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Brief Overview 

The use of computers for structural analysis has completely altered the method 

of presentation of structural theory. While the student is expected to be familiar 

with this presentation, it is far more important that he understands the basic 

principles of structural analysis.

The book endeavours to present in one volume, the classical as well as matrix 

methods of structural analysis. It is expected that for some time to come, the 

student will be required to study both these approaches, for the matrix methods are 

not very different from classical methods—the only difference is in the emphasis 

laid in formulating them so as to be suitable for computer programming. An 

understanding of the basic principles in both these methods necessarily requires 

the solving of simple problems using hand computations.

This book is intended for a course in structural analysis following the usual 

course in mechanics of solid or, as it is more commonly called, strength of 

materials. It aims to provide a smooth transition from the classical approaches 

that are based on physical behaviour of structures in terms of their defl ected 

shapes to a formal treatment of a general class of structures by means of matrix 

formulation. This book can be used by undergraduate students, professionals as 

well as those preparing for competitive examinations.

Rationale behind the Third Edition

Encouraged by the tremendous response to the fi rst two editions, this book 

has been revised keeping in mind the valuable suggestions received from the 

reviewers, publishers, readers and colleagues. The second edition of the text 

came out in 1996, i.e., 14 years back and since then has undergone 23 reprints! 

Since this book is prescribed as a textbook and as a reference in many major 

universities of India, to be in tandem with the changing course requirements, 

revision of the text assumed prime importance. Also, to uphold the competitive 

edge, I felt it was necessary to include certain pedagogical features like step-by-

step approach for the solved examples, objective-type questions and a solution 

manual.

Changes in the Third Edition

It was indeed a challenging task to undertake the revision of the textbook for 

its third edition! Keeping the basic approach of the fi rst two editions intact, the 
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third edition has been written to make the book broad-based and gain wider 

acceptance amongst teachers and students. 

Though arches are not included under a separate chapter, the three-hinged 

arches are dealt with elaborately under cables and arches in Chapter 2, and 

two-hinged arches under indeterminate structures in Chapter 10 dealing with 

consistent displacements. The ILD for three-hinged arches are covered in 

Chapter 7.

The scope of fi xed beams is enlarged by including a large number of worked-

out examples covering point loads, uniform and varying loads, applied couples 

and effect of sinking and rotation of supports.

Tension coeffi cient method is now included in the analysis of plane trusses in 

Chapter 3 and space trusses in Chapter 4.

Organization of the Book 

Chapters 1 and 2 deal with basic principles of structural analysis of simple 

structures using only equilibrium equations. Chapters 3 and 4 deal with the 

analysis of plane trusses and space trusses respectively. Chapters 5 and 6 deal 

with displacement calculations by geometric and energy methods respectively. 

Chapter 7 discusses the analysis for rolling loads by infl uence lines, while 

cables and suspension bridges are discussed in detail in Chapter 8. Chapter 9 is 

devoted to the approximate analysis of statically indeterminate structures.

Chapters 10 to 12 are devoted to the analysis of statically indeterminate 

structures using classical methods, such as consistent displacement, slope-

defl ection and moment distribution. Kani’s method is presented in some detail 

in Chapter 13. Column analogy is covered in Chapter 14. Chapters 15 and 

16 discuss the preliminaries required for the formulation matrix methods of 

structural analysis. The fl exibility and stiffness methods of analysis are presented 

in chapters 17 and 18. Simple examples needing only hand computations have 

been included in these chapters. However, the matrix formulation of the problems 

and computation techniques employed are suitable for computer programs. 

Finally, Chapter 19 discusses plastic analysis of steel structures. 

Four appendices are given at the end of the book which cover topics like theory 

of vectors and matrices, and tables on product integrals, fi xed end moments in a 

prismatic beam and force displacement relationship in a prismatic member.

Web Supplements

The web supplements can be accessed at and contain the following material:

Instructor Resources 

 • Solution manual 

 • PowerPoint lecture slides

Student Resources 

 • Links to reference material
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The international system of units (System Internationale d’Unites), commonly 

called SI, is being adopted all over the world as a uniform measurement system. 

While the complete transition from customary units to the SI system may take 

years, the use of SI units in the fi elds of engineering and science is proceeding 

rather rapidly, and it will soon become necessary for the modern civil engineer 

to gain experience in using the SI system. Fortunately, the changeover from the 

now common MKS units to SI units is quite simple, unlike the changeover from 

FPS to MKS units. In this book, SI units have been used throughout, with only 

minor modifi cations, to suit the requirements of the engineering world.

The basic and derived units for various categories of measurement are 

discussed in the following sections.

TYPICAL BASIC UNITS

Geometry

The basic unit of length is the metre (m), which together with the millimetre 

(mm) is used exclusively for geometrical quantities. Although the centimetre 

(cm) is a convenient quantity, its use is generally avoided in the SI system. The 

use of mm for section modulus and moment of inertia involves large numbers 

for the majority of common fl exural members. This problem is met by listing 

steel sections properties as section modulus ¥ 103 mm3 and moment of inertia ¥ 

106 mm4. Very small sections, such as light gauge steel shapes may be listed as 

section modulus x mm3 and moment of inertia x 10 mm4.

Mass and Density

Mass is a basic quantity in the system. The base unit of mass is the kilogram (kg). 

The use of kg should not be confused with the old metric force called kgf.

Material quantities are measured in mass units rather than in weight or force 

units. Thus, the mass per length of a steel beam is expressed in kg/m, gravity 

fl oor loading in kg/m2 and the mass of an object in kg. Mass density is given 

in kg/m3. In contrast to weight units, these quantities do not depend upon the 

acceleration due to gravity. Weight is not used directly in the SI system, but force 

is obviously caused by gravity acting on mass.

SI Units for 
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Force, Moment and Stress

The unit of force is the newton (N), which is the force required to give 1 kg mass 

1 m/s2 acceleration. Thus 1 N is 1 kg.m/s2. The newton is a derived unit that is 

independent of the acceleration due to gravity. A kilo-newton (1000 newtons) or 

kN, which is about 100 kgf, is a convenient quantity in structural analysis and 

design. Approximating the acceleration due to gravity as 9.81 m/s2, a kg of mass 

exerts a force of 9.81 N on its support point.

The stress unit is newton per square metre (N/m2) called pascal (Pa). This is 

a very small unit (1 kg/cm2 approximates to 98100 Pa) and becomes practical 

only when used with a prefi x (k or M). The most convenient SI stress unit for 

structures is 1,000,000 Pa, the mega pascal or MPa, which is identical to MN/m2 

or N/mm2. The modulus of steel is about 200,000 MPa in SI units.

Surface loadings and allowable soil pressures have the units of pressure or 

stress and thus may be expressed in Pascals, but common usage will dictate 

their expression in kN/m2 or similar units. Surface loads in particular are well 

expressed in kN/m2 because their effects must be converted into kN during 

structural analysis.

Moment is expressed in N.m or kN.m. These units are convenient since 1 N.m 

is close to 10 kg.cm and 1 kN.m is close to 1/10 t.m.

Angle, Temperature, Energy and Power

Plane angles are measured in radians (rad), but degrees are also used. Temperature 

in the SI system should be expressed in Kelvin (K) but the use of degrees Celsius 

(*C), formerly called centigrade, is also permissible. Kelvin and Celsius are 

equal for temperature changes since an increment of 1°C equals an increment of 

1 K. Energy is expressed in jonles (J), where 1 J is 1 N.m. The unit of power is 

the watt (W) which is equal to one joule per second (J/s).

Some Simple Rules to be Observed in Using Si Units

Prefi xes are to be selected from the following table, in which each prefi x is a 

multiple of 1000.

Prefi x Symbol Multiplying factor

giga G 109

mega M 106

kilo k 103

milli m 10–3

micro m 10–6

nano n 10–9

Compound units, such as for moments, are written with a dot to indicate 

multiplication, such as kN.m (kilonewton-metre).
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CONVERSION FACTORS FOR SI UNITS

(Standard Gravitational Acceleration = 9.80665 m/s2)

MKS To SI Units

 1. Force/Load/Weight 1 kgf (kg) = 9.80665 N

   1 tonne (t) = 9.80665 kN

 2. Force/Load/Weight 1 kgf/m = 9.80665 N/m

  per Unit Length 1 tf/m = 9.80665 kN/m

 3. Unit Weight 1 kgf/m3 = 9.80665 N/m-*

 4. Stress/Pressure/    

  Modulus of Elasticity 1 kgf/m2 = 9.80665 N/m2

     = 9.80665 Pa

   1 kgf/cm2 = 98066.5 N/m2

     = 98066.5 Pa

     = 98.0665 kN/m2

 5. Moment of Force/ 1 kgf.m = 9.80665 N.m

  Bending moment/ 1 kgf.cm = 98.0665 ¥ 10–3 N.m

  Torque 1 tf.m = 9.80665 kN.m

SI Units  xix



1.1  FORMS OF STRUCTURES

Any civil engineering structure is conceived keeping in mind its intended use, 

the materials available, cost and aesthetic considerations. The structural analyst 

encounters a great variety of structures and these are briefl y reviewed here.

One of the simplest structures is a simply supported beam, supported on a pin 

at one end and a roller at the other (Fig. 1.1a). Such a beam, it may be recalled 

from the fundamentals of strength of materials, is quite stable and statically 

determinate, and transmits the external loads to the supports mainly through shear 

and moment. The other types of beams which are more complicated from the 

point of view of analysis are those with fi xed ends and those that are continuous 

over supports (Figs. 1.1b and c). As we shall see later, such beams are statically 

indeterminate and cannot be solved using equations of static equilibrium alone.

Fig. 1.1  Types of beams: (a) Simple beam, (b) Fixed end beam, (c) Continuous beam

For longer spans, a truss may be employed in place of a beam. Unlike a 

beam in which the loads are resisted by shear and moment, the truss members 

transmit the load primarily by axial forces in the members. The structural action 

of a truss may be compared with that of a simply supported beam. For a truss 

under vertical loading, the top chord members of the truss are subjected to axial 

compressive forces and the bottom chord members to axial tensile forces. Under 

similar conditions, the top fi bres of a beam are subjected to compressive stresses 

and the bottom fi bres to tensile stresses. Trusses are mainly built up of prismatic 
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2  Basic Structural Analysis

members forming various structural shapes out of basic triangular elements. A 

typical bridge truss is shown in Fig. 1.2a. The truss is known as a plane truss 

since all the members lie in one plane. Three-dimensional trusses, known as 

space trusses, are also sometimes used.

Another type of structure used for long spans is the arch. From the structural 

point of view, arches are characterised by high axial thrust and relatively low 

bending moment which result from its distinguished shape as well as the horizontal 

reactions that develop at the support points. Almost similar in structural behaviour 

and equally effi cient in transmitting forces is the cable structure. However, in this 

the forces are in tension instead of compression as in the arches. An arch and a 

cable structure are shown in Figs 1.2b and c respectively.

Fig. 1.2  Types of axial force structures: (a) Truss, (b) Arch, (c) Cable structure

A type of structure commonly used in industrial or residential buildings is a 

frame. Typical frames are shown in Fig. 1.3.

Fig. 1.3  Types of frames: (a) Industrial frame, (b) Multi-storey building frame,

(c) Building frame with shear wall

Frames are characterised by moment resisting members at some or all the 

joints. The resulting structure is rigid and, from the analytical point of view, 

highly statically indeterminate. As in the case of trusses, frames can be three-

dimensional. However, owing to the complications of three-dimensional analysis, 

frames are generally treated as planar frames in two directions.
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In addition to being assembled by discrete straight elements, structures such 

as shells can be made up of continuous surfaces. Like arches, shells derive their 

strength mainly from their respective shapes. The analysis of shells is generally 

complicated because of this surface geometry and the three-directional interaction 

of material. Two typical shell structures are shown in Fig. 1.4. The analysis of 

shell structures forms a separate topic and hence has not been included in this 

book. 

Fig. 1.4  Shell structures: (a) Cylindrical shell, (b) Hyperbolic parabolid

1.2  ANALYSIS AND DESIGN

In a broad sense, the design of a structure consists of two parts: the fi rst part deals 

with the determination of forces at any point or member of the given structure 

and the second part deals with the selection and design of suitable sections to 

resist these forces so that the stresses and deformations developed in the structure 

due to these forces are within permissible limits. The fi rst part can be termed as 

“structural analysis” and the second part as “proportioning” or “dimensioning” 

of members.

Before we can start the analysis, we shall require the entire details of the struc-

ture, loading and sectional properties. To proportion a structure, we must fi rst 

know how it will behave under loading. Therefore, the process of analysis and 

design forms an integral part of any design. There is a defi nite advantage in com-

bining design and analysis, and were it not for the fact that such a textbook would 

be enormous, it would have been ideal to include both in one volume. In practice, 

the properties of members are so chosen as to obtain a specifi ed structure, and 

then the analysis is carried out. Often the designer may have to readjust his initial 

dimensions in order to get the desired response from the structure. Therefore, 

the intended purpose of any analysis is to know how the structure responds to a 

given loading and thereby evaluate the stresses and deformations.

The ultimate aim in learning the methods of analysis is to help design effi cient, 

elegant and economical structures. Analysis helps the designer to choose the right 

type of sections consistent with economy and safety of the structure. The purpose 

of structural analysis is to determine the reactions, internal forces, such as axial, 

shear, bending and torsional, and deformations at any point of a given structure 

caused by the applied loads and forces.



4  Basic Structural Analysis

1.3  LOADS AND FORCES

Although we are mainly concerned with the analysis of structures, it is desirable 

to give some attention to the loads and forces that are expected to come on a 

structure.

Loads and forces are usually classifi ed into two broad groups: dead load and 

imposed loads and forces. For the purpose of structural analysis, any load can be 

idealised into concentrated loads (single forces acting over a small area) and line 

loads (closely placed concentrated loads along a line, like a set of train loads or 

weight of a partition wall on a fl oor etc.). Distributed loads are loads which act 

over an area.

1.3.1 Dead Load

Dead loads include the weight of all permanent components of the structure, 

such as beams, columns, fl oor slabs, etc. and any other immovable loads that are 

constant in magnitude and permanently attached to the structure. Dead load is 

perhaps the simplest of all loading types, since it can be readily computed from 

given dimensions and known unit weight of materials. However, exact structural 

dimensions are not known during the initial design phase and assumptions must 

fi rst be made which may be subject to changes later as the structural proportions 

are developed. In some structures, such as plate girders and trusses, dead weight 

assumptions can be expressed by general formulae. Obviously such formulae 

are derived from known weights of previously built structures. The Indian 

Standard schedule of unit weights of building materials (fi rst revision) (IS: 1911-

1967) gives the average unit weight of materials for the purpose of dead load 

calculations.

1.3.2 Imposed Loads and Forces

Imposed loads are the forces that act on a structure in the use of the building or 

structure due to the nature of use, activities due to people, machinery installations, 

external natural forces, etc.

These are: (1) live load, (2) wind load, (3) seismic force, (4) snow load, (5) 

loads imposed by rain, (6) soil and hydrostatic forces, (7) erection loads and (8) 

other forces.

Live Load

Live load is categorised as: (1) live load on buildings, and (2) live load on 

bridges.

Live Load on Buildings The character of use of occupancy of a structure together 

with the detail of any specifi c installations would suggest the live load on the 

structure. In buildings, these loads include any external loads imposed upon the 

structure during its service, such as the weights of stored materials, furniture 

and people. The estimation of live loads based on any rational basis is still not 

possible. To aid the designer, codes usually describe uniformly distributed live 
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loads or equivalent concentrated loads that represent the minimum loads for that 

category of use. IS: 875–1964 provides conservatively superimposed loads on 

fl oors and roofs.

Live Load on Bridges Another type of live load is that of moving vehicles on 

highways and railway bridges. As in the case of buildings, these are the minimum 

specifi ed values to be used for the design of bridges. 

The live loads on a highway bridge are prescribed in the Indian Roads 

Congress Standard Specifi cations and Codes of Practice for Road Bridges: 

Section II. The loadings have been classifi ed as class AA, class A and class B. 

The code also specifi es hypothetical vehicles with wheel loads and wheel bases 

for the classifi cation of vehicles and road bridges. The code also specifi es the 

impact factor, centrifugal forces, longitudinal forces due to the tractive effect of 

vehicles or due to braking.

Similar information is available for loadings on a railway bridge. The nature 

and magnitude of the loads to be taken for railway bridges in India are given in 

the Bridge Rules of the Ministry of Railways, Government of India.

In moving live loads such as those on bridges and in crane gantries, the critical 

positions of moving vehicles or wheel loads that produce maximum forces at 

various points of the structure have to be determined. This is usually done with 

the help of infl uence lines discussed elsewhere in the book.

Wind Loads Wind loads are very important in the case of tall structures and 

also low level light structures in coastal areas. Wind forces are based upon the 

maximum wind velocity, which in turn depends upon the region and location. It 

also depends upon the shape of the structure. In the absence of any meteorological 

data, the wind pressure may be taken from IS: 875–1964. The code gives two 

basic wind maps of India; one giving the maximum wind pressure including 

winds of short duration as in squalls, and the other excluding winds of short 

duration. The code recommends the same wind pressure for all heights up to 

30 m and thereafter gives values at intervals of 5 m up to 150 m. The code 

recommends the use of only the map giving the maximum pressure for squall 

conditions. But the allowable stresses can be increased by 33 to 50% depending 

upon the ratio of the wind pressures given by both maps for any particular area.

Earthquake Forces Earthquake forces should be considered for the design of 

structures in areas of seismic activity. The highly irregular or random shaking 

of the ground transmits acceleration to structures and the mass of the structure 

resists the motion due to inertia effects. The total inertia force (usually equal to 

the horizontal shear at the base of the structure) ranges from about 0.02 to 0.12 W 

or more for most buildings, where W is the total weight of the structure.

The Indian Standard Recommendations Criteria for Earthquake Resistant 

Design of Structures (third revision) (IS: 1893-1975) divides the whole country 

into fi ve seismic zones depending on past experience and the probability of 

the future occurrence of earthquakes. The inertia force based on the seismic 

coeffi cient as appropriate for seismic zones depends on the type of soils and 
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foundation system—a smaller value for hard soils and a larger value for soft 

soils. Buildings provided for accommodating essential services which are of 

post-earthquake importance, such as emergency relief stores, food grain storage 

structures, water works and power stations should be designed taking into account 

the “importance factor”

Snow and Rain Loads Snow and rain loads affect the design of roofs. The 

design loads corresponding to the highest accumulation of snow can be found in 

IS: 875-1964 and other forms of design information. These values are based on 

past weather records maintained by the Meteorological Department.

If storm water is drained properly, rain does not contribute to any load on 

the structure. However, structural failures have occurred when rain water got 

accumulated on roofs due to choked storm water drains. The accumulation of 

water causes additional load and hence defl ection which permits more water to 

accumulate. This progressive defl ection and accumulation of water may continue, 

leading to structural failure.

Soil and Hydrostatic Forces Structures below the ground, such as foundation 

walls, retaining walls or tunnels are subjected to forces due to soil pressure. The 

pressures may be estimated according to established theories.

The force exerted by a fl uid is normal to the surface of the retaining structure. 

The magnitude of the force depends on the hydrostatic pressure which is taken 

as r = vh where v is the unit weight of the fl uid and a is the height of the fl uid 

retained. This linear pressure distribution occurs in tanks, vessels and other 

structures under fl uids.

Erection Loads All loads required to be carried by a structure or any part of 

it due to the placing or storage of construction materials and erection equipment, 

including all loads due to the operation of such equipment, shall be considered 

as erection loads.

Other Forces Impact, vibrations, temperature effects, shrinkage, creep, 

settlement of foundations and other such phenomena produce effects on 

structures, some of which may be similar to those caused by external loads and 

forces. These forces may sometimes be surprisingly large and should be taken 

into consideration while designing.

1.3.3 Load Combinations

Engineering judgement must be exercised when determining critical load 

combinations. It is not necessary to superpose all maximum loads. For example, 

a simultaneous occurrence of an earthquake and high velocity winds will have 

negligible statistical probability. Critical load combinations are usually specifi ed 

by codes.
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1.4  IDEALIZATION OF STRUCTURES

To carry out practical analysis it becomes necessary to idealize a structure. The 

members are normally represented by their centroidal axes. This naturally does 

not consider the dimensions of members or depth of joints, and hence there may 

be a considerable difference between clear spans and centre to centre spans 

ordinarily used in analysis. These differences can be ignored unless the cross-

sectional dimensions of members are suffi ciently large to infl uence the results 

or when the forces are applied such that these dimensions become signifi cant. 

Usually, the centroidal axes or the edges of members are represented by a single 

line. Sometimes two lines are drawn to indicate the depth of members, and unless 

the depth of member is specifi ed it is disregarded in analysis. Supports and 

connections are represented in a simplifi ed form. The conventional representation 

of supports and connections are given in Sec. 1.5. The idealized or simplifi ed 

form of the structure in Fig. 1.5a is represented in Fig. 1.5b.

Fig. 1.5  Idealization of structure: (a) Actual structure, (b) Idealized structure
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1.5  SUPPORTS AND CONNECTIONS—

   CONVENTIONAL REPRESENTATION

Most structures are either partly or completely restrained so that they cannot 

move freely in space. Such restrictions on the movement of a structure are 

called restraints and are supplied by supports that connect the structure to some 

stationary body. Thus an essential part of analysis is to determine the manner 

in which the supports react. The reactive forces of the supports on the structure 

depend on the type of support condition used. As a fi rst step in determining 

reactions, it is essential to understand the interacting forces between that part of 

the structure at the support and the supporting device

Various types of supports are used in structures. Figure 1.6 gives the commonly 

employed support conditions and reaction components that can be transmitted 

to the structure by such supports. In addition to knowing the forces that each 

type of support can transmit, the student should be able to recognize the type of 

displacement that is permitted by each. For example, a hinged support permits 

only rotation and no translation in any direction, while a roller support permits 

rotation in addition to translation along the line of rollers.

The actual connections and the corresponding conventional representation of 

simply supported and rigidly connected ends are shown in Fig. 1.7.

For analysis we shall consider that whereas the pinned connection cannot 

transmit any moment, the rigid joints can.

1.6  ELASTIC AND LINEAR BEHAVIOUR OF

   STRUCTURES

In materials obeying Hooke’s law, the load-deformation relationship is linear. 

However, in practice we fi nd that the actual stress-strain relationship differs 

from the simple law of proportions, but for most engineering materials a linear 

relationship holds good with a fair degree of accuracy for at least lower stresses. 

Since this behaviour is simple to analyse and provides an excellent approximation 

for most materials in the usual range of stresses, we often assume, for the purpose 

of analysis, that the material obeys Hooke’s law and term the resulting behaviour 

as “linear”.

We may generalize the linearity assumption to an entire structure. When the 

displacements in a system of structural components are linear functions of the 

applied load or stress, then we have a linear structure or a structure exhibiting 

linear behaviour. Throughout this book, linear behaviour of structures is 

assumed.

1.7  PRINCIPLE OF SUPERPOSITION

The major reason for assuming linear behaviour of structures is that it allows the 

use of the principle of superposition. This principle states that the displacements 
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resulting from each of a number of forces may be added to obtain the displacements 

resulting from the sum of forces. Superposition also implies the converse, that is, 

the forces that correspond to a number of displacements may be added to yield 

the force that corresponds to the sum of displacements.

As an example, consider the cantilever beam given in Fig. 1.8. The defl ections 

caused by the three separate loads are shown in Fig. 1.8a. The same fi nal 

defl ections would result if all the three loads are applied together as shown in 

Fig. 1.6  Types of supports: (a) Roller support, (b) Hinged support, (c) Fixed support,

(d) Link support, (e) Ball and socket, (f) Rigid support in space
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Fig. 1.8b. This is true even if the sequence of loading is altered. It is important 

to note that this useful result would not occur if the defl ection was not a linear 

function of load.

Superposition thus allows us to separate the loads in any desired way, analyse 

the structure for a separate set of loads and fi nd the result for the sum of loads by 

adding individual load effects. Superposition applies equally to forces, stresses, 

strains and displacements.

The superposition principle, however, is not valid for two important cases: (1) 

when the geometry of the structure changes appreciably during the application of 

Fig. 1.7  (a) Idealized hinge, (b) Idealized rigid joint

Fig. 1.8  Principle of superposition: (a) Defl ections due to loads applied separately, (b) 

Defl ections due to all loads applied together
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loads and (2) when the load-deformation relationship of a structure is not linear 

even though the change in geometry can be neglected.

In most structures the deformations are so small that the changes caused in 

the geometry are considered secondary and hence neglected. However, in cases 

such as a slender strut acted upon by both axial and transverse loads, ie resulting 

stresses, defl ections and moments are not equal to the algebraic sum of the values 

caused by the forces acting separately. The transverse defl ections affect the 

moment, which in turn cause additional defl ections.



2.1  EQUATIONS OF EQUILIBRIUM

Consider any stationary structure or body acted upon by a system of Forces 

which include external loads, reactions and body forces caused by the weight of 

the elements. The conditions of equilibrium are best established with reference 

to coordinate axes X, Y and Z. It is usually convenient to replace all forces by 

their components along the chosen reference axes. The condition of equilibrium 

in X direction expresses the fact that there is no net of unbalanced force acting 

in that direction which would accelerate the structure or body. Thus, for static 

equilibrium, the algebraic sum of all the forces along coordinate axis X must be 

zero, or mathematically, SFx = 0. Similar equations hold good along coordinate 

axes Y and Z. Three additional equations of equilibrium state the fact that the 

structure or element does not spin or rotate about any of the three axes due to 

unbalanced moments. The satisfaction of three force equations and three moment 

equations establishes that the structure is in equilibrium. The six equations of 

equilibrium are:

 SFX = 0 SMX = 0

 SFY = 0 SM
Y
 = 0 (2.1)

 SFZ = 0 SMZ = 0 

This can be expressed in vector form as:

 F
R
 = and M

R
 = 0 (2.2a)

or F
R
 = Fxi + FYj + Fzk = 0 (2.2b)

and M
R
 = MXi + MYj + M

Z
k = 0 (2.2c)

The primary use of equilibrium analysis is to evaluate the reactions and 

internal forces by forming a series of free-body diagrams. If a force or a moment 

acts in an arbitrary direction with respect to the coordinate axes, we replace the 

force or moment with its components along the three coordinate axes. In the case 

of a general three-dimensional structure all the six equilibrium equations are 

needed. However, many three-dimensional structures are idealized as series of 

two-dimensional components with the loading lying in one plane.

Statics of
Structures

2
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For a planar structure in the XY plane there can be no force acting in the Z 

direction nor any moments about X and Y directions. Moment MZ then represents 

the moment about Z axis on any point in the plane. Thus, for a planar structure, 

we have only three equations of equilibrium:

 SFX = 0 SFY = 0 SMZ = 0 (2.3)

If all forces acting on a two-dimensional structure are parallel, say parallel to 

the coordinate axis Y, then the term SFX = 0 contains no terms. Thus, there are 

only two effective equations of equilibrium, viz. SFY = 0 and SMZ = 0, for this 

type of loading. Similarly, if all forces located in a plane pass through a point, the 

summation of moments about this point would not contain any terms and only 

two equations of equilibrium are available.

2.2  FREE-BODY DIAGRAMS

The analysis of all structures is based on the fact that the structure is in 

equilibrium under the action of external loads and reactions. The magnitudes of 

the reactions are such that the applied loads are exactly counteracted according 

to Newton’s third law. Further, any part of the structure is in equilibrium along 

with the structure as a whole. This fact is used to determine the internal forces 

in a structure by drawing what are known as free-body diagrams for parts of a 

structure. Free-body diagrams are so useful in studying structural analysis that 

their importance cannot be over-emphasized.

The correct depiction of a free-body diagram is of extreme importance. 

The following steps may be followed for constructing a free-body diagram. 

Remove the body under consideration from its original state. To do this, cut it 

hypothetically or disengage some connections and supports. A drawing of the 

free-body diagram is then made.

On the drawing of the free-body, denote all the possible forces in the structure 

at the cuts and disengaged connections by appropriate force vectors. At this stage, 

it is neither known nor is it necessary to know the correct direction of forces. We 

can fi x them as acting either in the positive or in the negative direction. Once the 

values of these quantities are ascertained by methods of statics, the proper sense 

for each component can be established. All external forces acting on the body in 

its original state must also be included on the diagram. Clearly label the forces 

on free-body to facilitate the writing of equilibrium equations.

For a structure that is broken down into a number of free-body diagrams, the 

procedure for each diagram is the same. However, in dealing with forces acting 

on the free-bodies, the internal forces common to two free-bodies are denoted as 

equal but oppositely directed force vectors. The application of this procedure and 

the usefulness of free-body diagrams are illustrated in the following examples.

Example 2.1 
Draw the free-body diagrams of parts of the structure 

shown in Fig. 2.1 by making cuts to the right of points 

B and C and show the forces acting an these cuts.
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Fig. 2.1

Example 2.2 
A simply supported beam AB is under transverse and 

axial loading as shown in Fig. 2.2. The beam is to be 

analysed for internal forces at sections D and E at 3 m and 7 m respectively from 

support A.

Step 1: Evaluate reaction components

The beam is statically determinate. The reaction components can be evaluated 

using equations of equilibrium

The free body of the entire beam is shown in Fig. 2.2b. Summing up horizontal 

forces SFX = 0

 RAX + 3.0 = 0  or  RAX = –3.0 kW

The negative sign implies that the direction of RAX is opposite to the direction 

assumed.
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Fig. 2.2  (a) Given beam and loading (b) Free body of entire beam (c) Free body

     diagram of three parts (d) Results—Beam Sign Convention

Summation of moments about B, SMB = 0 gives

 RAY (10) – 8 (6) = 0

 RAY = 4.8 kN  and  RBY, = 8.0 – 4.8 = 3.2 kN

Step 2: Draw free bodies separated by sections D and E.

The free-body diagrams of three parts are shown in Fig. 2.2c. All the external 

forces, reaction components, and the internal forces at the cut sections are shown; 

the unknown forces are shown in their positive directions. Note that at all the cut 

sections the internal forces are equal but opposite in direction. All the three free 

bodies are under equilibrium.

Step 3: Consider each free body for equilibrium 

Considering free body AD the summation vertical forces SFY = 0 gives

 4.8 + VD = 0

\ VD = –4.8

The negative sign indicates that the shear force is downwards.

Again summation of Moments SMD = 0

We have –4.8 ¥ 3 + MD = 0
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or MD = 14.4 kN.m

Considering free body DE and writing SME = 0

We have –4.8 ¥ 4 – 14.4 + 8 ¥ 3 + ME = 0

or MD = 9.6 kN.m

The same procedure is followed in working on the free body EB. The forces 

on the beam are indicated in Fig. 2.2d as per beam sign convention.

Example 2.3 
It is required to determine the reaction components at A 

and D of the beam shown in Fig. 2.3a. Make use of free-

body diagrams to obtain the results.

Step 1: Release the structure from supports and show the forces on the released 

structure.

The free-body diagram of the entire structure released from the supports is 

shown in Fig. 2.3b. The forces exerted by the reactions at A and D are indicated 

in this fi gure. Note that the 40 kN force acting on a stub arm is replaced by 

a force and a moment at point B. The 25 kN force at E is replaced by its two 

components for convenience.

Step 2: Draw separate free bodies ABC and CDE.

There are four unknown reaction components shown acting on the free-body 

diagram of the structure (Fig. 2.3b). We shall make use of the three equations of 

equilibrium along with the fourth one from the known structural condition that 

at hinge point C on the beam, the moment is zero. The free-body diagrams of the 

two parts separated by the hinge point are shown in Fig. 2.3c. Note that equal 

and oppositely directed internal forces are represented at C. The reactions can be 

determined by considering either of the two free-body diagrams. However, the 

consideration of free-body CDE directly gives RDY and the internal forces at C.

Step 3: Consider the free body CDE.

Summation of horizontal forces SFX = 0 gives

 –RCX – 15 = 0

or RCX = –15 kN

The negative sign implies that the direction of force RCX is opposite to the 

direction assumed.

Summation of moments about C, that is S MC = 0

gives RDY(3) – 20(4.5) – 30(4.5) (4.5/2) = 0

or RDY = 131.25 kN

Summing up forces in the vertical direction and writing SFY = 0 we get 

 131.25 – 20 – 30(4.5) – RCY = 0

or R
CY

 = –23.75 kN
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Fig. 2.3  (a) Given beam and loading, (b) Free-body diagram of the entire beam,

            (c) Free-body diagrams of two parts separated at the hinge point

Step 4: Consider the free body CDE

With all the forces known on free-body CDE, the internal forces at any other 

point can be evaluated by only using statics.

Next, considering free-body ABC, the internal forces at hinge point C, RCX 

and RCY are known. The values are numerically equal but opposite to the forces 

determined on free-body CDE.

Applying condition SFX – 0 for free-body ABC we get

 RAX + RCX = 0

or RAX = 15 kN

Summing up forces in Y direction, SFY = 0 gives

 RAY – 40 + RCY = 0

or RAY – 40 – 23.75 = 0

or RAY = 63.75 kN

Finally summing up moments of all the forces about support point A

 M
A
 – 40(2) – 30 + RCY(4) = 0

or MA – 80 – 30 – (23.75)(4) = 0

yields MA = 205 kNm

The positive sign indicates that the direction of moment MA assumed is in the 

true direction.

Thus, all the reaction components are evaluated. The internal forces at any 

other point along the length of the beam can be evaluated using statics.
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Example 2.4 illustrates the breaking up of a structure into a number of free-

body diagrams without going into the arithmetics of it.

Example 2.4 
Draw free-body diagrams for each of the components 

as well as for the entire structure shown in Fig. 2.4a.

The members are connected by frictionless hinges. First we draw the free-

body diagram for the entire structure. The forces on the free-body of the structure 

are indicated in Fig. 2.4b. The reactive force from support A on to the structure 

is indicated by its components along two coordinate axes as AX and AY. The force 

at C is indicated by CY only, as there cannot be any component along the X axis 

due to the roller support.

The free-body diagram for the individual parts is shown in Fig. 2.4c. When 

two members are pinned together, such as members DE and AB or ED and BC, 

it is considered that the pin is part of one of the members. If desired, the pin can 

also be isolated and forces shown. However, when more than two members are 

connected at a pin, such as the connection at B, it is desirable to isolate the pin 

and consider that all members act on the pin rather than directly on each other as 

is illustrated in Fig. 2.4c. Notice that the pairs of forces at the disconnected pin 

are shown oppositely directed at the points of joining.

Free-body diagrams can also be drawn for the parts of a structure hypothetically 

cut by a section. For example, Fig. 2.4d shows the free-body diagram of the 

assembly to the left of section 1-1 in Fig. 2.4a. It may be noticed that at each 

cut, three forces were introduced. The number of unknown force components 

is much more than in the previous free-body diagram. For this reason we must 

carefully choose the free-body diagram that is suitable for our purpose.

Fig. 2.4  (a) Structure arrangement and loading, (b) Free-body diagram of entire structure, (c) 

Free-body diagrams of individual parts, (d) Free-body diagram of assembly to left of section 1-1
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We shall be making use of the technique of constructing free-body diagrams 

in analysing various types of structures in the subsequent chapters.

2.3  SIGN CONVENTION

An essential part of structural analysis is the adoption of an appropriate sign 

convention for representing forces and displacements. It will become clear with 

the development of different methods of analyses that there are advantages in not 

following the same sign convention.

In this text the following sign convention for representing various forces and 

displacements will be followed:

Axial Force An axial force is considered positive when it produces tension in 

the member. A compressive force is, therefore, negative.

Shear Force Shear force which tends to shear the member as shown in 

Fig. 2.5a is considered positive. Notice that the positive shear force forms a 

clockwise couple on a segment.

Bending Moment There are two conventions used for bending moment:

(1) the beam convention based on the nature of stress the moment produces, 

and (2) the static sign convention based on the direction the moment tends to 

rotate the joint or end of a member. The positive sense of the moments in both 

conventions is represented in Figs. 2.5b and c.

Fig. 2.5  Sign convention: (a) Positive shear, (b) Positive moment (beam convention),

(c) Positive moment (static convention), (d) Positive twist

In the beam convention, the moment which produces compressive stresses 

in the top fi bres or tensile stresses in the bottom fi bres is positive. In the joint 

convention, the moment that tends to rotate the joint clockwise or the member 

end anti-clockwise is denoted positive.

Twist The twist moment is considered positive when it acts on a member end 

as shown in Fig. 2.5d. The convention thus corresponds to the right-hand screw 

rule.

Representation of Forces and Displacements From the basic mechanics 

course the student must be familiar with the representation of forces by means 

of vectors with reference to a coordinate system. One of the common coordinate 

systems used is the orthogonal X, Y coordinates to describe the stresses, moments, 

defl ections, etc.
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For some analyses it is convenient to adopt a sign convention in terms of 

the structure or general global coordinate system. For an X, Y and Z coordinate 

system as shown in Fig. 2.6, the positive direction of the forces coincides with 

the direction of coordinate axes and the moments follow the right-hand screw 

rule. The moments and twists are represented by vectors with double arrow 

heads as in Fig. 2.6a or by moment vectors as shown in Fig. 2.6b. The same sign 

convention is also used for denoting defl ections or rotations.

Quite often the analysis is carried out using the joint sign convention but 

the moment diagram is drawn based on the beam sign convention. The student 

should be familiar with the interpretation of sign conventions adopted in the two 

systems. The following example is intended to illustrate the point. 

Fig. 2.6  General coordinate system

Example 2.5 
An analysis of a continuous beam shown in Fig. 2.7a 

has resulted in the following beam end moments in 

accordance with the joint sign convention.

Fig. 2.7  (a) Continuous beam analysed using static sign convention, (b) Free-body diagrams 
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 MAB = +19.37 kNm, MBA = 18.75 kNm, MBC = +18.75 kNm, 

 M
—

BC = –10.00 kNm, MCD = + 10.0 kNm.

Construct free-body diagrams for segments AB, BC and CD and evaluate the 

reactions.

The three segments of the beam are separated from the joints and the free-

body diagrams are drawn as shown in Fig. 2.7b. All the force components are 

indicated on the diagrams.

According to the beam sign convention, all the beam end moments are 

negative causing tension at the top. The values of the reactions are obtained 

by considering free-body diagrams of the segments. The reaction at A can be 

obtained by taking the summation of moments about B as

 –4RA + 40(2) + 19.37 – 18.75 = 0

or RA = 20.16 kN

The value of interior support reaction RB is obtained by fi rst determining the 

values of shear in the beams to the left and right of reaction RB. The value of 

shear to the left of RB is obtained by taking the summation of vertical forces, SFY 

= 0 on the free-body diagram of the segment AB. The shear to the right of RB is 

obtained by taking the summation of moments about C of the forces on the free-

body diagram of segment BC from Fig. 2.7b.

  V ¢B = VB – left = 40 – 20.16 = 19.84 kN 

 V ¢¢B = VB – right = 
18.75 20(3) (1.5) 10

3

+ -
= 32.92 kN 

Therefore,    RB = 19.84 + 32.92 = 52.76 kN 

Similarly, reaction RC can be evaluated. Its value is 37.08 kN.

2.4  SIMPLE CABLE AND ARCH STRUCTURES

2.4.1 Cables

As an introduction to the analysis of simple determinate structures, we shall fi rst 

take up simple cable structures. Cables are frequently used to support loads over 

long spans such as in suspension bridges and roofs of large open buildings. The 

only force in a cable is direct tension, since cables are too fl exible to carry moment. 

The analysis of cables involves the straightforward application of equilibrium 

equations to various free-bodies. We shall fi rst consider a cable whose supports 

at the ends are at the same level.

Example 2.6 
Consider a suspension cable shown in Fig. 2.8a. The 

loads are applied vertically downwards by the 

suspension cables carrying the bridge deck. Determine the reaction components 

at 1 and 5 and tension in the cable in different segments.
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The forces in the cable segments depend upon the geometry assumed by the 

cable at points 2, 3 and 4. For a given sag at any point, the shape of the cable 

is uniquely determined from equilibrium conditions. Knowing one coordinate, 

such as sag at point 2, the sag at any other .point can be calculated.

There are apparently four unknown reaction components with only three 

equations of equilibrium available. However, a fourth equation can be formed 

from the fact that the moment at any point on the cable is zero. The fi rst 

equilibrium equation can be written as S M5 = 0. Taking anticlockwise moments 

as positive, we have

 SM5 = –V1(80) + 30(60) + 40(40) + 50(20) = 0

or V1 = 55.0 kN

Next H1 is evaluated by isolating a part of a cable by making a cut at any point 

on the cable. The free-body diagram of part of the cable just to the left of point 2 

is shown in Fig. 2.8b. Writing summation of moments SM2 = 0 we have

Fig. 2.8  (a) Cable under load, (b) Free-body diagram of cable to the left of point 2,

(c) Results of analysis

 SM2 = –V1 (20) + H1 (10) = 0

or H1 = 110 kN

From a consideration of forces on the cable in X direction,

 SFX = 0 gives H5 = H1 = 110 kN 

Again by using SFY = 0, we have

 V1 – 30 – 40 – 50 + V5 = 0

or V5 = 65.0 kN

The same result could have been obtained by summing up moments of all 

forces about point 1.
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Having determined the four reaction components, we can evaluate the forces 

in the cable segments. The forces in the cable depend on the geometry of the 

cable segments. For this we fi rst need to determine the sag at points 3 and 4. 

Considering the free-body to the left of point 3 and summing up moments about 

point 3 we have,

 M3 = – 55(40) + 30(20) + 110(y3) = 0

or y3 = 14.56 m (sag at point 3).

Similarly, taking summation of moments about point 4 yields

 y4 = 11.82 m (sag point 4).

At each of the points 2, 3 and 4, the magnitude and direction of the applied load 

as well as the direction of forces in the cable are known. Using two equilibrium 

conditions SFX = 0 and SFY = 0, the unknown forces in the cable are determined. 

The results are shown in Fig. 2.8c.

The horizontal equilibrium of any part of the free-body shows that horizontal 

component H of the cable tension is constant throughout the cable. As a 

consequence, the maximum cable tension always occurs in the segment with the 

greatest slope.

Consider another example where the end supports are not at the same level.

Example 2.7 
For the cable structure shown in Fig. 2.9a determine 

the reactions at A, D and E and cable tensions.

The free-body diagram of the cable between the support points A and D is 

shown in Fig. 2.9b.

Summation of moments about point D gives

 MD = –VA (36) + 27(24) + 14(12) –HA(3.6) = 0 (2.4)

In order to determine VA and HA,, it is necessary to write another moment 

equation about point B where the sag is known. For the left portion of the cable

 MB = –VA (12) + HA (2.4) = 0 (2.5)

A simultaneous solution of Eqs. 2.4 and 2.5 yields 

 HA = 75 kN and VA = 15.11 kN

The sag of the cables at C, shown as yc in Fig. 2.9c, can be obtained by 

considering the free-body diagram of the cable to the left of point C. We can 

write

 MC = + HA {yC – 3.6(24/36)} –VA(24) + 27(12) = 0 

Substituting for HA and VA we get yC = 2.91 m.

From the given dimensions of the cable structure the desired distance dc = 

2.91 + 1.20 = 4.11 m. With the coordinates of points B and C known, we can fi nd 

the forces in the segments of the cable as in the previous example.

The tension in cable DE is obtained by considering equilibrium conditions at 

point D. Because the tower is pinned at both ends, we know that the horizontal 

component of forces in DC and DE must be equal. The results are shown in Fig. 

2.9d.
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Fig. 2.9  (a) Cable and loading, (b) Free-body diagram of cable between A and D,

(c) Free-body diagram of cable to the left of point C, (d) Results of analysis

2.5  ARCHES

The arch is one of the oldest structures. The Romans developed the semicircular 

true masonry arch, which they used extensively in both bridges and aqueducts. 

Quite a few of the early Indian railway and highway bridges used masonry arches. 

They were constructed with brick or stone masonry with lime or cement mortar 

as the binding material. Arches are also used in buildings to carry loads over 

doorways, windows etc., as well as to add an aesthetic touch to the building.

2.5.1 Theoretical Arch or Line of Thrust

We have seen in the previous section that a cable can support a given set of 

loads by developing tensions in various segments. The shape of the cable will 

correspond to the funicular polygon for the given system of loads.
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Arch structures behave in a similar way to cable structures but with the actions 

reversed. Thus, if we construct a polygonal arch similar to the cable profi le as in 

Fig. 2.8a, but upside down as shown in Fig. 2.10, the stresses in each link will be 

compressive and the arch is subjected to truly axial compression.

The supports at 1 and 5 will exert an equal horizontal thrust H inwards’ 

besides exerting vertical reactions V1 and V5. The polygonal arch if constructed 

will be subjected to direct axial thrust only and there is no bending moment or 

shear force anywhere. Such an arrangement will prove to be more economical 

as the thrust can be transmitted by a smaller cross-section, unlike a beam which 

is subjected to bending moment and shear force under the same load. Such a 

polygonal arch following the path of true compression is known as linear arch 

or theoretical arch.

Fig. 2.10  Polygonal arch

2.5.2 Actual Arch

In practice, the position and magnitude of the loading over a structure goes 

on changing. It is therefore neither advisable nor possible to construct an arch 

according to its theoretical shape. In practice, the arch can be of circular, parabolic 

or elliptical shape for easy construction and aesthetic appearance. Obviously such 

an arch is subjected to a certain amount of bending moment and radial shear.

2.5.3 Eddy’s Theorem

Consider a beam and an arch of same span and under same loading as shown in 

Fig. 2.11.

We can draw a funicular polygon for the forces passing through two support 

points (see. Section 2.6.6). The polygon is the pressure line or thrust line. The 

ordinate between the thrust line and the axis of the beams or arch at any section 

(f1f2) represents B.M. at that section to some scale. The actual pending moment 

is obtained as under

Mx μ f1 f2 at any Section X

or Mx = (f1f2) (f) (s) (p)

In which f – force scale in the polygon

 s – Space diagram scale

 p = polar distance
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Fig. 2.11  (a) A beam (b) An arch

It is evident that the moment in the arch is considerably reduced because of 

the profi le of the arch. This is known as Eddy’s Theorem which is useful in 

graphical analysis of structures. The theorem states that the bending moment at 

a section of a structural element is proportional to the vertical intercept between 

the pressure line for the given loading and the axis of the structure.

2.5.4 Types of Arches

Arches may be classifi ed, of course, on the basis of the materials of which they 

are built; steel and reinforced concrete is the most common of all materials. From 

the point of view of structural behaviour, arches are conveniently classifi ed as 

three-hinged, two-hinged and hinge less (also known as fi xed) arches. On the 

basis of form, arches may be further classifi ed as parabolic, circular, elliptical, 

etc. A number of arch forms are indicated in Fig. 2.12 which vary in the manner 

they are supported and in the structural arrangement of the arch ribs.

Fig. 2.12  Types of arches: (a) Three-hinged arch, (b) Two-hinged arch, (c) Fixed arch, (d) Tied 

arch, (e) Two-hinged Crescent arch, (f) Two-hinged spandrel braced arch

Open web arch ribs, though they resemble trusses, are considered as arches 

because of the manner in which the loads are transmitted.
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Of the three types of arches, only three-hinged arches are statically determinate 

and hence are included in this section. The analysis of statically indeterminate 

arches is dealt with in Chapter 10.

The effi ciency of an arch can be demonstrated by comparing it with a beam of 

the same span and under the same loading. In Fig. 2.13a a beam is shown under 

a concentrated load, P. The resulting reactions and the moment diagram are also 

shown in the fi gure. Consider the same loading on a three-hinged arch shown in 

Fig. 2.13b. The arch resists the load by developing vertical as well as horizontal 

components of reaction. The horizontal reaction component reduces the moment 

from that in a simple beam. The resulting moment in the arch is shown hatched 

in Fig. 2.13b. Note the existence of both positive and negative moment in the 

arch. Thus, we see that owing to its geometric shape and proper supports, an arch 

supports loading with much less moment than a corresponding straight beam. It 

must be remembered that the reduction in moment is achieved at the expense of 

large axial compression in the arch rib and also horizontal reaction components 

at the springing.

Fig. 2.13  (a) Beam and the moment diagram, (b) Three-hinged arch and moment diagram

2.5.5 Three-Hinged Arch

The analysis of a three-hinged arch, which is statically determinate, is carried 

out in much the same way as for the cable. The condition of zero moment at the 

internal hinge provides the fourth equilibrium equation for calculating the four 

reaction components. The procedure is illustrated in the examples that follow:

Example 2.8 
A three-hinged parabolic arch has span 16 m and 

central rise 4 m. It carries a concentrated load of 100 

kN at 4 m from left support. Evaluate reaction components, moment, thrust and 

radial shear at a section 6 m from left support. Take the equation of the arch y = 

4 h x (l – x) with left-hand support as origin. Draw bending moment diagram.
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Step 1: To evaluate reaction components

Fig. 2.14  (a) Given arch and loading (b) B.M diagram

Taking moment about A,

 MA = VB (16) – 100 (4) = 0

or VB = 25 kN

and VA = 100 – 25 = 75 kN

Horizontal reaction H may be obtained by taking moment about the hinge at C

 MC = 25 (8) – H(4)

This give H = 50 kN.

Step 2: To evaluate moment, thrust and radial shear

The ordinate of the arch at a section 6 m from A is, 

 y = 
24 4

(16 6 6 )
16 16

¥
¥ -

¥
or y = 3.75 m

Moment at E,

 ME = 75 (6) – 50 ¥ 3.75 – 100 (2)

Gives ME = 62.5 kN.m

Maximum +ve moment occurs under the load point,

 MD = 75 ¥ 4 – 50(3)

Gives maximum +ve moment MD = 150 kN.m.

Maximum –ve moment occurs at a section in between support B and hinge C. Let 

it be at a distance x from B.

Writing Mx = 25x – 50yx (2.6)

  = 25x – 
24 4

50 (16 )
16 16

x x
¥

¥ -
¥

  = –25x + 
250

16
x
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Seting 
d

d

eM

x
 = 0, we have –25 + 

100

16
 x = 0

or           x = 4 m

Substituting in moment equation, maximum –ve moment 

 Mmax = 25(4) – 50(3) = –50 kN.m

The moment diagram is drawn, superimposing on simple beam moment 

diagram, the moment caused by horizontal thrust as shown in Fig. 2.14

Step 3: To evaluate normal thrust

From the free body of the arch from A to E as shown in Fig. 2.14 normal thrust

 NE = H cos q – V sin q

where q is the inclination of the arch axis at E. Writing equation of parabola

 y = 
2

2

4
50 ( )

h
lx x

l
¥ -

     2

d 4
( 2 )

d

y h
l x

x l
= -

Substituting for x = 6 m, h = 4 m and l = 16 m

We have 
d

d

y

x
 = tan q = 0.25, q = 14°3¢

q is the inclination of arch axis with the horizontal

Substituting sin q = 0.24 and cos q = 0.97 in eqn. 2.6, we have

 NE = 50(0.97) – 25 (0.24)

 = 42.5 kN. (compression)

Similarly radial shear

 Vr = VE cos q + H sin q

 = 25 (0.97) + 50(0.24)

 = 36.25 kN –ve following the shear force sign convention

Example 2.9 
A three-hinged segmental arch has a span of 50 m and 

a rise of 8m. A 100 kN load is acting at a point 15 m 

measured horizontally from the right-hand support.

 Find (a) the horizontal thrust H, developed at the supports, and (b) the moment, 

normal thrust and radial shear at a section 15 m from the left-hand support.

Step 1: To evaluate radius of arch R and reaction components 

A three-hinged segmental arch as given is shown in Fig. 2.15a. The radius of 

segmental arch R is established using the relationship

 (2 R – yC) = 

2

2

LÊ ˆ
Á ˜Ë ¯

On substituting for yC and L

 R = 43.06 m.
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Fig. 2.15  (a) Arch and loading, (b) Free-body diagram of arch between A and D

Vertical reaction component VA may be obtained as in a simple beam by taking 

moment about support B.

 VA (50) – 100 (15) = 0

or VA = 30 kN.

and VB = 100 – 30 = 70 kN.

Horizontal reaction H may be obtained by taking moments about hinge point 

C and equating to zero, that is

 MC = 30 (25) – H(8) = 0

This gives H = 93.75 kN inwards as shown.

The inclination of the arch at 15 m from the left-hand support, or angle q 

subtended at the centre as shown in Fig. 2.5a is given by

 sin q = 
10

43.06
= 13.43°

Ordinate at D of arch axis, YD = R cos q – R cos j where j is the angle 

subtended at the centre by segment AC of the arch, that is

 sin f = 
25

43.06
 = 35.49°

Therefore, YD = 43.06 (0.97 – 0.81)

or YD = 6.89 m

Step 2: To evaluate moment and shear 

Moment at section 15 m from left-hand support

 MD = 30 (15) – 93.75 (6.89) = –195.94 kN.m 

From the free-body diagram in Fig. 2.15b, normal thrust

 ND = HD cos q + VD sin q

where q is the inclination of arch axis at point D 
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 ND = 93.75 (0.97) + 30 (0.23) = 97.84 kN (compression) 

Similarly radial shear

 Vr = VD cos q – HD sin q = 30 (0.97) – 93.75 (0.23) 

 = 7.54 kN +ve following the shear force sign convention.

Example 2.10 
The equation of the axis of a three-hinged arch is y = x 

– (x2/12), the origin being the left-hand support. The 

span and rise are 12 m and 3 m respectively. The let half of the arch is loaded 

with a uniformly distributed load of 30 kN/m. Evaluate: (a) the reaction 

components at the supports (b) moment, radial shear and normal thrust at a 

section 3 m from left-hand support.

Fig. 2.16  Arch under load 

Step 1: To evaluate reaction components 

Taking moments about the hinged support A 

 MA = VB (12) – 30 ¥ 6 ¥ 3 = 0

Gives VB = 45.0 kN

 VA = 180 – 45 = 135 kN

To evaluate H we take moment about hinge point C

 MC = VB (6) – H(3) = 0

Which gives H = 90 kN

Step 2: Evaluate moment at a section 3 m from A.

Writing MD = 135 (3) – 90(2.25) – 230
(3)

3
 = 29.5 kN

From Free body of the arch in Fig. 2.16

Normal thrust at D, ND = H cos q + VD sin q

From the arch equation inclination of arch axis at 3 m from support A, q = 

26° 36¢

Substituting the values, ND = 90(0.8942) + 45 (0.4478)

        = 100.62 kN (compression)

Again radial shear  V(r) = H sing q – V cos q

         = 90(0.4478) – 45 (0.8942) = 0
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One may draw bending moment dia-

gram by super imposing the moment 

diagram by horizontal thrust H over the 

simply supported beam bending moment 

diagram as shown in Fig. 2.17. The reader 

may verify, as an exercise, the maximum 

+ve and –ve moments and their sections 

as shown in the diagram. 
Fig. 2.17  B.M. Diagram

Example 2.11 
It is required to determine the reaction components at 

supports A and D and the internal forces just to the 

right of point C for a three-hinged arch shown in Fig. 2.18a.

Step 1: To evaluate reaction components

The free-body diagram of the entire arch is shown in Fig. 2.12b. Summation of 

moments about the left support, MA = 0 gives

 VD (24) – HD (2.4) – 145680(18) – 20(10) (10/2) = 0

 24 VD – 2.4 HD = 4240 (2.7)

Another equation containing VD and HD is obtained by considering the segment 

of the arch between B and D. Taking summation of moments about B gives

 VD (14) – HD (4.9) – 180(8) = 0.

 14 VD – 4.9 HD = 1440 (2.8)

Fig. 2.18  (a) Arch and loading, (b) Free-body diagram of entire arch,

(c) Free-body diagram of arch between C and D

A simultaneous solution of Eqs. 2.7 and 2.8 gives

 HD = 295.24 kN

and VD = 206.19 kN

For maintaining   SFH = 0, HA = HD = 295.24 kN 

VA is found by summing forces in the vertical direction
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 VA – 200 – 180 + 206.19 = 0

or VA = 173.81 kN

Step 2: To evaluate internal forces just to right of C

The internal forces at a point just to the right of C can be determined by 

considering the free-body diagram of the arch between that point and support D 

(Fig. 2.18c).

Equilibrium condition    SFH = 0 and SFy = 0 give

  HC = HD = 295.24 kN

and   VC = VD = 206.19 kN

and summing up moments about C

 MC + 206.19(6) – 295.24 (3.3) = 0

gives MC = – 262.85 kN m

One more example is presented to illustrate the procedure involved in the case 

of a parabolic arch.

Example 2.12 
The equation of a three-hinged parabolic arch with 

origin x2 at its left support is y = x – (x2/40), The span 

of the arch is 48 m. Find the normal thrust and radial shear force at a section 6 

m from the left support, when the arch is carrying a uniformly distributed load of 

20 kN/m over the left half of the span. Also fi nd the section at which the maximum 

positive or negative bending moment will occur and the magnitude of the same 

anywhere on the arch.

Fig. 2.19  (a) Arch and the leading (b) Free-body diagram (c) Moment diagram

Step 1: To evaluate H

The arch and the loading is shown in Fig. 2.19a. The ordinate of the arch at the 

central hinge

 YC = 24 – 
224

40
 = 9.6 m.
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Reaction VB is obtained by taking moments about A 

 VB (48) – 24 ¥ 20 ¥ 12 = 0

\ H = 
24 20 12

48

¥ ¥
 = 120 kN. 

 VA = 24 ¥ 20 – 120 = 360 kN.

Horizontal reaction H is obtained by taking moments about C 

 MC = VB (24) – H (9.6) = 0

\ H = 
120 24

300 kN.
9.6

¥
=

Step 2: To evaluate normal thrust and radial shear

Let q be the inclination of the arch axis at section D

 tan q = 
2

1
40

dy x

dx
= -

Substituting for x = 6 m

 tanq = 
2 6

1 0.7
40

¥
- =  

and q = 35°

From the Fig. 2.19b, normal thrust

 ND = H cos q + VD sin q 

in which VD is the shear force at section D. Shear force VD = VA – 20 ¥ 6

 VD = 360 – 120 = 240 kN

and H = 300 kN.

Normal thrust ND = 300 ¥ cos 35° + 240 sin 35°

 = 383.41 kN (compression) 

Radial shear Vr = VD cos q – H sin q

 = 240 ¥ cos 35° – 300 sin 35° = 24.53 kN.

Step 3: To evaluate maximum ±ve moments

Maximum +ve B.M.

Let the maximum +ve bending moment occur at a section X, x m from the left 

end. Then the moment

 Mx = 360 (x) – 20 
2( )

300
2

x

x
Y-

 = 300 (x) –10 x2 – 300

2

40

x
x

Ê ˆ
-Á ˜Ë ¯

 = 60x – 2.5 x2 (2.9)

We set 
xdM

dx
 = 0 to obtain the value for x
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xdM

dx
= 60 – 5x = 0

\ x = 
60

5
 = 12

Maximum +ve B.M will be obtained by substituting for x = 12 m in Eqn. 2.9

 Mmax = 60(12) – 2.5 (12)2  = 360 kN.m

Maximum –ve B.M.

It is clear from the B.M. diagram in Fig. 2.19c that the maximum –ve B.M. will 

occur in the region C to B.

Again taking a section X, x m from support B, moment

 Mx= 120 (x) – 300 

2

40

x
x

Ê ˆ
-Á ˜Ë ¯

 = 7.5 x2 – 180 x (2.10)

To obtain maximum –ve B.M. we set

 xdM

dx
 = 0

\ xdM

dx
= 15 x – 180 = 0

 x = 
180

12 m
15

=

Substituting in Eqn. 2.10 the maximum –ve B.M.

 Mmax = 7.5 (12)2 – 180 (12)

 = 7.5 (12)2 – 18 = –1080 kN.m.

2.6  GRAPHIC STATICS

2.6.1 General

Numerous graphical methods are available for determining the forces in the 

members of a truss, defl ection of truss joints, analysis of cable structures and 

arches. We shall only review some of the common procedures in this section. The 

graphical method which is concerned with the visual representation of forces 

greatly clarifi es the interaction of the force system.

A force may be represented graphically by a line drawn towards or away from 

the point of application and having a length that indicates the numerical size of 

the force to a certain scale. The slope of this line indicates the direction of the 

force, while the arrow head the sense in which the force acts along this line. For 

example, a force of 50 kN can be represented by a length of a line 25 mm if a 

scale of 1 mm = 2 kN is chosen (Fig. 2.20a).
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2.6.2 Resultant of Two Concurrent Forces

The resultant of two concurrent forces can be obtained in accordance with the 

law of parallelogram of forces. Thus, to determine the resultant of two forces 

F1 and F2 represented by vectors OA and OB, a parallelogram is constructed as 

shown in Fig. 2.20b. The direction and magnitude of resultant R12 is obtained 

by diagonal vector OC. The same result could have been obtained by drawing 

either of the force triangles OAC or OBC instead of the parallelogram (Figs 2.20c 

and d). In constructing these triangles, either force may be drawn fi rst and the 

other force laid out from the end of the fi rst vector. The result is then obtained, in 

magnitude and direction, from the closing vector of the triangle drawn from the 

beginning of the fi rst vector to the end of the second.

Fig. 2.20  (a) Representation of force vector, (b) Resultant of two concurrent forces

(c) Addition of force F2 to F1, (d) Addition of force F 1 to F2.

2.6.3 Resultant of Several Forces in a Plane

Consider a system of coplanar forces F1, F2, F3 and F4 acting on a body shown 

in Fig. 2.21a. The fi gure is simply a scaled diagram showing the body, point 

of application and line of action of the forces. This diagram is known as a 

space diagram. Suppose the resultant of the forces is required to be determined 

graphically. As described in the previous section, resultant R12 of forces F1 and 

F2 may be obtained from force triangle OAB (Fig. 2.21b). The line of action of 

this resultant is drawn parallel to vector OB and through the intersection of lines 

of actions of forces F1 and F2 on the space diagram. In the same manner, resultant 

R123 is obtained by combining R12 and F3, and resultant R1234 by combining R123 

and F4. The resultant of all the forces is, thus, R1234. The line of action of the 

resultant in the space diagram is obtained by fi xing successively the line of action 

of the intermediate resultants. For example, the line of action of resultant R123 

is obtained at the intersection point of resultant R12 and F3. Similarly the line of 
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action of R1234 passes through the point of intersection of resultant R123 and F4. 

The construction involved is shown in Fig. 2.21a.

Fig. 2.21  (a) Space diagram, (b) Force diagram

The same resultant could have been obtained by placing forces F1, F2, F3 

and F4 tip to tail in the order in which they are encountered in going round the 

rigid body. This force diagram OABCD as indicated in Fig. 2.21b is called the 

force polygon. The magnitude and direction of the resultant will be given by the 

vector drawn from the initial to the fi nal point of the force polygon, in this case 

by vector OD. The line of action of this resultant in the space diagram, of course, 

must be established as described above.

2.6.4 Equilibriant

Suppose we apply to the force system discussed above a force F5 which is equal 

in magnitude but opposite in direction to resultant R1234 or vector OD. If the 

line of action of F5 coincides with the line of action of R1234, then force F5 in 

effect holds the other forces in equilibrium. In such a case force F5 is called the 

equilibriant of the force system. The force polygon now closes thereby indicating 

that the resultant force on the body is zero. Suppose the line of action of force F5 

does not coincide with R1234 but is shifted laterally by an amount e as indicated 

in Fig. 2.15a. The force polygon, of course, closes thus satisfying SFX = 0 and 

SFY = 0. But in the space diagram, the equal and opposite forces, R1234 and 

F5 are parallel and the resultant is a moment couple. Thus, the body is not in 

equilibrium since S,M π 0. Therefore, in the case of non-concurrent forces, the 

closure of a force polygon is a necessary but not a suffi cient condition to show 

that the system is in equilibrium. In addition to this condition, it is necessary 

to show that in the space diagram the system is not equivalent to a couple. Of 

course, in the case of a concurrent force system, it is enough to show that the 

force polygon closes as a necessary condition for equilibrium.

2.6.5 Funicular Polygon

If the directions of forces in a system are parallel or nearly parallel as shown in 

Fig. 2.22a, the intersection points of the forces do not fall within the paper and, 
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therefore, the resultant cannot be obtained. To get over this diffi culty, we shall 

develop a general method using a funicular polygon which is applicable to any 

coplanar force system.

To illustrate the technique, let us determine the resultant of forces F1, F2 and 

F3. The force polygon for these three forces is shown in Fig. 2.22b. The resultant 

of the forces is R14. The line of action of this resultant is to be fi xed on the space 

diagram. For this we select a point 0 in the vicinity of the force polygon and lines 

are drawn to the extremities of the forces as in Fig. 2.22b. These lines are called 

rays. The point 0 is known as the pole and the most appropriate location of it will 

become clear as we develop this method further.

Consider force F1 in Fig. 2.22b resolved into two components 1-O and O-2 

coincident with ray 1-O and O-2. The direction of the components is indicated 

next to the rays. At an arbitrary point A on the line of action of force F1 in the 

space diagram, the direction of components 1-O and O-2 are constructed. The 

line representing O-3 is drawn through point B. The location of point B having 

been established by O-2 is extended to intersect force F2 at B.

Force F2 is next considered and resolved into components 2-O and O-3 as 

shown in Fig. 2.22b. The direction of component O-3 is drown through point 

B. The location of point B having been established by O-2, O-3 is extended to 

intersect force F3 at C. In the same manner, force F3 is resolved into 3-O and 

O-4, and O-4 is drawn through point C as shown. Now the original force system 

of F1, F2 and F3 has been replaced by six components 1-O and O-2, 2-O and 

O-3, and 3-O and O-4. Of these six components, pairs O-2 and 2-O, and O-3 

and 3-O which are equal but oppositely directed balance each other. We have, in 

effect, replaced forces F1, F2 and F3 by two components 1-O and O-4. Therefore, 

the intersection of lines of 1-O and O-4 at point D on the space diagram locates 

the line of action of R14 on the rigid body.

Fig. 2.22  (a) Space diagram and the funicular polygon, (b) Force polygon

The polygon ABCDA formed on the space diagram is referred to as the 

funicular polygon. The sides of this polygon drawn between the forces are called 

strings. Note that the funicular polygon shown is not unique, as the starting point 
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A chosen on force F1 is arbitrary as also the location of pole point O. It should 

be apparent now that the location of pole point O is made so that the strings 

of the funicular polygon will intersect the lines of action of the given forces at 

near right angles. Thus less space is required for the diagram and hence greater 

accuracy can be attained.

For equilibrium of the body, a force equal and opposite to resultant R14 must 

be applied to the body; it must be applied though point D. If this force was to be 

represented as F4 and included in the force system, then the force polygon and 

the funicular polygon drawn to these forces close. Thus, for a system of non-

concurrent forces to be in equilibrium, it is necessary that the force polygon as 

well as the funicular polygon must close.

The principle of the funicular and force polygons can be used to determine the 

reactions of a statically determinate structure.

Consider the beam in Fig. 2.23a. The reactions at A and B are to be determined. 

In this case the point of application and direction of the right-hand side reaction 

and only the point of application of the left-hand side reaction are known. The 

unknowns are the magnitudes of both the reactions and the direction of the left-

hand side reaction. These three unknowns may be found by using the condition 

that both the force and funicular polygons must close if the combined system of 

loads and reactions is to be in equilibrium.

The force polygon for the given forces F1 and F2 is constructed in Fig. 2.18b. 

We select a pole point O and draw the rays to points 1, 2 and 3 as shown. The 

construction of a funicular polygon begins at a particular point in Fig. 2.23a. 

Although we do not know the magnitude and direction of reaction at A, we do 

know that it passes through point A. Therefore, we begin the construction of the 

funicular polygon at this point. A string parallel to ray O-1 is drawn though point 

A and extended to intersect the line of action of force F1 at C. Note that this string 

represents the common component to the unknown reaction RA and the force F1. 

This can be verifi ed with reference to the developments in Fig. 2.23b.

Fig. 2.23  (a) Space diagram—beam and loading, (b) Force polygon

A line parallel to ray O-2 is drawn from point C to intersect the line of force F2 

at D. Similarly, a line O-3 is drawn through point D until it intersects the line of 
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action of the reaction at B at point B¢. It is at this point that the known direction of 

reaction RB is made use of. A closing line of the funicular polygon is drawn from 

A to B¢. It may be pointed out that string AB¢ represents a common component 

of reactions RA and RB. This closing line is transferred to the force diagram by 

drawing a ray parallel to the closing line and passing through pole point O. From 

point 3 a force vector is drawn parallel to reaction RB and extended to intersect 

the line just drawn through point O at 4. 3-O and O-4 represent the components 

of reaction RB. The vector 3-4 gives the magnitude of reaction RB while vector 

4-1, the closing vector of the force polygon, gives the magnitude and direction of 

reaction RA. 4-O and O-1 represent the components of reaction RA.

2.6.6 Funicular Polygon through Two Points

When we consider the procedure for drawing a funicular polygon for a given 

system of forces, it becomes apparent that it is possible to draw an infi nite number 

of funicular polygons for that system of forces. Similarly an infi nite number of 

points can be chosen for pole O. Sometimes, however, it becomes necessary to 

draw the funicular polygon to pass through certain specifi c points in the space 

diagram.

Consider a system of forces as shown in Fig. 2.24. Suppose it is required to 

construct a funicular polygon passing through two points A and B.

Fig. 2.24  Funicular polygon through two given points

Assume, temporarily, that these forces are applied to a rigid structure supported 

by a hinge at support A and a roller support supplying a vertical reaction at B. 

We draw the force polygon for the system of forces and commence the funicular 

polygon as usual starting from point A. The funicular polygon is shown labelled 

with strings 1, 2, 3 and 4 (O-1, 0-2, O-3 and O-4). AB¢ is the closing link or the 

string. From pole point O a ray is drawn parallel to the closing line AB¢. Vertex 

point 5 is fi xed by drawing a vertical vector through point 4 and locating the 

intersection point on the ray just drawn from point O. The value of reactions RB 

and RA as represented by vectors 4–5 and 5–1 are independent of the location of 

pole point O and thus the location of point 5 is unique.
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The object was to draw a funicular polygon that passes through two points 

A and B. In other words the closing line of the funicular polygon must coincide 

with the line AB. This is easily achieved by choosing a pole point O¢ anywhere 

on a ray drawn parallel to AB and passing througl vertex 5. The new funicular 

polygon with the strings labelled 1¢, 2¢, 3¢ and 4¢ (O¢-1, O¢-2, O¢-3 and O¢-4) 

passes through the given points A and B.

The graphical approach is well suited for determining forces in cables carrying 

concentrated loads. A single construction gives the shape of the cable, reaction 

components of cable supports and also the tension in the cable. The following 

example illustrates the procedure.

Example 2.13 
For a cable supported at end points A and B and 

carrying loads shown in Fig. 2.25a determine the cable 

shape and end reactions by a graphical construction.

Fig. 2.25  (a) Space diagram—cable under given loading, (b) Force polygon,

(c) Funicular polygon

The points of application of support reactions only are known and their 

magnitudes and directions are unknown. Adopting the procedure discussed just 

earlier we can construct a funicular polygon such that the closing line passes 

through the chord AB in the space diagram. An arbitrary pole point O gives 

the closing string AB¢ shown in Fig. 2.20c. The corresponding ray in the force 

polygon is shown as O-5. As pointed out earlier, point 5 uniquely fi xes up the 

vertical component of reactions RB and RA. They are independent of location of 

pole point O. Now a new pole point O¢ is chosen anywhere on the line passing 

through point 5 and parallel to the chord joining support points A and B. The 

funicular polygon drawn thus passes through support points A and B.
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The sags at each load point on the cable may be scaled from Fig. 2.25c 

measuring from the chord line joining the support points. The value of the 

horizontal force component H in the cable for these particular sag values is the 

horizontal distance from pole point O¢ to the vertical load vector line in the force 

polygon. Since the product of H and sag is constant for any given loading and 

span length, this solution defi nes all possible cable profi les. If the desired sag is 

75% of the measured values, all sags are multiplied by 3/4 and the horizontal 

force H is increased by 4/3. Thus the profi le of the cable after the sag values are 

adjusted gives the true profi le of the cable.

It may be noted that the vertical reactions determined from the force polygon 

will not be true vertical reactions on the cable foundations. Actual reactions will 

be the forces VA and VB as obtained from the construction of Fig. 2.25b plus the 

vertical components of the inclined closing line represented by ray O-5.

The analysis for forces in truss members by the graphical method is discussed 

in Chapter 3.

Problems for Practice

2.1 Draw the free-body diagrams of different parts of the nutcracker shown in Fig. 2.26 

and determine the forces on each part.

2.2 Compute the ordinates of the cable at the load points and determine the tensions in 

the cable shown in Fig. 2.27.

  

 Fig. 2.26 Fig. 2.27

2.3 Figure 2.28 shows a system of two inextensible fl exible cables supporting a l0 kN 

platform in a horizontal position. Calculate the support reactions and the maximum ten-

sion in the cable.

Fig. 2.28
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2.4 For the cable structure shown in Fig. 2.29 determine (a) the ordinate YD, (b) the 

maximum tension in cable BCDE, (c) tension in cable EF, and (d) the value of reaction 

at H. 

Fig. 2.29

2.5 Determine the reactions and maximum tension in the cable shown in Fig. 2.30.

Fig. 2.30

2.6 For the cable structure shown in Fig. 2.31 determine (a) maximum tension in cable 

BC and (b) tension in cable AB. D is a point of known elevation on BC.

Fig. 2.31

2.7 Determine the support reaction com-

ponents, the internal forces just to the right 

of point D for the three-hinged arch shown 

in Fig. 2.32.

2.8 A circular arched rib, span 50 m 

and rise 10 m, is hinged at the crown and 

springings and carries two vertical loads 

of 60 and 100 kN at horizontal distances 

12 and 30 m from the left-hand support 

respectively. Find the reaction components Fig. 2.32
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at the springings and moment, normal thrust and radial shear at a section 10 m from the 

left support.

2.9 Calculate the reactions by graphical construction for the structure shown in Fig. 

2.33.

2.10 An arch type structure is to carry the two concentrated loads shown in Fig. 2.34. 

Defi ne the shape of a two-hinged arch that can resist these loads with no bending action 

in the arch.

  

 Fig. 2.33 Fig. 2.34

2.11 Find graphically the force necessary to hold the frame shown in Fig. 2.35 in equi-

librium. Indicate the magnitude of the force and its components along horizontal and 

vertical directions.

2.12 Repeat the Problem 2.11 for frame in Fig. 2.36.

  

 Fig. 2.35 Fig. 2.36

2.13 Use the graphical approach to deter-

mine the shape of a cable that passes through 

points A, B and C under the loads shown in 

Fig. 2.37. (Hint: consider that point C is a 

roller support. Find pole O¢ for the funicular 

polygon to pass through A and C.

Select pole O¢¢ for the polygon to pass 

through B and C. Fix a common pole O¢¢ for 

the polygon to pass through A, B and C.)

2.14 An arch form is needed to carry three 

loads as shown in Fig. 2.38. It must pass through the three points A, B and C. Determine 

its shape graphically.

2.15 Find the reaction components for the structure shown in Fig. 2.39.

2.16 Find the reaction components for the structure shown in Fig. 2.40. 

Fig. 2.37
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 Fig. 2.38 Fig. 2.39

Fig. 2.40



3.1  INTRODUCTION

A truss is an articulated structure composed of straight members arranged and 

connected in such a way that they transmit primarily axial forces. If all the 

members lie in one plane it is called a plane truss. A three-dimensional truss is 

called a space truss. Space trusses are discussed in Chapter 4.

3.2  PLANE TRUSS

The basic form of a truss is a triangle formed by three members joined together at 

their common ends forming three joints. Such a triangle is clearly rigid. Another 

two members connected to two of the joints with their far ends connected to form 

another joint forms a stable system of two triangles. If the whole structure is built 

up in this way it must be internally rigid. Such a truss if supported suitably will 

be stable. For example, the truss has to be supported in general by three reaction 

components, all of which are neither parallel nor concurrent. Such a truss is 

called a simple truss. Various combinations of basic triangular elements produce 

general truss structures shown in Fig. 3.1. These trusses are stable and statically 

determinate.

Fig. 3.1  Trusses from triangular elements

Several common types of trusses are shown in Fig. 3.2. Trusses given in Fig. 

3.2a, b and c are roof trusses and are used up to 30 m span. The other types of 

trusses are commonly used in bridges.

Plane Trusses

3
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Fig. 3.2  Common types of trusses

3.3  GEOMETRIC STABILITY AND STATIC

   DETERMINANCY OF TRUSSES

A truss which possesses just suffi cient number of members or bars to maintain its 

stability and equilibrium under any system of forces applied at joints is called a 

statically determinate and stable truss.

A planar truss may be thought of as a structural device having j joints in 

a plane. The forces that act on the joint are the member forces, the external 

loads and the reactions. Since all the joints are in equilibrium, we can write two 

equilibrium equations, SFX = 0 and SFY = 0 for each joint. Thus, for the entire 

truss we can write 2j equations. The unknowns are the member forces and the 

reaction components. Therefore, if the structure is statically determinate, we can 

write the relation

 2j = m + r (3.1)

where m = number of members

 r = number of reaction components.

The following general statements can be made concerning the relation between 

j, m and r.

 1. 2j < m + r. There are more unknowns than the number of equilibrium 

equations. The structure is statically indeterminate. The degree of 

indeterminancy is n = m + r – 2j. Only inspection can be used to study 

geometric instability. The truss may be redundant either internally 

or externally or both. To analyse statically indeterminate trusses we 

need additional relationships, such as compatibility of displacements. 

Statically indeterminate trusses are treated in Chapter 10.

 2. 2j = m + r. The structure is statically determinate and the unknowns 

can be obtained from 2j equations. The degree of indeterminancy n = 0. 

Apart from inspection there are several ways of detecting instability.
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 3. 2j > m + r. There are not enough unknowns. The structure is a mechanism 

and always unstable.

In the light of the above statements consider the trusses in Fig. 3.3. The truss 

in Fig. 3.3a has six joints, eleven members and three reaction components; hence 

it is indeterminate by two degrees. On inspection it is seen that the truss is stable 

but it has two additional diagonal members, one in each panel, that are redundant. 

The removal of these redundant members cause no instability to the truss. Thus, 

the truss is internally redundant by two degrees. The truss in Fig. 3.3b is stable 

but there is an additional roller support which is not necessary for its stability. 

Hence the truss is statically indeterminate by one degree and the indeterminancy 

is external.

The truss in Fig. 3.3c is unstable. From inspection as well as from a count 

of members it is clear that the truss is defi cient and one diagonal member is 

necessary to make the truss rigid and stable. Consider the truss in Fig. 3.3d. It has 

more members than just required. But on inspection it is clear that the end panels 

are made over rigid by providing diagonal members both ways and the central 

panel is defi cient thereby making the truss unstable. It may be noted that the truss 

is unstable due to improper distribution of members.

Fig. 3.3  (a) Truss stable but internally redundant, (b) Truss stable but externally redundant,

(c) Truss unstable due to defi cient member, (d) Truss unstable due to

improper arrangement of members

3.4  ANALYSIS OF TRUSSES

3.4.1 Assumptions

In analysing the trusses the following assumptions are made:

 1. the members of a truss are pin-jointed at their ends on frictionless joints,

 2. the loads lie in the plane of the truss and are applied only at the joints, 

and

 3. the centroidal axes of various members framing into a joint will intersect 

at a common point.
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Of the three, assumption I is seldom completely satisfi ed in practice. For ex-

ample, the welded or riveted gusset plates commonly used to join the member 

ends do not really represent pinned connections. However, in many cases, the 

members are long and slender and very little moment is transmitted by the mem-

bers. Hence the assumed pin connections give acceptable results. Assumptions 2 

and 3 are normally satisfi ed. Assumption 2 implies that all truss members receive 

forces only through the joints at either ends and, therefore, these two end forces 

must be colinear and opposite to each other for equilibrium, making each a sim-

ple tension or compression member. Thus, the direction of forces away from the 

joint indicates, tension, and direction towards the joint indicates compression in 

the bars as shown in Fig. 3.4.

Fig. 3.4  Sense of bar force

3.4.2 Methods of Analysis

There are three common methods of analysis used in calculating the forces in the 

members of a truss. One of the methods used in analysing a truss is the method 

of joints. This method entails the use of a free-body diagram of joints with 

the equilibrium equations SFX = 0 and SFY = 0. Inspection of joints generally 

indicates the joints where the number of unknowns are two or less than two.

The second method is the method of sections. In this method the truss is cut 

into two parts and equilibrium equations are written for one of the parts of the cut 

truss treating it as a free-body. The critical aspect of this method is the choice of 

the proper free-body diagram for the purpose.

The method of joints is effective if we want to calculate forces in all members 

of the truss but the method of sections is obviously superior if we seek forces 

only in certain members. In such a case, sections can be made only through the 

selected members, whereas the method of joints would require the analysis of 

joints from one end of the structure progressively up to the particular member. 

The third method is known as the tension coeffi cient method. This method, 

formulated by Prof. Southwell is a systematic procedure of method of joints. 

This method is more useful for solving space trusses.

3.4.3 Method of Joints

In a determinate structure, the reaction components can be worked out using 

equations of equilibrium. The analysis can be commenced from a joint where 
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there are only two unknown member forces by utilizing the equilibrium equations 

SFx = 0 and SFy = 0. We can go toe the next joint, where again, there are only 

two unknown member forces. The process is repeated till al the desired member 

forces are obtained. The procedure is illustrated by the following examples. The 

graphical method for the analysis of trusses is discussed in section 3.6.

Example 3.1 
It is required to determine the forces in members of the 

truss shown in Fig. 3.5.

The fi rst step in the analysis is to assign 

appropriate notation to the joints. The 

joints are designated as 1,2, 3, 4, 5 and 6 

as indicted. With the numbering of joints 

each member has its two ends numbered. 

The forces in members are designated 

with the letter P with proper subscripts; 

thus P15 represents the force in member 

1–5. Tension in a member is denoted by 

a plus sign and compression by a minus 

sign. The unknown reaction components 

R4X, R4Y and R6Y are indicated in their 

positive sense.

From the equilibrium equations applied to the entire truss SFX = 0 

we get R4X = –20 kN

Again writing summation of moments about joint 6 we have

 M6 = R4Y(6) + 20(3) – 70(3) = 0

or S4Y = 25 kN

and applying SFY = 0

 R6Y = 70 – 25 = 45 kN

The next important step is to study the structure and decide which path can be 

taken up so that the joints will have two or less than two unknowns.

One path that will work is the order of joints 4-1-2-5 and 3 and check at 6. We 

can also start from joint 6 fi rst and proceed in the order of 6-3-2-5 and 1 with a 

check at 4.

A free-body diagram of joint 4 is shown in Fig. 3.6a.

Fig. 3.6  Free-body diagrams of joints 4 and 1

Fig. 3.5  Truss and the loading
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While drawing the free-body diagram, it may be convenient to show the 

unknown bar forces as tensile forces. From the equilibrium of forces if it turns 

out to be negative, the member is in compression. From Fig. 3.6a SFX = P45 – 20 

= 0 or P45 = 20 kN (tension).

Again, SFY = P41 + 25 = 0 or P41 = –25 

kN (compression). The results obtained at 

each joint can be recorded on a truss diagram 

shown in Fig. 3.7.

Proceeding to joint 1 we draw on the free-

body diagram, the previously determined 

value in its true direction as shown in Fig. 

3.6b. 

Summing forces

15

1
25 0

2
YF P

Ê ˆ
S = - =Á ˜Ë ¯

Gives  P15 = 35.36 kN (tension)

Similarly 12 15

1
20 0

2
XF P P

Ê ˆ
S = + + =Á ˜Ë ¯

Gives P12 = –45.0 kN (compression)

The remaining bar forces are determined by the same procedure with the joints 

taken in the order suggested above. The results are summarised in Fig. 3.7.

Example 3.2 
Analyse the truss shown in Fig. 3.8 for the bar forces. The 

10 kN load at the joint is 30° inclined to the vertical.

Fig. 3.8

On inspection, we notice that the truss is determinate and stable. All the joints 

are numbered. So that all the members have the ends numbered.

Step 1: To evaluate reaction components

The applied load 10 kN is resolved along the coordinate axes so that FX = 5.0 kN 

and FY = 8.66 kN

On summing forces in the horizontal direction 

Fig. 3.7  Results of analysis
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 R1x = 5.0 kN from right to left

Again summing up moments about support 3

 M3 = R1y (8) – 8.66 (6) + 5 ¥ 3.464 = 0

Gives R1y = 4.33 kN

and R3y = 8.66 – 4.33 = 4.33 kN

Step 2: To fi nd bar forces

At both the support joints 1 and 3, there are only two unknown bar forces. We 

can go through the path 3-5-2-4 and check at 1. Or, we can take the path 1-4-2-5 

and check at 3

Let us take up joint 3. The joint is shown as a free body in Fig. 3.9(a)

Fig. 3.9  Free bodies of joints

The bar forces are shown as tensile. In the analysis, if the result turns out to be 

negative, the member will be under compression 

Writing SFy = 0

We have 4.33 + P35 cos 30° = 0

Give P35 = –5.0 kN (compression)

Now writing SFx = 0

We have –P32 + 5.0 cos 60° = 0

Gives P32 = 2.5 kN (tension)

The member forces are indicated on the truss showing nature of forces with 

arrows.

Next we proceed to joint 5. Free body diagram of joint 5 is shown in Fig. 3.9 

(b)

Writing SFy = 0

 5 cos 30° – P52 cos 30° = 0

gives P52 = 5.0 (tension)

Again writing SFx = 0

 –5 cos 60° – 5 cos 60° – P54 = 0

gives P54 = – 8.66 (compression)
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Again considering free body diagram of joints and writing SFy = 0

We have P24 cos 30° + 5.0 cos 30° = 0

Gives P24 = –5.0 (compression)

Similarly writing SFx = 0

 –P21 + 2.5 + 2.5 + 2.5 = 0

gives P21 =  7.5 (tension)

Finally proceeding to joint 4 and considering the forces on the free body we 

can write

 SFy = 0

 –P41 cos 30° + 5 cos 30° = 0

gives P41 = 5.0 (tension)

The summary of results is indicated on the truss diagram

Example 3.3 
Using method of joints, fi nd the forces in members of 

the truss shown in Fig. 3.10.

Fig. 3.10

We need not evaluate the reaction components fi rst in this case. One can 

straightaway analyse the truss starting from joint 1 and following the path 1-2-

4-5 with a check at 3.

Considering joint 1 and writing SFx = 0 from Fig. 3.11 (a) 

we have 10 + P14 sin q = 0

 P14 = 
10

sin q

-
 = –

10

3
 ¥ 5 = –16.67 kN (compression)

Againwriting SFy = 0

 P12 – 16.67 cos q = 0

 P12 = 16.67 ¥ 
4

5
 = 13.33
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Fig. 3.11  Free body diagrams joints 1, 2, 4, 5

Next considering joint 2, we notice from the free-body diagram P24 = 0

and P23 = 13.33 kN

Proceeding to joint 4, member forces P43 and P45 can be evaluated by 

inspection

P43 = 0 since any force in member 4-3 will have component normal to 1-4-5 

which cannot be balanced

Member force P45 = P41 = –16.67

Next considering free body diagram of joint 5 and writing SFx = 0

We have –P53 + 16.67 sin q = 0

Gives P53 = 16.67 ¥ 
3

5
 = 10.0 kN

Again writing SFy = 0

We have R5y – 16.67 cos q = 0

 R5y = 16.67 ¥ 
4

5
 = 13.33

All the member forces are indicated on the truss diagram (Fig. 3.10b)

Let us consider another example where the top and bottom chords are not 

parallel.

Example 3.4 
It is required to determine the member forces using the 

method of joints for the truss in Fig. 3.12.

Since the truss and loading are symmetrical, it is enough to solve half the truss 

starting from one end. Each of the reactions RY is equal to half the total load on 

the truss. That is

 
1 5

45
35 57.5 kN

2
Y YR R= = + =

On examination we fi nd that we can start either from joint 1 or 5 where there 

are only two unknowns.

Writing the forces at joint 1 as in Fig. 3.13a and applying fi rst SFY = 0, we 

get

 57.5 – P16 (3.6/6) = 0

or P16 = 95.83 kN
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Utilizing condition SFX = 0, we get

 P12 + 95.83 (4/5) = 0

or P12 = –76.66 kN (compression)

Next we proceed to joint 2 which has only two unknown forces as shown in 

Fig. 3.13b. Inspection of the forces indicate P26 = –35 kN and P23 = –76.66 kN 

because two pairs of forces must balance.

Fig. 3.12  Truss for analysis

Fig. 3.13  Free-body diagrams of joints

At joint 6, summation of forces in X and Y directions would result in two 

simultaneous equations which are to be solved. We can avoid it by considering 

equilibrium in directions normal to each of the unknown forces. Thus, the 

summation of forces along the line normal to 6-7 (Fig. 3.13c) gives

 P63 (cos 39.09°) – 35 (cos 14.04°) + 95.83 (cos 67.17°) = 0 

This results in

 P63 = –4.16 kN

Similarly, equilibrium of forces perpendicular to member 6-3 would give 

directly P67. Alternatively, summation of forces SFX = 0, gives

 –95.83 (cos 36.87°) –4.16 (cos 36.87°) + P67 (cos 14.04°) = 0

or F67 = 82.47 kN

Next we shall proceed to joint 7. The free-body diagram of joint 7 is shown 

in Fig. 3.13d. Consideration of forces in the horizontal direction indicate P78 = 

82.47 kN. Again summing up of forces in the vertical direction gives,

 SFY = P73 + (82.47)(2)(cos 75.96°) = 0 

 P73 = –40.0 kN



56  Basic Structural Analysis

Fig. 3.14  Results of analysis

Now we can proceed to joint 3. Figure 3.13e represents the free-body diagram 

of the joint. Summation of forces in the vertical direction gives

 SFY = 40.0 – 45.0 +4.16 (cos 53.13°) – P38(cos 53.13°) = 0

or P38 = –4.16 kN

Summation of forces in the horizontal direction results in P34 = –119.79 kN.

The values of forces P34, P38 and P78 could have been anticipated because of 

symmetry. The summary of results of the analysis is shown in Fig. 3.14.

3.4.4 Method of Sections

The method of sections is quite useful, if we require the forces in certain members 

unlike method of joints in which all the bar forces are worked out joint by joint 

starting from one end. The method mainly concerns isolating a pat of the truss by 

making a cut through the members desired and treating that as a free-body. The 

forces in the members cut can be determined from the equations of equilibrium 

for the isolated part of the truss. The cut need not be straight; one can cut any 

number of members in any way. The method can be conveniently employed 

for checking the member forces calculated by other methods. The following 

examples will illustrate the procedure involved.

Example 3.5 
Calculate the forces only in members 2-3, 6-3 and 6-7 

of the truss solved in Example 3.4.

Since only a few bar forces are required the method of sections is convenient. 

The reactions are computed as in the previous example. The truss is cut into two 

parts by taking a section as shown in Fig. 3.15. Consider the free-body diagram 

of the left part of the truss. Assume that the tensile forces are positive and the 

directions of unknown forces are shown accordingly. There are three unknown 

forces acting on this free-body which can be evaluated from the three equations 

of equilibrium. However, if we write these equations in a certain order, each 

unknown will occur in only one of the equations. For example, to evaluate P67 

we take moments about joint 3, the point of intersection of the other two bar 

forces. The normal distance from joint 3 to the bar force P67 is

 (6) (sin 50.91°) = 4.66 m

Hence writing M3 = (57.5) (9.6) – (35) (4.8) – P67 (4.66) = 0 we get P67 = 82.47 

kN (tension).



Plane Trusses  57

Fig. 3.15  Free-body diagram of part of truss

In a similar manner, summation of moments about joint 6, the point of 

interaction of P63 and P67, yields P23 directly. Thus

 M6 = 57.5(4.8) + P23 (3.6) = 0

or P23 = –76.67 kN (compression).

We can follow the same approach and calculate the force in diagonal member 

6-3 by taking moments about a point of intersection of the top and bottom chords 

denoted by O in Fig. 3.15. Point O is 19.2 m to the left of joint 3 (14.4 m from 

joint 2) since the slope of bottom chord is 1 : 4. The normal distance from point 

O to the extension of member 3–6 is 19.2 (sin 36.87°) = 11.52 m.

Writing M0 = –57.5 (9.6) + 35 (14.4) – P63 (11.52) = 0

we get P63 = – 4.17 (compression).

Instead of working for P63 in this manner, it would be easier to sum up the 

horizontal components of these three forces and solve for P63. Thus we have

 P67 (cos 14.04°) – P23 + P63 (cos 36.87°) = 0 

This gives  P63 = –4.17 kN; same as the previous result.

3.4.5 Subdivided Truss

The panels in long and deep trusses are often subdivided with more than a single 

web member in order to reduce the web member lengths and the distance between 

panel points. Two popular subdivision schemes are shown in Fig. 3.16a where 

interior panels have K-shaped web member arrangement and the end panels have 

the so-called Baltimore truss subdivisions. Example 3.6 illustrates the procedure 

for fi nding forces in the members meeting at a joint in a subdivided truss.

Example 3.6 
Compute the forces in members meeting at joint 5 of the 

truss of Fig. 3.16a.

In the analysis, we adopt both the methods of analysis to our advantage. A 

free-body diagram of joint 5 (Fig. 3.16b) indicates that both the members 5–7 

and 5–8 are equally inclined to the horizontal and hence P58 = – P57 as there can 

be no resultant horizontal component on the joint. A section taken through the 

third panel gives a free-body diagram of the left part of the truss as in Fig. 4.16c. 

By using
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Fig. 3.16  Subdivided truss for analysis

 SFY = 125 – 100 + P57 sin 45° – P58 sin 45° = 0 

and substituting  P58 = – P57 and solving we get

 P58 = 17.7 kN (tension) and 

 P57 = –17.7 kN (compression)

It may be noted that the pair of members 5-7 and 5-8 carry the total shear in 

the panel. The division of shear between the two is done in such a manner that 

ensures zero horizontal resultant on joint 5.

Another section, taken through members 6-8, 6-5 and 2-4, results in a free-

body diagram of Fig. 3.16d. Summing moments about point 1

 SMl = 50 (10) + 50 (20) – P65 (20) = 0

we get P65 = 75.0 kN

Summation of forces in the vertical direction at joint 5 (Fig. 3.16b) gives,

 SFY = P45 – 75 + P57 (sin 45°) – P58(sin 45°) = 0 

 P45 = 100.00 kN (tension)

A section which results in a free-body diagram of Fig. 3.12e can also be used to 

determine the force in member 4-5. Summing up forces in the vertical direction

 SFY = –P45 + 125 – 100 + 75 = 0

we get P45 = 100.0 kN; same result as earlier.
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Example 3.7 
Using method of sections determine the bar forces in 

the members indicated of the truss shown in Fig. 3.17.

Fig. 3.17

Step 1: Evaluate reaction Components

The truss and the loading being symmetrical

 R10y = R14y = 100 kN

Step 2: Selection of path to the cut

We notice that a cut passing through members 11–12, 11–7, 7–2 and 2–3 will 

enable us to fi nd the bar forces in 2–3 and 11–12. The left part of the truss cut by 

the path X1X1 is shown isolated as a free-body in Fig. 3.19 (a)

Fig. 3.18  Free-body diagrams

All the bars 11–12, 11–7 and 2–7 pass through joint 11.

Summation of moments about joint 11

 SM11 = 0 results

 100 ¥3.6 + P23 ¥ 5.4 = 0

gives P23 = –66.67 kN (compression)

Similarly summing up momens about joint 2 

 SM2 = 0 results

 100 ¥ 3.6 – P11–12 (5.4) = 0

gives P11–12 = 66.67 (tension)
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Step 3: Forces in diagonal members 7–3 and 7–12

To fi nd the forces in diagonal member, we make a cut in the second panel across 

members 11–12, 2–3, 7–3 and 7–12. The free body of the isolated part is shown 

in Fig. 3.18b. It is seen that the diagonal members 7–3 and 7–12 carry total 

shear in panel 2. Further, the diversion of shear between the two is due in such a 

manner that no horizontal force component acts joint 7.

We know shear in panel 2 is; 100 – 50 = 50 kN

On inspection one can see that the member 7–3 will be in compression and the 

bar 7–12 will be in tension, both being numerically equal. 

Summing up forces SFy = 0

We have –P73 cos q – P7–12 cos q + 50 = 0

Where q is the angle of inclination of the diagonal members with the vertical, 

and that is 53°6.

This gives, P7–12 = 41.67 kN (tension)

and PT–3 = 41.67 kN (compression)

Step 4: Evaluation of forces in members 2–7 and 7–11

We cannot directly evaluate the member forces as there will be more than two 

unknowns in whatever manner we make the cut. We need to fi nd fi rst the forces 

in diagonal members in panel1, 2–6 and 6–11. We know the shear in panel is 

100 kN and the bar forces are 83.34 kN: member 

2–6 in compression and member 6–11 in tension 

following the procedure as earlier.

Now, using method of joints, summing up 

forces at joint 11, SFy = 0

Gives  P6–11 cos q + P11–7 – 50 = 0

P11–7 = 50 – 83.34 ¥ 0.6 = 0

Finally considering joint 7 and writing SFy = 0

We get P7–2 + 0 – 41.67 cos q – 41.67 cos q = 0

Gives P7–2 = 50.0 kN

As the student becomes more adept at analysing 

trusses, he may fi nd less need for complete free-

body diagrams of the joints, particularly for 

joints at which the member forces are obvious. 

However, the value of free-body diagrams during 

the learning stages, and for the more complicated 

joints cannot be over-emphasized.

These examples show that for a rapid analysis, the method of sections can be 

combined with the method of joints. Occasionally it may be necessary to solve 

simultaneous equilibrium equations of the free-body, and sometimes we must 

solve fi rst for some other member force before the desired member force can be 

found.

Fig. 3.18(d)

Fig. 3.18(e)
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3.4.6 Method of Tension Coeffi cients

R.V. Southwell proposed in 1929 a systematic procedure based on equilibrium 

condition of joints in a pin-jointed truss. He noted a relationship between the 

components of member forces along the coordinate axes and the member 

coordinates at the ends of members. The analysis results in linear simultaneous 

equations for the components of member forces along the coordinate axes at each 

joint. This method gives member forces per unit length rather than member forces 

directly. The force per unit length of member is known as tension coeffi cient 

of the member. This concept and application of this method to plane trusses 

is discussed in this section. The application of this method to space frames is 

discussed in the next Chapter.

Tension Coeffi cients Consider a 

member ij whose coordinates are (xi, 

yi) and (xj, yj) as indicated in Fig. 3.19. 

The member force Tij is considered to 

be tensile.

The components of Tij along the 

coordinate axes are 

Tx = Tij cos q, Ty = Tij sin q ](3.2)

Where q is the inclination of the 

member to the x axis 

We can express, cos q = 
j i ij

ij ij

x x x

l l

Ê ˆ-
=Á ˜

Ë ¯
 and sin q = 

j i ij

ij ij

y y y

l l

Ê ˆ-
=Á ˜

Ë ¯

 lij = (x2
ij + y2

ij)
1/2

From Eqn (3.2) 
ij

x ij ij ij

ij

T
T x t x

l

Ê ˆ
= =Á ˜

Ë ¯
 and 

ij

y ij ij ij

ij

T
T y t y

l

Ê ˆ
= =Á ˜

Ë ¯
The parameter t = T/l represents the force/unit length of member and it is known 

as tension coeffi cient of the member. The tension coeffi cients are all assumed to be 

positive indicating the force in member is tensile. In 

the analysis, if the coeffi cient turns out to be negative, 

the force in that member to be taken as compression 

These concepts can be applied to formulate the 

equilibrium condition to a truss joint i connected to 

truss joints j, k, m. as shown in Fig. 3.20.

Writing down SFx = 0 and SFy = 0 at the joint  Fig. 3.20

 SFx = tij xij + tik xik + tim xim + px = 0 (3.3)

and SFy = tij yij + tik yik + tim, yim + Py = 0 (3.4)

writing the above equations in compact form

Fig. 3.19
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 Stij xij + px = 0 (3.5)

and Stij yij + py = 0 (3.6)

Such equations are formulated at each of the joints and solved for tension 

coeffi cients. As in method of joints, the sequence of joints are so chosen that 

only two member forces are unknown at that joint. This method is amenable to 

computer applications as the equilibrium equations can be set up for all the joints 

instead of joint by joint. Member forces are computed by multiplying tension 

coeffi cients with the corresponding member lengths. The procedure involved is 

illustrated by the following examples.

Example 3.8 
Using method of tension coeffi cients fi nd the bar forces 

in the truss given in Fig. 3.21

This is the same truss as solved in example 3.2 using method of joints.

The reaction components as worked out earlier are

R1y = 4.33 kN and R3y = 4.33 kN.

Step 1: To fi x up the nodal coordinates

Choosing joint 1 as the origin the nodal coordinates are given in Table 3.1

Table 3.1

Sl.No. Node
Coordinates

x y

1 1 0 0

2 2 4.0 0

3 3 8.0 0

4 4 2.0 3.464

5 5 6.0 3.464

 Fig. 3.21

Step 2: The member parameters xij, yij and lij are computed from the coordinates 

above and tabulated in Table 3.2.

Table 3.2  Member parameters

Sl.No. Member xij = xi –xi yij = yj – yi 2 2

ij

ij ij

l

x y+
tij Tij

1 1–2 4.0 0 4.0 1.875 7.5

2 2–3 4.0 0 4.0 0.625 2.5

3 4–5 4.0 0 4.0 –1.25 –5.0

4 1–4 2.0 3.464 4.0 –1.25 –5.0

5 2–4 –2.0 3.464 4.0 –1.25 –5.0

6 2–5 2.0 3.464 4.0 +1.25 5.0

7 3–5 –2.0 3.464 4.0 –1.25 –5.0
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Step 3: Resolving the external force p

 Px = 5.0, py = –8.66 kN.

Step 4: As in method of joints, we proceed from joint to joint with two unknowns. 

We can start either from joint 1 or joint 3.

Considering joint 3 and writing

 SFy = t3–2 y3–2 + t3–5 y3–5 + 4.33 = 0

Substituting for y values, we get

 t32 (0) + t35 (3.464) + 4.33 = 0

or t35 = –1.25 kN

Again writing SFx = 0

 t3–2 (x32) + t35 x35 = 0

or t3–2 (–4.0) – 1.25 (–2.0) = 0

 –4 t32 = –2.50

 t32 = + 0.625

Fig. 3.22

Next proceeding to joint 5 and writing SFy = 0

We have t53 x53 + t52 x52 + t54 x54 = 0

or (–1.25) (–3.464) + t52 (–3.464) + t54 (0) = 0

Gives t52 = + 1.25

Writing SFx = 0 we hve

 t54 x54 + t53 x52 + t53 x53 = 0

 t54 (–4.0) + 1.25 (–2.0) – 1.25 (+2.0) = 0

gives t54 = –1.25

Next proceeding to joint 2 and writing SFy = 0

 t24 y24 + t25 y25 = 0

 t24(3.464) + (1.25) (3.464) = 0

Gives t24 = –1.25

Next proceeding to joint 1 and writing SFy = 0
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 t14 y14 + 4.33 = 0

 t14(3.464) = –4.33

gives t14 = –1.25 kN

A check at joint 4 satisfi es SFx = 0 and SFy = 0

 SFy = –8.66 + (–1.25) (–3.464) + (–1.25)(–3.464)

 = –8.66 + 4.33 + 4.33 = 0

Also SFx = 5.0 + (–1.25)(4) + (–1.25) (2) (–1.25) (–2)

 = 5.0 – 5.0 – 2.5 + 2.5 = 0

Let us take up one more example of a truss 

having non parallel top ad bottom chords to further 

reinforce the procedure.

Example 3.9 
Analyse the truss in Fig. 3.23 for the member forces 

using tension coeffi cients method.

Fig. 3.23

The truss and the loading are symmetrical. We need to analyse only one half 

of the truss starting from one end. Further.

 R1y = R5y = 
1

2
 (35 + 70 + 35) = 70 kN

Step 1: To tabulate the nodal coordinates.

The joints are numbered. The nodes and the coordinates are tabulated taking the 

origin at joint 1.

Table 3.3

Sl No. Node x y

1 1 0 0

2 2 4.8 0

3 3 9.6 0

4 4 14.4 0

5 6 4.8 3.6

6 7 9.6 4.8

7 8 14.4 3.6

Fig. 3.22 (d)

Fig. 3.22 (e)
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Step 2: To evaluate member parameters

The length of members of the truss are computed from the coordinates in Table 

above and listed in Table 3.4

Table 3.4  Member parameters

Sl. N. Member xij = xj–xi yij = yj – yi 2 2

ij

ij ij

l

x y+
tij I = tij ¥ lij

1 1–2 4.8 0 4.8 15.97 76.66

2 1–6 4.8 3.6 6.0 –15.97 –95.83

3 2–6 0 3.6 3.6 9.72 35.0

4 2–3 4.8 0 4.8 15.97 76.66

5 6–7 4.8 1.2 4.95 –7.29 –36.0

6 6–3 4.8 –3.6 6.0 –8.68 –43.74

7 7–8 4–8 –1.2 4.95 –7.29 –36.0

8 7–3 0 –4.8 4.8 3.645 17.50

9 3–8 4.8 3.6 6.0 – –

10 3–4 4.8 0 4.8 – –

Fig. 3.24  Free-body diagrams

Step 3: To consider equilibrium of joints

We can consider joint 1 where there are only two unknown bar forces. Writing 

SFy = 0

 t16(3.6) + 57.5 = 0

Gives t16 = –15.97

Again writing SFx = 0

 t16 (4.8) + t12 (4.8) = 0

Gives t12 = –t16 = 15.97

Next taking up joint 2 with two unknown bar forces 

We can write SFy = 0
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 t26 (3.6) –35 = 0

gives t26 = 9.72

Again writing SFx = 0

 t23(4.8) + t21 (–4.8) = 0

 t23 = t21 = 15.97

Proceeding to joint 6 next, we write SFx = 0

 t67(4.8) + t63(4.8) + t62(0) + t61(–4.8) = 0

gives 4.8 t67 + 4.8 t63 = –76.66 (a)

We can formulate another equation by writing SFy = 0

 t67(1.2) + t63 (–3–6) + t62 (–3.6) + t61 (–3.6) = 0

Substituting for t62 = 9.72 and t61 = –15.97

We get 1.2 t67 – 9.72 and t61 = –15.97

We get 1.2 t67 – 3.6 t63 = 22.50 (b)

Solving simultaneous equations (a) and (b)

We get t63 = –8.68

and t67 = –7.29

Next we need to proceed to joint 7

Writing SFx = 0

We have   t76 (–4.8) + t78 (4.8) = 0

Gives t78 = –7.29 
Fig. 3.24 (d)

Again writing SFy = 0

 t73 (–4.8) + t76 (–1.2) + t78 (–1.2) = 0

 –4.8 t73 + (–7.29) (–1.2) + (–7.29)(–.2) = 0

 t73 = 3.645

All the tension coeffi cients are entered in Table 3.4 and the bars forces are 

worked out

3.5  COMPOUND AND COMPLEX TRUSSES

We shall now consider the stability considerations of other types of trusses which 

are statically determinate on the basis of criteria established in Sec. 3.3.

Simple trusses (composed of triangular panels) are always stable if supported 

in a suitable manner. If two simple trusses are connected with a set of bars or pin 

connections which provide non-concurrent, non-parallel reactive components 

to each simple truss, then the system is stable. Such a system is termed as a 

compound truss. Its identifi cation is best performed by identifying the simple 

trusses as individual units and then identifying the bars that provide the proper 
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connections. The reaction components must of course be non-concurrent and 

non-parallel. Figure 3.25 shows a compound truss.

Another type of truss which cannot be classifi ed either as simple or compound 

is the complex truss. The truss shown in Fig. 3.26 is a complex truss. One 

identifying mark of a complex truss is that there is no joint where only two bars 

meet although the truss is statically determinate. Complex trusses are not often 

used. A more general method is needed to verify the stability of such trusses. 

Complex trusses for which n = 0 may be analysed for the presence of unstable or 

critical forms by the zero load test. 

Fig. 3.25  Compound truss

Fig. 3.26  Complex trusses, (a) Unstable, (b) Stable

Zero Load Test The zero load test is simple in application. Consider the 

structure with no applied loads. Assume a force in a member caused by a turn-

buckle arrangement and apply the rules of equilibrium to successive joints. If 

equilibrium can be established without developing any external reactions we have 

obtained a non-zero solution. It means that this set of internal forces obtained 

from zero load condition can be multiplied by an arbitrary constant which gives 

another equilibrium solution. The existence of more than one solution indicates 

that the structure is unstable. For example, we shall apply the zero load test for 

truss in Fig. 3.26a. For zero external loads the reaction components at 5 and 6 

are zero. Assume now 1 kN tensile force in member 1-4. Equilibrium of joint 1 

indicates 1 kN compressive force in each of the members 1-2 and 1-6. Working 

on joint 2 it will be seen that member 2-5 will have 1 kN tensile force, and 

member 2-3 will have 1 kN compressive force. Working further on joints 3, 4, 5 

and 6, we fi nd that every joint is in equilibrium with unit tension and the internal 
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bars and force in member 1-4 would have satisfi ed the equilibrium condition of 

the structure without developing any external reaction. Since the truss is statically 

determinate and there exist more than one solution, we conclude that the truss is 

unstable. It may be of interest to note that the truss of Fig. 3.26b is a stable one.

3.6  GRAPHICAL ANALYSIS OF TRUSSES

The member forces in a statically determinate truss can be determined by 

graphical analysis. Graphical analysis is based on two facts:

 1. If only three non-parallel forces act on a body they must pass through a 

common point.

 2. If the magnitudes of two forces acting on a body are the only unknowns, 

the closure of the force polygon determines their magnitudes. In the case 

of trusses, the direction of all forces are known. We examine free-bodies 

of joints that have not more than two unknown forces acting on them, as 

in the analytical application of the method of joints. Completion of the 

force diagram at any joint yields the magnitude of the unknown forces.

3.6.1 Analysis of a Simple Truss

Let us consider the truss in Fig. 3.27. A convenient graphical notation may be 

devised by numbering the joints and placing letters on each side of all forces 

(loads, reactions and member forces). This is known as Bow’s notation. Then the 

member and the force in member 3-8 between joints 3 and 8 are designated as i-j. 

The external load at joint 8 is called the force a-b and all other forces are defi ned 

uniquely by two letters.

Assuming that the reactions have been determined previously either by 

graphical or algebraic methods, the bar forces can then be determined by drawing 

a series of force polygons, one for each joint. The solution begins at joint 1 where 

there are only two unknown forces.

Fig. 3.27  Truss for graphical analysis
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Fig. 3.28  Force polygons: (a) Joint 1, (b) Joint 2, (c) Joint 8

The known reactions f-g and g-a are drawn fi rst as shown in Fig. 3.28a. The 

directions of forces a-h and f-h are known and it is a simple matter to plot their 

directions to locate point h and thus obtain the magnitude of two forces. Note that 

we have proceeded clockwise around joint 1 in plotting the forces.

The forces in members a-h and h-f are measured by the vector a-h and h-f 

in the force polygon. The force a-h pushes the joint and force h-f pulls the joint 

indicating that the nature of forces in a-h is compression and that in h-f is tension. 

Joint 2 should be analysed next as there are more than two unknowns at joint 8. 

The force polygon for joint 2 is shown in Fig. 3.28b. Having found the force in 

i-h and h-a it is now possible to proceed to joint 8. The force polygon for joint 8 

is shown in Fig. 3.28c.

Considering the remaining joints in turn, the analysis of the truss can be 

completed. It may be noticed that several bar forces such as f-h, h-a, i-h, etc. 

are plotted twice in Fig. 3.28. This is because we use previously determined 

bar forces in the successive construction of force polygons. Instead of drawing 

separate force polygons for each joint, it is convenient to combine all the force 

polygons into a single construction known as the Maxwell diagram.

To construct the Maxwell diagram, fi rst draw a force polygon for all the external 

forces, laying out the vectors in the same order as the forces are encountered in 

going round the structure, say, in a clockwise direction. The reaction components 

should also be included in the force polygon. Remember that the external forces 

and the reactions form a closed polygon. Vertices of this polygon should be 

labelled in the same manner as described above for the force polygon of joints. 

The Maxwell diagram for the truss of Fig. 3.27 drawn in this manner is shown in 

Fig. 3.29a. Now consider a joint such as 1 where there are only two unknowns. 

Vertex h is established in the same way as we did in the force polygon of joint 

1 (Fig. 3.28a). After establishing vertex h, we proceed to joint 2 and establish 

vertex i as was done earlier in the force polygon of joint 2.

The remaining vertices are located in turn by considering successively joints 

8, 7, 3, 4 and 5 (or 6).

The construction of the Maxwell diagram having been completed, it is a 

simple matter to determine the magnitude and sense of the force with which a bar 

acts on a given joint. The lengths of the vectors in the Maxwell diagram give the 

values of member forces. The sign of the bar forces is determined by proceeding 

clockwise around each joint (a-b-j-i-h at joint 8) and noting the corresponding 
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vector directions in the force polygon (b-j pushes, j-i pushes, i-h pulls and h-a 

pushes). The nature of force thus determined in all members, considering each 

joint in turn, is shown in Fig. 3.29b.

Fig. 3.29  (a) Maxwell diagram, (b) Nature of forces In members

3.6.2 Analysis of a Fink Roof Truss

The Maxwell diagram described in the previous section may be constructed for 

any simple truss without any diffi culty. However, when we attempt to analyse a 

compound truss, like the fi nk roof truss, the diagram can be drawn up to a certain 

point and we cannot proceed further since at each of the remaining joints there 

exist more than two unknowns. Consider a fi nk roof truss shown in Fig. 3.30a. 

After fi nding the reactions either analytically or graphically, a force polygon 

for external forces may be laid out and the Maxwell diagram started in the 

conventional manner. Starting from joint A one can proceed to joint B and then 

to joint C. Thereafter, we fi nd, the joints at D or E contain three unknowns and, 

therefore, it is impossible to continue with the Maxwell diagram. We face the 

same problem even if we commence from the right-hand support.

We may now consider one of the methods available to overcome this diffi culty. 

In this method, we temporarily replace bars D-F and F-G (bars 4-5 and 5-6) by 

a substitute bar E-G indicated by a dotted line. We may designate the space 

enclosed by triangle EDG by 4¢ and the space enclosed by triangle EGH by 6¢. 
This substitution does not affect the stability of the truss, or alter the forces in the
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Fig. 3.30  (a) Analysis of fi nk roof truss; (a) Space diagram, (b) Maxwell diagram

members outside the panel DGEF. This is evident when we take a section along 

X-X (Fig. 3.30a) and consider the free-body diagram of the left part of the truss for 

computation of forces in members B-D, C-D and C-E. This is also true of forces 

in members G-H, F-H and E-L when a section is taken along Y-Y (Fig. 3.30a) 

and a free-body diagram of the left part of the truss (Fig. 3.31) is considered. 

The locations of vertices 1, 2 and 3 in the Maxwell diagram, therefore, remain 

the same as for the original truss. It is thus possible to locate vertex 4¢ of the 

substitute bar truss by considering joint D and then proceed to joint G to locate 

vertex 6¢. The location of 6¢ so determined for the substitute bar truss coincides 

with 6 of original truss, since in either case the forces in bars G-H and F-H are 

the same. It is now possible to return to the original truss by considering joints G 

and D in turn to locate the correct positions of vertices 5 and 4. It is now easy to 

proceed in the usual manner and locate the remaining vertices. This procedure is 

illustrated in the Maxwell diagram given in Fig. 3.30b.
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Fig. 3.31  Free-body diagram: (a) part of truss left of section X-X,

(b) Part of truss left of section Y-Y

It should be apparent that the selection of a substitute member is not arbitrary. 

It should be kept in mind in selecting the substitute member, that its prime 

function is to provide a means of getting beyond unsolvable joints and at the 

same time to enable the true forces to be determined beyond these points.

Problems for Practice

3.1 Determine whether the trusses shown in Fig. 3.32 are (i) stable or unstable; (ii) 

statically determinate or indeterminate. If they are indeterminate, state the degree of in-

determinacy.

Fig. 3.32
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3.2, 3.3, 3.4 Use the method of joints to analyse the trusses shown in Figs. 3.33, 3.34 

and 3.35.

Fig. 3.33

  

 Fig. 3.34 Fig. 3.35

3.5, 3.6, 3.7 Determine the bar forces in the indicated members of the trusses shown in 

Figs. 3.36, 3.37, and 3.38.

Fig. 3.36

Fig. 3.37
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Fig. 3.38

3.8, 3.9, 3.10 and 311 Analyse the trusses given in Figs. 3,33, 3.34, 3.35, and 3.36 by 

the graphical method. Give results on the sketches of the trusses.

3.12 Analyse graphically the forces in members of the truss shown in Fig. 3.39.

Fig. 3.39



4.1  INTRODUCTION

The analysis of space trusses can be regarded as an extension of plane truss 

analysis. However, special consideration is necessary in view of the third 

dimension involved. Stresses are interrelated between members not lying in one 

plane. Space trusses include towers, antennas, guyed masts, derricks, framing for 

domes, aircraft framing, etc., to name a few.

To simplify computations, the connections of the members in a three-

dimensional truss are considered to be ball-and-socket joints. It is assumed that 

the joints transmit no moments and the external loads on the truss are applied 

only at the joints. Therefore, members are subjected only to axial forces as in 

planar trusses.

An idealized truss is termed just rigid if the removal of any of its members 

destroys its rigidity. If the removal of a member does not destroy its rigidity, the 

truss is said to be over rigid.

4.2  SIMPLE SPACE TRUSS

The basic element of a space truss which is 

just rigid is a tetrahedron with four joints. 

An additional joint can be formed by adding 

three more members as shown in Fig. 4.1. 

Any number of rigid joints can be formed 

by adding three members for each additional 

joint. Such trusses, if suitably supported, are 

internally rigid and statically determinate.

4.3  TYPES OF SUPPORTS

There are various forms of supports for space trusses. Three common types of 

supports and the corresponding components of reaction that are possible are 

shown in Fig. 4.2. The ball-and-socket support prevents the movement of the 

Space Trusses
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Fig. 4.1  Rigid space truss
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support in each of the three directions. The three component reactions are shown 

in Fig. 4.2a in their positive direction. The roller support in Fig. 4.2b prevents 

the movement of the support in two directions; movement is permitted in the 

third direction. The support condition in the YZ plane is comparable to a pinned 

support in a planar truss and the support condition in the XY plane is comparable 

to a roller support. The roller lies in the XZ plane with the axis parallel to Z. Other 

combinations of support are also possible for a roller support. For example, Riz 

can be zero (axis of roller parallel to X axis) but Rix and Riy may exist.

Fig. 4.2  Types of supports: (a) Ball-and-socket support, (b) Roller support, (c) Ball support

The ball support in Fig. 4.2c prevents movement only in one direction, that is, 

the Y direction for the support shown. Movement is permitted in the other two 

directions, that is, the X and Z directions.

4.4  EQUILIBRIUM AND STABILITY CONDITIONS

The equilibrium of an entire space truss or sections of a space truss is described 

by the six scalar equations given below.

 SFX = 0 SMX = 0

 SFY = 0 SMY = 0

 SFZ = 0 SMZ = 0

or in vector form    F
R
 = 0    M

R
 = 0 (4.1)

F
R
 and M

R
 represent three-dimensional force and moment vectors.

The equilibrium of a ball-and-socket joint is described by the three scalar 

equations

 SFX = 0   SFY = 0   SFZ = 0

or in vector from

 F
R
 = 0 (4.2)

The space truss may be thought of as a structural device which contains j 

ball-and-socket joints connected in space. The forces that act on the joints are the 

member forces, external forces and reaction components. Thus, from the three 

equations of equilibrium at each joint, we can write 3j equilibrium equations 

for the entire truss. Denoting the number of members as m, and the number 

of reaction components as r, the necessary condition for the space truss to be 

statically determinate is
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 3j = m + r (4.3)

If 3j < m + r, the truss is statically indeterminate, that is, the number of unknowns 

is more than the number of equations of equilibrium.

If 3j > m + r, the structure is statically unstable.

However, it should be remembered that a simple count alone does not prove 

its stability. While satisfying the count, the structure may still be statically or 

geometrically unstable if the bars of reaction components are not properly 

arranged. The reactions must be so placed that they can resist translation along 

and rotation about each of the three coordinate axes, if a three-dimensional truss 

is to be stable. For example, the reaction components in Fig. 4.3 pass through a 

common point o; they cannot resist rotation about the Y axis passing through o.

Fig. 4.3  Unstable support conditions

4.5  ANALYSIS OF SPACE  TRUSSES

The analysis of space trusses can be carried out by using a combination of the 

method of sections and method of joints. 

Certain generalized theorems can also be utilized in fi nding bar forces. 

However, the analysis by these methods is tedious because of the three 

dimensional nature of the problem. The method of tension coeffi cients, being 

systematic, is better suited to space truss analysis than other methods. The concept 

of tension coeffi cient method to space trusses is extended by incorporating the 

force components in the z direction. The equilibrium equations in the z direction 

can be written as Stij zij + zi = 0. A couple of examples at the end are presented to 

illustrate the procedure involved

Where it is possible, the reactions may be determined from a consideration of 

the equilibrium of the entire structure. Once the reactions are known, any joint with 

three or less unknown bar forces can be determined using the three equilibrium 

equations of the joint. Likewise, the joints can be solved in succession.

Sometimes it may not be possible to determine the reactions beforehand. In 

such cases, some of the bar forces can be determined fi rst and then the reaction 

components. Often, member forces and reaction components for a given space 

truss can be determined with less computational effort if conditions of forces at a 

joint are recognised. For certain conditions of loading at a joint in a space truss, 

and for certain arrangement of members meeting at a joint, the forces in the bars 

can be determined by observation.
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The following two theorems are important as their application often results in 

an appreciable saving in computations.

THEOREM 1 If all the bars meeting at a joint with the exception of one bar, n, lie 

in a plane, the component normal to that plane of the force in the bar n is equal 

to the component normal to that plane of any external load applied at that joint. 

If no external load is applied at the joint, the force in bar n is zero.

THEOREM 2 If all but two bars at a joint have no bar forces and these two are 

not collinear, and if no external load acts at that joint, the bar force in each of 

these two bars is zero.

These two theorems can be justifi ed from a consideration of the equilibrium 

of a joint under the conditions stated. The usefulness of the two theorems will be 

seen in the examples illustrated below.

Example 4.1 
It is required to determine the reactions and bar forces 

of the space truss in Fig. 4.4a.

For clarity the truss is shown in two-dimensional views in Fig. 4.4b and c. 

Force quantities are to be described in terms of X, Y and Z axes of Fig. 4.4a. The 

unknown reaction components at supports a, b and c are shown acting in the 

positive directions of X, Y and Z axes. The truss is checked for static determinancy 

by Eq. 4.3. For this truss j = 4, m = 6 and r = 6, which indicates that the truss is 

statically determinate.

Fig. 4.4  Truss for analysis
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External Reactions In this case the external reactions are only six in number 

and can be obtained without determining the bar forces. In obtaining the reaction 

components, we look for an equilibrium equation that involves only one unknown 

at a time. Let us determine the vertical reactions fi rst.

On applying SMX = 0 about axis ac, we notice that RbY is the only external 

force that could have a moment and hence RbY = 0. 

On applying SMz = 0 about the line of action of Raz

 –40(6) + RcY(6) = 0

or R
CY

 = 40.0 kN

On applying S FY = 0 to the entire structure

 SaY + RcY = 0 SRaY = –40.0 kN

To determine the horizontal reactions, if we apply S MY = 0 about the Y axis 

passing through the intersection of any two of the horizontal reactions, the third 

horizontal reaction will be the only unknown occurring in the resulting equation. 

Taking moments, for example, about point 0, the point of intersection of Raz and 

Rbx (see Fig. 4.4c), we have

 40(2) – ReZ(6) = 0

or RcZ = 13.33 kN

Applying SFZ = 0 again for the entire structure, we have

 13.33 + RaZ = 0

or RaZ = –13.33 kN

Finally applying SFX = 0 for the entire structure, we get

 40 + RbX = 0

or RFX = – 40.0 kN

Bar Forces The bar forces are determined from the equilibrium consideration 

of joints. In general, we have three scalar equilibrium equations for each joint 

and we must, therefore, begin at a joint where there are not more than three 

unknowns. For the given truss, we can begin at any joint since the reaction com-

ponents have already been determined. Let us fi rst analyse joint d. The free-body 

diagram of the joint is shown in Fig. 4.5a. Note that the unknown bar forces 

are all shown as acting away 

from the joint. Thus, the result-

ing signs for member forces will 

correspond with plus for tension 

and minus for compression. Be-

fore proceeding further, notice 

that at joint d, according to The-

orem 1, bar force

Pdb = 0 Fig. 4.5  Free-body diagrams: (a) Joint d, (b) Joint a
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The unit vectors along da and dc are:

 nda = 
2 2

3 6 2

6 2

- - +

+ +
2

i j k

3
 = –0.4285i –0.8571 j + 0.2857k

 ndc = 
2 2 2

3 6 2

3 6 2

- +

+ +

i j k
 = 04285i – 08571 j + 0.2857 k

where i, j and k represent the unit base vectors in X, Y and Z directions respectively, 

(see Appendix-A for theory of vectors.) The vector equation for equilibrium of 

joint d is

 40i + Pda(– 0.4285i – 0.8571 j + 0.2857 k) 

     + Pdc(+ 0.4285 i – 0.8571 j + 0.2857 k) = 0

Equating the coeffi cients of base vectors i and j to zero, we have 

 40.0 – 0.4285 Pda + 0.4285 Pdc = 0 

 – 0.8571 Pda – 0.8571 Pdc = 0

Solving the two equations simultaneously we obtain 

 Pda = + 46.67 kN (tension) 

 Pdc = –46.67 kN (compression)

In this particular structure, because we know the vertical reactions at a, b and 

c, the bar forces Pad, Pbd and Pcd can be computed more easily by considering 

SFY = 0 at each joint. For example, at joint a, the vertical reaction RaY = –40.0 

kN or, expressing this in the vector form, RaY = –40j. The unit vector,

 nad = 0.4285 i + 0.8571 j – 0.2851 k 

Equating the coeffi cients of j we have

 –40 j + Pad (0.8571) = 0

or Pad = 46.67 kN; same as the previous result.

Next consider joint a. The free-body diagram of joint a is shown in Fig. 4.5b. 

The unit vectors are

 nac = 1.0 i

 nad = 0.4285 i + 0.8571 j – 0.2851 k 

 nab = + 0.60 i – 0.80 k and RaY = – 40.0 j RaZ = – 13.33 k

The equilibrium equation at joint a, with the previously determined value of Pad 

is

 –40.0j – 13.33k + Pab(0.6i – 0.8k) + Pac(l.0i)

    + 46.67(0.4285 i + 0.8571 j – 0.2851 k) = 0 

Equating the coeffi cients of like base vectors to zero, we obtain 

 Pab = –33.3 kN

 Pac = 0
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Similarly, writing the equilibrium equation for joint c and solving for bar force 

Pcb, we get

 Pcb = 33.33 kN (tension) 

The complete reaction components and the bar forces are shown in Fig. 4.6.

Fig. 4.6  Results of analysis

Example 4.2 
Determine the bar forces and reaction components of 

the space truss in Fig. 4.7. Make use of Theorems 1 and 

2 wherever applicable to fi x up the bar forces.

Fig. 4.7  Truss for analysis
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Figure 4.7b represents an elevation on the XY plane and Fig. 4.7c shows the 

plan on the XZ plane. The X, Y and Z reference axes are oriented as shown in 

Fig. 4.7a.

Fig. 4.8  Free-body diagrams: (a) Joint 8, (b) Joint 7, (c) Joint 1

From inspection it is seen that j = 8, m = 16 and r = 8 satisfy Eq. 4.3.

Thus, the truss is statically determinate. However, it may be noted that there 

are eight unknown reactions and all cannot be determined fi rst. At joint 5 all 

members, except member 5-8, lie in the same plane and there are no external 

loads applied at the joint. Therefore, according to Theorem 1, the member force 

P58 is zero. Similarly, at joints 6 and 7 the member forces P65 and P76 are zero. 

By applying Theorem 2 to joint 5, we fi nd that the bar forces P51 and P52 are zero. 

Similarly, at joint 6, bar forces P62 and P63 are zero.

Bar forces P67 can be evaluated by considering the free-body diagram of joint 

8 given in Fig. 4.8a. If we take the summation of moments about the Z axis 

passing through points 1 and 4, we shall obtain an expression with P87 as the 

only unknown force because the two other unknowns intersect the axis about 

which the moments are being taken. Considering that a 200 kN force acts at joint 

8, we get,

 –P87(6) – 200(2) = 0

or P87 = – 66.67 kN

The unit vector are

 n84 = – 0.3015 i – 0.9045 j – 0.3015 k

 n87 = 1.0 i

 n81 = – 0.2671 i – 0.8012 j – 0.5345 k

Writing down the equation of equilibrium for joint 8 utilising the previously 

determined value for bar force P87, we have

 – 200 j – 66.7(1.0 i) + P84(– 0.3015 i + 0.9045 j – 0.3015 k)

 + P81(–0.2671 i – 0.8012 j – 0.5345 k) = 0 

Equating the coeffi cients of like base vectors to zero, we have 

 P81 = – 83.12 kN and P84 = – 147.47 kN

Considering next joint 7 in Fig. 4.8b, the unit vectors are
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 n74 = –0.6202 i – 0.7442 j – 0.2481 k 

 n73 = +0.3015 j – 0.9045 j – 0.3015 k 

 n78 = +1.0 i

Writing the equilibrium equation for joint 7 and equating the coeffi cients of i 

and j to zero, we have

 P73 = –157.86 kN

and P74 = 191.91 kN

We can next proceed to joint 1 where there are only three unknowns including 

one reaction component. The forces on the joint are shown in Fig. 4.8c. The unit 

vectors are

 n14 = –1.0 k

 n12 = +l.0 i

 n18 = 0.2671 i + 0.8012 j – 0.5345 k

On writing the equilibrium equation for joint 1 and equating the coeffi cients 

of like base vectors to zero, we have

Fig. 4.9  Results of analysis

 R1Y = 66.67 kN

 P12 = 22.22 kN

 P14 = 44.45 kN

and P18 = –83.12 kN
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The remaining bar forces and reaction components can be determined from 

the equilibrium expressions for joints 2, 3 and 4. The results are shown in Fig. 

4.9.

Example 4.3 
Using tension coeffi cient method analyse the member 

forces in sheer legs as shown in Fig. 4.10

Table 4.1  Coordinates

Sl. No Node x y z

1 D 0 0 0

2 A 3 –6 4

3 B 3 –6 –4

4 C 10.4 –6 0

The forces in sheer leg bars can 

be analysed without going into 

reaction components. Taking D as 

the origin and the coordinated axes 

as indicated the nodal coordinates 

are shown in Table 4.1. The member 

parameters are entered as shown in 

Table 4.2.

Table 4.2  Member parameters

Sl.No Member xij yij zij lij tij Tij

1 DA 3 –6  4 7.81 –15.1 –117.93

2 DB 3 –6 –4 7.81 –15.1 –117.93

3 DC 10.4 –6   0 12.0 13.5 162.0

Consider nodal point D. Writing down equations of equilibrium SFx = 0, SFy 

= 0, SFz = 0

we have SFx = tDA xDA + tDB xDB + tDC xDC + Px = 0

or 3 tDA + 3 tDB + 10.4 tDC – 50 = 0

or  3 tDA + 3 tDB + 10.4 tDC = 50 (4.4)

 SFy = –6 tDA – 6 tDB – 6tDC – 100 = 0

or 6 tDA + 6 tDB + 6 tDC = –100 (4.5)

Again SFz = 4tDA – 4tDB + 0 = 0 (4.6)

From Eqn (4.6) tDA = tDB

Rewriting Eqn (4.4) 6tDB + 10.4 tDC = 50 (4.7)

Rewriting Eqn. (4.5) 12 tDB + 6 tDC = –100 (4.8)

Fig. 4.10  Sheer legs
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Solving simultaneous equations (4.7) and (4.8)

We get tDC = 13.51

And tDB = –15.1

These coeffi cients are entered in Table 4.2 and the member forces are 

calculated.

Example 4.4 
Analyse the member forces in the three bar truss as 

shown in Fig. 4.11 using tension coeffi cient method.

Fig. 4.11  Space truss

Step 1: To fi x up bar parameters

The coordinates of the nodal joints are indicated. The bar parameters are tabulated 

in Table 4.3.

Table 4.3  Bar parameters

Sl. No Member xij yij zij lij tij Tij

1 DA –2.0 –4.5 –1.5 5.15 –6.99 36.00

2 DB  1.5 –4.5   1.0 4.85   3.80 18.43

3 DC  2.3 –4.5 –4.5 6.77   3.18 21.50

Step 2: Writing of equilibrium equations

    SFx = 0 tDA(–2.0) + tDB (1.5) + tDC (2.3) –27 = 0

  or –2.0 tDA + 1.5 tDB + 2.3 tDC = 27  (4.9)

    SFy = 0 –4.5 tDA – 4.5 tDB – 4.5 tDC = 0 (4.10)

and SFz = 0 –1.5 tAD + 1.0 tDB – 4.5 tDC = 0 (4.11)

Taking equation (4.9) and (4.10) tDB can be eliminated by multiplying eqation 

(4.9) with 3 and adding Eqn. (4.10)

We get –10.5 tDA + 2.4 tDC = 81 (4.12)

Again considering equations (4.10) and (4.11)

tDB can be eliminated by multiplying Eqn (4.11)

by 4.5 and adding Eqn. (4.10)

We get –11.25 tDA – 24.75 tDC = 0 (4.13)
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Solving equations (4.12) and (4.13)

We get tDC = 3.18 and tDA = –6.99

Finally, we have tDB = 3.80 from Eqn (4.13) 

The values are entered and the fi nal bar forces 

are worked out as in Table 4.3).

Example 4.5 
Calculate the member 

forces in the truss 

shown in Fig. 4.12, due to the loading indicated. 

The forces indicated along the coordinate axes 

are the components of the applied load.

The nodal coordinates are as given in the 

diagram. 

The member parameters are given in Table 

4.40.

Table 4.4  Bar parameters

Sl. No. Member xij yij zij lij tij Tij

1 CA 6  6 –6 10.39   –0.9633   –10.0

2 CB 0 10 –6 11.66    1.156 13.48

3 CD 0  0 –6 6.0 0.77 4.62

Joint C is taken for the enalysis of forces.

Writing summation of forces SFx = 0

we have tCA xCA + tCB xCB + tCD xCD + 5.78 = 0

or    6 tCA + tCB (0) + tCD (0) = –5.78 = 0 (4.14)

writing SFy = 6 tCA + 10 tCB + tCD (0) – 5.78 = 0

or 6 tCA + 10 tCB = 5.78  (4.15)

Again writing SFz = –6 tCA – 6 tCB – 6 tCO + 5.78 = 0

or 6 tCA + 6 tCB + 6 tCO = 5.78 (4.16)

From Eqn. (4.14)

 6 tCA = –5.78

 tCA = –0.9633

Substituting in Eqn. (4.15)

 6(–.9633) + 10 tCB = 5.78

gives tCB = 1.156

Substituting in Eqn. (4.16)

 (+6) (–0.9633) + (+6) (1.156) + (+6) tCO = + 5.78

gives tCO = 0.77

The tension coeffi cients and the bar forces are entered in Table 4.4.

Fig. 4.12  Space truss
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Problems for Practice

4.1 Find the reaction components and the bar forces of the space truss shown in Fig. 

4.13.

Fig. 4.13

4.2 Find the reaction components and bar forces of the truss in Problem 4.1 if a load 

of 10 kN is applied at joint d, but with a direction such that it passes through point g, the 

centre of the equilateral triangle, as shown in Fig. 4.14.

4.3 Find the reaction components and the bar forces of the truss given in Fig. 4.15. 

Fig. 4.15

Fig. 4.14
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4.4 In the truss shown in Fig. 4.16 (this is not a simple space truss), the plane of all ball 

sockets CDEH is in the ZY plane while the plane of FGDE is parallel to the XZ plane. 

Determine the forces in all the joints and then determine the supporting forces.

4.5 Find the reaction components and the bar forces of the truss given in Fig. 4.17.

 

 Fig. 4.16     Fig. 4.17

4.6 For the space frame shown in Fig. 4.18 determine: (a) the values of reaction com-

ponents, (b) the members that obviously have zero forces and (c) the forces in other 

members.

Fig. 4.18



5.1  DEFLECTED SHAPES

A necessary part of analysis is the evaluation of defl ections. Defl ections are 

evaluated not only to check that they do not exceed the design limitations, but 

also to use them in the analysis of statically indeterminate structures. In the 

analysis of statically indeterminate structures, the static equilibrium equations 

alone are not suffi cient to evaluate the unknowns. It becomes necessary to utilise 

additional conditions of compatibility or consistent displacements.

In this chapter, we shall discuss the geometric methods for obtaining 

defl ections in a structure. The energy or the virtual work methods are discussed 

in the next chapter. The intention in both these chapters is to develop concepts 

and methods of evaluation of defl ections. Their application in the analysis of 

statically indeterminate structures will be dealt with in later chapters.

As a fi rst step in discussing defl ections, it will be useful to develop an 

understanding of the manner in which a structure defl ects under external loads. 

The sketching of defl ected shapes helps to a large extent in understanding the 

response of the structure to external loads. It may be recalled that defl ections 

are caused by various types of forces such as axial, shear and moments in the 

members. However, defl ections caused by shear and axial forces are generally 

small when compared with defl ection caused by moments in beams and frames. 

Therefore, defl ections caused by shear and axial forces are generally ignored 

and only defl ections caused by moments are evaluated. In trusses, however, 

defl ections are primarily due to axial extensions or shortenings of the members. 

Normally, the forces in members will not be known quantitatively beforehand. 

The defl ected shapes can still be drawn from a rough idea of how the structure 

will defl ect under load. This can be substantiated by visualising the general nature 

of resisting moments and the condition of supports.

Let us consider an elementary case 

of a propped cantilever beam under a 

distributed load as shown in Fig. 5.1. The 

defl ected shape is shown by a broken 

line. In drawing defl ected shapes certain 

Displacements—
Geometric Methods

5

Fig. 5.1  Propped cantilever beam
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basic requirements must be met. For example, a defl ected shape representing 

a member is a continuous smooth curve. It must also be such that it satisfi es 

the support conditions and the connection between members. With regard to the 

propped cantilever beam of Fig. 5.1 the elastic line is a continuous smooth curve, 

curved downwards for some length and upwards afterwards. The fi xed end at left 

hand support A does not allow the member to either rotate or translate; support 

B does not permit any translation. Defl ections are very small when compared 

with the length of the members. While drawing defl ected shapes these are highly 

exaggerated for a better understanding of the defl ected shapes.

Now consider the continuous beam of Fig. 5.2. The defl ected shape or the 

elastic line is shown by a dotted line for the given loading. At support points 

A and B, the elastic line should not show any defl ections but may have some 

slopes. At point C, the fi xed end, zero slope and zero defl ection condition is 

satisfi ed. Note that the basic requirement that the elastic line is a smooth and 

continuous curve is also satisfi ed. The curve defl ects downwards in the span A-B 

and upwards in the span B-C for the loading indicated. At certain points on the 

curve the curvature changes sign; these points are referred to as infl ection points. 

Infl ection points represent points of zero moment in the beam. The infl ection 

points are indicated by asterisk marks (*) on the defl ected shape.

Consider a portal frame of Fig. 5.3. The frame is symmetrical and the loading 

also is symmetrical. The axial deformations are considered negligible when 

compared with those due to bending. Therefore, points B and C will remain in 

the same position. However, connections at B and C do rotate. In drawing the 

defl ected shape at B and C, it should be remembered that at the point of connection, 

the members rotate by the same amount so that the angular orientation of the 

members is maintained in the defl ected shape.

Fig. 5.2  Two-span continuous beam

  

 Fig. 5.3  Symmetrical portal frame Fig. 5.4  Portal frame under lateral load

       under symmetrical loading
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Consider the same frame subjected to lateral loading as shown in Fig. 5.4. 

Again neglecting axial deformations, the lateral displacement of points B and C 

must be same. Points B and C do rotate but the angular orientation of members 

meeting at points B and C must be maintained even in the defl ected shape.

As a last example, consider the frame of Fig. 5.5 with one leg inclined. If 

axial deformations are neglected, point C must move along a line perpendicular 

to DC at point C. Strictly speaking, this displacement is along an arc of a 

circle drawn with centre D and 

radius DC, but we are concerned 

with small displacements, and 

therefore, an arc is replaced by 

a straight line normal to DC. 

The point B moves laterally by 

DH, same as the horizontal 

displacement component of C 

since the axial deformation in 

member BC is neglected. No 

vertical displacement of point B 

is possible. However, both points 

B and C rotate. The members 

meeting at joints B and C will 

retain the same angular orientation 

to each other at the points of connection.

Learning to draw the defl ected shapes, qualitatively, will provide a through 

understanding of the methods of analysis of such structures. For example, while 

considering the conditions of consistent displacement to acquire additional 

equations for the analysis of statically indeterminate structures, a clear 

visualization of the defl ected shape of a structure will be highly meaningful and 

useful.

5.2  MOMENT-AREA METHOD

The moment-area method of determining defl ections provides a convenient 

means of determining slopes and defections in beams and frames.

This is a semi-graphical method, and, as will be seen later, can be conveniently 

used for members of varying moment of inertia and discontinuous loadings. The 

Mohr’s moment-area method is based on two basic theorems: (1) related to the 

change of slope of the elastic line between two points, and (2) related to the 

deviation of tangents drawn at two points on an elastic line.

To develop these theorems, let us consider a segment of an elastic line defl ected 

by a moment as shown in Fig. 5.6a. The moment producing the defl ected shape is 

shown in Fig. 5.6b in the form of moment diagram ordinates divided by fl exural 

rigidity EI of the beam. The diagram is commonly known as the M/EI diagram 

or curvature diagram.

Fig. 5.5  Frame with one inclined leg

   under lateral loading
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Fig. 5.6  (a) Elastic line, (b) M/EI diagram (curvature diagram)

From the previous study of strength of materials it may be recalled that the 

differential equation of such an elastic curve is

 
2

2
=

d y M

EIdx
 (5.1)

The sign of the bending moment corresponds to the beam convention of Fig. 

2.3b and the upward direction of y is positive. The slope of the elastic line can 

be expressed as

 q =
dy

dx
 (5.2)

Therefore, Eq. 5.1 can be written as

 
q

=
d M

dx EI
 (5.3)

or q =
Mdx

d
EI

 (5.4)

Considering a differential length of the beam between point B and C, (see Fig. 

5.6a) we see that the change of slope is denoted by dq, that is the angle between 

the tangents drawn from points B and C. We see from Eq. 5.4 that the value of 

change in slope between points B and C is equal to the area of the M/EI diagram 

between those points. The change of slope between A and C may be obtained by 

integrating Eq. 5.4 to give.

 C C

C A CAA A

Mdx
d

EI
q q q q= - = D =Ú Ú  (5.5)

From the results of Eq. 5.5 the fi rst moment-area theorem related to the change 

of slope may be stated as follows.
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THEOREM 1 The change of slope between the two points on an elastic line is 

equal to the area of the M/EI diagram between those points.

The sign for the change of slope directly results from the area of the M/EI 

diagram evaluated using Eq. 5.5. As seen from the elastic line of Fig. 5.6a, the 

sign of the slope at A is negative. From A to C the slope increases as can be seen 

from Eq. 5.5 and the M/EI diagram. The slope from A to C becomes less negative. 

Using consistent dimensions for M, E and I and the length of the member, the 

results obtained for q will be in radians.

Next, let us consider the use of the moment-area concept to evaluate defl ections. 

From Fig. 5.6a it can be seen that the vertical deviation of the two tangents drawn 

from B and C can be obtained from the product of the angle between the tangents 

and the distance to the reference line under consideration. Thus, at point A which 

is located at a distance x from the differential element BC, the vertical deviation 

dt between tangents B and C is

 dt = (x) (dq) (5.6)

It may be remembered that we are concerned with fl at elastic curves with 

small defl ections and slopes and hence the above relationship.

The deviation of the tangent at A from the tangent at C denoted by tAC can be 

obtained by repeating the procedure for each differential element between A and 

C and summing the resulting values of dt. This, of course, can be accomplished 

by integrating Eq. 5.6, which results in

 ( )( )q= Ú
C

AC A
t x d  (5.7)

Substituting for dq for Eq. 6.4

 = Ú
C

AC A

Mxdx
t

EI
 (5.8)

From this equation the second moment-area theorem can be stated as given 

below.

THEOREM 2 The tangential deviation of A from a tangent to the elastic curve at 

C is equal to the static moment of the area of the M/EI diagram between A and 

C taken about point A.

The deviation is obtained on a vertical line passing through A. If the area of M/

EI diagram between A and C is denoted by A1, Eq. 5.8 can be written as

 tAC = A1x1 (5.9)

where x1 represents the horizontal distance of the centroid of the area from point 

A (see Fig. 5.7).

By the same reasoning the deviation of point C from a tangent through A is

 tCA = A1x1¢ (5.10)

where the same area of M/EI diagram is used but x1¢ is measured from the vertical 

line through point C. In-Eqs. 5.9 and 5.10, the distances x1, x¢1, are taken as 

positive and, as E and I are positive quantities, the sign of the tangential deviation 

depends on the sign of the bending moments. A positive value for the tangential 
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deviation indicates that a given point lies above a tangent to the elastic curve 

drawn through the other point and vice versa.

Fig. 5.7  Sign convention for tangential deviation

This is shown clearly in Fig. 5.7. The order of the subscript used in the 

deviation at A and C may be carefully noted; the point for which the deviation is 

being determined is written fi rst.

The above two theorems can be applied between any two points on a continuous 

elastic curve of any beam for any loading. However, it must be emphasised that 

only relative rotation of the tangents and only tangential deviations are obtained 

directly. A further consideration of the geometry of the elastic curve at the 

supports to include boundary conditions is necessary in every case to determine 

defl ections. This aspect is illustrated in the following examples.

Example 5.1 
Find the slope and defl ection at the free end of a 

cantilever beam subjected to a concentrated load P at 

the free end.

Fig. 5.8  (a) Beam and loading; (b) Elastic line (c) M-diagram
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The elastic curve or the defl ection curve of the cantilever beam is shown in 

Fig. 5.8(b). Moment diagram is shown in Fig. 5.8(c). The slope of beam at the 

free end B can be taken as the change in slope from A to B since the slope at A = 

0. Using moment-area theorem 1 we have qB = qB – qA = Area of the M diagram 

between A and B.

 

21

2 2
= ◊ =

Pl Pl
l

EI EI

Again the tangential deviation at B from the tangent drawn at A is tBA, which 

is the defl ection of the free end B. Using moment area theorem I.

we have, 
31 2

2 3 2
d = = ◊ ◊ =B BA

Pl l Pl
t l

EI EI

Example 5.2 
Find the slope and defl ection of the end B of a cantilever 

beam under a uniformly distributed load w/unit length 

as shown in Fig. 5.9.

Fig. 5.9  (a) Given beam and loading; (b) Elastic curve; (c) M-diagram

Using moment area theorem I

 qB = qB – qA = Area of 
M

EI
 diagram between B and A.

 qB = 
2 31

3 2 6

w w
◊ =

l l
l

EI EI

Again using moment area theorem 2

 dB = tBA = Moment of the 
M

EI
 diagram 
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between A and B taken about B.

\ 
2 41 3

3 2 4 8

w w
d = ◊ ◊ =B

l l
l l

EI EI

Example 5.3 
Analyse a simply supported beam subjected to a 

concentrated load P at centre for its end slopes and 

defl ection at the centre. Use moment-area method in the analysis.

Fig. 5.10  (a) Beam and loading; (b) Elastic curve; (c) Moment diagram

The beam and the loading is symmetrical. The slopes of elastic curve at both 

the ends A and B are numerically equal, qB = –qA

The tangent drawn from A on the elastic curve intercepts an ordinate tBA at B. 

using moment area theorem-2

 tBA = i iA x

EI

or tBA = 
31

2 4 2 16
◊ ◊ =

Pl l Pl
l

EI EI

Then we have qA = 
2

16
=ABt Pl

l EI

The defl ection at centre of span C can be obtained indirectly. The elastic curve 

has zero slope at centre under load P due to symmetry. The tangent drawn from C 

on the elastic curve intercepts an ordinate at A equal to tAC which is the defl ection 

dC desired. We can also draw tangent from C to obtain tBC at B according to 

moment area theorem-2.
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 tAC 2 2=
A x

EI

or  tAC 
31

2 4 2 3 48
= ◊ ◊ =

Pl l l Pl

EI EI

\ dC = tAC 
3

48
=

Pl

EI

Example 5.4 
Find slopes at the ends and defl ection at centre of a 

simply supported beam subjected to uniformly distrib-

uted load as shown in Fig. 5.11.

Fig. 5.11  (a) Beam and Loading; (b) elastic line and intercepts (c) M-diagram

The beam and the loading are symmetrical. Hence qB = –qA. The intercept tBA 

is obtained by using moment-area theorem-2.

 tBA 1 1=
A x

EI

or tBA  
2 32

3 8 2 24

l l l
l

EI EI

w w
= ◊ ◊ =

 qA   = 
2

24

w
=BAt l

l EI

The defl ection at centre of span C is equal to tBC as the tangent drawn from C 

and the elastic line is horizontal.
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 dC = tBC 
2

2 2 2 5 5 4

3 2 8 8 2 384

w w
= = ◊ =

A x l l l l

EI EI EI

Example 5.5 
A cantilever beam having stepped moment of inertia is 

subjected to a 4 kN load at the free end as shown in

Fig. 5.12a. Using moment-area theorems, evaluate the slope and defl ection at 

the free end.

 E = 204 ¥ 106 kN/m2 (204,000 Mpa).

The elastic curve for the defl ected shape is shown in Fig. 5.12. The slope at B 

can be taken as the change in slope from A to B since the slope at A is zero. The 

slope at B is denoted by qB. Similarly, because the slope of the elastic curve at 

A is zero, the deviation of point B on the elastic curve from the tangent drawn 

at A represents directly the defl ection of the beam. This defl ection at point B is 

denoted by tBA (see Fig. 5.12b).

Fig. 5.12  (a) Beam and loading, (b) Elastic line, (c) Moment diagram,

(d) M/EI diagram (m–1 ¥ 10–3)

To evaluate qB and tBA by the moment-area concept, we fi rst draw the bending 

moment diagram as in Fig. 5.12c. The M/EI diagram is obtained by dividing all 

the ordinates of the M diagram by EI. The M/EI diagram is shown in Fig. 5.12d.

The slope at B is determined according to Theorem 1 from Eq. 5.5. Since qA 

= 0, we can write

 qB = qB – qA = DqBA = Ú
B

A

M
dx

EI
 (5.11)

The area under the M/EI diagram can be conveniently broken into two 

triangles and one rectangle. The technique of subdividing the M/EI diagram into 

fi gures for which the areas and locations of centroids are commonly known is 
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particularly useful in evaluating defl ections later. The value of qB is, therefore, 

given by

 qB = A1 + A2 + A3

From Fig. 5.12d we have

 3(1) ( 6.54) ( 2.45)
(1) ( 2.45) (1) 10

2 2
q

-- -È ˘= + - +Í ˙Î ˚
B  = –0.0069 radians

The defl ection at B is determined using moment-area Theorem 2. Using areas 

A1, A2 and A3 and taking static moments of these areas about point B, we obtain 

for the defl ection at B

 tBA = A1x1 + A2x2 + A3x3

where x1, x2 and x3, are the horizontal distances from B to the centroids of the 

respective areas. From Fig. 5.12d, the value of the defl ection is found to be

 tBA = [(–3.27)(2/3) + (–2.45)(1.5) + (–1.225)(5/3)]10–3

 = –7.895 ¥ 10–3 m = –7.9 mm

The negative sign indicates that point B is below the tangent drawn through 

point A that is, the defl ection is downwards.

Example 5.6 
A simply supported beam is loaded as shown in Fig. 

5.13a. Determine the location and magnitude of the 

maximum defl ection in the beam. EI for the beam is constant.

E = 204 ¥ 106 kN/m2 (204,000 mPa) and I = 50 ¥ 10–6 m4 (50 ¥ 106 mm4).

The elastic curve and moment 

diagram for the beam are shown 

in Figs. 5.13b and c respectively. 

Let the unknown point at which 

maximum defl ection will occur be 

at D, located at a distance x from the 

right hand support. The maximum 

defl ection occurs where the tangent 

to the elastic curve is horizontal.

It is easy to visualise that the 

maximum defl ection occurs in 

region CB. First we determine slope 

qB at support B. Then we determine 

the value of x for which the value 

of the slope changes by qB. From 

Fig. 5.13b we can see that qB can 

be obtained by dividing deviation 

tAB by the distance between points 

A and B.
Fig. 5.13  (a) Beam and loading, (b) Elastic 

line, (c) M/EI diagram
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The M/EI diagram for the beam is shown in Fig. 5.13c in terms of E and I. The 

units used are kN and m. To evaluate tAB, we take the static moment of the M/EI 

diagram area about point A. Thus,

 tAB = A1x1 

1 320.4
(1 / 2)(6)(40)(8.3) m= =

EI EI

and qB 
53.4

radians
6

= =ABt

EI

The desired value for x is, therefore, the length in which the area of the M/EI 

diagram changes by this value of qB That is,

1 40 53.4
( )

2 4

Ê ˆ Ê ˆ =Á ˜ Á ˜Ë ¯ Ë ¯
x

x
EI EI

This yields x = 3.27 m

The magnitude of maximum defl ection is found by evaluating tangential 

deviation tBD which is equal to the static moment of the portion of M/EI diagram 

between D and B about B. Therefore,

  
1 40 3.27 2

(3.27)
2 4 3

Ê ˆ Ê ˆ Ê ˆ= Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯BDt
EI

 (5.12)

    = 
116.55

204 50¥
m (point B is above the tangent drawn through point D)

Substituting for EI, we get

 Dmax = 
116.55

204 50
-

¥
 = –11.43 ¥ 10–3 m

or = 11.43 mm

Example 5.7 
For the beam in Example 5.6, fi nd the slope and defl ec-

tion at centre of beam.

It is apparent from the elastic curve (Fig. 5.14b) that the required defl ection 

is represented by DE¢. Again from geometry or kinetic considerations, DE¢ = 

DE¢¢ – E¢E¢¢ in which DE¢¢ = (qB)(3) and E¢E¢¢ is the deviation tDB which can be 

computed using moment-area Theorem 2. In this case tAB is the same as in the 

previous example and is

 
320.4

=ABt
EI

Therefore, DE¢¢ AB

1 160.2

2
= =t

EI

Again employing moment-area Theorem 2 we have

 tDB 
1 30 45.0

(3) (1)
2

Ê ˆ= =Á ˜Ë ¯EI EI
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It may be noted that the shaded 

portion of M/El diagram in Fig. 5.14c 

is considered and the x distance is 

measured from D. Therefore, the 

required defl ection is,

160.2 45.0 115.2
= - =¢DE

EI EI EI

Substituting numerical values for E 

and I

 

3115.2
11.29 10 m

204 50
DE -= = ¥¢

¥

or  DE¢ = 11.29 mm

which is not much different from 

the value of maximum defl ection of 

11.43 mm.

The positive signs of tAB and tDB 

indicate that the points A and D lie 

above the tangent through B. As may be seen from Fig. 5.14b, the defl ection at 

centre of beam is in the downward direction.

The slope of the elastic curve at D can be found from the known slope at one 

of the ends and employing Eq. 5.5. For point B of the right hand support

 qB = qD + DqDB

or qD = qD + DqDB

or qD = 
1 30

(3)
6 2

ABt

EI

Ê ˆ- Á ˜Ë ¯

or qD = 
53.4 45.0 8.4

EI EI EI
- =  radians (counter-clockwise)

The above procedure for fi nding the slope and defl ection at a point on the 

elastic curve is generally applicable. The following example illustrates the 

application of moment-area theorems to overhanging beams.

Example 5.8 
It is required to evaluate the defl ection at free end A of 

the overhanging beam shown in Fig. 5.15 caused by 

applied loads. EI is constant.

The moment diagram is shown in Fig. 5.15b. It may be seen that the point of 

contrafl exure is at all from support B. At this point an infl ection in the elastic 

curve takes place. The assumed profi le of the elastic curve is shown in Fig. 

5.15c.

Fig. 5.14  (a) Beam and loading,

(b) Elastic line, (c) M/EI diagram
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Fig 5.15  (a) Beam and loading, (b) Moment diagram, Elastic line—slope at B assumed 

positive, Elastic line—slope at B assumed negative, An alternative approach

To start with it is not known whether the slope of the elastic line over support 

B is positive or negative. We shall fi nd tCB by taking moment of the M/EI diagram 

area between B and C about point C. This gives

 tCB  = A1x1 + A2x2 + A3x3

  
( )1 1 2 1

( ) . ( / 2)( . )
2 3 2 6

È Ê ˆ Ê ˆ= + +Í Á ˜ Á ˜Ë ¯ Ë ¯Î

a
a P a a a P a a

EI

  
1 3

( / 2) ( . )
2 2 3

˘Ê ˆ+ - + ˙Á ˜Ë ¯ ˚

a
a P a a
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On simplifying, 
3.

6
=CB

P a
t

EI

The positive sign for tCB indicates that the point C is above the tangent through 

B. The corrected sketch of the elastic line is indicated in Fig. 5.l5d. From the 

fi gure it is seen that the desired defl ection is given by the ordinate AA¢ and is 

equal to A¢A¢¢ – AA¢¢. Since the triangles AA¢¢B and BCC¢ are similar the ordinate 

AA¢¢ = tCB/2 by proportion. The ordinate A¢A¢¢ = tAB, the deviation of the point A 

from the tangent to the elastic curve at support point B. Hence,

 AA¢ = A¢A¢¢ – AA¢¢ = tAB – CB

2

t

tAB can be evaluated using moment-area Theorem 2. Hence from Fig. 5.15b 

 tAB = A4x4

or    

31 1 3
( )( . )

3 4 4
AB

Pa
t a p a a

EI EI

È ˘Ê ˆ= - = -Í ˙Á ˜Ë ¯Î ˚
Here the negative sign indicates that point A is below the tangent through B. 

Now from the geometry of the elastic curve

 

3 3 31

4 2 6 6
D = - =A

Pa Pa Pa

EI EI EI

This example illustrates the necessity of watching for the sign of quantities 

computed by the application of the moment-area method, although in most cases 

the signs will be obvious.

The problem could have also been solved by fi rst establishing tAC. This scheme 

of analysis is shown in Fig. 5.15e.

For some types of loading, such as 

combination of concentrated and dis-

tributed loads, or for varying loads, 

the moment-area method can become 

complicated if directly used. The com-

plications arise because the areas and 

centroids of M/EI diagrams are diffi cult 

to evaluate. This diffi culty can be over-

come in most cases by considering the 

effects of loads separately and superpos-

ing the individual results. For example, 

the effects of uniformly distributed load 

w/unit length and concentrated load P 

on the beam shown in Fig. 5.16 can be 

considered to act separately.

This results in the simpler M/EI 

diagrams for uniformly distributed load 

Fig. 5.16  (a) Combined loading, (b) M/EI 

diagram for distributed load, (c) M/EI diagram 

for concentrated load



104  Basic Structural Analysis

(Fig. 5.16b) and concentrated load (Fig. 5.16c) for which the areas and centroids 

can be conveniently determined. The results from each of the diagrams are then 

combined for obtaining the total effect for the given loading. The following 

example further clarifi es the point.

Example 5.9 
It is required to evaluate the slope at left hand support 

A and defl ections under load point C and D for the 

beam shown in Fig. 5.17. E = 205 ¥ 10–6 kN/m2 (205,000 MPa) and I = 25 ¥ 10–6 

m4 (25 ¥ 106 mm4).

The elastic line and the M/EI diagram for uniform load are shown in Figs. 

5.17c and d and for concentrated loads in Figs. 5.17f and g. The slope of the 

beam at support A is seen to be equal to

 (1) (2)q q q= +A A A

   
(1) (2)

4 4
q = +BA BA

A

t t

Using moment-area Theorem 2,

 
(1)

1 2 106.67
(4) (20)(2)

3
ABt

EI EI

È ˘= =Í ˙Î ˚

 
(2)

1 1 2.8 1 1.6 13.34
(10) (2.4) 1.6 (1.6) ( 40)

2 3 2 3
BAt

EI EI

È ˘Ê ˆ Ê ˆ= + + - =Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

Therefore, the actual slope at A,

 qA = 
106.67 13.34 30.0

4

+
=

EI EI

Substituting numerical values for E and I, we have 

 qA = 0.00586 radians (clockwise)

The defl ection under load point C is seen to be equal to the sum of ordinates 

C1 C1¢ and C2 C2¢ in Figs. 5.17c and f. We know for the case of uniform loading

 C1 C1¢ = C1 C1¢¢ – tCA(1) 

(see Fig. 5.17c) in which C1C1¢¢ = qA(1) (2)

Thus, 1 1

26.67 2 20 3
(2) (2) (2)

3 8

Ê ˆ Ê ˆ¢ = - Á ˜ Á ˜Ë ¯ Ë ¯
C C

EI EI

Or 
(1)

53.34 20 33.34
D = - =C

EI EI EI
 downwards.

In a similar manner, C2C2¢ = DC(2) is evaluated for the case of concentrated 

loads. Following the same procedure

 C2C2¢ = C2C2¢¢ – tCA(2) 
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or DC(2) = 
3.34 1 10 2

(2) (2) 0
2 3

Ê ˆ Ê ˆ- =Á ˜ Á ˜Ë ¯ Ë ¯EI EI

The elastic curve in Fig. 5.17f is accordingly corrected and shown in dotted 

line. The defl ection under load point C is therefore,

Fig. 5.17  (a) Beam and loading, (b) Beam under distributed load only, (c) Elastic curve due to 

distributed load only, (d) M/EI diagram due to distributed load only, (e) Beam under concentrated 

loads only, (f) Elastic curve due to concetnrated loads only, (g) M/EI diagram due to concentrated 

loads only
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33.34 33.34

0D = + =C
EI EI

 downwards.

Substituting the numerical values for E and I

 
33.34

m
205 25

D =
¥C  = 6.5 mm

The defl ection under load point D is similarly found out as the sum of individual 

effects of the load. Considering fi rst the distributed loading, the defl ection of 

point D is D1D1 (Fig. 5.17c).

Hence, D1D¢1 = qB(1) (2)

Again 
(1)

(1)
4

q = AB

B

t

or qB(1) = 
1 2 (20)(2) 26.67

(4)
3 4

È ˘ =Í ˙Î ˚EI EI

Therefore,

 D1D1¢ = 
26.67 53.34

(2)
4

=
EI

 upwards 

Next considering only the effect of concentrated loads, the defl ection under load 

point D is D2D2¢¢ (Fig. 5.17f ). 

Thus,

 D2D2¢¢ = D2D¢2 + D2¢D2¢¢ = qB(2)(2) + tDB(2)

We see from Fig. 5.17f

 qB(2) = 
(2) 1 1 4.4 1 8.8

(2.4)(10) (1.6)( 40)
4 4 2 3 2 3

È ˘Ê ˆ Ê ˆ= + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

ABt

EI

 q2 = 
1

(17.6 93.87)
4

-
EI

or D2D2¢ 
1 38.14

(17.6 93.87)
4

= - = -
EI EI

The negative sign indicates that point A is below the tangent drawn from B.

Again from Fig. 5.17f

 tDB(2) 
1 40 2 53.33

(2) (2)
2 3

Ê ˆ Ê ˆ= - = -Á ˜ Á ˜Ë ¯ Ë ¯EI EI

Thus the defl ection under load point D is given by 

 DD = D2D2¢ + D2¢D2¢¢

 DD = 
38.14 53.33 91.47- -

= -
EI EI

Substituting the numerical values for E and I 

 DD = –17.8 mm
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It may be remembered that it is necessary to keep track of the sign of the 

evaluated quantities and interpret to get the desired slopes and defl ections as has 

been done in the above example.

The moment-area method can also be employed to determine the slopes and 

defl ections in a frame. Its use on frames requires a detailed consideration of the 

defl ected shape. The following examples will illustrate this point.

Example 5.10 
The slope and the horizontal and vertical defl ections 

are to be determined at point C for the frame shown in 

Fig. 5.18a.

E = 205 ¥ = 106 kN/m2 (205,000 MPa) and I = 10 ¥ 10–6 m4 (10 ¥ 106 mm4).

Fig. 5.18  (a) Frame and loading, (b) M/EI diagram, (c) Elastic line

The M/EI diagrams for the frame is shown in Fig. 5.18b. Beam sign convention 

is adopted for the moment diagram for each member. End A is considered to be 

the left end of member AB and end B is considered as the left end of member 

BC.

The defl ected shape of the frame is shown in Fig. 5.18c. The desired slope at 

C is seen to be equal to the slope at B plus the change in slope between B and 

C. If bending defl ections only are considered, neglecting axial deformations, the 

horizontal defl ection at C = DCH will be equal to the horizontal defl ection at 

B = DBH. The vertical defl ection at C is due to the slope at B as well as due to 

deviation tCB. Therefore, the vertical defl ection at C is equal to the product of qB 

and length BC plus the deviation tCB. From moment-area Theorem 1, qC is found 

to be

  qC = qB + DqBC

or  
6( 4) 1 ( 8)

(2)
3

q
- -

= +C
EI EI

 
29.33

EI
= -
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The horizontal defl ection at C which is also equal to the horizontal defl ection 

of point B is

 tBA = 
( 4) 72.0

6 (3)
EI EI

-
= - (to the right)

Substituting the numerical values for E and I

 DBH = DCH = 35.12 mm.

Generally the direction of defl ections in frames can be fi xed from 

observation.

The vertical defl ection at C is found from the expression

           DCV = qB(2) + tCB

  
24 1 ( 8) 3

(2) (2) (2)
3 4

-
= - +

EI EI

  
56

= -
EI

 (downwards)

Substituting numerical values for E and I we get

 DCV = –27.31 mm (downwards)

5.3  CONJUGATE BEAM METHOD

The conjugate beam method is another valuable alternative method for determining 

slopes and defl ections in beams. The method can also be conveniently used for 

continuous beams. This method is based on a mathematical correspondence that 

exists between moment vs. load function and defl ection vs. M/EI functions in a 

beam. If the defl ected shape of the beam is described by the function y(x), the 

following general relationships exist:

y = defl ection ordinates of the elastic curve

  q=
dy

dx
 = slope of the elastic curve (5.13)

  

2

2

q
= = xMd d y

dx EIdx
 (5.14)

  
3

3
= =x xdM Vd y

EIdx EIdx
 (5.15)

  
4

4
= =x xdV wd y

EIdx EIdx
 (5.16)

The validity of these relationships depends on the sign convention used for 

various quantities. The coordinate system that satisfi es these relationships are: y 

upwards and x to the right are positive, shear and moment sign convention is the 

same as given in Figs. 2.5a and b and the load is positive when it acts upwards.
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In the beam given in Fig. 5.19a the uniform load acting upwards is positive. 

Figures 5.19b, c, d and e show the corresponding shear, moment, slope and 

defl ection quantities. The differential relationships are shown on the left 

side of the fi gures. As pointed out earlier, from Fig. 5.19 it is seen that there 

is a mathematical correspondence between the moment vs. load function, the 

defl ection vs. M/EI function and also the slope vs. shear function. For example, 

the moment function can be obtained by successively integrating twice the load 

function. Similarly, the defl ection function can be obtained by successively 

integrating twice the M/EI function. These relationships lead to the conjugate 

beam concept for evaluating defl ection and slopes. If the M/EI diagram for a 

given beam and loading is considered to be the loading on an imaginary beam 

known as conjugate beam, the following two principles of conjugate beams can 

be stated.

Fig. 5.19  (a) Beam and loading, W, (b) Shear, V, (c) Curvature, MEI,

(d) Slope, q, (e) Defl ection, y

THEOREM 1 The shear at any point on the conjugate beam is equal (in sign and 

value) to the slope at the corresponding point on the real beam.

THEOREM 2 The moment at any point on the conjugate beam is equal (in sign 

and value) to the defl ection at the corresponding point on the real beam.

The supports of the conjugate beam are such that the shear and moment that 

are obtained in the conjugate beam are consistent with the slopes and defl ections 

in the real beam. The conjugate beams with (M/EI) loading for various beams 

and loadings are shown in Fig. 5.20.
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Fig. 5.20

With regard to the real beam given in Fig. 5.20a we see that at the fi xed 

end, no slope and defl ection are possible, while at the free end, both slope and 

defl ection would exist. The conjugate beam is, therefore, supported in such a way 

that no shear and moment are possible at the left end, while shear and moment 

are generated at the right end. The loading on the conjugate beam is acting 

downwards corresponding to the negative moment in the real beam. Similar 

reasoning is applied in obtaining conjugate beams for other beams in Fig. 5.20. 

For example, in Fig. 5.20d at the point of hinge in the real beam, there exists a 

support at the corresponding point in the conjugate beam. For the intermediate 

support point in the real beam, a hinge is provided in the conjugate beam so that 

no moment exists in the conjugate beam at that point. This corresponds to the 

support condition that no defl ection exists in the real beam at the support point 

and hence no moment exists in the conjugate beam at that point.

The foregoing conjugate beam support conditions can be summed up as 

follows:

 1. If the real beam is built in at its end, then the conjugate beam has zero 

reaction and zero moment at this end; this implies a free end.

 2. If the real beam has a free end, then the conjugate beam has a reaction 

and a moment at this end; this implies a fi xed end.

 3. If the real beam is continuous, then the conjugate beam has zero reactions 

at all the real beam interior support points. An exception to this occurs 

only when the real beam is hinged at an intermediate point. The hinge 

introduces an abrupt change of slope in the real beam and, therefore, a 

concentrated force at that point of the conjugate beam (see Fig. 5.20d).

 4. The moment of the conjugate beam at all the real beam interior support 

points is equal to the defl ection of these real supports. In the case of 

unyielding supports the conjugate beam moment is zero.
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A few examples are given below to illustrate the principles involved.

Example 5.11 
Using conjugate beam method, fi nd the slope and de-

fl ection at the free end of a cantilever beam subjected to 

uniformly distributed load as shown in Fig. 5.21a.

Fig. 5.21  (a) Given beam and loading; (b) Conjugate beam under M/EI loading

The conjugate beamand the loading on the beam is shown in Fig. 5.21b. In the 

conjugate beam, beam end A becomes free end A¢ and free end B becomes fi xed 

end B¢ as shown. At end B¢ in the conjugate beam there exists shear as well as 

moment which relates to slope and defl ection in the given beam.

The shear at B¢ is equal to area of the M/EI diagram between A¢ and B¢.

Therefore V¢B = 

2 31

3 2 6

w w
◊ ◊ =

l l
l

EI EI

That is qB 
3

6

w
=

l

EI

The defl ection at B of the real beam is determined by evaluating M¢B in the 

conjugate beam.

 M¢B = moment of the area of the M/EI diagram taken about B¢

That is M¢B 
21 3 4

3 2 4 8

w w
= ◊ ◊ ◊ =

l l l
l

EI EI

or dB 
4

8

w
=

l

EI

Example 5.12 
Find the defl ection of the beam shown in Fig. 5.22 

under the point load. Take E = 210 ¥ 106 kN/m2, I1 = 

160 ¥ 10–6 m4 and I2 = 120 ¥ 10–6 m4

Step 1: To draw the M/EI diagram

The given beam is shown in Fig. 5.22a. the moment diagram is given 5.22b. 

The conjugate beam and the loading (M/EI diagram) is shown in Fig. 5.22c. The 

conjugate beam is also a simply supported beam lke the given one.
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Fig. 5.22  (a) Given beam and loading; (b) M-diagram; (c) M/EI-diagram

Step 2: To evaluate reaction component V¢A

Writing SMB¢ 
1 1

1 (97.2) 1 (129.6)
(4.5) (2.7) (2.7) (1.8) (1.2) 0

2 2
AV

EI EI
¢

Ê ˆ Ê ˆ
= - + + =Á ˜ Á ˜Ë ¯ Ë ¯

Gives VA¢ = 
1

109.84

EI

Step 3: Defl ection under load point

The defl ection under load point C can be obtained by evaluating the moment in 

the conjugate beam at C¢.

 MC1 = 
1 1

109.84 1 97.2 2.7 178.47
(2.7) (2.7)

2 3

Ê ˆ Ê ˆ- =Á ˜ Á ˜Ë ¯ Ë ¯EI EI EI

Substituting for E and I, values

 dC = 
178.47

160 210¥
 = 0.00531 m

or 5.31 mm

Example 5.13 
It is required to determine the defl ection at centre point 

C and slopes at ends A and B of the beam shown in Fig. 

5.23a by the conjugate beam method. E = 205 ¥ 106 kN/m2 (205,000 MPa) and 

I = 80 ¥ 10–6 m4 (80 ¥ 106 mm4)
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The conjugate beam loaded with M/EI diagram of the real beam is shown 

in Fig. 5.23b. Because the real beam moment is positive, the M/EI loading on 

the conjugate beam is also shown to be upwards in the positive direction. The 

end supports are such as to generate only shearing force but no moment. This 

arrangement gives slopes at the end support points but no defl ection.

The slope at A in the real beam is determined by evaluating the shear at A¢ in 

the conjugate beam.

The shear at A¢ is equal to the support reaction V¢A and is equal to half the 

loading on the conjugate beam. Therefore,

 V ¢A + A1 + A2 + A3 = 0

or V ¢A = – 
1 1 1 125

(2) (50) 2(25) (2) (25)
2 2EI EI

È ˘+ + = -Í ˙Î ˚

that is 
125

0.0076
2.05 80

Aq
-

= = -
¥

 radians (clockwise)

Fig. 5.23  (a) Beam and loading, (b) Conjugate beam under M/EI loading

The shear is negative in its sense and, therefore, the slope at A in the real 

beam is also negative. The slope qB at support B is again equal to shear at B¢ in 

the conjugate beam. Due to symmetry of the beam and loading V¢A = V¢B¢, but the 

shear is positive to the left of B. Therefore, the slope at B is

 qB = V¢B¢ = + 0.0076 radians (anti-clockwise)

The defl ection at C in the real beam is determined by evaluating M ¢C in the 

conjugate beam. The value of M¢C is obtained by summing up of moments at 

point C¢ on the conjugate beam, that is,

 
125 50 2 50 25 2

(4) 2 (1)
3 3

CM
EI EI EI EI

Ê ˆ Ê ˆ= - + + + +¢ Á ˜ Á ˜Ë ¯ Ë ¯ = 
300

-
EI
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The moment in the conjugate beam at C¢ is negative. The defl ection at C in the 

real beam is also negative, that is, the defl ection is downwards and its value is

 DC = 
300

205 80

-
¥

 m or 18.29 mm.

Example 5.14 
An overhanging beam has the dimensions and loading 

as shown in Fig. 5.24a. Using the conjugate beam 

method, fi nd the slopes at A and B, and the defl ection at point C. EI is constant.

Fig. 5.24  (a) Beam and loading, (b) Conjugate beam under M/EI loading,

(c) Free-body diagrams of parts AB and BC

The M/EI loading on the conjugate beam is shown in Fig. 5.24b. It may be 

noted that the M/EI loading is drawn by parts for the convenience of areas and 

centroids by taking the effects of two concentrated loads separately. The direction 

of loading on the conjugate beam is in accordance with the sign convention 

adopted. To correspond the possible slopes and defl ection in the real beam, the 

conjugate beam in Fig. 5.24b is supported on the roller at A¢, hinged at B¢ and 

fi xed at C¢ The pin at B¢ results in zero moment, which is consistent with zero 

defl ection at B in the real beam. The slopes at point A and B in the real beam are 

determined by evaluating the shear at A¢ and B¢ in the conjugate beam. The shear 

forces can be conveniently evaluated by considering the free-body diagram of 

the conjugate beam shown in Fig. 5.24c. Assuming V ¢A and V ¢B as acting upwards 

and summing up moments about point B¢, we have
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1 45 1 40 6

(6) (6) (3) (6) 0
2 2 3

AV
EI EI

Ê ˆ Ê ˆ Ê ˆ+ + - =¢ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 V¢A 
27.5

= -
EI

The sign for shear is negative and so the slope at A is also negative, that is

 qA 
27.5

= -
EI

(clockwise)

Again equating all the transverse forces on segment A¢B¢ to zero, we have

 
1 45 1 40

(6) (6) 0
2 2

Ê ˆ Ê ˆ+ + + - =¢ ¢ Á ˜ Á ˜Ë ¯ Ë ¯A BV V
EI EI

that is,

 
12.5

=¢BV
EI

Thus, shear at B¢ is positive and so the slope at B is also positive. Therefore,

 
12.5

q =B
EI

 (anti-clockwise).

M¢C is found now by considering the segment B¢C¢ of the conjugate beam. 

Thus, we have

 
1 40 4

(2) (2)
2 3

C BM V
EI

Ê ˆ Ê ˆ= + -¢ ¢ Á ˜ Á ˜Ë ¯ Ë ¯

     [ ]1
25.0 53.33= - -

EI

78.33
= -

EI

Because this moment is negative, the defl ection in the real beam at C is

 DC = M¢C 

78.33
= -

EI
(downwards)

Note that the slope and defl ection at any point on the real beam is readily 

obtained from the free-body diagram of the conjugate beam in Fig. 5.24c.

5.4  DEFLECTION OF TRUSSES—GRAPHICAL

   METHOD

5.4.1 Williot-Mohr diagram

A graphical method presented in the following paragraphs provides a means 

for obtaining the defl ections of statically determinate truss structures. The 

defl ections in a truss arise from axial extensions or shortenings of members. The 

two common sources of deformations are the axial forces in members due to 

applied loads or temperature changes. It may be recalled from studies of strength 

of materials that the axial deformation in a prismatic member subjected to an 

axial force P may be expressed
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 =
PL

e
AE

 (5.16)

where L, A and E are the length, area of cross-section and Young’s modulus 

respectively. Similarly, the deformations due to temperature change DT can be 

expressed as

 e = aLDT (5.17)

where a is the coeffi cient of thermal expansion. Following the same sign 

convention as for forces, the extension is considered as a positive quantity and 

shortening a negative quantity.

Let us now consider a small truss (Fig. 5.25a) to develop a method for 

determining defl ections due to axial deformations in members. Under loading, 

let member AC undergo an extension eAC, and the member BC shorten by an 

amount EBC. The resulting displacement of joint C can be determined as shown 

in (Fig. 5.25b). The amount of extension in member

Fig. 5.25  (a) Member deformations, (b) Displacement of joint C

AC is drawn on member AC at joint C. The scale for deformations is highly 

exaggerated to show clearly the resulting displacements. The shortening of 

member BC is also shown along member BC. They are represented by vector 

eAC and eBC. The fi nal location of point C, denoted by C, is obtained at point 

of intersection of arcs swung with A and B as centres and extended length 

of AC (AC1) and shortened length of BC(BC2) as radii respectively. Because 

member deformations are small in comparison with their lengths, it is suffi cient 

to represent the arcs by tangents or straight lines perpendicular to the original 

direction of the members. The resulting location of joint C is found to be at C¢ as 

shown in Fig. 5.25b.

Apparently it appears that the procedure can be extended to large trusses. Let 

us see what happens in the process. As an example, let us consider the truss of 

Fig. 5.26a. The member deformations to be considered are shown next to each 

member. To analyse the structure, it must be remembered that the two points A 

and B are fi xed in space. We can determine the displacement of joint C¢ as we 

did in the previous example. The displaced position of joint C is shown as C in 

Fig. 5.26b. The displacement of D is found with respect to points A and C which 

can serve as fi xed points. The left end of member CD now takes position C¢. The 

amount of deformation in member CD is then constructed at its right end.
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Fig. 5.26  (a) Truss and member deformations, (b) Graphical analysis for truss

defl ections, (c) Williot diagram for truss defl ections

The amount of deformation in member AD is constructed at the right end D of 

the member AD. Then the location of D¢ is found at the intersection of the normals 

drawn from the ends of the deformation vectors as shown in Fig. 5.26b.

The location of E¢ is found by considering C and D¢ as fi xed points. The 

member CE and DE are moved so that ends C and D coincide with ends C and 

D¢ respectively and the member deformations are constructed at the ends in the 

original direction of members CE and DE. The intersection of the lines drawn 

perpendicular to the deformed lengths locates point E¢. The construction is shown 

in Fig. 5.26b.

It may be noticed that in this construction the length of members and the 

deformations must be drawn to the same scale. For obtaining a correct solution, 

enormous drawing space is needed, which is neither possible nor desirable. 

To overcome this diffi culty, we can draw a diagram of member deformations 

only. Such a diagram is known as Williot diagram named after the engineer 

who originated it. The Williot diagram affords an accurate graphical means of 

determining joint displacements without using a large scale drawing of a truss.
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To illustrate the use of the Williot diagram, let us consider again the truss 

of Fig. 5.26a. Basically, the method considers that the original lengths of 

the members are zero and only deformations are drawn. For the truss under 

discussion, points A and B are fi xed in space and are considered to be coincident 

on the Williot diagram (see Fig. 5.26c). We fi nd the displacement of joint C 

with respect to joints A and B which are fi xed in space. As before, we construct 

vectors on the Williot diagram representing only deformations in members. For 

example, vectors ac1 and bc2 represent to scale the deformations in members 

AC and BC respectively. The intersection of perpendiculars drawn at the ends of 

these vectors locates point c as shown in Fig. 5.26c.

We now use points a and c to determine the location of point d. The deformation 

vectors are again laid from the point a for member AD and from point c for 

member CD. The perpendiculars drawn at the ends of these vectors intersect at 

d. The procedure is repeated to establish point e.

The resulting Williot diagram is shown in Fig. 5.26c for the truss shown in 

Fig. 5.26a. Such a diagram gives the actual and relative defl ections of joints. 

Because joints A and B are fi xed in space, defl ection of joints measured with 

respect to joints A and B on the Williot diagram represent actual defl ections. 

For example, in Fig. 5.26c the actual defl ection of joint E is downwards by an 

amount DEV and to the left by an amount DEH. The relative defl ections between 

joints can be found out in a similar way by measuring vectorially between the 

points on the Williot diagram.

The construction of the Williot diagram for the truss of Fig. 5.26a was 

straightforward because in that two of the points on the truss were fi xed in space 

and they could serve as a starting point. Note that in the construction of the Williot 

diagram, the location of the two adjacent points must be known in order to fi x 

the displaced position of any other point. In the truss given in Fig. 5.27a no such 

condition exists for starting the Williot diagram. For example, joint A is fi xed 

in position but joint B or E will displace. To start the construction of the Williot 

diagram, we need either another fi xed point or a fi xed direction. However, we 

can temporarily assume the direction of a member or, if necessary, the location 

of a point fi xed to construct the Williot diagram which can be corrected later to 

yield the correct solution.

As an illustration, consider the truss in Fig. 5.27a and assume that the direction 

of member AB is fi xed. Point a in the Williot diagram is fi xed fi rst. Since the 

direction of member AB is assumed fi xed, point b is located in the direction of 

AB at a distance equal to the extension of member AB. Then point e is fi xed at 

the intersection of the perpendiculars drawn on the deformation vectors laid for 

members BE and AE. The remaining Williot diagram is completed as earlier and 

is shown in Fig. 5.27b. This results in a defl ected shape of the truss as shown 

in Fig. 5.27c. The indicated vertical defl ection of joint D in Fig. 5.27c violates 

the support condition for which only horizontal displacement is possible. The 

inaccuracy has arisen as a result of the assumption made that member AB will 

remain fi xed in direction. Therefore, it is necessary to correct so that the point 
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D is brought back to its proper position. For this, we rotate the whole truss by a 

small angle dq in the clockwise direction about joint A until the vertical defl ection 

at support D is eliminated. Such a rotation is equivalent to applying a correction 

to each joint by an amount

Fig. 5.27  (a) Truss and member deformations, (b) Williot-Mohr diagram, (c) Defl ection of 

truss taking that member AB remains horizontal, (d) Proportionate correction

 Ci = ridq (5.19)

where dq is the small angle through which the truss is rotated and ri the 

distance of any joint i from the centre of rotation, that is joint A in this case 

(see Fig. 5.21d). Since correction Ci is proportional to radius ri, we can draw a 

convenient correction diagram on the Williot diagram itself. The basis for such a 

correction is shown in Fig. 5.27d where the corrections should be perpendicular 

to the respective radii and magnitudes proportional to the radii.

In Fig. 5.27b vector ad represents the displacement of joint D with respect to 

joint A fi xed in space. Vector ad can be resolved into vertical component ad¢ and 

horizontal component d¢d. It is the vertical component that has to be eliminated. 

The correction can, therefore, be effected by constructing a scaled diagram of 

the truss on ad¢ as shown in Fig. 5.27b. The points on the correction diagram are 

denoted by primed alphabets.

The above correction is known as Mohr’s correction diagram as it was 

originated by Mohr. The resulting diagram is known as the Williot-Mohr diagram. 

The true displacement of any truss joint is obtained by the vector measured 
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from the primed alphabets to the corresponding non-primed ones. To verify this 

consider the displacement of joint D with respect to joint A fi xed in space; d¢d 

gives the displacement, that is,

 DDH = CD + ad (5.20)

or the true displacement of joint F is given by

 DF = f¢f = CF + af (5.21)

Both the values are taken out and shown separately in Fig. 5.28.

The construction of Williot-Mohr diagrams for other types of trusses or 

support conditions basically follows the same procedure. For example, if the 

roller support at joint D of the truss of Fig. 5.27a were inclined

Fig. 5.28 Displacement of Joints D and F

at some angle instead of being horizontal, the horizontal line drawn from d to 

locate d¢ in Fig. 5.27b would also be at the same angle as the roller support to 

refl ect the correct possible support displacement. Cases of trusses with supports 

at different levels can also be accounted for by constructing the correction 

diagram 90° to the given orientation of the truss and obtaining its scale from 

support considerations.

Problems for Practice

5.1 Draw the defl ected shapes of the structures shown in Fig. 5.29. Neglect axial defor-

mation of members. Indicate the possible location of points of contrafl exure.

Use the moment-area method to solve problems 5.2 to 5.10.

5.2 Find the defl ection and angular rotation of the free end of an aluminium cantilever 

beam shown in Fig. 5.30.

  E = 70 ¥ 106 kN/m2 (70,000 MPa) 

  I1 = 2 ¥ 10–6 m4 (2 ¥ 106 mm4) 

  I2 = 0.4 ¥ 10–6 m4 (0.4 ¥ 106 mm4)
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Fig. 5.29

  

 Fig. 5.30 Fig. 5.31

5.3 Determine the defl ection under load point for the beam shown in Fig. 5.31. EI is 

constant.

5.4 A compound beam AE consisting of two identical portions AC and CE hinged to-

gether at C is supported and loaded as shown in Fig. 5.32. Find the vertical defl ection of 

point E. El is constant.
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Fig. 5.32

5.5 An ISLB 300 beam is loaded as shown in Fig. 5.33. Determine the defl ection at the 

centre of the span.

  E = 210 ¥ 106 kN/m2 (210,000 mPa), 

  I = 73.33 ¥ 10–6 m4 (73.33 ¥ 106 mm4)

5.6 Find the defl ection at mid span and at the ends of the beam shown in Fig. 5.34.

E = 200 ¥ 106 kN/m2 (200,000 mPa), 

I = 85 ¥ 10–6 m4 (85 ¥ 106 mm4)

  

 Fig. 5.33 Fig. 5.34

5.7 Calculate the defl ection at point A of the beam shown in Fig. 5.35 due to a concen-

trated load at the overhanging end.

5.8 Determine the vertical defl ection of point 5 for the steel beam shown in Fig. 5.36. 

The basic beam is a wide fl ange steel beam with I1 = 186 ¥ 10–6 m4 (186 ¥ 106 mm4). It 

is reinforced with cover plates in the region 2-3-4 to give l2 = 326 ¥ 10–6 m4 (326 ¥ 106 

mm4). E = 200 ¥ 106 kN/m2 (200,00 MPa).

  

 Fig. 5.35 Fig. 5.36

5.9 A timber beam has a linear taper in depth from the ends to the centre of span as 

shown in Fig. 5.37. Determine the displacement at the centre of the beam for the given 

loading. E = 13 ¥ 106 kN/m2 (13,000 MPa). The beam is 200 mm wide.

5.10 For the rigid frame shown in Fig. 5.38,

(a) draw the defl ected shape and moment diagram,

(b) determine the horizontal defl ection at B and D.

5.11, 5.12, 5.13, 5.14, and 5.15

  Using the conjugate beam method solve problems 5.5, 5.6, 5.7 and 5.8 

5.16 Construct the Williot diagram for the truss shown in Fig. 5.39 and fi nd the dis-

placement of joint D as caused by the applied loads. E – 200 ¥ 106 kN/m2 and area of 

cross-section of each member = 1000 mm2.
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Fig. 5.37

  

 Fig. 5.38 Fig. 5.39

5.17 Construct the Williot-Mohr diagram for the truss shown in Fig. 5.40. Determine 

the displacement of joint C along the plane of rollers and also the vertical and horizontal 

components of the defl ection of joint B. E = 200 ¥ 106 kN/m2 (200,000 MPa).

 

 Fig. 5.40 Fig. 5.41

5.18 Construct the Williot-Mohr 

diagram and fi nd the horizontal and 

vertical displacement components 

of joint B. Member deformations 

are indicated on the truss shown in 

Fig. 5.41. Consider point A as fi xed 

in position and member AD as fi xed 

in direction.

5.19 Construct the Williot-Mohr 

diagram for the truss shown in Fig. 

5.42 and determine the vertical and 

horizontal components of defl ection 

of point D. Area of cross-section = 

400 mm2 each and E = 200 ¥ 106 

kN/m2 (200,000 MPa). Fig. 5.42



6.1  INTRODUCTION

In the preceding chapter, the methods for determining defl ections due to 

bending were based upon the geometrical interpretation of the mathematical 

relationship that exists between the applied moment, the curvature and fl exural 

rigidity (EI), of a member. Another group of methods can be developed from 

energy considerations. These energy methods are a powerful tool in obtaining 

the numerical solutions for defl ection problems and also for analysing statically 

indeterminate structures.

The fundamental quantity required for all energy methods of analysis of 

structures is the elastic strain energy or work stored in the structure due to elastic 

deformations. We shall, therefore, begin our discussion of energy methods with 

the physical and mathematical considerations involved in storing work in a body 

resulting from various types of forces such as axial, shear, bending and torsion.

In mechanics, energy is defi ned as the capacity to do work, and work is 

the product of the force and the distance it moves along its direction. In solid 

deformable bodies the stresses multiplied by the respective areas are the forces, 

and the deformations are the distances. The product of these two quantities is 

the internal work done in a body by externally applied forces. The internal work 

is stored in the body as the internal elastic energy of deformation or the elastic 

strain energy. We shall discuss various forms of the elastic strain energy and the 

method of computing this internal energy in structural members.

6.2  FORMS OF ELASTIC STRAIN ENERGY

6.2.1 Axial Stress

Consider the infi nitesimal element shown in Fig 6.1 (a) acted upon only by 

normal stress sx. As this stress is increased gradually from zero to its fi nal 

value, corresponding strain ex and ey = ez = – mex undergo a change from zero 

to their fi nal values. Since force sx.dy.dz is the only force acting, the work done 

by it during elongation will be solely due to the elongation of the element in x 

Displacements—
Energy Methods

6



Displacements—Energy Methods  125

direction. Thus, for infi nitesimal elongation de¢x, the work done by force s¢x .dy.

dz is

 (s¢x .dy.dz)(de¢x )(dx) = (s¢x )(de¢x )dV (6.1)

where dV = volume of element.

The term (s¢
Z
 )(de¢z) is represented by the shaded area in Figs. 6.1.b and c 

valid for the stress-strain curve linearly or curvilinearly related. Therefore, strain 

energy dU0 stored in an element of dV = dxdydz in its fi nal deformed shape is

 
0 0

( )
x

x xdU d dV
e

s e= ¢ ¢Ú  (6.2)

In the case of linearly elastic materials (Fig. 6.1b) s¢x = Ee¢x. On substituting 

in Eq. 6.2 and evaluating the integral, we get

  2

2

xdU T dV
e

=

or  
2

2 2

x x xdU dV dV
E

s s e
= =  (6.3)

The strain energy stored per unit volume of the materials or its strain energy 

density is

Fig. 6.1  (a) An element under normal stress, sx, (b) Stress-strain curve linear,

(c) Stress-strain curve non-linear

  
2 2

2 2 2

x x x xEdU

dV E

s s e e
= = =  (6.4)

This expression may be graphically interpreted as the area of triangle OAB in 

Fig. 6.16b.

Expressions analogous to Eq. 6.4 apply to normal stresses sy and sz and 

corresponding linear strains ey and ez. By the use of the stress-strain relations, 

strain energy can be represented either as a function of stress components or only 

as a function of strain components.

The complementary strain energy is defi ned as
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0

( )
x

c x xdU d dV
s

e s= ¢Ú  (6.5)

or  c x xdU dV dUe s= -  (6.6)

which represents the area between the curve and the stress axis. As can be 

seen from Eq. 6.5 and Fig. 6.1b, for a linearly elastic body the strain energy and 

complementary strain energies are equal.

6.2.2 Shearing Stress

An expression for the elastic strain energy for an infi nitesimal element under 

pure shear may be established in a manner analogous to uniaxial stress. Consider 

an element in a state of pure shear as shown in Fig. 6.2a. The corresponding 

stress-strain diagram is shown in Fig. 6.2b.

For simplicity the element is assumed fi xed in the XZ plane, and gradual ap-

plication of txy = tyx will distort the element as illustrated in Fig. 6.2a. Thus, for 

infi nitesimal displacement dgxy during deformation, the work done by force t¢xy 

dzdx acting on the parallel plane is (t¢xy dzdx) (dgxy, dy). Forces txy dydz on the 

planes perpendicular to the X axis do no work, since for small deformation, the 

displacement may be assumed to be perpendicular to these forces. It follows that 

the shear strain energy dUt, stored in the element in its fi nal deformed shape is

Fig. 6.2  (a) Distortion of an element under shearing stress, (b) Shearing stress and

strain relation, (c) Shearing strains in XY plane

 
0

( )xy
xy xydU d dVt

g
t g= ¢Ú  (6.7)

For linearly elastic material t¢xy = gxy/G. Substituting for t¢xy in Eq. 6.7 and 

evaluating the integral, we get

 

2 2

2 2 2

xy xy xy xyG
dU dV dV dV

G
t

g t t g
= = =  (6.8)



Displacements—Energy Methods  127

Here the term 
2

xy xyt g
 represents the area of triangle OCD in Fig. 6.2b. 

The strain energy density for shear becomes

 
1

2
xy xy

dU

dV t

t g
Ê ˆ =Á ˜Ë ¯

 (6.9)

Analogous expressions apply for shearing stress txy and tzx responding 

shearing strains gyz and gzx.

6.2.3 Multi-Axial State of 

Stress

Consider an infi nitesimal element with 

stresses acting on its faces as shown 

in Fig. 6.3. During gradual loading of 

the body these stresses reach their fi nal 

values starting from zero and increasing 

gradually. At the same time the element 

undergoes deformations gradually before 

it reaches its fi nal deformed shape. 

The strain energy expression for this 

state of stress follows directly by the 

superposition of energies of each stress 

component. The strain energy density for 

this general case is

 1
( )

2
x x y y z z xy xy yz yz xz xz

dU

dV
s e s e s e t g t g t g

Ê ˆ + + + + +Á ˜Ë ¯
 (6.10)

By the substitution of stress-strain relationships, we get

 ex = ( )x
y x

E E

s m
s s- +

 ey = ( )
y

x z
E E

s m
s s- +

 ez = ( )z
x y

E E

s m
s s- +        

(6.11)

 gxy = ; ; and
xy yz zx

yz zx
G G G

t t t
g g= =

In Eq. (6.10) we obtain the total strain energy per unit volume

2 2 2 2 2 21 1
( ) ( ) ( )

2 2
x y z x y y z x z xy yz xzdU

E E G

m
s s s s s s s s s s s s= + + - + + + + +

 (6.12)

The integration of Eq. (6.10) over volume V yields the total strain energy of 

the body

Fig. 6.3  Element under multi-axial 

state of stress
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1

2
total V

U dU dxdydz= ÚÚÚ  (6.13)

For linearly elastic material, under uniaxial stress sx and shearing stress txy, 

the strain energy

 
22

2 2

xyx

V V
U dxdydz dxdydz

E G

ts
= +ÚÚÚ ÚÚÚ  (6.14)

Several useful expressions can be developed from Eq. 6.14 by reducing the 

triple integral to single ones.

6.3  STRAIN ENERGY IN MEMBERS

6.3.1 Axially Loaded Members

Consider the member of Fig. 6.4 subjected to axial force P. In such situations, sx 

= P/A and at any section, dAÚÚ  = A. Therefore, since sx and A can be functions, 

x only, we get

Fig. 6.4

 

2 2

22 2

x

V V

P
U dxdydz dxdydz

E A E

s
= =ÚÚÚ ÚÚÚ

    
2 2

2 22
L A L

P P
dydz dx dz

AEA E
È ˘= =Î ˚Ú ÚÚ Ú  (6.15)

where a single integration along length L gives the required quantity.

6.3.2 Members Under Bending

In this case sx = 
M

y
I

. This relation must be substituted into the fi rst right hand 

term in Eq. 6.14. Then noting that M and I are functions of x only and that by 

defi nition

 
2

XXdydzy I=ÚÚ

and 

22
1

2 2

x

V V

M
U dxdydz y dxdydz

E E I

s Ê ˆ= = Á ˜Ë ¯ÚÚÚ ÚÚÚ
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2
2

22
L A

M
y dydz dx

EI
È ˘= Î ˚Ú ÚÚ

  
2

2L

M
U dx

EI
= Ú  (6.16)

6.3.3 Members Under Shearing

The shear strain energy is obtained using the second term on the right hand side 

of Eq. 6.14.

 

2

2

xy

V
U dxdydz

G

t
= ÚÚÚ

Substituting txy = 
VQ

It
 in the above equation, we have

 
2

1

2V

VQ
U dxdydz

G It

È ˘= Í ˙Î ˚
ÚÚÚ  (6.17)

This can be simplifi ed if regular sections, such 

as rectangular, circular, elliptical or triangular cross 

sections are considered. Considering a rectangular 

cross section of breadth b and depth d (Fig. 6.5). 

For any value of y,

 
1

/2d

y
Q bydy= Ú  (6.18)

or    

2
2
1

2 4

b d
Q y

Ê ˆ
= -Á ˜Ë ¯

 (6.19)

Equation 6.17 can be written as

 

22

22
L A

V Q
dydz dx

tGI

È ˘Ê ˆ
Í ˙Á ˜Ë ¯Í ˙Î ˚

Ú ÚÚ  (6.20)

For a rectangular cross section, the term within the bracket

  

22 2 5
/2 2

.2 4 4 120

d

A d

Q b d bd
dydz y dy

b -

Ê ˆÊ ˆ = - =Á ˜ Á ˜Ë ¯ Ë ¯
ÚÚ Ú  (6.21)

Since I = 31

12
bd and A = bd, Eq. 6.20 can be written as

  
2

(1.2)
2L

V
U dx

GA
= Ú  (6.22)

In general, we can write the strain energy due to shear

  
2

0 2

L V
U K dx

GA
= Ú  (6.23)

Fig. 6.5
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where K is a. constant whose value is dependent on the shape of the cross section. 

As noted above, the value of K for a rectangle is 1.2.

6.3.4 Circular Members in Torsion

The basic expression for torsional strain energy is analogous to the last term in 

Eq. 6.14. Substituting into such an equation, torsional shear stress t = 
T

J

r
 we 

get

  
2

2

22
L

T
U dydz dx

GJ
rÈ ˘= Î ˚Ú ÚÚ  (6.24)

   

2

2L

T dx

GJ
= Ú  (6.25)

Since 
2

A
dydz Jr =ÚÚ

Thus, for a prismatic bar of length L the total strain energy due to axial 

moment, shear and torsional forces becomes

 
2 2 2 2

0 0 0 02 2 2 2

L L L LP M dx V dx T dx
U dx K

EA EI GA GJ
= + + +Ú Ú Ú Ú  (6.26)

6.4  ENERGY RELATIONS IN STRUCTURAL THEORY

The following laws of energy are of fundamental importance in structural 

theory.

6.4.1 Law of Conservation of Energy

This is essentially a basic law of physics—energy is neither created nor destroyed. 

For the purpose of structural analysis, the law can be stated in the following 

form:

If a structure and external loads acting on it are isolated, such that 

these neither receive nor give out energy, then the total energy of the 

system remains constant.

A typical application of the law of conservation of energy can be 

illustrated by referring to a bar subjected to an axial pull P gradually 

applied as shown in Fig. 6.6. When equilibrium is reached, it will 

be found that the bar has extended by an amount d. Considering 

that the process is adiabatic (heat is neither supplied nor taken out), 

according to the law of conservation of energy, loss of poten-tial 

energy, Pd/2, must appear elsewhere. In this case, it is found in the 

form of strain energy stored in the bar. This is given by

 
2

0 2

L

t

P dx
W

EA
= Ú  (6.27)

where Wi = strain energy stored in the body or internal work.

Fig. 6.6
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Let

 
1

2
eW Pd=  (6.28)

where We is the external work done.

Therefore, We + Wi 
2

0

1

2 2

L P dx
P

EA
d= - + Ú  = 0 (6.29)

The minus sign for external work is to take into account the loss of potential 

energy

or –We + Wi = 0 (6.30)

or We = Wi (6.31)

that is, the external work done is equal to the internal strain energy.

In the case of rigid bodies the real work done by all the forces including the 

reactions must be zero, since the internal strain energy stored in the body is zero. 

This shall be made clear in the following examples.

Example 6.1 
It is desired to determine reaction RB of the rigid beam 

AB shown in Fig. 6.7. Use real work equation.

A small but real displacement D, is given 

to the beam at end B as shown. Since no 

internal strain energy is stored in the rigid 

beam the total work done must be equal to 

zero, that is

( ) 10 8 0
4 2

BR
D DÊ ˆ Ê ˆD - - =Á ˜ Á ˜Ë ¯ Ë ¯

or RB = 6.5 kN

Example 6.2 
Find the maximum defl ection due to force P applied at 

the end of the elastic cantilever of a rectangular cross 

section shown in Fig. 6.8. Consider fl exural and shearing deformations.

As load P is applied, the beam 

defl ects, say by an amount, D, 

downwards. The external work 

done is

1
( )

2
eW P= D

Internal strain energy is caused 

by: (1) bending stresses and (2) shearing stresses. These strain energies can be 

superimposed according to Eqns. 6.16 and 6.23.

 
2 2 2 3

bending 0 0

( )

2 2 6

L LxM dx Px dx P L
U

EI EI EI

-
= = =Ú Ú

Fig. 6.7

Fig. 6.8
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2 2 2

shear 0 0
1.2

2 2 2

L LxV P dx P L
U K dx K

GA GA GA
= = =Ú Ú

  
total bending shearU U U= +

Equating the external work to internal strain energy

   

2 3 21 6

2 6 10

P L P L
P

EI GA
D = +

         

3 6

3 5

PL PL

EI GA
D = +

The fi rst term in the result, 
3

3

PL

EI
, is the defl ection of the beam due to fl exure; 

the second term is the defl ection due to shear. 

The total defl ection D, may be recast as

 

3 2

2

3
1

3 10

PL E h

EI G L

Ê ˆ
D = +Á ˜Ë ¯

To gain further insight into this problem, if we replace E/G = 2.4, a typical 

value for concrete,

 

2

total bending2
1 0.72

h

L

Ê ˆ
D = + DÁ ˜Ë ¯

It can be seen for a short beam L/h = 1, the total defl ection is 1.72 times that 

due to bending. Hence defl ections caused by shear are important. On the other 

hand, for L/h = 10, the defl ection due to shear is less than 0.75 per cent. Thus 

defl ections due to shear are small in ordinary and slender beams and are usually 

neglected.

Example 6.3 
It is desired to fi nd the defl ection under the load point 

for the beam shown in Fig. 6.9. Consider only bending 

deformations. EI is constant throughout.

From statics, we have

( ), 0
2 2

x

P L
M x x= < <

Because of symmetry, the strain energy can be 

expressed as twice that of the left half of beam AC. 

Equating external work to internal strain energy, 

we have

 

22
/2 /2

0 0

1
2 ( )

2 2 2 2

L LxM dx P dx
P x

EI EI

È ˘Ê ˆD = = Í ˙Á ˜Ë ¯Î ˚
Ú Ú

where D = defl ection under load point. On integration we fi nd

Fig. 6.9
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2 31

2 96

P L
P

EI
D =

 

3

48

PL

EI
D =

This approach can be applied to more complex structures such as the one 

shown in Fig. 6.10.

Fig. 6.10  Frame in three dimensions

The strain energy for each member is evaluated separately and the results are 

summed up to give the total strain energy for the entire structure. Computational 

work can be simplifi ed by taking only the predominant strains which contribute to 

the defl ection. In this case, for example, the defl ection under load P is a function 

of fl exural and torsional strains only.

The approach illustrated in the above examples is limited to the determination 

of the defl ection caused by a single force at the point of application. If more than 

one load is applied to the structure, more than one unknown value of defl ection 

will appear in the expression for external work and, therefore, the resulting 

equation cannot be solved. Owing to these limitations, the method of real work 

is not widely used for defl ection analysis. However, it can be used in limited 

cases of loading and also serves as a means for developing additional principles 

of defl ections.

6.5  VIRTUAL WORK

The principle developed by Johann Bernoulli in 1717 is the most versatile of 

the methods available for computing defl ections of structures. The term virtual 

means ‘being in essence or effect but not in fact’. The virtual work means the 

work done by a real force acting through a virtual displacement or a virtual force 

acting through a real displacement. The virtual work is not a real quantity but 

an imaginary one. Virtual quantities shall be denoted by bold faced letters or 

symbols. Thus, virtual displacement shall be denoted by A and virtual work by 

W.

6.5.1 Virtual Work on a Rigid Body

Consider a rigid body supported and loaded as shown in Fig. 6.11a; the body is 

in equilibrium and satisfi es the static equilibrium conditions
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Fig. 6.11

 0 0X YF F= =Â Â  (6.32)

and 

1 1 1

0
r n n

X YM F y F x+ + =Â Â Â  (6.33)

Suppose that the body is displaced linearly by a small amount, AA¢ = D, without 

any rotation due to effects other than the system of forces, and takes a new 

position as shown.

The two components of displacement parallel to coordinate axes X and Y are 

Dx and Dy. Since the translation is very small the forces are not altered in their 

magnitude or direction and the body remains in equilibrium at all the time. Then 

the virtual work done (product of real forces and virtual displacement) is

 
1 1

n n

e X x Y yW F F= D + DÂ Â  (6.34)

Since Dx and Dy are constants for all forces, this becomes

 1 1

n n

e x X y yW F F= D + DÂ Â
 (6.35)

This is equal to zero since 
1 1

and
n n

X YF FÂ Â  are zero from Eq. 6.32.

Therefore,

 We = 0 (6.36)

If it is now assumed that the rigid body under the loading system F is rotated 

by a small angle a about the origin O (which could be any point) the component 

of displacement parallel to the X axis will be y.a. and parallel to the Y axis will 

be x.a (see Fig. 6.11b). The total work done by the components of forces F and 

couples M is

 
1 1 1

r n n

XY YM F F xa a a+ ◊ + ◊Â Â Â  (6.37)

or 
1 1 1

r n n

X y Y xM F Fa ◊ ◊
Ê ˆ+ +Á ˜Ë ¯Â Â Â  (6.38)

This, by Eq. 6.33, is equal to zero.

Since any small displacement of the rigid body can be represented as the sum 

of a translation and a rotation about some point and since the work of F system 

of forces and couples has been shown to be zero in either of the displacements, 

Johann Bernoulli’s principle of virtual work can be stated as follows.
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Given a rigid body held in equilibrium by a system of forces and/or couples, 

the total virtual work done by this system of forces and/or couples during a 

virtual displacement is zero.

Conversely, if the work done by a system of forces acting on a body (rigid) 

during a small virtual displacement does vanish, then the system of forces is in 

equilibrium.

6.5.2 Virtual Work on an Elastic Body

The principle can also be applied to an elastic body. For example, suppose that 

the elastic body shown in Fig. 6.12 is subjected to a set of F forces, and rests in

Fig. 6.12  (a) Elastic body under system of forces F, (b) Free-body diagram of elements 1 and 2

equilibrium in its deformed shape. Now suppose that the body is deformed to 

another shape due to another set of forces, temperature, etc., while the F system 

of forces is present. In other words, the elastic body is given a small virtual 

displacement which satisfy the boundary constraints. The virtual displacement, in 

effect, gives a ride to the F system of forces. Certainly, during this displacement 

any infi nitesimal element, such as 1 (interior) and 2 (exterior) will be displaced 

and the stresses on its boundaries will do some work. We shall designate this 

work as dWs. A part of this virtual work is done due to the rigid body movement 

of the element, and another part due to the change in the shape of the element. 

Since the change in the shape of the element is normally referred to as the 

deformation of the element, the work done by the stresses, due to the F system of 

forces on the boundaries, is designated as dWd. Consequently, the remaining part 

of the work (dWx – dWd) is done by F stresses during the rigid body movement 

of the element. However, every element is in equilibrium under the stresses in 

boundaries, and the work done by them during rigid body movement is equal to 

zero.

Hence dWs – dWd = 0 (6.39)

and for the entire body it becomes

 Ws – Wd = 0 (6.40)

or Ws = Wd (6.41)
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It should be understood here that Ws. represents the sum of the virtual work done 

by F stresses on the boundaries of every element in the body. However, each 

element has common boundaries with an adjacent element where the stresses 

are equal and opposite to each other. Certainly, the work done by equal but 

opposite stresses during the same displacement is equal to zero. As a result of 

this, the work done by the F stresses on all the interior boundaries adds up to 

zero. Hence Ws, consists of the work done by external F forces applied on the 

external boundaries only (for example F2 on element 2). Thus, the law of virtual 

work can be stated. If a system of forces F acting on a deformable body is under 

equilibrium, as the body is subjected to a small deformation caused by some 

other effects, the external virtual work done by F forces is equal to the internal 

virtual work done by F stresses.

This statement is valid regardless of the cause or the type of the virtual 

deformation imposed provided that the virtual deformation is so small as not to 

alter the geometry of the structure and is consistent with the boundary constraints. 

During virtual displacement, forces F remain in equilibrium.

Conversely, if a small virtual force is applied to an elastic body in the 

equilibrium condition under a set of forces F, the external virtual work done by 

forces F is equal to the internal virtual work done by F stresses. Thus, we can 

write

    Real displacement compatible

   

(Virtual force ¥ real displacement) = Virtual internal forces ¥ real internal displacements)

  Virtual forces in equilibrium
   

  Virtual displacement compatible

    

(Virtual displacement ¥ real force) = (Virtual internal displacements ¥ real internal forces

     Real forces in equilibrium

       

6.6  BETTI’S AND MAXWELL’S LAWS OF

     RECIPROCAL DEFLECTIONS

Maxwell’s law of reciprocal defl ections is a special case of Betti’s law of 

reciprocal work. We shall fi rst derive Betti’s law of reciprocal work. Suppose a 

linearly elastic structure shown in Fig. 6.13 is in equilibrium under two separate 

and independent systems of forces—system of forces Pm and system of forces Pn. 

Consider that the Pm system of forces is gradually applied fi rst. Let the defl ections 

at the point and direction of forces Pm be represented by

 Dm = Dm1, Dm2 . . ., Dmm  (6.42)
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Fig. 6.13  Elastic body under system of forces Pm and Pn

If the second system of forces Pn is applied on the structure while Pm forces 

are present, the structure will deform once more and will rest in equilibrium 

in its fi nal deformed shape as shown. Let Dn= Dn1, Dn2, . . ., Dnn, represent the 

deformations at the point and in the direction of forces Pn. The total external 

work done by these forces would then be

  
1 1

2 2
e m mm m mn n nnW P P P= D + D + DÂ Â Â  (6.43)

where Dmn represents the defl ection of the point of application of one of the 

Pm forces caused by the Pn force system. The fi rst and last terms in Eq. 6.43 

represent the work done by Pm and Pn forces respectively as they are gradually 

applied. The middle term, however, represents the work done by Pm forces riding 

along the defl ections caused by Pn forces.

Suppose now the loading sequence is reversed, that is, Pn forces are fi rst 

applied and Pm forces later. Pn forces in full ride along the defl ections caused by 

Pm forces. The fi nal deformed shape of the structure will be the same as before 

which is shown in dotted line in Fig. 6.13. The total external work done in this 

case will be

 
1 1

2 2
e n nn n nm m mmW P P P= D + D + DÂ Â Â  (6.44)

where Dnm represents the defl ection of the point of application of one of the Pn 

forces caused by Pm forces.

According to the principle of superposition, the total external work done in 

either of the sequences of loading should be same. Hence equating Eqs. 6.43 and 

6.44, we get

 
m mn n nmP PD = DÂ Â  (6.45)

This is known as a Betti’s theorem and may be stated as follows.

For a linearly elastic structure, the work done by a set of external forces 

Pm acting through displacements Dmn produced by another set of forces Pn is 

equal, to the work done by the second set of external forces Pn acting through 

displacements Dnm produced by forces Pm.
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Suppose now that both Pm and Pn systems consist of a single load P having 

the magnitude but not necessarily in the same direction as shown in Fig. 6.14, 

then, from Eq. 6.45,

 P Dmn = P Dnm

or Dmn = Dnm (6.46)

This is known as Maxwell’s law of reciprocal defl ection and states that: the 

defl ection of point n due to force P at point m is numerically equal to the defl ection 

of the point m due to force P applied at point n. Note that the defl ections are 

measured in the direction of the forces. The law does not differentiate normal 

force from a moment nor a linear displacement from a rotation. Such a generality 

is shown in Fig. 6.15.

For example, the rotation (in radians) D12 at 1 due to a unit load (N) at 2 is 

numerically equal to the defl ection (in m) at 2 due to a unit couple (N. m) at 1, 

that is,

 D12 = D21

Fig. 6.14  (a) Defl ections due to load P at m, (b) Defl ections due to load P at n

Fig. 6.15  (a) Unit load at 2, (b) Unit moment at 1

The theorems of Maxwell and Betti will prove to be invaluable in many 

aspects of structural analysis. These are used later in many situations.

6.7  APPLICATIONS OF VIRTUAL WORK

An extremely useful general relationship can be developed by making use of the 

conceptual virtual work relationship. Consider a simple beam loaded as shown 

in Fig. 6.16a. For clarity only one load P3 is considered as acting on the beam. 

It is required to determine the vertical downward defl ection at 4. The real work 
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method fails in this case as pointed out in Sec. 6.4. The principle of virtual work 

may be utilized to solve this problem.

Fig. 6.16  (a) Beam and loading, (b) Displacements due to virtual load P4,

(c) Displacement, due to loads P3 and P4

We begin the analysis by temporarily removing load P3, from the beam and 

placing virtual load P4 of unspecifi ed magnitude at the point and in the direction 

of the desired defl ection (Fig. 6.16b). The displacements caused by P4 are shown 

in Fig. 6.16b but we are not concerned with them as we shall see later.

We now load the beam with the real load, P3 producing additional displacement 

D3 and D4 under loads P3, and P4 as shown in Fig. 6.16c. The unspecifi ed load 

P4 rides along in full during deformations caused by P3,. Applying the principle 

that the external virtual work is equal to the internal virtual work we have We 

= Wi. In this We, = P4.D4, that is, the product of virtual force P4 and the real 

displacement D4.

The internal virtual work is due to moment M caused by the unspecifi ed virtual 

force P4, acting through the bending deformations (angle change df) produced 

by real load P3. The value of df is defi ned by df = Mdx/EI where moment M is 

due to real load P3. The internal strain energy,

 
0 0

L L

i

Mdx
d

EI
f =Ú Ú

M
W = M  (6.47)

Equating We = Wi, we have

 
4 0

L Mdx

EI
◊D = Ú4

M
P  (6.48)

or 4 0
4

1 L Mdx

EI
D = Ú

M

P
 (6.49)

The magnitude of P4 is immaterial; it drops out of the expression since 

moment M is a linear function of P4. Further, P4 is not actually applied to the 

real structure; it is applied only conceptually in the analysis.

For convenience, the unspecifi ed force P4 can be replaced by a unit load. The 

Eq. 6.49 reduces to

 4 0

L Mdx

EI
D = Ú

m
 (6.50)

where m is the moment caused by a unit load applied in place of P4. The quantity 

of the right side of Eq. 6.50 represents the internal virtual work. Thus, by using 

a unit value of external virtual force, we directly obtain the value of external 
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displacement D. The unit external force can be in the form of either a force or 

a moment depending upon the form of external displacements that are to be 

determined. For example, if the external displacement to be determined is a 

rotational quantity, a unit virtual moment is applied to the structure at the point 

under consideration. This method is commonly known as the unit load method 

or dummy load method.

The following examples illustrate the application of the virtual work method 

to various defl ection problems.

Example 6.4 
Using the method of virtual work, determine the vertical 

defl ection under the load point and at centre of 

cantilever beam shown in Fig. 6.17a. Consider deformations due to bending 

only. EI is constant.

The moment diagram corresponding to external load P is shown in Fig. 6.17b. 

The moment diagram due to a virtual unit load at 1 is shown in Fig. 6.17d. Taking 

origin for x at the free end

 Mx = – P(x)

 mx = – (x)

Using Eq. 6.50

 1 0

L xMdx

EI
D = Ú

m
 = 0

( ) ( . )
L dx

x P x
EI

- -Ú
3

3

PL

EI
=

To fi nd the defl ection at 2 we apply a unit load at 2. The resulting moment 

diagram is shown in Fig. 6.17f The limits for integration for L/2 to L. We then 

have

 Mx = – P(x)

 mx = – / 2
2

L
x for L x L

Ê ˆ- £ £Á ˜Ë ¯  

 
2 /2

( )
2

L

L

L dx
P x x

EI

Ê ˆD = -Á ˜Ë ¯Ú

or 

3

2

5

48

PL

EI
D =

The positive sign for both the defl ections indicates that they are in the direction 

of virtual unit forces applied (in this case downward).

Example 6.5 
It is required to determine rotations at A and B due to 

an applied moment MB on the beam as shown in Fig. 

6.18a. Use the method of virtual work.

To fi nd rotation at A apply a unit couple as shown in Fig. 6.18c. The origin for 

x is chosen at end A. Then

 Mx = MB (x/L)
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Fig. 6.17  (a) Beam under load P, (b) Moment diagram due to load P, (c) Beam under unit 

load at 1, (d) Moment diagram due to unit load at 1, (e) Beam under unit

load at 2, (f) Moment diagram due to unit load at 2

and mx = 1 – x/L

Using virtual work Eq. 6.50

 0
(1 / ) ( / )

L

A B

dx
x L M x L

EI
q = -Ú

On evaluation 
6

B
A

M L

EI
q =

The rotation at end B is found by applying a unit couple to the beam at B as 

shown in Fig. 6.18d. Again taking origin for x at end A

 Mx = MB (X/L)

and mx = x/L



142  Basic Structural Analysis

Fig. 6.18  (a) Beam under moment MB, (b) Moment diagram due to MB, (c) Moment diagram 

due to virtual unit moment at A, (d) Moment diagram due to virtual unit moment at B

On applying virtual work Eq. 6.50

 

2

0
( / )

L

B B

dx
M x L

EI
q = Ú

 3

B
B

M L

EI
q =

It may be noted that the direction of virtual forces applied to the structure is 

arbitrary. For example, if a unit couple had been applied counter-clockwise at A, 

the result qA would have had a negative sign. The negative sign would mean that 

the rotation was in a direction opposite to that of the applied virtual couple.

Example 6.6 
A beam AB is simply supported over a span 5 m in 

length. A concentrated load of 30 kN is acting at a 

section 1.25 m from support A. Calculate the defl ection under the load point. 

Take E = 200 ¥ 106 kN/m2 (200,000 MPa) and I = 13.0 ¥ 10–6 m4 (13.0 ¥ 106 

mm4)

The moment diagram due to applied load is shown in Fig. 6.19b. To obtain the 

defl ection under the load, we apply a virtual unit load at C.

Using equation 6.50 the defl ection dC = 0

L x
x

m dx
M

EI
Ú . The moment due to unit 

load is shown in Fig. 6.19c. The beam length is divided into two parts, part AC 
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and part BC, for the convenience of integration. Considering the part AC and 

taking origin at A

 Mx = RA (x)

  = 22.5(x) for 0 £ x £ 1.25 m

and mx = 0.75(x)

Similarly considering part BC and taking origin B

 Mx = RB (x)

  = 7.5 (x)  for 0 £ x £ 3.75 m

and  mx = 0.25 (x)

Fig. 6.19  (a) Beam and the loading, (b) Moment diagram due to applied loading,

(c) Moment diagram due to unit load at C

\  1.25 3.75

0 0
22.5 ( ) (0.25) ( ) 7.5 ( ) (0.25) ( )c

dx dx
x x x x

EI EI
d = +Ú Ú

or 3 3(0.25) (0.25)
22.5 (1.25) (7.5) (3.75)

3 3
c

EI EI
d = +

or 
3

43.9 43.9 (1000)
16.9 mm.

3 3 2.6 10
c

EI
d

¥
= = =

¥ ¥
In the above examples the product integrals have to be evaluated which are 

routine and time-taking. However, ready-made tables are available which can be 

utilized in evaluating the product integrals. The table in Appendix B gives the 

product integrals.

Example 6.7 
Using product integrals from Appendix B, determine 

the defl ection at the centre of the beam and slope at end 

A for the beam in Example 6.6.
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Defl ection at Centre In order to obtain defl ection at centre of beam, we apply 

a virtual unit load at D and draw the moment diagram as in Fig. 6.20c. The 

moment diagram due to applied loading is again shown in Fig. 6.20b. The beam 

is divided into three parts AC, CD and DB and the product integrals for these 

parts are obtained from Appendix B.

Fig. 6.20  (a) Beam and the loading, (b) Moment diagram due to applied loading,

(a) Moment diagram due to unit load at D, (d) Moment diagram due to unit couple at A

 For the length AC product integral 
1

( ) ( ) ( )
3

L a c=

  
1

(1.25) (28.125) (0.625) 7.32
3

= =

 For the length BD product integral 
1

( ) ( ) ( )
3

L a c=

  
1

(2.5) (18.75) (1.25) 19.53
3

= =

 For the length CD product integral { (2 ) (2 )}
6

L
a c d b d c= + + +

Taking a = 28.125

 b = 18.75

 c = 0.625

 d = 1.25
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and L = 1.25

Substituting in the relation above we have the product integral value = 26.85

\ 
7.32 19.53 26.85 53.7

D m
EI EI

d
+ +

= =

   
3

53.7
(1000) 20.65 mm

2.6 10
= =

¥

Slope at End A A unit moment is applied at end A and the resulting moment 

diagram is shown in Fig. 6.20c. For evaluating product integrals the beam is 

divided into two parts: part AC and part BC.

 Product integral for part AC ( 2 )
6

L
a b c= +

  
1

(1.25) (1 1.5) (28.125)
6

= +  = 14.65

 for part BC 
1

3
L a c=  

1
(3.75) (0.75) (28.125)

3
=  = 26.37

\ 3

3

14.65 26.37 41.02
1.578 10 radians.

26 10
A

EI
q -+

= = = ¥
¥

Example 6.8 
Find defl ection under load at C the centre of span of a 

overhanging beam loaded as shown in Fig. 6.21a. Take 

E = 205 ¥ 106 kN/m2 (205,000 MPa) and I = 25 ¥ 10–6 m4 (25 ¥ 106 mm4)

Fig. 6.21 (a) Overhanging beam and the loading, (b) B.M.D. due to concentrated load at C,

(c) B.M.D. on AB due to u.d.l, (d) B.M.D. due to concentrated load at D,

(e) B.M.D. due to unit load at C
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The defl ection under load at C can be obtained by superimposing the effects 

of individual loads. The moment diagrams for the individual loads are shown in 

Fig. 6.21 b, c and d. The moment diagram due to virtual unit load at C is shown 

in Fig. 6.21e. Using product integral values from Appendix B,

dC due to concentrated load at C = 
1

3

Lac

EI

    

1 (4) (30) (1)

3 EI
=

40

EI
=

dC due to u.d.l.
5 5 (4) (30) (1)

12 12
L a c

EI
= =

33.33

EI
=

dC due to conc. Load at D 
1

4
L a c=

1
(4) ( 40) (1)

4
= -

40

EI
= -

Net defl ection dc downward 
40 33.33 40

EI EI EI
= + -

            
33.33

EI
=

33.33
(1000) mm

205 25
=

¥
= 6.5 mm

6.8  DEFLECTION OF  TRUSSES AND FRAMES

Let us now examine the virtual work method for determining the defl ections of 

pin connected trusses. The defl ections to be considered are those due to axial 

deformations in the members. Let pi, be the bar forces caused by a unit virtual 

load applied at the joint and in the direction of the desired defl ection and Pi, 

the bar forces caused by the applied loading. Because bar forces pi and Pi are 

constant over the whole length, the internal virtual work of a member is

 
i i i

i i i

i i

PL
dW e

A E
= =

p
p  (6.52)

For a truss containing n members the internal virtual work expression 

becomes

 
1

n
i i i

i
i i i

PL
W

A E=
= Â

p
 (6.53)

The internal virtual work is thus found by summing the virtual work of all the 

members. Equating the internal virtual work to external virtual work, we have 

in general

 
1

1
n PL

AE
◊ D = Â

p
 (6.54)

   
1

n PL

AE
D = Â

p
 (6.55)
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The following example illustrates the steps involved in evaluating defl ections 

of truss joints.

Example 6.9 
The vertical and horizontal defl ection components of 

joint 4 are to be determined for the truss of Fig. 6.22a. 

L = 3 m, A = 500 ¥ 10–6 m4 (500 ¥ 106 mm4) and E = 200 ¥ 106 kN/m2 (200,000 

MPa) are constant for all members.

To determine the vertical defl ection of joint 4 denoted as D4V we apply a 

unit virtual force (1 kN) to the truss in the downward direction as shown in Fig. 

6.22b. Member forces P from the applied loading are calculated using any one of 

the methods of truss analysis. The virtual forces in members due to unit virtual 

force applied are also separately evaluated. It is convenient to tabulate the results 

as shown in Table 6.1.

Fig. 6.22  (a) Truss and loading, (b) Unit virtual force at 4

To determine the horizontal defl ection at joint 4 we apply again a unit virtual 

force at joint 4 acting horizontally from left to right. The resulting virtual forces 

in members are tabulated in Table 6.1.

Table 6.1  Internal Virtual Work Computations for Truss of Fig. 6.22

Member P pv ph pvP phP

(kN) (kN) (kN)

1 –5.77 –0.29 +0.50 +1.55 –2.89

2 +2.89 +0.14 +0.75 +0.42 +2.17

3 +5.77 +0.29 –0.50 +1.67 –2.89

4 –5.77 –0.29 +0.50 +1.67 –2.89

5 +5.77 –0.29 +0.50 –1.67 +2.89

6 +2.89 +0.43 +0.25 +1.25 +0.72

7 –5.77 –0.87 –0.50 +5.00 +2.89

S + 9.88 S 0
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Then, the vertical displacement 
7

4
1

1
V v PL

AE
D = Â p . Similarly, the horizontal 

displacement 
7

4
1

1
V hPL

AE
D = Â p

 
3

4 6 6

9.88 3
2.96 10 m

500 10 200 10
V

-
-

¥
D = = ¥

¥ ¥ ¥
or       D4V = 2.96 mm

and D4H = 0 as expected because of symmetry of structure and loading.

The following example illustrates the application of the virtual work method 

for frames as well.

Example 6.10 
It is desired to compute the vertical component of the 

defl ection of point A on the bracket to the beam as 

shown in Fig. 6.23a. E = 200 ¥ 106 kN/m2 (200,000 MPa) and I = 160 ¥ 10–6 m4 

(160 ¥ 106 mm4) are constant throughout. The method of virtual work may be 

employed.

For convenience, the structure is thought of as three straight beam elements. 

The virtual work expression is the same as Eq. 6.50. The total internal virtual 

work for the frame is the sum of the virtual work in each member.

With a unit virtual force (1 kN) applied at A in the direction of the desired 

defl ection (downwards in this case) the value of mx in each member is obtained 

from statics. The origin and positive direction of x for each member is indicated 

in Fig. 6.23b.

The bending moment variation due to external load is shown in Fig. 6.23b. 

The computations are carried out and shown in Table 6.2.

Applying Eq. 6.50, we get

  
6 6

700 700

3 3 200 10 160 10
AV

EI -D = =
¥ ¥ ¥

    = 7.28 ¥ 10–3 m

or   DAV = 7.29 mm.

Fig. 6.23  (a) Structure and loading, (b) Moment diagram 
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Table 6.2  Internal Virtual Work Computations for Structure of Fig. 6.23

Section
Limits-

For x
Mx mx 0

L x xM dx

EI
Ú

m

AB 0–1 m –100x –x
2

1

0

100 100

3

x dx

EI EI
=Ú

BC 0–1 m –100 –1
1

0

100 100dx

EI EI
=Ú

CD 0–3 m 100 1
3

xÊ ˆ- -Á ˜Ë ¯
1

3

xÊ ˆ- -Á ˜Ë ¯

2
3

0

100
100 1

3

700

3

x dx

EI EI

EI

Ê ˆ- =Á ˜Ë ¯

=

Ú

Â

Example 6.11 
The horizontal displacement at support D is to be 

determined for the frame shown in Fig. 6.24a. Relative 

I values are indicated along the members. E = 200 ¥ 106 kN/m2 (200,000 MPa), 

I = 300 ¥ 10–6 m4 (300 ¥ 106 mm4).

The defl ection analysis is the same as that followed in Example 6.10. The total 

internal virtual work for the frame is the sum of the internal virtual work of all 

the sections of the frame.

The unit force (1 kN) is applied at support D in the direction of the desired 

displacement (Fig. 6.24b). The origin and the positive direction of x for each 

section is indicated in Fig. 6.24b.

The expressions for mx and Mx for each member are determined as usual from 

statics. The resulting expressions for mx and Mx for all sections are tabulated in 

Table 6.3.

Fig. 6.24  (a) Frame and the loading, (b) Unit virtual force at D
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Table 6.3  Internal Virtual Work Computations for Frame of Fig. 6.24

Section
Origin 

for x

Limits

for x
Mx mx 0

L

x

Mdx

EI
Ú m

AE A 0–2 m +50x +x
2 2

0

1
50 400 / 3x dx EI

EI
=Ú

EB E 0–2 m +100 (2 + x)
2

0

1
100(2 ) 600 /x dx EI

EI
+ =Ú

BC B 0–6 m
50

100
3

x- + +4
6

0

1 50
4 100 600 /

3
x dx EI

EI

Ê ˆ- =Á ˜Ë ¯Ú

DC D 0–4 m 0 +x = 0

4000

3EI
=Â

Therefore,

 

4000

3

Mdx

EI EI
=Ú

m

Applying Eq. 6.50, we get

 
3

6 6

4000
22.2 10 m

3 200 10 300 10
DH

-
-D = = ¥

¥ ¥ ¥ ¥

or     DDH = 22.2 mm

The defl ection at any other point or direction can be found out in a similar 

manner by applying a unit virtual force at the point and in the direction of the 

desired defl ection. The rotation at any point of the frame can be found by applying 

a unit couple at the point the rotation is desired.

The virtual work method can also be extended to three-dimensional frames 

taking precautions to correctly identify the direction of forces and moments. A 

simple example discussed below illustrates the procedure.

Example 6.12 
Given a pipe bracket having a 90° bend at B and located 

in a horizontal plane as shown in Fig. 6.25a. Determine 

the vertical defl ection at A. I. = 3 ¥ 10–6 m4 (3 ¥ 106 mm4), J = 6 ¥ 10–6 m4 (6 ¥ 

106 mm4),

 E = 200 ¥ 106 kN/m2 (200,000 MPa) and 

 G = 80 ¥ 106 kN/m2 (80,000 MPa).

The bending and twisting strains are considered in evaluating the defl ections. 

Because of the third dimension, it will be helpful to defi ne positive forces on 

a section of a member with reference to the member co-ordinate system. The 

positive quantities of real and virtual forces on a section of member 1 are shown 

in Fig. 6.25b and member 2 in Fig. 6.25c. The double superscripts on the moment 
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quantities indicate the axis about which the moment acts. Note that the moments 

and twist vectors are drawn in accordance with the right-hand screw rule. The 

origin for member co-ordinates are located at the ends of the members. 

Fig. 6.25  (a) Bracket and loading, (b) Coordinates for member 1 (c) Coordinates for member 2

Earlier, the expressions for virtual work were developed with the moment 

considered as acting only about Z axis. However, this expression also holds good 

for internal virtual work for moments acting about Y axis. The general expression 

equating the external virtual work to internal virtual work for the effects under 

consideration can be written as

 
0 0 0

YY ZZ
L L LYY ZZx x x x

e i z x

M dx M dx t T dx
W W

EI EI GJ
= = + +Ú Ú Úm m  (6.55)

To evaluate defl ection at A in the vertical direction, apply a unit force (1 kN) 

at A along the positive direction of Y. The resulting expressions for Mx, Tx along 

with mx and tx are given in Table 6.4.

Table 6.4  Computations for internal Virtual Work of Bracket in Fig. 6.25

Member mx
YY Mx

YY 
mx

ZZ Mx
ZZ

tx Tx

1 0 0 –x +2x 0 0

2 0 –3x –x +2x +1 –2

Applying Eq. 6.50, we get

 
0 0 0

YY ZZ
L L LYY ZZx x x x

AV x x

M dx M dx T dx

EI EI GJ
D = + +Ú Ú Ú

t
m m  (6.56)

Substituting values from Table 6.4 in Eq. (6.56)

 

1 2

0 0

0 ( 2 ) 0 0 ( 2 ) ( 1) (2) 6 4
AV

x x x x
dx dx

EI EI GJ EI GJ

+ - + + - - -È ˘ È ˘D = + + = -Í ˙ Í ˙Î ˚ Î ˚
Ú Ú



152  Basic Structural Analysis

Substituting values for E, I, G and J

 6 6 6 6

6 4

200 10 3 10 80 10 6 10
AV - -

-
D = -

¥ ¥ ¥ ¥ ¥ ¥
        = –18.33 ¥ 103 m 

or      DAV = –18.33 mm.

The minus sign indicates that the defl ection is in the direction opposite to that 

of the unit load applied, that is, in the negative direction of Y or in the downward 

direction.

The method of virtual work lends itself well to the determination of defl ections due 

to temperature changes. This aspect is illustrated in the example that follows.

Example 6.13 
The cantilever beam in Fig. 6.26a is subjected to a 

thermal environment that produces a temperature of 

35°C at the top surface and 115°C at the bottom. If the beam is of steel, 3 m long 

and 0.2 m deep, determine the resulting slope at A. Assume the temperature to 

vary linearly over the depth of the beam. The original uniform temperature of the 

beam is 30°C. Take a = 11.7 ¥ 10 ¥ 10–6/°C.

Here we again use the condition of equality between the external virtual work 

and internal virtual work. The external virtual work is equal to the product of 

the virtual unit moment and real rotation caused by thermal effects. The internal 

virtual work is equal to the internal virtual force (moment m) multiplied by the 

real internal displacement.

The real internal displacement results from: (1) the average beam temperature 

of 75°C which is 45°C above that of the original temperature and (2) the 

temperature gradient of 80°C across the depth of the beam.

Fig. 6.26  (a) Beam subjected to temperature gradient, (b) Moment due

to virtual unit moment at A, (c) Elastic line
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The fi rst part of the thermal effect produces only a lengthening of the beam 

and does not enter into the work equation since the virtual unit moment produces 

no resultant axial force corresponding to an axial change along the length of the 

beam. The virtual moment diagram and the elastic line are shown in Fig. 6.26b 

and c respectively. However, the thermal gradient of the second part produces 

rotation df and the corresponding internal virtual work term is

 
0

m
L

iW d= fÚ  (6.57)

We shall determine df by considering 

the strains at the extreme fi bre caused by 

thermal gradient.

Considering a differential length dx of 

the beam (Fig. 6.27), the deformation at 

the top and bottom faces is given by

e = aDTdx

Therefore, the angle of rotation in a 

length dx = df = 
0.1

e

or  df = 10aDTdx

  = 10 ¥ 11.7 ¥ 10–6 ¥ 40dx 

  = 4.68 ¥ 103 dx 

Using Eq. 6.50, we get

  
3 3

0
4.68 10A dxq -= ¥Ú

or  3 34.68 10 3 14.04 10 rad.Aq - -= ¥ ¥ = ¥

The value of qA would be the same for any shape of 0.2 m depth steel beam 

that has its neutral axis for bending at mid-depth.

Example 6.14 
Consider the truss given in Example 6.9 (Fig. 6.22a). 

Members 1 and 7 in the truss are subjected to a 

temperature increase of 30°C. The resulting vertical defl ection at 3 has to be 

determined. The coeffi cient of thermal 

expansion for the material is 12 ¥ 10–6/°C.

There is no external load. The virtual 

stresses in members due to unit force applied 

at 3 are given in Fig. 6.28. The virtual stresses 

ride along the real displacements caused in 

members 1 and 7 as a result of change in 

temperature. Equating the external virtual 

work to internal virtual work, we get 

1 . D3V = 2(–0.58)aLdT

Fig. 6.27  Rotation caused by thermal 

gradient

Fig. 6.28  Stresses due to unit virtual 

force at 3
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or D3V = 2(–0.58)12 ¥ 10–6 ¥ 3 ¥ 30

  = –1.252 ¥ 10–3 m

 D3V = –1.25 mm

The negative sign indicates that the defl ection is upwards opposite to the 

direction of unit virtual load applied. The assumed direction is always identical 

to the direction of the applied virtual force.

6.9  CASTIGLIANO’S THEOREMS

In 1876 Alberto Castigliano published his work on the variation of strain energy 

systems in two parts. Parts I and II of his work are often referred to as Castigliano’s 

Theorems I and II respectively. They are known as

 Part Ii

i

U
P

∂
=

∂D
 (6.58)

and Part IIi

i

U

P

∂
= D

∂  (6.59)

where

 U = Strain energy of the system

 Pi = External loads applied point i.

and Di = defl ection of point i in the direction of Pi

The strain energy and virtual work principles play an important role in the 

derivation of Castigliano’s theorems.

Consider for example a simple beam as shown in Fig. 6.29 subjected to a 

system of loads P. Suppose load system P is applied gradually. The beam 

undergoes deformations as shown in Fig. 6.29a.

Here the strain energy is a function of external loads and is equal to the external 

work done. Therefore,

 U = We = f(P1 P2 ... Pn) (6.60)

or   
1

1

2

n

i i
i

U P
=

= DÂ  (6.61)

Now, if any one of the loads, say Pi, is increased by a differential amount, say 

dPi, the strain energy of the system will change by an amount i

i

U
dP

P

Ê ˆ∂
Á ˜∂Ë ¯

. The 

expression for total strain energy becomes

 
i

i

U
U U dP

P

∂
= +¢

∂
 (6.62)

which can be equated to We.

In terms of loads and the corresponding displacements shown in Fig. 6.29a,

 
1

1

2

n

e i i i i
i

U W U Pd dPd
=

= = + D + D¢ ¢ Â  (6.63)
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Fig. 6.29  (a) Defl ections due to load system P applied fi rst and then dPi (b) Defl ection

due to dpi applied fi rst and then load system P

It may be noted that the forces, P, ride in full during the displacements caused 

by dPi. The coeffi cient (1/2) in the last term is obvious. Neglecting the last term 

in Eq. 6.63 as being the product of two differential values, we have

 
1

n

e i i
i

U W U Pd
=

= = + D¢ ¢ Â  (6.64)

Now, suppose, the sequence of loading is reversed, that is dPi is applied fi rst 

and then the system P. The corresponding displacements are shown in Fig. 6.29b. 

The application of dPi fi rst produces an infi nitesimal displacement dDi. The 

external work of (1/2) (dPi) (dDi) can be neglected since the value is of second 

order. Further, the external work done by P system of forces is unaffected by the 

presence of dPi. On the other hand, during the application of these forces, dP, 

will act like a virtual load and will do (dPi) (Di) amount of work. Consequently, 

the total work done is

 W¢e = U¢ = U + dPiDi (6.65)

Since the order of the application of loads is immaterial, the total work done or 

the total internal strain energy in both the loading cases must be equal. Therefore, 

equating the right-hand side quantities of Eqs. 6.62 and 6.65, we have

 i i i

i

U
U dP U dP

P

∂
= = + D

∂  (6.66)

or i

i

U

P

∂
= D

∂
 (6.67)

This quantity is known as Castigliano’s second theorem in which Pi and Di 

can also be the moment and the angular rotation respectively. The theorem can 

be stated as follows: If a linearly elastic structure is subjected to a set of loads, 

the displacement of any load in its direction is equal to the partial derivative of 

the total strain energy with respect to that load.

Castigliano’a fi rst theorem can also be obtained in a similar manner. For 

example, in the beam of Fig. 6.29 loaded by P system of forces, we may term the 

external work as W as the internal strain energy as U.
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If one of the displacements, say Di, is changed by an infi nitesimal amount dDi 

while all the other displacements are kept unchanged, the corresponding change 

in strain energy would be

 i

i

U
d

∂
◊ D

∂D
 (6.68)

During such a change Pi is the only force which will do work of amount PidDi 

since all other displacements are kept unchanged. Equating the new internal 

energy and external work of the system, we have

 i i i

i

U
U d W dP

∂
+ ◊ D = + D

∂D
 (6.69)

This gives

 i

i

U
P

∂
=

∂D
 (6.70)

This is known as Castigliano’s fi rst theorem. Here we can see that the partial 

derivative of the strain energy with respect to any one of the displacements of 

applied loads is equal to the load. It should be noted that this theorem is not 

dependent upon the assumption of an elastic system and of a linear relation 

between the loads and displacements.

To apply Castigliano’s second theorem for determining defl ections, we must 

express the internal strain energy in terms of external loads. The expression 

developed in Sec. 6.3 can be utilised for this purpose. For example, in evaluating 

defl ections due to bending strains, the internal strain energy due to bending is 

given as (Eq. 6.16)

 
2

0 2

L xM dx
U

EI
= Ú  

From Eq. 6.67 the expression for defl ection can be written as

 
2

0 2

L x
i

i

M dx

P EI

∂
D =

∂
Ú  (6.71)

If the indicated operation were to be performed, it is necessary to square the 

various expressions for M, integrate and then evaluate the partial derivative. It 

is much easier to fi rst differentiate the quantity under the integral sign and then 

evaluate the integral, that is,

 
0

L x
i x

i

M dx
M

P EI

∂
D =

∂
Ú  (6.72)

Similar expressions can be written for other types of strains. For example, in 

the case of trusses where axial strains only will be considered, the expression for 

the defl ection of a truss joint is

 x x
i x

i

P L
P

P AE

∂
D =

∂
Â  (6.73)

The use of Eq. 6.73 requires that the axial forces in the members be expressed 

in terms of the external loading.
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It may be noted that if a defl ection component is required at a point where 

no action is applied, or if an action exists at that point but not in the direction of 

the desired defl ection, then an imaginary action is applied at that point in that 

direction until the partial derivative for the total strain energy has been found. 

The imaginary action is then reduced to zero.

The application of Castigliano’s second theorem to defl ection calculations is 

illustrated in the following examples.

Example 6.15 
It is required to determine the defl ection under the load 

point for the beam shown in Fig. 6.30. EI is constant.

The required defl ection, denoted as D, can be obtained from Eq 6.72,

  0

L x
x

M dx
M

P EI

∂
D =

∂
Ú

where  ( ) for 0
2 2

x

P L
M x x= £ £

  2

xM x

P

∂
=

∂
Because of symmetry, the defl ection can be obtained by taking twice the value 

of the integral for the left half of the beam, that is,

  
/2

0
2 ( ) ( / 2)

2

L P dx
x x

EI
D = Ú  or 

3

48

PL

EI
D =

  

 Fig. 6.30 Fig. 6.31

Example 6.16 
A cantilever beam is loaded as shown in Fig. 6.31. It is 

required to determine the vertical defl ection and 

rotation at free end A. EI is constant.

The vertical defl ection at the free end is obtained by applying a fi ctitious load 

P at A vertically downward. Then

 
2

2

x
x

w
M Px

-
= -  and xM

x
P

∂
= -

∂

Therefore, 

2

0

1
( )

2

L wx
Px x dx

EI

Ê ˆ
D = - + -Á ˜Ë ¯

Ú
4 3

8 3

wL PL

EI EI
= +

Now setting fi ctitious force P = 0 the desired defl ection
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4

8
AP

wL

EI
D =

The rotation at free end A is obtained 

by applying a fi ctitious moment force P 

to the beam as shown in Fig. 6.32.

Here

  

2

2
x

wx
M P= - +

and  1xM

P

∂
=

∂

  

2

0

1
(1)

2

L

A

wx
P dx

EI
q

Ê ˆ
= - +Á ˜Ë ¯

Ú
3

6

wL
PL

EI
= - +

Now setting P = 0 we have q = – 
3

6

wL

EI

The minus sign indicates that the rotation is in a direction opposite to the 

applied fi ctitious moment P.

Example 6.17 
Using Castigliano’s theorem, determine the prop 

reaction of a centilever beam propped at the free end 

and loaded as shown in Fig. 6.33.

The beam is statically indeterminate 

by 1 degree. 

Let R be the redundant reaction. 

Taking advantage of Castigliano’s 

second theorem that the displacement 

of reaction R in its direction is equal to 

the partial derivative of the total strain 

energy with respect to that load. We 

know the displacement of R = 0

Then we have 0
U

R

∂
=

∂
The total strain energy U is calculated by the sum of strain energy in region 

AB and region BC. 

For the Region A to B we have

 Mx = R.x and 
MK

x
R

∂
=

∂

 ∂UAB = 

/2 /2
2

0 0

1 1
l l

Mx
Mx dx Rx dx

EI R EI

∂
=

∂Ú Ú

Fig. 6.33

Fig. 6.32
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gives 

/2
3 3

0
3 24

l
R x Rl

EI EI

È ˘
=Í ˙

Í ˙Î ˚

For the region BC we have, taking x from B

 Mx = 
2

l
R x Wx

Ê ˆ+ -Á ˜Ë ¯

       
)

2

Mx l
x

R

∂ Ê ˆ= +Á ˜Ë ¯∂

       

/2

0

1

2 2 2

l
BCU l l

R x Wx x dx
R EI

È ˘∂ Ê ˆ È ˘= + - +Í ˙Á ˜ Í ˙Ë ¯∂ Î ˚Î ˚
Ú

or 

/2 2
2 2

0

1

2 4 2

l
l lx

R lx x W x dx
EI

È ˘Ê ˆ Ê ˆ+ + - +Í ˙Á ˜Á ˜ Ë ¯Ë ¯Í ˙Î ˚
Ú

Integrating and substituting limits

 

3 31 7 5

2 24 2 48

W
Rl Wl

EI EI

-Ê ˆ È ˘+Á ˜ Í ˙Ë ¯ Î ˚

Now 
3 3 37 5

0
24 48 2 48

ACU Rl R l W l

R EI EI EI

∂
= + - =

∂ ¥

or      
3 39 5

48 48 2
Rl Wl=

¥

or         R
5 48 5

48 2 9 18
W W= ¥ =

¥

This appears to be cumbersome when compared with other methods developed 

for solving indeterminate beams.

Example 6.18 
The sign board in Fig. 6.34 weighing 2.2 kN is supported 

by a cantilevered steel pipe whose axis is bent to a 

circular arc of 7 m radius. Taking I = 50 ¥ 10–6 m4 (50 ¥ 106 mm4) and E = 200 

¥ 106 kN/m2 (200,00 MPa) determine the vertical 

displacement of the centre of the sign board.

Since the radius of curvature is large in 

comparison with the cross-sectional dimension, 

ordinary beam defl ection formulae are used 

replacing dx by ds. In this case ds = Rdq. Applying 

a fi ctitious load P downwards we have

 Mq = – 2.2 R sin q – PR sing q

    
sin

M
R

P

q q
∂

= -
∂ Fig. 6.34  Sign board



160  Basic Structural Analysis

Therefore,   0

1 LM M
ds

EI P

q∂
D =

∂
Ú

or 
/2

0

1
(2.2 sin sin ) ( sin )R PR R R d

EI

p
q q q qD = - + -Ú

     
/2 /23 2 2 2

0 0

1 1
2.2 sin sinR d PR d

EI EI

p p
q q q q= - +Ú Ú

It is enough to evaluate the fi rst term in the above expression as the second 

term reduces to zero since P is a fi ctitious force and is to be equated to zero.

 

3
/2 2

0

2.2
sin

R
d

EI

p
q qD = Ú

On evaluating the integral and substituting values for E, I and R 

 D = 59.27 mm

Castigliano’s theorem can also be employed to evaluate defl ections in trusses. 

The example that follows illustrates the procedure.

Example 6.19 
It is required to determine the vertical and horizontal 

defl ection components 

of joint C of the truss in Fig. 6.35. E = 200 ¥ 

106 kN/m2 (200,000 MPa) and sectional area of 

each bar A = 100 ¥ 10–6 m2 (100 mm2).

To fi nd the vertical defl ection component 

of joint C, it is necessary to apply a fi ctitious 

force Pv in the vertical direction. Similarly a 

fi ctitious force Ph is applied at C to evaluate 

the horizontal defl ection component of joint 

C. Eq. 6.73 is made use of in evaluating the 

required defl ections.

Table 6.5  Computations for truss defl ections

Member
length 

L(m)

Bar forces due to

Applied and Fictitious 

forces: P (kN) v

P

P

∂
∂ h

P

P

∂
∂ v

PL
P

P AE

∂
∂ h

PL
P

P AE

∂
∂

1 2 3 4 5 6 7

AB 2.000
43.30 + 0.433 Pv

+0.250 Ph

+0.433 +0.250 37.24/AE 21.65/AE

BC 1.000
–86.60 + 0.866 Pv

–0.500 Ph

+ 0.866 –0.500 75.00/AE 43.30/AE

CA 1.732
–50.00 – 0.500 Pv

+0.866 Ph

–0.500 +0.866 43.30/AE –75.00/AE

155.54

AE
Â

10.05

AE

-
Â

Fig. 6.35
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The complete computations involved are given in Table 6.5. Therefore,

 
155.54

7.75 mmCV
AE

D = =

and 
10.05

0.5 mmCH
AE

-
D = = -

It may be noted that the value for AE is constant for all members and hence 

substituted at the end.

The negative sign for horizontal defl ection indicates that the defl ection is 

opposite to the direction of Ph, applied, that is, to the left.

It may be noted that in the last two columns of Table 6.5, Pv and Ph, terms 

were omitted since Pv = Ph = 0.

Unit Load or Dummy Load Method The unit load or dummy load method 

for evaluating defl ections was developed in Sec. 6.7 by employing the principle 

of virtual work. The same result can also be obtained from a consideration of 

Castigliano’s theorem II.

Let an elastic body shown in Fig. 6.36a be in equilibrium under loads P1, P2 

..., Pn and a load Q applied at point K. By Castigliano’s theorem, the component 

of defl ection at K in the direction of applied force Q is

  KQ

U

Q

∂
D =

∂  (6.74)

For a beam (or frame)

  KQ

M dx
M

Q EI

∂
D =

∂
Ú  (6.75)

Fig. 6.36

and for a truss

 
KQ

P L
P

Q AE

∂
D =

∂
Â Ú  (6.76)

Now consider moments M in a beam or a frame and forces P in truss members. 

They are necessarily functions of load Q as well as forces P1, P2, ..., Pn. Suppose 

a unit load is placed at K in the place of Q (see (Fig. 6.32b). Let the moment 

produced be m in a beam and the bar force be p in a truss. Therefore, the moment 

or bar force produced by a force Q will be
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 MQ = Q . m (6.77)

and PQ = Q . p

Now in the body acted on by forces P1, P2, ...,Pn and also Q (Fig. 6.35a) the 

moment M and bar forces P can be obtained by superposition as

 M = MP + MQ = MP + Q. m (6.78)

 P = PP + PQ = PP + Q. p (6.79)

where MP and PP are the moments and bar forces respectively produced by forces 

P1, P2, ..., Pn only.

Then 
M

m
Q

∂
=

∂  (6.80)

And 
P

P
Q

∂
=

∂  (6.81)

Substituting Eq. 6.80 in Eq. 6.75 for beams

 KQ

Mmdx

EI
D = Ú  (6.82)

Again substituting Eq. 6.81 in Eq. 6.76 for trusses

  
KQ

P p L

AE

◊ ◊
D = Â  (6.83)

Eqs. 6.82 and 6.83 are the same as Eqs. 6.50 and 6.54 respectively except that 

m and p are replaced by m and p in the expressions.

It may be pointed out that in the above derivation, the defl ection point K due to 

P system of forces alone can be found by setting forces Q = 0. Then the moment 

and bare forces are MP and PP respectively. Therefore, it is not necessary to 

actually apply the load Q, to a body in order to fi nd the defl ection of a point. The 

dummy load method is a numerical method of fi nding the partial derivative of 

the moments or the bar forces with respect to Q. The derivative can be found by 

computing moments and bar forces by a unit load applied at the point and in the 

direction of the desired defl ection.

The application of the dummy load method to frame and truss problems are 

illustrated in Examples 6.20, 6.21 and 6.22.

Example 6.20 
Using the dummy load method, fi nd the vertical and 

horizontal defl ections of the free end of the lamp post 

shown in Fig. 6.34.

 E = 200 ¥ 106 kN/m2 (200,000 MPa),

 I1 = 2/2 = 80 ¥ 10–6 m4 (80 ¥ 106 mm4).
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The vertical and horizontal defl ection com-

ponents at point C can be obtained by applying 

each time a unit force at point C in the direction of 

the desired defl ection. Moment M, mv and mh, as 

caused by applied loading, unit vertical force and 

unit horizontal force respectively are determined 

using statics only. The origin for x for each of the 

two members is shown in Fig. 6.37. The integral 

in Eq. 6.82 is carried out for the entire frame. The 

complete solution is shown in Table 6.6.

Table 6.6  Computations for evaluation of 
Mmdx

EI
Ú

Member Limits 

for x

Moment due 

to applied 

load, M 

kN.m

Moment 

due to unit 

vertical 

load, mv 

kN.m

Moment 

due to unit 

horizontal 

load, mh 

kN.m

vMm dx

EI
Ú hMm dx

EI
Ú

CB 0–4 m –4(x) –1.(x) 0
4

0
2

4 ( )x x dx

EI

- -
Ú

0

AB 0–6 m –4(4) –1.(4) –1.x
6

0
1

16( 4)dx

EI

- -
Ú

6

0
1

16( )x dx

EI

- -
Ú

On evaluation,

 
1

1664

3

vMm dx

EI EI
=Ú  and 

1

288hMm dx

EI EI
=Ú

On substitution of numerical values for E and I1

 DCV = 34.7 mm 

and DCH = 18.0 mm

Example 6.21 
Using the dummy load method, evaluate the vertical 

and horizontal defl ection components of joint C of the 

truss given in Example 6.19 (see Fig. 6.35).

Bar forces P due to the applied load are obtained as usual. To obtain vertical 

and horizontal defl ection components of joint C, it is necessary to apply unit 

forces, in turn, in the direction of the defl ections desired. Bar forces pv and ph are 

determined using any one of the methods.

The complete solution is worked out in Table 6.7. 

Therefore

 
155.54

CV
AE

D =  and 
10.05

CH
AE

-
D =

Substituting numerical values for A and E

 DCV = 7.75 mm and DCH = – 0.5 mm

Fig. 6.37
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It may have been noticed by now that considerable effort is saved if the dummy 

load method is used instead of Castigliano’s theorem.

Table 6.7  Computations to evaluate 
.P p L

AE

◊
S

Member Length 

M 

Bar forces due 

to applied load: 

P kN

pvkN phkN PpvL

AE
hPp L

AE

AB 2.000 +43.30 +0.430 0.250 37.24/AE 21.65/AE

BC 1.000 –86.60 –0.860 –0.500 75.00/AE 43.30/AE

CA 1.732 –50.00 –0.500 +0.866 43.30/AE –75.00/AE

155.54

AE
Â

10.05

AE

-Â

Example 6.22 
For the truss shown in Fig. 6.38. Calculate the change 

in length of diagonal BE due to the applied loading. 

The areas of upper and lower chords = 400 mm2 and web members = 300 mm2. 

Take E = 200 ¥ 103 N/mm2.

In order to obtain the changes 

in length in diagonal BE, we 

apply a unit force along BE as 

shown. The forces in all the 

members due to applied loading 

and also the forces in members 

due to applications of unit force 

are worked out and tabulated in 

Table 6.8.

Table 6.8

Member Length m Area of mm2 C.S. P kN p kN
610

PpL

A
¥

AC 8 400 200/3 0 0

CE 8 400 160/3 –4/5 –0.8533

EE 8 400 160/3 0 0

BD 8 400 –200/3 –4/5 1.0666

AB 10 300 –250/3 0 0

BC 6 300 50 –3/5 –0.6000

CD 10 300 50/3 1 0.5556

DE 6 300 30 –3/5 –0.3600

DF 10 300 –200/3 0 0

Fig. 6.38
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6 6

6

18 10 0.18 10
m

200 10E

¥ ¥
- = -

¥
Â  = –0.9 ¥ 10–3 m = –0.9 mm

The negative sign indicates that the diagonal BE moves away

Example 6.23 
Using an energy method, determine the horizontal 

defl ection of point D for the structure shown in Fig. 6.39 

due to application of the force H. EI is constant for the entire frame.

Fig. 6.39

The frame is statically determine. The moment due to applied load H is shown 

in Fig. (b). In order to obtain horizontal defl ection of point D, we apply a unit 

force in the direction of defl ection desired. Let the unit load is applied in the 

direction of H and the moment diagram is same as for H taking H = 1. The 

calculations 
Mm dx

EIÚ  are tabulated below.

Member Limits for x Moment M Moment m
Mm dx

EIÚ

AB O – L (–H.x) (–X)

2 3

0
3

L
Hx dx HL

EI EI
=Ú

BC O – L (–H.L) (–L)

2 3

0

L
HL dx HL

EI EI
=Ú

O – L (–H.x) (–x)

2 3

0
3

L
H x dx HL

EI EI

◊
=Ú

35

3

HL

EI
Â

 The defl ection DH = 
35

3

HL

EI
The +ve sign indicates that the defl ection is inwards in the direction of H.
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Problems for Practice

6.1 Calculate the defl ection and slope at the free end of the cantilever beam shown in 

Fig. 6.40. 

6.2 A uniform beam 10 m long is supported at 1 m from each end as shown in Fig. 6.41. 

It carries loads of 30 kN at each end and 120 kN at the centre. Find defl ections under the 

loads and slopes at the supports.

  

 Fig. 6.40  Fig. 6.41

6.3 Calculate the defl ection at point A of the elastic beam having bending stiffness as 

shown in Fig. 6.42.

6.4 A beam ABC is supported at A and by the strut at B as shown in Fig. 6.43. Connec-

tions at A, B and D may be taken as pin points. The load carried is 15 kN/m distributed 

over AB. Find the vertical defl ection at C. For ABC, area = 2500 mm2, / = 2 ¥ 106 mm4; 

for BD, area = 1500 mm2, E = 200,000 N/mra2, (200,000 MPa). 

  

 Fig. 6.42 Fig. 6.43

6.5 The vertical bent cantilever shown in Fig. 6.44 carries a vertical load at free end 

C. If the fl exural rigidity EI is constant throughout, estimate the vertical displacement of 

point C.

6.6 Determine the horizontal defl ection for the simple elastic frame shown in Fig. 6.45 

Consider only the defl ection caused by bending. The fl exural rigidity EI of both members 

is equal and constant.

  

 Fig. 6.44 Fig. 6.45
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6.7 Find the downward defl ection of end C caused by the applied force of 5 kN in the 

structure shown in Fig. 6.46. Consider defl ections only due to bending.

Fig. 6.46

6.8 A simply supported beam shown in Fig. 6.47 is subjected to a temperature gradient 

AT through its depth, the coeffi cient of thermal expansion is a/K. Determine the maxi-

mum defl ection. (Hint: Curvature diagram is constant with ordinate μ DT/d ). 

Fig. 6.47

6.9 Determine the adjustment required in the lengths of members EF and FG of the 

truss shown in Fig. 6.48 such that A, C, D and B all lie at the same level. The structure is 

loaded as shown and all members except the lower chord are subjected to a temperature 

rise of 30 K. AH areas are 1000 mm2, E is 200 ¥ 102 N/mm2 and the coeffi cient of thermal 

expansion is 12 ¥ 1 0–6/K.

Fig. 6.48



7.1  INTRODUCTION

So far, we have been concerned with loads with positions fi xed. But in actual 

practice, we often encounter loads which are moving or with positions that are 

liable to change. The common types of rolling loads are the axle loads of moving 

trucks or vehicles, wheel loads of a railway train or wheel loads of a gantry 

assembly on a gantry girder etc. In all these cases it is necessary to determine 

the maximum S.F. and B.M. at different sections as the loads traverse from one 

end to the other. In the following sections, we shall discuss the following cases 

of rolling loads:

 1. A single concentrated load

 2. A uniformly distributed load longer than the span

 3. A uniformly distributed load shorter than the span

 4. Two concentrated loads spaced at some distance apart

 5. A series of concentrated loads

7.2  A SINGLE CONCENTRATED LOAD

Consider a single concentrated load W rolling over a beam from A to B as shown 

in Fig. 7.1. It is required to determine the maximum positive and negative shear 

force and bending moment at a section X distance x from A.

Negative Shear Force Let us consider an instant when the load W is between 

A and X at a distance z from A. The shear force at section X is negative and is 

equal to reaction RB¢.

 Vx = –RB = –
Wz

l
 (7.1)

The negative shear force increases as the load advances towards the section X, 

reaching a maximum when the load is just to the left of section Vx (maxm.) = 
Wx

l
. 

If we want to draw the maximum –ve shear force diagram for all the sections we 

vary the value for x from x = 0 to x = l. It is seen that the diagram varies linearly 

Rolling Loads and 
Infl uence Lines

7
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with X having shear force V = 0 at x = 0 and V = W at x = l. The negative S.F. 

diagram is shown in Fig. 7.1b below the base line AB.

Fig. 7.1  (a) Beam under loading, (b) Maximum S.F. at a section X,

(c) Maximum B.M. at a section

Positive Shear Force Let us consider again an instant when the load is between 

X and B. We know that the shear force at section X is positive and is equal to

 
( )

x A

l z
V R W

l

-
= =  (7.2)

It is evident from Eqn. 7.2 that the shear force Vx decreases as the load moves 

towards support B and at z = l the shear force = 0. The positive shear force is at 

its maximum when the load is just to the right of section X. That is when z = x 

and is equal to

 
( )

(maxm.)x A

W l z
V R

l

-
=  (7.3)

If we want to plot the maximum positive shear force diagram for all the 

sections, we vary the value of x from x = 0 to x = l. It is seen that the diagram 

varies linearly with x having a shear force V = W at x = 0 to V = 0 at x = l. The 

maximum +ve shear force diagram is shown in Fig. 7.1b above the base line 

AB.

From the above discussion it is clear that the maximum positive or negative 

S.F. at a section X occurs when the load is on the section itself. Thus the shear 

force diagram will consist of two parallel straight lines, one for positive and the 

other for negative, having end ordinates as shown in Fig. 7.1b.
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Bending Moment The bending moment at section X for load W between A 

and X is equal to

 M = RB (l – x) = ( )
Wz

l x
l

-  (7.4)

The moment increases as the load advances towards X and the value of 

moment when the load at X is

 Mx = 
x

W
l

 (l – x) (7.5)

The moment at X when the load is over support A, i.e. z = 0, is Mx = 0.

When the load W is between X and B, the moment at section X is

 Mx = RA (x)

  
(1 )

( )
z

W x
l

-
=  (7.6)

From Eqn. 7.6 it is evident that the moment decreases as the load moves 

towards support B, and the moment at X is 0 when the load is over support B. The 

moment at X will be maximum when the load W is over the section, that is

 
(1 )

(maxm.)x

W x x
M

l

-
=  (7.7)

as before.

Thus, the bending moment diagram for moment at section X is a triangle 

having zero ordinates at the ends and an ordinate 
( )W x l x

l

-
 at the section X.

The maximum bending moment at other sections can be obtained by giving 

different values for x in Eqn. 7.7.

This is a second degree equation, the equation of a parabola. The section at 

which the absolute maximum value for Mx is obtained by differentiating Mx with 

respect to x and equating it to zero.

 

2

0 or 0xdM d Wx
Wx

dx dx l

Ê ˆ
= - =Á ˜Ë ¯

which gives x = 1/2.

Therefore, the absolute maximum bending moment will occur at the centre of 

the beam and is equal to

 
(maxm.)

2 4 4

l Wl Wl
M W= - =

The parabola shown in Fig. 7.1c envelops the maximum B.M. values.

7.3  UNIFORMLY DISTRIBUTED LOAD LONGER

     THAN THE SPAN

Negative Shear Force Consider a uniformly distributed load of w/unit length 

longer than the span l rolling from A to B, as shown in Fig. 7.2.
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Fig. 7.2  (a) Beam under rolling u.d.l. longer than span, (b) Maximum S.F. diagram,

(c) Maximum B.M. at different sections

Let us consider an instant when the head of the load is at any point C at a 

distance z from A. The shear force at section X is negative and is equal to

 
2

2
x B

wz
V R

l
= = -  (7.8)

The shear force reaches maximum when the head of the load touches section 

X and is equal to

 
2

2
x B

Wx
V R

l
= - = -  (7.9)

If we want to plot the maximum –ve S.F. diagram for other sections, the value 

of x has to be varied in Eqn. 7.9 which represents a second degree parabola. At x 

= 0 S.F., V = 0 and at x = l, the S.F., V = –wl/2. The –ve S.F. diagram is shown in 

Fig. 7.2b below the base line AB.

Positive Shear Force We know that the positive shear force at section X is 

equal to the reaction RA minus any load between A and X. A little consideration 

will show that the positive shear force is maximum when the tail of the load is at 

X and occupies from X to B. The maximum positive shear force for this loading 

position is equal to

 
2( )

2
x A

l x
V R w

l

-
= =  (7.10)

If we want to plot the maximum shear force at other sections the value of x 

has to be varied from x = 0 to x = l in Eqn. 7.10. Eqn. (7.10) represents a second 

degree curve having ordinates 
2

wl
 at x = 0 and zero at x = l. The maximum +ve 

shear force diagram is shown in Fig. 7.2b above base line AB.
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From the above discussion, we fi nd that the maximum –ve shear force will 

occur when the head of uniformly distributed load is at the section, and maximum 

+ve shear force will occur when the tail of the load touches the section. The shear 

force diagram will consist of two parabolas, one for –ve and the other for +ve 

S.F. as shown in Fig. 7.2b.

Bending Moment Let us consider an instant when the head of the load is at 

any point C distance z from A (Fig. 7.2a). Moment at section X is,

 Mx = RB (l – x)

  
2

( )
2

wz
l x

l
= -  (7.11)

The moment Mx increases as the load advances.

The moment at section X when the head of the load touches the section is

 Mx = RA (x) 
2

2

wx
-  (7.12)

The moment continues to increase as the load advances since more and more 

load is added on to the span. The maximum moment at section X occurs when 

the load fully occupies the span from A to B. Moment at section X when the span 

is fully loaded is

 Mx 
2

2 2

wlx wx
= -

  2( )
2

w
lx x= -  (7.13)

It is obvious that in a simply supported beam, the maximum bending moment 

will occur at centre of span when the span is fully loaded and is equal to 
2

max.
8

wl
M =

The maximum bending moment diagram for different sections is shown in 

Fig. 7.2c.

7.4  UNIFORMLY DISTRIBUTED LOAD SHORTER

     THAN SPAN

Negative Shear Force In Fig. 7.3a a u.d.l. of intensity w/unit length spreading 

over a length a crossing a simply supported beam AB is shown. Consider an 

instant when the head of the load enters the span and occupies a distance z £ a 

from A. The shear force at section is –ve and is equal to reaction RB,

 
2

2
x B

wz
V R

l

-
= - =  (7.14)
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It is evident that the shear force varies parabolically and reaches a value 
2

2

wa

l
 

when the tail of the load just enters the span. As the load moves forward the S.F. 

increases as RB increases. When the head of the load reaches section X, the S.F. 

is again equal to reaction RB.

 
2

x B

wa a
V R z x

l

Ê ˆ= - - -Á ˜Ë ¯  (7.15)

If we want to plot the S.F. diagram for different sections from x = 0 to x = l it 

is evident that the diagram is parabolic from x – 0 to x = a

Fig. 7.3  (a) Beam under u.d.l. shorter than span, (b) Maximum –ve and +ve S.F. at different 

sections, (c) Positioning of load for maximum B.M. at a section,

(d) Maximum B.M. diagram for different sections

and varies linearly from x = a to x = l. It is interesting to note that the straight 

line has its ordinates zero at x = 
2

a
 and wa at x = 

1

2

a+
. The –ve S.F. diagram is 

shown plotted in Fig. 7.3b below the base line AB.
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Positive Shear Force The shear force at section X will be positive when the 

load lies between X to B. The positive shear force reaches maximum when the 

tail of the load just crosses section X and is equal to reaction RA

 
2

x A

wa a
V R l x

l

Ê ˆ= = - -Á ˜Ë ¯
 (7.16)

If we want to plot maximum S.F. diagram for different sections the 

value of x has to be varied in Eqn. 7.16 which is linear. The S.F. ordinate 

1
0 and 0

2 2
x x

wa a
V l at x V at x l

l

Ê ˆ Ê ˆ= - = = = -Á ˜ Á ˜Ë ¯ Ë ¯  Thus, the S.F. diagram is 

a parabola for over a distance a from B having zero ordinate at B and 

2

2

wa

l
 

at distance a from B. Thereafter the S.F. diagram varies linearly having a S.F. 

ordinate 
2

wa a
l

l

Ê ˆ-Á ˜Ë ¯
 over support B. The positive shear force diagram is shown 

plotted in Fig. 7.3b.

From the above discussion, we fi nd that the maximum –ve S.F. at a given 

section occurs when the head of the load touches the section where as the 

maximum +ve S.F. at a section occurs when the tail of the load touches the 

section. The S.F. diagram consists of two parabolas up to a distance a from the 

ends and two straight lines as shown in Fig. 7.3b.

Bending Moment It is common knowledge that maximum bending moment at 

a section X occurs when the u.d.l. is spread on either side of the section. Suppose 

that the load is positioned as shown in Fig. 7.3c. Let z be the distance from 

support A to centroid of the load. The load behind the section is spread over CX. 

From Fig. 7.3c we fi nd

 2 2

a a
CX AX AC x z x z

Ê ˆ Ê ˆ= - = - - = - +Á ˜ Á ˜Ë ¯ Ë ¯
At this position reaction at A,

 

.
( )A

w a
R l z

l
= -

Moment at section X,

 Mx 

2

2 2
A

w a
R x x z

Ê ˆ= - - +Á ˜Ë ¯

  
2

. .
( )

2 2

w a w a
l z x z

l

È ˘Ê ˆ= - - - +Í ˙Á ˜Ë ¯Í ˙Î ˚
 (7.17)

The moment Mx will be maximum for the value of z, when 0xdM

dz
= . 

Differentiating Eqn. 7.17 w.r.t. z and equating it to zero.
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xdM

dz
 0

2

ax a
x z

l

Ê ˆ= - + - + =Á ˜Ë ¯

That is 
x

l
 = 

2

a
x z

a

- +

 
x

l
 = 

CX

CD
 (7.18)

It means that the B.M. at the section X is maximum when the position of the 

load is such that the section X divides the span and the load in the same ratio. 

This is a very important relation which is useful later for point loads also.

It is easy to visualise that the absolute maximum bending moment will occur 

at the centre of span when the load is spread equally on either side of centre of 

span. For this position of load the absolute maximum B.M.

 Mmax  .
2 2 4

A

l a a
R w= - ◊

  
2

2 2 8 4 2

wa l wa wa a
l

Ê ˆ= - = -Á ˜Ë ¯
 (7.19)

The maximum bending moment diagram for different section is shown in Fig. 

7.3d.

7.5  TWO CONCENTRATED LOADS

Consider two concentrated loads W1. and W2 spaced d apart rolling over a beam 

AB as shown in Fig. 7.4a. Let the leading load W1 be lighter than the trailing load 

W2

Negative Shear Force Consider an instant when the loads are in the region 

AX and d £ x. The shear force at section X is negative and is equal to RB. The 

shear force will increase as the loads move to the right as RB increases. The S.F. 

at section X will be maximum under one of the following two load positions, 

 i. When the leading load W1 is at section X and the trailing load is between 

A and X. 

 ii. When the leading load is between X and B and the trailing load W2 is on 

the section X.

Shear force at section X under load position (i) is

 1 2 ( )
x B

W x W x d
V R

l

+ -Ï ¸= - = - Ì ˝
Ó ˛

 (7.20)

Shear force at section X under load position (ii) is 

 Vx = –{RB – W1}

  
1 2

1

( ) ( )W x d W x
W

l

+ +Ï ¸= - -Ì ˝
Ó ˛

 (7.21)
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It is obvious that the maximum –ve S.F. at section X is the larger of the two 

values obtained in Eqns. 7.20 and 7.21 dependent on W1, W2, d, x and l. If the S.F. 

obtained in Eqn. 7.20 were to be greater than that obtained in Eqn. 7.21 then,

Fig. 7.4  (a) Beam and the two concentrated loads, (b) Maximum shear force diagram,

(c) Maximum B.M. diagram at different sections

 

1 2 1 2
1

( ) ( )W x W x d W x d W x
W

l l

+ - + +
> -

or W1x + W2x – W2d > W1x + W1d + W2 x – W1l

This reduces to W1d + W2d < W1l

or d(W1 + W2) < W1l

\ d < 
1

1 2

W
l

W W+
 (7.22)

If d > 
1

1 2

W

W W+
l the maximum S.F. at section X occurs under loading position 

(ii) discussed earlier.

Now if we want to plot the –ve S.F. diagram for different sections from x = 0 

to x = l the beam has to be divided into two sections: one from x = 0 to x = d and 

the second from x = d to x = l. In the fi rst section from x = 0 to x = d only one load 

W1 will be in the span and the trailing load lies outside the beam. Substituting x 

= 0 for support section, V = 0.
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At x = d, V = 1W d

l
 and at x = l, V = W1 + W2

( )l d

l

-
. The –ve S.F. diagram is 

shown plotted in Fig. 7.4b below base line AB.

Positive Shear Force Consider an instant when the loads W1 and W2 are in the 

region X to B. The shear force at section X is positive and is equal to RA. Shear 

force at section X is maximum under one of the two following load positions.

 i. When the trailing load W2 is at section X and the leading load W1 is in the 

region X to B. 

 ii. When the leading load W1 is at the section and the trailing load is in the 

region A to X. 

S.F. at X under loading position (i) is

 1 2( ) ( )
x A

W l x d W l x
V R

l

- - + -
= =  (7.23)

S.F. at X under loading position (ii) is

 1 2
2 2

( ) ( )
( )x A

W l x W l x d
V R W W

l

- + - +
= - = -  (7.24)

If the S.F. obtained in Eqn. 7.23 were to be greater than the S.F. obtained in 

Eqn. 7.24 then,

 

1 2 1 2
2

( ) ( ) ( ) ( )W l x d W l x W l x W l x d
W

l l

- - + - - + - +
> -

 (7.25)

or W1l – W1x – W1d + W2l – W2x > W1l – W1x + W2l – W2x + W2d – W2l

This reduces to W1d + W2d < W2l

or 
2

1 2

W
d l

W W
<

+  (7.26)

If d > W2/W1 + W2l the S.F. at section X will be maximum under loading position 

(ii).

The +ve S.F. diagram is shown plotted in Fig. 7.4b. dividing the beam into 

two sections; one from x = 0 to x = (l – a) and the second from x = (l – a) to x = l. 

For the section from x = (l – a) to x = l the leading load W1 lies outside the span 

and only the trailing load lies in the span.

Bending Moment The maximum bending moment at section X occurs when 

one of the two loads lie on the section.

Consider fi rst that the leading load W1 is at section X. The moment at section 

X is

 Mx (1) = RB (l – x)

 
1 2 ( )

( )
W x W x d

l x
l

+ -Ï ¸= -Ì ˝
Ó ˛

 (7.27)
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When the trailing load W2 is at section X, the moment at the section is

 Mx (2)  = RA (x)

  2
1

( ) ( )
( )

l x d W l x
W x

l

- - + -Ï ¸= Ì ˝
Ó ˛

 (7.28)

It is obvious that the maximum bending moment at section X is the greater 

of the two values obtained from Eqns 7.27 and 7.28 depending upon W1, W2, l, 

d and x. If we plot the maximum moment diagrams represented by Eqns. 7.27 

and 7.28 for different sections we fi nd that these diagrams are parabolas. The 

fi rst B.M. diagram Mx(1) will have zero ordinates at x = 
2

1 2

W d

W W+
 and at x = l. 

The second B.M. diagram Mx(2) will have zero ordinates at x = 0 and at x = l –

1

1 2

W d

W W+
, that is at a distance 1

1 2

W d

W W+
 from end B. The two moment diagrams 

are shown plotted in Fig. 7.4c. We also notice that Mx(1) = Mx(2) at section E. 

Equating the moments Mx(1) = Mx(2) we have

 
1 2 1 2( ) ( ) ( )

( )
W x W x d W l x d W l x

l x x
l l

+ - - - + -Ï ¸ Ï ¸- =Ì ˝ Ì ˝
Ó ˛ Ó ˛

 (7.29)

Simplifying, we get

 
2

1 2

Wx

l W W
=

+
 (7.30)

It is obvious that the average loading on the left of the section is equal to the 

average loading on the right of the section. It is seen that for all sections from A 

to E the maximum moment is given by Eqn. 7.28 in which W2 is on the section 

and W1 is ahead of it, and, for all sections from E to B, the maximum moment is 

given by Eqn 7.27 in which W1 is on the section and W2 is behind it.

7.6  SERIES OF CONCENTRATED LOADS

Consider a series of concentrated loads W1, W2 .... W5 rolling from A to B over 

span l as in Fig. 7.5.

Fig. 7.5

7.6.1 Maximum S.F. at a Section

The maximum –ve or +ve S.F. at a given section occurs when one of the loads is 

at the section itself. From an inspection of the magnitude and disposition of the 
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loads and making a few trials one may be able to fi x up a particular load which 

should be placed over the section. The calculations are simple and hence the 

trials can be carried out quickly.

7.6.2 Maximum Bending Moment Under a Given Load

Consider the load system as in Fig. 7.5 moving from left to right. Let W3 be the 

load the position of which is to be fi xed for obtaining maximum bending moment 

under it. Let

 x = Distance of load W3 from support A.

 R = Resultant of all the loads on the span and located at distance d form 

W3 

 R1 = Resultant of all the loads to the left of W3 and located at distance d1 

from W3

For the loading position indicated reaction at support A,

 1( )A

R
R l x d

l
= - +

Moment under load W3 is,

 Mx = RA(x) – R1(d1)

or Mx = 
R

l
 (lx – x2 + xd1) – R1 d1 (7.31)

We can obtain the value for x at which Mx will be maximum by setting 

0xdM

dx
=

\ 1( 2 ) 0xdM R
l x d

dx l
= - + =

or  x = 1

2 2

dl
+  (7.32)

From the above we can state that the maximum bending moment under any 

load occurs when that load and the resultant of all the loads are located equidistant 

from the centre of the span; or in other words, when the centre of the beam lies 

midway between the resultant R and the load under consideration.

7.6.3 Maximum Bending Moment at a Given Section

Consider the beam under a train of moving loads shown in Fig. 7.6. Let section 

K be located at a distance L1 from left-hand support and at a distance

Fig. 7.6
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L2 measured from right-hand support. Let R represent the resultant of all the 

loads on the span and be located at a distance x from the left-hand support. Again 

let R1 represent the resultant of loads to the left of section K and be located at 

distance d from the resultant R.The expression for the moment at K is,

 MK = RA L1 – R1 (L1 – x + a) (7.33)

substituting for RA = 
R

L
 (L – x) and differentiating with respect to x we get,

 

KdM

dx

1
1

L
R R

L
= - +

 (7.34)

For a maximum value of MK, KdM

dx
 passes from a positive value to zero and 

then to a negative value, that is,

 KdM

dx
 is positive for 

1

1

R R

L L
>

and KdM

dx
 is negative for 

1

1
L

R
R

L
<

This means that the maximum bending moment at any section K occurs when 

a particular load is on the section which changes the ratio 
1 1

1 1

to
R RR R

L L L L
> <  

as the load passes over the section from left to right. 

7.6.4 Absolute Maximum Shear and Moment in Beams

The absolute maximum shear in a simply supported beam subjected to a series of 

moving concentrated loads needs little discussion. It will occur next to one of the 

support sections, and therefore the solution entails only the positioning of loads 

such that the maximum value of reaction is obtained.

The theoretical calculations to determine the absolute maximum bending 

moment at any section and the curves showing these absolute maximum values 

are highly involved. However, the criteria arrived at for a maximum bending 

moment under a given loading or at a section may be used for fi nding out the 

absolute maximum bending moment anywhere on the span. This is done by fi rst 

selecting a wheel load and then arranging suitably the load system as concluded 

in 7.6.2. The maximum bending moment under that wheel load is obtained. After 

that another wheel load is selected and the same procedure is adopted to arrive 

at the maximum bending moment under that load. Two or three trials give the 

absolute maximum bending moment. The following guidelines may be kept in 

mind in making the trials.

 1. The absolute maximum bending moment occurs under one of the loads 

and not in between the loads.

 2. The absolute maximum bending moment occurs under a wheel load 

which is heavier and near the centre of span. It does not occur at centre 
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of span unless the resultant of the load system coincides with the heavier 

load.

A few numerical examples that follow on the topics covered will make the 

discussions clear.

Example 7.1 
A uniformly distributed load of 15 kN/m covering a 

length of 3 m crosses a girder of span 10 m. Find the 

maximum shear force and bending moment at a section 4 m from L.H. support.

Step 1: To fi x position of moving loads for maximum shear.

Maximum Negative Shear Force

We know that the maximum –ve shear force at the required section will take place 

when the head of the load is on the section as shown in Fig. 7.7b. Therefore

Fig. 7.7  (a) Beam undr u.d.I. shorter than span, (b) Position of load for maximum –ve S.F.,

(c) Position of load for maximum +ve S.F., (d) Position of load for maximum B.M.

 Vmax = – RB = –
15 3 2.5

11.25kN
10

¥ ¥
+

Maximum Positive Shear Force

The maximum +ve S.F. at the required section will take place when the tail of the 

load is on the section as shown in Fig. 7.7c. Therefore,

 max

15 3 4.5
20.25kN

10
AV R

¥ ¥
= = =

Step 2: To fi x position of loads for maximum B.M.

Maximum Bending Moment

The maximum bending moment at the section will occur when the position of 

the load is such that the section X divides that load in the same ratio as it divides 

the span. In Fig. 7.7d
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CX x

CD l
=

or 
4

3 10

CX
=

\  CX = 1.2 m

Now bending moment     Mx = RA (4) – 15 (1.2) (0.6)

    
15(3) (5.7) (4)

10
= – 15(1.2) (0.6)

     = 102.6 – 10.8 = 91.8 kN.m

Example 7.2 
Two point loads 40 kN and 60 kN spaced 6 m apart 

cross a girder of 16 m span with 40 kN load leading 

from left to right. Construct the maximum S.F. and B.M. diagrams stating the 

absolute maximum values.

Step 1: To fi x position of loads for maximum S.F.

Maximum Negative S.F. Diagram

Now for drawing the maximum –ve S.F. diagram, let the span AB be divided 

into two sections AC and CB as shown in Fig. 7.8b. When the leading load 40 

kN is over A, the reaction RB = 0 and therefore the S.F. at A = 0. As the 40 kN 

load enters the span and lies in the region A to C, the –ve S.F. is equal to RB and 

increases linearly as the load approaches section C. The S.F. at C when the load 

is at section C is,

 

40 6
15.0 kN

16
C BV R

- ¥
= = = -

When the leading load 40 kN crosses the section C, the trailing load also enters 

the span. The negative S.F. is equal to RB for any section from the leading load 

to support B. The reaction RB increases and so also the S.F. as the loads move 

further towards support B. The maximum –ve S.F. will develop when the leading 

load just reaches support B. The maximum –ve S.F. next to support B is,

 
(40 16 60 10)

77.5 kN
16

BV
¥ + ¥

= - = -

The –ve S.F. diagram is shown in Fig. 7.8b.

Maximum Positive S.F. Diagram

For drawing the +ve S.F. diagram let us divide the span AB into two sections AD 

and DB so that DB = 6 m, the spacing between the two loads. The reaction RA 

and hence the +ve S.F. is maximum at A when the trailing load is over support A. 

Therefore, the maximum +ve S.F. is

 

40 10
60 85 kN

16
AV

¥
= + =
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Fig. 7.8  (a) Beam and the rolling loads, (b) Maximum S.F. diagram,

(c) Maximum B.M. diagram

As the loads advance towards support B the reaction RA and hence the S.F. 

decreases till the leading load reaches support B. At this instance the trailing load 

is over section D. Therefore the +ve S.F. at section D is

 

60 10
22.5 kN

16
D AV R

¥
= = =

The maximum +ve S.F. diagram for the entire girder is shown in Fig. 7.8b.

Step 2: To fi x sections C and D.

Maximum B.M. Diagram

For drawing the B.M. diagram we divide the span AB into three sections AC, CD 

and DB as shown in Fig. 7.8c such that

 
2

1 2

60(6)
3.6m

100

W d
AC

W W
= = =

+

and 
1

1 2

40(6)
2.4m

100

W d
BD

W W
= = =

+

Step 3: Calculation of maximum moments

The maximum B.M. at any section X at a distance x from A occurs when one of 

the loads is at that section. Consider fi rst that the leading load is at the section X. 

The moment
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 1 2( ) ( )
(1) ( )x

W x W x d
M l x

l

+ -Ï ¸= -Ì ˝
Ó ˛

 (7.35)

This is a second degree curve having zero ordinates at C and B. The maximum 

ordinate for the B.M occurs at the centre of CB. i.e.,

 3.6 + 
1

2
 (16 – 3.6) = 9.8 m from support A.

Substituting x = 9.8 m in Eqn. (7.35)

 Mmax (1) 
(40 9.8 60 3.8)

(6.2)
16

¥ + ¥
=

  = 240.25 kN.m. 

Next consider that the trailing load is on section X. The moment

 Mx (2) = 
1 2( ) ( )

( )
W l x d W l x

x
l

- - + -Ï ¸
Ì ˝
Ó ˛

 (7.36)

This is again a second degree curve with zero ordinates at A and D. The 

maximum B.M. will occur at the mid-point of AD, i.e. 
1

2
 (16 – 2.4) = 6.8 m 

from A.

Substituting x = 6.8 m in Eqn. 7.36

 Mmax (2) = 
40 (16 6.8 6) 60(16 6.8)

6.8
16

- - + -Ï ¸
Ì ˝
Ó ˛

  = 289.0 kN.m 

The complete B.M. diagram is shown in Fig. 7.8c.

Example 7.3 
The load system shown in Fig. 7.9 crosses a girder 25 

m span with the 120 kN load leading. Determine the 

value of (i) Maximum B.M. at a section 8 m from the left end of the girder and (ii) 

Absolute maximum B.M. on the girder.

Step 1: To fi x the position of loads for maximum B.M.

Maximum Moment at the Section

The maximum moment at section X, 8 m from support A occurs when one of the 

loads is on the section. Further, the load which tilts the average loading in the 

regions AX and XB as it passes over the section is the one which should be placed 

over the section for maximum B.M. 

Let us consider 160 kN next to 80 kN just to the left of Section X.

Average load on AX = 
240

8
 = 30

on XB = 
280

17
 = 16.47

Average load on AX > Average load on XB. 

Consider next that the same 160 kN load is just to the right of section X.
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Fig. 7.9  (a) Beam and the rolling loads, (b) Position of rolling loads for maximum

B.M. at section X, (c) Position of loads for absolute maximum B.M.

Average load on AX = 
80

8
 = 10

on XB = 
440

17
 = 25.88

\ Average load on AX < Average load on XB.

Therefore, the maximum B.M. at section X will occur when a 160 kN load 

next to an 80 kN load is on the section.

The position of loads for maximum B.M. at section X is shown in Fig. 7.9b.

Step 2: Calculation of moment at X

The moment Mx = RA (8) – 80 (2)

 RA = 
120(13) 160(15) 160(17) 80(19)

328
25

+ + +
= kN

\ Mx = 328(8) – 80(2) = 2464 kN.m

Step 3: To fi x position of loads for absolute Maximum B.M. 

Absolute Maximum B.M

Let us fi rst fi x up the centroid of the loads. Taking moment about the 80 kN 

load
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120 6 160 4 16 2
3.23 m

520
x

+ + ¥ + ¥
= =

The position of loads for maximum B.M. to occur under 160 kN next to 60 kN 

is shown in Fig. 7.9c. This is also the absolute maximum bending moment on the 

girder as this load tilts the scales of average loading.

Reaction RB = 
(12.5 0.285)

520 251.99 kN
25

-
=

Absolute Maximum B.M. = RB (12.5 – 0.385) – 120 ¥ 2

  = 251.99 ¥ 12.115 – 240.0 

  = 2812.86 kN.m.

7.7  EQUIVALENT U.D.L

We have seen in the preceding sections that, when a system of loads roll over 

a girder, the girder is subjected to varying bending moment. Such a system of 

loads can be replaced by a uniformly distributed static load covering the entire 

span such that the moment caused by the static loading is equal to or greater than 

the moments obtained under moving loads. Such a static loading is called the 

equivalent u.d.l.

We know that the equivalent u.d.l. produces a moment diagram which is 

parabolic with a maximum ordinate at the centre of the beam. This bending moment 

diagram should envelop the bending moment diagram under actual rolling loads. 

The intensity of equivalent u.d.l. which envelops the B.M. diagram produced by 

the actual system of loads can be evaluated by any one of the methods available. 

However, the simple method which is acceptable and preferred by practising 

engineers is the one in which the absolute maximum B.M. produced by the system 

of loads is equaled to the maximum B.M. produced by the equivalent u.d.l. at the 

centre of span. That is, if Mmax is the absolute maximum B.M. produced by the 

system of loads and w¢ unit length is the equivalent u.d.l. then

 

2

max
8

w l
M

¢
=

from which w¢ = max

2

8

1

M
 (7.37)

Example 7.4 
A uniformly distributed load of 20 kN/m and 3 m long 

rolls over a girder of 12 m span. Find the equivalent 

u.d.l.

Absolute maximum B.M. at centre of span will occur when the load is placed 

symmetrical to the centre of span, that is 1.5 m length on either side of centre of 

span.

 Mmax = RA (6) – 20 
(1.5)

(1.5)
2
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20 3 6

22.5
2

¥ ¥
= -

Let w¢ be the equivalent u.d.l., then from Eqn. 7.37 , 

 w¢ 
8 157.5

8.75 kN/m
12 12

¥
= =

¥

Example 7.5 
Determine the maximum bending moment developed 

anywhere on the girder of span 15 m due to two rolling 

loads 150 kN and 100 kN spaced 4 m apart with the 100 kN load leading passing 

over the girder. Find the equivalent u.d.l. to give the same maximum bending 

moment.

The centroid of the loads is found taking moment about the 100 kN load.

Then 
150 4

2.4 m
250

x
¥

= =

The absolute maximum B.M. will occur under 150 kN load when that load 

and the centroid of loads are at equal distantces from the centre of the girder as 

shown in Fig. 7,10.

Fig. 7.10

 Mmax = RA (7.5 – 0.8)

 RA 
(7.5 0.8)

250
15

+
=

Substituting for RA, Mmax 
250 8.3

6.7 926.83 kN/m
15

¥
= ¥ =

If w¢ is the equivalent u.d.l., using Eqn. 7.37

 w¢ 
926.83 8

32.95 kN/m
15 15

¥
= =

¥

7.8  INFLUENCE LINES

7.8.1 Introduction

The steps involved in determining S.F. and B.M. at different sections of a beam 

as the rolling loads move from one end to the other are rather cumbersome. 

Infl uence lines are interesting and are a very useful tool in dealing with rolling 

loads. In the following sections the common methods of determining infl uence 
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lines are covered fi rst and later these infl uence lines are utilised to determine 

the maximum S.F. and B.M. in beams and forces in the members of the bridge 

trusses.

7.8.2 Defi nition and Basic Concept

An infl uence line is defi ned as a function whose value at a point represents some 

structural quantity as a unit load is placed at that point.

The structural quantities often encountered are: reactions, shear forces, 

moments, defl ections at specifi ed points or member forces as in the case of 

trusses.

The basic concept of an infl uence line 

(I. L.) can be developed by considering 

the simply supported beam of Fig. 7.11.

Suppose that it is required to know the 

variation of left-hand support reaction RA 

as a unit load moves from end A to end 

B. If the unit load is at a distance x from 

support A, the left support reaction is

 1 (1)A

x
R

L

Ê ˆ= -Á ˜Ë ¯  (7.38)

This expression for RA is true for any value of 0 £ x £ L and is positive when 

acting upwards. The variation is shown plotted in Fig. 7.12a. The ordinate at any 

point represents the value of reaction RA when a unit load is at that point.

In a similar manner we can express the variation of the shear force or the 

moment at a section as the unit load moves along the beam. For example, the 

shear force at say section D, is positive (following the sign convention as in Fig. 

2.3) for the unit load position shown in Fig. 7.11. The value of shear

 V1 = RA = 1
x

L

Ê ˆ-Á ˜Ë ¯  (1), for a £ x £ L (7.39)

and moment

Ml = RA(a) = 1
x

L

Ê ˆ-Á ˜Ë ¯  (a) for a £ x £ L  (7.40)

If the unit load were to be on the left of section D.

shear force V1 = – RB = 
x

L

Ê ˆ-Á ˜Ë ¯ (1),   [0 £ x £ a] (7.41)

and moment M1 = RB (L – a) = (x/L)(L – a), [0 £ x £ a] (7.42)

The variations of shear and moment are shown plotted in Figs. 7.12b and c 

respectively.

The diagrams in Fig. 7.12 are known as infl uence lines. They are constructed 

using general equations for the structural quantity under consideration. Infl uence 

Fig. 7.11
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lines can also be constructed by placing a unit load at a specifi c number of points, 

evaluating the required quantity under consideration, plotting the results and 

joining them by a smooth curve. The general expressions above help to clarify 

the meaning of an infl uence line. The structural quantity is a function of x which 

refl ects the position of the load.

7.8.3 Uses of Infl uence Lines

Once we have developed an infl uence line for a structural quantity, we can use it 

to evaluate that structural quantity for any type of moving loads.

The Infl uence Lines diagrams for S.F. and B.M. have been utilised to study the 

following cases of rolling loads covered earlier through numerical examples.

 1. Single concentrated load

 2. A u.d.l. longer than the span

 3. A u.d.l. shorter than the span

 4. Two concentrated loads

 5. A series of concentrated loads.

Example 7.6 
Consider the simple beam of Fig. 7.13a for which 

infl uence lines for shear and moment are developed for 

section 1 located 3 m from the left support. If a 20 kN concentrated load is placed 

at the mid-point of the beam, evaluate the moment and shear at section 1.

Fig. 7.12  (a) Variation of reaction RA, (b) Variation of shear force at section D

(c) Variation of moment at section D
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The value of the shear or moment at 1 due to the concentrated load is equal 

to the product of the infl uence line ordinate under the load and value of the load. 

Thus,

 V1 = 20 (+ 0.5) = 10 kN

and M1 = 20 (+ 1.5) = 30 kN.m

Again, if the load were to be placed just to the right of section 1, we have

Fig. 7.13  (a) Simple beam, (b) I.L. for shear at 1, (c) I.L. for moment at 1, (d) Beam under 

series of concentrated loads

 V1 = 20 (+ 0.75) = 15 kN 

 M1 = 20 (+ 2.25) = 45 kN.m

If the load is placed just to the left of section 1, we have 

 V1 = 20 (– 0.25) = 5.0 kN 

 M1 = 20 (+ 2.25) = 45 kN.m

Now let us consider the same beam subjected to a series of loads as shown in 

Fig. 7.13d. The resulting shear or moment at 1 due to the given loading can be 

obtained with the help of the infl uence lines of Figs. 7.13b and c.
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The shear or moment at section 1 is obtained by summing up the effect of 

individual concentrated loads as calculated above. Thus,

 V1 = 30 (– 0.167) + 20 (+ 0.58) + 20 (0.25) 

  = 11.65 kN

It may be noted that the infl uence line ordinate under 30 kN load is negative. 

Therefore, the contribution of 30 kN load to the shear at section 1 is negative. 

However, the net effect of all the forces is positive. In a similar manner, the 

moment at section 1 is found to be

 M1 = 30 (1.50) + 20 (1.75) + 20 (0.75)

  = 95.0 kN.m 

All the loads in this case contribute to the positive moment.

Example 7.7 
A single concentrated load of 60 kN crosses a girder of 

10 m span. Using I.L. diagrams fi nd the maximum S.F. 

and B.M. at a section 3 m from left end of the girder.

The Infl uence Line Diagram for 

shear force at a section 3 m from 

support A is obtained using equations 

7.39 and 7.41. The S.F. ordinate to 

the left of section is –0.3 and to the 

right is +0.7 as shown in Fig. 7.14b. 

These ordinates are for a unit load. To 

obtain the maximum +ve S.F. the 60 

kN load has to be placed to the right 

of section C. Then the maximum +ve 

S.F. at section C is

 VC = load ¥ ordinate of the 

I.L. under the load 

 = 60 ¥ 0.7 = 42.0 kN.

Similarly the maximum –ve S.F. 

is obtained by considering the load to 

the left of section C. Maximum –ve S.F. at section C is

 VC = load ¥ ordinate of I.L. under the load 60

 = 60 ¥ (–0.3) = –18.0 kN

The I.L. for moment at a section 3 m from support A is obtained using Eqn. 

7.40 and 7.42 as shown in Fig. 7.14c. The I.L. ordinate at the section is

 

( ) 3 7
2.1 kN.m

10
C

a l a
M

l

- ¥
= =

To obtain the maximum bending moment the load has to be placed over the 

section. The maximum B.M. is

Fig. 7.14  (a) Beam and the rolling load

(b) I.L. diagram for S.F. (c) I.L. diagram for B.M.
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 MC max = load ¥ ordinate of the I.L. diagram under the load 

 MC (max) = 60 ¥ 2.1 = 126.0 kN.m

Example 7.8 
It is required to determine the maximum possible shear 

force and moment at point C of the beam shown in Fig. 

7.15a due to a series of concentrated loads shown moving on the beam from right 

to left.

The problem is essentially one of determining the position of loads for which 

the shear or moment at C is maximum. The shear and moment infl uence lines for 

point C are shown in Figs. 7.15b and c. For the purpose of discussion we consider 

that the loads are moving from right to left with the 20 kN load in the lead.

Fig. 7.15  (a) Beam and rolling loads, (b) I.L for shear at C, (c) I.L. for moment at C

Let us fi rst attempt to determine the position of loads for maximum shear. This 

is done by moving the loads in successive steps across the beam and observing 

the manner in which the shear force at C changes. Consider that the 20 kN load 

enters the beam fi rst. We see that for an advance of 1 m to the left, the value of 

shear changes from zero to 20(0.1) = 2.0 kN. The slope of the infl uence line can 

be used to determine the change of shear force. The slope of the I.L. on either 

side of the section is 1 in 10. It may be noted that the slope from C to A will be 

considered positive because, for the movement of loads from right to left in this 

region, the shear at C becomes less negative.
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As the loads advance further to the left, the shear at C increases continuously 

until the leading load 20 kN reaches C. When the 20 kN load goes past C, there 

is an abrupt decrease in the shear at C. However, as the loads continue to move 

to the left, the shear force at C again increases gradually until the next load, that 

is, the 80 kN load reaches C. Thus, it is seen that point C experiences a series 

of increases and abrupt decreases in the value of shear as each load reaches C 

and goes past it. The maximum shear is obtained when one of the loads is just to 

the right of C. The maximum value of shear can be obtained by examining the 

change in shear at C during each movement. If the change is positive, it implies 

that the maximum shear value has not yet been obtained. When the change is 

observed to be negative after a particular move, the location of loads just prior to 

that move gives the maximum positive shear force at C.

The 20 kN load is initially considered to be just to the right of C. Now the 

loads are moved to the left till the next 80 kN load occupies a position just to the 

right of C. During this movement, the change in shear force at C is

 DVC = 20 (– 1.0) + (20 + 80 + 60) (2 ¥ 0.1) = 12.0 kN

It may be noted that the last load (100 kN) did not enter the span. The present 

movement indicates that the shear force at C is increased by 12 kN.

The procedure is repeated with the 80 kN load being moved past C and the 60 

kN being brought just to the right of C. The resulting change in the shear at C is

 VC = –80 + (20 + 100) (2 ¥ 0.1) + (80 + 60) (3 ¥ 0.1) = –14 kN

It may be noted that the 20 kN load moved out of the span and the 100 kN load 

entered the span but moved only 2 m into the span. In this movement the shear 

force decreases. The maximum value of shear is, therefore, obtained with the 80 

kN load placed just to the right of point C. With the position of loads determined, 

the value of shear force is obtained using the I.L. of Fig. 7.15b.

VC (max) = 20 (– 0.2) + 80 (0.6) + 60 (0.3) = 62.0 kN

The maximum moment at C can be obtained in a similar way from the I.L. 

of Fig. 7.15c. As the loads move from B to C, the moment at C increases. The 

slope in this section may be considered positive. Loads moving from C to A 

cause a decrease in the moment at C, so the slope in this section may be taken as 

negative. The maximum moment at C will occur when one of the loads is at C.

There is a continuous increase in the moment at C as the loads move from 

right to left till the 20 kN load is at C. As the 20 kN load moves past C, its 

contribution becomes negative but the contribution of loads in the region C to B 

is positive. To start with, consider that the 20 kN load is just over point C. The 

change in the moment at C as the loads are moved to the left till the next 80 kN 

load reaches point C is

 DMC = –20 (2 ¥ 0.6) + (80 + 60) (2 ¥ 0.4) = 88.0 kN.m

This move increases the moment at C. The loads are again moved to the left 

until the 60 kN load occupies point C. The change in moment for this move is

 DMC = 20(2) (–0.6) + 80(3)(–0.6) + 60(3)(0.4) + 100(2)(0.4) = –16.0 kN.m
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It may be noted that in the last move, the 28 kN load went out of the span and 

the 100 kN load entered the span but moved only 2 m inside the span.

It is clear that the last move decreased the moment at C and, therefore, the 

position of loads which gives the maximum moment is when the 80 kN load is 

on point C. Thus, the maximum moment is

 MC (max) = 20 (1.2) + 80 (2.4) + 60 (1.2) = 288 kN.m

In the example above the movement of loads was considered only from right 

to left. However, in the case of moving vehicles, the movement of loads can be 

in either direction with the front axle load leading. This aspect is illustrated in 

the following example.

Example 7.9 
The maximum moment and shear force at C for the 

beam of Fig. 7.16a is to be computed. The loading is 

due to axle loads of IRC class A driving vehicle as shown on top of the beam. 

Assume that the vehicle can move in either direction.

Fig. 7.16  (a) Beam and rolling loads, (b) I.L. for shear at C, (c) I.L. for moment at C

Step 1: To fi x up position of loads moving right to left

The problem is to determine which wheel is to be placed over C and in which 

direction the truck should be faced to produce the maximum moment at C.

The infl uence line for the moment at C is shown in 7.16c. The slopes of the 

infl uence line are shown for the vehicle moving from right to left. From an 

inspection of the wheel loads, it is obvious that one of the two rear wheel loads 
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must be over point C. We shall consider that initially the inner 114 kN load is 

over point C. If the loads are moved to the left until the rear wheel 114 kN load 

is over C, the change in moment is

 DMC = (27 + 27 + 114) (–0.625) (1.2) + 114 (0.375) (1.2)  = -74.7 kN.M

The initial position of loads, therefore, produces a maximum moment at C. 

The value of the moment is obtained using the infl uence line of Fig. 7.16c.

Step 2: Calculation of maximum moment

   MC(max)= 27(1.7)(0.625) + 27(2.8)(0.625) + 114(6)(0.625) + 114(8.8)(0.375)

 = 879.64 kN.m

Step 3: To fi x position of loads moving left to right

Next, let us consider that the vehicle is facing right. Initially, let the inner 114 kN 

load be over point C. If the loads are now moved to the right till the last 114 kN 

load occupies point C, the change in moment at C is

 DMC = (27 + 27 + 114)(1.2)(–3.375) + 114(1.2)(0.625) = 9.9 kN.m

The change is positive. Therefore, the maximum moment at C occurs when 

the last 114 kN load is over point C. For this position of loads, the moment is 

obtained using the I.L. of Fig. 7.16c.

  MC(max) = 27(4.5)(0.375) + 27(5.6)(3.75) + 114(8.8) (0.375) + 114(10)(0.375)

          = 905.96 kN.m

This value is higher than the previously determined 879.64 kN.m. The 

maximum moment value at C is, therefore, 905.96 kN.m. It should be noted 

that the positioning of wheel loads is not necessarily the same as this for other 

sections for determining the maximum moments.

Step 4: Evaluate maximum S.F.

The I.L. for the shear at C is shown in Fig. 7.16b. We shall fi rst evaluate the 

maximum positive shear force when the vehicle is moving from right to left. 

From inspection it may be decided that the maximum shear force will occur 

when the inner 114 kN load is just to the right of point C.

 VC(max) = 114(0.625) + 114 
8.8 1.7

(0.625) 27 (0.375)
10 6

Ê ˆ Ê ˆ-Á ˜ Á ˜Ë ¯ Ë ¯  

    – 27 
2.8

6

Ê ˆ
Á ˜Ë ¯ (0.375)

 = 126.35 kN

When the vehicle is facing and moving to the right, the maximum shear force 

will occur when the last 114 kN load is just to the right of point C.

 VC(max) = 114(0.625) + 114 
8.8 5.6

(0.625) 27 (0.625)
10 10

Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯

  + 27 
4.5

10

Ê ˆ
Á ˜Ë ¯ (0.625)

 = 151.00 kN
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This value of the shear force is greater than the previously determined value 

of 126.35 kN. The maximum negative shear force can be investigated in a similar 

manner.

This method of determining the maximum values of structural quantities is 

also applicable to other types of infl uence lines. It may be noticed that in certain 

cases it is not necessary to move the loads through all possible position. Often, 

by inspecting the magnitude of loads and their relative position, the trials can 

be reduced to examining only a few alternatives. In some cases where there are 

only a few loads, the location can be determined simply by inspection. However, 

when in doubt, the general procedure should be used.

7.8.4 Distributed Loads

Infl uence lines can be used for distributed loads as well. Consider a segment 

of a beam loaded from a to b as shown in Fig. 7.17a. The infl uence line for a 

structural quantity is also shown in Fig. 7.17b. The ordinates of this infl uence line 

are indicated by a function f(x). We see from Fig. 7.16 that the distributed load 

w(x) acting on a differential length of the beam dx is equivalent to a concentrated 

load of magnitude w(x)dx. The effect of this load on a structural quantity F, for 

which the infl uence line is drawn is

 dF = w(x) ◊ dx ◊ f(x) (7.34a)

that is the value of structural quantity is equal to the product of the concentrated 

load and the I.L. ordinate at that point. For the total distributed load from a to b, 

Eq. 7.43a is integrated over the length of the beam on which the load acts. Thus, 

the structural quantity

 F = ( ) ( )

b

x xa
w f dx◊ ◊Ú  (7.43b)

If the distributed load is uniform, then w(x) = w constant, and Eq. 7.43b can 

be written as

 
( )

b

xa
F w f dx= ◊Ú  (7.44)

Fig. 7.17  (a) Beam under distributed load from a to b, (b) Infl uence line f(x)
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From Eq. 7.44 we can state that the value of a structural quantity due to a 

uniform load is equal to the product of the magnitude of the uniform load and the 

area of the infl uence line diagram under the distributed load. For example, if the 

beam of Fig. 7.13a is loaded with a uniformly distributed load of 10 kN/m over 

an entire span, the moment at 1 from Fig. 7.13c is

 
1

1
(10) 2.25 12 135.0 kN.m

2
M

Ê ˆ= ¥ ¥ =Á ˜Ë ¯

The value of shear at 1 for the same load is found to be

 
1

0.25 3 0.75 9
(10) 10 30.0 kN

2 2
V

¥ ¥Ê ˆ Ê ˆ= - + =Á ˜ Á ˜Ë ¯ Ë ¯

It may be noted that the distributed load to the left of point 1 has actually 

reduced the shear force at 1. If the load were to be placed on the right 9 m length 

only, the value of shear at 1 would have been

 V1 
0.75 9

10 33.75 kN
2

¥Ê ˆ= =Á ˜Ë ¯
The infl uence lines can be used in this manner to fi x up the placement of loads 

to obtain the maximum effects.

Example 7.10 
A uniformly distributed load of 40 kN/m longer than the 

span rolls over a girder of 30 m span. Using I.L. 

diagram for S.F. and B.M. determine the maximum S.F. and B.M. at a section 12 

m from left-hand support A.

Fig. 7.18  (a) Beam and the u.d.l. longer than span (b) I.L. diagram for S.F. at section C

(c) I.L diagram for B.M. at section C
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The I.L. diagram for shear force at section C is shown in Fig. 7.18b, the 

ordinates being worked out as earlier. It is evident from the diagram that the 

maximum +ve S.F. will occur when the tail of the load is on section C and 

occupies from C to B. The maximum +ve S.F. at section C is given by

 VC = Intensity of loading ¥ Area of the triangle CC1B 

  = 40 ¥ 1/2 ¥ 18 ¥ 0.6 = 216 kN.

Similarly the maximum –ve S.F. at section C occurs when the head of the load 

is on section C and occupies from A to C. The maxm. –ve S.F. at section C is

 VC(max.) = Intensity of loading ¥ Area of the triangle ACC2 

  = 40 ¥ 1/2 ¥ 12 (–0.4) = –96.0 kN.

From the I.L. diagram for B.M. shown in Fig. 7.18c, it is clear that the 

maximum B.M. at section C occurs when the load occupies the entire span from 

A to B. The maximum moment at section C is

 MC (max.) = Intensity of loading ¥ Area of triangle ABC,

or MC(max.) = 40 ¥ 1/2 ¥ 30 ¥ 7.2 = 4320 kN.m

Example 7.11 
A girder simply supported has a span of 24 m. A u.d.l. 

of intensity 20 kN/m and 6 m long crosses the girder. 

Using I.L. diagrams fi nd the maximum S.F. and B.M. at a section 9 m from the 

left support.

The I.L. diagram for shear force at section C is shown in Fig. 7.19b. 

From the diagram it is clear that the maximum +ve S.F. at section C occurs 

when the tail of the load is at C and the load is spread from C to F. Therefore, the 

maximum +ve S.F. at section C is,

 VC(max.) 1
2

5 3
(6) (20) 60 kN

8 8

Ê ˆ= + =Á ˜Ë ¯

Similarly the maximum –ve S.F. at section C occurs when the head of the load 

is on the section and is spread from E to C. Maximum –ve S.F. at section C is

 VC(max.) 1
2

5 1
(6) (20) 30.0 kN

8 8

Ê ˆ= - + =Á ˜Ë ¯
We know that the maximum B.M. at section C will occur when the position 

of the load is such that-the section divides the load in the same ratio as it divides 

the span. That is in Fig. 7.19c

 
EC AC

EF AB
=

\ EC = 
6 9

2.25 m
24

EF AC

AB

¥ ¥
= =

and CE = 3.75 m.
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Fig. 7.19  (a) Beam under rolling u.d.l. shorter than span, (b) I.L. diagram for S.F. at section C, 

(c) I.L. diagram for B.M. at section C

For the position of load indicated the ordinate of the I.L. diagram at E and F 

is 4.22 kN.m. The maximum B.M. at section C is,

 MC(max.) = Intensity of loading ¥ area of the diagram EE1F1F. 

  = 20 ¥ 1/2 (5.625 + 4.22) (2.25 + 3.75) 

  = 590.7 kN.m.

Example 7.12 
Determine the maximum shear force and moment at 

section C for the beam shown in Fig. 7.20a. The beam 

is traversed by a uniformly distributed load of intensity 20 kN/m extending over 

a length of 4 m. Indicate the sections that experience the absolute maximum 

shear and maximum moment.

Step 1: To evaluate maximum +ve and –ve S.F. at section C

From the I.L. diagram for shear (Fig. 7.20b) it is obvious that the load should 

cover the left of section C for maximum negative shear. Therefore,

 V(max) 
0.375

(3.75) (20 14.06 kN ( ve)
2

= = -

Similarly, the maximum positive shear force will occur when the load is placed 

to the right of section C, that is,

 V(max) = 1/2 (0.625 + 0.225) (4) (20) = 68.0 kN (+ve)

Step 2: To fi x up load position for maximum moment at C

For the maximum moment at section C, the load position is worked out using Eq. 

7.43 and is shown in Fig. 7.20c. Therefore
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Fig. 7.20  (a) Beam and moving load, (b) I.L. for shear at section C

(c) I.L. for moment at section C

 MC(max) = V1 (1.4 + 2.34) (1.5) (20) + 1/2(1.4 + 2.34) (2.5) (20) 

  = 149.6 kN.m

From a knowledge of the infl uence lines for shear and moment, it can be said 

that the absolute maximum shear force will occur next to the support points and 

the absolute maximum moment occurs at centre of span. The values given may 

be verifi ed.

 V(max) = ± 64.0 kN and M(max) = 160.0 kN.m

Example 7.13 
Two point loads of 50 kN and 75 kN spaced 3 m apart 

with the 50 kN load leading passes over a simply 

supported span of 12 m from left to right. Using I.L. diagrams calculate the 

maximum S.F. and B.M. at a section 4.8 m from the left-hand support. Also fi nd 

out the section and the magnitude of the absolute maximum B.M. that may occur 

anywhere on the beam.

Step 1: To fi x up load position for maximum S.F.

Maximum Positive S.F.

It is clear from the I.L. diagram for shear at section C that the maximum +ve S.F. 

at section C occurs when the 75 kN is on the section and the leading load is in the 

region CB. Therefore, the maximum +ve S.F. at C is

 VC(max.) = 75 ¥ 0.6 + 50 ¥ 
0.6 4.2

7.2

¥
= 62.5 kN.
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Fig. 7.21  (a) Beam and the rolling loads, (b) I.L. diagram for S.F. at section C, (c) I.L. diagram 

for B.M. at section C, (d) Position of loads for absolute maximum. B.M., (e) I.L. diagram for moment 

under 75 kN load

Maximum Negative S.F.

The maximum –ve S.F. at section C will occur when the leading load is on the 

section and the trailing load is in the region AC. Therefore, the maximum –ve 

S.F. at C is

 VC(max.) 
0.4 1.8

50 0.4 75
4.8

¥Ê ˆ= - ¥ + ¥Á ˜Ë ¯
  = –31.25 kN.

Step 2: To fi x up load position for maximum B.M.

Maximum Bending Moment

Maximum B.M. at the given section occurs when one of the loads is on the 

section. From the inspection of loads it is clear that the maximum bending 

moment at section C will occur when the trailing load is on the section and the 

leading load is in the region CB. Moment at section C is

 MC(max.) = 75 ¥ 2.88 + 50 ¥ 1.68 

  = 300.0 kN.m.



202  Basic Structural Analysis

Step 3: To fi x up load position for absolute maximum B.M.

We know that the absolute maximum B.M. will occur under the heavier of the 

two loads when that load and the centroid of the loads are equidistant from centre 

of span.

Distance of centroid from 75 kN load is

 

50 3
1.2 m.

(50 75)
x

¥
= =

+

The disposition of loads for maximum bending moment should be such that 

the trailing load and the centroid of the load system lie equidistant from centre 

line as shown in Fig. 7.21d. The I.L. ordinate for B.M. under 75 kN load is 

shown in Fig. 7.21e. The absolute maximum B.M. is,

 M(Absomax.) = 75 ¥ 2.97 + 50 ¥ 1.62

 = 303.75 kN.m

Example 7.14 
It is required to determine the absolute maximum shear 

and moment for the beam of Fig. 7.22a when a standard 

IRC class A driving vehicle traverses in either direction.

To obtain the absolute maximum shear, we position the loads such that the 

rear wheel load 114 kN is next to the left-hand support (vehicle is facing right). 

The absolute maximum shear is equal to reaction RA. Therefore

 VA(max.) = 114(1) + (114) 
(14.8) (11.6) (10.5)

27 27
16 16 16

+ +

  = 256.75 kN

The same value of the shear force will be obtained at a section next to the 

right-hand support if the truck were to face left and the rear 114 kN load were to 

be placed at the section.

As regards moments, it is clear from an inspection of the loads that the absolute 

maximum moment occurs under one of the 114 kN loads. We shall investigate 

both alternatives. The location- of the resultant of the loads is found to be 1.43 m 

from the last wheel load as shown in Fig. 7.22b. First, we try under the interior 

114 kN load. The loads are so positioned, that the centre line of the beam is 

midway between the resultant and the load under consideration. The resulting 

load position is shown in Fig. 7.22c. The value of the absolute maximum moment 

under the load is found to be

 M = RB (7.885) – 114(1.2)

  
282

(7.885) (7.885) 114 (1.2)
16

= -

  = 959 kN.m

The positioning of loads for obtaining the maximum possible moment under 

the rear load 114 kN is shown in Fig. 7.22d. The moment under the last load is
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Fig. 7.22  (a) Beam and moving loads, (b) Resultant of load system, (c) Position of loads for 

maximum moment under inner 114 kN load, (d) Position of loads for maximum moment under 

outer 114 kN load

 M = RB (7.285) 
282

(7.285) (7.285)
16

= = 935.38 kN.m

Therefore, the absolute maximum moment occurs under the interior 114 kN 

load when placed at 0.115 m from the centre line of the beam.

7.8.5 Infl uence Lines for Statically Determinate Frames

  and Beams with Hinges

The construction of infl uence lines for other statically determinate beams and 

frames is illustrated through the following simple examples.

Example 7.15 
Consider the beam of Fig. 7.23. It is required to 

construct infl uence lines for the reaction at D, shear at 

B and moments at A and B.

To construct the infl uence line for reaction RD, consider the unit load between 

C and D at a distance x from C. Taking the summation of the moments about 

hinge point C, we have
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  RD (3) – (1) (x) = 0

or  RD = 
3

x

Reaction RD is linearly dependent on x. The reaction RD = 0 for a unit load 

placed anywhere between A and C; the load is fully transferred to the fi xed end 

support. The infl uence line for RD is shown in Fig. 7.23b. 

Fig. 7.23  (a) Beam fi xed at end A with hinge at C, (b) I.L. for reaction RD.

(c) I.L. for shear at B, (d) I.L. for moment at A, (e) I.L. for moment at B,

(f) Free-body diagrams of parts AC and CD

We shall now investigate for the shear at B. Suppose that the unit load is 

between C and D at a distance x from point C. The shear force at B will be equal 

to the algebraic sum of the unit load downward and reaction RD upward, that is,
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 VB 1
3

xÊ ˆ= -Á ˜Ë ¯  (7.45)

and is positive. Consider now the load between B and C. For all positions of 

load between B and C, the shear force at B is unity and is positive. However, for 

the unit load between A and B, the shear force at B is zero; the load is directly 

transmitted to the fi xed end A as in a cantilever beam, The I.L. for shear at B is 

shown in Fig. 7.23c.

To construct the I.L. for moment at sections A and B, consider again the unit 

load placed between C and D at a distance x from C as shown in Fig. 7.23a. From 

the free-body diagram of parts AB and DC (Fig. 7.23f), we evaluate

 MA = (reaction at the hinge) (4.5) 1
3

xÊ ˆ= -Á ˜Ë ¯  (7.46)

and MB = (reaction at the hinge) (1.5) 1
3

xÊ ˆ= -Á ˜Ë ¯
(1.5) (7.47)

when the unit load is placed between B and C at a distance x from C (Fig. 7.23a), 

we obtain,

 MA = (1) (4.5 – x), 0 £ x £ 4.5 m (7.48)

 MB = (1) (1.5 – x), 0 £ x £ 1.5 m (7.49)

When the unit load is between A and B the moment at B is zero. The I.L. for 

moments at A and B are shown plotted in Figs. 7.23d and e respectively.

The same procedure can also be used for constructing infl uence lines for 

structural quantities of frames. The procedure is illustrated by the following 

example.

Example 7.16 
Consider the frame of Fig. 7.24a. It is required to 

construct the I.L. for shear and moment at a point 

midway in column BD as the unit load moves from A to C across the horizontal 

member.

The position of the unit load is described by distance x measured from end A. 

To develop the infl uence line for the shear force and moment at F, it is necessary 

to know the value of RDH (horizontal reaction component at D) as the unit load 

moves from A to C.

Summing up the moment of all forces about a point 0 (not shown), the point of 

intersection of the two column lines extended, we have, from Fig. 7.24b

 RDH (12) – (1) (x – 2) = 0

or RDH = 
( 2)

12

x -

Therefore, the value of shear at F is

 VF = –RDH = – 
( 2)

12

x -
, 0  £ x £ 8 m (7.50)
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Fig. 7.24  (a) Frame and type of supports, (b) Free-body diagram of entire frame,

(c) I.L. for shear at F, (d) I.L. for moment at F

The resulting infl uence line for shear at F is shown in Fig. 7.24c. The moment 

at the same point F is evaluated as

 MF 
( 2) ( 2)

(2) (2)
12 6

DH

x x
R

- -
= - = - = -  (7.51)

A negative sign is given to satisfy the sign convention for the reference axes 

shown on column DB. The I.L. for moment at F is shown in Fig. 7.24d.

7.9  INFLUENCE LINES FOR PANELLED BEAMS

Infl uence lines for fl oor beams can also be developed following the procedure 

outlined above. Consider the fl oor system of Fig. 7.25 in which the roof slab 

transmits the load to the cross beams and through the cross beams to the main 
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girders, that is, the girders are subjected to concentrated loads transmitted by the 

cross beams. The points at which the girder supports the cross beams are referred 

to as panel points. Figure 7.26a shows schematically the load transmitted to the 

beam through panel points 1, 2, ..., 7. The infl uence line diagrams for shear force 

and moment for the beam have to be modifi ed since the load is transmitted through 

panel points. We shall illustrate the procedure through a simple example.

Fig. 7.25  Floor system

Example 7.17 
It is required to construct infl uence lines for the shear 

force in panel 4-5, moment at panel point 4 and also 

midway between the panel points 4 and 5 for the panelled beam given in Fig. 

7.26.

It may be noted that the I.L. for the shear force at any point within the panel 

is the same. Hence, we investigate for shear with reference to panel and not any 

section. The I.L. for the shear in panel 4-5 is shown in Fig. 7.26b. The portion of 

I.L. from 1 to 4 is obtained in the same manner as for a simple beam. Even though 

the load is applied through the joists, the shear in panel 4–5 is independent of the 

distribution of the unit load to any two joists between panels 1 and 4. This can 

also be seen from the fact that the shear in panel 4-5 is numerically equal to the 

reaction at the right-hand support. The right-hand support reaction is independent 

of the manner in which the unit load is transferred. However, when a unit load 

is located between panel points 4 and 5, the shear in panel 4-5 is dependent on 

the ratio of joists loads at 4 and 5. Suppose the unit load (N) is at a distance x 

from the left-hand support so that 6 m £ x £ 8 m, the shear in panel 4-5 is equal 

to the reaction at the left support minus the reaction at panel point 4. Thus, from

Fig. 7.26c

 V4–5 
8

, 6 m 8 m
2

A

x
R x

-Ê ˆ= - £ £Á ˜Ë ¯  (7.52)

or V4–5 

12 5
4 3 N

12 2 12

x x
x

-Ê ˆ Ê ˆ Ê ˆ= - - = -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯  (7.53)
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Fig. 7.26  (a) Panelled beam, (b) I.L. for shear in panel 4–5, (c) Unit load over panel 4–5, (d) 

I.L. for moment at panel point 4, (e) I.L. for moment at mid-point of panel 4–5

The variation is linear. When x = 6 m, V4–5 = –0.5 N and when x = 8 m, V4–5 = 

+ 0.33 N. It is also apparent that at x = 7.2 m shear in panel 4–5 is zero.

The construction of the I.L. between panels 5 and 7 is the same at that for a 

sample beam. The completed I.L. diagram is shown in Fig. 7.26b.

Consider now the I.L. for the moment at panel point 4. When the unit load is 

to the left of point 4, the moment at 4 is equal to the right-hand support reaction 

multiplied by the distance of panel point 4 from the right-hand support. Since 

the right-hand support reaction is independent of the manner in which the unit 

load is applied, the I.L. is same as that for a simple beam. When the unit load is 
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to the right of point 4, the moment at 4 is equal to the left-hand support reaction 

multiplied by the distance of point 4 from the left-hand support. Therefore, the 

I.L. for the moment at any panel is identical to the I.L. diagram for a beam on 

which the unit load is moving directly. The I.L. diagram for the moment at point 

4 is shown in Fig. 7.26d. However, when a section is located between the panel 

points, the I.L. diagram differs only in that panel. Consider a section midway 

between panel points 4 and 5. Suppose that a unit load is placed between points 4 

and 5 at a distance x from the left support point as in Fig. 7.26c. The moment at 

a section midway between panel points 4 and 5 can be written as

 M = RA (7) – 4
2

xÊ ˆ-Á ˜Ë ¯  (1), 6 m £ x £ 8 m (7.54)

Substituting 
12

12
A

x
R

-Ê ˆ
Á ˜Ë ¯

 and simplifying, we get

 M 
36

N.m
12

x-Ê ˆ= Á ˜Ë ¯  (7.55)

which results in M = 2.5 N.m when x = 6 m and M = 2.33 N.m when x = 8 m. The 

I.L. diagram for the moment at the section midway between panel points 4 and 

5 is shown in Fig. 7.26e. It may be noted that the diagram from 1 to 4 and again 

from 5 to 7 is the same as that for a beam directly under a moving load.

The infl uence line for the shear in any other panel or the infl uence line for the 

moment at any other section can be constructed employing the same procedure 

as outlined above.

7.10  INFLUENCE LINES FOR TRUSS MEMBERS

Infl uence lines for forces in truss members can be constructed in much the same 

manner as those for the panelled beam above. The basic principle of an infl uence 

line is made use of, which indicates the variation of the force in any member of 

the truss as the unit load moves across the truss. The procedure is illustrated by 

an example.

Example 7.18 
It is required to develop infl uence lines for the forces in 

members 1, 2 and 3 of the truss shown in Fig. 7.27a. 

Consider the unit load to be moving at the level of the lower chord.

The force in member 1 is always equal to the shear force in panel CD. This 

can be verifi ed by making a cut along section XX and considering the equilibrium 

of one of the two parts of the truss. The free-body diagram of the left part of the 

truss is shown in Fig. 7.27b. Therefore, the I.L. diagram for the force in member 

1 is same as the I.L. for shear force in panel C-D as shown in Fig. 7.27c. For the 

unit load between a and c (Fig. 7.27c), the force in member 1 is tensile in nature, 

while for any position of load between c to e the nature of force in member 1 is 

compressive.
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Fig. 7.27  (a) Truss, (b) Free-body diagram of part of truss, (c) I.L. for force in member 1,

(d) I.L. for force in member 2, (e) I.L. for force in member 3

The infl uence line for force in member 2 is obtained by considering the 

equilibrium of forces on a cut part of the truss. Imagine that the truss is cut into 

two parts along YY (Fig. 7.27a). Considering the equilibrium of forces in the 

vertical direction to the left of YY, we observe that the vertical component of the 

force in member 2 must balance the shear force in panel C-D. Writing this in the 

form of an expression, we have
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 P2 sin q = VCD

or  P2 = VCD cosec q (7.56)

where q is the angle of inclination of member 2 with respect to the bottom 

chord and VCD is the shear force in panel C-D. The infl uence line for the force in 

member 2 is shown in Fig. 7.27d in which the ordinates of the I.L. diagram for 

the shear in panel C-D is multiplied by a factor, cosec q.

The nature of force can be decided from the free-body diagram. Tensile force 

is indicated by plus sign in Fig. 7.27d.

An expression for the force in member, 3 can be obtained by employing the 

method of sections. Taking a section through YY (Fig. 7.27a) and considering the 

free-body diagram of the left section, we shall determine the force in member 3 

by summing the moments about D. The moment about D consists of the moment 

caused by a unit load and the left-hand reaction as in the panelled beam and the 

moment caused by the unknown force in member 3. In other words, the moment 

caused by the unknown force in member 3 about point D must be numerically 

equal to the panelled beam moment at D that is,

 P3 (4) = MD

or P3 = 
4

DM
 (7.57)

Therefore, it is seen that the force in member 3 is always equal to the panelled 

beam moment at D divided by the depth of the truss. For a moving load, the 

force in member 3 varies as the moment at point D divided by the depth of the 

truss. In other words, the I.L. for the force in member 3 can be obtained from 

the infl uence line for the moment at D by dividing the ordinates by the depth of 

the truss. The resulting I.L. diagram for the force in member 3 is shown in Fig. 

7.27e. The force is obviously compressive in nature for a unit load anywhere on 

the truss.

Example 7.19 
It is required to determine the maximum forces in 

members CE, DE and DF of the truss of Fig. 7.28a due 

to a dead load of 10 kN/m covering the entire span and a moving load of 20 kN/m 

longer than the span passing over the truss. Consider that the loads are 

transmitted through the lower chord.

The infl uence lines for the forces in members CE, DE and DF are constructed 

as discussed in Sec. 7.10 and are shown in Fig. 7.28b, c and d.

From Fig. 7.28b it is obvious that the moving load should cover the entire 

span to obtain the maximum force in member CE. The resulting force in member 

CE due to dead and moving loads is

 PCE = (10 + 20) 
1 1 1

(0.81) (5) (0.81) 1.04) (5) (10.4) (15)
2 2 2

Ï ¸+ + +Ì ˝
Ó ˛

         = 433.5 kN (tension)



212  Basic Structural Analysis

For the maximum force in member DE, it is obvious from the infl uence line 

in Fig. 7.28c that the moving load should occupy from the right-hand support to 

a point where the I.L. ordinate is zero. It may be noted that in all cases the dead 

load is taken as occupying the span throughout. The maximum tensile force in 

DE is

Fig. 7.28  (a) Truss, (b) I.L for force in member CE, (c) I.L for force in member DE,

(d) I.L for force in member DF

 PDE 
1

(10 20) (18.75) (0.6 1.1547)
2

= + ¥

   – 
1

2
(10) (6.25) (0.2 ¥ 1.1547)

  = 187.64 kN

The force in member DF can be determined by taking the moving load to 

occupy the entire span. The maximum compressive force is

 PDF = (10 + 20) 
1

2
 (25) (1.3857) 

 = 519.64 kN
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Example 7.20 
It is required to determine the maximum forces in 

members BC, CF and FG of the truss in Fig. 7.29 due 

to a live load of 25 kN/m longer than the span passing over the truss

Fig. 7.29  (a) Truss, (b) Truss cut by section 1–1, (c) I.L. diagram for force in member BC,

(d) I.L. diagram for force in member CF, (e) I.L. diagram for force in member FG

Infl uence Lines for Force in Member BC

To construct I.L. for force in member BC take section 1-1 and consider the 

equilibrium of the free body on the left of the section. Taking moments of all the 

forces to the left of section, about F we have

 PBC (3) = RA (AB) = MF

or PBC 
3

FM
=
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Therefore the I.L. for the force in member BC is obtained by drawing the I.L. 

for moment at F divided by a factor 3 as shown in Fig. 7.29c.

The maximum force in member BC occurs when the live load occupies the 

whole span.

\ PBC(max.) = 
1

2
 (20) (1.25) (25) = 312.5 kN.

I.L. for Force in Member CF

Again taking section 1–1, it is seen that the other two members BC and FG when 

extended meet at O, 10 m left of support A. The perpendicular distance from O 

to P on the member CF extended is

 OC sin a = 20 ¥ 
3

5.83
 = 10.29 m.

Force in member CF is given by taking moments about O of all the forces on 

the free body diagram on the right of the section.

Considering unit load rolling from A to B. force in member CF is

 PCF (10.29) = RE (30)

\ PCF = RE 
30

2.92
10.29

ER=

Therefore the I.L. diagram for force in member CF is same as the I.L. for RE, 

the ordinates of which are multiplied by 2.92. The I.L. diagram from A to B is a 

straight line having ordinates zero at A and 0.73 at B. 

Next consider the unit load anywhere between C and E. Considering the 

equilibrium of the free body on the left of the section, the force in member CF 

is given by

 PCF (10.29) = RA (10)

\ PCF = RA 
10

0.97
10.29

AR=

Again the I.L. for force in member CF is same as the I.L. for RA the ordinates 

of which are multiplied by 0.97. The I.L. diagram from E to C is a straight line 

having ordinates zero at E and 0.485 at C. The I.L. from B to C is a straight line 

as in a panelled beam since the loads are transmitted through the joints. The 

complete I.L. diagram is shown in Fig. 7.29d.

Maximum tension in member CF occurs when the L.L. is in the region E to Q

 PCF(max.) = 
1

2
 (0.485) (12) (25) 

  = 72.75 kN tension

Maximum compression in member CF occurs when the load occupies from 

A to Q.

 PCF (max.) = 
1

2
 (0.73) (8) (25) = 73.0 kN
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I.L. for Force in Member FG

From the equilibrium consideration of the free body diagram to the left of section 

1-1 it is seen that the force in member FG is obtained by the relationship

 PFG (^ distance CR) = MC (moment at C) 

Let q be the inclination of member FG to the horizontal

 tan q = 
3

11.31
15

q\ = ∞

perpendicular distance CR = OC sin q = 20 ¥ 0.196 = 3.92 m 

\ PFG = 
3.92

CM

The I.L. for force in member FG is obtained by drawing the I.L. for moment C 

and dividing the ordinates by 3.92. The I.L. diagram is shown in Fig. 7.29e.

Maximum force in member FG occurs when the L.L. is over the entire span.

 PFG(max.) = 
1

2
 (1.28) (20) (25) = 329 kN.m (comp.)

7.11  INFLUENCE LINES FOR THREE-HINGED ARCHES

Making use of the basic principles discussed so far, infl uence lines for three-

hinged arches, that are statically determinate may be constructed.

7.11.1 Infl uence Line for Horizontal Reaction H

Consider the three-hinged arch shown in Fig. 7.30a. Suppose it is required to 

construct the I.L. for horizontal reaction H, at the supports and the moment at 

a point D described by horizontal distance x from the left-hand support. Let a 

unit load be acting anywhere in the region A to C described by distance nL. The 

vertical reaction components are

 VA = (1 – n)

and VB = (n) (7.58)

To evaluate H, we take moments about hinge point C and equate it to zero. 

This gives

 ( ) ( ) 0 for 0
2 2

L L
n H h n- = £ £

or H = 
2

nL

h
 (7.59)

Similarly, if the unit load is in the region from C to B, we can evaluate H again 

by taking the moment about hinge point C and equating it to zero. This gives

 (1 – n) 
2

L
 – H(h) = 0 for 

2

L
 £ n £ L
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Fig. 7.30  (a) Three-hinged arch, (b) I.L diagram for horizontal reaction, H, (c) I.L. diagram 

for moment at D, (d) I.L. diagram for radial shear, (e) I.L diagram for normal thrust

or H = (1 – n)
2

L

h
 (7.60)

It is seen from Eqs. 7.59 and 7.60 that horizontal reaction H is directly related 

to the position of the unit load described by distance nL. The variation of H for a 

unit load moving from A to B is shown in Fig. 7.30b. This diagram, by defi nition, 

is the I.L. for horizontal reaction H. It is apparent that the value of H reaches a 

maximum when the unit load is at the crown and its value is L/4h.
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7.11.2 Infl uence Line Diagram for Moment

To draw the I.L. diagram for moment at any point D at distance x from left-

hand support A, it is convenient to express the moment by parts, that is the 

moment caused by applied loads as in a straight beam and the moment caused by 

horizontal reaction H. Thus,

 M = m – H ◊ yD (7.61)

Where m is the free bending moment and yD is the ordinate of the arch axis at 

section D.

Equation 7.61 is general and is true, for any section D desired.

The I.L. diagram for the moment at the section D is, therefore, drawn 

conveniently by combining the I.L. diagram for a simple beam moment Mf, and 

the I.L. diagram for horizontal reaction H, multiplied by ordinate yD. The two 

I.L. diagrams are superposed as shown in Fig. 7.30c. The resultant I.L. diagram 

is shown hatched. The common area left blank cancels out.

7.11.3 Infl uence Line Diagrams for Radial Shear and 

     Normal Thrust
The radial shear can be expressed as the algebraic sum of the shear caused by 

transverse loads and the shear caused by horizontal reaction H. Thus, the radial 

shear at any section D can be written as

 Vr(D) = VA cos 0 – H sin q (7.62)

following the sign convention for shear in beams. Here q is the inclination of the 

arch axis to the horizontal at section D. Hence the I.L. diagram for radial shear 

can be constructed in two parts representing the two terms in Eq. 7.62 and then 

superposed. The fi rst term actually represents shear in a simple beam multiplied 

by a constant, cos q. The I.L. diagram for this is, therefore, the same as the I.L. 

for the shear in a simple beam, but the ordinates are all multiplied by a constant, 

cos q. Similarly, the second term results in an I.L. the same as the I.L. for H, but 

the ordinates are all multiplied by a constant, sin q. The resultant I.L. diagram for 

radial shear is shown hatched in Fig. 7.30d The common blank area cancels out. 

The infl uence line diagram for normal thrust can also be drawn in two parts and 

then superposed. For example, the normal thrust at section D can be written as

 ND = VA sin q + H cos q (7.63)

Here q is the inclination of the arch axis to the horizontal at section D.

The resultant I.L. diagram for normal thrust is shown hatched in Fig. 7.30c. 

The plus sign indicates that the normal thrust is compression.

Infl uence lines drawn for three-hinged arches can be utilised to fi x up the 

position of moving loads for obtaining the maximum forces at any section of the 

arch. The example that follows illustrates the procedure.

Example 7.21 
A three-hinged parabolic arch has a span of 25 m with 

a central rise of 5 m. A load of 150 kN rolls over the 

arch from left to right. Find the maximum shear force and B.M. at a section 8 m 

from the left-hand hinge.
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A B

C

5 m

25 m8 m

(a) Three hinged archcos q
0.9615 0.6538

+

–
–

0.3460

0.3077

(b)   I.L.D. for shear at D

5.44 5.44

+ –

(b)   I.L.D. for moment at D

Fig. 7.31

Step 1: The infl uence line diagrams for shear force at a section 8 m from the left 

end is shown in Fig. 7.31b.

It is clear that the maximum –ve S.F. will occur when the load is to the left of 

section.

 –ve S.F., 
8 8

0.9615 0.3460 150
25 12.5

V
Ê ˆ= ¥ + ¥Á ˜Ë ¯

   = (0.3077 + 0.2214) 150

   = 79.37 kN

 Similarly, +ve S.F., 
17

0.9615 0.2214 150
25

V
Ê ˆ= ¥ -Á ˜Ë ¯

   = (0.6538 – 0.2214) 150

   = 64.86 kN.

Step 2: To fi x up I.L.D. for moment at section D

The I.L. diagram for the B.M. at a section 8 m from left end is shown in Fig. 

7.31c.

Maximum +ve B.M. occurs when the load is on the section. The maximum 

–ve B.M. will occur when the load is on the crown.

Step 3: To evaluate H

Ordinate at the section, y = 
4 5

(8) (17)
25 25

¥
¥

   = 4.352 m
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Taking moments about A

 VB (25) = 150 ¥ 8

 VB = 
150 8

48 kN.
25

¥

H is evaluated taking moments about C

 MC = VB (12.5) – H(5) = 0

 H = 
48 12.5

120 kN.
5

¥
=

Step 4: To evaluate maximum moments

Maximum +ve B.M. at the section

 Mmax = VA (8) – H y

  = 102(8) – 120 ¥ 4.352 

  = 293.76 kN.m

Maximum –ve B.M. when the load is on the crown is obtained as follows.

 VA = VB = 
150

75 kN.
2

=

H is evaluated taking moments about C

 MC = 75 ¥ 12.5 – H(5) = 0

 H 
75 12.5

187.5 kN.
5

¥
= =

 Maxm. –ve B.M. = VA (8) – H ¥ 4.352

  = 75 ¥ 8 – 187.5 ¥ 4.352 = –216.0 kN.m

Example 7.22 
A three-hinged circular arch has a span 50 m and a rise 

of 10 m. A load of 200 kN crosses the arch from one end 

to the other. Determine (i) the maximum horizontal thrust, and (ii) the maximum 

+ve and –ve B.M. at a section 15 m from left-hand hinge.

Step 1: To evaluate R and yd

Radius of the arch using the relation

 10 (2R – 10) = 25 ¥ 25 

 R = 36.25 m. 

At the section 15 m from left end yd is obtained from

 (36.25 – 10 + yd)
2 + 102 = 36.252 

 yd = 8.59

Step 2: To fi x up load position for maximum B.M.

From the I.L. diagram for B.M. at the required section (Fig. 7.32) the load is 

to be positioned on the section itself for obtaining maximum +ve B.M. Taking 

moments about A
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 VB (5) – 200 (15) = 0

 VB = 
200 15

50

¥
 = 60 kN

 VA = 200 – 60 = 140 kN

A B

C

15 m

25 m

10 m

(a) Three hinged  circular arch

+
–

(b)   I.L.D. for moment at D

25 m

D

200 kN

A B

10.5 10.74

Fig. 7.32

Horizontal thrust H is evaluated taking moments about C 

 MC = VB (25) – H. yC = 0

  = 60 ¥ 25 – H(10) = 0

\  H = 
60 25

10

¥
 = 150 kN

Moment under load

 MD = VB (35) – H . yD

  = 60 (35) – 150 (8.59)

  = 811.5 kN.m

We can also obtain the same value using the I.L.D. The +ve B.M. ordinate 

under load point

 

10.74
10.5 15 4.056 kN.m

25

Ê ˆ= - ¥ =Á ˜Ë ¯

Moment under load MD = 200 ¥ 4.056 = 811.2 kN.m

The maximum –ve B.M. will develop when the load is placed on the crown. 

Horizontal thrust H can be evaluated taking moments about C

 MC = VB (25) – H. yC = 0

  = 100 ¥ 25 – H(10) = 0

\ H = 250 kN. 
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Moment at the section

 MD = VA (15) – H(8.59)

  = 100 ¥ 15 – 250 ¥ 8.59

  = –648.0 kN.m.

We can also obtain the same value using the I.L. diagram. The –ve B.M. ordinate 

under load point

 

10.5
10.74 25 3.24 kN.m

35

Ê ˆ= - ¥ =Á ˜Ë ¯

Maximum –ve moment at the section = 3.24 ¥ 200 = 648.0 kN.m

Example 7.23 
A three-hinged parabolic arch has a span 40 m and a 

rise of 4 m (Fig. 7.33a). Using infl uence lines, determine 

maximum horizontal thrust H, and the moment at the quarter span point from the 

left hand support, when two loads 100 kN and 150 kN at 3 m centres move from 

left to right with the 100 kN load in the lead.

Step 1: To fi x up I.L.D for H and moment M

The I.L. diagram for horizontal thrust H is the same irrespective of section and is 

shown in Fig. 7.33b. From inspection it is seen that maximum horizontal thrust 

H occurs when the 150 kN load is on the central hinge and the 100 kN load is 3 

m to the right of the hinge. For this position of loading

 H(max) = 150(2.5) + 100(2.5)
17

20
 

  = 587.5 kN.

The infl uence line diagram for the moment at 1/4 span, that is, 10 m from the 

left-hand support, is shown in Fig. 7.33c. For convenience, the resultant infl uence 

line diagram is shown on a horizontal base in Fig. 7.33d.

Step 2: To fi x up load position for maximum B.M.

Let point E at which the I.L. ordinate is zero, be at a distance x from the left-hand 

support. From triangles ACC1 and AEE1, we have

 

7.5

20

e

x
=

Similarly, from triangles BDD1 and BEE1, we have

 

7.5

(40 ) 30

e

x
=

-

Eliminating e, we get

 x = 16 m

The maximum positive moment will occur when 150 kN is at the section itself 

and the 100 kN load is to the right of the section. Therefore,
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150 100 kN

3 m

D

C

3 m h = 4 m

A B

10 m

40 m

(a)

C

A B

40
= ––– = 2.5 kN

4 4¥
L

––
40

(b)

C
E

D

A
D1 E1 C1

B

x

+

7.5 e 7.5

3.75

+

–
10 m

16 m

2.5

(c)

(d)

–

Fig. 7.33  (a) Three-hinged arch and the moving toads, (b) I.L. for horizontal reaction H,

(c) I.L. for moment at section D, (d) I.L. for moment drawn on horizontal base

 M(max) = 150 ¥ 3.75 + 100(3.75) 
3

6
  = 750.0 kN.m

Similarly, the maximum negative moment will occur when 150 kN load is 

at hinge point C and the 100 kN load is to its right. For the loading position 

indicated

 M(max) = 150 ¥ 2.5 + 100(2.5) 
17

20

  = 587.5 kN.m
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7.11.4 Absolute Maximum Moment in a Three-Hinged

   Parabolic Arch

It is interesting to investigate the variation of the maximum moment along the 

arch as a unit load moves from one end to the other. Such information is useful 

in fi nding the absolute maximum moment as a uniformly distributed load longer 

than the span passes over an arch. Only the case of a parabolic arch will be 

considered. The equation for a parabolic arch, taking the origin at the left support 

is (Fig. 7.34a)

 Y = 4h

2

2

x x

L L

Ê ˆ
-Á ˜Ë ¯  (7.64)

The I.L. diagram for die moment at section D denoted by distance x from the 

left support is indicated in Fig. 7.34b. The ordinate

 
1

4

Ly
cc

h
=

where y is the ordinate of the arch axis at section D. 

Substituting for y from Eq. 7.64

 1 ( )
x

cc L x
L

= -  (7.65)

This is same as ordinate dd1.

The I.L. diagram indicates that the maximum positive moment occurs when the 

unit load is at the section itself. The positive moment is given by the ordinate

 dd2 = dd1 – d1d2

  
( ) ( )

/ 2

x L x x L x x

L L L

- -
= -

  
2

( )
( 2 )

x L x
L x

L

-
= -  (7.66)

Similarly, the maximum negative moment at the given section occurs when 

the unit load is at the central hinge. The magnitude of the moment is indicated 

by the ordinate

 cc2 = cc1 – c1 c2

  
( ) ( ) / 2

( )

x L x x L x L

L L L x

- -
= -

-

  
( 2 )

2

x L x

L

-
=  (7.67)

In order to obtain the absolute maximum positive moment anywhere along the 

arch, consider that the section D denoted by distance x is variable and therefore 

differentiate Eq. 7.66 with respect to x and equate to zero. This results in a 

quadratic equation which when solved gives two values for x that is x1 = 0.211L 

and x2 = 0.789L.
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D

B

C

A

E

X

Y

y h

X

L

(a)  Parabolic arch

D C
e

a b

d2

e1

c2

d1 c1
x

z

( – )
–––

X L X

L

L.y

h
––
4

(b)  I.L.D for moment at section D

(c)  Maxm.+Ve moment diagram

0.0962 L

L/16

L/4

0.0962 L

0.211 L 0.211 L

L/2 L/2

L/16

L/4

(d)  Maxm-Ve moment diagram

0.01883 WL2 0.01883 Wl2

0.234 L 0.234 L

(e)  Maxm. B.M.D for u.d.l

Fig. 7.34

Substituting for x = 0.211L in Eq. 7.66

Maximum moment = 0.0962 L
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Similarly, the section at which the absolute maximum negative moment will 

occur can be obtained by differentiating Eq. 7.67 with respect to x and equating 

to zero. This results in x = L/4.

Substituting for x = L/4 in Eq. 7.67 we get the maximum moment = L/16. The 

maximum positive and negative moment diagrams for all sections from A to B 

are shown in Figs. 7.34c and d respectively.

We can also utilise the I.L. diagram for the moment at any section to obtain 

the absolute maximum moment on the arch as a uniformly distributed load w/

unit length longer than the span crosses the arch.

It is obvious from the I.L. diagram (Fig. 7.34b) that the maximum positive 

moment will occur when a uniformly distributed load occupies the region from 

A to E and the maximum negative moment will occur when the distributed load 

occupies region E to B. Attention is drawn to the fact that the maximum positive 

or negative moments are numerically equal since the triangular areas ade and 

bce are same.

In the I.L. diagram, let the section of the zero ordinate be at distance z from 

support A. From similar triangles, we can write

  
1 1

1 1 / 2

ee ae z

cc ac L
= =

and  
1 1

1 1

( )

( )

ee be L z

dd bd L x

-
= =

-
 (7.68)

Since cc1 and dd1 are the same, we can write

  
( )

/ 2 ( )

z L z

L L x

-
=

-

or  z = 

2

(3 2 )

L

L x-

Substituting for cc1 and z in the fi rst of Eq. 7.68

  
1

2 ( )

(3 2 )

x L x
ee

L x

-
=

-
 (7.69)

Therefore, the area of triangle ade = area of triangle adb – area of triangle 

aeb

  
1 ( )( ) 1 2 ( )

2 2 (3 2 )

L x L x L x L x

L L x

- -
= -

-

  
( ) ( 2 )

2(3 2 )

x L x L x

L x

- -
=

-
 (7.70)

Therefore,

 Mx 
( ) ( 2 )

2(3 2 )

wx L x L x

L x

- -
=

-  (7.71)
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To obtain the absolute maximum positive moment anywhere on the arch, it 

is necessary to differentiate Eq. 7.71 with respect to x and equate it to zero. This 

gives

 x = 0.234 L

as an appropriate root of a cubic equation.

Substituting for x – 0.234 L Eq. 7.71, we get the absolute positive or negative 

moment = ± 0.01883 wL2.

The variation of the maximum positive or negative moment at any section 

from A to B is shown in Fig. 7.34e.

Example 7.24 
A three-hinged parabolic arch has span 20 m and rise 4 

m. A concentrated load of 150 kN rolls from left to right. 

Calculate the maximum +ve and –ve moments at a section 5 m from the left end 

support. Also calculate the absolute maximum B.M. that may occur anywhere in 

the arch.

150 kN

4 m

10 m10 m

D C

A B
5

Fig. 7.35

Step 1: To evaluate H for maximum +ve moment

Using the equation for parabola the rise of the arch at section D = 3 m. From a 

diagram of I.L. for moment at D (Fig. 7.34b) it is clear that maximum B.M. will 

occur when the load is at the section itself.

Reaction RB when the load is at the section is 

 RB = 
150 5

20

¥
 = 37.5 kN

Taking moments about the hinge at the crown 

 RB (10) = HB (4) 

\ HB  
37.5 10

4

¥
=  = 93.75 kN

 Moment MD = 37.5 ¥ 15 = 93.75 kN

  = 281.25 kN.m

Step 2: To evaluate H for maximum -ve moment

Again from the I.L. diagram it is seen that the maximum –ve moment will occur 

when the load is at the centre of the span.

 RA = RB = 75 kN. 
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Taking moments about the crown 

 H(4) = 75 ¥ 10

 H 
75 10

4

¥
= = 187.5 kN

Moment MD = 75 ¥ 5 – 187.5 ¥ 3 = –187.5 kN.m.

From the maximum +ve B.M. curves in Fig. 7.34c the absolute maximum +ve 

B.M. will occur at sections 0.211 l or 4.22 m from supports at either end and the 

magnitude of the absolute moment = 0.0962 l ¥ W

 = 0.0962 ¥ 20 ¥ 150 = 288.6 kN.m

Again from the maximum -ve moment curves in Fig. 7.33d the maximum –ve 

moment will occur at sections 0.25 l, i.e., 0.25 ¥ 20 = 5 m from the ends and the 

magnitude of the moment is 
20

150 187.5 kN.m.
16 16

l
w

- -
¥ = ¥ =

Example 7.25 
A three-hinged parabolic arch has a span 25 m and 

central rise 5 m as shown in Fig. 7.36. A u.d.l. of 

intensity 10 kN.m longer than the span rolls over the arch. Determine the 

maximum positive and negative moment at a section 7.5 m from the left end. Also 

fi nd out the section and the magnitude, of the absolute maximum moment that 

may occur anywhere on the arch.

10 kN/m

5 m

25 m

C

A B

Fig. 7.36

The maximum +ve or –ve B.M. curves as the u.d.l. longer than the span rolls 

over the arch span are shown in Fig. 7.34e. It is clear that the section at which the 

absolute maximum +ve or –ve B.M. will occur is located at 0.234 l i.e. 0.234 ¥ 

25 = 5.85 m from either end. The magnitude of the maximum B.M. = 0.0188 wl2 

i.e., = 0.0188 ¥ 10 ¥ 252 = 117.5 kN.m.

Maximum positive B.M. 

Let Mx(max) be the moment at the section.

Using the relation in Eqn. 7.71

 Mx(max) = 
( ) ( 2 )

2(3 2 )

Wx L x L x

L x

- -
-

Substituting x = 7.5 m

 Mx(max) = 
10 7.5 (25 7.5) (25 15)

2(3 25 15)

¥ - -
¥ -

 = 109.38 kN.m
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Maximum –ve moment

We know that the maximum –ve moment is equal to that of the maximum +ve 

B.M.

 Mmax = –109.38 kN.m

7.12  INFLUENCE LINES FROM DEFLECTED SHAPES

Infl uence lines for structural quantities can be developed from the defl ected shape 

of the structure. This method of constructing infl uence lines, as we shall see later, 

is particularly useful for continuous structures. This approach is mainly based on 

the Müller-Brcslau principle.

7.12.1 Müller-Breslau Principle

The Müller-Breslau principle states that if a reaction (or internal force) acts though 

an imposed displacement, the corresponding displaced shape (elastic curve) 

of the structure is, to some scale the infl uence line for the particular reaction 

(or internal force). The force and displacement, of course, can be replaced by 

moment and rotation respectively.

It must be pointed out here that the Müller-Breslau principle applies to the 

construction of infl uence lines for force quantities only.

Let us apply this principle to construct infl uence lines for a simple beam of 

Fig. 7.37a for which the infl uence lines were previously developed in Sec. 7.2. 

The Müller-Breslau principle will be applied to draw the I.L. for the support 

reaction at end A. Consider that a unit load is placed at C, an arbitrary point on 

the beam and the reaction at A is moved through a small displacement, DA. The 

displaced position of the beam is indicated by a dotted line (Fig. 7.37b). If the 

small displacement DA is assumed to be a virtual displacement, the virtual work 

done on the beam can be expressed as

 RA (DA) – (1) (DC) = 0

or RA 
(1)C

A

D
=

D  (7.72)

Because the magnitude of the imposed displacement DA is arbitrary, we can 

for convenience assume a value of unity. Then the displaced position represents 

to scale the infl uence line for reaction RA.

Let us now consider the Müller-Breslau principle to develop the I.L. for shear, 

say at section D.

Section D is located at a distance a from left-hand support A. A unit load 

is placed at C, an arbitrary point on the beam. The displacement to be given 

to the beam is the displacement in the direction of the force quantity under 

consideration, in this case, the shear force. The desired displacement can be 

given if a pinned-bar connection is introduction at section D. This pinned-bar 

connection is schematically shown in Fig. 7.37c. This connection facilitates the 
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required translation but prevents angular displacement between the two portions 

of the beam. The direction of displacement is same as the positive shear force. 

A

a

D
C

B

1

(a)

DA
DC

(b)

Pinned bar
connection

DD DC

(c)

(d)

MD MD

Pinned bar
connection

aD
DC

Fig. 7.37  (a) Beam, (b) I.L. for reaction RA (c) I.L. for shear at D, (d) I.L. for moment at D

The displaced beam diagram is shown in Fig. 7.37c. It may be noted that the two 

ends of the beam at section D must have the same slope representing continuity 

in transferring moment. With the displacements considered to be virtual, the 

virtual work equation is

  VD . DD – (1)(DC) = 0

or  VD 
(1)C

D

D
=

D
 (7.73)

As before, if DD is taken to be unity, the defected shape directly represents to 

scale the infl uence line for shear.

Infl uence line for the moment at section D can be obtained by inserting a 

pinned connection at the section under consideration and imposing rotations to 
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the ends by applying a couple. Thus, if a pinned connection is introduced at 

section D as shown in Fig. 7.37d and the beam is rotated through an angle aD at 

D by a couple MD, the virtual work expression can be written as

  MD (aD) – (1)(DC) = 0

or  MD 
(1)C

Da

D
=  (7.74)

The rotation displacement at D is in the same direction as the positive moment 

at D. Assuming virtual rotation aD equal to unity, we see that the I.L. for the 

moment at D is represented to scale by the defl ected shape. The equivalence of 

the values obtained by the defl ection method and the I.L. obtained in Fig. 7.12c 

can be verifi ed from the ordinates under the section. The ordinate under D can 

be written in terms of dD as (a/L) (L – a) aD. For aD = 1 the value is same as that 

obtained previously in Fig. 7.12c.

Member 2 contracted by D2

Support moves

Turn buckle

2

Fig. 7.38  I.L. for force in a struss member

We may also use the Muller-Breslau principle to sketch the I.L. for bar forces 

in trusses. Consider the truss of Fig. 7.27 shown again in Fig. 7.38. The I.L. for 

the force in member 2 is determined by giving a displacement D2 to the force in 

the member.

The desired displacement to the force in the member can be given by 

introducing a turn buckle connection somewhere on member 2. A consideration 

of the virtual work expression shows that for a unit displacement along member 

2, the defl ected shape of the bottom chord would represent to scale the I.L. for 

the force in member 2. A similar procedure can be followed for constructing 

infl uence lines for forces in other members. The reader may notice that the 

application of the Müller-Breslau principle to an ordinary truss is of no special 

advantage. However, infl uence lines can be constructed for a wide variety of 

structures such as space trusses, frames and continuous beams.

The use of defl ected shapes for constructing infl uence lines for some 

complicated structures is even more helpful. We shall illustrate the procedure by 

solving a numerical example.
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Example 7.26 
It is required to construct infl uence lines for reaction RA 

and RB and for shear and moment at sections 1 and 2 

for the balanced cantilever beam shown in Fig. 7.39a.

Applying the Müller-Breslau principle, we obtain the infl uence line for the 

reaction at A by allowing the reaction to displace by a unit distance

Fig. 7.39  (a) Balanced cantilever beam, (b) I.L. for reaction RA, (c) I.L for reaction RB,

(d) I.L. for shear at 1, (e) I.L. for moment at 1, (f) I.L. for shear at 2, (g) I.L. for moment at 2
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The resulting defl ection shape shown in Fig. 7.39b represents to scale the I.L. 

for the reaction at A. Proceeding in a similar manner, the I.L. for the reaction at B 

is constructed and is shown in Fig. 7.39c. The infl uence line for the shear at 1 is 

obtained by allowing positive shear at 1 to relatively displace a total of unity. The 

entire displacement is shown given to the right part of the section as the portion 

to the left of the section offers resistance to displacement. Again, it may be noted 

that the ends of the beam in the displaced position must ensure the same slope, 

that is, the right end must remain parallel to the stationary end at section 1. The 

displaced shape or the I.L. diagram is shown in 7.39d.

The infl uence line for the moment at section 1 is constructed by inserting a 

pin at 1 and imposing a unit rotation in the direction of positive moment. The 

part to the right of section 1 is like a link mechanism which can take all the 

rotation and no rotation need be imposed on the left part. The infl uence line 

for the moment at 1 is the same as the defl ected shape shown in Fig. 7.39e. 

Proceeding on similar principles, the infl uence lines for the shear and moment at 

section 2 are constructed. They are shown in Figs. 7.39f and g.

It may be noted that the defl ected shapes of statically determinate structures 

are composed of straight line segments and, hence, the values of the ordinates 

can be determined at any point on the beam from the lengths of the members.

Problems for Practice

7.1 For the beam shown Fig. 7.40 construct the infl uence line for shear just to the right 

of A, moment and shear at B and moment at C.

A B C

2 m 7 m3 m 3 m

Fig. 7.40

7.2 Construct infl uence lines for the moment at A and shear and moment at B for the 

beam shown in Fig. 7.41.

A
B C

2 m3 m

D E

2 m4 m

Fig. 7.41

7.3 Draw infl uence lines and calculate the maximum values for: (a) reaction at 1,

(b) shear at 2 and (c) moment at 2 for the beam shown in Fig. 7.42.

1 2 3 4 5 6

9 m 6 m 3 m4.5 m 7.5 m

Fig. 7.42
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7.4 For a unit load moving for A to C in Fig. 7.43 construct infl uence lines for reaction 

RA, moment at support B and shear just to the left of B.

4.5 m13.5 m

Joist @ 3 m c/c

A

B

C

Fig. 7.43

7.5 Draw the infl uence line for the moment at A of the structure shown in Fig. 7.44 as 

a unit load moves from B to C.

6 m

A

B
C

DE

Hinge

6 m 12 m

1
2
 m

Fig. 7.44

7.6 For a unit load moving from A to E on the truss shown in Fig. 7.45 construct infl u-

ence lines for members BC, CH and HJ.

A B C D E

G H J K

60°

60°

4 @ 4 m = 16 m

Fig. 7.45

7.7 For a unit load moving from 1 to 9 on the beam-truss structure shown in Fig. 7.46,

construct infl uence lines for reaction at 1, moment at 2, and for forces in members 5–6, 

5–12 and 11–12.

4 @ 4 m = 16 m

10 11 12

1
2

4 5 6 7 8

2.5 m

10 m 10 m

4 m

3
9

2.5 m

Fig. 7.46
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7.8 Determine the maximum shear and moment at C of beam AB shown in Fig. 7.47. 

The intensity of a uniformly distributed load is 25 kN/m extending over a length of 3 m.

12 m

3 m

A
C

4 m

25 kN/m

B

Fig. 7.47

7.9 Three wheel loads, 20, 80 and 80 kN, spaced 4 m apart from each other, with the 

20 kN load in the lead, pass over a simply supported beam of span 20 m. Determine the 

maximum shear and moment at a point 8 m from the left-hand support. Consider that the 

loading can move in either direction with the 20 kN load in the lead. 

7.10 The given load system crosses a overhanging beam shown in Fig. 7.48. Find the 

maximum values for the shear and moment at section B. Consider the movement of loads 

in either direction with the 100 kN load in the lead.

10 m 3 m

A
B C

D

10 m 10 m 3 m 3 m

100 50 50 50 kN

Fig. 7.48

7.11 Two wheel loads, 160 kN and 90 kN, spaced 4 m apart, are moving over a simply 

supported beam of 12 m span. Determine the maximum shear force and moment that may 

be developed anywhere on the beam.

7.12 Determine the maximum shear force and moment developed anywhere over the 

beam due to the three moving loads shown in Fig. 7.49 when passing over a simply sup-

ported beam.

11 m

80 160 180 kN

4 m 6 m

Fig. 7.49

7.13 Draw the I.L. for the forces in members CD, CH and GH of the truss shown in 

Fig. 7.50, and hence, determine the maximum forces in these members for a moving load 

of 40 kN/m uniformly distributed and longer than the span length and a dead load of 20 

kN/m, covering the entire span.
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A

B C D

E

F

G

H

4 @ 5 m = 20 m

4
 m

1
 m

Fig. 7.50

7.14 Determine the maximum shear force and moment at a section 30 m from the left-

hand support of a simply supported beam shown in Fig. 7.51. The loading system consists 

of four wheel loads followed by a distributed load of 15 kN/m extending over 10 m as 

shown. The load is reversible in direction.

10 m

80 150 120

5

75 m

30 m

100 kN

15 kN/m

A B
C

5 5

Fig. 7.51

7.15 Determine the maximum shear and moment developed at point C in the bridge 

girder shown in Fig. 7.52 by the truck loading indicated. What is the absolute maximum 

moment in the girder and where does it occur?

24 m

9 m

140 kN

C

4.5 m

A B

14035

4.5 m

Fig. 7.52

7.16 A three-hinged circular arch has a span of 40 m and a rise of 5 m. Two point loads 

160 kN and 80 kN spaced 5 m apart roll over the arch from left to right. Find the hori-

zontal thrust and B.M. at a section 12 m from left-hand support when the 80 kN load is 

on the section.



8.1  INTRODUCTION

In suspension bridges cables form an important structural component. A 

suspension bridge consists of two cables, one on either side of the roadway 

stretched over the span to be bridged. The cables which pass over supporting 

towers are anchored by back stays to a fi rm foundation. The deck loads are 

transmitted to the cables through closely spaced hangers.

Road

Anchorage

Supporting
tower

Dip

Main cable

Way

Back stay

Fig. 8.1(a)  Schematic diagram of a suspension bridge

The main cable may pass over the supporting tower over a frictionless pulley 

or over saddle supported on frictionless rollers giving freedom for horizontal 

movement. In the case of cable passing over a frictionless pulley the maximum 

tension Tmax in anchor cable is equal to the maximum tension Tmax in main cable. 

In the case of cable passing over a saddle on rollers the horizontal component 

of cable tension is same in main and anchor cables. A schematic diagram of 

a suspension bridge is shown in Fig. 8.1(a) and the anchoring of cable over 

supporting piers is shown in Fig. 8.1 (b)

It has been shown in section 2.4 that a cable under the given loading takes the 

shape of a funicular polygon which represents to some scale the B.M. diagram of 

a simple beam under the same loading. If the number of hangers is large the load 

transmitted to the cables can be approximated to a uniformly distributed load for 

which the cable assumes the shape of a parabola similar to a B.M. diagram of a 

simple beam under u.d.1.

Cables and 
Suspension Bridges

8
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T2

Main cable

T1

Pier

T T1 2=

(i) Friction less pulley

Pier

H2

q2

H1

q1

T2 T1

T2 T1

H1 = H2 T T1 2qcos = cos1 2q

(ii) Saddle on rollers

Anchor cable

Fig. 8.1(b)  Schematic diagram of a cable over piers

8.2  CABLES

8.2.1 Equation of the Cable

Let us now consider a cable subjected to a uniformly distributed loading. The 

loading determines the profi le of the cable. A cable of span 1 suspended from 

supports A and B at the same level is shown in Fig. 8.2. 

Let C be the lowest point of the cable and the sag of the cable at C be yC. 

Obviously the point C is located midway between supports A and B. The vertical 

reaction components at supports A and B are,

 2
A B

wl
V V= =

Horizontal reaction components HA = HB = H can be obtained by taking moments 

about C and setting MC = 0

 MC 0
2 2 4

A c

l l l
V w H y= - - =

  
2 2

0
4 8

c

wl wl
H y= - - =

\  H 
2

8 C

wl

y
=  (8.1)

In order to fi nd the shape of the cable, we write the equation for moment about 

a point P with coordinates x and y as shown in Fig. 8.2.

 MP 

2

( ) 0
2

A

wx
V x H y= - - ◊ =

or 

2 2

2 2 8 C

wl wx wl
x y

y
- =
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This gives 
2

4
( )Cy

y x l x
l

= -  (8.2)

This is a second order parabola. The defl ected shape of the cable under its own 

weight is not exactly a parabola but a catenary or a cosh function.

B

A

W/unit length

C
Px

HB

VA
VB

HA
y

yC

l

Fig. 8.2

However, in practice, the self weight of the cable is much smaller than the 

superimposed load and it is usually lumped together.

8.2.2 Horizontal Tension in the Cable

Considering again the cable in Fig. 8.2 subjected to a uniformly distributed 

load w/unit length, we can calculate horizontal tension in the cable H by taking 

moments about a point P as earlier. Hence,

 

2

0
2 2

P

wl wx
M x H y= - - =

The fi rst two terms in the above equation represent B.M. in a simply supported 

beam. The last term represents the moment caused by horizontal reaction H.

Therefore, MP = mP – H y = 0

or H = 
P

y

m
 (8.3)

For a point C the lowest point in the cable

 MC = mC – H yC = 0

 = 
2

0
8

C

wl
H y- =

\ H = 

2

8 C

wl

y
 (8.4)

From Eqn. 8.4 we see that the horizontal reaction H is inversely proportional 

to sag yC. Thus for a fl at cable structure, a large amount of horizontal reaction 

component is exerted on the supports. Further, when the cable is unusually 

fl at, the change in sag resulting from a change in its cable length must also be 

considered.
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The tension in the cable varies along its length. The maximum cable tension 

occurs at supports since H is constant all along and vertical reaction component 

VA or VB is maximum at the supports.

Thus  2 2 2 2orA A B BT V H T V H= + = +
is the design cable force for a cable with uniform section. 

Substituting for H and VA

 

1 1 12 2 22 22 22 2

max 2
1

2 8 2 8 2 16c c c

wl wl W W W l
T

y y y

È ˘ È ˘ È ˘Ê ˆÊ ˆ Ê ˆÊ ˆ Ê ˆÍ ˙ Í ˙= + = + = +Í ˙Á ˜ Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯Í ˙ Í ˙Ë ¯Ë ¯ Ë ¯Í ˙Î ˚Î ˚Î ˚

Example 8.1 
A suspension cable 140 m span and 14 m central dip 

carries a load of 1 kN/m. Calculate the maximum and 

minimum tension in the cable. Find the horizontal and vertical forces in each 

pier under the following conditions:

 (a) If the cable passes over a frictionless rollers on top of the piers

 (b) If the cable is fi rmly clamped to saddles carried on frictionless rollers on 

top of the piers.

In each case the back stay is inclined at 30° with the horizontal.

Using the relation 
2 1 140 140

175 kN
8 8 14c

l
H

y

w ¥ ¥
= = =

¥

Vertical reaction V = 
1 140

70 kN
2 2

lw ¥
= =

Maximum Tension 2 2
max 175 70 188.48 kNT = + =

Shape of the cable is a parabola, and the equation taking the origin at top of 

pier is

 ( )
2

4 cy
y x l x

l
= -

The slope of the cable = 
2

4 ( 2 )cydy
l x

dx l
= -

Slope of the cable at support 4 at 0cydy
x

dx l
= =

 
4 14

tan 0.40
140

q
¥

= =

              q = 21° 48¢
(a) Horizontal pull on the pier

 H = Tmax (cos 21° 48¢ – cos 30°)

 = 188.48 (0.9285 – 0.8660)

 H = 11.49 kN
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Vertical pressure on pier

 V = Tmax (sin 21° 48¢ + sin 30°)

 = 188.48 (0.3697 + 0.5000)

 V = 163.98 kN

 (b) In the case of saddle on rollers H1 = H2

or T1 cos 21° 48¢ = T2 cos 30°

  
1

2

cos 21 48

cos 30

T
T

∞ ¢
=

∞
    = 201.97 kN

  H1 = H2 = 175.0 kN

   Vertical pressure on pier = T1 sin 21° 48¢ + T2 sin 30°

    = 188.48 (0.3697) + 201.97 (0.50)

    = 170.73 kN

8.2.3 Tension in Cable Supported at Different Levels

Consider cable ACB stretched between two supports A and B at different levels 

and subjected to a uniformly distributed load as shown in Fig. 8.3. Let C be the 

lowest point on the cable at distance l1 and l2 from supports A and B respectively. 

As pointed out earlier, the horizontal component H of the tension in the cable is 

same everywhere as it is self-balancing in the absence of any horizontal loads. 

Taking moments about C, we can write

 

2 2
1 2(2 ) (2 )

and
8 8( )

A B

C C

w l w l
H H

y y d
= =

+

Equating HA = HB we get

 

2 2
1 2

2 2( )C C

wl wl
H

y y d
= =

+

or 
2
1

2
2

C

C

yl

y dl
=

+
 (8.5)

This relationship locates the lowest point C on the cable from support A or 

B.

Then we can write

 
2 2

1 2(2 ) (2 )

8 8( )C C

w l w l
H

y y d
= =

+
 (8.6)

The vertical rections VA or VB can be calculated by taking moment about B or 

A. Taking moment about B,
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B

A

W kN/m

C

HB

VA

VB

HA

YC

h

d

I1 I2

I

Fig. 8.3  Cable supported at ends at different levels

 VA (l) – 
2

l
wl  + H d = 0

\ 
2

A

wl d
V H

l
= -  (8.7)

Similarly, taking moment about A

 VB(l) – 
2

2

wl
 – H ◊ d = 0

\ 
2

B

wl d
V H

l
= +  (8.8)

Tension in the cable at A,

 
2 2

A A AT V H= +

And tension in the cable at B,

 2 2
B B BT V H= +

Example 8.2 
A foot bridge of width 3 m and span 50 m is carried by 

two cables of uniform section having a central dip of 5 

m. If the platform load is 5 kN/m2 calculate the maximum pull in the cables. Find 

the necessary section area required if the allowable stress is 120 N/mm2.

Total load on each cable   W = 
1

2
 (3) (5) (50)

                              = 375 kN

using the relation      

2

8 8C C

wl Wl
H

y y
= =

 H 
375 50

8 5

¥
=

¥
 = 468.75 kN

Vertical reaction   VA = VB 
375

187.5 kN.
2 2

W
= = =

Now using the relation Tmax 2 2V H= +
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 Tmax  2 2187.5 468.75= +

  = 504.86 kN.

Equating Tmax = f A

where f is the allowable stress and A is the area of cross section,

Area of cross section of cable, 

 
2max 504.86 1000

4207.17 mm
120

T
A

f

¥
= = =

Example 8.3 
A cable of uniform cross-sectional area is stretched 

between two supports 100 m apart with one end 4 m 

above the other as shown in Fig. 8.4. The cable is loaded with a uniformly 

distributed load of 10 kN/m and the sag of the cable measured from the higher 

end is 6 m. Find the horizotal tension in the cable. Also determine the maximum 

tension in the cable.

Span l = 100 m

 d = 4 m

and h = 6 m

We know 
1

2

l

l
 

1 1
2 26

1.732
2

C

C

y d

y

Ê ˆ+ Ê ˆ= = =Á ˜Á ˜ Ë ¯Ë ¯
\ l1 = 1.732 l2
Substituting in l1 + l2 = 100

 1.732 l2 + l2 = 100

 l2 = 
100

2.732
 = 36.6 m

\ l1 = 63.4 m 

Using the relation  H 

2
1

2( )C

wl

y d
=

+

 H 

210 63.4
335.0 kN

2 6

¥
= =

¥
Maximum tension in the cable

B

A

10 kN/m

VA

VB

I1 I2

6m

4m

100m

Fig. 8.4
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 VA 
2

wl Hd

l
= +

  
10 100 335 4

2 100

¥ ¥
= +  = 513.4 kN.

 Tmax 
2 2
AV H= +

  2 2513.4 335.0= +  = 613.0 kN.

8.2.4 Length of the Cable

(i) Cable Supports at the Same Level

Consider a cable ACB supported at A and B at the same level and carrying a u.d.l. 

as shown in Fig. 8.5.

S R

Q

C

y

x

A
B

I/2 I/2

Yc

P

P

Q
dy

ds

dx

Fig. 8.5

Let C be the lowest point on the cable. Taking C as the origin, consider a point 

P (x, y) on the cable. Draw a tangent to the cable at P meeting the horizontal line 

CS at R. From the geometry of the curve, we know

 CR = RS = 
2

x

A little consideration will show that the part CP of the cable is in equilibrium 

under the forces,

 (1) Horizontal pull, H

 (2) Downward load, w/unit length

 (3) Tension in the cable, T

Triangle PSR represents to some scale the triangular forces which are in 

equilibrium. We can write

 
PS RS RP

wx H T
= =

or 2

y x

wx H
=

\ 
2

2

wx
y

H
=  (8.9)

Consider now an elemental length of curve ds between two points P and Q. 

Taking the length of the arc PQ equal to the length of chord PQ as it is a fl at 

curve, we can write
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 ds 
2 2( ) ( )dx dy= +

     

2

1
dy

dx
dx

Ê ˆ= + Á ˜Ë ¯
 (8.10)

From Eqn. 8.9 we get 
dy wx

dx H
=  

Substituting for 
dy

dx
 in Eqn. 8.10

 ds 

2

1
wx

dx
H

Ê ˆ= + Á ˜Ë ¯  

If 
wx

H
 is a fraction, expanding by the binomial theorem, we can writ

 

1
22 2 2 2

2 2

1
1 1

2

w x w x

H H

Ê ˆ
+ = + +Á ˜Ë ¯

�

Neglecting higher powers of 
2 2

2

w x

H

Ê ˆ
Á ˜Ë ¯

 ds 
2 2

2
1

w x
dx

H

Ê ˆ
= +Á ˜Ë ¯

Integrating over a range x = 0 to x = l/2

 

1
2

0
dsÚ  

1
2

2 2

0 2
1

2

w x
dx

H

Ê ˆ
= +Á ˜Ë ¯

Ú

\ 
2

L
 

1
22 3

26

w x
x

H

È ˘
= +Í ˙

Î ˚

 

2 3

22 48

l w l

H
= +

Total length  L = 

2 3

224

w l
l

H

È ˘
+Í ˙

Î ˚

Substituting for H 

2

8 C

wl

y
=

 L 
2

8

3

Cy
l

l
= +  (8.11)
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(ii) Cable Supports at Different Levels

The length of a cable supported at different levels can be obtained by locating the 

lowest point C on the cable as earlier. Consider the cable supported at A and B at 

different levels having span length l as shown in Fig. 8.6.

C

A

BYc

I1 I2

d

h

Fig. 8.6

Then length of cable AC = 
1

2
 (the length of the cable having sag yC and span 

2l1) 

Similarly length of cable CB = 
1

2
 (the length of the cable having sag yC and 

span 2l2)

Total length of the cable AB = AC + CB 

 L  

22

1 2

1 2

1 8 1 8
2 2

2 3 2 2 3 2

cyh
l l

l l

Ê ˆÊ ˆ
= + + +Á ˜Á ˜Ë ¯ Ë ¯

 L 
22

1 2

1 2

4

3

cyh
l l

l l

Ê ˆ
= + + +Á ˜Ë ¯

\ L 
22

1 2

4

3

cyh
l

l l

Ê ˆ
= + +Á ˜Ë ¯

 (8.12)

8.2.5 Effect on Cable Due to Change of Temperature

Consider a cable stretched between two supports A and B at the same level having 

sag yC at the centre. When there is a rise in temperature, the length of the cable 

increases and so also the sag as the supports do not undergo any displacement. 

The change of the sag can be evaluated easily. Since the length of the cable,

 L 
2

8

3

cy
l

l
= +

 dL = 
16

3
c

yc
y

l
d

or dyc = 
3

16 c

l
L

y
d  (8.13)

If a is the coeffi cient of expansion and t°C is the rise in temperature, the 

length of the cable L changes to L1, where

 L1 = L + L a t = L (1 + a t)
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 change in length  = L1 – L = L a t

  

2
8

( )
3

cy
l t

l
a= +

  
2

8

3

cy
l t t

l
a a= +

Neglecting the second term which is small when compared with l a. t

 L = l a t 

Substituting in Eqn. 8.12

 yc 
3

( )
16 c

l
l t

y
a=

23

16 8 c

l
t

y
a=

Similarly a drop in temperature results in decrease in cable length L and hence 

the dip.

we know that the horizontal tension.

 H 

2

8 c

wl

y
=

or H 
1

cy
μ

and  
c

c

yH

H y

dd
= -

The minus sign indicates that when dip increases the horizontal tension H 

decreases.

The maximum tension induced in a cable can be calculated from 

2 2
maxT V H= +

If the dip is small V will be small when compared with H. 

We can write, Tmax = H. 

The stress in the cable,

 f maxT H

A A
= =

We know the value H varies inversely with yc

 f 
1 1

or
c c

H f
y y

μ μ μ

Again d f 2

c c

cc

y yf

f yy

d dd
μ - \ = -

The minus sign again indicates that with an increase in cable dip the stress in 

the cable decreases.
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Example 8.4 
A cable is suspended and loaded as shown in Fig. 8.7.

 (a) Compute the length of the cable.

 (b) Compute the horizontal component of tension H, in the cable.

 (c) Determine the magnitude and the position of maximum tension in the 

cable.

C

A

B

I1 I2

4.5 m

1.5 m

I = 24 m

7.5 kN/m

Fig. 8.7

 Let C be the lowest point on the cable 

  L be the length of the cable ACB 

  l1 be the horizontal distance from A to C 

  l2 be the horizontal distance from C to B

Then using the relation 

  

1 1
2 2

1

2

6

1.5

c

c

y dl

l y

Ê ˆ+ Ê ˆ= = Á ˜Á ˜ Ë ¯Ë ¯

\  
1

2

l

l
 = 2.

We know l1 + l2 = 24

 2l2 + l2 = 24.

 l2 = 8 m

and l1 = 16 m

Now using the Eqn. L = 

2 2

1 2

( )4 4

3 3

c cy d y
l

l l

+
+ +

  
2 24 (6) 4 (1.5)

24
3 16 3 8

= + +  = 27.38 m

Horizontal tension H 
2 2
1 7.5 16

160 kN.
2( ) 2 6c

wl

y d

¥
= = =

+ ¥
We know that the vertical reaction at A, the higher support, is

 VA 
2

wl H d

l
= =

7.5 24 160 4.5
120.0 kN.

2 24

¥ ¥
= + =
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Now using the relation          Tmax 
2 2

AH V= +

    
2 2160 120= +  = 200.0 kN.

Example 8.5 
If the central dip is limited to 1/12 span fi nd the 

maximum horizontal span which a steel wire of uniform 

cross section may have with the stress not exceeding 120 N/mm2. Take unit weight 

of steel = 78 kN/m3.

Let the cross-sectional area of wire = A m2 

 Length of cable 
2

8

3

cy
l

l
= +

8 1

3 12 12

l
l= + ¥

55

54
l=

Total weight of cable: 
55

78
54

l
A ¥  = 79.44 Al = W

Horizontal tension H 

2 3
12

8 8 8 2c c

wl W l W
W

y y
= = = ¥ =

We also know that the vertical reaction 
2

A B

W
V V= =

Substituting in the Eqn. 2 2
maxT V H= +

      

1
22

29
1.581 W

4 4

W
W

Ê ˆ
= + =Á ˜Ë ¯

Let f be the stress in the wire 

Then f. A = 1.581 W

 f. A = 1.581 ¥ 79.44 Al

Substituting for f = 120 ¥ 106 kN/m2, l 

6120 10
955.45 m

1.581 79.44

¥
= =

¥

Example 8.6 
A steel cable of 10 mm diameter is stretched across two 

poles 75 m apart. If the central dip is 1 m at a temperature 

of 15°C calculate the stress intensity in the cable. Also calculate the fall in 

temperature necessary to raise the stress to 70 N/mm2. Take unit weight of steel 

v = 78 kN/m3 and a = 12 ¥ 10–6 °C

Step 1: To fi nd the weight of cable W

Span of cable  l = 75 m

dip yc = 1 m

Weight of cable W = AL v
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in which  A = 78.54 ¥ 10–6 m2 

 L 

28
75

3 75

lÊ ˆ
= + ¥Á ˜Ë ¯

 = 75.04 m

and v = 78.0 kN/m3

\ W = 78.54 ¥ 10–6 ¥ 75.04 ¥ 78

  = 0.4597 kN.

Step 2: T evaluate H and T

We calculate

 H 
75

9.375
8 8c

W l
W W

y
= = ¥ =

 V 
2

W
=

 Tmax = 2 2 2 29.375 (1/ 2)H V W+ = +
  = 9.3883 W

Maximum stress f  2

6

9.3883 0.4597
kN/m

78.54 10-

¥
=

¥
 = 54.94 N/mm2

Step 3: To fi nd change in dip

Let t°C be the fall in temperature.

Change in dip d yc 
23

16 c

l
t

y
a=

  63 75 75
(12 10 )

16 1
t-¥

= ¥ ¥  = 12656 ¥ 10–6 t

we know 
c

c

yf

f y

dd
=

 

670.0 54.95 12656 10

54.95 (1)

t-- ¥Ê ˆ =Á ˜Ë ¯
\ t = 21.64°C

8.3  STIFFENING GIRDERS

We have seen that the cable takes the shape of a bending moment diagram in 

a simply supported beam under the given system of loads. When rolling loads 

pass across the bridge, the bending moment diagram changes with the position 

of loads and hence the profi le of the cable. The bridge deck suspended from 

such cables will swing up and down and will not be useful. In order to make the 

cable retain its parabolic shape throughout the passage of loads, it is necessary to 

transmit the moving loads to the suspension cable as uniformly distributed load. 
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This is achieved by providing stiffening girders on either side of the roadway. 

The girders may be of three-hinged or two-hinged and are suspended from the 

cables through hanger-cables. The roadway is then provided on the stiffening 

girder. 

The uniformly distributed dead load of the roadway and the stiffening girders 

is transmitted to the cables through hanger cables and is taken up entirely by 

the tension in the cables. The stiffening girders do not suffer any S.F. or B.M. 

under dead load as the girders are supported by closely spaced hanger cables 

throughout. Any live load on the bridge will be transmitted to the girders as 

point loads. The stiffening girders transmit the live load to the cable as uniformly 

distributed load. While doing so the stiffening girders will be subjected to S.F. 

and B.M. throughout their length.

8.4  THREE-HINGED STIFFENING GIRDER

A suspension bridge with three-hinged stiffening girder is shown in Fig. 8.8. The 

roadway is carried by two stiffening girders each hinged at the ends and at the 

centre of span.

A

x

Y

B

D

Ez

W

F

C

I/2 I/2
x

Road Way

We unit length/

yc

X

Fig. 8.8  Three-hinged stiffening girder

Dead Load As already mentioned, the weight of girders and the roadway is 

transmitted to the cables through the hanger cables and the load is entirely taken 

by the tension in the cable. The stiffening girder which is being held all along by 

the suspenders will not be susjected to any S.F. or B.M. at any section on account 

of uniformly distributed dead load.

Live Load Any rolling load that crosses the bridge will be transmitted to the 

cables through the girders and hanger cable as uniformly distributed load so 

that the cables will retain their parabolic shape while the girder will have to 

resist a certain amount of S.F. and B.M. due to rolling loads. Let us consider the 

following types of rolling loads.

8.4.1 Single Concentrated Load

Let us consider a concentrated load W moving from left to right as in Fig. 8.8. 

ACB is the suspension cable, and DEF is the three-hinged stiffening girder.
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At a particular instant let the load W be at a distance z from support D. Let us 

consider a section X at a distance x from A or D.

Cable Taking A as the origin the equation of the cable profi le may be written 

as

 y 
2

4
( )cy

x l x
l

= -

Let we be the equivalent u.d.l. on the cable. The vertical reaction at A or B, V 

= wel/2. The horizontal reaction component is given by,

 H 

2

8

e

c

w l

y
=

Maximum tension in the cable occur at A or B.

 Tmax = 
2 2V H+

Now, consider a point P(x, y) on the cable. Taking moments about P we can 

write

 MP 

2

( ) 0
2 2

e ew l w x
x H y= - - =

\ H y 

2

2 2

e ew lx w x
= -  (8.14)

Stiffening Girder Consider the loading on the girder. 

Vertical reaction at D,

Due to load W, VD 
( )W l z

l

-
=

Due to upward we,      VD 
2

eW l
=

Similarly vertical reaction at F,

due to W F

Wz
V

l
=

due to we 
2

e
F

W l
V =

B.M. at section X taking moment of all the forces to the left of section.

MX 
2

{ ( )} ( ) for
2 2

e e
D

w l w x
V x W x z x z x

Ï ¸Ô Ô= - - - - £Ì ˝
Ô ÔÓ ˛

 (8.15)

MX = 

2

( ) ( ) for
2 2

D e e

l x
V x w x w z x

Ï ¸Ô Ô- - ≥Ì ˝
Ô ÔÓ ˛

 (8.16)

The fi rst term in the above equations is evidently the equation for B.M. at 

section X in a simply supported beam subjected to loading W. The second term 

in both the equations is equal to Hy as in Eqn. 8.14
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\ Mx = mx – H y

in which

 mx = Moment due to W at section X in a simply supported beam.

 H = Horizontal tension in the cable

 y = Ordinate of the cable profi le at section X.

Evaluation of H in Terms of (W) We can evaluate H taking moments about 

hinge point at centre E of the girder.

 ME = mE – H yc = 0

\ H  E

cy

m
=

Writing down equation for moment,

 mE for 0
2 2 2

F

l Wz l Wz
V z x

l
= = = £ £

and mE  
( ) ( )

for
2 2 2

D

l W l z l W l z
V x z l

l

- -
= = = £ £  

Substituting for mE in Eqn. (8.16)

 H for 0
2 c

Wz
z x

y
= £ £  (8.17)

or H  
( )

for
2 c

W l z
x z l

y

-
= £ £  (8.18)

We can evaluate we by equating

 H 

2

for 0
8 2

e E

c c c

w l W z
z l

y y y

m
= = = £ £  (8.19)

\ we 2

4 Wz

l
=  (8. 20)

and we 
2

2

4 ( )
for

W l z
x z l

l

-
= £ £  (8.21)

8.4.2 Infl uence Line for H

The value of H varies with the position of the load. For the load position in the 

region D to E the variation of H is linear as in Eqn. 8.17 and again the variation 

of H is linear for the load position in the region E to F as in Eqn. 8.18. At z = l/2 

the value of

 H 
4 c

W l

y
=  (8.22)

It is seen that the value of H reaches maximum when the rolling load is at the 

centre. The I.L. diagram for H is shown in Fig. 8.9b.
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H
A

D

C

E

B

F

X

X

H

yc

(a) Cable and stiffening girder

A B
C

WI y/4 c

(b) I.L.D. for horizontal tension H

D

E

F
X G

G1X2

E1

E2

Wx

I
–– (I– )x X1

Wx

I
–– (I– )x

z

(c) I.L.D. for moment at section X

0.09621

0.2111

0.09621

0.2111

(d) Maximum. +ve moment diagram

1/16

l/4

1/16

l/4

(e) Maximum. –ve moment diagram

0.01883W.I2 0.01883W.I2

0.2341 0.2341

(f) Maximum moment diagram for u.d.l

Fig. 8.9

8.4.3 I.L. for B.M. at Section X

The moment expression for B.M. at section X is

 Mx = mx – H y
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It is clear that the moment Mx at section X consists of two terms, the fi rst 

term representing the simply supported beam moment, and the second term the 

moment caused due to horizontal tension H. Therefore the I.L.D. for moment at 

section X can be drawn by superimposing the I.L.D. for H◊y over the I.L.D. for mx 

The I.L. diagram is shown in Fig. 8.9c. The I.L. ordinate at section X for mx, XX1 

( )x l x
W

l

-
= . The I.L.D. for H◊y is a triangle with ordinate at the centre,

 E E1 4 c

W l
y

y
=

Substituting for y 
2

4
( )cy

x l x
l

= -

 E E1 2

4
( )

4

c

c

yW l
x l x

y l
= -

 E E1 ( )
x

W l x
l

= -  same as XX1

The net I.L. diagram is shown shaded in Fig. 8.9c. From the I.L. diagram it 

is clear that the maximum +ve B.M. at section X occurs when the load is on the 

section itself; the maximum –ve B.M. at section X occurs when the load is at the 

centre.

\ Maximum +ve B.M. ordinate X1 X2 = XX1 – XX2

or Mx (+ve) = 
( ) ( ) 2W x l x W x l x

x
l l l

- -
-

Simplifying

 Mx (+ve) = 
2

( )
( 2 )

W x l x
l x

l

-
-  (8.23)

Maximum –ve B.M. ordinate E1 E2 = E E1 – E E2

or Mx (–ve) 
( ) ( )

( ) 2

W x l x Wx l x l

l l l x

- -
= -

-
Simplifying

 Mx (–ve) 
( 2 )

2

W x l x

l

-
=  (8.24)

We can utilize the equations 8.23 and 8.24 for drawing the maximum +ve and 

–ve B.M. diagrams for different sections along the girder. The expression for 

maximum +ve B.M. (Eqn. 8.23) is a cubic parabola having zero ordinates at x = 

0, x = l/2 and x = l, the three hinge points. For obtaining the absolute maximum 

+ve B.M. anywhere on the girder, we differentiate Eqn. 8.23 with respect to x 

and equate it to zero.

 
xd M

d x
 = 6x2 – 6l x + l2 = 0

\ x 
2 2 3

l l
= ±
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That is, x = 0.211 l or 0.789 l (8.25)

Substituting the value for x in Eqn. 8.23 the absolute maximum B.M. Mmax 

(absolute) = 0.0962 Wl. The maximum +ve B.M. diagram is shown in Fig. 8.9d.

Similarly, the expression for maximum –ve moment at section (Eqn. 8.24) is 

a second degree parabola having ordinates zero, at the three hinge points. For 

obtaining the section at which the absolute maximum –ve B.M. will occur, we 

differentiate Eqn. 8.24 w.r.t. x and equate it to zero.

 
xd M

d x
 = (l – 2x) – 2 x = 0

\ x 
4

l
=

Substituting for x in Eqn. 8.24 the absolute maximum –ve B.M.

 Mmaxm. (absolute) 
16

Wl
=  (8.26)

The maximum –ve B.M. diagram is shown in Fig. 8.9e.

The reader may notice the identity of equations in a three-hinged arch and the 

equations 8.23 and 8.24 in a three-hinged stiffening girder.

8.4.4 Maximum B.M. Under U.D.L. Longer than Span

We can also utilise the I.L. diagram for B.M. (Fig. 8.9) at any section X to obtain 

the absolute maximum B.M. anywhere on the girder as a u.d.l. w/unit length 

longer than the span crosses the girder.

It is obvious from th I.L. diagram (Fig. 8.9) that the maximum +ve moment 

will occur when a u.d.l. occupies from D to G and the maximum –ve moment 

will occur when the distributed load occupies from G to F. Attention is drawn 

to the fact that the maxm. +ve or –ve moments are numerically equal since the 

triangular areas DX1G1 and FE1G1 are same.

In the I.L. diagram, let the section of zero ordinate be at a distance z from D. 

From similar triangles we can write.

 1

1

G G

E E 2

.

. l

D G z

D E
= =  (8.27)

and 
1

1

G G

X X

( )

( )

F G l z

F X l x

-
= =

-
since EE1 = XX1

  
2

l

z ( )

( )

l z

l x

-
=

-

solving z 
2

(3 2 )

l

l x
=

-
 (8.28)
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Substituting for E E1 = 
x

l
 (l – x) and z = 

2

(3 2 )

l

l x-  in Eqn. 8.27

 G G1 = 
2 ( )

(3 2 )

x l x

l x

-
-

\ The area of the triangle D X1G1 = 

 (Area of the triangle DX1F) – (Area of triangle D G1 F)

 

1 ( ) 1 2 ( )

2 2 (3 2 )

l x l x x l x
l

l l x

- -
= -

-

Area of the triangle DX1 G1 
( ) ( 2 )

2(3 2 )

x l x l x

l x

- -
=

-
 (8.29)

Therefore Mx maxm. 
( ) ( 2 )

2(3 2 )

x l x l x
w

l x

- -
=

-
 (8.30)

To obtain the absolute maximum +ve or –ve moment any where on the girder 

we differentiate Eqn. 8.30 with respect to x and equate it to zero. This gives

 x = 0.234 l

as the appropriate root of a cubic equation. 

Substituting for x = 0.234 l in Eqn. 8.24

 M±maxm. (absolute) = ± 0.01883 wl2 (8.31)

The maximum +ve or +ve moment diagram is shown in Fig. 8.9 for the girder 

from D to F.

8.5  INFLUENCE LINES FOR STIFFENING GIRDER

8.5.1 Infl uence Line for Shear Force

Consider a three-hinged stiffening girder as a rolling load moves from left to 

right. When the load W is in the region D to X, shear force at a section X distance 

x from D is –ve and is

 Vx for 0
2

e
F e

w l
V w x z x= - + - £ £

  
2

e
e

w lW z
w x

l
= - + -

  ( 2 )
2

ewW z
l x

l
= - + -  (8.32)

When the load is in the region X to F the shear force at section X is positive 

and is
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 Vx for
2

e
D e

w l
V w x x z l= - + £ £

  
( )

( 2 )
2

ewW l z
l x

l

-
= - -  (8.33)

The S.F. at section X as denoted by Eqns. 8.32 and 8.33 is in two parts; the fi rst 

part is similar to S.F. in a simply supported beam under load W and the second 

part represents shear due to we the equivalent u.d.l. on the cable and the girder. It 

can be shown that the second part is same as H tan q, the vertical component of 

cable tension T at section X. We know

 y 
2

4 ( )cy
x l x

l
= -

and tan q = 2

4
(1 2 )cydy

x
dx l

= -

\ H tan q 

2

2

4
( 2 ) ( 2 )

8 2

e c e

c

w l y w
l x l x

y l
= - = -

Therefore S.F. at section X can be written as

 Vx = – (vx + H tan q)  for 0 £ z £ x (8.34)

or Vx = vx – H tan q  for x £ z £ l (8.35)

A

D Xz
x

W

w unit lengthe/

Fig. 8.10

W

D

F

EX W

X1

X2

X3

–2x
W(––––)

l

l

Fig. 8.11  I.L diagram for S.F. at section X

The I.L. diagram for shear force at section X is shown in Fig. 8.11 Since vx and 

H tan q are additive in the region 0 £ z £ x, the I.L. diagrams for the two terms 

are shown on either side of base line DF.
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From the I.L. diagram we fi nd that the maximum –ve S.F. occurs when the 

load W is just to the left of section X. The ordinate X1 X2 represents the maximum 

–ve S.F. That is,

 Vx maxm. 
2

( 2 )ewW x x
l x

l l l

Ï ¸
= - + -Ì ˝

Ó ˛

  

2

2
2 4e

e

w xW x x
w

l l l

Ï ¸Ô Ô= - + -Ì ˝
Ô ÔÓ ˛

The I.L. diagram for maximum –ve S.F. at different sections 

3 5 3 7
( 0, , , , , , , , and )

8 4 8 2 8 4 8

l l l
x l l l l l=  is shown in Fig. 8.12.

0

1

1

1

1/2 1/2

1/21/2

1/2

1/2
5/16

9/16

7/16

11/16

11/16 1/4 3/8 1/2 5/8
9/16

3/4

7/16

7/8

5/16

Fig. 8.12

Similarly we notice that the maximum +ve S.F. will occur when the load W 

is just to the right of section X. The ordinate X2X3 represents the maximum +ve 

S.F. It may be noted that at any section the combined value of maximum –ve and 

+ve S F. is equal to W.

8.5.2 Uniformly Distributed Load Longer than Span

The I.L. diagram for S.F. at any section X can be utilised to determine the 

maximum –ve and +ve S.F. as a u.d.l. longer than the girder span passes over 

the bridge. The I.L. diagrams for shear force at sections x = 0, x = 
4

l
 and x = 

2

l
 

are shown in Fig. 8.13 a, b and c respectively At section x = 0, considering the 

triangle DEE1 we can write

 

1

1

G G

E E 2
l

D G Z

D E
= =

Again from the D FDD1

 

1

1

G G

D D

l z

l

-
=

Since E E1 and DD1 are each unity we can write

 2
l

z l z

l

-
=

Solving, 
3

l
z =
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It is clear from Fig. 8.13a the maximum +ve S.F. will develop when the 

uniformly distributed load w/unit length occupies region D to G and maximum 

–ve S.F. will develop when the u.d.l. occupies the region G to F. The maximum 

+ve S.F. is numerically equal to maximum –ve S.F. as the areas of the triangles 

DD1G and FE1G1 are same. Therefore, the

 maxm. +ve or –ve S.F. is Vmax 

1
(1)

2 3 6

l wl
w

Ê ˆ= =Á ˜Ë ¯
 (8.36)

D
z G E

F

E1

G1

(a)

D F

E1

X1

X2

X3

1/2

1

1

X

(b)

(c)

D

1

1/2

E
1/2

F

1

Fig. 8.13  (a) I.L.D for S.F. at section X = 0 (b) I.L.D for S.F. at section x = l/4

(c) I.L.D for S.F. at section X = 1/2

At section x = l/4 the maximum –ve S.F. will develop when the u.d.l. occupies 

the region D to X and the maximum +ve S.F. will develop when the u.d.l. occupies 

the region X to E. The maximum +ve and –ve S.F. are numerically equal as the 

areas of triangles DX1X2 and X2X3E1, are same. Therefore the maximum +ve or 

–ve S.F. is

 Vmax 
1 1

2 4 2 16

l wl
w

Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯
 (8.37)

At section x = l/2 the maximum –ve S.F. will occur when the u.d.l. occupies the 

region D to E and the maximum +ve S.F. will develop when the u.d.l. occupies 

the region E to F. It is obvious from the diagram Fig. 8.13c that the maximum 

–ve or +ve S.F. is

 Vmax 

1 1

2 2 2 8

l wl
w

Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯
 (8.38)
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Example 8.7 
The cables of a suspension bridge have a span of 40 m 

and a dip of 5 m. Each cable is stiffened by a girder 

hinged at the ends and at mid span to enable the cable to maintain its parabolic 

shape. There is a uniform dead load of 10 kN/m over the whole of the span and 

in addition a live load of 30 kN/m over 10 m length. Determine the maximum 

cable tension when the head of the live load is on the central hinge. Calculate the 

maximum S.F. and B.M. at a section 10 m from the left end when the live load 

rolls over.

Step 1: To fi nd H due to DL and L.L.

Horizontal tension on the cable due to D.L.

 

2 10 40 40
400 kN

8 8 5
l

c

wl
H

y

¥ ¥
= = =

¥
Horizontal tension on the cable due to L.L.

 
2

c

c

H
y

m
=

mc is the moment in a simply supported beam at C due to the given live load 

position

 mc = VF (20)

or mc 
30 10 15

(20)
40

¥ ¥
=

\ mc = 2250 kN.m

Substituting in the above eqn.

 2

2250
450 kN

5
H = =

Step 2: To determine VA and VB due to D.L and L.L

Vertical reaction VA due to D.L.

 
1

10 40
200 kN

2 2
A

wl
V

¥
= = =

If we is the u.d.l. on the cable due to L.L.

 

2

2
8

e

c

w l
H

y
=

Substituting for H2

 

450 8 5
11.25 kN/m

40 40
w

¥ ¥
= =

¥

Vertical reaction due to L.L

 
2

11.25 40
225 kN

2 2

e
A

w l
V

¥
= = =
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Step 3: To evaluate total VA and H

Total vertical reaction VA

 VA = VA1 + VA2 = 200 + 225 = 425 kN 

Total H = H1 + H2 = 400 + 450 = 850 kN

 Tmax = 2 2
AV H+

or Tmax = 2 2425 850+

 Tmax = 950.3 kN

Step 4: To fi nd maximum S.F.

The I.L. diagram for S.F. at a section 10 from the left end is shown in Fig. 8.14a. 

Maxm. –ve S.F. will occur when the load occupies from d to x. Similarly maxm. 

+ve S.F. will occur when the load occupies the region x to e. The maxm. –ve or 

+ve S.F.

 VX = ± 
1

2
 (0.5) (10) 30 = 75.0 kN

z

g

e1

g1

(a)

d
f

x1

x2

x3

1/2

1

1

x e

10 m 10 m

3.75 2.5

6.25

1.67
3.75

8.33

e2

e1

ex

x2

x1

(b)

+

–

–
+

Fig. 8.14  (a) I.LD. for S.F. at a section 10 m from end D (b) I.LD for B.M. at

a section 10 m from end D

Step 5: To fi nd maximum moment

The I.L. diagram for moment at section 10 m from the left end is shown in Fig. 

8.14b.

The distance z from end d at which the I.L. ordinate is zero is determined 

using similar triangles.

 
2 1

1
21 1

l

l

zeeZ
gg

gg ee
= \ =

Again 1
1

1 1

( )

1

l z xxl z l x
gg

gg xx x

-- -
= \ =

-
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Substituting for ee1 = xx1 = 
10 30

7.5
40

¥
=

 
7.5 (40 ) (7.5)

20 30

z z-
=

 z = 16 m

The position of load for getting maxm. B.M. is shown.

The head of the load is 3.75 m to the right of section and the tail end 6.25 m 

to the left of section.

For that position of the load, the maxm. +ve B.M.

 Mmax. = 
1

2
 (3.75 + 1.41) (3.75 + 6.25) (30)

  = 774.0 kN.m

Similarly the position of load for obtaining the maxm. –ve B.M. is shown in 

Fig. 8.14b. The head of the load is 8.33 m to the right of centre of girder and the 

tail end is 1.67 m to the left of centre of girder. For the loading position indicated 

the maxim, -ve B.M.,

 Mmax = 
1

2
 (2.5 + 1.46) (8.33 + 1.67) (30) 

  = 594.0 kN.m

Example 8.8 
A suspension cable with 50 m span and 4 m dip is 

stiffened by a three-hinged girder. The dead load of the 

girder and the deck is 7.5 kN/m. Find S.F. and B.M. in the girder at a section 10 

m from left hand hinge when a concentrated load of 100 kN is placed at 8 m from 

the left end. Find the maximum tension in the cable. 

Step 1: To fi nd H in cable due to D.L and L.L.

Let us consider fi rst the cable.

Due to D.L H = 
2 7.5 50 50

585.94 kN
8 8 4c

wl

y

¥ ¥
= =

¥

 VA 
7.5 50

187.5 kN
2 2

wl ¥
= = =

Due to cone, load W = 100 kN, the value of H can be obtained from knowing the 

value of w on the cable.

Taking moments about the section 10 m from support A

 Mx 
2(10)

(10) 0
2 2

ew l w
H y= - - =

\ H y 
50

(10) 50
2

w w= -

 H y = 200w 



Cables and Suspension Bridges  263

 y = 2.56 m at the section 10 m from A

We know from Eqn. 8.20 we 2

4 4 100 8
1.28 kN/m

50 50

w z

l

¥ ¥
= = =

¥

\ H 
200 1.28

100 kN
2.56

¥
= =

Step 2: To fi nd T

Vertical reaction due to 100 kN load 
1.28 50

32 kN
2 2

wl ¥
= = =

Total horizontal pull H due to dead and live load

  = 584.94 + 100 = 685.94 kN

 Total VA = 187.5 + 32 = 219.5 kN.

 T = 2 2685.94 219.5+
or T = 720.26 kN

Now consider the girder.

Uniformly distributed dead load does not cause any shear or moment on the 

girder.

Step 3: To fi nd maximum tension in cable

S.F. at section X, using Eqn. 8.34

 Vx = – (vx + H tan q)

  
100(8)

100 (0.192)
50

Ï ¸= - +Ì ˝
Ó ˛

  = – (16 + 19.2) = –35.2 kN

B.M. at section X,

 Mx = mx – Hy 

where y is the dip of the cable above the section

\ Mx 
100(8)

(40) 100 2.56
50

= - ¥

or Mx = 640 – 256 = 384 kN.m

Example 8.9 
The towers of a 150 m span suspension bridge are of 

unequal height. One tower is 18 m and the other 6 m 

above the lowest point of the cable which is immediately above the inner hinge 

of a three-hinged stiffening girder (Fig. 8.15). Find the maximum tension in the 

cable due to a point load W rolling over the bridge.

Step 1: Location of lowest point in the cable

First let us locate the position of lowest point C on the cable. Let it be at distance 

l1 from end A and l2 from end B.
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Then 
1

2

l

l

218

6

l

Ê ˆ= Á ˜Ë ¯

or 1

2

l

l
 = 1.732

       l1 = 1.732 l2.

We know l1 + l2 = 150

 1.732 l2 + l2 = 150

 l2 = 
150

2.732
 = 54.90

and l1 = 95.10 m

Step 2: To fi nd H and w

Taking moments about C of all the forces to the right of C

 MC = mc – H◊y – 
150

H d
 (54.9) = 0

The last term in the above equation is due to the towers being at different 

levels.

\ Mc 
(54.9) (95.1) (12) (54.9)

(6) 0
150 150

W H H= - - =

  = 34.81 W – 10.39 H = 0 

\ H = 3.35 W

we know H 

2
2

2 c

wl

y
=

H
A

z

W

B
H

I2I1

C6

12 m

Fig. 8.15

\  w 2 2
2

2 3.35 6
2 0.0133

54.9

cH y W
W

l

¥
= = ¥ =

Step 3: To fi nd Tmax

Vertical reaction at end A of the cable is obtained by taking moments about C

 VA (95.1) – 3.35 W (18) – 0.0133 
2(95.1)

0
2

W =
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\ VA = 1.266 W

 Tmaxm. = 2 2
AH V+

  = 
2 23.35 1.266W +

  = 3.58 W.

Example 8.10 
A suspension bridge with a three-hinged stiffening 

girder has a span of 100 m, a cenral dip of cable 8 m 

and weighs 2500 kN. It has to carry a live load of 50 kN/m. Calculate the sectional 

area of cables required and the sectional modulus for each girder if the permissible 

stress is 120 N/mm2. The live load may cover all or any part of the span. 

Step 1: To fi nd H and V due to D.L. and L.L.

Horizontal pull H due to D.L.

 Hl 
2500 100

3906 kN.
8 8 8c

W l

y

¥
= = =

¥
Vertical reaction VA due to D.L.

 VA1 
2500

2
=  = 1250 kN. 

Horizontal pull H due to L.L.

 H2 
50 100 100

7813 kN.
8 8

¥ ¥
= =

¥

Vertical reaction VA due to L.L.

 VA2 
50 100

2500
2

¥
= =

Combined horizontal pull on each cable,

 H = 
1

2
 (H1 + H2) = 

1

2
 (3906 + 7813) = 5860 kN.

and vertical reaction V = 
1

2
 (1250 + 2500) = 1875 kN

Step 2: To fi nd Tmax

 Tmax = 2 2H V+

  2 25860 1875= +
  = 6153 kN

Step 3: To fi nd area of cross section

We know f. A = T

\ A = 
26153 1000

51275 mm
120

¥
=
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Step 4: To fi nd modulus of section for girder

Under D.L. the stiffening girder suffers no S.F. or B.M.

Maxm. +ve or –ve B.M. occurs at section 0.234l from either end when the 

load occupies from D to G or from G to F as the case may be and is equal to 

0.01883 wl2.

\ Mmaxm. = ± 0.01883 ¥ 
50

2
 (100)2 on each girder

  = ± 4708 kN.m 

Modulus of section required = 
maxM

f

 

6
6 34708 10

39.23 10 mm
120

¥
= = ¥

Example 8.11 
A suspension bridge of 100 m span has two three-hinged 

stiffening girders supported by two cables having 

central dip 10 m. The width of the road way is 8m. The roadway carries a dead 

load of 1 kN /m2 extending over the whole span and a live load of 2 kN/m2 

extending over the left half of the bridge. Find B.M. and S.F. at a section 25 m 

and 80 m from the left hinge. Also calculate the maximum tension in the cable 

(see Fig. 8.16)

Step 1: To evaluate H due to D.L. and L.L.

Let us consider fi rst the cable. The horizontal tension in the cable is caused by 

dead and live loads.

 D.L. wd = 4 ¥ 1 = 4 kN/m

 L.L. wl = 4 ¥ 2 = 8 kN/m

Horizontal tension on the cable due to D.L.

 H1 = 

2
4 100 100

500 kN
8 8 10

d

c

l

y

w ¥ ¥
= =

¥

Horizontal tension on the cable due to L.L.

 
2

c

c

H
y

m
=

mc is the moment in simply supported beam at C due to the given L.L. position

 
2

8 50
50 25 500 kN

100 10
H = ¥ ¥ ¥ =

Step 2: To evaluate Tmax

Vertical reaction VA dut to D.L.

 VA1 = 
4 100

200 kN
2 2

d lw ◊ ¥
= =
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0.96

0.8

0.2

16.0 16.0
9.66.0

0.75

0.25

100m
18.75 18.75

F

8m
C

wd

wl

B

E

A

D

80
50

(a) Cable and stiffness girder

(b) I.L.D. for moment
at section 25 m from A

(c) I.L.D. for shear
at section 25 m from A

(e) I.L.D. for shear
at section 80 m from A

(d) I.L.D. for moment
at section 80 m from A

Fig. 8.16

If we is the u.d.l on the cable due to L.L.

 

2

2
8

e

c

l
H

y

w ◊
=

or we 
500 8 10

4 kN/m
100 100

¥ ¥
= =

¥

Hence,  
2

4 100
200 kN

2 2

e
A

l
V

w ¥
= = =

Total H = H1 + H2 = 500 + 500 = 1000 kN.

 VA = VA1 + VA2 = 200 + 200 = 400 kN

Maximum tension  2 2 2 2
max 1000 400 1077 kNAT H V= + = + =
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Step 3: To evaluate moment due to D.L and L.L.

Now consider the girder:

The uniformly distributed dead load does not cause any shear or moment on 

the girder. The I.L. diagrams for moment and shear for a-section at 25 m from 

end A is shown in Fig. 8.16b and c.

The distance z = 

2 100 100
40 m

3 2 3 100 50

l

l x

¥
= =

- ¥ -

Value of +ve ordinate at the section = 18.75 – 
18.75

25
50

¥  = 9.375

Value of –ve ordinate at the section = – 18.75 + 
18.75

50 6.25
75

¥ = -

The moment due to D.L. wd = 0 as the +ve and –ve moment areas are always 

equal

Moment due to L.L. 
1 1

8 (40) (9.375) (6.25)(10) 1250 kN.m
2 2

Ï ¸= - =Ì ˝
Ó ˛

Shear force due to D.L. = 0 as the +ve and –ve areas are equal.

Shear force due to L.L. is also equal to zero since the load is on the left half 

of the span 

Now consider the section 80 m from end A.

The I.L. Diagrams for moment and shear are shown in Fig. 8.16d and e.

Net +ve moment ordinate 
16 20

16 9.6 kN.m
50

¥
= - =

–ve moment ordinate 
16

16 50 6.0 kNm
80

= - + ¥ = -

Moment due to D.L. = 0 as earlier

Moment due to L.L. = 
1

(50) ( 6)(8) 1200 kN.m.
2

- = -

Step 4: To evaluate S.F. 

Shear force (–ve) due to D.L. 

  
1 1 1

4 ( 0.96) (100) (80) ( 0.8) (20((0.2)
2 2 2

Ï ¸= - + - +Ì ˝
Ó ˛

  = 4(–48.0 – 32.0 + 20) = – 312.0 kN

Shear force (+ve) due to L.L. 

  
1

8 ( 0.96 0.5) (50)
2

Ï ¸= - -Ì ˝
Ó ˛

  
( 1.46)

8 (50) 292 kN
2

-Ï ¸= = -Ì ˝
Ó ˛

Total –ve shear force = –312 – 292 = –604 kN



Cables and Suspension Bridges  269

8.6  TWO-HINGED STIFFENING GIRDER

As already mentioned, stiffening girders can be two-hinged, having hinges at the 

ends only and no hinge at the centre. Such a structure is statically indeterminate 

and the forces in cable and stiffening girder may be obtained approximately 

using energy methods. However, if the girder is assumed to be rigid and the load, 

irrespective of its position, is transmitted as a u.d.l. to to the cable, the forces in 

the girder and cable may be worked out as under.

Consider a single rolling load W at a distance z from D as in Fig. 8.17a. The 

load is assumed to be transmitted to the cable as a u.d.l. irrespective of the load 

position, we have

 W = we l (8.39)

where we is the equivalent u.d.l. per unit length. The horizontal pull H is given 

by

 
2

8 8

e

c c

w l W l
H

y y
= =  (8.40)

It is thus obvious that the magnitude of horizontal pull will be constant and 

independent of load position.

8.6.1 Infl uence Lines for a Single Concentrated Load 

  Rolling Over the Girder

The dead load of the girder and the roadway, as in a three-hinged girder, is 

transmitted to the cable by hangers as a u.d.l. The cable takes up the u.d.l. entirely 

by tension in the cable. The girder suffers no S.F. or B.M. under dead loads.

The live load is assumed to be transmitted as a u.d.l. by the hangers to the 

cables. Consider a suspension bridge of span l and a central dip yc with a two-

hinged stiffening girder as in Fig. 8.17. We shall draw the I.L. diagrams for 

horizontal pull H, shear force V and bending moment M.

I.L. Diagram for Horizontal Pull H

We have already seen that the equivalent u.d.l., we, irrespective of load position, 

is we = 
W

l

We know that in a cable subjected to a u.d.l. we /unit length, the horizontal 

pull is given by

 

2

8 8

e

c c

w l W l
H

y y
= =  (8.41)

We see, from the above equation, that the magnitude of horizontal pull H is 

constant and is independent of load position. Therefore, the I.L. for H is a straight 

line with constant ordinate as shown in Fig. 8.17b.
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H
A

D

B

C
W

H

E

(a)
z

x

X

yc

X
WI

Byc

(b)

(c)

W

W

W
––
2

(1– 2n)

(d)

W x

I

.
–––––––

2

(1– )x

W x

I

.
–––––––

( – )l x

W x

I

.
–––––––

2

(1– )x
Mx =

(e) WI 2

–––
32

+
–

W x.
–––––––

8

(1– )x
Mx =

(f)

+–
Wl
—
8

––

––

Fig. 8.17  (a) Cable and the two-hinged stiffening girder (b) I.LD. for H (c) I.L.D for S.F. at 

section X (d) I.L.D. for B.M. due to rolling load W (e) Absolute Maxm. B.M. due to rolling load W

(f) Absolute Maxm. B.M. due to u.d.l.

I.L. for Shear Force

Consider a section X at distance x. from D. We know that the S.F. at X

 Vx = – {vx + H tan q} for 0 £ z £ x (8.42)

or Vx = vx – H tan q for x £ z £ l (8.43)

as in a three-hinged stiffening girder in which

 vx =  shear force at section X in a simply supported beam.

 H tan q = the vertical component of tension in the cable at section X.

We have seen H tan q = 
2

W

l
 (l – 2x)
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Writing x = nl, H tan q = 
2

W
 (l – 2n)

The I.L. for S.F. for the given section is obtained by superimposing the I.L. for 

H tan q on the I.L. diagram for vx at the section X as in Fig. 8.17c. The maximum 

–ve S.F. occurs when the load W, just reaches the section.

 
max .

(1 2 )
2 2mx

W W
V nW n

-
= - - - =  (8.44)

The maxm. +ve S.F. is also equal to 
2

W
 and occurs at the section when the 

load just crosses the section. Thus, the maximum +ve or –ve S.F. at any section 

is the same and is equal to 
2

W
. 

I.L. for Bending Moment

Consider a section X at a distance x from D. We know that the moment at section 

X is

 Mx = mx – Hy as in a three-hinged girder.

or Mx = mx – 
2

W

l
 x (l – x)

The I.L. for B.M. is drawn by superimposing the I.L. for Hy = Wx (l – x)/2l on 

the I.L. diagram for B.M. at the section as shown in Fig. 8.17d.

Obviously the maximum +ve B.M. at the section occurs when the load is on 

the section and is given by

 
maxm. ( ) ( )

2

x W x
M W l x l x

l l
= - - -

( )

2

Wx l x

l

-
=

The maximum –ve B.M. at the section X occurs when the load is at either end 

on the hinge points.

\ maxm. ( )
2

W x
M l x

l
= - -

Thus the maximum +ve or –ve B.M. at section X is numerically equal and is

 maxm.

(1 )

2

xW x
M

l

-
= ±  (8.45)

The section at which the absolute maximum B.M. occurs is obtained by 

differentiating Mx maxm with respect to x and equating to zero.

 
( ) 0

2

d Wx
l x

dx l

Ï ¸- =Ì ˝
Ó ˛

 

2

0
2 2

d Wx W x

dx l

Ï ¸Ô Ô- =Ì ˝
Ô ÔÓ ˛
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That is 0
2

W W x

l
- =

\       l – 2x = 0

or x = l/2

Substituting for x = l/2 in Eqn. 8.45

 Mmaxm. (absolute) = ± 
8

Wl
 (8.46)

The moment diagram is shown in Fig. 8.17e.

8.6.2 Uniformly Distributed Load Longer than Span

Maximum Shear Force If a u.d.l. longer than the span were to traverse the 

girder, the maximum +ve S.F. would occur when the load occupies the middle 

+ve S.F. region in Fig. 8.17c extending over length l/2.

\ 
maxm.

1

2 2 2 8

w l wl
V = =

The maximum –ve S.F. at the section occurs when the u.d.l. occupies the end 

parts with no load on the middle +ve S.F. region. The maximum –ve S.F. is

 maxm.
8

wl
V = -

\ Vmaxm. for any section = ± 
8

wl
 (8.47)

Maximum Bending Moment The maximum +ve B.M. at a section X occurs 

when the u.d.l. occupies the +ve B.M. region as shown in Fig. 8.17a.

\ Maximum +ve B.M. 
1 ( )

( )
2 2 2 8

wx l x l wx
l x

l

-
= = -

This is the equation of a parabola of second degree reaching a maximum value 

at x = 
2

l
 and the value of the absolute maximum moment is

  Mmax (absolute) 
8 2 2

w l l
l

Ê ˆ= -Á ˜Ë ¯

  
2

32

wl
=  (8.48)

The maximum –ve moment at the section X occurs when the u.d.l. occupies 

the two ends with –ve ordinates and no load in the +ve ordinates region in Fig. 

8.17d

 Mx(maxm.) 

1
( )

2 2 2

w x l
l x

l
= - - ( )

8

w x
l x= - -

This is numerically equal to +ve Mx(maxm) derived earlier.

Therefore, the absolute maximum +ve or –ve B.M. occurs at the centre and 

is given by
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 Mmaxm. (absolute) 
2

32

wl
= ±  (8.49)

The moment diagram is shown in Fig. 8.17f.

Example 8.12 
A suspension cable of 100 m span has a dip of 10 m. It 

is stiffened by a two-hinged girder whose weight is 20 

kN/m. Determine the maximum tension in the cable if a point load of 500 kN rolls 

over the girder. Find also the maximum positive and negative B.M. on the 

girder.

Step 1: To fi nd w on the cable

We know that in a two-hinged stiffening girder the live load is transmitted to the 

cable as equivalent u.d.l. over the entire span. Therefore total load on the cable 

per metre length

 w 
Total (D.L. + L.L)

=
span

  
20 100 500

= 25 kN/m
100

¥ +
=

Step 2: To fi nd H, the horizontal pull

 

2 25 100 100
= = 3125 kN

8 8 10c

wl
H

y

¥ ¥
=

¥

Vertical reaction at supports

 VA = VB = 
25 100

2

¥
 = 1250 kN. 

Maximum tension in the cable

 Tmax 
2 2H V= + 2 23125 1250= +  = 3365.73 kN.

Step 3: To fi nd maximum +ve and –ve B.M.

The stiffening girder suffers no B.M. due to dead load. The maximum +ve or 

–ve B.M. will occur when the L.L. is at the centre of span. The I.L. diagram for 

moment at centre of span is shown in Fig. 8.18. The maximum +ve B.M. will 

occur when the load is over the central section and is

 
max

500 100
6250 kN.m

8 8

Wl
ve M

¥
+ = = =

Fig. 8.18  I.L.D. for moment at centre of span 
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The maximum –ve B.M. occurs at the central section when the load is 

positioned at the hinge points.

 
max

500 100
6250 kN.m

8 8

W L
M

- - ¥
= = = -

Example 8.13 
A two-hinged stiffening girder has a span 30 m as in 

Fig. 8.19a. Determine: (a) the maximum bending 

moment on the girder when (i) a concentrated load of 100 kN rolls over the 

girder and (ii) a u.d.l. of 3 kN/m rolls over the girder; (b) the bending moment at 

1/8 span section from either pier when a 100 kN load is at 1/4 span point from 

left pier; (c) the shear force at 1/4 span section due to loads as in (a) (i) and 

(ii). 

(a) (i) Maximum +ve and –ve B.M.

B.M. at a section x = nl from C is

 Mx = mx – Hy

  2

4
( )

8

c
x

c

yW l
x l x

y l
m= - -

  ( )
2

x

W l
n l nm= - -

The I.L.D. for moment at section X is shown in Fig. 8.19b. It is obvious from 

the I.L.D. that the maximum +ve B.M. occurs at centre when the 100 kN load is 

at the centre

Fig. 8.19  (a) Cable and two-hinged stiffening girder (b) I.L.D for B.M. at section X

(c) I.L.D. for S.F. at section X
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max

1 1 1
(100) (30) 375. kN.m

2 2 2
M

Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯

Maximum –ve B.M. occurs when the load is at the ends and is equal to –375 

kN.m.

 (ii) Under u.d.l. the maximum +ve B.M. occurs when the load occupies 

from f to g in Fig. 8.19b.

\ Maximum +ve B.M. 
1 1

(1 )
2 2 2

wl
n n

Ê ˆ Ê ˆ= -Á ˜ Á ˜Ë ¯ Ë ¯

  
1 30 3 30 1 1

2 2 2 2 2

¥ Ê ˆ Ê ˆ= ¥ ¥ Á ˜ Á ˜Ë ¯ Ë ¯

  = 84.375 kN.m

Maximum –ve B.M. occurs when the u.d.l. occupies e to f and g to d and is equal 

to –84.375 kN.m.

(b) When a 100 kN load is at 
1

4
 span the moment at 

1

8
 span = 0 corresponding 

to point f. Length gd = 
3

8
l

 B.M. at 1/8 span from D = 
2

3
 (cd)

  = 
2

(1 )
3 2

Wl
n n-

  
2 1 1 3

100 30
3 2 4 4

= ¥ ¥ ¥ ¥ ¥

  = 187.5 kN.m

(c) I.L. for shear at section X is shown in Fig. 8.19c.

 Vx = v + H tan q

 = v + H 
2

W
(1 – 2n) 

Maximum +ve or –ve S.F. at any section due to a 100 kN load is

 

1
(100) 50 kN.

2
= =

Maximum +ve or –ve S.F. due to u.d.l.

 

1

2 2 2

l wÊ ˆ Ê ˆ Ê ˆ= Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
1 30 3

11.25 kN.
2 2 2

= ¥ ¥ =

for all values of n.
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Example 8.14 
A two-hinged stiffering girder of a suspension bridge 

has a span of 80 m. The dip of the supporting cable is 8 

m. Two girders support a bridge deck. Two point loads of 400 kN and 600 kN at 

16 and 32 m act on the deck, half of which comes on to one stiffening girder. Find 

S.F. and B.M. at 25 m from left hand end. Find also the maximum tension in the 

cable (Fig. 8.20)

0.69

0.31

2.5 55m

25

17.18

8m

B

DC

A

80m
1616

200 300 KN

8.59

0.19

(a) Cable and two-hinged stif
girder-load on each girder

(b) I.L.D. for moment at 25 m
from A

(c) I.L.D. for shear at 25 m from A

Fig. 8.20

Step 1: To draw I.L.D. for moment

The I.L.D. for moment at section x, 25 m from end A is shown in Fig. 8.20(b). 

The ordinates under the load points are worked out as:

Moment ordinate under 200 kN load,

 = 
17.18 16

8.59 2.405
25

¥
- =

Moment ordinate under 300 kN load.

 = 
17.18

48 8.59 6.40
55

¥ - =

+ve moment at section x = 200 (2.405) + 300(6.40) = 2.401 kN.m

Step 2: To draw I.L.D for S.F.

The S.F. I.L.D. is shown in Fig. 8.20(c) 

Net ordinate under 200 kN. load 
0.31

(16) 0.019 0.39
25

= - - = -
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Net ordinate under 300 kN load 
0.69(48)

0.019 0.41
55

= + - =

Therefore, S.F. = 200(–0.39) + 300(0.41) = 45.0 kN

Step 3: To evaluate tension in cable

Equivalent u.d.l. on the cable we 
300 200

6.25 kN/m
80

+
= =

 

2
6.25 80 80

625.0 kN
8 8 8

e

c

w l
H

y

¥ ¥
= = =

¥

Vertical reaction 
6.25 80

250.0 kN
2 2

e
A

w l
V

¥
= = =

Maximum Tension,  2 2
max 625 250 673.15 kN.T = + =

Problems for Practice

8.1 A steel cable of 20 mm diameter is stretched across two poles 100 m apart. If the 

central dip is 2 m at a temperature of 5 °C, calculate the stress intensity in the cable. Cal-

culate the fall of temperature necessary to raise the stress to 55 N/mm2. Take weight of 

steel = 7.8 g/cm3 and a = 12.0 ¥ 10–6 per °C.

8.2 The cable of a suspension bridge of span 100 m is hung from piers which are 10 m 

and 5 m respectively above the lowest point of the cable. The load carried by the cable is 

2 kN/m of span. Find (i) the length of the cable between the piers, (ii) the horizontal pull 

in the cable, and (iii) the tension in the cable at the piers.

8.3 A three-hinged stiffening girder of a suspension bridge of span 100 m is to carry two 

point loads 200 kN and 250 kN at 20 m and 60 m from left end. Find the S.F. and B.M. on 

the girder at 40 m from the left end. The supporting cable has a central dip of 10 m. Find 

also the maximum tension in the cable and draw the moment diagram for the girder.

8.4 A suspension bridge cable hangs between two points A and B separated horizontally 

by 120 m and with A 20 m above B. The lowest point on the cable is 5 m below B. The 

cable supports a stiffening girder which is hinged vertically below A and B and the lowest 

point in the cable. Find the position and magnitude of the largest bending moment which 

a point load of 20 kN can induce in the girder together with the position of the load.

8.5 A suspension cable, stiffened with a three-hinged girder has 100 m span and 10 m 

dip. The girder carries a dead load of 1 kN/m extending over the whole span. A live load 

of 25 kN rolls from left to right. Determine (i) the maximum B.M. and S.F. anywhere on 

the girder, (ii) the maximum tension in the cable.

8.6 A suspension bridge with two three-hinged stiffening girders has a span of 120 m 

and the cable has a central dip of 10 m. It carries a D.L. of 3 kN/m. It is to be designed 

for a rolling L.L. of 100 kN. The loads (dead and live load) can be assumed to be 

equally divided between the stiffening girders and corresponding cables. Determine the 

sectional area required for the cable if the permissible stress is 150 N/mm2. Also fi nd the 
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maximum bending moment on the stiffening girder. The cable profi le can be assumed to 

be parabolic.

8.7 A suspension cable of 60 m span having a central dip of 6 m is strengthened by 

stiffening girders hinged at both ends. Two girders support a bridge deck. Two point loads 

500 kN and 600 kN at 16 m and 32 m respectively act on the deck, half of which comes to 

one girder. Find the S.F. and B.M. at 25 m from the left hand end. Find also the maximum 

tension in the cable.

8.8 A suspension cable, the ends of which are supported at the same level, has a span 

of 96 m and a central dip of 10 m. The bridge is stiffened by a stiffening girder hinged at 

the ends. The girder carries a single concentrated load of 10 kN at a point 24 m from left 

end. Assuming equal tension in the suspension hangers, calculate (i) the horizontal ten-

sion in the cable, (ii) the maximum positive and negative bending moments, and (iii) the 

value of absolute maximum B.M. and S.F. and where they will occur, if the 10 kN load 

rolls from left to right.



9.1  INTRODUCTION

The analysis of indeterminate structures, as such, will be discussed in detail in 

Chapters 10 to 14. However, it may be pointed out that the analysis depends on 

a knowledge of member proportions which are unknown at the time the design-

analysis is begun. Therefore it becomes necessary to perform some approximate 

analysis quickly to arrive at an estimate of member sizes. Approximate analysis 

is also performed for checking the more elaborate computations involved in an 

exact analysis. 

This chapter is concerned with the approximate analysis of a number of 

structural types that are statically indeterminate and are assumed to behave 

elastically. Approximate methods of analysis are discussed before exact methods 

of analysis with a view to making the reader familiar with a broad range of 

structures and their behaviour and at the same time enabling him to gain further 

insight into equilibrium conditions.

9.2  METHODS OF ANALYSIS

9.2.1 General

In approximate analysis, the statically indeterminate structure is reduced to a 

statically determinate structure, by making appropriate assumptions, and then 

analysed for member forces and reactions using statics. Some of the commonly 

used approximate methods of analysis are discussed in this chapter. It must be 

remembered that the results obtained are approximate and their nearness to the 

true values is dependent upon how good the assumptions are.

The study of approximate methods is best performed by a series of examples, 

since these methods are often specially related to a particular type of structure.

9.2.2 Indeterminate Trusses

Let us consider the statically indeterminate truss of Fig. 9.1 and fi nd an 

approximate analysis for determining the forces in its members. The truss is 

Approximate 
Analysis of Statically
Indeterminate
Structures

9
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statically indeterminate by four degrees because of the redundant diagonal 

members in four panels. If the diagonal members of the truss are considered to be 

long and slender, we can assume that the compression members carry negligible 

forces or do not take part. Therefore, the diagonals transmitting compressive 

forces are removed, which results in a statically determinate truss. The truss, 

after removing the compression diagonals for the given loading, is shown in Fig. 

9.2. The identifi cation of the diagonal members which are in tension is done by 

considering that the shear in each panel is carried by the diagonal members in 

tension.

If the diagonal members in truss of Fig. 9.1 are assumed to have 

considerable stiffness, we can perform an approximate analysis by assuming a 

certain distribution of shear in each panel between the two diagonals. It may 

be remembered that one of the diagonals will be in tension and the other in 

compression. For convenience, the shear is assumed to be distributed equally 

between the two diagonals. In either of these approximate methods, the number 

of assumptions is just equal to the degree of in-determinancy. The following 

example illustrates the point.

P1
P2

Fig. 9.1  Statically indeterminate truss

P P

Fig. 9.2  Truss with compression diagonals removed

Example 9.1 
It is required to determine the bar forces in the diagonals 

of the truss tower of Fig. 9.3a assuming that (a) the 

diagonal bars are very slender and buckle elastically at low loads and (b) the 

diagonals share the panel shear equally.

Figure 9.3b gives the truss after the compression diagonals are removed. 

This is a statically determinate truss and the forces in the diagonal members 

are obtained by equating the horizontal component of the forces in the diagonal 
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members to the shear force in the respective panels. Therefore, considering the 

top panel, we have

 P23 cos q = 20

or P23 = 20 2 kN

Similarly, P45 = 40 2 kN  and P67 = 60 2 kN

Considering that the diagonal members share the panel shear equally, we fi nd 

from a cut made in the top panel (Fig. 9.3c)

 P23 cos q + P14 cos q = 20 

 P23 = P14 = 10 2 kN

In a similar way, the forces in other diagonals are evaluated. They are, 

 P36 = P54 = 20 2 kN

3 m

20 kN

20 kN

20 kN

1 2

3 4

7 8

5 6

1 2

3 4

7 8

5 6

1 2

3 4

7 8

5 6

20 kN

20 kN

20 kN

20 kN

20 kN

20 kN

3
 m

3
 m

3
 m

q

q q

(a) (b) (c)

Fig. 9.3  (a) Redundant truss and loading, (b) Compression diagonals removed,

(c) Diagonals share panel shear equally

and P58 = P67 = 40 2 kN

It may be noted that diagonal bars 2-3, 4-5 and 6-7 are in tension, while bars 

1-4, 3-6 and 6-8 are in compression.

9.2.3 Mill Bents

Another problem commonly encountered is the mill bent subjected to lateral 

loading as shown in Fig. 9.4. The bents are composed of trusses for the roof 

section supported by vertical columns. The columns run to the top of the bents 

and hinge connections exist between the column and truss.

To make rational assumptions for the approximate analysis of such structures, 

we must consider the manner in which the bents defl ect under lateral loading. 

One possible defl ected shape of the left hand side column of the bent in Fig. 9.4a 

is shown in Fig. 9.5a.
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(a) (b)

Fig. 9.4  Mill bents: (a) Bent with fl at roof, (b) Bent with sloping roof

p
x

p

x

(a) (b)

Fig. 9.5  Defl ected shape of columns of mill bents

It is seen from the defl ected shape of the column that a point of contra-fl exure 

or a point of infl ection exists at height x, from the base. For a completely rigid 

base, it is common to assume that x = d/2. For a less rigid base, the infl ection 

point is at a lower level coinciding with the base for a hinged base.

The same reasoning is applied in fi xing the contra-fl exure point on the right 

hand side column. Since the structure is statically indeterminate by three degrees, 

one more assumption is necessary to make the structure a determinate one. A 

common third assumption is that the shear is equally shared by the columns 

at the infl ection points. The shear in columns is equal to the summation of the 

horizontal forces above the level under consideration.

For the mill bent of Fig. 9.4b, the left hand side column will defl ect as shown 

in Fig. 9.5b. The knee brace between the columns and the truss is considered 

to have been connected to the column at one end and the truss at the other by a 



Approximate Analysis of Statically Indeterminate Structures  283

pin connection. The column is continuous up to the bottom of the truss. For a 

fi xed support it is common to assume that the infl ection point is located midway 

between the knee brace connection and the base, that is, x = d/2. The assumption 

of infl ection points in the columns and equal distribution of shear between the 

columns at the infl ection points permits an analysis of such a structure as a 

statically determinate one. For a base which is not fully rigid it is customary to 

assume a value for x = d/3. The procedure involved is illustrated in the example 

given below.

Example 9.2 
Using appropriate assumptions, determine for the mill 

bent of Fig. 9.6 the components of reaction at the bases 

and sketch the moment diagram for the windward and leeward columns.

Because the columns are fi xed at the bases, the infl ection point in each column 

is assumed to be located at E and F as shown in Fig. 9.7 at a height of 4 m from 

the bases. Assuming that the shear force at the hinge level is divided equally 

between the two columns, the value of shear is

 
1

(20) (6) 60 kN
2

E FV V= = =

Fig. 9.6  Mill bent under lateral loading

A

B

C

D

E F

4
 m

4
 m

4
 m

4
 m

8
 m

Fig. 9.7  Assumed position of hinges
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A

B

C

D

E F

E F

VE VF

60 kN 60 kN

Fig. 9.8  Free-body diagram above hinge points

The axial forces in the columns at the level of the hinges are evaluated by 

considering the free-body diagram of structure above the hinge points as shown 

in Fig. 9.8. Writing down the summation of the moments about F and equating 

to zero we have

 –VE (24) + 20 (6)(3) = 0

or  VE = + 15 kN (downwards) 

and VF = 15 kN (upwards)

The desired reaction components at A and C can be determined from the free-

body diagram of the columns below the hinge points. The results are shown in 

Fig. 9.9

15 kN

60 kN

140 kN

15 kN

15 kN

15 kN

60 kN

60 kN

400 kN/m 240 kN/m

4
 m 4
 m

20 kN/m

Fig. 9.9  Free-body diagram of columns below hinge points

The remaining forces on column AB are obtained from the free-body diagram 

of the column in Fig. 9.10a. Taking the summation of the moments about B, we 

obtain

 20(10)(5) + 400 – 140(10) + X1(2) = 0

from which X1 = 0

The horizontal component of the force at B = 200 – 140 = 60 kN. The resulting 

moment diagram is drawn in Fig. 9.10b. Similar calculations are made for the 

leeward column and the results are shown in Fig. 9.10c and d.
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A

B

C

D

E
F

B

X1 = 0 x2 = 180 kN 240

240

2
0
k
N

/m

140 kN 60 kN

240 kN/m400 kN/m

15 kN 15 kN

400

90

(a) (b) (c) (d)

Fig. 9.10  (a) Forces on windward column, (b) Moment diagram for windward column,

(c) forces on leeward column, (d) Moment diagram for leeward column

9.2.4 Portal Frames

Laterally loaded portal frames can also be analysed by the approximations 

employed in Sec. 9.2.3 for mill bents. Consider, for example, a fi xed base portal 

frame of Fig. 9.11a. Note that the defl ected shape of a portal frame depends on 

the relative stiffness of columns and girder. Two extreme cases are considered. 

In Fig. 9.11b the defl ected shape of the frame when the girder is very stiff in  

comparison with the columns is given. The points of contra-fl exure lie at about 

mid-height of the columns. The defl ected shape of the frame when the girder 

is fl exible in comparison with the columns is given in Fig. 9.11c. The points of 

H

P

LL

(a) (b) (c)

(e)(d)

Fig. 9.11  (a) Portal frame, (b) Frame with stiff girder, (c) Frame with fl exible girder,

(d) Moment diagram for frame with stiff girder, (e) Moment diagram for

frame with fl exible girder,
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contra-fl exure lie near the top of the column. The possible moment diagrams for 

the two extreme cases are indicated in Fig. 9.11d and e respectively. Portal frames 

normally have girders that are stiffer than columns. The column infl ection points 

are, therefore, located somewhat higher than the mid-height of the columns that 

are fi xed. Realistic base connections are, however, never perfectly fi xed; hence 

infl ection points move down as rotation occurs at the base.

A few simple examples illustrate the procedure involved in solving the 

problems 

Example 9.3 
Analyse the portal frame subjected to lateral loading as 

shown in Fig. 9.12 using approximate method.

6 m

A

D

B
10 kN

4 m E

10 KN.M

10.010

10.0

D

C

(a) Deflected shape (b) Moment-diagram

Fig. 9.12  Portal frame under lateral loading

The elastic curve or the defl ected shape is shown in Fig. 9.12. For the 

approximate analyses, it is logical to assume points of confl exure located at mid 

height of columns and mid span of beam. Now the frame is statically determinate 

and joint moments can be evaluated using equations of equilibrium. The free 

body diagram is shown 9.13.

5 KN

B C

E

5 KN

3.33 3.33 KN

A D

10 KN

5 KN

5 KND

Fig. 9.13

Consider the upper part of the free body diagram. The shear is distributed 

equally, 5 kN, to each column. Taking moments about E, we get the axial force in 

the column AB = 3.33 kN (tension). In the column CD the axial force = 3.33 kN 

(compression). The moment diagrams along the columns and beam are shown 

in Fig. 9.12b.
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Example 9.4 
For the structure shown in Fig. 9.14a sketch the 

defl ected shape; mark all points of contrafl exure and 

construct approximate moment diagrams.

50 KN

3 m 3 m

A C

B

D

5
 m

5
 m

3m
50

A

33.33

16.67

(a)

1.67

7.5

A

7.5

1.5
33.33

C
6.67

7.5

7.5

1.67

D (b)

Fig. 9.14

The defl ected shape indicates the approximate positions of points of 

contrafl exure or hinge points. Assuming hinge points at 1.67 m from ends B and 

D and 1.5 m from C, free-body diagrams are shown in Fig. 9.14b. From the free-

body diagrams the moments are calculated.

 MB = 7.5 ¥ 1.67 = 12.5 kN.m

 MD = 7.5 ¥ 1.67 = 12.5 kN.m

 MCA = 33.3 ¥ 1.5 = 50.0 kN.m

 MDC = 7.5 ¥ 1.67 = 12.50 kN.m

The moment diagram is shown in Fig. 9.14c.

12.5 kN

50

25 kNm

12.5

50

25

Fig. 9.14 (c)  Moment diagram
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9.2.5 Continuous Beams and Building Frames

Consider the continuous beam shown in Fig. 9.15a under the distributed loading. 

If the ends of span BC do not undergo rotation as in a fi xed end beam, it can be 

shown by methods of analysis discussed in Chapters 10–13 that the infl ection 

points or points of zero moment of the beam are located at a distance of 0.21L 

from either end as shown in Fig. 9.15b. On the other hand, if no restraints exist 

for the ends to rotate, we have a case of a simple beam hinged at the end as in 

Fig. 9.15c where the points of zero moment are at the supports. In a frame or 

in a continuous beam such as that shown in Fig. 9.15a, the ends of the beam 

are restrained partially against rotation by the adjacent beams or columns which 

A

LAB
B

L LBC =
C

LCD

D

(a)

B C

0.21 L 0.21 L

(b)

(c)

B C

C

(d)

B

B C

(e)

0.25 L 0.25 L

L/2

L/2

CB

0.27 L

(f)

Fig. 9.15  (a) Continuous beam, (b) Ends B and C assumed fi xed, (c) Ends B and C assumed 

hinged, (d) Ends B and C partially restrained by elastic springs, (e) Fixed end beam under 

concentrated load, (f) One end fi xed and the other hinged
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in effect serve as elastic restraints. The elastic restraints can be represented by 

springs as in Fig. 9.15d. The location of infl ection points for such an elastically 

restrained beam depends upon the stiffness of springs, but it must lie somewhere 

between the support points and 0.21L from the end as in Fig. 9.15b. A generally 

assumed location for points of zero moment is 0.1L from the support points. In 

case of beams subjected to central concentrated loads, the location of points of 

contra-fl exure are at a distance of 0.25L from the ends (Fig. 9.15e). The position 

of the infl ection point for a beam fi xed at one end and hinged at the other is 

shown in Fig. 9.15f.

The positions of contra-fl exure points do vary from 0.21L to 0.27L from 

the supports depending upon the type of loading and the restraints at the ends. 

However, satisfactory results can be obtained by selecting the infl ection points 

at 0.1L from the ends.

The following examples illustrate the procedure followed in showing 

continuous beams approximately

Example 9.5 
For the continuous beam shown in Fig. 9.16. Sketch the 

defl ected shape and mark all points of centrafl exure. 

Sketch the moment diagram.

22.5

0.8

40

2.4m

22.5 17.5

40

0.8 0.5

52.5

17.5

2.0

25 15

20 KN/M

15
10 KN

0.5 1.0

35

(d)

18.0
15.0 10.0 KN.M

C DB

(c)

A

0.8m
0.5m0.8 0.5m(b)

A

40 KN
20 KN/M 10 KN

C DB

2m 2m 3m

(a)

1m

Fig. 9.16  (a) Continuous beam and loading (b) Defl ected shape and hinge positions

(c) Bending moment diagram (d) Free bodies

The defl ected shape of the continuous beam is drawn satisfying the boundary 

conditions. The approximate locations of points of contrafl exure are decided on 
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the basis of support conditions and loading on the span. The hinge points are 

shown in Fig. 9.16b making the distances from the adjacent supports.

The free-body diagrams are drawn extending from hinge point to hinge 

point. The support reactions and moments are worked out commencing from 

right end using equilibrium equation SFY = 0. It may be noted that the moments 

and reactions arrived at satisfy only SFY = 0 and not the moment SMB = 0. 

This is expected as we have obtained moments on the basis of assumed hinge 

positions. 

The moment diagram is drawn in Fig. 9.16c which is super imposition of span 

moment diagrams over support moment diagram.

Example 9.6 
Using approximate method of analysis, analyse the 

fi xed portal frame shown in Fig. 9.17. Sketch the 

defl ected shape and moment diagram.

1.2

C

5.6m

168 KN 168 KN1.2m

B

A D

168 KN
60 KN/m

168 KN

235.2

122.4 KNM 122.4 KNM

244.8

244.8 KN.M244.8

244.8

8 m

B C

1.33D

1.2
5.6m

1.2

A

4m
(a) Deflected shape and hinges

(b) Moment diagram

(c) Free-body diagrams

60 KN/M

Fig. 9.17 

The defl ected shape of the portal under loading is shown in Fig. 9.17 a 

satisfying the boundary conditions. The possible hinge locations are indicated. 

For the beam the hinges are assumed to be located at 0.15 l from ends B and C. 

The hinges in the columns are assumed to be located at 1.33 m from the base.

The free body diagram of the three parts are shown in Fig. 9.17c.

Moment at B = 168 + 
60

2
 (1.2)2 = 244.8 kN.m
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Moment at C = Moment at B = 244.8 kN.m

Moment at A = 
244.8

2
 = 122.4 kN.m

Moment at D = 122.4 kN.m

The moment diagram is shown in Fig. 9.17b.

Example 9.7 
For the structure shown in Fig. 9.18. Sketch the 

defl ected shape and mark all points of contrafl exure 

and construct approximate moment diagram.

B
A

ED

C40.5 40.5 KNM

12m
(a)

(c)

1.5 1.5m

9 KN/M

C

ED

3.75m

A B

5
m

HB
HA

4.5m

3.75

E

9 KN/M
13.5

HB
B

54 KN (b)

Fig. 9.18

The defl ected shape of the structure is drawn keeping in mind that the joint C 

is rigid and does not undergo any rotation (Fig. 9.18a). Hence the defl ected shape 

is obvious and the points of contrafl exure occurs at D and E. In the approximate 

analysis the points of contrafl exure assumed to be located at 1.5 m on either side 

of joint C measured horizontally. Besides vertical reactions at supports A and B 

there exists horizontal reaction HA = HB inwards.

Considering free-body diagram and summing moments about E.

 ME = 54 (4.5) – 
9

2
(4.5)2 – HB (3.75) = 0

Gives HB = 40.5 kN

Due to symmetry HA = HB = 40.5 kN.

Moment at C

 MC = 54(6) – 
9

2
(6)2 – 40.5 (5)

  = – 40.5 kN.m.
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The moment diagram is shown in Fig. 9.18c

It is often useful to be able to approximately analyse a building frame such as 

the one shown in Fig. 9.19a subjected only to gravity loading.

0.1 L1

0.1 L1

0.1 L1

L1 L2

0.1 L2

0.1 L2

0.1 L2

(a) (b)

Fig. 9.19  Building frame: (a) Contra-fl exure points assumed at 0.1 L from ends, (b) Reduced 

to a statically determinate structure

To get the approximate forces in a frame, it is only necessary to fi x the two 

points of contra-fl exure for each beam which immediately makes the structure 

statically determinate. Figure 9.19b shows such a determinate structure consisting 

of simple beams and cantilevered columns. However, it may be noted that the 

determinate structure offers very little resistance to horizontal loading.

The procedure is illustrated by the following example.

Example 9.8 
Using approximate method, analyse the building frame 

consisting of three bays and four storeys as shown (Fig. 

9.20a). Sketch the defl ected shape and moment diagram approximately.

The defl ected shape of the frame under gravity loads is shown in Fig. 9.20b. 

It is seen that in all the beams there are two infl exion points in each bay and one 

infl exion point in each of the columns on all fl oors. In the approximate analysis, 

the infl exion points are assumed located at 0.1 l from each end of the beam. The 

infl exion points in the columns are assumed at mid height in each fl oor. The 

infl exion points are shown on the defl ected shape of the frame. The moments at 

the end of the beams and columns are worked out commencing from left end. In 

Fig. 9.20 c the reduced statically determinate structure is shown, Fig. 9.20d gives 

the conceptual transmission of forces in a typical bay.
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Bay-1 Bay-2 Bay-3
A B C

D

4m 6m 5m

(a) Building Frame

4
m

4
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(b) Deflected shape
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0.4 .4 .6
B

4.8
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4.0m
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D

Bay-1 Bay-2 Bay-3

(c)

0.6 0.6
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(d) Bay-2 Conceptual

Fig. 9.20

 Maximum +ve moment in beams

 Bay 1 = 
230 3.2

8

¥
 = 38.4 kN.m

 Bay 2 = 
230 4.8

8

¥
 = 86.4 kN.m

 Bay 3 = 
230 4.0

8

¥
 = 60.0 kN.m

End reactions 

 Bay 1 = 
30 3.2

2

¥
= 48.0 kN
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 Bay 2 = 
30 4.8

2

¥
 = 72.0 kN

 Bay 3 = 
30 4.0

2

¥
 = 60.0 kN

Now end moments 

 Bay 1 = 48.0 ¥ 0.4 + 
230 0.4

2

¥
 = 21.6 kN.m

 Bay 2 = 72.0 ¥ 0.6 + 
230 0.6

2

¥
 = 48.6 kN.m

 Bay 3 = 60 ¥ 0.5 + 
230 0.5

2

¥
 = 33.75 kN.m

These values are true for all the storeys. 

It may be noted that, the end moments of beams at the interior column in bay 

1 do not balance. The imbalance moment, that is the difference in end moments 

48.6 – 21.6 = 27.0 kNm is shown taken by the column. So also the unbalanced 

moment at the interior column of bay 3, that is 48.6 – 33.75 = 14.85 kNm is 

shown taken by the column.

38.4

48.6

21.6

27.0

86.4

48.6

14.9

60

33.75 33.75

33.75

33.75
33.75

48.648.6

21.6
21.6

21.6

21.6

21.6

38.4
27.0

86.4

14.9

60

33.75

Fig. 9.21  Moment diagram in top storey

The moment diagram is sketched in Fig. 9.21 giving the approximate values 

of moments. The moment diagram is repetitive for all the storeys below.

In addition to the approximate procedures discussed above, there are other 

methods for the approximate analysis of building frames subjected to lateral 

loading. The two common methods widely used are the cantilever method and 

the portal method which are discussed below.

9.3  PORTAL METHOD

The portal method is an approximate analysis used for analysing building frames 

subjected to lateral loading such as the one shown in Fig. 9.22a. This method is 
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more appropriate for low rise (say height is less than width) building frames. In 

the analysis the following assumptions are made:

 1. An infl ection point is located at mid-height of each column;

 2. An infl ection point is located at the centre of each beam; and

 3. The horizontal shear is divided among all the columns on the basis

that each interior column takes twice as much as the exterior columns.

(a) (b)

Fig. 9.22  (a) Building frame under lateral loading, (b) Equivalent portals

The basis for the last assumption stems from the reasoning that the frame is 

composed of. individual portals as in Fig. 9.22b.

Obviously an interior column is in effect resisting the shear of two columns of 

the individual portals. The following example illustrates the procedure involved 

in the analysis of building frames by the portal method.

Example 9.9 
It is required to determine the approximate values of 

moment, shear and axial force in each member of frame 

in Fig. 9.23 using the portal method.

Considering fi rst the upper storey, infl ection points are assumed at mid-height 

on each column. We obtain the shear in each column from a free-body diagram 

of the structure above the hinge level by assigning shear to the interior column 

equal to twice the shear in the exterior column as shown in Fig. 9.24a.

 H + 2H + H = 20

or H = 5 kN

Infl ection points are also assumed at the centre of beams GH and HK. The 

member forces in the upper part of the frame can be evaluated from the free-body 

diagram of the parts shown in Fig. 9.24b beginning either with G or from K and 

working across. The resulting forces must check with the free-body diagram at 

the opposite end. The resulting forces are indicated on the diagram.

Again infl ection points are assumed at mid-height of lower storey columns 

and the shear is distributed as in the upper storey. Thus, in the lower storey

 H + 2H + H = 60

 H = 15 kN
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A B C

D
EF

G H K

6 m 6 m

20 kN

40 kN

4
 m

6
 m

Fig. 9.23  Frame under lateral load

G

G H K

HH 2H

H K

(a)

(b)

(c)

20 kN

20 kN

3.33 3.33

0.83 2.50

5 kN

2
 m

10 kN5 kN

2
 m

2
 m

3 m 4 m 3 m

2.502.50

3 m

15 5

3.33

3.33 0.83 2.50

2
 m

2
 m

3
 m

3
 m

18.33 13.75 13.7518.33

3 m 3 m 4 m 4 m
105 kN 5

1030

15 kN 30 kN 15 kN

40 kN

21.67 5.41 16.25

Fig. 9.24  (a) Distribution of shear among columns, (b) Free-body diagrams of parts

of upper storey, (c) Free-body diagrams of parts of lower storey
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The forces in the members of the lower storey are obtained from the free-body 

diagrams of Fig. 9.24c. The maximum moment in each member of the structure 

is readily obtained once the value of shear at the infl ection points have been 

determined.

The moment diagram drawn on the frame on the tension side of the members is 

shown in Fig. 9.25. The maximum values of shear and axial forces are indicated 

along each member. The shears are shown without any sign. The positive value 

of the axial force indicates tension.

V

P

G

CA

DE

F

K

V

P

V

P

V

P

V

P

V

P
V

P

V

P

V

P

V

P

H

B

+

+

10

10 45

1010

10 10

10

10
55

20
55

45 45

45

55

90

90

20

= 10
= –0.83

55

= 18.33
= – 30.0

= 13.75

= –10.0

= 30.0

= –5.41

= 3.33

= – 15.0

= 2.5

= – 5.0

= 5.0

= + 3.33

= 15.0

= + 21.67

= 15.0
= – 16.25

(All shear and axial forces in kN and moments in kN.m)

= 5.0

= –2.5

Fig. 9.25  Forces in frame members

9.4  CANTILEVER METHOD

The cantilever method of analysis is more appropriate for a tall structure, that is, 

for a structure that has a height greater than its width. This method is based on the 

assumption that the building frame acts like a cantilever beam with the column 

cross-sectional areas as the fi bres in a beam.

Consider the building frame loaded laterally as shown in Fig. 9.26a. For 

such a tall building, the column strains resulting from the overall bending action 

are assumed to affect behaviour. We assume that the frame is a laterally loaded 

cantilever with a cross-section as indicated in Fig. 8.26b. The moment at a typical 

horizontal section AA is resisted by concentrated column forces as shown in Fig. 

9.26c. The assumptions made in the analysis are:

 1. An infl ection point is located at the mid-height of the column in each 

storey;

 2. An infl ection point is located at the mid-point of each beam; and

 3. The axial force in each column is proportional to its distance from the 

centroid of the areas of the column group at that level.
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The fi rst two assumptions are the same as in the portal method. The third 

assumption gives the distribution of the axial forces in the columns instead of the 

distribution of the shear force among the columns as in the portal method. The 

last assumption enables one to include the effects of columns having different 

cross-sectional areas. The example that follows illustrates the procedure to be 

followed in analysing a frame by the cantilever method.

A1
A2

A3

P1
P2

P3

1 2 3

AA

Centroid of
frame

(a)

(b)

(c)

Tension

Compression

Fig. 9.26  (a) Building frame, (b) Cross-section of frame, (c) Axial forces in columns

Example 9.10 
Use the cantilever method to perform an approximate 

analysis of the frame analysed in Example 9.9. The 

cross-sectional areas of the columns are all assumed to be equal.
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The location of the centroid of the column areas is to be determined fi rst. 

Taking the summation of the moments of areas of columns about the left end 

column, we have

 

6 14
6.67 m

3

+
=x =

Consider the free-body diagram of the frame above the infl ection points of the 

columns in the upper storey as shown in Fig. 9.27a. Making use of assumption 3 

we can write the following relationship for the axial forces in the columns: 

G H K

PGF PHE PKD

(a)

(b)

Centroid

2
 m

8 m

7.33 mx = 6.67 m

6 m
20 kN

20 kN

40 kN

17.57 kN 1.76 kN 19.33 kN

4
 m

3
 m

Fig. 9.27  Axial force in columns (a) Columns in upper storey, (b) Columns in lower storey

 PHE = 
0.67

6.67
GFP

or PHE = 0.10 PGF

and PKD = 
7.33

6.67
GFP

or PKD = 1.10 PGF

Taking moments of the forces in the columns about the hinge point on the right 

end column, we have

 20(2) – PGF (14) – PHE (8) = 0 

Simplifying, we get

 PGF = 2.70 kN (tension)

 PHE = 0.27 kN (tension)
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and PKD = – 2.97 kN (compression).

The columns to the left of the centroid are in tension and the column on the right 

is in compression.

Having determined the axial forces in the columns, the member forces are 

determined from the free-body diagrams as in the portal method.

The column forces in the lower storey are obtained by the same procedure 

used for the upper storey. While taking moments about the infl ection point on 

the right end column, both the external loads are to be considered. The column 

forces are shown in Fig. 9.27b. The free-body diagrams for both stories showing 

the results of analysis by the cantilever method are given in Fig. 9.28.

G H K

A B
C

D
EF

20.0

2.70 2.70 2.97 2.97

4.05

40.0

17.57 1.76

30.02

19.33

17.8112.17

31.88 11.87

2.97

5.96

5.9615.95

4.05

2.70

14.87
9.99

14.87

9.99

0.27

16.36 5.9616.36

Fig. 9.28  Free-body diagrams

The moment diagram obtained form the analysis is shown in Fig. 9.29. The 

shear and axial forces are indicated along each member.

The results obtained by the cantilever method compare well with the values 

of those obtained by the portal method in some cases and differ substantially in 

some other cases. It may be remembered that both the methods of analysis are 

approximate and that the results obtained are only as good as the assumptions 

used. For example, it is not accurate to assume, irrespective of the relative 

stiffnesses of columns and beams, that the points of Contra-fl exure are located 

at mid-height of the storey on the columns and at mid-span points on the beams. 

It is also seen that a change in the cross-sectional area of columns can infl uence 

the location of the centroid of the column areas and, thus, appreciably alter the 

results, a fact not accounted for in the portal method.

Discussions on the accuracy of portal and cantilever methods as well as 

presentation of other approximate methods can be found in Norris and Wilbur.* 

The analyses presented for statically indeterminate structures in Chapters 10-14 

*Norris, C.H. and Wilbur, J.B., Elementary Structure Analysis, McGraw-Hill Book Co., New 

York, 1960.
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can be used to obtain exact results for the laterally loaded frame discussed 

above.

V

P

V

P

V

P V

P

V

P V

P

V

P

V

P
V

P
V

P +

= 2.70

8.10
= –15.95 8.10

19.98

= 2.97

= –5.96 11.92

11.92
8.10 11.88

= 9.99

= 0.27 = 16.36

= –11.87

= 4.05

= 2.70 = 14.87
= –31.88

36.15
8.10

44.61

= 12.17

= + 17.57

= 30.02
= 1.76

53.4390.0636.5

19.98

65.44

44.61
90.06

11.92

= 5.96

= –2.97

53.43

65.44

= 17.81

= –19.33

(All shear and axial forces in kN and moments in kN.m)

Fig. 9.29  Forces in frame members

Example 9.11 
Use cantilever method to perform an approximate 

analysis for the frame shown in Fig. 9.30. Draw 

defl ected shape and sketch moment diagram. Carry out the analysis for the top 

two fl oors.

5
 @

3
.6

 =
 1

8
m

20KN

40

40

40

40

6

5

4

3

2

1

7

8

9

10

11

12

18

17

16

15

14

13

19

20

21

22

23

24

3.0 3.6 3.0m

(a)    Building frame and loading (b)  Deflected Shape under load

Fig. 9.30
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1.8

4.8m

P 19–20P 18–17
P 78P 65

1.8
4.8m

17.36
7

4.523.29

6

1.5

H1 = 2.74 H2 = 7.263.29

1.233.29

3.29

7.26

18.08

85
40

2.74

13.15

H3 = 8.22 13.15

16.44
6.16

H4 = 21.78

20 KN
6 7 18 19

(a)   Free-body of top storey

(b)   Centroid of columns axial forces

(c)   Free–body diagram–upper storey

(d)   Free–body diagram–lower storey

Fig. 9.31

Step 1: To draw defl ected shape and locate hinge points

The defl ected shape of the frame is shown along side of the given frame in Fig. 

9.30. It is apparent from the bent shape that the possible positions of centrafl exure 

are located at mid span of each beam and mid height of each column on all the 

fl oors. Hence for our approximate analysis the hinge positions are assumed to the 

located at mid span of beams and mid height of columns as shown marked.

Further in the cantilever method of analysis the axial forces in the columns 

are assumed to the proportional to the distance from the centroid of the columns 

as shown in Fig. 9.31b.

Step 2: Calculation of axial forces top Storey

Te free-body of the top fl oor above the hinges is shown in Fig. 9.31c for the left 

half.

Taking moments about the hinge in column 19–20

We can write

 P65(9.6) + P78(6.6) – P18–17(3.0) = 20(1.8)

We know P78 = – P18–17

and P78 = P65 
(1.8)

4.8
 = 0.375 P65

Substituting in the above equation
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 P65(9.6) + P65 (0.375)(6.6 – 3.0) = 36

Gives P65 = 3.29 kN

and P78 = 1.23 kN

Step 3: Calculation of storey shear

Taking moments about the hinge in the beam 6–7

we have H1 (1.8) = 3.29 (1.8)

or H1 = 2.74 kN

Again taking moments about the hinge in beam 7–18

we have H2(1.8) = 3.29(3.3) + 1.23 (1.8)

gives H2 = 7.26 kN

Step 4: Calculation of Beam and column moments

Beam moments 6 – 7 = 3.29 ¥ 1.5 = 4.94 kN.m

 7 – 8 = 4.52 ¥ 1.8 = 8.14 kN.m

Column moments 6 – 5 = 2.74 ¥ 1.8 = 4.93 kN.m

 7 – 8 = 7.26 ¥ 1.8 = 13.07 kM.m

Step 5: Calculation of axial forces-lower storey

The free body diagram of the lower storey is shown in Fig. 9.31d

Taking moments about the hinge in column 19 – 20

 P54 (9.6) + P89(6.6) – P17–16(3.0) = 20(5.4) + 40 (1.8)

We know P89 = –P17–16

and P89 = P54  
(1.8)

4.8
= 0.375 P54

Substituting in the above equation

We have P54 (9.6) + P54 (0.375) (6.6 – 3.0) = 180

Gives P54 = 16.44 kN

and P89 = 0.375 (16.44) = 6.17 kN

Step 6: Calculation of storey shear in the lower storey

Taking moments about the hinge in beam 5–8

We have H3(1.8) + 2.74 (1.8) – (16.44 – 3.29)(1.5) = 0

Gives H3 = 8.22 kN

Again taking moments about the hinge in beam 8–17

We have H4(1.8) – (6.16 – 1.23)(1.8) – 13.15(3.3) + 7.26(1.8) = 0

Gives H4 = 21.78 kN.

Step 7: Calculation of beam and column moments

Beam moments 5 –8 = 13.15 (1.5) = 19.73 kN.m

 8–17 = 18.08 (1.8) = 32.54 kN.m
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Column moments 5–4 = 8.22 (1.8) = 14.80 kN.m

 8–9 = 21.78 (1.8) = 39.20 kN.m

8
14.8

19.73 32.5417

14.80

20
5

6 7 8
9

4.94 KNM8.14
4.94

13.07
4.94

19.73
39.24

32.5419.73

Moment diagram

Fig. 9.32

The moments in the other half of the frame are identical due to symmetry. The 

procedure can be extended to lower fl oors on similar lines

Problems for Practice

9.1, 9.2 For the structures shown in Figs 9.33 and 9.34, sketch the defl ected shape, mark 

all points of Contra-fl exure and construct approximate moment diagrams.

P kN

A B C D

9 m 6 m 12 m 6 m

Fig. 9.33

A

B C

D

10 kN/m

3
.6

 m

12.0 m

Fig. 9.34
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9.3 Determine the axial forces in diagonal members of the truss shown in Fig. 9.35 as-

suming that: (a) the diagonals are slender and carry no compressive forces; (b) shear in 

each panel is divided equally between the diagonals.

1 2 3 4 5

6 7 8 9
10

2
.5

 m

20 kN 40 kN 20 kN

4 @ 3 m = 12 m

Fig. 9.35

9.4 (a) Determine the reaction components at the base of the columns, (b) sketch the 

shear and moment diagrams for the columns and (c) fi nd the axial force in member 1-2 of 

the mill bent shown in Fig. 9.36. Make the usual simplifying assumptions.

A

B

C D

E

F

10 kN

20 kN

4 @ 3 n = 12 m

6
 m

2
 m

1

2

Fig. 9.36

9.5 For the mill bent shown in Fig. 9.37, sketch the moment diagram for the columns 

and fi nd the forces in the members of the truss.

L D

E

F

M N

B

C

A

20 kN

1
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2
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5 m

1
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Fig. 9.37
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9.6 Analyse the mills bent shown in Fig 9.38 for the reaction components at the bases 

and sketch the moment diagram for the columns.

1
0
 k

N
/m

24 m

2
 m

8
 m

6
 m

Fig. 9.38

9.7 Use the portal method to perform an approximate analysis for the frame in Fig. 

9.39. Show the results by drawing the moment diagram for the entire frame.

12 kN

24 kN

5 m 6 m 5 m

4
 m

6
 m

Fig. 9.39

9.8 Solve problem 9.7 by the cantilever method. Assume that the columns have equal

areas.



10.1  INTRODUCTION

Any structure whose reaction components or internal stresses cannot be established 

by using the equations of static equilibrium alone, is a statically indeterminate 

structure. For example, the beam of Fig. 10.1a has four reaction components. We 

cannot solve the four unknown reactions using only three available equations 

of equilibrium, viz., S FX = 0, S F
Y
 = 0. and S MZ = 0. Hence, it is statically 

indeterminate to the fi rst degree. We need one additional equation to solve for 

the unknown reactions. If this beam had a fi xed support at the left end support 

as in Fig. 10.1b, we would have had fi ve unknown reactions, but still only three 

equations of equilibrium. We would then need two additional equations in order 

to be able to solve the reaction components. The beam would then be statically 

indeterminate by two degrees.

The additional equations to solve statically indeterminate structures come from 

prescribed conditions of translations and rotations, commonly called conditions 

of compatibility or consistent displacements.

A B C

A B C

R1

R2 R3 R4

R1

R2 R3 R4

R M3 = A

(a)

(b)

Fig. 10.1  (a) Support A hinged—degree of indeterminancy = 1,

(b) Support A fi xed—degree of indeterminancy = 2

Indeterminate
Structures—
Compatibility
Methods

10
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A statically indeterminate structure is also termed a redundant structure because 

of redundant reaction components or redundant members in a truss which are not 

necessary for stability considerations. A statically determinate structure possesses 

no redundants. A statically indeterminate structure of the fi rst degree can possess 

one more additional reaction or member, the removal of which does not cause 

statical instability. For instance, in Fig. 10.1a any one of the roller supports can 

be removed without the structure becoming unstable. However, the removal of 

both roller supports makes the structure unstable. It follows that in a structure 

which is statically indeterminate to the second degree, if two redundants are 

removed simultaneously, the remaining structure will be statically determinate 

and stable. This can be verifi ed with respect to the structure in Fig. 10.1b.

10.2  DEGREE OF INDETERMINANCY AND

    STABILITY OF STRUCTURES

Consider a three-span continuous beam as shown in Fig. 10.2a. There are fi ve 

reaction components. With only three equations of equilibrium available the 

degree of indeterminancy is 5 – 3 = 2.

Another approach to the same problem is to cut the beam into segments and 

consider the internal forces as redundants. The free-body diagrams of the two 

segments are shown in Fig. 10.2b. If the internal forces V6 and M7 at the cut 

section are known then the external reaction components can be determined. 

For the left part we have fi ve unknowns and three equilibrium equations; for 

the right part we have four unknowns and two equations of statics (S FY = 0 

and S MZ = 0). Therefore, the total number of unknown reactions exceeds the 

total number of equilibrium equations by two; which again establishes the degree 

of indeterminancy. Alternatively, a knowledge of the two internal forces at the 

cut section would allow us to determine all the reactions, hence the degree of 

indeterminancy is two.

A C

R1

R2 R3 R4

R1

(a)

(b)

R5

R2 R3 R4 R5

V6 V6

M7 M7

Fig. 10.2  (a) Three-span continuous beam—twice redundant,

(b) Free-body diagram of segments
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Fig. 10.3  (a) Gable frame, (b) Free-body diagram of entire frame,

(c) Frame is cut at C and internal forces introduced

The rigid frame of Fig. 10.3a provides another example. The free-body diagram 

in Fig. 10.3b indicates six unknowns. The degree of indeterminancy is, therefore, 

6 – 3 = 3. Alternatively, the frame is cut at C and the three internal forces are 

introduced as shown in Fig. 10.3c. Combining these with the six reactions at the 

bases there are totally nine unknowns. With only six equations of equilibrium, 

the structure is statically indeterminate to the third degree. A consideration of 

each of the free-body diagrams also gives the same result.

As a last example, let us consider the two-storey frame of Fig. 10.4a. From the 

free-body diagram of the structure shown in Fig. 10.4b it is possible to determine 

the three reaction components using the three equations of equilibrium. The forces 

in members AD and BC can be found using statics only. However, the remainder 

of the structure presents a diffi cult situation. It is impossible to determine the 

forces in the members of closed loop CDEF from the known external reactions. 

Thus, we fi nd that although the structure is determinate externally, it is statically 

indeterminate internally.

A B

C

HA

H5

M6

VBVA

V4

D

E F

A B

CD

E F

A B

CD

E F

HA

VBVA

(a) (b) (c)

Fig. 10.4  (a) Two-storey frame, (b) Free-body diagram of structure,

(c) Internal member is cut and forces introduced

The degree of indeterminancy of the frame is established by taking a cut 

through beam CD and introducing three internal forces as in Fig. 10.4c. These 
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three internal forces together with three external reactions 

yield six unknown forces. The degree of indeterminancy 

is three.

With these examples in mind, we now proceed to a 

more general statement on establishing the degree of static 

indeterminancy for any structure. Of the many methods 

that have been suggested, one simple and elegant method 

to determine the degree of indeterminancy as well as 

the degree of instability is the ‘open tree’ construction 

method. A cantilever type of structure as shown in Fig. 

10.5, which is open without closed rings, is statically 

determinate and stable. When a structure such as the frame in Fig. 10.6 is not 

an open cantilever, it is a simple matter to cut into the cantilever of the open 

tree type. When a cut is made/we are removing constraints which are equal in 

number to the appropriate number of internal forces at the cut. The number of 

constraints removed to make the structure an open cantilever is shown in Fig. 

10.6b. An alternative method of reducing the structure into open cantilevers is 

shown in Fig. 10.6c. In either case the number of constraints removed is 6. The 

total number of constraints removed to make the structure an open cantilever or 

cantilevers corresponds to the degree of indeterminancy.

3

3

3

(a) (b) (c)

3

Fig. 10.6  (a) Two-storey frame, (b) Frame reduced to an open cantilever tree,

(c) Open cantilever trees

Let us consider another example of the frame of Fig. 10.7a. Here the frame 

can be made into an open cantilever by adding a rotation constraint at A and 

removing two constraints at D as shown in Fig. 10.7b. The added constraint is 

being indicated by a negative number, – 1, in this case. The number of constraints 

removed are 2 – 1 = 1 and, therefore, the degree of redundancy is 1.

As a last example consider the frame of Fig. 10.8a. To make it an open tree 

cantilever, we fi rst add a rotation constraint at the base of the left hand column, 

remove two constraints at the base of the right hand column and two restraints at 

hinge 1 as shown in Fig. 10.8b. At this point the structure becomes unstable unless 

we add a rotation restraint at hinge 2. The net number of constraints removed is 

4 – 2 = 2 and hence the degree of indeterminancy of the structure is 2.

Fig. 10.5  An open 

cantilever tree
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A

CB

D

(a)
(b)

A

CB

D

–1
+2

Fig. 10.7  (a) Frame hinged at base, (b) Number of restraints added or removed

(a) (b)

Hinge 1

Hinge 2

2

2

–1

–1

Fig. 10.8  (a) Structure with internal hinges, (b) Constraints added or removed

Summarising, we reduce the structure to an open tree or trees by adding or 

removing constraints so that no unstable branches exist. Then we fi nd the number 

of restraints added or removed; the net number of constraints removed gives the 

degree of indeterminancy of the structure.

The structure can be classifi ed as statically indeterminate or determinate or 

unstable according to the following conditions:

 1. NCR > NCA Indeterminate

 2. NCR = NCA Determinate

 3. NCR < NCA Unstable

where

NCR stands for the number of constraints removed, and

NCA for the number of constraints added.

The degree of indeterminancy = NCR – NCA

 = (NCR > NCA)

and the degree of instability = NCA – NCR

 = (NCA > NCR)

The degree of instability indicates the number of constraints that must be 

added to a structure in order to make it stable in a statically determinate manner. 

The examples illustrated below in Figs. 10.9a, b and c will clarify the point even 

more. In applying this criterion to determine the degree of indeterminancy or 

stability of a structure, we must be careful not to overlook the conditions of local 
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instability which the procedure fails to detect. For example, in the continuous 

beam of Fig 10.10a, NCR > NCA, but there is a defi nite condition of local 

instability in span BC. Similarly, the second panel of the truss in Fig. 10.10b and 

the second storey of the building frame in Fig. 10.10c are locally unstable even 

though NCR is much larger than NCA.

NCR = 5 NCR = 5

NCR = 4 NCR = 3

NCR = 1 NCR = 3

–1

–1

–1 –1

+1

–1 –1 –1 –1+1 +1 +1 +1 +1

–1 –1

2 2

–1 +1

(a)

(b)

(c)

Fig. 10.9  (a) Statically determinate and stable, (b) Stable—degree of indeterminancy = 1,

(c) Unstable—degree of instability = 2

The discussions of this section also apply to space frames. The open tree in 

space will have at its base 6 restraints and to open up a closed ring requires the 

removal of 6 constraints—three translations and three rotations. The kinematic 

indeterminancy of a structure system is discussed later in Chapter 14.
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A B C D E

(a)

(b)

(c)

Fig. 10.10  Locally unstable structure, (a) Continuous beam, (b) Truss, (c) Building frame

10.3  ANALYSIS OF INDETERMINATE STRUCTURES

10.3.1 Fixed Beams

Conventional Method The conventional method of analysis utilizes the 

concept of consistent displacements. The method has limited application to 

single span beams and makes use of the moment-area theorem 1 and 2. Consider 

a single span beam fi xed at the ends under an arbitrary loading as shown in Fig. 

10.11.

The beam is statically indeterminate by 2 degrees. The beam is made statically 

determinate by releasing the fi xed end moments MA and MB. The resulting beam 

is known as the primary beam.

The moment at any section of the beam due to given loading can be expressed 

as the algebraic sum of two components: One (mf) due to applied loads and the 

other (Mf) due to redundant moments. The elastic curve under the two types of 

moments are indicated separately in Fig. 10.11 b and c. The combined elastic 

curve having zero slope and zero defl ection at the supports is shown in Fig. 

10.11a. We can write the resultant moment at any section X as Mx = mf + Mf

The change of slope on the elastic curve from end supports A and B is zero. 

Using moment area theorem 1 we can write
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C D

w x( )

A B

l

(a)

A B

qA (b) qB

A

(c) qB¢ MB

B
qA¢MA

Fig. 10.11  (a) Fixed beam and elastic curve (b) Primary beam under given loading

(c) Primary beam under redundant and moments

Area of the 
f

EI

m
diagram + Area of 

fM

EI
 diagram = 0

Therefore Area of 
f

EI

mÊ ˆ
Á ˜Ë ¯

 diagram = – Area of fM

EI
diagram

Again using moment area theorem 2, the ordinate at B by the tangent drawn 

from A is zero, we can write that the moment of the area of 
f

EI

mÊ ˆ
Á ˜Ë ¯

 diagram and 

the moment of area of 
fM

EI

Ê ˆ
Á ˜Ë ¯

 diagram taken about support B is zero

Or moment of area of 
f

EI

mÊ ˆ
Á ˜Ë ¯

 and moment of area of 
fM

EI

Ê ˆ
Á ˜Ë ¯

 diagram between 

A and B taken about B = 0 or moment of area of 
f

EI

mÊ ˆ
Á ˜Ë ¯

 taken about B =

– moment of area of 
fM

EI

Ê ˆ
Á ˜Ë ¯

 taken about B.

In case of prismatic beams, EI being constant, it is enough if mf and Mf 

diagrams only are considered. A few illustrative examples presented below will 

help fi x the underlying principles. 

Example 10.1 
Analyse a fi xed beam for end moments subjected to a 

concentrated load W at centre of span.

Step 1: To release end moments MA and MB

The beam is reduced to a primary beam by releasing the fi xed end moments MA 

and MB. The mf diagram and Mf diagram are shown separately. Note MA = MB due 

to symmetry of beam and loading but are unknown
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BA

l

2

W

EI Const

l

(a)

(b)

+
wl/4

MA
– MB

(c)

l

4

(d)

l

4

w /l 8

wl

8

(d) Fixed beam moment diagram

(c) diagramMf

(a) Fixed beam and loading

Fig. 10.12

Using moment-area theorem 1, we can write 

Area of mf diagram + Area of Mf diagram = 0

We get  
1

( ) 0
2 4

A

wl
l M l

Ê ˆ + ◊ =Á ˜Ë ¯

\ MA = 
8

wl
-

and MB = 
8

wl
-

Step 2: To draw moment diagram

The combined moment diagram is shown in Fig. 10.12d. The support reactions 

are each W/2 due to symmetry. The shear force diagram is same as for the simply 

supported beam. Equal end moments do not contribute any thing towards shear.

Note there are two points at l/4 from each end at which the moment is zero. 

There points are known as points of infl ection or points of contrafl exure. At these 

points the elastic curve changes its curvature from hogging to sagging.

The student may, as an exercise, verify that the defl ection at centre of span is 
3

192

Wl

EI
 which is 25% of the defl ection in a simply supported beam.
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Example 10.2 
Analyse the fi xed beam of span l subjected to a u.d.l. of 

w/unit length extending from end to end. Draw shear 

force and bending moment diagram

wl2/8

BA

l

w/unit length

wl2/12

MBMA

(a)  Fixed beam and loading

(b) diagrammf

(c) diagramMf

wl

2

wl

2

0.211l
0.211l

wl2

12

wl2

24
(d) Combined moment diagram

(e) S.F diagram

Fig. 10.13

Step 1: To release end moments

The fi xed end moments are released making the beam a simply supported primary 

beam.

The mf diagram and the fi xed end moment diagram are as shown in Fig. 10.13 

b and c.

The fi xed end moments MA and MB are unknown but MA = MB due to 

symmetry

Using moment-area theorem 1

 

22
0

3 8

Ê ˆ
+ ◊ =Á ˜Ë ¯

A

wl
l M l

or 
2

12
A

wl
M = -

and  

2

12
B

wl
M = -
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Step 2: To draw combined B.M. diagram

The combined B.M. diagram is drawn by super imposing the fi xed moment 

diagram over mf diagram as shown in Fig. 10.13c. Note that the maximum +ve 

moment diagram is 
2

24

wl
 at centre which is half of end moments numerically.

Step 3: To fi x up points of contrafl exure 

Let us take a section x at a distance x from support A 

Moment 
2 2

2 2 12
x

wl wx wl
M x= - -

Equating the moment Mx = 0

We have x2 – lx + 
2

6

l
 = 0

Solving for x, we have x = 0.211 l and 0.789 l the two roots of the quadratic 

equation.

Thus the points of contrafl exure are located at 0.211 l from either end

Step 4: To draw shear force diagram

Due to symmetry the fi xed moments MA = MB 

Hence the fi xed end moments do not in any way contribute to the shear force. 

The shear force diagram is same as in simply supported beam as shown in Fig. 

10.12(e) The reader may again, verify that the defl ection at centre of span is 
4

384

Wl

EI
, which is 20% of the defl ection in a simply supported beams

Example 10.3 
Analyse a cantilever beam propped at the end and 

subjected to a u.d.l. covering the entire span as shown 

in Fig. 10.14. Draw the shear force and bending moment diagrams.

Step 1: To release the redundant reaction component

Propped cantilever beam is statically indeterminate by one degree. We can 

make the beam statically determinate by releasing one of the redundant reaction 

components. It can be the propped support or fi xed moment at A. In our example 

support moment is released making the primary beam a simply supported 

beam.

Step 2: To evaluate redundant moment MA

The given beam undergoes rotation at propped end B but no translation.

We can evaluate MA by utilizing the concept that the tangential deviation at B 

from the tangent on the elastic curve at A = 0

or tBA = 0, that is, the moment of the moment diagram between A and B taken 

about B = 0

We can write 

22 2
0

3 8 2 2 3
A

wl l l
l M l

Ê ˆ
◊ - =Á ˜Ë ¯
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wl
5
8

wl
3
8

l
3
4

wl
2

8

l
3
8

9 2wl

128

MA

MA

wl
2

8

A B

A B

(a) Given beam and elastic curve

(b) Primary beam under u.d.l

(c) Moment diagram – primary beam

(d) Primary beam under moment MA

(e) Moment diagram due to MA

(f) Combined moment diagram

(g) Shear force diagram

Fig. 10.14  Propped cantilever beam under u.d.l.

or 
2

8

wl
MA = -

Step 3: To evaluate support reactions

The support reactions can be evaluated using equation of static equilibrium. 

Taking moments of all the forces about B we can write

 MB = RA (l) – 
2

0
2 8

wl l wl◊
- =

Which gives  
5

2 8 8
A

wl wl
R wl= + =

and RB = 
5 3

8 8
w l wl wl◊ - =

Step 4: To fi nd point of contrafl exure

Let the section be located at a distance x from support B writing down moment 

 Mx = 
23

0
8 2

wx
wlx - =
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We get x = 
3

4
l

Step 5: To evaluate maximum +ve moment

Let the maximum +ve moment occur at a section ¥ distance x from B. Then 

 

23

8 2

w
= -

x
Mx wl x

or  
3

0
8

dMx
wl wx

dx
= - =

gives x = 
3

8
l

Then maximum +ve B.M. = 

2
23 3 3 9

8 8 2 8 128

Ê ˆ Ê ˆ- =Á ˜ Á ˜Ë ¯ Ë ¯
w l

wl l wl

It may be of interest to know that the maximum +ve B.M. occurs at a section 

the shear force changes its sign.

10.3.2 A General Method

In this section we shall consider a classical force method or a compatibility method 

as the fi rst of the several methods available for the analysis of indeterminate 

structures. In later chapters we shall take up slope-defl ection, moment distribution, 

Kanis and the general matrix methods of analysis.

In the previous sections, it has been emphasized that the analysis of statically 

indeterminate structures requires some additional conditions such as compatibility 

of displacements or conditions of consistent displacements.

To develop an understanding of the method of compatibility or consistent 

displacements, let us consider the propped cantilever beam shown in Fig. 10.15. 

In this the degree of indeterminancy is one. Or, alternatively, the structure has 

one redundant reaction. An additional equation can be obtained from defl ection 

considerations. As a fi rst step, the structure has to be made statically determinate 

by removing the redundant reaction. The choice of the redundant force is 

arbitrary. However, the simplicity and accuracy of the solution often depend 

upon the choice of the redundant. In selecting redundants it must be remembered 

that the structure which remains after the restraining effects of the redundants 

are removed must be stable. For example, in this particular case, we can choose 

the prop reaction as the redundants, or the moment at fi xed support C, or we may 

even choose an internal force such as moment and introduce a hinge somewhere 

along the length of the beam. We shall choose the prop reaction as the redundant 

and the restraining action of this force is temporarily removed. The remaining 

structure shown in Fig. 10.15b is commonly referred to as the primary structure. 

The redundant force is considered to be an active force on the primary structure. 

Thus, the primary structure supports not only the given loads, but also the forces 

representing the redundants.
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From now on we shall be concerned with the defl ections of the primary 

structure. The defl ections of the primary structure due to given loads and the 

redundant forces are considered separately. For the beam under consideration, 

the given loads produce displacement DBP at the point of redundant reaction RB 

as shown in Fig. 10.15b. The subscripts BP imply that the displacement is at B 

due to external load P on the primary structure. The defl ection at point B resulting 

from the redundant force RB is denoted as DBR (Fig. 10.15c). Again subscripts BR 

imply that the displacement is associated with the redundant reaction RB whose 

value, as yet, is unknown.

A

P

B
C

P

L/2

(a)

DBP

(b)

DBR

RB
(c)

L

Fig. 10.15  (a) A propped cantilever beam, (b) Defl ection due to applied load,

(c) Defl ection due to redundant reaction, RB

The defl ection equation required for the analysis of the given beam is obtained 

by considering the net defl ection of point B due to two types of loading. We know 

that the net defl ection at B must be zero because of unyielding roller support. 

Therefore, the value of RB is determined by imposing the known condition on 

the displacement at point B.

 DB = DBP + DBR = 0 (10.1)

The two displacements carry opposite signs in the equations as they are in 

opposite directions. Thus, if an upward defl ection is considered positive, DBP 

is a negative quantity. Obtaining the correct signs for forces and defl ections is 

essential. The use of defl ection and the force coordinate system will be helpful 

in complicated analysis.

DBP and DBR are defl ection quantities of the statically determinate primary 

structure. Their value can be calculated using any of the methods discussed in 

Chapters 5 and 6. For example, in our problem, we have

 
3 37

and
12 3

BP BR B

PL L
D D R

EI EI
= Ø = ≠
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Therefore,  

3

3

7 3 21

12 12
= =B

PL EI
R P

EI L

This method is often called the method of consistent displacements because 

the summation of displacements produced by the combined action of loads and 

redundants must be consistent with the given support conditions. It may also be 

noted that the principle of superposition has been utilised, thus restricting the 

validity of the analysis to the linear elastic range of the structure.

To extend the method further, consider the framed structure in Fig. 10.16. The 

fi rst step is to identify the degree of redundancy and then provide releases at those 

points in respect of those redundant forces. The frame is statically indeterminate 

to the third degree. Three additional equations of defl ection must, therefore, be 

obtained for the analysis of the frame. In the present example, the three released 

forces at B are selected as the redundant forces. The primary structure is attached 

to support A and is similar to a cantilever bent. The forces corresponding to the 

redundants are: shear R1, axial force R2 and moment R3. These quantities, R1, R2 

and R3 shown in Fig. 10.16b are in their positive direction.

A

C
P1

(a) (b)

R2

C D
D

A

BL

H

B

R3

R1

P2

P3

Fig. 10.16  (a) Portal frame, (b) Frame released at B

The basic support or boundary condition is that the fi nal displacements D1, D2 

and D3, at the release points must be zero. Displacement D1 is the sum of four 

components; D1p due to applied loading, D11 due to the force R1, D13 due to the 

force R2 and D13 due to the force R3. The fi rst subscript indicates correspondence 

to release 1, the second denotes the cause of the displacement—the loading P and 

the redundant forces corresponding to releases 1, 2 and 3 respectively. Since

 D1 = 0 we have

 D1 = D1P + D11 + D12 + D13 = 0

Similarly considering the compatibility condition for releases 2 and 3, we 

have

 D2 = D2P + D21 + D22 + D23 = 0

and D3 = D3P + D31 + D32 + D33 = 0  (10.2)
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Each of the above terms represents the displacement of a statically determinate 

structure resulting from a specifi ed load condition and each has its positive 

direction defi ned by the positive sense of the corresponding releases. The nine 

displacements Dij (i = 1, 2, 3, and j=1,2, 3), are linear functions of unknown 

redundants R1, R2 and R3.

10.4  FLEXIBILITY COEFFICIENTS

Any of the displacements Dij of the primary structure is a measure of the fl exibility 

of the structure; that is, the more fl exible the structure, the higher the values of 

the displacements. It is convenient to defi ne the effect of the redundant forces 

on the primary structure in terms of the displacements produced by unit forces 

corresponding to the redundants. For example, we write the displacement Dti as

 Dij=fijRj (10.3)

where fij, the displacement at i corresponding to release i for a unit force 

corresponding to Rj at release j, is called the fl exibility infl uence coeffi cient.

In general, a fl exibility infl uence coeffi cient for a structure, fij is defi ned as the 

defl ection at point i resulting from a unit force applied at j.

In the beam of Fig. 10.11 we may apply a unit force at point B to get the 

fl exibility coeffi cient.

 
3

3
BB

L
f

EI
=  (10.4)

The equation of compatibility becomes 

 DBP + fBB RB = 0 (10.5)

from which = - BP
B

BB

D
R

f
 (10.6)

The fl exibility coeffi cients are purely functions of geometry and elastic 

property of primary structure. They are independent of actual loading. Thus, we 

can determine the fl exibility coeffi cients for the primary structure and use them 

repeatedly for analysing the structure for different loading cases.

Using the concept of fl exibility coeffi cients, Eq. 10.2 can be written as

  D1P + f11R1 + f12R2 + F13R3 = 0 

  D2P + f21R1 + f22R2 + f23R3 = 0 (10.7)

  D3P + f31R1 + f32R2 + f33R3 = 0

In matrix form, we write

 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

P

P

P

f f f R D

f f f R D

f f f R D

È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

 (10.8)

or simply, FR = –D (10.9)
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The values of the unknown redundants are obtained by inverting the fl exibility 

matrix of Eq. 10.9 and pre-multiplying the negative of matrix D by this inverse. 

Thus,

 R = –F
–1 D (10.10)

The method of consistent displacements can be used to analyse various types 

of statically indeterminate problems. This procedure entails the computation of 

defl ection quantities. Various methods for computing defl ections were presented 

in Chapters 5 and 6. The computation method adopted for a particular structure is 

often a matter of personal choice, but in certain cases certain methods will have 

distinct advantages over others.

In the examples that follow appropriate methods have been used. It may be 

stressed here that some other methods of computation of defl ections may be 

preferable. However, the emphasis in these examples is on the indeterminate 

aspect of analysis rather than on the comparison of different methods of 

computing defl ections.

Example 10.4 
It is required to determine (a) the reaction at the right 

hand support, (b) the fi xed end moment at the left hand 

support and (c) the rotation at end B for the beam in Fig, 10.17.

The given beam is statically indeterminate to the fi rst degree. The choice of 

the redundant force is arbitrary, but we select RB as the redundant one since we 

are required to determine this. The resulting primary structure is a cantilever. The 

primary structure loaded with given moment MB is shown in Fig. 10.17b. Also 

the primary structure loaded with a unit value of redundant MB is shown in Fig. 

10.17c.

The condition for consistent displacement at B is written as

 DBP + fBB RB = 0 (10.11)

The defl ection quantities DBP and fBB are determined by the moment area 

method. From the M/EI diagram for an applied moment MB in Fig. 10.17b we 

can write

 

2

2

B
BP BA

M L
D t

EI
= = ≠

From the M/EI diagram for the unit reaction at B in Fig. 10.17c the expression for 

the fl exibility coeffi cient fBB is

 

3

3
BB BA

L
f t

EI
= = ≠

The value of redundant reaction RB from Eq. 10.6 is

 
3

2

BP B
B

BB

D M
R

f L
= - = -  (10.12)
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A

(a)

(b)

RB

B

MBEI Constant

MB

t DBA BD=

t fBA BB=

1
(c)

L

Fig. 10.17  (a) Beam under applied moment MB, (b) Defl ection of primary structure

due to applied moment MB, (c) Defl ection of primary structure due to unit force

applied along redundant force RB

The upward defl ection is taken as positive. The negative sign for the value of 

RB indicates that the reaction is downwards. After knowing RB, the question of 

fi nding the fi xed end moment at support A is only a matter of applying statics. 

Summing up the moments and taking the anti-clockwise moments as positive, 

we have

 MB + RB (L) + MA = 0

or  MA = 
2

BM
 (10.13)

The slope of the beam at B is obtained by the superposition of the slopes by 

applied moment MB and redundant reaction RB on the primary structure, that is

  

2

2

B B
B

M L R L

EI EI
q = +

Substituting for RB from Eq. 10.12, we get

  
4

B
B

M L

EI
q =  (10.14)

We shall solve another example of a fi xed end beam for end moments which 

are needed quite often.

Example 10.5 
It is required to determine the end moments for a fi xed 

end beam subjected to concentrated load P at distance 

a from one end and b from the other as shown in Fig. 10.18.

The given beam is statically indeterminate to the second degree. The beam 

can be made statically determinate by releasing the reaction components at one 

of the two fi xed ends. The resulting primary structure would be a cantilever. 

Alternatively, the end moments may be released, reducing it to a simple beam. 

In this example, the end moments are considered as redundants. The elastic line 
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of the primary structure under the given loading as well as the unit values of 

moments MA and MB are shown in Fig. 10.18 separately.

A

(a)

(b)

B

1

(c)

P

a b

L

A B

P

tBA

tAB

qAP qBP

(d)

A B
fAA fBA

tBA

A B

tB
tAB

fAB fBB

tAB

Fig. 10.18  (a) Fixed end beam and loading, (b) Displacement of primary structure due to 

applied load, (c) Displacement of primary structure due to unit moment at A,

(d) Displacement of primary structure due to unit moment at B

The two compatibility conditions which may be utilised are that the end 

rotations qA = qB = 0 in a fi xed beam. This condition may be written as

 qA = qAP + fAA MA + fAB MB = 0

 qB = qBP + fBA MA + JBB MB = 0 (10.15)

Writing this in matrix form,

 
0

0

AP AA AB A

BP BA BB B

f f M

f f M

q

q

Ï ¸ È ˘ Ï ¸ Ï ¸
+ =Ì ˝ Ì ˝ Ì ˝Í ˙

Î ˚ Ó ˛Ó ˛ Ó ˛
 (10.15a)
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The rotation quantities qAP, qBP and the rotation infl uence coeffi cients fAA, 

fAB, fBA and fBB can be obtained using the moment area method. Referring to Fig. 

10.18b, and from the M/EI diagram, we can write

 ( 2 )
2

abBA
AP

Pt
a b

L EIL
q = = +

 (2 )
2

abAB
BP

Pt
a b

L EIL
q = = +

Similarly, from Figs. 10.18c and d and the corresponding M/EI diagrams we 

can write

  

2 2

;
3 6

BA AB
AA BA

t tL L
f f

L EI L EI
= = = =

   
2 2

;
3 6

AB BA
BB AB

t tL L
f f

L EI L EI
= = =  (10.16)

Substituting the appropriate values from Eq. 10.16 in Eq. 10.15 and solving 

simultaneously for MA and MB, we get

 

2

2A

Pab
M

L
= -

and 
2

2
= -B

Pa b
M

L
 (10.17)

The negative sign for moments MA and MB indicates that they are opposite to 

the direction assumed in the beginning.

The end moments for concentrated load P, acting at the centre of beam may 

be obtained by substituting

 in Eq.10.17
2

L
a b= =

This gives 
8

A B

PL
M M= = -  (10.18)

We can also make use of Eq. 10.17 to evaluate the end moments for a fi xed 

end beam under a uniformly distributed load extending over a distance from a 

to b as shown in Fig. 10.19. If an elemental load (w◊dx) acting over a differential 

length (dx), is considered as concentrated we can write the end moments using 

Eq. 10.17 as

A

a

b

B

x

w.dx

dx

w/unit

( – )L x

Fig. 10.19
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2

2

( ) ( ) ( )
A

w dx x L x
dM

L

◊ -
= -

and  
2

2

( ) ( ) ( )
B

w dx x L x
dM

L

◊ -
= -

The end moments developed due to the loading extending from a to b may be 

written as

  
2

2

( )( )b

A
a

w x L x
M dx

L

-
= - Ú  (10.19)

and  
2

2

( )b

B
a

w x L x
M dx

L

◊ -
= - Ú

The evaluation of integrals in Eq. 10.19 gives directly the required moments. 

For example, for a uniformly distributed load occupying the entire span, the 

limits to be substituted are a = 0 and b = L. Evaluating the integral, we get

  
2

12
A

wL
M = -

and  
2

12
B

wL
M = -  (10.20)

The reader may verify that for a load extending from the left support to the 

centre, the fi xed end moments are

  211

192
AM wL= -

and  25

192
BM wL= -  (10.21)

Example 10.6 
Find end moments in a fi xed beam of span l under a 

uniformly varying load as shown in Fig. 10.20. Draw 

shear force and bending moment diagrams.

Step 1: Evaluation of fi xed end moments

Consider the elemental load 
wx dx

l

◊
 over (dx) as a concentrated load. We can 

write, using equation 10.17 the elemental moment dMA at A as 

  

2

2

( )
( )

◊ -Ê ˆ= - ◊Á ˜Ë ¯A

w x l x
dM dx x

l l

or  
2 2

3
( )A

w
dM x l x dx

l
= - -

or  2 2 2

3
0

( 2 )

l

A

w
M x l lx x dx

l
= - - +Ú
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0.5477l

3

20
wl

30
wl2

0.1090wl2

20
wl2

l

wx
dx

w/unit length

x

x ( – )xl

7

20
wl

(a)  Fixed beam and loading

(b)  Moment diagram

(c) Shear force diagram

Fig. 10.20

or  
2 2 3 4

3
0

( 2 )

l

A

w
M x l lx x dx

l
= - - +Ú

On integration and substitution of limits 

We get 
2

30
A

wl
M = -

Similarly, we can write

  
2

2
( )B

x l x
dM w dx x

l l

-Ê ˆ Ê ˆ= -Á ˜ Á ˜Ë ¯ Ë ¯

    
3

3
( )

w
x l x dx

l
= - -

or  

3 4

3
0

( )

l

B

w
M x l x dx

l
= - -Ú

On evaluation of integral we get 
2

20
B

wl
M = -

Step 2: To evaluate reaction components RA and RB

 
1

3 2

B A
A

M Mwl
R

l

-Ê ˆ
= ◊ - Á ˜Ë ¯
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9 3

or
6 60 60 20

lw wl
wl wl= - =

and 
21 7

or
3 60 60 20

B

wl wl
R wl wl= + =

The combined moment diagram is shown in Fig. 10.20d which is the 

superimposition of fi xed moment diagram over mf diagram.

Step 3: To draw shear force diagram.

Now that RA and RB have been evaluated we can write shear force Vx at x, distance 

x from A is

 Vx
3 1

20 2

wx
wl x

l
= - ◊ ◊    or  

23

20 2

wx
wl

l
- ◊

This is a second degree eqn. The S.F. is zero at x = .5477 l 

The shear force diagram is shown in Fig. 10.20c.

Example 10.7 
Analyse the fi xed beam of span l when the right end 

support sinks by an amount d as shown in Fig. 10.21. 

Take EI is constant.

A B
d

MA

RA
RB

MB

MB

MA

(a) Beam with sunken support
and elastic curve

(b) Free body of the beam

(c) Fixed end moments diagram

(d) Shear force diagram

Fig. 10.21

Step 1: To fi nd end moments MA and MB.

Let the support B sink by an amount d. 

The sinking of support induces fi xed end moments MA and MB, both of them 

anticlockwise.

Using the beam moment sign convention the fi xed moment diagram is drawn 

in Fig. 10.21c. The mf diagram is zero as there is no any external load. In the 

elastic line we notice that the change of slope on the elastic curve from A to B 

is zero. Using moment-area theorem 1, the area of 
M

EI
 diagram between A and 

B = 0
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or 
1 1

0
2 2 2 2

A BM Ml l

EI EI

Ê ˆ Ê ˆ- + =Á ˜ Á ˜Ë ¯ Ë ¯
or MA = MB (numerically)

Again the ordinate cut at B by the tangent at A on the elastic curve is equal to 

tBA which is same as d. we can write

 2 3 2 3
A B

l l l l
M M

EI EI
d

2Ê ˆ Ê ˆ- + =Á ˜ Á ˜Ë ¯ Ë ¯

 

2 2

0
3 6

A BM l M l

EI EI
- + =

Gives MA = 
2

6EI

l

d
-  and MB 

2

6EI

l

d
=

Step 2: To fi nd support reactions RA and RB

Using equation of equilibrium and writing summation of moments about support 

B = 0

we have RA(l) – MA – MB = 0

 RA 
3

12 EI

l
=

and RB  
3

12 EI

l
=  to satisfy SFY = 0

The shear force diagram is a rectangle having constant shear all along the beam.

Example 10.8 
For the fi xed beam shown in Fig. 10.22 support A is 

rigid but support B rotates by 10–4 radians for every 

kN.m moment. If EI 20 ¥ 103 kN.m2 fi nd the end moments.

MB

wl2

8

MA

5 KN/M

BA

8m

(a) Given beam

(b) Rotation of support under loadB

(c) Fixed moment diagram

(d) Simply supported beam moment diagram

Fig. 10.22

Let MA and MB are the end moments and a is the angle of rotation of the 

support B under the load. As usual, the end moments are considered as redundant, 
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we can evaluate the redundant moments by applying the following boundary 

conditions.

 (i)    tBA = 0

 (ii) Rotation at end   B = a MB or ABt

l

Writing the above in the form of equation,

 

21 2 1 2
( ) ( ) 0

2 3 2 3 3 8 2
BA A B

l l wl l l
t M l M l

EI EI EI

Ê ˆ ◊
= - - + =Á ˜Ë ¯

Rewriting tBA 
2 2 4

0
3 6 24

A BM l M l wl

EI EI EI
= - - + =  (10.22)

Writing condition (ii) in equation form

 

21 2 2
0

2 3 2 3 3 8 2
A B B

l l l l Wl l
M M l M

EI l EI l EI l
a

Ê ˆÊ ˆ Ê ˆ- - + ◊ - =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

or 

3

0
6 3 24

A B

l l wl
M M

EI EI EI
a

Ê ˆ Ê ˆ- - + + =Á ˜ Á ˜Ë ¯ Ë ¯  (10.23)

Multiplying Eqn (10.23) by 2l and subtracting from Eqn (10.22)

 

2 4

2
6 3 24

B
B

M l l wl
M l

EI EI EI
a

Ê ˆ- + + =Á ˜Ë ¯

or  ( )
2 42

3
6 3 24

B BM l M l wl
l EI a+ + + =

Substituting for EI, a and l 

We get MB = + 13.33 kN

Substituting MB value in Eqn. 10.22

We get MA = + 33.33 kN.m

The assumed –ve values for MA and MB are true

Example 10.9 
A fi xed beam is loaded with a moment M as shown in 

Fig. 10.23. Determine end moments.

Step 1: To release the redundant reaction components

The beam is statically indeterminate by 2 degrees. We have got the option to 

release either the end moments MA and MB or the reaction components RA and MA 

at the left end A to make the beam a primary one. The second option is chosen. 

The primary beam is a cantilever beam as shown in Fig. 10.23b with redundants 

RA and MA. The bending moment diagram on the primary beam is drawn in parts 

as shown in Fig. 10.23. Considering MA as hogging.
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MA MA

RA.l

M

MA

RA

M

EI Const.

M
BA

a

(a) Given beam and the elastic curve

(b) Primary cantilever and redundants andM RA A

(c) Moment diagram due to M

(d) Moment diagram due to MA

(e) Moment diagram due to RA

b

Fig. 10.23

Step 2: To evaluate redundants RA and MA

In the elastic curve the change of slope between ends A and B is zero and therefore 

the area of the moment diagrams between A and B = 0. writing the equation, we 

have

 
21 1

0
2

A AMb M l R l
EI

È ˘- - + ◊ =Í ˙Î ˚

or  

2

2

A
A

R l
M l M b- = ◊  (10.24)

Again tBA = 0 as the intercept at B from the tangent at A on the elastic curve is 

zero.

Writing the moment of Moment diagrams about A = 0 we have

 

2 3
1

. . 0
2 2 6

A AM l R lb
M b

EI

È ˘◊
- - + =Í ˙

Í ˙Î ˚

or  

3 2 2.

6 2 2

A AR l M l M b
- =  (10.25)

Multiplying Eqn. (10.24) by 
3

l
 through out and subtracting from Eqn. (10.25) 

we get
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 MA = 2

M

l
 (2ab – b2)

and RA = 
3

6
M ab

l

Step 3: To evaluate MB

With the known redundant reaction components we can calculate.

 MB = RA ◊ l – MA – M

or MB = 
2

M

l
 (2 ab – a2)

It may be noted that the sign of moment MA reverse it 2ab < b2 and so also MB 

if 2ab < a2. Taking a = b = l/2 the moment and shear force diagrams are shown 

in Fig. 10.24.

M/2

M/2

M

4

M

4

3
2

M
l

B
A

l

2
l

2
M

M
l

3

2

(a) Moment diagram

(b) Shear force diagram

Fig. 10.24

Example 10.10 
It is required to determine the horizontal reaction 

component for the frame in Fig. 10.25. The EI value for 

the beam is twice the value for the columns.

The frame is statically indeterminate to the fi rst degree. If we choose the 

horizontal reaction component at support D as the redundant, the frame is made 

into a primary structure by releasing support D from the restraint for lateral 

displacement. This is achieved by considering it to be placed on the roller support 

as shown in Fig. 10.25b. Redundant force RDX is considered to be positive when 

it acts along the positive direction of X. Also indicated are the directions of x for 

each member which are to be used in evaluating the defl ections of the structure.

We shall evaluate defl ection quantities by the method of virtual work. The 

loadings on the primary structure to obtain each of the defl ection quantities by 

virtual work are shown in Fig. 10.26. The internal virtual work for each of the 

members is obtained from the Eq. 6.51:
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A

B C

D

E

x

(a) (b)

4 m

2EI

EI

50 kN

RDY

RDX

2 m

50 kN

x
C

x

D
A

x

B
E

4
 mEI

Fig. 10.25  (a) Frame and loading, (b) Primary structure

50 kN

DDX fDX DX

P P= = 1P = 1

Fig. 10.26  Forces for defl ection computations

 0

L
x x

i x

M d
w

EI
= Ú m

The moment is considered positive when it produces compression on the 

outer face. Virtual moment mx and real moment Mx are expressed in terms of x 

coordinates as indicated in Fig. 10.25b. The values are tabulated in Table 10.1.

Table 10.1  Calculation for determining internal virtual work

Section x = 0 at
Limits for 

x in m

Moment

mx

Moment

Mx 0

/

L

xMx d EIÚ

AB A 0–4 x 0 0

CD D 0–4 x 0 0

BE B 0–4 4 16.67x
0

16.67
(4)

2

L
x

dx
EI

Ê ˆ
Á ˜Ë ¯Ú

CE C 0–2 4 33.33x
0

33.33
(4)

2

L
x

dx
EI

Ê ˆ
Á ˜Ë ¯Ú

Equating external virtual work to internal virtual work, we have from Eq. 

6.51
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 DDX 
4 2

0 0

(4)(16.67 ) (4)(33.33 )
0

2 2

x dx x dx

EI EI
= + +Ú Ú

400.0

EI
=

Similarly,

 FDX DX 
4 4 4 2

0 0 0 0

( )( ) ( )( ) (4)(4) (4)(4)

2 2

x x dx x x dx dx dx

EI EI EI EI
= + + +Ú Ú Ú Ú

90.66

EI
=

The equation for consistent displacement is

 DDX + RDX ◊ FDX DX = 0

or RDX  
400.00 90.66DX

DX DX

D

EI EIF
= - = -

or RDX = – 4.412 kN

The negative sign for RDX indicates that the reaction component at D is inwards, 

that is, opposite to the direction assumed.

The method of consistent displacements can also be used to determine the bar 

forces in statically indeterminate truss. This aspect is illustrated by the following 

examples.

Example 10.11 
It is required to determine the bar forces in the steel 

truss of Fig. 10.27. The area of each member is 500 ¥ 

10–6 m2 (500 mm2). 

Applying the criteria for indeterminancy we fi nd that the truss is redundant 

internally by two degrees. In analysing trusses with double diagonals it is 

convenient to select release in one of the diagonal members because the resulting 

primary structure will be the conventional truss.

We consider diagonal members 1–5 and 2–4 as redundants. Let the forces in 

the redundant bars be X1 and X2 as indicated in Fig. 10.27c.

 The analysis of the truss reduces to applying an equation of compatibility to 

the changes in lengths of the released members. The relative displacements D1p 

and D2p corresponding to the two cut ends of the bars is shown in Fig. 10.27b. 

The displacements are always measured along the lengths of the redundant 

members and since the redundants are unstressed at this stage of the analysis, 

displacement D1p is equal to the relative displacement of joint 4 with respect to 

joint 2 and D2p is the relative displacement of joint 5 with respect to 1.

These displacements must be eliminated by the relative displacements of the 

cut ends of members 2–4 and 1–5 when the redundant forces are acting in the 

members. The desired consistency deformations are:

 D1p + f11X1 + f12X2 = 0

 D2p + f21X1 + f22X2 = 0 (10.26)

where f11 is the fl exibility infl uence coeffi cient for unit tensile forces applied at 

the cut ends of member 4-2
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and f22 is the fl exibility infl uence coeffi cient for unit tensile forces applied at 

the cut ends of the members 5-1.
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Fig. 10.27  (a) Truss and loading, (b) Primary truss under external loading, (c) Primary truss 

under redundant forces, (d) Bar forces p, (e) bar forces p1, (f) Bar forces p2,

(g) Final bar forces P 

Expressing Eq. 10.26 in matrix form

 
111 121

21 222 2

p

p

Df fX

f fX D

Ï ¸Ï ¸ È ˘ Ô Ô= -Ì ˝ Ì ˝Í ˙
Î ˚ Ô ÔÓ ˛ Ó ˛

 (10.26a) 

The method of virtual work will be used to evaluate defl ection quantities. The 

expression for internal virtual work in a truss is given by Eq. 6.53. The loadings 

on the truss for determining defl ection quantities are shown in Figs. 10.27b and 

c. The values of bar forces resulting from each condition of loading are shown 

in Figs. 10.27d, e and f and also in Table 10.2. As before, the tensile forces in the 

members are considered positive. The values of D1p and D2p are found from the 

data of Table 10.2. 
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 D1p = 
1 68.28 CLpL

AE AE
= -Â

p

and D2p =  2 150.70 CLpL

AE AE
= -Â

p

where LC = 3 m and AE is constant for all members.

The same method is used to compute fij. In this case the real loading is a unit 

load corresponding to release i and the unit dummy load corresponds to release 

j, that is

 f11 
1

1

p L

AE

Ê ˆ= Á ˜Ë ¯
Âp  for all members

 f12 
2

1

p L

AE

Ê ˆ= Á ˜Ë ¯
Âp

also  f21  
1

2

p L

AE

Ê ˆ= Á ˜Ë ¯
Âp

and f22 
2

2

p L

AE

Ê ˆ= Á ˜Ë ¯
Âp

From Table 10.2, we have

 f11 

4.828 cL

AE
=   f12 

0.5 cL

AE
=

 f21 
0.5 cL

AE
=   and f22 

4.828 cL

AE
=

The compatibility condition is that the ends of both redundant members must 

match, that is, there should not be any gaps or overlaps of the members in the 

actual structure. Using compatibility Eq. 10.22

 D1p + f11X1 + f12X2 = 0 

 D2p + f21X1 + f22X2 = 0

 

1

2

4.828 0.500 68.28

0.500 4.828 150.70

c c
XL L

XAE AE

-Ï ¸È ˘ Ï ¸
= -Ì ˝ Ì ˝Í ˙ -Î ˚ Ó ˛Ó ˛

and solving for X1 and X2 by inverting the fl exibility matrix, we have

 

1

1

2

4.828 0.500 68.28 11.028
kN

0.500 4.828 150.70 30.070

X

X

- -Ï ¸ È ˘ Ï ¸ È ˘
= =Ì ˝ Ì ˝Í ˙ Í ˙-Î ˚ Î ˚Ó ˛Ó ˛

Therefore, X1 = 11.028 kN (tension) and X2 = 30.07 kN (tension).

The fi nal set of forces in the truss members is obtained by adding up, for each 

member, the three separate effects, that is, P = p + p1 ◊ X1 + p2 ◊ X2. The fi nal bar 

forces are given in Fig. 10.27g.
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This procedure can also be extended to stresses produced by temperature 

changes in indeterminate trusses. The procedure is illustrated by the following 

example.

Example 10.12 
Consider the same truss as in Example 10.11 above. 

Supposing that there is a temperature drop of 30°C on 

all the outer members, 1–2, 2–3, 3–4, 4–5 and 5–6, fi nd the forces set up in the 

members due to temperature drop only. Take a = 1.0 ¥ 10–5 °C.

The change in length of bars affected by temperature drop is

 DL = a L DT = 30 ¥ 10–5 L

where L = 3 m

To evaluate the defl ections the virtual work method is used. The internal vir-

tual work caused by the virtual forces p1 riding through real displacement DL is 

equated to the external virtual work caused by virtual unit load placed in the di-

rection of redundant members, in moving through the real displacements, that is

 1◊D1 DL = S p1 DL (10.27)

 1◊D2 DL = X p2 DL (10.28)

where p1 and p2 represent forces in members due to a unit load applied separately 

at redundants 1 and 2 respectively. The values of p1 and p2 are tabulated (Table 

10.3) for all the members affected by the temperature drop.

 D1 DL = 6.36 Lc ¥ 10–4

 D2 DL = 4.24 Lc ¥ 10–4

It may be noted that fl exibility matrix F is the same as in Example 10.10. 

Therefore, the redundant forces due to temperature change are

 

1

1 4

2

4.828 0.500 6.36
10

0.500 4.828 4.24
c

C

X L AE
L

X AE L

-
--Ï ¸ È ˘ Ï ¸

= - ¥Ì ˝ Ì ˝Í ˙ -Î ˚ Ó ˛Ó ˛
On simplifying, we have

 X1 = –12.39 kN 

 X2 = –7.50 kN

Table 10.3  Computations for temperature stresses

Member p1 p2 DL D1DL D2DL

kN kN Lc ¥ 10–4 Lc ¥ 10–4

1–2 0 –0.707 –0.0003 Lc 0 2.12

2–3 –0.707 0 –0.0003 Lc 2.12 0

3–4 –0.707 0 –0.0003 Lc 2.12 0

4–5 –0.707 0 –0.0003 Lc 2.12 0

5–6 0 –0.707 –0.0003 Lc 0 2.12

S 6.36 S 4.24
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Fig. 10.28  Bar forces due to temperature change 

The bar forces only due to temperature drop are given by 

 P = p1 ◊ X1 + p2 ◊ X2

The results are summarised in Fig. 10.28.

 The method also lends itself well to the condition of support movements and 

other types of initial displacements. For example, let us assume that the base 

of the right hand column of the portal frame in Fig. 10.16 moves by an amount 

D1 to the right and settles down by an amount D2. The expression for consistent 

displacement given in Eq. 10.7 now becomes 

 

1 11 12 13 1 1

2 21 22 23 2 2

3 31 32 33 3 0

P

P

P

D f f f R

D f f f R

D f f f R

DÈ ˘ È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙ Í ˙+ = -DÍ ˙ Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙ Í ˙Î ˚Î ˚ Î ˚ Î ˚

 (10.29)

 

1

1 11 12 13 1 1

2 21 22 23 2 2

3 31 32 33 3

P

P

P

R f f f D

R f f f D

R f f f D

-
- DÈ ˘ È ˘ È ˘

Í ˙ Í ˙ Í ˙= - = + DÍ ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

 (10.30)

Care must be exercised in such an analysis to ensure that the given settlements 

and computed displacements are in the same dimensions.

10.5  THEOREM OF THREE MOMENTS

A general equation based on the method of consistent displacements can be 

developed for continuous beams with or without support moments. We shall 

fi rst discuss beams with rigid supports. The equation relates the moments at the 

three consecutive support points to the loading on the intermediate spans and is, 

therefore, referred to as theorem of three moments. This theorem was presented 

by Clapeyron in 1857 for the analysis of continuous beams. The application of 

the three moments equation to a continuous beam results in a set of simultaneous 

equations with the moments over the supports as the unknowns.
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L I1, 1 L I2, 2

M1 M2 M3

M1 M2 M2 M3

1 2 3

(a)

(c)

(b)

(d)

q2P (Left) q2P (Right)

Fig. 10.29  (a) Continuous beam, (b) Primary structure, (c) Primary structure under

external loading, (d) Primary structure under redundant moments

Consider a continuous beam in which 1, 2 and 3 are the consecutive supports 

and spans 1–2 and 2–3 are arbitraily loaded as shown in Fig. 10.29a.

L1 and I1, L2 and I2 are the span lengths and moments of inertia corresponding 

to spans 1–2 and 2–3 respectively. The defl ected shape of the beam under loading 

is given by a dotted line.

 This beam can be made statically determinate by inserting hinges at the 

supports and considering support moments M1, M2 and M3 as redundants whose 

values are to be determined. We now consider the defl ected shape of the primary 

structure under given loading and the redundant moments (see Figs. 10.29c and 

d). The relative rotation between the segments of the beam over support 2 is 

represented by

 q2P = q2P(left) + q2P(right) (10.31)

The rotation at 2 due to redundant moments M1, M2 and M3 are related by the 

condition

 q2P + f21M1 + f22M2 + f23M3 = 0 (10.32)

The fl exibility coeffi cients f21, f22, and f23 are obtained by subjecting the 

primary structure to unit moments at supports 1, 2 and 3 and knowing the 

rotations at support 2.

The relative rotation q2P is obtained by considering the two segments of the 

beam as shown in Fig. 10.30a.

From Fig. 10.30a we see that the relative rotation at support 2 is

 q 2P = q2P(left) + q2P(right) (10.33)
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Rotation q2P(left) is a function of the transverse loading on the span 1-2. The 

amount of rotation due to transverse loading can be expressed in general terms 

by the moment area method. The area of the moment diagram is indicated by A1 

and the distance of the centroid of the area from support 1 is denoted by x1. The 

rotation at support 2 is given by deviation t12 divided by span L1, that is,

  q2P(left) 
1 1

1 1

A x

El L
=  (10.33a)

Similarly, for span 2-3

 q2P(right) 
2 2

2 2

A x

El L
=  (10.33b)

The values of f21, f22 and f23 can be obtained by applying unit couples in 

turns at supports 1, 2 and 3 as indicated in Fig. 10.30b and then determining 

the rotations over support 2. Using the moment-area method or conjugate beam 

method, we obtain

 
1

21

16

L
f

EI
=

 f22 = f22(left) + f22 (right) 
1 2

1 23 3

L L

EI EI
= +

A1

x1

A2

X2

t12

f22 (Left) f22 (Right)

f23f21

t32

+
+

1
2 2

3

q2P (Left) q2P (Right)

(a)

1

1

1
2 2 3

322
1

(b)

1

Fig. 10.30  (a) Primary structure under external load and corresponding moment diagrams,

(b) Primary structure under unit redundant forces



Indeterminate Structures—Compatibility Methods  343

and  f23
2

26

L

EI
=  (10.34)

Substituting in Eq. 10.28 the values from Eqs. 10.29 and 10.30, we get

 3 21 1 2 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

0
6 3 3 6

M LM L M L M L A x A x

EI EI EI EI EI L EI L
+ + + + + =  (10.35)

Rearranging Eq. 10.31, we get

  3 21 1 1 2 1 1 2 2
2

1 1 2 2 1 1 2 2

6 6
2

M LM L L L A x A x
M

EI EI EI EI EI L EI L

Ê ˆ
+ + + = - -Á ˜Ë ¯

 (10.36)

Equation 10.36 is the general form of the three-moment equation. The moment 

quantities in Eq. 10.36 are positive according to the beam sign convention, that 

is, positive moments cause tension at the bottom fi bres of the beam. If EI is 

constant throughout, Eq. 10.36 simplifi es to

 M1L1 + 2M2 (L1 + L2) + M3L2 = – 1 1 2 2

1 2

6 6
A x A x

L L
-  (10.37)

The three-moment equation developed above involves not only the moment 

over support 2 but also the moments at supports 1 and 3. In applying the three-

moment equation to a particular beam, we locate the interior supports, such as 

2, 3, 4, etc. successively and write as many equations as the unknown redundant 

support moments. A simultaneous solution of the equations for the unknown 

moments yields the required results. The application of this method is illustrated 

in the following examples.

Example 10.13 
It is required to determine the support moments and 

reactions for the three-span continuous beam shown in 

Fig. 10.31a. EI is constant.

The beam is indeterminate to the second degree and requires the use of two 

conditional equations. The three-moment equation, if used twice, once for the 

two left hand spans (Fig. 10.31b) and once for the two right hand spans (Fig. 

10.31d) supplies the two required conditional equations.

Applying Eq. 10.37 to the two left hand spans, we have

 MA (4) + 2MB (4 + 8) + MC (8) = –
(60)(2) (426.67)(4)

6 6
4 8

-

Since MA = 0, this simplifi es to

 24MB + 8MC = –1460 (10.38)

Similarly by applying Eq. 10.37 to the two right hand spans, we have

 MB (8) + 2MC (8 + 6) + MD (6) = – 
(426.67)(4) (180)(3)

6 6
8 6

-
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A = 60 A = 426.67
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3 m

A = 426.67 A = 180.0
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9.44
42.25 52.70 33.65

Fig. 10.31  (a) Three-span continuous beam and loading, (b) Left two spans,

(c) Simple beam moment diagrams, (d) Right two spans, (e) Simple beam

moment diagrams, (f) Final moment diagram

or  8MB + 28MC = –1820 (10.39)

Solving Eqs. 10.38 and 10.39 simultaneously, we obtain

 MB = – 42.25 kN.m, and MC = –52.70 kN.m

The reactions are determined by applying the equations of statics as follows

 RA = 20 + 
4

BM

or RA =20 + 
( 42.25)

9.44 kN
4

-
=



Indeterminate Structures—Compatibility Methods  345

Similarly,

 RB = 20 + 10(4) + 
4 8

C BB M MM --
+  = 69.25 kN

  RC = 60 + 
8 6

B C CM M M-
-  = 70.09 kN

Finally, RD = 20 + 
6

CM
 = 11.22 kN

The moment diagram is shown in Fig. 10.31f.

The theorem of three moments can also be applied to fi xed end beams. The 

required number of conditional equations can be obtained by considering an 

imaginary span adjacent to the fi xed end as having an arbitrary span length with 

an infi nite moment of inertia. This point is illustrated by solving the following 

example.

Example 10.14 
It is required to determine the support moments and 

reactions for a continuous beam fi xed at one end and 

having a overhang at the other as shown in Fig. 10.32a. EI is constant.

The beam is statically indeterminate to the second degree and requires two 

conditional equations.

For the purpose of writing three-moment equations, an imaginary span to the 

left of fi xed support A having an arbitrary length L¢ and moment of inertia I¢ = μ 

may be considered (see Fig. 10.32b). The three-moment equation for spans A¢ – 

A and A – B can be written as

 
6(80)(2)

2 0AB AB
A A B

AB

L LL L
M M M

I I IL

¢ ¢Ê ˆ Ê ˆÊ ˆ + + + = -¢ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯μ μ
 (10.40)

Substituting for LAB = 4 and multiplying throughout by I, this reduces to

  8MA + 4MB = –240 (10.41)

Similarly, writing the three-moment equation for spans A–B and B–C, we have

 MA (4) + 2MB (4 + 6) + MC (6) = 
(80)(2) 6(80)(3)

6
4 6

- -  (10.42)

We know MC = –40 kN.m

Substituting this value in Eq. 10.42, we have

 4MA + 20MB = –540 (10.43)

Solving Eqs. 10.41 and 10.43 simultaneously, we get

 MA = – 18.33 kN.m, and MB = –23.33 kN.m

The moment diagram is shown in Fig. 10.32c. The reactions are evaluated 

from the free-body diagrams in Fig. 10.32d and using statics only. Therefore,
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B C
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(c)

(d)

(a)

(b)
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20 kN

4 m 2 m6 m
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Span = L¢

–18.33

40.0 –23.33 –40.045.0

1 = a

2 m 3 m

Fig. 10.32  (a) Beam and loading, (b) Imaginary span added to left of support A;

(c) Moment diagrams, (d) Free-body diagrams of individual spans

 RA = 20 + 
( )B A

AB

M M

L

-
 = 18.75 kN

 RB = 20 + 30 + 
( )( ) --

+ C BA B

AB BC

M MM M

L L
 = 48.87 kN

and RC = 30 + 20 + 
( )B C

BC

M M

L

-
 = 52.78 kN

The theorem of the three moments equation can be suitably modifi ed to take 

into account the settlement of supports. For example, consider that supports 1, 2 

and 3 of Fig. 10.33 settle downward by amounts d1, d2 and d3 respectively.

L1, I1 L2, I2

1 2 3

d1
d2

d3

L1

d1d2–
L2

d2–d3

Fig. 10.33  Settlement of supports
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This effect separately produces rotations at 2 as

 q2(left) = – 
2 1

1L

d dÊ ˆ-
Á ˜Ë ¯

and q2(right) = – 2 3

2L

d dÊ ˆ-
Á ˜Ë ¯

Therefore, q2P(left) (see Eq. 10.33) modifi es now to

 q2P(left) = 1 1 2 1

1 1 1

A x

EI L L

d dÊ ˆ-
- Á ˜Ë ¯

 (10.44)

Similarly, q2P(right) modifi es to

 q2P(right) =  2 32 2

2 2 2

A x

EI L L

d dÊ ˆ-
- Á ˜Ë ¯

 (10.45)

Substituting these values in Eq. 10.32 and rearranging, we get

 

3 21 1 1 2 1 1 2 2
2

1 1 2 2 1 1 2 2

2 6
M LM L L L A x A x

M
I I I I L I L I

Ê ˆ Ê ˆ
+ + + = - +Á ˜ Á ˜Ë ¯ Ë ¯

 
2 32 1

1 2

( )( )
6E

L L

d dd dÏ ¸--
+ +Ì ˝

Ó ˛
 (10.46)

If I1 = I2 = I, Eq. 10.42 reduces to

 M1L1 + 2M2(L1 + L2) + M3L2 = –6 
1 1 2 2

1 2

A x A x

L L

Ê ˆ
+Á ˜Ë ¯

 2 32 1

1 2

( )( )
6EI

L L

d dd dÏ ¸Ê ˆ Ê ˆ--Ô Ô+ +Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ô ÔÓ ˛
 (10.47)

We note that in Eq. 10.46 the settlements d1, d2 and d3 are taken as positive if 

downward.

Example 10.15 
As an illustration of a typical application of the formula 

given in Eq. 10.47, the problem in Example 10.13 will 

now be solved considering that support B sinks by 10 mm under the given loading, 

E = 200 ¥ 106 kN/m2 (200,000 MPa) and I = 80 ¥ 10–6 m4 (80 ¥ 106 mm4). 

Referring to Fig. 10.31 and writing down the three-moment Eq. 10.47 for 

spans A-B and B-C, we have

 MA (4) + 2MB (4 + 8) + MC(8) = – 
60 2 426.67(4)

6
4 8

¥Ê ˆ+Á ˜Ë ¯

  + 6 ¥ 16000 
10 10

4000 8000

Ê ˆ+Á ˜Ë ¯
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This reduces to

 24MB + 8MC = – 1100 (10.48)

Similarly, writing down the three-moment Eq. 10.47 for spans B-C and C-D, we 

have

 MB(8) + 2MC (8 + 6) + MD(6) = –
426.67(4) 6(180)(3)

6
8 6

Ï ¸+Ì ˝
Ó ˛

  

10
6 16000

8000

Ê ˆ+ ¥ -Á ˜Ë ¯

Writing MD = 0 and simplifying, we have

 8MB + 28 MC = –1940 (10.49)

Solving Eqs. 10.48 and 10.49 simultaneously we obtain

 MB = –62.0 kN.m and MC = –25.1 kN.m

Note that the moments have been substantially altered from the previous values.

10.6  THE METHOD OF LEAST WORK

A special form of Castigliano’s second theorem is useful in the analysis of 

indeterminate structures. If Ri, is a reaction component, the corresponding 

displacement Di, is zero for a rigid support and from Eq. 6.68

 0
i

U

R

∂
=

∂
 (10.50)

This holds for each of the reaction components in the structure. It can be 

shown that Eq. 10.50 actually means that the reactions in an indeterminate 

structure take on values that lead to minimum strain energy level in the structure. 

For this reason, this approach is called method of least work. This method can be 

used to solve indeterminate beams, trusses, arches and frames. Although newer 

methods of analysis frequently will enable one to solve particular problems more 

directly than can be done using least work, the method is still in common use and 

preferred by some engineers.

A

x

W

B

L

M

(a)

(b)

Fig. 10.34  (a) Propped cantilever beam and loading, (b) Primary structure

under redundant moment M
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The application of the method of least work is illustrated by the following 

examples.

Example 10.16 
It is required to determine the moment at the fi xed end 

of the propped cantilever beam shown in Fig. 10.34. EI 

is constant.

Let us consider moment M at the fi xed end as the redundant. Then using Eq. 

10.50 for the fi xed end B

 
U

M

∂
∂

 = 
0

0
2

L
xM dx

M EI

∂
=

∂ Ú

 
U

M

∂
∂

 = 
0

1
0

L
x

x

M
M dx

EI M

∂
=

∂Ú

Substituting for

 Mx = 

2

2 2

wLx wx x
M

L

Ê ˆ
- +Á ˜Ë ¯

and 
xM

M

∂
∂

 = 
x

L
+

we have,

 
U

M

∂
∂

 = 

2

0

1
0

2 2

L wLx wx x x
M dx

EI L L

Ê ˆ Ê ˆ- + =Á ˜Á ˜ Ë ¯Ë ¯
Ú

On evaluation, we get

 M = 
2

8
-

wL

The negative sign for the value of M indicates that the direction assumed for M 

is incorrect. Moment M produces tension at the top.

The method can also be used for frames. The following example illustrates 

the procedure.

Example 10.17 
Using the method of least work, determine the horizontal 

reaction component for the frame shown in Fig. 10.35. 

Consider EI the same for all the members. 

The frame is indeterminate to the fi rst degree. The horizontal reaction 

component HA = HE = H is assumed to be a redundant reaction. The relative 

lateral displacement of the supports at A and E is zero. Therefore, we write

 
1

0x
x

MU
M dx

H EI H

∂∂
= =

∂ ∂Ú  (10.51)

for the whole frame. The origin for x coordinate for each section of the frame is 

indicated in Fig. 10.35b.



350  Basic Structural Analysis
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40 kN 40 kN

6 m2 m
6
 m

Fig. 10.35  (a) Frame and loading, (b) Origin for x

The evaluation of the integral in Eq. 10.51 is carried out in Table 10.4.

Table 10.4  To evaluate xM dx
M

H EI

∂
∂Ú  for the frame of Fig. 10.35

Section
x = 0 

at

Limits 

for x 

Moment 

Mx
xM

H

∂
∂ 0

L
x

x

M dx
M

H EI

∂
∂Ú

AB A 0–6 –H ◊ x –x

6
2

0

1
xH dx

EI Ú

BC B 0–2 30x–6H –6

6

0

1
(30 6 )( 6)- -Ú x H dx

EI

ED E 0–6 –H ◊ x –x

6
2

0

1
xH dx

EI Ú

DC D 0–6 10x–6H –6

6

0

1
(10 6 )( 6)x H dx

EI
- -Ú

Evaluating the integrals in the last column of Table 10.4, we get

 AB = 
72H

EI

 BC = 
72 360H

EI

-

 ED = 
72H

EI
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and DC = 
216 1080H

EI

-

Equating the sum to zero, we have

 
432 1440

0
H

EI

-
=

or H = – 3.33 kN

Example 10.18 
The frame in Fig. 10.36a is to be analysed using the 

method of least work. EI is constant throughout. 

The frame is indeterminate to the third degree. The three redundant reactions, 

if the structure is released at D, are HD, VD and MD (see Fig. 10.36b). The 

unyielding support conditions along with the method of least work give

 0, 0 and 0
D D D

U U U

H V M

∂ ∂ ∂
= = =

∂ ∂ ∂
 (10.52)
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(b)

Fig. 10.36  (a) Frame and loading, (b) Structure released at D, (c) Structure released at E
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resulting in three equations for the calculation of three unknown reaction 

components at D.

A simpler approach to this problem would be to release the structure at E, the 

mid point of girder BC, as shown in Fig. 10.36c. Symmetry conditions demand 

that VE = 0 and the horizontal displacement and the rotation are also zero at E. 

Thus, we have two conditions

 0 and 0
E E

U U

H M

∂ ∂
= =

∂ ∂

Further, it is suffi cient to write the strain energy for only half of the structure. 

The computations are carried out for the release at E and are shown in Table 

10.5. 

On evaluating

 
1 x

x

E

M
M dx

EI H

∂
∂Ú  and equating to zero, we get

  
64

8 3840
3

E
E

H
M- = -  (10.53)

Similarly, on evaluating

 
1 x

x

E

M
M dx

EI H

∂
∂Ú  and equating to zero, we get

  – HE + ME = 32 (10.54)

Solving Eqs. 10.53 and 10.54 simultaneously we get

 HE = –96 kN 

 ME = 224 kN.m

10.7  TWO-HINGED ARCHES

Even though three-hinged arches are statically determinate, the commonly 

employed arches are two-hinged and hingeless arches.

The two-hinged arch is statically indeterminate to the fi rst degree. It can be 

transformed into a primary structure either by removing the horizontal reaction 

component and treating it as a simply supported curved beam or by introducing 

a hinge at the crown. The former approach is usually followed as it is more 

convenient.

The primary arch structure spreads out under external load as shown in Fig. 

10.37a. This results in a horizontal displacement of support B by D1P. Usually 

defl ections only due to fl exure are considered. However, for long spans and in 

rigorous analysis the defl ections caused by axial and shearing deformations are 

also to be included.
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Fig. 10.37  (a) Primary arch under applied load, (b) Primary arch under

horizontal reaction

Since the support conditions dictate that the fi nal displacement at support 

B should be zero, horizontal reaction H should be such that displacement D1H 

caused by it must satisfy the condition

 D1P + D1H = 0 (10.55)

or D1P + f11H = 0 (10.56)

where f11 is the displacement caused by a unit force applied in the direction of 

H.

From Eq. 10.56

 H = 1

11

PD

f
-  (10.57)

The problem is thus reduced to fi nding horizontal displacements in a primary 

structure caused by external loading as well as unit horizontal force.

 The horizontal displacement in a curved member can be evaluated by utilising 

either Castigliano’s second theorem or the unit load method. The only difference 

with respect to a straight beam is that the integration has to be carried out along 

the axis of the arch, that is

 D1P = 
B

A

M ds
M

H EI

∂
∂Ú

 D1P = 
B

A

mds
M

EI
Ú  (10.58)

Similarly, f11 = 
2

B

A

ds
m

EI
Ú  (10.59)
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Therefore, H = 2

Mmds

EI

m ds

EI

Ú

Ú
 (10.60)

For an arch rib of uniform cross-section, EI is constant.

Therefore,

 H = – 
2

Mmds

m ds

Ú
Ú

 (10.61)

where

 M = moment at any point on the primary arch due to given loading, and 

 m = moment at any point on the primary arch due to a unit horizontal force 

applied at B in the direction of H. 

The following examples will demonstrate the steps involved in evaluating the 

integrals in Eq. 10.61.

Example 10.19 
A two-hinged segmental arch of span 40 m subtends an 

angle 2f = 90° at the centre. Find the horizontal 

reaction casued by a uniformly distributed load of 10 kN/m, extending from the 

left hand support to the centre of arch as shown in Fig. 10.38.

 Radius R = 
20

20.28 m
sin 45

=

 Rise h = R – R cos 45 = 8.28 m

A B
H HA = H HB =

y

x

ds
ds

C

dq q
dq

20 m 20 m

f = 45° f = 45°

q

8:28 m

10 kN/m

Fig. 10. 38

 Vertical reaction VA = 150 kN 

and  VB = 50 kN 

The expression for the moment at any point in the region A to C is
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 M = VA (20 – R sin q) – 
1

2
 (10)(20 – R sin q)2 for 0 £ q £ 

4

p

 = 1000 + 50 R sin q – 5R2 sin2 q 

and in the region C to B is

 M = VB (20 – sin q) for 0 £ q £ 
4

p

 = 1000 – 50 R sin q

Ordinate y = (R cos q – 20)

The moment due to unit load m = (1)(y) = (R cos q – 20) and ds = Rd q

 

\ 4
2 2

0

(1000 50 sin 5 sin ) ( cos 20)Mmds R R R Rd
p

q q q q= + - -Ú Ú

       

\ 4

0

(1000 50 sin ) ( cos 20)R R Rd
p

q q q+ + -Ú

    
2 3 350 5

1000 sin cos 2 sin 20,000
4 3

q q q q
È= - - -ÍÎ

R R R R

        

/ 4

2 2

0

1000 cos 50 25 sin 2R R R

p

q q q
˘

+ + - ˙
˚

      

/ 4

2

0

50
1000 sin cos 2 20,000 1000 sin

4
R R R R

p

q q q q
È ˘+ + - -Í ˙Î ˚

Substituting the limits and simplifying 

 Mmds = 6667 R kN.m3

        

/ 4
2 2

0

2 ( cos 20)m ds R Rd
p

q q= -Ú Ú

            

/ 4
2

2

0

1
2 sin 2 40 sin 400

2 4

R
R R R

p

q q q q
È ˘

= + - +Í ˙
Î ˚

     = 56.32 R m3 

Therefore,  H = 
6667

118.38 kN
56.32

R

R

-
= -

Horizontal reaction H acts inwards.

After the value of H has been thus determined, the moment, radial shear and 

normal thrust at any section can be computed as in a three-hinged arch using 

statics only.

Sometimes it becomes tedious to evaluate the integral, particularly when a 

large number of moment expressions are involved. In such cases it is easier, 

though less accurate, to evaluate the integral by graphical summation by dividing 
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the arch into a number of equal parts. The example that follows illustrates the 

procedure.

Example 10.20 
Solve the arch problem in Example 10.19 by evaluating 

the integrals by graphical summation.

The arch is divided into eight equal parts and the parts are numbered as in 

Fig. 10.39. Since the arch is fl at, the error in taking the divisions along the span 

instead of the arch axis is negligible. For any part, coordinates x and y are taken 

to the mid point of that part on the arch axis. The y coordinate is found from the 

relation

A B

y

x

C

y

x

1 2 3 4 5 6 7 8

20 m 20 m

Fig. 10.39

 (y + 20)2 + x2 = R2

The moment from A to C is

 M = 150 (20 – x) – 10 
2(20 )

2

x-

and for the region C to B is

 M = 50 (20 – x)

The calculations are all shown in Table 10.6. 

Table 10.6  Computation for evaluation of integrals in Eq. 10.61 by graphical summation

Section Distance x 

measured from 

crown, m

Ordinate y of 

arch axis, m

y2

m2
Moment M

kN.m
M◊ y

kN.m2

1 17.5 2.21 4.88 343.75 759.69

2 12.5 5.37 28.84 843.75 4530.93

3 7.5 7.27 52.85 1093.75 7951.56

4 2.5 8.17 66.75 1093.75 8935.94

5 2.5 8.17 66.75 875.00 7148.75

6 7.5 7.27 52.85 625.00 4543.75

7 12.5 5.37 28.84 375.00 2013.75

8 17.5 2.21 4.88 125.00 276.25

S y2 = 306.64 SM ◊ y = 36160.62
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Therefore,

 H = 2

36160.62
117.93 kN

306.64

Myds

y ds

- -
= = -Â

Â
This value is very close to the previous value of 118.38 kN obtained by direct 

integration. Note that the ds values in the numerator and denominator cancel 

out.

This procedure can be followed for parabolic, elliptical or any other arch 

having a constant moment of inertia for the rib. The example that follows gives 

the details of calculations for a parabolic arch.

Example 10.21 
A parabolic arch having a constant arch rib has a span 

64 m, and rise 12.8 m, and is hinged at the two supports. 

Two concentrated loads, each 20 kN, are acting at 8 m and 16 m from the centre 

measured horizontally on the left half of span. Determine horizontal thrust at the 

supports.

The integration involved in Eq. 10.61 can be conveniently carried out by 

graphical summation. For the analysis, the arch will be divided into eight equal 

parts as shown in Fig. 10.40. The error in not dividing the arch along the arch 

axis is negligible because of the fl atness of the arch. The equation of the arch axis 

taking the left hand support as the origin is

H

y

x

Y

H x

20 20 kN

8 m 8 m 12.8 m

Parabolic arch

1 2 3 4 5 6 7 8

64 m

Fig. 10.40

 

2

2
4

x x
y h

L L

Ê ˆ
= -Á ˜Ë ¯

 (10.62)

The ordinate for each part is obtained using Eq. 10.62. The entire calculations 

involved are shown in Table 10.7.

Therefore,

 

22224
31.78 kN

699.2
H

-
= = -
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Table 10.7  Computatins for evaluation of integrals in Eq. 10.61 by graphical summation

Section Distance x 

measured from 

left support m

Ordinate y of 

arch axis, m

y2

m2
Moment M

kN.m
M◊ y

kN.m2

1   4 3.0 9.00 110.0 330.0

2 12 7.8 60.84 330.0 2574.0

3 20 11.0 121.00 470.0 5170.0

4 28 12.6 158.76 450.0 5670.0

5 36 12.6 158.76 350.0 4410.0

6 44 11.0 121.00 250.0 2750.0

7 52 7.8 60.84 150.0 1170.0

8 60 3.0 9.00 50.0 150.0

S y2 = 699.2 SMy = 22224

Two-Hinged Parabolic Arch with a Secant Variation of 

Moment of Inertia

The expression for horizontal thrust H (Eq. 10.61) becomes simpler if two 

requirements are imposed upon the shape and proportions of the arch rib. These 

two requirements are: (1) the curve of the arch axis must be parabolic and (2) the 

moment of inertia of the rib at any particular section must be equal to moment of 

inertia at the crown multiplied by the secant of the angle q, where q is the angle 

between the horizontal and the tangent to the arch axis at that particular section. 

In Eq. 10.60

 
2

Mmds

EIH
m ds

EI

= -
Ú

Ú

the following relationships apply:

 I = Ic sec q
where

 Ic = moment of inertia at the crown

 I = moment of inertia at any other section 

 m = y and ds = sec q dx.

With these substitutions, Eq. (10.60) reduces to

 
2

= - Ú
Ú

Mydx
H

y dx
 (10.63)

It may be noted that the integration to be carried out and the limits to be taken 

are along the line joining the springings and not along the arch axis.

The following example illustrates the point.
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Example 10.22 
A two-hinged parabolic arch of span L and central rise 

h, carries a load W at a distance Z = nL from the left 

hand support. If the moment of inertia of the arch rib varies as the secant of the 

slope of the arch axis, calculate horizontal reaction H.

 The arch and the loading are shown in Fig. 10.41. The arch is reduced to a 

primary structure by releasing the horizontal restraint at support B.

Then

 M = ( ) for 0
Wx

L Z x Z
L

- £ £

or M = ( ) for
WZ

L x Z x L
L

- £ £

H can be evaluated using Eq. 10.63. 

Taking the numerator fi rst

 
0

L

MydxÚ  = 
2

2
0

( ) 4
Z Wx x x

L Z h dx
L L L

Ê ˆ
- -Á ˜Ë ¯

Ú

  

2

2

( )
4

L

Z

Z L x x x
W h dx

L L L

Ê ˆ-
+ -Á ˜Ë ¯

Ú

Integrating and substituting the limits, 

A B

C
D

W

L

h

Z nL=

VB =
WZ
–––
LVA =

L

( – )L Z
W

Fig. 10.41

  

2 2

2
0

( ) ( )

3

L L Z L LZ Z h
Mydx WZ

L

- + -
=Ú  (10.64)

Taking the denominator next

 

2
2

2

2
0 0

4
L L x x

y dx h dx
L L

Ï ¸Ê ˆÔ Ô= -Ì ˝Á ˜Ë ¯Ô ÔÓ ˛
Ú Ú

On evaluating the integral and substituting the limits 

 
2 2

0

8

15

L

y dx Lh=Ú  (10.65)
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It may be noted that

  
2

0

2
2

L
y

y dx ydx= ◊Ú Ú
      = 2 ¥ static moment of the area of the parabola 

    about its base

This gives 
2 22 2 8

2
3 5 15

Ê ˆ= =Á ˜Ë ¯Ú y dx Lh h Lh

Substituting the values from Eqs. 10.64 and 10.65 in Eq. 10.63

 2 2

3

5
( ) ( )

8

WZ
H L Z L LZ Z

hL

-
= - + -  (10.66)

Substituting

 Z = nL

 H =  3 45
( 2 )

8

WL
n n n

h

-
- +  (10.67)

The variation of H is shown plotted in Fig. 10.42.

It is seen that the value of H is dependent upon the position of the load 

described by distance Z = nL. The value of H reaches a maximum when n = 1/2, 

that is, when the load is at the crown. Substituting n = 1/2 in Eq. 10.67

H

WL

h

n

0 0.1 0.3 0.5 0.7 0.9 1.0

25

128

Fig. 10.42

 (max)

25

128

WL
H

h
=  (10.68)

It may be noted that if the I.L. for H is required, W is taken as unity and 

values of n are substituted that correspond to the various sections for which I.L. 

ordinates are desired.

 It there is more than one concentrated load acting on the arch, horizontal reaction 

H can be evaluated for individual loads and then the values superposed.

Example 10.23 
A two-hinged parabolic arch, with I proportional to the 

secant of the slope of arch axis, span 20 m and rise 4m 

is subjected to a concentrated load of 50 kN. Placed at 6 m from the left-hand 

support. Calculate the horizontal thrust and normal thrust and radial shear at a 

section of 5 m from left support.
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6m
5m

50 kN

4m

A
H

B
H

20m RBRA

q
N

39.2 kN

35 KNVR

39.2 kN

35 kN

C

Fig. 10.43  A two-hinged arch

Step 1: Calculation of H

The arch is statically indeterminate by fi rst degree. It is rendered determinate by 

releasing the reaction component H by placing support B on rollers.

Under the given load the arch spreads out by an amount D1P. The magnitude 

H must be such as to restore the arch to the original position. Using consistent 

displacement condition. We can write

 D1P + D1H = 0

or H = – 1

11

Displacement in the primary arch

Displacement in the arch by a unit force

PD

f
=

or writing in the form of integrals

we have  
0

2

0

l

l

M y dx
H

y dx
= - Ú

Ú

Step 2: Evaluation of integrals

The equation of the arch taking A as the origin is 

 
2

2

4
( )

h
y l x x

l
= -

Reaction 50 14
35

20
AR kN

¥
= =

and RB = 50 – 35 = 15 kN

Taking a section between A and C distance x from A

 Mx = 35 x

In the region C to B

 Mx = 35 x – 50 (x – 6) = (–15 x + 300)

Now 
6 20

0 6

M y dx M y dx+Ú Ú  to be evaluated

First we take 
6

2

0

4 4
35 (20 )

20 20
x x x dx

¥
◊ -

¥Ú



Indeterminate Structures—Compatibility Methods  363

on simplication, 
6

2 3

0

(28 1.4 )x x dx-Ú  = 

6
3 4

0

28 1.4
3 4

x xÈ ˘
-Í ˙

Î ˚
 = 1562.4

Next 
20

2

6

4 4
( 15 300) (20 )

20 20
x x x

¥
- + -

¥Ú

on simplication, 
20

2 3

6

(240 24 0.6 )x x x dx- +Ú

or  

20
2 3 4

6

240 24 0.6
2 3 4

x x xÈ ˘
- +Í ˙

Î ˚
 = 5123.6

Total  
20

0

1562.4 5123.6 6686My dx = + =Ú

 

20
2 2

0

8
(20)(4) 170.6

15
y dx = =Ú

 
6686

39.20 kN
170.6

H = - = -

Step 3: Finding normal thrust and radial shear 

Slope of arch at a section 5m from A = 38°42¢

 Normal thrust = H cos q + V sin q

  = 39.2 (0.7804) + 35 (0.6239) = 52.43 kN.

 Radial shear Vr = V cos q – H sin q

  = 35 (0.7804) – 39.2 (0.6239) = 2.85 kN

Example 10.24 
A two-hinged parabolic arch, whose section varies such 

that the moment of inertia of the section is proportional 

to the secant of the slope of the arch axis, has a span of 100 m and a rise of 20 m. 

The load is transmitted to the arch by means of seven suspenders placed 12.5 m 

apart. Each suspender transmits a force of 50 kN. Find horizontal reaction H.

The arch and disposition of suspenders is shown in Fig. 10.44. The suspenders 

1–7, 2–6 and 3–5 are symmetrically disposed. Therefore, the value of H is 

evaluated for the fi rst three forces and the results doubled. To this the value of H 

due to the central suspender is added. Thus, using Eq. 10.67

 H1 = H7 = 

3 4
5 (50)(100) 12.5 12,5 12.5

2
8 20 100 100 100

Ï ¸Ô ÔÊ ˆ Ê ˆ Ê ˆ- +Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Ô ÔÓ ˛

Similarly

 H2 = H6 = 34.79 kN
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 H3 = H5 = 45.20 kN

and     H4 = 48.83 kN

Total      H = 2 (18.96 + 34.79 + 45.20) + 48.83

  = 246.73 kN

We can also make use of Eq. 10.67 to obtain horizontal reaction H caused by 

a uniformly distributed load spread from Z1 = n1L to Z2 and n2L as shown in Fig. 

10.45.

 
8 @ 12.5 m = 100 m

2
0
 m

1 2 3 4 5 6 7

Fig. 10.44

 

Z1

Z2

dx

w

x nL= L n=(1 – )

w dx.

Fig. 10.45

An elemental load wdx acting over a differential length dx may be thought of 

as a concentrated load, and horizontal reaction dH caused by this may be written 

as

 dH = 3 45 ( . )
( 2 )

8

w dx L
n n n

h
- +

  
2

3 45
( 2 )

8

w L
n n n dn

h

◊
= - +

since dx = L dn.

Hence for the load spread from Z1 to Z2

 H = 
2

1

2
3 45

( 2 )
8

n

n

wL
n n n dn

h
- +Ú

 

2

1

2 2 2 55

8 2 2 5

n

n

w L n n n

h

È ˘◊
= - +Í ˙

Î ˚
 (10.69)

Taking a particular case of the whole span being loaded, substitution of limits 

n1 = 0 and n2 = 1 Eq. 10.69 gives
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 H = 
2

8

wL

h
 (10.70)

Again, if only one half of the span is loaded, the limits n1 = 0 and n2 = 1/2 

when substituted in Eq. 10.69 give

 H = 

2

16

wL

h
 (10.71)

Effect of Support Yielding, Rib Shortening and 

Temperature Changes

If the support yields under horizontal thrust an amount K per unit of horizontal 

reaction, then the Eq. 10.56 can be modifi ed to

 D1P + f11 H + KH = 0

or 
2

0
c c

Mydx y dx
H KH

EI EI
+ + =Ú Ú  (10.72)

where Ic is the moment of inertia of the arch rib at the crown.

From Eq. 10.72 the redundant horizontal reaction H can be evaluated. Rib 

shortening under axial force can be accounted for by considering that the rib 

shortens by an amount 
c

HL

A E

Here Ac = area of cross-section of the rib at the crown. For a fl at arch this 

approximation is permitted. Hence, Eq. 10.56 can be written as

 
2

0 0

0

L L

c c c

Mydx y dx HL

EI EI A E
+ + =Ú Ú  (10.73)

Similarly, temperature change is accounted for by taking displacement in the 

horizontal direction

 D1T = aDTL

The effect is the same as the displacement due to the horizontal yielding of 

supports. Then Eq. 10.56 may be written as

 
2

0

0

L

c c

Mydx y dx
H TL

EI EI
a+ + D =Ú Ú  (10.74)

Hingeless Arches

The hingeless arch shown in Fig. 10.46a is indeterminate by three degrees. 

Therefore, we need three releases to make the structure statically determinate. 

Supposing that the structure is released at B, the three redundants are HB, VB and 

MB. The three compatibility conditions that may be utilised are:

 1. Horizontal displacement DBH = 0, that is
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1
11 12 13 0B B B

Mm ds
f H f V f M

EI
+ + + =Ú

 2. Vertical displacement DBV = 0, that is

 
2

21 22 23 0B B B

Mm ds
f H f V f M

EI
+ + + =Ú

A B

HB

MB

VB

(a)

(b)

1

2

3

Fig. 10.46

 3. Rotation qB = 0, that is 

 
3

31 32 33 0B B B

Mm ds
f H f V f M

EI
+ + + =Ú  (10.75)

in which M is the moment at any section caused by the applied loading, and m1, 

m2 and m3 are the moments caused by unit loads applied at the redundants.

The analysis of fi xed arches can be done more conveniently either by the 

method of elastic centre or by column analogy. The reader is advised to consult 

books which deal with these methods.

Infl uence Lines for Two-Hinged Arches

Arch bridges are commonly employed for highway and railway bridges. Hence, 

infl uence lines for the structural forces such as horizontal thrust H, moment and 

shear are of paramount importance. As already pointed out, the I.L. for horizontal 

reaction H, can be obtained if load W is replaced by a unit load in Eq. 10.67. 

Therefore, for a unit load placed at a distance nL from one support

 3 45
( 2 )

8

L
H n n n

h
= - +  (10.76)

It may be noted that horizontal thrust H is the same for all sections of the arch 

axis. The I.L. diagram for the horizontal reaction is shown in Fig. 10.47a.
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The I.L. diagram for the moment at any section can be constructed from 

knowledge of the moment expression at that section. For example, the moment 

at any section denoted by distance x from one of the supports is

 Mx = mx – H◊y (10.77)

L
h

L
h

Y

X L x( – )

L

x

x

L
h

cos q

L
h

sin q

x

(a)

H.y =
25

128

25
128

(B)

cos q

cos q

(c)

–

+

+
sin q

25
128

sin q

(d)

+

25

128

Fig. 10.47  (a) I.L. for horizontal reaction H, (b) I.L. for moment at section distance x

from left support, (c) I.L. for radial shear, (d) I.L. for normal thrust

where mx is the free bending moment, and y is the ordinate of the arch axis at the 

section under consideration.

The I.L. diagram is drawn in two separate parts representing the two terms 

in Eq. 10.77 and then superimposed. The net infl uence line ordinates are shown 

hatched in Fig. 10.47b. It may be noted that a similar procedure was followed for 

a three-hinged arch in Chapter 7.
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 Infl uence lines for radial shear and normal thrust are constructed in the same 

manner as in a three-hinged arch. The expressions for radial shear

 Vr. = VA cos q – H sin q

and normal thrust

 N = VA sin q + H cos q

are the same as in three-hinged arches. The I.L. diagrams are also identical except 

that the variation of H is linear in a three-hinged arch and it is the curve of the 

fourth degree in the case of a two-hinged arch. Fig. 10.47c and d show the I.L. 

diagrams for radial shear and normal thrust respectively.

Example 10.25 
A two-hinged parabolic arch, whose section varies such 

that the moment of inertia of the section is proportionl 

to the secant of the slope of the arch axis has a span 30 m and rise 6 m. Determine 

the maximum positive and negative B.M. at a section 10 m from the left end 

support when a point load of 100 kN rolls over the beam.

Ordinate of the arch axis at section C is,

 yc = 
4(6)

30 30¥
(10) (20) = 5.33 m

From the I.L. diagram for moment at section C shown in Fig. 10.48b it is 

evident that the maximum +ve B.M. will occur when the load is on the section 

itself. We can write the moment, using Eq. 10.77, as

 MC = mc – H y

The value of H is evaluated using Eq. 10.72.

\ 
5 (30) 1 2 1

(100) 84.88 kN.
8 6 3 27 81

H
Ê ˆ= - + =Á ˜Ë ¯

A B

100 kN

C D

A B
C DE

6
 m

30 m

(a)

10

(b)

6.67 H.y =
25 l

128 h
y

Fig. 10.48  (a) Two-hinged arch and the rolling load, (b) I.L. for moment at section C
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Substituting in the above equation

 Mc = 
100 10 20

30

¥ ¥
 – 84.88 ¥ 5.33

  = 214.26 kN.

Again from the I.L. diagram it is evident that the maximum –ve B.M. will 

occur when the load is in the region E to B.

Let the maximum –ve B.M. occur at a section distance x from the right hand 

support

\ Moment Mx = 

3 4
( ) 5

2
8

Wx l x l x x x

l h l l l

Ï ¸- Ô ÔÊ ˆ Ê ˆ- - +Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ô ÔÓ ˛
yx

For obtaining the maximum value for Mx, we get

 
0xdM

dx
=

This results in a cubic equation in x and the value for x has to be determined 

by trial and error. As an alternative, the value for Mx is calculated taking values 

for x = 
3

, ,
8 4 8

l l
l ,  and l/2 from right hand support and the highest value for Mx 

is taken.

At x = 
8

l
, H = 

5 (30) 1 2 1
0.3790

8 8 8 64 6 64 64

Ê ˆ
- + =Á ˜¥ ¥Ë ¯

 

 x = 
4

l
, H = 0.6958

 x = 
3

8
, H = 0.9040

 x = 
2

l
, H = 0.9766

\ At  x = 
8

l
, MC = {m – 0.3790 ¥ 5.33} (100)

   
6.67 3.75

0.3790 5.33 (100)
20

¥Ê ˆ= - ¥Á ˜Ë ¯
  = – 77.0 kN.m

Similarly,

at x = 
4

l
, Mc 

6.67 7.5
0.6958 5.33 (100)

20

¥Ê ˆ= - ¥Á ˜Ë ¯

  = –121.0 kN.m



370  Basic Structural Analysis

At x = 
3

8
 l, Mc = 107.0 kN.m

 x = l/2, Mc = 21.0 kN.m

and the maximum –ve B.M. occurs at x = 
4

l
 and its value is

        = 121.0 kN.m

\ Maxm. –ve B.M. at section C = –121.0 kN.m

Example 10.26 
Draw I.L. diagrams for horizontal thrust H, and B.M. 

shear and thrust at D of the parabolic arch given in 

Fig. 10.49. 

Consider that IX = I0 sec q

A B

CD

+
–

+

+

6

3 m

12 m
24 m

(a)

1.11 3.51

(b)

4.5 3.51

(c)

0.97

0.73

0.24
0.97

(d)

0.24

0.24

0.18 0.12

1.51

(e)

Fig. 10.49  (a) Parabolic arch, (b) I.L.D. for H, (c) I.LD. for moment at section D,

(d) I.L.D. for radial shear at D, (e) I.LD. for thrust at section D
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Infl uence Line for H

Eqn. 10.63 gives 5

 H = 
3 45

( 2 )
8

- +
c

WL
n n n

y
 where n =

z

l

We can calculate H for different values of n taking W = 1 and plot I.L.D. for 

H as shown in Fig. 10.49b. For example

when n = 
1

4
, 

3 4
5 24 1 1 1

2
8 3 4 4 4

H
Ï ¸Ô ÔÊ ˆ Ê ˆ Ê ˆ= ¥ - +Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Ô ÔÓ ˛

 H = 1.11.

At n = 
1

, 1.56
2

H =

Infl uence Line for Moment at D

Moment at section D for any position of unit load is

 M = m – Hy

The I.L.D. is drawn by the superposition of I.L. for m and the I.L. for H y.

Ordinate y of arch at D = 
4 3

(6) (18) 2.25 m
24 24

¥
=

¥

Ordinate of the I.L. for H y at centre = 1.56 ¥ 2.25 = 3.51 

The I.L. diagram for moment at section D is shown in Fig. 10.49c.

Infl uence line for radial shear

Radial shear at D = VA cos q – H sin q

We know tan q = 
2

4
( 2 )cydy
l x

dx l
= -

  
4 3

(24 12)
24 24

¥
= -

¥
  = 0.25

\      q = 14.04°

  sin q = 0.24

  cos q = 0.97

The I.L.D. for radial S.F. is shown in Fig. 10.49d.

The I.L.D. for H sin q is superimposed over the I.L. diagram of VA cos q.

Infl uence line for normal thrust

Normal thrust at D = VA sin q + H cos q
The I.L. diagram for normal thrust at D is shown in Fig. 10.49e. The diagram 

is drawn by superimposing I.L.D. for H cos q over I.L.D. for VA sin q. The 

important values are noted on the diagram.
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10.8   INFLUENCE LINES FOR CONTINUOUS

    MEMBERS

Müller-Breslau’s principle introduced in Sec. 7.12 can be used to develop 

infl uence lines for continuous members. For example, consider a two-span 

continuous beam as; shown in Fig. 10.50. Suppose it is required to draw the 

infl uence line for the reaction at B. According to Müller-Breslau’s principle, if 

a unit displacement is given in the direction of reaction, the defl ected shape or 

elastic curve gives to scale the infl uence line ordinates for the reaction at B. The 

defl ected shape shown in Fig. 10.50b is itself the infl uence line for reaction RB.

 The proof for this principle can be demonstrated utilising the fl exibility 

infl uence coeffi cients presented in Sec. 10.4. Consider the beam with the support 

constraint removed as in Fig. 10.50c. Let a unit load be placed at any point i on 

the beam. The defl ections under the load point and at point B are indicated as fii 

and fBi, respectively. Now a unit load applied at B (Fig. 10.50d) gives defl ection 

fiB and fBB at points i and B respectively.

If RB were the reaction for a unit load at i, the compatibility condition that the 

fi nal defl ection at B = 0 gives

 RB fBB + fBi = 0 (10.78)

 RB = – sinceBi iB
Bi iB

BB BB

f f
f f

f f
= - =

B
C

B

B

1

1

i

fii fBi

fiB fBB

i

A

(a)

(b)

(c)

(d)

Fig. 10.50  (a) Two-span beam, (b) Unit displacement along reaction RB,

(c) Unit load applied at i, (d) Unit load applied at B
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The negative sign indicates that reaction RB is upwards opposite to the direction 

of the unit load. From Eq. 10.78, we have

 RB = fiB  for fBB = l (10.79)

This is true for any position of the unit load described by point i. Therefore, 

the defl ected shape or the elastic line represents, to some scale, the infl uence line 

for reaction RB and for fBB = 1; the defl ected shape gives to scale the infl uence 

line for reaction RB

Let us proceed to establish an infl uence line for the moment at section i of 

the same two-span continuous beam (Fig. 10.51a). Again, according to Müller-

Breslau’s principle, the section has to be relieved of its moment carrying capacity 

by introducing a hinge as shown in Fig. 10.51b. The unit load applied at j defl ects 

the beam as shown in Fig. 10.51b. The rotation at the hinge is denoted by fij. 

Suppose that a unit couple applied at i produces a rotation fii at i and defl ection fji 

at j, then the moment at i due to the unit load at j is

 Mi = 
ij

ii

f

f
 (10.80)

or Mi = for
ji

ij ji

ii

f
f f

f
=  (10.81)

If fii were made equal to unity, the defl ected shape in Fig. 10.51c would represent 

to scale the infl uence line for the moment at section i.

In a similar manner, the infl uence line for the shear at l (see Fig. 10.52a) 

can be obtained by relieving the member of its capacity to transmit shear by 

providing a link capable of only transmitting moment as explained in Sec. 7.12. 

The defl ected shape of the member under a unit load placed at j is shown in Fig. 

10.52b. Now a unit shear force is applied at i resulting in a defl ected shape shown 

in Fig. 10.52c. Note that the two ends of the beam displaced laterally must have 

the same slope indicating the continuity of the beam in transmitting moment.

B C

1

fij

i

A

fii

i

1
i

fji

j

i

i

(a)

(b)

(c)

Fig. 10.51  (a) Two-span beam, (b) Unit load applied at j, (c) Unit couples applied at i
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B

1

A

1
fji

j

j

j

fij

1

i

fij

(a)

(b)

(c)

C

Fig. 10.52  (a) Beam and section i and j, (b) Defl ected shape under unit load at j,

(c) Defl ected shape under unit shear at i

The shear force at i due to a unit load placed at j can be expressed at

 Vi = 
ij

ii

f

f
 (10.82)

or Vi = since
ji

ij ji

ii

f
f f

f
=  (10.83)

This is true for all positions of unit load described by point j. Therefore, if 

displacement fii, in Fig. 10.52c is made equal to unity, the resulting defl ected 

shape gives to scale the infl uence line for the shear at section i.

 Except for simple cases, the actual calculations of infl uence line ordinates 

become quite tedious. The model analysis using brass or steel splines are 

profi tably employed. The interested reader may consult references on model 

analysis of structures. Analytical solutions for simple cases are illustrated by the 

following examples.

Example 10.27 
Compute the infl uence line ordinates for the reaction at 

A and the moment and shear at 2 for the continuous 

beam shown in Fig. 10.53. Consider the moment of inertia as the same throughout. 

Values may be computed at 4 m interval for span A–B and 2.5 m interval for span 

B–C.

As has been discussed earlier, the reaction constraint at A is removed and a 

unit force is applied in the direction of reaction RA The resultant defl ected shape 

shown in Fig. 10.53b represents to some scale the infl uence line for reaction RA.

The quantities that are to be evaluated are defl ections; therefore, the 

conjugate beam method studied in Sec. 5.3 can be conveniently employed. 

The corresponding conjugate beam and support conditions and the conjugate 

beam loading are shown in Fig. 10.53c. The term EI is not included as it is 

constant throughout. The values of loading at the desired intervals are indicated. 
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The computations for the moments at the desired intervals, which are in fact the 

defl ections in the original beam, are carried out as follows. 

B
CA

A¢
B¢

C¢

C¢
B¢

A¢

C

R¢CR¢B

B¢

1 2 3 4 5 6

16 m 10 m

4
8

12
16

12
8

4

1

(a)

(b)

(c)

(d)

16

16 m

16

10 m

(e)

1
.0

0
.6

7
7
9

0
.3

8
4
6

0
.1

4
9

0
.0

0
.0

3
9
5

0
.0

4
5

0
.0

2
8

0
.0

1 2 3 4 5 6B

Fig. 10.53  (a) Continuous beam and the sections for computation of I.L. ordinates,

(b) Elastic line due to a unit force applied at A, (c) Conjugate beam and loading,

(d) Free-body diagrams of parts A’B’ and B’C, (e) I.L. for reaction RA

 Considering the free-body diagrams of parts A¢B¢ and B¢C¢ we have R¢B = 

53.33 and R¢C = 26.67. 

The moment values are

 M6 = – 26.67 (2.5) + 
1

2
  (4)(2.5) 

1

3

Ê ˆ
Á ˜Ë ¯ (2.5) = –62.51 

 M5 = – 26.67 (5) + 
1

2
 (8)(5) 

1

3
 (5) = –100.00

 M4 = – 26.67 (7.5) + 
1

2
 (12)(7.5) 

1

3
 7.5 = –87.53



376  Basic Structural Analysis

 M¢B = – 26.67 (10) + 
1

2
 (16)(10) 

1

3
 (10) = 0

 M3 = 53.33 (4) + 12(4) 
4

2
 + 

1

2
 (4)(4) 

2

3
(4) = 330.65

 M2 = 53.33 (8) + 8(8) + 
8

2
 + 

1

2
 (8)(8) 

2

3
 (8) = 853.31

 M1 = 53.33 (12) + 12(4) 
12

2
 + 

1

2
 (12)(12) 

2

3
 (12) = 1504

 M¢A = 53.33 (16) + 
1

2
 (16)(16) 

2

3
 (16) = 2218.6

Now the scale for the infl uence line diagram can be fi xed on the following 

basis. Since a unit loading at A must produce a reaction of unity at A, the defl ection 

obtained for the original beam at A must represent unity, that is, the conjugate 

beam moment M¢A = 2218.6 must be equated to unity. With this scale factor the 

defl ection ordinates are worked out and the true infl uence line for reaction RA is 

shown in Fig. 10.53e.

To construct the infl uence line for the moment at 2, we introduce a hinge at 

that point and apply unit couples as shown in Fig. 10.54a. The defl ected shape 

gives to some scale the infl uence line for the moment at 2. The conjugate beam 

with loading is shown in Fig. 10.54b. The term EI is not included as it is constant 

throughout.

Considering the free-body diagram of part B¢C¢, we get

 R¢C¢ = 3.33 downwards

The other reactions are evaluated from the free-body diagram of part A¢B¢. 
They are

 R¢A = 12.00 upwards

and R¢2 = 34.67 downwards.

It may be noted that the reaction at 2¢ in the conjugate beam represents the 

sum of shears on either side of point 2¢ and hence rotation f22 at 2 the original 

beam. The moments in the conjugate beam at the desired points are

 M1 = 49.33, M2 = 106.67, M3 = 41.32, M¢B = 0, 

 M4 = – 10.91, M5 = –12.48, M6 = –7.8, M¢C = 0

The infl uence line ordinates are obtained by dividing these values by 34.67 

which should represent unit rotation at point 2. The ordinates thus computed 

result in the infl uence line for the moment at 2 as shown in Fig. 10.54d

 To evaluate infl uence line ordinates for the shear at 2, we apply unit forces 

to the ends. The defl ected shape and the induced reactions and couples will be 

as shown in Fig. 10.55a. The conjugate beam along with the load is shown in 

Fig. 10.55b. In this fi gure attention is called to moment M ¢2. In Fig. 10.55a 

points D and E defl ect relative to each other; E moves up and D goes down. In 
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the conjugate beam the moment just to the right of point 2 must be different in 

sign and possibly in magnitude from the moment just to the left of section 2. In 

addition, since the tangents to the defl ected beam at D and E must be parallel, the 

shear in the conjugate beam at 2 must be the same on either side of section 2. The 

imposition of moment M¢2 will satisfy these requirements.

B

CA

A¢
B¢

C¢

B¢

R¢C

f22

R¢A R¢2

B¢
C¢A¢

B
CA

1 1

1 2 3 4 5 6

0.5
1.0

1.5
2.0

1.5
1.0

0.5

(a)

(b)

120.0 34.67 3.33

2 3
4 5 6

1
.4

2
2
8

3
.0

7
6
7

1
.1

9
1
8

0
.0

0
.3

1
4
7

0
.3

6
0
0

0
.2

2
5
0

Fig. 10.54  (a) Defl ected shape of the beam under unit couple applied at 2, (b) Conjugate 

beam and the loading, (c) Free-body diagrams of parts A¢B¢ and B¢C¢, (d) I.L, for moment at 2

The values of conjugate beam reactions, R¢A and R¢C, the shear V¢B and moment 

M¢2 are obtained below.

Taking moments about B from the right end

 R¢C = 
1

2
 (10)(16)(1/3) = 26.67

 R¢A = 
1

2
 (26)(16) – 26.67 = 181.33

 V¢B = 
2

3
 (10)(16/2) = 53.33



378  Basic Structural Analysis

and M¢2 = 53.33 ¥ 16 + 
1

2
 (16)(16) 

2

3
 (16) = 2218.61

Fig. 10.55  (a) Defl ected shape under unit shear force applied at 2, (b) Conjugate beam

and loading, (c) I.L. ordinates for shear at 2

The correct sense for M¢2 is determined by inspection and is shown in Fig. 

10.55b. Thus, the relative defl ection between points D and E in Fig. 10.55a is 

represented by M¢2.
The moments in the conjugate beam at intermediate sections are computed as 

follows

 M1 = – 181.33 (4) + 
1

2
 (4)(4)(4/3) = –703.99

 M2(left) = – 181.33 (8) + 
1

2
 (8)(8)(8/3) = –1365.31

 M2(right) = 2218.61 – 1365.31 = 853.3

 M3 = – 181.33 (12) + 2218.61 – 
1

2
 (12)(12) 

12

3
 = 330.65

 M4 = – 26.67 (7.5) + 
1

2
 (7.5)(12)(7.5/3) = –87.53 

 M5 = – 26.67 (5) + 
1

2
 (5)(8)(5/3) = –100.00 

 M6 = – 26.67 (2.5) + 
1

2
 (2.5)(4)(2.5/3) = –62.51
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The above moments must be divided by the relative defl ection between D and 

E, as represented by M¢2, in order to obtain the required ordinates. The infl uence 

line ordinates so obtained are plotted in Fig. 10.55c.

 The infl uence line for the moment over the interior support can also be 

obtained by applying the same technique. For example, Fig. 10.56a gives the 

defl ected shape of the beam hinged at support B and under unit couples applied 

as shown. The corresponding conjugate beam is shown in Fig. 10.56b. Again, 

considering the equilibrium of the free-body diagrams, we get

 R¢A = (1) (16/2) 
1

3
 = 2.67

 R¢C = (1) (10/2) 
1

3
 = 1.67

 R¢B =  
1

2
 (26)(1) – 4.33 = 8.67

The rotation denoted by fBB is equal to the sum of shears to the left and right 

of section B or reaction R¢B = 8.67.

Now the moments are evaluated at different sections. They are

 M1 = – 10.01, M2 = –16.03, M3 = –14.04, M4 = –5.49, 

 M5 = – 6.27 and M6 = –3.91

These moments, when divided by R¢B = 8.67, will directly represent the 

infl uence line ordinates for the moment over support B. The values are plotted 

in Fig. 10.56c. 
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1
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0.75
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1
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1
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0
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0
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3
3
7
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2
2
8

0
.4

5
1
5

(b)

(c)

Fig. 10.56  (a) Defl ected shape under unit couples applied at B, (b) Conjugate beam and 

loading, (c) I.L. ordinates for moment over support B



380  Basic Structural Analysis

The foregoing illustrations demonstrate that any desired infl uence line for 

a continuous beam can be readily computed using Müller-Breslau’s principle 

and the conjugate beam method. Actually, when the infl uence line for shear is 

needed, it is usually easier to compute the required ordinates by statics after the 

infl uence lines for reactions have been computed. This is also probably true for 

moment infl uence lines.

10.8.1 Qualitative Infl uence Lines by the

      Müller-Breslau Principle

So far we have demonstrated that the Muller-Breslau principle is of extreme 

importance in the determination of quantitative infl uence lines. The principle also 

helps very much to sketch qualitative infl uence lines. For example, qualitative 

infl uence lines for a fi ve-span continuous beam can be drawn with ease. To draw 

the infl uence line for reaction RC it is enough to give a small displacement in the 

direction of the reaction. The defl ected shape that results gives to some scale the 

infl uence line for reaction RC. This is shown in Fig. 10.57a.

Next, suppose it is required to draw the qualitative infl uence line for the moment 

at the centre of span CD. A hinge is assumed at this point and couples are applied. 

The defl ected shape gives the infl uence line for the moment in a qualitative way 

(Fig. 10.57b). I.L. for a support moment is also drawn by inserting a pin and 

drawing the defl ected shape due to couples applied at the pin (Fig. 10.57c).

A
B C D E F

A
B C D E F

A
B C D E F

A
B C D E F

DC

(a)

(b)

(c)

(d)

Fig. 10.57  Qualitative infl uence lines for a continuous beam: (a) I.L. for reaction RC,

(b) I.L. for moment at a section in span C–D, (c) I.L. for moment over support C,

(d) I.L. for shear at a section in span B–C.

Again suppose it is required to draw the I.L. for the shear at a section in 

span BC; the beam is cut, a roller and slide device is inserted and the ends are 
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subjected to equal and opposite transverse forces as shown in Fig. 10.57d. The 

defl ected beam and, therefore, the qualitative infl uence line for shear is shown 

in Fig. 10.57d.

These qualitative infl uence lines are useful in determining which of the 

spans are to be loaded with distributed live loads to get the maximum moments 

and shears at any section for which the qualitative infl uence line is drawn. For 

example, to obtain the maximum moment in span C-D, we must apply live load 

only on that and the alternate spans. On the other hand, to get the maximum 

support moment (Fig. 10.57c), the spans on either side of the support and only 

the alternate spans are to be loaded. So also, the spans that are to be loaded 

for obtaining maximum shear at any section can be decided by sketching the 

qualitative infl uence line for shear at the desired section.

The qualitative infl uence lines are particularly valuable in the analysis of 

building frames. For example, the I.L. for positive moment in span B2-C2 is 

shown in Fig. 10.58a. The infl uence line for the moment just to the right of joint 

C2 is shown in Fig. 10.58b.

From the qualitative infl uence lines for building frames it can be seen that a 

chequer-board loading pattern as indicated in Fig. 10.58a and b gives maximum 

moments. In bay CD a small length at levels 5, 3 and 1 should not be loaded. 

In addition at level 4, a short length is to be theoretically loaded. For practical 

analysis, bay CD at levels 5, 3 and 1 would be entirely loaded and at level 4 it 

would be unloaded. However, in practical terms, the effect of the load in any 

span on a member two or three bays away is negligible. Specifi cations, therefore, 

permit the analysis of large frames by the substitute frame method. In analysing 

a given fl oor beam and the columns above and below that fl oor, it is permissible 

to consider that all the columns are fi xed at their farther ends. The ends of beams 

two bays away from the section under consideration are also considered to be 

fi xed. This has the obvious effect of greatly simplifying the analysis with only a 

slight loss of accuracy.

A B C ED

a

A B C ED

5

4

3

2

1

5

4

3

2

1

(a) (b)

Fig. 10.58  Qualitative infl uence lines for a building frame: (a) I.L. for moment at ‘a’ in span 

B2-C2, (b) I.L. for moment just to the right of joint C2
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Problems for Practice

10.1 Using the method of consistent displacements determine for the beam given in 

Fig. 10.59

 (a) the reaction Rb treating it as the redundant, and

 (b) moment MA treating it as the redundant for the beam shown. EI is constant.

A B

PP

L/3 L/3 L/3

Fig. 10.59

10.2 Using the principle of consistent displacements, determine the reaction of the mid-

dle support and plot the shear and moment diagram for the two-span continuous beam 

shown in Fig. 10.60. Consider El constant throughout.

A

B
C

L L

w/Unit

Fig. 10.60

10.3 Find the forces in pin-jointed members of the steel structure shown in Fig. 10.61 if 

a force of 15 kN is applied at B.E = 200 ¥ 106 kN/m2 (200,000 MPa).

 

A

B

C

D

A = 93.75 mm2

L = 1.5 m

A

L

0.9 m

A = 156.25 mm2

L = 1.5 m

A = 62.5 mm2

L = 1.0 m

0.9 m

1.2 m
 

A

C D
B

70 kN

3.6 m

2.7 m 2.1 m

 Fig. 10.61 Fig. 10.62

10.4 Three bars of linearly elastic material are connected at A, B, C and D by pins as 

shown in Fig. 10.62. Determine the force in member AB caused by the applied load. The 

values of L/A are in the ratio: 7/15 for AD, 7/20 for AC and 1 for AB. Treat AB as the 

redundant member.
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10.5 The frame in Fig. 10.63 is simply supported and loaded as shown. Compute the 

stresses in two diagonals BF and CE. All members are 2000 mm2 in area. What would be 

the effect on these stresses of a rise in temperature of 20°C in member EF relative to other 

members? Take a = 12 ¥ 10–6/C.

A
C

D
B

E F
240 kN

5 m 5 m 5 m

5 m

Fig. 10.63

10.6 Calculate the forces in the members of the truss shown in Fig. 10.64 if the roller 

support at E sinks by 1 mm. Assume A = 5000 mm2 for all members and E = 200 ¥ 106 

kN/m2 (200,000 MPa). Choose force in member AD = X1 and reaction at E = X2 as re-

dundants. 

 

C

D
B

E

A

80 kN

4 m 4 m

4 m

 

C

D

B
E

A F

10 kN

4 m

10 kN

4 m

4 m

 Fig. 10.64 Fig. 10.65

10.7 Using the truss data in Problem 10.6 fi nd the forces in members due to forcing of 

member BC which is short in length by 1 mm.

10.8 Find the forces in all members of the truss shown in Fig. 10.65. Assume L/EA to 

be the same for all members.

10.9 Draw the shear force and moment diagrams for a three-span continuous beam 

with equal spans and EI constant carrying a uniformly distributed load of intensity w/unit 

length. The theorem of three moment equations may be used.

10.10 Using the theorem of three moments fi nd the support moments and reactions for 

the continuous beam given in Fig. 10.66. El constant.

CB

A

40 kN 20 kN

4 m 4 m

10 m 6 m

10 kN/m

Fig. 10.66
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10.11 A continuous beam of uniform section 18 m long is supported on four equally 

spaced elastic supports. The supports are such that they settle by 1 mm for each kN load. 

If the beam carries a uniformly distributed load of 30 kN/m throughout its length, obtain 

the reactions at the supports. E = 200,000 MPa and I = 200 ¥ 10–6 m4 (200 ¥ 106 mm4).

10.12 A continuous reinforced concrete beam ABCD of size 300 ¥ 200 mm is loaded as 

shown in Fig. 10.67. If P = 100 kN estimate the percentage change in the support moment 

at B or C and span moment at E when the supports B and C settle through vertical distance 

so that yAB = – yCD = 1/600. Take E = 13.3 ¥ 106 kN/m2 (13,300 MPa).

A
B C DE

P P P
5 m 6.5 m 5 m

10 m 13 m 10 m

Fig. 10.67

10.13 Obtain the values of the joint moments of a frame which forms a section of a box 

culvert shown in Fig. 10.68 under the prescribed loading and soil pressure.

A

B C

D

2 m
20 kN

2 m

2 l

2 l

4 m

5 kN/m

18 kN/m18 kN/m

l l

Fig. 10.68

10.14 Analyse the following frames shown in Fig. 10.69 by the compatibility method 

and draw the shear force and moment diagrams.

A

D

P

C
a

a

B

A
C

B
B

C

a

a

A

a m= 3

h m= 5

a/2

a/2

a/2W
/U

n
it
 L

e
n
g
th

(a) (b) (c)

40 kN.m

Fig. 10.69
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10.15 A two-hinged circular arch of span 20 m and rise 4 m is loaded with a uniformly 

distributed load of 10 kN/m over the left half of the span and a concentrated load of 80 

kN at the mid point of the right half of the arch. Calculate the horizontal reaction H and 

normal thrust N at a section just to the right of the concentrated load.

10.16 A two-hinged parabolic arch of span 60 m and rise 10 m and of constant rib cross-

section carries a uniformly distributed load of 20 kN/m covering the middle one-third 

length of the span. Calculate the horizontal reaction at the abutments and the radialshear 

and normal thrust at a section just at the commencement of loading.

10.17 The axis of a two-hinged arch given in Fig. 10.70 is defi ned by y = h sin 
x

L

p
. The 

moment of inertia at any section of the arch rib is equal to Ic sec q, where Ic is the moment 

of inertia at the crown and q equals the angle that a tangent to the arch axis makes with 

the horizontal. Calculate H, the horizontal reaction. 

Y
L/4

P

C

A X

L

B

H

Fig. 10.70

10.18 Calculate H for load P at the centre line of the arch in Problem 10.17.

10.19 Compute the ordinates, at intervals of 2.5 m, of the infl uence line for the moment 

at A in Fig. 10.71. The moment of inertia is constant.

A B
1 2 3

10 m

Fig. 10.71

10.20 Compute infl uence line ordinates, at intervals of 2.5 m for the following force 

components for the beam shown in Fig. 10.72. EI is constant throughout.

(a) Reaction RA, (b) moment at mid point of span BC, (c) moment over support B and (d) 

shear at mid point of span BC.

A

B
C

10 m 10 m

1 2 3 4 5 6

Fig. 10.72

10.21 Compute ordinates of infl uence line for the reaction at C in Fig. 10.73. The ordi-

nates may be computed at the mid point of spans A-B and B-C and at intervals of 10 m in 

span C-D. EI is constant.
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A
B C

D
1 2 3 4

20 m 10 m 30 m

Fig. 10.73

10.22 A two-hinged parabolic arch has span L = 30 m and rise h = 6 m. Construct 

infl uence lines for (a) the horizontal reaction, (b) the moment, shear, and thrust at the 

one-fourth point of the span.

10.23 Construct the following infl uence lines for the arch in Problem 10.22: (a) thrust 

at crown, (b) moment and shear at crown.



11.1  INTRODUCTION

The slope-defl ection method developed by Axel Bendixen in Germany in 

1914 was later presented in greater detail by G.A. Maney of the University of 

Minnesota in 1915. This method can be used to analyse statically indeterminate 

structures, composed of moment resisting members such as continuous beams 

and frames. The popularity of the method is lost to some extent by the advent 

of relaxation technique in the form of the moment distribution method and its 

relevance is greatly reduced by the introduction of the displacement method of 

matrix analysis. The method, though not preferred by engineers, is considered 

useful for the understanding of the relationship that exists between displacements 

of the joints and the forces at the ends of members.

The basic slope-defl ection equation expresses the moment at the end of a 

member as the superposition of end moment due to external loads on the member 

with the ends assumed restrained and the end moments caused by the actual end 

rotations and displacements. In a structure composed of several members, the 

slope-defl ection equations are applied to each member of the structure. Using 

appropriate equations of equilibrium of the joints along with slope-defl ection 

equations for each member, we obtain a set of simultaneous equations with 

displacements as unknowns. With the displacements evaluated, the end moments 

can be computed using slope-defl ection equations.

Before we proceed further we shall decide the sign convention for for ces and 

displacements. As the method uses algebraic procedure, the use of correct signs 

is of paramount importance.

11.2  SIGN CONVENTION

It is convenient in the development and application of this method to use the 

following static sign convention.

 1. Moment at the end of a member is considered positive when it is in the 

anti-clockwise direction or on a joint in the clockwise direction.

Slope-Defl ection
Method

11
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   Considering a beam fi xed at the ends and loaded transversely as shown 

in Fig. 11.1, the left hand support is subjected to a clockwise moment 

or the left end of the member is subjected to an anti-clockwise moment. 

Both of them by the above convention are positive. At the same time, the 

right hand support is subjected to an anti-clockwise moment or the right 

end of the member is subject to a clockwise moment. Again by the above 

convention both of them are negative.

 2. Translation is considered positive when it is upward in the Y direction.

 3. Angular rotation q is considered positive when it is in the anti-clockwise 

direction.

To develop slope-defl ection equations, let us consider a typical member in 

a continuous structure with its ends designated as i and j (see Fig. 11.2). The 

member is possibly subjected to a transverse loading as shown and is connected 

to other members at its ends or to the supports. When the structure undergoes 

deformations due to the action of applied forces, settlement of supports or any 

other effects, the member i-j which is a part of the structure also undergoes 

deformation inducing moment at its ends.

The general displacement of the member and the moments induced at the ends 

are shown in Fig. 11.3. All displacements and moments according to the sign 

convention adopted earlier are in their positive direction.

The end of moments Mij and Mji may be considered as caused by a combination 

of moments due to:

 

1 2

+ + – –

FEM12 FEM21  

i i

 Fig. 11.1  Sign convention for Fig. 11.2  Typical member in a

 end moments continuous structure

Di

Mij

qi

qj
j

j

i

i

Mji

Dj

Fig. 11.3  General displacement of a member

 1. the fi xed end moments developed by the transverse loading on the 

member;

 2. moments caused by the actual rotations of the ends, qi and qj of the 

member; and
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 3. the end moments caused by relative translation of ends of the member.

At this stage we may derive expressions for fi xed end moments for different 

loading cases and also the force displacement relationships in a member.

Fixed End Moments (FEM) The fi xed end moments for a transversely loaded 

member are the end mo ments developed when the ends are fi xed against rotation 

and translation. They may be determined by any of the standard methods of 

indeterminate analysis. In Examples 10.1 and 10.2 the fi xed end moments 

are obtained by employing a general method of consistent displacements and 

moment-area theorems. Fixed end moments for a number of common loading 

cases are summarised in the Appendix C for ready reference. It may be noted 

that the fi xed end moments are expressed in accordance with the adopted sign 

convention.

Force Displacement Relationships We also need information regarding 

the relationships that exist between the member end moments and its end 

displacements. They can be derived easily (one such case is presented in Example 

10.1) by any of the methods discussed in Chapter 10. For ready reference they 

are tabulated in the Appendix D.

11.3     DEVELOPMENT OF SLOPE-DEFLECTION

     EQUATIONS

The end moments developed due to each of the three contributory effects are 

shown in Fig. 11.4a to d.

The fi xed end moments for a specifi ed loading can be obtained either from 

the Table in the Appendix or can be worked out independently. Next, the end 

moments caused by the relative translation of the member end D = Dj – Di, with 

ends i and j fi xed against rotation can be taken from the Appendix. The values 

of end moments are shown in Fig. 11.4b. It is common to express end moments 

in terms of rotation ij
L

y
D

= , that is, the angle between the chord joining i and 

j and the original orientation of the member axis, y is considered positive when 

the chord rotates in the anti-clockwise direction.

The end moments caused by transverse loads and relative translation of joints 

are based on the fi xed end condition. When the member ends are allowed to rotate 

to their equilibrium position, additional moments are developed. For rotations qi 

and qj as shown in Fig. 11.4c and d, the corresponding end moments are

 
4 2 2

(2 )i i
ij i j

EI EI EI
M

L L L

q q
q q= + = +  (11.1)

 
42 2

( 2 )
ji

ji i j

EIEI EI
M

L L L

qq
q q= + = +  (11.2)

The true moment at each end of the member is the superposition of the zero 

rotation moments caused by transverse loading and relative translation, and the 
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moments due to the rotation of the end of the member. Thus, the true moments 

are

 Mij = FEMij + 2EK(2qi + qj – 3 yij) (11.3)

 Mji = FEMji + 2EK(qi + 2 qj – 3 yji) (11.4)

where

  
( )

or
j i

ji ij
L L

y y
D - DD

= =

and  
I

K
L

=  the relative stiffness

Eqs. 11.3 and 11.4 are known as slope-defl ection equations.

11.4  ANALYSIS OF CONTINUOUS BEAMS

The analysis of continuous beams by the slope-defl ection method is a fairly 

straightforward procedure. If there are no translations of supports, the possible 

Fig. 11.4  (a) Fixed end moments due to transverse loading, (b) End moments due to 

translation of joints, (c) End moments due to rotation qj at end i,

(d) End moments due to rotation qj at and j.



Slope-Defl ection Method  391

displacements of the beam are rotation of beams over supports represented by qi, 

and qj, in the slope-defl ection equations. If the supports undergo displacements 

(translations) they can be represented by parameter y.

The slope-defl ection equations for each of the spans in a continuous beam 

can be written in terms of unknown displacements. Then the equa tions of 

equilibrium are written for each of the support points. This will result in a set 

of simultaneous equations with displacements as unknowns. After solving the 

equations for displacements, the end moments are ob tained by substituting the 

known displacements in the slope-defl ection equations. The following examples 

illustrate the steps involved in analysing continuous beams.

Example 11.1 
It is required to determine the support moments for the 

continuous beam of Fig. 11.5a. Use the slope-defl ection 

method. The relative values of moments of inertia are shown in Fig. 11.5. E is 

constant.

To apply slope-defl ection equations we must fi rst determine the fi xed end 

moments for each span. From the Appendix table, we obtain

 12

100
62.50 kN.m

8
FEM

¥ 5
= =

1
l 2 3 l

2.5 m 100 kN
20 kN/m

7.5 m5 m

(a)

3

M21

M23

(b)

–

2

Fig. 11.5  (a) Beam and loading, (b) Free-body diagram of joint 2

  FEM21 = –62.50 kN.m

 
23

20(7.5)(7.5)
93.75 kN.m

12
FEM = =

  FEM32 = –93.75 kN.m

The supports are all rigid and no lateral translations are possible. Therefore, y 

= 0 for both spans. Further, for the fi xed supports at the left end, q1 = 0 and right 

hand support moment M32 = 0. The slope-defl ection equations for the two spans 

can be written as

 2
12 2

2
62.50 62.50 0.4

5

EI
M EI

q
q= + = +  (11.5)

 2
21 2

4
62.50 62.50 0.8

5

EI
M EI

q
q= - + = - +  (11.6)

 2 2
23

4(3) 2(3)
93.75

7.5 7.5

EI EI
M

q q
= + +

   = 93.75 + 1.6EIq2 + 0.8EIq3 (11.7)
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and M32 = –93.75 + 0.8EIq2 + 1.6EIq3 (11.8)

Considering the free-body diagram of a segment of the beam at joint 2 as shown 

in Fig. 11.5b we see that

 M21 + M23 = 0 (11.9)

Substituting the values for M21 and M23 from Eqs. 11.6 and 11.7, we get

 31.25 + 2.4EIq2 + 0.8 EIq3 = 0 (11.10)

We can get another equation by writing M32 = 0, that is

 –93.75 + 0.8 EIq2 + 1.6 EIq3 = 0 (11.11)

Solving Eqs. 11.10 and 11.11 simultaneously we get

 q2 = –39.06 and q3 = 78.13

Substituting these values for q 2 and q 3 in the Eqs. 11.5, 11.6 and 11.7, we 

obtain

100 kN
20 kN/m

7.5 m7.5 m

75 75

12.512.5

40.875 93.75 93.75

5 m

9.3759.375

50 50

0

40.625 kN 146.875 kN 62.50 kN

Simply supported
beam reactions

Reaction due to
support moments

True reactions

Fig. 11.6  Support reactions

 M12 = 46.875 kN.m

 M21 = –93.75 kN.m

 M23 = 93.75 kN.m

As a check we fi nd M32 = 0 from Eq. 11.8. Using these values the reactions may 

be found from the free-body diagrams of each of the spans 1–2 and 2–3 shown 

in Fig. 11.6. Thus, the reactions are:

 R1 = 40.625 kN, R2 = 146.875 kN and R3 = 62.50 kN

The shear force and bending moment diagrams are shown in Fig. 11.7.

The effects of support displacements can be readily included in the slope-

defl ection analysis of continuous beams. From the known support settlements, 

we can calculate for each span, the y value which can be included in the slope-

defl ection equations.

Another condition often encountered in continuous beams is the over hanging 

span. Such problems can be solved by replacing the overhanging span by an 
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equivalent applied moment at the support point. The procedure for analysis is 

then the same as before, except that there is a known value of moment at the end 

of the member adjacent to the overhanging span.

We shall illustrate these points by solving a few numerical examples.

Example 11.2 
Determine the support moments for the continuous 

beam shown in Fig. 11.8. Relative I values for all spans 

are indicated on the beam. Draw the moment diagram.

2m
50 kN/m

40 kN80 kN

1m

4m4m3m

(a)  Continuous beam

I32I21.5I 4

53.3 53.0
100.0

41.4
40.0

9.29

4

18.0

1 2 3

(b)  Moment diagram

Fig. 11.8

87.55

59.37

40.63

62.50

3
2

93.75
125.0

46.88

140.62

(b)  Shear force diagram

(a) Moment diagram

Fig. 11.7
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Step 1: To fi x up the fi xed end moments

First we write the fi xed end moments

 FEM12 = 
2

2

80 1 2
35.55 kN.m

3

¥ ¥
=

 FEM21 = –80 ¥ 2 ¥ 12 = –17.78

 FEM23 = 
250 4

66.67 kN.m
12

¥
=

 FEM32 = 
250 4

66.67 kN.m
12

- ¥
= -

 FEM34 = 
40 4

20.00 kN.m
8

¥
=

 FEM43 = –
40 4

20.00 kN.m
8

¥
= -

Step 2: To write end moments

The continuous beam under goes rotation of joints at supports 2 and 3. We may 

designate them as q2 and q3 respectively. As the supports are rigid no translation 

of joints is possible.

Now we can write down slope defl ection equations for moments.

 M12 = 35.55 + 2 
1.5

3

EIÊ ˆ
Á ˜Ë ¯  (0 + q2)

 M21 = –17.78 + 2 
1.5

3

EIÊ ˆ
Á ˜Ë ¯  (0+ 2q2)

 M23 = 66.67 + 2 
2

4

EIÊ ˆ
Á ˜Ë ¯  (2q2 + q3)

 M32 = –66.67 + 2 
2

4

EIÊ ˆ
Á ˜Ë ¯  (q2 + 2q3)

 M34 = 20.00 + 
2

4

EI
 (2q3 + 0)

and M43 = –20.00 + 
2

4

EI
 (q3 + 0)

Step 3: To write equilibrium conditions

In these equations the unknowns are q2 and q3 and the two equilibrium equations 

are:

 M21 + M23 = 0 (a)

 M32 + M34 = 0 (b)

Substituting the values from above we have

 4EIq2 + EIq3 = –48.89

 EIq2 + 3EIq3 = 46.67

Solving the equations simultaneously, we get
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 EIq2 = –17.58

and EIq3 = 21.42

Step 4: To write the end moments

Substituting these values in moment equations, we get

 M12 = 35.55 – 17.58 = 17.97 kN.m

 M21 = – 17.78 + 2(–17.58) = -52.94 kN.m

 M23 = 66.67 + 2(–17.58 + 21.42 = 52.93 kN.m

 M32 = –66.67 – 17.58 + 2(21.42) = –41.41 kN.m

 M34 = 20.00 + 21.42 = 41.42 kN.m

 M43 = –20.00 + 
21.42

2

-Ê ˆ
Á ˜Ë ¯  = – 9.29 kN.m

The moment diagram is shown in Fig. 11.8b.

Example 11.3 
A continuous beam is shown in Fig. 11.9 during loading 

support 2 sinks by 10 mm, determine the support 

moments. E = 200 ¥ 106 kN/m2 and I = 80 ¥ 10–6 m4. Relative I value for each 

span is indicated

10 kN/m

32

(2 )
8m

I

3m

40 kN

3m

40 kN

I

( )
4m
I (1.5 )

6m
I

4

(a)  Continuous beam

4
32

30.0
13.98

80.0

66.50
60.0

1

(b) Moment diagram

Fig. 11.9

Step 1: To write fi xed end moments due to loading 

The fi xed end moments are:

 FEM12 = 
2

2

40 3 1

4

¥ ¥
 = 7.5 kN.m

 FEM21 = 
2

2

40 3 1
22.5 kN.m

4

¥ ¥
= -

 FEM23 = –FEM32 = 
210 8

53.33 kN.m
12

¥
=
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 FEM32 = –53.33 kN.m

 FEM34 = –FEM43 = 
40 6

30.0 kN.m
8

¥
= -

Step 2: To write end moments in terms of FEMs, rotation and translations

and  12 21 23 32

1 1 1 1
, – , ,

400 400 800 800
y y y y= = = + = +

writing slope defl ection equations for end moments

 M12 = 
2

4

EI
(2q1 + q2 – 3 y12) + 7.5

  
2

1 2

3
7.5 2 10

2 4

EI
q q -Ê ˆ= + + + ¥Á ˜Ë ¯

  
2

167.5
2

EI
EI

q
q= + +

Similarly M21 = 37.5 + 1
2

2

EI
EI

q
q+

 M23 = 23.33 + EIq2 + 3
2

EI
q

 M32 = –53.33 + 2
3

2

EI
EI

q
q+

 M34 = 30.0 + EIq3 + 4

2

EIq

 M43 = –30.0 + 3
4

2

EI
EI

q
q+

Step 3: To fi x up equilibrium conditions

The four unknown rotations are q1, q2, q3 and q4 and the four equilibrium 

conditions utilised are

 (1) M21 + M23 = 0, (2) M32 + M34 = 0 (3) M12 = 0 and (4) M43 = 0

On substitution, the resulted equations are

  EIq1 + 4EIq2 + EIq3 = –121.66 (a)

  EIq2 + 4EIq3 + EIq4 = 106.66 (b)

  2 EIq1 + EIq2 = –135.0 (c)

and  EIq3 + 2 EIq4 = 60.0 (d)

Solving the above equations simultaneously the following are obtained

 EIq1 = – 55.68, EIq2 = – 23.65

 EIq3 = 28.66, EIq4 = 15.67
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Step 4: To write fi nal end moments 

Substituting the above in the moment equations

 M21 = 37.50 – 
55.68

2
 – 23.65 = –13.98 kN.m

 M23 = 23.33 – 23.65 + 
28.66

2
 = 14.01 kN.m

 M32 = –83.33 – 
23.65

2
 + 28.66 = –66.50

 M34 = 30.00 + 28.66 + 
15.67

2
 = 66.50

The bending moment diagram is shown in Fig. 11.9 (b)

Example 11.4 
A continuous beam is supported and loaded as shown 

in Fig. 11.10. During loading support 2 sinks by 10 

mm. Analyse the beam for support moments and reactions. E = 200  ¥ 106 kN/m2 

(200,000 MPa) and I = 100 ¥ 10–6 m4 (100 ¥ 106 mm4) constant throughout.

Proceeding as before we can write down fi xed end moments using the table 

in the appendix.

  
12

(40)(4)
20.0 kN.m

8
FEM = =

  FEM21 = – 20.0 kN.m

  
2

23

10(6)
30.0 kN.m

12
FEM = =

  FEM32 = – 30.0 kN.m

If we consider the overhanging span 3–4 as a cantilever the fi xed end moment 

at 3 is

 FEM34 = 20(2) = 40.0 kN.m

40 kN

20 kN

4 m
2

1
3

6 m 2 m

4

2 m
10 kN/m

Fig. 11.10  Continuous beam having a sinking support

The values of y for spans 1–2 and 2–3 are computed as

 12

1
rad.

400
y = -
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 23

1
rad.

600
y = +

The expressions for fi nal moments at the end of each span are written using 

Eqs. 11.3 and 11.4. Of special mention here is the fact that although absolute 

stiffnesses have been used in deriving these equations it is possible to simplify 

the computations by using relative values of I/L. The values of fi nal end moments 

obtained by using these relative values are not affected and are correct. If, 

however, we wish to fi nd out the absolute value of any unknown rotation q or 

y, an adjustment must be made to correct for the use of relative values of I/L in 

writing the initial equations. Note that the relative I/L values for spans 1–2 and 

2–3 may be taken as 3 and 2 respectively.

Using Eqs. 11.3 and 11.4 and remembering q1 = 0, we can write

 12
12 12 2 12

12

6
20.0 2 (0 )

EI
M EK

L
q y= + + -  (11.12)

Letting EK12 = 3, and substituting numerical values for the last term, we 

have

 M12 = 6q2 + 20 +75 (11.13)

and M21 = 12 q2 – 20 + 75 (11.14)

Similarly,

 23
23 23 2 3 23

23

6
30 2 (2 )

EI
M EK

L
q q y= + + -  (11.15)

Again, letting EK23 = 2 and substituting numerical values for the last term we 

have

 M23 = 8q2 + 4q3 + 30 – 33.33 (11.16)

and M32 = 4q2 + 8q3 – 30 – 33.33 (11.17)

It is apparent that the two unknowns, q2 and q3, appear in the above expressions 

for various moments. Therefore, we must fi nd two equilibrium conditions. In this 

case we conveniently use expressions to the effect that the sum of the internal 

moments over each of the supports, 2 and 3 must be zero (Fig. 11.11).

Further, we know moment M34 = + 40.0 kN.m

The equilibrium equations are

 M21 + M23 = 0 (11.18)

and M32 + M34 = 0 (11.19)

Substituting for M21 and M23 from Eq. 11.14 and 11.15, we get

 20q2 + 4q3 = – 51.67 (11.20)

Again substituting for M32 from Eq. 11.17 and taking M34 = + 40.0 kN.m we 

get

 4q2 + 8q3 = 23.33 (11.21)

A simultaneous solution of Eqs. 11.20 and 11.21 gives
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 q2 = – 3.5186

and q3 = 4.6755

Substituting back the values of q2 and q3 in Eqs. 11.13 to 11.17, we get

 M12 = 73.88 kN.M

 M21 = 12.78 kN.M

 M23 = –12.78 kN.m

 M32 = – 40.0 kN.m

and M34 = +40.0 kN.m

The actual values of q2 and q3 can be obtained by multiplying the relative 

values of q2 and q3 by 3L12/EI or 2L23/EI. Thus,

2 3

M21 M23 M32 M34

Fig. 11.11  Free-body diagrams of joints

73.88
40 kN

12.78 12.78 40.0 20 kN40.0

1
2 3

20 20 30 30 20

21.67 8.808.8021.67

4 m 6 m 2 m

10 kN/m

41.67 kN 19.53 kN 58.80 kN

Simply supported
beam reactions

Reactions due to
support moments

True reactions

Fig. 11.12  Reactions

 q2 = –2.111 ¥ 10–3 rad.

and q3 = 2.805 ¥ 10–3 rad.

The negative sign for q 2 indicates that the rotation of joint 2 is in the clockwise 

direction. Obviously, joint 3 rotates in the anti-clockwise direction.

The reactions may be obtained from free-body diagrams of spans 1–2 and 2–3 

as shown in Fig. 11.12.

11.5   ANALYSIS OF FRAMES WITH NO LATERAL

     TRANSLATION OF JOINTS

The analysis of frames in which the lateral translations of joints are restrained 

follows the same general procedure as for continuous beams. This aspect is 

illustrated in the following example.
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Example 11.5 
It is required to analyse the frame shown in Fig. 11.13 

for moments at the ends of members. El is constant for 

all members.

1
2

3

4

4 m

2 m

20 kN

4 m

2 m20 kN/m

40 kN

2
 m

Fig. 11.13  Frame and loading

It is seen from inspection that the beam can rotate at joints 2 and 3. There 

is no possibility of translation of any of the joints. Writing down the fi xed end 

moments, we have

 12

20(4)(4)
26.67 kN.m

12
FEM = =

  FEM21 = –26.67 kN.m

 23

40(4)
20.0 kN.m

8
FEM = =

  FEM32 = –20.0 kN.m

 24

20(4)
10.0 kN.m

8
FEM = - = -

  FEM42 = +10 kN.m

Note that for the column, the bottom end is the left end and the top the right 

end.

Designating the rotations at joints 2 and 3 as q2 and q3 respectively, the end 

moments can be written as

 M12 = 26.67 + 2EKq2 

Taking EK = 1, since only relative values are needed,

 M12 = 26.67 + 2 q2 

Similarly,

 

21 2

23 2 3

32 2 3

24 2

42 2

26.67 4

20 4 2

20 2 4

10 4

10 2

M

M

M

M

M

q

q q

q q

q

q

= - + ¸
Ô= + + ÔÔ= - + + ˝
Ô= - + Ô

= + Ǫ̂

 (11.22)
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Now to solve for the two unknowns, q2 and q3, two conditions are used. They are

 M21 + M23 + M24 = 0 (11.23)

and M32 = 0 (support 3 is a roller support) (11.24)

Substituting for moment terms from the expression in Eq. 11.22, we get

 12 q 2 + 2 q3 = 16.67 (11.25)

 2 q 2 + 4 q 3 = 20.00 (11.26)

Solving Eqs. 11.25 and 11.26 simultaneously, we get

 q2 = 0.606

and q3 = 4.6968

Substituting back in Eq. 11.22, we have

 M12 = 26.67 + 2 (0.606) = 27.88 kN.m

 M21 = –26.67 + 4 (0.606) = –24.24 kN.m

 M23 = 20.0 + 4(0.606) + 2(4.6968) = 31.82 kN.m

 M24 = –10 + 4 (0.606) = –7.57 kN.m

 M32 = –20 + 2 (0.606) + 4 (4.6968) = 0

 M42 = 10.0 + 2(0.606) = 11.21 kN.m 

The defl ected shape and the moment diagram are shown in Fig. 11.14.

1
2

q2

q3

3

4

(a)
(b)

27.88

40.0 24.24 31.82

7.57

20.00

11.21

Fig. 11.14  (a) Defl ected shape, (b) Moment diagram

Example 11.6 
Analyse the frame of Fig. 11.15. The relative I value for 

each member is indicated on the fi gure. E is constant. 

This is again a case of a frame where the lateral translation of joints is 

prevented. However, joints 2 and 3 are free to rotate. We can write down the 

fi xed end moments as

 12

40(4)
20.0 kN.m

8
FEM = =

  FEM21 = –20.0 kN.m
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 23

60(3)
22.50 kN.m

8
FEM = =

and  FEM32 = –22.50 kN.m

1

2
3

4

2 l 2 l

l

60 kN

1.5 m 1.5 m

40 kN
2

m
2

m

Fig. 11.15  Frame and loading

Now designating rotations at joints 2 and 3 as q2 and q3 respectively, we can 

write down the end moments of members as

 

12 12 2

21 12 2

23 23 2 23 3

32 23 2 23 3

34 34 3

43 34 3

20.0 2

20.0 4

22.50 4 4

22.50 2 4

0 4

0 2

M EK

M EK

M EK EK

M EK EK

M EK

M EK

q

q

q q

q q

q

q

= + ¸
Ô= - + Ô
Ô= + + Ô
˝= - + + Ô
Ô= +
Ô

= + Ǫ̂

 (11.27)

in which       23 3412
12 23 34

12 23 34

, and
I II

K K K
L L L

= = =

It is observed that all the above moments are written in terms of q2 and q3 which 

are yet to be evaluated. We shall use the following conditions of equilibrium to 

evaluate the unknown rotations q2 and q3.

 M21 + M23 = 0 (11.28)

and M32 + M34 = 0 (11.29)

Substituting for the moment values from Eq. 11.27, we have

 20 E q 2 + 4 E q 3 = – 2.50 (11.30)

and 4 E q 2 + 20 E q 3 = 22.50. (11.31)

It may be noted that the above equations were obtained taking the relative 

stiffness ratio as EK12 = 3, EK23 = 2 and EK34 = 3.

Solving Eqs. 11.30 and 11.31 simultaneously, we get
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 q2 = –0.3646 and q3 = 1.1979

Substituting these values in Eq. 11.27 the end moments are evaluated as

 M12 = 20 + 6(–0.3646) = 17.81 kN.m

 M21 = –20 + 12 (–0.3646) = –24.38 kN.m

 M23 = 22.5 + 8(–0.3646) + 4(8.1979) = 24.38 kN.m

 M32 = –22.5 + 4(–0.3646) + 8(1.1979) = –14.38 kN.m

 M34 = 4(3) (1.1979) = 14.38 kN.m

 M43 = 2(3) (1.1979) = 7.19 kN.m

The defl ected shape and the moment diagram are shown in Fig. 11.16.

45.00

14.38

24.37

40.0

17.81 7.19

24.37

14.38

(a) (b)

Fig. 11.16  (a) Defl ected shape, (b) Moment diagram

11.6   ANALYSIS OF FRAMES WITH LATERAL

     TRANSLATION OF JOINTS

For the analysis of frames in which the translation of joints is permitted, it 

is necessary to consider some other equilibrium conditions in addition to the 

equilibrium of joints. The following examples illustrate the steps involved in 

analysing such frames.

Example 11.7 
Determine the moments at the ends of the members of 

the frame shown in Fig. 11.17. EI is constant for all 

members. Draw bending moment diagram.

Under the loading the frame undergoes side sway as shown in the defl ected shape 

in addition to rotations at 2 and 3

Step 1: To write fi xed end moments

We can write the fi xed end moments as

 FEM23 = 
2

2

50 2 4

6

¥ ¥
 = 44.44 kNm
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6m

1 4

3

50 KN

2
2 m

6
m

12.79.5
1 4

45.6

23.8

23.8

20.6
32

(a) (b)

Fig. 11.17  (a) Portal frame under loading (b) Moment diagram

 FEM32 = 
2

2

50 2 4

6

¥ ¥
 = –22.22 kNm

 FEM12 = FEM21 = 0

and FEM43 = FEM34 = 0

Step 2: To write general equations for end moments

Now assigning rotations at joints 2 and 3 as q2 and q3 respectively and y12 = y34 

= 
6

-D
. We can write slope defl ection equations for end moments as:

 M12 =  2

2
3

6 6

EI
q

DÊ ˆ+Á ˜Ë ¯

 M21 =  2

2
2 3

6 6

EI
q

DÊ ˆ+Á ˜Ë ¯

 M23 =  ( )2 3

2
2 44.44

6

EI
q q+ +

 M32 =  ( )2 3

2
2 22.22

6

EI
q q+ -

 M34 =  3

2
2 3

6 6

EI
q

DÊ ˆ+Á ˜Ë ¯

and M43 =  
3

2
3

6 6

EI
q

DÊ ˆ+Á ˜Ë ¯

Step 3: To fi x up equilibrium equations

It can be seen that the above moments are expressed in terms of q2, q3 and y12 

= y34. It is therefore necessary that we require three conditional equations to 

evaluate these unknowns.
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The fi rst two conditions can be written as

 M21 + M23 = 0 (11.32)

 M32 + M34 = 0 (11.33)

The third conditional equation is obtained by writing down SFH = 0 for the 

entire structure

M21

M12

M34

M43

Fig. 11.17(c)  Shear in columns

That is: 43 3412 21 0
6 6

M MM M ++
+ =  (11.34)

On substitution and the values, we have

 324
– 44.44

3 3 6

EIEI EIqq D
+ + =  (11.35)

 2
3

4
22.22

3 3 6

EI EI
EI

q
q

D
+ + =  (11.36)

 EI q2 + EI q3 + 
2

3
 EI D = 0 (11.37)

Solving the above equations simultaneously, we get,

 EI q2 = –42.83

 EI q3 = 23.77

and EI D = 28.58

Step 4: To write fi nal end moments

Substituting these values in moment equations we have

 M12 = – 
4.2.83 28.58

– 9.52 kN.m
3 6

+ =

 M21 = 
2 28.58

( 42.83) – 23.79 kN.m
3 6

- + =

 M23 = 
2 1

44.44 (–42.83) (23.77) 23.81 kNm
3 3

+ + =

 M32 = 
1 2

22.22 ( 42.83) (23.77) 20.65 kNm
3 3

- + - + =
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 M34 = 
2 1

(23.77) (28.58) 20.61 kNm
3 6

+ =

 M43 = 23.77 + 
28.58

6
 = 12.68 kNm

The moment diagram is shown in Fig. 11.17b

Example 11.8 
Determine the end moments of the members of the 

frame shown in Fig. 11.18. EI is same for all members. 

Draw the bending moment diagrams

6m

10 KN

4
m

2 3

(a)

1 4

8.0

8.038.0

8.0

2

12.0 12.0
(b)

1 4

Fig. 11.18

Step 1: To identify translation and rotation of joints

The frame under goes lateral translation under the horizontal load. Joints 2 and 3 

rotate by an amount q2 and q3 respectively. As the axial force is neglected in beam 

2–3 the lateral translation D is same for both the columns. The displacements q2, 

q3 and D are to be evaluated for determining the end moments of members.

As the frame sways to the right, the angular rotation y12 and y43 are clockwise 

and hence taken as negative. So we have

 y12 = y21 = y43 = y34 = –
4

D

Step 2: To write slope defl ection equations for end moments

Writing the slope defl ections we have

 M12 = 2

2 3

4 4

EI
q

Ê ˆ+ DÁ ˜Ë ¯

 M21 = 
2

2 3
2

4 4

EI
q

Ê ˆ+ DÁ ˜Ë ¯

 M23 = ( )2 3

2
2

6

EI
q q+     (11.38)

 M32 = ( )3 3

2
2 2

6

EI
q q+

 M34 = 2

2 3
2

6 4

EI
q

Ê ˆ+ DÁ ˜Ë ¯
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 M43 = 3

2 3

4 4

EI
q

Ê ˆ+ DÁ ˜Ë ¯

Step 3: To fi x up equilibrium conditions

To evaluate q2, q3 and D we require three equilibrium conditions, we can write 

two conditions as

 M21 + M23 = 0 (11.39)

 M32 + M34 = 0 (11.40)

The third is the shear condition. The horizontal force and the shear in columns 

must balance making SFH = 0 on the entire frame. We can write

M21

M12

M34

M43

(c)

Fig. 11.18 (c)

 43 3412 21
10

4 4

M MM M ++
+ =  (11.41)

On substitution into equations 11.39, 11.40 and 11.41 we have

 3
2

5 3
0

3 3 8

EI
EI EI

q
q + + D =

or  3
2

5 3
0

3 3 8

q
q + + D =  (11.42)

 
2 3

4 2 3
0

3 3 8
q q+ + D =  (11.43)

and 2 3

3 3 3
40 /

2 2 2
EIq q+ + D =  (11.44)

Solving the above simultaneous equations

 2 3

8 128
and

3EI
q q= = - D =

Substituting back in the slope defl ection equations the end moments in the 

members are:

 M12 = 12 kNm, M21 = 8 kN.m
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 M23 = –8 kNm, M32 = –8 kN.m

 M34 = 8 kNm, M43 = 12 kN.m

The moment diagram is shown in Fig. 11.18b.

Example 11.9 
Determine the end moments of the members of the 

frame shown in Fig. 11.19. The relative EI values for 

each member are indicated along the members

41

EI = 2

EI = 1 EI = 1

2 3

8m

3
m

20 KN

3
m

30.1130.11

17.03

23.47

23.47

(a)  Portal frame under lateral load (b)  Moment diagram

Fig. 11.19

Step 1: To write fi xed end moments

The fi xed end moments are

 FEM12 = 
20 6

15 kNm
8

¥
=

 FEM21 = –15 kN.m

Step 2: To identify translation and rotation of joints 

Let q2, q3 and D are the displacements- q2 and q3 angular and D translational

We can now write the end moments in terms of displacements as

M12 = 2 12

2
( 3 ) 15

6

EI
q y- +  in which y12 = 

6

-D

or

 

( )

( )

12 2

21 2

23 2 3

32 2 3

34 2

43 3

3 15
3 6

2 3 15
3 6

(2 )
2 2 2

8

(2 )
2 2

8

2
2 2 3

6 6

2
3

6 6

EI
M

EI
M

EI
M

EI
M

EI
M

EI
M

q

q

q q

q q

q

q

¸DÊ ˆ= + +Á ˜ ÔË ¯ Ô
ÔDÊ ˆ= + - ÔÁ ˜Ë ¯ Ô
Ô

= + ÔÔ
˝
Ô= +
Ô
ÔDÊ ˆ Ô= +Á ˜Ë ¯ Ô
ÔDÊ ˆ Ô= +Á ˜Ë ¯ Ǫ̂

 (11.45)
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Step 3: To fi x up equilibrium equations

The three unknown displacements are determined by utilizing three equilibrium 

equations

     (i) M21 + M23 = 0,   (ii) M32 + M34 = 0

and (iii) SFH = 0, i.e.20 H1 – H4 = 0

or 20 – 34 4312 21 0
6 6

M MM M ++ Ê ˆÊ ˆ - =Á ˜ Á ˜Ë ¯ Ë ¯
Substituting the values for the moments we have

 
3

2

5 15

3 2 6 EI

q
q

D
+ + =

 2
3

5
0

2 3 6

q
q

D
+ + =

 q2 + q3 + 
2 120

3 EI
D =

M21

M12

M34

M43

H1 H4

20 KN

Fig. 11.19 (c)

Solving the above equations simultaneously 

We have EIq = –7.07, EIq3 = –19.93 and EID = 220.5

Substituting these values in moment equations 

We have

 12

7.07 220.5
15 49.39 kN.m

3 6
M = - + + =

 21

2 220.5
( 7.07) 15 17.03 kN.m

3 6
M = - - + - =

 23

19.93
7.07 17.03 kN.m

2
M = - - = -

 32

7.07
19.93 23.47 kN.m

2
M = - - = -

 34

2 220.5
( 19.93) 23.47 kN.m

3 6
M = - + =
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 43

19.93 220.5
30.11 kN.m

3 6
M = - + =

Example 11.10 
Using the slope-defl ection method determine the end 

moments of the members of the frame given in Fig. 

11.20a. EI is the same throughout.

The fi xed end moments for the members are written as

  12

60(4)
30.0 kN.m

8
FEM = =

   FEM21 = –30.0 kN.m

  23

40(4)(4)
53.33 kN.m

12
FEM = =

   FEM32 = –53.33 kN.m

(a) (b)

1

2 3

4

1

2
3

4

40 kN/m

2
m

60 kN

3
 m

4 m

D D

2
m

Fig. 11.20  (a) Frame and loading, (b) Possible defl ected shape of frame

Because axial deformation is neglected, the lateral translation of joint 2 is 

equal to that of joint 3 as shown in Fig. 11.20b. Then 12
4

y
D

=  and 34
3

y
D

= . 

Noting that q1 = q4 = 0, we can write the following slope defl ection equations for 

end moments. Assigning EK12 = EK23 = 3 and EK34 = 4, we get

 

12 2 12

21 2 12

23 2 3

32 2 3

34 3 34

43 3 34

30 6( 3 )

30 6(2 3 )

53.33 6(2 0)

53.33 6( 2 0)

0 8(2 0 3 )

0 8( 0 3 )

M

M

M

M

M

M

q y

q y

q q

q q

q y

q y

= + - ¸
Ô= - + - Ô
Ô= + + + Ô
˝= - + + + Ô
Ô= + + -
Ô

= + + - Ǫ̂

 (11.46)
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It can be seen that all the above moments are expressed in terms of q2, q3 and  

12 34

3

4
y y= and, therefore, three conditional equations are required to evaluate 

these three unknowns. The fi rst two conditions that can be written are

 M21 + M23 = 0 (11.47)

and M32 + M34 = 0 (11.48)

The third conditional equation can be obtained by considering that the 

summation of the forces in the horizontal direction on the entire structure is

SFH = 0.

The forces involved in this equilibrium equation are the 60 kN external 

horizontal force and the shears in the columns at the bases. Referring to Fig. 

11.21, we can write

1

2
3

4

3
 m

2
 m

M21

M12

M34

V43

V12
M43

60 kN

2
 m

Fig. 11.21  Shear in columns at base

 S FH = 60 – V12 – V43 = 0 (11.49)

Forces acting to the right on the structure are considered positive. Expressions 

for shears V12 and V43 can be obtained in terms of the end moments. Taking the 

summation of moments about 2 on the left hand side column

 M12 + M21 + 60(2) – V12(4) = 0

or 
12 21

12 30
4

M M
V

+
= +  (11.50)

Similarly, the summation of moments about 3 on the right hand side column 

gives

 
34 43

43
3

M M
V

+
=  (11.51)

Simultaneously solving Eqs. 11.47, 11.48 and 11.49 after substituting for 

moments from Eq. 11.46, we get

 q2 = –2.005, q3 = 1.237 and y12 = –0.96

Substituting these values in Eq. 11.32, we get

 M12 = 30 + 6 (–2.0) – 6(3) (–0.96) = 35.28 kN.m
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 M21 = –30 + 12 (–2.0) – 6(3)(–0.96) = –36.70 kN.m

 M23 = 53.33 + 12 (–2.0) + 6(1.237) = + 36.70 kN.m

 M32 = –53.33 + 6(–2.0) + 12(1.237) = –50.50 kN.m

 M34 = 0 + 16(1.237) – 24(4/3)(–0.96) = 50.50 kN.m

 M43 = 0 + 8(1.237) – 24 (4/3) (– 0.96) = 40.62. kN.m.

The free-body diagrams of the members of the frame are shown in Fig. 11.22. As 

a check we notice that the sum of shear in columns and the external horizontal 

load satisfy the condition SFH = 0.

40 kN/m

30.37

76.55

76.55
36.70

36.70

60 kN

35.28

76.55

29.63

30.70

50.5

83.45

30.37

83.45

30.37

50.5

30.37

83.45

40.62

Fig. 11.22  Free-body diagram of frame members

The slope-defl ection equations can also be applied to frames with more than 

one bay and one storey. For multistorey frames, additional equations are obtained 

by considering the summation of horizontal forces above each fl oor level. As 

the number of bays and storeys increases, so does the number of simultaneous 

equations to be solved. However, with the aid of digital electronic computers, the 

solving of the large number of simultaneous equations poses no problem.

Another type of frame sometimes encountered in practice is the one with 

columns that are inclined instead of being vertical. The analysis of such a frame 

is illustrated in the example using slope-defl ection equations.

Example 11.11 
The frame of Fig. 11.23a is to be analysed by the slope-

defl ection method. EI is same for all members.

The given frame has three degrees of freedom. Two rotations, one at each of 

joints 2 and 3, and one lateral translation of the frame. The rotations at 2 and 3 are 

denoted as usual by q 2 and q3 and the lateral horizontal displacement is denoted 

by D. The general displacement of the frame is shown in Fig. 11.23b .

Referring to Fig. 11.23b we can write
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50 kN

1

2 3

4

3 m 5 m 2.25 m

3
 m

(a) (b)

1

2
3

4

f1 f2

D ftan 1

D ftan 2

cos f1

cos f2

D D D

D

Fig. 11.23  (a) Frame and loading, (b) Defl ected shape of frame

 

12

12 1

43

43 2

23 1 2

23

cos

cos

(tan tan )

L

L

L

y

y

y

¸-D
= ÔF Ô

Ô-D
= ˝F Ô

ÔD
= F + F Ô

Ǫ̂

 (11.52)

For the member length and slopes of columns in the frame, we obtain

 

12

43

23

0.25
(5)(0.8)

0.3333
(3.75)(0.8)

and (0.75 0.75) 0.30
5

y

y

y

-D ¸= = - D Ô
Ô

-D Ô= = - D ˝
Ô
ÔD

= + = D Ô
˛

 (11.53)

In this example the fi xed end moments for all the members of the frame are 

zero. Noting q1 = q4 = 0. we can write the following slope-defl ection equations,

 M12 = 2EK12 (0 + q2 – 3y12)

Taking 
12

1
,

5
EK =  we get

 

12 2

21 2

23 2 3

32 2 3

34 3

43 3

(0.4 0.3 )

(0.8 0.3 )

(0.8 0.4 0.36 )

(0.4 0.8 0.36 )

(1.07 0.53 )

(0.53 0.53 )

M

M

M

M

M

M

q

q

q q

q q

q

q

= + D ¸
Ô= + D Ô
Ô= + - D Ô
˝= + - D Ô
Ô= + D
Ô

= + D Ǫ̂

 (11.54)

Then taking the summation of the moments at joints 2 and 3, we obtain
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 M21 + M23 = (1.6 q2 + 0.4 q3 – 0.06 D) = 0 (11.55)

and  M32 + M34 = (0.4 q2 + 1.87 q3 + 0.17 D) = 0 (11.56)

One more independent equation is necessary to solve for the three unknowns 

q2, q3 and D. A third equation of equilibrium is obtained by considering the 

summation of moments about point O in Fig. 11.24a. Point O is located at the 

intersection of the two inclined column lines. Taking summation of moments 

about O we get:

1

2

3

4

V12

M12

50 kN

9.
17

 m 7.92
m 3

.3
3
 m

3
 m

M43
V43

O

(a)

1

2
3

4

(b)

V12

M43

V43

V43
M21 M34

V21

M12

Fig 11.24  (a) Free-body diagram of the structure, (b) Moment and shear in columns

 SMo = M12 + M43 – V12 (9.17) – V43(7.92) + 50(3.33) = 0 (11.57)

The shears V12 and V43 can be expressed in terms of moments at the ends of 

members 1-2 and 3-4 respectively. Referring to Fig. 11.24b

 12 21
12

12

M M
V

L

+
=  (11.58)

 34 43
43

34

M M
V

L

+
=  (11.59)

After expressing the moments as in Eq. 11.54 and substituting in Eq. 11.57, 

and on simplifi cation, we get

 (1.8 q2 + 2.84 q3 + 2.52 D) = 166.67 (11.60)
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We have thus three unknowns q2, q3 and D, and three conditional equa-

tions given by Eqs. 11.55, 11.56 and 11.60. On solving these three equa tions 

simultaneously, we get

 q2 = 4.59

 q3 = –7.62

and D = 71.51

Substituting these values in Eq. 11.54, we get the end moments as

 M12 = 23.29 kN.m

 M21 = 25.12 kN.m

 M23 = –25.12 kN.m

 M32 = –30.00 kN.m

 M34 = + 30.00 kN.m

 M43 = + 34.07 kN.m

The values of the remaining reaction components can be obtained from the 

free-body diagrams of the members.

Problems for Practice

Use the slope-defl ection method in solving the following problems.

11.1 Determine the support moments and reactions for the beam shown in Fig. 11.25. 

Construct the shear force and moment diagrams for the beam. EI is constant.

1
2 3

40 kN

20 kN/m

10 kN

2 m 2 m 3 m 1.5 m

Fig. 11.25

11.2 Determine the support moments of the continuous beam shown in Fig. 11.26. EI 

is constant.

50 kN 80 kN 80 kN

40 kN/m
1 2 3

4

3 m 2 m 4 m 4 m2 m 2 m

Fig. 11.26

11.3 Find.the end moments of the members of the frame shown in Fig. 11.27. El is 

constant.

11.4 Determine the end moments of the members of the framed structure shown in Fig.  

11.28 Sketch the defl ected shape and draw the moment diagram on the tension face of 

the members.
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1

2 3

4
8 m

4
 m

60 kN/m

Fig. 11.27

EI = 2
4 m 4 m 4 m

EI = 2 EI = 2
1

2 3
4

5 6

4
 mEI = 1 EI = 1

30 kN/m

100 kN

2 m

Fig. 11.28

11.5 Determine the end moments in all the members of the framed structure shown in 

Fig. 11.29. EI value for each member is indicated along the members.

11.6 Determine the end moments in all the members of the frame shown in Fig. 11.30. 

EI values are indicated along the members.

EI EI EI

EIEI

40 kN

20 kN/m

1
2 3

4

65

4
 m

4 m 4 m

= 1 = 1

1 m

= 2 = 2 = 2

Fig. 11.29

EI

E
I

E
I

4
 m

6 m 3 m

=
 3

2

1

3

4

100 kN

2 m

3
0
 k

N
/m

= 2

= 1

Fig. 11.30



12.1  INTRODUCTION

The moment distribution method, also known as the Hardy Cross method, 

provides a convenient means of analysing statically indeterminate beams and 

frames by simple hand calculations. This is basically an iterative process. The 

procedure, in general, involves artifi cially restraining temporarily all the joints 

against rotation and writing down the fi xed end moments for all the members. 

The joints are then released one by one in succession. At each released joint the 

unbalanced moments are distributed to all the ends of the members meeting at 

that joint. A certain fraction of these distributed moments are carried over to the 

far end of members. The released joint is again restrained temporarily before 

proceeding to the next joint. The same set of operations are carried out at each 

joint till all the joints are completed. This completes one cycle of operations. The 

process is iterated for a number of cycles till the values obtained are within the 

desired accuracy.

The moment distribution method is also a displacement method of analysis. 

However, this method does not involve solving any equations. This method is 

highly popular among engineers as the calculations involved are minimum and 

are free from solving simultaneous equations if the frames do not undergo lateral 

translations.

Sign Convention The sign convention followed in the development of 

this method is the same as the one followed for the slope-defl ection method. 

Reference may be made to Sec. 11.2.

Mij

Mji

j
i

qi

Lij

EI constant

= 1

Fig. 12.1  Absolute stiffness of a member when the far end is fi xed

Moment 
Distribution Method

12
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Before developing the moment distribution method of analysis, it is necessary 

to defi ne certain terms employed in this method. They are presented and discussed 

below.

12.1.1 Absolute and Relative Stiffness of Members

The absolute stiffness of a member can be defi ned as the moment required to 

produce a unit rotation at the simply supported end, i, while the farther end, j, is 

fully restrained. For the beam in Fig. 12.1, the moment Mij thus represents the 

absolute stiffness of member i-j. From the Appendix table, the moment

 
4

ij

EI
M

L
=  (12.1)

considering qi as unity.

The moment at the farther fi xed end is equal to

 
2

ji

EI
M

L
=  (12.2)

The ratio I/L in Eqs. 12.1 and 12.2 is referred to as the relative stiffness and is 

denoted by letter K. For prismatic member i-j, the relative stiffness

 

.

ij

ij ji

ij

I
K K

L
= =

12.1.2 Carry Over Factor (C.O.F.)

If a moment Mij is applied at end i of the member in Fig. 12.1, a specifi ed amount 

of moment, Mji, is generated at the farther restrained end. The carry over factor 

(C.O.F.) is defi ned as the factor by which the moment at simply supported end i, 

Mij, is multiplied to get the moment carried over to the other end, that is, Mji or

 Mji = CijMij (12.3)

Cij is the carry over factor. From Eqs. 12.1 and 12.2, we can write

 
1

2
ji ijM M

Ê ˆ= Á ˜Ë ¯
 (12.4)

Thus, for a prismatic member the carry over factor is always 
1

2

Ê ˆ+Á ˜Ë ¯ . If the 

farther end is a hinged end instead of a fi xed one as in Fig. 12.2, the corresponding 

stiffness is known as the modifi ed stiffness of a member and is equal to (see 

Appendix D)

Mji

j
i

MjiLij

EI constant

= 0

l

Fig. 12.2  Absolute stiffness of a member when far end is hinged
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3

ij

EI
M

L
=  (12.5)

and the relative stiffness

 
3

4
K K=¢  (12.6)

Obviously, the moment carried over to the farther hinged end, Mji = 0.

12.1.3 Distribution Factor (D.F.)

Consider a joint in a structure where two or more members meet. If an external 

moment M is applied to such a joint, the joint undergoes a rotation q as shown in 

Fig. 12.3a. Since all the members meeting at this joint undergo the same rotation 

q, the applied moment M is distributed to each of the ends of the members 

according to their relative stiffness values. The factor by which the applied 

moment is multiplied to obtain the end moment of any member is known as the 

distribution factor (D.F.).

Consider the free-body diagram of joint 1 in Fig. 12.3b. For equilibrium of 

joint 1, we have

 M12 + M13 + M14 + M15 – M = 0 (12.7)

In writing the equilibrium Eq. 12.7, clockwise moments on a joint are 

considered positive. The end moments of members can be written in terms of the 

angle of rotation q as

 M12 = 4EK12q, M13 = 4 EK13q, M14 = 4EK14q

and M15 = 4EK15q (12.8)

Substituting these values in Eq. 12.7, we get

 M = 4Eq (K12 + K13 + K14 + K15)

or M = 4EqSK (12.9)

or 
4

M

E K
q =

S
 (12.10)

(E,I,L)1-3

(E,I,L)1-4

(E,I,L)1-2

(E,I,L)1-5

2

5

3

M q

Q

(a) (b) 5

1
1

3

24

M14
M12

M13

M15

M

Fig. 12.3  (a) Moment M applied at joint 1, (b) Free-body diagram of joint 1
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where SK denotes the sum of the relative stiffnesses of all the members meeting 

at joint 1.

Substituting the value for q from Eq. 12.10 in the fi rst of Eq. 12.8, we get

 12
12 124

4

KM
M EK M

E K K
= =

S S
 (12.11)

Ratio 12K

KS
 indicates the fraction by which the applied moment M is to be 

multiplied to get the moment resisted by member 1–2. This ratio by defi nition 

is the distribution factor. The distribution factor for any member i-j is defi ned in 

general as

 
ij

ij

K
r

K
=

S
 (12.12)

The distribution factor for a member is thus equal to the stiffness (or relative 

stiffness) of the member divided by the sum of stiffnesses (or relative stiffnesses) 

of all the members meeting at the joint.

12.2  DEVELOPMENT OF METHOD

The basic idea underlying the moment distribution method may be illustrated by 

considering the analysis of a continuous beam shown in Fig. 12.4a. The beam is 

fi xed at its ends but is free to rotate over support 2. Now, we begin the analysis by 

temporarily restraining the beam against rotation over support as shown in Fig. 

12.4b. The fi xed end moments in each span caused by the transverse loads are 

evaluated using the Appendix Table, and following the sign convention adopted, 

we have

 12

100 5
62.50 kN.m

8
FEM

¥
= =

  FEM21 = –62.50 kN.m

 

2

23

20(7.5)
97.75 kN.m

12
FEM = =

  FEM32 = –93.75 kN.m

Considering the free-body diagram of joint 2 (Fig. 12.4c), we fi nd that the 

temporary restraint is resisting a moment of 31.25 kN.m in the direction indicated. 

According to the sign convention it is a negative quantity. To obtain the true 

condition at support 2 we must remove the temporary restraint at support 2. This 

release is achieved by applying a +31.25 kN.m at joint 2. Under this moment the 

member will rotate until it attains a position of equilibrium generating a moment 

of –31.25 kN.m in the two member ends meeting at joint 2. This moment is 

distributed between the two members in proportion to their relative stiffnesses. 

The distribution factors are evaluated from their relative stiffnesses using Eq. 

12.12. Thus
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100 kN

20 kN/m

5 m 7.5 m

1
2 3I I

2.5 m

3
(a) Two span bean and

the loading

(b) All the joints temporarily
restrained

(c) Free body diagram of
joint 2

1

2

3

– 31.25

– 62.50 93.75

2

Fig. 12.4  (a) Two span beam and the loading, (b) All the joints temporarily restrained,

(c) Free body diagram of joint 2

 21

/ 5 1

( / 5 3 / 7.5) 3

I
r

I I
= =

+

And 23

3 / 7.5 2

( / 5 3 / 7.5) 3

I
r

I I
= =

+
Therefore, the moment developed at the end of each member is

 21

1
( 31.25) 10.42 kN.m

3
M = - = -

 
23

2
( 31.25) 20.83 kN.m

3
M = - = -

Half of these moments are carried to their farther ends as carry over moments, 

that is,

 M12 = (1/2) (–10.42) = –5.21 kN.m

 M32 = (1/2) (–20.83) = –10.42 kN.m

The beam is now in its true position under the given loading. The true moment 

at each end of the member is obtained by adding algebraically the fi xed end 

moments and the moments caused by the release of joint 2.

Thus, the true moments are

 M12 = 62.50 – 5.21 = 57.29 kN.m

 M21 = –62.50 – 10.42 = –72.92 kN.m

 M23 = + 93.75 – 20.83 = 72.92 kN.m

and M32 = –93.75 – 10.42 = -104.17 kN.m
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The above procedure can be recorded in a convenient tabular form as shown 

in Fig. 12.5. The relative stiffnesses are recorded fi rst in the respective spaces. 

The distribution factors are then recorded in small boxes marked for each joint. 

It may be noted that the distribution factors for joints 1 and 3 are zero. A fi xed 

end support may be thought of as a joint with an imaginary member of negligible 

length joining the regular member end. In that case the denominator in Eq. 12.12 

results in an infi nite value and, therefore, the distribution factor is zero for the 

beam at this end.

The fi xed end moments are next recorded at the ends of the members as shown 

in Fig. 12.5. The unbalanced moment at joint 2 is distributed between the two 

members by multiplying the unbalanced moment with the respective distribution 

factors. After the distribution is done a line is drawn below to show that the 

joint is balanced. Half of the distributed moments are carried over to the farther 

ends as carry over moments and entered as shown. Note that at a fi xed joint no 

balancing is necessary. The moments in each column are then summed up to get 

the fi nal or true moments.

As an extension of the procedure consider now a variation in the support 

condition at the right end of the beam as shown in Fig. 12.6a. This is a simply 

supported end. It is now possible for both joint 2 and joint 3 to rotate.

L

100 kN

20 kN/m

I I
=

5 L

I 3I
=

7.5

0 1/3 2/3 0

62.50 – 62.50

– 10.420

– 5.21 0 0

93.75 – 93.75

– 20.83 0

– 10.42

– 104.17+ 72.92– 72.9257.29

1 2 3 Imaginary member
of zero length

Relative stiffness (K)

Distribution factor (r)

Fixed end moments (FEM)

Unbalanced moments distributed

Carry over moments

Final moments

Fig. 12.5

The analysis is started by considering that both joints 2 and 3 are restrained 

temporarily as shown in Fig. 12.6b. The fi xed end moments are the same as in 

the previous example and are shown entered in their respective ends. The two 

temporarily restrained joints are to be released one by one in turn. In releasing 

joint 3, we fi rst notice that the joint is actually a simply supported end and the 

fi nal moment must be equal to zero. Therefore, the unbalanced moment at joint 

3 is balanced as shown in Fig. 12.6c. Half of the balanced moment is carried to 
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joint 2 as the carry over moment. Joint 3 is again restrained temporarily in the 

rotated position as shown in Fig. 12.6d.

100 kN

20 kN

I 2
1

3
3

I
7.5 m5 m

0 1/3 2/3 0

2
1 3

3
2

1

3
2

+ 62.50 – 62.50 – 93.75+ 93.75

+ 62.50 – 62.50 + 93.75 – 93.75

+ 93.75+ 46.88

– 13.02 – 26.04 – 52.09 – 26.05

(a) Beam and the loading

Distribution factor (r)

(b) Joint 2 and 3 restrained
temporarily

Fixed end moments

(c) Joint 3 is released, balanced
& moment carried to joint 2

(d) Joint 3 is restrained in the
rotated position & joint 2

is released, balanced
& moment carried over

Fig. 12.6

Joint 2 is then released and the unbalanced moment –78.13 kN.m (–62.50 + 

93.73 + 46.88) is distributed to the two members, 2-1 and 2-3 in proportion to 

their distribution factors. Half of these distributed moments are carried over to 

the farther ends. At this stage joint 2 is again temporarily restrained in the rotated 

position. No balancing is necessary at joint 1 which is a fi xed end. However, joint 

3 again has to be released by balancing the moment to zero. Half of the balanced 

moment is carried over to joint 2. The joint 2 again is unbalanced. However, it 

may be noted that the unbalanced moment at joint 2 is much smaller (–13.03 

kN.m) than the original unbalanced moment (–78.13 kN.m). Joint 2 is released 

and the unbalanced moment distributed. This set of operations is repeated in 

a cyclic order until the unbalanced moments are within the desired degree of 

accuracy.

The whole procedure can be condensed and performed in a tabular form where 

the values are recorded in a compact form. The procedure involved is shown in 

the table of Fig. 12.7. The iteration is stopped when the unbalanced moments 

become very small and can be neglected. The fi nal step before summing the 

moments is the balancing and distribution of the moments at the joints. Thus, the 

fi nal moments are in equilibrium.
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1
2

3

=
l l

L 5
=

l l

L 2.5

0 1/3 2/3 0

62.50 – 62.50

– 13.02 – 26.04

– 2.17 – 4.34

– 0.37 – 0.73

– 0.06 – 0.12

– 0.02

+ 46.87 – 93.75

93.75 – 93.75

46.88

– 52.09

+ 13.03

– 8.69

+ 2.18

– 1.45

+ 0.37

– 0.25

+ 0.07

+ 93.75

– 0.05

+ 93.75

– 26.05

+ 26.05

– 4.35

+ 4.35

– 0.73

+ 0.73

– 0.13

+ 0.13

0

Rel. stiff

D.F

FEM

Bal.3 and C.O

Bal. 2 and C.O

Bal.3 and C.O

Bal. 2 and C.O

Bal.3 and C.O

Bal. 2 and C.O

Bal.3 and C.O

Bal. 2 and C.O

Bal.3 and C.O

Bal. 2

Final moments

Fig. 12.7

The convergence in the above solution has been rather slow owing to the fact 

that joint 3 is a hinged end and continuously throws back sizeable carry over 

moments to joint 2.

In a structure where one end is simply supported, such as the right hand 

support of the beam in Fig. 12.7, a considerable amount of work can be saved by 

using the modifi ed or reduced stiffness factor for right span 2-3. According to Eq. 

12.6 the modifi ed stiffness factor is three-fourth of the stiffness factor of a beam 

whose farther end is fi xed.

We shall revise the distribution factors using the modifi ed stiffness factor for 

span 2-3. The distribution factors are worked out as shown in Fig. 12.8. The 

joints are temporarily restrained as earlier and the fi xed end moments are written. 

Again, as a fi rst step, we release joint 3 and allow the member to rotate and 

develop a moment of + 93.75 kN.m and carry over half of it to support 2. At this 

point we leave joint 3 free of any restraint so that it can rotate freely and hence 

develop no moment. Next, we move on to joint 2. The joint is released so that the 

unbalanced moment (–78.13 kN.m) is distributed to the two members meeting 

at that joint as shown in Fig. 12.8. Then, there is the usual carry over to joint 1 

and no carry over moment to joint 3 since the modifi ed stiffness for span 2-3 is 
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used considering that the farther end is hinged. Thus a considerable amount of 

computation is avoided. The summed up moments are seen to be the same as in 

the previous method.

0 0.4 0.6 0

l l
=

L 5

1
2

3

l 3l3

4 2.5 10

+ 62.50 – 62.50

– 15.63 –31.25

+ 46.87 –93.75

+ 93.75

+ 46.88

– 46.88

+ 93.75

+ 93.75

+ 93.75

0

= Rel. stiff.

D.F

FEM

Bal. 3 and C.O

Bal. 2 and C.O

Final moments

Fig. 12.8

Structures with overhanging members can be solved by replacing the 

overhanging span with an equivalent applied moment at the adjacent support 

point. The procedure is then similar to the case of a simply supported end but 

with a known moment at that end. We shall make this point clear by working out 

the following example.

Example 12.1 
It is required to determine the support moments for the 

continuous beam shown in Fig. 12.9 by the moment 

distribution method. El is the same throughout.

First, we can replace the overhanging span at the right end with an equivalent 

moment of +10.0 kN.m. The moment is positive according to our sign convention 

because the 10 kN force tends to rotate the joint in a clockwise direction. This 

moment is entered along with the fi xed end moments in Fig. 12.9.

L L

40 kN

20 kN/m

10 kN

2 m 2
1

3
4 m 3 m 1 m

l
=

l

4 4

3

4

l l

0 0.5 0.5 0

+ 20.00 –20.00

+ 0.63 + 1.25

+ 20.63 –18.75

+ 15.00

+ 2.50

+ 1.25

– 15.00

+ 5.00

+ 10.00

+18.75 – 10.00 + 10.00

Overhanging beam
and the loading

Rel. stiff

D.F

FEM.

Bal. 3 and C.O

Ba. 2, distr. C.O

Final moments

Fig. 12.9
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The fi xed end moments are

 12 21

4(40)
20 kN.m 20 kN.m

8
FEM FEM= = = -

 

2

23 32

60(3)
15 kN.m 15 kN.m

12
FEM FEM= = = -

Joint 2 is released so that the fi nal moment is kept at 10.0 kN.m and the joint 

is then treated similar to a simply supported end. Note that the modifi ed stiffness 

factor 3/4 is used for span 2-3. Half of the balanced moment at 3 is carried over to 

joint 2. Joint 2 is released and the unbalanced moment is distributed. Half of the 

distributed moment is carried over to fi xed end –1 as usual. The fi nal moments 

are obtained by summing up the moments in each column entry. As a check, we 

see that the moments at support 2 sum up to zero.

Consider another example of a continuous beam of three spans with one end 

fi xed and the other with a overhang.

Example 12.2 
It is required to determine the support moments for the 

continuous beam of Fig. 12.10. El is the same 

throughout.

As in the previous example, the overhanging end can be replaced by applying 

a concentrated moment –150.00 kN.m at the left of support 1. This is entered in 

the same row as the fi xed end moments in other spans in Fig. 12.10. The fi xed 

end moments are written down using the Appendix table.

 

2 2

12 2 2

80(2)(4) 80(4)(2)
106.66 kN.m

(6) (6)
FEM = + =

  FEM21 = –106.66 kN.m

  FEM23 = FEM32 = 0

 
34 43

40(4)(4)
53.33 kN.m; 53.33kN.m

12
FEM FEM= = = -

The relative values of stiffnesses are worked out as usual. Because support 

1 can be considered as simply supported with a defi nite moment, the reduced 

stiffness value is taken for span 1-2.

As shown in Fig. 12.10, the fi rst step in moment distribution is to balance 

the simply supported end at 1. An equivalent moment of the overhanging 

span is included in balancing the joint. After carrying over half the balancing 

moment to joint 2, the moment distribution analysis follows the usual procedure 

to completion. The entire analysis is shown entered in the moment distribution 

table of Fig. 12.10.
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I I I I

1 2 3

80 kN 80 kN50 kN

2 m 2 m 40 kN/m

3 m 6 m 4 m 4 m

4

3
4

l
4

l
8

=
l

6

Il
4

1.0 1/3 2/3 1/2 01/2

– 150.00

0

– 150.00

+ 106.66

+ 43.34

0

+ 150.00

– 106.66

+ 21.67

+ 28.33

+ 4.45

+ 2.36

+ 0.37

+ 0.20

– 0.03

– 49.25

0.0

+ 56.66

13.34

+ 8.89

– 7.09

+ 4.73

– 1.12

+ 0.75

– 0.60

+ 0.40

– 0.10

– 0.07

+ 49.25

0.0

– 26.67

+ 28.33

+ 14.77

+ 4.45

– 2.23

+ 2.37

– 1.19

+ 0.38

– 0.19

+ 0.20

– 0.1

– 8.82

+ 53.33

– 26.66

– 14.16

– 2.22

– 1.18

– 0.19

– 0.1

+ 8.82

– 53.33

– 13.33

– 7.08

– 1.11

– 0.59

– 0.10

– 75.54

Beam and the
loading

Rel. stiff

D.F

FEM

Bal. 1 and C.O

Dist.

C.O

Dist.

C.O

Dist.

C.O

Dist.

C.O

Dist.

C.O

Dist.

Final moments

Fig. 12.10

In the discussion of moment distribution above, none of the joints was 

considered to have translated in a direction transverse to the axis of the member. 

Where such transverse joint translations are possible, for example, as in the case 

of settlement of supports or elastic supports, they can be taken into account while 

writing the fi xed end moments. We shall illustrate the procedure by solving the 

following examples.

Example 12.3 
Determine the support moments for the continuous 

beam shown in Fig. 12.11. E is constant and I values 

are as indicated on the beam. 
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40KN
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4
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3
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Rel, Stiff

Modified Rel Stiff.

FEM Clue to loading+ 7.50 –22.50 +53.33

–7.50 –3.75

–53.33 +30.00 –30.00

+15.00 +30.00

Dist Fact

Due to Simply supported
ends

Moments for distribution

Dist.

C.O

C.O

Dist.

Dist.

C.O

Dist.

C.O

–26.25 +53.33

–11.61 –15.47

+2.38

–1.02 –1.36

+ 2.21

–0.95 –1.26

+ 0.20

–0.09 –0.11

+0.18

–0.08 –0.10

–40.00 +40.00

–53.33

+4.76 +3.57

+45.00

–7.74

+ 4.42 + 3.32

–0.68

+ 0.39 + 0.29

–0.63

+ 0.36 + 0.27

–0.06

+0.03 +0.03

–52.48 +52.48

Dist.

I/4
3
4

0 0

0 0

00

Fig. 12.11

Example 12.4 
In the continuous beam in Example 12.3, the support 2 

sinks by 10 mm under the loading. Determine the 

support moments due to combined loading and sinking of support take E = 200 

¥ 106 kN/m2 and I = 80 ¥ 10–6 m4.

In the Example 12.3 above. The support moments are worked out due to the 

loading on the beam. Now we can work out separately the support moments as a 

result of sinking of support 2. The combined moments can be obtained by adding 

them algebraically. The results are shown entered in the Table that follows.
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3
7

4
7

3
7

4
7

+ 60.0 + 60.0 – 15.0 – 15.0

– 60.0 – 30.0

+ 30.0 – 15.0 – 15.0

– 6.43 – 8.57

+ 4.29

+ 8.57 + 6.43

– 1.84 – 2.45

+ 1.23 – 1.23

+ 2.45 + 1.84

+ 4.29

– 0.53 – 0.70

+ 0.35

+ 0.70 + 0.53

– 0.35

– 0.15 – 0.20

+ 0.10

+ 0.20 + 0.15

– 0.10

– 0.04 – 0.06 + 0.06 + 0.04

+ 21.01 – 21.01

+ 40.00 + 40.00

– 8.99 + 8.99

+ 52.48 + 52.48

– 18.99 + 18.99 – 61.47 + 61.47
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FEM Due to
settlement of supp.

Bal. & c.o.

Moments for Pist

Dist

C.O
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C.O
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C.O

C.O

Dist

Dist

Support Moments

Moments Previous

Final Moments

00

0

0

0

0

0

0

0

Fig. 12.12

Example 12.5 
Let us consider the continuous beam of Fig. 12.13. 

Under the loading support 2 sinks by 10 mm. Determine 

the support moments using the moment distribution method. E = 200 ¥ 106 kN/

m2 (200,000 MPa) and I = 100 ¥ l06 m4 (100 ¥ 106 mm4).

The example was previously solved by the slope-defl ection method in Example 

11.4. Note EI is the same throughout.

The fi xed end moments are written, as usual, after restraining all the joints 

temporarily. The fi xed end moments are

 12 21

40 4
20.00 kN.m; 20.00 kN.m

8
FEM FEM

¥
= = = -

 
23 32

10 6 6
30.00 kN.m; 30.00 kN.m

12
FEM FEM

¥ ¥
= = = -
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3
4

l
4

l
6

l
8

=

0 2/3 1/3 1.0

2 m

4 m

1
2 3

40 kN

10 kN/m

20 kN

2 m6 m

+ 20.00 – 20.00 + 30.00 – 30.00 + 40.00

+ 75.00 – 75.00 + 33.33 – 33.33

+ 95.00 + 75.00 + 3.33 – 63.33

+ 11.67 + 23.33

– 21.12 – 42.23 – 21.11

+ 73.88 + 12.77 – 12.77 – 40.00

+ 40.00

+ 40.00

Beam and the loading

Rel. stiff

D.F

FEM due to loading

FEM due to translation
of support 2

Total FEM

Bal. 3 and C.O

Bal. 2, distr. and C.O

Final moments

Fig. 12.13

The overhanging end is replaced by applying a moment of + 40.00 kN.m 

at joint 3 and the support shall be treated as simply supported for all purposes 

hereafter. The effect of the translation of supports can now be included by 

considering the fi xed end moments caused by the translation of joints in the 

temporarily restrained condition. The fi xed end moments due to the translation 

of support 2 are (see Appendix table).

 

6 6

12 2 2

6 6(200 ) (100 ) 10

1000(4)

75.00 kN.m

EI
FEM

L

-D ¥ 10 ¥ 10 Ê ˆ= = Á ˜Ë ¯

=

  FEM21 = 75.00 kN.m

 

6 6

23 2

6(200 ) (100 ) 10

1000(6)

33.33 kN.m

FEM
-- ¥ 10 ¥ 10 Ê ˆ= Á ˜Ë ¯

= -
  FEM32 = –33.33 kN.m

These fi xed end moments are to be added algebraically to the fi xed end 

moments caused by transverse loads. For clarity, the fi xed end moments caused 

by transverse loads are entered fi rst in one row and the fi xed end moments due 

to the translation of the support are entered in the next row as shown in Fig. 

12.13. The algebraic sum of the fi xed end moments are entered in the third row. 

The procedure from now on is the same as in the previous examples. The fi nal 
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moments are summed up at the end taking the total fi xed end moments. The 

results obtained are the same as the slope-defl ection solution. Notice the extreme 

simplicity of the moment distribution method in dealing with the translation of 

supports. We shall discuss further in Sec. 12.4 the effect of the translation of 

joints with reference to frames.

12.3   ANALYSIS OF FRAMES WITH NO LATERAL

      TRANSLATION OF JOINTS

Moment distribution for the analysis of frames in which the joint translations are 

prevented follows the same general procedure as for continuous beams. It is quite 

usual that in frames more than two members meet at a joint. Care must be taken 

in such cases to include the stiffness of all members meeting at any joint while 

evaluating the distribution factors. Additional consideration must be given to the 

recording of computations. For a single bay, single storey frame, it is convenient 

to spread out the legs of the frame so that the frame lies along a straight line. The 

entries are then made as on a continuous beam. Another convenient method of 

recording calculations is to enter the values on a sketch of the framed structure. 

Both these methods are illustrated in the following examples.

Example 12.6 
The end moments of the members of the portal frame of 

Fig. 12.14 are to be obtained using the moment 

distribution method. The relative values of EI are shown along the members.

The frame is prevented from undergoing lateral translation. The calculations 

are entered on the opened up frame as shown in Fig. 12.15a. The procedure 

followed is the same as for a continuous beam. The entries are self-explanatory. 

The fi nal summed up values give a check as regards the correctness of the 

calculations. The calculations can also be recorded on a sketch of the frame as 

shown in Fig. 12.15b.

Example 12.7 
Using the moment distribution method, determine the 

end moments of the members of the frame of Fig. 12.16 

and draw the moment diagram. EI is the same throughout.

The support condition at end 1 prevents the frame from undergoing lateral 

translation. As pointed out, the procedure for the analysis of this frame is the 

same as that for continuous beams without translation of supports. The fi xed end 

moments due to external loading in the temporarily restrained joints are

 

2

12 21

30(4)
40.00 kN.m, 40.00 kN.m

12
FEM FEM= = = -

 23 32

(100)(4)
50.00 kN.m, 50.00 kN.m

8
FEM FEM= = = -

 

2

34 43

20(3)
15.00 kN.m, 15.00 kN.m

12
FEM FEM= = = -
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EI = 6

EI = 4 EI = 4
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Fig. 12.14  Frame and loading
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+ 35.74

0.0
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+ 17.80

Rel. stiff

D.F

FEM
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C.O

Dist.

C.O

Dist.

C.O

Dist.

C.O

Dist.

Final moments

1.0 3/7 4/7 1/2 1/2 0

Fig. 12.15(a)  Frame opened out and distribution carried out

The calculations are performed on a sketch of the frame as shown in Fig. 

12.17. For the girder of the frame, the calculations are entered as in a continuous 

beam. For columns, however, the values are entered below on a column line as 

shown in Fig. 12.17. This arrangement is convenient for single storey frames of 
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any number of bays. For frames of more than one storey, the arrangement which 

is slightly different but more convenient is shown later in Sec. 12.6.
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Fig. 12.15 (b)  An alternative way of recording value
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Fig. 12.16  Frame and loading
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D.F

FEM

Dist.4 and C.O

C.O

Dist.

C.O
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C.O

Dist.

Final moments

C.O

Fig. 12.17

The fi xed end moments are entered in one row. It may be noted that there are 

no fi xed end moments for the columns as there is no load transverse to them. Next 

the simply supported end 4 is balanced and half of it is carried to support 3 as the 

carry over moment. Joints 2 and 3 are balanced and the moments are distributed 

to the three member ends meeting at these joints according to their distribution 

factors. The distributed moment for the column tops are recorded below under 
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‘column top’. Next the moments are carried over to the farther ends as carry over 

moments. For columns the carry over is from ‘column top’ to ‘column bottom’. 

The moments are summed up as usual. As a check it can be verifi ed that the sum 

of the moments at any joint must be zero. It may be noted that the moments at 

the bottom of columns are either equal to zero as in the case of hinged supports 

or equal to half the moment at the top as in the case of fi xed bases. The moment 

diagram is shown in Fig. 12.18 drawn on the tension face of the members.

37.51

60.0 44.99
50.01 100.00 42.48

32.51

22.50

9.97
5.02

2.49

Fig. 12.18  Moment diagram

12.4   ANALYSIS OF FRAMES WITH LATERAL

     TRANSLATION OF JOINTS

So far we have considered frames in which the joints are not allowed to translate 

laterally. However, in frames, the translation of some joints is common due to 

forces acting in the lateral direction as in Fig. 12.19a or due to asymmetrical 

forces as in Fig.12.19b or due to asymmetry in the make-up of the frame even 

though the load is symmetrical as in Figs. 12.19c and d.

In frames undergoing lateral translation, the analysis is carried out in two 

stages. In the fi rst stage, the frame is prevented from undergoing any lateral 

translation by applying an artifi cial joint restraint as shown in Fig. 12.20. The 

procedure is then similar to the one adopted for frames without sway.

The value of artifi cial restraining force X is obtained by fi rst evaluating the 

shear at the bases of columns. Then from the equilibrium condition, S FH = 0, 

the value of X can be evaluated. At this stage the end moments obtained are 

true only when restraining force X is acting. To achieve the true condition of 

the structure, the frame has to be analysed again by applying a force equal and 

opposite to artifi cial restraining force X. The member end moments resulting from 

this condition of loading will be combined with the moments obtained from the 

earlier restrained condition to obtain the true values of moments in the frame.



436  Basic Structural Analysis

Fig. 12.19  Lateral translations due to: (a) Lateral loading, (b) unsymmetrical loading,

(c) Unequal column heights, (d) Unequal column stiffnesses

1

2
3

4

Artificial
Restraint

Fig. 12.20  Frame restrained from lateral

translation

The moments in the members of the frame due to application of the force (–X) 

are obtained in an indirect manner. The frame is assumed to be subjected to an 

arbitrary loading say X ¢, as shown in Fig. 12.21. If only translations are allowed 

restraining the rotations temporarily, the frame defl ects laterally by an amount 

D. Lateral translation D is the same for both joints, if the axial deformation in 

the beam is neglected. The fi xed end moments for this condition can be written 

using the Appendix table. It is not necessary to know the true value of D. We can 

arbitrarily fi x moments in columns on the basis that the joints translate equally 

without undergoing rotation. It is good practice to assume the moments that lie in 

the range of moments we are working with. With the fi xed end moments chosen 

x
D D

Fig. 12.21  Frame under an arbitrary 

lateral force
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arbitrarily, but following defi nite proportions, the moment distribution is worked 

out. From a free body diagram of columns, horizontal force X is worked out 

using the condition of equilibrium of forces in the horizontal direction. The true 

values of moments under a horizontal force (–X) can be obtained by multiplying 

the moments caused by X¢ by the ratio, X/X¢. The moments thus obtained are 

added to the moments obtained in the fi rst stage of moment distribution. The 

whole procedure shall become clear once we work out some examples.

Example 12.8 
Determine the end moments of the members of the 

frame shown in Fig. 12.22a. EI is same for all the 

members. Draw the moment diagram.

4
 m

1

250 kN 3

4

4 m
(a) (b)

57.2057.20

42.84

43.10

43.10

42.84

Fig. 12.22

Step 1: To fi x arbitrary fi xed end column moments

The frame undergoes lateral translation. To start with we do not know D, the 

lateral translation. As discussed earlier, we assigned arbitrary fi xed end moments 

with defi nite proportions and in the range we are working with. The moment 

distribution is carried out as usual and entered in the table as shown in Fig. 

12.23a.

Step 2: To determine column shears

From the free-body diagram of columns Fig. 12.23b.

 

1 2
1

32.03 23.99
14.00

4 4

M M
H

+ +
= = =

 

3 4
2

32.00 23.99
14.00

4 4

M M
H

+ +
= = =

 H1 + H2 = 28.00 kN.

As the given load is 50 kN, the moments are multiplied by a ratio 50/28. The fi nal 

adjusted moments are entered in the table bending moment diagram is shown in 

Fig. 12.15b.
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I
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1
2

1
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1
2

+ 40.0 + 40.00 0 + 40.0 + 40.0

– 20.0 – 20.0 – 20.0 – 20.0 + 20.0

– 10.0 – 10.0 – 10.0 – 10.0

+ 5.0 + 5.0 + 5.0 + 5.0

+ 2.5 + 2.5 + 2.5+ 2.5

– 1.25 – 1.25 + 1.25 – 1.25

– 0.63 – 0.63 – 0.63

+ 0.32 + 0.32 + 0.32 + 0.32

– 0.63

+ 0.16 – 0.16 – 0.16 – 0.16 – 0.16 + 0.16

+ 0.08 + 0.08 + 0.08 + 0.08

32.03 23.99 – 24.14 – 24.14 + 23.99 + 32.03

57.20 42.84 – 43.10 – 43.10 + 42.84

D.F

FEM – Arbitrary
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C.O
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C.O
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14.0

14.02

28.0

1
H1 = 14.0

14.0

14.0
3

4
H2 = 14.0

(a)

(b)

Fig. 12.23

Example 12.9 
Determine the end moments of the members of the 

frame shown in Fig. 12.24a. EI values are indicated 

along the members.

Step 1: To fi x up end moments in a restrained structure

As a fi rst step, the joint 3 is artifi cially restrained from undergoing lateral 

translation. The moment distribution is worked out in the table that follows. 

The artifi cial restraining force ‘X’ is worked out considering the free-body 

diagrams of the columns as shown in Fig. 12.24b.
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From the free-body diagram of columns in Fig. 12.24b, we can arrive at the 

column shears by applying SFH = 0

3

4

EI = 2

EI = 1EI = 1

8 m
(a)

3
 m

1

3
 m

2

20 kN

8.46

20

M2

18.27 M1 1.64
0.98

0.49

18.36

1.96

0.49
0.49

18.36
18.36

(b)

Fig. 12.24

I

6
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0.4 0.6 0.6 0.4

+ 15.0 – 15.0 0 0 0 0

+ 6.0 + 9.0

+ 3.0 + 4.5

– 2.7 – 1.8

– 1.35

+ 0.54 + 0.81

+ 0.27 + 0.41

– 0.25 – 0.16

– 0.9

– 0.08– 0.13

+ 0.05 + 0.08

+ 18.27

+ 31.12

+ 49.39
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+ 25.51
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– 25.51

+ 8.41 + 1.96

– 25.51

– 23.55

– 1.96

+ 25.51

+ 23.55

– 0.98

+ 31.12

+ 30.14

1 3 4

Rel . Stiff

D.F.

FEM

Bal

C.O

C.O

Bal

Bal

C.O

Bal

C.O

Bal

Moments sway prevented

Moments due to sway

Final Moments

Fig. 12.25

We get X = 18.85 kN.

The frame is now permitted to sway. The FEM caused due to sway are assumed 

appropriately and the moment distribution is carried out as follows.
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0.4 0.6 0.4 0.6

+ 10.0 + 10.0 0 0 + 10.0 + 10.0

– 2.0 – 4.0 – 6.0 – 6.0 – 4.0 – 2.0

0 3.0 0 3.0

0.60 + 1.20 + 1.80

+ 0.90

+ 1.80 + 1.20 0.60

– 0.18 – 0.36 – 0.54

+ 0.90

– 0.36– 0.54 – 0.18

– 0.27 – 0.27

+ 0.06 + 0.11 + 0.16 + 0.16 + 0.11 + 0.06

+ 8.48 + 6.95 – 6.95 – 6.95 + 6.95 + 8.48

1 2 3 4

D.F
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Bal & co

Bal & co

Bal & co

Bal & co

Moments due to FEM assumed

Fig. 12.26

The shear in columns and hence the horizontal fore 

  
8,48 6.95 6.95 8.48

5.14 kN
6 6

X
+ +

= + =¢

The ratio 
18.85

3.67
5.14

X

X
= =

¢
The moments in the table above are multiplied by the factor 3.67 and added 

algebraically to the moments obtained by presenting sway. The fi nd moments are 

shown entered in Table Fig. 12.25.

Example 12.10 
Determine the end moments of the members of the 

frame shown in Fig. 12.27a. E is constant and relative 

I values are indicated on the frame.

I = 6
3

1

23

4 4

2

1

(a) (b)

6 m

50 kN

2
 m

2
 m

I = 4 I = 4

20 kN/m

Fig. 12.27  (a) Frame and loading, (b) Frame restrained from lateral translation

As a fi rst step we artifi cially restrain joint 3 from undergoing lateral translation 

as in Fig. 12.27b. The moment distribution for this restrained condition is already 
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worked out in Example 12.6. We shall take the values from the table of Fig. 

12.15. The artifi cial restraining force X is worked out considering the free-body 

diagram of the columns as in Fig. 12.28. Summing the moments about joint 2, 

we have

1

2 3

4

50 kN

2
 m

20 kN/m

0.0

V12

35.77

V4317.80

2
 m

X
54.77

Fig. 12.28  Free-body diagram of columns

 12

50(2) 54.77
11.31 kN

4
V

-
= =

Similarly, summing the moments about joint 3, we get

 43

35.74 17.80
13.39 kN

4
V

+
= =

Applying equilibrium condition S FH = 0 for the entire structure

 50 – 11.31 – 13.39 – X = 0

or X = 25.3 kN

This is the force the artifi cial restraint exerts on the frame to prevent lateral 

translation and the moments in the fi rst distribution are true for this constrained 

position. To obtain the true condition, the artifi cial constraint has to be removed 

by applying a force equal but opposite to force X. This needs a second distribution 

of moments. However, this has to be worked out in an indirect manner. Apply 

an unknown force, X¢. The fi xed end moments in the columns can be worked 

out considering that joints 2 and 3 only translate and do not rotate. If the axial 

deformation in the beam is neglected, the translations (D) are the same at both 

joints 3 and 4 (Fig. 12.29). The fi xed end moments can be written using the 

Appendix table.

 
12 21 2 2

3 (3)(4)
0, 0.75

(4)

EI
FEM FEM E E

L

D
= = = D = D

 43 34 2 2

6 (6)(4)
1.5

(4)

EI
FEM FEM E E

L

D
= = = D = D

Letting ED = 20
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 FEM21 = 15.0 kN.m

 FEM34 = FEM43 = 30.0 kN.m

Fig. 12.29  Translation of joints 2 and 3 with rotations restrained
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Fig. 12.30

The fi xed moments are entered, as usual, in the table of Fig. 12.30. The 

distribution factors are the same as in Example 12.6. The moment distribution 

is carried out as usual and the fi nal moments are shown in the last row of the 

table. The lateral force X¢ which produced these moments can be evaluated by 

considering the free-body diagram of the columns as in Fig. 12.31. The summation 

of the moments about joint 2 gives,

 
12

11.52
2.88 kN

4
V = =

Similarly, the summation of the moments about joint 3 gives
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 43

16.15 23.11
9.82 kN

4
V

+
= =

From considerations of equilibrium of horizontal forces SFH = 0, we have

 X ¢ = 2.88 + 9.82 = 12.70 kN

The true value of the horizontal force to be applied to the frame is 25.30 

kN. Therefore, the moments due to a lateral force of 25.30 kN are obtained 

by proportion, that is, by multiplying the moments in Fig. 12.30 by a factor 

25.30
1.992

12.70
= . These moments are added to the values of the moments in Fig. 

12.15. Thus, the true moments in the frame are

1

2 3

4

X¢
16.1511.52

0.0 23.11

V12 V43

Fig. 12.31  Free-body diagram of columns

 M12 = 0

 M21 = –54.77 + 11.52 ¥ 1.992 = –31.82

 M32 = –35.73 – 16.15 ¥ 1.992 = –67.90 = –M34

 M43 = +17.80 + 23.11 ¥ 1.992 = 63.84

As a check it is seen that the sum of the shears in the columns is equal to the 

external lateral force (Fig. 12.32).

0

2 3

4

67.90

63.84
32.94

31.82

50 kN

17.051

Fig. 12.32  Check for SFH = 0
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Example 12.11 
Determine the end moments of the members of the 

frame of Fig. 12.33a. EI is constant for all members.

As earlier, the frame is artifi cially restrained temporarily by applying an 

unknown lateral force at joint 3 as shown in Fig. 12.33b. For the restrained 

condition, the moment distribution is carried out in the table of Fig. 12.34 in the 

usual manner. We shall fi nd out the artifi cial restraining force by considering the 

shear force in the columns and the equilibrium of horizontal forces (Fig. 12.35).

1

2 3

4 1

2
3

4

2
 m

60 kN

40 kN/m

2
 m

3
 m

4 m

(a)

(b)

Fig.12.33  (a) Frame and loading, (b) Frame restrained from translation
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C.O
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C.O

Dist.

C.O

Dist.

C.O
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Final moments

60 kN
40 kN/m

l
4

l
4

l
3

0

0

1/2 1/2 4/73/70

+ 30.00

– 5.84

– 2.86

– 0.31

– 0.16

+ 20.83

– 30.00

– 11.67

– 5.72

– 0.62

– 0.31

– 0.03

– 48.35

+ 53.33

– 11.66

+ 11.43

– 5.71

+ 1.25

– 0.63

+ 0.62

– 0.31

+ 0.07

– 0.04

+ 48.35

– 53.33

+ 22.86

– 5.83

+ 2.50

– 2.86

+ 1.23

– 0.32

+ 0.14

– 0.16

+ 0.07

– 35.70

0

+ 30.47

+ 3.33

+ 1.63

+ 0.18

+ 0.09

+ 35.70

+ 15.24

+ 1.67

+ 0.82

+ 0.09

– 17.82

Rel. stiff

Fig. 12.34
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1

2
3

4

35.7

60 kN

48.35

17.82

20.83

V12

V43

X

Fig. 12.35  Free-body diagram of columns

Thus, 12

60(2) 20.83 48.35
23.12 kN

4
V

+ -
= =

 43

17.82 35.7
17.84 kN

3
V

+
= =

Writing, S FH = 0, we have

 60 – 23.12 – 17.84 – X = 0

or X = 19.04 kN

This restraining force was not there in the original structure. Therefore, a 

force of (–X) has to be applied and the moments corresponding to this force (–X), 

have to be worked out. This is done in an indirect way. Let the frame undergo 

a translation, D, without undergoing rotation under lateral force X¢ as shown in 

Fig. 12.36. 

X¢

1

2
3

4

D D

Fig. 12.36  Frame undergoing translation without rotation

The fi xed end moments are

 12 21 2

6 3

8(4)

EI
FEM FEM EI

D
= = = D

 
34 43 2

6 2

3(3)

EI
FEM FEM EI

D
= = = D
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Letting EI D = 60

 FEM12 = FEM21 = 22.50 kN.m

 FEM34 = FEM43 = 40.00 kN.m

The distribution is carried out and the values recorded in the table of Fig. 

12.37.

+ 22.50

– 5.63

+ 2.15

– 030

+ 18/84

+ 0.12

+ 22.50

– 11.25

+ 4.29

– 0.60

+ 0.23

– 0.03

+ 15.14

– 11.25

0

– 8.57

+ 4.28

+ 1.21

– 0.61

– 0.46

+ 0.23

+ 0.07

– 0.04

– 15.14

0

– 17.14

– 5.63

+ 2.41

+ 2.14

– 0.92

– 0.31

+ 0.13

+ 0.12

– 0.05

– 19.25

+ 40.00

– 22.86

+ 3.22

–1.22

+ 0.18

–0.07

+ 19.25

+ 40.00

– 11.43

+ 1.61

– 0.61

+ 0.09

+ 29.66

D.F

FEM – Arbitrary

Dist

Dist

C.O

C.O

Dist

C.O

Dist

C.O

Dist

Final Moments

0 1/2 1/2 3/7 4/7 0

Fig. 12.37

X¢

V43

V12

15.14

18.84

29.66

19.25

Fig. 12.38(a)  Free-body diagram of columns

Columns shears are evaluated considering the free body diagrams of the 

columns (Fig. 12.38a)

 
12

15.14 18.84
8.50

4
V

+
= =

 
43

29.66 19.25
16.30

3
V

+
= =
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60 kN

36.69 50.52

30.39
40.66

29.66
35.34

Fig. 12.38(b)  Check for SFH = 0

 X ¢ = 8.50 + 16.30 = 24.80 kN

The moments in the table of Fig. 12.30 are to be multiplied by the ratio

 

19.04
0.77

24.80

X

X
= =

¢

The true fi nal moments are

 M12 = 20.83 + 18.84(0.77) = 35.34 kN.m

 M21 = –48.35 + 15.14(0.77) = –36.69 kN.m

 M23 = +36.69 kN.m

 M32 = –35.70 – 19.25(0.77) = –50.52 kN.m

 M34 = + 50.52 kN.m

 M43 = 17.82 + 29.66(0.77) = 40.66 kN.m

The fi nal check that the sum of the shears in the columns must balance the 

lateral force is satisfi ed (Fig. 12.38b).

The moment distribution method can be conveniently employed for frames 

with inclined columns. As an illustration, the frame in Example 11.11 is again 

analysed by the moment distribution method in the following example.

Example 12.12 
It is required to analyse the frame in Fig. 12.39a using 

the moment distribution method. EI is the same 

throughout.

The lateral translation of joints 2 and 3 under external force is shown in Fig. 

12.39b. If axial deformations are neglected, lateral translation D is the same for 

both joints. The amount of translation transverse to the columns and the beam 

is indicated in Fig. 12.39b. The fi xed end moments caused by joint translations 

only restraining joint rotations are

 
12 21 2

112

6 6

cos 5 5 0.8

EI EI
FEM FEM

L f

D D
= = =

¥
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D
D

D

D

4
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3 m 5 m

1

2 3

4
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3
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2.25 m

(a)

(b)

D ftan 1

D ftan 2

cos f2

cos f1

1

2

3

4

f2f1

Fig. 12.39  (a) Frame and loading, (b) Lateral translation of joints
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– 41.99

+ 53.33
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– 0.88

– 0.53

– 0.05

+ 41.99

+ 53.33

– 4.95

– 0.43

– 0.05

– 47.68
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FEM

Dist

C.O

Dist

C.O

Dist

C.O

Dist

Final Moments

Rel. stiff

Fig. 12.40

Letting EID = 100

 
12 21
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The moment distribution is carried out using the general procedure and the 

calculations are recorded on the opened up frame shown in Fig. 12.40. We shall 

now evaluate the external horizontal force which caused the fi nal moments in 

the table of Fig. 12.40. To obtain the horizontal force we shall consider the free-

body diagram of the beam and column shown in Fig. 12.41. The summation of 

moments about 2 on the left inclined column gives

15.42

4
 m

3
 m

3 m

35.12

2 35.12 3 41.99

15.425 m

= 15.42

35.12 + 41.99
15.42

32

1 4

41.99

47.68

2.25 m

15.42

515.42

15.42

32.51

H12

H43

Fig. 12.41  Free-body diagram of frame members

 S M2 = –H12(4) + 15.42(3) + 32.51 + 35.12 = 0

or H12 = 28.47 kN

Similarly, for the right hand column, taking moments about 3 and equating 

SM3 = 0, we have

 –H43(3) + 15.42(2.25) + 47.68 + 41.99 = 0

or H43 = 41.46 kN

The resultant external lateral force is X¢ = 69.93 kN from left to right. But the 

frame was actually subjected to an external force of 50.0 kN only. Therefore, 

the fi nal moments in the table of Fig. 12.42 are to be multiplied by a factor 

50
0.715

69.93
= . The true moments are

4
 m

3
0
 k

N
/m

4
 m

100 kN

2 m 4 m

1

2 3

4

EI = 2

EI = 1 EI = 1

6 m 3 m

Fig. 12.42  Frame and loading
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 M12 = 32.51 ¥ 0.715 = 23.24 kN.m

 M21 = –M23 = 35.12(0.715) = 25.11 kN.m 

 M34 = –M32 = 41.99(0.715) = 30.92 kN.m

 M43 = 47.68(0.715) = 34.09 kN.m

These values tally well with the values obtained by the slope-defl ection 

method in Example 11.11.

Example 12.13 
Determine the end moments for the members of the 

frame of Fig. 12.42. The relative values of EI are 

indicated on the diagram.

As in the frames having vertical columns, the frame will be initially restrained 

against lateral translation by providing a temporary support at the top of the right 

hand column. The fi xed end moments for the restrained joints are
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Fig. 12.43
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100 kN

2

2

1

3

6 m

69.52
24.04

74.25

(66.67 + 7.58)
= 74.25

24.04

(33.33 – 7.58)
= 25.75

69.52

25.24

H12

74.25

4
 m

3
0
 k

N
/m

4
 m

3

4

12.02

H43

3 m

25.75

25.75

Fig. 12.44  Free-body diagram of frame members

 

2

32

100(4)(2)
44.44 kN.m

36
FEM = = -

  FEM34 = FEM43 = 0

The moment distribution is carried out in the table of Fig. 12.43. Next, the free-

body diagrams of the columns and girder are shown in Fig. 12.44 indicating all 

the forces acting on them. From the free-body diagram of the left hand column, 

summing up moments about joint 2, we have

 SM2 = –H12(4) + 120(2) + 25.24 – 69.52 = 0

or H12 = 48.93 kN

Similarly, summing up moments about joint 3 on the right hand column, we 

get

 SM3 = –H43 (4) + 25.75 (3) + 12.02 + 24.04 = 0

or H43 = 28.33 kN

D
DD

cos f D ftan

1

2
3

4

f

X¢

Fig. 12.45  Joints 2 and 3 undergoing translation without rotation
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Total artifi cial restraining force X = 120 – (48.93 + 28.33)

or X = 42.74 kN acting from right to left.

We shall analyse the frame once again by applying a force (–X) on the structure. 

Consider the defl ected shape of the frame (only lateral translation and no rotation 

of joints) under horizontal force X ¢ as shown in Fig. 12.45.

The fi xed end moments corresponding to this translation without rotation of 

joints are worked out as earlier. Taking EI D = 100, the fi xed end moments are

 12 2

6 6
37.5 kN.m

16(4)

EI
FEM

D ¥ 100
= = =

  FEM21 = 37.5 kN.m

 23 32 2

6 2 0.75
25.00 kN.m

(6)
FEM FEM

¥ ¥ 100 ¥
= = - = -

 
34 43 2

6
30.00 kN.m

(5) (0.8)
FEM FEM

¥ 100
= = =

The moment distribution is carried out in the table of Fig. 12.46. The free-

body diagrams of the members of the frame are shown in Fig. 12.47. Summing 

up moments about joint 2 on the left hand column, we have

 SM2 = –H12(4) + 34.95 + 32.35 = 0

or  H12 = 16.83 kN
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29.70
H12

H43

Fig. 12.47  Free-body diagram of frame members

Similarly, summing up moments about joints 3 on the right hand column, we 

have

 S M3 = –H43(4) + 10.29(3) + 29.7 + 29.4 = 0

or H43 = 22.49 kN

Therefore, lateral force X¢ = 16.83 + 22.49 = 39.32 kN acting from left to 

right.

The moments in Fig. 12.46 are to be multiplied by a factor, 
42.74

39.32
 = 1.087, to 

get the true moments for the lateral force of (–X) or 42.74 kN acting from left to 

right. Therefore, the fi nal and the true moments by superposition are

 M12 = 25.24 + 34.95(1.087) = 63.23 kN.m

 M21 = –69.52 + 32.35(1.0987) = –34.36 kN.m

 M23 = + 34.36 kN.m

 M32 = –24.04 – 29.4(1.087) = –56.00 kN.m

 M34 = +56.00 kN.m

 M43 = 12.02 + 29.7(1.087) = 44.30 kN.m

12.5  SYMMETRICAL FRAMES

Symmetric Loading In symmetrical structures symmetrically loaded as in 

Fig. 12.41a, symmetrical joints rotate by the same amount but in the opposite 

direction.

Making use of this fact the stiffness of member AB in Fig. 12.48b is 

established.

The moment developed at end A can be written as

 2 (2 )AB A B

I
M E

L
q q= +
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H
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(iii)(ii)

(a)

CL

(b)

Fig. 12.48  (a) Symmetrical structure under symmetrical loading,

(b) Symmetrically defl ected beam

But due to symmetry qA = –qB

Therefore,

 

2
AB A

EI
M

L
q=

or absolute stiffness 
2EI

K
L

=¢

Comparing this with the stiffness value in Eq. 12.1, we have

 
1

2
K K=¢

Thus, if the distribution factors at the ends of the members common to each half 

of the structure are adjusted, the distribution procedure need only be carried out 

on one half and there will be no carry-over moments across the axis of symmetry. 

This would considerably reduce computational work.

Skew-Symmetric Loading Now consider symmetrical structures under a 

skew-symmetrical loading as shown in Fig. 12.49 in which symmetrical joints 

rotate the same amount but, in this case, in the same direction.

Consider the beam in Fig. 12.50 subject to end moments MAB and MBA.There 

is a point of contrafl exure at mid span, that is

 qA = qB = q
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Fig. 12.49  Symmetrical structures under skew-

symmetrical loading

Writing the moment at end A in terms of rotations, we have

 

2
(2 )AB A B

EI
M

L
q q= +

or 

6
AB

EI
M

L

q
=

Thus, the absolute stiffness of member AB is

 

6 3

2

EI
K K

L
= =¢

Or, alternatively, consider one half as a pin-ended member, 
2

L
 long, then 

3 3

4 / 2 2

I
K K

L
= =¢  as above. Again, if the distribution factors at the ends of 

the common members are adjusted, there is no carry over across the axis of 

symmetry and only half of the structure need be analysed.

Any Loading

Since any load system can be broken into two systems, one symmetrical and the 

other skew-symmetrical, these devices are very useful. Two examples are shown 

in Fig. 12.51.

qA

qB
L

B

MBAMAB

A
CL

Fig. 12.50
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Fig. 12.51  Symmetrical structure, under arbitrary loading; (a) Continuous beam, (b) Frame
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Fig. 12.52  (a) Frame and loading, (b) Symmetrical and skew-symmetric loading

We shall illustrate the procedure by solving an example.

Example 12.14 
Find the bending moment in the symmetrical frame 

shown in Fig. 12.52a replacing the loading by equivalent 

symmetrical and anti-symmetrical loading.
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The given loading on the symmetric structure is replaced by a symmetrical 

and an anti-symmetrical loading as indicated in Fig. 12.52b.

With symmetry or anti-symmetry of loading, the moment distribution need 

be carried out for only one-half of the frame. Figure 12.53a and b deal with the 

symmetrical and anti-symmetrical cases respectively. The relative stiffnesses for 

the members meeting at B are calculated on the basis

 K¢BA : K¢BE : K¢BC = 3 KBA 4 KBE : 2 KBC 

for the symmetrical case, and

 K¢BA : K¢BE : KBC = 3KBA : 4KBE : 6KBC 

for the anti-symmetrical case,

where 
I

K
L

= . In this case K is the same for all.

The FEM at B in member BA (note end A is hinged) is

(FEMBA = 
1

2
FEMAB) = –75.0 kN.m for both cases. The carry over factor, CBE 

= 0.5. No moments are carried over from B to C or from B to A. Thus, only one 

cycle of moment distribution is required at B as shown in Fig. 12.53.

It is important to note that in the symmetrical case the end moments in the 

right hand half of the frame are equal in magnitude but opposite in sign to the 

end moments in the left hand half, while in the anti-symmetrical case they are 

equal and also of the same sign in both the halves. The summation of the end 

moments in the two cases is carried out in the table of Fig. 12.54. This gives the 

end moments of the frame in Fig. 12.52. The corresponding moment diagram is 

shown in Fig. 12.55.
12 kN/m

8 kN

1

2

3 4

5

6

16 kN

24 kN

1 m

4 m

4
 m

4
 m

X1
(2l)

(I) (I)

(I)

(I) (I)

X2

  Fig. 12.55  Moment diagram   Fig. 12.56  Frame and loading
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Fig. 12.57

12.6  MULTISTOREY FRAMES

The moment distribution technique can be extended to include the analysis of 

multistorey frames, although manual computation for such structures can become 

quite cumbersome if the number of storeys is large.

As an illustration of the moment distribution approach, an example is solved 

which discusses the various steps involved in the analysis.

Example 12.15 
Using the moment distribution method, determine the 

end moments of all the members of the frame shown in 

Fig. 12.63. The I value for each member is indicated on the frame.

As a fi rst step, the frame is restrained against lateral translation by providing 

artifi cial restraining forces at each fl oor level.
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The distribution factors are evaluated using Eq. 12.12. The values are shown 

recorded at all the joints in Fig. 12.57. The moment distribution is carried out 

as usual. It may be noted that the carry over moments are always from column 

to column and beam to beam only. The moments obtained from the fi rst stage 

of moment distribution are true only if lateral translation is prevented by the 

restraining forces acting at each fl oor level. First the value of the restraining 

forces is determined. In multistoreyed frames they are best obtained by fi nding 

the shears in the columns at the bases. The column shears are worked out using 

the free-body diagrams of columns as shown in Fig. 12.58. The summation of the 

horizontal forces in the top storey gives

 8 + 3.99 – 3.13 + X1 = 0

The forces acting from left to right are considered positive.

This gives X1 = –8.86 kN.

X1

X2

8 kN

3.99

5 kN

1.33

1.31 0.34

3.99
3.13

3.13

0.35

4
 m

4
 m

8.97

7.00

3.99

3.50

1.75
1.31

8.00

4.53

3.

0.90

0.45
0.3

(b)

(a)

Fig. 12.58  (a) Shear at the base of columns and artifi cially restraining forces,

(b) Free-body diagram of columns

Similarly, summation of forces in the lower storey gives

 16 – 3.99 + 3.13 + 1.31 – 0.34 + X2 = 0

or X2 = –16.11 kN

The negative sign for forces X1 and X2 indicates that the restraining forces 

were acting from right to left.

The next step is to apply forces equal but opposite in direction to the restraining 

forces and work out moments induced in the ends of the members. As we have 

seen earlier, this procedure is to be carried out in an indirect manner.

A horizontal force of an unknown magnitude is assumed to act at the top level 

and at the same time holding the lower storey by an another unknown force. 

Under these forces, the frame lurches to the right as shown in Fig. 12.59a. The 

magnitude and sense of these forces can be determined later. The resulting fi xed 

end moments due to translation but without rotation are shown in Fig. 12.59a.
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Moments are balanced and distributed in the usual manner. The results of 

moment distribution are shown in Fig. 12.59b. The column shears and lateral 

forces at fl oor levels 3-4 and 2-5 are shown in Fig. 12.59c.

By another combination of horizontal forces acting at levels 3-4 and 2-5, the 

frame is next forced to translate as shown in Fig. 12.60a. The fi xed end moments 

due to translations only are indicated on the frame. The results of the moment 

distribution are shown in Fig. 12.60b. The column shears and lateral forces at 

level 3-4 and 2-5 are shown in Fig. 12.60c.

The joint forces in Fig. 12.59c and Fig. 12.60c and the moments with which 

they are consistent cannot be combined directly to fi nd the moments resulting 

from two forces equal and opposite to the artifi cial joint restraining forces of 

Fig. 12.58a. It is possible, however, to fi nd some factor A by which all the values 

shown in Fig. 12.57b may be multiplied, and another factor B by which all the 

values of Fig. 12.60b may be multiplied, such that an algebraic summation of the 

products will result in a set of moments consistent with forces acting equal and 

opposite to the joint restraining forces of Fig. 12.58a.

The two conditions necessary to evaluate A and B are obtained by simply 

expressing the fact that the superposition of A times the constraint joint forces 

in Fig. 12.59b and B times the constrained joint force in Fig. 12.60b and the 

artifi cially retrained joint forces in Fig. 12.58a must result in the zero horizontal 

forces at each of the two fl oor levels. Writing all forces acting to the right positive, 

these equations are

 –8.86 + 7.74 (A) – 2.30 (B) = 0

and –16.12 – 10.04 (A) + 11.68 (B) = 0.

A simultaneous solution results in

 A = 2.09 and B = 3.18

The fi nal moments are evaluated by adding to the moments in Fig. 12.57 A 

times the moments in Fig. 12.59b and B times the moments in Fig. 12.60b.

The fi nal and true end moments of the frame members are indicated in Fig. 

12.61a. The moment diagram as drawn on the tension side of the frame is shown 

in Fig. 12.61b.

As a check on the correctness of the moments obtained, we fi nd the shear in 

each storey and compare it with the external shear. For example, in the upper 

storey, the shear in the columns is

 

3.29 20.26 1.47 10.06
8.03 kN

4

+ - +
=

In the lower storey, the shear in the columns is

 

17.18 21.57 27.56 29.89
24.05 kN

4

+ + +
=

They agree with the external shear.
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+ 3.29

– 3.29 – 20.26

+20.26

+10.06

+21.57

– 15.71

– 17.18

– 31.65– 1.47

27.56 29.89

(a) (b)

Fig. 12.61  (a) Results of analysis, (b) Moment diagram

Thus the moment distribution method for frames undergoing lateral translations 

involves repeated distribution of moments and the solving of simultaneous 

equations.

12.7  NO-SHEAR MOMENT DISTRIBUTION

In the analysis of frames subjected to lateral loading, moment distribution has 

to be carried out, which results in solving of simultaneous equations. In the no-

shear moment distribution, the side sway is allowed to occur freely during the 

moment distribution, that is, no change in the forces acting at the fl oor level 

takes place when the joints are allowed to rotate, thus the shear in the columns 

is not changed during the distribution. The method was originally developed for 

symmetrical one bay multistorey frames supporting anti-symmetrical loading. 

The method is also known as cantilever moment distribution.

The adjusted end rotational stiffnesses and fi xed end moments required for the 

no-shear moment distribution are discussed below.

Consider a symmetrical frame loaded anti-symmetrically as in Fig. 12.62a. 

The defl ected shape of the column is shown in Fig. 12.62b in which the end B is 

allowed to sway by D without rotation of joint when rotation q occurs at A due to 

moment applied at that end.

The moments at ends A and B for the member can be obtained as the summation 

of moments due to independent deformations shown in Fig. 12.62c and d.

 6 4
A

EI E
M

l l

f q
= -  (12.13)

and 
6 2

B

EI EI
M

l l

f q
= -  (12.14)

MA should be equal to –MB for no shear in columns AB.
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P B

A

EI L. EI L.

C

D

q

A

B

q

+=

(a) (b) (c) (d)

Fig. 12.62  (a) Symmetrical frame, (b) Translation permitted at top and rotation imposed at 

bottom, (c) Translation only permitted at top, (d) Rotation imposed at bottom

 

P/2
B

A D

C
P/2

D D

Point of
contra
flexure

 

BP/2

A

E

 Fig. 12.63 Fig. 12.64

Equating MA = –MB

 
6 4 6 4EI EI EI EI

l l l l

f q f q
- = - +

 
2

q
f =  (12.15)

Substituting in Eqs. 12.13 and 12.14

Moment at 
EI

A
l

= -  (12.16)

Moment at 
EI

B
l

=  (12.17)

Thus the stiffness for member 
EI

AB
l

=  and the carry over factor = –1.

The values for stiffness and C.O.F. can also be obtained by the moment 

distribution method. If the horizontal load is split into two equal forces as shown 

in Fig. 12.63 the frame will be subjected to anti-symmetrical loading. Under the 

loading the joints B and C translate horizontally by the same amount, and there is 

a contrafl exure point at the mid-point of BC. It is therefore suffi cient to consider 

the frame in Fig. 12.64 which will have the same end moments as in the left half 

of the original frame.

Our task is thus to carry out the moment distribution at joint B with the 

translation allowed to take place freely. The relative and rotational stiffness of 
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member 
3 6

/ 2

EI EI
BE

l l
= =  and of member 

EI
BA

l
=  as earlier. The FEM are the 

end moments due to external loading with the joint B prevented from rotation but 

allowed to sway.

The steps involved in solving these types of frames are:

 1. Consider that the stiffness of a member parallel to axis of symmetry 

subjected to lateral translation is EI/l and C.O.F. is –1 when the far end 

is fi xed.

 2. Consider that the stiffness of a member perpendicular to the axis of 

symmetry is 6 EI/l and the C.O.F. is zero.

 3. Fixed end moments are determined due to sway only without rotation of 

joints under lateral loading.

 4. Moments are balanced for one half of the frame only.

The no-shear moment distribution method is best explained by solving a 

couple of numerical examples.

Example 12.16 
Using the no-shear moment distribution, obtain the 

bending moment diagram for the frame shown in Fig. 

12.65. Consider that all the members have the same value of EI.

The frame under anti-symmetric loading is shown in Fig. 12.65b and the 

analysis has to be carried out for the frame shown in Fig. 12.65c.

Stiffness of member 4

EI
AB =

 

6

6

EI
BE =

10 kN B

EI

EI EI

D

C

A

4
 m

6 m

5 kN 5 kN 5 kN

C B

D A

E

(a) (b) (c)

B

A

Fig. 12.65  (a) Frame under lateral load, (b) Frame under antisymmetric loading,

(c) Frame for analysis

The moment distribution for the frame is shown below. It may be noted that 

the fi xed end moments are obtained by allowing lateral translation freely but 

restraining end rotations. The fi xed end moment FEMAB = FEMBA and using 

equilibrium equation FEMAB/2 = 5 which gives FEMAB = FEMBA = 10.0 kN.m
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Joint A B

Member AB BA BE

Rel. stiff 1/4 1/4 1

D.F.s 0 0.2 0.8

FEM +10 +10 0

Bal. & C.O. +2 –2 –8

Final moments +12 +8 –8

The B.M. diagram is shown in Fig. 12.66.

A

B
C

D

8 kN.m

12

8

8

12 kN.m

Fig. 12.66

Example 12.17 
Using no-shear moment distribution, analyse the 

symmetrical two-storey frame loaded as shown in Fig. 

12.60. Draw the B.M. diagram. The values encircled are the relative stiffness, I/l, 

of members.

The moment distribution is carried out at joints A, B and C for half of the 

frame shown in Fig. 12.67b. The relative end-rotational stiffnesses are 6I/l for 

the beams and I/l for the columns. The C.O.Fs are CBA = CBC = CCB = –1. The 

fi xed end moments in the columns are calculated using equilibrium equations in 

each fl oor level.

Joint A B C

Member AB BA BE BC CB CD

Rel. stiff 2 2 24 1 1 12

D.F.s 0 0.75 0.89 0.037 0.077 0.923

FEM +60.00 +60.00 +15.00 +15.00

Bal. –5.55 –66.75 –2.78 –1.16 –13.84

C.O. +5.55 +1.16 +2.78

Bal. –0.09 –1.03 –0.04 –0.21 –2.56

C.O. +0.09 +2.14 +0.04

Bal. –2.02 –0.19 –0.01 0.0 –0.04

Final moments +65.64 +54.34 –67.97 +13.54 +16.44 –6.44
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 m

DC

B
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20 kN 10 kN

12 m

5 kN

F

8
 m
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B
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D ¢

E¢

(a)

(b)

E

Fig. 12.67  (a) Frame and the loading (b) Frame for analysis

The moment diagram is shown in Fig. 12.68.

D

16.44

13.54

67.97

54.34

65.64 65.64

54.34

67.97

16.44

Fig. 12.68

Example 12.18 
Using no-shear moment distribution method, analyse 

the vierendel girder in Fig. 12.70. The relative values of 

K = I/l for the members are indicated on the girder.

The frame is symmetrical about mid height. The symmetrical frame under 

anti-symmetric loading is shown in Fig. 12.69b. Therefore, the analysis needs 

to be carried out for one half of the frame. The relative stiffness values and the 

carry-over factors are shown in the table that follows. The fi xed end moments are 

calculated using equilibrium conditions for each bay.

Joint B C D

Member BA BC CB CF CD DC DE

Rel. stiff 18 4 4 18 4 4 18

Dist.Factory 0.82 0.18 0.15 0.70 0.15 0.18 0.82

C.O.F. 0 –1 –1 0 –1 –1 0

FEM 0 +30.0 +30.0 –30.0 –30.0 0

Bal. –24.6 –5.4 0 0 0 +5.4 +24.6

C.O. 0 +5.4 –5.4

Final moments –24.6 +24.6 +35.4 0 –35.4 –24.6 +24.6
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40 kN

C

A

B

E
F

6
 m

6 m 6 m

K = 4

K = 3 K = 3 K = 3

K = 4 K = 4

K = 4

20 kN 10 kN10 kN

10 kN 10 kN

20 kN

(a)

(b)

Fig. 12.69  (a) Vierendel girder and the loading, (b) Symmetrical frame under

anti-symmetrical loading

The bending moment diagram is shown in Fig. 12.70.

DCB

A
F

E

24.6

24.6

24.6

24.6

24.624.6

35.4

35.4

Fig. 12.70

Several developments in the moment distribution approach have made it 

possible to take into account the lateral sway without the necessity of solving 

simultaneous equations. However, each one of them gives a set of rules in 

working out the adjusted stiffnesses which are not easy to remember. Kani’s 

method which is dealt with in chapter 13 may be more convenient to apply in 

such cases.



Moment Distribution Method  469

Problems for Practice

Use the moment distribution method in solving the following problems.

12.1 Determine the support moments of the beam shown in Fig. 12.71. EI is constant 

throughout.

4 m 4 m

2 m

2
3

30 kN/m

40 kN

1

Fig. 12.71

12.2 Determine the moment over the central support and sketch the shear force and mo-

ment diagrams for the beam shown in Fig. 12.72. E is constant and I values are indicated 

on the beam.

100 kN

2

20 kN/m2.5 m

5 m 7.5 m

1 3
I 3I

Fig. 12.72

12.3 Determine the support moments and sketch the moment diagram for the beam 

shown in Fig. 12.73. EI is constant.

30 kN/m
20 kN

3 m 3 m 1.5 m

4
3

2
1

Fig. 12.73

12.4 Determine the support moments for the beam shown in Fig. 12.74. EI is constant.

80 kN/m

30 kN

8 m

1
32 4

6 m 2 m
3 m

Fig. 12.74

12.5 Determine the support moments for the beam shown in Fig. 12.75. E is constant 

and I values are as indicated on the beam.
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50 kN/m

40 kN

1
2 3

4

80 kN

3 m 4 m 4 m

2 m1 m

I2I1.5I

Fig. 12.75

12.6 Determine the support moments for the continuous beam shown in Fig. 12.76. 

Under the load support B sinks by 2.5 mm.

 I = 350 ¥ 10–6 m4 (350 ¥ 106 mm4) and E = 200 ¥ 106kN/m2 (200,000 MPa) for all mem-

bers. 

A B C D

4 0 kN/m

100 kN

5  0 kN/m

3 m 2m 3 m

1m

Fig. 12.76

12.7 Determine the end moments of the members of the frame shown in Fig. 12.77. EI 

is constant throughout.

2
 m

20 kN/m

1 2

4

20 kN

40 kN

2
 m

2 m 2 m4 m

Fig. 12.77

12.8 Determine the end moments of the member of the frame shown in Fig. 12.78. The 

relative values of EI for the members are indicated on the frame.

EI = 2

EI = 1 EI = 1

EI = 2 EI = 1

20 kN/m
40 kN

4 m

1 3

5 6

2
4

4 m 1 m

4
 m

Fig. 12.78
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12.9 Determine the moments at the ends of the members of the frame shown in

Fig. 12.79. EI values are indicated on the frame.

50 kN

4
 m

6 m

4 m

1

2 3

4

EI EI

2EI

Fig. 12.79

12.10 For the frame shown in Fig. 12.80, determine the end moments of members. EI 

is constant.

D

CB

A

40 kN

3
 m

4 m

2
 m

60 kN

2
 m

Fig. 12.80

12.11 Determine the end moments of the members of the frame shown in Fig. 12.81. 

EI is constant.

50 kN

1

2 3

4

25 kN

60°

6 m 3 m

1.5 m

3 m

60°

Fig. 12.81

12.12 Determine the end moments of the members of the two-storey frame shown 

in Fig. 12.82. E is constant and relative I values are indicated on the members of the 

frame.



472  Basic Structural Analysis

I

1.2I 0.8I

0.8I
0.9I

I

12.5 kN/m

1
6
.7

 k
N

/m

6 m

1
.2

 m
3
.6

 m
4
.8

 m

1

2

3 4

5

6

Fig. 12.82

12.13 Determine the end moments of the members of a two-storey frame shown in 

Fig.12.83. Take advantage of symmetry. The relative stiffness values for all the members 

are indicated.

50 kN/m

100 kN
4.5 m

6
 m

9 m

1

2

3

4

5

6

2

2

2

2

4

6
 m

4

Fig. 12.83

12.14 Solve the end moments of the members of the frame shown in Fig. 12.84. Use 

anti-symmetric relations. The relative stiffness values for all the members are indicated

25 kn

50 kn

1

2

3

4
5

6

2

2 2

2

4

4

4
 m

6 m

4
 m

Fig. 12.84



13.1  INTRODUCTION

This is an iteration method. This method was developed by Gasper Kani of 

Germany in 1947. The method is an excellent extension of the slope-defl ection 

method. It has the simplicity of moment distribution. Since the method has been 

recognised as one which is very useful, it is discussed in some detail in this 

chapter.

13.2  BASIC CONCEPT

13.2.1 Members without Translation of Joints

Let AB represent a beam in a frame or a continuous structure under transverse 

loading as shown in Fig. 13.1a. A general defl ected shape of the member under 

the loading is shown in Fig. 13.1b. For the time being it is assumed that the joints 

do not translate and only ends A and B undergo rotations qA and qB respectively. 

Let MAB and MBA represent the end moments of beam AB.

Sign Convention

We follow the same sign convention as is followed in the slope-defl ection nethod, 

that is,

 1. anti-clockwise end moments are positive, and

 2. anti-clockwise rotations are postive.

The actual end moments in member AB may be thought of as moments 

developed due to a superimposition of the following three components of 

deformation:

 1. The member AB, to start with, is regarded as completely restrained or 

fi xed. The fi xed end moments for this condition are written as MF
AB and 

MF
BA at ends A and B respectively (Fig. 13.1c).

 2. Only the end A is rotated through an angle qA inducing a moment 2M¢AB 

at end A and M¢AB at farther end B which is fi xed (Fig. 13.1d) Moment 

M¢AB is called the rotation moment at end A.

Kani’s Method

13
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A

MAB

qB

L EI.

qA

MFAB

2M¢AB

2M¢BA

B

MBA

qA

2M¢AB

M¢BA

qB

MFBA

(a)

(b)

(c)

(d)

(e)

Fig. 13.1  (a) Beam in a continuous structure, (b) Defl ected shape—ends undergo rotation 

only, (c) Fixed end moments, (d) Only end A rotates by qA, (e) Only end B rotates by qB.

 3. Next end A is considered as fi xed in the rotated condition and only end 

B is rotated through an angle qB which induces a moment 2M¢BA at B 

and moment M¢BA at end A (Fig. 13.1e). The moment M¢BA is called the 

rotation moment at end B.

Thus, the fi nal moments MAB and MBA can be expressed as the superposition 

of the three moments, that is

 MF
AB = MF

AB + 2M ¢AB + M ¢BA

and MBA = MF
BA + 2M ¢BA + M ¢AB (13.1)

For member AB, when we refer to the fi nal moment MAB at A, end A may be 

referred to as the near end and B as the far end. Similarly, when we refer to 

moment MBA at B, end B may be referred to as the near end and end A as the far 

end. Therefore, the relationship in Eq. 13.1 may be stated as follows: the true 

moment at the near end of a member is the algebraic sum of (a) the fi xed end 

moment at the near end due to applied loading, (b) twice the rotation moment of 

the near end and (c) the rotation moment of the far end.

Figure 13.2 shows a multi-storeyed frame. If no translation of joints occur, 

Eq. 13.1 is applicable to all the members.
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Consider various members at joint A. End moments at A for the members 

meeting at A are given by

 MAB = MF
AB + 2M¢AB + M¢BA

 MAC = MF
AC + 2M¢AC + M¢CA (13.2)

 MAD = MF
AD + 2M¢AD + M¢DA

 MAE = MF
AE + 2M¢AE + M¢EA

For the equilibrium of joint A, the sum of the end moments at A must be zero, 

that is

  Â MAB = 0 (13.3)

or  Â MF
AB + 2 Â M¢AB + Â M¢BA (13.4)

where

 Â MF
AB = algebraic sum of fi xed end moments at A of all members meeting at 

A.

 Â M¢AB = algebraic sum of rotation moments at A of all the members meeting 

at A.

 Â M¢BA = algebraic sum of the rotation moments of far ends of the members 

meeting at A.

A

B

C

D

E

Fig. 13.2  A building frame

From Eq. 13.4, we have

 ( )1

2

F
AB AB BAM M M

Ê ˆ= - +¢ ¢Á ˜Ë ¯Â Â Â  (13.5)

or (1

2

F
AB A BAM M M

Ê ˆ= - +¢ ¢Á ˜Ë ¯Â Â  (13.6)

where MF
A = S MF

AB = sum of fi xed end moments at joint A.

From the moment-rotation relationship given in the Appendix we have for the 

beam in Fig. 13.3,

 2M ¢AB =
4

4AB A
AB A

AB

E I
E K

L

q
q=  (13.7)
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where

 KAB = AB

AB

I

L
 the relative stiffness of member AB.

Therefore,

 M ¢AB = 2E KAB qA (13.8)

At joint A all the members undergo the same rotation qA. Assuming E is the 

same for all

 
2AB A ABM E Kq=¢Â Â  (13.9)

Dividing Eq. 13.8 by Eq. 13.9. we have MAB

 
AB AB

AB AB

M K

M K

¢
=

¢Â Â  (13.10)

or M¢AB = 
AB

AB

AB

K
M

K
¢ÂÂ  (13.11)

Substituting for SMAB from Eq. 13.6

 ( )1

2

FAB
AB A BA

AB

K
M M M

K

Ê ˆ= - +¢ ¢Á ˜Ë ¯ ÂÂ  (13.12)

The ratio 
1

2

AB

AB

K

K

Ê ˆ-Á ˜Ë ¯ Â
 is known as the rotation factor for the member AB at 

joint A. Denoting rotation factor as uAB

qA

LAB
M¢AB

A
E I, AB

2M¢AB

B

Fig. 13.3

 uAB = 
1

2

AB

AB

K

K

Ê ˆ-Á ˜Ë ¯ Â  (13.13)

Eq. 13.12 can now be written as 

 M ¢AB = uAB (MF
A + SM ¢BA) (13.14)

In this equation the summation of fi xed end moments MF
A is a known quantity. 

To start with, the far end rotation moments M¢BA are not known and hence they 

may be taken as zero.

By a similar approximation, the rotation moments at other joints are also 

determined. With the approximate values of rotation moments computed, it is 

possible to determine again a more correct value of the rotation moment at A for 

member AB using Eq. 13.14.
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The process mentioned above is iterated till the desired accurate values of the 

rotation moments are obtained. After attaining the desired degree of accuracy in 

the values of the rotation moments, the fi nal moments can be computed using 

Eq. 13.2.

Some Important Points

 1. The sum of the rotation factors at a joint is 
1

2

Ê ˆ-Á ˜Ë ¯
 2. If an end of a member is fi xed, the rotation at that end being zero, the 

rotation moment is also zero.

 3. If an end of a member is hinged or pinned, it is convenient to consider it 

as fi xed and take the relative stiffness as
3

4

I

L

Ê ˆ
Á ˜Ë ¯

 

 4. The following examples illustrate the procedure involved.

Example 13.1 
Determine the support moments for the continuous 

beam of Fig. 13.4. The relative I values are indicated 

along the member in each span. E is constant.

(1.5 )I (2 )I ( )I

80 kN

50 kN/m
40 kN

1
2 3

4

1 m

3 m 4 m

2 m

4 m

Fig.13.4  Beam and loading

The fi xed end moments are

 

2

12 2

(80)(1)(2)
35.56 kN.m

(3)

FM = =

 

2

21 2

(80)(1)(2)
17.78 kN.m

(3)

FM = - = -

 

2

23

(50) (4)
66.67 kN.m

12

FM = =

 32 66.67 kN.mFM = -

 34

40(4)
20 kN.m

8

FM = =

 MF
43= –20 kN.m

Next we evaluate the rotation factors at joints 2 and 3.
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Joint Members
Rel. stiffness 

K
SK 

Rotation factor 

1

2

K
u

K

Ê ˆ= -Á ˜Ë ¯ Â

2 2–1 1.5I/3 I
1

4

Ê ˆ-Á ˜Ë ¯

2–3 2I/4
1

4

Ê ˆ-Á ˜Ë ¯

3 3–2 2I/4
3

4
I

1

3

Ê ˆ-Á ˜Ë ¯

3–4 I/4
1

6

Ê ˆ-Á ˜Ë ¯

The sum of the fi xed end moments at 2 = MF
2 = MF

21 + MF
23

 = – 17.78 + 66.67 + 48.89 kN.m 

The sum of the fi xed end moments at 3

 MF
3 = MF

32 + MF
34 = –66.67 + 20.00 = –46.67 kN.m

The scheme for proceeding with the method of rotation contributions is shown 

in Fig. 13.5. The beam line is drawn and joints 2 and 3 are marked by two squares 

one inside the other. The sum of the fi xed end moments at each joint are entered 

in the inner squares.

2 3

– 1/4 – 1/4
– 1/3

– 1/6
1

4
– 17.78

+ 48.89
– 46.67

– 66.67

35.56 66.67 20.0 – 20.0

Fig. 13.5

Rotation factors (–1/4) and (–1/4) for members 2–1 and 2–3 at 2 and (–1/3) 

and (–1/6) for members 3–2 and 3–4 at 3 are entered in the annular spaces as 

shown in Fig. 13.5. The member fi xed and moments are written above the beam 

line.

The rotation moments can now be determined by iteration as presented below. 

First consider joint 2. Applying Eq. 13.14 to this joint, we have

 ( )21 21 2 12
FM u M M= +¢ ¢Â

and ( )23 23 2 12
FM u M M= +¢ ¢Â  (13.15)
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in which

 MF
2 = sum of fi xed end moments at 2 = 48.89 kN.m 

 SM¢12 = rotation moments of far ends of members meeting at joint 2.

We know  M¢12 = 0 since end 1 is fi xed end

 M¢32 = 0 assumed to start with. 

Substituting these values in Eq. 13.15

 M¢21 = (–1/4) (48.89 + 0) = –12.22 kN.m

and M¢23 = (–1/4) (48.89 + 0) = –12.22 kN.m

These rotation moments are entered below the beam line at the appropriate 

places as shown in Fig. 13.6.

1

2 3 4

– 1/4 – 1/4 – 1/3 – 1/6

+ 35.56 – 17.78 + 66.67 – 66.67 + 20.0 – 20.0

0 – 12.22 – 12.22 + 19.63 + 9.82

+ 48.89 – 46.67

Fig. 13.6

Now consider joint 3. Rotation moments M¢32 and M¢34 will be determined 

using Eq. 13.14

 M¢32 = u32(– 46.67 –12.22 + 0)

 =  (–1/3) (–58.89) = +19.63 kN.m

and M¢34 = (–1/6) (–58.89) = + 9.82 kN.m

These rotation moments are shown entered in Fig. 13.6 in the appropriate 

places.

This completes one cycle. The procedure is repeated starting again from 

joint 2. More accurate rotation moments at joint 2 can be obtained by taking the 

approximate values obtained in the fi rst cycle. For example, considering joint 2:

The sum of the rotation moments at the far ends

 at 1 = 0

 at 3 = + 19.63 kN.m

Therefore,

 M¢21 = (–1/4) (48.89 + 0 + 19.63)

  = –17.13 kN.m 

 M¢23 = –17.13 kN.m

These values of rotation moments supersede the values (–12.22 kN.m) 

obtained earlier.

Now consider joint 3. New values of rotation moments are determined as 

explained earlier. Therefore,

 M¢32 = (–1/3) (–46.67 – 17.13) = + 21.27 kN.m

and M¢34 = (–1/6) ( –46.67 – 17.13) = + 10.63 kN.m
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These values replace the previous values of +19.63 kN.m and +9.82 kN.m. 

The new values are shown in Fig. 13.7 under the previous values shown struck 

off. This completes the second cycle.

Proceeding again, starting from joint 2

32
+ 35.56

1
– 17.78 + 66.67

– 1/3 – 1/6– 1/4 – 1/4

0

– 66.67 + 20.0 – 20.0

0–
– 17.13

–
– 17.13 + 21.27

+ 48.89

+ 10.63

– 46.67

4

Fig. 13.7

 M¢2l = (–1/4) (48.89 + 0 + 21.27) = –17.66 kN.m 

 M¢23 = –17.66 kN.m

Joint 3

 M¢32 = (–1/3) (–46.67 –17.66 + 0) = 21.44 kN.m

 M¢34 = (–1/6) (–46.67 – 17.66 + 0) = 10.72 kN.m 

These values are entered in Fig. 13.8 striking the previous values. Proceeding 

on to the fourth cycle, we have at joint 2

2 3
– 12.22
– 17.13
– 17.66

– 12.22
– 17.13
– 17.66

+ 10.63
+ 10.72

+ 19.63
+ 21.27
+ 21.44

1 4

Fig. 13.8

 M¢21 + (–1/4) (48.89 + 0 + 21.44) = –17.58 kN.M

 M¢23 = –17.58 kN.m 

At joint 3

 M¢32 = (–1/3) (–46.67 – 17.58 + 0) = 21.42 kN.m

 M¢34 = ( 1/6) (–64.25) = 10.71 kN.m

These values now replace the previous values. The previous values are struck 

off and the new values are entered as shown in Fig. 13.9.

2 3
– 12.22
– 17.13
– 17.66
– 17.58

– 12.22
– 17.13
– 17.66
– 17.58

+ 10.63
+ 10.72
+ 10.71

+ 19.63
+ 21.27
+ 21.44
+ 21.42

1 4

Fig. 13.9

At this stage it is seen that the maximum difference between the immediately 

previous and present values is 0.08 at joint 2 and 0.02 at joint 3. If we are 
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satisfi ed that this difference is within acceptable limits, the iteration process can 

be stopped.

Now we have the acceptable values of rotation moments so that the fi nal 

moments can be determined using Eq. 13.1. This is accomplished in a tabular 

form as shown in Fig. 13.10.

As a check we can sum up the moments over joints 2 and 3 and see whether 

they add up to zero.

We shall solve another example of a continuous beam with hinged supports 

at ends.

1 42 3
+ 35.56 – 17.78 + 66.67 – 66.67 + 20.00 – 20.00

0
0

– 17.58

+ 17.98

– 17.58
– 17.58

– 52.94

0

– 17.58
– 17.58

+ 52.93

+ 21.42

+ 21.42
21.42

–

– 41.41

+
17.58

0
+
+ 10.71

10.71

– 9.29

+ 10.71
10.71

+ 41.42

+
0

Fig. 13.10  Computation of end moments

Example 13.2 
Determine the end moments of the continuous beam 

shown in Fig. 13.11. The relative values of I for each 

span are indicated along the members. E is constant.

The beam has hinged and roller supports at 1 and 4 respectively. It will be 

convenient to consider that

40 kN

10 kN/m

40 kN
3 m 3 m

1
4

l 2 3

4 m 8 m 6 m

2l 1.5l

Fig. 13.11  Beam and loading

 1. the ends are fi xed and the relative stiffness of spans 1-2 and 3-4 are taken 

as (3/4)K12 and (3/4)K34 respectively, and

 2. the fi xed end moments, MF
21 and MF

34 are modifi ed as (MF
21 – ½ MF

12) 

and (MF
34 – ½ MF

34) respectively.

With these modifi cations the hinged or roller ends are assumed to be fi xed 

having zero fi xed end moments. We can write the fi xed end moments as

 

2

12 2

40(3)(1)
7.50 kN.m

(4)

FM = =

 

2

21 2

40(3) (1)
22.50 kN.m

(4)

FM = - = -

 

2

23 32

10(8)
53.33 kN.m

12

F FM M= - = =



482  Basic Structural Analysis

 34 43

40(6)
30.00 kN.m

8

F FM M= - = =

The moments are adjusted to account for the hinged or roller supports at 1 and 

4. The adjusted moments are:

 MF
21 = –22.50 –

1

2
 (7.50) = –26.25 kN.m 

 MF
34 = + 30.00 – 

1

2
 (–30.00) = 45.00 kN.m

 12 43 0F FM M= - =

The rotation factors are

Joint Member Rel. Stiff. K ÂK Rotation factor

u = (–1/2) K/SK

2 2–1 (3/4) (I/4) 7/16I –0.21

2–3 (2I/8) –0.29

3 3–2 (2I/8) 7/16I –0.29

3–4 (3/4)(1.5I/6) –0.21

0

0

0

0

– .21 – .29 – .29 – .21

– 26.25 + 53.33 – 53.33 + 45.00

– 5.80
– 6.79
– 6.87
– 6.87

– 7.74
– 9.05
– 9.16
– 9.17

+ 4.59
+ 4.97
+ 5.00
+ 5.00

+ 3.44
+ 3.72
+ 3.75
+ 3.75

1 2 3 4

+ 27.08 – 8.33

Fig. 13.12

The fi xed end moments and the rotation factors are shown entered in Fig. 

13.12.

Cycle 1

Joint 2

To start with the rotation moments of the far ends are assumed to be zero. 

Therefore,

 M¢21 = (–0.21) (27.08 + 0 + 0) = –5.80 kN.m 

 M¢23 = (–0.29) (27.08) = –7.74 kN.m 

Joint 3

 M¢32 = (–0.29) (–8.33 – 7.74 + 0) = 4.59 kN.m 

 M¢34 = (–0.21) (–8.33 – 7.74 + 0) = 3.44 kN.m

These rotation moments are shown entered in Fig. 13.12. The rotation moments 

at 1 and 4 are noted as zero since they have been replaced by fi xed ends.
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Cycle 2

Joint 2

More accurate rotation moments can be obtained by taking the previously 

evaluated values of rotation moments. For example, at joint 2

 M¢21 = (–0.21) (27.08 + 0 + 4.59) = –6.79 kN.m 

 M¢23 = (–0.29) (27.08 + 0 + 4.59) + –9.05 kN.m

Joint 3

 M¢32 = (–0.29) (–8.33 – 9.04 + 0) = 4.97 kN.m 

 M¢34 = (–0.21) (–8.33 – 9.05 + 0) = 3.72 kN.m

The procedure is continued and the values up to four cycles are shown entered 

in Fig. 13.12.

Now that the rotation moments are known, the fi nal moments are easily 

evaluated using Eq. 13.1. The computations are conveniently done in a tabular 

form as shown in Fig. 13.13.

1 2 3 4
0

0

0

– 26.25 + 53.33 – 53.33 + 45.00 0

0

0

– 6.87
– 6.87

0

– 39.99

– 9.17
– 9.17
+ 5.00

– 39.99

+ 5.00
+ 5.00
– 9.17

– 52.50

+ 3.75
+ 3.75

0

+ 52.50

Fig.13.13  Computation of end moments

Because supports 1 and 4 are actually simply supports, the moments at those 

supports must be zero. Hence, moment computations need not be carried out at 

those ends.

The overhanging ends in a continuous member should be considered as 

having a stiffness equal to zero. The rotation moments are computed in the usual 

manner. This is illustrated in the following example.

Example 13.3 
Find the support moments for the continuous beam 

shown in Fig. 13.14. EI is constant.

The fi xed end moments using the Appendix table are

 MF
12 = MF

21 = 0

  23

80(3)(3)
20.0 kN.m

6 6

FM = - = -
¥

 MF
32 = –20.00 kN.m

 MF
34 = 30 (2) = 60.0 kN.m 

The rotation factors are:

 u2l = –0.21, u23 = –0.29 and u32 = (–1/2).
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These values are shown entered in Fig. 13.15. Proceeding in the usual manner 

the rotation moments are evaluated. The rotation moments for fi ve cycles are 

shown.

80 kN.m
30 kN

2 3

8 m 3 m 3 m 2 m

Fig. 13.14  Beam and loading

1 2 3
4

40.0

– 3/14 – 4/14 – 1/2
0 0 – 20.00 – 20.00

4.29
9.18
9.89
9.98

10.00

5.71
12.25
13.18
13.31
13.33

– 22.86
– 26.13
– 26.59
– 26.66
– 26.67

60.0

– 20.0

Fig. 13.15

0 0 – 20.00 60.0– 20.00

0
0
10.00

10.00

10.00
10.00
0

20.00

13.33
13.33

20.00

– 26.67

–

– 2
– 26.67

– 6

6.67

13.33

0.00 60.0

1 2 3 4

Fig. 13.16  Compulation of end moments

The fi nal end moments are worked out in the Table of Fig. 13.16.

13.2.2 Members with Translatory Joints

Figure 13.17 shows a member AB in a frame which has undergone lateral 

displacements at A and B so that the relative displacement is D = (DB – DA). It 

may be noted that the ends are restrained from rotation. The fi xed end moments 

corresponding to this displacement are

 
2

6
AB BA

EI
M M

L

D
= =¢¢ ¢¢  (13.16)

When the translation of joints occurs along with rotations, the true end mpments 

are given by

  2F
AB AB AB BA ABM M M M M= + + +¢ ¢ ¢¢

 2F
BA BA BA AB BAM M M M M= + + +¢ ¢ ¢¢  (13.17)

The quantity M¢¢AB = M¢¢BA is known as the displacement moment of member AB.

If A happens to be a joint where two or more members meet (Fig. 13.2), then 

for the condition of equilibrium of joint A, we have
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 0ABM =Â  (13.18)

that is, 2 0F
AB AB BA ABM M M M+ + + =¢ ¢ ¢¢Â Â Â Â  (13.19)

Therefore, ( 1/2) ( )F
AB AB BA ABM M M M= - + +¢ ¢ ¢¢Â Â Â Â  (13.20)

Again from Eq. 13.11

 

AB
AB AB

AB

K
M M

K
= S¢ ¢

S

A B

M ¢BA¢

M ¢AB¢

D A

D

D B

Fig. 13.17

Substituting for S M¢AB from Eq. 13.20 we have

 ( )1/2 ( FAB
AB AB BA AB

BA

K
M M M M

K
= - S + S + S¢ ¢ ¢¢

S
 (13.21)

or M¢AB = uAB( F
A BA ABM M M+ S + S¢ ¢¢  (13.22)

In a similar way, we can write

 ( )F
BA AB B AB BAM u M M M= + +¢ ¢ ¢¢Â Â  (13.23)

Using these relationships, rotation moments can be determined by the iterative 

procedure followed earlier. If lateral displacements are known, the displacement 

moments can be determined from Eq. 13.16. If lateral displacements are 

unknown, then additional equations are to be used. This aspect is discussed later 

in Sec. 13.4.

Example 13.4 
Consider the same beam and loading as in Example 

13.2. Under the load, support 2 sinks by 10 mm. 

Determine the end moments. E = 200 ¥ 106 kN/m2 (200,000 MPa) and I = 80 ¥ 

106 mm4).

The fi xed end moments after taking into account the simply supported 

conditions at the ends were worked out earlier as

 MF
12 = 0 and MF

21 = –26.25 kN.m

 MF
34 = + 45.00 kN.m and MF

43 = 0

The fi xed end moments due to the known settlement of support are to be 

added to the above moments to arrive at net fi xed end moments. However, for 
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clarity, the fi xed end moments due to transverse loading are entered in the fi rst 

row and moments due to translation of joints in the second row in Fig. 13.18. The 

rotation factors are taken from Example 13.2 and shown entered in Fig. 13.18.

The procedure, after this step, is the same as was followed in earlier examples. 

The rotation moments for fi ve cycles are shown recorded in Fig. 13.18. The fi nal 

moments are obtained using Eq. 13.17. The computations are shown tabulated 

in Fig. 13.19.

3/14
– 26.25

30.00

– 5.80
– 8.62
– 8.85
– 8.87
– 8.87

–4

–

– 7.74
– 11.50
– 11.80
– 11.83
– 11.83

/14
53.33
30.00

4/14
– 53.33
– 30.00

13.16
14.24
14.32
14.33
14.33

–3/14
45.00

9.87
10.68
10.74
10.75
10.75

0

0

0

0

0
1 2 3 4

Fig. 13.18

1 2 3 4
0

0

– 26.25
30.00

– 8.87
– 8.87

0

– 13.99

– 53.33
30.00

– 11.83

–

– 11.83
14.33

14.00

– 53.33
30.00

14.33

–

14.33
– 11.83

– 66.50

45.00

10.75
10.75

0

66.50

0

0

0

Fig. 13.19  Computations of end moments

13.3   FRAMES WITHOUT LATERAL TRANSLATION

     OF JOINTS

The frames in which lateral translations are prevented are analysed in the same 

way as continuous beams. The lateral sway is prevented either due to support 

conditions or due to the symmetry of the frame and loading. The procedure is 

illustrated by solving the following example.

Example 13.5 
Determine the end moments of the members of the 

frame of Fig. 13.20. The relative values of I are indicated 

on the Figure.

Due to symmetry of frame and loading, the frame does not undergo lateral 

translation. The fi xed end moments are

 23 32

40(6) (6)
120.0 kN.m

12

F FM M= - = =

 12 21 34 43 0F F F FM M M M= = = =
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Rotation factors:

Joint Member Rel. Stiff K Â K Rot. Factor (u)

2 2–1 I/3 –0.2

2–3 3I/6 5/6 I –0.3

3 3–2 3I/6 5/6 I –0.3

3–4 I/3 –0.2

Fig. 13.20  Frame and loading

1

0

4

0

2 3

+120.0 –120.0

+ 34.28

–
–
–
–
– 34.29

–
–
–
–
– 34.29

+ 46.80

+ 51.43

+ 120.00 – 120.00

– 0.2

–
0
.3

– 0.2

–
0
.3

Fig. 13.21

Now the rotation moments are worked out in the same manner as was done in 

the previous examples. These are shown entered in Fig. 13.21 up to fi ve cycles.

The fi nal moments are computed and shown in Fig. 13.22.

13.3.1 Symmetrical Frames Under Symmetrical Loading

Considerable computational work can be saved if we make use of symmetry of 

frames and loading. Two cases of symmetry arise, namely, frames in which the 

axis of symmetry passes through the centre line of the beams, and frames with 

the axis of symmetry passing through the column line.
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– 34.28
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0

– 68.56

+ 34.28

+ 34.28
0

Fig. 13.22  Computation of fi nal moments

Case 1

Axis of symmetry passes through centre of beams.

Let AB be any horizontal member of a frame through the centre of which the 

axis of symmetry passes (Fig. 13.23).

B
A

MAB
qA qB – MBA =MAB

A B

q¢A

q ¢a¢

– MBA

MAB

(a)

(b)

(c)

Fig. 13.23  (a) End moments and rotations, (b) Rotation at end A due to moment MAB.

(C) Rotation at end A due to moment MBA

Let MAB and MBA be the end moments. Due to symmetry of deformation, MAB 

and MBA are numerically equal but are opposite in sense.

The slope at A = qA is obtained as a superposition of the rotations due to MAB 

and –MBA as shown in Figs. 13.23b and c respectively. Therefore,

 qA = q ¢A + q ¢¢A
From the moment rotation relationships given in Appendix D

 and
3 6 6

AB BA AB
A A

M L M L M L

EI EI EI
q q= = - =¢ ¢¢



Kani’s Method  489

Therefore,  
2

AB
A A A

M L

EI
q q q= + =¢ ¢¢

Let this member be replaced by member AB¢ whose end A will undergo rotation 

qA due to moment MAB applied at end A while end B¢ is being B¢ restrained (Fig. 

13.24). The substitute member will have the same value of I as for the original 

member. 

A

qA

B¢

L¢
MAB

Fig. 13.24

For such a beam the force displacement relationship is

       
4

AB
A

M L

E I
q =

 

where L¢ is the length of the substitute member. Hence for the equality of rotations 

between original member AB and the substitute member AB¢

 
2

or
2 4

AB AB
A

M L M L I I

E I E I L L
q

¢
= = =

¢

or K = 2K¢

or K¢ = 
2

K
 (13.24)

Thus, if K is the relative stiffness of original member AB, this member can 

be replaced by substitute member AB¢ having relative stiffness K/2. With this 

substitute member, the analysis then needs to be carried out for only one half 

of the frame considering the line of symmetry as the fi xed end. The following 

examples illustrate the steps involved.

Example 13.6 
We shall analyse the same frame as in Example 13.5 

(Fig. 13.20) taking advantage of symmetry of the frame 

and loading.

Since the axis of symmetry passes through the middle of the beam 2-3, only 

one half of the frame need be considered. The substitute frame is shown in Fig. 

13.25a.

The rotation factors at joint 2 are

 
21 23

4 3
and

14 14
u u

-
= - =¢

The true rotation moments are obtained in the fi rst distribution only. They are 

shown entered in Fig. 13.25b. The fi nal moments are worked out in Fig. 13.25c.



490  Basic Structural Analysis

k23¢
1
2

3
6
l(    )==

k12
1
3

=

3¢

1

2

(a) 0

1

2
+ 120

– 34.29
– 4/14

– 25.71

+ 120 0

– 3/14

0
3

(b)

– 34.29
– 34.29

0

– 68.58

– 34.29

– 34.29
0.0

– 25.71
– 25.71

0

+ 68.58

(c)
1

2 3
0

120.0

Fig.13.25  (a) Substitue frame, (b) Rotation moments, (c) Computation of end moments

Example 13.7 
Analyse the frame of Fig. 13.26 for end moments taking 

advantage of symmetry of the frame and loading. 

The fi xed end moments are

 

2 2

25 2 2

30(2) (4) 30(2) (4)
40.0 kN.m

(6) (6)

FM = + =

 

2

34

20(6)
60.0 kN.m

12

FM = =

1

2

3 4

5

6

3
 m

3
 m

6 m

2 m

30 30 kN

20 kN/m

4l

l

l

l

l

2 m

4l

Fig. 13.26  Frame and loading

The substitute frame is shown in Fig. 13.27a.

For the substitute frame the relative stiffnesses and the rotation factors are 

worked out. The rotation moments are evaluated at joints 2 and 3, These are 

shown in Fig. 13.27b.
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Rotation factors:

Joint Member K Rel. Stiff K Â K Rot. Factor

(–1/2)K/ÂK

2–1 I/3 –1/6

2 2–3 I/3 I –1/6

2–5 I/3 –1/6

3 3–2 I/3 –1/4

3–4 I/3 2/3I –1/4

k34¢
1
2

4
6
l l

3
(    )= ==

k25¢
1
2

4
6
l l

3
(    )= ==

k23
1
3

=

k12
1
3

=

4¢

5¢

1

2

3

(a)
(b)

+ 60.00

– 1/4

+ 60.00
4¢

5¢

3

2

– 1/6

– 1/6

1/4

1

– 15.00
– 13.96
– 13.92
– 13.91

0

– 15.00
– 13.96
– 13.92
– 13.91

– 4.35
– 4.35
– 4.34
– 4.17

– 1/6

+ 40.00
+ 40.00

– 4.17
– 4.34
– 4.35
– 4.35

– 4.17
– 4.34
– 4.35
– 4.35

Fig. 13.27  (a) Substitute frame, (b) Rotation moments

The fi nal moments are computed, as shown in Fig. 13.28a. Figure shows the 

end moments of the members of the frame.

Case II

The axis of symmetry passes through the column. This case occurs when the 

number of bays is an even number. Due to symmetry of the loading and frame, 

the joints on the axis of symmetry will not rotate. Hence, it is suffi cient if half the 

frame is analysed. The following example illustrates the procedure.
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+ 60.00

– 13.91
– 13.91

0

+ 32.18

– 13.91
– 4.35
– 4.35

– 32.17

– 22.61

– 13.91
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– 4.35
– 4.35
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– 8.70

– 4.35

– 4.35
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5

(a)

(b)

– 32.17
+ 32.18 – 32.18

+ 32.17

– 22.61

– 8.70

– 4.35 + 4.35

+ 8.70

+ 22.61
+ 31.30 – 31.30

Fig. 13.28  (a) Computation of end moments, (b) Final moments

Example 13.8 
Analyse the frame shown in Fig. 13.29 taking advantage 

of symmetry of the frame and loading.

We shall consider only half the frame as shown in Fig. 13.30a. Joints 4, 5 

and 6 which lie on the axis of symmetry do not rotate” and hence are considered 

fi xed.

1

2

3
4

5

6 7

8

9

l

l

l l

ll

30 kN/m

3
 m

6 m

20 kN/m

3
 m

6 m

2l

2l

2l

2l

Fig. 13.29  Frame and loading
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The fi xed end moments are

 34 43

30 6 6
90.0 kN.m

12

F FM M
¥ ¥

= - = =

 25 52

20 6 6
60.0 kN.m

12

F FM M
¥ ¥

= - = =

The rotation factors at joints 2 and 3 are worked out as usual and are shown in 

Fig. 13.30b. The rotation moments are evaluated up to three cycles and are shown 

recorded in Fig. 13.30b. The rotation moments being known, the fi nal moments 

can be evaluated using Eq. 13.1. The computations for fi nal end moments are 

shown in Fig. 13.31a. The fi nal end moments of all the members in the given 

frame are shown in Fig. 13.31b.

3
 m

3
 m

1

2

3
4

5

6 m

2l

2l

20 kN/m

l

l

30 kN/m

(a)
(b)

+ 60.0

+ 90.0

0 1

2

3 4

5

– 1/6

– 1/4

– 90.00+ 90.00

– 22.50
– 20.94
– 20.87

– 1/4

– 20.50
– 20.94
– 20.87

– 1/6
– 6.52
– 6.51
– 6.25

– 1/6

+ 60.00 – 60.00

– 6.25
– 6.51
– 6.52

– 6.25
– 6.51
– 6.52

Fig. 13.30  (a) Substitute frame, (b) Rotation moments

13.4  FRAMES WITH LATERAL TRANSLATION OF 

     JOINTS

13.4.1 Vertical Loading

Let 1-2 represent a vertical member in any storey of a multi storeyed frame (Fig. 

13.32). M12 and M21 are the end moments at 1 and 2. Let the horizontal force 

exerted by the frame on column 1-2 be H.
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Fig. 13.31  (a) Computation of end moments, (b) Final moment

If the height of the storey is given as h, then from the equilibrium consideration 

of member I-2

 M12 + M21 + H(h) = 0 (13.25)

or 
12 21( )M M

H
h

+
= -  (13.26)

Consider now a general building frame as shown in Fig. 13.33. Let 1-2, 3-4, 5-6 

and 7-8 represent columns in a particular storey.

Applying Eq. 13.26 to all the columns of the storey

 

12 21( )M M
H

h

S + S
S = -

 (13.27)

In general, S H represents the shear in all the columns in that storey. If we denote 

Qr = shear in the rth storey, we can write

 

H

h

H

M21

M12

1

2
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3 5

4 6

h

7

8

 Fig. 13.32  Column in a building frame Fig. 13.33
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 12 21( )
r

r

M M
Q

h

S + S
= -  (13.28)

where hr = height of columns of the rth storey;

 S M12 = sum of the end moments at the upper ends of all the columns in the 

rth storey;

 S M21 = sum of end moments at the lower ends of all the columns in the rth 

storey.

Obviously Qr = 0 as the external loading is vertical. Further, all the columns of 

the rth storey are of height hr. Therefore, we have from Eq. 13.28

 SM12 + SM21 = 0 (13.29)

for the rth storey.

We know, the general expression for end moments for member 1-2 is

 M12 = MF
12 + 2M¢12 + M¢21 + M¢¢12

and M21 = MF
21 + 2 M¢21 + M¢12 + M¢¢21 (13.30)

For a column which is vertical MF
12 = MF

21 = 0 since the loading on the frame 

is vertical. For any prismatic member it may be noted that

 M¢¢12 = M¢¢21 

Therefore,

 
12 21 12 21 123 3 2M M M M MS + S = S + S + S¢ ¢ ¢¢  (13.31)

From Eq. 13.29 12 21 0M MS + S =

Hence, 12 21 123 3 2 0M M MS + S + S =¢ ¢ ¢¢

or  
12 12 21

3
( )

2
M M MS = - S + S¢¢ ¢ ¢  (13.32)

Equation 13.32 gives a relation between the rotation and translation moments.

We know that the relative lateral displacement D is the same for all the columns 

in any one storey. For any column, the translation moment is

 12 2

6 6E I E I
M

hh

jD
= =¢¢

Where 
h

j
D

=

Thus, the translation moment of a column in a storey is proportional to the 

relative stiffness 
I

K
h

= .

Therefore,

 12 12

12 12

M K

M K

¢¢
=

S S¢¢

or 12
12 12

12

K
M M

K
= S¢¢ ¢¢

S
 (13.33)
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Substituting for Â M¢¢12 from Eq. 13.32 we can write Eq. 13.33 as 

 
12

12 12 21

12

( 3/2) ( )
K

M M M
K

= - S + S¢¢ ¢ ¢
S

Or 12 12 12 21( )M v M M= S + S¢¢ ¢ ¢
 (13.34)

in which v12 = (–3/2) K/Â K12 is called the displacement factor or translation 

factor of member 1-2.

It may be noted that in Eq. 13.34, (ÂM¢12 + ÂM¢21) sum of the rotation moments 

at the top and bottom ends of all the columns of the storey under consideration.

 ÂK12 = sum of the relative stiffnesses of all the columns in the storey under 

consideration

Obviously, the sum of the translation factors of all the columns of a storey will 

be equal to (–3/2). Summing up, the various relationships obtained earlier are

 
12 12 1 21 12( )FM u M M M= + S + S¢ ¢ ¢¢

 21 21 2 12 21( )FM u M M M= + S + S¢ ¢ ¢¢  (13.35)

 
12 21 12 12 21( )M M v M M= = S + S¢¢ ¢¢ ¢ ¢  (13.36)

 
12 12 12 212FM M M M M= + + +¢ ¢ ¢¢

 
21 21 21 12 212FM M M M M= + + +¢ ¢ ¢¢  (13.37)

By applying Eqs. 13.35 and 13.36, the rotation and translation moments may 

be determined by iteration for all the storey in turn. Once the acceptable values 

of rotation and translation moments are known, the fi nal moments may be 

determined by Eq. 13.37.

13.4.2 Horizontal Loading

For a frame subjected to horizontal loading, the storey shear, ÂH = Qr. This is 

shown in Fig. 13.34 by making a cut through all the columns. If all the columns 

of the storey are of height hr, we can write the equilibrium equation SM = 0, that 

is

H

H

H
rth storey
height hr

Fig. 13.34  Shear in columns
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 12 21 ( ) 0r rM M Q hS + S + =  (13.38)

or 
12 21( )r rQ h M M= - S + S  (13.39)

Writing column moments using Eq. 13.30 and knowing M F
12 = MF

21 = 0 for 

columns, we have

 { }12 21 123 ( ) 2r r
r

Q h M M M= - + +¢ ¢ ¢¢Â  (13.40)

Summation Â
r
  is for all the columns in the rth storey

or 12 21 12

2
( )

3 3

r r

r

Q h
M M M

Ï ¸= - + +¢ ¢ ¢¢Ì ˝
Ó ˛

Â  (13.41)

This gives

 
12 12 21

3
( )

2 3

r r

r

Q h
M M M

Ï ¸
S = - + +¢¢ ¢ ¢Ì ˝

Ó ˛
Â  (13.42)

or 12 12 21

3
( )

2

F
r

r

M M M M
Ï ¸

S = - + +¢¢ ¢ ¢Ì ˝
Ó ˛

Â  (13.43)

Here MF
r = Qr hr/3 is known as the storey moment. This is positive when Q acts 

from right to left. From Eq. 13.43 we can write

 
12

12 12 21

12

( 3/2) ( )F
r

r

r

K
M M M M

K

Ï ¸
= - + +¢¢ ¢ ¢Ì ˝

Ó ˛
ÂÂ  (13.44)

or 
12 12 12 21( )F

r
r

M v M M M
Ï ¸

= + +¢¢ ¢ ¢Ì ˝
Ó ˛

Â  (13.45)

The analysis of a multi storey building frame with horizontal loading differs 

from that of a frame with vertical loading only by the fact that in performing 

the basic operation for the determination of the translation moments, the sum of 

the rotation moments of all member ends of the storey must also contain storey 

moment MF
r.

We shall illustrate various points by solving a few numerical examples. First 

we consider frames under vertical loading only.

Example 13.9 
Determine the end moments of the members of the 

frame shown in Fig. 13.35. Relative I values are 

indicated along the members. E is constant.

The fi xed end moments are

 

2

23 2

33.75(2) (4)
33.0 kN.m

(6)

FM = =

  

2

32 2

33.75(2) (4)
15.0 kN.m

(6)

FM = - = -
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The rotation factors are computed in the usual way.

 
21 23 32 34

1 1
and

4 4
u u u u= = - = = -

This displacement factor for each column is (–3/4) as the two columns have the 

same relative stiffness.

The fi xed end moments, and the rotation factors are shown entered in Fig. 

13.36 as in the previous examples. The translation factors are written by the side 

of columns in small boxes as shown. Now we can proceed with the iteration 

process. The various computations follow this order: fi rst joints 2 and 3 and then 

storey columns 1-2 and 3-4.

I = 3

1

2 3

4

6 m

4
 mI = 2 I = 2

33.75 kN

2 m

Fig. 13.35  Frame and loading
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– 15.00+ 30.00

– 7.50
– 9.26
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– 9.64
– 9.65

+ 5.63
+ 5.72
+ 5.49
+ 5.38
+ 5.36

– 7.50
– 9.26
– 9.58
– 9.64
– 9.65

–3/4
–3/4+ 1.40

+ 2.61
+ 3.07
+ 3.20
+ 3.22

1 4

+ 1.40
+ 2.61
+ 3.07
+ 3.20
+ 3.22

+ 5.63
+ 5.72
+ 5.49
+ 5.38
+ 5.36

Fig. 13.36  Rotation and translation moments

Cycle 1

Joint 2

Assuming all far end rotation and translation moments to be zero, the following 

fi rst approximations are obtained for the near end rotation moments.



Kani’s Method  499

 M¢23 = (–1/4) (+ 30.0) = –7.50 kN.m 

 M¢21 = –7.50 kN.m

Joint 3

Sum of fi xed end moments = –15.00 kN.m

Rotation moment at 2 = –7.50 kN.m

        at 4 =   0 (fi xed end)

Displacement moments of column 1–2 =   0 (assumed)

             column 3–4 =   0 (assumed)

           Total  –22.50 kN.m

Therefore,

 M¢32 = (–1/4) (–22.50) = + 5.63 kN.m

and M¢34 = (–1/4) (–22.50) = + 5.63 kN.m

Storey 1

(There is only one storey in the present case.)

 Rotation moments at the top of column 1–2 = –7.50 kN.m

 column 3–4 = +5.63 kN.m

 at the bottom of column =   0

 Total     –1.87 kN.m

Therefore,

 M¢¢12 = (–3/4) (–1.87) = +1.40 kN.m 

 M¢¢34 = (–3/4)(–1.87) = +1.40 kN.m

The rotation moments are entered for the beam ends as earlier and for the columns 

at their ends (see Fig. 13.36). Note that the translation moments are entered along 

the columns at the mid height of the storey. This completes the fi rst cycle.

Cycle 2

Joint 2

 Sum of fi xed end moments = + 30.0 kN.m

 Rotation moments at 1 = 0 (fi xed end)

 at 3 = + 5.63 kN.m

 Translation moments of column 1–2 = +1.40 kN.m

 Total  37.03 kN.m

 M¢23 = (–1/4) (37.03) = –9.26 kN.m

 M¢21 = (–1/4) (37.03) = –9.26 kN.m

Joint 3

 Sum of fi xed end moments = –15.00 kN.m

 Rotation moments: at 2 = –9.26 kN.m

 at 4 = 0

 Translation moments of column 3-4 = + 1.40 kN.m

 Total  –22.86 kN.m
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 M¢32 = (–1/4) (–22.86) = 5.72 kN.m 

 M¢ = (–1/4) (–22.86) = 5.72 kN.m.

Storey 1

 Rotation moments at the top of column 1–2 = –9.26 kN.m

 column 3–4 =   5.72 kN.m

 Rotation moment at the bottom of the columns =   0

 Total  –3.54 kN.m

 M¢¢12 = M¢¢34 = (–3/4) (–3.54) = 2.61 kN.m

This completes the second cycle. In a similar manner the computations were 

carried out up to fi ve cycles, the rotation and translation moments in successive 

cycles are entered in Fig. 13.36.

Once the rotation moments and translation moments are known with the 

desired accuracy, the fi nal moments can be computed using Eq. 13.37. These 

computations are shown in Fig. 13.37a and the fi nal moments are shown in Fig. 

13.37b.
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Fig. 13.37  (a) Computation of end moments, (b) Final moments
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Fig. 13.38  Frame and loading
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Example 13.10 
We shall consider a two storey frame subjected to both 

vertical and lateral loading. The details of the frame 

and loading are given in Fig. 13.38.

Rotation factors

Joint Members Rel. K Â K u

2 2-1 I/4 –1/8

2-3 I/4 I –1/8

2-5 I/2 –1/4

3 3-2 I/4 (3/4)I –1/6

3-4 I/2 –1/3

Translation factors

In each storey there are only two columns and both of them have the same relative 

stiffness. Therefore, the translation factor for each column

 

1 3 3

2 2 4

Ê ˆ Ê ˆ= - = -Á ˜ Á ˜Ë ¯ Ë ¯

Fixed end moments

 MF
34 = –MF

43 = 
212(4)

16.00 kN.m
12

= +

 MF
25 = 

2

2

24(1) (3)
13.50 kN.m

(4)
= +

 MF
52 = 

2

2

24(1) (3)
4.50 kN.m

(4)
= +

The rotation and translation factors as well as fi xed end moments are shown 

entered in Fig. 13.39.

Storey moments

Storey 2 Q2 = –8 kN,  
8 4

10.67 kN.m
3

F
rM

¥
= - = -

Storey 1 Q1 = (–8) + (–16) = –24 kN,  
24 4

32.00 kN.m
3

F
rM

¥
= - = -

The storey moments are recorded in small rectangular blocks at the mid height 

of each storey to the left of the fi rst column line.

The iterations are carried out in the following order: fi rst joints 2-5-4 and 3 

and then storey 2 and 1.

Cycle 1

Joint 2

The rotation moments and translation moments are initially assumed to be zero.
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Sum of joint moments  = 13.50 kN.m

Sum of rotation moments at ends:  1 = 0  (fi xed end)

  3 = 0  (assumed)

  5 = 0  (assumed)

Sum of translation moments of

 column 2-3 above  = 0  (assumed)

 column 2-1 below  = 0  (assumed)

 Total   +13.50 kN.m

Using Eq. 13.35, M¢21 = M¢23 = (–1/8) (13.5) = –1.69 kN.m 

 M¢25 = (–1/4) (13.5) = –3.38 kN.m

Joint 5

Sum of joint moments  = –4.50 kN.m

Sum of rotation moments at far ends:

  2 = – 3.38 kN.m

  4 = 0 (assumed)

  6 = 0 (fi xed end)

Sum of translation moments of:

 column 5-4 above  = 0

 column 5-6 below  = 0

 Total   –7.88 kN.m

Therefore, M¢56 = M¢54 = (–1/8) (–7.88) = 0.99 kN.m

 M¢52 = (–1/4) (–7.88) = 1.97 kN.m

Joint 4

Sum of joint moments  = –16.00 kN.m

Sum of rotation moments at far ends: 3 =   0

  5 = +0.99 kN.m

Sum of translation moment of column 4-5 =   0

 Total   –15.01 kN.m

 M¢45 = (–1/6) (–15.01) = 2.50 kN.m 

 M¢43 = (–1.3) (–15.01)= 5.00 kN.m

Joint 3

Sum of joint moments  = +16.00 kN.m

Sum of rotation moments at far ends: 2 = –1.69 kN.m

  4 = +5.00 kN.m

Sum of translation moments of column 2-3 =   0

 Total   19.31 kN.m

 M¢32 = (–1/6) (19.31) = –3.22 kN.m 

 M¢34 = (–1/3) (19.31) = –6.44 kN.m

Having considered all the joints for rotation moments, now we shall proceed 

to evaluate the translation moments—storey 2 fi rst and then storey 1.
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Storey 2

Storey moment  = –10.67 kN.m

Rotation moments at ends of columns 2-3 = –3.22 kN.m (top)

     +2.50 kN.m (bottom)

  and 4-5 = –1.69 kN.m (top)

     +0.99 kN.m (bottom)

 Total   –12.09 kN.m

Therefore, using Eq. 13.36

 M¢¢23 = M¢¢45 = (– 3/4) (12.09) = 9.07 kN.m

Storey 1

Storey moment  = –32.00 kN.m

Rotation moments from column ends: 1-2 = –1.69 kN.m (top)

     0 (bottom)

  5-6 =   0.99 kN.m (top)

        0 (bottom)

 Total   –32.7 kN.m

 M¢12 = M¢¢56 = (–3/4) (–32.7)

         = + 24.53 kN.m

The rotation moments and translation moments are entered in Fig. 13.39. This 

completes the fi rst cycle of iteration.

Cycle 2

Improved values of rotation moments and translation moments can be obtained 

by taking the values obtained in the fi rst cycle. Consider,

Joint 2

Sum of joint moments  = + 13.50 kN.m

Sum of rotation moments at far ends: 1 = 0

  2 = –3.22 kN.m

  5 =+ 1.97 kN.m

Sum of translation moments: columns 2-3 above  = + 9.07 kN.m

 column 2-1 below  = + 24.53 kN.m

 Total   –45.85 kN.m

 M¢21 =M¢23 = (–1/8) (45.85) = –5.73 kN.m 

 M¢25 = (–1/4) (45.85) = –11.46 kN.m

Joint 5

Sum of joint moments  = –4.50 kN.m

Sum of rotation moments at far ends: 2 = –11.46 kN.m

  4 = + 2.50 kN.m

  6 = 0.

 Sum of translation moments: column 5-4 above = + 9.07 kN.m

  column 5-6 below = + 24.53 kN.m

 Total   +20.14 kN.m
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 M¢54 = M¢56 = (–1/8) (20.14) = –2.52 kN.m 

 M¢52 = (–1/4) (20.14) = –5.0 4 kN.m

Joint 4

Sum of joint moments  = –16.00 kN.m

Rotation moments at far ends: 3 = –6.44 kN.m

  5 = –2.52 kN.m

 Translation moments of column 4-5 below = + 9.07 kN.m

 Total   –15.89 kN.m

 M¢43 = (1/3) (–15.89) = +5.30 kN.m 

 M¢45 = (–1/6) (–15.89) = +2.65 kN.m

Fig. 13.39  Rotation and translation moments
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Joint 3

Sum of joint moments  = + 16.00 kN.m

 Rotation moments at far ends: 4 = + 5.30 kN.m

  2 = –5.73 kN.m

 Translation moment: column 2-3 below  = + 9.07 kN.m

 Total   +24.64 kN.m

 M¢34 = (–1/3) (24.64) = –8.21 kN.m 

 M¢32 = (–1/6) (24.64) = –4.11 kN.m

Storey 2

 Storey moment  = –10.67 kN.m

 Rotation moments from column ends:

  column 2-3 = –4.11 kN.m (top)

   = –5.73 kN.m (bottom) 

  and column 4-5 = +2.65 kN.m (top)

   –2.52 kN.m (bottom);

 Total   –20.38 kN.m

 M¢¢23 = M¢¢54 = (–3/4) (–20.38) = +15.29 kN.m

Storey 1

 Storey moment  = –32.00 kN.m

 Rotation moments of column ends:

  column 1-2 = –5.73 kN.m

  column 5-6 = –2.52 kN.m

 Total   –40.25 kN.m

 M¢¢12 = M¢¢56 = (–3/4) (–40.25) = 30.19 kN.m

This completes the second cycle of iteration. In a similar manner the subsequent 

cycles are carried out taking each time the improved rotation and translation 

moments obtained in the immediately previous cycle.

The values for the rotation and translation moments for six cycles are shown 

in Fig. 13.39. The values in the sixth cycle are taken as acceptable and the values 

in the previous cycles are ignored.

Once the rotation and translation moments are known the fi nal end moments 

can be computed using Eq. 13.37. The computations have been done on the 

outline of the frame as shown in Fig. 13.40a.

The fi nal moments are shown in Fig. 13.40b. It may be noted that all the joints 

satisfy the equilibrium condition, SM = 0, with only slight errors, if any due to 

rounding off of values.

As an additional check we can fi nd the shear in the columns in each storey 

and compare it with the external shear on the structure. Shear in the columns in 

storey 2 is

 (1/4) (1.41 + 0.61 + 18.28 + 11.70) = 8.0 kN 
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and in storey 1

 (1/4) (19.56 + 25.78 + 23.10 + 27.55) = 24.0 kN

Both of them satisfy external shear and thus act as a check for the accuracy 

of results.

Example 13.11 
A four-storeyed three-bay building frame under lateral 

loading is shown in Fig. 13.41. The data of the frame 

are given in the fi gure. The values indicated along the members represent their 

relative stiffnesses.

The rotation and the translation factors are shown recorded in Fig. 13.42. The 

sequence followed in carrying out iterations is: fi rst the storeys in the order, 4-3-

2-1, for the translation moments and then the joints in the order, B-H-N-Q, C-G-

M-P, D-F-L and E-K for the rotation moments. Since there are no transverse 

loads to cause any fi xed end moments, we start with the evaluation of translation 

moments from the known storey moment as follows. The storey moments are:

E K

A

B

C

D

H

M P

O

F
L

G

N

J R

20 kN

40 kN

40 kN

50 kN

1

1 1

1 2

2

2 2

2

2

2 2

2
1

1

1

3

2

2

3 3

3 4 4

4 m 4 m 4 m

Q

44
 m

4
 m

5
 m

6
 m

S
to

re
y
 -

 1

Fig. 13.41  Frame and loading

Storey 4

 Q4 = –20 kN MF
r

20

3
= - (4) = –26.7 kN.m

Storey 3

 Q3 = –60 kN MF
r 

60

3
= - (4) = –80.0 kN.m
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Fig. 13.42  Rotation and translation moments up to fi ve cycles

Storey 2

 Q2 = –100 kN MF
r 

100

3
= - (5) = –166.7 kN.m

Storey 1

 Q1 = –150 kN MF
r 

150

3
= - (6) = –300 kN.m

These storey moments are shown entered in small boxes at the mid height of 

each storey to the left of the fi rst column line.
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The rotation moments are initially taken to be zero and using Eq. 13.45 the 

translation moments are calculated.

Storey 4

 EF KLM M=¢¢ ¢¢ = (–3/4) (26.7) = + 20.0 

Storey 3

 DCM ¢¢ = (–0.3) (–80.0) = + 24.0

 FG LMM M=¢¢ ¢¢ = (–0.96) (–80.0) = + 48.0 

Storey 2

 CBM ¢¢  = (–0.33) (–166.67) = + 55.0

 GH MNM M=¢¢ ¢¢ = (–0.5) (–166.7) = + 83.4

 PQM ¢¢ = (–0.17) (–166.7) = + 28.3

Storey 1

 BAM ¢¢ = (–0.35) (–300.0) = + 105.0

 HJ NOM M=¢¢ ¢¢ = (–0.46) (–300.0) = 138.0

 QRM ¢¢ = (–0.23) (–300.0) = 69.0 

We shall now proceed to determine the rotation moments.

Joint B

 BH BCM M=¢ ¢ = (–1/7) (55.0 + 105) = –22.9

 BAM ¢ = (–3/14) (55.0 + 105.0) = –34.3. 

Joint H

 HB HNM M=¢ ¢ = (–1/11) (83.4 + 138.0 – 22.9) = –18.0 

 HGM ¢ = (–3/22) (83.4 + 138.0 – 22.9) = –27.1 

 HJM ¢ = (–2/11) (83.4 + 138.0 – 22.9) = –36.1

Joint N

 NH NQM M=¢ ¢ = (–1/11) (83.4 + 138.0 – 18.0) = –18.5 

 NOM ¢ = (–2/11) (83.4 + 138.0 – 18.0) = –37.0 

 NMM ¢ = (–1.5/11)(83.4 + 138.0 –18.0) = –27.7

Joint Q

 QN QRM M=¢ ¢ = (–1/5) (28.3 + 69.0 – 18.5) = –15.8
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 QPM ¢ = (–1/10) (28.3 + 69.0 – 18.5) = –7.9 

Joint C

 CG CBM M=¢ ¢ = (–1/5) (24.0 + 22.0 – 22.9) = –11.2

 CDM ¢
 = (–1/10) (24.0 + 55.0 – 22.9) = –5.6 

Joint G

 GC GF GMM M M= =¢ ¢ ¢ = (–1/9) (48.0 + 83.4 – 11.2 – 27.1) = –10.3 

 GHM ¢ = (–1/6) (93.1) = –15.5 

Joint M

 MG MLM M=¢ ¢  = (–1/8)(48.0 + 83.4 – 10.3 – 27.7) = –11.7

 MPM ¢ = (–1/16) (93.4) = –5.8

 MNM ¢ = (–3/16) (93.4) = –17.5

Joint P

 PM PQM M=¢ ¢ = (–1/4) (28.3 – 5.8 – 7.9) = –3.7

Joint D

 DC DFM M=¢ ¢ = (–1/4) (24.0 – 5.6) = –4.6

Joint F

 FL FGM M=¢ ¢  = (–1/6) (20.0 + 48.0 – 4.6 – 10.3) = –8.9 

 FD FEM M=¢ ¢  = (–1/12) (5.3.1) = –4.4

Joint L

 LF LMM M=¢ ¢ = (–1/5) (20.0 + 48.0 – 8.9 – 11.7) = –9.5

 LKM ¢ = (–1/10) (20.0 + 48.0 – 8.9 – 11.7) = –4.7 

Joint E

 EK EFM M=¢ ¢ = (–1/4) (20.0 – 4.4) = –3.9 

Joint K

 KE KLM M=¢ ¢ = (–1/4) (20.0 – 3.9 – 4.7) = –2.9

This completes one cycle. The rotation and translation moments have been 

shown entered in Fig. 13.42 as the fi rst row in each entry.

The second cycle again starts with the determination of translation mo ments. 

Again using Eq. 13.36, the improved values of translation moments are:

Storey 4

 EF KLM M=¢¢ ¢¢ = (–3/4) (–26.7 – 3.9 – 4.4 – 2.9 – 4.7) = 32.0 
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Storey 3

 DCM ¢¢ = (–0.3) (–80.0 – 4.6 – 5.6 – 8.9 – 10.3 – 9.5 – 11.7) = 39.2

 FG LMM M=¢¢ ¢¢  = (–0.6) (130.6) = 78.4

Storey 2

 CBM ¢¢ = (–0.33) (–166.7 – 11.2 – 22.9 – 15.5 – 27.1 –17.5 – 27.7 – 3.7 – 7.9) 

 = 99.1

 
GH MNM M=¢¢ ¢¢  = (–0.5) (–300.2) = 150.1 

 PQM ¢¢  = (–0.17) (–300.2) = 51.0 

Storey 1

 BAM ¢¢  = (–0.35)(–300.0 – 34.3 – 36.1 – 37.0 – 15.8) = 148.1 

 HJ NOM M=¢¢ ¢¢  = (–0.46) (–423.2) = 194.7

 M¢QR = (–0.23) (–423.2) = 97.3

Having determined the translation moments we shall proceed to deter mine the 

rotation moments.

Joint B

 BH BCM M=¢ ¢ = (–1/7) (–11.2 – 18.0 + 99.1 + 148.1) = –31.1 

 BAM ¢ = (–3/14) (218.0) = –46.7

Joint H

 HB HNM M=¢ ¢ = (– l/11) (–31.1 – 15.5 – 18.5 + 0 + 150.1 + 194.7) = –25.4

 HGM ¢ = (–3/2) (279.7) = –38.1

 HJM ¢ = (– 2/11) (279.7) = –50.9 

Joint N

 NH NQM M=¢ ¢ = (–1/11)(150.1 + 194.7 – 25.4 – 17.5 – 15.8) = –26.0

 NOM ¢  = (–2/11) (286.1) = –52.0

 NMM ¢ = (– 1.5/11) (286.1) = –39.0

Joint G

 QN QRM M=¢ ¢ = (–1/5) (51.0 + 97.3 – 26.0 – 3.7) = –23.7

 QPM ¢ = (–1/10) (118.6) = –11.9

Joint C

 CG CBM M=¢ ¢ = (–1/5) (39.2 + 99.1 – 10.3 – 31.1 – 4.6) = –18.5

 CDM ¢  = (–1/10) (92.3) = –9.2
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Joint G

 GC GF GMM M M= =¢ ¢ ¢  = (–1/9) (78.4 +150.1 – 18.5 – 8.9 – 11.7 – 38.1) = –16.8

 GHM ¢
= (–1/6) (151.3) = –25.2 

Joint M

 MG MLM M=¢ ¢ = (– 1/8) (78.4 + 150.1 – 16.8 – 9.5 – 3.7 – 39.0) = –19.9

 MPM ¢ = (–1/l6) (159.5) = –10.0

 MNM ¢ = (–3/16) (159.5) = –29.9 

Joint P

 
PM PQM M=¢ ¢ = (–1/4) (51.0 – 10.0 – 11.9) = –7.3

Joint D

 
DC DFM M=¢ ¢ = (–1/4) (39.2 – 9.2 – 4.4) = –6.4

Joint F

 FL FGM M=¢ ¢ = (–1/6) (32.0 + 78.4 – 6.4 – 3.9 – 9.5 – 16.8) = –12.3 

 
FD FEM M=¢ ¢ = (–1/12) (73.8) = –6.2

Joint L

 LF LMM M=¢ ¢ = (–1/5) (32.0 + 78.4 – 12.3 – 2.9 – 19.9) = –15.1 

 LKM ¢ = (– 1/10) (75.3) = –7.5

Joint E

 EK EFM M=¢ ¢ = (–1/4) (32.0 – 6.2 – 3.9) = –5.5

Joint K

 KE KLM M=¢ ¢ = (–1/4) (32.0 – 5.5 – 7.5) = –4.8

This completes the second cycle. In a similar manner computations are car-

ried out in the subsequent cycles of iteration. The values of the rotation and 

translation moments up to fi ve cycles have been shown entered in Fig. 13.42.

The values obtained in the fi fth cycle are taken as acceptable and all the values 

in the previous cycles are ignored. The fi fth cycle values of rotation and translation 

moments are shown separately in Fig. 13.43 for reference while computing the 

fi nal end moments.

The fi nal moments are worked out as usual using Eq. 13.37 and the results are 

shown entered in Fig. 13.44.

As a check we evaluate the shear in each storey and compare it with the 

external shear.
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Fig. 13.43  Rotation and translation moments in fi fth cycle

Fig. 13.44  Final end moments, kN.m
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 Storey 4 = (20.6 + 19.8 + 20.0 + 15.7) (1/4) = 19.03 kN

 Storey 3 = (25.0 + 55.8 + 41.3 + 21.3 + 48.8 + 34.8) (1/4) = 56.75 kN

 Storey 2 = (50.0 + 92.9 + 79.1 + 34.8 + 37.9 + 80.8 + 73.6 + 130.9) (1/5)

 = 96.00 kN 

 Storey 1 = (65.3 + 108.5 + 107.9 + 57.7 + 120.8 + 170.1 + 169.8 + 86.8) (1/6)

 = 147.8 kN

It may be seen that at some joints the moments do not add up exactly to zero. 

The storey shears also differ slightly from the external shear. This is due to the 

termination of the iteration process after only fi ve cycles. Improved values can 

be obtained if the iteration is further continued.

13.5  GENERAL CASE—STOREY COLUMNS UNEQUAL 

     IN HEIGHT AND BASES FIXED OR HINGED

We shall now consider a general case of a frame of one or more bays with unequal 

column heights, and some of which may be fi xed and others hinged at their bases. 

For simplicity of derivation, only a single bay frame as in Fig. 13.45a has been 

chosen but the conclusions drawn from them are quite general.

Lateral displacement D induces additional moments in the columns and Eq. 

13.37 is applicable. Moments denoted as M¢¢ are known as linear displacement 

moments and are as follows

 
6 AB

AB BA

AB

E K
M M

h

D
= =¢¢ ¢¢  (13.46)

For member CD

 
3 CD

CD

CD

E K
M

h

D
=¢¢  (13.47)

and 0DCM =¢¢  (13.48)

Now let us replace column CD which is hinged at the base by an equivalent 

column C¢D¢ fi xed at the base as in Fig. 13.45b. For the sub stitute column we 

take C DK ¢ ¢  = ¾ KCD and C Dh ¢ ¢ . = hCD. If the two columns were to undergo the 

same lateral displacement D at the top, we would have

 
6 6 (3/4)

1.5

C D CD
C D CD

C D CD

E K E K
M M

h h

¢ ¢
¢ ¢

¢ ¢

D D
= = =¢¢ ¢¢  (13.49)

that is, so far as displacements are concerned, a substitute column may be used 

instead of a hinged one as shown in Fig. 13.45c provided we ensure that the two 

frames have the same shear force due to the displace ment. For this we introduce 

factors mAB and MA for the columns in the substitute frame and equate the shear 

force due to the displacement in the frames, that is

 
22 2CD C DBA AB

AB CD

AB CD AB C D

M MM M
m m

h h h h

¢ ¢

¢ ¢

¢¢ ¢¢¢¢ ¢¢
+ = +  (13.50)
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Which gives mAB = 1 for the column fi xed at the base

and 3/4
2

CD C D
CD

C D CD

M h
m

M h

¢ ¢

¢ ¢

¢¢
= =

¢¢  (13.51)

for the hinged column.

We are now in a position to deal with the substitute frame by choosing storey 

height hr = HAB and writing

 and orr r r
AB C D CD

AB C D CD

h h h
C C C

h h h
¢ ¢

¢ ¢

= = =¢
¢

 (13.52)

for convenience of notation.

Now summing up the horizontal forces to zero. We have

 Q hr + CAB (MAB + MBA) + C¢CD (MCD + MDC) = 0 (13.53)

Substituting for the moments from Eq. 13.37 and noting the fi xed end moments 

= 0 we have

 3[ ( ) ( )]r AB AB BA CD C D D CQ h C M M C M M¢ ¢ ¢ ¢+ + + +¢ ¢ ¢ ¢ ¢

  2( ) 0AB AB AB CD C D C Dm C M m C M¢ ¢ ¢ ¢+ + =¢¢ ¢ ¢¢  (13.54)

This after transformation gives

  
3

(
2 3

r
AB AB AB CD CD CD ik ik ki

Q h
m C M m C M C M M

Ï ¸+ = - + +¢¢ ¢ ¢¢ ¢ ¢Ì ˝
Ó ˛

Â  (13.55)

or { }3
(

2

F
AB AB AB CD CD CD r ik ik kim C M m C M M C M M+ = - + +¢¢ ¢ ¢¢ ¢ ¢Â  (13.56) 

(here i-k in general represents the two ends of a column)

The terms 
3

F r
r

Q h
M =  defi nes the storey moments and is positive when Q acts 

from right to left. We know

 CDAB AB AB AB

C D AB CD CD CD

hM K K C

M h K K C¢ ¢

¢¢¢
= =

¢¢ ¢ ¢ ¢
 (13.57)

or 

2

2

AB BA AB AB AB AB

CD CD C D CD CDCD

m C M m C K

m C M m KC¢ ¢

¢¢
= =

¢ ¢¢ ¢
 (13.58)

which gives

 
2 2

( )

( )

AB AB AB AB AB CD CD C D
A B

AB AB AB CD CD CD

C K m C M m C M
M

m C K m C K

¢ ¢
¢ ¢

+¢¢ ¢ ¢¢
=¢¢

+ ¢
 (13.59)

 
2 2

( )

( )

CD CD AB AB AB CD CD C D
C D

AB AB AB CD CD CD

C K m C M m C M
M

m C K m C K

¢ ¢
¢ ¢

+¢ ¢ ¢¢ ¢ ¢¢
=¢¢

+ ¢ ¢
 (13.60)

With the help of Eq. 13.56 the translation moment for any column i-k may be 

written as
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 { }2

3
( )

2

Fik ik
ik r ik ik ki

ik ik ik

C k
M M C M M

m C K

Ê ˆ= - + +¢¢ ¢ ¢Á ˜Ë ¯ ÂÂ
 (13.61)

 { }( )F
ik ik r ik ik kiM v M C M M= + +¢¢ ¢ ¢Â  (13.62)

 
2

3

2

ik ik
ik

ik ik ik

C k
v

m C K

Ê ˆ= -Á ˜Ë ¯ Â
 (13.63)

which we know is the translation factor for column i-k. A control on the 

calculations vik is given by

 
3

2
ik ik ikm C V = -Â  (13.64)

These derivations are perfectly general in nature and can be extended to 

different cases as described below.

Case 1

All the columns fi xed at base.

For this condition 

 Mik = 1 for all columns

and 2

3

2

ik ik
ik

ik ik

C K
v

C K

Ê ˆ= -Á ˜Ë ¯ Â  (13.65)

and the control is 
3

2
ik ikC v = -Â  (3.66)

Case 2

All the columns hinged at base. 

For this condition

 
3

2
ikm = for all columns

and 
2

2 ik ik
ik

ik ik

C K
v

C K
= -

Â
 (13.67)

and the control is     ÂCik vik = –2

The example that follows illustrates the steps involved.

Example 13.12 
It is required to analyse the frame in Fig. 13.46 for the 

end moments. E is constant and the relative values of I 

are indicated along the members.

The same frame is once solved in Example 12.6 using the moment dis tribution 

method. This gives a good comparison of the two methods.

The hinged column is replaced by a column fi xed at the base having h¢12= 1.5 

h12 = 1.5(4) = 6.0 m and K¢12 = (3/4) K12 = (3/4) (I) = 3/4. If we choose frame 

height hr = h34 = 4 m, C¢12 = 4/6 = 2/3 and C34 = 4/4 = 1.0.
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Fig. 13.46  (a) Frame and loading, (b) Frame with substitute column

Fixed end moments

The fi xed end moments are calculated as usual. However, the fi xed end moment 

MF
21 is modifi ed as (MF

21 –1/2 MF
12) to take into account the hinged condition 

at support 1.

Storey moment

Lateral force 
37.5

25 34.375 kN
4

rQ
Ê ˆ= + =Á ˜Ë ¯

 

and the storey moment

 

( ) 34.375 (4)
45.83 kN.m

3 3

F r r
r

Q h
M = = - = -

Rotation factors

Joint 2 u21 = (– ½) 
(3/4)

0.21
(1 3/4)

= -
+

 u23 
1

( 1/2) 0.29
(1 3/4)

= - = -
+

Joint 3 u32 
1

( 1/2) 0.25
(1 1)

= - = -
+

 u34 
1

( 1/2) 0.25
(1 1)

= - = -
+

Transaction factors

 2
12 12 12 12 12 12 12 12

2 3
1 2 : 0.75, , , 0.5, 0.25

3 4
m C K C K m C K- = = = = =¢ ¢ ¢ ¢ ¢ ¢
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2

34 34 34 34 34 34 34 343 4 : 1.0, 1, 1, 1.0, 1.0m C K C K m C K- = = = = =

Therefore, using Eq. 13.63

 v12 
3 0.5

0.6
2 (0.25 1.0)

Ê ˆ= - = -Á ˜Ë ¯ +

 v34 
3 1.0

1.2
2 (0.25 1.0)

Ê ˆ= - = -Á ˜Ë ¯ +

These values satisfy the check given by Eq. 13.66, that is. 

 (0.75) (2/3) (–0.6) + 1 ¥ 1 (–1.2) = –1.5

The fi xed end moments, storey moment, rotation and translation factors are 

shown entered in Fig. 13.47a.

The iterations have been carried out in the usual manner. To start with, the 

rotation and translation moments are considered to be zero.

Cycle 1

Rotation moments 

Joint 2

 M¢23 = –0.29 ( + 22.5 + 0 + 0) = –6.53 

 M¢21 = –0.21 (22.5) = 4.73

Joint 3

 M¢32 = M¢34 = – 0.25 (–60 – 6.53 + 0) = +16.63

Translation moments

 M¢¢12 = – 0.6 [–45.83 + (2/3) (–4.73) + (16.63)] = + 19.41 

 M¢¢34 = –1.2 (–32.3) = + 38.82

This completes the fi rst cycle of computations and the values are shown 

entered in Fig. 13.47a.

Cycle 2

Rotation moments 

Joint 2

 M¢23 = –0.29 (+22.5 + 16.63 + 19.41) = –16.98 

 M¢21 = –0.21 (58.54) = –12.29

Joint 3

 M¢32 = M¢34 = – 0.25 (–60 – 19.68 + 38.82) = + 9.54 

Translation moments

 M¢¢12 = –0.6 [–45.83 + 2/3(–12.29) + 9.54] = + 26.69 

 M¢¢34 = – 1.2 (44.48) = 53.58

This completes the second cycle. In a similar manner, further iterations are 

carried out each time improving the values of the previous cycles. The rotation 
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and translation moments up to fi ve cycles have been shown entered in Fig. 13.47a. 

The fi nal moments are computed using Eq. 13.37 and the computations are shown 

entered in Fig. 13.47b.

The fi nal moments compare very well with the values obtained (shown in 

brackets) in Example 12.6 solved by the moment distribution method. The 

reader can easily judge the versatility of Kani’s method and the simplicity of 

computations.

Fig. 13.47  Results of analysis: (a) Rotation and translation moments,        (b) Computation of fi nal end moments
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Problems for Practice

Use Kani’s method in solving the following problems.

13.1 Analyse the continuous beam loaded as shown in Fig. 13.48 and sketch shear and 

moment diagrams. EI is constant.

A C

40 kN
50 kN

B

3 m 5.4 m

1.8 m

Fig. 13.48

13.2 Find the moments at all the supports and reactions for the continuous beam loaded 

as shown in Fig. 13.49. Flexural rigidity EI is constant.

50 kN 60 kN
40 kN30 kN/m

A B C

D

1.5 m

6 m 3 m3.6 m
1.5 m

1.5 m

Fig. 13.49

13.3 Analyse the continuous beam given in Fig. 13.50 for support moments. Moment of 

inertia I for each span is indicated. E is constant.

A
B C

D

40 kN

1.5 m 10 kN/m

80 kN

2 m

2l

4 m3 5 m3 m

1.75 m

l 1.5l

Fig. 13.50

13.4 Analyse the continuous beam given in Fig. 13.51 when

 (a) support C sinks by 5 mm and

 (b) the temperature of the upper surface increases to 40°C while that of the lower 

surface remains at 20°C. For spans AB and CD assume depth h = 200 mm, I = 

25 ¥ 10–6 m4 (25 ¥ 106 mm4); for span BC, h = 300 mm and I = 75 ¥ 10–6 m4 

(75 ¥ 106 mm4). E = 210 ¥ 106 kN/m2 (210,000 MPa), a, = 12 ¥ 10–6 per °C.

13.5 Determine the moments at supports if support B yields by 10 mm under the given 

loading for the beam shown in Fig. 13.52. E = 204 ¥ 106 kN/m2 (204,000 MPa) and I = 

30 ¥ 10–6m4(30 ¥ 106 mm4).
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A
B C

D

l 3l l

3 m 4 m 3 m

Fig. 13.51

A

B C

50 kN
40 kN/m

4 m 3 m 1 m

Fig. 13.52

13.6 Analyse the frame shown in Fig. 13.53 for end moments of members.

 

A

B C

D

80 kN
1.5 m

4.5 m

4I

6 m

I I 3
 m

 

 Fig. 13.53 Fig. 13.54

13.7 Anayse the frame shown in Fig. 13.54 for the end moments taking advantage of 

symmetry of the frame and loading.

13.8 Using anti-symmetry, analyse the frame under lateral load as shown in Fig. 

13.55.

A

B

C
D

E

F

I

I

I

I I

I

10 kN

20 kN
2

2

6 m

6
 m

6
 m

Fig. 13.55
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13.9 Analyse the frame when subjected to a wind load of 10 kN/m as shown in Fig. 

13.56. The stiffness value K for each member is marked along the members. The K values 

of the columns in the same storey are equal.

1

A

5

9
10 11 12

18 15 15

27

21 18

6 7

18

3

32

20 20

8

4

5

B C D

5 m3 m6 m

4
 m

1
0
 k

N
/m

4
 m

2

4
 m

Fig. 13.56

13.10, 13.11 Analyse the frames shown for end moments.

  

A

B

C

D

E

F

I

I I

I

I

I

12 kN/m

1
6
.5

 k
N

/m

50 kN

1.2 0.8

0.8

0.9

6 m

2
.4

 m
3
.6

 m
4
.8

 m

 Fig. 13.57 Fig. 13.58



14.1  INTRODUCTION

The column analogy presented by Hardy Cross in 1932 is his second outstanding 

contribution to the fi eld of structural analysis. The method can be applied to 

fi xed beams, frames, single span arches and closed frames having degrees of 

indeterminancy not more than three. The anology pertains to the identities 

between the moments in a statically indeterminate structure and the stresses 

produced in an eccentrically loaded short column.

The method is particularly useful to determine the fi xed end moments and 

carry-over factors for non-prismatic members which are necessary in carrying 

out moment distribution.

14.2  DEVELOPMENT OF THE METHOD

Consider a short column under an eccentric load P as in Fig. 14.1a. The stress 

distribution across the depth of the column is shown in Fig. 14.1b. The stress at 

any point at a distance y from axis XX is

 
y

y y

M xP P P e x
f

A I A I

◊ ◊
= ± = ±  (14.1)

It is clear that the resultant of the stresses is equal to the applied load P and the 

centroid of the resultant coincides with the line of action of P. 

Fig. 14.1  (a) Short column under eccentric loading, (b) Stress distribution along XX

Column Analogy

14
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Next consider a beam fi xed at the ends and subjected to a concentrated load 

P as shown in Fig. 14.2. Suppose it is required to determine the end moments 

at A and B. The beam is made statically determinate by releasing the restraining 

moments MA and M
B
. The simply supported moment Ms diagram is shown in 

Fig. 14.2b. The bending moment diagram due to unknown end moments Mi is 

shown in Fig. 14.2d.

Now consider that the beam is replaced by an analogous column whose width 

is equal to 1/EI and depth same as the length of the beam along the axis. The 

loading on the column is the Ms diagram acting downward and the upward stress 

distribution across the depth of the column is the Mi diagram. From the moment 

area theorems the following, can be stated.

Fig. 14.2  (a) Fixed beam under load P, (b) B.M. diagram Ms, (c) Analogous column,

(d) B.M. diagram Mi

 1. Since the change of slope from A to B in the fi xed beam is zero, the area 

of the M/EI diagram between A and B should be zero. Therefore, the area 

of Ms/EI diagram should be equal to the –Mi/EI diagram.

 2. Since the defl ection of the tangent at A to the tangent at end B is zero, 

the moment of the M/EI diagram should be equal to zero. Therefore, the 

centroid of the Ms/EI diagram should coincide with that of the Mi/EI 

diagram.

Let us now understand the column analogy. The load on the analogous column 

due to the Ms/EI diagram is analogous to stress distribution in the short column. 

As the stresses in a short column can be evaluated from the known applied load P, 

the indeterminate moment Mi can be evaluated from the known Ms/EI diagram. If 
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the total area of the Ms/EI diagram, represented by Ni is applied to the analogous 

column at a point corresponding to the centroid of the diagram, the stress at any 

point on the analogous column will be

 
y

N N e x
f

A I

◊ ◊
= ±  (14.2)

Hence the inderterminate moment Mi at any section is given by

 i

y

N N e x
M

A I

◊ ◊
= ±  (14.3)

The moment at any section in the beam is given by M = Ms – Mi

14.2.1 Sign Convention

The sign convention shall be taken as follows. The positive bending moment Ms, 

causing tension inside corresponds to positive elastic loading N. For the stress 

diagram of analogous column, upward pressure is considered as positive. The 

domain of the inside or outside of a structure is indicated in Fig. 14.3.

Fig. 14.3

We shall illustrate the method by solving a few numerical examples.

Example 14.1 
Using column analogy method, fi nd the fi xed end 

moments for a fi xed beam subjected to uniformly 

distributed load as shown in fi g. 14.4.

Fig. 14.4
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Consider support moments MA and MB are redundant and are released to make 

the beam a simply supported. The analogous column is shown in Fig. 14.4c

Area of the column = 
l

EI

Axial load N 
2 22

3 8 12

wl l wl

EI E I
= ◊ =  

The load is axial without eccentricity. Hence

 MiA = Ms – 
N

A

  = 0 – 
3 2

12 12

wl E I wl

E I l
◊ = -

 MiB = 

2

12

wl
-

Example 14.2 
Using the column analogy method, determine the fi xed 

end moments for the beam shown in Fig. 14.5 draw the 

moment diagram.

The beam is statically indeterminate by two degrees. We can release the 

redundants RB and MB and consider it as a cantilever beam.

The beam, the redundants, the moment diagram and the analogous column are 

shown in Fig. 14.5.

 Area of the column = 
l

E I

 Axial load = 

2 21

3 8 2 48

wl l wl

EI EI

Ê ˆ
- = -Á ˜Ë ¯

 Eccentricity e = 
3

8
l

 and Iyy = 
3

31

12 12

I l
l

E I EI

Ê ˆ
=Á ˜Ë ¯

 End moment MiA = –

2 3 3

3

3 12

8 48 48 8 2

wl wl EI wl l l EI

EI l EI l

Ê ˆ
- - ◊ - ◊ ◊Á ˜Ë ¯

  
2 2 2

3
8 48 64

wl wl wlÊ ˆ
= - - - -Á ˜Ë ¯

211

192
wl= -

 End moment MiB 

3 3
2

3

3 12 5
0

48 48 8 2 192

wl EI wl l l EI
wl

EI l EI l

Ï ¸Ê ˆ - -Ô ÔÊ ˆ Ê ˆ Ê ˆ= - - ◊ - =Ì ˝Á ˜ Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯ Ë ¯Ë ¯Ô ÔÓ ˛
 

The bending moment diagram is shown in Fig. 14.5c
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Fig. 14.5

Example 14.3 
Using column analogy method, analyse the prismatic 

beam fi xed at the ends as shown in Fig. 14.6 for the end 

moments under the given loading.

Consider M
A
 and M

B
 as redundants. The Ms diagram for a simple beam and the 

analogous column are shown in Fig. 14.6b and c.

Indeterminate moment iA

y

N N e x
M

A I

◊ ◊
= +

in which 
3

and
12

y

l l
A I

EI EI
= =

Load 
1

2 2

P ab l P ab
N

l EI EI
= =

Eccentrictiy 
2

2 3 6

l l a l a
e

+ -
= - =

and 
2

N P ab

A l
=
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for the case a < b, .
2

A

l
x = +

         3

( 2 ) 12

2 6 2

y

A

y

M P ab l a l EI
x

I EI l

-
=

            2
( 2 )

2

P ab
l a

l
= -

 
2

( 2 )
2 2

iA

P ab P ab
M l a

l l
= + -

Fig. 14.6  (a) Beam fi xed at ends, (b) B.M. diagram Ms, (c) Analogous column

 MA = MsA – MiA

  2
0 ( 2 )

2 2

P ab P ab
l a

l l

Ï ¸Ô Ô= - + -Ì ˝
Ô ÔÓ ˛

Simplifying, MA = –

2

22

P ab

l
For the end B, xB = –l/2

 MB = MsB – MiB 
2

0 ( 2 )
2 2

P ab P ab
l a

l l

Ï ¸Ô Ô= - + -Ì ˝
Ô ÔÓ ˛

 
2

( 2 )
2 2

P ab P ab
a b a

l l
= - + + -

  2
( )

2 2

P ab P ab
b a

l l
= - + -
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  2
( )

2

P ab
l b a

l
= - - +

  

2

2

P a b

l
= -

\ MA 
2

2

P ab

l
= -

and MB 
2

2

P a b

l
= -

Example 14.4 
Using the column analogy method, determine the fi xed 

end moment at support A of the beam shown in Fig. 14.7.

The beam is simply supported at B and hence does not carry any moment. A 

hinge is theoretically a point of no stiffness and the moment of inertia is zero. 

Therefore the width of the analogous column 1/EI is infi nite and the YY axis of 

the analogous column should pass through the hinge.

Area of the column A = μ

Axial load 
21

2 4 8

pl pl
N l

EI EI
= =  

 

31

3
y

l
I

EI
=

\ M
A
 = MsA – MiA

  

0
x

N e
y

I
= -

Fig. 14.7
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2

3

3
0

8 2

Pl l EI

EI l

Ê ˆ= - Á ˜Ë ¯

  

3

16
pl= -

Alternatively we can release the reaction component at B and consider it as a 

cantilever beam (Fig. 14.8).

Area A = μ

Fig. 14.8  (a) Cantilever beam, (b) B.M. diagram Ms, (c) Analogous column

Load 
21 ( )

2 2 2 8

l P l P l
N

EI EI

-
= = -

 
1 5

3 2 6

l l
e l= - =

 MA = MsA – MiA

          

2

3

5 3 5 3
( )

2 8 2 16 16

Pl Pl EI Pl
l Pl Pl

EI l l

Ï ¸- -Ô ÔÊ ˆ= - = - + = -Ì ˝Á ˜Ë ¯Ô ÔÓ ˛

same as the earlier result.

Example 14.5 
A beam fi xed at the ends has varying moment of inertia 

as shown in Fig. 14.9. Using column analogy method 

determine the fi xed end moments.

The beam is reduced to a simply supported beam by removing the restraining 

moments at A and B.
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The ‘bending moment diagram Ms is shown in Fig. 14.9b. The analogous 

column with the width changing in steps is shown in Fig. 14.9c.

Area of analogous column 
2 1 1 2

2 3 3 2 3

l l l
A

EI EI EI

¥ ¥
= + =

Fig. 14.9  (a) Fixed beam and the loading, (b) B.M diagram Ms (c) Analogous column

Load on the column 
1 1

(2)
2 2 3 2

Pl l
N

EI
=

    

1
(2)

2 6 4 6

Pl Pl l

EI

Ê ˆ= +Á ˜Ë ¯  

27

72

Pl

EI
=

Eccentricity e = 0

 MA = Ms – Mi

  

27 3 21
0 0

72 2 144y

N N e y Pl EI
Pl

A I EI l

È ˘
= - + = - = -Í ˙

Í ˙Î ˚

 MB = –
21

144
Pl

Example 14.6 
Obtain fi xed end moments, stiffness factors and carry 

over factors for the ends A and B of the beam shown in 

Fig. 14.10. Use the column analogy method.

Step 1: To fi x up column area and load

The end moments MA and MB are considered as redundants. The moment diagram 

is drawn in parts; fi rst for u.d.l and then for point load as shown. The analogous 

column is shown in Fig. 14.10d.
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Fig. 14.10

Area of the column 
8 4 8

2EI EI EI
= + =

Column load 
2 (360)(12) 2 320)(4) 1 320)(8) 1 320)(4)

3 2 3 2 2 2 2
N

EI EI EI EI

( ( (
= + + +

        

3146.7

EI
=

Step 2: To evaluate M.I. of column

The position of YY axis is determined by taking moments of the column areas 

about A

 

12 4
(6) (10)

2 2 7.0 m
8

EI EIx
EI

+
= =

 

3 3 3 41 1 1 1 1 1 98.67
(7) (5) (1) m

3 2 3 3 2
yyI

EI EI EI EI

Ê ˆ Ê ˆ Ê ˆ= + - =Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯Ë ¯

Step 3: To fi x up eccentricity of column load

Next, The resultant of the column load from end A is obtained by taking moments 

about A as. 
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426.7
(8 1.5)

1440 6 640 16 640
(9.33)

3146.7 3

EIx
EI EI EI

EI

+¥ Ê ˆ= + + +Á ˜Ë ¯

      
22078.18

7.016 m
3146.7

= =

or       e = 0.016 m

Step 4: To evaluate end moments

Moment MA = Ms – MiA

  ( )3146.7 3146.7 (7) ( )
0 0.016

8 98.67

EI EI

EI EI

È ˘Ê ˆ= - + -Í ˙Á ˜Ë ¯Î ˚
  = –389.77 kNm

and MB ( )3146.7 3146.7
0 0.016 (5) ( )

8

EI
EI

EI EI

È ˘Ê ˆ= - +Í ˙Á ˜Ë ¯Î ˚
  = –395.89 kN.m

To obtain stiffness and carry over factor apply a unit load at A for N = 1

 MiA = 
(7) (7) ( )

1 0.6216
8 98.67

EI EI
EI+ =

 MiB  
(7) (5) ( )

1 0.2297
8 98.67

EI EI
EI= - = -

C.O.F.        
0.2297

0.3695
0.6216

iB

iA

M EI

M EI
= = -

Again apply a unit load for N at B

 MiB = 
(1)(5)(5)

0.3783
8 98.67

EI EI
EI+ =  

 MiA = 
(1)(5)(7)

(1) 0.2297
8 98.67

EI EI
= -

C.O.F. 
0.2297

0.6087
0.3783

iA

iB

M

M

-
= = = -

We can make a check CAB KA = CBA KB which is satisfi ed.

 (–0.3695) (0.6216) = (–0.3783)(0.6072)

14.2.2 Stiffness and Carry-over Factors

The column analogy method is specially useful for determining stiffness and 

carry-over factors for non-prismatic members.
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Let us fi rst evaluate the stiffness and carry-over factors for a prismatic member. 

Let a moment MA be applied at the simply supported end A to give a unit rotation 

at that end while the farther end B is fi xed as shown in Fig. 14.11a.

Fig. 14.11

The analogous column is shown in Fig. 14.11b. Change of slope in the beam 

from A to B = 1. Therefore, the area of the M/EI diagram between A and B is also 

= 1. Accordingly the load on the analogous column N = 1. The load N has to be 

located at A along axis XX as the location of it elsewhere implies a moment of it 

about A and hence falsely indicates defl ection at A.

Now 
3

, 1, / 2,
12

y

l l
A N e l I

E I EI
= = = =

 MA = 3

( /2)

/12y

N Nex El l

A l l l EI
+ = +

  
3 4EI EI EI

l l l
= + =  (14.4)

And MB 
3 2

y

N Nex E I E I EI

A l l l l
= - = - = -  (14.5)

Therefore stiffness of member at end 
4 EI

A
l

= and carry-over factor from A 

to B

 
1

2

B
AB

A

M
C

M
= = -  (14.6)

Now let us evaluate the stiffness and carry-over factors for a non-prismatic 

member. This is best explained by solving a numerical example.

Example 14.7 
Compute the stiffness at end A of the member AB and 

carry-over factor from A to B for the fi xed beam in 

Example 14.5.

From the previous example 
2

3

l
A

EI
=  and N = 1 as shown in Fig 14.12 

             e = 1/2, y = 1/2

      

3

31 1 1 1

12 2 12 2 3
y

l
I l

EI EI

Ê ˆ Ê ˆ Ê ˆ= + Á ˜Á ˜ Á ˜ Ë ¯Ë ¯ Ë ¯

37

162

l

EI
=
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 3

3 162
1 ( /2) ( /2) 7.2857

2 7
A

y

N N e x EI EI EI
M l l

A l l ll
= + = + =

and MB 4.2857
y

N N e x EI

A l l
= - = -

C.O.F. CAB = B

A

M

M
= – 0.588

For members that are not symmetrical, Maxwell’s reciprocal law can be  

utilised in checking the stiffness and carry-over factors obtained at the two ends. 

The moment MA applied at A to induce a unit rotation at A produces a moment 

MB at B which is equal to the moment MA developed at A due to a moment MB 

applied at B to induce a unit rotation at B. The relationship may be expressed

Fig. 14.12

 C
AB

 K
A
 = CBA KB (14.7)

This is made clear in Fig. 14.13.

Here

 KA = Stiffness of member AB at end A 

 KB = Stiffness of member BA at end B 

 CAB = Carry-over factor from A to B 

 ABA = Carry-over factor from B to A.

Fig. 14.13

Example 14.8 
Determine stiffness factors and carry over factors for 

the fi xed ends A and B of the shown in Fig. 14.14. Check 

the relation CAB KA = CBA KB
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Fig. 14.14

Step 1: To fi x up analogous column and area

The analogous column is drawn as shown (Fig. 14.14b)

Area of the analogous column = 
4 6 6 11

2 2EI EI EI EI
+ + =

Step 2: To evaluate M.I. of the column

The axis YY is determined by taking moments of the area about A

 

6
(7)

4 6
(2) (13) 7.73 m

2 11 2

EIx
EI EI EI

= + + =

Then Iyy ( )33 21 1 4 1 1
(4) (5.73) 3.73

12 2 2 3
EI

EI EI

Ê ˆ Ê ˆ= + +Á ˜ Á ˜Ë ¯ Ë ¯

       ( )3 3 2 41 1 1 1 6 190.80
2.27 (6) (5.27) m

3 12 2 2EI EI EI EI

Ê ˆ Ê ˆ+ + + =Á ˜ Á ˜Ë ¯ Ë ¯

Step 3: To evaluate end moments

Now applying a load N = 1 at A

 MiA = (1) (7.73) (7.73)
11 190.80

EI EI
+

  = (0.09 + 0.3132) EI

  = 0.4031 EI

 MiB = 
(8.27) ( )

(1) (7.73) 0.2450
11 190.80

EI EI
EI- = -

 C.O.F. 
0.2450

0.607
0.4031

iB

iA

M EI

M EJ

-
= = - = -

Similarly applying a load N = 1 at B

 MiB 
(8.27) ( )

(1) (8.27) 0.467
11 190.80

EI EI
EI= + =
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 MiA 
(7.73) ( )

(1) (8.27) 0.2450
11 190.80

EI EI
EI= - = -

 C.O.F. = 
0.2450

0.5246
0.4670

iA

iB

M EI

M EI

-
= =

The check CAB KA = CBA KB satisfi es.

Example 14.9 
Using the column analogy method, compute fi xed end 

moments, carry-over factors and stiffnesses for the 

beam shown in Fig. 14.15. The depth of the beam is varying but the width is 

constant and is equal to 500 mm.

Fig. 14.15  (a) Non-prismatic beam and the loading, (b) Moment of inertia in steps,

(c) Moment Ms ordinates, (d) Analogous column width in steps

The beam is divided into ten parts each of 2 m length for computing Ix and A. 

Greater accuracy can be obtained by dividing the beam into more parts.

Let Io be the moment of inertia in the uniform depth region. The moments of 

inertia at the mid width of other sections are obtained as follows.

 

3

(1)

1000
8.00

500
o oI I I

Ê ˆ= =Á ˜Ë ¯

 

3

(2)

800
4.10

500
o oI I I

Ê ˆ= =Á ˜Ë ¯

 

3

(3)

600
1.73

500
o oI I I

Ê ˆ= =Á ˜Ë ¯
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The moment diagram MS is shown in Fig. 13.15c. The moment ordinates at 

the mid width of each section are calculated.

The Fig. 14.15d shows the analogous column for the haunched beam. The 

width of analogous column for each of the sections is arrived at by calculating

1/EI using a appropriate value for I. The width of the anologous column for half 

of the column depth is indicated in Fig. 14.15d. The values of A and N for each 

of the sections for one half are tabulated below.

Section N A

1.
  

25 2
6.25/

8.0
o

a

EI
EI

¥
=

 

2 0.125
0.25/ o

o

EI
EI

¥
=

2.
75 2

36.86/
4.01

o

o

EI
EI

¥
=

 

2 0.244
0.488/ o

o

EI
EI

¥
=

3.
125 2

144.68/
1.73

o

o

EI
EI

¥
=

 

2 0.578
1.156/ o

o

EI
EI

¥
=

4.
 

175 2
350.00/

1.0
o

o

EI
EI

¥
=

    

2 1
2.00/ o

o

EI
EI

¥
=

5.
450.00/225 2

1.0 978.51/

o

o o

EI

EI EI

¥
=

S
   

2.00/2 1

5.894/

o

o o

EI

EI EI

¥
=

S

 

2 987.51 1975.02

o o

N
EI EI

¥
= =

 

2 5.89 11.78

o o

A
EI EI

¥
= =

3 3 31
{0.125(20) 0.199 (16) 0.234(12)

12 o

I
EI

= + + 3 175.65
0.422 (8) }

oEI
+ =

 e = 0

\ Mi = 
1975.02

167.66
11.78

N

A
= =

 MA = MB = 0 – Mi = –167.66 kN.m

Stiffness and C.O.F.

Take N = 1 and e = 10 m.

 Mi = 
y

N N e x

A I
±
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 MiA = 
1.0 1 10 10

0.65.43
11.78/ 175.65/

o

o o

EI
EI EI

¥ ¥
+ =

 MiB = 
1.0 1 10 10

0.484
11.78/ 175.65/

o

o o

EI
EI EI

¥ ¥
- = -

 MA = 0 – MiA = – 0.6543 EIo

 MB = 0 – (– 0.484 EIo) = + 0.484 EIo

 CAB = CBA 
0.484

0.74
0.654

= - = -

 KA = KB = 0.6543 EIo

Example 14.10 
Determine the stiffness at ends A and B and carry-over 

factors from A to B and B to A for the unsymmetrical 

haunched beam of constant width b shown in Fig. 14.16.

The analogous column is shown in Fig. 14.16b, the beam is divided into 4 

elements. For each element, the value of 1/EI and hence the width of the analogous 

column is calculated. The values are tabulated in the table that follows. The depth 

of the beam in the prismatic length is taken as do = 0.6 m and moment of inertia 

is taken as Io.

Ele-

ment 

Len-

gth
d 

3
do

d

Ê ˆ
Á ˜Ë ¯

Dis-

tance 

x from 

YY 

axis of 

beam

Area ax ax2 + ix

1 1 m
1.1 

m
0.1622 4.0 m

0.1622

oEI

0.6488

oEI

2.5952 0

oEI

+

2 1 m
0.9

m
0.2963 3.0 m

0.2963

oEI

0.8889

oEI

2.6667 0

oEI

+

3 1 m
0.7 

m
0.6297 2.0 m

0.6297

oEI

1.2594

oEI

2.5188 0

oEI

+

4 6 m
0.6 

m
1.00 –1.5 m

6.0

oEI

9.00

oEI

- 13.50 18

oEI

+

7.0882

oEI
Â 6.2029

oEI

- 39.2807

oEI
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6.2029
0.875

7.0882
x = - = -

 

239.2807 7.0882 33.8537
(0.875)GG

o o o

I
EI EI EI

= - =

Fig. 14.16

Applying a unit elastic load N = 1 at end A

 

(5.375)(5.375)
1 0.9943

7.0882 33.8537/

o
iA o

o

EI
M EI

EI
= + =

 

(5.375)(3.625)
1 0.4355

7.0882 33.8537/

o
iB o

o

EI
M EI

EI
= - = -

 MA = 0 – MiA = –0.9943 EIo

 MB = 0 – MiB = –0.4355 EIo

 C.O.F. CAB = 
0.4355

0.438
0.9943

-
= -

Applying a unit elastic load N = 1 at end B

 

(4.5 0.875)(4.5 0.875)
1 0.4355

7.0882 33.8537/

o
iA o

o

EI
M EI

EI

- +
= - = -

 

(4.5 0.875)(4.5 0.875)
1 0.529

7.0882 33.8537/

o
iB o

o

EI
M EI

EI

- -
= + =

 MA = 0.4355 EIo

 MB = –0.529 EIo

 C.O.F. CBA = –
0.4355

0.823
0.5299

= -
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Checking by the reciprocal theorem

 CAB KA = CBA KB

 CAB KA = –0.438 (–0.9943) EIo = 0.4353 EIo

 CBA KB = –0.823 (–0.529) EIo = 0.4355 EIo

14.3   ANALYSIS OF FRAMES BY THE COLUMN

    ANALOGY METHOD

The column analogy method can be extended to frames in a manner similar to 

that applied for beams. Although this method is tedious for prismatic frames 

when compared with other available methods, the method is very useful when it 

comes to non-prismatic members.

In beams, the centroid of the elastic loads falls on one of the principal axes of 

the beam; this hardly happens in case of frames. Hence the analogous column is 

subjected to biaxial moment and thus the stress, or the indeterminate moment at 

any section is given by

 

yx
i

y x

N e xN e yN
M

A I I
= ± ±

 (14.8)

Consider a portal frame fi xed at the base as in Fig. 14.17a. In the analogous 

column the width of each member is 1/EI. The frame is symmetrical about the 

YY axis. The XX axis passes through the centroid of the analogous column as 

shown.

Fig. 14.17  (a) Portal frame fi xed at base, (b) Analogous column

Next consider the same frame but hinged at the feet of the base. As discussed 

earlier, the hinge offers no resistance to rotation, the fl exural rigidity EI = 0. The 

width 1/EI of the analogous column becomes infi nite. Consequently the centroid 

of the column area lies on the line joining hinges and forms the XX axis. The axis 

YY lies on the line of symmetry as shown in Fig. 14.18b.
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Fig. 14.18  (a) Portal frame hinged at base, (b) Analogous column with axes

Fig. 14.19  (a) Frame and the loading, (b) Analogous column and M8 diagram

The following worked out examples will make the procedure clear.

Example 14.11 
Using column analogy method determine the moments 

at A, B, C and D of the frame shown in Fig. 14.19.

The moment constraints at A and D and the horizontal reaction component at 

D are released to make the frame statically determinate. The moment diagram Ms 

for the released structure is a parabola.

Area of the analogous columns 
2 4 8 16

A
EI EI EI

¥
= + =

Centroid distance from top face 
2 4 2

1 m
16

EI
y

EI

¥ ¥
= ¥ =

 Ixx = IBC – Ay–
2

  

3 21 1 16 80
4 2 (1)

3 3EI EI EI

Ê ˆ= ¥ - =Á ˜Ë ¯

C.G. of moment diagram Ms lies on the YY axis 

 ex = 0 ey = 1 m
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Load on the analogous column 
2 480 2560

(8)
3

N
EI EI

= =

 Mx = N ey = 
2560

1
EI

¥

 MiB = MiC 
32560 2560 (1) (1)

3
16 80

EI
EI

EI EI

¥
= +

¥

  = 160 + 96 = 256 kN.m 

End moments MB = MC = 0 – 256 = –256 kN.m.

Similarly MiB = MiD 
2560 2560 3 (3)

16 80

EI EI

EI EI

¥
= -

  = 160 – 288 = –128 kN.m 

 MA = MD = 0 – (–128) = +128 kN.m

Example 14.12 
Determine the end moments of the portal frame hinged 

at the base and loaded as shown in Fig. 14.20. EI values 

are indicated along the members on the frame.

Fig. 14.20
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Hinged support points represent an infi nite area of the analogous column. 

Therefore the XX axis passes through hinge points.

Column load N = 
1 (66.67) 100

(6)
2 2 EI EI

=

  
1

m
3

xe =  ey = 4 m

 Mx = N ey 
100 400

(4)
EI EI

= =

 Ixx = 
3 21 1 6 272

(4) (2) (4)
3 2 3EI EI EI

Ê ˆ + =Á ˜Ë ¯

  MiA = MiD = 0 since A = μ and IYY = μ

 MiB = 0 + 
400 (4)

3 17.65
272

EI
EI

=

 MiC = 17.65

\ MB = 0 – 17.65 = –17.65 kN.m (tension outside)

 MC = 0 – 17.65 = –17.65 kN.m (tension outside)

Example 14.13 
Determine the moments at A, B, C and D of the frame 

shown in Fig. 14.21.

The degree of indeterminancy of the frame is 3. The frame is made statically 

determinate by releasing the three reaction components at D. The resulting frame 

is a cantilever bent for which the Ms diagram is shown. As the moment Ms causes 

tension outside, the axial load N is negative.

Fig. 14.21

Column load N = 
1 4 800

(400)
2 EI EI

- = -
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Column area A = 
2 4 8 12

2EI EI EI

¥
+ =

Taking moment about top of beam

 

8 (2)
1.33 m

12

EI
y

EI
= =

 Ixx 
3 3 21 1 8 21.3

(1.33 2.67 ) (2) (1.33)
3 2EI EI EI

Ê ˆ= + + =Á ˜Ë ¯

 Iyy 
3 21 1 4 149.33

(8) 2 4
12 2 EI EI EI

Ê ˆ Ê ˆ= + =Á ˜Á ˜ Ë ¯Ë ¯
 ex = –4.0 m

 ey = 1.34 m

 Mx = N ey 
800 1072

( 1.34)
EI EI

= - =

 My = N ex = 
800 3200

( 4)
EI EI

- - =

Moment MA = MsA – MiA

  
800 1072 3200

400 ( 2.67) ( 4)
12 21.3 149.33

EI EI

EI EI

-Ï ¸= - - + - + -Ì ˝
Ó ˛

  = –113.24 kN.m

Similarly MB = 0 
800 1072 3200

(1.33) ( 4)
12 21.3 149.33

-Ï ¸- + + -Ì ˝
Ó ˛

 = 85.46 kN.m

 MC = 0 
800 1072 3200

(1.33) (4)
12 21.3 149.33

-Ï ¸- + +Ì ˝
Ó ˛

 = 85.98 kN.m

 Mx = 0 
800 1072 3200

(–2.67) (4)
12 21.3 149.33

-Ï ¸- + +Ì ˝
Ó ˛

 = 115.32 kN.m

Example 14.14 
Using column analogy method analyse the portal bent 

shown in Fig. 14.22a

The frame is statically in determinate by one degree. On removal of the 

reaction constant at C the frame becomes a free bent. The analogous column and 

the moment diagram are as shown. The area of the column at hinged support C 

is μ and hence the XX axis and YY axis through C as shown.

Area of the analogous column = μ

 Column load = N1 + N2

  
1 1 ( 30)(4)

( 30) (3)
2 2 EI EI

-
= - +
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  = –22.5/EI + 120/EI

  = 
142.5

EI
-

Fig. 14.22

We fi nd ex1 = –5 m and ey1 = 0

and ex2 = –6 m and ey2 = –2 m

Moment Mx 
120 240

( 22.5) (0) ( 2)
EI EI

-Ê ˆ= - + - =Á ˜Ë ¯

 My 
( 22.5) 120 832.5

( 5) ( 6)
EI EI EI

- -Ê ˆ= - + - =Á ˜Ë ¯

 Ixx = 31 1 21.33
(4)

3 EI EI

Ê ˆ =Á ˜Ë ¯

 Iyy = 3 21 1 1 180
(6) 4 (6)

3 2 EI EI EI

Ê ˆ Ê ˆ+ Á ˜Á ˜ Ë ¯Ë ¯

Now moment MA = 
240 ( ) 832.5

30 0 ( 4) ( 6)
21.33 180

EI EI

EI EI

È ˘- - + - + -Í ˙Î ˚
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  = 30 [(45) ( 27.75)]- - + -  = 42.75 kN.m

and MB = –30 
240 832.5 ( )

0 (0) ( 6)
21.33 180

EI EI

EI EI

È ˘+ + -Í ˙Î ˚
  = –30 + 27.75 = –2.25 kN.m

Example 14.15 
Analyse the portal frame given in Fig. 14.23 for the end 

moments of the members. The EI values of members are 

indicated along the members.

The frame is made into a free bent by releasing the support restraints at D. The 

analogous column and the moment diagram are as shown.

Column area 
4 6 5.5

(2)
2 4EI EI EI

= + =

Column load 
1 4 53.33

( 80)
3 2 EI EI

Ê ˆ
= - = -Á ˜Ë ¯

Now taking moments of areas about top face

 
4 (2)

(2) ( ) 1.4545 m
2 5.5

y EI
EI

= =

Fig. 14.23
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 Ixx = 3 21 1 5.5 9.69
(4) (2) (1.4545)

3 2 EI EI EI

Ê ˆ
- =Á ˜Ë ¯

 Iyy = 3 21 1 4 40.5
(6) 2 (3)

12 4 2EI EI EI

Ê ˆ Ê ˆ
+ =Á ˜ Á ˜Ë ¯ Ë ¯

 MA = Ms ( ) ( )
y x

xx yy

N e N eN
y x

A I I

È ˘
- + +Í ˙

Í ˙Î ˚
 

Substituting, MA = 
53.33 ( ) 53.33 1.5

10 ( ) ( 2.55)
5.5 9.69

EI
EI

EI EI

È ˘- -Ê ˆ Ê ˆ- - + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

    
53.33 ( 3)

( ) ( 3)
40.5

EI
EI

˘- -Ê ˆ Ê ˆ+ - ˙Á ˜ Á ˜Ë ¯ Ë ¯ ˚
  = –80 – (–9.70 – 21.75 – 11.85)

  = –80 + 43.30 = –36.7

 MB = 0 
53.33 ( ) 53.33 1.55

( ) (1.45)
5.5 9.69

EI
EI

EI EI

È ˘- -Ê ˆ Ê ˆ- - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

   
53.33 ( 3)

( ) ( 3)
40.5

EI
EI

˘- -Ê ˆ Ê ˆ+ - ˙Á ˜ Á ˜Ë ¯ Ë ¯ ˚
  = 0 – (–9.70 + 12.37 – 11.85)

  = + 9.18 kN.m

 MC = 0 – (–9.70 + 12.37 + 11.85) = –14.52 kN.m

 MD = 0 – (–9.70 – 21.75 + 11.85) = + 19.6 kN.m

14.3.1 Closed Frames

Column analogy method can also be extended to closed frames. The following 

example will illustrate the procedure.

Example 14.16 
Using the column analogy method, determine the end 

moments and draw the bending moment diagram for 

the closed frame shown in Fig. 14.24.

We can release the structure say at C just to the right of load and make it 

determinate. The analogous column is shown in Fig. 14.24. The bending moment 

diagram Ms for the released structure is shown in Fig. 14.25. The loads on the 

analogous column and their centroids are shown in Fig. 14.25.

 
1 11

1 300 225
(3) 2 m,

2 2
x y

o o

N e e
EI EI

Ê ˆ
= - = - = -Á ˜Ë ¯

= – 1.29 m 
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Fig. 14.24

Fig. 14.25

 
2 22

1 300 450
(3) 3 m,

2
x y

o o

N e e
EI EI

Ê ˆ- -
= = - = -Á ˜Ë ¯

= – 0.29 m 

 
3 33

1 450 675
(3) 3 m,

2
x y

o o

N e e
EI EI

Ê ˆ- -
= = - = -Á ˜Ë ¯

= + 0.71 m 

 
4 44

1 450 337.5
(6) 1 m,

2 4
x y

o o

N e e
EI EI

Ê ˆ- -
= = = -Á ˜Ë ¯

= + 0.71 m

 S N = –16875/EIo

Each of the loads N1, N2, N3 and N4 are equal to the area of the Ms, diagram 

multiplied by the appropriate 1/EI of the column. These loads act at points on 

the centre line of the analogous column, the point of application of each being 

aligned with the centroid of the area of the appropriate Ms diagram.
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Area of the analogous columns 
3 6 6 21

2
2 4 2o o o o

A
EI EI EI EI

Ê ˆ
= + + =Á ˜Ë ¯

 

The location of the XX axis can be obtained by taking moment about the top 

face of the column.

 

3 3 6
2 (3) 1.29 m.

2 4o o

y
EI EI

Ê ˆ Ê ˆÊ ˆ= + =Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯

 Ixx = 
2 2 3 36 6 1

(1.29) (1.71) 2 (1.29 1.71 )
2 4 3o o oEI EI EI

Ê ˆ
+ + +Á ˜Ë ¯

  = 4.99 + 4.39 + 4.77 = 
414.15

m
oEI

 Iyy = 
3 3 21 1 1 1 3

(6) (6) 2 (3)
12 2 12 4o o oEI EI EI

Ê ˆ Ê ˆ Ê ˆ
+ +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

  

49 4.5 54 67.5
m

o o o oEI EI EI EI
= + + =

Let us evaluate the moments Mx and My

 Mx = 1 1 2 2 3 3 4 4y y y y yN e N e N e N e N e= + + +Â

  
1

{( 225)( 129) ( 450)( 0.29) ( 675)(0.71) ( 337.5) (1.71)}
oEI

= - - + - - + - + -

  
635.63

kN.m
oEI

-
=

 MY 1 1 2 2 3 3 4 4x x x x xN e N e N e N e N e= = + + +Â

  
1

oEI
= {(–225) (–2) + (–45)(–3) + (–675)(–3) + (–337.5) (–1) 

  4162.5
kN.m

oEI
=

Substituting these values in 

 M
A
 = MsA –MiA 

  
1687 535 63 4162.5

450 (1.71) ( 3)
10.5 14.15 67.5

- -Ï ¸= - - - + -Ì ˝
Ó ˛

  = –450 + 422.65 = –27.35 kN.m



552  Basic Structural Analysis

 MB = –300 –
635.63 4162.5

160.67 ( 1.29) ( 3)
14.15 67.5

Ï ¸- - - + -Ì ˝
Ó ˛

  = –300 + 287.9 = –12.1 kN.m

 Mc = 0 –
635.63

160.67 ( 1.29)
14.15

Ï ¸- - -Ì ˝
Ó ˛

  = 160.67 – 57.77 = 102.9 kN.m

 MD = 0 –
635.63 4162.5

160.67 ( 1.29) ( 3)
14.15 67.5

Ï ¸- - - + +Ì ˝
Ó ˛

  = 0 – 82.9 = – 82.9 kN.m

 ME = 0 – 
635.63 4162.5

160.67 (1.71) ( 3)
14.15 67.5

Ï ¸- - + +Ì ˝
Ó ˛

  = 0 + 52.66 = 52.66 kN.m 

The bending moment diagram is shown in Fig. 14.26.

Fig. 14.26

14.4  GABLE FRAMES

Symmetrical gable frames can be analysed using the column analogy method. 

However, while analysing a gable frame it is necessary to deter mine the moment 

of inertia of the line area about a centroidal axis which is at an angle q with the 

direction of the axis XX. Consider a line area as shown in Fig. 14.27.

 Ix 
1/2 2

0
2 ( sin )b dx x q= ◊Ú

  
1/2 2 2

0
2 sinb x dxq= ◊Ú

  

1/2
3

2

0

2 sin
3

x
b q

È ˘
= Í ˙

Î ˚

3
2sin

12

bl
q=

Similarly Iy 

3
2cos

12

bl
q=
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Fig. 14.27

Example 14.17 
Analyse the gable frame shown in Fig. 14.28 by column 

analogy method.

The analogous column is shown in Fig. 14.28. The properties of the analogous 

column are:

 

24 6.32 14.32
(2) (2) m

2
A

EI EI EI

Ê ˆ= + =Á ˜Ë ¯

Centroid distance y– from base

 

8(2) 6.32
(2) (5)

2
3.32 m

14.32/

EI EI
y

EI

+
= =

Fig. 14.28  (a) Gable frame and the loading, (b) Analogous column



554  Basic Structural Analysis

3 2 3 21 1 4 1 1 6.32
2 (4) (1.32) (6.32) (0.1) (1.68)

12 12 2 2
xxI

EI EI EI EI

È ˘Ê ˆÊ ˆ= + + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

  

444.54
m

EI
=

Due to symmetry of frame and loading My = 0 and hence Iyy is not required.

Load on Analogous Column The frame is released from the restraining moments 

at A and E and the horizontal reaction component at E making it a statically 

determinate frame as shown in Fig. 14.29a. The Ms diagram is shown plotted on 

the inclined member in Fig. 14.29b.

Fig. 14.29

Maxm. 
2 224 12

432 kN.m
8 8

s

wl
M

¥
= = =

Column load  
2 6.32 1820.16

2 (432) kN
3 2

N
EI EI

Ï ¸Ê ˆÔ Ô= =Ì ˝Á ˜Ë ¯Ô ÔÓ ˛

Column area  24 4 6.32 14.32
2 m

2
A

EI EI EI EI
= + + ¥ =

Moment     
1820.16 3512.91

(1.25 0.68)xM
EI EI

= + =

          My = 0

 
1820.16 3512.91( )

( ) ( 3.32)
(14.32) (44.54)

iA

EI
M EI

EI EI
= + = -  = – 134.74 kN.m

 MiB = 127.11 + 78.87 (0.68) = 180.74 kN.m

 MiC = 127.11 + 
3512.91( )

(44.54)

EI

EI
 (2.68) = 338.48 kN.m

The moments are

 MA = 0 –(–134.74) = 134.74 kN.m 

 MB = 0 –(180.74) = –180.74 kN.m

 MC = 432 – 338.48 = 93.51 kN.m
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Fig. 14.30

The fi nal bending moment diagram is indicated in Fig. 14.30.

14.5  ANALYSIS OF UNSYMMETRICAL FRAMES

In the preceding section, we required to know the principal axes of the analogous 

column. This presented no problem when the frame was sym metrical. In the 

analysis of unsymmetrical frames it is necessary to use the principal moments of 

inertia and product moments of inertia in the solution. The typical frames and the 

axes to be considered are shown in Fig. 14.31.

Fig. 14.31  Unsymmetrical frames and the axes
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Fig. 14.32  Unsymmetrical short column cross-section

Consider an area as shown in Fig. 14.32 subjected to a tensile force (+ve) P 

at a point (x, y) with respect to any coordinate axes X and Y through the centroid 

of the section.

The eccentric force P can be replaced by a force N at the centroid and by two 

moments Mx = P ◊ y and My = P ◊ X. The nor mal stress at any point is given by

 
2 2

x y y xy x y x xy

x y xy x y xy

M I M I M I M IP
f y

A I I I I I I

Ê ˆ Ê ˆ- -
= + +Á ˜ Á ˜

- -Ë ¯ Ë ¯
 (14.9)

where A is the area of cross-section.

Ix, Iy are the moments of inertia about x and y axes and Ixy. is the product of 

moments of inertia about X and Y axes.

Referring to the frames in Fig. 14.31, the statically indeterminate mo ment at 

any point (x, y) on the analogous column is obtained by

 
2 2

x y y xy x y x xy

i

x y x y xy

M I M I M I M IN
M y

A I I Ixy I I I

Ê ˆ Ê ˆ- -
= + +Á ˜ Á ˜

- -Ë ¯ Ë ¯
 (14.10)

This is the equation to be used when XX and YY are not the principal axes but 

pass through the centroid of the analogous column.

An illustrated example that follows will make the procedure clear.

Example 14.18 
Using the column analogy method, fi nd the end moments 

for the unsymmetrical frame shown in Fig. 14.33. 

Consider that all the members of the frame have a constant fl exural rigidity EI.

The frame is released of the three reaction components at D making it a 

statically determinate cantilever bent. The analogous column is shown in Fig. 

14.33b. The column is not symmetrical about any of the axes. We fi nd fi rst the 

centroid of the column and choose X and Y axes passing through the centroid.

Area of the column 24 4 2 10
mA

EI EI EI EI
= + + =

Distance of centroid from top 

4 2
(2) (1)

1.0 m
10 /

EI EIy
EI

+
= =
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Distance of centroid from left hand column line

Fig. 14.33  (a) Unsymmetrical frame and the loading, (b) Analogous column and the axes

 

4 2
(2) (4)

1.6 m
10 /

EI EIx
EI

+
= =

 

3 2 3 2 21 1 4 1 2 4 7.17
(4) (1) (2) (1) m

12 2
xxI

EI EI EI EI EI

Ê ˆ Ê ˆ= + + + =Á ˜ Á ˜Ë ¯ Ë ¯

 

2 2 3 2 44 2 1 1 4 27.73
(1.6) (2.4) (4) (0.4) m

12
yyI

EI EI EI EI EI

Ê ˆ Ê ˆ= + + + =Á ˜ Á ˜Ë ¯ Ë ¯

 
44 2 4 8.0

( 1) ( 1.6) (2.4) (0) (0.4) (1) mxyI
EI EI EI EI

= - - + + =

Loading on the column   
1 2 80

( 80) kN.
2

N
EI EI

-
= - =

Moment  
80 7 186.67

kN.m
3

x yM N e
EI EI

- Ê ˆ= = - =Á ˜Ë ¯

 
( )80 128
1 6 kN.my xM N e

EI EI

-
= = - =
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Using Equation 14.8 and substituting the values as worked out earlier 

 MiA = –8 – 92.05 + 6.81 = –93.24 kN.m 

 MiB = –8 + 30.68 + 6.80 = 29.48 kN.m 

 MiC = –8 + 30.68 – 10.55 = 12.13 kN.m 

 MiD = –8 – 30.68 – 10.55 = – 49.23 kN.m 

The end moments are

 MA = MsA – MiA = 80 – (–93.24) = 13.24 kN.m 

 MB = MsB – MiB = 0 – (29.48) = – 29.48 kN.m 

 MC = MsC – MiC = 0 – (12.13) = – 12.13 kN.m 

 MD = MsD – MiD = 0 – (–49.23) = 49.23 kN.m

The bending moment diagram is shown in Fig. 14.34.

Fig. 14.34  Moment diagram

Example 14.19 
Solve the previous example taking that the right column 

has hinged support as shown in Fig 14.35a.

The analogous column has infi nite area at the hinge point. The centroid of 

the column is located at the hinge point. We choose two coordinate axes X and Y 

passing through the hinge point which are not principal axes.

Area of the column A = a

 
3 3 2 41 1 1 1 1 24

(2) (4) 4 (2) m
3 12

xxI
EI EI EI EI

Ê ˆ Ê ˆ Ê ˆ= + + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 
2 3 41 1 1 85.33

4 (4) (4) m
3

yyI
EI EI EI

Ê ˆ Ê ˆ= + + =Á ˜ Á ˜Ë ¯ Ë ¯

 
41 16

4 (2) ( 2) mxyI
EI EI

-Ê ˆ= + - =Á ˜Ë ¯

N = 
80

EI

-
 kN, as earlier.

 

80 106.67
( 4/3) kN.mx yM N e

EI EI

-
= = - =
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Fig. 14.35

 

80 320.0
( 4) kN.my xM N e

EI EI

-
= = - =

Using Equation 14.8 and substituting

106.67 85.33 320 16 (320 24 106.67 16)
0 ( 2) ( 4)

24 85.33 256 24 85.33 256
iAM

Ê ˆ¥ + ¥ ¥ + ¥
= + - + -Á ˜¥ - ¥ -Ë ¯

  = 0 + 7.94 (–2) + 5.24 (–4) 

  = –36.84 kN.m 

 MiB = 0 + 7.94 (2) + 5.24 (–4)

  = –5.08 kN.m 

 MiC = 0 + 7.94 (2) + 5.24 (0)

  = + 15.88 kN.m 

 MiD = 0 

 MiE = 0 + 7.94 (0) + 5.24 (–4)

  = –20.96 kN.m 
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The fi nal moments are

 MA = –80 – (–36.84) = 43.16 kN.m 

 MB = 0 – (–5.08) = 5.08 kN.m 

 MC = 0 – 15.88 = –15.88 kN.m 

 MD = 0

 ME = –(–20.96) = 20.96 kN.m

The fi nal B.M. diagram is shown in Fig. 14.36.

Fig. 14.36  Final moment diagram

Column analogy method, through useful and mechanical in analysing beams 

and frames, particularly the non-prismatic members, does not throw any light on 

the behaviour of the structure.

Problems for Practice

14.1 Using the column analogy method, obtain the fi xed end moment and draw the 

B.M. diagram for a propped cantilever of uniform section and of length 12 m. The beam 

is fi xed at end A and propped at B. Two loads of 100 kN and 80 kN are placed at 4 m and 

8 m respectively from A.

14.2, 14.3 Using the column anology method, determine the fi xed end moments and 

draw the B.M. diagram for the beams shown in Figs. 14.37 and 14.38.

  

 Fig. 14.37 Fig. 14.38

14.4, 14.5 Obtain fi xed end moments, stiffness factors and carry-over factors for the 

ends A and B of the beams shown in Figs. 14.39 and 14.40. Use the column anology 

method.

  

 Fig. 14.39 Fig. 14.40
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14.6, 14.7, 14.8 Using the column analogy method analyse the portal frames shown in 

Fig. 14.41, 14.42 and 14.43.

14.9 Analyse the frame shown in Fig. 14.44 using column analogy method.

  

 Fig. 14.41 Fig. 14.42

  

 Fig. 14.43 Fig. 14.44

14.10, 14.11, 14.12, 14.13 Obtain the rotational stiffness and the carry-over factors for 

the beams shown in Figs. 14.45, 14.46, 14.47 and 14.48.

  

 Fig. 14.45 Fig. 14.46

  

 Fig. 14.47 Fig. 14.48



15.1  INTRODUCTION

The objective of any analysis is to determine the reaction at the supports, the 

forces in members and displacement of joints. The forces must satify the static 

equilibrium not only for the entire structure but also for any part taken out as a free 

body. The displacements in the structure must satisfy the geometric continuity of 

the structure and be compatible with support conditions.

15.1.1 Methods of Analysis

In the analysis, two general methods are adopted. The fi rst is the force method or 

the fl exibility method. In this, the degree of static indeterminancy of the structure 

is determined and the structure is made statically determinate by releasing 

the redundants equal to the degree of indeterminancy. The released structure, 

which is known as the primary structure, is analysed using static equations of 

equilibrium and the displacements in the direction of released are determined. 

The inconsistencies in the geometric compatibility at the releases are satisfi ed 

by the introduction of additional forces at the releases. The unknown forces 

applied at the releases are evaluated by satisfying the compatibility conditions 

on the releases. With the redudant forces known, the forces in the structure are 

determined by the superimposition of the forces in the released structure and the 

forces due to redudant forces.

The second approach is the displacement method or the stiffness method. In 

this, the structure is restrained from undergoing displacements at the joints. The 

restraining forces are determined at the joints. The number of artifi cial restraints 

added to make the structure kinematically determinate is equal to the degree 

of freedom of the structure. The restrained structure, however, does not satisfy 

the equilibrium of forces at the joints. Displacements are then allowed to take 

place at the joints until the artifi cial restraining forces vanish. The displacements 

are evaluated by satisfying the equilibrium conditions of the joints. With the 

joint displacements known, the forces on the structure are determined by the 

superposition of the forces in the restrained structure and the forces due to 

displacements at the joints.

Matrix Methods of
Structural Analysis

15
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Either the force method or the displacement method can be used for the 

analysis of a given structure. In the force method, the unknowns are the forces 

required at the releases to satisfy the geometric compatibility. The analysis results 

in a number of simultaneous equations equal to the number of releases. On the 

other hand the unknowns in the displacement method are the displacements at 

the joints. The analysis results in a number of simultaneous equations equal to 

the number of independent displacements. The possible number of independent 

displacements represents a different type of indeterminancy known as kinematic 

indeterminancy.

15.1.2 Kinematic Indeterminancy of a Structure

There are two types of indeterminancies that may be used to describe a structural 

system; (1) static indeterminancy and (2) kinematic indeterminancy. Static 

indeterminancy, discussed in Chapter 10, refers to the number of redundant forces 

that are to be released to transform the structure into a statically determinate and 

yet a stable structure. The second type of indeterminancy in a structural system, 

kinematic indeterminancy, refers to the number of independent components of 

joint displacements with respect to a specifi ed set of axes.

Any joint in space will have six independent components of displacements 

known as degrees of freedom (d.o.f), three translations and three rotations. A 

joint in a plane frame will have three degrees of freedom, two translations and 

one rotation. A plane truss joint naturally will have two degrees of freedom, both 

translations. A few illustrations presented below will make the point clear.

Consider a continuous beam ABC as shown in Fig. 15.1. At end A the beam 

is prevented from undergoing any rotation or translation. The roller supports at 

B and C prevent any translation in the vertical direction. It may be noted that a 

roller support is capable of taking up either the upward or downward reaction.

Fig. 15.1

If we neglect axial deformations in the beams, there will be no horizontal 

displacement at supports B or C. Therefore, the only unknown displacements are 

the rotations at B and C denoted by D1 and D2 respectively. These displacements 

are independent of one another as either can be given an arbitrary value by the 

application of appropriate forces.

The number of independent joint displacements or degrees of freedom in 

a structure is called the degree of kinematic indeterminancy. Therefore, in the 

continuous beam referrred to above, the degree of kinematic indeterminancy is 

two.

Consider an example of a plane frame shown in Fig. 15.2. The fi xed supports 

at C and D prevent translations and rotations. If the axial forces are neglected 

joints A and B undergo only rotations and no translations as shown in Fig. 15.2. 
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As these rotations are independent of one another the kinematic indeterminancy 

of the frame is two.

As another example, consider a plane frame with inclined legs as shown in 

Fig. 15.3.

Fig. 15.2

Fig.15.3

The frame has fi xed supports at 1 and 4. Joints 2 and 3 apparently have three 

degrees of freedom each, two translations and one rotation. However, if axial 

deformation in member 2-3 is neglected, the horizontal displacement A at joint 3 

is equal to the horizontal displacement at joint 2. Further, the vertical displacement 

at joint 2 or the displacement normal to member 1-2 can be related to horizontal 

displacement D. The vertical displacement at joint 2 is D tan q1 and displacement 

normal to member 1-2 is 
1cosq

D
. Similarly, the vertical displacement at joint 

3 is D tan q2 and displacement normal to member 4-3 is 
2cosq

D
. Thus, there 

are only three independent displacements, rotations at 2 and 3, and lateral 

displacement which is same at both the joints. Therefore, the degree of kinematic 

indeterminancy for the frame is 3. However, if the axial deformations are taken 

into account, all the four translational displacements are independent and the 

kinematic indeterminancy of the structure is 6.

Consider an example of a pin-jointed truss with the forces acting at the joints 

only as shown in Fig. 15.4.

The members undergo axial deformations only and remain straight. The 

deformations in the structure are completely defi ned if the components of 

translations along two orthogonal axes are determined for each joint. Thus 
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each joint has two degrees of freedom. The pin-jointed frame in Fig. 15.4 is 

kinematically indeterminate by two degrees.

Consider now a space frame as shown in Fig. 15.5. All the four columns are 

fi xed and hence no displacements take place. The four joints A, B, C and D in 

space have six degrees of freedom each—three translation and three rotations. 

The kinematic indeterminancy of the structure is 4 ¥ 6 = 24.

  

 Fig. 15.4 Fig. 15.5

If the axial deformations are not accounted for, the four columns remain 

unchanged in their lengths and hence the vertical displacements in the Z 

direction at joints A, B, C and D vanish reducing the kinematic indeterminancy 

by four. Further, the displacements in the X direction at joints A and B are equal. 

So also the displacements in the X direction at C and D are equal. Similarly 

the displacements in the Y direction at A and C, and B and D are equal. The 

kinematic indeterminancy is further reduced by four. Therefore the kinematic 

indeterminancy of the structure neglecting axial deformations is 16.

To determine the kinematic indeterminancy of a structural system, consider 

a plane frame or truss having J joints, let C be the number of displacements 

constrained giving rise to reaction components, then the kinematic indeterminancy 

of a frame is given by

 IK = N J – C

in which I
K
 is the kinematic indeterminancy and N the number of degrees of 

freedom at the joint.

Examples illustrating the degree of kinematic indeterminancy of various plane 

structures are given in Fig. 15.6. It may be noted that the restrained degrees of 

freedom are indicated in broken lines.

It is emphasized here that the kinematic indeterminancy should not be 

confused with static indeterminancy. For instance, the frame in Fig. 15.2 is 

statically indeterminate by fi ve degrees. If the fi xed support at C is replaced by 

a hinge, the degree of static indeterminancy is reduced by one. This, however, 

introduced one independent displacement at C and hence increases the kinematic 

indeterminancy by one.
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In general the introduction of a release decreases the statical indetermiancy 

and increases the kinematic indeterminancy. For this reason the displacement 

method of analysis is more suitable for structures having a higher degree of 

indeterminancy.

Before we embark upon any of the above methods we shall consider the 

necessary preliminaries that are essential to the development of methods.

15.2  STIFFNESS AND FLEXIBILITY COEFFICIENTS

In Section 10.4 we discussed the force displacement relationship in terms of 

fl exibility infl uence coeffi cients. In this section we shall formalise the procedures 

of relating the forces and displacements in a structure in terms of fl exibility and 

stiffness coeffi cients. These coeffi cients are characteristic of a structure relating 

the forces and displacement at its coordinates.

The fl exibility coeffi cients characterise the behaviour of the structure by 

specifying the displacement response to the applied forces at the coordinates. On 

the other hand, the stiffness coeffi cients specify the forces required to produce 

the given displacements at the coordinates.

15.2.1 Structure with a Single Coordinate

Consider a simple example of a cantilever beam in Fig. 15.7a with a single 

coordinate indicated for force displacement measurements. The deformation of 

the structure may be expressed as

 D = fP (15.1)

in which D = deformation at coordinate point 1

 f = fl exibility coeffi cient which is defi ned as the displacement at 

coordinate 1 caused by a unit force at 1

 P = load applied at coordinate 1

Using the moment area method, we fi nd for the beam of Fig. 15.7a

 
3

3

L
f

EI
=  (15.2)

An alternative way to relating the force and displacement at coordinate 1 is

 P = kD (15.3)

in which k = stiffness coeffi cient which is defi ned as the force required at 

coordinate 1 to produce a unit displacement at 1

 D = displacement at point 1

 P = force applied at point 1

The value of k for the beam of Fig. 15.7a is

 
3

3EI
k

L
=  (15.4)

Again for a beam of Fig. 15.7b, we have
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 and
L EI

f k
EI L

= =  (15.5)

We fi nd from a comparison of the values of f and k, one is the inverse of the 

other, or

 f k = 1 (15.6)

Fig. 15.7  (a) Cantilever beam under load P, (b) Displacement due to moment

15.2.2 Structure with Two Coordinates

We now extend the concept of stiffness and fl exibility matrices to a structure 

having two coordinates.

Flexibility Matrix Figure 15.8a again shows a cantilever beam with two 

coordinates. Let us relate the forces and the corresponding displacements through 

fl exibility coeffi cients.

To do this, we apply the superposition of forces as follows: First we apply a 

unit force at coordinate 1 only (Fig. 15.8b) and designate the displacements at 1 

and 2 as f11 and f12 respectively. Next, we apply a unit force at 2 only (Fig. 15.8c) 

and designate the displacements at 1 and 2 as f12 and f22 respectively.

The displacements D1 and D2 due to forces P1 and P2 acting simultaneously 

are

 D1 = f11P1 + f12P2

And D2 = f21P1 + f22P2 (15.7)

This can be written in the form of a matrix as

 1 11 12 1

2 21 22 2

D f f P

D f f P

Ï ¸ È ˘ Ï ¸
=Ì ˝ Ì ˝Í ˙
Î ˚Ó ˛ Ó ˛

 (15.8)

or simply

 D = fP (15.9)

The matrix f is the fl exibility matrix for the structure of Fig. 15.8. It may be 

noted that the elements of the fi rst column of this matrix are generated by applying 

a unit force at 1 only and the elements of the second column by applying a unit 

force at 2 only. The elements of the fl exibility matrix for the structure is

 

2
11 12

21 22

/3 /2

/2 1

f f L L L

f f EI L

È ˘È ˘
= = Í ˙Í ˙
Î ˚ Î ˚

f  (15.10)
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Fig. 15.8  (a) Beam under loads P1 and P2, (b) Unit load at coordinate 1 only,

(c) Unit load at coordinate 2 only

Stiffness Matrix We shall now relate displacements and forces in an alternative 

way so that displacement information at the coordinates can be easily transferred 

into forces. To do this we apply a superposition of displacements as shown in 

Fig. 15.9. First we apply a unit displacement at 1 only (Fig. 15.9a) and designate 

the required forces at 1 and 2 as k11 and k21 respectively. The fi rst subscript is the 

coordinate where the force is measured and the second subscript is the coordinate 

where the unit displacement is applied. Similarly, in Fig. 15.9b forces k12 and k22 

are required to cause a unit displacement at 2 only. The forces required to produce 

displacements D1 and D2 simultaneously are obtained by a superposition of the 

results obtained in Figs. 15.9a and b. This yields

 P1 = k11D1 + k12D2

 P2 = k21D1 + k22D2 (15.11)

Expressing this in matrix form, we have

 1 11 12 1

2 21 22 2

P k k D

P k k D

Ï ¸ È ˘ Ï ¸
=Ì ˝ Ì ˝Í ˙
Î ˚Ó ˛ Ó ˛

 (15.12)

or simply

 P = kD (15.13)

The stiffness matrix k has the following elements for the structure of 

Fig. 15.9

 
2

11 12

21 22

12/ 6/

6/ 4

k k EI L L

k k L L

È ˘È ˘ -
= = Í ˙Í ˙ -Î ˚ Î ˚

k  (15.14)

The reciprocal relation on the basis of Eqs. 15.10 and 15.14 is not apparent 

because in Eq. 15.10 f11 = L3/3EI and in Eq. 15.14 k11 = 12EI/L3. However, in cases 

where more than one coordinate is considered, the reciprocity between stiffness 

and fl exibility matrices exists in matrix form. This is shown to be true by the 

operation in Eq. 15.15 in which the fl exibility and stiffness matrix of Eqs. 15.10 

and 15.14 are multiplied to yield the identity matrix.

 
2 2 1 0/3 /2 12/ 6/

0 1/2 1 6/ 4

L L L EI L L

EI LL L

È ˘ È ˘ È ˘-
=Í ˙ Í ˙ Í ˙- Î ˚Î ˚ Î ˚

 (15.15)
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Fig. 15.9  (a) Unit displacement at coordinate 1 only, (b) Unit displacement

at coordinate 2 only

Equation 15.15 is written in compact notation as

 fk = I (15.16)

The procedure can be extended to structures with more than two coordinates 

and can be generalised as follows.

15.2.3 Flexibility and Stiffness Matrices in n Coordinates

Consider a linear elastic structure with n coordinates. To generate the elements 

of column 1 of the fl exibility matrix f we apply a unit force at coordinate 1 only 

and compute displacements at all the coordinates fi1 (i = 1, 2, ..., n). This will 

give the elements in column 1. To generate, again say, column n of matrix f, we 

apply a unit force at coordinate n only and compute displacements fin (i = 1, 2, 

..., n). The values of these displacements form the elements in the nth column of 

matrix f. In general, to generate the elements in the jth column, apply a unit force 

at coordinate j only and compute the displacements fi j (i = 1, 2 ..., n). The values 

of these displacements form the elements of the jth column of the matrix f. Thus, 

it is seen that the complete fl exibility matrix f will have n rows and n columns 

forming a square matrix n ¥ n.

Similarly, to generate the elements in column 1 of matrix k, we impose a unit 

displacement at coordinate 1 only and compute forces needed at all the coordinates 

ki1 (i = 1, 2, ..., n) to hold the structure in that confi guration. These forces form the 

elements of the fi rst column of the stiffness matrix k. To generate, say, column 

n of matrix k, we impose a unit displacement at coordinate n only and compute 

forces kin(i = 1,2, ..., n) needed to hold the structure with no displacements at 

other coordinate. In general, to generate the elements of column j (j = 1, 2, ..., 

n), we impose a unit displacement at j only and compute forces kij(i = 1, 2, ..., n) 

needed to hold the structure with no displacements at other coordinates. These 

forces form the elements of the jth column of matrix k. Thus, a stiffness matrix 

for n coordinates will have n rows and n columns of elements, forming a square 

matrix n ¥ n.

15.2.4 Force Displacement Relations

Using matrices f and k, the force and displacement vectors at the coordinates are 

related by
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 D = fP (15.17)

which in the expanded form is

 D1 = 
1

n

ij
j

f
=
Â Pj = f11P1 + f12P2… f1nPn

 D2 = 2
1

n

j
j

f
=
Â Pj

                  

 Dn = 
1

n

n j
j

f
=
Â Pj (15.18)

that is, the ith element of vector D in Eq. 15.18 is equal to the sum of the products 

of fij(j = 1, 2, ..., n) in row i of f and the corresponding elements Pj of P.

In terms of the stiffness matrix, the force displacement relationship is

 P = kD (15.19)

which in the expanded form is

 P1 = 
1

n

ij
j

k
=
Â Dj = k11D1 + k12D2… kinDn

 P2 = 2
1

n

j
j

k
=
Â Dj

                 

 Pn = 
1

n

n j
j

k
=
Â Dj (15.20)

A number of examples will help to reinforce the concept of the stiffness and 

fl exibility matrices.

Example 15.1 
Generate the fl exibility matrix [f] for cordinates 1 and 

2 of the beam shown in Fig. 15.10

To generate fl exibility matrix [f] we apply a unit force at coordinate 1 and fi nd 

displacements corresponding to coordinates 1 and 2. These displacements form 

the elements f11 and f21 of the fl exibility matrix. The required displacements are 

obtained by using conjugate beam method.

From the above 

 11

3 3
or

8 8
A

L L
R f

EI EI
= =¢

 
2 2

21or
12 12

C

L L
M f

EI EI
= =¢

Again applying a unit force at coordinate 2 and using conjugate beam method
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Fig. 15.10

 

2 2

12or
12 12

A

L L
R f

EI EI
= =¢

and 
3 3

22or
32 32

C

L L
M f

EI EI
= =¢

The fl exibility matrix

 
2

3

8 12
[ ]

12 32

L

L
f

EI L L

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙Î ˚

Example 15.2 
Generate the stiffness matrix [k] for the structure with 

the coordinates as shown in Fig. 15.11

The stiffness matrix [k] can be obtained by imposing a unit displacement at 

each of the coordinates one at a time and computing the forces required to hold 

the structure in the defl ected confi guration.

First, we apply a unit displacement D1 = 1 at coordinate 1 and work out the 

forces required to hold the structure in that confi guration. The elements in the 

fi rst column of the matrix [k] are as shown in Fig. 15.11. The elements in the 

second column of the matrix [k] are obtained by imposing a unit displacement 

D2 = 1 at coordinate 2 and working out the forces. The elements are shown in 

fi gure. Similarly, the elements in third and fourth columns of the matrix [k] are 

obtained by imposing displacements D3 = 1 and D4 = 1 in turns. The resulting 

elements in the third and fourth quadrants are also shown. The complete stiffness 

matrix.

 

8

0 4
[ ]

4 2 12

12 6 6 36

Sym
k

È ˘
Í ˙
Í ˙=
Í ˙
Í ˙
- -Î ˚
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Fig. 15.11

Example 15.3 
Considering only axial deformation for the truss shown 

in Fig. 15.12 determine fl exibility matrix [f] and 

stiffness matrix [k] associated with applied forces P.

Fig. 15.12
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First, we apply a unit force a joint B in the direction of forces P1 and P2 in 

turns and obtain member forces using method of joints. The displacement of 

joint B due to application of unit forces are obtained using virtual work method. 

The results are tabulated.

Member Length p1 p2
2
1

L
p

AE

2
2

L
p

AE
1 2p p L

AE

AB L 1
1

3

L

AE

1

3

L

AE

1

3

L

AE

BC L –1
1

3

L

AE

1

3

L

AE

1

3

L

AE
-

2L

AE
Â 2

3

L

AE
Â 0

 

2 0

[ ] 2
0

3

L
f

AE

È ˘
Í ˙= Í ˙
Í ˙Î ˚

The stiffness matrix [k] is obtained by inverting the fl exibility matrix [ f ] as

 

1
0

2
[ ]

3
0

2

AE
k

L

È ˘
Í ˙

= Í ˙
Í ˙
Í ˙Î ˚

Example 15.4 
It is required to generate the fl exibility matrix f and 

stiffness matrix k in terms of coordinates 1, 2 and 3 for 

the cantilever bent of Fig. 15.13a.

To generate the elements in the fi rst column of the fl exibility matrix f we 

apply a unit force at coordinate 1 only and compute the displacements at the 

coordinates. The fl exibility coeffi cients are indicated in Fig. 15.13b.

The displacements correspond to the translation at coordinate 1 and rotations 

at coordinates 2 and 3. Displacements only due to bending are considered. Any 

method such as the moment area or virtual work method can be used in the 

computation of displacements.

The corresponding displacements or fl exibility coeffi cients are

3 2 2

11 21 31, and
2 2

L L L
f f f

EI EI EI
= = - = -

To arrive at the second column of the matrix f we again apply a unit force (in this 

case a unit couple) at coordinate 2 only as indicated in Fig. 15.13c. The resulting 

displacements at the coordinates give
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Fig. 15.13  (a) Frame and coordinates, (b) Unit load applied at coordinate 1 only,

(c) Unit load applied at coordinate 2 only, (d) Unit load applied at coordinate 3 only

 
2

12 22 32, and
2

L L L
f f f

EI EI EI
= - = =  (15.21)

Lastly, a unit couple is applied at only coordinate 3 (Fig. 15.13d) and the elements 

in the third column of matrix f are determined. The fl exibility coeffi cients are

 
2

13 23 33

2
, and

2

L L L
f f f

EI EI EI
= - = =  (15.22)

The complete fl exibility matrix f is

 

2

3 2 2

1 1
2

1 2
2

L L L

L L

EI

L

È ˘
- -Í ˙

Í ˙
Í ˙

= -Í ˙
Í ˙
Í ˙-Í ˙
Î ˚

f  (15.23)

It is seen that fl exibility matrix f is a square matrix and is symmetric, that is, 

fij = fji.

The stiffness matrix k can likewise be determined by imposing a unit 

displacement at one coordinate at a time and computing the forces required 

at the coordinates to hold the structure in that confi guration. For example, to 

generate the fi rst column of the stiffness matrix k we impose a unit displacement 
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at coordinate 1 only as shown in Fig. 15.14a and fi nd the forces required at each 

of the coordinates. The defl ected shape and the corresponding stiffness elements 

are indicated in Fig. 15.14a. The computations for the stiffness elements are 

carried out using the free-body diagram shown in Fig. 15.14b. In writing the 

forces on the free-body diagram, the force displacement relationship given in the 

Appendix are made use of. Writing the equilibrium equation for the joint and the 

beam element, the stiffness elements computed are as follows.

Fig. 15.14  (a) Unit displacement imposed at 1 only, (b) Free-body diagrams to compute

k11, k21 and k31, (c) Unit displacement imposed at coordinate 2, (d) Free-body diagram to compute 

k12, k22 and k32. (e) Unit displacement imposed at coordinate 3, (f) Free-body diagrams to compute 

k13, k23 and k33
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 11 21 313 2

6
12 0, 0, 0 0

EI EI
k k k

L L
- = - = + =

or 
11 21 313 2

12 6
, , 0

EI EI
k k k

L L
= = =  (15.24)

To generate the stiffness elements in the second column of matrix k, unit dis-

placement is imposed at coordinate 2 and the forces needed at all the coordinates 

are computed. The defl ected shape of the cantilever bent is shown in Fig. 15.14c 

and the computations for the stiffness elements are shown in Fig. 15.14d.

From the free-body diagram of Fig. 15.14d we have

 12 22 322

6 5
0, 0, 0

EI EI EI
k k k

L LL
- = - = + =

         
12 22 322

6 5
, ,

EI EI EI
k k k

L LL
= = = -  (15.25)

Similarly, from Fig. 15.14e and f, we have

 13 23 330 0, 0, 0
EI EI

k k k
L L

+ = + = - =

 13 23 330, ,
EI EI

k k k
L L

= = - =  (15.26)

Therefore, the complete stiffness matrix k is

 

2

12 6
0

6
5 1

0 1 1

LL

EI

L L

È ˘
Í ˙
Í ˙
Í ˙= -Í ˙
Í ˙

-Í ˙
Í ˙Î ˚

k  (15.27)

The moments and shears shown in the free-body diagrams are in their actual 

direction of action, whereas the stiffness elements kij are shown in the positive 

direction of their action.

The results of f and k referred to the same structure with identical coordinates 

can be checked by applying the condition

 fk = I (15.28)

Carrying out the multiplication of f and k results in the identity matrix as 

shown.

 

2

2

12 6
0

3 2 2 1 0 0
6

1 1 5 1 0 1 0
2

0 0 1
0 1 1

1 2
2

L L L

LL

L L EI

EI L L

L

È ˘ È ˘
- -Í ˙ Í ˙

Í ˙ Í ˙ È ˘
Í ˙ Í ˙ Í ˙- - =Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚-Í ˙ Í ˙-Í ˙ Í ˙Î ˚Î ˚

 (15.29)
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Example 15.5 
It is required to generate stiffness matrix k for the frame 

of Fig. 15.15a.

A unit displacement is imposed at coordinate 1 as in Fig. 15.15b and the 

forces required at all the coordinates to hold the structure in that confi guration 

determined. The forces on the free-body diagram of Fig. 15.15c gives

 K11 – 15 = 0 K21 – 6 = 0 K31 – 3 = 0

 K11 = 15 K21 = 6 K31 = 3  (15.30)

The second column of matrix k is obtained by imposing a unit displacement 

at coordinate 2 only as in Fig. 15.15d and computing the forces required at 

the coordinates to hold the structure in that confi guration. From the free-body 

diagram of Fig. 15.15e we have

 K12 – 6 = 0 K22 – 4 – 4 = 0 K32 – 2 = 0

 K12 = 6 K22 = 8 K32 = 2 (15.31)

Similarly, to obtain the third column elements of matrix k we impose a unit 

displacement at coordinate 3 only as in Fig. 15.15f and the forces needed to hold 

the structure in that confi guration are worked out. From the free-body diagram 

of Fig. 15.15g we have

 k13 = 3 k23 = 2 k33 = 7 (15.32)

The complete stiffness matrix is

 

15 6 3

6 8 2

3 2 7

È ˘
Í ˙= Í ˙
Í ˙Î ˚

k  (15.33)

The generation of fl exibility matrix f for the frame of Fig. 15.15a is more 

complicated than stiffness matrix k. For example, to generate the elements in  

column one of matrix f, the solution of the frame which is two times redundant is 

necessary. We shall see later that fl exibility matrix f can be obtained by inverting 

stiffness matrix k so that in the present case we can use k to fi nd f.

Example 15.6 
We shall now consider another example where f can be 

generated more easily than k. Figure 15.16a shows a 

cantilever beam with three coordinates.

The fl exibility elements of matrix f can be computed by applying a unit force 

at each of the coordinates in turn and then computing the displacements at the 

coordinates.

The fl exibility matrix f is

 

3
2 5 8

5 16 28
6

8 28 54

L

EI

È ˘
Í ˙= Í ˙
Í ˙Î ˚

f  (15.34)

The generation of stiffness matrix k for the beam of Fig. 15.16a is more in-

volved and requires the solution of an indeterminate beam. For example, to gen-

erate the fi rst column of matrix k we need to compute forces k11, k21 and k31 (see 

Fig. 15.17) which requires the solution of a three times redundant structure.
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Fig. 15.15  (a) Frame and the coordinates, (b) Unit displacement imposed at coordinate 1,

(c) Free-body diagrams to compute k11, k21 and k31 (d) Unit displacement imposed at coordinate 2, 

(e) Free-body diagrams to compute k12, k22 and k32, (f) Unit displacement imposed at coordinate 3, 

(g) Free-body diagrams to compute k13,k23 and k33
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Fig. 15.16  (a) Structure and the coordinates, (b) To generate fi rst column of matrix f,

(c) To generate second columns of matrix, f, (d)To generate third column of matrix f

Fig. 15.17  Unit displacement imposed at coordinate 1 to generate fi rst column of matrix k

Example 15.7 
Generate stiffness matrix k for the three coordinates 

indicated and compute displacements Di at the 

coordinates due to a single force P = 30 kN applied as shown in Fig. 15.18.
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The procedure to be followed in determining the elements of the stiffness 

matrix k is the same as in the previous Example 15.5. However, due to the 

inclination of the left hand side column, attention should be paid to the geometry 

of the displaced structure and the resolution of forces into axial and lateral forces. 

Only bending deformations are considered, neglecting axial deformations. To 

generate the fi rst column of stiffness matrix k, we impose a unit displacement at 

coordinate 1 and fi nd the forces required at the coordinates to hold the structure 

in that confi guration. Figure 15.19a shows the defl ected form of the structure and 

Fig. 15.19b the free-body diagram for computing stiffness elements. Consider 

now equilibrium of joints 2 and 3 shown separately in Fig. 15.19c. The total 

vertical component of 
3 3

9 9EI EI

L L

Ê ˆ+Á ˜Ë ¯
 is replaced by a horizontal component 

3

13.5EI

L

Ê ˆ
Á ˜Ë ¯

 and an axial componentas 
3

22.5EI

L

Ê ˆ
Á ˜Ë ¯

 shown in Fig. 15.19c. Writing 

the equations of equilibrium

 11 213 3 2 2

25.5 12 7.5 4.5
0 0

EI EI EI EI
k k

L L L L
- - = - - =

 11 213 2

37.5 3EI EI
k k

L L
= =

 31 312 2 2

4.5 6 1.5
0

EI EI EI
k k

L L L
+ - = =  (15.35)

Fig. 15.18  Structure and coordinates 

The elements of column 2 of stiffness matrix k are obtained by imposing 

a unit displacement at coordinate 2 only and computing the forces required to 

hold the structure in that confi guration (Fig. 15.19d and e). Again, resolving the 

forces at coordinate 2 along the axis of the inclined column and in the horizontal 

direction, we have from equilibrium conditions

 
12 22 322

3 4 4 2
0 0 0

EI EI EI EI
k k k

L L LL
- = - - = + =
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Fig. 15.19  (a) Unit displacement imposed at coordinate 1, (b) Free-body diagrams to 

compute k11, k21 and k31, (c) Equilibrium of joints 2 and 3 (contd.)

 12 22 322

3 8 2EI EI EI
k k k

L LL
= = = -  (15.36)

In a similar manner the elements of the third column of matrix k can be 

obtained by imposing a unit displacement at coordinate 3 only and computing 

the forces required at the coordinates. The values obtained are

 
13 23 332

1.5 2 8
, ,

EI EI EI
k k k

L LL
= = - =  (15.37)
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Fig. 15.19  (Contd.) (d) Unit displacement imposed at coordinate 2, (e) Free-body

diagrams to compute k12, k22 and k32

Therefore, the complete stiffness matrix is

 

2

37.5 3.0 1.5

3.0
8 2

1.5
2 8

L LL

EI

L L

L

È ˘
Í ˙
Í ˙
Í ˙= -Í ˙
Í ˙
Í ˙-
Í ˙Î ˚

k  (15.38)

Now the displacements due to the given load can be found using Eq. 15.19

 P = kD

or D = k
–1

P
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Inverting the stiffness matrix using any of the standard methods, we can 

write

  
3

2 2

2 2

21 6 37.560

21 297.75 70.5
0

2178

6 70.5 291
0

L L

L
D

EI L L L

L L L

È ˘ Ï ¸Í ˙ Ô ÔÍ ˙ Ô ÔÔ ÔÍ ˙= - Ì ˝Í ˙
Ô ÔÍ ˙
Ô ÔÍ ˙- Ô ÔÓ ˛Í ˙Î ˚

 (15.39)

15.3  MEMBER STIFFNESS AND FLEXIBILITY

     MATRICES

As we shall see later, a fl exibility or stiffness matrix for a complete structure 

can be syntherized from the fl exibility or stiffness coeffi cients of members 

constituting the structure. Further, an understanding of how member deformation 

or member forces affect each other will help clarify the treatment of structures 

assembled from individual members.

The forces commonly encountered in the members are axial, bending, torsion 

and shear. We shall develop stiffness and fl exibility coeffi cients for a beam 

element so that we can repeatedly use the stiffness or fl exibility matrix for the 

members in the structure.

15.3.1 Sign Convention

The following static sign convention will be used in developing the member 

matrices. Figure 15.20a indicates a joint and member that frames into it along 

with the internal forces all in their positive sense. Figure 15.20b indicates a set of 

external joint forces and Fig. 15.20c gives the displacements all in their positive 

sense.

It may be noted that the moment M12 at the end 1 of member 1-2 is counter-

clockwise while the same moment on the joint is clockwise. In ternal forces acting 

on either end of a member are positive in the positive direction of coordinate axes. 

Couples are included in this convention by using the right hand screw rule.

The positive directions of internal member end forces, external joint forces 

and nodal displacements coincide.

We shall generate a member stiffness matrix for a simple beam element shown 

in Fig. 15.21a. Figure 15.21b gives the beam element in its general deformed 

state.
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Fig. 15.20  Illustration of sign convention (a) Positive sense for internal forces,

(b) Positive sense for external forces, (c) Positive sense for displacements

The stiffness matrix to be developed is of the form

 

11 12 13 14 15 1612 1

21 22 23 24 25 2612 2

31 32 33 34 35 3612 1

41 42 43 44 45 4621 4

51 52 53 54 55 5621 5

61 62 63 64 65 6621 2

k k k k k kF D

k k k k k kV D

k k k k k kM

k k k k k kF D

k k k k k kV D

k k k k k kM

f

f

È ˘Ï ¸ Ï ¸
Í ˙Ô Ô Ô Ô
Í ˙Ô Ô Ô Ô
Í ˙Ô Ô Ô Ô

= Í ˙Ì ˝ Ì ˝
Í ˙Ô Ô Ô Ô
Í ˙Ô Ô Ô Ô
Í ˙Ô Ô Ô Ô
Í ˙Ô Ô Ô ÔÎ ˚Ó ˛ Ó ˛

 (15.40)

   P =       k         D (15.41)

Although there are several ways in which the stiffness infl uence coeffi cients 

can be developed, we shall develop the elements from the basic defi nition of 

the stiffness element kij. The beam element has six displacement directions 

corresponding to the six degrees of freedom for the member ends as defi ned in 

Fig. 15.21b. The stiffness matrix k is generated by imposing a unit displacement 

at each of the degrees of freedom in turn and computing the forces required at all 

the coordinate points. Fig. 15.22 indicates the unit displacement given to each 

degree of freedom (d.o.f) with the corresponding forces and couples required to 

impose the displacement.

The vectors are shown in the assumed positive direction and the minus 

sign indicates that the force actually acts opposite to the direction indicated. 

The member stiffness matrix may be written directly from the information 
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Fig. 15.21  (a) Beam element with coordinates, (b) General deformation of a beam element

Fig. 15.22  Member stiffness infl uence coeffi cients

displayed in Fig. 15.22. Writing the end forces in terms of the stiffness matrix 

and displacement vector
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 (15.42a)

 P =           k            D

 (15.42b)

In stiffness matrix k the following can be noticed:

 1. Column 4 is identical to column 1 and column 5 identical to column 2 

except for their signs being reversed.

 2. Column 6 can be obtained by multiplying elements of column 5 by (-L) 

and subtracting column 3 from it.

Due to these identities, the value of the determinant is zero and, therefore, the 

inverse cannot be obtained. For this reason and also because it is often desirable, 

if possible, to work with a reduced size of matrix k, the stiffness relation can be 

expressed in terms of a 3 ¥ 3 matrix. The reduced size of the k matrix can be 

obtained by considering

 F12 = –F21, V12 = –V21 and M21 =M12 – V21(L) (15.43)

Since the axial force and shear are constant along the beam and the relationship 

of Eq. 15.43 can serve as a supplemental equation for determining the shear in 

terms of end moments, it is suffi cient to rewrite the relationship of Eq. 15.42a in 

the form

 

1
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2

1
12 2 2
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5
2 221

2
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6 4 2
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DEA EAF
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M

L LL L

f

f

Ï ¸È ˘Ï ¸ Ô Ô-Í ˙Ô Ô Ô ÔÍ ˙Ô Ô Ô ÔÔ Ô Í ˙= -Ì ˝ Ì ˝Í ˙
Ô Ô Ô ÔÍ ˙
Ô Ô Ô ÔÍ ˙-Ô Ô Ô ÔÓ ˛ Í ˙Î ˚ Ô ÔÓ ˛

 (15.44)

The deformations due to axial strains at the coordinates 1 and 4 can be 

suffi ciently described by the extension as
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 e12 = –(D1 – D4) (15.45)

The defl ections of a member due to bending can be adequately described by 

rotations q1 and q2 as shown in Fig. 15.20 where end rotations are referred to 

with respect to the chord joining the ends rather than the coordinate axes, that is

 5 2
1 1

( )D D

L
f q

-
= +  (15.46)

and 5 2
2 2

( )D D

L
f q

-
= +  (15.47)

Therefore,

 
1 4( ) ( )

EA EA
F D D e

L L
= - - =  (15.48)

Using force displacement relationships given in Appendix D and superimposing 

the effects, we have

 

52 1 2
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66 4 4EIDEID EI EI
M

L LL L

f f
= - + +
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1 24 2EI EI

L L

q q
= +  (15.49)

Fig. 15.23

Similarly,

 1 2
21

2 4EI EI
M

L L

q q
= +  (15.50)

Hence, the relationship in Eq. 15.44 can be written as

 12 1

21 2

0 0

4 2
0

2 4
0

EAF e
L

EA EA
M

L L

EA EA
M

L L

q

q

È ˘Ï ¸ Ï ¸
Í ˙Ô Ô Ô Ô
Í ˙Ô Ô Ô ÔÔ Ô Ô ÔÍ ˙=Ì ˝ Ì ˝Í ˙Ô Ô Ô ÔÍ ˙

Ô Ô Ô ÔÍ ˙
Ô Ô Ô ÔÓ ˛ Ó ˛Í ˙Î ˚

 (15.51)

   P  =    k     D (15.52)
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In this form stiffness matrix k is expressed as a 3 ¥ 3 matrix. It may be noted that 

the axial force is uncoupled from the moments, that is, the axial effect does not 

infl uence the moment.

If only bending deformations are predominant so that the axial effect can be 

neglected, matrix k can be written as

 
2 12

1 2

EI

L

È ˘
= Í ˙

Î ˚
k  (15.53)

The fl exibility matrix for the member can be obtained by inverting the stiffness 

matrix. Thus,

 
2 1

1 26

L
f

EI

-È ˘
= Í ˙-Î ˚

 (15.54)

The stiffness and fl exibility of a member due to twist can be developed in a 

manner similar to that used for axial loading. Torsional force like an axial force 

is uncoupled and does not infl uence the other forces. For a circular member, the 

deformation resulting from twist is shown in Fig. 15.24.

Fig. 15.24

For equilibrium

 T1 = T2 = T

Denoting the net deformation as y, we can write

 

G J
T

L

y
=

where

 J = polar moment of inertia

and G = modulus of elasticity in shear.

The stiffness relationship for the member can be written as

 T = ky (15.55)

where

k 
G J

L
= , stiffness of a circular member subjected to twisting moment.

The fl exibility of the member due to twist is
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L

f
G J

=  (15.56)

Thus, to summaries, for a member subjected to end moments, axial and twist 

forces, the general stiffness matrix can be written as
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 (15.57)

 P =     k     D (15.58)

The corresponding fl exibility matrix can be written as
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 (15.59)

 D =      f       P (15.60)

15.4  ENERGY CONCEPTS IN STRUCTURES

In Chapter 6 we dealt at length with the different forms of strain energy in elastic 

structures and the relation between the internal strain energy stored and the 

external work done on the structure.

Using tools of matrix algebra, we shall now derive some important concepts 

relating to strain energy and properties of stiffness and fl exibility matrices of 

structures.

15.4.1 Symmetry Property of the Stiffness and

      Flexibility Matrices

It has been pointed out in Section 6.6 that the strain energy depends only on the 

fi nal defl ected shape of the structure and is independent of the order of loading. 

Making use of this property we can prove that the stiffness and fl exibility matrices 

are symmetrical. Let us show it by means of a simple example.

The beam in Fig. 15.25 is being acted upon by two systems of forces Pi and 

Pj causing displacements Di, and Dj. For the purpose of clarity only two loads 

are shown.
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Since the sequence of loading has no bearing on the fi nal value of strain energy 

U, the same strain energy will be obtained in the following two sequences of 

loading in which the forces are gradually applied.

In loading sequence I, consider that only load Pi is gradually applied fi rst. The 

displacement caused by this load is indicated in Fig. 15.26a. The work done by 

Pi can be written as

 

21 1
( ) ( )

2 2
i ii i ii iP f P f P=

Fig. 15.25  Defl ections due to loads Pi and Pj

Fig. 15.26  (a) Load Pi is applied fi rst; defl ections due to load pi, (b) Load Pj is applied next;

defl ections due to loads Pi and Pj

Next apply Pj gradually which results in additional displacements shown 

in Fig. 15.26b. The corresponding work done by forces Pi and Pj during this 

operation is

 

21

2
ii i j jj jf PP f P+

It may be noted that there is no coeffi cient (1/2) in the fi rst term because Pi rides 

in full through the displacement caused by Pj. The total work done or strain 

energy in loading sequence I is

 2 21 1

2 2
I ii i ij i j ji jU f P f PP f P= + +  (15.61)

Next consider loading sequence II in which Pj is applied gradually fi rst and 

then Pi. The displacement caused due to loading Pj alone is shown in Fig. 15.27a 

and under Pj and Pi together is shown in Fig. 15.27b.

The work done when Pi is applied fi rst is

 

21 1
( ) ( )

2 2
j jj j ij jP f P f P=

The work done when Pi is applied gradually next is
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21

2
ji i j ii if PP f P+

The total work done or strain energy stored in loading sequence II is

 2 21 1

2 2
II ii i ji i j jj jU f P f PP f P= + +  (15.62)

Since UI = UII we fi nd from Eqs. 14.61 and 14.62

 fij = fji (15.63)

This is known as Maxwell’s reciprocal relationship and it indicates that the 

fl exibility matrix for a structure is symmetrical.

A similar procedure is used to show that kij = kji.

We use the following two displacement sequences so that the displacements 

Di and Dj are imposed to result in forces Pi and Pj.

In the fi rst sequence, displacement Di is imposed fi rst as shown in Fig. 15.28a 

and displacement Dj is imposed next as shown in Fig. 15.28b. The work done by 

the forces due to imposition of Di, fi rst is

Fig.15.27  (a) Load Pj is applied fi rst, (b) Pi is applied next

Fig. 15.28  (a) Displacement Di is imposed fi rst, (b) Displacement Dj is Imposed next

 

21

2
ii ik D

Again, the work done when displacement Dj is imposed next is

 

21

2
ij i j jj jk D D k D+

It may be noted that the force kjiDi rides in full through displacement Dj. The 

total work done in sequence I is
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 2 21 1

2 2
I ii i ji i j jj jU k D k D D k D= + +  (15.64)

Similarly, in sequence II we impose displacement Dj fi rst keeping Di = 0 and 

then impose displacement Di holding Dj at its value. This yields

 2 21 1

2 2
II ii i ij i j jj jU k D k D D k D= + +  (15.65)

Since UI = UII, we fi nd from Eqs. 15.64 and 15.65

 kij = kji (15.66)

which indicates that the stiffness matrix of a structure is symmetrical.

15.4.2 Strain Energy in Terms of Stiffness and

      Flexibility Matrices

We studied in Section 6.1 that when a linear elastic structure is acted upon by a 

number of forces Pi(i = 1, 2, ..., n) applied gradually, the strain energy U, stored 

in the structure is equal to the work done by these forces in moving through the 

corresponding Di (i = 1, 2, ..., n).

Therefore,

 1

1

2

n

e i i
i

U W PD
=

= = Â
 (15.67)

In the matrix notation

 
1

2
U = T

P D  (15.68)

or 
1

2
U = T

D P  (15.69)

Substituting for P from Eq. 15.19

 
1

2
U = T

D k D  (15.70)

Taking transpose on either side, we get

 
1

2
U = T T

D k D  (15.71)

It may be noted that the left hand side of Eq. 15.70 remains unchanged becuase 

the transpose of a scalar quantity does not alter its value. The operation carried 

on the right hand side is according to the reversal law of transpose. We conclude 

from Equations 15.70 and 15.71 that

 k
T = k (15.72)

Again consider Eq. 15.68. Substituting for D from Eq. 15.17, we have

 
1

2
U = T

P f P  (15.73)
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Taking transpose on either side results

 
1

2
U = T T

P f P  (15.74)

From Equations 15.73 and 15.74, we conclude

 f
T = f (15.75)

15.4.3 Stiffness and Flexibility Coeffi cients in Terms of

      Strain Energy

Stiffness Coeffi cients Let us consider Equation 15.70

 

1

2
U = T

D k D

In this equation, each element of kij multiplies Di of the left row vector and Dj of 

the right column vector, then all the products are added and the sum multiplied 

by 1/2.

If we take a partial derivative of strain energy U with respect to any 

displacement Di in Eq. 15.70, then on the right hand side of the equation, only 

the terms in which Di appear will contribute to this partial derivative. From Eq. 

15.70 it is seen that the terms in which Di appear are associated with l row and l 

column of the stiffness element kij Taking the symmetric property kij = kji the sum 

of these terms is given by

 
1

2
(2kl1DlD1 + 2kl2DlD2 +   + kllD

2
l +   2klnDlDn ) (15.76)

Taking a partial derivative with respect to Di this sum becomes

 kl1D1 + kl2D2 +   + kll + Dl +   + kln Dn
1

n

lj j
j

k D
=

= Â  (15.77)

or 
1

n

lj j
jl

U
k D

D =

∂
=

∂ Â  (15.78)

The right hand side of Eq. 15.78 is equal to force Pl at coordinate l (see Equation 

15.20), hence

 l

l

U
P

D

∂
=

∂
 (15.79)

This, we are familiar, is Castigliano’s fi rst theorem. If we now take the partial 

derivative with respect to any Ds in Eq. 15.77, we have

 
2

1

1, 2, ...,

1, 2, ...,
s

l s

l nU
k

s nD D

=∂
=

=∂ ∂
 (15.80)

Hence, in general, cross stiffness coeffi cient kls is equal to the second partial 

derivative of the strain energy with respect to displacements at l and s.

Direct stiffness coeffi cient kll is obtained by taking the partial derivative of 

Eq. 15.77 with respect to Dl, that is
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2

2 ll

l

U
k

D

∂
=

∂
 (15.81)

Flexibility Coeffi cients Starting with Eq. 15.73

 

1

2
U = T

P fP

and proceeding as earlier, but taking a partial derivative of Equation 15.73 with 

respect to any force Pl (with all the Pi considered to be independent) and making 

use of the reciprocal relationship fij = fji we obtain

 
1

n

lj j
jl

U
f P

P =

∂
=

∂ Â  (15.82)

The right hand side of Eq. 15.82 is equal to displacement Dl at coordinate l 

(see Eq. 15.18), hence

 l

l

U
D

P

∂
=

∂
 (15.83)

If we take the partial derivative with respect to any force Ps in Eq. 15.82, we 

have

 

2

ls

l s

U
f

P P

∂
=

∂ ∂
 l = 1, 2, …, n; s = 1, 2, … n (15.84)

The partial derivative of Equation 15.82 with respect to Pl gives

 
2

2 ll

U
f

P

∂
=

∂
 (15.85)

15.5   MAXWELL’S AND BETTI’S RECIPROCAL

    DEFLECTIONS

Maxwell-Betti’s reciprocal relationships were developed in Section 6.6. However, 

it is of interest to establish the relationship using the matrix relationship as 

follows.

Consider the two identical elastic structures of Fig. 15.29a and b. The applied 

forces are arbitrary in the two structures and we designate them as systems I and 

II respectively. Let us fi x the coordinates for systems I and II as shown in Fig. 

15.29c.

Let f be the fl exibility matrix corresponding to the coordinates. For convenience 

of reference we designate the forces and displacements in Fig. 15.29a as PI and 

DI and in Fig. 15.29b as PII and DII respectively. For system I in Fig. 15.29a we 

can write

 DI = f PI (15.86)



596  Basic Structural Analysis

and for system II we write

 DII = f PII (15.87)

Fig. 15.29  (a) Loading system I, (b) Loading system II, (c) Loading systems I and II

and structure coordinates

If we now compute the product P
T

I DII, (the forces in system I and the 

displacements in system II) substituting for DII from Eq. 15.87, we have

 P
T

I fPII  (15.88)

Again, fi nding product PT
II DI (the forces in system II and the displacements 

in system I) and substituting for Dl from Eq. 15.86, we get

 P
T

II fPI (15.89)

This is a scalar quantity and the transposition of it does not effect the value. 

Taking the transpose of Eq. 15.89 it can be written as

 P
T

I fPII (15.90)

This is identical with Eq. 15.88. Hence, we conclude

 P
T

I DI = PT
II DI (15.91)

The relationship expressed by Eq. 15.91 is known as Betti’s law. This may be 

stated as: For a linear elastic structure subjected to two different force systems I 

and II, the work done by the forces in system I acting through the corresponding 

displacements (virtual) in system II, is equal to the work done by the forces in 

system II acting through the displacements (virtual) in system I.

15.5.1 Application of Betti’s Law

Betti’s law can be made use of to deal with structures in which forces are not 

acting at the coordinates.

As an example consider the beam element with the coordinates defi ned as 

shown in Fig. 15.30. Considering only bending deformations, the stiffness matrix 

k is

 

4 2

2 4

EI

L

È ˘
= Í ˙

Î ˚
k
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The force displacement relationship is

 P = kD

or D = k
–1

P

These equations are, however, defi ned only for the forces acting at the 

coordinates

Suppose we wish to compute displacements D1 and D2 caused by forces 

not acting at the coordinates using the same stiffness matrix. As an example, 

consider a beam under the forces as shown in Fig. 15.31a. Forces Pf
i are at the 

coordinates and forces Qi are not at the coordinates. Displacements Di (i = 1, 2) 

are required.

Fig. 15.30  Beam element and coordinates

Fig.15.31  (a) Forces and coordinates, (b) Forces at coordinates, (c) Forces not at coordinates

The forces on the beam can be separated into forces acting at the coordinates 

(Fig. 15.31b) and forces not acting at the coordinates (Fig. 15.31c). The 

displacements due to forces at coordinates pose no problem and consideration 

has to be only given to forces not at the coordinates.

In Fig. 15.32a we apply a superposition of displacements to the structure. In 

Fig. 15.32b we represent the fi xed coordinate state in which no displacements 

are permitted at the coordinates, whereas in Fig. 15.32c forces P1 and P2 are 

such as to produce, displacements corresponding to the ones in Fig. 15.32a. The 

forces at the coordinates are shown in their positive direction. Since the forces 

at the coordinates in Fig. 15.32a are zero, it, therefore, follows that the sum of 

corresponding forces in Fig. 15.32a and 15.32c must be zero. Thus,

 P
o

i + Pi = 0 (15.92)

or Pi = –Po
i (15.93)

It may be remembered that forces Po
i in Fig. 15.32b are fi xed end moments. 

Forces P, in Fig. 15.32c are equal in magnitude and opposite in sign to the forces 

at coordinates Po
i in the fi xed coordinate state. Thus, any distributed load or 

concentrated load applied at other than coordinate points can be replaced by 

equivalent joint forces given by Equation 15.93.
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To obtain displacements Di due to the loads in Fig. 15.32a we add the results 

in Fig. 15.32b, 15.32b and c which are respectively

 k
–1

P
f, 0, –k

–1
P

o (15.94)

Fig. 15.32  (a) Displacements DQ due to forces Qi, (b) Displacements DQ = 0 in the fi xed 

coordinate state, (c) Displacements DQ due to forces Pf = {–P}o at the coordinates

Final displacements D are, therefore,

 D = k–1 (Pf – Po) (15.95)

Forces Po in the fi xed coordinate state can be computed using the table in the 

Appendix.

15.6  STRAIN ENERGY IN ELEMENTS AND SYSTEMS

15.6.1 Strain Energy in Elements

In Section 15.4 we showed that the strain energy in a structure can be expressed 

in terms of fl exibility or stiffness matrices when the forces are applied at the 

coordinates. Similar expressions can be written for strain energy in any element 

when the forces are applied at only the coordinates. The only requirement for 

expressing the strain energy in terms of fl exibility or stiffness matrices is that 

these matrices should exist for the coordinates defi ned for the element.

Consider the element of Fig. 15.33 with forces pi and displacements di at the 

two coordinates as shown.

Fig. 15.33  Element forces and displacements at coordinates

We shall identify the element as s. The strain energy Us in this element is equal 

to the work done by forces pi in going through corresponding displacements di, 

that is

 T1

2
s s sU = p d  (15.96)
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or 
T1

2
s s sU = d p  (15.97)

in which ps and ds are respectively the vectors of forces and displacements at 

the coordinates of elements s. We see that these forces and displacements are 

independent measurements and both stiffness and fl exibility matrices exist. We 

can write

 ps = ks ds (15.98)

or ds = fs ps (15.99)

Substituting for ps from Equation 15.98 into Equation 15.97, we get

 T1

2
s s s sU = d k d  (15.100)

Again substituting for ds from Equation 15.99 into Equation 15.96, we get

 
T1

2
s s s sU = p f p  (15.101)

15.6.2 Strain Energy in a System in Terms of

      Strain Energy in the Elements

Consider the structure of Fig. 15.34 with forces Pi producing displacements 

Di at the coordinates as shown. The total strain energy in the structure can be 

expressed in terms of forces Pi and displacements Di, as in Equations 15.68 or 

15.69 or strain energy from the individual elements as

 
1

m

s
s

U U
=

= Â  (15.102)

in which Us is the strain energy in element s and m is the total number of elements 

(m = 6 in this case).

Figure 15.35 shows the internal forces and corresponding displacements at the 

ends of each element in the structure of Fig. 15.34. Two coordinates are defi ned 

for each element to identify forces and displacement as in Fig. 15.35. Applied 

forces Pi are not included in the fi gure for clarity.

Fig. 15.34  Coordinates and forces Pi
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The strain energy Us, in any element s can be expressed in terms of Equations 

15.96 or 15.97. The total strain energy in the structure can be written as

Fig. 15.35  Internal forces Pi at element coordinates in the structure

 T

1 1

1

2

m m

s s s
s s

U U
= =

= =Â Â d p  (15.103)

or 
T

1

1

2

n

s s s
s

U
=

= Â d k d  (15.104)

Equation 15.104 can also be written in the form

 T1

2
U = d kd  (15.105)

in which
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1
2

1

All other 
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All other and
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zero

ss
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d

k
d

k
kd

d
k

 (15.106)

Martrix k contains the stiffness matrices of the unassembled elements and is 

referred to as the uncoupled stiffness matrix of the elements.

The equality of the right hand side quantities of Equations 15.104 and 15.105 

can be verifi ed by carrying out the multiplication on the right hand side of Eq. 

15.105 using the partitioned matrices given in identities.
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The total strain energy U, in the structure in Fig. 15.31 can also be expressed 

in terms of the fl exibility matrix f of the elements, that is

 
T

1

1

2

m

s s
s

U
=

= Â p d  (15.107)

or 
T

1

1

2

m

s s s
s

U
=

= Â p f p
 (15.108)

or 
T1

2
U = p f p  (15.109)

in which

  

1

1
2

1

All other 

elements 
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All other and

elements 
:

zero

ss

m
m
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Í ˙
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Í ˙
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f
p

p f
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p
f

 (15.110)

The equality of expressions on the right hand side of Equations 15.108 and 

15.09 can be verifi ed.

Equations 15.105 and 15.109 are very important in the development of stiffness 

and fl exibility methods of structural analysis which are discussed in Chapters 17 

and 18. The reader is advised to make an effort to thoroughly understand the 

physical signifi cance of these equations.

Problems for Practice

15.1 Compute the 3 ¥ 3 fl exibility matrix f considering axial and fl exural deformations 

for the beam shown in Fig. 15.36.

Fig. 15.36
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15.2, 15.3 Considering only bending deformation, determine the fl exibility matrix f and 

stiffness matrix k associated with the actions shown in Figs. 15.37 and 15.38.

  

 Fig. 15.37 Fig. 15.38

15.4, 15.5, 15.6, 15.7, 15.8 Generate the stiffness matrix k for each of the following

structures with coordinates as shown in Figs. 15.39, 15.40, 15.41, 15.42 and 15.43.

  

 Fig. 15.39 Fig. 15.40

  

 Fig. 15.41 Fig. 15.42

15.9, 15.10 Generate the fl exibility matrix f for each of the structures with the coordi-

nates shown in Figs. 15.44 and 15.45.

  

 Fig. 15.43 Fig. 15.44

15.11 Generate the fl exibility matrix f for the stepped beam in Problem 15.5. Check 

your answer by applying f k = I.
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15.12 Considering only axial deformations for the trusses shown in Figs. 15.46 deter-

mine fl exibility matrix f and stiffness matrix k associated with applied forces P.

  

 Fig. 15.45 Fig. 15.46

15.13 Calculate fl exibility matrix f for coordinates 1, 2 and 3 of the pipe bend shown 

in Fig. 15.47. Consider only the effects of fl exural and torsional deformations. Assume 

Poisson’s ratio of 0.5 leading to G = E/3.

  

 Fig. 15.47 Fig. 15.48

15.14 Using the coordinates as shown in Fig. 15.48 generate fl exibility matrix f for  

structure. Find displacements D1 and D2 for the leading as shown.

15.15 Generate stiffness matrix k for the four coordinates shown in Fig. 15.49.

15.16 Generate the stiffness matrix k for the structure with the coordinates shown in 

Fig. 15.49.

  

 Fig. 15.49 Fig. 15.50
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15.17 Write the stiffness matrix corresponding to the coordinates 1 and 2 of the frame 

shown in Fig. 15.51. EI is constant.

Fig. 15.51



16.1   TRANSFORMATION OF SYSTEM

    FORCES TO ELEMENT FORCES

A common objective in the analysis of structures is fi nding the internal forces 

resulting from external forces. We relate the external forces Pi at the system 

coordinates to the forces pi defi ned at the element coordinates by a matrix A by 

the expression

 Pi = APi (16.1)

Equation 16.1 transforms system forces Pi to element-forces pi and constitutes 

an equation of equilibrium. Matrix A is known as the force transformation matrix 

and can be easily generated for a determinate structure.

Let us now show how forces Pi at the coordinates of a structure are transformed 

to forces pi at the coordinates of the elements in the structure. This requires that 

we generate matrix A of Eq. 16.1 for the structure. As an example, we consider 

the statically determinate frame of Fig. 16.1.

Fig. 16.1  Determine frame: (a) Structure coordinates, (b) Element coordinates

The structure and element coordinates are indicated in Figs. 16.1a and b 

respectively. One can generate matrix A in Eq. 16.1 by assigning arbitrary values 

to Pi (i = 1, 2, 3 and 4) and computing the element forces at the coordinates from 

the equations of equilibrium. However, an alternative approach, is to generate 

Transformation 
of Information in 
Structures through
Matrices

16
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the elements of matrix A column by column as follows. For example, to generate 

elements in column j, we apply a unit force at coordinate j only and compute the 

element forces Pi (i = 1, 2, ..., 6) at the element coordinates. To generate column 

1 of matrix A we apply P1 = 1 and Pi = 0 for i π 1 and compute internal forces pi 

from equilibrium considerations. In the present example, we get

 p1 = 0, p2 = L, p3 = –L, p4 = p5 = p6 = 0.

These forces form the fi rst column of A.

Applying next a unit force only at 2 in Fig. 16.1a and computing the internal 

forces, we have

 p1 = 0, p2 = 0, p3 = 1, p4 = p5 = p6 = 0

This will form the second column of matrix A.

Proceeding in a similar manner, the application of a unit force at coordinate 

3 gives

 P1 = P2 = P3 = 0, P4 = 1, P5 = P6 = 0.

Following in a similar manner, the elements in the fourth column are obtained. 

The complete transformation matrix A is given as

 

0 0 0 0

0 0 0

1 0 0

0 0 1 1

0 0 0 1

0 0 0 1

L

L

È ˘
Í ˙
Í ˙
Í ˙-

= Í ˙
Í ˙
Í ˙-
Í ˙
Í ˙Î ˚

A  (16.2)

Example 16.1 
Generate the force transformation matrix [A] for the 

structure and the coordinates shown in Fig. 16.2.

Fig. 16.2

The structure and member coordinates are given in Fig. 16.2a. The elements 

in the fi rst column of the transformation matrix [A] are obtained by applying 

a unit force at the structure coordinate 1 and fi nding the forces at the member 
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coordinates. Since the structure is statically determinate this presents no diffi culty. 

The moment diagram obtained due to unit force applied at coordinate 1 is shown 

in Fig. 16.3a. The forces at the element coordinates are as shown in Fig. 16.3b. 

The elements are:

Fig. 16.3

 11 21 31 41 51 61

3 3
, , , 0, 0, 0

5 5 5

L
A A A L A A A= + = + = - = = =

Fig. 16.4

The moment diagram obtained due to unit load applied at coordinate 2 is 

shown in Fig. 16.4. The elements in the second column of matrix [A] are

12 22 32 42 52

7 7 7 3 3
, , , ,

4 4 4 4 4

L L L L L
A A A A A= - = + = - = + = -  and A62 = 0

The elements in the third column of matrix [A] are obtained by applying a unit 

force at coordinates 3 in the structure. The moment diagram due to unit force is 

shown in Fig. 16.5.

The elements in the third column of matrix [A] are

 A13 = 0, A23 = +L, A33 = –L, A43 = + L, A53 = –L, A63 = 0

Lastly, applying a unit force at structure coordinate 4 the moment diagram 

obtained is shown in Fig. 16.6.
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Fig. 16.5

Fig. 16.6

The elements in the fourth column of matrix [A] are:

 A14 = –1, A24 = + 1, A34 = – 1, A44 = 1, A54 = –1, A64 = +1

The complete transformation matrix:

 

7
0 1

5 4

3 7
1

5 4

3 7
1

[ ] 5 4

3
0 1

4

3
0 1

4

0 0 0 1

L
L

L L
L

L L
L

A

L
L

L
L

È ˘
- -Í ˙

Í ˙
Í ˙+ + + +Í ˙
Í ˙
Í ˙- + - -
Í ˙=
Í ˙
Í ˙+ + +
Í ˙
Í ˙

- - -Í ˙
Í ˙
Í ˙+Î ˚

Example 16.2 
Generate the force transformation matrix [A] relating 

the member forces to the external forces along the 

coordinates for the truss shown in Fig. 16.7. Find the forces in members due to 

applied load
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Fig. 16.7

To obtain the elements in the fi rst column of the force transformation matrix 

[A], we apply unit force at coordinate 1 and work out the forces in all the members. 

Method of joints and method of sections are utilized in calculating the forces in 

members. The elements of the matrix are:

 A11 = –1.0, A21 = A31 = A41 = A51 = 0

The elements n the second column of the matrix [A] are obtained by applying 

a unit force along coordinate 2. They are:

 A12 = 0.25, A22 = 0.85, A32 = –0.43, A42 = + 0.43 and A52 = -0.51

Similarly, the elements in the third column of matrix [A] are obtained by 

applying a unit force at coordinate 3 and fi nding the forces in members of the 

truss. The elements are:

 A13 = –0.66, A23 = –0.55, A33 = +0.55, A43 = –0.55 and A53 = 0.33

The elements in the fourth column of matrix are:

 A14 = 0.5, A24 = 0.42, A34 = –0.42, A44 = –0.83 and A54 = –0.25

The fi fth column elements are:

 A15 = –0.66, A25 = –0.55, A35 = 0.55, A45 = –0.55 and A55 = –0.67

The complete transformation matrix [A] is

   

1.00 0.25 0.66 0.50 0.66

0 0.85 0.55 0.42 0.55

[ ] 0 0.43 0.55 0.42 0.55

0 0.43 0.55 0.83 0.55

0 0.51 0.33 0.25 0.67

A

- - -È ˘
Í ˙- -Í ˙
Í ˙= - -
Í ˙

- - -Í ˙
Í ˙- - -Î ˚

 

{ } [ ]

14.14 17.68

14.14 12.0

or 0 6.00

0 6.00

0 7.00

p A

-Ï ¸ Ï ¸
Ô Ô Ô Ô- -Ô Ô Ô ÔÔ Ô Ô Ô

= = +Ì ˝ Ì ˝
Ô Ô Ô -
Ô Ô Ô

+Ô Ô ÔÓ ˛ Ó ˛

Ô
Ô
Ô
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The forces in members by the applied loading can be obtained by multiplying 

[A] by the loading column matrix as above.

16.2    TRANSFORMATION OF SYSTEM

      DISPLACEMENTS TO ELEMENT

    DISPLACEMENTS

The element displacements corresponding to the element coordinates can be 

related to the displacements at the system coordinates by the equation

 di = B Di (16.3)

Fig. 16.8  (a) Structure and structure coordinates, (b) Elements and element coordinates,

(c) Alternate element coordinates

in which B is the displacement transformation matrix and di and Di are the 

displacements at element and system coordinates respectively. Equation 

16.3 constitutes an equation of displacement compatibility which ensures the 

continuity of the structure.

Let us generate B for the frame of Fig. 16.8 in which the structure coordinates are 

defi ned in Fig. 16.8a and element coordinates in Fig. 16.8b. One way to generate 

matrix B in Eq. 16.3 is to apply arbitrary displacements Di(i = 1, 2, 3) and use 

conditions of compatibility to fi nd corresponding displacements di(i = 1, 2, ..., 12). 
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An alternate approach is to apply a unit displacement at system coordinate j only 

and compute the displacements at the element coordinates. These displacements 

di, form the element of the jth column of matrix [B]. For example to generate 

column 2 of matrix B we apply a unit displacement at structure coordinate 2 only 

and compute displacements at the element coordinates. This results in d2 = 1 and 

d5 = 1 and all the other element displacements zero. Following this procedure for 

other structure coordinate displacements of Fig. 16.8a, we obtain 

 B = 

0 0 0

0 1 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 1

0 0 0

1 0 0

0 0 0

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

 (16.4)

If we defi ne the element coordinates as in Fig. 16.8c, deleting the coordinates 

corresponding to transverse forces, matrix B reduces to

 B = 

1
0 0

1
1 0

0 1 0

0 0 1

1
0 1

1
0 0

L

L

L

L

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

 (16.5)

It may be noted that for this coordinate system the rotations are to be taken 

relative to a chord connecting the ends of the member.

Example 16.3 
Generate displacement transformation matrix [B] for 

the structure with structure and element coordinates 

shown in Fig. 16.9. For the same structure, prove the contra gradient law.
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Fig. 16.9

We can generate displacement transformation matrix [B] by imposing unit 

displacement at each of the structure coordinates in turns and working out the 

displacements at member coordinates.

A unit displacement D1 = 1 is given to the structure. The displacements at the 

member coordinates are worked out as shown in Fig. 16.10 a, b. The elements in 

the fi rst column of the matrix [B] are:

 
11 21 31 41 51 61

1 1 1 1
, , 0, andB B B B B B

L L L L
= = = = = =

Fig. 16.10

Fig. 16.11

The displacement D2 = 1 imposed at the structure is as shown in Fig. 6.11a. 

The displacements at the element coordinates are.

 B12 = 0, B22 = 1, B32 = 1, B42 = B52 = B62 = 0
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Fig. 16.12

Similarly, the elements in the third column are:

 B13 = 0, B23 = 0, B33 = 0, B43 = 1, B53 = 1 and B63 = 0

The complete transformation matrix [B] is

 [B] = 

1
0 0

1
1 0

0 1 0

0 0 1

1
0 1

1
0 0

L

L

L

L

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

To verify contra gradient law P = BTp, we write the equation of equilibrium 

for shear at top portion of the columns and moment about two joints (structure 

coordinates 2 and 3) as

 P1 = p1 + p2 + p5 + p6

 P2 = p2 + p3

and P3 = p4 + p5

In matrix form we have,

 {P} = [B]T{p}

 

1

2

1
3

2
4

3
5

6

1 1 1 1
0 0

0 1 1 0 0 0

0 0 0 1 1 0

p

p
P L L L L

p
P

p
P

p

p

Ï ¸
Ô ÔÈ ˘
Ô ÔÍ ˙Ï ¸
Ô ÔÍ ˙Ô Ô

=Ì ˝ Ì ˝Í ˙
Ô Ô Ô ÔÍ ˙

Î ˚Ó ˛ Ô Ô
Ô Ô
Ô ÔÓ ˛
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16.3    TRANSFORMATION OF ELEMENT FLEXIBILITY

    MATRICES TO SYSTEM FLEXIBILITY MATRIX

Using matrix A. which transforms system forces Pi to element forces pi, we can 

synthesise the fl exibility matrix of its elements. We shall demonstrate this by 

considering the structure in Fig. 16.13a.

Fig. 16.13 (a) Structure and structure coordinates, (b) Element and element coordinates

Let the structure undergo deformations Di(i = 1, 2, 3, 4) as a result of forces 

P(i = 1, 2, 3, 4) gradually applied at the coordinates. The total strain energy, 

U, in the structure is equal to the work done by forces Pi in moving through 

displacements Di, at the coordinates. This can be written in terms of fl exibility 

matrix F of the system (see Eq. 15.73).

 1

2
U = T

P FP  (16.6)

This strain energy can also be expressed as the sum of the strain energies, Us, 

in the elements (see Eq. 15.109)

 
1

2
U = T

p fp  (16.7)

Substituting p = A P

And p
T = PT

 A
T

in Eq. 16.7, and comparing with Eq. 16.6, we have

 P
T
FP = PT

 A
T
 f A P (16.8)

Since forces Pi are independent, both fl exibility matrix F and matrix product 

A
T
f A are symmetrical matrices. That they are identical can be easily proved 

from Equation 16.8. Therefore,

 F = AT
fA (16.9)

Hence the system fl exibility matrix F is synthesised from the element fl exibility 

matrices fs which are recorded as sub-matrices in f as in Equation 15.110.

For the structure in Fig. 16.13a
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1

1

2

2

3

3

2 1

1 26

2 1

1 26

2 1

1 26

L

EI

L

EI

L

EI

È ˘-È ˘
Í ˙Í ˙-Î ˚Í ˙
Í ˙-È ˘Í ˙= Í ˙-Í ˙Î ˚
Í ˙

-È ˘Í ˙
Í ˙Í ˙-Î ˚Î ˚

f  (16.10)

For simplicity, assuming L1 = L2 = L3 = L and using transformation matrix A 

given for the same coordinates and frame in Eq. 16.2 and f from Eq. 16.10, the 

operation of Eq. 16.9 gives

 

4 2 1 1

2 2 1 1

1 1 1 26

1 1 2 4

L

EI

-È ˘
Í ˙- - -Í ˙=
Í ˙-
Í ˙

-Î ˚

f  (16.11)

Equation 16.9 can also be derived from virtual work. Consider virtual 

displacement iD  at system coordinates (Fig. 16.8a). The compatible element 

displacements d can be obtained from matrix B of Eq. 16.5. Equating the internal 

and external virtual works, we get

 T T
p D = P d  (16.12)

Substituting for

 D
–
 = FP 

 d
–
 = f p

 p
T = (A P)T = PT AT

in Equation 16.12, we get

 P
T FP = PT

 A
T
 f A P (16.13)

This is same as Equation 16.8, therefore,

 F = AT 
f A (16.14)

Example 16.4 
Using the relationship

 [ ] [ ] [ ] [ ]TF A f A=

generate the fl exibility matrix [F] for the structure shown in Fig. 16.14

Fig. 16.14
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First, let us establish the force transformation matrix [A]. Unit forces are 

applied in turns at the structure coordinates and the forces at the member 

coordinates of the elements are worked out. The elements in the fi rst column of 

the matrix [A] are

 11 21 31 41

1 1
, , and 0

2 4 2

L
A A A A= - = - = - = =

Fig. 16.15

The elements in the second column of the matrix [A] are :

 
12 22 32 42

1 1 1
, , and 0

2
A A A A

L L
= - = - = = =

The elements of the third column are,

 
13 23 33 43

1 1 1
, , and 0

2
A A A A

L L
= - = = - = =

The complete force transformation matrix [A] is

 [A] = 

1 1 1

2

1 1

4 2 2

1 1 1

2

0 0 1

L L

L

L L

È ˘
- -Í ˙

Í ˙
Í ˙- -Í ˙
Í ˙
Í ˙- -
Í ˙
Í ˙
Î ˚

The uncoupled fl exibility matrix [f] is

 [f ] 

2

2

3

3 121

24 3

3 12

L L

L

EI L L

L

È ˘
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙Î ˚
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The product [A]T [f ] 

2 23 3

4 2 2 2

3 3
24 2

3 2 9
2

L L L
L

L L
L

EI

L
L

È ˘
- - - -Í ˙

Í ˙
Í ˙

= - -Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

and [F] = [A]T [f] [A] 

2 3
0

2 2

0 2 1
24

3
1 8

2

L
L

L

EI

L

È ˘
-Í ˙

Í ˙
= -Í ˙

Í ˙
Í ˙- -
Í ˙Î ˚

16.4   TRANSFORMATION OF ELEMENT STIFFNESS

    MATRICES TO SYSTEM STIFFNESS MATRIX

Following a development similar to that of Section 16.3 we can use displacement 

transformation matrix B to synthesize the stiffness matrix K of a system from the 

stiffness matrices of its element ks.

Consider the frame of Fig. 16.8a under force Pi at the system coordinates. The 

strain energy of the system in terms of stiffness matrix K can be written as (Eq. 

15.70)

 

1

2
U = T

D KD

The same strain energy can also be written as the sum of strain energies Us in the 

elements of the system (Eq. 15.70) that is

 

1

2
U = T

d kd
  (16.15)

Substituting for

 =d BD

And   dT = DT
 B

T

in Eq. 16.15 and comparing with Eq. 16.14, we have

  DT
 KD = DT 

B
T
kBD (16.16)

Since Di are independent (otherwise k does not exist) and both K and matrix 

product BT
 kB are symmetical matrices, we can see that they are also identical, 

Hence,

 K = B
T
 kB (16.17)
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For the structure of Fig. 16.8a and element coordinates as in Fig. 16.8c, we 

can write

 

1

2

3

È ˘
Í ˙= Í ˙
Í ˙Î ˚

k

k k

k

 (16.18)

in which

 

4 2

2 4
s

EI

L

È ˘
= Í ˙

Î ˚
k

 s = 1, 2, 3

On performing the operation of Eq. 16.17 taking the values of matrix B from 

Eq. 16.5 and k from the foregoing, we get

 

2

24 6 6

6
8 2

6
2 8

L LL

EI

L L

L

È ˘
Í ˙
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙
Í ˙Î ˚

K

 (16.19)

Equation 16.17 can also be derived from virtual work. Considering virtual 

forces iP  at the system coordinates and the corresponding internal forces Pi 

which are in equilibrium with forces Pi, we can write from the virtual work 

relationship

 
T T

D P = d p  (16.20)

Substituting for

 P = KD

 or =T T T
d = BD d D B

and or =p = kd p kBD

in Eq. 16.20, we get

 D
T
KD = DT

B
T
kBD (16.21)

This is same as Eq. 16.16. Therefore,

 K = B
T
 kB (16.22)

16.5    TRANSFORMATION OF FORCES AND

    DISPLACEMENTS IN GENERAL

The transformation of forces and displacements from a set of independent 

coordinates of the system to dependent coordinates of the elements are given in 

Sections 16.1 and 16.2. When the same element coordinates are used to identify 
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element forces p1, and displacements di there then exists a relationship between 

the transformations of forces and displacements.

To show the nature of relationship, we consider the frame of Fig. 16.8a. From 

the conditions of compatibility, we have (see Eq. 16.3)

 d = BD

and the total strain energy stored in the structure is (see Eq. 15.69)

 

1

2
U = T

D P

The same strain energy can also be obtained by summing up the strain energies 

in the elements, that is

 1

1 1

2 2

m

s s
s

U
=

= =Â T T
d P d p

Equating the strain energy obtained from both the approaches

 D
T
P = d

T
p (16.23)

Substituting for dT
 = D

T
 B

T, we get

 D
T
 P = D

T
B

T
p (16.24)

or D
T (P – B

T
p) = 0 (16.25)

Since the displacements D are independent and can be assigned arbitrary values, it 

follows that the expression inside the parenthesis must be zero. Thus, we have

 P = B
T
p (16.26)

Forces P are the generalised forces in the D coordinates.

Equations 16.3 and 16.26 show the relationship that exists between the 

transformation of displacements and forces from element coordinates d (which 

identify di and pi) to generalised coordinates D (which identify Di and Pi).

If, instead of starting with Eq. 16.3, the transformation of displacements, we 

start with the transformation of forces (Eq. 16.1)

 p = AP

Again equating the total energy stored in the structure obtained from 

external forces and their displacements and from the elements forces and their 

displacements, we have

 P
T
D = p

T
d (16.27)

Substituting for

 p
T
 = P

T
 A

T

we have P
T
 D = P

T
 A

T
 d (16.28)

or P
T
(D – A

T
d) = 0 (16.29)

Since forces Pi are independent and can be assigned arbitrary values, the 

expression inside the parenthesis must vanish to satisfy the above relationship, 

that is
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 D = A
T
d (16.30)

Equations 16.3 and 16.26, and Equations 16.1 and 16.30 constitute con-

tragradient laws.

To verify Equation 16.26 for the structure of Fig. 16.8a and element coordinates 

(Fig. 16.8b) we write the equations of equilibrium for shear across top portion 

of the frame and moment about two joints (structure coordinates 2 and 3) as 

follows:

 Pi = p4 + p11  P2 = P2 + P5  P3 = P6 + P9

In matrix form, we have

 

1 1

2 2

3 3

0 0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0

P p

P p

P p

Ï ¸ Ï ¸È ˘
Ô Ô Ô ÔÍ ˙=Ì ˝ Ì ˝Í ˙
Ô Ô Ô ÔÍ ˙Î ˚Ó ˛ Ó ˛

T
B

 (16.31)

The above 3 ¥ 12 matrix is the transpose of matrix B obtained earlier (see Eq. 

16.4) from conditions of compatibility.

16.6     TRANSFORMATION OF INFORMATION FROM 

     MEMBER COORDINATES TO STRUCTURE

    COORDINATES AND VICE VERSA

For convenience we fi x element coordinates coincident with member coordinates 

called local coordinates. It often becomes necessary to transform information 

from member coordinates to structure coordinates called global coordinates and 

vice versa.

Consider an axial force member in a truss arbitrarily oriented as shown in Fig. 

16.16a. The orientation of local coordinates are represented by X¢ and Y¢ and 

structure coordinates by X and Y. The member stiffness matrix with reference to 

local coordinates is (see information displayed in Fig. 15.19 and neglect fl exural 

stiffness)

 

0 0

0 0 0 0

0 0

0 0 0 0

EA EA

L L

EA EA

L L

È ˘
-Í ˙

Í ˙
Í ˙¢ Í ˙
Í ˙-
Í ˙
Í ˙Î ˚

k =  (16.32)

Let the force components be p1 and p2 at one end and p3 and p4 at the other 

end along the structure coordinates. If we designate the force components along 

member coordinates as p¢1 p¢2 at one end and p¢3 and p¢4 at the other, we can relate 

them as
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Fig. 16.16

 p¢1 = p1 cos q + p2 sin q (16.33)

 p¢2 = – p1 sin q  + p2 cos q 

Writing Equation 16.33 in the matrix form, we have

 

1 1

2 2

3 3

4 4

cos sin 0 0

sin cos 0 0

0 0 cos sin

0 0 sin cos

p p

p p

p p

p p

q q

q q

q q

q q

¢Ï ¸ Ï ¸È ˘
Í ˙Ô Ô Ô Ô¢Ô Ô Ô ÔÍ ˙=Ì ˝ Ì ˝Í ˙¢Ô Ô Ô ÔÍ ˙Ô Ô Ô Ô¢ -Î ˚Ó ˛ Ó ˛

 (16.34a)

or p¢ = Rp (16.34b)

where R is called the rotation transformation matrix.

Consider next a beam element subjected to axial and bending forces and 

oriented in an arbitrary manner as shown in Fig. 16.16b. The member stiffness 

matrix with repeat to local coordinates is the same as given in Eq. 15.42. Again 

denoting force components along structure coordinates as pi and along member 

coordinates as p¢i they can be related by
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1 1

2 2

3 3

4 4

5 5

6 6

cos sin 0

sin cos 0 All elements zero

0 0 1

cos sin 0

All elements zero sin cos 0

0 0 1

p p

p p

p p

p p

p p

p p

q q

q q

q q

q q

È ˘¢Ï ¸ Ï ¸
Í ˙Ô Ô Ô Ô
Í ˙-Ô Ô Ô Ô¢
Í ˙Ô Ô Ô Ô
Í ˙Ô Ô Ô Ô¢Ô Ô Ô ÔÍ ˙=Ì ˝ Ì ˝Í ˙¢Ô Ô Ô ÔÍ ˙

Ô Ô Ô ÔÍ ˙-¢Ô Ô Ô ÔÍ ˙
Ô Ô Ô ÔÍ ˙

¢Ô Ô Ô ÔÍ ˙Ó ˛ Ó ˛Î ˚

 (16.35a)

or p¢ = R p (16.35b)

It may be noted that the moment term is the same whatever may be the 

orientation of axes.

Since both forces and displacement are vectorial quantities, displacements 

can also be transformed in the same manner. Therefore, we can write

 d¢ = Rd (16.36)

We know that member forces p¢i can be related to member displacements 

d¢i through the member stiffness matrix. Representing member forces pi 

displacements di and stiffness matrix k with primes supercribed for identifi cation 

in terms of local coordinates, and without primes when they are in terms of global 

coordinates, we have

 p¢ = k¢ d¢ (16.37)

Substituting for p¢ from Eq. 16.35b, we have

 Rp = k¢d¢ (16.38)

Replacing d¢ = Rd from Eq. 16.36

 Rp = k¢ Rd (16.39)

Pre-multiplying by R-1 on both sides, we get

 R
–1

 R p = R–1
 k¢ Rd (16.40)

or p = R
–1

 k¢ Rd (16.41)

Since p and d are member end forces and displacements in the structure 

coordinate system, we may interpret R–1
 k¢ R as the member stiffness matrix in 

the structure coordinate system. Therefore,

 k = R–1
k¢ R (16.42)

or k = RT
 k¢ R (16.43)

since R–1 = RT which can be easily verifi ed.

Therefore, Eq. 16.41 can be written as

 p = k d (16.44)
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Hence, if we fi nd stiffness matrix k¢ referred to local coordinates, it is a simple 

matter to transform it to global coordinates by using Eq. 16.43.

In a similar manner, by making use of rotation matrix R we can write for 

displacements as

 d¢ = Rd (16.45)

Substituting for

 d¢ = f¢p 

Eq. 16.45 can be written as

 Rd = f¢p (16.46)

where f¢ is the fl exibility matrix in terms of local coordinates. Pre-multi plying 

both sides of Equation 16.46 by R–1

 R
–1 Rd = R–1

 f¢p¢ (16.47)

Replacing p¢ = R p and R–1 = RT in Eq. 15.47, we have

 d = RT
 f¢R p (16.48) 

 d = f p (16.49)

in which  f = RT
 f¢ R (16.50)

Matrix f represents the fl exibility matrix of a member in a global coordinates.

Hence, from the fl exibility matrix of a member in its local coordinates, 

the fl exibility matrix in terms of global coordinates can be obtained from the 

operation of Eq. 16.50.

Problems for Practice

16.1 The space truss is pinned at all joints and supported as shown in Fig. 16.17. Com-

pute the transformation matrix of order (3 ¥ 3) relating the member forces to the load 

applied along coordinates 1, 2 and 3.

Fig. 16.17

16.2 Generate the displacement transformation matrix B for the structure with structure 

and element coordinates as shown in Fig. 16.18.
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16.3 Generate the transformation matrix B for the structure and element coordinates 

shown in Fig. 16.19.

16.4 Using the relationship

    Â T
s a sF = A f A

or    F = A
T
 fA

generate the fl exibility matrix F for the structures shown in Figs. 16.20 and 16.21.

Fig. 16.18

Fig. 16.19

Fig. 16.20
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Fig. 16.21



17.1  INTRODUCTION

The fl exibility method of matrix analysis is basically a consistent displacement 

method cast in a matrix form. This method can be used for the analysis of statically 

determinate as well as indeterminate structures. There is, however, no advantage 

in employing the matrix approach for determinate structures as they can easily 

be solved using only equations of equilibrium. In the analysis of indeterminate 

structures the procedures outlined in Section 10.3 are followed.

17.1.1 Flexibility Method—Steps to be Followed

 1. As a fi rst step the degree of static indeterminancy of the structure is 

determined. The structure is then reduced to a statically determinate one 

by releasing the redundant forces equal to the degree of indeterminancy, 

say n. The releases can be either external or internal or a combination 

of both. Care has to be exercised in selecting the releases so that the 

released structure is not only statically determinate and stable but also 

convenient for evaluation of displacements at the released coordinates.

 2. The displacements of the primary structure under given loading are 

determined at all releases in the direction of releases. Any of the standard 

methods may be adopted for determining the displacements which may 

be translations or rotations or both. Sometimes one may refer to standard 

tables for obtaining the above displacements. These displacements D1p, 

D2p, ... Dnp form the displacement vector {Dp}.

 3. The next step consists of determining the displacements at the released 

coordinates due to unit values of the redundants applied one by one in 

turn at all the coordinates. These displacements form the elements of the 

fl exibility matrix [F] for the structure.

 4. The values of the redundant forces necessary to ensure geometric 

continuity or compatibility of the structure are determined by the 

relation

 {Dp} + [F] (XR) = 0 (17.1)

Flexibility or Force 
Method of Analysis

17
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where Dp = Displacements at the releases due to applied loading

 n ¥ 1 on the primary structure

 F = Flexibility matrix, the elements of which are displacements 

 n ¥ n due to unit values of redundants on the primary structure.

 XR = Redundant forces on the released structure which are 

 n ¥ 1 to be determined.

From Equation 17.1 the unknown redundant forces are obtained as

 {XR} = [F] –1 {–Dp} (17.2)

 5. The fi nal forces in the structure are obtained by superimposing the effects 

of external loading and the redundant forces on the released structure. 

The force in any member ‘i’ can be expressed as

 Pi = Psi + {fi1 Xi + fi2 X2 . . . fin Xn} (17.3)

Expressing in matrix form, the forces in all the members, m

 {p} = {ps} + [F] {Xr}

 m¥1 m¥1  m¥n n¥1

With this brief description, the application of the force or fl exibility method will 

now be illustrated by examples.

17.1.2 Sign Convention

Any consistent sign convention can be adopted. The sign convention adopted 

in this matrix method of analysis is the stress sign convention as the static sign 

convention cannot be adopted for moment at a joint or section. The redundant 

forces and displacements in the direction of the coordinates are considered 

positive.

Example 17.1 
Fig. 17.1a shows a continuous beam ABC fi xed at end 

A and supported on rollers at B and C. EI is the same 

throughout. Determine the reactions and moments over supports.

The beam is statically indeterminate by two degrees and therefore two 

redundant forces are to be released to make the beam statically determinate. 

The following alternatives exist for the release of redundants: (1) MA and MB,

(2) MA and RB, (3) RB and RC and (4) MA and RC. In this example the moments 

at A and B are considered as redundants. The released structure and the structure 

coordinates are shown in Fig. 17.1b. It may be noted that the released structure 

comprises two simple beams AB and BC.

The displacements D1 and D2 in the primary structure are obtained using 

moment area theorems.

 

2

1

100(8) 400

16
PD

EI EI
= + = +

 

2 2

2

100(8) 60(8) 640

16 16
PD

EI EI EI
= + + = +
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Fig. 17.1  (a) Beam and the loading, (b) Released structure and coordinates,

(c) Displacements in a released structure under loading, (d) Displacements due to unit

couple at coordinate 1, (e) Displacements due to unit couple at coordinate 2

The displacements due to unit values of redundants at A and B are shown in 

Fig. 17.1d and e.

  11

8

3
f

EI
=

  21

4

3
f

EI
=

  
22

8 8 16

3 3 3
f

EI EI EI
= + =

The fl exibility matrix [F] for the coordinates chosen is

 

11 12

21 22

8 41
[ ] or [ ]

4 163

f f

f f EI

È ˘ È ˘
= =Í ˙ Í ˙

Î ˚Î ˚
F F
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The redundant forces are obtained by using Equation 17.2

  
1{ } [ ] { }-= -R pX F D

  

1 16 43
[ ]

4 8112

EI- -È ˘
= Í ˙-Î ˚

F

\  

16 4 4003 1
{ }

4 8 640112

EI

EI

- -È ˘ Ï ¸
= Ì ˝Í ˙- -Î ˚ Ó ˛

RX

Solving,  
102.86

{ }
94.29

-Ï ¸
= Ì ˝-Ó ˛

RX

\ X1 = –102.86 kN.m 

and X2 = –94.29 kN.m

According to our sign convention the moments at A and B cause tension at the 

top.

The reactions can be obtained by using statics. The vertical reactions at A, B 

and C are:

 RA = 51.07 kN, RB = 90.72 kN and RC = 18.21 kN

Example 17.2 
Using the fl exibility method analyse the continuous 

beam shown in Fig. 17.2. The value of EI for each span 

is as indicated.

The beam is statically indeterminate by two degrees. Internal moments at A 

and B are considered as redundants. The released structure consists of two simple 

beams AB and BC.

  

3 3

1

10(10) 416.17

24 24

wl
D

EI EI EI
= = =

  

3 2

2

450

24 16(3 )

wl wl
D

EI EI EI
= = =

The elements of the fl exibility matrix are obtained by applying a unit value of 

the redundants as shown in Figs. 17.2d and e.

  11

10

3
f

EI
=

  21

5

3
f

EI
=

  22

10 10 40

3 9 9
f

EI EI EI
= + =

  21

5

3
f EI=
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Fig. 17.2  (a) Beam and the loading, (b) Released structure and coordinates,

(c) Displacements in a released structure under loading, (d) Displacements under

unit couple at coordinate 1, (e) Displacements under unit couple at coordinates 2

\ [F] 

10 5
1

40
3 5

3
EI

È ˘
Í ˙= Í ˙
Í ˙Î ˚

 [F]–1 

40
53

3
108.33

5 10

EI
È ˘-Í ˙= Í ˙
-Í ˙Î ˚

The redundant vector

 

40
416.6753 1

{ } 3
450108.33

5 10

EI

EI

È ˘ -- Ï ¸Í ˙= Ì ˝Í ˙ -Ó ˛-Í ˙Î ˚
RX

 X1 = – 91.54 kN.m

and X2 = – 66.92 kN.m

The reactions and moments at other sections can be worked out using equations 

of statics.
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Example 17.3 
Analyse the beam given in Fig. 17.3 for the central 

defl ection and rotation at the ends.

Fig. 17.3

Let us generate the fl exibility matrix [F] by utilising the relation:

 [F] = [A]T [f ] [A]

The transformation matrix [A] is obtained by applying a unit force at the 

structure coordinates in turns and fi nding out the forces at the member coordinates 

the resulting matrix is:

 [A] = 

1 1 1

2

1 1

4 2 2

1 1 1

2

0 0 1

L L

L

L L

È ˘+ - -Í ˙
Í ˙
Í ˙-Í ˙
Í ˙
Í ˙- - -
Í ˙
Í ˙+Î ˚

The uncoupled fl exibility matrix [f] is obtained by applying a unit force at the 

member coordinates one by one in turns and fi nding the displacements using 

standard formulae. The resulting matrix is

 

2

2

3 0 0

3 12 0 0
[ ]

48 0 0 2 6

0 0 6 24

L L

LL
f

EI L L

L

È ˘
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙Î ˚
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Now the fl exibility matrix is [F] is obtained as

 

23 5

4 2 2

[ ] [ ] [ ] [ ] 3 3
48 2

5
3 15

2

T

L
L L

L L
F A f A

EI

L

È ˘-Í ˙
Í ˙
Í ˙= = -Í ˙
Í ˙
Í ˙- -
Í ˙Î ˚

Next: The displacements are obtained by the relation

 

{ } { }

2

1

3 5

4 2 2

[ ] 3 3 0
48 2

0
5

3 15
2

L
L L

P
L L

D F P
EI

L

È ˘-Í ˙
Ï ¸Í ˙
Ô ÔÍ ˙= = - Ì ˝Í ˙ Ô ÔÍ ˙ Ó ˛

Í ˙- -
Í ˙Î ˚

 

2
1

64

1

24

5

96

C

A

B

L

P L

EI
q

q

Ï ¸-Ô Ô
DÏ ¸ Ô Ô

Ô Ô Ô Ô= -Ì ˝ Ì ˝
Ô Ô Ô Ô
Ó ˛ Ô Ô

Ô ÔÓ ˛

Example 17.4 
Analyse the beam in Example 17.3 for central defl ection 

and end rotations if the beam is subjected to a u.d.l. 

from A to B of intensity w/unit length.

The fl exibility matrix [F] developed in Example 7.3 is used. The displacements 

are calculated using the relation

 {D} = [F] {P}

The forces {P} are the equivalent joint loads as shown in Fig. 17.4.

or { }

2

2

2

3 5

24 2 2

3 3
48 2 48

5
3 15

2 48

wLL
L L

L L wL
D

EI

L wl

Ï ¸È ˘- Ô ÔÍ ˙
Ô ÔÍ ˙
Ô ÔÍ ˙= - Ì ˝Í ˙ Ô ÔÍ ˙
Ô ÔÍ ˙- - -Ô ÔÍ ˙Î ˚ Ó ˛

gives
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{ }

4

3

3

7

768

128

13

384

wL

EI

wL
D

EI

wl

EI

Ï ¸
Ô Ô
Ô Ô
Ô Ô

= Ì ˝
Ô Ô
Ô Ô
Ô Ô-
Ó ˛

Hence, 

3

7

768

1

128

13

384

C

A

B

L

wL

EI
q

q

Ï ¸
Ô Ô

DÏ ¸ Ô Ô
Ô Ô Ô Ô=Ì ˝ Ì ˝
Ô Ô Ô Ô
Ó ˛ Ô Ô-Ô ÔÓ ˛

Fig. 17.4

Example 17.5 
Analyse the prismatic two span continuous beam shown 

in Fig. 17.5 a due to the following effects:

 (a) A uniform load w/unit length over the entire beam. 

 (b) Concentrated load P at the centre of span BC

 (c) Support settlement of D at point B.

 (d) Temperature variation DT between the top and bottom of beam: the 

depth of the beam is d and coeffi cient of thermal expansion is a.



634  Basic Structural Analysis

Fig. 17.5

 (a) The beam is statically indeterminate by two degrees. On releasing 

moment carrying capacity at B and C the continuous beam results in two 

simple beams.

  The displacements (rotations) at the support B and C are

  

3 3 3

1
24 24 12

p

L L L
D

EI EI EI

w w w
= + =

  

3

2
24

p

L
D

EI

w
=

The fl exibility coeffi cients are:

 
11 21 12 22

2
, and

3 3 3 6 3

L L L L L
f f f f

EI EI EI EI EI
= + = = = =

Hence 
4 1

[ ]
1 26

L
F

EI

È ˘
= Í ˙

Î ˚

and 
1 2 16

[ ]
1 47

EI
F

L

- -È ˘
= Í ˙-Î ˚

The released moments are, say X1 and X2 at B and C are:

 

2
1

2

1

2 16 12

1 4 17

24

X EI L

X L EI

w

È ˘-Í ˙-Ï ¸ È ˘
= Í ˙Ì ˝ Í ˙- Í ˙Î ˚Ó ˛ -Í ˙Î ˚
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gives 
2

1

3

28
X lw= -

 

2

2
14

l
X

w
= +

 (b) The coordinates are the same and therefore matrix [F] remains same. 

The displacements in the primary structure due to load P on span BC 

are:

 

2 2

1 2and
16 16

p p

PL PL
D D

EI EI
= =

The released moments are

 

2
1

2

2 1 16

1 4 17 16

X EI PL

X L EI

- -Ï ¸ È ˘ Ï ¸
=Ì ˝ Ì ˝Í ˙- -Î ˚ Ó ˛Ó ˛

gives 1 2

3 9
and

6 56
X PL X PL= - = -

 (c) The settlement of support B gives the displacements in the primary 

structure as

  1 2PD
L L L

D D D
= - - = -

  2PD
L

D
=

We get 
1

2

2

2 16

1 47

X EI L

X L

L

DÏ ¸
Ô Ô-Ï ¸ È ˘ Ô Ô=Ì ˝ Ì ˝Í ˙- DÎ ˚Ó ˛ Ô Ô-
Ô ÔÓ ˛

Gives 1 22 2

30 36
and

7 7

EI EI
X X

L L

D D
= = -

 (d) If we consider the variation of temperature DT over the depth of the beam 

‘d’ the higher temperature being at the top the primary beams defl ect 

uploads. 

Let the rotation over a unit distance be dq = a 
Td

d

D
 = a DT 

Rotation at B from both the sides 
2 2

L L
Ta

Ê ˆ= - D +Á ˜Ë ¯
 = –a D TL

Rotation at C = –
2

T La D

Therefore, 1

2

2 16

1 47
2

TL
X EI

TL
X L

a

a

DÏ ¸-Ï ¸ È ˘ Ô Ô= DÌ ˝ Ì ˝Í ˙-Î ˚Ó ˛ Ô ÔÓ ˛
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Gives 1

9

7
X TLa= D

and 2

6

7
X TLa= D

Example 17.6 
Analyse the frame shown in Fig. 17.6 and draw the 

B.M. diagram. Consider only fl exural deformations 

and take El as constant throughout.

The frame is statically indeterminate by two degrees. The vertical and 

horizontal reaction components at C are considered as redundants. The frame 

is reduced to a cantilever bent as shown in Fig. 27.6b on which the positive 

directions of coordinates are indicated.

The unit load method is adopted to determine displacements D
IP
 and D2P

 under 

the given loading

Fig. 17.6  (a) Frame and loading, (b) Released structure and coordinates, (c) B.M.D due to 

loading, (d) B.M.D. due to unit load along coordinate 2, (e) B.M.D. due to unit

load along coordinate 2 (f) Final B.M.D

  

5

1

0

500
40( )P

dx
D x

EI EI

-
= - =Ú

  

3 5

2

0 0

780
40( ) 40(3) /P

dx
D x dx EI

EI EI
= =Ú Ú

The elements of the fl exibility matrix are determined using the unit load 

method again. From Fig. 17.6d and e.
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11

125

3
f

EI
=

 
12 21

125
37.537.5 1

[ ] 3

37.5 54

f f
EI EI

È ˘-- Í ˙= = \ = Í ˙
-Í ˙Î ˚

F

 

1
22

54 37.5
54

and [ ] 125
843.75 37.5

3

EI
f

EI

-
È ˘
Í ˙= = Í ˙
Í ˙Î ˚

F

The redundants vector

 

54 37.5
5001

{ } 125
780843.75 37.5

3

EI

EI

È ˘ Ï ¸Í ˙= Ì ˝Í ˙ -Ó ˛Í ˙Î ˚
RX

This gives X1 = –2.67 kN

 X2 = –16.30 kN

The negative signs for the reactions indicate that these components are opposite 

to the direction of the coordinates. The moments are determined using statics

 MA = 40 + 2.67 (5) –16.3 (3) = 4.45 kN.m 

 MB = 40 – 16.3 (3) = 8.92 kN.m 

The B.M. diagram is shown in Fig. 17.6f.

Example 17.7 
Using the fl exibility method, analyse the pin-jointed 

frame in Fig. 17.7. The cross-sectional areas A and E 

for all members is the same.

The frame is internally redundant by one degree. The member AC is 

considered as redundant. The removal of member AC makes the frame statically 

determinate.

Fig. 17.7
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The displacement in direction AC is determined using the unit load method. 

The displacement calculations are shown in tabular form. Tension is taken as 

positive and compression negative.

Displacement in the direction of the redundant in the released structure is

Member l in lm ps kN pi kN ps pi l pi
2l p = ps + X1 {pi)

AB 4 26.67 –0.8 –85.33 2.56 14.82

BC 3 0 –0.6 0 1.08 –8.88

CD 4 –10.0 –0.8 320.0 2.56 –21.85

AD 3 20.0 –0.6 –36.0 1.08 11.11

BD 5 –33.33 1 –166.7 5.00 –18.52

AC 5 0 1 0 5.00 14.81

S –256.03 S 17.28

 

6

1

256.03s i
p

i

p p l
D

A E A E=

-
= =Â

Flexibility coeffi cient

 

2

11

17.28ip l
f

A E A E

S
= =

The compatibility condition can be written as 

 Dp + f11 X1 = 0

\ X1 = f –1
11 – Dp

256.03
14.82

17.28
= =

The fi nal forces in the members are obtained by the superposition of the forces 

due to external loading and the redundant force

 Pi = Psi + X1 (p1i)

Expressing in matrix form

 {p} = {ps} + {X1} {p1}  (17.4)

The values are tabulated in the last column of the table.

17.1.3 Effect of Displacements at Releases

When displacements, if any, take place at one or more of the coordinates 

representing the redundants, the compatibility Equation 17.1 requires a slight 

modifi cation. The modifi ed equation is

 {Dp} + [F] (XR) = |D| (17.5)

and |XR| = [F]–1 [|D| – |DP|] (17.6)

in which |D| represents the displacements at the coordinates.
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The displacements at the coordinates may be translations and rotations of 

supports, temperature effects and lack of fi t in truss members.

Example 17.8 
Analyse the continuous beam in Example 17.1 if the 

beam undergoes settlement of supports B and C by 

300

EI
 and 

200

EI
 respectively. The beam was analysed earlier taking support 

moments MA anu MB as redundants.

From the earlier examples, the displacements at coordinates 1 and 2 under the 

given loading were

 
1 2

400 640
andP PD D

EI EI
= =

Fig. 17.8

Additional displacements due to settlement of supports are

 
1 2

300 300 (300 200) 50
and

8 8 8EI EI EI EI

-
D = D = - - = -

The combined displacement at coordinate 
400 300 437.5

1
8EI EI EI

= + =

and at coordinates 
640 50 590

2
EI EI EI

= - =

The fl exibility matrix [F] and the inverse [F]–1 are the same as earlier. The 

redundants are evaluated using the Equation 17.2.

  

16 4 437.53 1
{ }

4 8 590.0112

EI

EI

- -È ˘ Ï ¸
= Ì ˝Í ˙- -Î ˚ Ó ˛

RX

Solving  
124.28

{ } kN.m
79.55

-Ï ¸
= Ì ˝-Ó ˛

RX
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\ X1 = –124.28 kN.m

 X2 = –79.55 kN.m

It may be noted that the magnitude of the moment at fi xed end A is increased 

and the moment over support B is decreased due to settlement of supports.

Example 17.9 
Analyse the continuous beam shown in Fig. 17.9 under 

the given loading. Support B sinks by 1/100 and support 

C rotates by 0.004 radians in the anti-clockwise direction. 

Fig. 17.9

The vertical reaction at B and moment at C are released to make the continuous 

beam a simply supported one. The coordinates at the redundants are indicated.

Now  
4 4

1

5 (2 ) 5

384 24
P

w l wl
D

EI EI
= - = -

  
3 3

2

(2 )

24 3
P

w l wl
D

EI EI
= + = +

Given    Di = 
100

l-
 and D2 = + 0.004 

The negative sign for D1 is assigned as the displacement is opposite to the 

direction of coordinate 1.

The elements of the fl exibility matrix are obtained by applying unit values of 

redundants at the coordinates one after the other as shown in Fig. 17.9d and e.

  

3 3

11

(2 )

48 6

l l
f

EI EI
= =
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2

21 12
4

l
f f

EI
= -

  22

2

3

l
f

EI
=

     

22 3
[ ]

12 3 8

l l l

EI l

È ˘-
= Í ˙

-Î ˚
F

 

1

3 2

8 312
[ ]

7 3 2

lEI

l l l

- È ˘
= Í ˙

Î ˚
F

Using the compability equation

 {X} = –[F]–1 [{D} + [{D}]

  

4

3 2 3

5

8 3 100 2412

7 3 2
0.004

3

l wl

l EIEI

l l l l
w

EI

Ï ¸
+ +Ô ÔÈ ˘ Ô Ô= Í ˙ Ì ˝

Î ˚ Ô Ô- -Ô ÔÓ ˛

The moments and reactions can be calculated using statics.

Example 17.10 
Analyse the pin-jointed frame in Example 17.7 if the 

member AC is too long by 
50

AE
 to fi t.

The displacement D1p and the fl exibility coeffi cient f11 are same as in Example 

17.7. Since the member has to be compressed to fi t in D = – 50/AE the modifi ed 

compatibility condition can be written as

 D1P
 +f11 (X1) = D

\ X1 = (f11)
–1 {D – D1p}

Substituting the values with proper sign

 
1

50 256.03
11.92 kN. (tension)

17.28

AE
X

AE AE

-Ï ¸= + =Ì ˝
Ó ˛

The reduced value of tension in member AC is due to pre-compressor of the 

member before fi tting. The revised values in other members car be calculated 

using the revised value for X1.

17.2  GENERALISED METHOD OF ANALYSIS

Up to this point the fl exibility method has been carried out on the lines of the 

consistent displacement method with the resulting equations cast in matrix 
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form. This approach, though useful in the beginning, does not lend itself to the 

generalised procedure for the use of computers.

It may be pointed out that only simple examples have been worked out in 

the following sections for a clear illustration of the method. The reader may 

be inclined to think that the application of matrix analysis for relatively simply 

problems is cumbersome. However, the method is a powerful tool in the solution 

of more complex problems especially with the use of computer techniques. 

Matrix methods are at their best when applied to complex structures which are 

diffi cult to solve by traditional methods.

17.3  STATICALLY DETERMINATE STRUCTURES

In this approach, coordinates on the structure are selected at all degrees of 

freedom. Additional coordinates can be included at points where external forces 

are applied and also where displacement measurements are desired.

The structure is then broken up into a number of individual elements such that 

the structure coordinates occur only at their ends. The element coordinates are 

then selected for which the fl exibility matrix exists so that we can write ds = fs 

ps for each element and d = f p for all elements in an uncoupled state. A relation 

between the external forces and element forces is established (Eq. 16.1).

 p = AP

This can be easily generated in the case of statically determinate structures. 

From the element fl exibility matrices, the system fl exibility matrix is synthesised 

using Equation 16.9.

 F = AT
f A

After evaluating fl exibility matrix F, structure displacements are computed to 

the set of given external forces using Eq. 15.17.

 D = FP

The internal forces are evaluated by the relation

 p = AP 

and the internal displacements

 d = f p = f A P

The preceding analysis will now be illustrated by the following examples.

Example 17.11 
For the truss of Fig. 17.10a it is required to determine 

the vertical and horizontal displacements of joint B and 

the horizontal displacement of joint C.

This is a statically determinate truss with three degrees of freedom; two at 

joint B and one at joint C. We can easily establish the relation between external 

and internal forces by using the method of joints, which yields the relation
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1 1

2 2

3 3

0.36 0.48 1

0.80 0.60 0

0.60 0.80 0

p P

p P

p P

-Ï ¸ Ï ¸Ï ¸
Ô Ô Ô Ô Ô Ô=Ì ˝ Ì ˝ Ì ˝
Ô Ô Ô Ô Ô Ô-Ó ˛Ó ˛ Ó ˛

Or p  =    A    P

The fl exibility of an element taking only axial effect is

 
s

L

AE
=f

Therefore, the fl exibility matrix f of unassembled elements is

Fig. 17.10  (a) Truss and loading, (b) Truss elements

 

1 0 0

0 0.8 0

0 0 0.6

L

AE

È ˘
Í ˙= Í ˙
Í ˙Î ˚

f

Hence displacements

 d = f p = f A P

 

1 1

2 2

3 3

1 0 0 0.36 0.48 1

0 0.8 0 0.80 0.60 0

0 0 0.6 0.60 0.80 0

d P
L

d P
AE

d P

-Ï ¸ Ï ¸È ˘ Ï ¸
Ô Ô Ô Ô Ô ÔÍ ˙=Ì ˝ Ì ˝ Ì ˝Í ˙
Ô Ô Ô Ô Ô ÔÍ ˙ -Î ˚ Ó ˛Ó ˛ Ó ˛

or 

1 1

2 2

3 3

0.36 0.48 1

0.64 0.48 0 2

0.36 0.48 0 0

d P P
L

d P P
AE

d P

- =Ï ¸ Ï ¸Ï ¸
Ô Ô Ô Ô Ô Ô= =Ì ˝ Ì ˝ Ì ˝
Ô Ô Ô Ô Ô Ô- =Ó ˛Ó ˛ Ó ˛

or 

1

2

3

0.60

1.60

0.60

d
PL

d
AE

d

-Ï ¸ Ï ¸
Ô Ô Ô Ô=Ì ˝ Ì ˝
Ô Ô Ô Ô

Ó ˛Ó ˛

The fl exibility matrix F of the entire truss can be obtained using Eq. 16.9.
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0.36 0.80 0.60 1 0 0 0.36 0.48 1

0.48 0.60 0.80 0 0.8 0 0.80 0.60 0

1.00 0 0 0 0 0.6 0.60 0.80 0

L

AE

- -È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙-Î ˚ Î ˚ Î ˚

T
F = A F A

This gives

 

0.8576 0.0768 0.36

0.0768 0.9024 0.48

0.3600 0.4800 1.00

L

AE

-È ˘
Í ˙- -Í ˙
Í ˙-Î ˚

F =

Hence the displacement vector D is given by

 

0.8576 0.0768 0.36

0.0768 0.9024 0.48 2

0.3600 0.4800 1.00 0

P
L

P
AE

-È ˘ Ï ¸
Ô ÔÍ ˙= - - Ì ˝Í ˙
Ô ÔÍ ˙-Î ˚ Ó ˛

D FP =

 

1

2

3

0.704

1.728

0.600

D
PL

D m
AE

D

Ï ¸ Ï ¸
Ô Ô Ô Ô
Ì ˝ Ì ˝
Ô Ô Ô Ô-Ó ˛Ó ˛

=

Example 17.12 
It is required to determine the horizontal and vertical 

displacements of joint B and C, and the horizontal 

displacement component of joint D for the truss illustrated in Fig. 17.11a.

The structure has fi ve degrees of freedom and coordinates are indicated in Fig. 

17.11b at all the degrees of freedom. The transformation matrix A relating the 

bar forces to applied forces is obtained by the method of joints. This results in

 

1

2

3

4

0 0 0 0 1

0 1 0 0 0

1 0 0 0 0

1 0 1 1 0

02 0 2 0 0

P

P

P

P

È ˘ Ï ¸
Í ˙ Ô Ô
Í ˙ Ô ÔÔ ÔÍ ˙-= Ì ˝Í ˙ Ô Ô- - -Í ˙ Ô ÔÍ ˙ Ô ÔÓ ˛Î ˚

p

As before, the displacements d are obtained by the relation

 

1 0 1 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 2

L

AE

È ˘
Í ˙
Í ˙
Í ˙= =
Í ˙
Í ˙
Í ˙
Î ˚

d fp p
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Fig. 17.11  (a) Truss and loading, (b) System coordinates

The fl exibility matrix F is synthesised using Eq. 16.9.

 

1 0 0 0 00 1 1 1 2

0 1 0 0 00 1 0 0 0

0 0 1 0 00 0 0 1 2

0 0 0 1 00 0 0 1 0

0 0 0 0 21 0 0 0 0

L

AE

È ˘ È ˘- -
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙= -Í ˙ Í ˙
Í ˙ Í ˙-
Í ˙ Í ˙

Î ˚Î ˚

T
F = A fA

        

0 0 0 0 1 4.828 0 3.828 1 0

0 1 0 0 0 0 1 0 0 0

1 0 0 0 0 3.828 0 3.828 1 0

1 0 1 1 0 1 0 1 1 0

0 0 0 0 12 0 2 0 0

L

AE

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙- Í ˙¥ =
Í ˙ Í ˙- - -Í ˙ Í ˙
Í ˙ Í ˙Î ˚Î ˚

Hence, D = fP = 

1 3 4

2

1 3 4

1 3 4

4.828 3.828

3.828 3.828

0

P P P

P
L

P P P
AE

P P P

+ +È ˘
Í ˙
Í ˙
Í ˙+ +
Í ˙

+ +Í ˙
Í ˙Î ˚

The preceding analysis can be easily extended to statically determinate beams 

and frames. This is illustrated by the following examples.

Example 17.13 
For the simply supported beam loaded as shown in Fig. 

17.12a, it is required to determine the vertical displace-

ment at B and the rotations at B and C.

The structure coordinates are indicated in Fig. 17.12b. The structure is broken 

into two elements, AB and BC, and the coordinates for each element are indicated 

in Fig. 17.12c.
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Fig. 17.12  (a) Beam and loading, (b) Structure coordinates,

(c) Elements and element coordinates

Since the beam is statically determinate, we can relate without much effort 

internal forces p of the elements to applied forces P.

 P = AP

 

1
1

2
2

3
3

4

1 1 1

2

1 1

4 2 2

1 1 1

2

0 0 1

L Lp
PL

p
P

p
P

p
L L

È ˘- - -Í ˙
Ï ¸ Í ˙ Ï ¸Ô Ô Í ˙+ + +Ô Ô Ô ÔÍ ˙=Ì ˝ Ì ˝

Í ˙Ô Ô Ô ÔÍ ˙ Ó ˛+ - -Ô ÔÓ ˛ Í ˙
Í ˙+Î ˚

We can get the displacements of the elements by the relation

 d = f P 

The uncoupled fl exibility matrix f is

 

2

2

0 03

0 03 12

0 024 3

0 0 3 12

L L

LL

EI L L

L

È ˘
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙Î ˚

f

The fl exibility matrix F is synthesised using Eq. 16.9.

 

2 0 3

0 4 2
48

3 2 16

L L
L

EI
L

È ˘
Í ˙

= -Í ˙
Í ˙-Î ˚

T
F = A f A
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The displacement vector D is given by

 D = F P

 

2
1 3

2 3

1 2 3

3

4 2
48

3 2 16

P L P L
L

P P m
EI

P L P P

È ˘- +
Í ˙

= -Í ˙
Í ˙- - +Î ˚

D

Example 17.14 
It is required to determine the displacements at the co-

ordinates of the structure for the frame of Fig. 17.13a.

Axial deformations are neglected. Only bending deformations are considered. 

The structure coordinates are indicated in Fig. 17.13b and the element coordinates 

in Fig. 17.13c. The varying load has been replaced by equivalent joint loads as 

given by Eq. 15.93 and are shown in Fig. 17.13d.

Fig. 17.13  (a) Frame and loading, (b) Structure coordinates, (c) Element coordinates,

(d) Equivalent joint loads

The structure has six possible external displacements or degrees of freedom as 

shown in Fig. 17.13b. The force transformation matrix A is developed in terms 

of six external forces corresponding to these displacements, although at three of 

the coordinates the forces have zero values.
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Since the frame is statically determinate, from statics alone we construct the 

A matrix.

 P  =    A       P

 

1 1

2 2

3 3

4 4

5 5

6 6

0 0 0 1 0 0

1 0 0 1 1 0

1 1 0 1 1 0

0 0 1 0 1 1

0 0 0 0 1 1

0 0 0 0 0 1

p P L

p P

p P

p P

p P L

p P

Ï ¸ Ï ¸È ˘
Ô Ô Í ˙ Ô Ô-Í ˙Ô Ô Ô Ô

Í ˙Ô Ô Ô Ô-
= Í ˙Ì ˝ Ì ˝-Í ˙Ô Ô Ô Ô

Í ˙Ô Ô Ô Ô-
Í ˙Ô Ô Ô Ô
Í ˙Ô Ô Ô ÔÎ ˚Ó ˛ Ó ˛

The linear force quantities are multiplied by a factor L in order to maintain the 

nondimensional characteristic nature of matrix A. In this case L = 4 m.

The fl exibility matrix of the member element as given by Eq. 15.54 is used to 

develop the uncoupled fl exibility matrix f. Therefore,

 

2 1 All other 
elements zero1 2

2 1

6 1 2

2 1All other
elements zero 1 2

L

EI

È ˘-
Í ˙

-Í ˙
Í ˙-Í ˙=
Í ˙-
Í ˙
Í ˙-
Í ˙-Î ˚

f

We obtain the fl exibility matrix F for the structure using Eq. 16.9.

 F = A
T
 f A

 

2 10 1 1 0 0 0 All other 
elements zero1 20 0 1 0 0 0

0 0 0 1 0 0 2 1

1 1 1 0 0 0 6 1 2

0 1 1 1 1 0 2 1All other
0 0 0 1 1 1 elements zero 1 2

L

EI

È ˘--È ˘ Í ˙Í ˙ -Í ˙Í ˙ Í ˙Í ˙ -Í ˙Í ˙ Í ˙- -Í ˙ Í ˙Í ˙- Í ˙-Í ˙ Í ˙-Í ˙Î ˚ -Î ˚

 

0 0 0 1 0 0 4 2 1 5 1 1

1 0 0 1 1 0 2 2 1 2 3 1

1 1 0 1 1 0 1 1 2 1 3 2

0 0 1 0 1 1 5 2 1 8 0 16

0 0 0 0 1 1 1 3 3 0 10 6

0 0 0 0 0 1 1 1 2 1 6 8

L

EI

- - -È ˘ È ˘
Í ˙ Í ˙- - - -Í ˙ Í ˙
Í ˙ Í ˙- - - -

=Í ˙ Í ˙
- - - -Í ˙ Í ˙

Í ˙ Í ˙- - - -
Í ˙ Í ˙

- - -Í ˙ Í ˙Î ˚ Î ˚
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The external loads are related to external displacements in the form.

 

1 1

2 2

3 3

4 4

5 5

6 6

/ 4 2 1 5 1 1

2 2 1 2 3 1

1 1 2 1 3 2

5 2 1 8 0 16

/ 1 3 3 0 10 6

1 1 2 1 6 8

D L P L

D P

D PL

D PEI

D L P L

D P

- - -Ï ¸ Ï ¸È ˘
Ô Ô Í ˙ Ô Ô- - -Í ˙Ô Ô Ô Ô

Í ˙Ô Ô Ô Ô- - -
= Í ˙Ì ˝ Ì ˝- - -Í ˙Ô Ô Ô Ô

Í ˙Ô Ô Ô Ô- - -
Í ˙Ô Ô Ô Ô

- - -Í ˙Ô Ô Ô ÔÎ ˚Ó ˛ Ó ˛

For the loading shown in Fig. 17.10d the load vector P and the resulting 

defl ections are

 

1 1

2 2

3 3

4 4

5 5

6 6

20.0 68.27

6.4 41.60

9.6 30.401
and radians

0 81.60

/0 45.33

0 30.40

P L D L

P D

P D

P D EI

P D L

P D

Ï ¸ Ï ¸ Ï ¸
Ô Ô Ô Ô Ô Ô- -Ô Ô Ô Ô Ô Ô
Ô Ô Ô Ô Ô Ô

= =Ì ˝ Ì ˝ Ì ˝-Ô Ô Ô Ô Ô Ô
Ô Ô Ô Ô Ô Ô-
Ô Ô Ô Ô Ô Ô
Ô Ô Ô Ô Ó ˛Ó ˛ Ó ˛

If displacements are desired only at the points of application of external 

loads, matrix A need be developed only for those external loads. This would 

have resulted in a smaller F matrix. However, the displacements at other points 

cannot be obtained. In the present example, if only displacements corresponding 

to given external loads P1, P2 and P3 were to be determined, the F matrix would 

have been a 3 ¥ 3 matrix.

17.3.1 Computer Programme for Statically Determinate

     Structures

The same general procedure can be used for the analysis of any type of 

statically determinate structural system. When performing these analyses, it is 

relatively a simply task to compute the initial matrices [A] and [f]. However, the 

computations required to generate [f], {p}, and {D} are very tedious and prone 

to error. Computer programme can be easily developed for the matrix operations 

on a computer.

17.3.2 Flow Chart

The fl ow chart given in Fig. 17.14 enables one to perform a fl exibility analysis 

of a statically determinate structure. The input data for the programme consists 

of the equilibrium matrix [A], the member fl exibility matrix [f] and the joint 

load matrix {P}. The output consists of the structure fl exibility matrix [F], the 

member end forces matrix {p} and the joint displacement matrix {D}.



650  Basic Structural Analysis

Fig. 17.14  Flow chart for fl exibility analysis of statically determinate structures

17.4  STATICALLY INDETERMINATE STRUCTURES

For statically determinate structures, matrix A can be generated by conditions of 

equilibrium. However, for statically indeterminate structures, the conditions of 

equilibrium alone are not suffi cient to generate A.

We shall now show how the fl exibility method is used to analyse statically 

indeterminate structures. To determine matrix A, we reduce the statically 
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indeterminate structure to a statically determinate one by removing a number 

of constraints equal to the degree of indeterminancy. This reduced statically 

determinate structure is called the primary structure.

Next, we shall defi ne the system coordinates at the points of interest, that 

is, at the points where external forces are applied or where displacement 

measurements are required. It may be noted that the system coordinates 

should include coordinates at the constraints which are removed in the primary 

structure. The coordinates at the constraint points identify the redundant forces. 

For identifi cation we designate the external loads and displacements by Pi and Di 

and the redundant forces and displacements by Xr and Dr respectively.

We select elements so that the structure coordinates occur only at their ends. 

Next we fi x element coordinates for which a fl exibility matrix exists and takes 

into account all the desired forms of deformation. We number the element 

coordinates in sequence, proceeding from element to element so that we can 

write ds = fs ps for each element and d = f p for all elements before they are 

coupled to form the system.

Following the procedure of Section 16.1, we construct the transformation 

matrix A which transforms system forces Pi and redundants Xr on the primary 

structure to element forces p. To distinguish the external forces Pi and redudant 

forces Xr and the corresponding transformation matrix A, we write Eq. 16.1 in 

the partitional form as

 [ ]
l

l r
r

Ï ¸
= Ì ˝

Ó ˛

P
p A A

X
 (17.7)

or p = Al pl + Ar Xr (17.8)

in which

 Pl = external load vector

 Xr = redundant forces vector

 Al = transformation matrix connecting the external forces to the element 

forces

 Ar = transformation matrix connecting the redundant forces to the 

element forces.

At this point, it may be noted that redundant forces Xr are not known and 

hence p cannot be computed. However, fl exibility matrix F can be synthesized 

using Eq. 16.9. This equation can be written in the partitioned form as

  [ : ]
È ˘
Í ˙=
Í ˙Î ˚

T
l

l rT
r

A
F F A A

A
 (17.9)

or  
ll lr

rl rr

È ˘
= Í ˙

Í ˙Î ˚

F F
F

F F
 (17.10)

Expanding the submatrices, we get 



652  Basic Structural Analysis

 T
ll l l=F A f A

 
T

lr l r=F A f A  (17.11)

 T
rl r l=F A f A

 
T

rr r r=F A f A

The submatrices of Eq. 17.11 are simply the defl ection infl uence coeffi cients 

of the primary structure for forces Pl and Xr.

We can write down the force displacement relationship to the primary structure 

as

 D = FP

 

or in the partitioned form
Known forces

Unknown displacements
(loads)

at load points

known displacements Unknown forces
(specified) at redundants (redundants)

l ll lr l

r rl rr r

D

D

Ï ¸ È ˘ Ï ¸Ô Ô Ô Ô= Í ˙Ì ˝ Ì ˝
Í ˙Ô Ô Ô ÔÎ ˚Ó ˛ Ó ˛

F F P

F F X

 (17.12)

In this equation the redundant force vector Xr which depends on applied forces 

Pl must take such values as to restore the displacements Dr at the constraint 

points to their specifi ed values in the original structure under the action of forces 

Pl. This is equivalent to saying that the values of Xr must be such as to satisfy the 

conditions of compatibility.

Considering that there are no displacements at the points of constraints in the 

original unreduced structure, we substitute Dr = 0 in Eq. 17.12 and write it into 

two separate matrix equations as

 Dl = F11 Pi + Flr Xr (17.13)

 0 = Frl Pl + Frr Xr (17.14)

From Eq. 17.14 we solve for redundant forces Xr in terms of the applied 

forces

 Xr = – F–1
rr Frl Pl (17.15)

Substituting for Xr in Eq. 17.13 we get 

 Dl = Fl Pl (17.16)

in which Fl = Fll – Fir F
–1
rr Frl (17.17)

Fl is known as reduced fl exibility matrix corresponding to the coordinates at 

which the applied forces exist.

The member end forces can now be computed by superimposing the effects of 

external loads {Pl} and the redundant forces {Xr} on the reduced structure
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 {p} = {pl} + {pr} = [Al] {Pl} + [Ar] {Xr} (17.18)

The internal forces P can be obtained by substituting for Xr in Eq. 17.8. This 

gives

 p = (Al – Ar F
–1

rr Frl) Pl  (17.19)

The displacements d at the element coordinates can be obtained in terms of 

applied forces Pl by substituting for p from Eq. 17.19, that is

 d = (fAl – Ar F
–1

rr Frl) Pl (17.20)

The procedure is illustrated through the simple examples that follow.

Example 17.15 
It is required to determine the bar forces and displace-

ments at coordinates 1 and 2 for the three-bar truss 

loaded as shown in Fig. 17.15a.

Fig. 17.15  (a) Truss and loading, (b) Primary structure under applied and redundant forces

The truss is statically indeterminate by one degree. The truss is reduced to a 

primary structure by considering the force in member 2 as redundant.

This yields

 p = AP = 

1 1

2 2

3

1 0 1
1

0 0 2
2

1 1 1

l r

p P

p P

p X

-È ˘Ï ¸ Ï ¸
Í ˙Ô Ô Ô Ô=Ì ˝ Ì ˝Í ˙

Ô Ô Ô ÔÍ ˙- - Ó ˛Ó ˛ Î ˚
 A A

The fl exibility matrix of each bar fs = 
L

AE
. The fl exibility matrix f of the 

uncoupled members can be written as

 

2 0 0

0 1 0

0 0 2

L

AE

È ˘
Í ˙

= Í ˙
Í ˙
Î ˚

f
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Now we generate matrix F by carrying out the operation of Eq. 16.9.

 

1 0 1 2 0 0
1

1 0 1 0 1 0
2

1 2 1 0 0 2

T L

AE

È ˘ Ï ¸
Í ˙ Ô Ô
Í ˙= - Ì ˝
Í ˙ Ô Ô- -Í ˙ Ó ˛Î ˚

F = A f A

 

1 1 1
1

0 0 2
2

1 1 1

ll lr

-Ï ¸
Ô Ô
Ì ˝
Ô Ô- -Ó ˛

F F

 F = 

2 0 2
1

0 2 0

2 0 2 1

rl rr

AE

Ï ¸-
Ô ÔÔ Ô
Ì ˝
Ô Ô- +Ô ÔÓ ˛

F F

Since F–1
rr is required in both Eqs. 17.15 and 17.19, we see

 

1 1

2 1
rr

AE

L

- =
+

F

Next we evaluate the product

 

1 2
0

2 1
rr rl
-

Ï ¸-Ô Ô= Ì ˝
+Ô ÔÓ ˛

F F

Therefore, the unknown redundant force X from Eq. 17.15 is

 

11

2

2
0

2 1
rr rl l

P

P

-
Ï ¸ Ê ˆÔ Ô- = Ì ˝ Á ˜Ë ¯+Ô ÔÓ ˛

X = F F P

 

Flexibility matrix Fl corresponding to external forces Pl is given by Eq. 17.17.

 
1

l ll lr rr rl
-= -F F F F F

 

2 0 22
0

0 2 10 2

L L

AE AE

È ˘ Ï ¸Ï ¸ --Ô Ô Ô Ô= -Í ˙ Ì ˝ Ì ˝
+Ô Ô Ô ÔÍ ˙ Ó ˛ Ó ˛Î ˚

 

2
0

2 1

0 2

l

L

AE

È ˘
Í ˙

= +Í ˙
Í ˙
Î ˚

F

Then Dl = Fl Pl
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1

1

2

2

2
0 2

2 12 1

0 2

P
P LL

PAE AE
P

È ˘ È ˘
Í ˙ Ï ¸ Í ˙= = ++ Ì ˝Í ˙ Í ˙Ó ˛Í ˙ Í ˙Î ˚Î ˚

The bar forces are obtained from Eq. 17.18.

 1( )l r rr rl l
-= -p A A F F P

  

1

2

11 1
1 1 2

0 0 2 0
2 2 2 1

1 1 1

P

P

Ê ˆ-È ˘È ˘
Ï ¸Í ˙ Ï ¸-Á ˜Ô ÔÍ ˙= - Ì ˝ Ì ˝Í ˙Á ˜Í ˙ +Ô Ô Ó ˛Ó ˛Í ˙Á ˜Í ˙- -Î ˚Ë ¯Î ˚

  

1

2

1
1

1 2

1 2
0

2 2 1

1
1

2 1

P

P

È ˘
Í ˙

+Í ˙
Í ˙ Ï ¸
Í ˙= Ì ˝

+Í ˙ Ó ˛
Í ˙
Í ˙-
Í ˙+Î ˚

Example 17.16 
Generate the 2 ¥ 2 matrix Fl and fi nd the internal forc-

es in terms of Pl for the continuous beam shown in Fig. 

17.16a. EI is the same throughout.

The structure is statically indeterminate to the second degree. The structure 

can be reduced to a primary structure by removing the two interior supports 

or by removing the moments constraints over sup ports. For our illustration, the 

support moments are chosen as redundants. Using equations of equilibrium, we 

can construct the following matrix A.

 

0 0 0 0

/4 0 1/2 0

/4 0 1/2 0

0 0 1 0

0 0 1 0

0 /4 1/2 1/2

0 /4 1/2 1/2

0 0 0 1

0 0 0 1

0 0 0 0

l r

L

L

L

L

È ˘
Í ˙-Í ˙
Í ˙-
Í ˙
Í ˙
Í ˙-
Í ˙=

- + +Í ˙
Í ˙+ - -Í ˙

+Í ˙
Í ˙-Í ˙
Í ˙Î ˚

A

A A
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Fig. 17.16  (a) Continuous beam and loading, (b) Primary structure with system

coordinates, (c) Elements and element coordinates

The element fl exibility coeffi cients are

 
1 2 3 4

2 1

1 212

L

EI

-È ˘
= = = = Í ˙-Î ˚

f f f f

and 5

4 2

2 412

L

EI

-È ˘
= Í ˙-Î ˚

f

The uncoupled fl exibility matrix f of the structure is

 

All other elements zero

2 1

1 2

2 1

1 2

2 1
12

1 2

2 1

1 2

4 2

2 4

All other elements zero

L

EI

È ˘
Í ˙
Í ˙
Í ˙-
Í ˙

-Í ˙
-Í ˙

Í ˙-Í ˙
¥ -Í ˙

Í ˙-Í ˙
-Í ˙

Í ˙-
Í ˙

-Í ˙
Í ˙-
Í ˙
Í ˙Î ˚

f



Flexibility or Force Method of Analysis  657

Now we generate matrix F using Eq. 16.9 and utilising the partitioned matrices 

as in Eqs. 17.10 and 17.11.

 AT
ll l lf=F A

  

0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 04

L -È ˘
= Í ˙-Î ˚

 

All other elements zero

2 1

1 2

2 1

1 2

2 1
12

1 2

2 1

1 2

4 2

2 4

All other elements zero

L

EI

È ˘
Í ˙
Í ˙
Í ˙-
Í ˙

-Í ˙
-Í ˙

Í ˙-Í ˙
¥ -Í ˙

Í ˙-Í ˙
-Í ˙

Í ˙-
Í ˙

-Í ˙
Í ˙-
Í ˙
Í ˙Î ˚

 

3

0 0

1 0

1 0

0 0

0 0 4 0

0 1 0 44 192

0 1

0 0

0 0

0 0

L L

EI

È ˘
Í ˙-Í ˙
Í ˙
Í ˙
Í ˙
Í ˙ È ˘
Í ˙¥ = Í ˙-Í ˙ Î ˚
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

Similarly, proceeding with other partitioned matrices

 

32 8

8 3248
rr

L

EI

È ˘
= Í ˙

Î ˚
F

 

2 6 0

6 696
lr

L

EI

-È ˘
= Í ˙- -Î ˚

F
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2 6 6

0 696
rl

L

EI

- -È ˘
= Í ˙-Î ˚

F

These sub-matrices will be utilised to evaluate the required quantities. We fi rst 

evaluate

 
1 4 12

1 45rr

EI

L

- -È ˘
= Í ˙-Î ˚

F

and 1 4 3

1 340rr rl

L- - -È ˘
= Í ˙-Î ˚

F F

Then 1

2

4 3

1 340
r

PL
X

P

- - Ï ¸È ˘
= Ì ˝Í ˙-Î ˚ Ó ˛

or 
1 2

1 2

4 3

340
r

P PL
X

P P

- -È ˘
= Í ˙-Î ˚

and 
3

1 4 3

3 6640
lr rr rl

L

EI

- È ˘
= Í ˙

Î ˚
F F F

The reduced fl exibility matrix Fl of order 2 ¥ 2 can be obtained using Eq. 17.17 

Thus,

 

3 28 9

9 221920
l

L -È ˘
= Í ˙-Î ˚

F

The internal forces are evaluated using Eq. 17.17.

 p = Al Pl + ArXr 

Substituting for Xr, we have

 
1( )l r rr rl l

-= -p A A F F P

 

1

2

3

4

5

6

7

8

9

10

0 0 0 0

1 0 1 0

1 0 1 0

0 0 2 0

0 0 1 20 4 31

0 1 1 1 1 34 2 40

0 1 1 1

0 0 0 2

0 0 0 2

0 0 0 0

p

p

p

p

p L L

p

p

p

p

p

ÏÏ ¸ È ˘ È ˘
ÔÔ Ô Í ˙ Í ˙-Ô Í ˙ Í ˙Ô Ô
Ô Í ˙ Í ˙Ô Ô -
Ô Í ˙ Í ˙Ô Ô
Ô Í ˙ Í ˙Ô Ô

Í ˙ Í ˙ÔÔ Ô - - -È ˘Ô Ô Ô Í ˙ Í ˙= -Ì ˝ Ì Í ˙- -Í ˙ Í ˙ Î ˚Ô Ô Ô
Í ˙ Í ˙Ô Ô - -Í ˙ Í ˙Ô Ô
Í ˙ Í ˙Ô Ô
Í ˙ Í ˙Ô Ô -Í ˙ Í ˙Ô Ô
Í ˙ Í ˙Ô Ô Î ˚ Î ˚Ó ˛ Ó

1P

¸
Ô
Ô
Ô
Ô
Ô
ÔÔ
˝
Ô

Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ǫ̂
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or 

1

2

3

4

5 1

6 2

7

8

9

10

0 0

16 3

16 3

8 6

8 6

3 1480

3 14

2 6

2 6

0 0

p

p

p

p

p PL

p P

p

p

p

p

Ï ¸ È ˘
Ô Ô Í ˙-Í ˙Ô Ô

Í ˙Ô Ô -
Í ˙Ô Ô
Í ˙Ô Ô
Í ˙Ô Ô - - Ï ¸Ô Ô Í ˙=Ì ˝ Ì ˝-Í ˙ Ó ˛Ô Ô
Í ˙Ô Ô -Í ˙Ô Ô

-Í ˙Ô Ô
Í ˙Ô Ô + -Í ˙Ô Ô
Í ˙Ô Ô Î ˚Ó ˛

Example 17.17 
Generate the fl exibility matrix Fl in terms of Pl for the 

structure shown in Fig. 17.17a. Find the external dis-

placements and the member forces for the coordinates shown.

The structure is indeterminate by two degrees, It is reduced to a primary 

structure by removing two reaction constraints at the left hand support. The 

primary structure is shown in Fig. 17.17b and the element coordinates in Fig. 

17.17c.The element coordinates for element 1 are dif ferent from those for 

elements 2 and 3. This is taken only to show the facility available. One can as 

well choose, and in fact, it is preferable to have the same type of coordinates for 

all the elements. Matrix A is con structed in the usual manner in the partitioned 

form, that is

 

0 0 0 1

0 0 1

1 0 1

0 1 0

0 0 0

0 0 0 0

l r

L

L

L

L

-È ˘
Í ˙- -Í ˙
Í ˙

= Í ˙
-Í ˙

Í ˙
Í ˙
Í ˙Î ˚

A

A A

The element fl exibility matrix can be written as

  

2

1 2

2 12 3
,

1 26 123 6

L L L L

L

È ˘ -È ˘-
= =Í ˙ Í ˙-- Î ˚Î ˚

f f

and  3

2 1

1 26

L -È ˘
= Í ˙-Î ˚

f
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Fig. 17.17  (a) Structure and loading, (b) Primary structure and system coordinates,

(c) Elements and coordinates

The uncoupled fl exibility matrix f can be written as

 

24 6

6 12

2 1

12 1 2

4 2

2 4

L L

L

L

È ˘-Í ˙
-Í ˙

Í ˙-
= Í ˙

-Í ˙
Í ˙-
Í ˙

-Í ˙Î ˚

f

The fl exibility matrix F for the structure is obtained by peforming the operation 

of Eq. 16.9.

 F = A
T
 f A

 

24 6
0 0 1 0 0 0 6 12
0 0 0 1 0 0 2 1

0 1 1 0 0 0 12 1 2

4 21 0

2 4

L L

L

L

L L L L

È ˘-Í ˙
È ˘ -Í ˙
Í ˙ Í ˙-Í ˙= Í ˙
Í ˙- -Í ˙
Í ˙ Í ˙-- - + - +Î ˚ Í ˙

-Í ˙Î ˚

F

 

2

0 0 0 1

2 1 2 30 0 1

1 2 1 31 0 1

14 92 10 1 0 12

3 3 9 140 0 0

0 0 0 0

LL

LL L

LL

L L L LL

-È ˘
Í ˙ -È ˘- -Í ˙ Í ˙- - -Í ˙+ Í ˙=Í ˙ Í ˙--Í ˙ Í ˙
Í ˙ -+ Í ˙Î ˚Í ˙
Í ˙Î ˚

We now have,
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2
1

3

12 14 9

115 9 14
rr

L L

L L

- È ˘-
= Í ˙

-Î ˚
F

and 

2 2
1

3

1 13

115 24 33
rr rl

L L

L L L

- È ˘
= Í ˙

-Î ˚
F F

Then 
2 2

1

2
2

1 13
and

115 24 33
r

PL L
X

PL L L

È ˘ Ï ¸
= Í ˙ Ì ˝

- Ó ˛Î ˚

 

1 74 73

73 8612 115
lr rr rl

L- -È ˘
= Í ˙-¥ Î ˚

F F F

Therefore, the reduced fl exibility matrix corresponding to forces Pl is

 

2 1 74 73 156 42

1 2 73 86 42 11412 12 115 12 115
l

L L L- - -È ˘ È ˘ È ˘
= - =Í ˙ Í ˙ Í ˙- - -¥ ¥Î ˚ Î ˚ Î ˚

F

The external displacements are obtained from the relation of Eq. 17.16

 Dl = Fl Pl

  

1

2

26 7

7 24230

PL

P

- Ï ¸È ˘
= Ì ˝Í ˙-Î ˚ Ó ˛

The internal forces are obtained using Eq. 17.19

 

2 2
1

2
2

0 0 0 1

0 0 1

1 0 1 1 13

0 1 0 115 24 33

0 0 0

0 0 0 0

L

PL L L

PL L L L

L

Ï ¸-È ˘ È ˘
Ô ÔÍ ˙ Í ˙- -Ô ÔÍ ˙ Í ˙
Ô ÔÍ ˙ Í ˙ È ˘ Ï ¸Ô Ô= -Í ˙ Í ˙Ì Í ˙˝ Ì ˝- - Ó ˛Í ˙ Í ˙ Î ˚Ô Ô

Í ˙ Í ˙Ô Ô
Í ˙ Í ˙Ô Ô
Í ˙ Í ˙Ô ÔÎ ˚ Î ˚Ó ˛

p

or 1

2

24/ 33/

25 20

90 201

20 82115

24 33

0 0

L L

P

P

-È ˘
Í ˙-Í ˙
Í ˙+ Ï ¸

= Í ˙ Ì ˝+ Ó ˛Í ˙
Í ˙- +
Í ˙
Í ˙Î ˚

p
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17.4.1 Computer Programme for Statically Indeterminate

   Structures

We have seen that the general analysis of a statically indeterminate struc ture is 

reduced to a set of simple matrix multiplications, starting with matrices [Al], 

[Ar], [f] and [P]. The computations can be carried out manually to generate the 

initial matrices [Al], [Ar] and [f] but the com putations of [A] and [F] are very 

tedious and time-consuming. The com puter is much better suited to perform 

these types of operations.

17.4.2 Flow Chart

Fig. 17.18 shows a fl ow chart for a computer programme which uses the analysis 

described earlier. The fl ow chart is drawn such that it can be used both for 

statically determinate and indeterminate structures. If the number of redundants 

is zero it will branch out for the analysis of stati cally determinate structures. On 

the other hand if the redundants number one or more the structure is statically 

indeterminant and the matrix [A] will be computed in the programme. The input 

matrices for this case will be [A1] and [A2]. The steps outlined in the fl ow chart 

are obvious.

17.5    TEMPERATURE STRESSES, LACK OF FIT,

    SUPPORT SETTLEMENTS, ETC.

When a statically determinate structure is subjected to a change in temperature, 

the element displacements di will take place with no resulting internal forces 

pt. However, in statically indeterminate structures, thermal change will result in 

internal forces pi. We shall now discuss how these forces are computed by the 

fl exibility method. Let us designate

 Ds = displacements due to temperature at the coordinates of the element 

before it is connected to the structure,

 Di = displacements at the coordinates of the elements uncoupled.

If in addition to the change in temperature, each element s is subjected to 

forces ps at the coordinates, then an additional displacement fs ps will take place 

at the coordinates. The total displacement ds for any element, s, is then

 ds = fx ps + Ds (17.21)

For all the elements in an unconnected state, we can write

 d = f p + D (17.22)

From Eq. 16.1 we can write

 p = AP 

and also from Eq. 16.30, we have

 D = AT
d

and partitioning the matrices of Eq. 16.30 to distinguish between the coor dinates 

at the applied forces and redundants we can write
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Fig. 17.18  Flow chart for the fl exibility analysis for statically indeterminate structures
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T
l l

T
r r

AÏ ¸Ï ¸Ô Ô Ô Ô=Ì ˝ Ì ˝
Ô Ô Ô ÔÓ ˛ Ó ˛

D
d

D A
 (17.23)

Writing the matrix in two separate matrices, we have

 Dl = AT
l d (17.24)

and Dr = Ar
T
d (17.25)

Equation 17.25 is only a restatement of the condition of compatibility which must 

be satisfi ed in the fl exibility method. We now substitute for d from Eq. 17.22 into 

Eq. 17.25

 Dr = Ar
T (fp + D) = 0 (17.26)

Substituting for p from Eq. 17.8 in Eq. 17.26

 Dr = Ar
T {f (Al pl + Ar Xr) + D} = 0 (17.27)

or Dr = Ar
T fAl Pl + AT

r fAr Xr + AT
r D = 0 (17.28)

or A
T

r f Ar Xr = –A
T

r f Al Pl – Ar D (17.29)

Therefore,

 Xr = –(AT
r fAr)

–1 (AT
r f Al Pl + AT

r D) (17.30)

Identifying these triple matrix products as in Eq. 17.11 we can write

 Xr = – F–1
rr Frl Pl – F–1

rr A
T

r D (17.31)

Substituting for Xr from Eq. 17.31 in Eq. 17.8, we have 

 p = (Al – Ar F
–1
rr Frl) Pl – ArF

–1
rr A

T
r D (17.32)

Equation 17.32 gives the member forces both due to applied forces and thermal 

changes. When D = 0, Eqs. 17.31 and 17.32 reduce to Eqs 17.15 and 17.19 

respectively.

The development here and in the resulting Eqs. 17.31 and 17.32 also applies 

to redundant structures in which the elements do not fi t the geometry called for 

by the design, that is, they are either too long or too short, bent or twisted. In 

such cases which are referred to as lack of fi t, internal forces are induced when 

structure is assembled by forcibly fi tting the nonfi tting elements. In this case,

D in Eq. 17.22 represents the initial lack of fi t in the unconnected elements.

Problems for Practice

Use the fl exibility method of analysis in solving the following problems.

17.1 Calculate the rotation and defl ection at the free end of a cantilever beam loaded as 

shown in Fig. 17.19. EI is constant.

17.2 Determine the nodal displacements for the pin-connected trusses shown in Figs. 

17.20a and b. The displacement coordinates are indicated.
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Fig. 17.19

Fig. 17.20

17.3 Analyse the beams shown in Figs. 17.21a and b for reaction components at A and 

B and rotations at B.

Fig. 17.21

17.4 For the structure shown in Fig. 17.22 choose as redudants (a) RB and RC, (b) MA 

and MB. By inspection of F state which of the choices is the most desirable. Using the best 

system, solve for redundants and reactions and draw fi nal shear and moment diagrams.

Fig. 17.22

17.5 Generate the 2 ¥ 2 matrix Fl and fi nd the internal forces in terms of Pl for the con-

tinuous beam shown in Fig. 17.23. EI is the same throughout.
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Fig. 17.23

17.6 Analyse the frames shown in Figs. 17.24a, b and c for the displacements and mem-

ber forces. Consider only fl exural deformations. EI is constant.

Fig. 17.24

17.7 A portal frame fi xed at one end, supported on rollers on the other is tied with a 

guy wire as shown in Fig. 17.25. The sectional properties of members are given below. 

Determine the forces in the members due to a horizontal force of 50 kN. E = 200 ¥ 106 

kN/m2 (200,000 MPa).

member (A.10-3) L l

AB 12.5 m2 3.00 m 300 ¥ 10–6 m4

BC 12.5 m2 3.00 m 200 ¥ 10–6 m4

CD 12.5 m2 3.00 m 200 ¥ 10–4 m4

CE 3.125 m2 3.75 m 0

Fig. 17.25

17.8 Member AB of the portal frame in Prob. 17.7 is subjected/ to a temperature drop of 

30°C. Determine forces in members, ac = 8.25 ¥ 10–6°C.
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17.9 Analyse the pin-connected truss shown in Fig. 17.26 for applied load P. All 

members are of equal stiffness EA.

Fig. 17.26

17.10 The truss shown in Fig. 17.27 has top and bottom chords area = 650 mm2, verti-

cals = 325 mm2 and diagonals = 975 mm , E = 200 kN/mm2 (200,000 MPa). An analysis 

is required for the loading and fabrication defects described below.

 (a) Defi ne an approriate primary structure.

 (b) Obtain fl exibility matrix FI.

 (c) Analyse the structure for a concentrated load of 50 kN applied downwards at 

joint 4.

 (d) For the unloaded truss, fi nd the bar forces resulting from a fabrication error in 

which bars 1-4 and 3-5 were fabricated 8.33 mm longer than required.

  

 Fig. 17.27 Fig. 17.28

17.11 It is required to fi nd redundant X1, defl ections D2 and D3 and the moments at 

points 1 to 4 of the beam shown in Fig 17.28 due to the two loading conditions given 

below.

 (a) Loading condition 1 : X2 = 10 kN, X3 = 6 kN

 (b) Loading condition 2 : Support 1 settles by D1 = 1

Consider only fl exural deformations of the structure. EI is constant.

17.12 Analyse the continuous beam shown in Fig. 17.29 due to:

 (a) A uniform load w/unit length over the entire beam.

 (b) Concentrated load P at the centre of span BC.

 (c) Support settlement D at point B.
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Fig. 17.29

17.13 Determine the moment in the members of the frames shown in Fig. 17.30a and 

b.

Fig. 17.30



18.1  INTRODUCTION

The stiffness or displacement method in structural analysis is analogous to 

the fl exibility method; whereas in the latter the forces were unknowns, here 

the displacements are unknowns. Some of the basic principles and equations 

applying to the stiffness method have already been developed in Chapters 15 

and 16 by the generalisation of existing methods and well-known principles. 

In the matrix formulation of the stiffness method there is no need to distinguish 

between a statically determinate structure and an indeterminate one, since the 

steps are identical in both cases.

Of the two methods, the matrix displacement method of analysis is commonly 

preferred particularly when the degree of static indeterminancy is high. The 

stiffness method aims at solving for unknown joint equations at the joints. 

The steps involved in the displacement method of analysis are presented in the 

following section.

18.1.1 Stiffness Method—Steps to be Followed

 1. As a fi rst step the degree of freedom or the kinematic indeterminancy of 

the structure is determined. The coordinates for the structure are estab-

lished identifying the location and direction of joint displacements.

  Restraining forces are applied at the coordinates to prevent joint 

displacements. In this method there is no choice exercised in the selection 

of joint displacements unlike the redundants in the fl exibility method. 

This is a favourable point for the adoption of the displacement method.

 2. The restraining forces are determined as a sum of fi xed end forces for the 

members meeting at a joint. The fi xed end forces are obtained with the 

aid of standard tables (Table in Appendix).

 3. In the next step, the forces required to hold the restrained structure 

with a unit displacement at one of the coordinates only, and with zero 

displacements at all other coordinates, are determined. This is done for 

all other coordinates one by one and the forces required are determined. 

These forces form the elements of the stiffness matrix [K].

Stiffness or 
Displacement
Method of Analysis

18
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 4. The values of displacements {D} necessary to ensure the equilibrium of 

the joints are determined using the relation

 {P} + [K] {D} = 0 (18.1)

in which

 {P} = restraining forces at the joints,

 {K} = stiffness matrix corresponding to the coordinates, and 

 {D} = unknown displacements at the coordinates.

Displacements {D} are obtained by solving Equation 18.1.

 {D} = [K]–1 {–P} (18.2)

 5. Finally the forces in the given structure are obtained by adding the 

forces on the restrained structure and the forces caused by the joint 

displacements found as above.

The examples that follow will make the procedure clear.

Example 18.1 
Using the displacement method, analyse the continuous 

beam in example 17.1 solved by the fl exibility method.

The degree of kinematic indeterminacy is two because of the two independent 

rotations at B and C. The coordinates 1 and 2 are chosen at the displacements. 

The restraining forces at the joints which are equal to the sum of end forces, are 

calculated. As earlier, they are considered positive when their directions accord 

with those of the coordinates.

Therefore, to obtain the restraining forces, it is suffi cient to add the end forces 

at each joint as indicated following the static sign convention used in other 

methods.

Any external couples or forces applied at the joints require equal and opposite 

restraining forces.

The forces in the present case are

 

40
{ } kN.m

60

-Ï ¸
= Ì ˝-Ó ˛

P

The elements of the stiffness matrix are obtained by determining the forces 

required to hold the beam with D1 = 1 and D2 = 0 and again with D1 = 0 and D2 

= 1 as in Fig. 18.1d and e.

The elements of the stiffness matrix are

 

11

21

12

22

4 4

8 8

2

8 4

2

8 4

4

8 2

EI EI
k EI

EI EI
k

EI EI
k

EI EI
k

= + =

= +

= +

= +
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D2= 1

A
B C

D1= 1

+ 100 – 100 – 60+ 60

100 kN 60 kN

4 m4 m

8 m 8 m

(a)

( )b

1 2

(c)

(d)

(e)

Fig. 18.1  (a) Beam and the loading, (b) Coordinates, (c) Restraining forces,

(d) Unit displacement imposed at coordinate 1, (e) Unit displacement imposed at coordinate 2

The stiffness matrix is

  

4 1
[ ]

1 24

EI È ˘
= Í ˙

Î ˚
K

  

1 2 14
[ ]

1 47 EI

- -È ˘
= Í ˙-Î ˚

K

Substituting in Equation 18.2,

 |D|  
2 1 404

1 4 607 EI

- +È ˘ Ï ¸
= Ì ˝Í ˙- +Î ˚ Ó ˛

 D1 = 
11.43

EI

 D2 = 
114.29

EI

The fi nal moments are calculated using slope defl ection equations.

 

2 11.43
100 0 100 2.86 102.86

8
AB

EI
M

EI

Ê ˆ= + + + = + =Á ˜Ë ¯
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2 11.43
100 0 1 100 5.72 94.28

8
BA

EI
M

EI

Ê ˆ= - + + ¥ = - + = -Á ˜Ë ¯

 

2 2 11.43 114.29
60 60 5.72 28.57 94.29

8
BC

EI
M

EI EI

¥Ê ˆ= + + + = + + =Á ˜Ë ¯

 

2 11.43 2 114.29
60 60 57.15 0

8
CB

EI
M

EI EI

¥Ê ˆ= - + + = - + =Á ˜Ë ¯

Example 18.2 
Using the displacement method of analysis analyse the 

continuous beam given in Fig. 18.2a.

Supports B and C are restrained from rotation. The restraining forces are,

 P1 = 0 as the fi xed end moments on either side of support B are equal but 

opposite in sign

A
B

C

D1

D2

W/Unit length

(a)

(b)

( )c

(d)

1 2

Fig. 18.2

 

2

2
12

wl
P

-
=

The stiffness matrix

 

8 2
[ ]

2 4

EI

l

È ˘
= Í ˙

Î ˚
K

 

1 4 2
[ ]

2 828

l

EI

- -È ˘
= Í ˙-Î ˚

K

and 2

0
4 2

2 828
12

l
D wl

EI

Ï ¸
-È ˘ Ô Ô= Ì ˝Í ˙-Î ˚ Ô ÔÓ ˛
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\  
3

1
168

wl
D

EI
=

and  
3

2
42

wl
D

EI
=

The end moments of the members are determined using slope defl ection equations. 

The moment values are

 

2 3 2 2 22
0

12 168 12 84 14
AB

wl EI wl wl wl wl
M

l EI

Ê ˆ
= + - = - =Á ˜Ë ¯

 

2 3 2 2
22 2 3

0
12 168 12 42 28

Ê ˆ- ¥ -
= + - = - - =Á ˜Ë ¯

BA

wl EI wl wl wl
M wl

l EI

 

2 3 3
22 2 3

12 168 42 28
BC

wl EI wl wl
M wl

l EI EI

Ê ˆ+
= + - + =Á ˜Ë ¯

 

2 3 32 2
0

12 168 42

Ê ˆ¥
= - + - + =Á ˜Ë ¯

CB

wl EI wl wl
M

l EI EI

18.1.2 Effect of Support Displacements, Temperature 

Changes, etc.

The effect of support displacements, temperature changes, truss members being 

too long or short to fi t in can be readily incorporated in the stiffness method of 

analysis. A convenient procedure is to consider all such effects on the restrained 

structure and add the resulting joint forces to the joint forces caused by the loads. 

The combined restraining forces Pc can be written as

 {PC} = {P1} + {Pt} + {Pr}

where {P1} = Restraining forces due to applied loads

 {Pt} = Restraining forces due to temperature change

 {Pr} = Restraining forces due to displacement of supports.

Equation 18.2 is modifi ed as

 {D} = [K–1] {–PC} (18.3)

The procedure is illustrated by the following examples.

Example 18.3 
Using the displacement method, analyse the continuous 

beam given in Fig. 18.3. Consider that under the given 

loading the support B sinks by 
300

EI
 and support C by 

200

EI
.

The fi xed end moments produced by the translation of joint are added to the 

fi xed end moment caused by external loading, The forces at the joints are
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A
B C

C

A
B C

EI

+ 28.125 – 9.375

300/EI

200/ /E

21

8 m

4 m
100 kN 60 kN

4 m

8 m

Fig. 18.3

 

40 18.75 21.25
{ }

60 9.38 69.38

- + -Ï ¸ Ï ¸
= =Ì ˝ Ì ˝- - -Ó ˛ Ó ˛

P

The stiffness matrix for the same coordinates as in example 18.2 is

 

8 2
[ ]

2 48

EI È ˘
= Í ˙

Î ˚
K

 

1 4 22
[ ]

2 87 EI

- -È ˘
= Í ˙-Î ˚

K

The displacements are

 

4 2 21.252
{ }

2 4 69.387 EI

-È ˘ Ï ¸
= Ì ˝Í ˙-Î ˚ Ó ˛

D

\   D1 2

15.36 146.44
and D

EI EI

-
= =

The end moments for the members are calculated using slope defl ection 

equations:

 

2 15.36
100 28.13 0 124.29 kN.m

8
AB

EI
M

EI

Ê ˆ= + + - = +Á ˜Ë ¯

 

2 2
100 28.13 0 79.55 kN.m

8

¥ 15.36Ê ˆ= - + + - = -Á ˜Ë ¯BA

EI
M

EI

 

2 2 15.36 146.44
60 9.38 79.55 kN.m

8
BC

EI
M

EI EI

- ¥Ê ˆ= - + + =Á ˜Ë ¯

 

2 2 146.44 15.76
60 9.38 0

8
CB

EI
M

EI EI

¥Ê ˆ= - - + - =Á ˜Ë ¯
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Example 18.4 
Using the displacement method, analyse the continuous 

beam with overhang on one end as shown in Fig. 18.4, 

for conditions: (a) that all the supports are rigid and (b) support B sinks by 10 

mm under the loading. Take E = 200 ¥ 106 N/mm2 and I = 100 ¥ 103 mm4.

(a) The beam is restrained at B and C to prevent rotations. The effect of the 

overhang is taken into account by applying a clockwise moment of 40 kN.m at 

joint C.

The load vector  
20 30 10

{ }
30 40 10

- + =Ï ¸
= Ì ˝- + =Ó ˛

P

Stiffness matrix   [K] = 
5 1

1 23

EI È ˘
Í ˙
Î ˚

         
1 2 11

[ ]
1 53EI

- -È ˘
= Í ˙-Î ˚

K

\ [D] = 
2 1 101

1 5 103EI

- -È ˘ Ï ¸
Ì ˝Í ˙- -Î ˚ Ó ˛

which gives D1 2

10 40
and

3 3
D

EI EI

- -
= =

The end moments are

 

2 10
20 0 18.33 kN.m

4 3
AB

EI
M

EI

Ê ˆ
= + + - = +Á ˜Ë ¯

 

2 10
20 2 0 23.33 kN.m

4 3
BA

EI
M

EI

Ê ˆ
= - + - ¥ - + = -Á ˜Ë ¯

 

2 2 10 40
30 23.33 kN.m

6 3

Ê ˆ- ¥
= + + + = +Á ˜Ë ¯BC

EI
M

EI EI

 

2 40 10
30 2 40.0 kN.m

6 3 3
CB

EI
M

EI EI

Ê ˆ
= - + - ¥ + = -Á ˜Ë ¯

(b) The settlement of support B causes fi xed end moments. The fi xed end 

moments are

 

200 100 10
6 75.0 kN.m

4 4 1000
AB BAFEM FEM

¥
= = ¥ ¥ = +

¥

 

200 100 10
6 33.33 kN.m

6 6 1000
BC CBFEM FEM

¥
= = - ¥ ¥ = -

¥
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D1= 1

B C
D

A

A

D1= 0 D2= 1

D2= 0

40 kN

10 kN/m

20 kN

4 m 6 m 2

(a)
2

1

(b)

(c)

(d)

Fig.18.4

The restraining forces at the joints are

 

10 75 33.33 51.67
{ }

10 33.33 23.33

+ - =Ï ¸
= Ì ˝- = -Ó ˛

P

The stiffness matrix [K] and the inverse [K]–1 remains the same

Hence 
2 1 51.671

[ ]
1 5 27.333EI

- -È ˘ Ï ¸
= Ì ˝Í ˙- +Î ˚ Ó ˛

D

This gives    1 2

42.22 56.11
andD D

EI EI
= - = +

The resulting fi nal moments are

 

2 42.22
20 75 0 73.89 kN.m

4
AB

EI
M

EI

Ê ˆ= + + + - =Á ˜Ë ¯

 

2 42.22
20 75 2 0 12.78 kN.m

4
BA

EI
M

EI

Ê ˆ= - + + - ¥ + =Á ˜Ë ¯

 

2 42.22 56.11
30 33.33 2 12.78 kN.m

6
BC

EI
M

EI EI

Ê ˆ= + - + - ¥ + =Á ˜Ë ¯

 

2 2 56.11 42.22
30 33.33 40 kN.m

6
CB

EI
M

EI EI

¥Ê ˆ= - - + - = -Á ˜Ë ¯

Example 18.5 
Using the stiffness method of analysis obtain the 

moments at the ends of members for the portal frame 

shown in Fig. 18.5.
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A

B
C

D

EI = 3

EI = 1

D1= 1 D2= 040 kN/m

EI = 1 3
 m

6 m

(a) (b)

Fig. 18.5

The frame undergoes rotations at B and C without translation due to symmetry 

of frame and loading.

The degree of kinematic indeterminacy is two. The coordinates at B and C are 

denoted as 1 and 2.

The elements in the fi rst column of the stiffness matrix [K] are obtained by 

setting D1 = 1 and D2 = 0 and the second column by setting D1 = 0 and D2 = 1.

  11

4 4 3 10

3 6 3

EI EI
k EI

¥
= + =

  21

2 3

6

EI
k EI

¥
= =

  k12 = k21 = EI

and  k22 = k11 = 
10

3
 EI

The restraining forces required to prevent rotations at B and C are

 

120 kN.m
{ }

120 kN.m

+Ï ¸
= Ì ˝-Ó ˛

P

The stiffness matrix for the coordinates is

 

10 3
[ ]

3 103

EI È ˘
= Í ˙

Î ˚
K

 
1 10 33

[ ]
3 1091EI

- -È ˘
= Í ˙-Î ˚

K

The displacements are

 

10 3 1203
{ }

3 10 12091EI

- -È ˘ Ï ¸
= Ì ˝Í ˙- +Î ˚ Ó ˛

D

which gives 
1

51.43
D

EI

-
=

and 2

51.43
=D

EI
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As could be expected the rotation values are the same but opposite in 

direction.

The moments at the ends of members using slope defl ection equations are,

 

2 51.43
0 0 34.29 kN.m

3
AB

EI
M

EI

Ê ˆ= + - = -Á ˜Ë ¯

 

2 ( 51.43)
0 2 0 68.58 kN.m

3
BA

EI
M

EI

-Ê ˆ= + + = -Á ˜Ë ¯

 

2 3 ( 51.43) 51.43
120 2 68.57 kN.m

6 6
BC

EI
M

EI EI

Ï ¸¥ -
= + + + =Ì ˝

Ó ˛

 

2 3 2 51.43 51.43
120 68.5 kN.m

6
CB

EI
M

EI EI

¥ ¥Ï ¸= - + - = -Ì ˝
Ó ˛

Example 18.6 
Using the displacement method, analyse the frame 

shown in Fig. 18.6 for end moments of members AB 

and BC.

The kinematic indeterminancy of the frame is two. The frame undergoes 

independent rotations at B and C. The displacements are denoted as D1 and D2 at 

coordinates 1 and 2 as indicated in Fig. 18.7b. The joint loads are:

 

7.5
{ }

7.5

Ï ¸
= Ì ˝-Ó ˛

P

A

B
C

A

B

C

A

B

C

D1= 0
D2= 1

D2= 1

D1= 1
D2= 0

D1= 1

(a) (b)

(c) (d)

3
 m

3 m

1 2

10 kN/m

Fig. 18.6

The elements of the stiffness matrix are obtained by setting D1 = 1 and D2 = 

0 and, D1 = 0 and D2 = 1 in turn and determining the forces required to hold the 

structure in the displaced position as shown in Fig. 18.6c and d.
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The elements of the stiffness matrix are:

 11 21

4 4 8 2

3 3 3 3
= + = =

EI EI EI
k EI k

 
21 22

2 4

3 3
= =

EI EI
k k

The stiffness matrix

 

8 2
[ ]

2 43

EI È ˘
= Í ˙

Î ˚
K

 

1 4 23
[ ]

2 828EI

- -È ˘
= Í ˙-Î ˚

K

\ {D} = [K]–1{–P}
4 2 7.53

2 8 7.528EI

- -È ˘ Ï ¸
= Ì ˝Í ˙- +Î ˚ Ó ˛

 

1

2

4.82

8.04

D
EI

D
EI

= -

= +

The moments at the ends of the members are obtained using slope defl ection 

equations.

 

2 4.82
0 0 3.21 kN.m

3

2 2( 4.82)
0 0 6.43 kN.m

3

AB

BA

EI
M

EI

EI
M

EI

Ê ˆ= + - = -Á ˜Ë ¯

-Ê ˆ= + + = -Á ˜Ë ¯

 

2 ( 4.82) 8.04
7.5 2 6.43

3

2 (8.04) 4.82
7.5 2 0

3

BC

CB

EI
M

EI EI

EI
M

EI EI

-Ï ¸= + + + =Ì ˝
Ó ˛
Ï ¸= - + - =Ì ˝
Ó ˛

Example 18.7 
Using the stiffness method, analyse for end moments of 

the frame in Fig. 18.7 which is same as the one in 

Example 11.3.

The structure is kinematically indeterminate by two degrees. The rotations at 

B and C are denoted by D1 and D2 respectively.

The fi xed end moments and hence the joint loads are shown in Fig. 18.7b.
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CA

B

D

CA

B

D

A

B

C

D

A
B

D

D1= 0 D2= 1
D2= 0

D1= 1

40 kN

20 kN/m
2 m

4 m

20 kN

4 m 2 m

2 m

1 2

(a) (b)

(c) (d)

Fig. 18.7

The load vector is

 

50

{ } 3

20

Ï ¸-Ô Ô= Ì ˝
Ô Ô-Ó ˛

P

The elements of the stiffness matrix are 

  11

4 4 4 12EI EI EI EI
k

L L L L
= + + =

  21

2EI
k

L
=

  12

2EI
k

L
=

  22

4EI
k

L
=

The stiffness matrix,

  

6 12
[ ]

1 2

EI

L

È ˘
= Í ˙

Î ˚
K

  

1 2 1
[ ]

1 622

L

EI

- -È ˘
= Í ˙-Î ˚

K
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50
2 1

{ } 3
1 622

20

L

EI

Ï ¸- +È ˘ Ô Ô= Ì ˝Í ˙-Î ˚ Ô Ô+Ó ˛

D

  1

2.42
D

EI
=

  2

18.79
D

EI
=

The moments at the ends of members are obtained by using slope defl ection 

equations.

 

80 2 2.42
0 27.88 kN.m

3 4
AB

EI
M

EI

+ Ê ˆ= + + =Á ˜Ë ¯

 

80 2 2 2.42
0 24.25 kN.m

3 4
BA

EI
M

EI

- ¥Ê ˆ= + + = -Á ˜Ë ¯

 

2 2 2.42 18.79
20 31.80 kN.m

4
BC

EI
M

EI EI

¥Ê ˆ= + + + =Á ˜Ë ¯

 

2 2 18.79 2.42
20 0 kN.m

4
CB

EI
M

EI EI

¥Ê ˆ= - + + =Á ˜Ë ¯

 

2 2 2.42
10 0 7.58 kN.m

4
BD

EI
M

EI

¥Ê ˆ= - + + = -Á ˜Ë ¯

 

2 2.42
10 0 11.21 kN.m

4
DB

EI
M

EI

Ê ˆ= + + + =Á ˜Ë ¯

The results tally with the values obtained by the slope defl ection method.

Example 18.8 
Using the stiffness method of analysis, determine the 

moments at the ends of members for the frame as in 

Example 12.7.

Neglecting axial deformations, the structure is kinematically indeterminate by 

three degrees. The restrained structure and the coordinates are indicated in Fig. 

18.8b. It may be noted that the lateral translation at 1 is same for joints 2 and 3, 

as the axial strain in member 2-3 is neglected.

The restraining forces are

 

30.00

{ } 23.23 kN.m

53.33

-Ï ¸
Ô Ô= +Ì ˝
Ô Ô-Ó ˛

P

The stiffness matrix is generated by giving unit displacement at each 

coordinate one by one and determining the forces required to hold the structure 
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with zero displacements at the other coordinates as shown in Fig. 18.8c, d and e. 

The elements as shown in Fig. 18.8c, d and e of the stiffness matrix are:

11 22 333 3

12 12 91 4 4 4 4 7
; 2 ;

144 4 4 4 3 34 3

EI EI EI EI EI EI EI
k k EI k EI= + = = + = = + =

21 32 132 2 3

6 3 2 3 12 4
; ;

8 8 94 4 3

EI EI EI
k EI k EI k EI= = = = = =

31 32 232

6 2 2 2
; ;

3 4 2 4 23

EI EI EI EI EI
k EI k k= = = = = =

Fig. 18.8

The matrix

 

91 54 64

[ ] 54 288 72
144

96 72 336

EI
È ˘
Í ˙= Í ˙
Í ˙Î ˚

K
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3
1

16.80 2.06 4.36
144 10

[ ] 2.06 3.92 0.25

4.36 0.25 4.28
EI

-
-

- -È ˘
¥ Í ˙= - -Í ˙

Í ˙- - -Î ˚

K

The displacements vector

 {D} = [K]–1 {–P}

or { }
3

16.80 2.06 4.36 30.00
144 10

2.06 3.92 0.25 23.33

4.36 0.25 4.28 53.33

- - - +È ˘ È ˘
¥ Í ˙ Í ˙= - - -Í ˙ Í ˙

Í ˙ Í ˙- - +Î ˚ Î ˚
EI

D

Solving

  

1

2

3

46.01

23.98

14.87

D
EI

D
EI

D
EI

=

-
=

=

The moments at the ends of members are obtained using the slope defl ection 

equations.

 
12

2 23.98 3 46.01
30 0 35.26 kN.m

4 4

EI
M

EI EI

Ê ˆ¥
= + + - + = +Á ˜Ë ¯

 21

2 2 23.98 3 46.01
30 36.73 kN.m

4 4

EI
M

EI EI

Ê ˆ- ¥ ¥
= - + + = -Á ˜Ë ¯

 
23

2 23.98 14.87
53.33 2 36.79 kN.m

4 4

EI
M

EI EI

Ê ˆ
= + + - ¥ + = +Á ˜Ë ¯

 32

2 14.87 23.98
53.33 2 50.45 kN.m

4

EI
M

EI EI

Ê ˆ= - + ¥ - = +Á ˜Ë ¯

 34

2 14.87 3 46.01
0 2 50.50 kN.m

3

EI
M

EI EI

¥Ê ˆ= + ¥ + = +Á ˜Ë ¯

 
43

2 14.87 3 46.01
0 40.58 kN.m

3

EI
M

EI EI

¥Ê ˆ= + + =Á ˜Ë ¯

These values tally with the previous values except for the minor rounding-off 

errors.

It may be mentioned that the lateral translations, though positive, give rotations 

which are negative for substitution in slope defl ection equations.
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18.2   DEVELOPMENT OF STIFFNESS MATRIX FOR

    A PIN-JOINTED STRUCTURE

Consider a pin-jointed structure as in Fig. 18.9a. The structure is kinematically 

indeterminate by two degrees as the displacement at A will have two components 

along X and Y directions. To prevent joint displacement at A, a restraining force 

equal to but opposite to external force P has to be applied. The components of the 

restraining force along the coordinate axes are

Fig. 18.9

 P1 = –P cos q

 P2 = –P sin q

The negative sign is due to the force acting in a direction opposite to the 

coordinates. At this point there will be no internal forces in the members.

Now let us determine the forces required in the members to hold the structure 

in displaced position such that D1 = 1 and D2 = 0 as in Fig. 18.9b.

The member ‘i’ as shown in Fig. 18.9c shortens by an amount cos qi and 

produces a compressive force ai Ei cos qi/li, in which ai, li and Ei refer to area of 

cross-section, length and Young’s modulus for member ‘i’ The components of 

this force along X and Y directions are,
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2
1cos and sin cosi i i i

i i

i i

a E a E

l l
q q q

The forces required to hold all the bars in the displaced position are, 

  2
11

1

cos
m

i i
i

i i

a E
k

l
q

=
= Â  (18.4a) 

And  
21

1

sin cos
m

i i
i i

i i

a E
k

l
q q

=
= Â   (18.4b)

By a similar argument, the forces required to hold the joint in the displaced 

position such that D1 = 0 and D2 = 1 as in Fig. 18.19a are

  
12

1

sin cos
m

i i
i i

i i

a E
k

l
q q

=

Ê ˆ
= Á ˜Ë ¯

Â

  

2
22 1

1

sin
m

i i

i i

a E
k

l
q

=

Ê ˆ
= Á ˜Ë ¯

Â

In the actual structure the joint A undergoes translations D1 along X direction and 

D2 along Y direction under the given loading without any restraining forces. The 

statical relationship can be expressed as

  P1 + k11 D1 + k12 D2 = 0

  P2 + k2l D1 + k22 D2 = 0

Expressed in matrix form

 {P} + [K] {D} = 0 

The unknown displacements are determined from

 {D} = [K]–1 {–P}

18.2.1 Member Forces

Consider a typical member AB connecting joints A and B in a plane truss. The 

force in member AB can be calculated if the displacements at the two ends of the 

member are known.

The components of the displacements at A along X and Y coordinates are DAX 

and DAY respectively. Similarly DBX and DBY are the displacement components 

along X and Y respectively at B. It is clear that the shortening of the member at 

A due to joint displacement at A is (DAX cos qAB + DAY sin qAB). Similarly the 

elongation of the member at joint B due to joint displacement at B is (DRX COS 

qAB + DBY sin qAB)

Therefore, the net elongation of member AB is

  {DBX – DAX) cos qAB + (DBY – DAY) sin qAB} (18.5)
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Fig. 18.10

Consequently the force in member AB is given by

 { }( ) cos ( ) sinAB BX AX AB BY AY AB

AE
P D D D S

L
q q= - + -  (18.6)

If the member is reckoned as BA instead of AB, then the inclination of the member 

should be measured at end B and the equation for the force in member BA can 

be written as

 
{ }( ) cos ( ) sinBA BX AX BA AY BY BA

AE
P D D D S

L
q q= - + -

The angle of inclination of the member at any end is always measured counter-

clockwise from the positive direction of the X axis. Also it may be remembered 

that the force in members PAB and PBA are found to be equal since the member 

carries the same force from one joint to the other.

A few examples will make the procedure clear.

Example 18.9 
Using the stiffness method determine the displacements 

at the joint B of a pin-jointed frame shown in Fig. 

18.11a. Also calculate the forces in members AB and BC due to the given loading. 

The values of area of cross-section are indicated. Take E = 2 ¥ 105 N/mm2

Joint B has two degrees of freedom; displacements in the direction of the 

coordinates X and Y.

Let D1 and D2 be the displacements in the direction of the coordinates 1 and 2 

due to applied load. The restraining forces are:

 P1 = 0 and P2 = + 10 kN.

The stiffness matrix with reference to the chosen coordinates may be developed 

by diving a unit displacement at coordinates 1 and 2 sucessively. The necessary 

computations for the evaluation of stiffness elements have been listed in the table 

that follows.
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A

C

B

A

X

Y

A

B

C

A = 10 10 mm¥ 3 2

A = 20 10 mm¥ 3 2

10 kN

4 m

5
m

3
m

(a) (b)

1

2

Fig. 18.11

Table 18.1

Member
AE

L
q

cos 

q

sin 

q
AE

L
 cos2

q
AE

L
sin q2 

AE

L
 sin q cos q

1 2 3 4 5 6 7 8

BA 1 ¥ 106 180 –1.0 0 1 ¥ 106 0 0

BC 0.4 ¥ 106 143.3 –0.8 0.6 0.256 ¥ 106 0.144 ¥ 106 –0.192 ¥ 106

S 1.256 ¥ 106 0.144 ¥ 106 –0.192 ¥ 106

From the Table k11 = 1.256 ¥ 106

 k21 = –0.192 ¥ 106

 k22 = 0.144 ¥ 106

The stiffness matrix

 
3 1256 192

[ ] 10
192 144

-È ˘
= Í ˙-Î ˚

K

 
1

6

144 1921
[ ]

192 1256144 10

- +È ˘
= Í ˙+¥ Î ˚

K

\ D 6 3

0144 1921

192 1256144 10 10 10

Ï ¸È ˘ Ô Ô= Ì ˝Í ˙¥ - ¥Ô ÔÎ ˚ Ó ˛
 

Solving,

 D1 = 13.33 ¥ 10–3

and D2 = –87.22 ¥ 10–3

The member forces may be determined using Eqns 18.5 and 18.6. Force in 

member AB
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 1 2{( 0) cos ( 0) sin }AB AB AB

AE
P D D

L
q q= - + -

       = 1 ¥ 106 {(–13.33 ¥ 10–3) (1) + (–87.22 ¥ 10-3) (0)}

        = –13.33 ¥ 103 N = –13.33 kN.

(Minus sign indicates compression) Force in member BC

   PBC = 
AE

L
{(0 + 13.33 ¥ 10–3) (–0.8) + (0. + 87.22 ¥ 10–3) (0.6)}

  = 0.4 ¥ 106 (–10.664 ¥ 10–3 + 52.33 ¥ 10–3)

  = +16.66 ¥ 103 N = + 16.66 kN.

Example 18.10 
Using the stiffness matrix method determine the 

displacements of the joint A of the pin-jointed plane 

frame shown in Fig. 18.12. Also determine the bar forces for the given loading.

The degree of freedom or the kinematic indeterminancy is two as the joint A 

can undergo displacements in X and Y directions.

Let the coordinates be as shown in Fig. 18.12b to determine displacements 

D1 and D2 at joint A. The necessary computations for the evaluation of stiffness 

elements have been shown in the Table that follows.

Table 18.2

Member
AE

L
q cos q sin q AE

L
cos2

q
AE

L
sin2

q
AE

L
sin q cos q 

1 2 3 4 5 6 7 8

AF
1.414

AE

L
45° 0.707 0.707

0.3535

AE

L 0.3535 

AE

L 0.3535 
AE

L

AE
1.154

AE

L
60° 0.500 0.866

0.2166 
AE

L
0.6500

AE

L
0.3752 

AE

L

AD
AE

L
90° 0 1.000 0 1.0000

AE

L

0

AC
1.154

AE

L
120° –0.500 0.866 0.2166

AE

L
0.6500

AE

L -0.3752

AE

L

AB
1.1414

AE

L
135° –0.707 0.707 0.3535

AE

L
0.3535

AE

L
0.3752

AE

L

S 1.1402
AE

L
3.007

AE

L

0
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Y

Y

60°
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90°
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2

1

100 kN

(a) (b)

Fig. 18.12

The Elements of the matrix [K] are

 k11 = 1.1402 
AE

L

 k21 = 0

 k22 = 3.007 
AE

L

Matrix  
1.1402 0

[ ]
0 3.007

AE

L

È ˘
= Í ˙

Î ˚
K

  1 3.0070 0
[ ]

0 1.14023.4286

L

AE

- È ˘
= Í ˙

Î ˚
K

The restraining forces

  
{ } 50.0 kN

86.6 kN

-Ï ¸
= Ì ˝+Ó ˛

P

  { } 3.0070 0 50.0

0 1.1402 86.63.4286

L

AE

È ˘ Ï ¸
= Ì ˝Í ˙ +Î ˚ Ó ˛

D

Soving

 D1 = +43.85 
L

AE

 D2 = –28.8 
L

AE
The member forces may be obtained using Eqns 18.5 and 18.6.

   
1 2{(0 ) cos (0 ) sin }

1.414
AF

AE
P D D

L
q q= - + -

    

(0.707)
(043.85) 28,8 (0.707) 7.525 kN.

1.414

AE L L

L AE AE

Ï ¸= - = -Ì ˝
Ó ˛
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(0 43.85) (0.5) (0 28.8) (0.866) 2.61 kN.
1.154

AE

AE L L
P

L AE AE

Ï ¸= - + = +Ì ˝
Ó ˛

(0 43.85) (0) (0 28.8) (1) 28.80 kN.AD

AE L L
P

L AE AE

Ï ¸= - + + = +Ì ˝
Ó ˛

(0 43.85) ( 0.5) (0 28.8) (0.866) 40.61 kN.
1.541

AC

AE L L
P

L AE AE

Ï ¸= - - + + = +Ì ˝
Ó ˛

(0 43.85) ( 0.707) (0 28.8) (0.707) 36.33 kN.
1.414

AB

AE L L
P

L AE AE

Ï ¸= - - + + = +Ì ˝
Ó ˛

Example 18.11 
Using the stiffness method determine the displacements 

at joint A and bar forces under loads P1 and P2 for the 

pin-jointed frame shown in Fig. 18.13. AE is the same for all members.

The stiffness elements have been worked out in Table 18.3.

Table 18.3

Mem-

ber

AE

L
q cos q sin q AE

L
cos2

q
AE

L
sin2

q
AE

L
sin q cos q

1 2 3 4 5 6 7 8

AB 0.707
AE

L

135° –0.707 0.707 0.3534
AE

L
0.3534

AE

L
–0.3534

AE

L

AC
AE

L
180° –1.00 0 1.000

AE

L

0 0

AD 0.707 AE

L

225° –0.700 –0.700 0.3534
AE

L
0.3534

AE

L
+0.3534

AE

L

S 1.7068
AE

L
0.7068

AE

L

0

The stiffness elements are

 11 1.7068
AE

k
L

=

 21 0k =

 
22 0.7068

AE
k

L
=
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Fig. 18.13

 

1.7068 0
[ ]

0 0.7068

AE

L

È ˘
= Í ˙

Î ˚
K

 

1 0.7068 0
[ ]

0 1.70681.2071

L

AE

- È ˘
= Í ˙

Î ˚
K

 

1

2

0.707 01
[ ]

0 1.7071.2071

P

PAE

Ï ¸È ˘
= Ì ˝Í ˙ -Î ˚ Ó ˛

D

 D1 = 0.5857 P1 
L

AE
 

 D2 = –1.414 P2 
L

AE
The bar forces are

1 20 0.5857 ( 0.707) 0 1.414 0.707
1.414

AB

AE L L
P P P

L AE AE

Ï ¸Ê ˆ Ê ˆ= - - + +Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ó ˛

    = + 0.2929 P1 + 0.707 P2

1 2 10 0.5857 ( 1.0) 0 1.414 (0) 0.5857AC

AE L L
P P P P

L AE AE

Ï ¸Ê ˆ Ê ˆ= - - + + = +Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ó ˛

1 20 1.414
0 0.5857 (0.707) ( 0.707)

1.414
AD

P L P LAE
P

L AE AE

Ï ¸+Ê ˆ Ê ˆ= - + -Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ó ˛

  = + 0.292 P1 – 0.707 P2

Up to this point, the stiffness matrix [K] has been developed direct for the 

structure at the required coordinates. A few simple examples have been solved 

to bring out the procedure involved. This procedure, however, is not suitable for 

structures having high degree of kinematic indeterminancy and also it does not 

lend itself to computer programming.
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A generalised stiffness method of analysis has been presented in the following 

sections which is suitable for computer programming. A few examples have been 

solved using hand computations to illustrate the steps involved in the process.

18.3  DEVELOPMENT OF METHOD FOR

    A STRUCTURE HAVING FORCES AT ALL

    DEGREES OF FREEDOM

If the displacements at all the degrees of freedom are known, then the deformation 

of the structure is completely defi ned. It may be noted here that the stiffness 

matrix to be inverted is of order n ¥ n, where n represents the degree of freedom 

of the structure. If forces exist at all the degrees of freedom (n in number), 

the structure is said to be kinematically indeterminate by n degrees and the 

kinematic defi ciency is zero. However, if forces are applied at m (m < n) degrees 

of freedom only, the displacements associated with the applied loads only cannot 

fully describe the deformation of the structure. Such a structure is kinematically 

defi cient by (n – m) degrees.

We shall fi rst develop the method for a structure having forces applied at all 

the degrees of freedom and next for a general case considering that forces are 

only applied at some of the degrees of freedom.

If the forces exist at all the degrees of freedom, the kinematic defi ciency is 

zero. The displacements associated with the applied forces completely describe 

the deformation of the structure.

We can proceed with the analysis by defi ning the system coordinates at 

all the nodal points and numbering them: fi rst, the nodal points that undergo 

displacements, and then, the nodal points that are restrained from undergoing 

displacements. We must ensure that the displacements are independent and hence 

corresponding stiffness matrix K exists so that we can write Eq. 18.1.

Next, we select elements so that the ends of the elements coincide with system 

coordinates. We fi x for each element s, element coordinats for which a stiffness 

matrix exists, so that we can write

 ps = ks ds

or p = k d

for all unassembled elements.

We next generate displacement transformation matrix B using the procedure 

of Section 16.2 which ensures element-structure compatibility, that is

 d = BD

Structure stiffness matrix K is synthesised from the element stiffness matrices 

using Eq. 16.17

 K = BT
 k B

From the known stiffness matrix, the nodal displacements are obtained from 

Eq. 18.2. From the known nodal displacements, we can write the displacements 

of the elements as
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 d = BD

or d = BK
–1 P (18.7)

The internal stresses can be written as

 p = kd

or p = kBD (18.8)

or p = kBK
–1 

P (18.9)

We shall demonstrate the complete procedure in the following simple 

examples.

Example 18.12 
Two loads are applied at joint A of the trussed structure 

shown in Fig. 18.14a. Determine the displacements 

and internal forces of the members of the truss by the stiffness method. The cross-

section is the same for all members.

On inspection, we can notice that the structure has two degrees of freedom. 

These are identifi ed and represented by coordinates 1 and 2. The elements 

are identifi ed and numbered. Transformation matrix B can be constructed by 

imposing unit displacements along coordinates 1 and 2, in turn, and evaluating 

the displacements of elements (see Fig. 18.14a and c). The resulting matrix 

relationship is

 

1

2
1

3
2

4

5

1/ 2 1/ 2

1/2 3/2

0 1

1/2 3/2

1 2 1/ 2

d

d
D

d
D

d

d

È ˘Ï ¸ Í ˙Ô Ô Í ˙Ô Ô Ï ¸Ô Ô Í ˙=Ì ˝ Ì ˝Í ˙ Ó ˛Ô Ô Í ˙-Ô Ô Í ˙
Ô Ô Í ˙Ó ˛ -Î ˚

d B D

Next the stiffness matrix for the structure can be developed using Eq. 16.17.

 K = BT kB

where k is the unassembled stiffnesses of all members. For the truss structure, 

we can write matrix k as

 

1/ 2

3/ 2

1

3/ 2

1/ 2

AE

L

È ˘
Í ˙
Í ˙
Í ˙

= Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

k
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B C D E F
L

A P1

D2

D1

D1 = 1

D2 = 1

(a)
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45° 60° 60°
45°

1.414L

1.154L

1

45° 60°

(b)

(c)

Fig. 18.14  (a) Structure and loading, (b) Unit displacement imposed along coordinate 1,

(c) Unit displacement imposed along coordinate 2

and 

 K = 
1/ 2 1/2 0 1/2 1/2

1/ 2 3/2 1 3/2 1/ 2

È ˘- -
Í ˙

-Í ˙Î ˚

 

1/ 2 1/ 2 1/ 2

3/ 2 1/2 3/2

1 0 1

3/ 2 1/2 3/2

1/ 2 1/ 21/ 2

AE

L

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-Î ˚Î ˚

or

 

1.140 0

0 3.006

AE

L

È ˘
= Í ˙

Î ˚
K

     

1 3.006 0

0 1.1403.83

L

AE

- È ˘
= Í ˙

Î ˚
K
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The external displacements are

 

1

2

3.006 0

0 1.1403.83

PL

PAE

Ï ¸È ˘
= Ì ˝Í ˙

Î ˚ Ó ˛
D

The internal stresses can be evaluated using Eq. 18.8.

 

1/ 2 1/ 2 1/ 2

3/ 2 1/2 3/2

1 0 1

3/ 2 1/2 3/2

1/ 2 1/ 21/ 2

AE

L

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙= Í ˙ Í ˙
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-Î ˚Î ˚

P

 

1

2

3.006 0

0 1.1403.43

PL

PAE

Ï ¸È ˘
Ì ˝Í ˙

Î ˚ Ó ˛

or

 

1 2

1 2

2

1 2

1 2

0.4382 0.1662

0.3795 0.2493

0 0.3324

0.3795 0.2493

0.4389 0.1662

P P

P P

P

P P

P P

+È ˘
Í ˙+Í ˙
Í ˙+=
Í ˙
- +Í ˙

Í ˙- +Î ˚

P

Example 18.13 
Using the stiffness method, calculate the end defl ection 

and rotation of a cantilever beam loaded uniformly as 

shown in Fig. 18.15a. EI is constant.

The structure has two degrees of freedom, one rotation and the other translation 

at the free end.

Displacements transformation matrix B is

 

1
0

4

1
1

4

È ˘-Í ˙
= Í ˙

Í ˙-Í ˙Î ˚

B

Member stiffness matrix k = 
4 2

2 4

EI

L

È ˘
Í ˙
Î ˚

Structure stiffness matrix K is

 K = BT kB
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Z

20 kN
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= – 20 kN

20 kN

13.33 kN.m

13.33 kN.m

10 kN/m

4 m

(a)

(b)

(c) =

2

(d)

1

P1

P2

Fig. 18.15  (a) Cantilever beam and loading, (b) Fixed coordinate state-forces P* at 

coordinates, (c) Forces at coordinates (–P*), (d) Member coordinates

 

3/4 3/2

3/2 44

EI -È ˘
= Í ˙-Î ˚

Then      D = K–1 P

 

4 3/2 20.00 6016 16

3/2 3/4 13.33 203 3EI EI

- -È ˘ Ï ¸ Ï ¸
= =Ì ˝ Ì ˝Í ˙ + -Î ˚ Ó ˛ Ó ˛

The member forces are given by Eq. 18.4

 

2 1 1/4 0 60 5016 4
kN.m

1 2 1/4 1 20 102 3 3

EI

EI

- - +È ˘ È ˘ Ï ¸ Ï ¸
= =Ì ˝ Ì ˝Í ˙ Í ˙- - +Î ˚ Î ˚ Ó ˛ Ó ˛

p

Final internal forces p must include the fi xed end moments shown in Fig. 

18.15b.

or

 

50 40/3 804
kN.m

10 40/3 03

f +Ï ¸ Ï ¸ Ï ¸
= + =Ì ˝ Ì ˝ Ì ˝+ -Ó ˛ Ó ˛ Ó ˛

p

Example 18.14 
Using the stiffness method of analysis, analyse the 

frame of Fig. 18.16a for displacements at the coordinates 

of the structure and the internal forces in the members.

The structure has two degrees of freedom. They are the rotations at coordinates 

1 and 2. The deformations corresponding to these coordinates completely 

describe the defl ected shape of the structure. We choose the element coordinates 
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as shown in Fig. 18.16c. For the element coordinates chosen, the stiffness matrix 

of the elements is

20 kN.m
30 kN.m

L I,

L I, 2

L I,

1

2

3

4

5

6

1

2
3

4

3

2

1

2

1

(a) (b) (c)

Fig. 18.16  (a) Structure and loading, (b) Structure coordinates, (c) Element coordinates

 

4 2

2 4
s

EI

L

È ˘
= Í ˙

Î ˚
k

so that Ps = ks ds

Therefore we can write matrix k, the uncoupled matrix of the structure as

 

4 2

2 4

8 4

4 8

4 2

2 4

EI

L

È ˘
Í ˙
Í ˙
Í ˙

= Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

k

Next, we construct displacement transformation matrix B

 

0 0

1 0

1 0

0 1

0 1

0 0

Ï ¸
Ô Ô
Ô Ô
Ô Ô

= Ì ˝
Ô Ô
Ô Ô
Ô Ô
Ó ˛

B

Structure matrix K is synthesised using Eq. 16.17

 

0 1 1 0 0 0

0 0 0 1 1 0

È ˘
= Í ˙

Î ˚
K
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0 04 2
1 02 4
1 08 4

0 14 8

4 2 0 1

2 4 0 0

EI

L

È ˘È ˘
Í ˙Í ˙
Í ˙Í ˙
Í ˙Í ˙

¥ Í ˙Í ˙
Í ˙Í ˙
Í ˙Í ˙
Í ˙Í ˙
Í ˙Î ˚ Î ˚

This gives

 

12 4

4 12

EI

L

È ˘
= Í ˙

Î ˚
K

or 

 

1 12 4

4 12128

L

EI

- -È ˘
= Í ˙-Î ˚

K

The displacement at the coordinates are

  D = K–1 P

    

12 4 20

4 12 30128

L

EI

-È ˘ Ï ¸
= Ì ˝Í ˙-Î ˚ Ó ˛

  

15/16

35/16

L

EI

Ï ¸
= Ì ˝

Ó ˛
D

We can evaluate the member forces using Eq. 18.8

 

24 8 15

48 16 30

80 16 20 1301 1
kN.m

16 80 30 170128 8

16 48 70

8 24 35

-È ˘ Ï ¸
Í ˙ Ô Ô-Í ˙ Ô Ô
Í ˙ Ô ÔÏ ¸

= =Í ˙ Ì ˝ Ì ˝
Ó ˛Í ˙ Ô Ô

Í ˙ Ô Ô-
Í ˙ Ô Ô

-Í ˙Î ˚ Ó ˛

p

The results satisfy the conditions of equilibrium at the joints where the external 

forces are applied.

Example 18.15 
If the structure of Example 18.14 has applied loads at 

the coordinates as well as along members as shown in 

Fig. 18.17a, establish the displacements at the coordinates and internal stresses 

in members.

The structure coordinates and element coordinates are the same as in the 

previous example.
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Fig. 18.17  (a) Structure and loading, (b) Forces Pf at coordinates, (c) Forces not

at the coordinates, (d) Fixed coordinate state, (e) Forces at the coordinates (–Pf)

It is convenient to separate the forces at the joints and forces not at the joints 

as in Fig. 18.176 and c respectively. Fixed coordinate forces Po are computed 

from the corresponding po
s at the element coordinates using the Appendix table. 

From Eq, 16.26, we can write

 P
o = BT po

In the present example, we have

 

3
1

2 4

16 32 5 24
, ,

16 32 246

o o o

o o o

p p p

p p p

Ï ¸ Ï ¸ Ï ¸+ + -Ï ¸ Ï ¸ Ï ¸Ô Ô Ô Ô Ô Ô= = =Ì ˝ Ì ˝ Ì ˝ Ì ˝ Ì ˝ Ì ˝- - +Ó ˛ Ó ˛ Ó ˛Ô ÔÔ Ô Ô Ô Ó ˛Ó ˛ Ó ˛

or 

16

16

32

32

24

24

o

Ï ¸
Ô Ô-Ô Ô
Ô Ô+

= Ì ˝-Ô Ô
Ô Ô-
Ô Ô

+Ó ˛

p

Matrix B is the same as in the earlier example. Performing the operation of Eq. 

16.26



700  Basic Structural Analysis

 P = BT po

we have

 

16

56

o Ï ¸
= Ì ˝-Ó ˛

p

The results could have also been obtained by adding algebraically the fi xed end 

moments at coordinates 1 and 2. The superposition of the forces on the coordinate 

points give

 P = Pf – Po (18.10)

        

20 16 4

30 56 86

Ï ¸ Ï ¸ Ï ¸
= - =Ì ˝ Ì ˝ Ì ˝-Ó ˛ Ó ˛ Ó ˛

The displacements at the system coordinates are computed using

 D = K–1 P

Using the results from the previous example for K–1, we have

 

12 4 4 371

4 12 86 127128 4

L

EI EI

-È ˘ Ï ¸ Ï ¸
= =Ì ˝ Ì ˝Í ˙- -Î ˚ Ó ˛ Ó ˛

D

Again, using Eq. 16.3 and substituting for D form Eq. 18.2 we have

 d = BK
–1 (pf – Po) (18.11)

and

 p = kd = kBK
–1 (Pf – Po) (18.12)

The superposition of forces and displacements in Figs. 18.17b and e (forces at 

coordinates + forces opposite to the fi xed coordinate state) give the corresponding 

forces and displacements at any point on the structure as desired. Therefore, the 

net forces at the element coordinates are

 P
f = po + kBK

–1 (Pf – Po) (18.13)

In the example, we have

 

16 24 8 96

16 48 16 404

32 80 16 4 7241 1
kN.m

32 16 80 86 356128 16

24 16 48 124

24 8 24 630

f

+ -Ï ¸ È ˘ Ï ¸
Í ˙Ô Ô Ô Ô- - -Í ˙Ô Ô Ô Ô
Í ˙Ô Ô Ô Ô+ Ï ¸

= + =Í ˙Ì ˝ Ì ˝ Ì ˝- Ó ˛Í ˙Ô Ô Ô Ô
Í ˙Ô Ô Ô Ô- -
Í ˙Ô Ô Ô Ô

+ -Í ˙Î ˚Ó ˛ Ó ˛

p

These results satisfy the conditions of equilibrium at the structure coordinates 

1 and 2.

With forces pf known, each element can be analysed as a statically determinate 

member to compute the displacements and internal forces at any point in the 

structure.
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Fig. 18.18  Free-body diagrams of elements

The free-body diagrams shown in Fig. 18.18 give an idea about the forces.

18.3.1 Computer Programme for the Stiffness Analysis of 

Kinematically Determinate System

The analysis of kinematically determinate structures by the stiffness method has 

been reduced to a set of matrix opeations. The fl ow chart is shown in Fig. 18.19. 

The input data consists of the matrices [B],{k}, and {P}. The output consists of 

the matrices [K], [F], {D}, and {p}.

18.4  DEVELOPMENT OF METHOD FOR

    A GENERAL CASE

Generally in a structure, every node will have a force and a corresponding 

displacement, one of which is known. For example, specifi ed loads are applied 

at all degrees of freedom (some of them can be zero), hence the forces are known 

and the displacements are unknown; on the other hand, at the support points 

displacements are zero or specifi ed but the reactive forces are unknown. We can 

collect n coordinates with unknown displacements and known forces (loads) and 

the remaining m coordinates corresponding to known displacements {at supports) 

and unknown forces (reactions) and partition the matrix equation as

  
11 12

1 1

2 21 22 2

1 2
Known Unknown displacement
forces (loads) at load point

1

0

Unknown Known (zero or specified)
forces (reactions) displacements at supports

n n n m

m n m m

K K

K K

¥ ¥

¥ ¥

È ˘
Ï ¸ Ï ¸Í ˙Ô Ô Ô Ô=Ì ˝ Ì ˝Í ˙
Ô Ô Ô ÔÓ ˛ Ó ˛Í ˙

Î ˚

P D

P D

 (18.14)
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Fig. 18.19  Flow chart for stiffness analysis of kinematically determinate structure

Writing Equation 18.14 in the expanded form

 P1 = K11 D1 + K12 D2 (18.15)

and P2 = K21 D1 + K22 D2 (18.16)

The solution is obtained in two steps. First n equations are solved for unknown 

displacements D1. From Eq 18.15,

 D1 = K–1
11 (P1 – K12 D2)  (18.17)
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It may be noted that K11 has to be inverted corresponding to a solution of n 

simultaneous equations.

Displacements D1 thus found are then substituted in Eq. 18.16 to solve for the 

unknown forces.

We can also profi tably utilise the technique of partitioning the stiffness 

matrix to obtain a reduced stiffness matrix relating the forces and displacements 

corresponding to the applied loads. For example, in a structure having n degrees 

of kinematic indeterminancy and forces (loads) applied at m of the coordinates 

only, we can collect m coordinates at which the loads are applied and the 

remaining (n – m) coordinates at which the forces (loads) are zero, and partition 

the matrix equations as

 

Displacements 
Applied forces 11 11 co
known (load) ( )1 1

Displacements corresponding Applied forces 21 22 2
to zero applied forces (zero) ( )( ) ( )( )
(unknown)

m m m n m

n m m n m n m

¥ ¥ -

- - -

È ˘
Ï ¸ Ï ¸Í ˙Ô Ô Ô Ô=Ì ˝ Ì ˝Í ˙
Ô Ô Ô ÔÓ ˛ Ó ˛Í ˙

Î ˚

K K
P D

P K K D

rresponding to
applied forces (unknown)

 (18.18)

 

Writing Equation 18.18 in the expanded form

 P1 = K11D1 + K12D2 (18.19)

and 0 = K21 D1 + K22 D2 (18.20)

As a fi rst step we evaluate D2 by pre-multiplying Eq. 18.20 by K–1
22 

 D2 = – K–1
22 K21 D1 (18.21)

Substituting for D2 in Equation 18.19 and rearranging, we get

 P1 = (K11 – K12K
–1

22 K21)D1 (18.22)

or P1 = K1 D1 (18.23)

where

 K1 = K11 – K12K
–1

22 K21 (18.24)

K1 is known as reduced stiffness matrix corresponding to the coordinates at 

which the applied forces exist.

It may be noted here that the matrix to be inverted is K22, the order of which 

corresponds to the degree of kinematic defi ciency of the structure.

With these basic concepts, the steps necessary for the formulation of the 

stiffness method are as follows.

 1. Identify the nodal points (joints) and number them, fi rst the joints that 

undergo displacements, and then the joints that are restrained from 

undergoing displacements.

 2. Select elements so that the ends of the elements coincide with the 

structure coordinates.

 3. Write the stiffness matrix for each element using element coordinates to 

only account for the desired energy forms.

 4. Generate transformation matrix B using the procedure of Section 16.2, 

which ensures element-structure compatibility.
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 5. Synthesise structure stiffness matrix K using Eq. 16.17.

 6. Write the matrix equation in the partitioned form (Eq. 18.14 or 18.18) and 

solve for unknown displacements D1 or D2 and unknown reactions P2.

 7. The element displacements can be written in the form

 d = BD

  and the element (internal) forces p = kd.

This concludes the analysis by the stiffness method. We shall demonstrate the 

complete procedure in terms of simple examples.

Example 18.16 
Figure 18.20a shows a frame subjected to lateral force 

P1. Find reduced stiffness matrix K1 and corresponding 

displacements D1 and the internal stresses and displacements in elements.

Neglecting axial deformations the structure has three degrees of freedom (two 

rotations and one translation) while external force P1 is applied at coordinate 

1 only. Therefore, the kinematic defi ciency is two. The element coordinates 

are chosen as indicated in Fig. 18.20c. Transformation matrix B which ensures 

compatibility by relating element displacements d to system displacements D is 

obtained from Eq. 16.3

 d = BD

L = 3 m

I

2I

I

(a) (b)

(c)

1

2 3

4

2

L = 6 m

L = 3 m1 3

2

1 3

1

2

3

4 5 6

7 8

9

10

11

12

P1

Fig. 18.20  (a) Frame and loading, (b) System coordinates, (c) Element coordinates

To distinguish between system coordinates where the applied forces are zero, we 

designate the displacements at these coordinates as D2. The displacements at the 

coordinates where forces P1 are applied are denoted by D1. Using this notation, 

Eq. 16.3 can be written in the partitioned form as
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 [ ] 1

1 2
2

d
Ï ¸Ô Ô= Ì ˝
Ô ÔÓ ˛

D
B B

D
 (18.25)

At this stage it may be noted that displacements D1 are not known. Writing Eq. 

18.25 in expanded form

 d = B1D1 + B2D2 (18.26)

We construct the transformation matrix B and write 

 

1

2

3

4

5
11

6
21

7
22

8

9

10

11

12

0 0 0

0 1 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 1

0 0 0

1 0 0

0 0 0

d

d

d

d

d

d

d

d

d

d

d

d

Ï ¸ È ˘
Í ˙Ô Ô
Í ˙Ô Ô
Í ˙Ô Ô
Í ˙Ô Ô -Í ˙Ô Ô
Í ˙Ô Ô
Í ˙ Ï ¸Ô Ô

Ô Ô Ô ÔÍ ˙=Ì ˝ Ì ˝Í ˙
Ô Ô Ô ÔÍ ˙ Ó ˛Ô Ô Í ˙
Ô Ô Í ˙
Ô Ô Í ˙
Ô Ô Í ˙
Ô Ô Í ˙
Ô Ô Í ˙
Ô Ô Í ˙Î ˚Ó ˛

≠ ≠

D

D

D

 (18.27)

To synthesise stiffness matrix [K] from the stiffness matrices of elements, we 

use Eq. 16.17

 K = BT kB

The equation can be written in the partitioned form as

 
11 12 1

1 2
21 22 2

T

T

È ˘È ˘
Í ˙=Í ˙
Í ˙Í ˙Î ˚ Î ˚

K K B
kB B

K K B
 (18.28)

Expanding the right hand side of Eq. 18.28,

 

11 1 1

12 1 2

21 2 1

22 2 2

T

T

T

T

¸=
Ô

= Ô
˝

= Ô
Ô= ˛

K B kB

K B kB

K B kB

K B kB

 (18.29)

For the system coordinates we write the force displacement relationship in the 

partitioned form
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1 11 12 1

21 22 2

Ï ¸ È ˘ Ï ¸Ô Ô Ô Ô= Í ˙Ì ˝ Ì ˝
Í ˙Ô Ô Ô ÔÎ ˚Ó ˛ Ó ˛

P K K D

0 K K D
 (18.30)

This is the same as Eq. 18.18 and all the relationships developed there from can 

be made use of.

Thus,

 D2 = – K22 K21 D1 (18.31)

and the reduced stiffness matrix is

 K1 = K11 – K12 K22 K21 (18.32)

We can write

 P1 = K1 D1 (18.33)

or

 D1 = K1
–1 P1 (18.34)

The element displacements can be written from Eq. 18.26 as

 d = (B1 – B2 K
–1

22 K21 )D1 (18.35)

and internal forces p = kd = k(B1 – B2 K
–1

22 K21)D1 (18.36)

To complete the solution for the frame of Fig. 18.19 we can write

 

1

2

3

È ˘
Í ˙

= Í ˙
Í ˙
Î ˚

k

k k

k

For the coordinates of the elements given in Fig. 18.19c,

 

1 2 3 2 2

2 2

4 2 6/ 6/

2 4 6/ 6/

6/ 6/ 12/ 12/

6/ 6/ 12/ 12/

L L

L LEI

L L L LL

L L L L

-È ˘
Í ˙-Í ˙= = = Í ˙-
Í ˙
Í ˙- - -Î ˚

k k k

It may be noted that we could have taken only the end moments for each member. 

In that case the displacements at the ends (rotations q) must b with reference to 

a chord joining the ends of the member. Now w generate the stiffness matrix K 

using Eq. 16.17.

 

2

(3 3) (3 12) (12 12) (12 3)

24/ 6/ 6/

6/ 8 2

6/ 2 8

T

L L L
EI

L
L

L
¥ ¥ ¥ ¥

È ˘
Í ˙

= = Í ˙
Í ˙
Î ˚

K B k B
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Since K–1
22 is required in Eqs. 18.31 and 18.32, we evaluate this fi rst

 

1
22

8 2

2 860

L

EI

- -È ˘
= Í ˙-Î ˚

K

Next, we evaluate the product

 

1
22 21

8 2 6/ 31

2 8 6/ 360 5

LL EL

LEI L L

- -È ˘ Ï ¸ Ï ¸
= =Ì ˝ Ì ˝Í ˙-Î ˚ Ó ˛ Ó ˛

K K

Substituting this in Eq. 18.32

   22

1
1 11 12 21 2

324 6 6 1

35

EI EI

L L L L LL

- Ï ¸Ê ˆ Ï ¸= - = - Ì ˝ Ì ˝Á ˜Ë ¯ Ó ˛ Ó ˛
K K K K K

 1 3
16.8

EI

L
=K

Therefore,

 

3
1

1
16.8

P L
D

EI
=

since 
1

1 1 1D P-= K

Internal displacements d are obtained using Eq. 18.35.

 

1

2

3

4

5

6
1

7

8

9

10

11

12

0 0 0

0 3/5 3/5

0 0 0

1 0 1

0 3/5 3/5

0 3/5
or

0 0

0 0

0 3/5

0 0

1 0

0 0

d

d L L

d

d

d L L

d L

d

d

d L

d

d

d

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜ -
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜- -Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜ -
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜= - =Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜

Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯Ë ¯

D d 1

3/5

0

0

3/5

0

1

0

L

L

Ï ¸
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô

-Ô Ô
Ì ˝
Ô Ô
Ô Ô
Ô Ô

-Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô ÔÓ ˛

D

The internal stresses are obtained using Eq. 18.36.
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2

2

12

2

2

2

24/5

18/5

42/5

42/5

18/5

18/5

36/5

36/5

18/5

24/5

42/5

42/5

L

L

L

L

L

LEI

LL

L

L

L

L

L

Ï ¸
Ô Ô
Ô Ô
Ô Ô
Ô Ô

-Ô Ô
Ô Ô-Ô Ô
Ô Ô-Ô Ô= Ì ˝-Ô Ô
Ô Ô+
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô
Ô Ô

-Ô ÔÓ ˛

p D

Example 18.17 
Construct reduced stiffnes K1 for the frame of Fig. 

18.21a from the stiffness matrices of its elements. The 

structure and element coordinates are indicated. Compute the internal forces in 

the elements. EI is constant.

This structure has three degrees of freedom. They are indicated by the 

coordinates of the structure. If the external load is resolved into two components 

so that the 37.5 kN force in the direction of coordinate 1 and the other component 

of 18 kN is along the inclined leg of the frame which does not cause any moments 

if axial deformations are neglected. Thus, external forces do not exist at two of 

the three structure coordinates. Transformation matrix B is constructed in the 

partitioned form as shown.

Fig. 18.21  (a) Structure and structure coordinates, (b) Elements and coordinates
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1 2

5/4 0 0

5/4 1 0

3/4 1 0

3/4 0 1

1/ 0 1

1/ 0 0

L

L

L

L

L

L

È ˘
Í ˙
Í ˙
Í ˙-

= Í ˙
-Í ˙

Í ˙
Í ˙
Í ˙Î ˚

B B

B

Element stiffness matrix ki = k2 = k3 
4 2

2 4

EI

L

È ˘
= Í ˙

Î ˚
The uncoupled stiffness matrix k is

 

4 2

2 4

4 2

2 4

4 2

2 4

EI

L

È ˘
Í ˙
Í ˙
Í ˙

= Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

k

Stiffness matrix K of the structure is obtained using Eq. 16.17 in the partitioned 

form as 

 

3 3 (3 12) (12 12) (12 3)

37.5 3.0 1.5

2

3.0
8 2

1.5
2 8

T

L L

EI

L L

L

¥ ¥ ¥ ¥

È ˘
Í ˙
Í ˙
Í ˙= = Í ˙
Í ˙
Í ˙
Í ˙Î ˚

K B k B

We fi rst evaluate

 

1
22

8 21

2 860

L

EI

- -È ˘
= Í ˙-Î ˚

K

and

 

1
22 21

3.0

8 2 211

2 8 1.5 660 60

L EI L

EI L L

L

-

Ï ¸
Ô Ô-È ˘ Ï ¸Ô Ô= =Ì ˝ Ì ˝Í ˙-Î ˚ Ó ˛Ô Ô
Ô ÔÓ ˛

K k

Now, we can construct the reduced stiffness matrix using Eq 18.32.
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  1 2

2137.5 3.0 1.5 1

660

EI EI

L L L L LL

Ï ¸Ê ˆ Ï ¸= - Ì ˝ Ì ˝Á ˜Ë ¯ Ó ˛ Ó ˛
K

or  
1 3

36.3
EI

L
=K

Displacement 
3 3

1 (37.5) 1.033
36.3

L L
D

EI EI
= =

Internal displacements d can be obtained using Eq. 18.35.

   

3

5/4 0 0

5/4 1 0

3/4 1 0 211
1.033

3/4 0 1 660

1/ 0 1

1/ 0 0

L

L

L L

L L EI

L

L

Ï ¸ È ˘
Í ˙Ô Ô
Í ˙Ô Ô
Í ˙ Ê ˆÔ Ô- Ï ¸

= - Í ˙Ì ˝ Ì ˝ Á ˜- Ë ¯Ó ˛Í ˙Ô Ô
Í ˙Ô Ô
Í ˙Ô Ô
Í ˙Î ˚Ó ˛

d

or 
3 2

1.25 1.29

0.90 0.93

1.10 1.141
1.03

0.85 0.88

0.90 1.93

1.00 0.03

L L

L EI EI

Ï ¸ Ï ¸
Ô Ô Ô Ô
Ô Ô Ô Ô

Ê ˆÔ Ô Ô Ô- -
= =Ì ˝ Ì ˝Á ˜- -Ë ¯Ô Ô Ô Ô

Ô Ô Ô Ô
Ô Ô Ô Ô
Ó ˛ Ó ˛

d

Internal forces p are obtained as

 
(6 6) (6 1)(6 1) ¥ ¥¥

=p k d

or 

6.96

6.30

6.30
kN.m

5.80

5.80

5.98

L

L

L

L

L

L

Ï ¸
Ô Ô
Ô Ô
Ô Ô-

= Ì ˝-Ô Ô
Ô Ô
Ô Ô
Ó ˛

p

The application of Eq. 18.14 is illustrated later in Examples 18.18, 18.19 and 

18.20.
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18.4.1 Computer Programme for the Stiffness Analysis of

     Kinematicaliy Indeterminate Structures

At this point, the reader might have noticed that there are a number of similarities 

between the equations which have been developed in this chapter for the stiffness 

analysis of kinematically indeterminate structures, and those which were 

developed in Chapter 17 for the fl exibility analysis of statically indeterminate 

structures. This comparison shows that the form of the equations is same in each 

step of the analysis. The primary difference is that if an equation represents an 

equilibrium condition in one of the procedures, the corresponding equation in 

another procedure represents a geometry condition. The computer programmes 

in the two types of analyses are similar. The input data consists of the matrices 

[B1], [B2], [K] and {P}. The computations can be carried out to generate matrices 

[B] and [K]. A fl ow chart is given in Fig. 18.22 which traces the steps involved in 

solving the kinematically indeterminate structures using stiffness analysis. The 

fl ow chart is drawn to analyse the kinematically determinate structure also, so as 

to be in line with the fl ow chart given in Fig. 17.15 for the analysis of statically 

determinate and indeterminate structures. The reader will not miss the striking 

similarity between the two fl ow charts.

18.4.2 Temperature Stresses, Lack of Fit,

     Support Settlements, etc.

Let us designate by D the thermal displacements at the coordinates of the elements 

before they are connected to form the system. The solution for fi nal internal 

forces pf is given by the relation (Eq. 18.13).

 p
f = p° + kBK

–1 {P
f – Po)

or p
f = po + kBK

–1 (Pf – BT po) (18.37)

applies here too, except that forces po in the fi xed coordinate state are due to 

thermal changes or lack of fi t, whereas in Section 18.3 they were caused by 

forces not at the coordinates.

In the fi xed coordinate state the element forces are

 p
o = –kD (18.38)

The minus sign in this case is needed because forces po must be applied in a 

direction opposite to displacements D.

If the structure is subjected only to thermal changes or lack of fi t represented 

by displacements D of the unassembled elements then we set pf = 0 in the Eq. 

18.37 that is

 p
f = (kBK

–1 BT– I) k D (18.39)

If there are forces Pf at the coordinates, then

 p
f = kBK

–1 Pf + (kBK
–1 BT – I) k D (18.40)

This aspect has been illustrated in Example 18.20.



712  Basic Structural Analysis

Fig. 18.22  Flow chart for stiffness analysis of kinematically indeterminate structure
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18.5  DIRECT STIFFNESS METHOD

In the analysis of structures by the stiffness method, the formation of stiffness 

matrix K is a major step in the process. The matrix K was achieved by Eq. 

16.17 involving a triple matrix product. The numerical work involved in manual 

computations tends to become voluminous even for a simple structure. Also, 

it may have been noticed that uncoupled stiffness matrix k is sometimes very 

large and contains a large number of zero terms so that when a computer is used 

a lot of storage space is wasted. For this reason the transformation procedure 

may not be the best way of assembling structure matrix K. This matrix can be 

deduced more easily by noting the fact that any stiffness element Kij is the nodal 

force corresponding to degree of freedom i caused by the imposition of a unit 

displacement corresponding to degree of freedom j. The same result is, therefore, 

more simply obtained if the forces caused by the displacements as they are 

imposed, one at a time, on the restrained structure are computed and assembled.

18.5.1 Nodal Stiffness of a Continuous Beam

Consider, for example, a three-span continuous beam with moments applied at 

each of the joints as shown in Fig. 17.23a. At each support one degree of freedom 

exists. Each support point can be considered as a nodal point and the stiffness of 

Kij is denoted as nodal stiffness.

The displacements shown in Fig. 17.23b can be considered as the superposition 

of four separate cases. Figure 18.23c shows the displacement shape of the structure 

with q1 imposed and all other degrees of freedom locked against rotations. The 

member end forces needed to accomplish these displacements (to cause q1 and to 

prevent rotation at the locked joints) are indicated in Fig. 18.23c. At joint 1, for 

example, moment K11 is the moment acting on joint 1 caused by a unit rotation 

of joint 1 with joints 2, 3 and 4 fi xed against rotation. K11 is the moment acting 

on joint 1 caused by a unit rotation of joint 2 with joints 1, 3 and 4 fi xed against 

rotation (Fig. 18.23d). The q terms represent the actual rotation of the joints. 

K11 qi is, therefore, the actual moment at joint 1. The joint moments, Kij, are 

noted on the fi gures as totals for both members framing into a joint and thus, Kij 

represents joint stiffness. The totals are equal to the moment acting on the joint 

by the members. It may be noticed that the counter-clockwise moments on the 

member ends which are positive, result in clockwise moments acting on joints, 

also defi ned as positive. The total internal moment on any joint must be equal to 

the applied external moment. If external moments are defi ned as positive when 

acting in a counter-clockwise direction, we may express the joint equilibrium as

or

 

11 12 13 14 1 1

21 22 23 24 2 2

31 32 33 34 3 3

41 42 43 44 4 4

 

K K K K M

K K K K M

K K K K M

K K K K M

q

q

q

q

È ˘ Ï ¸ Ï ¸
Í ˙ Ô Ô Ô Ô

Ô Ô Ô ÔÍ ˙ =Ì ˝ Ì ˝Í ˙ Ô Ô Ô ÔÍ ˙ Ô Ô Ô ÔÎ ˚ Ó ˛ Ó ˛
=K D  P

 (18.41)
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M1 M2 M3 M4

q1 q2 q3

q4

q1

K11 1q K21 1q

K22 2q

K32 2qK12 2q
q2

K33 3q

K23 3q
K43 3qq3

q4K34 4q K44 4q

q2

1 2 3 4

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 18.23  (a) Continuous beam and applied moments, (b) Displacements at coordinates,

(c) 81 imposed at coordinate 1, (d) 82 imposed at coordinate 2, (e) 62 imposed at

coordinate 3, (f) 64 imposed at coordinate 4

In this example K13, = K31 = 0, K14 = K41 = 0, K24 = K42 = 0.

For the continuous beam, the joint or nodal stiffness values, Kij are easily 

computed from a knowledge of the member stiffness values. Therefore,

 

11 12 13 14

12 12

12 22 23 24

12 12 23 23

31 32 33 34

32 32 34 34

41 42 43 44

34 34

4 2
0 0

2 4 4 2
0

2 4 4 2
0

2 4
0 0

EI EI
K K K K

L L

EI EI EI EI
K K K K

L L L L

EI EI EI EI
K K K K

L L L L

EI EI
K K K K

L L

= = = =

Ê ˆ
= = + = =Á ˜Ë ¯

Ê ˆ
= = = + =Á ˜Ë ¯

= = = =
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18.5.2 Joint or Nodal Stiffness or a Frame

A similar procedure, as that of a continuous beam, can be applied to assemble 

the stiffness matrix of a plane frame. We observe that all the elements in a given 

column of matrix K are nodal forces caused by a single nodal displacement. 

Consider a part of a planar frame as shown in Fig. 18.24a. For simplicity, the 

structure is shown as having three degrees of freedom numbered as 1, 2 and 3. If 

we wish to compute the elements in the fi rst column of structure stiffness matrix 

K, we impose a unit displacement along the degree of freedom 1 with other 

nodal displacements held at zero values. Elements K11,K21 and K31 are the forces 

corresponding to degrees of freedom 1, 2 and 3 respectively (Fig. 18.24b). This 

can also be constructed from the components of the members framing into the 

joint. For example, K11 can be obtained as the sum of the terms k11 for each of the 

three members as shown in Fig. 18.24c. Thus, the problem has been reduced to 

that of computing appropriate member stiffnesses and assembling the structure 

stiffness elements from the member stiffness elements. To summarise, each 

term of the structure stiffness matrix can be computed directly by examining the 

member ends at each node and adding the stiffness computed for each member. 

This is the feature which is the origin of the term direct stiffness approach.

K11

K21

K31

K31

K21

K11

K31

K21

K11

K11

K31

K31

1

2

3

1

1

2

2

3

3

1

(a) (b)

(c)

Fig. 18.24  (a) Frame and degrees of freedom (structure coordinates), (b) Unit displacement 

imposed along coordinate 1, (c) Stiffness coeffi cient of elements along structure coordinates

18.5.3 Member Stiffness Matrix in the Structure

     Coordinate System

In the computation of nodal stiffnesses, it is necessary that the member stiffness 

matrix must be computed in terms of coordinate directions established for 

the structure. Diffi culties arise when the member orientation differs from the 

structure coordinate directions. In such cases it is convenient fi rst to establish 

member stiffness coeffi cients in relation to its local coordinates. The member 

stiffnesses are then transferred to the structure coordinate system as discussed 

in Section 16.6. Then nodal stiffness Kij is simply the sum of corresponding 

member stiffnesses kij. It is essential that each node of the structure is carefully 
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labelled, and that the nodal numbering of each element corresponds to that of the 

structure. We shall illustrate the steps involved by solving a few examples.

Example 18.18 
Construct the direct stiffness matrix K for the truss of 

Fig. 18.25.

 E = 200 ¥ 106 kN/m2 (200,000 MPa)

 A = 2500 ¥ 10– 6m2 (2500 mm2)

At each joint, the truss has only two degrees of freedom. The degrees of freedom 

are numbered, fi rst the unrestrained and then the restrained degrees of freedom. 

The positive member senses are shown in Fig. 18.25. It may be noticed that they 

have been chosen so that the far end of the member has a higher joint number 

than the one at the near end. This is a useful convention that allows k to be 

formed in the arrangement that is added into stiffness matrix K.

Y

1
1

1

5

6

8

7

3

6

2

2

2
3

3

4

4
5

4

5 m

5
 m

Fig. 18.25  Truss structure and degrees of freedom

Table 18.1 gives the member number, node number and the direction cosine 

of members.

Table 18.1  Member data for indeterminate truss

Node No.

Member Near Far q sin q cos q

1 1 2 0° 0 1.0

2 2 3 270° –1.0 0

3 3 4 180° 0 –1.0

4 1 4 270° –1.0 0

5 1 3 315° –0.707 0.707

6 2 4 225° –0.707 –0.707

The origin for each member is chosen at the lesser joint number end and 

the X axis is directed towards the joint having a higher joint number. The 
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member stiffness matrix denoted by k¢ with reference to local coordinate axes is

(Eq. 16.32):

 

/ 0 / 0

0 0 0 0

/ 0 / 0

0 0 0 0

EA L EA L

EA L EA L

-È ˘
Í ˙
Í ˙=¢
Í ˙-
Í ˙
Î ˚

k

The rotation matrix for the plane truss member is (Eq. 16.34a)

 

cos sin 0 0

sin cos 0 0

0 0 cos sin

0 0 sin cos

q q

q q

q q

q q

È ˘
Í ˙-Í ˙=
Í ˙
Í ˙

-Î ˚

R

Member stiffness matrix for members 1, 2, 3 and 4 is

 

5
1,2,3,4

1 0 1 0

0 0 0 0
10 kN/m

1 0 1 0

0 0 0 0

-È ˘
Í ˙
Í ˙= ¥¢
Í ˙-
Í ˙
Î ˚

k

and for members 5 and 6 is

 

5
5,6

0.707 0 0.707 0

0 0 0 0
10 kN/m

0.707 0 0.707 0

0 0 0 0

-È ˘
Í ˙
Í ˙= ¥¢
Í ˙-
Í ˙
Î ˚

k

The rotation matrices for members are

     

1 2 4

1 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0
,

0 0 1 0 0 0 0 1

0 0 0 0 0 0 1 0

-È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙= = =
Í ˙ Í ˙-
Í ˙ Í ˙
Î ˚ Î ˚

R R R

 

3 5

1 0 0 0 0.707 0.707 0 0

0 1 0 0 0.707 0.707 0 0
,

0 0 1 0 0 0 0.707 0.707

0 0 0 1 0 0 0.707 0.707

- -È ˘ È ˘
Í ˙ Í ˙-Í ˙ Í ˙= =
Í ˙ Í ˙- -
Í ˙ Í ˙

-Î ˚ Î ˚

R R



718  Basic Structural Analysis

 6

0.707 0.707 0 0

0.707 0.707 0 0

0 0 0.707 0.707

0 0 0.707 0.707

- -È ˘
Í ˙-Í ˙=
Í ˙- -
Í ˙

-Î ˚

R  (18.42)

Now we have for all members, 1 to 6, the stiffness matrices in their local 

coordinates and the transformation matrices related to structure coordinates. The 

member stiffness matrix is transformed to the structure coordinate system using 

Eq. 16.43.

 k = RT
k¢R

where each one of them is a 4 ¥ 4 array. Taking member 5 as an example,

 

5
5

0.707 0.707 0 0 0.707 0 0.707 0

0.707 0.707 0 0 0 0 0 0
10

0 0 0.707 0.707 0.707 0 0.707 0

0 0 0.707 0.707 0 0 0 0

-È ˘ È ˘
Í ˙ Í ˙-Í ˙ Í ˙= ¥
Í ˙ Í ˙-
Í ˙ Í ˙

-Î ˚ Î ˚

k

 

0.707 0.707 0 0

0.707 0.707 0 0

0 0 0.707 0.707

0 0 0.707 0.707

-È ˘
Í ˙
Í ˙
Í ˙-
Í ˙
Î ˚

  

1 2 5 6

1 0.353 0.353 0.353 0.353

2 0.353 0.353 0.353 0.353
10 kN/m

3 0.353 0.353 0.353 0.353

4 0.353 0.353 0.353 0.353

5

- -È ˘
Í ˙- -Í ˙= ¥
Í ˙- -
Í ˙

- -Î ˚

Similarly, we get the member stiffness matrices in the structure coordinates 

system for the remaining members.

Member 1

 

1

1 2 3 4

1 0 1 0 1

0 0 0 0 2
10 kN/m

1 0 1 0 3

0 0 0 0 4

5

-È ˘
Í ˙
Í ˙= ¥
Í ˙-
Í ˙
Î ˚

k
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Member 2

 

2

3 4 5 6

0 0 0 0 3

0 1 0 1 4
10 kN/m

0 0 0 0 5

0 1 0 1 6

5

È ˘
Í ˙-Í ˙= ¥
Í ˙
Í ˙

-Î ˚

k

Member 3

 

3

5 6 7 8

1 0 1 0 5

0 0 0 0 6
10 kN/m

1 0 1 0 7

0 0 0 0 8

5

-È ˘
Í ˙
Í ˙= ¥
Í ˙-
Í ˙
Î ˚

k

Member 4

 

4

1 2 7 8

0 0 0 0 1

0 1 0 1 2
10 kN/m

0 0 0 0 7

0 1 0 1 8

5

È ˘
Í ˙-Í ˙= ¥
Í ˙
Í ˙

-Î ˚

k

Member 6

 

6

3 4 7 8

0.353 0.353 0.353 0.353 1

0.353 0.353 0.353 0.353 2
10 kN/m

0.353 0.353 0.353 0.353 7

0.353 0.353 0.353 0.353 8

5

- -È ˘
Í ˙- -Í ˙= ¥
Í ˙-
Í ˙
- -Î ˚

k

While this step is simple, it becomes tedious when the computations are done 

by hand. A simple computer programme can be utilised to do the job.

The stiffness matrix for the unrestrained structure is constructed by inserting 

the elements from the member stiffness matrix into the correct position (like 

numbered) in the structure stiffness matrix. The resulting 8x8 array is shown in 

Eq. 18.43. The 8 ¥ 8 array is necessary since there are eight degrees of freedom 

for the unrestrained structure. The array is partitioned so that the fi rst fi ve rows 

and columns correspond to the actual degrees of freedom with the structure 

restrained at its supports.
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1 2 3 4 5 6 7 8

1 1.353 0.353 1.000 0 0.353 0.353 0 0

2 0 1.353 0 0 0.353 0.353 0 1.000

3 1.000 0 1.353 0.353 0 0 0.353 0.353

4 0 0 0.353 1.353 0 1.000 0.353 0.353

5 0.353 0.353 0 0 1.353 0.353 1.000 0

6 0.353 0.353 0 1.000 0.353 1.353 0 0

7 0

8

- - -
- -

- - -
- - -

=
- - -

- - -

K

0 0.353 0.353 1.000 0 1.353 0.353

0 1.000 0.353 0.353 0 0 1.353 1.353

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙- - -Í ˙

- - -Í ˙Î ˚

 (18.43)

Up to this point the analysis is independent of loading.

If loading were given at any or all the degrees of freedom, the upper left 

portion of stiffness matrix K11 can be inverted to obtain displacements D1 by the 

relation

Fig. 18.26  (a) Structure and structure coordinates, (b) Elements and coordinates

 D1 = K11
–1

P1

since D2 = 0     in Eq. 18.17

Now that the displacements of joints have been found we can fi nd member forces 

p¢ = k¢Rd.

It may be noted that the matrix to be inverted is of the order 5¥5 and hence a 

computer programme would be required for this purpose.

Example 18.19 
Assemble the structure stiffness matrix and determine 

the nodal displacements and member forces due to an 
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applied load of 45 kN as shown in Fig. 18.26a. Members 1 and 3 are axial force 

members and member 2 is subject to fl exural and axial deformations.

We shall fi rst write out the element stiffness matrices, member by member, taking 

care to adhere to the established numbering shown in Fig. 18.26a.

We can write the member stiffness matrix for axial force members 1 and 3 

using Eq. 16.43, and for beam element 2, using Eq. 15.42 directly since the 

local coordinates for the members coincide with structure coordinates. Using 

the structure properties in Fig. 18.26b and substituting values for k’ and R in Eq. 

16.43, we obtain

 

3

1

1 2 4 5

1 1 1 1
1

2 2 2 2

1 1 1 1
2

120 10 2 2 2 2
kN/m

1 1 1 13 2
4

2 2 2 2

1 1 1 1
5

2 2 2 2

È ˘+ - - +Í ˙
Í ˙
Í ˙- + + -Í ˙¥

= Í ˙
Í ˙- + + -
Í ˙
Í ˙
Í ˙+ - +
Î ˚

k

 

3

3

1 2 9 10

3 3 3 31
4 4 4 4

3 1 3 12
120 10 4 4 4 4

kN/m
(6)2 3 3 3 3 3

9
4 4 4 4

3 1 3 1
10

4 4 4 4

È ˘
- -Í ˙

Í ˙
Í ˙

- -Í ˙¥ Í ˙=
Í ˙

- -Í ˙
Í ˙
Í ˙
Í ˙- -
Î ˚

k

and

3
2

6 7 8 1 2 3

6 50.0 0 0 50.0 0 0

7 0 0.0556 0.1667 0 0.0556 0.1667

8 0 0.1667 0.6667 0 0.1667 0.3333
10 kN/m

1 50.0 0 0 50.0 0 0

2 0 0.0556 0.1667 0 0.0556 0.1667

3 0 0.1667 0.3333 0 0.1667 0.6667

-È ˘
Í ˙-Í ˙
Í ˙-

= ¥Í ˙
-Í ˙

Í ˙- - -
Í ˙

-Í ˙Î ˚

k
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Assembling these element stiffnesses into the location of the (10 ¥ 10) structure 

stiffness matrix as indicated by the numbering of rows and columns, we obtain 

the matrix K (Eq. 18.44).

The physical meaning of these numbers should be clearly understood; element 

Kn- for instance, is more than four times the value of K22, that is, the horizontal 

force required to horizontally stretch the structure by a specifi ed amount is four 

times as much as a vertical force at the same point causing the same amount of 

vertical displacement. It may be verifi ed that

K =

1 2 3 4 5 6 7 8 9 10

1 77.13 Sym.

2 6.64 18.53

3 0 0.1667 0.6667

4 14.14 14.14 14.14

5 14.14 14.14 14.14 14.14

6 50.00 0 0 50.00

7 0 0.0556 0.1667 0 0.0556

8 0 0.1667 0.333 0 0.1667 0.6667

9 12.99 7.50 12.99

10 7.50 4.33 7.50 4.33

È
Í -Í
Í -
Í
- + +Í

Í - - +
Í
-Í

-
-

- -
- -Î

310 kN/m

˘
˙
˙
˙
˙
˙
˙
˙ ¥
˙

Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙̊

 (18.44)

the contribution of beam member (element 2) k22 is only a small fraction of the 

total value of stiffness k22 indicating that this stiffness is mainly due to inclined 

truss members.

Now writing the force displacement relationship of the structure in the 

partitioned form, we get

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

0 1 77.13

45 2 6.64 18.53 sym

0 3 0 0.1667 0.667

4 14.14 14.14 14.14

5 14.14 14.14 14.14 14.14

6 50.00 0 0 50.00

7 0 0.0556 0.1667 0 0.0556

8 0 0.1667 0.3333 0 0.166

9

10

X

X

X

X

X

X

X

È ˘
Í ˙- -Í ˙
Í ˙ -
Í ˙

- +Í ˙
Í ˙ - - +
Í ˙ =

-Í ˙
Í ˙ -Í ˙

-Í ˙
Í ˙
Í ˙
Í ˙Î ˚

1

2

3

3

0

010

0

7 0.6667 0

12.99 7.50 12.99 0

7.50 4.33 7.50 4.33 0

D

D

D

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙¥
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙- -Í ˙ Í ˙
Í ˙ Í ˙- -Î ˚ Î ˚

 (18.45)

The given values of applied loads P1 to P3 and the specifi ed support displacements 

D4 to D10 (all zero) are now inserted into the force displacement relationship (Eq. 

18.14). Equations 18.15 and 18.16 can now be solved to yield the matrices of 

unknown displacements and reactions. The displacements are
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1

3
2

3

0.0134 0.0048 0.0012 0

(10 ) 0.0048 0.0558 0.0140 45 m.

0.0012 0.0140 1.5035 0

D

D

D

-
Ï ¸ È ˘ Ï ¸
Ô Ô Ô ÔÍ ˙= -Ì ˝ Ì ˝Í ˙
Ô Ô Ô ÔÍ ˙Î ˚ Ó ˛Ó ˛

Or

 

1

2

3

0.2160 mm

2.5110 mm

0.0006 rad.

D

D

D

-Ï ¸ Ï ¸
Ô Ô Ô Ô= -Ì ˝ Ì ˝
Ô Ô Ô Ô-Ó ˛Ó ˛

The reactions are

 

4

5

6

7 8

8

9

10

32.4500

32.4500

10.8000

All kN, except in kN.m0.1395

0.4184

21.6383

12.4926

X

X

X

X X

X

X

X

-Ï ¸ Ï ¸
Ô Ô Ô Ô
Ô Ô Ô Ô
Ô Ô Ô Ô
Ô Ô Ô Ô=Ì ˝ Ì ˝
Ô Ô Ô Ô
Ô Ô Ô Ô
Ô Ô Ô Ô
Ô Ô Ô Ô

Ó ˛Ó ˛

It may be noted that these reactions satisfy the equilibrium conditions. The 

element forces for elements 1, 2 and 3 can now be found by applying ps = ksds 

for each member. For example, for member 1

 p1 = k1 d1

 

1

2

4

5

14.14 14.14 14.14 14.14 0.216 32.45

14.14 14.14 14.14 14.14 2.511 32.45
kN

14.14 14.14 14.14 14.14 0 32.45

14.14 14.14 14.14 14.14 0 32.45

p

p

p

p

¢ - - - +Ï ¸ È ˘ Ï ¸ Ï ¸
Ô Ô Í ˙ Ô Ô Ô Ô¢ - - - -Ô Ô Ô Ô Ô ÔÍ ˙= =Ì ˝ Ì ˝ Ì ˝Í ˙¢ - - -Ô Ô Ô Ô Ô ÔÍ ˙Ô Ô Ô Ô Ô Ô¢ - - +Î ˚ Ó ˛ Ó ˛Ó ˛

It may be noted that only the horizontal and vertical components of the bar 

forces are obtained. The bar force which is needed for design purposes can be 

determined by simple statics as

 

32.45 32.45
45.92 kN

2 2
p = + =

Example 18.20 
The structure in Example 18.19 is subjected to two 

different loading conditions:

 1. A uniform load w = 15 kN/m on the horizontal beam;

 2. An axial shortening of 2.5 ¥ 10–3 m of the inclined bracing member 3.

For each case compute nodal forces and nodal displacements.
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We computed the fi xed end forces for both members due to the two different 

loading conditions. In the loading condition 1, the beam has only the fi xed end 

forces as shown in Fig. 18.27b. In loading condition 2, the shortening of member 

3 leads to axial fi xed end forces which are proportional to the member stiffness. 

The fi xed end forces along the direction of member 3 is

5

3 m

7

68

2

4

3

1

10

9

6 m

(a)

45°

30°

15 kN/m

45 kN

+ 45
kN.m

– 45

45 kN

(b)

– 37.5 kN

21.65 kN
–21.65 kN

37.5 kN

(c)

D = 2.5 mm

Fig. 18.27  (a) Structure, (b) Loading condition 1—fi xed end forces,

(c) Loading condition 2—fi xed end forces

 

3 3120 10 2.5 10
43.30 kN (tension);

6(2 3)

AE

l

D ¥ ¥ ¥
= =

and this fi xed end force has to be expressed in terms of its components parallel 

to the nodal axes as shown in Fig. 18.27c.

The fi xed end forces acting on the joints for both loading conditions are now 

assembled in fi xed end force matrix Pf, adhering to the nodal numbering system 

shown in Fig. 18.27a.
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1 2

1 0 37.50

2 45 21.65

3 45 0

4 0 0

5 0 0

6 0 0

7 45 0

8 45 0

9 0 37.50

10 0 21.65

fP

-È ˘
Í ˙- -Í ˙
Í ˙+
Í ˙
Í ˙
Í ˙
Í ˙=
Í ˙
Í ˙-Í ˙
-Í ˙

Í ˙
Í ˙
Í ˙Î ˚

The other matrices for this structure were already calculated and presented in 

Example 18.19. Using the relation, D = K–1 Pf and taking the values for K–1 from 

the previous example, the displacements in the two loading cases are

 

1,1 1,2

3
2,1 2,2

3,1 3,2

0.0134 0.0048 0.0012 0 37.5

(10 ) 0.0048 0.0558 0.0140 45 21.65

0.0012 0.0140 1.5035 45 0

D D

D D

D D

-

È ˘ -È ˘ È ˘
Í ˙ Í ˙ Í ˙= - -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙Î ˚ Î ˚Î ˚

        

0.1620 0.6064 mm

1.8810 0.1388 mm

0.0670 0.00035 rad.

- -È ˘
Í ˙= - -Í ˙
Í ˙+ -Î ˚

The reactions are

 

4,1 4,2

5,1 5,2

6,1 6,2

7,1 7,2 8

8,1 8,2

9,1 9,2

10,1 10,2

24.31 11.05

24.31 11.05

8.1 30.32

All kN, except  in kN0.1158 0.0766

0.3359 0.2313

16.21 19.21

9.36 11.09

X X

X X

X X

X X X

X X

X X

X X

È ˘ - -È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙

=Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙

-Í ˙ Í ˙
Í ˙ Í ˙-Î ˚Î ˚

.m

Member forces can now be calculated using Eq. 18.13.

18.6    ANALYSIS BY TRIDIAGONALIZATION OF

    STIFFNESS MATRIX

Consider the building frame in Fig. 18.28a which is three bay wide and say 

20 storey high. At each fl oor level, neglecting axial deformations, there exist 
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fi ve degrees of freedom, four joint rotations and the lateral translation. We have 

stiffness matrix K of order 100 ¥ 100 which needs to be inverted. Most computers 

do not have this capacity.

We shall now discuss a step-by-step procedure which reduces the size of the 

matrix, so that even small capacity computers can be employed.

18.6.1 Numbering of Coordinates

First consider the continuous beam in Fig. 18.28b. For the coordinates as shown, 

the resulting siffness matrix is a band matrix of the form shown in Eq. 18.46. 

Each coordinate j (except for coordinates 1 and n which are coupled only to 

single coordinates) is coupled to two coordinates, the coordinate (j – 1) that 

proceeds it and the coordinate (j + 1) that follows. If the numbering is not in 

sequence then we would not obtain this band matrix.

 

11 12

21 22 23

32 33 34

, 1 , 1

, 1

- +

-

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

����

����

����

����

j j jj j j

n n nm

K K

K K K

K K K

K K K

K K

K  (18.46)

Similar considerations apply to larger systems. For example the resulting 

stiffness matrix for a building frame such as the one in Fig. 18.28a is

 

11 12

21 22 23

32 33 34

, 1 , 1

, 1

- +

-

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

����

����

����

����

j j jj j j

n n nm

K K

K K K

K K K

K

K K K

K K

 (18.47)

The above two stiffness are similar except that in the latter case, each element 

Kjj corresponds to the stiffness matrix of level j and matrices Kj,j–1 and Kj,j+1 are 

the coupling matrices corresponding to level (j –1) and (j+1) respectively. Each 

element is a submatrix, the order of which is equal to the degrees of freedom at 
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each fl oor level. The sequence of numbering must be maintained to develop the 

tridiagonal band matrix. 

1
2 3 4 5

6
7 8 9 10

1 1

2 2

3 3

4 4

j j

j + 1 j + 1

n + 1

nn

n + 1

(a) (b)

Floor
Level

Fig. 18.28  (a) Building frame, (b) Continuous beam

The solution starts with grouping the stiffness of fl oor levels 1, 2 and 3, that 

is

  
1 11 12 1

2 21 22 23 2

3 32 33 3

0

0

Ï ¸ È ˘ Ï ¸
Ô Ô Ô ÔÍ ˙=Ì ˝ Ì ˝Í ˙
Ô Ô Ô ÔÍ ˙Î ˚Ó ˛ Ó ˛

P K K D

P K K K D

P K K D

 (18.48)

This yields

 P1 = K11 D1 + K12 D2 (18.49)

Therefore,

 D1 = K–1
11 (P1 – K12D2) (18.50)

Again

 P2 = K21 D1 + K22 D2 + K23 D3 (18.51)

Substituting for D1 from Eq. 18.50 into Eq. 18.51

 P2 = K21 K
–1
11 P1 – K21 K

–1
11 K12 D2 + K22 D2 + K23 D3 (18.52)

or (P2 – K21 K
–1
11 P1) = (K22 – K21 K

–1
11 K12)D2 + K23 D3

or P¢2 = K¢2 D2 + K23 D3 (18.53)



728  Basic Structural Analysis

in which

 P¢2 = (P2 – K21 K
–1
11 P1) (18.54)

and K¢22 = (K22 – K21 K
–1
11 K12) (18.55)

From Eq. 18.53

 D2 = K¢22 (P¢2 – K23 D3) (18.56)

Again from Eq. 18.48

 P3 = K32 D2 + K33D3 (18.57)

Substituting for D2 from Eq. 18.56

 P3 = K32 K¢–1
22 (P¢2 – K23 D3) + K33 D3 (18.58)

or   (P3 – K32 K¢22
–1 P¢2) = (K33 – K32 K¢22

–1 K23) D3

 P¢3 = K¢33D3 (18.59)

or D3 = K¢33
–1 P¢3 (18.60)

in which

 P¢3 = (P3 – K32K¢–1
22 P¢2) (18.61)

and K¢33 = (K33 – K32 K¢22
–1 K23) (18.62)

The treatment is general and these expressions can be written for any fl oor 

level. We can write, for example, for the jth fl oor level which has a fl oor above 

and a fl oor below as

 P¢j = Pj – Kj,j – 1 K¢–1
j–1, j–1P¢j–1 (18.63)

 K¢jj = Kjj – Kj,j – 1 K¢j–1
j–1,j–1 Kj+1 (18.64)

 Dj = K¢–1
jj (P¢j – Kj, j+1 Dj+1) (18.65)

Proceeding in the same manner for j = n we get the displacement at the fl oor 

immediately above the foundation

 Dn = K¢–1
nn (P¢n – Kn,n+1 Dn+1) (18.66)

For fi xity at the base, that is, (n + 1) level, Dn + 1 is a null matrix leading to

 Dn = K¢–1
nn P¢n (18.67)

Likewise, for a hinged base condition, we get for j = n + 1

 Dn+1 = K¢–1
n+1,n+1 P¢n+1 (18.68)

in which

 K¢n+1,n+1 = Kn+1,n+1 – Kn+1,n K¢–1
n,n Kn,n+1 (18.69)

and

 P¢n+1 = Pn+1 – Kn+1,n K¢–1
n,n P¢n (18.70)



Stiffness or Displacement Method of Analysis  729

Once displacements Dn (Eqn 18.67) or Dn + 1 (Eq. 18.68) have been determined, 

the remaining displacements are obtained by successive back substitution till 

topmost fl oor level displacements D1 are obtained. The displacements being 

known, the member end forces are obtained by using the force-displacement 

relationships or by the slope-defl ection equations.

The advantage of this approach is obvious. The largest matrix to be inverted 

at any time is m ¥ m, where m is the number of displacements in the fl oor level 

under consideration.

The computational steps involved for a three-storeyed building frame fi xed at 

the base may be summarised as follows:

 1. Set up the stiffness matrix which takes the form of a tridiagonal matrix

 

11 12

21 22 23

32 33

È ˘
Í ˙= Í ˙
Í ˙Î ˚

K K

K K K K

K K

 2. Compute

 

11

11

11

1

1
21

1
21 1

(a)

(b)

(c)

-

-

-

K

K K

K K P

 3. Calculate

 P¢2 = P2 – K21 K
–1
11 P1

  Then      K¢22 = K22 – K21 K¢–1
11K12

 4. Compute

 

22

1

1
32 22

1
32 22 1

(a)

(b)

(c)

-

-

-

¢

¢

K

K K

K K P

 5. Calculate

 P¢3 = P3 – K32 K
–1
22 P¢2

  and   K¢33 = K33 – K32 K¢–1
22 K23

 6. Compute

 K¢–1
33

 7. Evaluate

 D3 = K¢–1
33 P¢3

 D2 = K¢–1
22 (P¢2 – K23 D3)

    and D1 = K¢–1
11 (P1 – K12 D2)
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The entire procedure involved will be further made clear by solving the 

following examples.

Example 18.21 
Consider the single bay four storey building frame 

shown in Fig. 18.29a. Using the step-by-step or storey-

by-storey procedure developed above, calculate displacements D1 through D4 

and member end forces for the loading indicated. Consider only bending 

deformations.

The frame has three degrees of freedom at each fl oor level, one lateral translation 

and two joint rotations. They are numbered fl oor by fl oor in a particular sequence 

starting from the top as shown in Fig. 18.29b.

Fig. 18.29  (a) Frame and loading, (b) Structure coordinates

As a fi rst step the elements of the stiffness matrix K11, K12 and K21, K22, 

and K23 are obtained by imposing unit displacements at each of the degrees 

of freedom in turn and computing the forces necessary to hold the structure in 

that confi guration. The values are shown computed in Fig. 18.30. The complete 

stiffness matrix K is shown in Eq. 18.71.
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First, we evaluate

1
11

2.7296 0.7475 0.7475
1

0.7475 0.7908 0.1151

0.7475 0.1151 0.7908
EI

-

- -È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

K

Next

1
21 11 1

0.6678 0.5510 0.5510 2.7296 0.7475 0.7475

0.5510 0.6061 0 0.7475 0.7908 0.1151

0.5510 0 0.6061 0.7475 0.1151 0.7908

-

- - - - -È ˘ È ˘
Í ˙ Í ˙= -Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

K K P

 

45 45.00

0 47.32

0 47.32

-Ï ¸ Ï ¸
Ô Ô Ô Ô=Ì ˝ Ì ˝
Ô Ô Ô Ô
Ó ˛ Ó ˛

Then,

 

1
2 2 21 11 1

45 45.00 90.00 kN

0 47.32 47.32 kN.m

0 47.32 47.32 kN.m

-= -¢

-Ï ¸ Ï ¸ Ï ¸
Ô Ô Ô Ô Ô Ô= - = -Ì ˝ Ì ˝ Ì ˝
Ô Ô Ô Ô Ô Ô-Ó ˛ Ó ˛ Ó ˛

P P K K P

We now evaluate

 K¢22 = K22 – K21 K
–1
11 K12

 K¢22 = EI 

0.6678 0.5510 0.5510

0.5510 2.3372 0.1053

0.5510 0.1053 2.3372

È ˘
Í ˙-Í ˙
Í ˙- -Î ˚

 K¢–1
22 = 

2.5267 0.6238 0.6238
1

0.6238 0.5827 0.1733

0.6238 0.1733 0.5827
EI

- -È ˘
Í ˙-Í ˙
Í ˙-Î ˚

 K32K¢–1
22 = 

1.0000 0 0

1.0142 0.0095 0.2386

1.0142 0.2386 0.0095

-È ˘
Í ˙-Í ˙
Í ˙-Î ˚

and

 K32K¢–1
22P¢2 = 

90.00

102.12

102.12

-Ï ¸
Ô Ô+Ì ˝
Ô Ô+Ó ˛
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 K32K¢–1
22K23 = 

0.6678 0.5510 0.5510
1

0.5510 0.5646 0.4142

0.5510 0.4142 0.5646
EI

- -È ˘
Í ˙-Í ˙
Í ˙-Î ˚

Now, we have

 P¢3 = P3 – K32K¢–1
22P¢2

  = 

45.00 90.00 135.00

0 102.12 102.12

0 102.12 102.12

-Ï ¸ Ï ¸ Ï ¸
Ô Ô Ô Ô Ô Ô- =Ì ˝ Ì ˝ Ì ˝
Ô Ô Ô Ô Ô Ô
Ó ˛ Ó ˛ Ó ˛

and

 K¢33 = K33 – K32K¢–1
22K23

  = 

0.6678 0.5510 0.5510

0.5510 2.3929 0.1475

0.5510 0.1475 22.3929

EI

È ˘
Í ˙-Í ˙
Í ˙-Î ˚

 K¢–1
33 = 

2.5159 0.6172 0.6172
1

0.6172 0.5709 0.1773

0.6172 0.1773 0.5709
EI

-È ˘
Í ˙-Í ˙
Í ˙-Î ˚

 K43 K¢–1
33 = 

1.0000 0 0

1.0122 0.0059 0.2326

1.0122 0.2326 0.0059

-È ˘
Í ˙-Í ˙
Í ˙-Î ˚

 K43 K¢–1
33P¢3 = 

135.00 kN

159.80 kN.m

159.80 kN.m

-Ï ¸
Ô Ô
Ì ˝
Ô Ô
Ó ˛

 P¢4 = 

45.00 135.00 180.00 kN

0 159.80 159.80 kN.m

0 159.80 159.80 kN.m

-Ï ¸ Ï ¸ Ï ¸
Ô Ô Ô Ô Ô Ô- = -Ì ˝ Ì ˝ Ì ˝
Ô Ô Ô Ô Ô Ô-Ó ˛ Ó ˛ Ó ˛

 K¢44 = K44 – K43K¢–1
33K34

  = 

0.6678 0.5510 0.5510

0.5510 2.3962 0.1500

0.5510 0.1500 2.3962

EI

È ˘
Í ˙-Í ˙
Í ˙-Î ˚

and

 K¢–1
44 = 

2.5158 0.6171 0.6171
1

0.6171 0.5704 0.1776

0.6171 0.1776 0.5704
EI

- -È ˘
Í ˙-Í ˙
Í ˙-Î ˚
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Now, we can evaluate the displacements by back substitution. For example

 D4 = K¢44 P¢4
or

 

1,4

2,4

3,4

650.11 m
1

230.66 rad

230.66 rad
EI

Ï ¸ Ï ¸
Ô Ô Ô Ô= -Ì ˝ Ì ˝
Ô Ô Ô Ô-Ó ˛Ó ˛

D

D

D

Next we evaluate

 

34 4
(3 1)(3 3)

688.33

498.01

498.01
¥¥

-Ï ¸
Ô Ô= -Ì ˝
Ô Ô-Ó ˛

K D

and

 

3 34 4

823.33

395.89

395.89

Ï ¸
Ô Ô- =¢ Ì ˝
Ô Ô
Ó ˛

P K D

then

 D3 = K¢–1
33 (P¢3 – K34 D4)

or

 

1,3

2,3

3,3

1582.73 m
1

211.95 rad

211.95 rad
EI

Ï ¸ Ï ¸
Ô Ô Ô Ô= -Ì ˝ Ì ˝
Ô Ô Ô Ô-Ó ˛Ó ˛

D

D

D

Proceeding again,

 

23 3
(3 3) (3 1)

1290.51

1000.54

1000.54
¥ ¥

-Ï ¸
Ô Ô= -Ì ˝
Ô Ô-Ó ˛

K D

and

 

2 23 3

1380.50

953.22

953.22

Ï ¸
Ô Ô- =¢ Ì ˝
Ô Ô
Ó ˛

P K D

then

 D2 = K¢–1
22 (P¢2 – K23 D3)
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or

 

1,2

2,2

3,2

2298.87 m
1

140.52 rad

140.52 rad
EI

Ï ¸ Ï ¸
Ô Ô Ô Ô= -Ì ˝ Ì ˝
Ô Ô Ô Ô-Ó ˛Ó ˛

D

D

D

Proceeding in a similar way

 K12D2 = 

2298.87

140.52

140.52

Ï ¸
Ô Ô-Ì ˝
Ô Ô-Ó ˛

 P1 – K12 D2 = 

1735.04

1351.85

1351.85

Ï ¸
Ô Ô
Ì ˝
Ô Ô
Ó ˛

Then

 D1 = K–1
11 – (P1 – K12 D2).

 

1,1

2,1

3,1

2716.69 m
1

72.30 rad

72.30 rad
EI

Ï ¸ Ï ¸
Ô Ô Ô Ô= -Ì ˝ Ì ˝
Ô Ô Ô Ô-Ó ˛Ó ˛

D

D

D

The displacements are indicated in Fig. 18.31a.

It may be noted that the rotation D2,i = D3,i at all the fl oor levels for i = 1,2,3 

and 4.

Moments

The end moments of the elements can be found using slope-defl ection equations. 

Starting from the top storey.

 MAB = 
1

7.5
 (4 D2,1 + 2 D3,1) = 

6

7.5
D3,1 = – 57.84 kN.m

 MAC = 
1

3.3
 (4 D2,1 + 2 D2,2) = 2

6

3.3
(D1,1 – D1,2)= +57.40 kN.m

Proceeding on similar lines

 MCD = 
6

7.5
 (–140.52) = –112.42 kN.m

 MCA = 
1

3.3
 {4(–140.52) + 2(–72.30)} + 2

6

3.3
 (2716.69 – 2298.87)

 = 16.05 kN.m

 MCE = 
1

3.3
{4(–140.52)+ 2(–211.95)} +  2

6

3.3
 (2298.87 – 1582.73)

 = 95.79 kN.m
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 MEF = 
6

7.5
(–211.95) = –169.56 kN.m

 MEG = 
1

3.3
 {4(–211.95) + 2(–230.66)} + 2

6

3.3
 (1582.73 – 650.11)

 = 117.14 kN.m

 MEC = 
1

3.3
 {4(–211.95) + 2(–140.52)} + 2

6

3.3
 (2298.87 – 1582.73)

 = 52.50 kN.m

 MGE = 
1

3.3
 {4(–230.66) + 2(–211.95)} + 2

6

3.3
 (1582.73 – 650.11)

 = 105.80 kN.m

 MGH = 
6

7.5
(–230.66) = – 184.53 kN.m

 MGI = 
1

3.3
 (4)(–230.66) + 2

6

3.3
 (650.11) = 78.60 kN.m

 MIG = 
1

3.3
 (2)(–230.66) + 2

6

3.3
 (650.11) = 218.40 kN.m

Fig. 18.32  Moment diagram

The results satisfy the equilibrium of the joints with only a rounding off of 

error, if any. The end moments in the columns satisfy the external shear. The 

fi nal moment values are shown in Fig. 18.31b. The moment diagram drawn on 

the tension side of members is shown in Fig. 18.32. The computations have been 

carried in long hand to show in detail the various steps involved. However, the 

method is well suited for a complete matrix formulation of the problem and for 
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carrying out computations through electronic digital computers. For a complete 

discussion of this and other effi cient methods best suited for matrix formulation, 

the reader should refer to more advanced text books.

18.7   COMPARISON OF FLEXIBILITY AND

    STIFFNESS METHODS

The fl exibility and stiffness methods of structural analysis are quite similar 

in many respects, especially in the fomulation of the problem. For this reason 

the choice of one method or the other is primarily a matter of computational 

convenience.

In the fl exibility method there are several alternatives as to redundants, and 

the choice of redundants has a signifi cant effect on the nature and amount of 

computational effort required. In the stiffness method, on the other hand, there is 

no choice of unknowns since the structure can be restrained in a defi nite manner; 

thus, the method of analysis follows a rather set procedure. However, there are 

both advantages and disadvantages in both approaches and when carrying out 

the analysis by hand computations, the method that produces fewer unknowns 

generally involves the least amount of computations. For example, the inversion 

of a fl exibility or stiffness matrix depends upon the number of unknowns involved. 

For a structure that has numerous redundants but very few joint displacements as 

in Fig. 18.33a, the stiffness method will be preferred. The fl exibility method needs 

an inversion of a 7 ¥ 7 matrix, whereas the stiffness method needs an inversion of 

a 2 ¥ 2 matrix. When there are fewer redundants in a structure than the number of 

1

2

3

4

5

6

7

8
9

(b)

(a)

1

2

9875 63 41 2

Fig. 18.33
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joint displacements, as in Fig. 18.33b, the fl exibility method is preferred. Since 

the structure is redundant to the second degree, the fl exibility method requires an 

inversion of a 2 ¥ 2 matrix. On the other hand, the stiffness method requires the 

inversion of a 9 ¥ 9 matrix in order to compute displacements.

The order of the matrix to be inverted is obviously important for manual 

computations. However, if an electronic digitial computer is to be used to 

execute the analysis, the manner in which the required set of equations is 

formulated becomes the important factor in selecting the method of analysis. To 

have an effective computer programme, the computations required to develop 

the equations for the analysis should be general and repetitive and not unique to 

any particular problem. In this respect the stiffness approach is preferred. In the 

stiffness method there is no actual choice involved as far as the required structure 

is concerned, and hence a general programme can be written that will solve all 

classes of problems.

Problems for Practice

Use the stiffness method in solving the following problems.

18.1, 18.2 Analyse the plane three-member trusses shown in Fig. 18.34 and 18.35 due 

to the applied load. All members have identical axial stiffness AE.

 

C

P

A

B D

h

1 2 3

2

1

30° 45°

 

L
A

E
. .

L
A

E
.

.

L A E. .

P

120°

120° 90
° 30°

 Fig. 18.34 Fig. 18.35

18.3 Analyse the simple truss shown in Fig. 18.36. Hinged supports are provided at A 

and B and all the members are assumed to have identical sectional properties.

2 P

P
C

L

B1

23
4

5

6

1

2

3

Plane Truss Coordinates

Fig. 18.36
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18.4 Analyse the plane truss given in Fig. 18.37 for the loads shown, assuming all mem-

bers to have the same axial stiffness AE.

18.5 Analyse the beam shown in Fig. 18.38 assuming fl exural rigidity EI constant for 

the span.

18.6 Analyse the beam shown in Fig 18.39 taking points A, B and C as joints and as 

suming constant EI.

18.7 Find the displacements over supports and member and forces of the beam given 

in Fig. 18.40.

 

P

2 P

L

D

CA
B

LL

1 2 3

4 5

 

L

1

2
4

3
W/Unit Length

 Fig. 18.37 Fig. 18.38

A

B
L

C

L/3

1

2

3

4

5

6

Fig. 18.39

W = 150 kN

3 EI
EI

1.5 L

C

BA

L

L /2 P = 100 kN

Fig. 18.40

18.8 Analyse the beam shown in Fig. 18.41 taking points A, B, C and D as joints.

Y

A

W P L= / P P

2 EI EIB C EI
D

X

L/2 L/2L L

2P

1 2 3

Fig. 18.41

18.9 Find the support moment at B for the beam shown in Fig. 18.42. EI is constant.
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A B

L

C D

L L

W/Unit

Fig. 18.42

18.10 Analysis the structure shown in Fig. 18.43 taking rotation at joint B as the only 

degree of freedom. Draw the moment diagram and evaluate all reactions.

18.11 Analyse the rigid frame shown in Fig. 18.44 for displacements and members 

forces. Neglect axial deformations. EI is constant.

 

P

L/2 L/2

B

EI
C

2 L EI

 
L

B
C

A

D

P

L

L/2

 Fig. 18.43 Fig. 18.44

18.12 Obtain the end moments for the frame shown in Fig. 18.45. EI is constant.

18.13 Neglecting axial deformations, write the stiffness matrix for the frame shown in 

Fig. 10.46a corresponding to the coordinates indicated. Condense this matrix to fi nd the 

stiffness matrix corresponding to the coordinates in Fig. 18.46b. EI is constant.

B
C

D
A

20 kN

10 m

4

3

10 m

Fig. 18.45

Fig. 18.46



19.1  INTRODUCTION

In the preceding chapters the analysis has been carried out on the basis of elastic 

behaviour of structures. Such an analysis is useful to study the performance of the 

structure, especially with regard to serviceability under working load. However, 

in steel structures if the load is increased, some of the sections in the structure 

may develop yield stress. Any further increase in load causes the structure to 

undergo elasto-plastic deformations and some of the sections may develop a 

fully plastic condition at which a suffi cient number of plastic hinges are formed 

transforming the structure into a mechanism. The mechanism would collapse 

without noticeable ad ditional loading. A study of the mechanism of failure and 

knowledge of the load causing the mechanism is necessary to determine the load 

factor. A structure is designed so that its collapse load is equal to or higher than 

the working load multiplied by the load factor specifi ed.

Design of structures based on the plastic approach is being increasingly used 

and adopted in various codes of practice particularly for steel struc tures. The 

present outline of analysis is limited to plastic analysis of steel structures only.
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Fig. 19.1  Idealised stress-strain curve
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19.2  STRESS-STRAIN CURVE

An idealised stress-strain relationship for structural steel is shown in Fig. 19.1. 

It may be noted that the large amount of plastic deformation (12-14 times the 

elastic deformation) is useful for the section to develop a plastic hinge. The large 

reserve strength available in the strain-hardening region is not utilised in the 

design of structures.

We shall now consider the principles of plastic analysis as applicable to simple 

and continuous beams and frames.

19.3  PLASTIC MOMENT

Consider a beam cross-section symmetrical about the plane of bending 

subjected to a moment M under a working load as shown in Fig. 19.2a. The 

stresses developed are in the elastic region (Fig. 19.2b)

The stress distributions across the depth of the beam under different mo ment 

levels are shown in Fig. 19.2b, c, d and e in which

 M = Moment corresponding to working load under which the stresses 

are within the proportional limit

 My = Moment at which the section develops yield stress

and Mp = Moment at which the entire section is under yield stress.

When the moment is increased to My the stress variation continues to be linear, 

the maximum stress at the extreme top fi bre reaching yield stress sy as in Fig. 

19.2c. With a further increases in the moment My < M < Mp the bottom fi bre stress 

also reaches the yield stress while the yield stress penetrates into the inner fi bres 

at the top as in Fig. 19.2d. As the bending moment is increased to Mp the yield 

will penetrate until the two zones of yield meet; the cross-section at this stage is 

said to be fully plastic and the moment Mp is known as a plastic moment.

s < sy s s= y
s s= y s s= y

s < sy s < sy s s= y s s= y

(a)
Beam

section

(b)
Stress

under M

(c)
Stress

under My

(d)
Stress

under < <M M MPy

(e)
Stress

under MP

Fig. 19.2

The value of moment Mp for a fully plastic section can be calculated in terms 

of the yield stress sy. As the section is not subjected to any external axial force 

the total compression C = AC sy must be equal to total tension T = Atsy in which 

Ac and At, are the areas of compression and tensile zones in the cross section.
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Equating,

 Ac sy = At sy (19.1)

\ Ac = At = 
2

A
 (19.2)

where A is the area of cross-section.

That is, the neutral axis divides the area of cross-section into two equal parts 

and the resulting compression and tension 
2

yAs
 form a couple equal to the 

plastic moment Mp.

\ ( )
2

p y c t y p

A
M y y Zs s= + =  (19.3)

where yc and yt are the distances of centroids of compression and tension areas 

from N.A. of the plastic section and Zp is known as the plastic modulus of 

section.

The maximum moment which a section can carry when the stress fi rst reaches 

yield value is My = sy Ze, where Ze is the elastic modulus of the section.

19.3.1 Plastic Modulus, Shape Factor

The ratio S = 
p

e

Z

Z
 is known as the shape factor which depends on the shape of 

the cross-section; it is always greater than unity.

For a rectangular cross-section having breadth b and depth d the modulus of 

section in elastic analysis is Ze = 

2

.
6

bd
 The corresponding modulus of section in 

plastic analysis is obtained by taking the static moment of the compression and 

tensile areas about the neutral axis as shown in Fig. 19.3a.

That is, Zp = 
2

(2)
2 4 4

d d bd
b

Ê ˆ Ê ˆ =Á ˜ Á ˜Ë ¯ Ë ¯
 (19.4)

Hence the shape factor

 S = 
2 2

1.5
4 6

p

e

Z bd bd

Z
= ∏ =  (19.5)

for a rectangular section.

For a circular section the elastic modulus is

 

3

32
eZ d

p
=

The modulus of section in the plastic analysis can be obtained again by taking 

the static moment of the tensile and compression areas about the neutral axis as 

shown in Fig 19.3b.
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2 2

(2)
8 3

p

d
Z d

p

p
=

 = 

3

6

d
 (19.6)

\ Shape factor: S = 
p

e

Z

Z

  
3

3 1.7
6 32

d
d

p
= ∏ =  (19.7)

Fig. 19.3

For rolled steel I beams and other built-up I sections the value of the shape factor 

varies from 1.14 to 1.18.

19.3.2 Load Factor

The ratio of the load causing collapse to the working load is called the load 

factor. The load factor is dependent upon the shape of the section as the working 

load is dependent upon the I and Z values and the collapse load is dependent 

upon the shape of the section.

Considering a rectangular beam of breadth b and depth d, the moment of 

resistance under working load M = 
2

6
b

bd
s , where sb is the allowable stress in 

bending = sy/1.5.

For collapse load the moment of resistance Mp = 
2

.
4

y

bd
s

Therefore, the load factor = 
2 2

4 1.5 6

p y

y

M bd bd

M

s
s

Ê ˆ
= Á ˜Ë ¯

 = 1.5 ¥ 1.5 = 2.25

19.3.3 Mechanism of Failure

(i) Simple Beam

Consider a simply supported beam under a concentrated load W at the centre. 

(Fig. 19.4.)
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Fig. 19.4  (a) Beam and the loading, (b) Defl ection curves under increasing load,

(c) Rotations and defl ections at collapse (4-3)

As the load W is increased gradually, the mid span section develops yield 

stress sy. As the load is further increased the yield stress penetrates deeper and 

at a moment Mp a plastic section is developed at the centre. The formation of a 

hinge under the load point can constitute a mechanism of failure. Without any 

addition of load the plastic hinge undergoes increasing rotation and so also the 

defl ection in the beam, causing collapse. The load Wu at the collapse stage is 

related to plastic moment Mp by statics as

 
4

u
p

M l
M =  or 

4 p

u

M
M

l
=

Distribution of the Plastic Hinge In the discussions above, the plastic hinge has 

been assumed to be formed at a point and all the rotation occurred at that point. 

In reality, the hinge extends over a length of member that is dependent on the 

loading and the geometry. For example, in the rectangular beam, the hinge length 

is equal to one-third of the span. For a wide-fl anged beam with a shape factor 

1.14, the hinge length is L/8. In other words, the hinge length DL is the length 

of the beam over which the moment is greater than My. In the analysis however, 

the plastic hinge is considered as a point at which all the plastic rotations occur. 

(Fig. 19.5.)

The defl ections and rotations resulting in a collapse mechanism are shown 

in Fig. 19.6. The increase in defl ection during collapse is due to rotation of the 

hinge at the centre without a corresponding change in the curvature in the two 

halves which remain straight.

The plastic analysis is of no advantage for determinate beams and frames as 

they would develop collapse mechanism soon after formation of the fi rst plastic 
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hinge. However, in statically indeterminate structures more than one plastic 

hinge is necessary to develop a failure mechanism.

Fig. 19.5  Plastic hinge length in (a) rectangular beam, (b) I section

Virtual Displacements and Virtual Work The principle of virtual displacements is 

useful in expressing the equilibrium condition. It may be stated that if a system 

of forces in equilibrium is subjected to virtual displacement, the work done by 

the external forces equals the work done by the internal forces.

If the external work is called WE and the internal work is called WI, this 

principle may be expressed in the form

 WE = WI (19.8)

The collapse load of the beam can be calculated by equating the virtual work 

done by the external load and internal forces during virtual moment of the 

collapse mechanism as shown in Fig. 19.6.

In the virtual movement of failure mechanism there is rotation q at the ends 

and 2 q at centre. The downward displacement under load point Wu is 
2

l
q

Ê ˆ
Á ˜Ë ¯

Virtual work done by load Wu is WE = 
2

u

l
W q

Ê ˆ
Á ˜Ë ¯

Internal virtual work done by the plastic moment Mp at the hinge, WI = Mp 

(2q). No work is done at the ends as no moment or plastic hinge exists there. 

Equating external virtual work to internal virtual work we get

 
2

u

l
W q

Ê ˆ
Á ˜Ë ¯

 = 2Mp q

 Wu 

4 pM

l
=
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Fig. 19.6  Virtual rotations and defl ections in a failure mechanism

A
B

CI/2 I/2

MP

A

C

B

MPMP Under load W1

Under load Wu

A B

I/2

2

w/unit length

(a)

(b)
(1)

(2) (3)

(c)

(3) – (z)

(D)

Rotation and deflections

1) Attainment of first yield
2) Attainment of ultimate load
3) Rotation and deflections under

continued straining

Fig. 19.7  (a) Fixed beam, (b) Moment diagrams under loads w1 and wu

(c) Defl ections under w1 and wu and (d) Failure mechanism

(ii) Fixed Beam

Consider a beam fi xed at both the ends and subjected to a uniformly distributed 

load w as shown in Fig. 19.7. The fi xed end moments are MA = MB = 

2

12

wl-
 and 

Mc = 
2

24

wl
 in the elastic analysis. If the u.d.1. is increased to w1 the ends develop 

fully plastic moment Mp and plastic hinges are formed at A and B.

Although the ends develop plastic moment Mp and the plastic hinges form, the 

beam will not fail but act as a simple beam to carry further load. If w1 is further 

increased, the moments at supports will remain constant at Mp and the moments 

in the beam will increase, as it would be in a simple beam. In this process the 

plastic hinges at the ends freely rotate and the increase in defl ections will be the 

same as in a simply supported beam. At a load wu the beam develops plastic 

moment Mp at the centre and a third plastic hinge is formed, which constitute a 

failure mechanism.
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The moment diagrams at different load intensities are shown in Fig. 19.7b and 

the corresponding defl ections in Fig. 19.7c.

The collapse load can be calculated using again the virtual work equations.

External virtual work WE = ( )
4

u

l
w l q

Ê ˆ
Á ˜Ë ¯

where wul is the total load and 
4

l
q

Ê ˆ
Á ˜Ë ¯

 is the average downward displacement of 

the load.

Internal virtual work WI = Mp (q + 2q + q)

in which q, 2q and q are the virtual rotations at A, C and B respectively. 

Therefore,

 
2

4

uw l q
 = 4 Mp q

 wu = 2

16 pM

l

Load factor u

e

w

w
 can be calculated as earlier.

Let we be the working load, then

 
2

12

ew l
 = M

 we = 2

12 M

l

Considering a factor of safety 1.5 to the yield stress, we can write

 wy = 
2

12 yM

l

 Ratio u

y

w

w
 = 

2

2

16

12

p

y

M l

Ml

Ê ˆÊ ˆ
Á ˜Á ˜Ë ¯ Ë ¯

or u

e

w

w
 = (1.5) 

16

12

p

y

M

M

For a rectangular section 
p

y

M

M
 = 1.5

\ u

e

w

w
 = 1.5 

16

12

Ê ˆ
Á ˜Ë ¯

 (1.5) = 3.0

This clearly indicates that the design of a fi xed beam on the basis of elastic 

theory is conservative.



Plastic Analysis of Steel Structures  751

(iii) Propped Cantilever Beam

Consider a propped cantilever beam of span l and loaded centrally by a 

concentrated load W as shown in Fig. 19.8a. The elastic moment diagram is 

shown in Fig. 19.8b.

W

A B
C

I/2 I/2

WI

WI

A B
C

I/2

2

(a)

(b)

5

32

3

16

(c)

(d)

Fig. 19.8  (a) Propped cantilever beam and the loading, (b) Moment diagram under working 

load, (c) Mp at A and C, (d) Defl ections under failure mechanism

The moment at the fi xed end is larger than the one under the load point. If the 

load is increased, the moment at the fi xed end reaches Mp and a plastic hinge is 

formed.

After a plastic hinge is formed at A the beam will act as though it is a simply 

supported beam having a plastic hinge at A and a real hinge at B. An increase 

in load W will not increase the moment at the fi xed end but will increase the 

moment in the beam as in a simply supported beam. Eventually the moment 

under the load point reaches Mp and a failure mechanism will form with two 

plastic hinges and one real hinge.

The load Wu at which the beam develops a collapse mechanism is determined 

using virtual work equations as earlier.

 
2

u

l
W q

Ê ˆ
Á ˜Ë ¯

 = Mp (q) + Mp (2 q)

where q = rotation of the hinge at left end and 2 q = rotation of hinge under load 

point

(iv) Fixed Beam Under Unsymmetrical Loading

Consider a fi xed beam under load W positioned at l/3 from the left hand support 

as shown in Fig. 19.9a. The elastic moment diagram is shown in Fig. 19.9b. 

The plastic moment will develop fi rst at end A. As the load is increased the next 
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section which will develop plastic moment Mp is under load point. Then the beam 

between C and B is a cantilever. The third hinge will form at support B, forming 

a failure mechanism. The collapse load Wu can be calculated using virtual work 

equations as earlier.

Fig. 19.9  (a) Fixed beam under unsymmetrical loading, (b) Moment under working load,

(c) Moment Mp at A, C and B, (d) Mechanism of failure

 
2

3
uW lq

Ê ˆ
Á ˜Ë ¯

 = Mp(2q + 3q + q)

 Wu   
9 pM

l

(v) Propped Cantilever Under U.D.L.

Consider a propped cantilever beam subjected to a uniformly distributed load w/

unit length as shown in Fig. 19.10a.

The elastic moment diagram is shown in Fig. 19.10b. The beam has to 

develop a plastic hinge at fi xed end A and another in the span to form a collapse 

mechanism. The fi nal moment diagram before collapse is as shown in Fig. 

19.10c. But in this case, the hinge along the span is not at mid point but at a point 

C where the effective moment is Mp. Let this point be at a distance x from the 

simply supported end.

 2

p

B

Mwl
R

l
= -
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A B

W/Unit length

WI2
–––
8

MP

MP

A B

C x

I

(a)
9

128

(b)

(c)

(d)

0.586 0.414

2.415
1.415

Fig. 19.10  (a) Propped cantilever beam, (b) Elastic moment diagram, (c) Location

of plastic moment, (d) Failure mechanism

Shear at C = RB – w x = 0 since maximum moment is assumed to occur at C.

Therefore 0
2

pMwl
wx

l
- - =

 
2

pMl
x

wl
= -

B.M. at C, 

2

2
C B

wx
M R x= -

Substituting for RB and x

 

2

2 2 2 2

p p p

C

M M Mwl l w l
M

l wl wl

Ê ˆ Ê ˆ Ê ˆ
= - - - -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

Simplifying

 

2
2

28 2 2

pp

C

MMwl
M

wl
= - +

For formation of plastic hinge at C this moment MC must be equal to Mp. 

Therefore

 

2
2

28 2 2

pp

p

MMwl
M

wl
= - +

or 

2
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Solving,

 Mp = 0.686 
2

8

wl

and x = 
2

l
 – 0.086l = 0.414l

The collapse load can be calculated using virtual work equations as ear lier. 

Referring to Fig. 19.10d,

 
0.586

( ) (2.415 )
2

u p p

l
w l M M

q
q q

Ê ˆ = +Á ˜Ë ¯

 wu = 11.656 
2

pM

l

and Mp = 0.086 wu l
2

The reader may note the collapse load wu = 12 
2

pM

l
 if the plastic hinge in the 

span is assumed to form at centre of span. This information is very useful in the 

design of continuous beams by plastic theory.

Example 19.1 
Calculate the collapse load Wu for a proposed cantilever 

loaded as shown in Fig. 19.11. Take the plastic moment 

capacity of the beam as Mp.

The beam will develop a mechanism of failure by the formation of a plastic 

hinge at the fi xed end and the second one under one of the two concentrated 

loads. The location of the second plastic hinge is not ob vious; a trial and error 

procedure is necessary.

First the collapse load is calculated considering that a hinge is formed under 

load 0.8 Wu as shown in Fig. 19.11b. Using the virtual work equation we have

 
2

0.8 ( 3 )
3 3

u u p

l
W W l Mq q q q

Ê ˆ Ê ˆ+ = +Á ˜ Á ˜Ë ¯ Ë ¯
Solving
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p

u

M
W

l
=

If the second hinge is assumed to be formed under load Wu, the collapse load Wu 

can be calculated from Fig. 19.11d and e as follows.

 

2
0.8 (2 3 )

3 3
u u p

l
W l W Mq q q q

Ê ˆ Ê ˆ+ = +Á ˜ Á ˜Ë ¯ Ë ¯

Solving,

 5.36
p
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=
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Fig. 19.11  (a) Beam and loading, (b) Moment diagram assuming hinges at A and D,

(c) Mechanism at collapse, (d) Moment diagram assuming hinges at A and C,

(e) Mechanism at collapse

The value of Wu which has the lesser value in terms of Mp is the correct one. 

For the beam, the collapse takes place when the second hinge forms under load 

0.8 Wu and Wu = 4.62 
pM

l
.

19.4  METHODS OF ANALYSIS

The two methods of analysis which are followed in the plastic analysis are:

 1. Statical Method of Analysis

 2. Mechanism Method of Analysis or Kinematic Method of Analysis

19.4.1 Statical Method of Analysis

The statical method is based on the lower bound theorem. The theorem states 

that a load computed on the basis of the assumed equilibrium moment diagram 

in which the moments are not greater than Mp is less than or at best equal to the 

true ultimate load. The objective of this method is to fi nd an equilibrium moment 
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diagram in which |M| < Mp and a failure mechanism is formed. The following 

procedure is followed in this method.

 1. Release redundants which can be either moments or forces and make the 

structure a determinate one.

 2. Obtain moment diagram for the determinate structure.

 3. Draw the moment diagram for the structure due to redundant moments 

or forces.

 4. Sketch the combined moment diagram so that a mechanism is formed.

 5. Compute the magnitude of redundants by solving equilibrium 

equations.

 6. Check whether suffi cient number of hinges are formed for the mechanism 

of failure.

19.4.2 Mechanism Method of Analysis

For a structure with large number of redundants, the possible number of failure 

mechanisms increase and construction of correct equilibrium moment diagrams 

becomes diffi cult. For such cases the mechanism method of analysis may be 

preferred. This method is based on an upper bound theorem. The theorem states 

that a load computed on the basis of an assumed mechanism will always be 

greater than or ar best equal to the true failure load. The correct mechanism is 

the one which results in the lowest possible load and for which the moment |M| 

does not exceed the plastic moment Mp at any section. The objective is to fi nd a 

mechanism in which the plastic moment condition is not violated. The following 

procedure is followed in the analysis.

 1. Determine the required number of plastic hinges necessary for the 

mechanism. The number of hinges is n + 1 where n is the degree of 

indeterminacy.

 2. Select possible mechanisms: elementary or independent mechanisms 

and combinations thereof.

 3. For each possible mechanism calculate the collapse load.

 4. Lowest collapse load is the correct ultimate load.

 5. Check to see that nowhere the moment |M| > Mp.

A few examples will be solved using both the methods to make the procedure 

clear.

(i) Continuous Beams

Example 19.2 
A two span continuous beam of uniform cross-section is 

fi xed at end A and simply supported at B and C, as 

shown in Fig. 19.12. The loading in each span is shown. Determine the collapse 

load in terms of plastic moment Mp.

Statical Method The structure is statically indeterminate by two degrees. Moments 

at A and B are identifi ed as redundants. The moment diagram is drawn taking AB 

and BC as two simple beams. The redundant moment diagram is superimposed 

over the simple beam moments.
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Fig. 19.12  (a) A two-span continuous beam, (b) Moment diagram with hinges at A, D

and B, (c) Moment diagram with hinges at B and E, (d) and (e) Failure mechanisms

A failure mechanism requires three plastic hinges. Consider the hinges at A, B 

and D as shown in Fig. 19.12b. From the moment diagram we can write

 
2

4
p

Pl
M=

 

8 p

u

M
P

l
=

In this, the moment at E, ME > Mp. Hence this is not the correct mechanism. 

Next we try the moment diagram which causes collapse of the beam BC by 

forming hinges at B and E as in Fig. 19.12c.

 4 2

p

p

MPl
M= +

 

6 p

u

M
P

l
=

Obviously the moment at D, MD < Mp

Therefore the true collapse load is 
6 p

u

M
P

l
=

Mechanism Method It is assumed that the beam AB will collapse by the formation 

of plastic hinges at A, B and D. The mechanism is shown in Fig. 19.12c.

Equating virtual work done by the external and internal forces

 

( 2 )
2

u p

l
P Mq q q q
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\ 
8 p

u

M
P

l
=

Another possible mechanism of failure results from formation of hinges at B 

and E. Again writing the virtual work equation for the mechanism,
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P Mq q q
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\ The least collapse load 
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u

M
P

l
=

A moment check that nowhere the moment |M| > Mp is required. However, in the 

present case the collapse takes place in span BC and the beam AB is intact and is 

redundant. The exact magnitude of the moment in the redundant portion of the 

beam, is not of interest. There are some simple methods available for obtaining 

the possible moment diagram when the structure is partially redundant at failure. 

The reader may refer to Plastic Design of Steel Frames by Lynn S. Beedle for 

those methods.

(ii) Rectangular Portal Frames

The plastic analysis of fi xed and continuous beams was carried out either by the 

statical method or by the mechanism method. There was only one distribution 

of moment in each span and identifi cation of failure mechanism was relatively 

easy. In case of frames, there exist several possible failure mechanisms. The total 

number of independent or elementary mechanisms is equal to (n – m) where n 

is the number of possible plastic hinges and m is the degree of indeterminacy 

of the frame. Besides the elementary mechanism, combined mechanisms may 

also form. Each possible mechanism results in a particular failure load, only 

the lowest of which is correct. In a frame, it is usually convenient to make the 

analysis by the kinematic method. In the examples that follow only this method 

of analysis has been followed.

Example 19.3 
Determine the collapse load for the portal frame shown 

in Fig. 19.13.

The frame is indeterminate by three degrees. The number of hinges necessary 

for total collapse is 4. The number of independent of elementary mechanisms is 

2; that is the number of possible hinges (5) minus the degree of indeterminacy.

The two independent mechanisms are (i) the beam mechanism and (ii) the 

sway mechanism as shown in Fig. 19.13b and c. The third one shown in Fig. 

19.13d is the combined mechanism in which the hinge at B is eliminated.

Virtual work equations for each of these mechanisms give

Mechanism 1 PD = Mp (q) + 2Mp (2q) + Mp (q)
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Fig. 19.13  (a) Frame and the loading, (b) Beam mechanism, (c) Sway mechanism,

(d) Combined mechanism, (e) Final moment diagram
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Mechanism 2 PD/2 = Mp (q) + Mp (q) + Mp (q) + Mp (q)
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Mechanism 3 P D1 + 
2

P
D2 = Mp(q) + 2Mp (2 q) + Mp(2q) + Mp(q)
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The collapse load is the smallest of the three. That is Pu (3) = 10.67 Mp/l and 

failure of the frame will occur under the combined mechanism.

To make sure that some other mechanism was not overlooked, it is necessary 

to check the plastic moment condition to see that |M| < Mp anywhere on the 

frame. The complete moment diagram is shown in Fig. 19.13e. The moment at B 

is determined as follows:

  

2 4
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= =
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4
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M Ml
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l
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Since the moment MB < Mp the correct collapse load has been obtained.

Example 19.4 
A portal frame ABCD with hinged feet has stanchions 4 

m high and a beam of 6 m span. There is a horizontal 

point load of 40 kN at B while the beam carries a point load of 120 kN at mid 

span. Using a load factor of 1.75, establish the collapse mechanism and calculate 

the collapse moment.

The frame and the design loading is shown in Fig. 19.14a. Using virtual 

equations in each of the mechanisms, we get,

Beam Mechanism 210 (D) = Mp (q) + Mp (2 q) + Mp (q)

 210 ¥ 3 q = 4 Mp q

\ Mp = 157.5 kN.m

Sway Mechanism 70 (D) = Mp (q) + Mp (q)

 70 (4 q) = 2 Mp q
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Fig. 19.14  (a) Frame and the loading, (b) Beam mechanism, (c) Sway mechanism,

(d) Combined mechanism, (e) Final moment diagram

\ Mp = 140.0 kN.m

Combined Mechanism 210 (D1) + 70 (D2) = Mp (2 q) + Mp (2 q)
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 210 (3 q) + 70 (4 q) = 4Mp0 

\ Mp = 227.5 kN.M

The combined mechanism requires a plastic moment Mp = 227.5 kN.m and 

the failure is due to formation of plastic hinges at C and E. The bending moment 

diagram in Fig. 19.14e shows that moment M > Mp anywhere on the frame.

19.5   GABLE FRAMES OR FRAMES WITH INCLINED

    MEMBERS

In the case of frames having inclined members it becomes tedious to compute 

the displacements in the direction of the load as the structure moves through the 

mechanism motion. In such cases the motion of the structure and of its elements 

may be found by using one of the methods of basic mechanics, namely that of 

“instantaneous centres”.

O

A

B
C

D

E

2

I/
2

I

Fig. 19.15

Although the use of instantaneous centres is not necessary in the solution of 

example 19.4, consider its application to Mechanism 3 of that example shown in 

Fig. 19.15. The mechanism essentially consists of three movable parts ABE, EC 

and CD with hinges at their ends. Part ABE pivots about A and the part CD about 

D. The intermediate part EC can rotate normal to AE at E and normal to DC at C. 

It is evident that the part EC will rotate about an instantaneous centre O which is 

the point of intersection of lines AE and DC extended.

A virtual clockwise rotation at D gives lateral displacement of 
2

l
q  at C. Since 

the length CO is equal to 
2

l
, the rotation of EC about O is = q. The total rotation 

at C is 2 q and that at E is also 2 q by geometry. The vertical motion of the load 

at E = 
2

l
q as before. These angular rotations and translations are the same as in 

Example 19.4 and the virtual work equations give the same results.
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The use of “instantaneous centres” is more appropriate for gable frames. 

Consider a global frame shown in Fig. 19.16a. One of the trial mechanisms is 

shown in Fig. 19.16b. The mechanism results in the break up of the structure into 

three parts: ABC, CDE and EF with hinges at their ends. As discussed earlier 

part CDE rotates about the instantaneous centre O. The instantaneous centre is 

located at the intersection of the lines AC and FE extended. Let q1 be the rotation 

at hinge point F, then by geometry

 

1
2 3 2 1

3
and 3

4 4

q
q q q q= = =

Equating external virtual work to internal virtual work in a virtual dis placement 

as shown in Fig. 19.16b,
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Fig. 19.16  (a) Frame and the loading, (b) Location of instantaneous centre
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Writing in terms of q1
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A second mechanism is shown in Fig. 19.17. The instantaneous centres are B, 

O and F for the parts BC, CE and EF, respectively.

O

F
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Fig. 19.17

In this, by geometry, q1 = q2

 q3 = 3 q1

Writing down the virtual work equation
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Writing in terms of q1
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It is necessary to make a check that the moment M anywhere does not exceed 

Mp.
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19.6  TWO BAY PORTAL FRAME

We shall now take up a two bay portal frame and determine the collapse load by 

the elementary mechanism and combined mechanisms.

Example 19.5 
Consider a two bay portal frame as shown in Fig. 

19.18. Determine the collapse load. The moment Mp 

values are specifi ed along the members.

Beam mechanisms for beams 4-5-6 and 6-7-8 and sway mechanisms 

are considered as shown in Fig. 19.18b, c and d and the collapse loads are 

determined.

Beam 4-5-6 4 P (lq) = Mp (q) + 2 Mp (2 q) + 2 Mp (q)

 4Plq = 7Mpq

 Pu(1) = 1.75
pM

l

Beam 6-7-8 5P 
3

2
lq

Ê ˆ
Á ˜Ë ¯  = 3Mp(q) + 3 Mp (2q) + 2 Mp (q)
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Sway Mechanism:

 3P(2lq) = Mp(q + q) + 2 Mp (q + q) + 2 Mp (q + q)

 6Plq = 10Mpq
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Combining sway and beam mechanism for beam 6-7-8 as in Fig. 19.18e the 

virtual work equation is,

3P(2 lq) + 5 P 
3

2
lq

Ê ˆ
Á ˜Ë ¯  = Mp (q + q) + 2Mp (q + q) + 2Mp (q + 2q) + 3Mp (2q)

 13.5 Plq = 18 Mpq
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Combining sway and beams 4-5-6 and 6-7-8 as in Fig. 19.18f the virtual work 

equation is

4P(D1) + 5P(D2) + 3 P(D3) = Mp(q) + 2Mp(q) + 2Mp(q) + 2Mp (2 q + 2 q)

 + 3 Mp(2q) + 2Mp (2 q)
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Fig. 19.18  (a) Two-bay frame and loading, (b) Beam mechanism 4-5-6,

(c) Beam mechanism 6-7-8, (d) Sway mechanism, (e) Combined mechanism,

(f) Beam and sway mechanism combined
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Substituting for D1, D2 and D3,

 4P(lq) + 5P 
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2
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This combined sway and beams mechanism gives the least value for Pu = 1.3142 

Mp/l. A moment check that nowhere is M > Mp, is necessary to ensure that this is 

the correct critical load.

Problems for Practice

19.1 Find the shape factor for the following sections:

 (a) A square section having side ‘a’ placed with one of its diagonals vertical.

 (b)  A tubular section with outer diameter equal to twice the inner diameter.

 (c) An I section having compression and tension fl anges 250 ¥ 15 mm each and a 

web 500 ¥ 10 mm.

19.2 A beam of uniform section having span 1 and plastic moment Mp is fi xed at one 

end and simply supported at the other. What is the maximum concentrated load W that the 

beam can carry if the load is at l/3 from the fi xed end?

19.3 Determine the collapse load for a propped cantilever beam 15 MB 250 @ 373 N/m 

if a concentrated load W is acting at mid span.

19.4 A fi xed beam 8 m span carries a u.d.l. on the left half of the span. If the plastic mo-

ment of the section is 120 kN.m fi nd the value of the collapse load.

19.5 A two-span continuous beam having span AB = 6 m and BC = 8 m is subjected to 

central concentrated loads of 60 kN and 80 kN respectively. If the beam is simply sup-

ported at the ends calculate plastic moment required for the beam.

19.6 In problem 19.5, if the span BC is subjected to a u.d.l. of 100 kN instead of 80 kN 

point load and end C is fi xed fi nd the plastic moment Mp required for the beam.

19.7 A two-span continuous beam ABC each of span l is fi xed at end A and simply sup 

ported at the other end C. Find the collapse load if it is subjected to u.d.l. of w/unit length. 

Take it that the beam is uniform and has plastic moment Mp.

19.8 In problem 19.7 determine the collapse load w/unit length if the span AB has 2 Mp 

and the span BC has 1.5 Mp.

19.9 A rectangular frame shown in Fig. 19.19 is fi xed at the column bases and is loaded 

as shown. Find the collapse load Pu.

19.10 A pinned-base rectangular portal frame ABCD of height L and span 3L is of 

uniform section throughout with fully plastic moment Mp. The frame is subjected to a 

horizon tal load P at the top left column together with a vertical load P at a distance L from 

right end of the beam. Find the value of P which would cause collapse.

19.11 Find the required value of Mp for the fi xed-base pitched roof portal frame shown 

in Fig. 19.20.
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19.12 Determine the collapse load of the two bay portal frame shown in Fig. 19.21.
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A.1  VECTORS

In structural analysis forces and displacements can be expressed conveniently 

by vectors. The use of vector algebra simplifi es certain calculations particularly 

in space members, trusses and frames. Only an elementary theory of vectors is 

presented here. For greater details the reader should refer to books dealing with 

vector algebra. A force can be represented vectorially as

 F = a1i + a2j + a3k (A.1)

where a1, a2 and a3 are the scalar components along 

coordinate axes X, Y and Z respectively, and i, j 

and k are the basic unit vectors directed along X, Y 

and Z axes respectively as shown in Fig. A.1.

A.1.1 Addition of Vectors

The addition of vectors follows the law of 

parallelogram of forces. Let A = (a1i + a2j + a3k) 

and B = (b1i + b2j + b3k) be the two vectors to be 

added.

Then, C = A + B = (c1i + c2j + c3k) (A.2)

in which c1 = (a1 + b1), c2 = (a2 + b2), c3 = (a3 + b3)

that is, the components of vector A are added to the components of vector B. In 

the same way more than two vectors can be added by adding the corresponding 

components of the elements of the vectors. The only necessary condition is 

that they must all have the same dimension and expressed in terms of the same 

coordinate system.

Subtraction is also carried out similarly. For example, A – B is obtained by 

subtracting the components of vector B from the corresponding components of 

vector A.

Addition is commutative

 A + B = B + A (A.3)

Theory of Vectors 
and Matrices

Appendix A

Fig. A.1  Basic unit vectors
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Addition is associative

 A + (B + C) = (A + B) + C (A.4)

A.1.2 Product of Vectors

A.1.2.1 Dot Product

The scalar or dot product of two vectors A = (a1i + a2j + a3k) and B = {b1i + b2j 

+ b3k) results in a scalar quantity. This is represented as

 A ◊ B = | A | | B | cos q (A.5)

This product A ◊ B = a1b1 ◊ i + a2b2j ◊ j + a3b3k ◊ k
  = a1b1 + a2b2 + a3b3 (A.6)

since i ◊ i = 1, j ◊ j = 1 and k ◊ k = 1

In mechanics, this simple operation is useful in many ways. If vectors A and B 

represent force and displacement respectively, the product results in work. Work 

is a scalar quantity.

From the defi nition it follows readily that the dot product is commutative and 

is distributive with respect to vector addition.

Thus, A ◊ B = B ◊ A or A(B + C) = A ◊ B + A ◊ C (A.7)

The dot product can be used to determine the angle between the two vectors. 

For example, from Eq. A.5

 cos q = 
| | | |

◊A B

A B

The projection of vector A along an axis represented by B is equal to

 |A| cos q = 
1 1 2 2 3 3

| |

a b a b a b+ +
B

 (A.8)

The dot product can also be employed to defi ne a plane passing through a 

given point P and perpendicular to a vector N.

Let Q (x, y, z) be an arbitrary point on a plane and A and B the position vectors 

to points P and Q as shown in Fig. A.2.

The displacement vector PQ = B – A

The equation of the plane is obtained by solving

 (B – A) ◊ N = 0 (A.9)

Example A.1 
What is the rectangular component of the 500 N force 

shown in Fig. A.3 along the diagonal from B to A.

Unit vector along 500 N force

 
2 2 2

5 10 8 5 10 8

1895 10 8

+ + + +
= =

+ +

i j k i j k
n
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 Fig. A.2 Fig. A.3

Expressing 500 N force in the vector form, we get

 

2500 5000 4000

189 189 189
= + +

i j k
F

Displacement vector BA = 5 i – 10 j + 8 k

Unit vector along BA is 
2 2 2

5 10 8 5 10 8

1895 10 8

- + - +
= =

+ +

i j k i j k
n

The component of 500 N force along BA is obtained by

 F ◊ n = –29.07 N

Example A.2 
Defi ne the plane which passes through point B and is 

perpendicular to axis A given that A = (2, 3, 5) and

B = (8, 1, –2).

Let Q(x, y, z) be any point on the plane (Fig. A.4). Displacement vector QB = 

(8 – x) i + (1 – y)j + (–2 – z)k

The equation for the plane can be obtained by using Eq. A.9

 QB ◊ A = 0

Substituting for QB and A and simplifying we get

 2x + 3y + 5z – 9.

A.1.2.2 Cross Product

This is also known as vector product since it results in a vector. One such result 

may be the moment of the force. For the vector (having possibly different 

dimensions) shown in Fig. A.5 as A and B the operation is defi ned as

 A ¥ B = C (A.10)

where C has a magnitude that is given as

 |C| = |A| |B| sin q (A.11)
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 Fig. A.4 Fig. A.5

which is equal to the area of the parallelogram formed by A and B. Angle q is the 

smaller angle between the two vectors A and B. Vector C has a direction normal 

to the plane formed by A and B.

The commutative law does not hold good. From the defi nition of the cross 

product

 (A ¥ B) = –(B ¥ A) (A.12)

In a right-handed Cartesian coordinate system

 2 3 3 1 1 2

2 3 3 1 1 2

a a a a a a

b b b b b b
¥ = + +A B i j k  (A. 13)

where a1, a2, a3 and b1, b2, b3 are the scalar components of A and B respectively.

For convenience in memorising, it is useful to note that Eq. A. 13 can be 

interpreted as the expansion of the determinant, that is

 
1 2 3

1 2 3

a a a

b b b

¥ =
i j k

A B  (A.14)

The application of cross-product occurs in the defi nition of moment. The 

moment of a force F about an axis through a given point O is

 M = r ¥ F (A.15)

where r is a position vector from point O to any point A on the line of action of 

force F as shown in Fig. A.6. Moment vector M is perpendicular to the plane 

defi ned by r and F.

It is easy to see that the magnitude of moment M is

 r ¥ F = | r | ◊ | F | sin q = F ◊ d (A.16)

a result we are familiar with.

We can easily see that an arbitrary selection of point A anywhere along the 

line of action of force F has no effect on the value of M. This in effect only 

stipulates that F is a transmissible vector in the computation of M.
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 Fig. A.6 Fig. A.7

A.1.2.3 The Scalar Triple Produpt

Another useful quantity is the scalar triple product, which for a set of vectors A, 

B and C is defi ned as

 (A ¥ B) ◊ C = S (A.17)

where S is a scalar quantity. A simple geometric meaning can be associated with 

this operation. In Fig. A.7 we have shown A, B and C as an arbitrary set of 

vectors.

Let A ¥ B = D

D is a vector perpendicular to the plane defi ned by A and B and is equal in 

magnitude to the shaded area of the parallelogram. The scalar product of D ◊ C 

results in

 D C = D ◊ C cos a

  = D ◊ h (A.18)

in which D is the base area and h the normal height of the parallel-piped. Thus, 

the scalar triple product represents the volume of the parallel-piped formed by 

the concurrent vectors of the triple product.

The computation of the scalar triple product is a straightforward process. It 

takes the form

 

1 2 3

1 2 3

1 2 3

( )

a a a

C b b b

c c c

¥ ◊ =A B  (A.19)

This can be written as

 (A ¥ B) ◊ C = – (B ¥ A) ◊ C (A.20)

 A ◊ (B ¥ C) = (A ¥ B) ◊ C
One important application of the triple scalar product in mechanics is the 

moment of a force along an axis passing through a point.

In Fig. A.8 let A represent an arbitrary vector along axis aa and r the position 

vector of a point B on the line of the action of force F.
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Fig. A.8

Then,

 M = (r ¥ F) ¥ A (A.21)

where M is the moment of force F along axis aa passing through O. It is evident 

that if axis aa lies in the same plane as F and O, moment M is equal to zero. 

Consequently, M becomes maximum when axis aa lies normal to the plane 

defi ned by O and F.

A.1.2.4 Vector Triple Product

Another operation involving three vectors is the vector triple product defi ned by 

vectors A, B and C as A ¥ (B ¥ C). The vector triple product is a vector quantity 

and will appear often in the study of dynamics. The triple vector product can be 

carried out by using the dot product as

 A ¥ (B ¥ C) = B(A ◊ C) – C(A ◊ B) (A.22)

Example A.3 
A force F = (10i + 16j) kN goes through the origin of the 

coordinate system. What is the moment of this force F 

about an axis going through points 1 and 2 with position vectors r1 = 6i + 3k and 

r2 = 16j – 4k?

To compute this we can take the moment of F about either point 1 or 2 and 

then fi nd the component of this vector along the direction of the displacement 

vector between 1 and 2. Using point 1

 M12 = {(–r1) ¥ F} ◊ n12

where n12 is the unit vector along the direction between points 1 and 2.

This is in the form of the triple scalar product. Accordingly, we can use the 

determinant approach (see Sec. A.2). for the calculation, once the required 

vectors have been determined.

 2 1
12

2 1

6 16 7

| | 36 256 49

È ˘- - + -
= = Í ˙

- + +Í ˙Î ˚

r r i j k
n

r r
 = 0.3249i + 0.8664j – 0.3790k

We then have for M12
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6 0 3

10 16 0 5.20 kN.m

.3249 .8664 .3790

- -
= -

- + -

Example A.4 
The coordinate of ends of vectors from the origin to the 

points A, B and C are A = (1, –1, 2) B = (3, –2, 0) and C 

=(–4, 1, 2). Find a vector N perpendicular to plane 

ABC.

In Fig. A.9 let A, B and C be the points, the 

coordinates of which are given. The displacement 

vectors AB and AC are

 AB = (2i – j – 2k)

 AC = (–5i + 2j)

The cross product AB ¥ AC gives a vector N normal to the plane defi ned by 

ABC. Carrying out the cross product in the determinant form

 

2 1 2

5 2 0

- -
- +

i j k

We get the vector perpendicular to the plane ABC as

 4i + 10j – k

Example A.5 
Find the volume of the tetrahedron that has the following 

vertices

 A(4, 7, –1), B(3, 3, 3), C(1, –1, 2) and D(2, 1, 0)

Let ABC form the corners of the base and D the apex. The displacement 

vectors AB, AC and AD are

 AB = –i – 4j + 4k

 AC = –3i – 8j + 3k

 AD = –2i – 6j + k

Volume V of the parallel-piped having AB, AC and AD as the three adjacent 

edges is obtained from the scalar triple product. That is

 V = (AB ¥ AC) AD

Evaluating in the determinant form

 

1 4 4

3 8 3 10

2 6 1

- - +
- - + =
- -

Volume of tetrahedron = 
1

6
(10) = 1.67 units3

Fig. A.9
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A.1.2.5 Orthogonal Vectors

Vectros A and B are said to be orthogonal if, and only if, their scalar is ..... zero.

A.1.2.6 Linear Dependence of Vectors

A set of m vectors A1, A2, ..., Am are said to be linearly dependent if at least 

one of the them can be represented as a linear combination of the other m – 1 

vectors, that is, as the sum of those vectors each multiplied by a constant. If 

none of the vectors can be represented in this fashion, they are said to be linearly 

independent. For example, vectors A = i + 2j + k, B = 3k and C = 2i + 4j are 

linearly dependent because 6A – 2B – 3C = 0, that is 
1 1

.
3 2

= +A B C  The unit 

vectors i, j and k are linearly independent.

Two linearly dependent non-zero vectors A and B are collinear, that is, if we 

let their initial points coincide they lie along the same line. Consequently, we 

have A ¥ B = 0 from the defi nition of cross product. This yields that two vectors 

A and B are linearly dependent if, and only if, their vector product is the zero 

vector.

Three linearly dependent non-zero vectors A, B and C are co-planar, that is, if 

we allow their initial points to coincide, they lie in the same plane. By interpreting 

the triple scalar product, we can state that the three vectors are linearly dependent 

if, and only if, their triple scalar product is zero.

A.2  DETERMINANTS

Determinants arise in the solution of simultaneous linear algebraic equations. 

We shall briefl y discuss the elements of determinants. Consider the system of 

simultaneous equations

  a11x1 + a12x2 + a13x3 = b1

  a21x1 + a22x2 + a23x3 = b2

  a31x1 + a32x2 + a33x3 = b3 (A.23)

Solving for x1, x2 and x3 we get

 
1 22 23 33 2 32 12 33 13 32 3 12 23 13 22

1

11 22 33 23 32 21 12 33 13 32 31 12 23 13 22

( ) ( ) ( )

( ) ( ) ( )

b a a a a b a a a a b a a a a
x

a a a a a a a a a a a a a a a

- - - + -
=

- - - + -

 
1 23 31 21 33 2 13 31 11 33 3 13 21 11 23

2

11 22 33 23 32 21 12 33 13 32 31 12 23 13 22

( ) ( ) ( )

( ) ( ) ( )

b a a a a b a a a a b a a a a
x

a a a a a a a a a a a a a a a

- - - + -
=

- - - + -

 1 21 32 22 31 2 11 32 12 31 3 11 22 12 21
3

11 22 33 23 32 21 12 33 13 32 31 12 23 13 22

( ) ( ) ( )

( ) ( ) ( )

- - - + -
=

- - - + -
b a a a a b a a a a b a a a a

x
a a a a a a a a a a a a a a a

 (A.23)

The expression in the denominators of x1, x2 and x3 is written in the form

 

11 12 13

21 22 23

31 32 33

| |

a a a

A a a a

a a a

=  (A.25)

and is called a determinant of order 3, since it has three rows and three columns
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Note that the expression in Eq. (A.25) can also be written as

 22 23 21 23 21 22

11 12 13
32 33 31 33 31 32

a a a a a a
a a a

a a a a a a
- +  (A.26)

Thus, a determinant of order 3 is defi ned in terms of a determinant of order 2. 

Similarly, determinants of order 4 can be defi ned in terms of determinants of order 

3. In general, we may defi ne a determinant of order n in terms of determinants 

of order (n – 1).

A.2.1 Minors and Cofactors

The minor of an element aij of a determinant of size n is the determinant of 

order (n – 1) obtained by deleting the ith row and jth column of the original 

determinant. This is denoted as Mij. Thus, there would be n fi rst minors, each of 

order (n – 1).

The cofactor of determinant | A |, corresponding to the element aij, is designated 

as Cij and is

 Cij = (–1)i + j Mij (A.27)

Because of this, cofactors are sometimes referred to as signed minors. For 

example in the third order determinant

 

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
11 13 11 13

32 11 23 13 21
2321 21 23

( )= = = -
a a a a

M a a a a
aa a a

 (A.28)

and C32 = (–1)3+2M32 = –a11a23 + a13a21 (A.29)

A.2.2 Evaluation of Determinants by

     Cofactors–Laplace Expansion

The numerical value of an n ¥ n determinant | A | can be found either from

 
1

| |
n

ij ij
j

A a C
=

= Â  (A.30)

for any value of i, or

 
1

| |
n

ij ij
i

A a C
=

= Â  (A.31)

for any value of j. Equation A.30 describes the expansion of the determinant 

about a row. Equation A.31 describes the expansion of the determinant about a 

column.
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Example A.6 
Using Laplace expansion, evaluate the determinant

1 3 1 2

2 0 2 4
| |

1 1 0 1

2 5 3 6

A

-
- -

=
-

The determinant will be expanded about the third row. Equation A.30 with i = 3 

and j = 1, 2, 3, 4 is applicable

 | A | = a31C31 + a32C32 + a33C33 + a34C34

  = (–1)(+M31) + (1)(–M32) + (0)(+M33) + (1)(–M34)

Now

 

31 32 34

3 1 2 1 1 2 3 1 1

0 2 4 2 2 4 0 2 2

5 3 6 2 3 6 5 2 3

M M M

- -
= - - = - - = -

Expansion of M31 about the fi rst column leaves only a 2 ¥ 2 determinant. We 

shall use Eq. A.31 with j = 1 and i = 1, 2, 3 to evaluate M31. Thus,

 M31 = 3[(–2)(6)–(–4)(3)] + 0 + 5[(1) (–4) – (–2) (–2)] = –40

Similarly expanding M32 about the fi rst column,

 M32 = 1[(–2)(6)–(–4)(3)] – 2[(1)(6) – (–2)(3)] + 2[(1) (–4) – (–2) (–2)] = –40

Expanding M34 about the second column

 M34 = – (3) [(2)(3) – (–2) (2)] + 0 – (5)[(1)(–2) – (1) (2)] = – 10

Now | A | = (–1) (–40) + (1) (40) + (l)(10) = 90

A.2.3 Properties of Determinants

The following properties of determinants play an important part in matrix 

algebra:

 1. The value of a determinant is not altered when its rows and columns are 

interchanged, that is, transposed.

 2. If all the elements in one row (or column) of a determinant are zero, the 

determinant is zero.

 3. Interchanging of two adjacent rows or columns of a determinant only 

alters the sign of its determinant.

 4. If all the elements in a row or a coiumn of a determinant are multiplied 

by a factor k, the value of the determinant is k times the value of the 

given determinant.

 5. If each element of a row (or a column) of a determinant is expressed 

as a binomial, the determinant can be written as the sum of two 

determinants.
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 6. If corresponding elements of two rows or columns of a determinant are 

proportional, the value of the determinant is zero.

 7. The value of a determinant is left unchanged if the elements of a row 

(or column) are altered by adding to them any constant multiple of the 

corresponding elements in any other row (or column).

 8. The value of a triangular determinant is equal to the product of the 

diagonal elements.

The evaluation of a higher order determinant by Laplace expansion is every 

time consuming. There are many special methods that are suitable for large 

determinants. Only one method which is known as pivotal condensation or 

Gauss’ method is presented. This method is based on triangularisation of the 

determinant using No. 7 from the above properties of the determinants. Then by 

virtue of No. 8, the determinant will be the product of the elements on the main 

diagonal.

This is illustrated for a determinant of order 3, but the application of the 

technique to an nth order determinant will be apparent.

Example A.7 
Consider a determinant

 

1 2 1

| | 2 2 3

1 3 3

A

-È ˘
Í ˙= -Í ˙
Í ˙Î ˚

Multiply the fi rst row by +2 and add it to the second row. The resulting 

determinant value does not change (Property 7). That is,

 

1 2 1

| | 0 2 5

1 3 3

A

-È ˘
Í ˙= -Í ˙
Í ˙Î ˚

Now subtracting fi rst row from the third

 

1 2 1

| | 0 2 5

1 3 2

A

-È ˘
Í ˙= -Í ˙
Í ˙Î ˚

Multiplying second row by 5/2 and adding to the third

 

1 2 1

| | 0 2 5

0 0 14.5

A

-È ˘
Í ˙= -Í ˙
Í ˙Î ˚

Then | A |= (1) (–2) (14.5) = – 29.
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A.3  MATRICES

A matrix is defi ned as an array of elements arranged in rows and columns. The 

general representation of an m ¥ n matrix A is

 

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

n

n

n

m m m mn

a a a a

a a a a

a a a a

a a a a

È ˘
Í ˙
Í ˙
Í ˙=
Í ˙
Í ˙
Í ˙Î ˚

A  (A.32)

An element of matrix A in the ith row and jth column is represented by the 

notation aij. An exmple of a matrix notation are the coeffi cients in a set of 

simultaneous equations

 2x1 – 3x2 + x3 = 4

 –x1 + 2x2 + x3 = 1

 3x1 + x2 + 2x3 = –3 (A.33)

represented by a matrix

 

2 3 1

1 2 1

3 1 2

+ - +È ˘
Í ˙= - + +Í ˙
Í ˙+ + +Î ˚

A  (A.34)

where a11 = +2, a12 = –3 and so on.

A.3.1 Types of Matrices

A.3.1.1 Row Matrix

A matrix,

 {a1 a2 ... an} (A.35)

having only one row is called row matrix or row vector.

A.3.1.2 Column Matrix

A matrix,

 

1

2

m

b

b

b

Ï ¸
Ô Ô
Ô Ô
Ì ˝
Ô Ô
Ô ÔÓ ˛

 (A.36)

having only one column is called column matrix or column vector. Two matrices 

A and B of (m ¥ n) are said to be equal if, and only if, the corresponding elements 

are equal, that is aij = bij for all i = 1, 2, ..., n and j = 1, 2, ..., m. Then A = B.
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A.3.1.3 Square Matrix

A matrix having the same number of rows and columns is called square matrix 

and the number of rows or columns is called its order. The diagonal containing 

the elements a11, a21, ..., ann of the square matrix is called the principal diagonal. 

Square matrices are of special importance in structural analysis.

A.3.1.4 Diagonal Matrix

A square matrix A whose elements above and below the principal diagonal are 

all zero, that is aij = 0 for all i π j, is called diagonal matrix. For example,

 

3 0 0 2 0 0

0 1 0 and 0 3 0

0 0 4 0 0 5

È ˘ È ˘
Í ˙ Í ˙-Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

 (A.37)

are diagonal matrices.

A.3.1.5 Unit Matrix

A diagonal matrix whose elements in the principal diagonal are all unity and zero 

elsewhere is called unit matrix or identity matrix. For example,

 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0 1

È ˘
Í ˙
Í ˙= Í ˙
Í ˙
Í ˙Î ˚

I  (A.38)

is a unit matrix.

A.3.1.6 Null Matrix

A matrix whose elements are all zero is called null matrix or zero matrix

A.3.1.7 Real Matrix

If all the elements of a matrix are real, the matrix is called real matrix.

A.3.1.8 Transpose of a Matrix

Interchanging the rows and columns of a matrix A results in transpose matrix and 

is denoted as AT. If A is a m ¥ n matrix then AT = n ¥ m matrix. For example,

 

T

2 4
2 3 6

and 3 1
4 1 0

6 0

È ˘
È ˘ Í ˙= =Í ˙ Í ˙Î ˚ Í ˙Î ˚

A A

Likewise, after transposition, a column vector becomes a row vector 2

 

T

2

1 and {2 1 3}

3

Ï ¸
Ô Ô= - = -Ì ˝
Ô Ô
Ó ˛

A A
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The fundamental properties of transposition are

 (AT)T = A (A.39a)

 (A ± B)T = AT ± BT (A.39b)

 (A B)T = BT
A

T (A.39c)

 (K A)T = KA
T (A.39d)

 A
T = A if and only if A is symmetric (A.39e)

 A
T
A = A A

T = B (B is symmetric) (A.39f)

 A + AT = B  (B is symmetric) (A.39g)

 A – AT = B  (B is skew-symmetric) (A.39h)

A.3.1.9 Symmetric and Skew Symmetric Matrices

A real square matrix A is said to be symmetric if it is equal to its transpose, that 

is,

 A
T = A, that is, aij = aji (i, j = 1, 2, ..., n) (A.40)

A real square matrix A is said to be skew-symmetric if 

 A
T = A, that is, aij = –aji (i, j = 1, 2, ..., n)

which implies that the elements in the principal diagonal of a skew-symmetric 

matrix are all zero.

A.3.1.10 Triangular Matrices (Upper and Lower)

A square matrix whose elements above the principal diagonal (or below the 

principal diagonal) are all zero is called triangular matrix. For example, the 

matrices U and L,

 

0 6 1 1 0 0

0 2 3 2 3 0

0 0 4 5 0 2

-È ˘ È ˘
Í ˙ Í ˙= = -Í ˙ Í ˙
Í ˙ Í ˙Î ˚ Î ˚

U L  (A.41)

are called the upper and lower triangular matrices respectively.

A.3.1.11 Band Matrix

A matrix whose non-zero elements are located on or near the principal diagonal 

such that aij = 0 for | i – j | > b is known as band matrix. In case the bandwidth

b = 3, the band matrix is often referred to as a tridiagonal (triple diagonal) matrix. 

Band matrices are commonly encountered in structural analysis.

A.3.1.12 Orthogonal Matrix

This is a square matrix whose inverse is equal to its transpose. That is

 A
–1 = AT (A.42)

Rotation matrix R between rectangular coordinate frame is orthogonal, that is RT 

= R–1 or R RT = I. This is frequently employed in matrix analysis of structures.



Theory of Vectors and Matrices  783

A.4  MATRIX OPERATIONS

A.4.1 Addition and Subtraction of Matrices

The addition of matrix A and matrix B results in another matrix C, the elements 

of which are equal to the sum of the corresponding elements of A and B. The 

addition can be written as

 A + B = C (A.43)

or aij + bij = cij for each i and j.

Similarly, the difference of matrices A and B is another matrix D. That is

 A – B = D (A.44)

or aij – bij = dij for each i and j.

The only necessary condition for addition or subtraction is that matrices must all 

have the same dimension, that is, the same number of rows and columns. Such 

matrices are said to be conformable for addition.

Example A.8 
Let,

4 6 3 5 1 2
and

0 1 2 3 1 0

- -È ˘ È ˘
= =Í ˙ Í ˙

Î ˚ Î ˚
A B

Then

 

1 5 5 9 7 1
and

3 2 2 3 0 2

-È ˘ È ˘
+ = - =Í ˙ Í ˙-Î ˚ Î ˚

A B A B

The addition is commutative and also associative.

That is,

 A + B = B + A (A.45)

and (A + B) + C = A + (B + C) (A.46)

A.4.2 Matrix Multiplication

The product of matrix A and scalar quantity C is defi ned as matrix C ◊ A or A ◊ C 

and is obtained by multiplying each element of A by scalar C. Thus

 

11 12 1

21 22 2

1 2

n

n

m m mn

c a c a c a

c a c a c a

C C

c a c a c a

◊ ◊ ◊È ˘
Í ˙◊ ◊ ◊Í ˙
Í ˙◊ = ◊ =
Í ˙
Í ˙
Í ˙◊ ◊ ◊Î ˚

A A  (A.47)

The product of two matrices A and B results in another matrix C. This can be 

written as

 A B = C

where the elements of resulting matrix C are by defi nition
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 1

n

ij ik kj
k

C a b
=

= Â

or Cij = ai1 b1j, + ai2, b2, – ain bnj (A.48)

that is, the ijth element of the resultant matrix C is the sum of the multiplication 

of the elements in the ith row of matrix A with the elements of jth column of 

matrix B. Thus, the process of matrix multiplication is conveniently referred to 

as the multiplication of rows into columns.

In the multiplication of A and B, A is called pre-multiplier and B is called post-

multiplier. Such a distinction must be kept in mind since matrix multiplication is 

in general non-commutative, that is,

 AB π BA (A.49)

Two matrices can be multiplied only when the matrices are conformable for 

multiplication, that is, the number of columns of pre-multiplier is equal to the 

number of rows of the post-multiplier. Thus, if A is m ¥ n, then B must be n ¥ p 

so that the product matrix C will be m ¥ p

 
m n n p m p

=
¥ ¥ ¥
A B C

 (A.50)

   

Figure A. 10 represents schematically the matrix multiplication.

Figure A. 10 shows an arrangement of matrices A and B and their product 

C = AB which is convenient for numerical work. The point of interest is that 

each element Cij of the product matrix occupies the intersection of the ith row 

of the pre-multiplier matrix and jth column of post-multiplier which are used for 

computing Cij.

Fig. A.10

Example A.9 
Let,

 

1 0 2
3 2 1

and 5 3 1
0 4 6

6 4 2

È ˘
-È ˘ Í ˙= =Í ˙ Í ˙Î ˚ Í ˙Î ˚

A B
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We are to determine product AB.

As a fi rst step it is desirable to write the two matrices with their dimensions. 

The inner dimension 3 ¥ 3

 
2 3 3 3 2 3

=
¥ ¥ ¥
A B C

     

indicates conformability of matrix multiplication and the outer 2 ¥ 3 indicates the 

dimension of the resulting matrix. Thus,

 

1 0 2
3 2 1 7 2 6

5 3 1
0 4 6 56 36 16

6 4 2

Sum 3 6 5 Sum 63 38 22

È ˘
-È ˘ È ˘Í ˙= =Í ˙ Í ˙Í ˙Î ˚ Î ˚Í ˙Î ˚

C

 C11 = (3)(1) + (2)(5) + (–1)(6) = 7

 C12 = (3)(0) + (2)(3) + (–1)(4) = 2

 C13 = (3)(2) + (2)(1) + (–1)(2) = 6

 C21 = 0(1) + (4)(5) + (6) (6) = 56

 C22 = 0 + (4) (3) + (6) (4) = 36

 C23 = 0 + (4)(1) + (6) (2) = 16

Numerical work can be checked by the use of the sums of the elements of the 

columns. In example A.9 we have,

  (3)(1) + (6)(5) + (5)(6) = 63

  (3)(0) + (6)(3) + (5)(4) = 38

  (5)(2) + (6)(1) + (5)(2) = 22

which checks with the sum of elements of the columns in product C. The reader 

will realise that for this numerical example product B A is not possible. In matrix 

multiplication it may happen that AB = 0, even though A π 0 or B π 0. For 

example, the product of

 
1 1 1 1 0 0

and results in
2 2 1 1 0 0

-È ˘ È ˘ È ˘
= = =Í ˙ Í ˙ Í ˙-Î ˚ Î ˚ Î ˚

A B C

It may be shown that in this example BA π 0.

Furthermore, if AB = AC it does not necessarily imply that B = C. For 

example,

 

0 3 1 2 5 8
, ,

0 1 4 3 4 3

-È ˘ È ˘ È ˘
= = =Í ˙ Í ˙ Í ˙- -Î ˚ Î ˚ Î ˚

A B C

Then 
12 9

,
4 3

+ -È ˘
= = Í ˙- +Î ˚

AB AC  yet B π C
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Multiplication of three or more matrices can exist provided they are conformable 

in sequence as shown

 =
¥ ¥ ¥ ¥ ¥m n n p p q q s m s

A B C D E
 (A. 51)

                     

The associative and distributive laws are valid in matrix multiplication

 (AB)C = A(BC) (A.52)

 A(BC) = AB + AC (A.53)

A.4.3 Partitioned Matrix

It is often necessary to partition a matrix into a number of smaller matrices known 

as sub-matrices. For example a 3 ¥ 4 matrix can be partitioned as

 

11 12 13 14
11 12

21 22 23 24
21 22

31 32 33 34

a a a a

a a a a

a a a a

È ˘
È ˘Í ˙

= = Í ˙Í ˙
Í ˙Î ˚Í ˙

Î ˚

A A
A

A A
 (A.54)

where

 

12 13 1411
11 12

22 23 2421

21 31 22 32 33 34[ ] [ ]

a a aa

a a aa

a a a a

È ˘È ˘
= = Í ˙Í ˙

Î ˚ Î ˚
= =

A A

A A

Two matrices A and B which are of the same size can be added or subtracted 

by adding or subtracting their sub-matrices, treating them as elements, provided 

they are partitioned into the same number and size of submatrices. Thus, if A and 

B are partitioned as above, their sum C can be written as

 11 11 12 12

21 21 22 22

+ +È ˘
= + = Í ˙+ +Í ˙Î ˚

A B A B
C A B

A B A B
 (A.55)

The multiplication of two matrices can be performed in terms of their 

submatrices, treating them as elements, provided the original matrices and their 

partitioned matrices are conformable for multiplication.

Example A.10 
Given two matrices

1 0 4 4 2 3 1

0 2 5 and 2 1 0 3

4 5 1 5 2 1 0

È ˘ È ˘-
Í ˙ Í ˙

= =Í ˙ Í ˙
Í ˙ Í ˙
Î ˚ Î ˚

A B

The product 

16 6 1 1

29 12 5 6

31 15 13 19

-È ˘
Í ˙= = Í ˙
Í ˙Î ˚

AB C
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The two matrices are partitioned keeping in mind the conformity principle for 

multiplication. The product AB in terms of their sub-matrices is

 

11 12 11 12

21 22 21 22

È ˘ È ˘
Í ˙ Í ˙
Î ˚ Î ˚

A A B B

A A B B

where

  

11 11

12 12

21 21

22 21

1 0 4 2

0 2 2 1

4 3 1

5 0 3

[4 5] [5 2]

[1] [1 0]

-È ˘ È ˘
= =Í ˙ Í ˙

Î ˚ Î ˚
È ˘ È ˘

= =Í ˙ Í ˙
Î ˚ Î ˚

= =
= =

A B

A B

A B

A B

Performing the required multiplication we obtain

 C11 = A11B11 + A12B21

  

1 0 4 2 4
[5 2]

0 2 2 1 5

-È ˘ È ˘ È ˘
= +Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚

  

4 2 20 8 16 6

4 2 25 10 29 12

- -È ˘ È ˘ È ˘
= + =Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚

 C12 = A11B12 + A12B22

   

1 0 3 1 4
[1 0]

0 2 0 3 5

-È ˘ È ˘ È ˘
= +Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚

   

3 1 4 0 1 1

0 6 5 0 5 6

- - -È ˘ È ˘ È ˘
= + =Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚

 C21 = A21B11 + A22B21

  

4 2
[4 5] [1] [5 2]

2 1

[26 13] [5 2] [31 15]

È ˘
= +Í ˙

Î ˚
= + =

 C22 = A21B12 + A22B22

  

3 1
[4 5] [1] [1 0]

0 3

[12 19] [1 0] [13 19]

È ˘
= +Í ˙

Î ˚
= + =
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Therefore, 

 

16 6 1 116 6 1 1

29 12 5 629 12 5 6

31 15 13 19[31 15] [31 15]

È ˘ -- È ˘È ˘ È ˘
Í ˙ Í ˙Í ˙ Í ˙= =Î ˚ Î ˚Í ˙ Í ˙
Í ˙ Í ˙Î ˚Î ˚

C

which is same as the previous result.

A.4.4 Adjoint Matrix

Let A be a square matrix of order n and Cij be the signed minors or cofactors, 

then

 

11 12 1

21 22 2

1 2

n

n

n n nn

C C C

C C C

C C C

=C  (A.56)

The transpose of this matrix, by defi nition is adjoint of matrix A. Thus,

 

11 12 1

21 22 2

1 2

Adj

n

n

n n nn

C C C

C C C

C C C

=A  (A.57)

The use of adjoint matrices is found in the inversion of matrices dealt with in 

Sec. A.5.

A.4.4.1 Singular Matrices and Rank of a Matrix

If the determinant of a square matrix vanishes, that is, if the rows (or columns) 

are nearly dependent, the matrix is said to be singular. For example, the matrix

 

1 2 1

3 3 0

2 2 4

- -È ˘
Í ˙= -Í ˙
Í ˙Î ˚

A

is singular because determinant A = 0. It is seen that the elements in the third 

column are obtained by adding columns 1 and 2.

The maximum number of linearly independent rows or columns of matrix A is 

called rank. The rank of a matrix is defi ned as being the order of its largest non-

singular minor. The rank, therefore, of every square matrix with a non-vanishing 

minors is the same as its order.

The rank of the transpose of a matrix is same as that of the original matrix.
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A.5  INVERSE OF A MATRIX

In an ordinary algebraic equation such as ax = b the unknown x can be obtained 

by dividing both sides by a that is, x = b/a. However, in matrix equation AX = 

B, where A is a n ¥ n non-singular matrix, X and B are n ¥ l column vectors, the 

solution is obtained by pre-multiplying both sides by inverse or reciprocal matrix 

A
–1 of A, that is,

 A
–1 AX = A–1

B (A.58)

or IX = A–1
B (A.59)

or X = A–1
B (A.60)

The inverse matrix, then, is the matrix which when pre-multiplied or post-

multiplied by matrix A, results in an identity matrix I, that is,

 AA
–1 = A–1 A = I (A.61)

The multiplication here is commutative.

The only necessary and suffi cient condition for the existence of the inverse 

is that the original matrix be a non-singular square matrix. If a matrix has an 

inverse, the inverse is unique and is referred to as proper inverse.

Inversion in matrix algebra is analogous to division in ordinary algebra. 

However, inversion in matrix is perhaps the most time consuming procedure in 

the handling of matrices if carried by hand calculations. However, the availability 

of electronic digital computers has changed the situation completely. Now there 

are several methods available for the inversion of a matrix. However, only three 

of them are described in the following sections.

A.5.1 Inversion of a Matrix by Adjoint

The inverse of a matrix A is obtained by dividing the adjoint matrix, Adj A, by 

the determinant of the original matrix. Thus

 1 Adj

| |

- È ˘
= Í ˙

Î ˚

A
A

A
 (A.62)

The procedure is illustrated by a numerical example.

Example A.11 
Given a square matrix

 

3 6 11

3 4 6

4 8 13

- -È ˘
Í ˙= -Í ˙
Í ˙-Î ˚

A

Determine the inverse of matrix A.
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First let us evaluate the co-factors and hence

 

4 6 3 6 3 4

8 13 4 13 4 8

6 11 3 11 3 6

8 13 4 13 4 8

6 11 3 11 3 6

4 6 3 6 3 4

ijC

È ˘- -
-Í ˙- -Í ˙

Í ˙- - - -Í ˙=
- -Í ˙

Í ˙
- - - -Í ˙-Í ˙- -Î ˚

           

4 15 8

10 5 0

8 15 6

- - -È ˘
Í ˙= Í ˙
Í ˙- - -Î ˚

Next, by transposing C above the adjoint is obtained. Thus,

 

4 10 8

Adj 15 5 15

8 0 6

- -È ˘
Í ˙= - -Í ˙
Í ˙- -Î ˚

A

Evaluate the determinant of the original matrix using Eq. A.30

 1

| |
n

ij ij
j

A a c
=

= Â

Operating on the second row .

 | A |= 3(10) – 4(5) + 0 = 10

Therefore,

 

1

0.4 1.0 0.8
Adj

1.5 0.5 1.5
| |

0.8 0 0.6
A

-

- -È ˘
Í ˙= = - -Í ˙
Í ˙- -Î ˚

A
A

It can be verifi ed that

 AA
–1 = I

A.5.2 Inversion of Matrix by Gauss-Jordan Method

When the size of matrix is larger than 4 ¥ 4, inversion by Eq. A.62 becomes very 

cumbersome. Many additional methods have been developed for inverting large 

matrices. One method which is most commonly used is the Gauss-Jordan or 

complete elimination method. This is by far the quickest method for the inversion 

of a matrix on a computer.
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As an example, consider the matrix

 

2 4 3

1 3 4

1 3 6

È ˘
Í ˙= Í ˙
Í ˙-Î ˚

A  (A. 63)

As a fi rst step, a rectangular matrix is formed by augmenting the given matrix 

with an identity matrix as shown

 

2 4 3 1 0 0

1 3 4 0 1 0

1 3 6 0 0 1

È ˘
Í ˙
Í ˙
Í ˙-Î ˚

 (A.64)

The Gauss-Jordan elimination process is applied to the rectangular matrix 

reducing the left part of the matrix to an identity matrix with the right part 

attaining the elements denoted by bij. The resulting matrix is of the form

 

11 12 13

21 22 23

31 32 33

1 0 0

0 1 0

0 0 1

b b b

b b b

b b b

È ˘
Í ˙
Í ˙
Í ˙Î ˚

 (A.65)

The inversion of A is

 

11 12 13

1
21 22 23

31 32 33

b b b

b b b

b b b

-
È ˘
Í ˙= = Í ˙
Í ˙Î ˚

A B  (A.66)

Example A.12 
Let us apply the procedure to invert matrix A given in Eq. 

A.63. The augmented matrix is given in Eq. A.64.

 

11

21

31

3 1
1 2 0 0 Divide first row by 2.2 2

Multiply first row by 1 and5 1
0 1 1 0

subtract from second row.2 2

15 1 Multiply first row by 1 and0 5 0 1
2 2 subtract from third row.

a

a

a

È ˘
Í ˙ =
Í ˙ =Í ˙-Í ˙
Í ˙

= -Í ˙
Í ˙Î ˚

After this, the fi rst row and the fi rst column are untouched for some time. The 

process on the second row is repeated.

 

22

32

3 1
1 2 0 0

2 2 First row left untouched
5 1

Divide second row by 1.0 1 1 0
2 2

Multiply second row by 5 and

subtract from third row.
0 0 5 3 5 1

a

a

È ˘
Í ˙
Í ˙
Í ˙

=-Í ˙
Í ˙ =
Í ˙
Í ˙- -Î ˚
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What we have followed so far is the Gaussian elimination.

 

12

12

33

7 3
1 0 2 0 Multiply second row by 2 and2 2

subtract from first row. This eliminates 5 1
0 1 1 0

Second row is left untouched2 2

13 Divide third row by 5
0 0 1 1

5 5

È ˘
- -Í ˙ =

Í ˙
Í ˙-Í ˙
Í ˙

= -Í ˙- -
Í ˙Î ˚

a

a

a

 

13

13.

23

3 3 7 Multiply third row by 7/2 and1 0 0
5 2 10 subtract from first row. This eliminates 

3 1
Multiply third row by 5/2 and0 1 0 1

2 2
subtract from second row. This eliminates

13
0 0 1 1

5 5

È ˘ = -- -Í ˙
Í ˙
Í ˙ =-Í ˙
Í ˙
Í ˙- -
Í ˙Î ˚

a

a

a

23.

23.

 

This eliminates 

a

a

Hence the inverse matrix is

 

1

3 3 7

5 2 10

3 1
1

2 2

3 1
1

5 5

-

È ˘- -Í ˙
Í ˙
Í ˙= -Í ˙
Í ˙
Í ˙- -
Í ˙Î ˚

A

The result can be verifi ed by the relationship

 A
–1

A = I

 

3 3 7

5 2 10 2 4 3 1 0 0
3 1

1 1 3 4 0 1 0
2 2

1 3 6 0 0 1
3 1

1
5 5

È ˘- -Í ˙
È ˘ È ˘Í ˙
Í ˙ Í ˙Í ˙- =Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙ -Î ˚ Î ˚

Í ˙- -
Í ˙Î ˚

A.5.3 Matrix Inversion by Partitioning

Suppose we have a computer and a programme for inversion which can handle 

matrices of order £ n. To invert a matrix of a higher order, say m > n, we can 

partition the matrix and generate its inversion in terms of inverses on submatrices 

of order £ n.

Let A be an m ¥ m square matrix which is partitioned into four sub-rnatrices.
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11 12

21 22

( ) ( )

( ) ( )

È ˘
Í ˙

¥ ¥Í ˙= Í ˙
Í ˙

¥ ¥Í ˙Î ˚

p q

p
p p p q

q
q p q q

A A

A
A A

 (A.67)

Here p and q are smaller than n, and p can be equal to q. Attention must be paid 

to the fact that at least one of the sub-matrices on the main diagonal, that is, A11 

or A12 should be a non-singular square matrix. In other words, an inverse matrix 

should exist for at least to one of them.

The following procedure is developed on the basis that A11 is non-singular. A 

similar procedure can be developed if A22 rather than A11 is non-singular. Let the 

inverted matrix of A be B and is partitioned likewise, that is,

 
11 121

21 22

-
È ˘

= Í ˙
Í ˙Î ˚

qnp

q

B B
A

B B
 (A.68)

Then from the defi nition of inverse

 
11 12 11 12

21 22 21 22

0

0

È ˘ È ˘ È ˘
=Í ˙ Í ˙ Í ˙

Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

A A B B I

A A B B I
 (A.69)

The following equations can be written

  A11
 
B11 + A12 B21 = I (A.70)

  A11
 
B12 + A12 B22 = 0 (A.71)

  A21
 
B11 + A22 B21 = 0 (A.72)

  A21
 
B12 + A22 B22 = I (A.73)

Using these four equations and remembering that the inverse is defi ned only for 

a square matrix, we can solve for the four submatrices Bij. For example, the pre-

multiplication of each term in Eq. A.71 by A–1
11 gives

 B12 = –A
–1
11 A12B22 (A.74)

Substituting this in Eq. A.73,

 (A22–A21A
–1
11A12)B22 = I (A.75)

The matrix in parenthesis is square and of order q, the same as B22 and I in Eq. 

A.73. Therefore, we can pre-multiply by its inverse and write

 B22 = (A22 – A21A
–1
11A12)

–1 (A.76)

where

 L = (A22 – A21A
–1
11A12) (A.77)

From Eq. A.74, B12 = –A
–1
11A12L

–1 (A.78)

From Eqs. A.70, we have

 B11 = A
–1
11 – A

–1
11 A12B21 (A.79)
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Again from Eq. A.72 and A.79 we can write

 A21A
–1
11 – A21A

–1
11A12B21 + A22B21 = 0 (A.80)

or A21A
–1
11 + (A22A21A

–1
11A12)B21 = 0 (A.81)

or LB21 = –A21A
–1
11 (A.82)

or B21 = –L
–1

A21 A
–1
11 (A.83)

The complete inverse is given by

 

1 1 1 1
11 11 12 21 11 121

1 1 1
21 11

- - - -
-

- - -

È ˘- -
Í ˙= =

-Í ˙Î ˚

A A A B A A L
A B

L A A L
 (A.84)

The required steps are as follows:

Compute

 1. A
–1
11

 2. L = A22 – A21A
–1
11 A12

 3. B22 = L–1

 4. B21 = –L
–1 A21A

–1
11

 5. B12 = – A–1
11 A12L

–1

 6. B11 = A–1
11 A

–1
11 A12 B21 (A.85)

The above steps indicate that the inversion of a matrix of order n requires the 

inversion of two matrices A11 and L of order p and q respectively, where p + q 

= n.

Example A.13 
Invert the following matrix by partitioning.

 

6 1 5

2 5 4

3 3 1

È ˘-
Í ˙

= - -Í ˙
Í ˙- -Î ˚

A

We fi nd,

 

1
11

5 11

2 6( 28)

- - -È ˘
= Í ˙- Î ˚

A

 

5 1 51 49
[ 1] [ 3 3]

2 6 4( 28) 28

- - -È ˘È ˘
= - - - = -Í ˙Í ˙- Î ˚ Î ˚

L

 
1

22

28 4

49 7

-= = - = -B L

 
21

5 128 1 1
[ 3 3] [3 3]

2 649 ( 28) 7

-È ˘Ê ˆ= - - = -Í ˙Á ˜Ë ¯ - Î ˚
B
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11

5 1 5 1 5 1 21 1 1 1
[ 3 3]

2 6 2 6 2 3428 28 7 7

- - -È ˘È ˘ È ˘ È ˘Ê ˆ= - + - - = -Í ˙Í ˙ Í ˙ Í ˙Á ˜Ë ¯ Î ˚ Î ˚ Î ˚Î ˚
B

 
12

5 1 5 31 28 1

2 6 4 228 29 7

- - -È ˘ È ˘È ˘Ê ˆ Ê ˆ= - - = -Í ˙ Í ˙Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚ Î ˚ Î ˚
B

Therefore, the inverse matrix is

 

1

1 2 3
1

2 3 2
7

3 3 4

-
È ˘
Í ˙= = - Í ˙
Í ˙Î ˚

A B

A.5.4 Properties of the Inverse

There are many useful properties of the inverse. Some of the important ones are 

mentioned below.

 1. The inverse of a non-singular square matrix is unique. If

 AB = I and AC = I (A.86)

  then           B = C = A–1

 2. The inverse of an inverse is the original matrix, that is

 (A–1)–1 = A (A.87)

 3. The inverse of a product of matrices is equal to the product of their 

individual inverses in reverse order, that is,

 [ABCD]–1 = [D]–1[C]–1[B]–1[A]–1 (A.88)

 4. The inverse of the transpose is equal to the transpose of the inverse, that 

is.

 (AT)–1 = (A–1)–T  (A89)

 5. If K is non-zero scalar, than

 1 11
( )K

K

- -=A A  (A.89)

 6. The inverse of a diagonal matrix is also a diagonal matrix.

 

11 11

22 221

33 33

1/

1/

1/

1/nn nn

a a

a a

a a

a a

-

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙= =
Í ˙ Í ˙
Í ˙ Í ˙
Î ˚ Î ˚

A A  (A.90)

 7. The inverse of an upper (or lower) triangular matrix is also a upper 

(or lower) triangular matrix. The inverse exists only if all the diagonal 

elements of a triangular matrix are non-zero.
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Problems for Practice

A.1 Find the work done by force F = 4i + 2j + 3k acting on a particle if the particle is 

displaced from point A(l, 2, 0) to point B(2, –1, 3).

A.2 Calculate the area of triangle ABC where A, B, and C are points (1, 2, 4), (3, 1, – 2) 

and (4, 3, 1) respectively. Also fi nd the angles at A, B and C.

A.3 Show that vectors A(2, –1, 1), B(1, –3, –5) and C(3, –4, –4) form a right triangle.

A.4 Find the volume of a tetrahedron with A, B, C as adjacent edges where A = i + 2k, 

B = 4i + 6j + 2k and C = 3i + 3j – 6k with respect to right-handed cartesian coordinates.

A.5 Making use of the cross product give the unit vector n normal to the inclined sur-

face ABC given in Fig. A.11.

Fig. A.11

A.6 Evaluate the following determinants

 (i) 

2 3 1 2

2 0 2 4

1 1 0 1

2 5 3 6

-
- -

-
 (ii) 

2 2 2 2

2 2 2 2

2 2 2 2

b c a a

b a c b

c c a b

+

+

+

A.7 Using the scalar triple product fi nd the area projected on to the plane N from the 

surface ABC given in Fig. A.12. Plane N is infi nite and is normal to vector r = 50i + 40j 

+ 30k.

Fig. 12

A.8 A force F acts at position (3, 2, 0). It is in xy plane and is inclined at 30° from x axis 

with a sense directed away from the origin. What is the moment of this force about an axis 

going through the points (6, 2, 5) and (0, –2, 3)?
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A.9 Find the moment of 1 kN force shown in Fig. A.13 about points A and B.

 

Fig. A.13

A.10 Prove the following relationship

 (a) (AB)T = BT
A

T; (b) (AT)T = A; (c) (A + B)T = AT + BT;

 (d) (AC)–1 = C–1
A

–1; (e) AC(AC)–1 = I; (f) (A2)1 = (A–1)2

A.11 Given

 

3 2 4 1 2 3

1 3 2 and 3 1 0

2 1 2 0 4 2

- -È ˘ È ˘
Í ˙ Í ˙= =Í ˙ Í ˙
Í ˙ Í ˙-Î ˚ Î ˚

A B

 Compute C = AB and C = BA

A.12 Find the product AB for the following square matrices.

 

4 4 8 2 4 8

2 6 8 2 4 8

2 4 6 2 4 8

- - -È ˘ È ˘
Í ˙ Í ˙= - = - -Í ˙ Í ˙
Í ˙ Í ˙- - -Î ˚ Î ˚

A B

A.13 Invert the following matrices solving at least one by both the adjoint and Gauss-

Jordan elimination methods.

 

(a) (b) (c)

3 1 1 3 6 11 cos sin 0

15 6 5 3 4 6 sin cos 0

5 2 2 4 8 13 0 0 1

q q

q q

- - -È ˘ È ˘ È ˘
Í ˙ Í ˙ Í ˙= - - = - = -Í ˙ Í ˙ Í ˙
Í ˙ Í ˙ Í ˙- -Î ˚ Î ˚ Î ˚

A B R

A.14 Invert the following matrix by partitioning.

  

2 1 3 1

1 4 2 1

3 1 4 3

1 2 3 1

È ˘
Í ˙- -Í ˙
Í ˙- -
Í ˙
Î ˚
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Fixed End Moments 
in A Prismatic Beam

Appendix C

Type of Loading Fixed End Moment

FEMAB FEMBA

8

PL+
8

PL-

2

12

WL+ 2

12

WL-

2

2

Pab

L

+ 2

2

Pa b

L

-

211

192
WL

+ 25

192
WL

-

2

20

WoL+ 2

30

WoL-

25

96
WoL

+ 25

96
WoL

-

27

960
WoL

+ 223

960
WoL

-

2
( 2 )

M
b b a

L

+
-

2
(2 )

M
a b a

L

+
-



Force Displacement
Relationship in a
Prismatic Member

Appendix D

Type of Displacement End Moment

MAB MBA

4 AEI

L

q+ 2 AEI

L

q+

2 BEI

L

q+ 4 BEI

L

q+

3 AEI

L

q+
0

2

6EI

L

+ D
2

6EI

L

+ D

2

3EI

L

+ D
0



CHAPTER 2

2.1 On a free-body diagram,

 (a) only external and internal forces are indicated 

 (b) external, internal as well as reaction components are shown

 (c)  only internal forces need be shown

 (d) only reaction components and external forces are indicated.

2.2 The principle of super position is valid only if the material is

 (a) elastic (b) stress-strain relationship is linear

 (c) plastic (d) elasto-plastic

2.3 In a plane structure, the equilibrium equations are

 (a) SFx = 0, SFy = 0 (b) SFx = 0, SFy = 0, SFz = 0

 (c) SMx = 0, SMy = 0, SMz = 0 (d) SFx = 0, SFy = 0, SMz = 0

2.4 A closed funicular polygon of forces acting on a body indicates

 (a) SFx = 0, SFy = 0 and SMz = 0

 (b) only SFx = 0, and SFy = 0

 (c) the body dies not rotate

 (d) no relevance with regard to forces

2.5 In a cable stretched between two level supports the horizontal tension in the cable is

 (a) same through out (b) maximum at the supporting towers

 (c) maximum at the centre of cable

 (d) not predictable

2.6 In a cable subjected to v.d.l. the tension in the cable is

 (a) maximum at the centre

 (b) uniform through out

 (c) maximum at the supporting towers

 (d) not predictable

2.7 A three-hinged arch is

 (a) statically indeterminate because of central hinge 

 (b) determinate if the springings are at the same level

 (c) statically determinate

 (d) statically determinate or indeterminate depending upon loading

2.8 Arches are not subjected to bending moment if the 

 (a) arch is parabolic and symmetrically loaded 

 (b) arch is parabolic and springings are at the same level

Objective 
Type Questions
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 (c) arch is parabolic and subjected to v.d.l all through 

 (d) thrust line does not coincide with the arch axis

2.9 If a cable stretched between two towers at the same level has span l and rise h, the 

horizontal tension in the cable due to v.d.l. w/unit length is 

 (a) 
2

8

wl

h
 (b) 

2

12

wl

h
 (c) 

2

16

wl

h
 (d) 

2

4

wl

h

2.10 Masonry arches resist the external loads by

 (a) bending moment and radial shear

 (b) thrust only

 (c) normal thrust, radial shear and moment

 (d) normal thrust and shear

2.11 Line of thrust in an arch follows the 

 (a) line joining the hinge points (b) Funicular polygon of forces

 (c) axis of the arch (d) line joining the springings

CHAPTER 3

3.1 In a truss, the joints are considered to be

 (a) rigid (b) pin joints (c) bolted joints (d) welded

3.2 A panel in a truss means the space between any two

 (a) members (b) joints

 (c) lower chord joints (d) lower chord and upper chord joints

3.3 A member in a truss is subjected to only

 (a) axial tension (b) axial compression

 (c) axial compression or tension (d) axial force and moment

3.4 Tension coeffi cient of a member indicates 

 (a) tension in the member (b) force in a member

 (c) force per unit displacement  (d) force per unit length of member

3.5 The tension coeffi cient method is based on only 

 (a) equilibrium condition (b) method of joints and equilibrium

 (c) method of joints and sections (d) method of sections and equilibrium

3.6 The pitch of a truss is the ratio of

 (a) height to half span (b) height to span

 (c) height of truss to panel length (d) average height of truss to span

3.7 If 2 j > m + r in a plane truss, the truss is 

 (a) redundant (b) determinate (c) stable (d) unstable

3.8 If 2 j < m + r in a plane truss, the truss is

 (a) redundant (b) determinate (c) stable (d) unstable

3.9 The forces in collinear members at a joint of a plane truss are equal if

 (a) the joint is not loaded

 (b) joint is not loaded and has only three members

 (c) loaded

 (d) loaded and has only three members

3.10 A truss and the loading is shown in Fig.3.1. The force in member 2 – 4 is

 (a) 8.66 KN tension (b) 8.66 KN compression

 (c) 22.5 KN compression (d) 22.5 KN tension
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Fig : 3.1

3.11 The force in member 2.5 in the truss in Fig.3.1 is 

 (a) 22.5 KN compression (b) 7.5 KN tension

 (c) 8.66 KN compression (d) 8.66 KN tension

3.12 The force in member 4 – 5 in the above truss is

 (a) 8.66 KN compression (b) 7.5 KN tension

 (c) 7.5 KN compression (d) 8.66 KN tension

CHAPTER 4

4.1 In a space truss if 3 j < m + r, the truss is 

 (a) unstable (b) stable (c) determinate (d) indeterminate

4.2 In a space truss if 3 j > m + r, the truss is 

 (a) unstable (b) stable (c) determinate (d) indeterminate

4.3 The force in the non-coplanar member at the joint of a space truss is zero if the 

joint is 

 (a) not loaded (b) not loaded and has only three members

 (c) loaded  (d) loaded and has only four members

4.4) If all the members, except one, are coplanar at the joint of a truss, the force in the 

force in the non-coplanar member is zero if the 

 (a) joint is not loaded

 (b) joint loaded in the coplanar

 (c) joint load normal to the coplanar

 (d) joint load not normal to the coplanar

4.5 The method of tension coeffi cients was developed by

 (a) clapeyron (b) hardy cross (c) williot molr (d) south well

4.6 At a joint in a space truss if all the bar forces, except two, are zero, the two bars 

also have no bar forces if

 (a) joint is loaded

 (b) the two bars collinear

 (c) joint is not loaded

 (d) joint is not loaded and bars are not collinear

4.7 A space truss and the loading on it is given in Fig.4.1. The coordinates of the 

joints are indicated. The equilibrium equations using tension coeffi cients are giv-

en. Indicate right or wrong against each 
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Fig. 4.1

 (a) tda (–3) + tdb (0) + tdc (3) + 40 = 0 right/wrong

 (b) tda (–4) + tdb (–6) + tdc (–6) + 0 = 0 right/wrong

 (c) tda (2) + tdb (–2) + tdc (2) + 0 = 0 right/wrong

CHAPTER – 5

5.1 The moment area method is valid for

 (a) single span beams (b) continuous beams

 (c) frames (d) no limitations

5.2 At the free end of a beam

 (a) the slope and defl ection are zero (b) the moment and shear are zero

 (c) the moment is zero but not shear (d) the shear is zero but not moment

5.3 Moment area method yields

 (a) only defl ection at a section (b) only slope at a section

 (c) slopes and defl ections (d) elastic curve

5.4 The slope of the cantilever beam of space l at the free end due to load concen-

trated load at the free end is 

 (a) 
2Pl

EI
 (b) 

2

2

Pl

EI
 (c) 

2

3

Pl

EI
 (d) 

2

4

Pl

EI

5.5 The slopes at the ends of a simply supported beam of span l under a u.d.l w/unit 

length is 

 (a) 
3

8

wl

EI
 (b) 

3

16

wl

EI
 (c) 

3

24

wl

EI
 (d) 

3

48

wl

EI

5.6 The ratio of defl ection at centre of a fi xed beam and a simply supported beam 

under a concentrated load p at the centre of the space is

 (a) 0.2 (b) 0.25 (c) 0.5 (d) 0.75

5.7 The ratio of defl ections of the beam above under a u.d.l is

 (a) 0.1 (b) 0.2 (c) 0.25 (d) 0.5

5.8 In a cantilever beam, a moment M applied at the free end yields slope at the free 

end

 (a) 
4

Ml

EI
 (b) 

3

Ml

EI
 (c) 

2

Ml

EI
 (d) 

Ml

EI

5.9 The defl ection of a cantilever beam at the free end due to a moment M applied at 

that end is 
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 (a) 
2Ml

EI
 (b) 

2

2

Ml

EI
 (c) 

2

3

Ml

EI
 (d) 

2

4

Ml

EI

5.10 The slope of a simply supported beam at the end under a moment M at that end 

is

 (a) 
2

Ml

EI
 (b) 

3

Ml

EI
 (c) 

4

Ml

EI
 (d) 

6

Ml

EI

5.11 The defl ection centre of a simply supported beam under a moment M at the end 

is

 (a) 
2

8

Ml

EI
 (b) 

2

16

Ml

EI
 (c) 

2

24

Ml

EI
 (d) 

2

48

Ml

EI

5.12 In a conjugate beam the free end of a real beam will have

 (a) a free end (b) a fi xed end (c) hinged end (d) none of the above

5.13 In a conjugate beam the intermediate hinge in the original beam will be 

 (a) a hinge in the conjugate beam also 

 (b) an intermediate support

 (c) with a hinge but with a moment applied

 (d) moment without hinge

5.14 The defl ection at the free end of a overhanging beam under load p at centre of 

span is

 (a) 
2

16

Pla

EI
 (b) 

2

16

Pl a

EI
 (c) 

3

16

Pa l

EI
 (d) 

3

16

Pl a

EI

Fig. 4.2

5.15 The slope at the free end in the above beam is

 (a) 
2

8

Pl a

EI
 (b) 

2

16

Pl a

EI
 (c) 

2

16

Pl

EI
 (d) 

2

24

Pl

EI

CHAPTER – 6

6.1 The strain energy stored in a circular rod of length l and axial rigidity AE due to 

a pull P is

 (a) 
2P l

AE
 (b) 

2

2

P l

AE
 (c) 

2

3

P l

AE
 (d) 

2

4

P l

AE

6.2 Two uniform steel rods A and B of lengths l and 2l having diameters d and 2d are 

subjected to tensile force P and 2P respectively, which of the following statement 

is correct

 (a) elongation in A is twice the elongation in B

 (b) strain energy in A is half the strain energy in B

 (c) strain energy in A and B are same

 (d) strain energy in A is twice the strain energy in B
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6.3 In a cantilever beam of space l and fl exural rigidity EI the total strain energy un-

der a concentrated W is

 (a) 
2 3

6

W l

EI
 (b) 

2 4

3

W l

EI
 (c) 

2 4

8

W l

EI
 (d) 

2 4

6

W l

EI

6.4 Two beams, one of simply supported of space l and the other a cantilever of space 

l/2, are subjected to a concentrated P at centre of span of simply supported and at 

free end in a cantilever beam. Choose the correct statement in the following :

 (a) The strain energy stored in both the beams is same 

 (b) The strain energy in S.S. beam is twice the strain energy in cantilever beam

 (c) The strain energy in S.S. beam is half the strain energy in cantilever beam

 (d) The strain energy in cantilever is four times the strain energy is S.S. beam

6.5 The shear strain energy stored in a rectangular beam of length l under shear force 

V and shear rigidity GA is equal to

 (a) 
2

2

V l

GA
 (b) 

21.2

2

V l

GA
 (c) 

2V l

GA
 (d) 

21.5

2

V l

GA

6.6 The elastic strain energy stored in a beam of fl exural rigidity EI and length l sub-

jected to pure moment M is

 (a) 
Ml

EI
 (b) 

2

2

Ml

EI
 (c) 

2

2

M l

EI
 (d) 

2

4

M l

EI

6.7 Maxwell-Bettis theorem states that

 (a) Pm Dmn = Pn Dnm (b) Pn Dmn = Pm dnm

 (c) Dmn = Dnm (d) PD = Mq

6.8 Maxwell law of reciprocal defl ection states

 (a) Pm Dmn = Pn Dnm (b) Pn Dmn = Pm Dnm

 (c) Dmn = Dnm (d) PD = Mq

6.9 The ratio of strain energy stored in a cantilever beam subjected to a concentrated 

load at the free end and at centre of span is 

 (a) 2 (b) 2 (c) 4 (d) 8

6.10 The displacements caused by a load P acting at points m and n are shown in 

Fig.6.1. As per Maxwell’s reciprocal defl ections

Fig. 6.1

 (a) dmm = dnm (b) dnn = dmn (c) dnm = dnn (d) dnm = dmn

6.11 The displacements caused in a beam subjected to a unit load and a unit couple are 

shown in Fig. 6.2. Then the as per Maxwell-Bettis theorem the relationship is

Fig. 6.2

 (a) d12 = d21 (b) d11 = d22 (c) d11 = d12 (d) d21 = d22
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CHAPTER – 7

7.1 The infl uence diagram for maximum bending moment in a simply supported 

beam is 

 (a) rectangular (b) triangular (c) parabolic (d) irregular

7.2 The infl uence line for structural function is used for obtaining maximum value 

due to

 (a) single point load only (b) uniformly distributed load only

 (c) several point loads  (d) all the above 

7.3 The ordinate of I.L.D for moment at 
1

4
 span of a simply supported beam is 

3
.

16
l  

If a u.d.l., w/unit length occupies the whole span the moment at 
1

4
 span is

 (a) 
2

16

wl
 (b) 

2

32

wl
 (c) 

23

32

wl
 (d) 

23

16

wl

7.4 The maximum B.M. at a section under rolling u.d.l. shorter than span occurs 

when the moving load

 (a) just reaches the section

 (b) just leaves the section

 (c) load occupies centre of span

 (d) when the section divides the span and load in the same ratio

7.5 The maximum +ve shear force at a section under a moving u.d.l shorter than the 

span occurs when the load

 (a) just reaches the section

 (b) the tail end just leaves the section

 (c) load occupies centre of span

 (d) section divides the span and the load in the same ratio

7.6 The maximum B.M. under a particular load among several moving loads occurs 

when that load is

 (a) at centre of span

 (b) when the load and the resultant of loads are at equidistant from the middle of 

span

 (c) when the heaviest load is at centre of span 

 (d) when the resultant of the loads is at centre of span

7.7 A u.d.l of length 10 m passes over a simple beam of span 25 m from left to right. 

For a maximum B.M. at a section 10 m from left support the part length of the 

load that must pass the section is

 (a) 4 m (b) 5 m (c) 6 m (d) 7 m

7.8 A u.d.l., w/unit length covering a length l/2 passes over a simply supported beam 

of span l. The maximum B.M. at the left quarter span is equal to 

 (a) 
29

128

wl
 (b) 

27

128

wl
 (c) 

25

128

wl
 (d) 

23

128

wl

7.9 Two point loads 30 KN and 20 KN separated by 5 m crosses a simply supported 

girder of span 16 m from left to right the 30 KN load leading. The section at 

which the maximum B.M. occurs is at a distance from left hand support

 (a) 8 m (b) 9 m (c) 10 m (d) 11 m
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7.10 The area of the I.L.D. for the reaction of a simply supported beam of span l is

 (a) l/8 (b) l/2 (c) l/6 (d) l/4

7.11 A simply supported beam is traversed by two concentrated loads 80 kN and 40 

kN at 3 m apart with 80 kN load leading. The maximum moment under 80 kN 

load occurs when the load is at 

 (a) mid span (b) 1 m from centre

 (c) 1.5 m from centre (d) 3 m from centre

7.12 Muller-Breslan’s principal for infl uence line is applicable for only

 (a) simple beams (b) continuous beams

 (c) trusses and frames (d) all the above

7.13 In a three-hinged arch the B.M. caused by horizontal thrust at the hinge point is 

equal to

 (a) H.l/4 (b) Zero (c) H.l/8 (d) H.l/6

7.14 The I.L.D for a force in a truss member is shown in Fig.7.1. If a u.d.l. of intensity 

10 kN/m longer than span traverses the maximum tension in the member is

Fig. 7.1

 (a) 20 kN (b) 16 kN (c) 12 kN (d) 8 kN

7.15 The I.L.D. for force in a truss member is given in Fig. 7.1. If a u.d. load of 10 kN/m 

longer than the span passes over the maximum compression in the member is

 (a) 20 kN (b) 24 kN (c) 36 kN (d) 48 kN

CHAPTER – 8

8.1 Under a uniformly distributed load the cable takes the shape of a 

 (a) parabola (b) circular (c) catenary (d) funicular polygon

8.2 The length of a parabolic cable of span l and dip d is

 (a) 
2

3

d
l

l
+  (b) 

24

3

d
l

l
+  (c) 

28

3

d
l

l
+  (d) 

216

3

d
l

l
+

8.3 A cable of span l and dip d is subjected to a v.d.l., w/unit length along the span. 

The horizontal tension H in the cable is

 (a) 
2

4

wl

d
 (b) 

2

8

wl

d
 (c) 

2

12

wl

d
 (d) 

2

16

wl

d

8.4 A cable of a suspension bridge of span 100 m is hung from towers which are 10 

m and 5 m respectively above the lowest point of the cable. The ratio of the hori-

zontal length of the cable from the higher and lower towers to the lowest point of 

the cable 1

2

l

l
 is

 (a) 

1

210

5

Ê ˆ
Á ˜Ë ¯

 (b) 

1

25

10

Ê ˆ
Á ˜Ë ¯

 (c) 
10

5

Ê ˆ
Á ˜Ë ¯

 (d) 

2
5

10

Ê ˆ
Á ˜Ë ¯
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8.5 The horizontal length of the cable from the higher end to the lowest point of the 

cable is

 (a) 50 m (b) 55 m (c) 57.5 m (d) 58.58 m

8.6 The total length of the above cable from end to end is

 (a) 104 m (b) 103 m (c) 102 m (d) 101 m

8.7 In a three-hinged stiffening girder, the maximum +ve moment due to a rolling 

concentrated load occurs at a section distance x from one end. The value of x is

 (a) 0.211 l (b) 0.25 l (c) 0.234 l (d) 
3

8
l

8.8 The maximum – ve moment due to a concentrated moving load on a three-hinged 

stiffening girder occurs at a section the distance of which from one end is

 (a) 0.211 l (b) 0.25 l (c) 0.234 l (d) 
3

8
l

8.9 In a symmetrical three-hinged stiffening girder the infl uence line ordinate for H 

at centre of span is

 (a) 
16

l

yc
 (b) 

12

l

yc
 (c) 

8

l

yc
 (d) 

4

l

yc

8.10 In a two-hinged stiffening girder the maximum +ve or –ve moment due to a mov-

ing concentrated load W is

 (a) 
4

Wl  (b) 
8

Wl  (c) 
16

Wl  (d) 
24

Wl

8.11 The maximum +ve or –ve moment in a two-hinged stiffening girder due to a v.d.l. 

longer than the span crosses over is

 (a) 
2

32

Wl  (b) 
2

16

Wl  (c) 
2

12

Wl  (d) 
2

8

Wl

8.12 A suspension cable having 50 m span and dip 4 m is stiffened by a three-hinged 

stiffening girder. A concentrated load 100 kN is placed at 8 m from the left end. 

The equivalent v.d.l. we on the cable is

 (a) 2.0 kN/m (b) 1.28 kN/m (c) 6.25 kN/m (d) 12.5 kN/m

8.13 A cable of a suspension bridge has a span 40 m and dip 5 m. A three-hinged stiff-

ening girder is used. The maximum + ve moment at a section 10 m from left end 

as a 50 kN load rolls over is

 (a) 312.5 kN.m (b) 300 kN.m (c) 187.5 kN.m (d) 625.0 kN.m

CHAPTER 9

9.1 A redundant truss shown in Fig. 9.1 is analysed using approximation that the 

compression diagonal members do not carry any force. Then the force in member 

2-7 will be 

Fig. 9.1
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 (a) 0 (b) 50 2  KN (c) 100 KN (d) 150 KN

9.2 The force in member 3-c in the above truss is 

 (a) 100 KN (b) 50 KN (c) 50 2  KN (d) 25 KN

9.3 The truss in Fig. 9.1 is analysed using the approximation that the shear in panel 

2-3 will be shared equally by the diagonal members the force in member 2-7 is

 (a) 25 2  compression (b) 25 2  tension

 (c)  50 2  compression (d) 50 2  tension

9.4 The force in member 6-3 in the above truss is

 (a)  50 2  compression (b) 50 2  tension

 (c) 25 2  compression (d) 25 2  tension

9.5 A portal frame of span 6 m and height 4 m is fi xed at the base. It is subjected to 

a v.d.l. of 10 KN/m over the entire span. Assuming the hinge points at 0.2 l from 

the ends on the beam and hinges at 1/3 height of columns, the moment at the top 

of columns is 

 (a) 30 kN.m (b) 28.8 kN.m (c) 4.5 kN.m (d) 22.5 kN.m

9.6 In the portal frame above the moment at the foot of the columns is

 (a) 45 kN.m (b) 30 kN.m (c) 28.8 kN.m (d) 14.4 kN.m

9.7 In the approximate analysis of building frames under lateral loads the points of 

contra fl exure in beams and columns are assumed at

 (a) 
2

l
 for beams 

2

3
h  from base for columns

 (b) 
1

10
l  for beams and 

2

h
 for columns

 (c) 
2

l
 for beams 

1

3
h  for columns

 (d) 
2

l
 for beams 

2

h
 for columns

9.8 In the approximate analysis of building frames using portal method the shear in 

the frame is shared

 (a) equally by all the columns

 (b) the interior columns take twice as much as the exterior columns

 (c) only interior columns take the shear

 (d) the exterior columns take twice as much as the interior columns.

9.9 In the approximate analysis of building frames using cantilenar method, the axial 

force in the columns is assumed to the 

 (a) equal tension in all columns

 (b) tension in windward columns and compression in leeward columns

 (c) tension or compression in columns is proportional to the distance of column 

from C.G. of columns

 (d) equal compression in all columns

9.10 In a cantilenar method of approximate analysis of a building frame the column 

lines and the C.G. of columns is shown in Fig. 9.2. The axial force in column 1-4 

is 
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Fig. 9.2

 (a) 3.20 kN tension (b) 3.20 compression

 (c) 3.45 compression (d) 0.24 kN tension

9.11 The force in column 3-6 in the above building frame is 

 (a) 3.20 kN compression (b) 3.45 tension

 (c) 3.45 compression (d) 0.24 kN compression

CHAPTER – 10

10.1 A fi xed beam loaded transversely is statically indeterminate by

 (a) 3 degrees (b) 2 degrees (c) 1 degree (d) no indeterminacy

10.2 A portal frame fi xed at the base is indeterminate by

 (a) 3 degrees (b) 2 degrees (c) 1 degree (d) no indeterminacy

10.3 A three-span continuous beam fi xed at one end and hinged at the other end is 

statically indeterminate by

 (a) 4 degrees (b) 3 degrees (c) 2 degrees (d) 1 degree

10.4 A two-storey single bay portal frame fi xed at the base having a hinge in each of 

the beams is indeterminate by

 (a) 4 degrees (b) 3 degrees (c) 2 degrees (d) 1 degree

10.5 In a portal frame, one column is fi xed at the base and the other a hinge on rollers. 

If there is a hinge in the beam the frame is

 (a) statically indeterminate by one degree

 (b) statically determinate

 (c) statically determinate and stable 

 (d) unstable

10.6 Consistent displacements or compatibility condition means

 (a) displacements caused by the redundant forces

 (b) displacements caused by the forces other than redundant forces

 (c) displacements caused by redundant and applied forces

 (d) displacements caused by redundant and applied forces satisfying the bound-

ary conditions

10.7 The theorem of three moments cannot be applied to

 (a) single span fi xed beams

 (b) continuous beams with over hangs

 (c) trusses and frames 

 (d) continuous beams with sinking supports and rotating joints

10.8 In a two-hinged arch, the I.L. ordinate at centre of span for horizontal thrust H is 

 (a) 
25

128

l

h
 (b) 

15

128

l

h
 (c) 

1

16

l

h
 (d) 

1

8

l

h
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10.9 In a two-hinged arch of span l, and rise h, the horizontal thrust under a rolling 

load is given by the relation 3 45
( 2 ).

8

Wl
H n n n

h
= - +  The maximum value of H 

is

 (a) 
2

125

16

Wl

h
 (b) 

125

16

l
W

h
 (c) 

125

16

Wl

h
 (d) 

16

Wl

h

10.10 The I.L.D. for horizontal thrust H in a two-hinged arch is

 (a) parabola (b) tringle

 (c) curve of third degree (d) curve of fourth degree

10.11 The radial shear in a parabolic two-hinged arch when the load is at the crown is

 (a) Vr = VA + cos q + H sin q

 (b) Vr = VA – cos q – H sin q

 (c) Vr = VA + sin q + H cos q

 (d) Vr = VA – sin q – H cos q

10.12 Muller-Breslau principal can be utilized for 

 (a) drawing infl uence lines for force quantities qualitatively

 (b) drawing infl uence lines for forces quantitatively

 (c) drawing infl uence lines for slopes and defl ections

 (d) drawing infl uence lines for cables and arches

CHAPTER 11

11.1 The propped end of a cantilever beam of span l settles by an amount d, the rota-

tion of the propped end is

 (a) 
l

d
 (b) 

1.5

l

d
 (c) 

2

l

d
 (d) zero

11.2 The propped end of a cantilever beam of span l settles by an amount d without 

rotation the moment at the fi xed end is

 (a) 
2

3EI

l

d
 (b) 

2

4EI

l

d
 (c) 

2

6EI

l

d
 (d) 

2

8EI

l

d

11.3 A moment M is applied at the propped end of a cantilever beam of span l and 

fl exural rigidity EI. The moment at the fi xed end will be

 (a) 2 M (b) M (c) M/2 (d) M/3

11.4 In a fi xed beam AB of span l, one of the supports undergoes a rotation q then the 

shear in beam is

 (a) 
2

EI

l

q
 (b) 

2

2EI

l

q
 (c) 

2

4EI

l

q
 (d) 

2

6EI

l

q

11.5 A fi xed beam AB of span l is subjected to a moment M at the centre of span. The 

fi xed end moments are

 (a) M (b) M/2 (c) M/4 (d) M/8

11.6 In a fi xed beam AB of span l under a v.d.l w/unit length, the support B rotates by 

an amount q. The moment at end A is 

 (a) 

2 2

12

wl EI

l

qÊ ˆ
+Á ˜

Ë ¯
  (b) 

2 4

12

wl EI

l

qÊ ˆ
+Á ˜

Ë ¯

 (c) 

2 2

12

wl EI

l

qÊ ˆ
-Á ˜

Ë ¯
  (d) 

2 4

12

wl EI

l

qÊ ˆ
-Á ˜

Ë ¯
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11.7 In the beam above the moment at end B is

 (a) 

2 2

12

wl EI

l

qÊ ˆ
+Á ˜

Ë ¯
  (b) 

2 4

12

wl EI

l

qÊ ˆ
- +Á ˜

Ë ¯

 (c) 

2 2

12

wl EI

l

qÊ ˆ
+Á ˜

Ë ¯
  (d) 

2 4

12

wl EI

l

qÊ ˆ
-Á ˜

Ë ¯
11.8 In a fi xed beam AB of span l, the support B undergoes a unit rotation and a unit 

translation. The moment at end B is

 (a) 2

2 6EI EI

l l

Ê ˆ+Á ˜Ë ¯    (b) 
2

4 6EI EI

l l

Ê ˆ+Á ˜Ë ¯

 (c) 
2

2 6EI EI

l l

Ê ˆ-Á ˜Ë ¯
   (d) 

2

4 6EI EI

l l

Ê ˆ- +Á ˜Ë ¯
11.9 In the above beam the beam at end A is

 (a) 2

4 6EI EI

l l

Ê ˆ+Á ˜Ë ¯    (b) 
2

4 6EI EI

l l

Ê ˆ- +Á ˜Ë ¯

 (c) 
2

2 6EI EI

l l

Ê ˆ+Á ˜Ë ¯
   (d) 

2

2 6EI EI

l l

Ê ˆ-Á ˜Ë ¯
11.10 In a two span continuous beam shown in Fig. 11.1 the support B settles by an 

amount d. Then

Fig. 11.1

 (a) the moment at B increases

 (b) the moments at B and C decrease

 (c) the moment at B increase and moment at C decrease

 (d) the moment at B decrease and moment at C increase

11.11 In an analysis of a portal frame, the moments at the column ends are given in Fig. 

11.2. The shear in the left column at the base is

 (a) 60 kN (b) 30 kN (c) 29.66 kN (d) 36.69 kN

11.12 In Fig. 11.2, the end moments of columns are given; the shear at the base of the 

right column is

Fig. 11.2

 (a) 0 kN (b) 30.39 kN (c) 40.66/3 kN (d) 30 kN
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11.13 A member 1-2 in a framed structure undergoes deformation as shown in Fig. 11.3. 

The moment M12 at end l can be written as

 (a) 1 2 2 1
12

4 2 6 ( )EI EI EI
M

l l l l

q q D - D
= - +

 (b) 1 2 2 1
12

4 2 6 ( )EI EI EI
M

l l l l

q q D - D
= - - +

 (c) 1 2
12

4 2EI EI
M

l l

q q
= - +

 (d) 1 2 2 1
12

4 2 6 ( )EI EI EI
M

l l l l

q q D - D
= + -

Fig. 11.3

11.14 From the Fig.11.3, one can write the end moment M21 as

 (a) 1 2 2 1
21

4 2 6 ( )EI EI EI
M

L L L L

q q D - D
= + -

 (b) 1 2 2 1
21

2 4 6 ( )EI EI EI
M

L L L L

q q D - D
= + -

 (c) 1 2 2 1
21

4 2 6 ( )EI EI EI
M

L L L L

q q D - D
= + +

 (d) 1 2 2 1
21

2 4 6 ( )EI EI EI
M

L L L L

q q D - D
= + +

CHAPTER 12

12.1 The stiffness of a prismatic beam of length l and fl exural rigidity EI is

 (a) 
EI

l
 (b) 

2EI

l
 (c) 

3EI

l
 (d) 

4EI

l

12.2 The modifi ed stiffness of a prismatic member is

 (a) 
EI

L
 (b) 

3EI

l
 (c) 

4EI

l
 (d) 

6EI

l

12.3 In a fi xed beam, the moment induced by w/unit translation without rotation at one 

end is

 (a) 2

2EI

l
 (b) 

2

4EI

l
 (c) 2

6EI

l
 (d) 2

8EI

l

12.4 If a moment M is applied at the propped end of a cantilever beam, the moment 

induced at fi xed end is

 (a) M (b) M/2 (c) M/3 (d) M/4
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12.5 The carry over factor for a prismatic beam is

 (a) 0 (b) 1/4 (c) 1/2 (d) 1

12.6 Moment distribution method

 (a) gives only approximate results

 (b) not suitable for non prismatic members

 (c) highly useful for continuous beams and frames

 (d) can be used for solving plane and space trusses

12.7 A two-span continuous beam is shown in Fig. 12.1 under the load the support 2 

sinks by 10 mm. The fl exural rigidity EI = 20 ¥ 103 kN m2. The fi xed end moment 

to be considered for moment distribution MF
12 = MF

21 is

Fig. 12.1

 (a) 50 kN.m (b) 75 kN.m (c) 100 kN.m (d) 150 kN.m

12.8 In the continuous beam in Fig.12.1 the fi xed end moments MF
23 = MF

32 to be con-

sidered for moment distribution are

 (a) 100/3 kN.m (b) 50 KN.m

 (c) 75 kN.m (d) 100 kN.m

12.9 In the continuous beam in Fig. 12.1 support 1 settles by 10 mm and yields ratio 

10–3 radians under the load. The fi xed end moment to be considered for moment 

distribution MF
12 is

 (a) 75 kN.m (b) 95 kN.m (c) 100 kN.m (d) 150 kN.m

12.10 In the continuous beam in Fig. 12.1 the fi xed end moment MF
21 is

 (a) 50 kN.m (b) 75 kN.m (c) 85 kN.m (d) 100 kN.m

12.11 In an analysis of a portal frame, with sway the following column end moments 

are obtained by arresting lateral sway with a horizontal force ‘x’ at the top of the 

column. The resulting shear at the top of the column 1–2, V21 is (see Fig. 12.2)

Fig. 12.2

 (a) 50 kN (b) 0 (c) 38.69 kN (d) 25

12.12 In Fig. 12.2 the shear at the top of column 3–4, V43 is 

 (a) 13.39 kN (b) 0.0 (c) 17.8 kN (d) 8.94 kN

12.13 In the analysis of the frame in the above the force ‘x’ applied to present sway in 

the analysis is

 (a) 50 kN (b) 38.69 kN (c) 13.39 kN (d) 24.70 kN
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CHAPTER 13

13.1 In Kani’s method the sign convention followed for end moments is based on

 (a) static sign convention

 (b) beam sign convention

 (c) beam convention for beams and static sign convention for columns

 (d) no uniform convention

13.2 Kani’s method is based on

 (a) method of consistent displacements

 (b) slope defl ection method 

 (c) fl exibility method

 (d) moment distribution

13.3 In Kani’s method the iteration will converge even if there is some mistake in 

calculation of moments

 (a) true in some cases (b) False

 (c) true (d) true for beams only

13.4 The sum of rotation factors at a joint is

 (a) 1 (b) 1/2 (c) –1/2 (d) –3/4

13.5 The sum of displacement or translation factors due to sway in a storey of a frame 

is equal to

 (a) –1/4 (b) –1/2 (c) –1.0 (d) –3/2

13.6 In a member fi xed at the end the rotation factor is

 (a) 
4EI

L
 (b) 

2EI

L
 (c) 0 (d) 

6EI

L

13.7 If an end of a member is hinged it can be considered as fi xed, if the relative stiff-

ness is taken as

 (a) 
I

L
 (b) 

2

I

L
 (c) 

1.5

I

L
 (d) 

3

4

I

L

13.8 In a portal frame hinged at the base and of columns equal height the translation 

factor is equal to

 (a) –1/2 (b) –1 (c) –3/2 (d) –2

13.9 In the portal frame shown in Fig. 13.1 if the storey height is taken as 6 m the sway 

distribution factor for column 1-2 is

Fig. 13.1

 (a) 
31

65
 (b) 

12

35
-  (c) 

31

35
-  (d) 

81

70
-

13.10 In the portal frame shown in Fig. 13.1 the sway distribution factor for column 3–4 

is
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 (a) 
12

35
-  (b) 

31

35
-  (c) 

27

35
-  (d) 

81

70

13.11 In a multi-storey building frame the storey height of rth storey is hr and storey 

shear is Q, then the storey moment is equal to

 (a) 
4

rQh
 (b) 

3

rQh
 (c) 

2

rQh
 (d) Qhr

13.12 The general expression for end moment in a member 1-2 in a frame with transla-

tory joint is

 (a) M F12 + 2M ¢12 + M ¢21 + M ¢¢12

 (b) M F12 + 2M ¢12 – M ¢21 – M ¢¢12

 (c) M F12 – 2M ¢12 – M ¢21 + M ¢¢12

 (d) M F12 + 2M ¢12 + M ¢21 – M ¢¢12

CHAPTER 14

14.1 Column analogy method is applicable to 

 (a) determinate structures

 (b) continuous beams

 (c) fi xed beams and single storey frames

 (d) multi-storey frames

14.2 The area of an analogous column of a propped cantilever beam of length L and 

fl exural rigidity EI is equal to

 (a) 
L

EI
 (b) 

2L

EI
 (c) 

3L

EI
 (d) a

14.3 The moment of inertia of an analogous column of a propped cantilever beam as 

above is

 (a) 
3

2

L

EI
 (b) 

3

3

L

EI
 (c) 

3

4

L

EI
 (d) 

3

12

L

EI

14.4 The moment of inertia of an analogous column of a fi xed beam of length L and 

fl exural rigidity EI is

 (a) 
3

3

L

EI
 (b) 

3

4

L

EI
 (c) 

3

12

L

EI
 (d) 

3

48

L

EI

14.5 The M.I of a beam of rectangular cross section varies I. If the width of the beam 

is b and span l the area of an analogous column will be

 (a) 3L

EI
 (b) 4.5L

EI
 (c) 6L

EI
 (d) 7.5L

EI

14.6 A fi xed beam AB has a hinge in the span at a distance from A and b from B. If EI 

is fl exural rigidity, then the moment of inertia of the analogous column is

 (a) 
3 3

3

a b

EI

Ê ˆ+
Á ˜
Ë ¯

 (b) 
3 3

2

a b

EI

Ê ˆ+
Á ˜
Ë ¯

 (c) 
3 3

4

a b

EI

Ê ˆ+
Á ˜
Ë ¯

 (d) 
3 3

6

a b

EI

Ê ˆ+
Á ˜
Ë ¯

14.7 The stiffness KA and KB of a non prismatic beam element are : 
5EI

L
 and 

6EI

L
 

respectively. If the c.o.f CAB = 0.45 the c.o.f CBA will be

 (a) 0.6 (b) 0.45 (c) 0.375 (d) 0.2875
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14.8 In a non-prismatic beam element AB the c.o.f CAB and CBA are 0.607 and 0.525 

respectively. If the stiffness KA = 0.4031 EI then the stiffness KB will be

 (a) 0.2450 (b) 0.3350 (c) 0.3716 (d) 0.4670

14.9 On an analogous column of a propped cantilever beam AB of span L and fl exural 

rigidity EI, a load N = 1 is placed on the column at A, then the moment at end A, 

the fi xed end is equal to

 (a) 
EI

L
 (b) 

2EI

L
 (c) 

3EI

L
 (d) 

4EI

L

14.10 In a non prismatic beam AB the relationship between c.o.f and stiffness factors 

is

 (a) KA = KB (b) CAB = CBA (c) CABKA = CBAKB (d) CABKB = CBAKA

CHAPTER 15

15.1 State True or False the following statements

 (a) In matrix analysis of structures the static indeterminancy or kinematic inde-

terminancy is one and the same

 (b) In force method of analysis the unknown are the forces at the releases to 

satisfy the geometric compatibility

 (c) In the stiffness method of analysis the unknowns are the displacements at the 

joints independent of equilibrium equation

 (d) The displacement method of analysis is more suitable for structures having 

a higher degree of static indeterminancy

 (e) The fl exibility coeffi cient fij is equal to stiffness coeffi cient Kji 

 (f) The stiffness matrix [K] : [F]–1

15.2 For a cantilever beam the structure coordinates are shown in Fig. 15.1. The fl ex-

ibility coeffi cient are

Fig. 15.1

 (i) f11 = (a) 
3

2

L

EI
 (b) 

3

3

L

EI
 (c) 

3

4

L

EI
 (d) 

3

6

L

EI

 (ii) f12 = (a) 
2

2

L

EI
 (b) 

2

3

L

EI
 (c) 

2

4

L

EI
 (d) 

2

6

L

EI

 (iii) f22 = (a) 
L

EI
 (b) 

2

L

EI
 (c) 

3

L

EI
 (d) 

4

L

EI

15.3 In a simply supported beam the structure coordinates are as shown in Fig. 15.2. 

The fl exibility coeffi cients are

Fig. 15.2
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 (i) f11 = (a) 
3

L

EI
 (b) 

4

L

EI
 (c) 

2

L

EI
 (d) 

L

EI

 (ii) f12 = f21 = (a) 
2

L

EI
 (b) 

3

L

EI
 (c) 

4

L

EI
 (d) 

6

L

EI

15.4 The structure coordinates are as indicated on a simply supported beam in Fig. 

15.3. The fl exibility coeffi cients are

Fig. 15.3

 (i) f11 = (a) 
3

12

L

EI
 (b) 

3

16

L

EI
 (c) 

3

24

L

EI
 (d) 

3

48

L

EI

 (ii) f12 = f21 = (a) 
2

4

L

EI
 (b) 

2

8

L

EI
 (c) 

2

16

L

EI
 (d) 

2

24

L

EI

15.5 The fl exibility coeffi cients for the structure shown in Fig. 15.4 are

Fig. 15.4

 (i) f11 = (a) 
3L

EI
 (b) 

3

2

L

EI
 (c) 

3

3

L

EI
 (d) 

3

4

L

EI

 (i) f22 = (a) 
L

EI
 (b) 

2

3

L

EI
 (c) 

3

L

EI
 (d) 

3

4

L

EI

 (ii) f12 = f21 = (a) 
2

3

L

EI
 (b) 

2

3

L

EI

-
 (c) 

2

4

L

EI
 (d) 

2

4

L

EI

-

15.6 which of the following relationship is correct

 (a) [F] = [A]T[f][A] (b) [F] = [A][f][A]

 (c) [F] = [A][f][A]T (d) [F] = [B][f][B]

15.7 State True or False the following relationships

 (a) [f][K] = [I] (b) [K]–1 = [f ]

 (c) T1
{ } [ ]

2
U P D=  (d) [K] = [F]T

15.8 If stiffness matrix 
2 12

[ ]
1 2

EI
k

L

È ˘
= Í ˙

Î ˚
 the fl exibility matrix [f ] is

 (a) 
2 1

1 22

L

EI

-È ˘
Í ˙-Î ˚

 (b) 
2 1

1 26

L

EI

È ˘
Í ˙
Î ˚
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 (c) 
2 1

1 26

L

EI

-È ˘
Í ˙-Î ˚

 (d) 
2 1

1 26

L

EI

-È ˘
Í ˙-Î ˚

CHAPTER 19

19.1 The shape factor for a square section having side ‘a’ placed with one of its diago-

nal vertical is

 (a) 1.0 (b) 1.5 (c) 2.0 (d) 3.0

19.2 Shape factor for a circular tubular section with outside diameter equal to twice the 

inner diameter is

 (a) 1.58 (b) 1.75 (c) 2.0 (d) 2.5

19.3 For a steel rolled beam section the shape factor varies from

 (a) 1.0–1.5 (b) 1.5–2.0 (c) 1.14–1.18 (d) 1.25–1.5

19.4 Load factor for a steel rectangular beam is

 (a) 1.0 (b) 2.25 (c) 1.15 (d) 1.5

19.5 In a simply supported beam centrally loaded the ultimate load Wu is

 (a) pM

l
 (b) 

2 pM

l
 (c) 

3 pM

l
 (d) 

4 pM

l

19.6 In a fi xed beam under u.d.l. w/unit length the ultimate load Wu is

 (a) 
2

4 pM

l
 (b) 

2

8 pM

l
 (c) 

2

16 pM

l
 (d) 

2

20 pM

l

19.7 In a fi xed beam under u.d.l. the load factor is

 (a) 1.0 (b) 2.0 (c) 3.0 (d) 4.0

19.8 In a fi xed beam under a concentrated load W at 1/3 span the ultimate load Wu is

 (a) 
3 pM

l
 (b) 

6 pM

l
 (c) 

9 pM

l
 (d) 

12 pM

l

19.9 In a propped cantilever beam under central load W the ultimate load Wu is 

 (a) 
12 pM

l
 (b) 

9 pM

l
 (c) 

6 pM

l
 (d) 

3 pM

l

19.10 A propped cantilever beam is under a concentrated load W at 1/3 span point from 

fi xed end. The maximum load the beam can carry is Wu equal to

 (a) 
7.5 pM

l
 (b) 

5 pM

l
 (c) 

6 pM

l
 (d) 

9 pM

l

19.11 Number of plastic hinges necessary for collapse of the structure if the degree of 

indeterminancy of the structure n is

 (a) n (b) n + 3 (c) n + 2 (d) n + 1

19.12 A portal frame is shown in Fig. 19.1. In a beam mechanism the ultimate load Pu 

is
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Fig. 19.1

 (a) 
4 pM

L
 (b) 

6 pM

L
 (c) 

7.5 pM

L
 (d) 

9 pM

L

19.13 For the frame in Fig. 19.1 the ultimate load in sway mechanism is

 (a) 
4 pM

L
 (b) 

6 pM

L
 (c) 

8 pM

L
 (d) 

12 pM

L

19.14 For the frame in Fig. 19.1 the ultimate load in combined mechanism is

 (a) 
4.5 pM

L
 (b) 

16

3

pM

L
 (c) 

7.5 pM

L
 (d) 

9 pM

L



ANSWERS TO PROBLEMS FOR PRACTICE

Chapter 2
2.2 yD = 7.07 m; yE = 5.29 m

 TAC = 100.95 kN; TCD =  86.34, TDE = 87.64 kN, TEB = 98.79 kN

2.3 HA = 5.0 kN, VA = 7.5 kN, VB = 5.0 kN, Tmax = 9.01 kN

2.4 (a) yD = 4.09 m; (b) 261.07 kN; (c) 407.42 kN; (d) 409.24 kN

2.5 H = 1080 kN, VA = 720 kN, VB = 360 kN, TA(max) = 1298 kN

2.6 (a) TBC(max) = 194.81 kN; (b) TAB = 257.15 kN

2.7 H = 108.89 KN, VA = 67.67 kN, ND = 103.63 (comp) kN,

 VD(r) = –33.52 kN, MD = 112.02 kN.m

2.8 H = 136.0 kN, VA = 85.6 kN, VB = 74.4 kN,

 M = –60.3 kN.m, N = 159.18 kN, V(r) = 21.65 kN

2.15 H = 10.67 kN (to the left), V(left) = 21.34 kN (upwards) V(right) = 18.66 kN

2.16 R(left) = 31.82 kN (normal to rollers), H(right) = 2.5 kN (to the right)

 V(right) = 27.5 kN (upwards)

Chapter 3
3.1 (a) Stable, statically indeterminate, degree of indeterminacy = 1

 (b) Stable, statically indeterminate, degree of indeterminacy = 2

 (c) Stable, statically determinate, complex truss

 (d) Unstable

 (e) Stable, statically indeterminate, degree of indeterminacy = 2

 (f) Unstable

 (g) Unstable

 (h) Unstable

3.2 1–2 = 12.5 kN, 2–3 = 75.0 kN, 3–4 = 25.0 kN, 5–6 = 0 kN, 6–7 = –12.5 kN,

 7–8 = –75.0 kN, 8–9 = –25.0 kN,

 1–6 = – 17.68 kN, 2–7 =. –88.38 kN, 3–8 = 70.71 kN, 4–9 = 35.36 kN,

 1–5 = 12.50 kN, 2–6 = 62.50 kN, 3–7 = –50.0 kN, 4–8 = – 25.0 kN

3.3 1–2 = 22.99 kN, 2–3 = 1.44 kN, 4–5 = – 1.55 kN, 1–5 = –24.64 kN,

 5–2= –21.55 kN, 2–4 = 21.55 kN, 4–3 = – 21.55 kN

Answers



Answers  823

3.4 1–2 = –10.0 kN, 2–3= –40.0 kN, 3–4= –10.0 kN, 4–5 = 42.42 kN,

 5–3 = 14.14 kN, 5–2 = 28.28 kN, 5–6 = 20.00 kN, 6–1 = 14.14 kN,

 6–2 = 14.14 kN

3.5 1–2 = –15.0 kN, 2–3 = 0 kN, 2–4 = 9.6 kN, 2–6 = –9.6 kN, 4–5 = –37.5 kN,

 4–7 = 6.0 kN

3.6 2–3 = –76.03 kN, 9–3 = –50.26 kN, 9–16 = 42.62 kN, 15–16 = 75.00 kN,

 2–9 = 56.25 kN, 9–15 = –6.25 kN

3.7 1–2 = 180.0 kN, 8–4= 5–10 = 0

Chapter 4
4.1 RaY = –10.0 kN, RbY = 10.0 kN, RcY = 0 kN,

 RaZ = –8.66 kN, RbZ = 8.66 kN, RcX = –10.0 kN, Pab = –5.0 kN,

 Pbc = 10.0 kN, Pca = –10.0 kN, Ped = –10.0 kN,

 Peh = –10.0 kN, Pea = 14.14 kN, All others = 0

4.2 RaY = –11.54 kN, RaZ = –2.50 kN, RbY = 5.77 kN,

 RbZ = 7.50 kN, RcY = 5.77 kN, RcX = –8.67 kN,

 Pab = –4.33 kN, Pbc = 8.67 kN, Pca = –2.90 kN,

 Ped = –5.77 kN, Peb = –5.77 kN, Pda = 5.77 kN,

 Pdc = –8.15 kN, Pea = 8.15 kN, All others = 0

4.3 RzY = 32.0 kN, R3Y = –28.0 kN, R4Y = 6.0 kN,

 R3Z = –20.0 kN, R4Z = 20.0 kN, R4X = 20.0 kN,

 P21 = –37.4 kN, P24 = 17.2 kN, P23 = 4.3 kN, P31 = 32.7 kN, P34= –36.6 kN

4.6 R2Z = 0, R1X = –133.33 kN, R3X = 33.33 = kN

Chapter 5
5.2 D = 0.723 mm (downwards)

 q = 0.00289 (clockwise)

5.3 
3

3

Pa

EI
D =

5.4 
34

3
E

Pa

EI
D =

5.5 D = 15.94 mm

5.6 Dcentre = 8.16 mm (downward)

 Dfree end = 5.24 mm (upwards)

5.7 
32

3

PL
A

EI
D =

5.8 D5 = 4.23 mm

5.9 Dcentre = 52.0 mm (taking eight equal parts of 0.75 m each)

5.10 
3 314 31

(to the right), (to the right),
3 6

B D

PL PL

EI EI
D = D =

CHAPTER 6

6.1 
3 23 5

16 16

PL PL

EI EI
qD = =
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6.2 cen end

supp.

1040 350
(downwards) (upwards)

360

EI EI

EI
q

D = D =

=

6.3 
35

(downwards)
16

A

PL

EI
D =

6.4 DC = 17.5 mm

6.5 

2

4
C

PR R
L

EI

pÊ ˆD = +Á ˜Ë ¯

6.6 
313

(to the right)
192

AH

PL

EI
D =

6.7 Dc = 41.76 mm

6.8 
2

max
8

TL

d

aD
D =

Chapter 7
7.1 Shear at A:I.L ordinates, left end –0.2, left of supp. –0.0, right of supp.–1.0, right 

hand supp. – 0.0 right end– – 0.3. Shear at B: left end –0.2, left of B–0.3, right of 

B–0.7, right supp. –0.0, right end – 0.3.

7.2 Moment at A: –0.0, B–4.0, C– –6.0, D –0.0, E – –4.0

 Shear at B: right of B–1.0, C – 1.0, D–0.0, E– –0.67. Moment at

 B: A –0.0, B–0.0, C– –2.0, D – 0.0, E – 4/3

7.3 Reaction at 1:1–1.0, 3–0.0, 4– –0.3, 6–0.0

 Shear at 2:1–0.0, left of 2— – 0.6, right of 2–0.4, 3–0.0, 4– –0.3, 6–0.0

 Moment at 2:1–0.0, 2–3.6, 3–0.0, 4– –2.7 6–0.0

7.4 Reaction at A: A–1.0, B–0.0, C –1/3

 Moment at B:panel point in span next to supp. B–0.0, B – –0.75, C– –3.0

 Shear left of B:A–0.0 panel point in span next of B— –12/13.5 to the right of 

panel point – 1.5/13.5, B–0.50 C — –1/3

7.5 Moment at A:B–6.0, E–0.0, D– –6.0, and C–0.0

7.6 Member BC: A–0.0, B–0.72, C–0.87, E–0.0 (comp.)

 Member HC: A–0.0, B–0.29, C–0.58, E–0.0 (–Comp, +Ten.)

7.7 Reaction 1:1–1.0, 2–0.0, 3 – 0.25, 7–0.0

 Moment at 2:2–0.0, 3 – 2.50, 7–0.0

 Member 5–6:3–0.0, 6–0.75, 7–0.0

 Member 5–12:3–0.0, 5–0.71, 6 – 0.35 (comp.), 7–0.0

 Member 11–12:1–0.0, 5 – 1.0 (comp.), 7–0.0

7.8 Max. shear at C: 40.63 kN or –15.62kN, max. moment at C.–175. 13 kN.m

7.9 Max. shear–84.0 kN or –48.0 kN, max. moment –688.0 kN.m

7.10 Max. shear –80.0 or –80.0 kN, max. moment +875.0 or –800.0 kN.m

7.11 Max. shear next to supp. –220.0 or +220.0 kN

 Max moment –580.8 kN.m under 160 kN load at 5.28 m from supp.

7.12 Max shear –260.0 or –260.0 kN

 Max. moment –517.1 kN.m under 180 kN load at 4.09 m from supp.
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7.13 Max. force in members: CD–562.5, CH–96.0, GH–612.0 kN (comp.)

7.14 Max. shear–276.0 or –156.0 kN, max. moment –9080 kN.m

7.15 Max. shear at C–157.5 or –78.75 kN, max. moment at C–1437.2 kN.m, absolute 

max. shear next to supp. –275.6 kN, absolute max. moment under interior 140 kN 

load at 11.25 m from supp. –1503.7 kN.m

Chapter 8
8.1 t = 22.09°C

8.2 (i) L = 103.8 m, (ii) H = 171.52 kN, (iii) TA = 203.0 kN, TB = 194.36 kN

8.3 V40 = 4.0 kN, M40 = –320.0 kN.m

8.5 (i) Mmax = +240.5 kN.m, –156.25 kN.m

 Vmax = +25kN., (ii) Tmax = 201.9 kN

8.6 A = 2951 mm2, Mmax = +577.2 kN.m

 –375.0 kN.m

8.7 V25 = 27.03 kN, M25 =1881 kN.m

 Tmax = 740.73 kN.

8.8 (i) H = 12.0 kN, Mmax = 90.0 kN.m

 (iii) Mmax = +120 kN.m at ends

 Vmax = 5.0 kN. const, al through

Chapter 9
9.1 MB = –2.31 P and Mc = –0.46P assuming hinge points 3 m from B and 2 m from C.

9.2 MB = MC = –64.8 kN.m, hinges assumed at 0.1 L from B and C.

9.3 (a) 1–7 = 5–9 = 62.49 kN, 2–8 = 4–8 = 31.24 kN

 (b) 1–7 = 31.24 kN, 6–2 = 31.24 kN, 2–8 = 15.63 kN, 3–7 = –15.63 kN

9.4 (a) Windward col. N = 9.17 kN(ten), M = –45.0 kN.m, V = 15.0 kN

 Leeward col. N = –9.17 kN (comp), M = 45.0 kN.m, V = 15.0 kN

 hinges assumed 3 m above base; (c) 1–2 = –16.53 kN

9.5 PCL = –30.0 kN, PLD = 10.0 kN, PBM = PML = 28.29 kN,

 PLN = PEN = –28.29 kN. PCM = PMN = PND = 0

9.6 Reactions at base:

 Vindward col. N = 7.5 kN (ten), M = 200.0 kN.m, V = 70.0 kN

 Leeward col. N = –7.5 kN(comp), M = 120.0 kN.m, V = 30.0 kN

9.7 Beam end moments upper row–4.0 kN.m, lower row–22.0 kN.m

 Column moments upper storey – 4.0, 8.0, 8.0 and 4.0 kN.m

    lower storey – 18.0, 36.0, 36.0 and 18.0 kN.m

9.8 Beam moments upper row –3.3, 5.43, 5.43 and 3.3 kN.m

    lower row –11.49, 30.45, 30.45 and 11.49 kN.m

 Column moments upper storey – 3.3, 8.72, 8.72 and 3.3 kN.m

    lower storey –11.49, 30.45. 30.45 and 11.49 kN.m

Chapter 10

10.1 
2

,
3 3

B A

PL
R P M= = -

10.2 
5

4
BR wL=
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10.3 PAB = 5.91, PBC = –5.91 (comp.), PBD = 7.90 kN

10.4 PAB = 58.63 kN (ten.)

10.5 PEC = –56.6 kN, PBF = 0, PEC = –42.5 (comp.) kN, PBF = –14.1 kN

10.6 X1 = 65.3 kN (ten), X2 = 3.48 kN downwards

10.7 PBC = 73.34 kN (ten), X2 = 19.65 kN upwards

10.8 PAB = –19.5 kN, PBC = –3.8 kN, PCD = –3.8 kN, PDE = 6.2 kN

 PEF = 20.6, PBE = –3.3 kN, PCE = 5.4 kN, PDB = –8.8 kN

 PBF = 13.4 kN, PEA = –14.9 kN

10.9 Interior supp. moments 
2

10

wL
- , Interior reaction 

11

10

wL
-

10.10 MB = –76.88 kN.m, RA = 20.30 kN, RB = 82.51 kN, RC = 14.52 kN

10.11 Interior reaction –178.62 kN

10.12 Interior support moments decreased by 0.595%, span moments in creased by 

0.65%

10.13 MBC = MCB = –6.77 kN.m. MAD = MAB = –4.57 kN.m

10.14 (a) HA = 
3

7
wa- , VA = 

3

28
wa , (b) VA = 14.4 kN

 (c) VB = 1.26 P(upwards), HB = 0.41 P (to the right)

10.15 H = 115.77 kN (graphical summation from eight equal parts)

10.16 H = 447.88 kN (graphical summation from eight equal parts)

10.17 
2

2
PL

H
hp

=

10.18 
2

2PL
H

hp
=

10.19 1–1.64, 2–1.87, 3–1.17 kN.m

10.20  A 1 2 3 B 4 5 6

 (a) 1.000 0.692 0.406 0.168 0 –0.082 –0.094 –0.059

 (b) 0 –0.293 –0.468 –0.410 0 0.841 2.032 0.956

 (c) 0 0.590 0.940 0.820 0 0.820 0.940 0.590

 (d) 0 0.059 0.094 0.082 0 0.168 0.410 0.308

          0.590 

10.21 1 – 0.30, 2 – 0.50, C – 1.0, 3 – 1.31, 4 – 0.85

10.22 
125

128
H = when unit load is at crown, moment quarter span point = 2.49, centre 

–0.64.

Chapter 11
11.1 M12 = 21.25 kN.m, M21 = –17.50 kN.m, M23 = 17.50 kN.m

 M32 = – 15.00 kN.m

11.2 M12 = 150.0 kN.m, M21 = –49.25 kN.m, M32 = –8.82 kN.m.

 M43 = –75.60 kN.m.

11.3 M12 = –128.0 kN.m, M21 = –256.0 kN.m, M32 = –256.0 kN.m.

 M43 = 128.0 kN.m.

11.4 M12 = –23.09 kN.m, M21 = –46.18 kN.m, M23 = 69.27 kN.m,

 M25 = –23.09 kN.m, M32 = –85.24 kN.m, M34 = –70.15 kN.m,

 M36 = 12.73 kN.m, M43 = –37.28 kN.m.
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11.5 M12 = –4.76 kN.m, M21 = –9.52 kN.m, M23 = 14.29 kN.m,

 M25 = –4.76 kN.m, M32 = –37.15 kN.m, M36 = –2.86 kN.m,

 M34 = 40.00 kN.m, M52 = –2.38 kN.m. M63 = –1.43 kN.m.

11.6 M12 = 63.42 kN.m. M21 = –34.17 kN.m, M32 = –56.20 kN.m,

 M43 = 44.50 kN.m.

Chapter 12
12.1 M12 = 45.00 kN.m, M21 = –30.00 kN.m, M23 = 30.00 kN.m, M32 = –15.00 kN.m.

12.2 M21 = –109.4 kN.m, M23 = 109.4 kN.m.

12.3 M12 = –5.30 kN.m. M23 = 10.70 kN.m, M34 = 30.00 kN.m.

12.4 M12 = 10.0 kN.m, M21 = –M23 = 20.0 kN.m, M32 = –60.0 kN.m.

12.5 M12 = 18.00 kN.m. M23 = 52.90 kN.m, M34 = 41.40 kN.m. M43 = –9.30 kN.m.

12.6 MAB = 45.02 kN.m. MBC = 11.59 kN.m, MCD = 40.94 kN.m,

 MDC = –35.78 kN.m.

12.7 M12 = 27.92 kN.m, M21 = –24.26 kN.m, M23 = 31.83 kN.m,

 M24 = –7.56 kN.m, M42 = 11.22 kN.m.

12.8 See 11.6

12.9 M21 = –17.60 kN.m. M23 = 17.60 kN.m, M32 = –17.59 kN.m.

12.10 MAB = 60.50 kN.m, MBA = –19.70 kN.m, MBC = 19.70 kN.m.

 MCB = –59.40 kN.m, MCD = 59.40 kN.m.

Chapter 13
13.1 MBA = –30.64 kN.m, MEC = 30.64 kN.m, MCB = –34.68 kN.m

13.2 MAB = 75.0 kN.m, MBA = –57.0 kN.m, MCB = –44.8 kN.m.

13.3 MBC = 13.04 kN.m, MCD = 15.90 kN.m, MDC = –52.06 kN.m.

13.4 (a) MAB = –3.77 kN.m, MBC = –7.54 kN.m, MCD = –11.75 kN.m

13.5 MAB = 83.98 kN.m. MBC = 14.99 kN.m, MCB = –50.00 kN.m.

13.6 MAB = –9.53 kN.m, MBA = –24.26 kN.m, MCB = 20.60 kN.m.

 MDC = 13.0 kN.m.

13.7 MCD = –128.0 kN.m, MBF = –162.8 kN.m, MBC = 106.3 kN.m.

 MBA = 56.4 kN.m, MAB = 28.2 kN.m, MDC = 128.0 kN.m,

 MEB = 162.8 kN.m, MCB = –106.3 kN.m.

13.8 MAB = MFE = 49.4 kN.m, MBA = MEF = 40.6 kN.m.

 MBE = MEB = –52.7 kN.m. MBC = MED = 12.0 kN.m,

 MCD = MDC = –18.0 kN.m.

13.10 MBA = –10.3 kN.m, MEF = 13.7 kN.m, MDE = 23.1 kN.m,

 MCB = –22.9 kN.m.

CHAPTER 14

14.1 MA = –364.38 kN.m

14.2 MA= 
2

9
-  Pl, MB = 

2

9
-  Pl

14.3 MA= 
11

192
-  wl2, MB = 

5

192
-  wl2

14.4 MA = –389.77 kN.m. MB = –395.89 kN.m
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14.5 MA = – 7.19 P kN.m, MB = –3.36 P kN.m

 Stiffness factors MiA = 0.4186 EI, MiB = –0.2615EI,

 C.O.Fs = –0.6247, –0.5610

14.6 MA = MD = 17.78 kN.m. MB = MC = –35.56 kN.m.

14.7 MA = –56.75 kN.m. MB = –MC = 42.86 kN.m.

14.8 MB = –14.06 kN.m, MC = –14.06 kN.m.

14.9 MA = –13.12 kN.m, MB = –24.38 kN.m.

 Mc = –24.38 kN.m, MD = –13.12 kN.m

14.10 Stiffness factors MiA = 8.21 
EI

l
, MiB = 4.84 

EI

l
 CO. Fs = –0.4356, –0.74

Chapter 15
15.1
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15.6
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8 8

1 5 1 1

6 24 24 8

È ˘
Í ˙
Í ˙
-Í ˙

Í ˙
= Í ˙

-Í ˙
Í ˙
Í ˙-Í ˙
Í ˙Î ˚

f
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15.13

 

3
8 sym.

3 2
6

0 0 13

L

EI

È ˘
Í ˙= -Í ˙
Í ˙Î ˚

f

15.14

 

2 1

1 26

L

EI

-È ˘
= Í ˙-Î ˚

f

15.15

 

8

2 8 sym.

0 2 (4 )

3 6 6 15

bk

È ˘
Í ˙
Í ˙=
Í ˙+
Í ˙
Î ˚

k

15.16

 

2

3

2 2

129 sym.

3 16
2

3 4 16

EI
L L

L
L L L

È ˘
Í ˙

= -Í ˙
Í ˙-Î ˚

k

15.17

 

2 8

2 12

EI

L

È ˘
= Í ˙

Î ˚
k

Chapter 16
16.1

 

5 5
0

3 3

34
0 0

3

4 4
0

3 3

AD

BD

CD

-È ˘
Í ˙
Í ˙
Í ˙-

= Í ˙
Í ˙
Í ˙-Í ˙
Î ˚

A

16.2

 

0 1 01

5
0 02

4

3 0 1 0

4 0 0 1

35 0 0
4

3
0 06

4

7 0 0 1

5
0 08

4

È ˘
Í ˙-Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙-Í ˙=
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

B
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16.3

 

11

2

4 12 9
3

5 25 25

4

5 1

6 1

7

8 16 12
8

5 25 25

19

10 1

111

3 4
12

5 5

È ˘
Í ˙
Í ˙
Í ˙-
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙= Í ˙
Í ˙-
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

B

 Elements not recorded are zero

16.4 See 15.10

Chapter 17
17.1

 

3
8

1

6

B

B

L

D WL

EIq

-Ï ¸
Ô ÔÏ ¸ Ô Ô=Ì ˝ Ì ˝-Ó ˛ Ô Ô
Ô ÔÓ ˛

17.2

 

1

1
2

3

0.67

(a) 4.36

0

-Ï ¸ Ï ¸
Ô Ô Ô Ô=Ì ˝ Ì ˝
Ô Ô Ô Ô

Ó ˛Ó ˛

D
P L

D
EI

D

 

1

2

3

4

5

3.49

12.50

(b) 33.33

37.70

5.13

-Ï ¸ Ï ¸
Ô Ô Ô Ô-Ô Ô Ô ÔÔ Ô Ô Ô= -Ì ˝ Ì ˝
Ô Ô Ô Ô-Ô Ô Ô Ô

-Ô Ô Ô ÔÓ ˛Ó ˛

D

D
L

D
AE

D

D

17.3

 

2

5

(a) 3
8

6

A

B

B

R

WL
R

L

EI
q

Ï ¸ Ï ¸
Ô Ô Ô Ô
Ô Ô Ô ÔÔ Ô Ô Ô=Ì ˝ Ì ˝
Ô Ô Ô Ô
Ô Ô Ô Ô
Ô Ô Ô ÔÓ ˛Ó ˛
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2

4

(b) 2
3

6
q

Ï ¸Ï ¸
Ô ÔÔ Ô
Ô ÔÔ ÔÔ Ô Ô Ô=Ì ˝ Ì ˝

Ô Ô Ô Ô
Ô Ô Ô Ô
Ô Ô Ô ÔÓ ˛ Ó ˛

A

B

B

R

P
R

L

EI

17.4 Second choice is most desired

 

52.46
91.3

kN.m and 62.24 kN
66.92

1.3

A
AB

B
BA

C

R
M

R
M

R

È ˘ È ˘
-Ï ¸ Ï ¸ Í ˙ Í ˙= =Ì ˝ Ì ˝ Í ˙ Í ˙-Ó ˛Ó ˛ Í ˙ Í ˙Î ˚Î ˚

17.6

 

104
(b)

345
DH wL=

 

2

(c)
48

B

PL

EI
q =

17.9

 

1

2

31

42

5

6

0

0

0.262 0.738
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0 0

0.731

0

p

p

pX P P

pX

p P

p

È ˘ È ˘
Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙- -Ï ¸ Ê ˆ

= =Í ˙ Í ˙Ì ˝ Á ˜Ë ¯ Í ˙ Í ˙Ó ˛
Í ˙ Í ˙-
Í ˙ Í ˙

Í ˙Í ˙ Î ˚Î ˚
17.10 (a) 1–4 and 3–6 may be removed to make it a primary structure

 
1

24.78 3.321
(b)

3.32 24.78

È ˘
= Í ˙

Î ˚
F

EI

 

1 2 8.07, 35.6

2 4 10.75, 47.4

(c) 1 3 22.60, 47.4

(d) 2 3 13.45, 59.3

1 4 28.22, 59.3

3 4 16.13, 71.2

- -Ï ¸ È ˘
Í ˙Ô Ô- -Í ˙Ô Ô
Í ˙Ô Ô-Ô Ô = Í ˙Ì ˝- -Í ˙Ô Ô
Í ˙Ô Ô- - -
Í ˙Ô Ô

- -Í ˙Ô Ô Î ˚Ó ˛
17.11

 

3

1 3

3

21 22

3
31 32

54 sym.

28 16 1.85 kN, 0.11
6

8 5 2

1.016 0.519

0.70 0.148

L EI
X

EI L

L

D D EI

D D L

EI

È ˘
Ï ¸Í ˙= = -Ì ˝Í ˙ Ó ˛Í ˙Î ˚

È ˘
Í ˙È ˘ Í ˙=Í ˙ Í ˙Î ˚
Í ˙
Î ˚

F
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17.12

 

2

2

2

2

2

2
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19
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224
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0.1059 2.77

1568
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M wL PL

L

EI
wL PLM
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- DÈ ˘Ï ¸ Í ˙Ô Ô Í ˙Ô Ô DÔ Ô Í ˙= -Ì ˝ Í ˙
Ô Ô Í ˙
Ô Ô DÍ ˙
Ô Ô Í ˙Ó ˛ Î ˚

Chapter 18
18.1

 

1

2

3

0.365

0.500

0.259

p P

p P

p P

Ï ¸ Ï ¸
Ô Ô Ô Ô=Ì ˝ Ì ˝
Ô Ô Ô Ô

Ó ˛Ó ˛
18.2

 

left incl. 0.5774
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vert. 0.0

P

P
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Ô Ô
Ì ˝
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Ó ˛

18.3

 

1
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5 2
2
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3

4

0
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3

R P
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D RAE
p P

R P

-Ï ¸ Ï ¸
Ï ¸ Ï ¸ Ô Ô Ô Ô-Ï ¸ Ï ¸ Ô Ô Ô Ô Ô Ô Ô Ô= = - =Ì ˝ Ì ˝ Ì ˝ Ì ˝ Ì ˝ Ì ˝-Ó ˛Ó ˛ Ô Ô Ô Ô Ô Ô Ô Ô

Ó ˛Ó ˛ Ô Ô Ô ÔÓ ˛Ó ˛
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1

2

3

4

5
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0.0
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p P
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p P
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p
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Ô Ô Ô Ô
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1.5625 9.38
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3.125 18.75

q

q

-È ˘ È ˘È ˘ È ˘
= -Í ˙ Í ˙Í ˙ Í ˙

Î ˚ Î ˚Î ˚ Î ˚

B AB
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MEI
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2

1
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248 48

8
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B
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MPL PL
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18.11

 

2

0.0921
0.0044

0.0833
0.0329 ,

0.1400
0.0168

0.2716
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B

BA
C

CD

DC

M

MPL
PL
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L

M

q

q
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40.2

37.5
kN.m

34.6

34.5

AB

BC

CD

DA

M

M

M

M

Ï ¸ Ï ¸
Ô Ô Ô Ô-Ô Ô Ô Ô=Ì ˝ Ì ˝
Ô Ô Ô Ô
Ô Ô Ô ÔÓ ˛Ó ˛
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2

2 2 2

24

0 12 sym.

12 6 12

6 6
2 8

L

EI

L
L L L

L L

È ˘
Í ˙
Í ˙
Í ˙
Í ˙= - -Í ˙
Í ˙
Í ˙-Í ˙
Î ˚

k

 
3

19.304 8.087

8.087 5.743

EI

L

-È ˘
= Í ˙-Î ˚

k*

Chapter 19
19.1 (a) 2.0, (b) 1.58, (c) 1.13

19.2 Wu = 7.5 
PM

l

19.3 Wu = 6.0 
PM

l

19.4 Wu = 53.33 kN/m

19.5 MP = 106.67 kN.m

19.6 MP = 60.0 kN.m

19.7 wu = 11.67 2
PM

l

19.8 wu = 17.5 2
PM

l

19.9 Pu = 3.43 
PM

l

19.10 Pu = 1.5 
PM

l
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ANSWERS TO OBJECTIVE TYPE QUESTIONS

Ch.2 : (1) b (2) b (3) d (4) b (5) a

 (6) c (7) c (8) c (9) a (10) b

 (11) b

Ch.3 : (1) b (2) d (3) c (4) d (5) b

 (6) b (7) d (8) a (9) b (10) b

 (11) b (12) a

Ch.4 : (1) d (2) a (3) a (4) a (5) d

 (6) d (7) a

Ch.5 : (1) a (2) b (3) c (4) b (5) c

 (6) b (7) b (8) d (9) b (10) b

 (11) b (12) b (13) b (14) b (15) c

Ch.6 : (1) b (2) b (3) a (4) c (5) b

 (6) c (7) a (8) c (9) d (10) d

 (11) a

Ch.7 : (1) b (2) d (3) c (4) d (5) b

 (6) b (7) c (8) a (9) d (10) b

 (11) b (12) d (13) a (14) b (15) c

Ch.8 : (1) a (2) c (3) b (4) a (5) d

 (6) b (7) a (8) b (9) d (10) b

 (11) a (12) b (13) c

Ch.9 : (1) a (2) c (3) a (4) d (5) b

 (6) d (7) d (8) b (9) c (10) a

 (11) c

Ch.10 : (1) b (2) a (3) b (4) a (5) d 

 (6) d (7) c (8) a (9) c (10) d

 (11) b (12) a

Ch.11 : (1) b (2) c (3) c (4) d (5) c

 (6) a (7) b (8) b (9) c (10) d

 (11) c (12) b (13) d (14) b

Ch.12 : (1) d (2) b (3) c (4) b (5) c

 (6) c (7) b (8) a (9) b (10) c

 (11) c (12) a (13) d

Ch.13 : (1) a (2) d (3) c (4) c (5) d

 (6) c (7) d (8) d (9) b (10) c

 (11) b (12) a

Ch.14 : (1) c (2) d (3) b (4) c (5) b

 (6) a (7) c (8) d (9) b (10) c

Ch.15 : (1)  (a) F (b) T (c) F (d) T

   (e) F (f) T

 (2)  (i) b (ii) a (iii) a

 (3)  (i) a (ii) d

 (4)  (i) d (ii) c

 (5)  (i) c (ii) b (iii) b

Ch.19 : (1) c (2) a (3) c (4) b (5) d

 (6) c (7) c (8) b (9) c (10 a

 (11) d (12) b (13) c (14) b
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Absolute Maximum Moment 180

 maximum shear 180

Analysis approximate 279

Analysis and design 3

Approximate analysis of statically
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Assumptions required for

 portal method 294

 cantilever method 297

 indeterminate trusses 279

 Mill bents 281

 continuous beams and building

frames 288

Arches, general 24

 three-hinged 27, 28, 215, 223

 two-hinged 26, 352

 hingeless 27, 365

Axial force 19

B
Bettis theorem 137, 595, 596

Bow’s notation 68

Bridges, types of trusses 47, 48

 suspension 236

C
Cable structures, cables 21

 illustrative examples 21–24

Cantilever method 297–304

Carry over factor 418

Castigliano’s theorems 154

Coeffi cients, fl exibility 567

 stiffness 567

Column analogy 524

Concurrent forces 36

Index

Conjugate-beam method 108, 115

Connection, hinged and rigid 9, 10

Contra gradient law 620

Computer programme,

 Flexibility Analysis

 statically determinate structures 650

 statically indeterminate structures 663 

 Stiffness analysis,

 kinematically determinate structures 701

 indeterminate structures 712

D
Dead loads 4

Defl ected shapes 89

Defl ection by,

 castigliano’s theorem 154

 conjugate-beam method 108–115

 dummy load method 140

 energy methods 124–165

 geometric methods 89–106

 real work 131

 unit load method 140

 virtual work 138

Determinancy, static

 of plane trusses 47

 of space trusses 75

Displacements, consistent 321

Displacement method 669

 compared to force method 739

Displacement transformation matrix 610 

Distribution factor 419

Earthquake forces 5

Elastic line 90, 91

Elastic strain energy under,

axial stress 124, 128

 bending 128
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 multiaxial state of stress 127

 shearing stress 126,129

 torsion 130

Energy methods, displacements 124–165

Equilibriant of force system 37

Equilibrium, equations of 12

Equivalent uniformly distributed

 load 186

Erection loads 6

Exact analysis 279

F
Fink roof, analysis of 70

Fixed end moments 389

Fixed support 9

Flexibility matrix 568

 reduced 652

Flexibility coeffi cients 322

 infl uence coeffi cients 322

Floor system, infl uence lines for 206

Force or fl exibility method of

 analysis 626

 statically determinate structures 642

 statically indeterminate structures 650

 compared with displacement 

method 739

Force polygon 37

Force transformation matrix 605

Forces, resultant of concurrent 36

Force systems,

 concurrent 36

 coplanar 36

 couple, moment 37

 equilibrium, graphical conditions,

 for 37

Forms of structure 1

Frames

 closed 549

 gable 552

 rectangular portal 285

 two bay 765

 substitute frame method 358

Frames, infl uence lines for 203

Frame work, coordinate system 562

Free body diagrams 13, 14

Funicular polygon 38

 drawn through two point 40

G
Geometric methods, displacements 89

Graphic statics 35

Graphical analysis of,

 cables 41

 plane trusses 68

Graphical method, defl ection of

 trusses 115–120

H
Hardy cross 417–468

Hingeless arch 365

Hooke’s law 8

Hydrostatic forces 6

I
Impact loads 7

Indeterminancy, degree of 308

 static, kinematic 563

Indeterminate structures,

 analysis of 313

Infl ection points 90

Infl uence line,

 defi nition of 187

 for beams and frame’s construction

 of 187, 188

 illustrative examples 187–200

 for panelled beams 206–209

 for continuous members 372

 Three-hinged arches 215

 three-hinged stiffening girder 256

 Two-hinged arches 366

 two-hinged stiffening girder 269

 uses of 189

 for concentrated loads 189

 for distributed loads 196

Instantaneous centre 762

Internal strain energy expression for,

 axial stress 124

 multi-axial state of stress 127

 shearing stress 126

J
Joints, method of 49

Joint stiffness 715

K
Kani’s method 439

Kinematically indeterminate

structures 711, 712

L
Law of conservation of energy 130

Least work, method of 348

Link support 9
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Live load, bridges, buildings 4, 5

 earthquake 5

 snow and rain 6

 soil and hydrostatic 6

Load factor 746

Lower bound theorem 755

M
Matrix,

 displacements transformation 610

 fl exibility 568

 force transformation 605

 methods of structural analysis 562

 stiffness 569

Maxwell diagram 69

Maxwell’s reciprocal theorem 136, 592

Mill bent 281

Mechanism of failure 746

Methods of analysis

 statical 755, 756

 mechanism 755, 756

Mechanism,

 beam 758

 sway 758

 combined 758

Moment distribution, no shear 463

Moment,

 absolute maximum 223

 carry over factor 418, 534

 fi xed end 389

 rotation 474

Moment-area method 91

Moment-distribution method 417

 sign convention for 417

Müller Breslau principle 228, 372

N
Newton’s law 13

Nodal stiffness 713, 715

O
Open tree 310

P
Plastic moment 744

Plastic modulus 745

Plastic hinge distribution 747

Plane trusses 46

Pole 38

Polygon,

 force 37

 furicular 37

Portal method 294

Portal frames 285

Pratt truss 47

Primary structure 319

R
Rays 38, 41

Real work 131

Reactions,

 computation of 16

 infl uence lines for 188

Reciprocal theorem,

 Betti’s and Maxwell’s 136, 139

Right hand screw rule 19

Rigid connection 10

Roller support 9

 for space truss 76

Roof trusses, types 46

Rotation transformation matrix 521

Rotation factor 476

S
Sections, method of 56

Series of concentrated loads, live 178

Shape factor 745

Shear force 19

 absolute maximum 180

 infl uence lines for 188

Shells 3

Sign convention for,

 axial force 19

 bending moment 19

 shear 19

 twist 19

 moment distribution method 417

 slope-defl ection method 387

 Kani’s method 473

 column analogy 524

 matrix methods 545

Slope defl ection method 387–415

Space diagram 36

Stability, geometric

 of plane trusses 47

 of space trusses 75

Static determinancy of,

 plane trusses 47

 space trusses 75

Stiffness factor,

 absolute 418, 534

 relative 418

 modifi ed or reduced 419
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Stiffness coeffi cient 567

Stiffness matrix 564

 uncoupled 600

 reduced 703

Stiffness analysis, kinematically determinate 

systems 701, 702

Stiffness method, direct 713

 kinematically indeterminate

 systems 712, 713

Static equilibrium equation 12

Statically indeterminate structures,

 illustrative examples of

 beams  323–333

 frames 333–335

 trusses 335–340

Strain energy stores in

 axially loaded members 128

 bending 128

 shearing 129

 torsion 130

 elements 598

 systems 599

Stiffening girder,

 three-hinged 250

 two-hinged 269

Strain energy in terms of stiffness and

 fl exibility matrices  593

Superposition, principal of 8

Support,

 ball 76

 ball-and-socket 9, 76

 fi xed 9

 hinged 9

 roller 9, 76

Support yielding or settlements 346, 365,

 662, 702

T
Temperature stresses 339, 365

Tension in cables 21

Tension coeffi cients 49, 61, 77

Three dimensional trusses 46, 75

 reaction of 77

 two theorems for 78

Three-hinged arch 27

 illustrative examples 27–35

 infl uence lines for 215–217

Three-moment equation 343

Theorem of three moments 340

Translation factor 496

Trusses,

 plane 46

 space 75

 geometric stability of 47

 infl uence lines for 209

 graphical analysis of 68

 method of joints 49

 method of sections 56

Two-hinged arch 352

 illustrative examples 353–365

 infl uence lines for 366

Transformation of information through

 matrices 605–623

U
Unbalanced moment 422

Unit load 139

Upper bound theorem 756

V
Virtual work,

 applications of 138

 defi nition of 136

 defl ection of,

  beams 140

  frames 146

  trusses 146

W
Warren truss 47

Williot diagram 117 

Williot-Mohr diagram 115–120

Work

 real (see real work)

 virtual (see virtual work)

Z
Zero load test 67
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