes

7.1e 4 No No white space is permitted
-4.5e-2 Yes

1.5E+2.5 No Exponent must be an integer
$255 No $ symbol is not permitted
0X7B Yes Hexadecimal integer

Single Character Constants

A single character constant (or simply character constant) contains a single character enclosed within
a pair of single quote marks. Example of character constants are:

5 s;?)

Constants, Variables and Data Types 55

Note that the character constant ‘5’ is not the same as the number 5. The last constant is a blank
space.
Character constants have integer values known as ASCII values. For example, the statement
printf("%d", 'a');
would print the number 97, the ASCII value of the letter a. Similarly, the statement
printf("%c", '97');
would output the letter ‘a’. ASCII values for all characters are given in Appendix II.
Since each character constant represents an integer value, it is also possible to perform arithmetic
operations on character constants.

String Constants

A string constant is a sequence of characters enclosed in double quotes. The characters may be letters,
numbers, special characters and blank space. Examples are:

“Hello!” “1987” “WELL DONE” “?...!I” “543” “X”

Remember that a character constant (e.g., ‘X’) is not equivalent to the single character string
constant (e.g., “X”). Further, a single character string constant does not have an equivalent integer
value while a character constant has an integer value. Character strings are often used in programs to
build meaningful programs.

Backslash Character Constants

C supports some special backslash character constants that are used in output functions. For example,
the symbol “\n’ stands for newline character. A list of such backslash character constants is given in
Table 3.5. Note that each one of them represents one character, although they consist of two characters.
These character combinations are known as escape sequences.

Table 3.5 Backslash Character Constants

Constant Meaning
\a’ audible alert (bell)
‘b’ back space
\f form feed
“\n’ new line
Ar’ carriage return
\t horizontal tab
\v’ vertical tab
\” single quote
o\ double quote
A\ question mark
A\Y backslash

0 null

56 Basic Computation and Principles of Computer Programming

3.6 VARIABLES

A variable is a data name that may be used to store a data value. Unlike constants that remain
unchanged during the execution of a program, a variable may take different values at different times
during execution. In Chapter 1, we used several variables. For instance, we used the variable amount
in Sample Program 3 to store the value of money at the end of each year (after adding the interest
earned during that year).

A variable name can be chosen by the programmer in a meaningful way so as to reflect its function

or nature in the program. Some examples of such names are:
Average
height
Total
Counter_1
class_strength

As mentioned earlier, variable names may consist of letters, digits, and the underscore(_) character,

subject to the following conditions:

1. They must begin with a letter. Some systems permit underscore as the first character.

2. ANSI standard recognizes a length of 31 characters. However, length should not be normally
more than eight characters, since only the first eight characters are treated as significant by many
compilers. (In C99, at least 63 characters are significant.)

3. Uppercase and lowercase are significant. That is, the variable Total is not the same as total or
TOTAL.

4. It should not be a keyword.

5. White space is not allowed.

Some examples of valid variable names are:

John Value T_raise
Delhi x1 ph_value
mark sum1 distance

Invalid examples include:
123 (area)

% 25th

Further examples of variable names and their correctness are given in Table 3.6.

Table 3.6 Examples of Variable Names

Variable name Valid ? Remark
First_tag Valid

char Not valid char is a keyword

Price$ Not valid Dollar sign is illegal

group one Not valid Blank space is not permitted
average_number Valid First eight characters are significant

int_type Valid Keyword may be part of a name

Constants, Variables and Data Types 57

If only the first eight characters are recognized by a compiler, then the two names

average_height
average_weight

mean the same thing to the computer. Such names can be rewritten as
avg_height and avg_weight

or
ht_average and wt_average

without changing their meanings.

3.7 DATA TYPES

C language is rich in its data types. Storage representations and machine instructions to handle
constants differ from machine to machine. The variety of data types available allow the programmer to
select the type appropriate to the needs of the application as well as the machine.

ANSI C supports three classes of data types:

1. Primary (or fundamental) data types
2. Derived data types
3. User-defined data types

The primary data types and their extensions are discussed in this section. The user-defined data
types are defined in the next section while the derived data types such as arrays, functions, structures
and pointers are discussed as and when they are encountered.

All C compilers support five fundamental data types, namely integer (int), character (char), floating
point (float), double-precision floating point (double) and void. Many of them also offer extended
data types such as long int and long double. Various data types and the terminology used to describe
them are given in Fig. 3.4. The range of the basic four types are given in Table 3.7. We discuss briefly
each one of them in this section.

\(0 4N Ol CO9 adds three more data types, namely _Bool, _Complex, and _Imaginary.

58 Basic Computation and Principles of Computer Programming

PRIMARY DATA TYPES

Integral Type

Integer Character
signed unsigned type char
int unsigned int signed char
short int unsigned short int unsigned char
long int unsigned long int

Floating point Type

void

’ float ‘ double Long double

Fig. 3.4 Primary data types in C

Table 3.7 Size and Range of Basic Data Types on 16-bit Machines

Data type Range of values
char —128 to 127

int -32,768 to 32,767

float 3.4e-38 to 3.4e+e38

double 1.7e-308 to 1.7e+308

Integer Types

Integers are whole numbers with a range of values supported by a particular machine. Generally,
integers occupy one word of storage, and since the word sizes of machines vary (typically, 16 or 32
bits) the size of an integer that can be stored depends on the computer. If we use a 16 bit word length,
the size of the integer value is limited to the range —32768 to +32767 (that is, —2" to +2'°~1). A signed
integer uses one bit for sign and 15 bits for the magnitude of the number. Similarly, a 32 bit word
length can store an integer ranging from —2,147,483,648 to 2,147,483,647.

In order to provide some control over the range of numbers and storage space, C has three classes of
integer storage, namely short int, int, and long int, in both signed and unsigned forms. ANSI C
defines these types so that they can be organized from the smallest to the largest, as shown in Fig. 3.5.
For example, short int represents fairly small integer values and requires half the amount of storage as

Constants, Variables and Data Types 59

a regular int number uses. Unlike signed integers, unsigned integers use all the bits for the magnitude
of the number and are always positive. Therefore, for a 16 bit machine, the range of unsigned integer

numbers will be from 0 to 65,535.
short int
’ int [

’ long int '

Fig. 3.5 Integer types

We declare long and unsigned integers to increase the range of values. The use of qualifier signed
on integers is optional because the default declaration assumes a signed number. Table 3.8 shows all
the allowed combinations of basic types and qualifiers and their size and range on a 16-bit machine.

WNOMN C99 allows long long integer types.

Table 3.8 Size and Range of Data Types on a 16-bit Machine

Type Size (bits) Range

char or signed char 8 —128 to 127

unsigned char 8 0 to 255

int or signed int 16 -32,768 to 32,767
unsigned int 16 0 to 65535

short int or

signed short int 8 —128 to 127

unsigned short int 8 0 to 255

long int or

signed long int 32 —2,147,483,648 to 2,147,483,647
unsigned long int 32 0 to 4,294,967,295

float 32 3.4E - 38 to 3.4E + 38
double 64 1.7E - 308 to 1.7E + 308
long double 80 34E — 4932 to 1.1E + 4932

Floating Point Types

Floating point (or real) numbers are stored in 32 bits (on all 16 bit and 32 bit machines), with 6 digits
of precision. Floating point numbers are defined in C by the keyword float. When the accuracy
provided by a float number is not sufficient, the type double can be used to define the number. A
double data type number uses 64 bits giving a precision of 14 digits. These are known as double
precision numbers. Remember that double type represents the same data type that float represents, but
with a greater precision. To extend the precision further, we may use long double which uses 80 bits.
The relationship among floating types is illustrated in Fig. 3.6.

60 Basic Computation and Principles of Computer Programming

float

’ double [

’ long double '

Fig. 3.6 Floating-point types

Void Types

The void type has no values. This is usually used to specify the type of functions. The type of a
function is said to be void when it does not return any value to the calling function. It can also play the
role of a generic type, meaning that it can represent any of the other standard types.

Character Types

A single character can be defined as a character(char) type data. Characters are usually stored in 8
bits (one byte) of internal storage. The qualifier signed or unsigned may be explicitly applied to char.
While unsigned chars have values between 0 and 255, signed chars have values from —128 to 127.

3.8 DECLARATION OF VARIABLES

After designing suitable variable names, we must declare them to the compiler. Declaration does two
things:

1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

The declaration of variables must be done before they are used in the program.

Primary Type Declaration

A variable can be used to store a value of any data type. That is, the name has nothing to do with its
type. The syntax for declaring a variable is as follows:

data-type v1,v2,....vn ;
vl, v2,vn are the names of variables. Variables are separated by commas. A declaration statement
must end with a semicolon. For example, valid declarations are:

int count;
int number, total;
double ratio;

int and double are the keywords to represent integer type and real type data values respectively. Table
3.9 shows various data types and their keyword equivalents.

Constants, Variables and Data Types 61

Table 3.9 Data Types and Their Keywords

Data type Keyword equivalent
Character char
Unsigned character unsigned char
Signed character signed char
Signed integer signed int (or int)
Signed short integer signed short int

(or short int or short)
Signed long integer signed long int

(or long int or long)
Unsigned integer unsigned int (or unsigned)
Unsigned short integer unsigned short int

(or unsigned short)
Unsigned long integer unsigned long int

(or unsigned long)
Floating point float
Double-precision
floating point double
Extended double-precision
floating point long double

The program segment given in Fig. 3.7 illustrates declaration of variables. main() is the beginning
of the program. The opening brace { signals the execution of the program. Declaration of variables is
usually done immediately after the opening brace of the program. The variables can also be declared
outside (either before or after) the main function. The importance of place of declaration will be dealt
in detail later while discussing functions.

C99 permits declaration of variables at any point within a function or block, prior to their use.

main() /*......... Program Name......oeeeeeeeuennennnnn =/
{
/Fcooooo00anoc00ans Declaration......ccovveenneennn.n. =)
float Xs Y3
int code;

short int count;
lTong int amount ;

doubTe deviation;
unsigned n;
char €3
/Fccoo000a00anooa Computation.....oovvvvuiineennnnn. =)
} /¥o00000000000¢ Program ends........eeeiiunennnnnnnnn =)

Fig. 3.7 Declaration of variables

62 Basic Computation and Principles of Computer Programming

When an adjective (qualifier) short, long, or unsigned is used without a basic data type specifier,
C compilers treat the data type as an int. If we want to declare a character variable as unsigned, then
we must do so using both the terms like unsigned char.

@ Default values of Constants)

Integer constants, by default, represent int type data. We can override this default by
specifying unsigned or long after the number (by appending U or L) as shown below:

Literal Type Value
+111 int 111
-222 int -222
45678U unsigned int 45,678
—56789L long int -56,789
987654UL unsigned long int 9,87,654

Similarly, floating point constants, by default represent double type data. If we want
the resulting data type to be float or long double, we must append the letter f or F to
the number for float and letter I or L for long double as shown below:

Literal Type Value

0. double 0.0

.0 double 0.0

12.0 double 12.0

1.234 double 1.234

—-1.2f float -1.2

1.23456789L long double 1.23456789 /

User-Defined Type Declaration

C supports a feature known as “type definition™ that allows users to define an identifier that would
represent an existing data type. The user-defined data type identifier can later be used to declare
variables. It takes the general form:

typedef type identifier;

Where fype refers to an existing data type and “identifier” refers to the “new” name given to the data
type. The existing data type may belong to any class of type, including the user-defined ones.
Remember that the new type is ‘new’ only in name, but not the data type. typedef cannot create a new
type. Some examples of type definition are:

typedef int units;
typedef float marks;

Here, units symbolizes int and marks symbolizes float. They can be later used to declare variables
as follows:

units batchl, batch2;
marks namel[50], name2[50];

Constants, Variables and Data Types 63

batchl and batch2 are inclared as int variable and namel[50] and name2[50] are declared as 50
element floating point array variables. The main advantage of typedef is that we can create meaningful
data type names for increasing the readability of the program.

Another user-defined data type is enumerated data type provided by ANSI standard. It is defined as
follows:

enum identifier {valuel, value2, ... valuen};

The “identifier” is a user-defined enumerated data type which can be used to declare variables that can
have one of the values enclosed within the braces (known as enumeration constants). After this
definition, we can declare variables to be of this ‘new’ type as below:
enum identifier vl1, v2, ... vn;

The enumerated variables v1, v2, ... vn can only have one of the values valuel, value2, ... valuen. The
assignments of the following types are valid:

vl = value3;

v5 = valuel;

An example:
enum day {Monday,Tuesday, ... Sunday};
enum day week st, week end;
week st = Monday;
week end = Friday;
if(week st == Tuesday)
week end = Saturday;

The compiler automatically assigns integer digits beginning with O to all the enumeration constants.
That is, the enumeration constant valuel is assigned 0, value?2 is assigned 1, and so on. However, the
automatic assignments can be overridden by assigning values explicitly to the enumeration constants.
For example:

enum day {Monday = 1, Tuesday, ... Sunday};

Here, the constant Monday is assigned the value of 1. The remaining constants are assigned values
that increase successively by 1.

The definition and declaration of enumerated variables can be combined in one statement. Example:

enum day {Monday, ... Sunday} week st, week end;

3.9 DECLARATION OF STORAGE CLASS

Variables in C can have not only data type but also storage class that provides information about their
location and visibility. The storage class decides the portion of the program within which the variables
are recognized. Consider the following example:
/* Example of storage classes */
int m;
main()
{
int 1i;
float balance;

64 Basic Computation and Principles of Computer Programming

functionl();
1
functionl()
{

int 1,

float sum;

}

The variable m which has been declared before the main is called global variable. It can be used in
all the functions in the program. It need not be declared in other functions. A global variable is also
known as an external variable.

The variables i, balance and sum are called local variables because they are declared inside a
function. Local variables are visible and meaningful only inside the functions in which they are
declared. They are not known to other functions. Note that the variable i has been declared in both the
functions. Any change in the value of i in one function does not affect its value in the other.

C provides a variety of storage class specifiers that can be used to declare explicitly the scope and
lifetime of variables. The concepts of scope and lifetime are important only in multifunction and
multiple file programs and therefore the storage classes are considered in detail later when functions
are discussed. For now, remember that there are four storage class specifiers (auto, register, static,
and extern) whose meanings are given in Table 3.10.

The storage class is another qualifier (like long or unsigned) that can be added to a variable
declaration as shown below:

auto int count;
register char ch;
static int x;
extern long total;

Static and external (extern) variables are automatically initialized to zero. Automatic (auto)
variables contain undefined values (known as ‘garbage’) unless they are initialized explicitly.

Table 3.10 Srorage Classes and Their Meaning

Storage class Meaning

auto Local variable known only to the function in which it is declared. Default is auto.

static Local variable which exists and retains its value even after the control is transferred to the
calling function.

extern Global variable known to all functions in the file.

register Local variable which is stored in the register.

3.10 ASSIGNING VALUES TO VARIABLES

Variables are created for use in program statements such as,
value = amount + inrate * amount;

Constants, Variables and Data Types 65

while (year <= PERIOD)
{

year = year + 1;
}

In the first statement, the numeric value stored in the variable inrate is multiplied by the value
stored in amount and the product is added to amount. The result is stored in the variable value. This
process is possible only if the variables amount and inrate have already been given values. The
variable value is called the target variable. While all the variables are declared for their type, the
variables that are used in expressions (on the right side of equal (=) sign of a computational statement)
must be assigned values before they are encountered in the program. Similarly, the variable year and
the symbolic constant PERIOD in the while statement must be assigned values before this statement
is encountered.

Assignment Statement
Values can be assigned to variables using the assignment operator = as follows:
variable name = constant;

We have already used such statements in Chapter 1. Further examples are:
initial_value = 03

final_value = 100;
balance = 75.84;
yes = 'x';

C permits multiple assignments in one line. For example
initial_value = 0; final_value = 100;
are valid statements.

An assignment statement implies that the value of the variable on the left of the ‘equal sign’ is set
equal to the value of the quantity (or the expression) on the right. The statement

year = year + 1;

means that the ‘new value’ of year is equal to the ‘old value’ of year plus 1.

During assignment operation, C converts the type of value on the right-hand side to the type on the
left. This may involve truncation when real value is converted to an integer.

It is also possible to assign a value to a variable at the time the variable is declared. This takes the
following form:

data-type variable _name = constant;

Some examples are:

int final_value 100;
char yes = 'x';
double balance = 75.84;

66 Basic Computation and Principles of Computer Programming

The process of giving initial values to variables is called initialization. C permits the initialization
of more than one variables in one statement using multiple assignment operators. For example the
statements

p=q=s-= 0;

X =y =2z = MAX;
are valid. The first statement initializes the variables p, q, and s to zero while the second initializes x,
y, and z with MAX. Note that MAX is a symbolic constant defined at the beginning.

Remember that external and static variables are initialized to zero by default. Automatic variables
that are not initialized explicitly will contain garbage.

Example 3.2 | Program in Fig. 3.8 shows typical declarations, assignments and values
stored in various types of variables.

The variables x and p have been declared as floating-point variables. Note that the way the value of
1.234567890000 that we assigned to x is displayed under different output formats. The value of x is
displayed as 1.234567880630 under %.12lf format, while the actual value assigned is
1.234567890000. This is because the variable x has been declared as a float that can store values only
up to six decimal places.

The variable m that has been declared as int is not able to store the value 54321 correctly. Instead,
it contains some garbage. Since this program was run on a 16-bit machine, the maximum value that an
int variable can store is only 32767. However, the variable k (declared as unsigned) has stored the
value 54321 correctly. Similarly, the long int variable n has stored the value 1234567890 correctly.

The value 9.87654321 assigned to y declared as double has been stored correctly but the value is
printed as 9.876543 under %If format. Note that unless specified otherwise, the printf function will
always display a float or double value to six decimal places. We will discuss later the output formats
for displaying numbers.

Program

main()

{

/¥ooo0000000 DECLARATIONS .t i ittt i et i ie et iieneeeennn =)
float X, P 3
double Y.q ;
unsigned k ;

J¥oo00000000 DECLARATIONS AND ASSIGNMENTS............ =y
int m = 54321 ;
long int n = 1234567890 ;

/¥oo0o0000000 ASSIGNMENTS . vt ittt ittt ieeneeeannnn =y
x = 1.234567890000 ;
y = 9.87654321 ;
k = 54321 ;
p=gq=1.0;

/¥oo0o0000000 PRINTING. et vveetieeneiienneeennneeannnns =y

Constants, Variables and Data Types 67

printf("m = %d\n", m) ;

printf("n = %1d\n", n) ;

printf("x = %.121f\n", x) ;

printf("x f\n", x) ;

printf("y = %.121f\n",y) ;

printf("y = %1f\n", y) ;

printf("k up=5%fq=%121f\n", k, p, q) ;

non
o° o

]
oF

Output

= -11215

= 1234567890

= 1.234567880630

= 1.234568

9.876543210000

= 9.876543

= 54321 p = 1.000000 g = 1.000000000000

A< < X X - 3
1]

Fig. 3.8 Examples of assignments

Reading Data from Keyboard

Another way of giving values to variables is to input data through keyboard using the scanf function.
It is a general input function available in C and is very similar in concept to the printf function. It
works much like an INPUT statement in BASIC. The general format of scanf is as follows:

scanf("control string", &variablel,&variable2,....);

The control string contains the format of data being received. The ampersand symbol & before each
variable name is an operator that specifies the variable name’s address. We must always use this
operator, otherwise unexpected results may occur. Let us look at an example:

scanf("%d", &number);

When this statement is encountered by the computer, the execution stops and waits for the value of
the variable number to be typed in. Since the control string “%d” specifies that an integer value is to
be read from the terminal, we have to type in the value in integer form. Once the number is typed in
and the ‘Return’ Key is pressed, the computer then proceeds to the next statement. Thus, the use of
scanf provides an interactive feature and makes the program ‘user friendly’. The value is assigned to
the variable number.

Example 3.3 | The program in Fig. 3.9 illustrates the use of scanf function.

The first executable statement in the program is a printf, requesting the user to enter an integer
number. This is known as “prompt message” and appears on the screen like

Enter an integer number

As soon as the user types in an integer number, the computer proceeds to compare the value with
100. If the value typed in is less than 100, then a message

Your number is smaller than 100

68 Basic Computation and Principles of Computer Programming

is printed on the screen. Otherwise, the message
Your number contains more than two digits

is printed. Outputs of the program run for two different inputs are also shown in Fig. 3.9.

Program
main()

{

int number;

printf("Enter an integer number\n");
scanf ("%d", &number);

if (number < 100)
printf("Your number is smaller than 100\n\n");
else
printf("Your number contains more than two digits\n");

Output
Enter an integer number
54
Your number is smaller than 100
Enter an integer number
108
Your number contains more than two digits

Fig. 3.9 Use of scanf function for interactive computing

Some compilers permit the use of the ‘prompt message’ as a part of the control string in scanf, like
scanf ("Enter a number %d",&number) ;
We discuss more about scanf in Chapter 5.

In Fig. 3.9 we have used a decision statement if...else to decide whether the number is less than 100.
Decision statements are discussed in depth in Chapter 6.

Example 3.4 | Write a flexible interactive program, using scanf to calculate the value of
money at the end of each year of investment, assuming an interest rate
of 11 percent.

In this case, computer requests the user to input the values of the amount to be invested, interest rate
and period of investment by printing a prompt message

Input amount, interest rate, and period

Constants, Variables and Data Types 69

and then waits for input values. As soon as we finish entering the three values corresponding to the
three variables amount, inrate, and period, the computer begins to calculate the amount at the end
of each year, up to ‘period’ and produces output as shown in Fig. 3.10.

Program
main()
{
int year, period ;
float amount, inrate, value ;

printf("Input amount, interest rate, and period\n\n") ;
scanf ("%f %f %d", &amount, &inrate, &period) ;
printf("\n") ;

year =1 ;

while(year <= period)

{
value = amount + inrate * amount ;
printf("%2d Rs %8.2f\n", year, value) ;
amount = value ;
year = year + 1 ;

}
Output
Input amount, interest rate, and period

10000 0.14 5

1 Rs 11400.00
2 Rs 12996.00
3 Rs 14815.44
4 Rs 16889.60
5 Rs 19254.15
Input amount, interest rate, and period

20000 0.12 7

1 Rs 22400.00
2 Rs 25088.00
3 Rs 28098.56
4 Rs 31470.39
5 Rs 35246.84
6 Rs 39476.46
7 Rs 44213.63

Fig. 3.10 Interactive investment program

70 Basic Computation and Principles of Computer Programming

Note that the scanf function contains three variables. In such cases, care should be exercised to
see that the values entered match the order and type of the variables in the list. Any mismatch might
lead to unexpected results. The compiler may not detect such errors.

3.11 DEFINING SYMBOLIC CONSTANTS

We often use certain unique constants in a program. These constants may appear repeatedly in a
number of places in the program. One example of such a constant is 3.142, representing the value of
the mathematical constant “pi”’. Another example is the total number of students whose mark-sheets
are analysed by a ‘test analysis program’. The number of students, say 50, may be used for calculating
the class total, class average, standard deviation, etc. We face two problems in the subsequent use of
such programs. These are

1. problem in modification of the program and
2. problem in understanding the program.

Modifiability

We may like to change the value of “pi” from 3.142 to 3.14159 to improve the accuracy of calculations
or the number 50 to 100 to process the test results of another class. In both the cases, we will have to
search throughout the program and explicitly change the value of the constant wherever it has been
used. If any value is left unchanged, the program may produce disastrous outputs.

Understandability

When a numeric value appears in a program, its use is not always clear, especially when the same
value means different things in different places. For example, the number 50 may mean the number of
students at one place and the ‘pass marks’ at another place of the same program. We may forget what
a certain number meant, when we read the program some days later.

Assignment of such constants to a symbolic name frees us from these problems. For example, we
may use the name STRENGTH to define the number of students and PASS_MARK to define the
pass marks required in a subject. Constant values are assigned to these names at the beginning of the
program. Subsequent use of the names STRENGTH and PASS_MARK in the program has the effect
of causing their defined values to be automatically substituted at the appropriate points. A constant is
defined as follows:

#define symbolic-name value of constant

Valid examples of constant definitions are:

#define STRENGTH 100
#define PASS MARK 50
#define MAX 200
#define PI 3.14159

Symbolic names are sometimes called constant identifiers. Since the symbolic names are constants
(not variables), they do not appear in declarations. The following rules apply to a #define statement
which define a symbolic constant:

Constants, Variables and Data Types 71

1. Symbolic names have the same form as variable names. (Symbolic names are written in
CAPITALS to visually distinguish them from the normal variable names, which are written in
lowercase letters. This is only a convention, not a rule.)

2. No blank space between the pound sign ‘#’ and the word define is permitted.

3. “# must be the first character in the line.

4. A blank space is required between #define and symbolic name and between the symbolic name
and the constant.

5. #define statements must not end with a semicolon.

6. After definition, the symbolic name should not be assigned any other value within the program
by using an assignment statement. For example, STRENGTH = 200; is illegal.

7. Symbolic names are NOT declared for data types. Its data type depends on the type of constant.

8. #define statements may appear anywhere in the program but before it is referenced in the
program (the usual practice is to place them in the beginning of the program).

#define statement is a preprocessor compiler directive and is much more powerful than what has

been mentioned here. More advanced types of definitions will be discussed later. Table 3.11 illustrates
some invalid statements of #define.

Table 3.11 Examples of Invalid #define Statements

Statement Validity Remark

#define X = 2.5 Invalid ‘=" sign is not allowed

define MAX 10 Invalid No white space between # and define
#define N 25; Invalid No semicolon at the end

#define N 5, M 10 Invalid A statement can define only one name.
#Define ARRAY 11 Invalid define should be in lowercase letters
#define PRICES 100 Invalid $ symbol is not permitted in name

3.12 DECLARING A VARIABLE AS CONSTANT

We may like the value of certain variables to remain constant during the execution of a program. We
can achieve this by declaring the variable with the qualifier const at the time of initialization. Example:

const int class_size = 40;

const is a new data type qualifier defined by ANSI standard. This tells the compiler that the value of
the int variable class_size must not be modified by the program. However, it can be used on the
right_hand side of an assignment statement like any other variable.

3.13 DECLARING A VARIABLE AS VOLATILE

ANSI standard defines another qualifier volatile that could be used to tell explicitly the compiler that
a variable’s value may be changed at any time by some external sources (from outside the program).
For example:

volatile int date;

72 Basic Computation and Principles of Computer Programming

The value of date may be altered by some external factors even if it does not appear on the left-
hand side of an assignment statement. When we declare a variable as volatile, the compiler will
examine the value of the variable each time it is encountered to see whether any external alteration has
changed the value.

Remember that the value of a variable declared as volatile can be modified by its own program as
well. If we wish that the value must not be modified by the program while it may be altered by some
other process, then we may declare the variable as both const and volatile as shown below:

volatile const int location = 100;

WN(OJN CO9 adds another qualifier called restrict. See the Appendix “C99 Features”.

3.14 OVERFLOW AND UNDERFLOW OF DATA

Problem of data overflow occurs when the value of a variable is either too big or too small for the data
type to hold. The largest value that a variable can hold also depends on the machine. Since floating-
point values are rounded off to the number of significant digits allowed (or specified), an overflow
normally results in the largest possible real value, whereas an underflow results in zero.

Integers are always exact within the limits of the range of the integral data types used. However, an
overflow which is a serious problem may occur if the data type does not match the value of the
constant. C does not provide any warning or indication of integer overflow. It simply gives incorrect
results. (Overflow normally produces a negative number.) We should therefore exercise a greater
care to define correct data types for handling the input/output values.

{Just Remember}

= Do not use the underscore as the first character of identifiers (or variable
names) because many of the identifiers in the system library start with
underscore.

= Use only 31 or less characters for identifiers. This helps ensure portability of
programs.

= Do not use keywords or any system library names for identifiers.

= Use meaningful and intelligent variable names.

= Do not create variable names that differ only by one or two letters.

= Each variable used must be declared for its type at the beginning of the program
or function.

= All variables must be initialized before they are used in the program.

= Integer constants, by default, assume int types. To make the numbers long or
unsigned, we must append the letters L and U to them.

= Floating point constants default to double. To make them to denote float or
long double, we must append the letters F or L to the numbers.

= Do not use lowercase | for long as it is usually confused with the number 1.

Constants, Variables and Data Types 73

= Use single quote for character constants and double quotes for string constants.

= A character is stored as an integer. It is therefore possible to perform arithmetic
operations on characters.

= Do not combine declarations with executable statements.

= A variable can be made constant either by using the preprocessor command
#define at the beginning of the program or by declaring it with the qualifier const
at the time of initialization.

= Do not use semicolon at the end of #define directive.

= The character # should be in the first column.

= Do not give any space between # and define.

= C does not provide any warning or indication of overflow. It simply gives incorrect
results. Care should be exercised in defining correct data type.

= A variable defined before the main function is available to all the functions in the
program.

= A variable defined inside a function is local to that function and not available to
other functions.

Case Studies

1. Calculation of Average of Numbers

A program to calculate the average of a set of N numbers is given in Fig. 3.11.

Program

#define N 10 /* SYMBOLIC CONSTANT */
main()
{
int count /* DECLARATION OF */
floatsum, average, number ; /* VARIABLES */
sun =0 ; /* INITIALIZATION */
count= 0 ; /* OF VARIABLES */
while(count <N)
{
scanf("%f", &number) ;
sum = sum + number ;
count = count +1 ;
}
average = sum/N ;
printf ("N = %d Sum = %f", N, sum);
printf(" Average = %f", average);
}
1

74 Basic Computation and Principles of Computer Programming

B o
®© N~

Z 0 BN P WY~ P&
= o

NN OO

10 Sum = 38.799999 Average = 3.880

Fig. 3.11 Average of N numbers

The variable number is declared as float and therefore it can take both integer and real numbers.
Since the symbolic constant N is assigned the value of 10 using the #define statement, the program
accepts ten values and calculates their sum using the while loop. The variable count counts the number
of values and as soon as it becomes 11, the while loop is exited and then the average is calculated.

Notice that the actual value of sum is 38.8 but the value displayed is 38.799999. In fact, the actual
value that is displayed is quite dependent on the computer system. Such an inaccuracy is due to the
way the floating point numbers are internally represented inside the computer.

2. Temperature Conversion Problem

The program presented in Fig. 3.12 converts the given temperature in Fahrenheit to Celsius using the
following conversion formula:

C= F-32
1.8
Program
#define F_LOW 0 J¥ - m - —— - - — = —
*/ -
#define F_MAX 250 /* SYMBOLIC CONSTANTS =/
#define STEP 25 J¥ e m - m— - - - = = —
*/
main()
{
typedef float REAL ; /* TYPE DEFINITION */

REAL fahrenheit, celsius ; /* DECLARATION */

fahrenheit = F LOW ; /* INITIALIZATION */
printf("Fahrenheit Celsius\n\n") ;
while(fahrenheit <= F MAX)
{
celsius = (fahrenheit - 32.0) / 1.8 ;
printf(" %5.1f %7.2f\n", fahrenheit, celsius);

Constants, Variables and Data Types 75
fahrenheit = fahrenheit + STEP ;

}

Output
Fahrenheit Celsius
0.0 -17.78

25.0 -3.89
50.0 10.00
75.0 23.89
100.0 37.78
125.0 51.67
150.0 65.56
175.0 79.44
200.0 93.33
225.0 107.22
250.0 121.11

Fig. 3.12 Temperature conversion—Fahrenheit—Celsius

The program prints a conversion table for reading temperature in Celsius, given the Fahrenheit
values. The minimum and maximum values and step size are defined as symbolic constants. These
values can be changed by redefining the #define statements. An user-defined data type name REAL is
used to declare the variables Fahrenheit and Celsius.

The formation specifications %5.1f and %7.2 in the second printf statement produces two-column
output as shown.

Review Questions

3.1 State whether the following statements are true or false.

(a)
(b)
(c)
(d
(e)
(f)
€9)
(h)
(i)
(J)
(k)
o)

Any valid printable ASCII character can be used in an identifier.
All variables must be given a type when they are declared.
Declarations can appear anywhere in a program.

ANSI C treats the variables name and Name to be same.

The underscore can be used anywhere in an identifier.

The keyword void is a data type in C.

Floating point constants, by default, denote float type values.
Like variables, constants have a type.

Character constants are coded using double quotes.
Initialization is the process of assigning a value to a variable at the time of declaration.
All static variables are automatically initialized to zero.

The scanf function can be used to read only one value at a time.

3.2 Fill in the blanks with appropriate words.

(a)
(b)
(@)
(d

The keyword __ can be used to create a data type identifier.
is the largest value that an unsigned short int type variable can store.
A global variable is alsoknownas _ variable.
A variable can be made constant by declaring it with the qualifier __ at the time of

initialization.

76

33
34
35
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13

3.14
3.15

3.16

3.17

3.18

Basic Computation and Principles of Computer Programming

What are trigraph characters? How are they useful?

Describe the four basic data types. How could we extend the range of values they represent?
What is an unsigned integer constant? What is the significance of declaring a constant unsigned?
Describe the characteristics and purpose of escape sequence characters.

What is a variable and what is meant by the “value” of a variable?

How do variables and symbolic names differ?

State the differences between the declaration of a variable and the definition of a symbolic name.
What is initialization? Why is it important?

What are the qualifiers that an int can have at a time?

A programmer would like to use the word DPR to declare all the double-precision floating point
values in his program. How could he achieve this?

What are enumeration variables? How are they declared? What is the advantage of using them in a
program?

Describe the purpose of the qualifiers const and volatile.

When dealing with very small or very large numbers, what steps would you take to improve the
accuracy of the calculations?

Which of the following are invalid constants and why?

0.0001 5x1.5 99999
+100 75.45 E-2 “15.75”
-45.6 -1.79e +4 0.00001234
Which of the following are invalid variable names and why?
Minimum First.name nl+n2 &name
doubles 3rd_row n$ Rowl
float Sum Total Row Total Column-total
Find errors, if any, in the following declaration statements.
Int x;
float Tetter,DIGIT;
double = p,q

exponent alpha,beta;
m,n,z: INTEGER
short char c;

long int m; count;
long float temp;

3.19 What would be the value of x after execution of the following statements?

int x, y = 10;
char z = 'a';
X =y +z;

3.20 Identify syntax errors in the following program. After corrections, what output would you expect

when you execute it?
#define PI 3.14159

main()

{
int R,C; /* R-Radius of circle
float perimeter; /* Circumference of circle */
float area; /* Area of circle */

C =PI

Constants, Variables and Data Types

R=5;

Perimeter = 2.0 * C *R;

Area = C*R*R;

printf("%f", "%d",&perimeter,&area)

}

77

Programming Exercises

3.1

32

33
34

35

3.6

3.7

3.8

39
3.10

Write a program to determine and print the sum of the following harmonic series for a given value
of n:

1+ 1/2 +1/3 +....+ 1/n

The value of n should be given interactively through the terminal.

Write a program to read the price of an item in decimal form (like 15.95) and print the output in
paise (like 1595 paise).

Write a program that prints the even numbers from 1 to 100.

Write a program that requests two float type numbers from the user and then divides the first number
by the second and display the result along with the numbers.

The price of one kg of rice is Rs. 16.75 and one kg of sugar is Rs. 15. Write a program to get these
values from the user and display the prices as follows:

*#% LIST OF ITEMS ***

Item Price

Rice Rs 16.75

Sugar Rs 15.00

Write program to count and print the number of negative and positive numbers in a given set of
numbers. Test your program with a suitable set of numbers. Use scanf to read the numbers. Reading
should be terminated when the value 0 is encountered.

Write a program to do the following:

(a) Declare x and y as integer variables and z as a short integer variable.

(b) Assign two 6 digit numbers to x and y

(c) Assign the sum of x and y to z

(d) Output the values of x, y and z

Comment on the output.

Write a program to read two floating point numbers using a scanf statement, assign their sum to an
integer variable and then output the values of all the three variables.

Write a program to illustrate the use of typedef declaration in a program.

Write a program to illustrate the use of symbolic constants in a real-life application.

CHAPTER

4

Operators and Expressions

4.1 INTRODUCTION

C supports a rich set of built-in operators. We have already used several of them, such as =, +, —, *,
& and <. An operator is a symbol that tells the computer to perform certain mathematical or logical
manipulations. Operators are used in programs to manipulate data and variables. They usually form a
part of the mathematical or logical expressions.

C operators can be classified into a number of categories. They include:

Arithmetic operators

Relational operators

Logical operators

Assignment operators

Increment and decrement operators
Conditional operators

Bitwise operators

Special operators

NN L=

An expression is a sequence of operands and operators that reduces to a single value. For example,
10+ 15
is an expression whose value is 25. The value can be any type other than void.

4.2 ARITHMETIC OPERATORS

C provides all the basic arithmetic operators. They are listed in Table 4.1. The operators +, —, *, and /
all work the same way as they do in other languages. These can operate on any built-in data type
allowed in C. The unary minus operator, in effect, multiplies its single operand by —1. Therefore, a
number preceded by a minus sign changes its sign.

Operators and Expressions 79

Table 4.1 Arithmetic Operators

Operator Meaning
+ Addition or unary plus
Subtraction or unary minus
* Multiplication
/ Division
% Modulo division

Integer division truncates any fractional part. The modulo division operation produces the
remainder of an integer division. Examples of use of arithmetic operators are:

a-b a+b
a*b al/b
a%b —-a*b

Here a and b are variables and are known as operands. The modulo division operator % cannot be
used on floating point data. Note that C does not have an operator for exponentiation. Older versions
of C does not support unary plus but ANSI C supports it.

Integer Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the expression is
called an integer expression, and the operation is called integer arithmetic. Integer arithmetic always
yields an integer value. The largest integer value depends on the machine, as pointed out earlier. In the
above examples, if a and b are integers, then for a = 14 and b = 4 we have the following results:

a-b = 10
a+b = 18
a*b = 56
al/b = 3 (decimal part truncated)
a%b = 2 (remainder of division)

During integer division, if both the operands are of the same sign, the result is truncated towards
zero. If one of them is negative, the direction of trunction is implementation dependent. That is,

6/7 =0and -6/-7 =0
but —6/7 may be zero or —1. (Machine dependent)

Similarly, during modulo division, the sign of the result is always the sign of the first operand (the
dividend). That is

“14%3 = -2
14% -3 = -2
14%-3 = 2

Example 4.1 | The program in Fig. 4.1 shows the use of integer arithmetic o convert a
given number of days info months and days.

80 Basic Computation and Principles of Computer Programming

Program
main ()

{

int months, days ;

printf("Enter days\n") ;
scanf("%d", &days) ;

months = days / 30 ;

days = days % 30 ;

printf("Months = %d Days = %d", months, days) ;
}

Output
Enter days
265
Months = 8 Days = 25
Enter days
364
Months = 12 Days = 4
Enter days
45

Months = 1 Days = 15

Fig. 4.1 Illustration of integer arithmetic

The variables months and days are declared as integers. Therefore, the statement
months = days/30;
truncates the decimal part and assigns the integer part to months. Similarly, the statement
days = days%30;

assigns the remainder part of the division to days. Thus the given number of days is converted into an
equivalent number of months and days and the result is printed as shown in the output.

Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real operand may
assume values either in decimal or exponential notation. Since floating point values are rounded to the
number of significant digits permissible, the final value is an approximation of the correct result. If x,
y, and z are floats, then we will have:

x =6.0/7.0 = 0.857143
y = 1.0/3.0 = 0.333333
z =-2.0/3.0 = -0.666667

The operator % cannot be used with real operands.

Operators and Expressions 81

Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a mixed-mode
arithmetic expression. If either operand is of the real type, then only the real operation is performed
and the result is always a real number. Thus

15/10.0 = 1.5
whereas
15/10 =1

More about mixed operations will be discussed later when we deal with the evaluation of expressions.

4.3 RELATIONAL OPERATORS

We often compare two quantities and depending on their relation, take certain decisions. For example,
we may compare the age of two persons, or the price of two items, and so on. These comparisons can
be done with the help of relational operators. We have already used the symbol ‘<‘, meaning ‘less
than’. An expression such as

a<borl<?20

containing a relational operator is termed as a relational expression. The value of a relational
expression is either one or zero. It is one if the specified relation is true and zero if the relation is false.
For example

10 < 20 is true
but
20 < 10 is false

C supports six relational operators in all. These operators and their meanings are shown in Table 4.2.

Table 4.2 Relational Operators

Operator Meaning
< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

== is equal to

1= is not equal to

A simple relational expression contains only one relational operator and takes the following form:
ae-1 relational operator ae-2

ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or combination of
them. Given below are some examples of simple relational expressions and their values:

4.5 <= 10 TRUE

82 Basic Computation and Principles of Computer Programming

4.5 <-10 FALSE

—-35>= 0 FALSE

10 < 7+5 TRUE

a+b = c+d TRUE only if the sum of values of a and b is equal to the sum of values of ¢ and
d.

When arithmetic expressions are used on either side of a relational operator, the arithmetic
expressions will be evaluated first and then the results compared. That is, arithmetic operators have a
higher priority over relational operators.

Relational expressions are used in decision statements such as if and while to decide the course of
action of a running program. Decision statements are discussed in detail in Chapters 6 and 7.

@ Relational Operator Complements)

Among the six relational operators, each one is a complement of another operator.
> is complement of <=
< is complement of >=
== is complement of 1=
We can simplify an expression involving the not and the less than operators using the
complements as shown below:

Actual one Simplified one
(x<y) X>=y

I(x>y) X<=y

I(x!=y) X==y
I(x<=y) X>y

I(x>=y) X<y
!(X == y) X = y J

4.4 LOGICAL OPERATORS

In addition to the relational operators, C has the following three logical operators.
&& meaning logical AND
Il meaning logical OR
! meaning logical NOT
The logical operators && and Il are used when we want to test more than one condition and make
decisions. An example is:
a>b&&x==10
An expression of this kind, which combines two or more relational expressions, is termed as a
logical expression or a compound relational expression. Like the simple relational expressions, a
logical expression also yields a value of one or zero, according to the truth table shown in Table 4.3.
The logical expression given above is true only if a > b is true and x == 10 is true. If either (or both)
of them are false, the expression is false.

Operators and Expressions 83

Table 4.3 Truth Table

Value of the expression

op-1 op-2
op-1 && op-2 op-1 11 op-2
Non-zero Non-zero 1 1
Non-zero 0 0 1
0 Non-zero 0 1
0 0 0 0

Some examples of the usage of logical expressions are:

1. if (age > 55 && salary < 1000)
2. if (number < O || number > 100)

We shall see more of them when we discuss decision statements.
NOTE: Relative precedence of the relational and logical operators is as follows:

Highest !

Lowest

It is important to remember this when we use these operators in compound expressions.

4.5 ASSIGNMENT OPERATORS

Assignment operators are used to assign the result of an expression to a variable. We have seen the
usual assignment operator, ‘=". In addition, C has a set of ‘shorthand’ assignment operators of the
form

vV op= exp;

where v is a variable, exp is an expression and op is a C binary arithmetic operator. The operator op=
is known as the shorthand assignment operator.
The assignment statement

vV op= exp;
is equivalent to
v =v op (exp);
with v evaluated only once. Consider an example
X += y+l;
This is same as the statement
X =X+ (y+);

84 Basic Computation and Principles of Computer Programming
The shorthand operator += means ‘add y+1 to x’ or ‘increment x by y+1’. For y = 2, the above
statement becomes
xp += 3;

and when this statement is executed, 3 is added to x. If the old value of x is, say 5, then the new value
of x is 8. Some of the commonly used shorthand assignment operators are illustrated in Table 4.4.

Table 4.4 Shorthand Assignment Operators

Statement with simple Statement with
assignment operator shorthand operator
a=a+1 a+=1

a=a-1 a—=1

a=a*(n+l) a*=n+l

a=a/(n+l) a/=n+l

a=a%b a%=>b

The use of shorthand assignment operators has three advantages:

1. What appears on the left-hand side need not be repeated and therefore it becomes easier to write.
2. The statement is more concise and easier to read.
3. The statement is more efficient.

These advantages may be appreciated if we consider a slightly more involved statement like
value(5*j-2) = value(5*j-2) + delta;
With the help of the += operator, this can be written as follows:
value(5*j-2) += delta;

It is easier to read and understand and is more efficient because the expression 5*j-2 is evaluated
only once.

Example 4.2 | Program of Fig. 4.2 prints a sequence of squares of numbers. Note the use
of the shorthand operator *= .

The program attempts to print a sequence of squares of numbers starting from 2. The statement
a *= a;
which is identical to
a = a*a;
replaces the current value of a by its square. When the value of a becomes equal or greater than N
(=100) the while is terminated. Note that the output contains only three values 2, 4 and 16.

Program
#define N 100
#define A 2
main()

Operators and Expressions 85

int a;

a = A;

while(a < N)

{
printf("%d\n", a);
a *= a;

Output
2

4

16

Fig. 4.2 Use of shorthand operator *=

4.6 INCREMENT AND DECREMENT OPERATORS

C allows two very useful operators not generally found in other languages. These are the increment
and decrement operators:

++ and - -
The operator ++ adds 1 to the operand, while — — subtracts 1. Both are unary operators and takes the
following form:
++m; or mt+;
- -m; or m— —;

++m; is equivalent to m = m+l; (or m += 1)
— -m; is equivalent to m = m-1; (or m —= 13;)
We use the increment and decrement statements in for and while loops extensively.
While ++m and m++ mean the same thing when they form statements independently, they behave
differently when they are used in expressions on the right-hand side of an assignment statement.
Consider the following:

m = 5;
y = +m;
In this case, the value of y and m would be 6. Suppose, if we rewrite the above statements as
m = 5;
y = mg
then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand and

then the result is assigned to the variable on left. On the other hand, a postfix operator first assigns the
value to the variable on left and then increments the operand.

86

Basic Computation and Principles of Computer Programming

Similar is the case, when we use ++ (or ——) in subscripted variables. That is, the statement

a[i++] = 10;

is equivalent to

a[i] = 10;
i= i+l;

The increment and decrement operators can be used in complex statements. Example:

m = n++ —j+10;

Old value of n is used in evaluating the expression. n is incremented after the evaluation. Some
compilers require a space on either side of n++ or ++n.

@ Rules for ++ and — — Operators)

&,

Increment and decrement operators are unary operators and they require variable
as their operands.

When postfix ++ (or — —) is used with a variable in an expression, the expression
is evaluated first using the original value of the variable and then the variable is
incremented (or decremented) by one.

When prefix ++(or ——) is used in an expression, the variable is incremented (or
decremented) first and then the expression is evaluated using the new value of
the variable.

The precedence and associatively of ++ and — — operators are the same as those
of unary + and unary —. J

4.7 CONDITIONAL OPERATOR

A ternary operator pair “? :” is available in C to construct conditional expressions of the form

expl ? exp2 : exp3

where expl, exp2, and exp3 are expressions.

The operator ? : works as follows: exp! is evaluated first. If it is nonzero (true), then the expression
exp?2 is evaluated and becomes the value of the expression. If exp! is false, exp3 is evaluated and its
value becomes the value of the expression. Note that only one of the expressions (either exp2 or exp3)
is evaluated. For example, consider the following statements.

a = 10;
b = 15;
x=(a>b)?a:b;

Operators and Expressions 87

In this example, x will be assigned the value of b. This can be achieved using the if..else statements
as follows:

if (a > b)
X = a;
else
X = b;

4.8 BITWISE OPERATORS

C has a distinction of supporting special operators known as bitwise operators for manipulation of
data at bit level. These operators are used for testing the bits, or shifting them right or left. Bitwise
operators may not be applied to float or double. Table 4.5 lists the bitwise operators and their
meanings.

Table 4.5 Bitwise Operators

Operator Meaning
& bitwise AND
| bitwise OR
A bitwise exclusive OR
<< shift left
>> shift right

4.9 SPECIAL OPERATORS

C supports some special operators of interest such as comma operator, sizeof operator, pointer
operators (& and *) and member selection operators (. and —>). The comma and sizeof operators are
discussed in this section while the pointer operators are discussed in Chapter 12. Member selection
operators which are used to select members of a structure are discussed in Chapters 13 and 12. ANSI
committee has introduced two preprocessor operators known as “string-izing” and “token-pasting”
operators (# and ##). They will be discussed in Chapter 9.

The Comma Operator

The comma operator can be used to link the related expressions together. A comma-linked list of
expressions are evaluated left to right and the value of right-most expression is the value of the
combined expression. For example, the statement

value = (x = 10, y = 5, x+y);

first assigns the value 10 to x, then assigns 5 to y, and finally assigns 15 (i.e. 10 + 5) to value. Since
comma operator has the lowest precedence of all operators, the parentheses are necessary. Some
applications of comma operator are:

88 Basic Computation and Principles of Computer Programming

In for loops:
for (n=1, m=10, n <=m; n++, m++)
In while loops:
while (c = getchar(), c !='10")
Exchanging values:

t=x,x=y,y=1t;

The sizeof Operator
The sizeof is a compile time operator and, when used with an operand, it returns the number of bytes
the operand occupies. The operand may be a variable, a constant or a data type qualifier.
Examples: m = sizeof (sum);
n = sizeof (long int);
k = sizeof (235L);
The sizeof operator is normally used to determine the lengths of arrays and structures when their

sizes are not known to the programmer. It is also used to allocate memory space dynamically to
variables during execution of a program.

Example 4.3 | In Fig. 4.3, the program employs different kinds of operators. The results of
their evaluation are also shown for comparison.

Notice the way the increment operator ++ works when used in an expression. In the statement

c = ++a - b;
new value of a (= 16) is used thus giving the value 6 to c. That is, a is incremented by 1 before it is used
in the expression. However, in the statement

d = b++ + a;
the old value of b (=10) is used in the expression. Here, b is incremented by 1 after it is used in the
expression.

We can print the character % by placing it immediately after another % character in the control
string. This is illustrated by the statement
printf("a%%b = %d\n", a%b);

The program also illustrates that the expression

c>d?1:0
assumes the value O when c is less than d and 1 when c is greater than d.

Program

main()

{

int a, b, c, d;

a = 15;

Operators and Expressions

b =10;
C = ++a - b;

%d\n",a, b, c);

]
N
o
o
]

printf("a = %d b
d = b++ +a;

printf("a = %d
printf("a/b = "
printf("a%%b = %d\n", a%b);
printf("a *= b = %d\n", a*=b);
printf("%d\n", (c>d) ? 1 : 0);
printf("%d\n", (c<d) ? 1 : 0);

b=2%d=%d\n",a, b, d);
d\n", a/b);
d

0
%

a *= b =176

89

Fig. 4.3 Further illustration of arithmetic operators

4.10 ARITHMETIC EXPRESSIONS

Table 4.6 Expressions

An arithmetic expression is a combination of variables, constants, and operators arranged as per the
syntax of the language. We have used a number of simple expressions in the examples discussed so
far. C can handle any complex mathematical expressions. Some of the examples of C expressions are
shown in Table 4.6. Remember that C does not have an operator for exponentiation.

Algebraic expression C expression
axb-c a*b-c
(m+n) (x+y) (m+n) * (x+y)

(ﬁj a*blc
c

3x2 +2x+1 3EXFR+2H X+ 1

X
(f] +c x/y+c
y

90 Basic Computation and Principles of Computer Programming

4.11 EVALUATION OF EXPRESSIONS

Expressions are evaluated using an assignment statement of the form:

variable = expression;

Variable is any valid C variable name. When the statement is encountered, the expression is evaluated
first and the result then replaces the previous value of the variable on the left-hand side. All variables
used in the expression must be assigned values before evaluation is attempted. Examples of evaluation
statements are

a*b-c;
b/ c*a;
-b/ c+d;

< X
]

zZ =

The blank space around an operator is optional and adds only to improve readability. When these
statements are used in a program, the variables a, b, ¢, and d must be defined before they are used in
the expressions.

Example 4.4 | The program in Fig. 4.4 illustrates the use of variables in expressions and
their evaluation.

Output of the program also illustrates the effect of presence of parentheses in expressions. This is
discussed in the next section.

Program
main()
{
float a, b, ¢, x, y, z;
a=9;
b = 12;
c = 3;
x=a-b/3+c*2-1;
y=a-b/ (3+c)*(2-1);
z=a-(b/ (3+c)*2) -1;
printf("x = %f\n", x);
printf("y = %f\n", y);
printf("z = %f\n", z);
}

Operators and Expressions 91

Output
x = 10.000000
y = 7.000000
z = 4.000000

Fig. 4.4 lllustrations of evaluation of expressions

4.12 PRECEDENCE OF ARITHMETIC OPERATORS

An arithmetic expression without parentheses will be evaluated from left to right using the rules of
precedence of operators. There are two distinct priority levels of arithmetic operators in C:
High priority * / %
Low priority + —
The basic evaluation procedure includes ‘two’ left-to-right passes through the expression. During
the first pass, the high priority operators (if any) are applied as they are encountered. During the

second pass, the low priority operators (if any) are applied as they are encountered. Consider the
following evaluation statement that has been used in the program of Fig. 4.4.

X = a-b/3 + c*2-1
When a=9, b =12, and ¢ = 3, the statement becomes
x =9-12/3 + 3*%2-1
and is evaluated as follows
First pass
Stepl: x = 9-4+3%2-1
Step2: x = 9-4+6-1
Second pass
Step3: x = 5+6-1
Step4: x = 11-1
StepS: x = 10
These steps are illustrated in Fig. 4.5. The numbers inside parentheses refer to step numbers.

However, the order of evaluation can be changed by introducing parentheses into an expression.
Consider the same expression with parentheses as shown below:

9-12/(3+3)*(2-1)

Whenever parentheses are used, the expressions within parentheses assume highest priority. If two
or more sets of parentheses appear one after another as shown above, the expression contained in the
left-most set is evaluated first and the right-most in the last. Given below are the new steps.

92 Basic Computation and Principles of Computer Programming

9 - 12/3 + 32 =

ﬁJ (1) == @

1

Fig. 4.5 Illustration of hierarchy of operations

First pass

Stepl: 9-12/6 * (2-1)
Step2: 9-12/6 * 1

Second pass

Step3: 9-2 * 1
Step4: 9-2

Third pass

Step5: 7

This time, the procedure consists of three left-to-right passes. However, the number of evaluation
steps remains the same as 5 (i.e equal to the number of arithmetic operators).

Parentheses may be nested, and in such cases, evaluation of the expression will proceed outward
from the innermost set of parentheses. Just make sure that every opening parenthesis has a matching
closing parenthesis. For example

9-(12/(3+3) *2)-1=4
whereas
9—-((12/3) +3*2)=1==2

While parentheses allow us to change the order of priority, we may also use them to improve
understandability of the program. When in doubt, we can always add an extra pair just to make sure
that the priority assumed is the one we require.

Operators and Expressions | 93
@ Rules for Evaluation of Expression >

e First, parenthesized sub-expression from left to right are evaluated.

e If parentheses are nested, the evaluation begins with the innermost sub-
expression.

e The precedence rule is applied in determining the order of application of
operators in evaluating sub-expressions.

e The associativity rule is applied when two or more operators of the same
precedence level appear in a sub-expression.

e Arithmetic expressions are evaluated from left to right using the rules of
precedence.

i) e When parentheses are used, the expressions within parentheses assume highest

priority. J

4.13 SOME COMPUTATIONAL PROBLEMS

When expressions include real values, then it is important to take necessary precautions to guard
against certain computational errors. We know that the computer gives approximate values for real
numbers and the errors due to such approximations may lead to serious problems. For example,
consider the following statements:

a =1.0/3.0;

b=a*3.0;

We know that (1.0/3.0) 3.0 is equal to 1. But there is no guarantee that the value of b computed in
a program will equal 1.

Another problem is division by zero. On most computers, any attempt to divide a number by zero
will result in abnormal termination of the program. In some cases such a division may produce
meaningless results. Care should be taken to test the denominator that is likely to assume zero value
and avoid any division by zero.

The third problem is to avoid overflow or underflow errors. It is our responsibility to guarantee that
operands are of the correct type and range, and the result may not produce any overflow or underflow.

Example 4.5 | Output of the program in Fig. 4.6 shows round-off errors that can occur in
computation of floating point numbers.

Program
=
main()

{

Sum of n terms of 1/n ——m8 ——*/

94 Basic Computation and Principles of Computer Programming

float sum, n, term ;

int count =1 ;

sum =0 ;

printf("Enter value of n\n") ;

scanf("%f", &n) ;

term=1.0/n

while(count <=n)

{
sum = sum + term ;
count++

}

printf("Sum = %f\n", sum) ;

Output

Enter value of n
9
Sum = 1.000001
Enter value of n
143
Sum = 0.999999

Fig. 4.6 Round-off errors in floating point computations

We know that the sum of n terms of 1/n is 1. However, due to errors in floating point
representation, the result is not always 1.

4.14 TYPE CONVERSIONS IN EXPRESSIONS

Implicit Type Conversion

C permits mixing of constants and variables of different types in an expression. C automatically
converts any intermediate values to the proper type so that the expression can be evaluated without
losing any significance. This automatic conversion is known as implicit type conversion.

During evaluation it adheres to very strict rules of type conversion. If the operands are of different
types, the ‘lower’ type is automatically converted to the ‘higher’ type before the operation proceeds.
The result is of the higher type. A typical type conversion process is illustrated in Fig. 4.7.

Operators and Expressions 95

int i, X;
float f
double d;
long int 1;
X = 1 /i + i *f - d
long float
long float
float
L float
] double — Y
int double

Fig. 4.7 Process of implicit type conversion

Given below is the sequence of rules that are applied while evaluating expressions.
All short and char are automatically converted to int; then

1.

if one of the operands is long double, the other will be converted to long double and the result

will be long double;

else, if one of the operands is double, the other will be converted to double and the result will be

double;

else, if one of the operands is float, the other will be converted to float and the result will be

float;

else, if one of the operands is unsigned long int, the other will be converted to unsigned long

int and the result will be unsigned long int;

else, if one of the operands is long int and the other is unsigned int, then

(a) if unsigned int can be converted to long int, the unsigned int operand will be converted as
such and the result will be long int;

(b) else, both operands will be converted to unsigned long int and the result will be unsigned
long int;

else, if one of the operands is long int, the other will be converted to long int and the result will

be long int;

else, if one of the operands is unsigned int, the other will be converted to unsigned int and the

result will be unsigned int.

96 | Basic Computation and Principles of Computer Programming

@ Conversion Hierarchy)

Note that, C uses the rule that, in all expressions except assignments,
any implicit type conversions are made from a lower size type to a
higher size type as shown below:

long double

double

float

Conversion

Hierarchy unsigned long int

long int

unsigned int

int

short char
< ; /

Note that some versions of C automatically convert all floating-point operands to double precision.

The final result of an expression is converted to the type of the variable on the left of the assignment
sign before assigning the value to it. However, the following changes are introduced during the final
assignment.

1. float to int causes truncation of the fractional part.
2. double to float causes rounding of digits.
3. long int to int causes dropping of the excess higher order bits.

Explicit Conversion

We have just discussed how C performs type conversion automatically. However, there are instances
when we want to force a type conversion in a way that is different from the automatic conversion.
Consider, for example, the calculation of ratio of females to males in a town.

ratio = female_number/male_number

Since female_number and male_number are declared as integers in the program, the decimal part
of the result of the division would be lost and ratio would represent a wrong figure. This problem can
be solved by converting locally one of the variables to the floating point as shown below:

ratio = (float) female_number/male_number

The operator (float) converts the female_number to floating point for the purpose of evaluation of
the expression. Then using the rule of automatic conversion, the division is performed in floating
point mode, thus retaining the fractional part of result.

Operators and Expressions 97

Note that in no way does the operator (float) affect the value of the variable female number. And
also, the type of female number remains as int in the other parts of the program.

The process of such a local conversion is known as explicit conversion or casting a value. The
general form of a cast is:

(type-name)expression

where fype-name is one of the standard C data types. The expression may be a constant, variable or an
expression. Some examples of casts and their actions are shown in Table 4.7.

Table 4.7 Use of Casts

Example Action

x = (int) 7.5 7.5 is converted to integer by truncation.

a = (int) 21.3/(int)4.5 Evaluated as 21/4 and the result would be 5.
b = (double)sum/n Division is done in floating point mode.

y = (int) (a+b) The result of a+b is converted to integer.

z = (int)a+b a is converted to integer and then added to b.
p = cos((double)x) Converts x to double before using it.

Casting can be used to round-off a given value. Consider the following statement:
x = (int) (y+0.5);

Ify is 27.6, y+0.5 is 28.1 and on casting, the result becomes 28, the value that is assigned to x. Of
course, the expression, being cast is not changed.

Example 4.6 | Figure 4.8 shows a program using a cast to evaluate the equation

n
sum = Y (1/)
i=1
Program
main()
{
float sum
int n;
sum = 0 ;
for(n =13 n<=10; +n)
{
sum = sum + 1/(float)n ;
printf("%2d %6.4f\n", n, sum) ;
}
}

98 Basic Computation and Principles of Computer Programming

Output

.0000
.5000
.8333
.0833
.2833
.4500
.5929
L7179
.8290
.9290

S LVoONOUIR~ WN
S T S R I O T R O B e e

—_

Fig. 4.8 Use of a cast

4.15 OPERATOR PRECEDENCE AND ASSOCIATIVITY

As mentioned earlier each operator, in C has a precedence associated with it. This precedence is used
to determine how an expression involving more than one operator is evaluated. There are distinct
levels of precedence and an operator may belong to one of these levels. The operators at the higher
level of precedence are evaluated first. The operators of the same precedence are evaluated either from
‘left to right” or from ‘right to left’, depending on the level. This is known as the associativity property
of an operator. Table 4.8 provides a complete list of operators, their precedence levels, and their rules
of association. The groups are listed in the order of decreasing precedence. Rank 1 indicates the
highest precedence level and 15 the lowest. The list also includes those operators, which we have not
yet been discussed.

It is very important to note carefully, the order of precedence and associativity of operators.
Consider the following conditional statement:

if(x==10+15 && y < 10)

The precedence rules say that the addition operator has a higher priority than the logical operator
(&&) and the relational operators (== and <). Therefore, the addition of 10 and 15 is executed first.
This is equivalent to:

if(x==25&& y < 10)

The next step is to determine whether x is equal to 25 and y is less than 10. If we assume a value of
20 for x and 5 for y, then

x == 25 is FALSE (0)
y < 10is TRUE (1)

Note that since the operator < enjoys a higher priority compared to ==, y < 10 is tested first and
then x == 25 is tested.
Finally we get:
if (FALSE && TRUE)

Because one of the conditions is FALSE, the complex condition is FALSE.

Operators and Expressions

99

In the case of &&, it is guaranteed that the second operand will not be evaluated if the first is zero

and in the case of |l, the second operand will not be evaluated if the first is non-zero.

Table 4.8 Summary of C Operators

Operator Description Associativity

() Function call Left to right 1
[1] Array element reference

+ Unary plus

- Unary minus Right to left 2
++ Increment

-— Decrement

! Logical negation

~ Ones complement

* Pointer reference (indirection)

& Address

sizeof Size of an object

(type) Type cast (conversion)

* Multiplication Left to right 3
/ Division

% Modulus

+ Addition Left to right 4
- Subtraction

<< Left shift Left to right 5
>> Right shift

< Less than Left to right 6
<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equality Left to right 7
I= Inequality

& Bitwise AND Left to right 8
A Bitwise XOR Left to right 9

| Bitwise OR Left to right 10
&& Logical AND Left to right 11
I Logical OR Left to right 12
7 Conditional expression Right to left 13
= Assignment operators Right to left 14
* == %=

4= —= &=

Az |=

<<= >>=

s Comma operator Left to right 15

100 | Basic Computation and Principles of Computer Programming

& Rules of Precedence and Associativity >

e Precedence rules decides the order in which different operators are applied

e Associativity rule decides the order in which multiple occurrences of the same
level operator are applied

4.16 MATHEMATICAL FUNCTIONS

Mathematical functions such as cos, sqrt, log, etc. are frequently used in analysis of real-life problems.
Most of the C compilers support these basic math functions. However, there are systems that have a
more comprehensive math library and one should consult the reference manual to find out which
functions are available. Table 4.9 lists some standard math functions.

Table 4.9 Math functions

Function Meaning
Trigonometric

acos(x) Arc cosine of x

asin(x) Arc sine of x

atan(x) Arc tangent of x

atan 2(x,y) Arc tangent of x/y
cos(x) Cosine of x

sin(x) Sine of x

tan(x) Tangent of x
Hyperbolic

cosh(x) Hyperbolic cosine of x
sinh(x) Hyperbolic sine of x
tanh(x) Hyperbolic tangent of x

Other functions

ceil(x) x rounded up to the nearest integer
exp(x) e to the x power (e*)

fabs(x) Absolute value of x.

floor(x) x rounded down to the nearest integer
fmod(x,y) Remainder of x/y

log(x) Natural log of x, x >0

log10(x) Base 10 log of x, x >0

pow(x,y) x to the power y (x”)

sqrt(x) Square root of x, x > =0

Note: 1. x and y should be declared as double.

2. In trigonometric and hyperbolic functions, x and y are in radians.

3. All the functions return a double.

Operators and Expressions 101

4. C99 has added float and long double versions of these fuctions.
5. C99 has added many more mathematical functions.
6. See the Appendix “C99 Features” for details.
As pointed out earlier in Chapter 1, to use any of these functions in a program, we should include
the line:

include <math.h>

in the beginning of the program.

[Just Remember}

= Use decrement and increment operators carefully. Understand the difference
between postfix and prefix operations before using them.

= Add parentheses wherever you feel they would help to make the evaluation
order clear.

= Be aware of side effects produced by some expressions.

= Avoid any attempt to divide by zero. It is normally undefined. It will either result
in a fatal error or in incorrect results.

= Do not forget a semicolon at the end of an expression.

= Understand clearly the precedence of operators in an expression. Use
parentheses, if necessary.

= Associativity is applied when more than one operator of the same precedence
are used in an expression. Understand which operators associate from right to
left and which associate from left to right.

= Do not use increment or decrement operators with any expression other than a
variable identifier.

= ltis illegal to apply modules operator % with anything other than integers.

= Do not use a variable in an expression before it has been assigned a value.

= Integer division always truncates the decimal part of the result. Use it carefully.
Use casting where necessary.

= The result of an expression is converted to the type of the variable on the left of
the assignment before assigning the value to it. Be careful about the loss of
information during the conversion.

= All mathematical functions implement double type parameters and return
double type values.

= lItis an error if any space appears between the two symbols of the operators ==,
=, <=and >=.

= lItis an error if the two symbols of the operators !=, <= and >= are reversed.

= Use spaces on either side of binary operator to improve the readability of the
code.

= Do not use increment and decrement operators to floating point variables.

= Do not confuse the equality operator == with the assignment operator =.

102 Basic Computation and Principles of Computer Programming

Case Study

1. Salesman’s Salary

A computer manufacturing company has the following monthly compensation policy to their sales-

persons:
Minimum base salary : 1500.00
Bonus for every computer sold : 200.00
Commission on the total monthly sales 1 2 per cent

Since the prices of computers are changing, the sales price of each computer is fixed at the
beginning of every month. A program to compute a sales-person’s gross salary is given in Fig. 4.9.

Program
#define BASE_SALAR 1500.00
#define BONUS_RATE 200.00
#define COMMISSION 0.02
main()

{
int quantity ;
float gross_salary, price ;
float bonus, commission ;
printf("Input number sold and price\n") ;
scanf("%d %f", &quantity, &price) ;
bonus = BONUS_RATE * quantity ;
commission = COMMISSION * quantity * price ;
gross_salary BASE_SALARY + bonus + commission ;
printf("\n");
printf("Bonus =
printf("Commission =
printf("Gross salary =

o

6.2f\n", bonus) ;
6.2f\n", commission) ;
6.2f\n", gross_salary) ;

N

I
N

}

Output
Input number sold and price
5 20450.00
Bonus = 1000.00
Commission = 2045.00
Gross salary = 4545.00

Fig. 4.9 Program of salesman’s salary

Given the base salary, bonus, and commission rate, the inputs necessary to calculate the gross
salary are, the price of each computer and the number sold during the month.
The gross salary is given by the equation:
Gross salary = base salary + (quantity * bonus rate)
+ (quantity * Price) * commission rate

Operators and Expressions

2. Solution of the Quadratic Equation

An equation of the form
ax>+bx+c=0

103

is known as the quadratic equation. The values of x that satisfy the equation are known as the roots
of the equation. A quadratic equation has two roots which are given by the following two formulae:

—b+sqrt (b2 —4ac)
2a

root 1 =

—b-sqrt (b* — 4ac)
2a

root 2 =

A program to evaluate these roots is given in Fig. 4.10. The program requests the user to input the

values of a, b and ¢ and outputs root 1 and root 2.

Program
#include <math.h>
main()
{
float a, b, c, discriminant,
rootl, root2;
printf("Input values of a, b, and c\n");
scanf ("%f %f %f", &a, &b, &c);
discriminant = b*b - 4*a*c ;
if(discriminant < 0)
printf("\n\nROOTS ARE IMAGINARY\n");
else
{
rootl = (-b + sqgrt(discriminant))/(2.0%*a);
root2 = (-b - sqrt(discriminant))/(2.0%a);

rootl,root2);

}
}
Output
Input values of a, b, and ¢
2 4 -16
Rootl = 2.00
Root2 = -4.00
Input values of a, b, and ¢
123

ROOTS ARE IMAGINARY

printf("\n\nRootl = %5.2f\n\nRoot2 = %5.2f\n",

Fig. 4.10 Solution of a quadratic equation

104

Basic Computation and Principles of Computer Programming

The term (b2—4ac) is called the discriminant. If the discriminant is less than zero, its square roots
cannot be evaluated. In such cases, the roots are said to be imaginary numbers and the program outputs
an appropriate message.

Review Questions

4.1 State whether the following statements are true or false.

4.2

4.3

4.4

(a)
(b)
(©)
(d)

(e)
()
(2)
(h)
i)
(j)
k)
D

All arithmetic operators have the same level of precedence.

The modulus operator % can be used only with integers.

The operators <=, >= and != all enjoy the same level of priority.

During modulo division, the sign of the result is positive, if both the operands are of the same
sign.

In C, if a data item is zero, it is considered false.

The expression /(x<=y) is same as the expression x>y.

A unary expression consists of only one operand with no operators.

Associativity is used to decide which of several different expressions is evaluated first.
An expression statement is terminated with a period.

During the evaluation of mixed expressions, an implicit cast is generated automatically.
An explicit cast can be used to change the expression.

Parentheses can be used to change the order of evaluation expressions.

Fill in the blanks with appropriate words.

(a)
(b)
(©)
(d)

(e)
()
(2)
(h)

The expression containing all the integer operands is called expression.
The operator cannot be used with real operands.
C supports as many as relational operators.
An expression that combines two or more relational expressions is termed as
expression.
The operator returns the number of bytes the operand occupies.
The order of evaluation can be changed by using in an expression.
The use of on a variable can change its type in the memory.
is used to determine the order in which different operators in an expression are
evaluated.

Given the statement
inta=10,b=20,c;
determine whether each of the following statements are true or false.

()
(b)
()
(d)
(e)
()

The statement a = + 10, is valid.

The expression a + 4/6 * 6/2 evaluates to 11.

The expression b + 3/2 * 2/3 evaluates to 20.

The statement a + = b; gives the values 30 to a and 20 to b.
The statement ++a++; gives the value 12 to a

The statement a = 1/b; assigns the value 0.5 to a

Declared a as int and b as float, state whether the following statements are true or false.

()
(b)
(©)
(d)
(e)

The statement a = 1/3 + 1/3 + 1/3; assigns the value 1 to a.

The statement b = 1.0/3.0 + 1.0/3.0 + 1.0/3.0; assigns a value 1.0 to b.
The statement b = 1.0/3.0 * 3.0 gives a value 1.0 to b.

The statement b = 1.0/3.0 + 2.0/3.0 assigns a value 1.0 to b.

The statement a = 15/10.0 + 3/2; assigns a value 3 to a.

Operators and Expressions 105

4.5 Which of the following expressions are true?
(a) (5 +5>=10)
(b) 5+5==10111+3==
(¢) 5>101110<20 && 3 <5
(d) 10!=15&& !(10<20) I 15> 30
4.6 Which of the following arithmetic expressions are valid ? If valid, give the value of the expression;
otherwise give reason.

(a) 25/3 % 2 (e) =14 % 3

(b) +9/4 +5 (f) 1525 +-5.0

() 7.5%3 (2) 53)*3+5%3
) 14%3+7%2 (h) 21 % (int)4.5

4.7 Write C assignment statements to evaluate the following equations:
(a) Area= w1? +2 wrh
m,m,

(b) Torque = .
m; +m,

(c) Side = \/a>+b>—2ab cos(x)

)
(d) Energy = mass | acceleration X height + (velocity)”
4.8 Identify unnecessary parentheses in the following arithmetic expressions.
(@) ((x=(y/5)+2)%8) + 25
(b) ((x-y) * p)+q
(©) (m*n) + (=x/y)
(d) x/3*y)
4.9 Find errors, if any, in the following assignment statements and rectify them.
(a) x=y=2z=0.5,2.0.-5.75;
(b) m=++a*5;
(©) 'y =sqrt(100);
(d) p*=xly;
(e) s=/5;
(f) a=b++—c*2
4.10 Determine the value of each of the following logical expressions if a = 5, b = 10 and
c=-6
(a) a>b&&a<c
(b) a<b&&a>c
(c) a==cllb>a
(d) b>15&&c<0lla>0
(e) (a/2.0==0.0 && b/2.0!=0.0)llc < 0.0
4.11 What is the output of the following program?

main ()

{
char x;
int y;

106 Basic Computation and Principles of Computer Programming

x = 100;
y = 125;
printf ("%c\n", x) ;
printf ("%c\n", y) ;
printf ("%d\n", x) ;

}
4.12 Find the output of the following program?
main ()
{
int x = 100;

printf("%d/n", 10 + x++);
printf("%d/n", 10 + ++x);

}
4.13 What is printed by the following program?

main

{
int x =5, y =10, z = 10 ;
X =Yy ==1Z
printf("%d",x) ;

}

4.14 What is the output of the following program?

main ()
{
int x = 100, y = 200;
printf ("%d", (x > y)? x : y);

}
4.15 What is the output of the following program?
main ()
{
unsigned x = 1 ;
signed char y = -1 ;
if(x > y)

printf(" x > y");
else
printf("x<= y") ;
}

Did you expect this output? Explain.

4.16 What is the output of the following program? Explain the output.
main ()

{
int x = 10 ;

4.17

4.18

4.19

4.20

Operators and Expressions 107

if(x = 20) printf("TRUE") ;
else printf("FALSE") ;
}

What is the error in each of the following statements?
(@) if(m==1&n!=0)
printf(“OK”);
(b) if (x=<5)
printf (“Jump”);
What is the error, if any, in the following segment?
int x = 10 ;
float y = 4.25 ;
X = y%X 3
What is printed when the following is executed?
for (m = 0; m <3; ++m)
printf("%d/n", (m%2) ? m: m+2);
What is the output of the following segment when executed?
intm=- 14, n = 3;
printf("%d\n", m/n * 10) ;
n = -n;
printf("%d\n", m/n * 10);

Programming Exercises

4.1

4.2

43
4.4

4.5

4.6

Given the values of the variables X, y and z, write a program to rotate their values such that x has the
value of y, y has the value of z, and z has the value of x.

Write a program that reads a floating-point number and then displays the right-most digit of the
integral part of the number.

Modify the above program to display the two right-most digits of the integral part of the number.
Write a program that will obtain the length and width of a rectangle from the user and compute its
area and perimeter.

Given an integer number, write a program that displays the number as follows:
First line : all digits
Second line : all except first digit
Third line : all except first two digits
Last line : The last digit
For example, the number 5678 will be displayed as:
5678
678
78
8

The straight-line method of computing the yearly depreciation of the value of an item is given by

Purchase Price — Salvage Value

Depreciation = -
Years of Service

108

4.7

4.8

4.9

4.10

4.12
4.13

4.14

4.15

Basic Computation and Principles of Computer Programming

Write a program to determine the salvage value of an item when the purchase price, years of service,
and the annual depreciation are given.

Write a program that will read a real number from the keyboard and print the following output in
one line:

Smallest integer The given Largest integer
not less than number not greater than
the number the number

The total distance travelled by a vehicle in ¢ seconds is given by
distance = ut + (ar*)/2

where u is the initial velocity (metres per second), a is the acceleration (metres per second 2). Write
a program to evaluate the distance travelled at regular intervals of time, given the values of u and a.
The program should provide the flexibility to the user to select his own time intervals and repeat the
calculations for different values of u and a.

In inventory management, the Economic Order Quantity for a single item is given by

2 X demand rate X setup costs
EOQ= | = D
holding cost per item per unit time

and the optimal Time Between Orders

2 X setup costs
TBO = C s S8 —
demand rate X holding cost per item per unit time

Write a program to compute EOQ and TBO, given demand rate (items per unit time), setup costs
(per order), and the holding cost (per item per unit time).

For a certain electrical circuit with an inductance L and resistance R, the damped natural frequency
is given by

1 R
Frequency = ,| —-——
LC 4c?
It is desired to study the variation of this frequency with C (capacitance). Write a program to
calculate the frequency for different values of C starting from 0.01 to 0.1 in steps of 0.01.
Write a program to read a four digit integer and print the sum of its digits.
Hint: Use / and % operators.
Write a program to print the size of various data types in C.
Given three values, write a program to read three values from keyboard and print out the largest of
them without using if statement.
Write a program to read two integer values m and n and to decide and print whether m is a multiple
of n.
Write a program to read three values using scanf statement and print the following results:
(a) Sum of the values
(b) Average of the three values
(c) Largest of the three
(d) Smallest of the three

Operators and Expressions 109

4.16 The cost of one type of mobile service is Rs. 250 plus Rs. 1.25 for each call made over and above 100
calls. Write a program to read customer codes and calls made and print the bill for each customer.

4.17 Write a program to print a table of sin and cos functions for the interval from 0 to 180 degrees in
increments of 15 as shown below.

x (degrees) sin (x) cos (x)

o L
s L

w -

4.18 Write a program to compute the values of square-roots and squares of the numbers 0 to 100 in steps
10 and print the output in a tabular form as shown below.

Number Square-root Square
0 0 0
100 10 10000

4.19 Write a program that determines whether a given integer is odd or even and displays the number
and description on the same line.
4.20 Write a program to illustrate the use of cast operator in a real life situation.

CHAPTER

S

Managing Input and Output
Operations

5.1 INTRODUCTION

Reading, processing, and writing of data are the three essential functions of a computer program. Most
programs take some data as input and display the processed data, often known as information or results,
on a suitable medium. So far we have seen two methods of providing data to the program variables. One
method is to assign values to variables through the assignment statements such as x = 5; a = 0; and so
on. Another method is to use the input function scanf which can read data from a keyboard. We have
used both the methods in most of our earlier example programs. For outputting results we have used
extensively the function printf which sends results out to a terminal.

Unlike other high-level languages, C does not have any built-in input/output statements as part of its
syntax. All input/output operations are carried out through function calls such as printf and scanf.
There exist several functions that have more or less become standard for input and output operations in
C. These functions are collectively known as the standard I/O library. In this chapter we shall discuss
some common I/O functions that can be used on many machines without any change. However, one
should consult the system reference manual for exact details of these functions and also to see what other
functions are available.

It may be recalled that we have included a statement

#include <math.h>

in the Sample Program 5 in Chapter 1, where a math library function cos(x) has been used. This is to

instruct the compiler to fetch the function cos(x) from the math library, and that it is not a part of C

language. Similarly, each program that uses a standard input/output function must contain the statement
#include <stdio.h>

at the beginning. However, there might be exceptions. For example, this is not necessary for the
functions printf and scanf which have been defined as a part of the C language.

Managing Input and Output Operations 111

The file name stdio.h is an abbreviation for standard input-output header file. The instruction #in-
clude <stdio.h> tells the compiler ‘to search for a file named stdio.h and place its contents at this point
in the program’. The contents of the header file become part of the source code when it is compiled.

5.2 READING A CHARACTER

The simplest of all input/output operations is reading a character from the ‘standard input’ unit (usually
the keyboard) and writing it to the ‘standard output’ unit (usually the screen). Reading a single character
can be done by using the function getchar. (This can also be done with the help of the scanf function
which is discussed in Section 5.4.) The getchar takes the following form:

variable_name = getchar();

variable_name is a valid C name that has been declared as char type. When this statement is encoun-
tered, the computer waits until a key is pressed and then assigns this character as a value to getchar
function. Since getchar is used on the right-hand side of an assignment statement, the character value of
getchar is in turn assigned to the variable name on the left. For example

char name;
name = getchar();

Will assign the character ‘H’ to the variable name when we press the key H on the keyboard. Since
getchar is a function, it requires a set of parentheses as shown.

Example 5.1 | The program in Fig. 5.1 shows the use of getchar function in an interactive envi-
ronment.

The program displays a question of YES/NO type to the user and reads the user’s response in a single
character (Y or N). If the response is Y or y, it outputs the message

My name is BUSY BEE
otherwise, outputs

You are good for nothing

W[OJNOH There is one line space between the input text and output message.

Program
#include <stdio.h>
main()
{
char answer;
printf("Would you Tike to know my name?\n");

printf("Type Y for YES and N for NO: ");
answer = getchar(); /* Reading a character...*/

112 Basic Computation and Principles of Computer Programming

if(answer == 'Y' || answer == 'y')
printf("\n\nMy name is BUSY BEE\n");
else

printf("\n\nYou are good for nothing\n");

}

Output
Would you Tike to know my name?
Type Y for YES and N for NO: Y
My name is BUSY BEE
Would you Tike to know my name?
Type Y for YES and N for NO: n

You are good for nothing

Fig. 5.1 Use of getchar function to read a character from keyboard

The getchar function may be called successively to read the characters contained in a line of text. For
example, the following program segment reads characters from keyboard one after another until the
‘Return’ key is pressed.

char character;

character = ;
while(character != '\n')

{

character = getchar();

@ WARNING >

The getchar() function accepts any character keyed in. This includes RETURN and
TAB. This means when we enter single character input, the newline character is
waiting in the input queue after getchar() returns. This could create problems when we
use getchar() in a loop interactively. A dummy getchar() may be used to 'eat' the
unwanted newline character. We can also use the fflush function to flush out the
unwanted characters.

We shall be using decision statements like if, if...else and while extensively in this chapter. They are]
discussed in detail in Chapters 6 and 7.

Managing Input and Output Operations 113

Example 5.2 | The program of Fig. 5.2 requests the user to enter a character and displays a
message on the screen telling the user whether the character is an alphabet or
digit, or any other special character.

This program receives a character from the keyboard and tests whether it is a letter or digit and prints out
a message accordingly. These tests are done with the help of the following functions:
isalpha(character)
isdigit(character)
For example, isalpha assumes a value non-zero (TRUE) if the argument character contains an
alphabet; otherwise it assumes 0 (FALSE). Similar is the case with the function isdigit.

Program

#include <stdio.h>
#include <ctype.h>
main()

{

char character;
printf("Press any key\n");
character = getchar();
if (isalpha(character) > 0)/* Test for letter */
printf("The character is a letter.");
else
if (isdigit (character) > 0)/* Test for digit */
printf("The character is a digit.");
else
printf("The character is not alphanumeric.");

Output
Press any key
h
The character is a letter.

Press any key
5
The character is a digit.

Press any key
*

The character is not alphanumeric.

Fig. 5.2 Program to test the character type

C supports many other similar functions, which are given in Table 5.1. These character functions are
contained in the file ctype.h and therefore the statement

#include <ctype.h>
must be included in the program.

114 Basic Computation and Principles of Computer Programming

Table 5.1 Character Test Functions

Function Test
isalnum(c) Is ¢ an alphanumeric character?
isalpha(c) Is ¢ an alphabetic character?
isdigit(c) Is c a digit?

islower(c) Is ¢ lower case letter?
isprint(c) Is ¢ a printable character?
ispunct(c) Is ¢ a punctuation mark?
isspace(c) Is ¢ a white space character?
isupper(c) Is ¢ an upper case letter?

5.3 WRITING A CHARACTER

Like getchar, there is an analogous function putchar for writing characters one at a time to the terminal.
It takes the form as shown below:

putchar (variable_name);

where variable_name is a type char variable containing a character. This statement displays the
character contained in the variable_name at the terminal. For example, the statements

answer = 'Y';
putchar (answer);

will display the character Y on the screen. The statement
putchar ('"\n');
would cause the cursor on the screen to move to the beginning of the next line.

Example 5.3 | A program that reads a character from keyboard and then prints it in reverse
case is given in Fig. 5.3. That is, if the input is upper case, the output will be lower
case and vice versa.

The program uses three new functions: islower, toupper, and tolower. The function islower is a
conditional function and takes the value TRUE if the argument is a lowercase alphabet; otherwise takes
the value FALSE. The function toupper converts the lowercase argument into an uppercase alphabet
while the function tolower does the reverse.

Program

#include <stdio.h>

#include <ctype.h>

main()

{
char alphabet;
printf("Enter an alphabet");
putchar('\n'); /* move to next line */
alphabet = getchar();
if (islower(alphabet))

Managing Input and Output Operations | 115

putchar (toupper(alphabet));/* Reverse and display */
else
putchar(tolower(alphabet)); /* Reverse and display */

Output
Enter an alphabet
a
A
Enter an alphabet
Q

q
Enter an alphabet
z
Z

Fig. 5.3 Reading and writing of alphabets in reverse case

5.4 FORMATTED INPUT

Formatted input refers to an input data that has been arranged in a particular format. For example,
consider the following data:

15.75 123 John

This line contains three pieces of data, arranged in a particular form. Such data has to be read con-
forming to the format of its appearance. For example, the first part of the data should be read into a
variable float, the second into int, and the third part into char. This is possible in C using the scanf
function. (scanf means scan formatted.)

We have already used this input function in a number of examples. Here, we shall explore all of the
options that are available for reading the formatted data with scanf function. The general form of scanf
is

scanf ("control string", argl, arg2, argn) ;

The control string specifies the field format in which the data is to be entered and the arguments
argl, arg2,, argn specify the address of locations where the data is stored. Control string and argu-
ments are separated by commas.

Control string (also known as format string) contains field specifications, which direct the interpre-
tation of input data. It may include:

e Field (or format) specifications, consisting of the conversion character %, a data type character (or
type specifier), and an optional number, specifying the field width.
e Blanks, tabs, or newlines.

Blanks, tabs and newlines are ignored. The data type character indicates the type of data that is to be
assigned to the variable associated with the corresponding argument. The field width specifier is
optional. The discussions that follow will clarify these concepts.

116 Basic Computation and Principles of Computer Programming

Inputting Integer Numbers
The field specification for reading an integer number is:
% w sd

The percentage sign (%) indicates that a conversion specification follows. w is an integer number
that specifies the field width of the number to be read and d, known as data type character, indicates that

the number to be read is in integer mode. Consider the following example:
scanf ("%2d %5d", &numl, &num2);

Data line:
50 31426
The value 50 is assigned to num1 and 31426 to num2. Suppose the input data is as follows:
31426 50

The variable num1 will be assigned 31 (because of %2d) and num?2 will be assigned 426 (unread
part of 31426). The value 50 that is unread will be assigned to the first variable in the next scanf call.
This kind of errors may be eliminated if we use the field specifications without the field width specifica-
tions. That is, the statement

scanf("%d %d", &numl, &num2);
will read the data
31426 50

correctly and assign 31426 to num1 and 50 to num2.

Input data items must be separated by spaces, tabs or newlines. Punctuation marks do not count as
separators. When the scanf function searches the input data line for a value to be read, it will always
bypass any white space characters.

What happens if we enter a floating point number instead of an integer? The fractional part may be
stripped away! Also, scanf may skip reading further input.

When the scanf reads a particular value, reading of the value will be terminated as soon as the
number of characters specified by the field width is reached (if specified) or until a character that is not
valid for the value being read is encountered. In the case of integers, valid characters are an optionally
signed sequence of digits.

An input field may be skipped by specifying * in the place of field width. For example, the statement

scanf("%d %*d %d", &a, &b)
will assign the data
123 456 789
as follows:
123 to a
456 skipped (because of *)
789 to b

The data type character d may be preceded by ‘I’ (letter ell) to read long integers and h to read short
integers.

We have provided white space between the field specifications. These spaces are not necessary with the
numeric input, but it is a good practice to include them.

Managing Input and Output Operations 117

Example 5.4 | Various input formatting options for reading integers are experimented in the
program shown in Fig. 5.4.

Program

main()

{
int a,b,c,x,y,z;
int p,q,r;
printf("Enter three integer numbers\n");
scanf("%d %*d %d",&a,&b,&c);
printf("%d %d %d \n\n",a,b,c);
printf("Enter two 4-digit numbers\n");
scanf("%2d %4d",8&x,8y);
printf("%d %d\n\n", x,y);

printf("Enter two integers\n");

scanf("%d %d", &a,&x):

printf("%d %d \n\n",a,x);

printf("Enter a nine digit number\n");
scanf("%3d %4d %3d",&p,&q,&r);

printf("%d %d %d \n\n",p,q,r);
printf("Enter two three digit numbers\n");
scanf("%d %d",&x,&y);

printf("%d %d",x,y);

Output
Enter three integer numbers
123
1 3 -3577

Enter two 4-digit numbers
6789 4321
67 89

Enter two integers

44 66

4321 44
Enter a nine-digit number
123456789
66 1234 567
Enter two three-digit numbers
123 456
89 123

Fig. 5.4 Reading integers using scanf

118 Basic Computation and Principles of Computer Programming

The first scanf requests input data for three integer values a, b, and ¢, and accordingly three values 1,
2, and 3 are keyed in. Because of the specification %*d the value 2 has been skipped and 3 is assigned
to the variable b. Notice that since no data is available for ¢, it contains garbage.

The second scanf specifies the format %2d and %4d for the variables x and y respectively. Whenever
we specify field width for reading integer numbers, the input numbers should not contain more digits
that the specified size. Otherwise, the extra digits on the right-hand side will be truncated and assigned
to the next variable in the list. Thus, the second scanf has truncated the four digit number 6789 and
assigned 67 to x and 89 to y. The value 4321 has been assigned to the first variable in the immediately
following scanf statement.

It is legal to use a non-whitespace character between field specifications. However, the scanf expects a
matching character in the given location. For example,

scanf("%d-%d", &a, &b);
accepts input like
123-456
to assign 123 to a and 456 to b.

Inputting Real Numbers

Unlike integer numbers, the field width of real numbers is not to be specified and therefore scanf reads
real numbers using the simple specification %f for both the notations, namely, decimal point notation
and exponential notation. For example, the statement
scanf ("%f %f %f", &x, &y, &z);
with the input data
475.89 43.21E-1 678

will assign the value 475.89 to x, 4.321 to y, and 678.0 to z. The input field specifications may be
separated by any arbitrary blank spaces.

If the number to be read is of double type, then the specification should be %If instead of simple %f.
A number may be skipped using % *f specification.

Example 5.5 | Reading of real numbers (in both decimal point and exponential notation) is
illustrated in Fig. 5.5.

Program
main()
{
float x,y;
double p,q;

printf("Values of x and y:");
scanf("%f %e", &x, &y);
printf("\n");

printf("x = %f\ny = %f\n\n", x, y);
printf("Values of p and q:");

Managing Input and Output Operations 119

scanf("51f %1f", &p, &q);
printf("\n\np = %.121f\np = %.12e", p,q);

Output
Values of x and y:12.3456 17.5e-2
x = 12.345600
y = 0.175000

Values of p and q:4.142857142857 18.5678901234567890

4.142857142857
1.856789012346e+001

p
q

Fig. 5.5 Reading of real numbers

Inputting Character Strings

We have already seen how a single character can be read from the terminal using the getchar function.
The same can be achieved using the scanf function also. In addition, a scanf function can input strings
containing more than one character. Following are the specifications for reading character strings:

%ws or %wc

The corresponding argument should be a pointer to a character array. However, %c may be used to read
a single character when the argument is a pointer to a char variable.

Example 5.6 | Reading of strings using %we and %ws is illustrated in Fig. 5.6.

The program in Fig. 5.6 illustrates the use of various field specifications for reading strings. When we use
%we for reading a string, the system will wait until the w character is keyed in.

Note that the specification %s terminates reading at the encounter of a blank space. Therefore, name2
has read only the first part of “New York” and the second part is automatically assigned to name3.
However, during the second run, the string “New-York™ is correctly assigned to name2.

Program
main()

{
int no;
char namel[15], name2[15], name3[15];
printf("Enter serial number and name one\n");
scanf("%d %15c", &no, namel);
printf("%d %15s\n\n", no, namel);
printf("Enter serial number and name two\n");

120

Output

scanf("%d %s", &no, name2);
printf("%d %15s\n\n", no, name2);

Basic Computation and Principles of Computer Programming

printf("Enter serial number and name three\n");

scanf("%d %15s", &no, name3);

printf("%d %15s\n\n", no, name3);

Enter serial number
1 123456789012345

1 123456789012345r
Enter serial number
2 New York

2 New
Enter serial number
2 York
Enter serial number
1 123456789012

1 123456789012r
Enter serial number
2 New-York

2 New-York
Enter serial number
3 London

3 London

and name one

and

and

and

and

and

name

name

name

name

name

two

three

one

two

three

Fig. 5.6 Reading of strings

Some versions of scanf support the following conversion specifications for strings:

The specification %][characters] means that only the characters specified within the brackets are
permissible in the input string. If the input string contains any other character, the string will be
terminated at the first encounter of such a character. The specification %[”characters] does exactly the
reverse. That is, the characters specified after the circumflex (*) are not permitted in the input string.

%[characters]

%[~characters]

The reading of the string will be terminated at the encounter of one of these characters.

Example 5.7 | The program in Fig. 5.7 illustrates the function of %l] specification.

Program-A
main()

{

char address[801;

Managing Input and Output Operations 121

printf("Enter address\n");
scanf("%[a-z]", address);
printf("%-80s\n\n", address);

Output
Enter address
new delhi 110002
new delhi

Program-B
main()
{
char address[80];

printf("Enter address\n");
scanf ("%[*\n]", address);
printf("%-80s", address);

Output
Enter address
New Delhi 110 002
New Delhi 110 002

Fig. 5.7 Illustration of conversion specification%|] for strings

& Reading Blank Spaces >

We have earlier seen that %s specifier cannot be used to read strings with blank spaces.
But, this can be done with the help of %[] specification. Blank spaces may be included
within the brackets, thus enabling the scanf to read strings with spaces. Remember
that the lowercase and uppercase letters are distinct. See Fig. 5.7.

Reading Mixed Data Types

It is possible to use one scanf statement to input a data line containing mixed mode data. In such cases,
care should be exercised to ensure that the input data items match the control specifications in order and
type. When an attempt is made to read an item that does not match the type expected, the scanf function
does not read any further and immediately returns the values read. The statement

scanf ("%d %c %f %s", &count, &code, &ratio, name);

will read the data
15 p 1.575 coffee

122 | Basic Computation and Principles of Computer Programming

correctly and assign the values to the variables in the order in which they appear. Some systems accept
integers in the place of real numbers and vice versa, and the input data is converted to the type specified
in the control string.

A space before the %c specification in the format string is necessary to skip the white space before p.

Detection of Errors in Input

When a scanf function completes reading its list, it returns the value of number of items that are
successfully read. This value can be used to test whether any errors occurred in reading the input. For
example, the statement

scanf("%d %f %s, &a, &b, name);
will return the value 3 if the following data is typed in:

20 150.25 motor
and will return the value 1 if the following line is entered

20 motor 150.25

This is because the function would encounter a string when it was expecting a floating-point value, and
would therefore terminate its scan after reading the first value.

Example 5.8 | The program presented in Fig. 5.8 illustrates the testing for correctness of reading
of data by scanf function.

The function scanf is expected to read three items of data and therefore, when the values for all the three
variables are read correctly, the program prints out their values. During the third run, the second item
does not match with the type of variable and therefore the reading is terminated and the error message is
printed. Same is the case with the fourth run.

In the last run, although data items do not match the variables, no error message has been printed.
When we attempt to read a real number for an int variable, the integer part is assigned to the variable,
and the truncated decimal part is assigned to the next variable.

W(OMNIH The character 2’ is assigned to the character variable c.

Program
main()
{
int a;
float b;
char c;
printf("Enter values of a, b and c\n");
if (scanf("%d %f %c", &a, &b, &c) == 3)
printf("a = %d b = %f ¢ = %\n" , a, b, c);
else
printf("Error in input.\n");

Output

Managing Input and Output Operations

Enter values of a, b and ¢
12 3.45 A
a =12 b = 3.450000 c
Enter values of a, b and ¢
23 78 9
a = 23 b = 78.000000 c=9
Enter values of a, b and ¢
8 A 5.25
Error in input.
Enter values of a, b and ¢
Y 12 67
Error in input.
Enter values of a, b and ¢
15.75 23 X
a =15 b = 0.750000 c =2

1}
b=

123

Fig. 5.8 Detection of errors in scanf input

Commonly used scanf format codes are given in Table 5.2

Table 5.2 Commonly used scanf Format Codes

Code Meaning

Yoc read a single character

Yod read a decimal integer

Yoe read a floating point value

9ot read a floating point value

Yog read a floating point value

90h read a short integer

%1 read a decimal, hexadecimal or octal integer
900 read an octal integer

%os read a string

9ou read an unsigned decimal integer
Yox read a hexadecimal integer

%] ..] read a string of word(s)

The following letters may be used as prefix for certain conversion characters.

h for short integers

1 for long integers or double

L forlong double

W(OSNI C99 adds some more format codes.

124

Basic Computation and Principles of Computer Programming

Points to Remember while Using scanf

If we do not plan carefully, some ‘crazy’ things can happen with scanf. Since the I/O routines are not a
part of C language, they are made available either as a separate module of the C library or as a part of
the operating system (like UNIX). New features are added to these routines from time to time as new
versions of systems are released. We should consult the system reference manual before using these
routines. Given below are some of the general points to keep in mind while writing a scanf statement.

1.
2.
3.

@ — An error is detected, or
— The end of file is reached J

All function arguments, except the control string, must be pointers to variables.

Format specifications contained in the control string should match the arguments in order.

Input data items must be separated by spaces and must match the variables receiving the input in
the same order.

The reading will be terminated, when scanf encounters a ‘mismatch’ of data or a character that is
not valid for the value being read.

When searching for a value, scanf ignores line boundaries and simply looks for the next
appropriate character.

. Any unread data items in a line will be considered as part of the data input line to the next scanf

call.
When the field width specifier w is used, it should be large enough to contain the input data size.

& Rules for scanf)

e Each variable to be read must have a filed specification.

e For each field specification, there must be a variable address of proper
type.

e Any non-whitespace character used in the format string must have a matching
character in the user input.

e Never end the format string with whitespace. It is a fatal error!
e The scanf reads until:

A whitespace character is found in a numeric specification, or

The maximum number of characters have been read, or

5.5 FORMATTED OUTPUT

We have seen the use of printf function for printing captions and numerical results. It is highly desirable
that the outputs are produced in such a way that they are understandable and are in an easy-to-use form.
It is therefore necessary for the programmer to give careful consideration to the appearance and clarity
of the output produced by his program.

Managing Input and Output Operations 125

The printf statement provides certain features that can be effectively exploited to control the align-
ment and spacing of print-outs on the terminals. The general form of printf statement is:

printf("control string”, argl, arg2, , argn);
Control string consists of three types of items:

1. Characters that will be printed on the screen as they appear.
2. Format specifications that define the output format for display of each item.
3. Escape sequence characters such as \n, \t, and \b.

The control string indicates how many arguments follow and what their types are. The arguments
argl, arg2, , argn are the variables whose values are formatted and printed according to the
specifications of the control string. The arguments should match in number, order and type with the
format specifications.

A simple format specification has the following form:

[

% w.p type-specifier
where w is an integer number that specifies the total number of columns for the output value and p is
another integer number that specifies the number of digits to the right of the decimal point (of a real
number) or the number of characters to be printed from a string. Both w and p are optional. Some
examples of formatted printf statement are:

printf("Programming in C");

printf(" ");

printf("\n");

printf("%d", x);

printf("a = %f\n b = %f", a, b);

printf("sum = %d", 1234);

printf("\n\n");
printf never supplies a newline automatically and therefore multiple printf statements may be used to

build one line of output. A newline can be introduced by the help of a newline character \n” as shown in
some of the examples above.

Output of Integer Numbers
The format specification for printing an integer number is:

% wd

where w specifies the minimum field width for the output. However, if a number is greater than the
specified field width, it will be printed in full, overriding the minimum specification. d specifies that the
value to be printed is an integer. The number is written right-justified in the given field width. Leading
blanks will appear as necessary. The following examples illustrate the output of the number 9876 under
different formats:

126 Basic Computation and Principles of Computer Programming

Format Output
printf(“%d”, 9876) ﬂnﬂ
printf(“%6d”, 9876)] \ \9\8\7\6\
printf(“%2d”, 9876) ﬂﬂﬂ
printf(“%-6d”, 9876) 9[8]7]6] | |
printf(“%06d”, 9876) 0]o[9]8]7]6]

It is possible to force the printing to be left-justified by placing a minus sign directly after the %
character, as shown in the fourth example above. It is also possible to pad with zeros the leading blanks
by placing a 0 (zero) before the field width specifier as shown in the last item above. The minus (—) and
zero (0) are known as flags.

Long integers may be printed by specifying Id in the place of d in the format specification. Similarly,
we may use hd for printing short integers.

Example 5.9 | The program in Fig. 5.9 illustrates the output of infeger numbers under various
formats.

Program
main()
{
int m = 12345;
long n = 987654;

printf("%d\n",m);
printf("%10d\n",m);
printf("%010d\n",m);
printf("%-10d\n",m);
printf("%101d\n",n);
printf("%101d\n",-n);

Output
12345
12345
0000012345
12345
987654
— 987654

Fig. 5.9 Formatted output of integers

Output of Real Numbers

The output of a real number may be displayed in decimal notation using the following format
specification:

Managing Input and Output Operations 127

% w.p f

The integer w indicates the minimum number of positions that are to be used for the display of the value
and the integer p indicates the number of digits to be displayed after the decimal point (precision). The
value, when displayed, is rounded to p decimal places and printed right-justified in the field of w
columns. Leading blanks and trailing zeros will appear as necessary. The default precision is 6 decimal
places. The negative numbers will be printed with the minus sign. The number will be displayed in the
form [—] mmm-nnn.

We can also display a real number in exponential notation by using the specification:

% w.p e
The display takes the form
[-] m.nnnne[t]xx
where the length of the string of n’s is specified by the precision p. The default precision is 6. The field
width w should satisfy the condition.
w = pt7

The value will be rounded off and printed right justified in the field of w columns.

Padding the leading blanks with zeros and printing with left-justification are also possible by using
flags O or — before the field width specifier w.

The following examples illustrate the output of the number y = 98.7654 under different format speci-
fications:

Format 0utput
printf(“%7.4f,y) 19]8].]7]6]5]4]
printf(“%7.2f ,y)] \ \ 9 \ 8 \ . \ 7 \ 7 \
printf(“%-7.2f.y) of8].[7]7] | |
printf(“%f ”,y)] 9 \ 8 \ . \ 7 \ 6 \ 5 \ 4 \
printf(“%10.2¢”,y)] \ \9 \) \ 8 \ 8 \ e \ + \ 0 \ 1 \
printf(“%11.4e” -y) -]9].[8]7]6]5][e|[+]0]1]
printf(“%-10.2¢”.y) of.[8[8]e[+[0]1] []
printf(“%e”.y) 9[.]8]7]6]5]4]0]e[+]0]1]

Some systems also support a special field specification character that lets the user define the field size
at run time. This takes the following form:

printf("%*.*f", width, precision, number);

128 Basic Computation and Principles of Computer Programming

In this case, both the field width and the precision are given as arguments which will supply the values
for w and p. For example,
printf("%*.*f",7,2,number) ;
is equivalent to
printf("%7.2f",number) ;

The advantage of this format is that the values for widrh and precision may be supplied at run time, thus
making the format a dynamic one. For example, the above statement can be used as follows:

int width = 7;

int precision = 2;

printf("%*.*f", width, precision, number);

Example 5.10 | All the options of printing a real number are illustrated in Fig. 5.10.

Program

main()

{
float y = 98.7654;
printf("%7.4f\n", y);
printf("%f\n", y);
printf("%7.2f\n", y);
printf("%-7.2f\n", y);
printf("%07.2f\n", y);
printf("s*.*f", 7, 2, y);
printf("\n");
printf("%10.2e\n", y);
printf("%12.4e\n", -y);
printf("%-10.2e\n", y);
printf("%e\n", y);

Output
98.7654
98.765404
98.77
98.77
0098.77
98.77
9.88e+001
-9.8765e+001
9.88e+001
9.876540e+001

Fig. 5.10 Formatted output of real numbers

Managing Input and Output Operations 129

Printing of a Single Character
A single character can be displayed in a desired position using the format:
swc
The character will be displayed right-justified in the field of w columns. We can make the display
left-justified by placing a minus sign before the integer w. The default value for wis 1.
Printing of Strings
The format specification for outputting strings is similar to that of real numbers. It is of the form
“wW.ps

where w specifies the field width for display and p instructs that only the first p characters of the string
are to be displayed. The display is right-justified.

The following examples show the effect of variety of specifications in printing a string “NEW DELHI
110001, containing 16 characters (including blanks).

Specification Output

123 456 78 9012345¢6 78 90
e (NJefw] [ofefefufr] [1]1]ofofofa] [| | |
wos [[| [[n]efw[[ofefuijnf[i] [1][1]ofofo]1]
wotos [[| [[[[[[[[ne[w] [ofeft]u[i] |
wes [N[elw] [of [[[[][[T [[[]]

|
%20t0s [N[Efw] [ofefifu[| | [[[] [[[]]]
|

wes [NJefw] [ole[ifn]r] [1][r]ofofof1] [| |
Example 5.11 | Printing of characters and strings is illustrated in Fig. 5.11.
Program
main()
{
char x = 'A';

char name[20] = "ANIL KUMAR GUPTA";

printf("OUTPUT OF CHARACTERS\n\n");
printf("%c\n%3c\n%5c\n", x,x,x);
printf("%3c\n%c\n", x,x);

130 Basic Computation and Principles of Computer Programming
printf("\n");

printf("OUTPUT OF STRINGS\n\n");
printf("%s\n", name);

printf("%20s\n", name);
printf("%20.10s\n", name);
printf("%.5s\n", name);
printf("%-20.10s\n", name);
printf("%5s\n", name);

Output
OUTPUT OF CHARACTERS
A
A

A
A
OUTPUT OF STRINGS
ANIL KUMAR GUPTA
ANIL KUMAR GUPTA
ANIL KUMAR
ANIL
ANIL KUMAR
ANIL KUMAR GUPTA

Fig. 5.11 Printing of characters and strings

Mixed Data Output

It is permitted to mix data types in one printf statement. For example, the statement of the type
printf("%d %f %s %c", a, b, c, d);

is valid. As pointed out earlier, printf uses its control string to decide how many variables to be printed

and what their types are. Therefore, the format specifications should match the variables in number,

order, and type. If there are not enough variables or if they are of the wrong type, the output results will
be incorrect.

Table 5.3 Commonly used printf Format Codes

Code Meaning

Joc print a single character

9od print a decimal integer

Yoe print a floating point value in exponent form

Yot print a floating point value without exponent

9og print a floating point value either e-type or f-type depending on
o1 print a signed decimal integer

(Contd.)

Managing Input and Output Operations 131

Table 5.3 (Contd.)

Code Meaning
900 print an octal integer, without leading zero

Yos print a string

9ou print an unsigned decimal integer

Yox print a hexadecimal integer, without leading Ox

The following letters may be used as prefix for certain conversion characters.
h for short integers
1 for long integers or double
L forlongdouble.

Table 5.4 Commonly used Output Format Flags

Flag Meaning

- Output is left-justified within the field. Remaining field will be blank.
+ + or — will precede the signed numeric item.

0 Causes leading zeros to appear.

(with o or x) Causes octal and hex items to be preceded by O and Ox, respectively.

(with e, f or g) Causes a decimal point to be present in all floating point numbers, even

if it is whole number. Also prevents the truncation of trailing zeros in g-
type conversion.

W(OMNDE (99 adds some more format codes.

Enhancing the Readability of Output

Computer outputs are used as information for analysing certain relationships between variables and for
making decisions. Therefore the correctness and clarity of outputs are of utmost importance. While the
correctness depends on the solution procedure, the clarity depends on the way the output is presented.
Following are some of the steps we can take to improve the clarity and hence the readability and
understandability of outputs.

1. Provide enough blank space between two numbers.

2. Introduce appropriate headings and variable names in the output.

3. Print special messages whenever a peculiar condition occurs in the output.
4. Introduce blank lines between the important sections of the output.

The system usually provides two blank spaces between the numbers. However, this can be increased by
selecting a suitable field width for the numbers or by introducing a ‘tab’ character between the
specifications. For example, the statement

printf("a = %d\t b = %d", a, b);
will provide four blank spaces between the two fields. We can also print them on two separate lines by
using the statement

printf("a = %d\n b = %d", a, b);

132 Basic Computation and Principles of Computer Programming

Messages and headings can be printed by using the character strings directly in the printf statement.
Examples:
printf("\n OUTPUT RESULTS \n");
printf("Code\t Name\t Age\n");
printf("Error in input data\n");

printf("Enter your name\n");

[Just Remember}

= While using getchar function, care should be exercised to clear any unwanted
characters in the input stream.

= Do not forget to include <stdio.h> headerfiles when using functions from
standard input/output library.

= Do not forget to include <ctype.h> header file when using functions from char-
acter handling library.

= Provide proper field specifications for every variable to be read or printed.

= Enclose format control strings in double quotes.

= Do not forget to use address operator & for basic type variables in the input list
of scanf.

= Use double quotes for character string constants.

= Use single quotes for single character constants.

= Provide sufficient field to handle a value to be printed.

= Be aware of the situations where output may be imprecise due to formatting.

= Do not specify any precision in input field specifications.

= Do not provide any white-space at the end of format string of a scanf
statement.

= Do not forget to close the format string in the scanf or printf statement with
double quotes.

= Using an incorrect conversion code for data type being read or written will
result in runtime error.

= Do not forget the comma after the format string in scanf and printf
statements.

= Not separating read and write arguments is an error.

= Do not use commas in the format string of a scanf statement.

= Using an address operator & with a variable in the printf statement will result
in runtime error.

Case Studies

1. Inventory Report

Problem: The ABC Electric Company manufactures four consumer products. Their inventory position
on a particular day is given below:

Managing Input and Output Operations 133

Code Quantity Rate (Rs)
F105 275 575.00
H220 107 99.95
1019 321 215.50
M315 89 725.00

It is required to prepare the inventory report table in the following format:

INVENTORY REPORT

Code Quantity Rate Value

Total Value: —

The value of each item is given by the product of quantity and rate.
Program: The program given in Fig. 5.12 reads the data from the terminal and generates the required
output. The program uses subscripted variables which are discussed in Chapter 7.

Program
#define ITEMS 4
main()
{ /* BEGIN */
int i, quantity[5];
float rate[5], value, total value;
char code[5][5];
/* READING VALUES */
i=1;
while (i <= ITEMS)
{
printf("Enter code, quantity, and rate:");
scanf("%s %d %f", code[i], &quantity[i],&rate[i]);

i+t
}
Pooocooc Printing of Table and Column Headings....... &7
printf("\n\n");
printf(" INVENTORY REPORT \n");
printf("--————- - — \n");
printf(" Code Quantity Rate Value \n");
printf("—-———-—---—-————————————— \n");
Booooooc Preparation of Inventory Position.......... 7/
total value = 0;
i=1;

while (i <= ITEMS)
{

134 Basic Computation and Principles of Computer Programming

value = quantity[i] * rate[i];

printf("%5s %10d %10.2f %e\n",code[i],quantity[i],
rate[i],value);

total value += value;

i++;
}
PBsooococ Printing of End of Table.................. 7
printf("—-————-—-—-———————— \n");
printf(" Total Value = %e\n",total value);
printf("—-————--—-—-———————— \n");
} /* END */

Output
Enter code, quantity, and rate:F105 275 575.00
Enter code, quantity, and rate:H220 107 99.95
Enter code, quantity, and rate:1019 321 215.50
Enter code, quantity, and rate:M315 89 725.00

INVENTORY REPORT

Code Quantity Rate Value

F105 275 575.00 1.581250e+005
H220 107 99.95 1.069465e+004
1019 321 215.50 6.917550e+004
M315 89 725.00 6.452500e+004

Total Value = 3.025202e+005

Fig. 5.12 Program for inventory report

2. Reliability Graph

Problem: The reliability of an electronic component is given by

reliability (r) = e =™
where A is the component failure rate per hour and t is the time of operation in hours. A graph is required
to determine the reliability at various operating times, from 0 to 3000 hours. The failure rate A (lambda)
is 0.001.

Problem
#include <math.h>
#define LAMBDA 0.001
main()
{
double t;
float r;
int i, R;
for (i=1; i<=27; ++1i)

{

Managing Input and Output Operations

printf("--");
1
printf("\n");
for (t=0; t<=3000; t+=150)
{

r = exp(-LAMBDA*t);
R = (int) (50*r+0.5);
printf(" |");
for (i=1; i<=R; ++i)
{

printf("*");
1
printf("#\n");

1
for (i=1; i<3; ++1i)
{

printf(" |\n");

|**#
|***#
|*************************************#
|********************************#
|***************************#
|************************#
|********************#

|*****************#

|***************#

|*************#

|***********#

|**********#

|********#

|*******#

|******#

|*****#

|*****#

|****#

|***#

|***#

|*~k#

135

Fig. 5.13 Program to draw reliability graph

136 Basic Computation and Principles of Computer Programming
Program: The program given in Fig. 5.13 produces a shaded graph. The values of t are self-generated
by the for statement
for (t=0; t <= 3000; t = t+150)
in steps of 150. The integer 50 in the statement
(int) (50*r+0.5)

is a scale factor which converts r to a large value where an integer is used for plotting the curve.
Remember r is always less than 1.

Review Questions

5.1 State whether the following statements are true or false.

(a) The purpose of the header file <studio.h> is to store the programs created by the users.

(b) The C standard function that receives a single character from the keyboard is getchar.

(c) The getchar cannot be used to read a line of text from the keyboard.

(d) The input list in a scanf statement can contain one or more variables.

(e) When an input stream contains more data items than the number of specifications in a scanf
statement, the unused items will be used by the next scanf call in the program.

(f) Format specifiers for output convert internal representations for data to readable characters.

(g) Variables form a legal element of the format control string of a printf statement.

(h) The scanf function cannot be used to read a single character from the keyboard.

(i) The format specification %+ —8d prints an integer left-justified in a field width of 8 with a
plus sign, if the number is positive.

(j) If the field width of a format specifier is larger than the actual width of the value, the value is
printed right-justified in the field.

(k) The print list in a printf statement can contain function calls.

(1) The format specification %5s will print only the first 5 characters of a given string to be

printed.
5.2 Fill in the blanks in the following statements.

(a) The _ specification is used to read or write a short integer.

(b) The conversion specifier __ is used to print integers in hexadecimal form.

(c) For using character functions, we must include the header file . in the program.

(d) For reading a double type value, we must use the specification

(e) The specification __ is used to read a data from input list and dlscard it without
assigning it to many variables.

(f) The specification ___ may be used in scanf to terminate reading at the encounter of

a particular character.
(g) The specification %]] is used for reading strings that contain .
(h) By default, the real numbers are printed with a precisionof __ decimal places.
(i) To print the data left-justified, we mustuse __ in the field specification.
(j) The specifier __ prints floating-point values in the scientific notation.
5.3 Distinguish between the following pairs:
(a) getchar and scanf functions.
(b) %s and %c specifications for reading.
(c) %s and %]] specifications for reading.

5.4

5.5

5.6

5.7

5.8

5.9

Managing Input and Output Operations 137

(d) %g and %f specification for printing.
(e) %f and %e specifications for printing.

Write scanf statements to read the following data lists:
(a) 78 B 45 (b) 123 1.23 45A
(¢) 15-10-2002 (d) 10 TRUE 20

State the outputs produced by the following printf statements.
(a) printf (“%d%c%t”, 10, ‘x’, 1.23);
(b) printf (“%2d %c %4.2f”, 1234,, ‘x’, 1.23);
(c) printf (“%d\t%4.2f”, 1234, 456);
(d) printf (“\”%08.2\"”, 123.4);
(e) printf (“%d%d %d”, 10, 20);
For questions 5.6 to 5.10 assume that the following declarations have been made in the
program:
int year, count;
float amount, price;
char code, city[10];
double root;
State errors, if any, in the following input statements.
(a) scanf(“%c%t%d”, city, &price, &year);
(b) scanf(“%s%d”, city, amount);
(c) scanf(“%f, %d, &amount, &year);
(d) scanf(\n”%f”, root);
(e) scanf(“%c %d %1d”, *code, &count, Root);
What will be the values stored in the variables year and code when the data
1988, x
is keyed in as a response to the following statements:
(a) scanf(“%d %c”, &year, &code);
(b) scanf(“%c %d”, &year, &code);
(c) scanf(“%d %c”, &code, &year);
(d) scanf(“%s %c”, &year, &code);

The variables count, price, and city have the following values:
count <—— 1275
price <—— -235.74

city <—— Cambridge
Show the exact output that the following output statements will produce:
(a) printf(“%d %t”, count, price);
(b) printf(“%2d\n%f”, count, price);
(c) printf(“%d %f”, price, count);
(d) printf(“%10dxxxx%5.2f” ,count, price);
(e) printf(“%s”, city);
(f) printf(%-10d %-15s”, count, city);
State what (if anything) is wrong with each of the following output statements:
(a) printf(%d 7.2%f, year, amount);
(b) printf(“%-s, %c™\n, city, code);
(c) printf(“%f, %d, %s, price, count, city);
(d) printf(“%c%d%f\n”, amount, code, year);

138
5.10

5.11
5.12
5.13
5.14
5.15

5.16
5.17
5.18

5.19

5.20

Basic Computation and Principles of Computer Programming

In response to the input statement
scanf(“%4d%*%d”, &year, &code, &count);
the following data is keyed in:
19883745
What values does the computer assign to the variables year, code, and count?
How can we use the getchar() function to read multicharacter strings?
How can we use the putchar () function to output multicharacter strings?
What is the purpose of scanf() function?
Describe the purpose of commonly used conversion characters in a scanf() function.
What happens when an input data item contains
(a) more characters than the specified field width and
(b) fewer characters than the specified field width?
What is the purpose of print() function?
Describe the purpose of commonly used conversion characters in a printf() function.
How does a control string in a printf() function differ from the control string in a scanf()
function?
What happens if an output data item contains
(a) more characters than the specified field width and
(b) fewer characters than the specified field width?
How are the unrecognized characters within the control string are interpreted in
(a) scanf function; and
(b) printf function?

Programming Exercises

5.1

5.2

53

54

Given the string “WORDPROCESSING”, write a program to read the string from the terminal
and display the same in the following formats:
(a) WORD PROCESSING
(b) WORD
PROCESSING

(c) W.P.
Write a program to read the values of x and y and print the results of the following expressions in
one line:
X+y (b) X+y

X—-y 2
Write a program to read the following numbers, round them off to the nearest integers and print
out the results in integer form:

35.7 50.21 -23.73 —46.45

Write a program that reads 4 floating point values in the range, 0.0 to 20.0, and prints a horizontal
bar chart to represent these values using the character * as the fill character. For the purpose of
the chart, the values may be rounded off to the nearest integer. For example, the value 4.36 should
be represented as follows.

(a)

(©) (x+y)(x-y)

£ £
* * * £ 436
£ £ £ £

Note that the actual values are shown at the end of each bar.

5.5

5.6

5.7

5.8

5.9

5.10

Managing Input and Output Operations 139

Write an interactive program to demonstrate the process of multiplication. The program should
ask the user to enter two two-digit integers and print the product of integers as shown below.
45
X 37
7 %45 is 315
3x45is 135
Add them 1665

Write a program to read three integers from the keyboard using one scanf statement and output
them on one line using:

(a) three printf statements,

(b) only one printf with conversion specifiers, and

(c) only one printf without conversion specifiers.

Write a program that prints the value 10.45678 in exponential format with the following
specifications:

(a) correct to two decimal places;

(b) correct to four decimal places; and

(c) correct to eight decimal places.

Write a program to print the value 345.6789 in fixed-point format with the following
specifications:

(a) correct to two decimal places;

(b) correct to five decimal places; and

(c) correct to zero decimal places.

Write a program to read the name ANIL KUMAR GUPTA in three parts using the scanf
statement and to display the same in the following format using the printf statement.

(a) ANIL K. GUPTA

(b) AK. GUPTA

(c) GUPTA AK.

Write a program to read and display the following table of data.
Name Code Price

Fan 67831 1234.50
Motor 450 5786.70

The name and code must be left-justified and price must be right-justified.

CHAPTER

6

Decision Making and
Branching

6.1 INTRODUCTION

We have seen that a C program is a set of statements which are normally executed sequentially in the
order in which they appear. This happens when no options or no repetitions of certain calculations are
necessary. However, in practice, we have a number of situations where we may have to change the order
of execution of statements based on certain conditions, or repeat a group of statements until certain
specified conditions are met. This involves a kind of decision making to see whether a particular
condition has occurred or not and then direct the computer to execute certain statements accordingly.

C language possesses such decision-making capabilities by supporting the following statements:

1. if statement

2. switch statement

3. Conditional operator statement

4. goto statement

These statements are popularly known as decision-making statements. Since these statements ‘con-
trol” the flow of execution, they are also known as control statements.

We have already used some of these statements in the earlier examples. Here, we shall discuss their
features, capabilities and applications in more detail.

6.2 DECISION MAKING WITH IF STATEMENT

The if statement is a powerful decision-making statement and is used to control the flow of execution of
statements. It is basically a two-way decision statement and is used in conjunction with an expression. It
takes the following form:

if (test expression)

It allows the computer to evaluate the expression first and then, depending on whether the value of the
expression (relation or condition) is ‘true’ (or non-zero) or ‘false’ (zero), it transfers the control to a

Decision Making and Branching 141

particular statement. This point of program has two paths to follow, one for the true condition and the
other for the false condition as shown in Fig. 6.1.

test expression
»

Fig. 6.1 Two-way branching

Some examples of decision making, using if statements are:

1. if (bank balance is zero)
borrow money
2. if (room is dark)
put on lights
3. if (codeis 1)
person is male
4. if (age is more than 55)
person is retired
The if statement may be implemented in different forms depending on the complexity of conditions to
be tested. The different forms are:
1. Simple if statement
2. if.....else statement
3. Nested if....else statement
4. else if ladder.
We shall discuss each one of them in the next few sections.

6.3 SIMPLE IF STATEMENT

The general form of a simple if statement is

if (test expression)

{
}

statement-x;
The ‘statement-block’ may be a single statement or a group of statements. If the test expression is true,
the statement-block will be executed; otherwise the statement-block will be skipped and the execution

statement-block;

142 Basic Computation and Principles of Computer Programming

will jump to the statement-x. Remember, when the condition is true both the statement-block and the
statement-x are executed in sequence. This is illustrated in Fig. 6.2.

test

expression
2

True

statement-block

statement - x <

Next statement

Fig. 6.2 Flow chart of simple if control

Consider the following segment of a program that is written for processing of marks obtained in an
entrance examination.

.........

if (category == SPORTS)
{

}

printf("%f", marks);

marks = marks + bonus marks;

.........

.........

The program tests the type of category of the student. If the student belongs to the SPORTS category,
then additional bonus_marks are added to his marks before they are printed. For others, bonus_marks
are not added.

Example 6.1 | The program in Fig. 6.3 reads four values a, b, ¢, and d from the terminal and
evaluates the ratio of (a+b) to (c—d) and prints the result, if c-d is not equal to
zero.

The program given in Fig. 6.3 has been run for two sets of data to see that the paths function properly.
The result of the first run is printed as,

Ratio = -3.181818

Decision Making and Branching 143

Program
main()
{
int a, b, c, d;
float ratio;

printf("Enter four integer values\n");
scanf("%d %d %d %d", &a, &b, &c, &d);

if (c-d != 0) /* Execute statement block */

{
ratio = (float)(a+b)/(float)(c-d);
printf("Ratio = %f\n", ratio);

}
Output
Enter four integer values
12 23 34 45
Ratio = -3.181818

Enter four integer values
12 23 34 34

Fig. 6.3 Illustration of simple if statement

The second run has neither produced any results nor any message. During the second run, the value of
(c—d) is equal to zero and therefore, the statements contained in the statement-block are skipped. Since
no other statement follows the statement-block, program stops without producing any output.

Note the use of float conversion in the statement evaluating the ratio. This is necessary to avoid
truncation due to integer division. Remember, the output of the first run —3.181818 is printed correct to
six decimal places. The answer contains a round off error. If we wish to have higher accuracy, we must
use double or long double data type.

The simple if is often used for counting purposes. The Example 6.2 illustrates this.

Example 6.2 | The program in Fig. 6.4 counts the number of boys whose weight is
less than 50 kg and height is greater than 170 cm.

The program has to test two conditions, one for weight and another for height. This is done using the
compound relation

if (weight < 50 && height > 170)

144 Basic Computation and Principles of Computer Programming

This would have been equivalently done using two if statements as follows:
if (weight < 50)
if (height > 170)
count = count +1;
If the value of weight is less than 50, then the following statement is executed, which in turn is

another if statement. This if statement tests height and if the height is greater than 170, then the count
is incremented by 1.

Program
main()
{
int count, i;
float weight, height;

count = 0;
printf("Enter weight and height for 10 boys\n");

for (i =1; i <= 10; i++)
{
scanf ("%f %f", &weight, &height);
if (weight < 50 && height > 170)
count = count + 1;

}
printf("Number of boys with weight < 50 kg\n");
printf("and height > 170 cm = %d\n", count);

}

Output

Enter weight and height for 10 boys

45 176.5
55 174.2
47 168.0
49 170.7
54 169.0
53 170.5
49 167.0
48 175.0
47 167

51 170

Number of boys with weight < 50 kg
and height > 170 cm = 3

Fig. 6.4 Use of if for counting

Decision Making and Branching | 145

@ Applying De Morgan’s Rule >

While designing decision statements, we often come across a situation where the
logical NOT operator is applied to a compound logical expression, like !(x&&yll!z).
However, a positive logic is always easy to read and comprehend than a negative
logic. In such cases, we may apply what is known as De Morgan’s rule to make the
total expression positive. This rule is as follows:
“Remove the parentheses by applying the NOT operator to every logical expression
component, while complementing the relational operators.”
That is,
X becomes !x
IX becomes x

&& becomes I
[l becomes &&
Examples:
I(x && y Il 1z) becomes !x Il ly && z
@ 1(x <=0 Il !condition) becomes x >0&& condition J
6.4 THE IF.....ELSE STATEMENT

The if...else statement is an extension of the simple if statement. The general form is

If (test expression)

{

True-block statement(s)

False-block statement(s)
}

statement-x

If the test expression is true, then the true-block statement(s), immediately following the if
statements<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>