
Bioinformatics
A Computing Perspective

Bioinformatics
A Computing Perspective

Shuba Gopal
Rochester Institute of Technology

Anne Haake
Rochester Institute of Technology

Rhys Price Jones
George Washington University

Paul Tymann
Rochester Institute of Technology

BIOINFORMATICS: A COMPUTING PERSPECTIVE

Published byMcGraw-Hill, a business unit of TheMcGraw-Hill Companies, Inc., 1221 Avenue of the Americas, NewYork,

NY 10020. Copyright © 2009 by TheMcGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be

reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written

consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or

transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8

ISBN 978–0–07–313364–5

MHID 0–07–313364–7

Global Publisher: Raghothaman Srinivasan

Director of Development: Kristine Tibbetts

Senior Project Manager: Kay J. Brimeyer

Senior Production Supervisor: Laura Fuller

Associate Design Coordinator: Brenda A. Rolwes

Cover/Interior Designer: Studio Montage, St. Louis, Missouri

(USE) Cover Image: Illustration Figure 4.7 and Photodisc Vol. 6 - Nature, Wildlife and the Environment

Senior Photo Research Coordinator: John C. Leland

Photo Research: Evelyn Jo Johnson

Compositor: Newgen Imaging Systems

Typeface: 10/12 Times Roman

Printer: R. R. Donnelley Crawfordsville, IN

Photo Credits: Tymann Bioinformatics 1/e

Fig. 1.1:©Pixtal/age Fotostock, Fig. 1.2:©Science Source/PhotoResearchers, Inc., Fig. 1.4:© ImageSelect/ArtResource,NY,

Fig. 1.6: © CAIDA/Photo Researchers, Inc., Fig. 2.24B: © ISM, Fig. 3.13: © Scott Camazine/Phototake—All rights reserved.,

Fig. 3.24: Photos reprinted Courtesy of Ming Jin, et al, Two-dimensional gel proteome reference map of blood monocytes,

Proteome Science 2006, 4:16; licensee Biomed Central Ltd., Fig. 3.26: © Dr. Cecil H. Fox, Fig. 3.27 © Dr. Cecil H. Fox,

Fig. 8.2: Courtesy of the Center for Array Technologies at the University of Washington, Fig. 9.19: © Stephen Gerard/Photo

Researchers, Inc.,

Library of Congress Cataloging-in-Publication Data

Bioinformatics : a computing perspective / Shuba Gopal ... [et al.]. – 1st ed.

p. cm.

Includes index.

ISBN 978–0–07–313364–5 — ISBN 0–07–313364–7 (hard copy : alk. paper)

1. Bioinformatics. I. Gopal, Shuba.

QH324.2.B546 2009

572.80285–dc22 2008004080

www.mhhe.com

Dedication

I Mam, Laurel, Sara, Caroline a Claire

—Rhys Price Jones

For Bill, Peter and Scott

—Anne Haake

For Sridhar, Sanjeev and Mara

—Shuba Gopal

Brief Contents

Preface xi

Acknowledgment xiv

Chapter 1 Road Map 1

Chapter 2 Biological Basics 22

Chapter 3 Wet and Dry Lab Techniques 84

Chapter 4 Fragment Assembly 128

Chapter 5 Sequence Alignment 158

Chapter 6 Simulating and Modeling Evolution 219

Chapter 7 Gene Finding 276

Chapter 8 Gene Expression 329

Chapter 9 Projects 383

Index 445

vi

Contents

Preface xi

Acknowledgment xiv

Chapter 1 Road Map 1

1.1 What Is Bioinformatics? 1

1.2 A Bioinformatics Team 6

1.3 What Defines Life? 8

1.4 A Systems Approach to Biology 10

1.5 Bioinformatics in Action 16

1.5.1 Deciphering a Killer: HIV and

Bioinformatics 17

1.6 The Road Ahead 18

Summary 20

Key Terms 20

Bibliography 21

Chapter 2 Biological Basics 22

2.1 The Blind Engineer 22

2.1.1 The Case of the Peppered

Moth 23

2.1.2 How Evolution Works 24

2.1.3 Evolution’s Palette 25

2.2 Compute Machine par Excellence 26

2.2.1 Cellular Organization and

Complexity 26

2.2.2 Chemistry and Life 28

2.2.3 A Parts List for Life 33

2.3 The Languages of the Cell 36

2.3.1 Operating Systems for Cells 37

2.3.2 Deciphering the Language of

Cells 39

2.3.3 Compiling DNAStrings

Programs 46

2.3.4 Executing Code from

DNAStrings 49

2.4 Further Nuances in DNAStrings 57

2.5 Proteins: Cellular Machines 61

2.5.1 Proteins as Molecules 62

2.5.2 Proteins as Engineered

Machines 67

2.6 Data Maintenance and Integrity

Tasks 70

2.6.1 Backing up DNA Data 70

2.6.2 The Challenges of Data

Management 74

Key Terms 82

Bibliography 83

Chapter 3 Wet and Dry Lab
Techniques 84

3.1 Hybridization: Putting Base Pairs to

Work 85

3.2 Making Copies of Nucleotide

Sequences 87

3.3 An Explosion of Copies 91

3.4 Sequencing DNA Strings 94

3.5 The Human Genome Project: Computing to

the Rescue 99

3.5.1 Mission Impossible: Sequencing the

Human Genome 100

3.6 Human Genome Sequencing

Strategies 105

3.7 From Structure to Function 107

3.8 Profiling the Transcriptome 111

3.9 A Few Proteomics Techniques 115

3.10 Putting It All Together 118

3.11 A Few Selected Dry Lab Techniques 120

3.11.1 Algorithms 120

3.11.2 Analysis 122

Key Terms 125

Bibliography 126

Chapter 4 Fragment Assembly 128

4.1 The Nature of the Problem 128

4.1.1 Two Analogies 128

4.1.2 The Need for Multiple

Coverage 130

4.2 Putting the Pieces Together 132

4.2.1 Location, Location,

Location 132

vii

viii Contents

4.2.2 Mapping 133

4.2.3 Using Overlaps 133

4.2.4 Whole-Genome Sequencing 134

4.2.5 The Problem of Repeats 135

4.2.6 AWorked Example 135

4.3 The Size of the Problem 136

4.4 A Purely Combinatorial Problem 138

4.4.1 Problem Statement 139

4.5 Solving the Combinatorial Problem 139

4.5.1 Overlaps 139

4.5.2 Fragments Within Fragments 140

4.5.3 A Graph Model 141

4.5.4 A Nonoptimal Greedy

Algorithm 142

4.5.5 Improving on Greed 144

4.6 Biological Sequence Reassembly 146

4.7 Sequencing by Hybridization 148

4.7.1 AWorked Example 149

4.8 Exercises for Chapter 4 155

Key Terms 157

Bibliography 157

Chapter 5 Sequence Alignment 158

5.1 Exact Pattern Matching 160

5.1.1 The Naïve Algorithm 160

5.1.2 Algorithm Analysis 161

5.1.3 Other Pattern-Matching

Algorithms 163

5.1.4 DFAs for Search 164

5.1.5 DFAs as Programs 166

5.1.6 Suffix Trees 170

5.1.7 AWorked Example:

abracadabara 170

5.1.8 Recap of Exact Pattern

Matching 171

5.2 Things People Do Well:

Similarity Detection 172

5.3 Computers Helping People:

Presenting DotPlots 173

5.3.1 Straight DotPlot: Searching for

Areas of Exact Matching 173

5.3.2 AWorked Example: Can You

Dance the Can-Can? 174

5.3.3 Controlling Sensitivity and

Selectivity 175

5.4 People Helping Computers:

Algorithms 176

5.4.1 Alignment 176

5.4.2 Quality of Alignments: Scoring

Schemes 178

5.4.3 Global Alignments: The

Needleman–Wunsch

Algorithms 180

5.4.4 AWorked Example 180

5.4.5 Local Alignments: The

Smith–Waterman Algorithm 187

5.4.6 AWorked Example 191

5.5 Affine Gap Penalties 192

5.6 Evolutionary Considerations 193

5.6.1 PAM and BLOSUM 193

5.7 Space/Time Analysis of Dynamic

Programming Algorithms 196

5.8 Heuristic Approaches: Fast A and

BLAST 197

5.8.1 AWorked Example: Bill Gates

at Ballgames 197

5.9 Multiple Alignments 199

5.9.1 AWorked Example 202

5.9.2 Analysis of Multiple-Alignment

Algorithms 204

5.10 Exercises for Chapter 5 206

Key Terms 217

Bibliography 218

Chapter 6 Simulating and Modeling
Evolution 219

6.1 The Biological Time Machine 219

6.1.1 Evolutionary Processes 221

6.2 E. coli Evolution 222

6.3 Simulating Evolution in Silico 225

6.3.1 Genetic Algorithms: A First

Pass 226

6.3.2 Monkey Shakespeare: An Extended

Example 228

6.3.3 Monkey Evolution: Making Whales

from Weasels 234

6.3.4 AWorked Example: A Genetic

Algorithm for Gene Finding 238

6.4 Modeling Evolutionary Relationships 241

6.4.1 Models of Mutation 243

Contents ix

6.5 Discovering Evolutionary

Relationships 249

6.5.1 Parsimony 252

6.5.2 Other Ways to Build Trees 263

6.5.3 Maximum Likelihood 270

Key Terms 274

Bibliography 275

Chapter 7 Gene Finding 276

7.1 A Modern Cryptographic Puzzle 276

7.1.1 Detecting Encryption 278

7.1.2 Encoding Information 279

7.2 Cracking the Genome: A First Pass 281

7.2.1 AWorked Example: HIV

Integration Sites 282

7.2.2 Regulating Genes: Transcription

Factor-Binding Sites 293

7.3 A Biological Decoder Ring 295

7.3.1 A First Try at Decryption: ORF

Finding 297

7.3.2 Accounting for Discontinuous

Coding Regions 301

7.4 Finding Genes Through Mathematics 306

7.4.1 Linguistic Complexity 307

7.4.2 Looks Like a . . . 307

7.4.3 Markov Models 308

7.4.4 Genes as Markov Processes 314

7.5 Gene Finding by Learning: Letting a

Computer Do It 317

7.6 Exercises for Chapter 7 319

Key Terms 327

Bibliography 327

Chapter 8 Gene Expression 329

8.1 Introduction 329

8.2 Genes in Context 329

8.3 Genotype to Phenotype 330

8.4 The Expected (by now) Complications of

Biology 331

8.5 A Flood of Data 334

8.6 Noisy Data 337

8.6.1 Turning down the Noise 338

8.7 The Many Modes of Gene

Expression Data 339

8.8 A Worked Example: Gene Expression

in HIV-Infected Cells 342

8.8.1 Data Preprocessing 342

8.9 Programs to Work with Genes and

Expression Vectors 350

8.10 Mining the Gene Expression Data 352

8.10.1 AWorked Example: Looking for

Differentially Expressed

Genes 353

8.10.2 Testing Biological Hypotheses

with Statistical Hypotheses 354

8.11 A Worked Example: Forming New

Hypotheses 356

8.11.1 Organizing the Data 356

8.11.2 Clustering 358

8.11.3 Classification 370

8.11.4 Using Visualization Techniques to

Aid Interpretation 371

8.11.5 Advanced Classification

Algorithms 373

8.12 Data Management 374

8.12.1 Controlled Vocabularies and

Standardization of Microarray

Data 375

8.13 Exercises for Chapter 8 378

Key Terms 380

Bibliography 381

Chapter 9 Projects 383

9.1 Visualization and Exploration of Complex

Datasets 383

9.1.1 Sequencing Gel Visualization 384

9.1.2 Microarray Data

Visualization 389

9.1.3 Data Visualization Tools 390

9.1.4 Over to You 392

9.1.5 Resources for Visualization 393

9.2 RNA Structure and Function

Prediction 394

9.2.1 Solving Structures for Functional

RNAs: Early Successes 395

9.2.2 Structural RNAs and Gene

Regulation 396

9.2.3 RNA Structures in Machines:

Solving Complex Structures 401

9.2.4 Over to You 405

x Contents

9.2.5 Resources for Structure

Prediction 406

9.3 Rational Drug Design Through

Protein Structure and

Function Prediction 408

9.3.1 A Pharmaceutical Fairy Tale 408

9.3.2 Drug Development: One in a

Million Chances 409

9.3.3 Structure-Based Drug

Design 410

9.3.4 A Pharmaceutical Cautionary

Tale 414

9.3.5 Over to You 415

9.3.6 Resources for Rational Drug

Design 416

9.4 Information-Based Medicine 416

9.4.1 Identifying Simple Disease

Genes 417

9.4.2 The Challenge of Mapping

Complex Diseases 420

9.4.3 Over to You 423

9.4.4 Resources for Information-Based

Medicine 424

9.5 Systems Biology 424

9.5.1 Introduction 424

9.5.2 Inputs 428

9.5.3 Outputs 429

9.5.4 Modern Approach to Systems

Biology 429

9.5.5 Feedback, Equilibrium, and

Attractors 430

9.5.6 What Kind of Model? 435

9.5.7 Over to You 436

9.5.8 Resources for Systems

Biology 439

Key Terms 440

Bibliography 441

Index 445

Preface

“. . .we seem to agree that [bioinformatics is] an interdisciplinary field, requiring

skills in computer science, molecular biology, statistics, mathematics, and more.

I’m not qualified in any of these fields. . .though I spend most of my time writing

software, developing algorithms, and deriving equations. . .”

— Sean Eddy1

One of the challenges of writing a textbook in an interdisciplinary field as fluid

and rapidly evolving as bioinformatics is that no one is an expert in all aspects

of the field. We all come to the table with different backgrounds, a collection of

skills accrued along the way, and a set of ideas of what to study and how to go

about doing so. To be successful you need to communicate your ideas to people

who share neither the background nor your vocabulary, and to do so in a way

that fires the imagination. That’s what we have tried to do in this book. We are a

disparate group: formal training in mathematics and computer science for two of

us; formal training in biology for the other two; all of us using, developing and

evaluating new computational methods for the analysis of biological problems.

What gets us out of bed in the morning is the idea that we can design an algorithm

or computational method that will help us better understand the miracle of life.

Along the way, we discovered that together we could create a textbook that blends

computing and biology in an engaging and unique way.

In fact, we believe this book is as close to a stand-alone text as possible in the

field. The book is aimed at those with a computing background, but it contains

enough background from both the biological and computing angles that students

from either discipline should feel comfortable starting with this text. Of course,

no text can cover everything in equal depth, so when push comes to shove, we

slide to the computing end of the scale rather than the biology end. Thus, we

assume that students have already acquired about a year’s worth of programming

experience and are conversant with Java or a similar object-oriented programming

language.

To help keep students focused on material that is often complex and detailed,

we used one long-running example throughout the text. Specifically, we pro-

vided worked examples and discussed the ways in which computing approaches

have elucidated key aspects of the biology of the human immunodeficiency virus

(HIV), the virus that causes AIDS. Threading a single example through many top-

ics is meant to enable computing students to ground themselves as they explore

the complexities of biology. In turn, the HIV example gives biology students a

chance to return to a familiar place even as advanced computing concepts are

introduced.

1
Eddy, Sean. (2005). “Ante disciplinary Science,” PLoS Computational Biology. 1(1):e6.

xi

xii Preface

We made a conscious decision not to talk about the application of com-

mon bioinformatics tools, although we highlighted interesting methods that

are embedded in well-known programs. This book is not a “how-to” guide to

bioinformatics, and its intended audience is not computer scientists hoping to

pick up a little biology or biologists hoping to get a few computing clues. Rather,

we hoped to engage the next generation of scientists. We wanted to inspire individ-

uals to design the breakthrough algorithms and compuational approaches that

will provide novel and valuable insights into biological phenomena. Ambitious

as this is, we have learned from our experiences teaching undergraduates that if

you demand the world of them, some will produce amazing results. Indeed, we

wrote this book for just those undergraduates who over the years have surprised

us with their ingenuity, tenacity and enterprising approach to the field. This is a

book aimed at all the undergraduates and possibly first year graduate students

who are just itching for the chance to try out their skills on a whole new set of

problems.

We purposely took a conversational tone in the text, keeping things relatively

lighthearted even as we engaged in rigorous analysis. We hoped in doing so to

entice students into learning and thinking.

We did not think in such lofty terms when we began this process several years

ago. We started at a much more prosaic level: Anne Haake and Rhys Price Jones

were offering a pair of courses titled “Introduction to Bioinformatics Computing”

and “Advanced Bioinformatics Computing” for undergraduates at the Rochester

Institute of Technology (RIT). None of the textbooks on the market had the right

blend of computing and biology for the courses. We identified many textbooks

that were merely procedural guides describing how existing computational tools

could be applied to specific biology problems. Another set of textbooks was so

overwhelmingly focused on the algorithmic aspects that they lost sight of the biol-

ogy that motivated them. We wanted to achieve that happy medium: a textbook

that would emphasize the theoretical underpinnings and logic of the algorithms

while also highlighting the biological knowledge that drives the algorithm devel-

opment in a unique direction. Since no one else was writing the textbook we

wanted, we wrote our own. The fruits of those labors reside in your hands now.

We will not tell you how to use this book because we think there are many

ways to use it. What we do suggest is that you feel free to pick those chapters that

most suit your tastes and the needs of your students. For example, if you or your

students need a little extra biology background, you will find that Chapters 2 and 3

provide a very good primer on basic molecular biology. If, on the other hand,

your students need a gentler introduction to some of the algorithms, chapters 3, 4,

and 5 are designed to help them understand the spirit of bioinformatics algo-

rithms. These chapters do, however, expect a familiarity with written explanations

of algorithmic ideas, such as would be encountered in most introductory

computer science courses at the college level.

You can certainly work through all the chapters in the book over the course

of a semester or year-long course depending on the level of detail you wish to

pursue. You can customize students’ experience by selecting from the exercises

included in each chapter. Many of these exercises require students to develop code

Preface xiii

and programs to accomplish specific tasks. Most of these tasks have a biological

basis or are motivated by a specific biological phenomenon. For a faster paced,

less involved course, you might omit some of the more detailed programming

exercises. Additional instructional material and solutions to the exercises will be

made available at www.mhhe.com/gopal.

Chapter 9 encourages you to give your students free rein to explore some

fascinating new areas of bioinformatics where computing challenges loom large –

areas in which the extant solutions come in an intriguing variety and the open

questions are just as numerous. Rather than try to cover all the details of ongoing

research, we leave the door open for innovative students to investigate the issues

for themselves, either on their own or in small groups. This provides an important

pedagogical tool: the motivation and context within which students can become

independent investigators in their own right.

In the end, we want this book to be a gateway to new and exciting discoveries.

We invite you to explore, to investigate and then to roam free through the field.

If our experiences are any indication, what you produce from these explorations

will surprise even you. We hope you will enjoy the journey as much as we have.

Shuba Gopal

Rochester, NY, May 2008

Anne Haake

Rochester NY, May 2008

Rhys Price Jones

Washington, D.C., May 2008

Paul Tymann

Rochester, NY, May 2008

Acknowledgment

“Knowledge is in the end based on acknowledgment.”

—Ludwig Wittgenstein

Many contribute to any endeavor such as this not just those whose names appear

on the cover. These individuals deserve the real credit for bringing this work to

fruition. Our students have been the primary motivation for this work, and we

remain indebted to them. Transforming that inspiration into reality required the

skills of our excellent editorial team at McGraw-Hill. Kelly Lowery and Emily

Lupash helped us get started writing, and we were then ably guided by Alan

Apt. Melinda Bilecki has been a steady source of support through our darkest

hours. Kris Tibbets and Raghu Srinivasan helped us put the final touches on our

manuscript.

We were fortunate to have numerous peer reviewers of our chapters, and

their feedback provided much needed reassurance and valuable suggestions for

improvement. Our student collaborators, Guy Paddock and Eric Foster, pro-

vided some of the code in the text, on the website, and in the Solutions Manual,

while Brendan Dahl helped ensure that exercises were a good fit for the text.

Dr. Robert Parody contributed material and guidance for the statistical analy-

sis of gene expression data. The students of the Introduction to Bioinformatics

Computing and Advanced Bioinformatics Computing courses in Winter 2005

and Spring 2006 reviewed many of the chapters and offered specific suggestions.

Their enthusiasm for this project has buoyed us throughout.

Last but hardly least, we would like to acknowledge the unflagging support

of our near and dear ones. To Laurel, Bill, and Sridhar: you made it easy for us

to dream big.

xiv

1
Road Map

“Dealing with these system properties, which ultimately must underlie our under-

standing of all cellular behaviour, will require more abstract conceptualisations

than biologists have been used to in the past. We might need to move into a strange

more abstract world…”

—Paul Nurse (Nobel Prize in physiology or medicine, 2001), A long

twentieth century of the cell cycle and beyond, Cell. 2000, 100:71–78.

1.1 WHAT IS BIOINFORMATICS?

Since the thirteenth century scientists have been using the scientificmethod to for-

mulate a model of the world around us. The scientific method defines a cycle that

starts with an observation of some phenomenon, the development of a hypoth-

esis that describes the phenomenon, and performance of experiments to test the

validity of the hypothesis. Although the hypothesis is the main focus of the scien-

tific method, what really drives scientific advancement is the collection, analysis,

and interpretation of the data generated by the experiments performed to test the

hypothesis.

Gregor Mendel (1822–1884, Figure 1.1), the first person to trace the charac-

teristics of successive generations of pea plants, used the scientific method to test

his theories of heredity. During themiddle of his life,Mendel performedhundreds

of experiments on pea plants and observed changes in seven basic characteristics

of the plants, carefully recording the results from each of these experiments in

notebooks. After analyzing the data he collected in his notebooks, Mendel dis-

covered three basic laws1 that govern the passage of a trait from one generation

of a species to another. Although Mendel’s laws are very important in a study of

genetics, what is really important here is the process that Mendel used to develop

these laws, namely, he collected the data produced after performing several experi-

ments, stored the data in his notebooks, and then analyzed the data to develop

his laws.

The basic scientific work being done in laboratories around the world today

follows the same principles thatMendel followed in the 1800s. One thing that has

changed significantly fromMendel’s time is the scale at whichwe can perform our

1
Mendel’s laws are: the law of dominance, the law of segregation, and the law of independent

assortment.

1

2 Chapter 1 Road Map

FIGURE 1.1

Gregor Mendel.

(© Pixtal / age

Fotostock)

experiments.Mendel’s datawere basedon the changes that he couldobserve in the

characteristics of his pea plants from one generation to another. Today biologists

are able to observe the cells and subcellular components of the organisms they

are studying and collect data on the structure of the DNA and other molecules

in these cells. This has not only changed our understanding of some of the basic

processes in living organisms but it has also resulted in a flood of data. Instead

of recording seven characteristics, modern scientists record tens of thousands.

It is no longer possible to use simple notebooks to record the results of these

experiments, let alone analyze the data they produce.

Like scientific experimentation, computers and how they are used have

evolved over time. Charles Babbage (1791–1871, Figure 1.2), a mathematician

and inventor, grew tired of calculating astronomical tables by hand and conceived

of a way to build a mechanical device to perform the calculations automatically.

In 1822, Babbage started work on a computing device—the difference engine

(Figure 1.3)—to automatically calculate mathematical tables. During the course

of his work on the difference engine, he conceived of a more sophisticated

machine he called the analytical engine. The analytical engine was meant to

be programmed using punch cards and would employ features such as sequential

control, branching, and looping. AlthoughBabbage never built a complete work-

ing model of either machine,2 his work became the basis on which many modern

computers are built.

2
One of Babbage’s earlier difference engines was eventually constructed from drawings by a team at

London’s Science Museum in the 1990s. The machine weighs 3 tons and is 10 feet wide by 6 feet tall.

Chapter 1 Road Map 3

FIGURE 1.2

Charles Babbage.

(© Science

Source / Photo

Researchers, Inc.)

FIGURE 1.3

A difference engine.

(© Bettman / Corbis)

4 Chapter 1 Road Map

When electronic computers were first built in the 1940s, they were large, cum-

bersome devices that were only capable of performing simple operations. These

machines were typically very expensive to build and maintain and were designed

for a specific purpose. Like many of the technological advances in the twentieth

century, initially computers were primarily used for military purposes. The face

of computing changed forever with the invention of the transistor, followed by

the integrated circuit. These devices allowed computer engineers to build more

powerful, smaller, and inexpensivemachines. These breakthroughs ultimately led

to the development of the personal computer.

In tandem with the development of more powerful, and useful, computer

hardware, computer scientists were also learning more about the basic theories

that underlie computation. Ada Lovelace (1815–1852, Figure 1.4), who also

FIGURE 1.4

Ada Lovelace.

(© Image Select / Art

Resource, NY)

Chapter 1 Road Map 5

was a mathematician, worked with Charles Babbage on the analytical engine.

Unlike Babbage, who was interested in building a computing device, Lovelace

sought to understand themethodology of computing. She studied thesemethods,

implementations, and the properties of implementations. Lovelace developed a

program that would have been able to compute the Bernoulli numbers. It is

because of this work that many consider Lovelace to be the world’s first pro-

grammer. It is interesting to note that both Ada Lovelace and Gregor Mendel

were doing their groundbreaking work around the same time.

As computer hardware becamemore useful andpowerful, our understanding

of computing and programming increased as well. New programming languages,

such as Smalltalk, Pascal, and C++, were developed that allow programmers to

write more sophisticated programs. Groundbreaking work at Xerox Palo Alto

Research Center (PARC) produced a computing environment that made it easy

to display information in a graphical form. Computer scientists were developing

an understanding of the basic properties of computation.

The stage was now set for computing and biology to come together. The

curation of the amino acid sequences of proteins begun by Margaret O. Dayhoff

(1925–1983) marked the beginning of modern bioinformatics. Curation involves

the maintenance and annotation of the data, a task well suited to modern

databases. In the Atlas of Protein Sequences, Dayhoff and her colleagues ini-

tiated the formal publication of known sequence data with yearly releases of

the Atlas in the mid-1960s [3]. In 1970, S. B. Needleman and C. D. Wunsch

developed the first algorithm that made it possible to align DNA sequences.

The Needleman–Wunsch algorithm forms the computational basis of sequence

alignment and represents the first major contribution by computer scientists to

the field of bioinformatics. Over the years, computer scientists working together

with biologists have developed faster, more effective algorithms to analyze the

data collected during experimentation.

Computational and quantitative analysis of biological phenomena did not

truly blossom until the explosion of sequence and other biologically derived data

in the mid-1990s. Since then an ocean of biological data has been created. Mod-

ern scientists, unlikeMendel, routinely perform experiments that result in tens of

thousands of data points. For example, using rapid DNA sequencing, scientists

can unravel an entire genome, which typically consists of billions of nucleotides.

A scientist can use a microarray to simultaneously measure the activity levels of

tens of thousands of genes (Figure 1.5). As biotechnology brings ever more effec-

tive techniques to measure biological phenomena, the amount of data produced

by experiments in a laboratory will become even larger, which in turn will require

the development of sophisticated techniques to manage the data, to analyze the

results, and to aid the scientist in interpretation.

Due to the amount and the nature of the data being collected in laboratories

today, biologists are finding more and more that they need to collaborate with

colleagues in different fields such as computer science, information technology,

mathematics, and statistics in order to manage, store, analyze, and visualize the

data produced by experiments they perform in their laboratories. This collabora-

tive work is what makes it possible to interpret the results of modern biological

6 Chapter 1 Road Map

FIGURE 1.5 A microarray. A color version of this image is shown on the inside cover

of this book.

(Courtesy of the Center for Array Technologies at the University of Washington)

experiments and, in turn, develop a better understanding of the nature of living

organisms. This work, done by teams of biologists, chemists, computer scientists,

information technologists, mathematicians, physicists, and statisticians, has given

birth to a new field called bioinformatics.

Bioinformatics is a field of study in which these diverse fields merge into

a single discipline. Working together bioinformaticists develop algorithms and

statistical methods that can be used to analyze and further our understanding

of large collections of different types of biological data, such as nucleotide and

amino acid sequences, protein domains and structures, and the evolutionary

relationship between organisms. During the past decade bioinformaticists have

developed and implemented tools that enable efficient access to andmanagement

of different types of information.

Most of the work in bioinformatics to date has focused on the study of

genomic sequences to provide insight into the function of a cell. Genomic

sequence data is used to predict protein coding regions, amino acid sequences,

and, ultimately, the structure and function of proteins. Although impressive

advances have been made within the past two decades, there is still much that

we do not know or understand. It is clear that advances in the field of bioinfor-

matics rely on a multidisciplinary effort. In the next section we will look at the

challenges faced by those working in this field.

1.2 A BIOINFORMATICS TEAM

Bioinformatics by its very nature requires experts in the various disciplines that

make up this new field. Unfortunately putting together a successful bioinfor-

matics team is not as simple as throwing a few biologists, chemists, computer

scientists, and mathematicians into a room and asking them to work together.

Individuals in these various fields often do not speak the same scientific language

and often only have a basic understanding of the fundamental concepts of the

other disciplines. If the members of a bioinformatics team cannot communicate,

Chapter 1 Road Map 7

and do not understand or appreciate what the other disciplines offer in terms of

techniques and tools to develop solutions to common problems, the team will

not be successful.

Another way to look at this issue is to consider the spectrum of interests of

the members of the team. In bioinformatics, as in all the sciences, a spectrum

exists that spans the realms of theory, development, and application. The entire

spectrum of both the computational and biological sciences contributes to the

field of bioinformatics, but the boundaries of the realms within the spectrum of

the new science are far from clear. An interesting challenge faces those working

at the interface between the established sciences: If any aspect of the spectrum

of either science is downplayed, then the eventual spectrum of the new discipline

will be deficient.

As an example, consider how the boundaries of theory, development, and

applications come together in a different field—the science of motor mechanics.

Principles of combustion and equations governing energy release in combustive

processes contribute to the realm of the theoretical. How to harness this energy

through an internal combustion or a jet engine falls into the realmof development.

The application realm involves the test pilot or the racing driver. The science of

motor mechanics requires all three aspects of the spectrum. Additionally, any

effective participant in the process—no matter their particular specialty—must

have some knowledge of the rest of the spectrum. The developer needs to know

the theory and the expected eventual use of the product; the test driver needs

an appreciation of the limits of the engine and the processes enabling its power.

Theoreticians must study the consequences and directions of their industry.

For a biologist or a chemist, the creation, study, and analysis of algorithms

are within the theoretical realm. Program design, creation, and testing consti-

tute the developmental realm. Some users of those programs, particularly testers,

participate in the application spectrum of the science of computing. Users who

know and understand the application areawill contribute to themodification and

maintenance stages and will need an understanding of the theory and develop-

ment aspects in order to work effectively with the rest of their team. Likewise, for

the computer scientists, information technologists, and statisticians, the chemical

basis of the flow of information within a cell lies in the theoretical realm. How-

ever, a basic understanding of this theory is necessary, to build computational

and statistical models of these processes.

It is important to distinguish the users of motor mechanics—the everyday

drivers and commuters—from the application scientists. Similarly, we distinguish

ordinary users of the computational sciences. Most users of word-processing

programs do not need to know about the underlying representation of their

keystrokes nor about the selection of the algorithms that implement their design

wishes. The term application scientist describes users who contribute to the next

generation of word processors: those who understand the needs of literary com-

position and presentation and who can knowledgeably communicate with the

theoreticians and developers of the products.

Now consider the science of bioinformatics. Where on the spectrum does

the conduct of sequencing experiments belong? What about the design of an

8 Chapter 1 Road Map

efficient database for publishing the results of biological experiments? Is the

search for common features among entries in such a database solely an appli-

cation? Where in the science spectrum of bioinformatics does the design of an

improved alignment program lie?

The truth is that we are as yet unable to specifically identify the boundaries

of the spectrum of this new science. Nor do we need to. What is important is

that all the scientists participating in bioinformatics need to know the entire

potential extent of that spectrum in order to be effective. And the only way

to be certain that you have covered the entire spectrum is to cover the spectra

of both parent sciences: computational science as well as life science. As the

disciplines represented in a bioinformatics teammerge, participants in themerged

science whose backgrounds are primarily in one of the parent sciences may be

insufficiently versed in the entire spectrum of the other. And this is a danger

even for those primarily interested in the application aspects of the new sciences.

Application scientists must understand the underlying principles from the realms

of theory and development. Many of the computational applications available

for use today by experimental biologists allow for default assumptions about the

nature of the input and its relevance to the application being used.

For example, thepopularbasic local alignment search tool (BLAST), used for

sequence similarity searching, is often treated as a “black box” tool that will work

unfailingly regardless of the input and underlying assumptions. To effectively use

BLAST and especially to understand the results it can return, the user needs to

understand principles of evolutionary relatedness and distance as summarized

in the Dayhoff, or point accepted mutation (PAM), matrices (see Chapter 5).

Users who understand the underlying heuristics used to speed up the execution

and the effects of modifying window sizes and thresholds on the usefulness of

the results gain insights into the results returned as well as power, or robustness,

in manipulating the input data correctly. And users with a good understanding

of statistics can have better confidence in their results. Therefore, we emphasize

that bioinformaticists can only benefit from understanding principles across the

entire spectrum of both the biological and computer sciences.

Bioinformatics has come into existence as part of our curiosity to understand

how a biological organism functions. For millennia, humans have been trying to

understand what life is. From Aristotle to Francis Crick and James Watson,

some of the greatest minds have tried to answer this question. Yet, we still do

not have a definitive answer. The next section of this chapter will discuss how an

entire area of science has developed around attempts to define life and identify

its components—the field of biology.

1.3 WHAT DEFINES LIFE?

Because of the nature of the question and the great diversity of life, one aspect

of biology has been largely focused on collecting and describing all the instances

of life available for study. This has led some, Ernest Rutherford in particular, to

dismiss the biological sciences as mere “stamp collecting.” But stamp collecting

Chapter 1 Road Map 9

can be a valuable activity in this context because it provides the basis for mak-

ing broad generalizations. For example, we can make general statements about

groups of stamps: some have artwork, some are miniaturized photographs, some

are commemorative, and others are decorative, and so on. From these, we might

go on to a theory of stamp “evolution” in which we notice that the cost of stamps

increases over time, or that stamps become more varied in color and tone across

geographical regions. The same approaches are used in biology to draw long-

range inferences about groups of organisms and the changes they undergo across

time and space.

If we ask the question “what is life?” in a different way, we can move past

merely descriptive discussions of what life could be. Let’s ask the question this

way: What defines life?

The answer here is a little bit easier to find.We can say that there are three fea-

tureswhichare common toall living systems: theyare capableof self-reproduction;

they are complex systems; and as a result, they are robust. Self-reproduction is

relatively easy to define; it is the property of being able to create a new copy of

oneself. This, of course, does not mean an exact replica of oneself, and it is, in

fact, the variation between parent and offspring that gives rise to diversity and

drives the changes across time and space known as evolution. This aspect of life is

what best separates it from, say, computers and the common cold virus. Neither

of these can replicate themselves in the absence of direct assistance from a large

cohort of other, possibly living, systems.

It is not difficult to see that most living systems are complex. So, for that mat-

ter, is your desktop or laptop computer. Your computer is made up of millions of

logic circuits and transistors that together create a complex network capable of

sophisticated processing and computation. Similarly, whether you consider a bac-

terium in your stomach or the human brain, each is a complex system capable of

receiving and processing information. This occurs as a result of many small parts

(whether silicon chips or cells) coordinating their responses and communicating

through complex networks to transfer information and responses across time and

space. Unlike computers, which are composed of large numbers of relatively sim-

ple and similar parts, biological systems have large numbers of diverse elements,

many of which can function in more than one way.

Robustness is a more loosely defined concept. When we say that a system

is robust, we mean that it is able to tolerate fluctuations in the environment or

amongst its subcomponents [1]. For example, database management systems are

designed to be robust to the demands of multiple users accessing and writing

information to the database roughly simultaneously. To take a similar example

from biology, human beings are able to maintain body temperatures at about

98.6◦F regardless of the outside temperature. A high degree of interaction with

the environment is one of the hallmarks that distinguish living systems frommost

physical systems. Living organisms require interaction with the environment for

the most basic necessities of life on the one hand and must protect themselves

from harmful environmental influences on the other. Consider the sun, one of

the most important environmental factors. For humans, exposure to sunlight is

essential for vitamin D production yet can cause adverse changes in the skin.

10 Chapter 1 Road Map

Just because a system is robust does not mean that it cannot fail. In our

example, humans can only maintain a normal body temperature within a partic-

ular range of outside temperatures; if it gets too hot or too cold, then the system

fails. Similarly, databases can fail if there is a massive power outage or a catas-

trophic incident that damages the storage system directly. However, in each of

these examples, the system fails only when something goes dramatically wrong.

These systems are able to maintain a stable state most of the time. In other words,

robust systems can account for and manage anticipated perturbation events but

are sensitive to unanticipated and potentially catastrophic failures [2].

Computer systems, such as databasemanagement systems, are designed to be

robust. Living systems are continually “reengineered” by evolutionary processes.

In some ways, this is the key definition of living systems: they have evolved to

manage common, “anticipatable” disasters through complex networks designed

to adjust for such fluctuations. Yet the complexity required to manage these

potential disasters leaves them open to rare, albeit dramatic, failures [5, 2]. Take

the case of the dinosaurs. For nearly 300million years, they dominated the planet.

And then, a single, catastrophic event—the collision of an asteroid—ended their

existence. No matter how robust a system you build, chances are that a single,

extremely low-probability event can completely destroy it. But this leaves the

way open for a new solution to the problem: in the case of the dinosaurs, their

extinction created room for mammals to evolve. Now we humans dominate the

planet. There is no guarantee, however, that we will always remain at the top.

New, more robust organisms might be in the making, just waiting for a chance

to take over as the dominant mode of life.

So how do systems manifest complexity and robustness? The answer is that

many systems aremodular in nature. Amodule is a self-contained unit that can be

modified or evolved, can retain integrity when removed from the larger system,

and that has a clear protocol or method for interfacing with other modules [2, 4].

In the next section we will see how living organisms can be viewed as a collection

of interconnected modules, and how a network of these modules can result in a

complex and robust living organism.

1.4 A SYSTEMS APPROACH TO BIOLOGY

So I went to the librarian in the zoology section and asked her if she could find

me a “map of the cat.” “A map of the cat, sir?” she asked horrified. “You mean a

zoological chart!” From then on there were rumors about a dumb biology student

who was looking for “a map of the cat.”

—Richard P. Feynman, Surely You’re Joking Mr. Feynman!

Living systems utilize networks of interconnected modules to manifest complex-

ity and robustness. As an analogy, you can think of a computer as being one

module in the large network of such modules that are the Internet. Comput-

ers “interact” with one another through the hypertext transfer protocol (http)

or through other, clearly defined, well-ordered protocols. The Internet is an

Chapter 1 Road Map 11

expansive series of such interconnected modules, and the resulting network is

an information transfer system that is both vast in size and complex in terms of

its connections and responses to changes.

The Internet is a robust system in that it can tolerate perturbations within

the network. Each computer connected to it is a node, and when a node fails,

routers are able to find other ways to transfer the information around that failed

node. In order to disrupt the entire system, a catastrophic event is needed. For

example, a large swath of nodes and routers are suddenly disabled and no re-

routing mechanism can be identified. It is hard to imagine a scenario in which so

many routers and nodes would be disrupted that the entire Internet would fail.

So, by most standards, the Internet is a robust system.

It is even, to some extent, self-replicating in that it grows and expands in

complexity through the addition of new nodes, protocols, and modules. As a

result the Internet is “evolving” across time and space. From an external perspec-

tive, the Internet is constantly changing and adapting to various pressures and

demands, some of which are easy to identify and others more mysterious.

If you were an alien from Mars faced with the challenge of figuring out

how the Internet works, where would you start? You might start by trying to

document all the components of the network and account for the ways in which

each component interacted with other components. Essentially, what you would

be doing is building a “map” of the Internet. This is exactly the approach used

in the Internet mapping project started at Bell Labs in the summer of 1998. The

mapping consists of frequent probes to registered Internet entities. From these

data a tree can be built that shows the paths to most of the nodes on the Internet.

An example of such a map is shown in Figure 1.6.

So, where is the map of the cat or the dog or even of a single cell? It is still a

work in progress.Most of twentieth century biology has been focused on trying to

understand biological phenomena such as development and disease by studying

the behavior of, and more recently by identifying, the underlying molecules. We

have made tremendous progress and have generated huge volumes of data that

remain to be translated into information. Figure 1.7 shows some of the pathways

within an eukaryotic cell such as ours.

A major challenge facing scientists today is to try and assemble the map of

the cellular intra- and internets: the networks that pass information around and

between cells. This is the challenge that you will begin exploring through this text

as we traverse the hierarchy of biological data and examine the computational

approaches to mining the data. The cellular internet is at least as, if not more,

complex than the Internet, and it has had millions of years of tinkering (evolu-

tion) to develop and optimize its connections. The challenge now is essentially to

reverse-engineer this network.

So where are the modules in this biological network? In the context of our

bodies, a cell might be considered as a module because groups of cells create

tissues andorgans that result in a humanbody. Butwe can zoom into the cell itself,

and it is in here that we find themost astonishing array ofmodules, networks, and

sophisticated mechanisms for communicating across modules. This is also the

frontier of a new field called systems biology, which today attempts to model

12 Chapter 1 Road Map

FIGURE 1.6 Internet map circa 1998. A more recent version of an internet map is

available at numerous locations, including http://chrisharrison.net/projects/InternetMap/

(© CAIDA / Photo Researchers, Inc.)

the modules within and across cells and to develop a computational replica of

these modules so they can be studied in depth.

What kind of modules would we expect to find in cells? Since self-

reproduction is a crucial aspect of all living organisms, we might expect that

every cell contains a replication module. And indeed, all cells do have such a

module. It is based on the information-carrying molecule in cells, known asDNA

(deoxyribonucleic acid). DNA on its own can’t replicate so there is an associated

set of machines (biologists call these proteins) that are part of a specific network.

The replication module in cells includes DNA, these proteins and all the other

parts required to make a copy of DNA.

We could also think of cells as miniscule computer chips. That is, at every

point, they are receiving input, making decisions as a result of this input, and

generating output (in biology, this is knownas responding to a signal, [4]). In cells,

the most common output (response) is to make a machine (protein). Input from

outside the cell is received at the surface of the cell and then transmitted to the

DNA by signaling modules. Thousands of such modules occur in the cell, and all

their signals converge at the DNA. This is where the decisions are made, usually

Chapter 1 Road Map 13

FIGURE 1.7 Schematic pathways within an eukaryotic cell, as visualized by the VisANT software package.

The software package is described in Hu, Z., Mellor, J., Wu, J. and DeLisi, C. (2005) “VisANT: data-integrating

visual framework for biological networks and modules,” Nucl. Acids Res. 33: W352–W357. The data for this

image was drawn from MouseNet v.1.1 (Kim, Wan K., Krumpelman, Chase, and Marcotte, Edward M. (under

review)). “Inferring mouse gene functions from genomic-scale data using a combined functional network/

classification strategy,” Genome Biology.

(Credit: Courtesy of Zhenjun Hu.)

as a result of combined inputs on the DNA. When a “decision” has been made,

the DNA directs the generation of a short piece of information contained in a

molecule known as RNA (ribonucleic acid), through a process of transcription.

The information in DNA is essentially “transcribed” into another form—the

RNAmolecule. The information in the RNA will direct the creation of a protein

through a “protein generation”module in a process known as translation.Rather

than being simply an information-carrying molecule, the resulting protein has its

own unique function and, thus, the information in RNA has been “translated.”

14 Chapter 1 Road Map

Theprotein can then interactwithmanyothermolecules andmodules to influence

the behavior of the cell or its neighbors. The output of cells is a change in their

behavior, or the way they respond to the environment. Although today we focus

much of our energy on studying DNA and RNA sequence data, it is the protein

that is the workhorse of the cell and is what “makes us what we are.”

The idea that information flows linearly via information-carrying molecules

is known as the central dogma of molecular biology. It states that information

flows from DNA to RNA to protein. When this idea was originally formulated

in the 1950s, it was thought that information could only flow in one direction:

fromDNA to RNA to protein. We’ve since discovered that information can flow

“backwards” as well, from RNA to DNA and from protein to RNA, and we can

take advantage of these alternative flows to learn more about the ways in which

cells receive and respond to their environment. This is one of the best examples of

an important “truth” in biology. Unlike other sciences, biology has very few clear

and unambiguous never-violated principles. The central dogma comes close.

Once a protein is created, the information content inherent in that protein

is transferred when the protein interacts with another protein. These interac-

tions create complex networks. These networks include the signaling modules

that allow information to be received from outside the cell, to be passed around

the cell, and to be transferred to neighboring cells. Given that the web of inter-

actions is so complex and involves thousands or millions of interactions among

diverse, multifunctional elements, the effort to model an entire biological system

is an enormously challenging task. The good news is that, somewhat surprisingly,

molecular biologists have discovered a high degree of unity in thesemodules, even

among diverse organisms. That is, we can learn a lot about how humans work

by studying fruit flies, worms, or even simpler organisms. Research efforts in

these model organisms, which have fewer cells and well-defined genetic compo-

sitions, contribute greatly to the task of piecing together the puzzle of molecular

interactions.

This also is where computers come in. Although it is difficult for a single

person to track these interactions across time or space, computers can be used to

model whatmight happenwhen thousands of proteins interact. In order tomodel

a biological system, however, we need to know something about each component

of the system as well as how they interact with one another. In Figure 1.8 we

summarize some of the ways in which biologists learn about the components of

a biological module and some of the ways in which computer scientists model

these modules. As you’ll see, the more complex the system gets (e.g., tissues or

organs), the less we know about them from either a biological or computational

standpoint. The future challenges for both computer scientists and biologists lie

in these areas.

What is at stake? Just as computer systems can be engineered to improve their

performance, biologists are attempting to engineer molecular networks, cells, tis-

sues, and even organs in order to improve the quality of life. Take for example,

a cancer cell, which divides uncontrollably and has developed mechanisms to

escape cell death and so keeps on dividing even under adverse environmental

conditions (robustness is not always a good thing). An understanding of the

C
o
m

p
u
ta

ti
o
n
a
l

a
p
p
ro

a
c
h
e
s

D
A

T
A

 m
a
n
a
g
e
m

e
n
t
is

s
u
e
s
 a

n
d
 s

o
lu

ti
o
n
s

F
ra

g
m

e
n
t

re
a
s
s
e
m

b
ly

G
e
n
e
 f
in

d
in

g

a
lg

o
ri
th

m
s

N
e
u
ra

l
n
e
tw

o
rk

s

2
D

 &
 3

D
 s

tr
u
c
tu

re

p
re

d
ic

ti
o
n

A
lig

n
m

e
n
t

P
h
y
lo

g
e
n
y

G
ra

p
h
 t
h
e
o
ry

M
a
c
h
in

e
 l
e
a
rn

in
g

N
e
tw

o
rk

 m
o
d
e
lin

g

S
ta

ti
s
ti
c
a
l
a
n
a
ly

s
e
s

M
o
n
te

 C
a
rl
o
 m

e
th

o
d
s

S
im

u
la

ti
o
n
 &

 m
o
d
e
lin

g
P

h
y
lo

g
e
n
y

D
N

A
R

N
A

P
ro

te
in

In
te

ra
c
ti
o
n
s

C
e
lls

T
is

s
u
e
s

O
rg

a
n
s

S
y
s
te

m
s

O
rg

a
n
is

m
s

S
e
q
u
e
n
c
in

g

P
C

R

S
o
u
th

e
rn

 b
lo

ts

c
D

N
A

 s
y
n
th

e
s
is

H
y
b
ri
d
iz

a
ti
o
n

N
o
rt

h
e
rn

b
lo

ts

2
D

 &
 3

D
 g

e
ls

W
e
s
te

rn
 b

lo
ts

M
a
s
s

s
p
e
c
to

m
e
tr

y

R
e
v
e
rs

e

g
e
n
e
ti
c
s

In
 s

it
u
 m

ic
ro

s
c
o
p
y

P
h
e
n
o
ty

p
e

o
b
s
e
rv

a
ti
o
n
s

S
y
m

p
to

m
s
 &

c
lin

ic
a
l
d
a
ta

B
io

lo
g
ic

a
l

a
p
p
ro

a
c
h
e
s

F
I
G
U
R
E
1
.8

C
o
m
p
u
ta
ti
o
n
a
l
a
n
d
b
io
lo
g
ic
a
l
a
p
p
ro
a
ch
es
to

m
o
d
el
in
g
o
rg
a
n
is
m
s.

15

16 Chapter 1 Road Map

modules that control cell division and cell death opens a window for pharmaceu-

tical intervention that will lead scientists to develop new treatments and cures. In

the next section we will take a look at some of the significant projects in bioin-

formatics that have led to a further understanding of how living organisms work

or have improved the quality of life.

1.5 BIOINFORMATICS IN ACTION

The U.S. Human Genome Project (HGP) is one of the best known examples of

bioinformatics in action. The HGP began formally in 1990 and was originally

planned to be a 13-year effort coordinated by the U.S. Department of Energy

and the National Institutes of Health. A genome consists of the DNA in an

organism, including its genes. As you read in Section 1.4, genes carry information

for making most of the proteins required by an organism. One of the goals of the

HGP was to sequence the human genome, which could be used to identify genes

in human DNA. The idea of sequencing the human genome was first proposed

in 1985. At that time portions of the human genome were mapped, which meant

it was possible to determine which portion of the genome was responsible for

some proteins, but no one had a complete list of the sequence of the 3 billion

bases (A, G, C, or T) that made up the genome. Once the human genome was

sequenced, scientists would be able to study the effect of DNA variations among

individuals, which could lead to revolutionary new ways to diagnose, treat, and

someday prevent the thousands of disorders that affect human beings. You may

find it interesting to learn that the Department of Energy played an important

role in the HGP. One of the charges of the DOE is to study the residues of the

atomic bomb project and the biological effects of exposure to radiation. Using

their expertise in engineering technology derived from their massive projects in

atomic energy and its potential dangers, they had already made several major

contributions to the genome project. A previous project initiated by the DOE,

GenBank, was a computerized repository for the primary DNA sequences of

genetic material from all organisms reported in the literature. This was located

at the Los Alamos National Laboratory with a collaborating counterpart at the

European Molecular Biology Laboratories (EMBL) in Heidelberg, Germany.

By 1991, some 60 million bases were recorded, about half of which being human

and the remainder from bacteria, mice, fruit flies, and so forth. This number

doubled over the subsequent 2 years to well over 100 million bases. GenBank

has become the primary repository of sequence data and currently contains over

30 billion bases.

The overwhelming success of the Human Genome Project has resulted in an

explosion in the amount of available biological information, which in turn has

furthered our understanding of the inner working of living organisms. The avail-

ability of this information has dramatically changed the way in which researchers

have been able to do their work. For example, in pharmaceutical research the

traditional pipeline for drug development is a long and expensive one, usually

involving the screening of a large number of potential compounds. Now new

Chapter 1 Road Map 17

strategies in theprocess have emerged fromour increasedunderstandingofmolec-

ular biology and the rapidly growing data on gene sequence, predicted proteins,

and their structures. As opposed to the traditional screening strategies, rational

drug design is a more focused, high-tech, knowledge-based approach. The basic

idea is that if you know exactly which gene and protein is responsible for a dis-

ease, you can custom-make a drug to combat it. Rational drug design uses the

tools of bioinformatics to identify and validate genes and proteins as potential

drug targets. The pharmaceutical industry has embraced genomics as a source of

drug targeting and recognizes that bioinformatics is crucial for validating these

potential drug targets and for determining which ones are the most suitable for

entering the development pipeline. How successful will this be? Time will tell,

but the tremendous potential for success of a rational approach to drug design is

exemplified by the anticancer drugs imatinibmesylate (Gleevec) and trastuzumab

(Herceptin), and the protease inhibitors that are part of the drug cocktail given

to treat individuals infected with HIV. Gleevec, a revolutionary drug, developed

by Novartis Pharmaceuticals and pioneered by Dr. Brian Druker is highly effec-

tive in managing chronic myelogenous leukemia (CML) and has few side effects.

It specifically targets and inhibits a tyrosine kinase, an enzyme that functions

incorrectly in cancer cells. Although the identification of the enzyme inhibitor

and Gleevec’s development relied on more than 10 years of research in the “wet

lab” and clinic, the success of the targeted approach has created a huge amount of

excitement about enzyme inhibitors specifically and about the rational approach,

in general.

1.5.1 Deciphering a Killer: HIV and Bioinformatics

The human immunodeficiency virus (HIV) is the causative agent of AIDS

(acquired immunodeficiency syndrome) and has brought tragedy to millions of

lives. Figuring out the biology of HIV and the secrets of its genome have helped

us develop drugs to fight this deadly agent, but it remains the source of a global

humanitarian and medical crisis. Throughout the book we will examine some

of HIV’s biological complexity and how bioinformatics has helped us decipher

some of its mysteries.

In Chapter 2 we include a description of the biology of HIV.We highlight the

many unusual features of HIV: its RNA genome, its use of reverse transcriptase,

its ability to integrate into the host genome, and its high mutability. Mutability

allows HIV to evade the host immune system. In Chapter 3 we will learn about

some of the laboratory techniques that scientists use to study HIV and its effects

on human cells.

In Chapter 4 we will discuss how retroviruses like HIV are believed to be

the source of many of the repeat regions in the human genome and transposable

elements in many genomes. AlthoughHIV itself has a small genome that was not

difficult to sequence and reassemble, the integration of retroviruses into genomes

bedevils the reassembly process in host genomes.

HIV and its retrovirus compatriots also impinge on the process of sequence

alignment discussed in Chapter 5. Because of their high mutability, different

18 Chapter 1 Road Map

strains of HIV will have slightly different sequences. By subjecting those strains

to multiple alignment, researchers have obtained useful and valuable insights

into where and how HIV originated. The origins of HIV are further explored in

Chapter 6, where we look at methods for determining the evolutionary history

of HIV. We also consider how mutations occur over time in HIV and use this to

build a model of mutation rates.

In Chapter 7, we use HIV as an example of how to identify signals in host

genomes, including our own. HIV integrates itself at specific points within the

host genome, and we will explore the signals that might allow it to select a given

point within the genome as appropriate for integration. This is an example of

how HIV interacts with its host, and these interactions are central to its ability

to infect and spread in a population.

Similarly, in Chapter 8, we consider how HIV influences the gene expression

patterns of a host cell. Because it interferes with host cell protein synthesis, HIV

has a profound effect on gene expression within host cells. Microarray and other

recent technology can track changes in host cell gene expression as a consequence

of HIV infection.

The study of HIV underlies many of the issues raised in the projects detailed

in Chapter 9. In Section 9.2, we consider the secondary structures of RNAs,

including some generated by HIV. These secondary structures are crucial for the

transport of the HIV genome within the cell, and recent work in predicting the

structures of these RNAs has yielded some insights into the biology of HIV.

In Rational Drug Design through Protein Structure and Function Prediction

(Section 9.3), we look at how a computational prediction of the structure of an

HIV protein, the HIV protease, helped to develop a new class of drugs—the

protease inhibitors.

Our hope is that learning about HIV will help you appreciate the many ways

in which bioinformatics can elucidate the mysteries behind a complex biological

system. As we discuss different aspects of HIV biology, you will see that both

computational and experimental methods were used. The study of HIV exempli-

fies the kind of results that can arise when a team of interdisciplinary scientists

bring their skills to bear on a specific problem.

1.6 THE ROAD AHEAD

As we have seen, a successful bioinformatics team is a synergistic combination

of researchers from multiple disciplines who seek insight into the biological pro-

cesses at work in a living organism. Although it is vital that all the members

of a bioinformatics team work together, it is possible to discern two major focus

areas within bioinformatics. Themore established of these two areas concentrates

on the biological processes at work within an organism and the use of existing

computational tools to analyze and interpret these data. The second area focuses

on the development of new computing approaches to interpret, manage, and

distribute collections of biological data. The first focus area is biologically moti-

vated and emphasizes collecting information on the state of an organism. The

Chapter 1 Road Map 19

second studies computing techniques for converting biological data into bio-

logical information. Biologists and chemists are primarily interested in the first

focus area, and computer scientists, information technologists, physicists, and

mathematicians are drawn to the second.

In this book we will follow a “roadmap to systems biology,” taking you on

a journey of discovery from data to information, which is moving us ever closer

to understanding biological problems. You will learn how biological laboratory

science and computational sciences synergistically have enabled a data-driven,

bottom-up approach to extracting information from the data at increasing levels

of complexity. In many cases, computational strategies have greatly acceler-

ated the extraction of information from the data. Just as important, you will

see how effective computational approaches rely on input from the scientific

knowledge base that has been generated from decades of ongoing biological

research.

This book is written for individuals who have already had some training in

the computational sciences. Specifically we assume that you have mastered basic

programming skills and have already encountered basic algorithms and data

structures before starting to read this book. We do not expect that you will have

more than a passing familiarity with biological concepts; these will be developed

in the course of presenting computational concepts. In the chapters that followwe

will introduce both the computational issues, and the biological principals they

rely on, in tandem. The chapters in this book can be divided into three broad

categories: what we term the “kernel” (Chapters 1–3), the “classical” (Chapters 4

and 5), and the “avant-garde” (Chapters 6–9) of bioinformatics.

The first section will cover the requisite background needed by any bioinfor-

maticist. Thekernelwill develop concepts frommolecular biology, methodologies

such as sequencing technology, and other aspects of biology relevant to bio-

informatics. In addition, we will review computing concepts and techniques from

mathematics and statistics. A discussion of database design and use will be part

of this section as well, although databases and their uses, development, and

implementation will be addressed in other chapters as appropriate.

From thekernel youwill proceed through the classical bioinformatics section.

This section coversmanyof themost frequently usedbioinformatics tools.Wewill

focus primarily on the algorithms that define these tools. A secondary emphasis

will be on the biological justifications that motivated the design and development

of the algorithms. Chapters in this section will devote attention to algorithms

involved in fragment reassembly, pattern matching, and dynamic programming.

Many of thesemethods focus on sequence analysis, an area within bioinformatics

that has seen the greatest pace of development in the past decade.

In the third section of the text, we will extend the analysis to more recent

developments. Some of the topics we cover within the avant-garde bioinformat-

ics section include phylogenetics and tree building (Chapter 6), gene finding

(Chapter 7), clustering of gene expression patterns, and development of gene

networks (Chapter 8). More advanced topics, such as protein structure modeling

and themodeling of cells, tissues, and organs will also be touched on (Chapter 9).

These represent the “future” of bioinformatics and do not yet have formal

20 Chapter 1 Road Map

algorithmic solutions—the area where the most active research will develop in

the years ahead.

When you finish reading this book, you will be conversant with key concepts

in the biological sciences and knowledgeable about current bioinformatics tools

and approaches. Our purpose is not to train you to use those tools. Rather,

you will be able to identify and understand the algorithms that underlie existing

bioinformatics tools andbe able to evaluate algorithms and their implementation,

within the context of the relevant biological phenomena.

SUMMARY

Bioinformatics is a new field in which several disci-

plines work together tomanage, store, and analyze

the data being produced in laboratories around

the world. Although the process being used to

advance our understanding of living organisms is

similar to what Gregor Mendel used in the 1800s,

the scale and scope of what is being done today is

dramatically different.

For this new discipline to be successful all

members of a bioinformatics team must have a

basic knowledge of the fundamental concepts of

the disciplines represented by the team and an

understanding and appreciation of what each dis-

cipline brings to the project. We have seen that

not only is it important for the biologist to under-

stand computer science, it is equally important

for the computer scientist to understand the basic

biological process atworkwithin a livingorganism.

Although bioinformatics is a relatively new

discipline, after four decades two focus areas of the

discipline have emerged. Biologists and chemists

focus on the biological and chemical processes at

work in an organism and concentrate on improv-

ing the ability to collect information on the state

of an organism. Computer scientists, information

technologists, and mathematicians working in a

second focus area concentrate on the development

of computing techniques that convert biological

data intobiological information.Working together

scientists in both of these focus areas are improv-

ing the understanding of the biological processes

at work within an organism.

This text will focus on the computing side of

bioinformatics, but it will also introduce basic bio-

logical principles asneeded. In thenext chapter you

will learn about the central dogma of molecular

biology and the basic molecular structure of DNA

and RNA. You will also obtain a basic knowl-

edge of the science of evolution and a general

understanding of the concepts related to biologi-

cal information storage, a general overview of gene

regulation, alleles, SNPs, and genome structure.

KEY TERMS

bioinformatics (1.1)

theoretical (1.2)

development (1.2)

application (1.2)

user (1.2)

application scientist (1.2)

self-reproduction (1.3)

complex system (1.3)

robust (1.3)

evolution (1.3)

complex networks (1.3)

robustness (1.3)

modular (1.3)

module (1.3)

systems biology (1.4)

replication module (1.4)

DNA (deoxyribonucleic acid) (1.4)

RNA (ribonucleic acid) (1.4)

transcription (1.4)

translation (1.4)

central dogma of molecular

biology (1.4)

genome (1.5)

Chapter 1 Road Map 21

BIBLIOGRAPHY

1. J. M. Carlson and John Doyle. Complexity

and robustness. Proc. Natl. Acad. Sci. USA,

99:2538–2545, 2002.

2. Marie E. Csete and John C. Doyle. Reverse

engineering of biological complexity. Science,

295(5560):1664–1669, 2002.

3. M. O. Dayhoff. Atlas of Protein Sequence

and Structure, vol. 5, supplement 3.

National Biomedical Research Foundation,

1978.

4. H. L. Hartwell, J. J. Hopfield, S. Leibler, and

A. W. Murray. From molecular to modular

cell biology. Nature, 402(SUPP):C47–C52,

1999.

5. H. Kitano. Systems biology: a brief overview.

Science, 295:1662–1664, 2002.

2
Biological Basics

“The difference [between biology and physics] is one of complexity of design.

Biology is the study of complicated things that give the appearance of having

been designed for a purpose . . . Man-made artefacts like computers and cars . . . are

[also] complicated and obviously designed for a purpose . . . They [can be] treated

as biological objects.”

—Richard Dawkins, The Blind Watchmaker

2.1 THE BLIND ENGINEER

When humans set out to build something, whether it is a skyscraper or a com-

puter, we start by laying out a set of plans. These blueprints have several levels

of detail from the wiring and organization of each constituent part up to the

final appearance of the product. Once the plans are laid out, each part is

designed and built by a team of engineers and specialists. These people are

not necessarily concerned with the final product; what they do best is create

one little part of the larger whole. When that larger whole is finally assembled,

it can appear much greater than the sum of its parts. A good example would

be the supercomputer, Deep Blue, which has taken on mythic qualities since

it beat the reigning world chess champion in a rematch in 1997. (Deep Blue

lost the first confrontation with Gary Kasparov in 1996 and underwent many

upgrades.)

In Chapter 1, we talked about how living systems are defined by this kind

of complexity, in which the whole seems to be much more than the sum of the

parts. In biological systems, the engineers, architects, and design consultants are

replaced by one process: evolution.Whereas human engineers start with a purpose

and design a machine to support that purpose, evolution proceeds with existing

materials with the long-term aim of continued survival. If there is a purpose to

evolutionary processes, then it is simply to propagate life in some form across

time and space.

Success in evolution is defined by the long-term survival of a species or group

of organisms. The important point here is that evolution does not usually operate

on the level of the individual organism, but rather over long periods of time on

22

Chapter 2 Biological Basics 23

groups of organisms that form a species. Of course, for a species to survive, indi-

vidual organisms are vital. Each individual organism represents a combination

of features that help it survive in a particular environment. These features are

passed from generation to generation across many organisms.

In each generation, some organisms will be better adapted to their environ-

ment, and they will reproduce faster than their less-adapted peers. Over time, the

progeny from the better adapted organisms will begin to dominate the popula-

tion. They will continue to reproduce faster than their less-adapted peers, and

eventually the whole population may exhibit those adaptations that are best for a

particular environment. This is not to say that the population will remain static;

environments do change, and generally those organisms that are flexible enough

to change with their environment will succeed over time.

2.1.1 The Case of the Peppered Moth

A good example of this is a species of moth common in England, Biston betu-

laria. Prior to the Industrial Revolution, the majority of moths had white

wings with small black dots. The peppered moth, as these moths were called,

could hide against the bark of the many light-colored trees that are common

in England. As a result, they were not easily picked out by birds, their main

predators.

Occasionally, a peppered moth might have a variant pattern of entirely black

wings. These moths were easily picked out by birds and often eaten before they

had a chance to reproduce. We would say that the all-black wing feature was a

poor adaptation for the preindustrial environment of England.

Things changed dramatically for these moths when the Industrial Revolution

began spewing coal dust into the air. Now many trees were covered in soot, and

those moths with white wings were distinctive against the blackened bark of trees.

As a result, these moths were easily spotted and picked off by birds. In contrast,

the occasional moth with black wings was perfectly camouflaged and avoided its

predators. Over time, the majority of moths became black-winged because this

was an advantageous adaptation.

Recently, scientists have observed a decline in the numbers of black-winged

moths and a resurgence of white-winged moths. Scientists speculate that the

enforcement of clean air standards in the last half century has once again made

it advantageous to have white wings rather than black wings [9].

So you can see how a feature that is advantageous in certain conditions can

suddenly become deleterious and vice versa.1 Although individual organisms

cannot change their particular set of features, the species as a whole can adapt

to these changes and survive. So when we say that evolution operates on species

1
Recently debate has arisen about this particular example because there is some evidence that the

shift in coloring of the moths cannot be sufficiently explained just by changes in air pollution. For
more on why this might be an oversimplified example, consult Michael Majerus’ book Melanism:
Evolution in Action.

24 Chapter 2 Biological Basics

and not on organisms, we mean that it can drive the adaptations of the species

as whole, but it cannot make a huge difference at the level of the individual

organism.

2.1.2 How Evolution Works

So how does evolution operate? Two processes drive evolution in species: muta-

tion and natural selection. Mutation is the tendency for organisms to change just

a little bit over time. This is the raw material for evolution. In the case of the

peppered moth, a mutation or set of mutations led to the black-wing feature that

was so advantageous during the polluted years prior to clean air laws.

How does evolution use these mutations? Through a process known asnatural

selection. This was first described in 1859 by Charles Darwin in his seminal text,

On the Origin of Species. What Darwin noticed is that tiny differences between

individuals can be magnified over time if a particular difference helps one individ-

ual adapt better to an environment than another of its counterparts. We would

say that the black-wing feature of peppered moths was selected for during the

years when pollution was high. The white-wing feature is now being selected for

because of the cleaner air.

You might ask, “Who or what is doing the selecting here?” The answer is

“It depends.” In the case of the peppered moth, the selection comes from the

predators: the birds. The black- or white-wing feature is protective under certain

conditions because it allows the moths to hide from their natural predators. So,

in a sense, the birds are doing the selecting. The same sort of idea applies to many

species: Adaptations that make an organism weaker or less able to adapt will

make these organisms prime targets for predation. So over time the species as a

whole becomes better adapted and better able to avoid its predators. Of course,

the predators are evolving too, so the equilibrium between prey and predators is

constantly shifting.

Juxtaposed with this are the changes to the environment. No environment is

stable over long periods of time. On a geological scale, environments are always

changing: deserts become grasslands that become forests, oceans rise or fall,

mountains are raised up and then eroded. All these changes put pressure on

species: they must adapt to the changes or face extinction. Sometimes, an envi-

ronment suddenly becomes isolated. For example, a species spread out across a

large area might be split in two by floods or volcanic activity. When these sort

of dramatic changes occur, the two populations may begin to evolve separately.

That is, they begin to adapt to their local environments. Eventually, they may

evolve in such different ways that they no longer resemble each other. This is the

process of speciation, or the process of producing new species.

For example, cows and whales actually share an unexpectedly recent common

ancestor. Many millions of years ago, that common ancestor diverged into two

distinct populations: one adapted to the land, the other to the sea. The result

today is two groups of animals that appear to be very different from each other.

Yet, these species share a great deal of the same information and are closely

related biologically.

Chapter 2 Biological Basics 25

2.1.3 Evolution’s Palette

What do we mean when we say that cows and whales are related? What we

are actually talking about are the sets of heritable information that each organ-

ism within the species has. In the case of cows and whales, they share much of

the same heritable information. In biology, units of heritable information are

called genes. The mutations that evolution uses to select organisms occur within

genes. Because genes are inherited from one generation to the next, the muta-

tions in the genes are also passed across generations. Adaptations are the result

of sets of mutations within genes that allow organisms to survive in their par-

ticular environment. Think of the peppered moths. The coloring of their wings

is driven by specific genes, and mutations in those genes cause the coloring to

change.

Although changes in genes are necessary to make visible changes to an

organism’s appearance, not all changes at the gene level lead to visible changes.

Changes can occur on two levels, and both levels are utilized by evolution.

Small changes in the content of information are achieved by changing the

letter sequences that make up genes. These changes are known as genotypic

changes. Big changes in the appearance of an organism, such as flippers on

a whale as it evolves away from its cow ancestor, are known as phenotypic

changes.

We usually think of evolution as occurring in a slow, steady manner across

millions of years. This is because we look at phenotypic changes, which tend

to take a long time to appear. However, at the genotypic level, changes occur

all the time. Each generation will have slight mutations in its genes, and not

all of these will lead immediately to a change in phenotype. For example,

you and your siblings probably share many phenotypic features such as the

color of your eyes and hair with your parents. Yet, at the genotypic level,

differences between you and your parents and even your siblings also exist.

Some of these were the result of mutations, but many are the result of a

“shuffling” of genetic information at your conception. Every one of your cells

contains information from each of your parents, but some of the parts were

mixed and matched when you were conceived. As a result, you are genetically

unique, even though you share many genetic similarities with your parents. The

combination of mutations and genetic variation in each generation might even-

tually lead to dramatic phenotypic changes, but probably not for another few

millenia.

This is a key feature of evolutionary processes: on the one hand, mutations

accumulate slowly at the genotypic level. On the other hand, the dramatic pheno-

typic changes are seen every now and then. Evolution is what is known in physics

as a stochastic process. That is, small, random changes can be made through a

process such as mutation until a large and dramatic change occurs. At each point,

selection pressure is exerted so that some features are selected for or against. The

easiest examples of selection to understand are phenotypic changes such as the

coloring of peppered moths, but some pressures select for or against certain geno-

typic changes that do not have obvious phenotypic effects. We will return to this

in later chapters.

26 Chapter 2 Biological Basics

2.2 COMPUTE MACHINE PAR EXCELLENCE

“The uniformity of earth’s life, more astonishing than its diversity, is accountable

by the high probability that we derived, originally, from some single cell, fertilized

in a bolt of lightning as the earth cooled.”

— Lewis Thomas, The Lives of a Cell

Leaps of evolution can be seen all across the biological spectrum. One of the most

striking is the apparently sudden switch from single-celled organisms like bacteria

to multicellular ones including humans. We do not fully know why single-celled

organisms suddenly banded together to form multicellular ones. In other words,

we do not yet understand all the pressures that might have favored selection for

multicellular organisms. What we do know is that today, living organisms come

in essentially two flavors: single-celled or multicelled.

The separation of organisms into these two categories also roughly follows

a division of complexity: single-celled organisms are much less complex than

multicelled ones. This does not mean that bacteria are by any means elementary

systems: we still do not understand much of how bacteria function. Figure 2.1

shows a subset of all organisms that we know about today.

Of the three domains of life shown in Figure 2.1, the bacteria and archaea can

be grouped together into a cluster called prokaryotes. The remainder are mem-

bers of a separate cluster called eukaryotes. Traditionally, biologists differentiate

between groups of organisms based on the complexity of their cells.

2.2.1 Cellular Organization and Complexity

The distinction between prokaryotes and eukaryotes lies in how their cells are

organized. Eukaryote cells are divided into lots of little compartments, much

Eubacteria
Eukaryotes

Last universal common ancestor

Archaebacteria

Phylogenetic tree of life

FIGURE 2.1 The tree of life is a representation of how we think organisms are related

to one another. It presupposes a universal common ancestor, a single organism from

which every living species has evolved. That is shown at the center of the tree. Since that

original ancestor, life has evolved into three main domains: eubacteria, archaebacteria,

and eukaryotes.

Chapter 2 Biological Basics 27

like modern day computers with multiple hardware bays. Each compartment is

called an organelle, or “little organ.” Each organelle has a specific function, and

eukaryotic cells have specialized mechanisms for transporting substances between

their organelles as needed.

Every multicellular organism is made up of eukaryotic cells. All of our

cells are eukaryotic, as are the cells that make up insects, animals, and plants.

Many single-celled eukaryotes are deadly parasites, such as the organism that

causes malaria (Plasmodium falciparum). Many other single-celled eukaryotes

are benign. If you have ever looked at pond scum under a microscope, much of

what you see are single-celled eukaryotes, such as algae, dinoflagellates, Parame-

cium and other species. A sampling of single-celled eukaryotes, also known

as protozoa, is shown in Figure 2.2. You may already know of some single-

celled eukaryotes: yeast, for example, is used in baking and in the making of

beer.

In contrast to eukaryotes, prokaryotes have just one “hardware bay”: all the

contents of the cell are jumbled up in a single compartment. Prokaryotes have

no organelles. Rather, the organization of the prokaryotic cell occurs through

complexes or clusters of substances. Prokaryotes include organisms like the bac-

teria in your gut and the myriad disease-causing bacteria. The archaeabacteria

are also prokaryotes, although many of them have highly unusual biology that is

not seen in any other organisms.

All cells, whether prokaryote or eukaryote, share certain noteworthy features.

You can think of each of these features as a component in a parts list. By the time

you finish this section, you will have a preliminary understanding of the parts

that make up cells and allow them to perform their functions.

Before we can start talking about cells, we need to review some basic chem-

istry specific to living systems. In this section, we will review the nature of atomic

bonds, the basic atoms and molecules that contribute to life, and a little bit about

how cells regulate the interactions between these molecules.

FIGURE 2.2 A

sampling of some

single-celled

eukaryotes.

28 Chapter 2 Biological Basics

The Discovery of Archaeabacteria

The archaebacteria, as they are sometimes known, are believed to be

some of the most ancient organisms on the planet. However, they were dis-

covered only 30 years ago. In 1977, two researchers, Carl Woese and George

Fox, stumbled on a set of organisms that did not easily fall into either the

bacteria or eukaryote divisions. These organisms appeared superficially to

resemble bacteria: they lacked organelles, had circular DNA genomes, and

had many of the same enzymes that bacteria do. However, they also showed

certain features that had until then only been seen in eukaryotes.

The archaeabacteria are primarily characterized by the extreme envi-

ronments in which they are found. Archaeabacteria live around the edges of

sulfur vents many miles below the ocean surface; archaeabacteria “breathe”

methane and die in the presence of oxygen; and they can survive extreme cold

(up to −20◦C) and heat (over 100◦C). The more exotic the places researchers

have looked, the more archaeabacteria they have found. One reason we now

think that archaeabacteria may be the most ancient forms of life is that they

seem uniquely adapted for the very harsh conditions that we think must have

existed when life first appeared on this planet [4].

A number of Websites provide additional information about these un-

usual organisms. One excellent place to start is:

http://www.ucmp.berkeley.edu/archaea/archaea.html

2.2.2 Chemistry and Life

All atoms are composed of protons and neutrons, which together form the nucleus

of an atom. Surrounding this nucleus are electrons, which reside in a series

of concentric orbits known as shells. The number of protons and electrons is

exactly equal in all atoms, but different elements have different numbers of pro-

tons and electrons. This observation is encoded in the periodic table of elements

(Figure 2.3).

Each shell of electrons can hold as many as eight electrons, with one excep-

tion: the very first shell can only hold two electrons. Since different types of

atoms have different numbers of electrons, they will have different numbers of

shells. For example, helium (He) has only two electrons, and these are both found

in the first and only electron shell present in He atoms. In contrast, sodium (Na)

has 11 electrons. These are divided as follows: two in the first shell, eight in the

second shell, and one in the third shell (Figure 2.4).

In general, atoms like to have full electron shells as this is energetically favor-

able. In other words, atoms are most stable when they have two electrons in the

first shell and eight in every successive shell. In the case of Na, the extra electron

in the third shell presents a destabilizing force. As a result, Na atoms are willing to

shed the eleventh electron if they can find a willing recipient. One such recipient

might be chlorine (Cl), which has 17 electrons. How would these electrons be

distributed across its shells (Figure 2.5)?

Chapter 2 Biological Basics 29

1

H
1.000

6

C
12.01

3

Li
6.941

11

Na
22.99

19

K
39.10

37

Rb
85.47

55

Cs
132.9

87

Fr
223.0

2

He
4.000

10

Ne
20.18

18

Ar
39.95

36

Kr
83.80

54

Xe
131.3

86

Rn
222.0

118

Uuo
293

4

Be
9.012

12

Mg
24.31

5

B
10.81

13

Al
26.98

20

Ca
40.00

38

Sr
87.62

56

Ba
137.3

88

Ra
226.0

21

Sc
44.96

39

Sy
88.91

71

Lu
175.0

103

Lr
262.1

22

Ti
47.55

40

Zr
91.22

72

Hf
178.5

104

Rf
261.1

23

V
50.94

41

Nb
92.91

73

Ta
180.9

105

Db
262.1

24

Cr
52.00

42

Mo
95.94

74

W
183.8

106

Sg
263.1

25

Mn
54.94

43

Tc
98.91

75

Re
186.2

107

Bh
264.1

26

Fe
55.85

44

Ru
101.1

76

Os
190.2

108

Hs
265.1

27

Co
58.93

45

Rh
102.9

77

Ir
192.2

109

Mt
268

28

Ni
58.69

46

Pd
106.4

78

Pt
195.1

110

Uun
269

29

Cu
60.55

47

Ag
107.9

79

Au
197.0

111

Uuu
272

30

Zn
65.39

48

Cd
112.4

80

Hg
200.6

112

Uub
277

31

Ga
69.72

49

In
114.8

81

Tl
204.4

113

Uut

6

C
12.01

14

Si
28.09

32

Ge
72.61

50

Sn
118.7

82

Pb
207.2

114

Uuq
289

57

La
138.9

89

Ac
227.0

58

Ce
140.1

90

Th
232.0

59

Pr
140.9

91

Pa
231.0

60

Nd
144.2

92

U
236.0

61

Pm
146.9

93

Np
237.0

62

Sm
150.4

94

Pu
244.1

63

Eu
152.0

95

Am
245.1

64

Gd
157.3

96

Cm
247.1

65

Tb
158.9

97

Bk
247.1

66

Dy
162.5

98

Cf
251.1

67

Ho
164.9

99

Es
252.0

68

Er
167.3

100

Fm
257.1

69

Tm
168.9

101

Md
258.1

70

Yb
173.0

102

No
259.1

7

N
14.01

15

P
30.97

33

As
74.92

51

Sb
121.8

83

Bi
209.0

115

Uup

8

O
16.00

16

S
32.07

34

Se
78.96

52

Te
127.6

84

Po
209.0

116

Uuh
289

9

F
19.00

17

Cl
35.45

35

Br
79.90

53

I
126.9

85

At
210.0

117

Uus

Atomic weight

Symbol

1

1

2

3

4

5

6

7

6

7

2 13 14 15 16 17

18

3 4 5 6 7 8 9 10 11 12

Atomic number

Semimetal

Metal

Nonmetal

FIGURE 2.3 The periodic table of elements summarizes some of the features of each element. Elements are

each made up of just one kind of atom, and the properties of these atoms determine the properties of the element.

Na
Atom

FIGURE 2.4 This

schematic shows the

11 electrons of

sodium (Na) as they

would appear if we

could see the electron

shells. Each shell is a

concentric orbit

around the nucleus,

which is made up of

protons and neutrons.

Chlorine

17Cl

FIGURE 2.5 The

chlorine atom has 17

electrons distributed

across three shells.

The lack of a

complete outer shell

makes chlorine atoms

“greedy” and willing

to take electrons from

other atoms.

30 Chapter 2 Biological Basics

When a Na atom and a Cl atom encounter each other, the Na atom gives up

one of its electrons (the outermost one in the third shell) to Cl (which has only

seven in its outermost shell). The result is that now both atoms have a complete

outer shell (Na has eight in its second shell, which is now its outer shell, and Cl

has eight in its third shell, which is its outer shell). However, the Na atom now

has 11 protons with positive charges but retains only 10 electrons. As a result,

it acquires one positive charge and is denoted as a Na+ ion. The Cl atom now

has one extra electron, giving it a negative charge, so it is denoted as a Cl− ion.

Together, the two form an ionic bond, and the formula NaCl indicates the joining

together of these two atoms to create a molecule that is neutral, or does not have

a charge. NaCl, by the way, is the chemical formula for table salt.

In an ionic bond, electrons are fully transferred from one atom to another.

However, in some instances, electrons are shared between atoms rather than fully

transferred. For example, water (H2O) is made up of two hydrogen atoms and

one oxygen atom. Each hydrogen atom has just one proton and therefore just one

electron. This leaves hydrogen with an unfilled shell (remember that the first shell

takes two electrons). Oxygen, on the other hand, has six protons and electrons.

As a consequence, the two hydrogens and oxygen “share” their electrons. The

electrons in hydrogen spend some of their time in the hydrogen’s shells and some

of their time in the oxygen’s shells. In return, some of oxygen’s electrons also

split their time between the two hydrogens. When electrons are not transferred

outright but shared across a short distance, this is known as a covalent bond.

Figure 2.6 shows how water is formed in a covalent bond.

One of the consequences of sharing electrons between the atoms of water

is that the electrons are sometimes closer to one atom than another. Because

FIGURE 2.6
Water molecules are

formed when two

hydrogens and one

oxygen share their

electrons through

covalent bonds.

Bohr Model of H2O

Oxygen

Covalent bond

Covalent bond

1 p

1 p

8 p

8 n

Hydrogen

Hydrogen

Chapter 2 Biological Basics 31

H

H
H

H

H

H

H

HO

O
O

O

O

H

H

+

+

+

+ +

FIGURE 2.7
Because of the slight

negative charge on

the oxygen and the

slight positive charge

on the hydrogens,

water molecules will

assemble into

structures that create

hydrogen bonds.

These are shaded in

this image.

oxygen is a much larger atom than hydrogen, the electrons do tend to spend more

time on the oxygen side of the molecule. As a result, the oxygen acquires a slight

negative charge. For the same reason, the hydrogens each end up with a slight

positive charge. This is known as a dipole. When several water molecules are

present together, they arrange themselves so that the slightly positive hydrogens

of neighboring molecules are oriented toward the slightly negative oxygens as

shown in Figure 2.7.

The organization of molecules around a dipole creates weak bonds that hold

the molecules in place, but which can be broken quite easily. The weak bonds that

hold water molecules in strings (as shown in Figure 2.7) are known as hydrogen

bonds because they are formed between hydrogens on one water molecule making

weak connections to the oxygen on a different molecule. Hydrogen bonds are most

common in water, but they can occur in any molecule that contains hydrogens

and atoms that can take on a slightly negative charge (like oxygen).

Energy and Chemical Bonds

When ionic or covalent bonds form, it is through a process known as a reaction.

A certain amount of energy is required for the reaction to proceed and the bond

to form. This energy is captured within the bond and released when the bond is

broken. Some bonds require more energy to form than they release when broken,

and these are known as endothermic reactions. In contrast, some bonds require

very little energy to form, but can release large amounts of energy when broken.

These are known as exothermic reactions. For example, the reaction where pure

hydrogen and oxygen combine to form water is extremely exothermic: usually

there is a tremendous release of energy that creates a small explosion.

Of course, for this reaction to occur, the hydrogen and oxygen have to be

heated (i.e., energy is added to the system). The amount of energy required before

a reaction can proceed is known as activation energy. When the activation energy

is very high, as it is in the case of the formation of water from oxygen and

hydrogen, then the reaction does not proceed spontaneously. In contrast, some

reactions have a very low activation energy and can occur nearly spontaneously.

32 Chapter 2 Biological Basics

For example when table salt (NaCl) is dissolved (ionic bonds of NaCl are broken)

in water, little energy is required for the bonds to break.

The strength of a bond is a measure of the activation energy of the reaction

that would break those bonds. The strength of a bond can vary depending on the

environment, however. Take the instance of table salt. The ionic bonds between

Na and Cl seem to be very weak because you can dissolve (break the bonds)

NaCl so quickly in water. However, if you were to try to break NaCl bonds by

heating table salt, you would need to increase the temperature to 800◦C before

the bonds begin to break. In contrast, covalent bonds will break very easily when

heated. However, in water, the covalent bonds are much stronger than the ionic

bonds. As with many things, the context of a reaction matters as much as the

components of the reaction. In a biological context, almost everything occurs in

a water-based environment. So the strongest bonds we see in biological molecules

are covalent ones. Many ionic bonds occur in this context as well, but they are

weaker because of the water environment present in all living systems.

In living systems, some atoms and molecules are extremely common, whereas

others are rare or never found. There are over 100 known types of atoms (ele-

ments), but only about 25 occur in living systems. The most common elements

found in living systems are hydrogen, carbon, nitrogen, oxygen, and phosphorus.

Together these atoms combine to form molecules. Some of these molecules can

grow in size and complexity to the point where they incorporate many thousands

of atoms. These are known asmacromolecules. Some examples of macromolecules

are DNA and large proteins.

Carbon is the most common element in living systems. Indeed, it was orig-

inally thought that any molecule containing carbon had to be associated with

living organisms. Thus, molecules that contain carbon are known as organic.

Although we now know there are ways to create carbon molecules that do not

require living systems, the majority of all carbon compounds are still generated

by living systems.

You will encounter carbon atoms in much of this chapter because they are

at the heart of so many important structures within cells. Given the prevalence

of carbon compounds, chemists and biochemists have developed notations that

allow them to draw and represent them in a sort of shorthand. In the stick figures

in Figure 2.8, the carbons are not shown at all. Rather, each of the vertices of the

hexagonal pattern represents a carbon.

H

H

H

H

H

H

FIGURE 2.8 Many carbon structures are represented without specifically labeling the

carbon atoms within the structure as shown here for the carbon-based molecule benzene.

Rather, each of the vertices of the hexagon represents a carbon atom that is bound to a

hydrogen (H).

Chapter 2 Biological Basics 33

Charged molecules

Charged molecules

Uncharged
fatty acids

FIGURE 2.9 The cell membrane of all cells is made up of two layers of fatty acids,

each of which has a charged molecule at its head. The membranes can “roll up” into

small packages, known as micelles. When they enclose small amounts of water or other

contents, they are known as liposomes. When they enclose the entire contents of a cell,

we refer to them as cell membranes.

2.2.3 A Parts List for Life

The Cellular Great Wall

The first feature that all cells share is a barrier that separates the cell’s internal

contents from its environment. In cells, this barrier is known as the cell membrane.

All cells have a cell membrane.2 The cell membrane is actually made up

of two kinds of materials. The internal portion contains fatty acids, which

are hydrophobic, or “water-fearing.” The ends of the fatty acids have charged

molecules, however, that are hydrophilic, or “water-loving.” The charged parti-

cles face outward from the cell and into the cell, and the fatty acid portion faces

into the cell membrane as shown in Figure 2.9. Because there are two layers of

molecules, the cell membrane is known as a bilayer. Because of the hydrophobic

nature of the fatty acid tails, charged particles and large molecules cannot easily

cross the membrane. This circumstance allows the membrane to act as a barrier,

preventing the free movement of molecules.

Why would the cell membrane be so important for the cell’s survival? Cells

are essentially minuscule chemical factories. Every chemical reaction requires just

the right environment in order to occur. The cell membrane creates the first of

several isolated environments that can be used to run various chemical reactions.

Cells are largely made up of water, a charged molecule with some unique

properties. Within this aqueous environment, cells must create and regulate

the flow of energy and information. This is done through a series of chemical

processes that create, maintain, and break bonds between molecules.

Chemical processes usually require specific conditions to be satisfied prior to

the reactions occurring. For example, hydrogen and oxygen, the two components

of water, will not spontaneously form water in any reasonable time.3 For water to

2
Some cells, such as plant cells and some bacteria, have an additional barrier known as the cell wall.

3
It has been calculated that it would take on the order of several billion years for such a spontaneous

reaction to produce even one molecule of water.

34 Chapter 2 Biological Basics

A key feature of the internal environment of the cell is its ability to maintain

a steady state, or equilibrium among hundreds of chemical reactions. In

biology, this is known as homeostasis. Systems that are at homeostasis are

difficult to perturb. That is, you cannot easily shift the equilibrium that the

cell maintains without adding a great deal of energy or force to the system.

For example, your body maintains a steady body temperature around 37◦C

(98.6◦F). It takes extreme shifts in the external temperature (about ± 40◦C)

before your body loses its ability to maintain a steady temperature.

form, the hydrogen and oxygen must be heated to very high temperatures. This

causes an explosive reaction in which water is formed.

In the same manner, the many thousands of chemical reactions required for a

cell to function depend on the creation of the right environment. The temperature

must be correct, the physical and chemical properties of the molecules involved

must be accommodated, and any energy required for the reaction to occur must

be provided. These are just a few of the conditions required for certain reactions to

occur. The cell membrane provides the best mechanism for creating appropriate

environments for chemical reactions to occur within the cell.

A barrier is critical to ensuring that the cell’s contents are protected from

the environment, but the cell needs to know what is going on in its environment.

“Input devices” embedded in the cell membrane communicate changes in the

environment. These input devices, called receptors, are able to “perceive” input

through a chemical interaction: a molecule from the environment chemically

bonds to a portion of the receptor. This initiates changes in the receptor that result

in the transfer of information into the cell. Unlike modern-day computers, cells

do not “read in” data and information from the external environment. Rather,

they usually respond to binary changes in the receptor state. Either the receptor

is “off” and nothing is bound to it, or the receptor is “on” because something is

bound to it.

Cellular Innards

Inside the cell, the various cellular hardware components float in a jelly-like

substance known as the cytoplasm. This is a water-rich environment in which

most of the reactions of the cell are carried out. All the “hardware” of the

cell are embedded in the cytoplasm. The cellular hardware is “welded” to the

cell membrane by special proteins known collectively as the cytoskeleton. These

proteins are able to reorganize their orientation, allowing some cells to move

around their environment. The amoeba, for example, can inch along a sur-

face by extending and contracting parts of its cellular surface, as shown in

Figure 2.10.

In prokaryotic cells, the various hardware is distributed throughout the cell

in a relatively unordered manner. However, in eukaryotic cells, the same hard-

ware is distributed into smaller compartments separated by the same sort of

Chapter 2 Biological Basics 35

Amoeba extends
part of cellular
structure into “pseudopodia”

Movement of cellular contents

New location
of amoeba

Distance

1

2

3

FIGURE 2.10 The amoeba moves around in its environment by extending and

contracting parts of the cytoskeleton. As shown in this figure, it begins by extending a

small section of the cell outward in the direction it wishes to go. It then contracts the

“back” of the cell and scoots forward. The amoeba can inch along in this fashion for

extremely long distances, and the entire motion is coordinated by specialized proteins

within the cytoskeleton [1].

membrane that forms the cell membrane. That is, each organelle has its own

membrane.

At the heart of all eukaryotic cells is the nucleus, the main control center and

the place where the full set of cellular instructions known as the genome is stored.

It is also where most of the programs of the cell are first “compiled,” and where

decisions about how to respond to changes in the cell’s environment are made.

We will discuss the genome in much greater detail in the next section.

Energy Sources and Uses

Every cell must have an internal power source or a mechanism for generating

the energy necessary to conduct its daily activities. For most cells, this is done

through a series of chemical reactions in which molecules with high-energy bonds

are created. When these bonds are broken, the energy released can be utilized to

run the various chemical reactions needed for survival, replication, and adap-

tation to the environment. In eukaryotes, the power sources are known as the

mitochondria. Oddly enough, the mitochondria are actually small cells in their

own right. The current theory is that they were prokaryotic microorganisms that

were “swallowed” by a precursor to the eukaryotic cell. The mitochondria now

depend on the larger, eukaryotic cell to provide them with nutrients and other

raw material. In return, they provide the eukaryotic cell with a steady supply of

energy.

Because the mitochondria used to be free-living organisms at some point

in the past, they have their own genomes (sets of programs and instructions for

36 Chapter 2 Biological Basics

O
P

O

O

ONa

P
O

O

ONa

P
HO

O

ONa

N

NN

N

NH2

O

HO HO

FIGURE 2.11 The energy molecule used in most cells is ATP, adenosine triphosphate.

Each of the three phosphate bonds shown on the left can be broken, releasing 30 kJ of

energy, which can be harnessed to run other chemical reactions within the cell.

running those programs). So every eukaryotic cell has at least two genomes: a

large one stored in the nucleus, and a small one stored in the mitochondria.4

The energy that mitochondria produce is stored in a special molecule known

as adenosine triphosphate (ATP).The energy is actually stored in phosphate bonds

(covalent bonds of three oxygens around a phosphorus atom). This is shown in

Figure 2.11. Each time a phosphate bond is broken, 30 kJ (kilojoules) of energy

is released. Food you consume is eventually converted into these high-energy

bonds in the phosphate groups of ATP. Your cells have a number of complex

biochemical pathways dedicated to the chemical conversion of various food types

into ATP.

Most eukaryotic cells have many more organelles, and each of these has a

specific function. Just as a computer can have various components that provide

added functionality, eukaryotic cells have acquired organelles to handle very

sophisticated tasks. We will discuss some of these organelles as we explore the

workings of the cell. For now, though, we turn to the challenge of getting all these

pieces of hardware to work together. We turn to the “software” needed to run

the cell.

2.3 THE LANGUAGES OF THE CELL

“When a programming language is created that allows programmers to program

in simple English, it will be discovered that programmers cannot speak English.”

—Anonymous

Just as with computers, cells have several “languages” that control the flow

of information. In cells, the equivalent of assembly language is a set of chemical

interactions, which do the “grunt work” of the cell. Although each such inter-

action is crucial for the functioning of the cell and its continued survival, the

language of interaction is rather limited. It is defined by the chemistry of the

components involved and is restricted to those interactions that are physically

4
Plant cells have a third genome stored in a special organelle called the chloroplast, which generates

energy by converting sunlight into molecules with high-energy bonds.

Chapter 2 Biological Basics 37

and energetically favorable. In other words, proteins usually do not interact with

one another spontaneously. The environment must be favorable for the interac-

tion to occur. That interaction is bounded by the laws of physics and chemistry.

To change the behavior of the cell, you have to change its chemical processes and

interactions.

2.3.1 Operating Systems for Cells

Hardware is just the first step to assembling a functioning computer. For most

users, a computer is not a functional piece of equipment until it has an oper-

ating system: a mediator between the hardware and the user. This is true for

cells as well. Proteins interacting willy-nilly will not promote survival; they must

work together at specific times and in specific ways. Without some kind of reg-

ulation, proteins would interact randomly, resulting in chaos. It would be like a

computer in which the hard drive is accessed at random intervals in no partic-

ular order and for no purpose. The result would just be random bits of data.

To make for a cohesive whole, the various components of a cell or a com-

puter must be coordinated. This is one of the primary activities of the operating

system.

Within cells, no specific component is directly analogous to the operating

system. Rather, several components combine to perform the tasks similar to

those an operating system would accomplish. For example, biological modules

ensure that certain activities are accomplished on an hourly or daily basis. Some

components monitor the current state of affairs, and others receive input and

respond to it. The core of the activity is centered around the genome of the cell,

but the activities themselves are distributed to relevant areas of the cell.

You may have heard the term genome before. Often referred to as the blue-

print for the cell, the genome contains all the instructions for making a new cell.

In this sense, it is the blueprint for designing the cell. In contrast to computer

hardware, which is manufactured outside the individual unit and installed by

others, cells manufacture their own “hardware.” The instructions for building

cellular hardware are contained in the cell’s genome.

The genome is more than just the set of instructions on how to make the

cellular hardware. It is also capable of copying itself and modifying itself. Cellu-

lar genomes are instances of self-editing code. In addition to specifying the parts

of a cell, the genome is able to direct the manufacturing of those parts and to

have those parts then interact with the genome to initiate the generation of other,

possibly new, parts. So the genome is much more than just the blueprint for the

cell. It is also the heart of the operating system; it creates the environment in

which the cellular hardware can interact with a variety of software within the cell

and from external sources. The genome commands, informs, and controls the

cell. Paradoxically, the genome is itself commanded, informed, and controlled by

the cell!

Let’s consider an example. All cells must have ways to sense changes in their

environment and adapt to those changes. Cells that cannot respond to the envi-

ronment would be maladapted and would be selected against. Bacterial cells

38 Chapter 2 Biological Basics

have especially sophisticated mechanisms for sensing chemical gradients in their

environments. For example, the bacterium Escherichia coli lives in watery envi-

ronments (including your gut) and needs to move toward food sources and away

from toxic substances. It does this by checking its immediate environment for

certain kinds of chemicals. “Food” chemicals will draw the E. coli toward the

source, but “waste” chemicals will repel the bacterium.

E. coli is able to sense the presence of food or toxins through special proteins

on the surface of the cell. These proteins are known as receptors (the input devices

we spoke of earlier). When receptors bind a molecule of a chemical, they trigger

a network of signals that leads to changes within the E. coli cell itself. The end

result of these signaling networks is that the bacterium uses a specialized motor

structure known as the flagellum to move toward the food [6].

Let’s take a closer look at the signaling network involved when E. coli is in

search of food. Just as it was said that all roads once led to Rome, all signaling

networks in the cell lead to the genome. There is a very good reason for this: the

genome is both the repository of instructions and the decision-making kernel of

the cellular operating system. Therefore, most responses (or outputs) from a cell

cannot be generated without consulting the genome.

For most cells the first step is to make a protein or group of proteins. The

cell needs these pieces of hardware to generate its output. The instructions for

making these proteins are contained in the genome, so it’s not all that surprising

that signaling networks generally culminate at the genome.

In the case of E. coli, moving toward food requires “running the motor.”

Essentially, the flagella have to be turned at high speed to propel the bacterium

in a particular direction. The proteins that operate the flagella are generated, or

synthesized, to use the biological term, from instructions in the genome. This

occurs when the signals from the receptor indicate that food is in the vicinity of

the bacterium. The decision to activate the flagellum is the result of the receptor

signaling the genome, which makes the relevant proteins, which then turn the

flagellum [6].

Not all decisions in the cell are as binary as this one. In the E. coli example,

it’s obvious that if there’s food in a particular direction, the bacterium should go

in that direction. This is a simple decision. Most decisions in cells, however, are

much more complex and involve integrating signals from a variety of networks.

Integration culminates at the level of the genome: signals converge, decisions are

made, and proteins are generated. Whenever a protein is made, we say that its gene

has been expressed. Most signaling networks lead to changes in gene expression.

In many such instances, the proteins that are made can also operate on the

genome, perhaps to activate other proteins or to turn off the signaling network

when a response has been generated. Biologists refer to these interconnected net-

works as signaling cascades. The combinatorial possibilities of multiple cascades

converging on a region of the genome at the same time are unlimited, and this is

the basis for much of the complexity of living cells.

In fact, even as you sit here reading this, your cells are engaging in hundreds if

not thousands of minute modifications and adjustments. These are in response to

signals from the exterior of the cell and involve manipulations of the genome. You

Chapter 2 Biological Basics 39

have anywhere from a million cells as an infant to a billion cells in an adult body,

and each is engaged in a complex dance, which is both beautiful and absolutely

essential for your survival. This is all mediated by the genome, which as we’ll

discuss in the next section, is just a string of four kinds of molecules. It’s fair to

say that your cells are the most incredible computers you’ll ever encounter.

2.3.2 Deciphering the Language of Cells

“Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.”

—Lewis Caroll, Jabberwocky

DNAStrings as a Human Language

So what is the genome, anyway? The genomes of all cells are made up of a molecule

known as deoxyribosenucleic acid (DNA), which we introduced in Chapter 1.

It is the molecule that all cellular organisms use as the basis for their genomes.

Like all “natural languages” or languages that humans use, it has an alphabet,

a vocabulary, and a grammar. We do not fully understand all the aspects of

this language, and one of the challenges of the new fields of bioinformatics and

systems biology is to decipher it. Unlike natural languages such as English or

Latvian, understanding DNA will not allow us to write poetry or read literature.

Rather, like a computer programming language, it will allow us to understand

and work with the cellular computer. So DNA has aspects of a human language

and aspects of a computer programming language. When we refer to DNA as

a language, we will call it DNAStrings to distinguish it from references to the

molecule known as DNA.

Let’s look at the human language parts of DNA first. DNAStrings has an

alphabet of four letters. The English language has 26, so at first glance we might

assume that English is a far more complex language than DNAStrings. However,

there are human languages with as few as 18 letters, and others with thousands

of characters. In the computer world, the basic language is one of binary digits.

Its alphabet is the set {0,1}. Its words are sequences of letters like 0011001010

and 1111. If you wish, you may refer to the letters of this alphabet as bits. Even

though BinaryStrings, the language of binary, has only two letters, it can be used

in very sophisticated computation. So the size of the alphabet is not necessarily

a reflection of the complexity of the language.

A better measure of complexity is the size and variety of the vocabulary. It has

been estimated that the English language has between 50,000 and 70,000 words.5

Most words in the English language are between 3 and 10 letters long. In com-

puting a special importance is attached to groups of 8 bits. Indeed, the special

5
You will find an active and very heated debate about this estimate if you search online. As it turns

out, it all depends on how you define a word.

40 Chapter 2 Biological Basics

N O

NH2

CH2
O

OH OH

OP O O

O

O–O

P

O

O

P

O

O

Base

Phosphate group

Sugar

FIGURE 2.12 Nucleotides are made up of three key components. The sugar molecule

binds to the phosphate group to create the backbone of a strand of DNA. The nitrogen

base on each nucleotide determines the letter of the alphabet. There are four letters: A,

C, G, and T, and each is the result of a specific nitrogen base.

term byte is used to refer to a group of 8 bits. In DNAStrings, each gene rep-

resents a “word,” and there may be as many as 1 million words.6 DNAStrings

words can have word lengths of 10,000 or more letters each. So it is possible that

DNAStrings is a language that is more complex than any human language.

English has an extremely complex and involved grammar, as anyone who has

tried to learn it as a second language knows. Even with a relatively small vocab-

ulary (small when compared with DNAStrings’s vocabulary, that is), English

has been able to facilitate communication on a multitude of levels: from the

basic transfer of information to the high art of William Shakespeare. How does

DNAStrings compare here? Since we are only just beginning to understand the

grammar of this language, we do not yet know what the full extent of its sophisti-

cation might be. It is probably safe to say that high art is possible in DNAStrings

if you are willing to consider yourself an example of high art!

The Alphabet of DNAStrings

The alphabet of DNAStrings, as mentioned earlier, has four “letters.” In fact,

these letters are four kinds of molecules and each is known as a nucleotide. Each

molecule has three basic components: a sugar molecule, a nitrogen ring, and

a phosphate group (Figure 2.12). The phosphate group is negatively charged so

DNA has an overall negative charge. This property can be utilized in experimental

manipulation of DNA, as discussed in Chapter 3.

The phosphate group interacts chemically with the sugar group to form

bonds. The result is a long, lanky chain of molecules that can twist and turn

much like a section of bicycle chain. Like the bicycle chain, it can twist in some

directions better than others, and it has a certain rigidity to it. This has to do

with the physical and chemical properties of the phosphate group and the sugar.

The chain of phosphates and interlinked sugars is known as the sugar–phosphate

backbone of DNA (Figure 2.13).

6
If each protein encoded in DNA is a “word,” then it is reasonable to estimate that the total set of

nonredundant proteins present in all organisms would be about 1 million [1].

Chapter 2 Biological Basics 41

Sugar−phosphate
backbone

O
O

O O

O

O

O

3 end

Sugar−phosphate
backbone

5 end

Adenine (Purine)

Thymine
(Pyrimidine)

O

O O

O

O

P

O O

O

O

P

O O

O

O

P

O
Cytosine

(Pyrimidine)

5 end

Guanine
(Purine)

O

O

O

P

NH2

NH2

H 2 N

H 2 N

H 2 N

OH

O

O O

O

OO

O

O O

O

O

O

O O

O

O

NH2

OH

3 end

P

P

P

P

O

O

N

N

N
Hydrogen
bonds

N

HN
N

O

N

N

O

N

N

O

N

HNN

NO

N

NNH

N
O

N
N

NH

N O
N

N

FIGURE 2.13 Covalent bonds that form between adjacent phosphate groups and sugar groups on neighboring

nucleotides yield a DNA strand. Because the links occur between sugar and phosphate groups, this is known as

the sugar–phosphate backbone of a DNA strand. Hydrogen bonds between the nitrogen bases allow for the

formation of the DNA double helix.

(Image designed and generated by Madeleine Price Ball.)

42 Chapter 2 Biological Basics

FIGURE 2.14
DNA has two

pyrimidines and two

purines. Purines

basepair with

pyrimidines as shown.

They have slightly

different chemical

structures, and these

variations allow them

to be utilized as

letters in the alphabet

of DNAStrings.

N

N

N

N

O

H

N

HGuanine

(Purine)

Cytosine

(Pyrimidine)

H

H N

N

O

N

H

Adenine

(Purine)

Thymine

(Pyrimidine)

N

N

N

N

N O

N

O

N

H

H

H

Hanging off this sugar–phosphate backbone are the nitrogen rings. There

are two kinds of nitrogen rings: pyrimidines and purines (Figure 2.14). They

have different chemical properties and are used in distinct ways within the DNA.

You can think of them as being roughly analogous to vowels and consonants.

Although both vowels and consonants are letters, vowels can do some things

that consonants cannot and vice versa. The same is true of the pyrimidines and

purines.

There are two pyrimidines: thymidine and cytosine. These are abbreviated as

T and C, respectively, and we will refer to them by these letters from now on.

The two purines are adenosine and guanine. They are represented by the letters A

and G.

DNA is usually found as two strands that wrap around each other in a spiral

within a spiral, or double helix. The two strands of the DNA are held together by

weak interactions known as hydrogen bonds. These interactions are “weak” in a

chemical sense: that is, they are not as strong as the bonding that forms when two

molecules trade electrons or share them. Even though hydrogen bonds are weak,

they are extremely stable. To break apart the hydrogen bonds that hold the two

strands of DNA together, the molecule must be heated to 96◦C. In other words,

the molecule must almost be boiled to get it to come apart. One of the reasons

life has succeeded on this planet is the tremendous stability of the double-helix

structure of DNA.

The stability of the structure also allows DNA to grow to extraordinary

lengths. For example, the DNA in your cells is actually about 1 meter (m) in

length. Yet it fits in cells that are about 100 nanometers (nm) in length! To squeeze

all that DNA into your cells, the DNA is wrapped and twisted into a very tight

bundle. Imagine taking a rubber band and twisting it over and over until you have

a small, very tight bundle. This is what happens to the DNA in your cells. The

Chapter 2 Biological Basics 43

DNA is wrapped tightly around itself and several proteins until it can fit inside

the tiny space of the cell.

DNA has certain requirements before hydrogen bonds can form between its

two strands. The first requirement is that if a C (cytosine) occurs on one strand,

then the other strand must have a G (guanine) and vice versa. The same applies

for T (thymine) and A (adenosine): the hydrogen bonds form when there is a T on

one strand and an A on the other. In practice, this means that if one strand has

the sequence of letters AGGCAT, then the other strand would have the sequence

TCCGTA to match up with the letters on the first strand. This is known as the

complement of the letters on the first strand.

The chemical structure of DNA also forces a certain orientation to the

strands. In Figure 2.13, the end containing a free phosphate group is called

the 5 (read as “five prime”) end. This refers to the point on the sugar molecule

where the phosphate group binds to the sugar. This is also the “top,” or “head,”

of the DNA molecule. At the other end is a sugar molecule that represents the

“end,” or “bottom,” of the DNA molecule. This is known as the 3 (read as “three

prime”) end. Each DNA strands runs from a 5 end to a 3 end.

For the sequence of letters on one strand to match up with the letters on

the other strand, the two strands have to run in opposite directions. That is, one

strand is positioned with the 5 end at the top right of Figure 2.13 and the other

has the 5 end at the bottom left of the figure. This is known as an antiparallel

orientation.

To understand why this is necessary, let’s go back to our string of letters:

ACGT. If we read the letters on the first strand from the 5 end to the 3 end, it

would be AGGCAT. If we now read the letters on the other strand from 5 to 3 ,

the sequence would be ATGCCT. For these two strands to pair up and form the

hydrogen bonds, the second strand “flips” orientation so that the 3 end is at the

top. So reading the sequence from 3 to 5 gives the correct sequence of letters to

pair up with the first string:

5 A G G C A T 3 (first strand or forward strand)

| | | | | |

3 T C C G T A 5 (second strand or reverse strand)

In biology, we say that the second strand is a reverse complement of the first

strand. Because we think of the strands as running from the 5 end to the 3

end, we also refer to the first strand as the forward strand. The second strand,

running in the “opposite” direction is also known as the reverse strand. As we

will see shortly, each strand plays an important role in storing and directing the

execution of programs written in DNAStrings.

The problem of which direction to read information is not unique to cells.

Back in the distant past of computers, when input and output were still performed

via paper tape or punched cards, many sequences punched onto cards or tape

could make sense if the card or tape were upside-down or reversed, as illustrated

in Figure 2.15. Steps were necessary to ensure correct positioning, and cards

were deliberately made to be nonsymmetrical to help this. It is conceivable that

44 Chapter 2 Biological Basics

FIGURE 2.15 Paper tape and punched cards used for I/O in the early days of

computing. These media must be read in the correct orientation and right-side up.

Flipping them leads to legitimate but unintended reads, just as reading the “wrong”

strand of DNA might produce unexpected results.

© Bettman/CORBIS

DNA can contain useful information simultaneously in both strands. Similarly,

it is conceivable that a paper tape or even modern digital media may contain

information that is meaningful both when read normally and when read “upside-

down” or “inside-out.” Try this fun exercise:

Exercise 2.1 Write a program that compiles and runs both when it is read normally and

when you reverse the order of the characters. This task is much more easily

accomplished in languages like C or Lisp rather than in more disciplined

modern languages.

Our understanding of the structure of DNA is quite recent: 2003 was the 50th

anniversary of the discovery of its structure. The two people most instrumental

in that discovery are James Watson and the late Francis Crick. In their honor, the

base pairing mechanism that lines up an A with a T and a G with a C is known

as Watson–Crick base pairing.

Francis Crick went on to produce influential work about the ways in which

the language of DNA could direct the formation of proteins, as we will discuss

shortly. It is hard not to overstate the importance of the discovery of the structure

of DNA or its “recentness.” Biology has had just over 50 years to start piecing

together the puzzle of how DNA directs the formation of proteins. We have a

pretty good understanding of how this process occurs in bacteria, but we are still

uncertain about some of the aspects in eukaryotes like our own cells. Before we

look at the exact process that generates proteins from DNA, let us take a closer

look at the language of DNA.

Nouns in DNAStrings

Now that we know about the alphabet for DNAStrings, what sort of words can we

form with it? For this, we have to define what a word is in DNAStrings. Let’s say

Chapter 2 Biological Basics 45

that the “nouns” of DNAStrings correspond to individual proteins. Sometimes

these words are fairly short—just a few hundred letters long. Or they may be

many thousands of letters in length.

The nouns of DNAStrings are the protein-coding genes. Many genes have the

codes required to make proteins. Many hundreds of thousands of genes code for

proteins across the spectrum of life. Some genes code for other kinds of molecules,

and we will discuss these genes later.

Groups of genes share similarities. These similarities can be in the “spelling”:

they have the same or very similar sequences of letters. In English for example,

the words cat and rat both refer to a furry creature with four legs. In the same

fashion, some genes have similar spellings and meanings. They are considered to

be members of the same gene family. In contrast, English also has many words

that are similarly spelled but with vastly different meanings. For example, read,

lead, and tread all include the same juxtaposition of letters—ead. Yet, they have

very different meanings. This is not as common in DNAStrings. In general, if

a gene shares the same or very similar sequence of letters with another gene, then

the two genes will make very similar proteins. We will discuss why this is the case

shortly.

Programming Concepts for Cells

The “verbs” of DNAStrings are usually much shorter words that make decisions

about when a protein should be made. At this point we must abandon the anal-

ogy with human languages and start thinking about DNAStrings as a computer

language.

DNAStrings has many of the same elements as a programming language. We

know there are words to define if–then–else relationships and loop control. It is

possible that DNAStrings has data structures, too, but we do not yet understand

how those might work. Let’s look at some examples of if–then–else statements in

DNAStrings.

The E. coli example provides us with an if–then–else decision. “If there is

food, go toward it. Else do not move in that direction.” In DNAStrings, an

if–then–else statement is sometimes encoded as something called a promoter.

When the promoter is on, the if–then part of the statement is executed. When the

promoter is off, the else statement is in effect. What do we mean by a promoter

being on or off? A promoter is on when a protein is bound to it. A promoter is

frequently turned off by the removal of the protein that turned it on. Sometimes,

however, a promoter can also be inactivated by a different protein binding to it.

This allows for fine-tuning of the simple binary on–off mechanism.

Promoters are found in front of most genes. When the promoter is on the

if–then statement is executed. In most cases, the if–then statement would read

something like “If (some condition), then make this gene’s protein.” Loop control

can be added in by regulating how long the promoter is on. For example, “while

the promoter is on, if (some condition), make this gene’s protein.”

Sometimes a single protein can turn on many genes at the same time. This

is the for loop of DNAStrings. Essentially, it would read something like this:

“for all promoters this protein can bind, if (some condition), make the proteins

46 Chapter 2 Biological Basics

from those genes.” Usually, the if–then statement is implicit. That is, if a protein

can bind the promoter, then that if–then statement’s condition has already been

fulfilled. So really, in DNAStrings, you would write “for all promoters this protein

can bind, make the proteins from those genes.”

We do not have many examples of data structures in DNAStrings. Those

few are mostly from bacterial cells. Arrays of genes can be accessed at one time

using just one promoter. These arrays are known as operons. In DNAStrings, the

command might read something like this: “if (some condition), access each gene

in array operon, make each gene’s protein in sequence.” Examples of linked lists,

associative arrays, or more sophisticated data structures do exist, but they are

beyond the level of our present discussion.

Accessing all the genes in an operon can have very powerful and subtle effects.

Just as in programming languages, the more complex the data structure, the more

sophisticated the possible operations. In the case of operons, the cell has the

ability to fine-tune its responses based on a variety of inputs. A good example

of this is the lac operon. Most bacterial cells can utilize the sugar lactose as an

energy source. They have a set of enzymes that break down lactose and transfer

the energy contained in the sugar bonds to other molecules. Five enzymes are

needed for this process, and each is encoded by a gene. All five of the genes are

part of an array with a common promoter. When lactose is not present, these

enzymes are not needed. The promoter is bound by a special protein known as a

repressor and is off by default. When lactose is present in the environment, it is

transported into the cell. It binds to an inducer that can then bind to the promoter.

Now the promoter is on, and the array of enzyme genes can be accessed. The

enzymes are made, and the lactose is used up. When there is no longer any lactose

to use, the promoter is turned off. This is because in the absence of lactose, the

inducer protein can no longer stay on the promoter. It is replaced by the repressor

protein. The array cannot be accessed any more, so no additional enzymes are

made. The system is now off until lactose becomes available again. The process

is summarized in Figure 2.16.

So what would the code for this operation look like in DNAStrings? It might

read something like this:

if (lactose+inducer)

bind lactose+inducer to promoter;

while(lactose+inducer bound to promoter)

make enzymes to use lactose as energy source;

else

remove inducer from promoter;

place repressor on promoter;

2.3.3 Compiling DNAStrings Programs

Now that we know something about DNAStrings as a computer language, we

need to think about how the instructions are executed when a program is run.

Chapter 2 Biological Basics 47

lacZ

lacZ

protein

lacY

protein

lacA

protein
Lactose digested by enzymes

lacZ

protein

lacY

protein

lacA

protein

(very small

amounts made)

RNA

polymerase

Repressor

bound

lacY lacA Environmental input

NO Glucose

YES Lactose

NO Lactose

YES Glucose

YES Lactose

YES Glucose

lacZ lacY lacA

lacZ lacY lacA

X X X

Small amounts of enzymes and
lactose digestion

No lactose digestion enzymes

FIGURE 2.16 The lac operon and its operation under various conditions.

Let’s look again at the lac operon program. The while loop we set up includes

this statement:

while(lactose+inducer bound to promoter)

make enzymes to use lactose as energy source;

How does the cell go about executing the statement make enzymes to

use lactose as energy source;? These instructions require two steps

to actually execute. The first step is to compile the code. The process in biology

is known as transcription and is performed by a specialized protein known as

ribonucleic acid (RNA) polymerase. RNA polymerase is essentially the compiler

for all DNAStrings code; we share many of the components of RNA polymerase

with every other form of life on this planet.

One difference between prokaryotes and eukaryotes is the number of RNA

polymerases each includes. Prokaryotes have one, all-purpose RNA polymerase.

Eukaryotes have three, each specialized for a specific class of genes. Another dif-

ference is that in prokaryotes, the process of transcription is straightforward: a

copy of the DNA is made using ribonucleic acid, which is a temporary molecule.

In eukaryotes, many other steps occur before the final RNA is made. So in

prokaryotes, RNA polymerase is more of a copier than a compiler. In eukary-

otes, it performs more of the functions we associate with computing language

compilers.

Eukaryotic RNA polymerases are actually remarkable compilers. In most

organisms, RNA polymerase “compiles,” or reads the DNA sequence at the

48 Chapter 2 Biological Basics

rate of 1000–2000 nucleotides per second. It generates the binary, or executable,

version of the DNAStrings code at the rate of about 500–1000 characters per

second. From a programming perspective, RNA polymerase appears to run

as a linear process. Were it, instead, to be a quadratic O(n2) process or, even

worse, an exponential 2n process, then we would find that performance would

severely degrade as the length of genes increases. Compilers that run in time

O(n), where n is the length of the program source are acceptable. Doubling the

length of your source doubles the compiling time, and nobody can complain

about that.

Exercise 2.2 Company Macinsoft has developed a Java compiler javaA that can com-

pile a program comprising n characters in an average time of 750n + 1800

microseconds (μs). Company Microtosh has a compiler javaB that takes

12n2 + 3n + 2μs.

1. How long does a 24-line program with an average of 12 characters per

line take to compile

(a) on compiler javaA

(b) on compiler javaB

2. How long does a 240-line program with an average of 12 characters per

line take to compile

(a) on compiler javaA

(b) on compiler javaB

3. How long does a 2400-line program with an average of 12 characters

per line take to compile

(a) on compiler javaA

(b) on compiler javaB

A quadratic time compiler might be fine for short programs, but as program

length increases so too does compiling time. Software developers could never

accept this. Likewise evolution has produced a linear time compiler in our

cells.

Executable Files from DNAStrings

The result of transcription (compiling) is a temporary copy of the program in

the equivalent of an executable file. For DNAStrings, the final executable file is a

molecule called messenger RNA (mRNA).

The key feature of mRNA is that it is chemically similar to DNA. It has

four letters in its alphabet as well. One major difference between the alpha-

bets of DNA and mRNA is that in mRNA uracil, represented by the letter U,

replaces the thymine (T) used in DNA. The chemical properties of U are very

similar to those of T, at least for our purposes here. The chemical structure

of uracil is shown in Figure 2.17. The letters of mRNA are also nucleotides

because they have the same chemical and physical properties as the letters

of DNA.

Chapter 2 Biological Basics 49

Thymine
Uracil

O O

C
C

C
N

N
H

C

O

CH3

O

H
N

N
CC

Phosphate group Phosphate group

Sugar group
Sugar group

C
C

FIGURE 2.17 The nucleotide uracil is used in place of thymine in RNA. It is

chemically related to thymine and, for our purposes, functions in essentially the same

way as a thymine would in DNA.

Another difference between DNA and mRNA is that mRNA occurs as a

single strand, running from a 5 end to a 3 end. As a result of these differences,

mRNA is nowhere near as stable as DNA. It is very easily degraded. Cells have

come up with a variety of ways to keep mRNA around long enough to use it.

2.3.4 Executing Code from DNAStrings

Just as with the executable file of a program, the mRNA can be used many

times. Each time the mRNA “program” is run, a protein is produced. The pro-

cess of making the protein is known in biology as translation because it involves

converting the A, C, G, and U letters (remember that mRNA does not have

T letters) of the mRNA into a string of amino acids—the chemical units that

make up all proteins. Proteins are the output resulting from running DNAStrings

code.

The actual process of running the executable file of code from DNAStrings

involves two steps. The first step is to consult a lookup table that converts triplets

of ACGU letters in the executable table into amino acids. The second step is to

create the string of amino acids that make up the actual protein. Both steps occur

as part of the “running” of the mRNA executable code and are carried out on a

structure called the ribosome (Figure 2.18).

The ribosome is a processor that runs an “executable” mRNA. Each cell

has hundreds if not thousands of ribosomes, so these processors constitute a

vast “cluster” of computing nodes within the cell. Bacterial ribosomes, which are

the best understood, are extremely fast processors. They can read and execute

the mRNA executable code at the rate of about 60 mRNA letters per second.

They are also extremely precise, with an error rate of less than 0.0001% in most

cases. This may not seem very impressive, especially since computer processors

today are even faster than this and even more accurate. The ribosome is such an

astonishing processor because it evolved to its current level of complexity and

sophistication without deliberate design.

After finding and attaching to the mRNA, the first thing the ribosome does

is to start reading the string of ACGU letters that are encoded in the mRNA. The

50 Chapter 2 Biological Basics

Small subunit

of ribosome

Large subunit

of ribosome

Protein

mRNA

FIGURE 2.18 The ribosome is a large complex made up of two subunits that have

four RNA strands and about 50 proteins. These RNA strands are not like the mRNAs;

they do not code for proteins and are never translated. Rather, they have special

functions within the ribosome—translating mRNAs.

FIGURE 2.19 The

standard genetic code

is a mapping of triplet

nucleotides to amino

acids. Notice that

some amino acids

have more than one

triplet nucleotide

code. Since multiple

triplets can represent

the same amino acid,

we say that the genetic

code is degenerate. In

mathematical terms,

the mapping from

triplets to amino

acids is onto but not

one-to-one.

GCA,GCC,GCG,GCU

AGA,AGG,CGA,CGC,CGG,CGU

GAC,GAU

AAC,AAU

UGC,UGU

GAA,GAG

CAA,CAG

GGA,GGC,GGG,GGU

CAC,CAU

AUA,AUC,AUU

UUA,UUG,CUA,CUC,CUG,CUU

AAA,AAG

AUG

UUC,UUU

CCA,CCC,CCG,CCU

AGC,AGU,UCA,UCC,UCG,UCU

ACA,ACC,ACG,ACU

UGG

UAC,UAU

GUA,GUC,GUG,GUU

UAA,UAG,UGA

Ala

Arg

Asp

Asn

Cys

Glu

Gln

Gly

His

lle

Leu

Lys

Met

Phe

Pro

Ser

Thr

Trp

Tyr

Val

stop

AMINO ACID CODONS

ribosome parses the mRNA letters by reading groups of three letters at a time. In

fact, that set is so important that it even has its own name—codon. Each three-

letter codon indicates an amino acid. This mapping is referred to as the genetic

code and is illustrated in Figure 2.19. The genetic code is a mapping between

a set of triples of one type of chemical unit (nucleotides) to a set of completely

different chemical units (amino acids).

Why use a triplet nucleotide code for the genetic code? The reason is quite

simple. There are 20 amino acids commonly used in biological systems, and we

Chapter 2 Biological Basics 51

can figure out the minimum number of nucleotides required to provide at least one

unique code for each amino acid. What is the minimum number of nucleotides

required?

The Purpose of Codes

Any mapping from a set of words in one language to a set of words in another

(possibly the same) language is a code. Codes that map fixed-width words to

fixed-width words are the easiest to use. For example, the ASCII code provides

a mapping between the set of eight7-letter words in BinaryStrings and some

of the characters that we can type on our keyboards or print to our screens.

More recently, Unicode provides a mapping from the set of 16-letter words in

BinaryStrings. There are many valid ways to look at the mapping provided by

codes such as ASCII or Unicode: The usual view is as a map between a set of

numbers and a set of characters, many of which can be printed or specified via a

keyboard. Figure 2.20 provides a key to the ASCII code.

Morse code shows some advantages to considering variable-width

codes. Morse code provides a mapping between English and DotDashStrings.

DotDashStrings is a language with the alphabet dot, dash. Figure 2.21 shows

the mapping from the letters of English to words in DotDashStrings provided

by the Morse code. The Morse code was developed for nonvoice communication

using a single key switch. The dash was transmitted as a long pulse, the dot as a

short pulse. Morse code tries to provide a certain economy in transmission time

by using short sequences for common letters while allowing the codes for less

common English letters to be relatively long. Similarly, compression algorithms

typically replace commonly occurring patterns with short codes and use longer

codes for rarer ones.

The key point is that codes allow for the efficient transmission of informa-

tion from one format into another. The result is that some kind of action can

be taken based on the information. For example, Morse code was used for radio

communications to coordinate military activities during World War II. We use

ASCII for binary representation of English words every day when we enter infor-

mation into a computer and expect it to complete some processing task as a

result.

The genetic code allows cells to transform information into an action. The

code represents all 64 possible triplet combinations of the four letters of DNA-

Strings. The point is again information transfer: to transfer the information

contained within the mRNA into a protein that can actually do something within

the cell.

You will note that Figure 2.20 displays some “sensible” features. A comes

before B, which comes before C, ... which comes before Z. 0, 1, 2, ... , 9

occur in the “correct” order. But what is behind the ordering of the punc-

7
Historically, ASCII was originally formulated as a 7-bit code. There is no harm in adopting modern

usage and considering it an 8-bit code as we do in this text. In any case ASCII is gradually being
replaced by the 16-bit Unicode.

ASCII Character Codes Table & Cheat Sheet

Special Chars

9 \t (Tab)

10 \n (NL)

13 \r (CR)

32 Space

33 !

34 "

35 #

36 $

37 %

38 &

39 '

40 (

41)

42 *

43 +

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

Upper Case

65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

Lower Case

97 a

98 b

99 c

100 d

101 e

102 f

103 g

104 h

105 i

106 j

107 k

108 l

109 m

110 n

111 o

112 p

113 q

114 r

115 s

116 t

117 u

118 v

119 w

120 x

121 y

122 z

Extended ASCII Extended ASCII Extended ASCII

128 €

129 

130 ‚ ‚

131 ƒ ƒ

132 „ „

133 … …

134 † †

135 ‡ ‡

136 ˆ ˆ

137 ‰ ‰

138 Š

139 ‹ ‹

140 Œ Œ

141 

142 Ž

143 

144 

145 ‘ ‘

146 ’ ’

147 " “

148 " ”

149 • •

150 – –

151 — —

152 ˜ ˜

153 ™ ™

55 7

56 8

57 9

58 :

59 ;

60 <

61 =

62 >

63 ?

64 @

91 [

92 \

93]

94 ^

95 _

96 `

123 {

124 |

125 }

126 ~

154 š

155 › ›

156 œ œ

157 

158 ž

159 Ÿ Ÿ

160

161 ¡ ¡

162 ¢ ¢

163 £ £

164 ¤

165 ¥ ¥

166 ¦

167 § §

168 ¨ ¨

169 © ©

170 ª ª

171 « «

172 ¬ ¬

173 ­

174 ® ®

175 ¯

176 °

177 ± ±

178 ²

179 ³

180 ´ ´

181 µ µ

182 ¶ ¶

183 · ·

184 ¸ ¸

185 ¹

186 º

º

º

187 » »

188 ¼

189 ½

190 ¾

191 ¿ ¿

192 À À

193 Á Á

194 Â Â

195 Ã Ã

196 Ä Ä

197 Å Å

198 Æ Æ

199 Ç Ç

200 È È

201 É É

202 Ê Ê

203 Ë Ë

204 Ì Ì

205 Í Í

206 Î Î

207 Ï Ï

208 Ð

209 Ñ Ñ

210 Ò Ò

211 Ó Ó

212 Ô Ô

213 Õ Õ

214 Ö Ö

215 ×

216 Ø Ø

217 Ù Ù

218 Ú Ú

219 Û Û

220 Ü Ü

221 Ý

222 Þ

223 ß ß

224 à à

225 á á

226 â â

227 ã ã

228 ä ä

229 å å

230 æ æ

231 ç ç

232 è è

233 é é

234 ê ê

235 ë ë

236 ì ì

237 í í

238 î î

239 ï ï

240 ð

241 ñ ñ

242 ò ò

243 ó ó

244 ô ô

245 õ õ

246 ö ö

247 ÷ ÷

248 ø ø

249 ù ù

250 ú ú

251 û û

252 ü ü

253 ý

FIGURE 2.20 The ASCII code as specified for use with Tektronics equipment.

52

Chapter 2 Biological Basics 53

tuation characters? The truth is that a good deal of arbitrariness is inherent

in the selection of which numbers will be mapped to which characters by the

ASCII code. Once you understand that the AS in ASCII stands for “American

Standard,” you can probably appreciate that a committee made a number of

arbitrary decisions in setting up this code. Granted, the committee applied some

common sense by making it fairly straightforward to use ASCII-encoded char-

acters to correctly alphabetize sets of data; but many of the decisions were

arbitrary. To correctly program a sorting algorithm that has some very strin-

gent requirements for deciding whether “Clinton, William Jefferson” should

precede “Clinton, William, Jefferson,” or vice versa, you need to be able to con-

sult the ASCII code table. Where is it? It’s published in many places, including

Figure 2.20.

Huffman codes [2] and other codes used for data compression follow a similar

philosophy: Frequently occurring entities are given short encodings, and the rarer

entities may have quite long encodings. Exercise 2.3 asks you to investigate this.

Morse code suffers from potential ambiguity. Look at Figure 2.21 again and

notice that the sequence .-- could represent the single letter W, or it might be

the triplet ETT, or EM or AT. The key switch operator distinguishes between

these possibilities by using a short pause between encodings of individual letters.

Since the pause is thus incorporated as an integral and important feature of the

language, the alphabet of DotDashStrings needs to be enhanced with a third

Morse code

The alphabet

.- A --. G - - M ... S -.- - Y
-... B H -. N - T - -.. Z
-.-. C .. I --- O ..- U
-.. D .--- J .- -. P ...- V
. E -.- K - -.- Q .- - W
..-. F .-.. L .-. R -..- X

Numbers

.- - - - 1 -.... 6

..- - - 2 - -... 7

...- - 3 - - -.. 8

....- 4 - - - -. 9

..... 5 - - - - - 0

Punctuation marks

Point (.) .-.-.- (AAA)
Comma (,) - -..- - (MIM)
Comma (,) - -..- - (MIM)
Question-mark (?) ..- -.. (IMI)
Colon (:) - - -... (OS)
Hyphen (-) -....- (BA)
At-sign (@) .--.-. (AC)
Error

FIGURE 2.21 The Morse code.

54 Chapter 2 Biological Basics

character –, the pause. Huffman codes have no need for such extensions. They

are designed to have a prefix property so that no encoding is allowed to be a

proper prefix of another encoding. In this way, the end of an encoding is uniquely

determined, and when encountered the decoder can proceed to decoding a new

entity [2].

Exercise 2.3 Following the directions in an algorithms textbook such as [2] write a program

to generate a human code to produce binary strings for each character in

your favorite Shakespeare play. Compare the length of the code for the letter

e with the length of the code for the letter x. Repeat the exercise, but instead of

using individual characters as the encoded unit, have your program develop

an encoding for each individual word. Now compare the length of the code

for the name of the leading character in your Shakespeare play with another

word chosen by you at random from somewhere within the play.

Now let’s turn our attention to the genetic code (see Figure 2.19). We can see

some signs of sensible assignment of amino acid to codon. For example, there

is some grouping so that minor errors in the nucleotides might still result in the

same amino acid, or at least an amino acid that shares some important chemical

property.

Whether the genetic code used is the best one possible is open to debate.

Remember that evolution does not have the luxury of designing things ahead

of time. Rather it must use what is already available and innovate from that.

An interesting discussion of the extent to which the genetic code is arbitrary can

be found in a chapter entitled “The Genetic Code: Arbitrary?”8 in [3].

Cellular Processors for DNAStrings

Translation according to the genetic code must be accomplished by ribosomes.

Ribosomes “parse” the mRNA by introducing a subprocessing unit, called the

transfer RNA (tRNA). The tRNA is represented by the cloverleaf-shaped piece

of RNA shown in Figure 2.22. It is made up of the same four nucleotides,—A, C,

G, and U—as in the mRNA. Unlike mRNA, however, the tRNA folds up into a

complex shape by using hydrogen bonds.

Translation occurs when tRNAs are recruited by the ribosome and brought

into close proximity to the mRNA. A tRNA has an anticodon end, which can bind

to a complementary triplet of nucleotides (the codon) in the mRNA. The other

end provides the correct amino acid for the ribosome to attach to its growing

protein. In this sense, the different tRNA molecules within a cell provide the

translation table for the genetic code. The tRNA is the mechanism that cells use

to “look up” values in the genetic code. The tRNA is essentially an adapter that

matches mRNA nucleotides to amino acids.

8
Notice the capital letters in the title of Hofstadter’s chapter.

Chapter 2 Biological Basics 55

Amino acid

attaches here

Stem-loops

Anti-codon

A G C

FIGURE 2.22 The

tRNA is a specialized

RNA molecule that

matches codons in the

mRNA to amino

acids. Its structure is

critical for its

function.

The ribosome also provides the right chemical environment so that the amino

acids held on the other end of the tRNA (see Figure 2.22) can form special bonds.

More than one ribosome can be on an mRNA at any given time, so it is common

to see long chains of proteins coming off the same mRNA strand. In this fashion,

hundreds of copies of a protein can be made from a single mRNA. Each time the

ribosome proceeds through the mRNA, it generates one copy of the protein.

As you’ll see in the genetic code (see Figure 2.19), there are some triplet com-

binations that have special functions, one of which is to indicate where the protein

synthesis should begin. This is known as the start codon. In most organisms, the

start codon is an AUG. If you look at the genetic code, you’ll see that AUG

codes for the amino acid methionine. Almost all proteins begin with a methion-

ine as the first amino acid in their sequence. In later stages of protein processing,

this methionine is sometimes removed. But for protein synthesis to begin in the

ribosome, the first tRNA into the ribosome has to carry a methionine.

There are three common stop codons that indicate where the ribosome should

stop the synthesis of the protein: UAA, UAG, and UGA (see Figure 2.19). When the

ribosome encounters one of these, it allows a special protein with the appropriate

complementary codon sequence to enter the ribosome. This protein does not

carry an amino acid. This absence of the amino acid on the protein carrying a

match to a stop codon causes the ribosome to chemically terminate the protein

chain. The ribosome then releases the finished protein. The protein can now fold

into its correct shape and is ready for use by the cell.

Executing DNAStrings: A Synopsis

Let’s recap the events that lead to the execution of DNAStrings code. The primary

objective of executing code in DNAStrings is to make a protein.9 When signals

9
We’ll postpone a discussion of other kinds of code execution for the time being.

56 Chapter 2 Biological Basics

turn on the gene by activating a promoter (if–then–else statements in DNA-

Strings), the equivalent of an executable copy of the code is made. This is stored

in the molecule known as mRNA. Compiling to mRNA is accomplished by a

protein called RNA polymerase. Once mRNA is made, the code is run by a

processor known as the ribosome. The ribosome allows the protein to be made

by creating the right environment for translation. The genetic code for triplet

mRNA letters is used to convert mRNA sequences into strings of amino acids.

This is done using a special adapter molecule known as the tRNA. Each tRNA

matches up a triplet letter sequence known as a codon with an amino acid. The

ribosome then makes special bonds between neighboring amino acids. These

bonds are called peptide bonds. The long string of amino acids joined by these

bonds will be the protein. Protein synthesis begins at a special signal, the start

codon, and ends at a special signal, the stop codon. All proteins are synthesized

with a methionine at the start, although sometimes the methionine is removed

after synthesis.

The idea that information contained in the DNA passes into mRNA, which

then transfers the information to protein is known as the central dogma of

molecular biology and was formulated by the late Francis Crick, codiscoverer

of the structure of DNA. Originally, the idea was that information flowed in just

one direction: from DNA to mRNA to protein (Figure 2.23).

It turns out that the only rule in biology is that for every rule, there is an

exception. We have since discovered that information can flow “backward” from

mRNA into DNA in some viruses. This includes the human immunodeficiency

virus (HIV), which causes acquired immunodeficiency syndrome (AIDS). These

viruses store their genome as RNA rather than DNA and have a special enzyme,

reverse transcriptase, which creates a DNA copy from the RNA genome. The

DNA copy then makes more mRNA that can be translated into viral proteins.

Some of the most potent anti-HIV drugs available today target this unusual

enzyme in an effort to stop the virus from replicating and spreading.

In some instances proteins can also change the information content of the

mRNA without changing the DNA. One such example is RNA editing in which

some nucleotides of the mRNA are selectively changed. The result is that the

DNA

mRNA

Protein

Translation

Transcription

Replication

FIGURE 2.23 The central dogma of molecular biology states that information flows

from DNA to RNA to protein. Since this original idea was stated in the 1950s, we have

learned that information can flow “backward” from RNA to DNA and possibly from

protein to RNA.

Chapter 2 Biological Basics 57

mRNA no longer exactly matches the DNA from which it was copied [7]. This

is a bit like a computer in which some executable program files are occasionally

edited “on the fly” to allow them to run in less time. Rather than edit the original

code, the processor just makes adjustments to the executable file. If a computer

actually did something like this, we would probably get pretty worried because we

would have trouble understanding what was going on.10 But it turns out cellular

computers are constantly editing and modifying their code: at the source level

(DNA), at the executable level (mRNA), and sometimes even after the protein

has been made. Evolution has had 4 billion years to tinker with these processes,

and it has come up with an extraordinary range of solutions.

2.4 FURTHER NUANCES IN DNASTRINGS

Now that we understand some of the process that executes DNAStrings code,

we can look at more specific processes that occur during that execution. The

description provided so far is actually the process as it occurs in bacteria or

prokaryotes. These are the simpler cells in which all the components are jumbled

together. The process is much more complicated in our own eukaryotic cells.

Prokaryotes are like computers using an old version of computing lan-

guages. In the early days of computing, programs were stand-alone sequences

of instructions. These instructions might be punched onto cards and perhaps

stored together in one box. To run a program, the cards had to be read, as a sin-

gle continuous stream from the cards into contiguous locations in the computer’s

memory. When a few bells and whistles were correctly invoked, the program could

then begin to execute. When it had finished its task, another program would be

read into memory from another box of punched cards.

An analogy can be drawn with simple prokaryotic genes. Each is a set of

cards unto itself, with perhaps some bells and whistles in the form of promoters

and starts and stops. Groups of genes may be activated together, as in an operon,

but each gene is essentially making its own protein.

In bacteria, each gene or box of cards is one contiguous sequence of DNA.

These regions of the DNA sequence are called open reading frames (ORFs) (pro-

nounced to rhyme with “morphs”). Genes in bacteria are relatively easy to find

because you can search for the start codon and stop codon within the DNA

sequence. Whenever you find a start codon followed by a minimum set of non-

stop codons, you have an open reading frame. The ORF ends when you find a

stop codon. Improved methods for finding a gene in bacteria that go beyond this

10
It’s interesting to note that in the early days of computing, before the development of modern

conveniences like index registers, it was common for programmers to create self-modifying code to
achieve what are today considered fairly mundane tasks such as operating on each member of an
array. Nowadays we frown on the technique because it’s hard for us to understand and verify the
action of self-modifying code. On the other hand, we are not very good at simulating biological
phenomena using our disciplined structured programming approach. Could it be that self-modifying
code will be the key to successful computer simulation of life?

58 Chapter 2 Biological Basics

FIGURE 2.24
Overview of gene

structures in bacteria

and eukaryotes.

Bacterial ORF

Eukaryotic gene:

Exon ExonIntron Intron Exon

Exons
spliced
together

Complete protein

Complete protein

simple approach are discussed in Chapter 7. An example bacterial gene is shown

in Figure 2.24.

Programmers soon came to realize that combining the effects of several pro-

gram segments, albeit still sequentially, could enhance their abilities to achieve

sophisticated computing. For example, one program segment might analyze some

returns from exit polls after an election and leave its results (e.g., means, medi-

ans, or standard deviations) somewhere accessible to the next program segment.

That program might look at the statistics generated by the first program and

make some predictions about the expected winner. Although programs were still

stand-alone sequences of instructions punched on cards, they could be made to

act in groups and to communicate among one another to achieve the desired

results.

Some prokaryotic genes find themselves grouped into operons. They may

share bells and whistles and other signals. Their relative proximity makes it all

possible. Just like the boxes of punched cards for coupled programs needed to be

kept close together.

With the advent of secondary storage devices, ancestors of today’s disk drives,

it became possible to store portions of programs in such a way that other programs

could invoke them as subprograms. Libraries of useful routines were accumulated.

Sometimes copies of useful routines would be made and incorporated into the

executables of the larger programs that called them. Sometimes, it was possible

to arrange for “action at a distance,” and program A could call up subroutine B

without actually copying it into its own executable file.

We are far from understanding the mechanisms by which eukaryotic genes

can work. This is because, much like modern-day, object-oriented programming,

some of the “classes” and “methods” necessary to run these programs are frag-

mented and distributed at great distances from one another. We can see that the

actions of a gene or group of genes can affect the actions of others. But it is

not entirely clear how these effects occur. Science is only beginning to appreciate

some of the interactions that characterize networks of genes.

The computing industry has not had the luxury of spending 4 billion years

in the pursuit of effective regulation of program segments. But run a task man-

ager program to see how different programs and groups of programs interact.

See what happens when you randomly kill threads and obscurely named system

Chapter 2 Biological Basics 59

routines. How can one program, such as Microsoft Word, within a suite like office

conscript code from another program, say PowerPoint, to copy a graphic from

a slide presentation into a typed document? Even outside of suites, programs

are collaborating or interfering with one another all the time. Any modern mul-

titasking operating system demonstrates a microcosm of collaborative network

activity. If you were a visitor from another planet, you might be hard pressed to

fathom the workings of the standard desktop computer from a sequential read

of the bits on its hard drive. The same challenge faces us when we try to figure

out what goes on as eukaryotic cells work with their genomes.

Skipping Comments in DNAStrings Code

You can think of eukaryotic genes as being pieces of code held in multiple files,

such as “header files,” objects and classes from separate methods that need to

be incorporated, and other subroutines, which must be distributed across several

different “files.” All the files are required for the code to generate a functional

protein, but the files are interspersed with long stretches of DNA that do not

contribute to the information content of the program. An example eukaryotic

gene is shown in Figure 2.24 and the distribution of gene sizes is shown for human

genes in Figure 2.25.

The portions of the code that do contribute to the generation of a protein are

contained in regions of the gene called exons. These are like the individual files

required for the code to execute properly. Interspersed within the gene sequence

are also the long tracts of noncoding sequence known as introns. You can think of

these as long sections of “comments” on the code. Although they don’t contribute

to the actual execution of the code, they do have some effect on the length of the

code and on the way it is executed.

During transcription, the process of compiling the code into an executable

file, the compiler (RNA polymerase) makes a copy of the entire stretch of the gene.

F
re

q
u
e

n
c
y
 o

f
o

c
c
u

rr
e

n
c
e

1000

Gene size (bp)

200,000

FIGURE 2.25 Eukaryotic genes come in a range of sizes from as small as a few

thousand bases to many hundreds of thousands of bases. Most genes are several

thousand bases long, as shown here, but the distribution is extremely long-tailed. (Based

on data from human genes in the RefSeq collection of GenBank).

60 Chapter 2 Biological Basics

FIGURE 2.26
The process of

splicing involves

looping the intronic

sequence around and

then cutting it at the

5 and 3 ends as

shown here.

pre-mRNA

Spliced
mRNA

Intron

Intron Lariat

Translation Discard

1st Exon 2nd Exon

1st Reaction

2nd Reaction

This includes both the exons (files that contribute to the final protein generation)

and the introns (comments on the code). In a separate step, the introns are

removed by a mechanism called splicing. Figure 2.26 shows how this would occur

in an eukaryotic gene.

An amazing piece of machinery known as the spliceosome actually carries

out the chemical reactions necessary. The spliceosome is itself made up of RNA

as well as some proteins, and it reads the executable file of mRNA to find and

remove the introns. It does this with remarkable accuracy: 98% of all mRNAs are

correctly spliced in your cells. What makes this accuracy so impressive is that it

appears that primarily two short signals specify the regions where the introns are.

Introns are marked by a GU at the 5 end of the intron and an AG at the 3 end

of the intron. When you think about it, this is a pretty small signal. At random a

GU will occur once in every 16 bases (42) as would the AG. Yet, the spliceosome

is able to find and splice out the introns with extraordinary accuracy!

To get a sense of how difficult this task actually is, consider a piece of com-

puter code in which comments are marked with the # sign. Let’s suppose that

the # sign is also used to demarcate array data structures. Now the compiler has

to figure out which # signs refer to comments and which refer to an array. The

compiler has to have additional information because otherwise it might acciden-

tally skip an important data structure or try to compile a comment as if it were

an array. For instance, perhaps comments in this strange programming language

always begin with the word “Comment.” So the compiler would treat this string:

#Comment ... as if it were a comment and this string: #my_files ... as

the name of an array.

We would expect the spliceosome, which is a kind of compiler, to utilize

additional signals in identifying the sites at which splicing should occur. There

have been a number of tantalizing hints about what those signals should be, but

no one yet knows what, how or where these signals are. We are still trying to

figure out how the spliceosome finds the actual introns rather than splicing out

Chapter 2 Biological Basics 61

every stretch of DNA between a GU and an AG. We will discuss some strategies

for finding such signals in the introns in Chapter 7.

Setting Permissions

Earlier, we mentioned that mRNA is relatively unstable and can be degraded

rather quickly. This is like a system in which executable files are periodically

deleted, perhaps as a protection against computer viruses. In fact, the same may

be true of the cellular process of degrading mRNA. It turns out that many cellular

viruses have RNA as their genome (rather than DNA). By deleting or degrading

mRNA on a regular basis, the cell may be able to protect itself from infection by

these RNA viruses. The caveat is that executable files that are important for the

cell itself will also be subject to deletion. This is a big problem because the cell

cannot make proteins if it does not have the executable files of mRNA.

Cells have worked out a solution to this problem. They chemically modify

the mRNA at two places. At the beginning or 5 end, the cell adds a chemically

modified guanine (G). This is known as the 5 cap. At the endpoint or 3 end

of the mRNA, the cell adds a long string of adenines (A). This is known as

polyadenylation (derived from the words poly [meaning “many”], adenine, and

the suffix -ation [meaning to indicate an action]). Without these two protectors,

the mRNA would be rapidly degraded and the nucleotides in the mRNA reused

for some other mRNA.

The chemical modifications of mRNA may remind you of the use of a dirty

bit in page-replacement schemes in a computer system. When code or data is

being switched into and out of memory one page at a time during the execution

of a program, it is possible to avoid rewriting some pages to disk if it is known

that they did not change while they were paged in to memory. The dirty bit is set

if any part of a page has been modified. Without the dirty bit, the system will

allow the page to be overwritten without first copying its contents to disk. The

page’s bits in memory will simply “evaporate.”

These modifications of mRNA are common to all eukaryotes but do not

occur in bacterial or other prokaryotic cells. They are just one example of the

increase in complexity as you move along the tree of life from prokaryotes to

eukaryotes (see Figure 2.1).

2.5 PROTEINS: CELLULAR MACHINES

We have described at length the ways in which cells make proteins. But what are

proteins themselves? Proteins are essentially the cellular hardware. They are the

machines and processors that handle all the tasks the cell needs to survive.

Recall the example of the E. coli receptors that can sense the presence of food

or toxic molecules in the environment. Receptors are proteins. DNA polymerase,

which replicates DNA, is also a protein. So is RNA polymerase, the compiler that

compiles DNAStrings code. When you hear people talking about “getting enough

protein” in their diet, they are actually talking about the full set of proteins present

62 Chapter 2 Biological Basics

in the cells we consume as food. Whether it is animal protein or plant protein, all

proteins share some common features. We will consider these properties in this

section.

2.5.1 Proteins as Molecules

Let us start by describing proteins chemically. As we mentioned earlier, proteins

are long strings of chemical units known as amino acids. Twenty amino acids are

used by all biological systems. Some of their chemical properties are shown in

Figure 2.27.

Amino acids are made up of two parts: a carbon chain, sometimes known

as the R chain, and a nitrogen group known as the amine group. One end of the

carbon chain contains an acid structure, accounting for their designation as acids.

The carbon chain provides each amino acid with its unique chemical properties.

Amino acid structures are shown in Figure 2.27.

Amino acids bond to each other through a special kind of chemical connec-

tion called a peptide bond. Unlike the hydrogen bonds of DNA, peptide bonds are

true covalent bonds. That is, they result from the electrons within the amine group

being shared with the electrons of the acid group on the next amino acid. The

result is an extremely strong, flexible bond. Amino acids can be strung together

into long chains via these peptide bonds to form proteins.

Most proteins range between a few dozen to a few thousand amino acids

in length; but we don’t know of any specific upper limit to this length. So these

20 amino acids have a potentially infinite set of combinations, given the lengths

of possible proteins. However, in practice, many of these combinations would

be chemically or energetically unstable. A conservative estimate is that about

a million distinct amino acid sequences exist among all the organisms on the

planet.

Proteins are often complex three-dimensional structures because the amino

acids can interact with one another through the carbon chain portions of

the molecules. They can form hydrogen bonds and other weak interactions.

They can also form bonds that involve sharing electrons or trading electrons.

As a result, it is rare to find a protein that is just one long, straight chain

of amino acids. Rather, proteins are folded up into complex 3-D structures

(Figure 2.28).

Protein Structure

Protein structure occurs on four levels, each of which contributes to the over-

all shape of the protein. The first level, or primary structure, is just the string

of amino acids. This is the 2-D view of proteins. In cells, this string of amino

acids rapidly folds up into a 3-D shape that is composed of two kinds of sec-

ondary structures—level two of protein structure. Secondary structures include

the alpha (α)-helix and the beta (β)-sheet. The α-helix is a rigid corkscrew struc-

ture. It is often present to provide structural integrity within a protein. An

example is shown in Figure 2.29. The β-sheet is a flat layer of strands that

wrap back and forth as shown in Figure 2.30. This is also a rigid structure used

Chapter 2 Biological Basics 63

COO

C+H3N H

CH

H3C CH3

CH2

CH

H3C CH3

COO

C+H3N H

Valine
(val)

Leucine

(leu)

CH2

CH3

CH CH3

Isoleucine
(ile)

COO

C+H3N H

CH2

S

CH2

Methionine

(met)

COO

C+H3N H

CH3

CH2

COO

C+H3N H

Phenylalanine
(phe)

Amino acids with hydrophobic side groups

CH2

C

H2N O

COO

C+H3N H

Asparagine
(asn)

CH2

COO

CH2

Glutamic acid
(glu)

COO

C+H3N H

Amino acids with hydrophilic side groups

CH2

C

CH2

Glutamine
(gln)

COO

C+H3N H

H2N O

C

CH2

Histidine
(his)

COO

C+H3N H

HC N

CH

N
H+

H

CH2

CH2

CH2

COO

C+H3N H

CH2

NH3
+

Lysine
(lys)

CH2

CH2

CH2

COO

C+H3N H

NH

C

Arginine
(arg)

NH2

NH2
+

CH2

COO

COO

C+H3N H

Aspartic acid
(asp)

Amino acids that are in-between

H

COO

C+H3N H

Glycine
(gly)

CH3

COO

C+H3N H

Alanine
(ala)

C

COO

C+H3N H

Serine
(ser)

H

H OH C

COO

C+H3N H

Threonine
(thr)

CH3

H OH
CH2

COO

C+H3N H

Tyrosine
(tyr)

CH2

COO

C+H3N H

Tryptophan
(trp)

C

HC
N
H

CH2

COO

C+H3N H

Cysteine
(cys)

SH

CH2

COO

C H

Proline
(pro)

+H2N

H2N
C
H2

FIGURE 2.27 The 20 amino acids found in all biological systems. The chemical structure of an amino acid

determines its properties and will influence the shape and function of the resulting protein.

64 Chapter 2 Biological Basics

FIGURE 2.28 Proteins are made up of chains of amino acids that fold into complex

three-dimensional structures as shown here.

FIGURE 2.29 The α-helix is a common secondary structure in proteins formed by

hydrogen bonds along the peptide backbone (main carbon chain) of an amino acid

sequence.

Beta-sheet

Beta-sheet

Loop regions

FIGURE 2.30 The β-sheet is also a common secondary structure in proteins. It is

formed by hydrogen bonds across the peptide backbone (main carbon chain) of an

amino acid sequence.

to maintain structural integrity. The central portion of many proteins contains

a β-sheet.

These two structures are the most common secondary structures in proteins.

They are formed through hydrogen bonding between the amine (nitrogen) and

acid portions of different amino acids. Because these regions are the central part

of the amino acid chain, they are also known as the peptide backbone. Many

Chapter 2 Biological Basics 65

OH

OH

H

H

S

S

O

O

NH2

H2N

FIGURE 2.31 Disulfide bonds can form between two cysteines on different parts of a

peptide chain to create a secondary structure. The bonds are true covalent bonds (not

like hydrogen bonds) and are very stable even at high temperatures.

FIGURE 2.32 The full three-dimensional structure of a protein is known as its

tertiary structure. Note the presence of the secondary structures such as β-sheets and

α-helices. This is a good example of how secondary structure contribute to the final

tertiary structure of a protein.

different kinds of amino acids can participate in the formation of α-helices and

β-sheets because the bonds are formed along the main carbon chain rather than

with specific side chains.

Specific interactions with side chains can also create secondary structures.

For example, the amino acid cysteine contains a sulfur atom, which can bond to

the sulfur in another cysteine to create a disulfide bond (Figure 2.31). Disulfide

bonds are quite common in the proteins that make up hair. In fact, the curliness

of hair is determined in part by the presence of these disulfide bonds. The more

cysteine present in the hair protein, the more disulfide bonds formed, and the

curlier the hair. This is a good example of how secondary structure alone can

affect the resulting shape of a protein.

For most proteins, however, the real 3-D shape is formed when the secondary

structures fold up into a complete protein. The tertiary structure of a protein is its

final, three-dimensional shape as shown in Figure 2.32. The two most common

tertiary structures are globular and fibrous.

Globular proteins are often involved in mediating chemical reactions. For

example, the enzymes that break down food in your intestines are globular

proteins. So are the “machines” that process code in DNAStrings: both DNA and

66 Chapter 2 Biological Basics

FIGURE 2.33 The tertiary structure of collagen creates a ropelike appearance, which

is critical to its function in skin elasticity. Collagen is actually made up of three α-helices

that twist around each other to create its tertiary structure.

Beta domain 1

Beta domain 2

Alpha domain 1

Alpha domain 2

Fe

FIGURE 2.34 Hemoglobin, the protein that transports oxygen within the blood, is

made up two kinds of proteins. Hemoglobin has a total of four protein molecules, two of

each kind of protein, that together create its quarternary structure. Note the prevalence

of helices in these structures.

RNA polymerases are globular proteins. An example globular protein is shown

in Figure 2.32.

Fibrous proteins are most often part of structural units. For example, colla-

gen is the protein that allows your skin to be smooth and elastic (Figure 2.33).

Collagen fibers disintegrate over time, and as a result you develop wrinkles as

you grow older. As a piece of trivia, the most common protein in your body is

collagen: you have more collagen proteins in your skin than any other kind of

protein in any other organ.

Several protein chains can assemble together to create a larger structure. The

whole set of protein chains that constitute the protein is said to have quater-

nary structure (level four). A good example of such a structure is hemoglobin,

the molecule that carries oxygen in your blood. As you can see in Figure 2.34,

hemoglobin has four distinct protein chains, each with its own primary, sec-

ondary, and tertiary structure. The quarternary structure forms when the four

units assemble around an iron atom. It is the iron that binds and holds on

Chapter 2 Biological Basics 67

to the oxygen in your blood. The rest of the protein creates a stable chemical

environment so that the oxygen is not lost during transport.

2.5.2 Proteins as Engineered Machines

From an engineering perspective, each protein in a cell is part of a module that

will accomplish a given task. The way proteins perform their work is primarily

through chemical interactions with other proteins or molecules.

Protein Interactions

Recall the receptors on the surface of the E. coli cell that receives input about

the presence of food or toxins in the environment. That receptor is a protein

that changes its shape when a food molecule chemically binds to a part of it.

The change in shape is communicated to an associated protein on the inside

of the cell membrane. This protein then separates from the cell membrane and

can interact with various proteins within the cell. Each of those proteins then

interacts with others and so on until a protein binds the promoter (as described

in our discussion of the biological equivalent of the if–then–else statement in

DNAStrings). The result of all these proteins communicating with one another

is that “decisions” are made and new proteins may be generated depending on

circumstances.

Viruses

Ligands are not limited to just small molecules. They can be large pro-

teins in their own right. A good example of this is a special protein found

on the surface of HIV. These proteins can bind to specific receptors on the

cells that participate in the body’s response to infections—the immune sys-

tem. The receptors on these cells are actually specific for other molecules, but

HIV has evolved mimics of the real ligands. Because the chemical structure

of the virus coat proteins is very similar to that of the receptors’ actual ligand,

it can bind to the receptor. It then sets off a signaling cascade within the cell

(just like the real ligand would). This allows the virus entry into the cell. Once

inside the cell, the HIV viral genome takes over the cellular machinery for

reading, compiling, and executing DNAStrings code. The result is that the

cell simply becomes a factory for manufacturing virus rather than doing its

actual job.

If you think about receptors as input devices into the cell, then biological

viruses are exactly like computer viruses. They enter the cell by disguising

their true contents and appearing to be a real, harmless ligand. Once inside

the cell, they take over the cell’s computing and processing abilities to dupli-

cate themselves. When they leave the cell, the cell often dies through loss of

resources or because its membranes have been ruptured.

68 Chapter 2 Biological Basics

So how does this communication between proteins occur? They are the result

of chemical interactions. In the case of the E. coli receptor, the protein receptor

is able to chemically bind to various molecules. Each molecule that can bind a

receptor is known as a ligand. Every protein has specificity, that is, it can only bind

to certain kinds of ligands. Because each protein interaction is a critical activity

in the function of the cell and has to be closely regulated, very few proteins can

bind to broad ranges of ligands. Proteins that can bind many different ligands are

more difficult to control. So most cells have evolved multiple proteins to handle

specific types of ligands rather than having one master protein capable of binding

everything.

Within cells, groups of proteins often “band together” into complexes. For

example, although DNA polymerase is the main protein involved in DNA repli-

cation (Section 2.6.1), it is part of a larger complex. This complex includes the

proteins that unwind DNA, stitch the fragments of the strands together, and

many other proteins with functions related to DNA replication. The whole set of

proteins are required for DNA replication, and from a systems perspective, the

complex as a whole is a module. The same is true for RNA polymerase, which

“compiles” DNAStrings code into mRNA. It is also part of a complex of pro-

teins, all of which are required. Protein complexes are probably the most basic

modules present within cells.

Types of Protein Machines

It is far beyond the scope of this text to detail the many thousands of types of

proteins present in a cell. However, there are a few classes of proteins so common

and so important for cellular function that you will need to know about them.

We have talked a great deal about receptors, the input devices for the cells.

These proteins are known as transmembrane proteins because they usually traverse

the two layers that form the cell membrane. Most transmembrane (or TM) pro-

teins share certain common features. For example, to cross the membrane, they

must have stretches of amino acids that are chemically stable within the mem-

brane. The cell membrane is made up partly of fatty acids, and these molecules

are very hydrophobic. That is, they repel water. Think of adding oil to a glass of

water. The oil molecules tend to bunch up and exclude water from their interiors.

This is exactly what happens in the interior of the cell membrane. The fatty acids

assemble in a way that excludes water from the interior of the cell membrane.

To cross the cell membrane, all TM proteins have stretches of hydrophobic

amino acids. These are usually assembled into a set of α-helices so that the protein

can span the entire width of the cell membrane. However, most TM proteins also

have sections that will extend out past the cell membrane or extend into the

cytoplasm. Both of these environments are very rich in water. So TM proteins

also have regions that contain hydrophilic amino acids.

One of the key challenges with identifying proteins computationally is to

determine if the sequence of amino acids alternates between very hydrophobic

and very hydrophilic regions. If an amino acid sequence has such a characteristic,

then it is likely to be a TM protein. We will discuss issues of identifying protein

structure computationally in Section 9.3 of Chapter 9.

Chapter 2 Biological Basics 69

Glucose

Glucose-6-phosphate

Fructose-6-phosphate

Fructose-1,6-biphosphate

3-Phosphoglyceric acid

2-Phosphoglyceric acid

Phosphonolpyruvic acid

2 NADH

ATP Produced

ATP Produced

ATP Produced

ATP used

ATP used

Phosphoglyceraldehyde 1,3-Diphosphoglyceric acid

FIGURE 2.35 Glycolysis—one of the best studied metabolic pathways is common to

both bacteria and eukaryotes. The glycolytic pathway involves a series of biochemical

reactions that break down glucose (a sugar) to obtain energy. The energy is stored in

molecules of ATP.

Another class of extremely important proteins are enzymes. These are the

chemical catalysts that allow reactions to occur. As we mentioned earlier, chem-

ical reactions require very specific environments and conditions. Enzymes allow

reactions to occur by creating a microenvironment within the enzyme that has the

right conditions for the reaction. In biology, you can usually identify enzymes by

their names. Most enzymes end in the suffix -ase. For example, DNA polymerase

is an enzyme that creates the right environment in which nucleotide letters can

be strung together to form a DNA strand.

Many of the enzymes we know about are involved in metabolic pathways—

processes that allow molecules to be chemically modified and converted to yield

energy. Recall that in cells, energy is stored in a special molecule, ATP. All

cells have sophisticated mechanisms for transferring the energy stored in various

molecules into the high-energy bonds of ATP. Figure 2.35 shows one of the best

studied pathways for generating ATP from sugar molecules.

Why would cells need to transfer the energy to ATP? Why not just use the

energy inherent in any given molecule? The fact is that most molecules, especially

from substances we think of as food, have very low energy bonds. Breaking

each of these bonds would release just a small amount of energy. Sometimes,

a process that occurs within the cell requires more energy than the breaking of

such bonds can provide. For example, DNA replication requires about 60 kJ11 for

every nucleotide added to the new DNA strand. Rather than try and corral many

different types of molecules to obtain the needed energy for a process, cells use

one ATP molecule for each nucleotide added to the DNA strand. This simplifies

the process of obtaining and using energy within the cell.

11
This is exactly the amount of energy contained in two phosphate bonds of ATP.

70 Chapter 2 Biological Basics

ATP molecules in essence store the cumulative energy of many different kinds

of molecules. It turns out that breaking each bond of the three high-energy phos-

phate bonds yields about the right amount of energy for the majority of reactions

that occur within the cell. ATP is often referred to as the “currency” of the cell

to conduct its energy-exchange “business.” All cells use ATP as their currency,

so it is one of the few universal standards in living systems.

Enzymes are also present in many other pathways within the cell. One class

of enzymes is involved in regulating when certain proteins are turned “on” or

turned “off.” Many proteins are activated, or turned “on,” when they have a

phosphate group bound to them. Enzymes known as kinases add phosphate

groups to proteins. To turn off proteins, a separate class of enzymes known

as phosphatases come into play. These enzymes remove phosphate groups from

proteins. The phosphate groups come from ATP as well. So in a sense, these

enzymes are adding or removing energy from various proteins.

A signaling cascade, such as the one that communicates the presence of

food to the E. coli is usually composed of multiple kinases and phosphatases.

Essentially, information is transmitted around the cell when phosphate groups

are added or removed from various proteins.

Recall that we described the machine language of cells as being the language

of chemical interactions. We can refine that description now. In fact, for the vast

majority of processes in the cell, the actual “machine language” is expressed in

terms of the phosphate groups bound to or removed from various proteins. In

this sense, the machine language of cells is a binary one just like that in computing

systems. Unlike computing systems, however, the language is not expressed as 0’s

or 1’s. Rather, it is determined by the presence or absence of a phosphate group.

2.6 DATA MAINTENANCE AND INTEGRITY TASKS

Now that we understand how cells make proteins, it should be clear that the

DNA in the genome is central to the process. When we talk about mutations

that lead to natural selection, we are talking about changes to the DNA—the

genotypic changes we discussed earlier. Over time, these genotypic changes can

lead to phenotypic (i.e., large, visible) changes.

Small mutations to the DNA can affect how the code is read or compiled.

They can also directly influence the end product of the execution of the code: the

sequence of amino acids within a protein. The reason evolution can proceed is

that the DNA is open to mutation. On the other hand, too many mutations within

one cell can lead to disaster. If too many mutations occur, the code will be so

corrupted that the cell cannot read or execute it. Cells have to balance the need

to evolve in the long-term with the more immediate need to preserve the integrity

of their data and code.

2.6.1 Backing up DNA Data

The first and foremost concern of cells and computing systems is to maintain the

integrity of the code and data required for operation. In many computing systems,

Chapter 2 Biological Basics 71

this takes place in essentially three ways. The first is through “back-ups” of the

data and source code at routine intervals. The second is through error detection

mechanisms that can identify where the code is corrupted or modified at random.

Having found an error, systems must also have mechanisms for correcting those

errors to the best of their ability. We will see in this section how both computing

systems and cellular systems have methods for maintaining data integrity.

The first step to ensuring that data integrity is maintained is to back up the

data. In essence, a second copy of the data needs to be retained. This is important

not only to ensure a replacement if the first copy is destroyed, but also that errors

in one copy can be corrected by consulting the other copy. In computing systems,

back-ups can be done in one of two ways. The first is to store a copy of the data on

a separate, often different medium. For example, magnetic tapes can be used to

store all the data normally found on a hard drive. This approach is advantageous

because the tape archives can be stored in a separate location, thereby ensuring

that disaster at one location does not wipe out all the instances of the data.

However, tape archives have a limited storage capacity. As hard drives have

grown exponentially, backing up to a tape archive has become increasingly

impractical. Therefore, the preferred method for data storage and back-ups has

been to store to another hard drive. One solution is through a variety of RAID

(redundant arrays of inexpensive drives) architectures which allow for replica-

tion and storage of data across hard drives. The data is synchronized at regular

intervals across the RAID drives. The result is a mechanism for ensuring that

replicates of the data and their organization are retained.

Cells tend to favor the second approach to data storage. In fact, cellular back-

ups resemble a RAID array in that a duplicate of the data is stored in the same

medium and in the same location as the first copy. Specifically, cells adopt the

equivalent of a RAID1 configuration. In computers, RAID1 arrays essentially

write the same data to two separate disk drives. The result is a perfect replica of

the data. In terms of storage, this is an expensive operation. However, in terms

of reliability, it is the best choice.

For cells, RAID1 architectures are implemented through DNA. The physical

structure of DNA, the double helix, essentially provides two copies of the DNA

code. DNAStrings code is read off of just one strand of DNA at any given time.

The other strand therefore serves as the “back-up.” Each strand of DNA is like a

disk drive. The RAID1 configuration means that each strand is an exact replicate

of the other. In practice, the DNA strands have complementary sequences. But

the information content of each strand is identical.

DNA: Duplicating RAID Arrays

When cells divide to produce new cells, the DNA information of the cell must be

transferred as well. This is done by making a new copy of the DNA for each new

cell. Most cells divide in a binary fashion: one cell becomes two, two become four,

and so on. Each time, the cell must make two copies of double-helixed (“double-

stranded” in biology parlance) DNA for the daughter cells. This is done through

DNA replication. In essence, this process creates two new RAID1 arrays from the

existing one.

72 Chapter 2 Biological Basics

The first step in DNA replication is to separate the two strands of DNA.

Each strand of original DNA acts as a template for the generation of a new

strand. In general, the DNA strands are not completely unwound. Instead, a

small section of DNA is unwound at a specific location, known as the origin of

replication. As replication proceeds, this small “bubble” where replication begins

widens and spreads in both directions as shown in Figure 2.36. At no time in the

process is the DNA left in a single-stranded state for very long because single-

stranded DNA would be unstable and could be degraded just like single-stranded

mRNA.

DNA polymerase, the machine that does DNA replication, is a quite remark-

able parser of DNAStrings code. It reads each letter of DNA and then creates

the complementary letter, stringing these new letters together to create an entirely

new, complementary strand to the one it is reading. Like RNA polymerase, DNA

polymerase is very fast: it can replicate all 3.2 billion letters of the human genome

in about 1 hour.

The chemical structure of DNA forces DNA polymerase to move in the

5 -to-3 direction, adding new letters to the 3 end of the new strand. To get

the correct complement to the existing strand, DNA polymerase reads off the

template strand in the 3 -to-5 direction. That is, DNA polymerase synthesizes

in the 5 -to-3 direction and reads in the 3 to 5 direction. Recall that the two

strands of DNA run in opposite directions or are antiparallel. So for the reverse

strand, the one running from 3 to 5 , DNA polymerase can just move along

the strand, adding the appropriate complement letter to the new strand (see

Figure 2.36).

Lagging
strand

Leading
strand

Okazaki fragment

Helicase

Single strand,
Binding proteins

Topoisomerase

DNA ligase
DNA Polymerase

DNA primase

RNA primer

FIGURE 2.36 DNA replication involves a complex of several proteins that unwind

the DNA from the helix and then duplicate the strands. Some of the components are

shown here. The DNA polymerase on the leading strand can synthesize a continuous

strand, whereas the DNA polymerase on the lagging strand synthesizes short fragments

called Okazaki fragments. These are then stitched together to yield the complete strand.

(Source: This image was generated by Mariana Ruiz Villanreal and has been released to

the public domain.)

Chapter 2 Biological Basics 73

DNA polymerase makes

Okazaki fragment

DNA polymerase finishes

fragment

RNA primer replaced by

DNA

Gaps in Okazaki fragments

sealed by ligase

RNA primer binds DNA

FIGURE 2.37 For the lagging strand, DNA replication must occur in short stretches

that are then stitched together. The short segments that are initially synthesized are

known as Okazaki fragments.

However, for the forward strand, running in the 5 -to-3 direction, the

mechanism is more complex. The DNA polymerase skips forward a little dis-

tance, reads about 50–100 letters and synthesizes the complement sequence. It

then stops, moves forward a little more, and repeats the process. The result

is that many little fragments of DNA need to be stitched together to get the

complete strand of new DNA. These fragments, known as Okazaki fragments,

and a set of special enzymes, known as ligases, stitch the fragments together

(Figure 2.37).

When you view DNA replication under a microscope, it looks like one strand

is being replicated at top speed, while the other seems to be trailing along. The

strand that is synthesized continuously is known as the leading strand. The other

strand, being synthesized in short segments with stitching together, is known as

the lagging strand.

Why does DNA polymerase have to contort itself in this fashion? Why not

have two DNA polymerases, each running along the original DNA template from

the 3 -to-5 direction? In other words, why not have two leading strands instead

of just the one? There is not a clear answer to this, save that evolution is a “blind

engineer,” so design is not necessarily inherent to the process.

However, a simple chemical necessity may force the arrangement we observe

in cells. If there were two DNA polymerase complexes, one running in each

direction along the template, larger sections of DNA would have to be unwound to

provide access for these very large proteins. As mentioned earlier, single-stranded

DNA is not very stable. So by unwinding larger sections, the cell runs the risk

that the DNA template will degrade before the DNA polymerase can read the

74 Chapter 2 Biological Basics

template. Therefore, the cell might prefer to open a small section of DNA, allow

one DNA polymerase complex into the space, and accept the lower efficiency of

this arrangement.

This explanation is actually just speculation; we have no reason to believe

that evolution “thought” about the consequences of the arrangement. Like a

good programmer, evolution might simply take the approach that “if it ain’t

broke, don’t fix it!” In other words, having evolved a functional system for DNA

replication, any incremental changes might not be favorable enough to be selected.

As a result, new solutions might never appear simply because the current system

works well enough.

2.6.2 The Challenges of Data Management

Verifying Data Integrity

Cells need more than just a way to duplicate data and distribute it to their daughter

cells. They also need mechanisms to ensure that the current data have not been

corrupted. In other words, cells must verify the integrity of the DNA at regular

intervals. Cells use a variety of mechanisms to check the integrity of their data,

some of which have direct corollaries to computing solutions. Computing systems

must also ensure the integrity of their data, so we consider solutions from the

realm of computing first.

One of the key challenges in computing is to store data in as efficient a

way as possible. We just discussed the use of RAID arrays for backing up data

and suggested that cells take the RAID1 approach to data back-up. This is the

most expensive solution in terms of storage but is the best solution in terms of

maintaining data integrity. To get around the cost of storing multiple duplicates of

large amounts of data, computer scientists have developed a variety of solutions.

Chief among these are methods for data compression.

Data Compression

Data compression seeks to minimize the storage or bandwidth necessary to store

or transmit information. This is true whether we are considering binary strings

of information stored on a hard drive or DNAStrings code stored in a cell: it is

often necessary to compress the data to maximize storage efficiency. The size of

the hard drive, for instance, is a physical limitation that could determine the need

for data compression. The size of the cell is also a physical limitation and an

extreme one at that. Most eukaryotic cells are on the order of a few hundred

micrometers (μm, 10−6m) in diameter. The DNA of most cells, however, is many

times this length. For example, the DNA in any one of your cells if stretched out

would be about 1 m in length [1]! Obviously, massive compression is necessary

to fit the DNA into microscopic cells.

DNA is compressed, or “packaged,” by twisting it tightly around and around

until it is a tight ball. Think of a rubber band that you keep twisting and knotting

until you have a small, tight ball. This is similar to what happens to most DNA.

The actual packaging of DNA is handled by special proteins, chief of which are

Chapter 2 Biological Basics 75

the histones. These proteins bind at regular intervals along bare DNA, and the

DNA is wrapped around them, much as string would be wrapped around a yo-yo

(Figure 2.38).

DNA compression takes place on many levels. The first level involves four

types of histone proteins, which together form the core nucleosome. Each nucleo-

some covers about 250 nucleotides of DNA sequence. Between each nucleosome

is a short stretch of DNA, known as linkerDNA.A separate histone protein binds

to the linker DNA. The nucleosomes and linker DNA are then wrapped around

each other and packed tightly in a variety of ways, with increasing compression

at each level (Figure 2.39).

DNA compression, like other forms of data compression, presents some

practical problems. Although it is convenient to package the DNA in order to

fit it inside a cell, the DNAStrings code cannot be read or executed while it is

in a packaged (compressed) state. Just as with binary data, it must be uncom-

pressed before it can be utilized. Specific regions of DNA are unpackaged when

a particular gene’s worth of code is required.

Histone H1

DNA

Nucleosome

DNA

Complex of
8 histones

FIGURE 2.38 Depicted here are several histone proteins, each of which helps bind to

and wrap the DNA. The nucleosome contains four types of histones and has two

molecules of each of these four histones. In addition, another histone known as

histone H1 binds the DNA between nucleosomes.

DNA The Nucleosome “Beads-on-a-String” The 30nm Fibre Active Chromosome The Metaphase Chromosome

Isolated patches Genes under active transcription

Add core histones Add histone H1 Add further scaffold proteins Add further scaffold proteins

Less active genes During interphase During cell division

FIGURE 2.39 The many levels of DNA packaging are shown here. The first level involves the nucleosomes,

made up of DNA and histone proteins. Further packaging allows the DNA to be compressed up to 10,000-fold so

it can fit inside microscopic cells.

(Image designed and updated by Richard Wheeler.)

76 Chapter 2 Biological Basics

We do not fully understand how sections of DNA are unpackaged, but we do

know that most cells have unpackaged regions of DNA as well as tightly packaged

ones. The unpackaged regions, known as euchromatin, contain the DNAStrings

code that the cell requires to function. Regions that are not required are kept

tightly packaged and known as heterochromatin.

A multicellular organism such as yourself has many different cell types. Since

every cell in your body has the same genomic content,12 cells cannot just cut out

the parts of the genome that are not needed for their particular function. Rather,

they regulate which regions of the DNA are packaged or unpackaged. Only the

unpackaged euchromatin regions of the DNA can be compiled and executed.

For example, a liver cell’s euchromatin will include those genes (containing the

DNAStrings code) required for liver function. A brain cell, in contrast, would

have euchromatin in other regions of the genome that are required for brain

function. The regions of the DNA related to brain function are packaged as

heterochromatin in the liver cell and vice versa. This allows cells to maintain

their specialized functions even though each cell has the full genome. We refer

to specialized cells that have packaged unnecessary regions of the genome as

differentiated cells.

Redundancy and Data Compression

As long as storage devices and communications channels are perfectly reliable,

data compression is beneficial and problem-free. Unfortunately, reliability is not

always one hundred percent, and errors occur in hardware and noise (unwanted,

intrusive extra information) is invariably present on communication channels.

Error-detecting and error-correcting codes have been developed that use redun-

dancy to overcome problems associated with unreliable components and noisy

channels.

A simple error-detecting scheme for the transmission of numerical data is

sometimes referred to as a checksum. The idea is to repeatedly add up all the

digits in a number that you wish to store or transmit until only a single digit

remains. You then append that digital sum in a prearranged location. For exam-

ple, before you store or transmit the number 5751 you will calculate the sum

5+7+5+1 to produce 18 and then sum 1+8 to give the single digit 9. Then,

alongside the number 5751 you will also store or transmit that digital sum 9.

Let’s say you send 57519. Because of noise on the line, a recipient receives

56519. By forming the digital sum 5 + 6 + 5 + 1 → 17 → 8 and discovering

that 8 differs from the final digit 9, the recipient knows that an error occurred.

Of course, it is possible that two or more errors occur and cancel each other,

thereby causing the errors to escape undetected. But for very noisy lines we

can develop similar but more sophisticated error-detecting codes that use more

redundancy.

12
With some exceptions, as always. Certain cells in your immune system actually cut out portions of

DNA from their genomes as they become specialized to attack a specific infectious agent.

Chapter 2 Biological Basics 77

Stem Cells and Differentiation

You may have heard about stem cells, special cells sometimes taken

from embryos, which are able to become any kind of cell within an organ-

ism. These cells are unique in that they can access any part of the genome

they need. In contrast, differentiated cells have so tightly packaged certain

regions of the genome that they can never access them again. For example,

a normal skin cell cannot spontaneously become a liver cell because it can-

not unpack the DNA regions that contain the code to begin making liver

cell proteins.13 However, a stem cell from an embryo can do this: it can make

skin cells and, presumably, liver cells, muscle cells, and brain cells.

How do stem cells retain the ability to become any kind of cell? Part

of the answer lies in their source. Embryonic stem cells, which can generate

the widest range of possible cell types, are derived from very early human

embryos. During fertilization, the process that creates a human embryo,

an egg and a sperm combine to create a single cell that will give rise to all

the other cells in the body. This cell is said to be omnipotent, meaning it can

make any kind of cell. Over the course of the first two weeks after fertiliza-

tion, this cell divides over and over again to form a small ball of cells. Each

of these cells is also capable of becoming any kind of cell within the body.

It is these cells that are harvested and grown in the laboratory as embryonic

stem cells.

If these cells are left to grow in the embryo, they start the process of

specialization. Cells that are harvested in this stage are called pluripotent,

meaning they can still become many types of cells, but the range is more lim-

ited than that for the original fertilized cell. Eventually, each of these stem

cells will become even more specialized, resulting in a fully formed fetus and

eventually a human baby.

Some stem cells remain, however, even in the adult human. The best

known are the stem cells that reside in the bone marrow. These cells are

pluripotent: that is, they can become any kind of blood cell (red blood cells,

white blood cells, macrophages, and others). You may have heard of bone

marrow transplants for treating leukemia or other cancers that damage blood

cells. A bone marrow transplant essentially replaces the damaged stem cells

with fresh ones that will be able to make healthy blood cells.

The hope is that one day we will be able to use stem cells to replace

many different kinds of damaged cells from brain cells to skin cells. You can

find out more about stem cells by visiting the National Institutes of Health

Website at: http://stemcells.nih.gov/index.asp

13
An interesting exception to this general fact has been manipulated in cloning organisms. It turns

out if you place the nucleus of a fully differentiated cell such as a skin cell into an egg cell, then the
nucleus resets itself and can produce a viable embryo with every kind of cell type again.

78 Chapter 2 Biological Basics

In any case, we hope you see how, by storing or sending more than the

bare minimum of information necessary, it is possible to use that redundancy

to detect errors in storage or transmission. Some codes even go beyond error-

detection and provide reliable error correction. MacWilliams and Sloane describe

many in [8].

Cellular Approaches to Data Integrity

Cells have evolved error-detecting and error-correcting mechanisms to deal with

genomic replication, which is fraught with dangers. Mutations can and do occur.

Many mutations, however, are corrected. As usual, evolution has produced a

mechanism that allows just enough mutation for successful evolution to occur!

The previously mentioned discussion in [3] also considers the balances between

the competing concepts of efficiency of data transmission and the need for redun-

dancy to correct errors. Over 4 billion years, evolution has achieved an interesting

compromise.

Cells back up their data by making another copy of it. Any time you begin a

copying process, there is a small chance of an error occurring during the copying.

It’s hard to find information on error rates for copies to and from computer drives,

but one in a trillion is probably an overestimate. In the case of DNA replication,

the base rate for errors during copying is about 1 letter in 10,000 (104). This might

not seem so terrible until you consider the size of genomes, including ours. The

human genome has about 3.2 billion letters (3.2 × 109). How many errors would

you expect given the base error rate of DNA polymerase?

Obviously, this base error rate becomes dangerously high as the size of

genomes increases. Therefore, the DNA polymerase includes a proofreading

mechanism that checks each nucleotide that is added to the new strand against

the letter that is present on the template strand. If the wrong nucleotide is added,

the polymerase moves back one letter, removes the incorrect nucleotide, adds the

right one, and moves forward again. With just this basic mechanism of checking

the accuracy of duplication, DNA polymerase has an actual error rate of 1 error

in a billion letters (1 × 109). This means that across the entire human genome,

only three mistakes are likely in each replication cycle. This level of fidelity in

replication is quite extraordinary.

Catching and Fixing Errors

The cells in your body have probably undergone well over a hundred thousand

replication cycles already.14 So even three mistakes on average in each replication

cycle can be magnified over time. In addition, since conception, your cells have

been exposed to a large number of “insults,” or chemical and physical accidents

that could potentially damage your DNA. These forms of damage must also be

identified and fixed as quickly as possible.

Unlike computers, where technicians can find and repair errors on a hard

drive, each cell is essentially independent in terms of the code and data it has

14
Counting from the first cell division of the fertilized egg to adulthood.

Chapter 2 Biological Basics 79

available for use. Should an error occur in the DNA sequence and not be cor-

rected, the consequences could be disastrous for the cell and the organism. Either

the cell dies prematurely, or it begins to grow out of control—the disease known

as cancer.

Most cancers are the result of errors in the DNA sequence of key sections of

code that control when and how cells grow and replicate. Cancer is essentially like

code with an infinite loop. A program with an infinite loop could run forever, using

more and more computing resources until the system crashes. The same is true for

cells: errors in the DNA code cause cells to keep growing and dividing until they

use up all the system resources. So eventually the cell “crashes.” Unfortunately

for us, there is no way to “reboot” such a cell.

As a result cells have evolved powerful mechanisms to prevent cancer from

developing in the first place. The first step to preventing cancer is to prevent

errors in the DNA sequence during replication. We have already seen how DNA

polymerase reduces the chances of errors, but three errors are likely in each

replication cycle. So over time, that base error rate will cause random muta-

tions to accumulate. Other mechanisms are needed to compensate for this base

error rate.

The second line of defense is to regularly check the DNA sequence itself

to see if there are any errors. This is a bit like evaluating the checksum from a

transmission. In our example, we checked the last digit of the transmitted string

with the sum of the remainder of the digits. If these differed, we knew an error

had occurred. For DNA error checking, cells rely on the fact that DNA has two

strands, each a complementary copy of the other.

Errors in DNA usually take the form of mismatches. That is, given a T on one

strand, you would expect an A on the other strand. If DNA polymerase made a

mistake, then it might have inserted a C instead at that position. Mismatch repair

enzymes identify such mistakes and then make a “reasoned guess” about what

the correct sequence should be. We do not yet know how these enzymes work, but

they are able to tell which strand was the template during replication and which

was the newly synthesized strand. They selectively correct the new strand rather

than the template one. So in our example, if the template had a T and the new

strand has a C, the mismatch repair enzymes will replace the C with the correct

complementary letter, A. If the template strand had a C, they will correct the T

on the other strand to a G.

This mechanism is also powerful because it can handle errors that occur as

a result of exposure to chemical toxins and spontaneous degradation. Cells are

constantly combating the forces of entropy, or, to put it another way, the forces of

chaos. Chemical processes are the lifeblood of cells, but they are also the biggest

hazard for cells. In fact, one theory for why we age is that cellular processes in our

cells slowly degrade and damage our DNA and other components. Cells must

find ways to maintain the integrity of their data given that chemical processes are

necessary evils.

One of the most dangerous chemical processes at the DNA level is a sponta-

neous change: C’s tend to become T’s over time. This is a change in the chemical

structure of the nitrogen base part of the C nucleotide, and it occurs at some

80 Chapter 2 Biological Basics

relatively low rate. It also happens at random, so there is no reason why any

particular C would be changed over any other C. The same mismatch repair

enzymes that catch errors left by DNA polymerase can also catch these C-to-T

changes. These enzymes note the mismatch that occurs: if there was a C at one

point, the other strand should have a G. So if the enzymes spot a G-T combina-

tion, then either the G is wrong or the T is wrong. Somehow, the enzymes are

able to tell which is the wrong nucleotide. Again, it is not clear how the enzymes

know whether a C changed to a T at one point or whether the DNA polymerase

made a mistake and added a G instead of a A at that point. Yet, it appears

that they are able to reliably correct for most mistakes without introducing

new ones.

For the most part, cells try to deal with errors in their data with the RAID1

array approach. They check the back-up copy and compare the two copies. Errors

in the “new” copy are corrected based on the older one. The problem with this

approach is what if the error was on the “old” copy? The error is then likely to be

preserved and propagated in every generation. The good news is that most errors

or mutations have no long-term consequences for the cell. In fact, biologists have

speculated that large sections of the genome are composed of repetitive, non-

functional DNA. Mutations in these regions have no negative effect on the cells,

and so they are neither selected for or against. They are merely the flotsam and

jetsam of evolution, and they continue to be propagated faithfully across the

millenia.

Data Integrity in Extremis

Sometimes, however, just having two copies of data is not enough to

ensure data integrity. The bacterium, Deinococcus radiodurans, whose natu-

ral environment is the desert, has four complete copies of its genome. That is,

it has eight strands of DNA. Why would D. radiodurans need so many back-

ups of its DNA? It turns out D. radiodurans has an extraordinary ability to

survive harsh environments.

Researchers first discovered this organism in food-canning factories. Cer-

tain bacteria can grow in canned foods and cause deadly forms of food

poisoning (botulism, caused by Clostridium botulinum, is one such example).

So canning factories have developed a number of ways to kill such bacteria.

The standard approach is to irradiate the cans with UV (ultraviolet) light or

sometimes with low doses of gamma radiation (from a radioactive source).

Then, a random sample of cans is selected and tested to see if any bacteria

are present. In one such experiment, a certain bacterial agent kept showing

up regardless of how much radiation was used. Despite having been exposed

to radiation equivalent to several atomic bombs (1.5 million megarads of

(continued)

Chapter 2 Biological Basics 81

radiation), this organism continued to grow and thrive. The organism was

D. radiodurans.15

It turns out that D. radiodurans can resist extremely high levels of UV

and other radiation because it is uniquely adapted to overcome the dangers

of such exposure. Usually, when cells are exposed to UV or gamma radi-

ation, the DNA within the cell breaks apart or fragments. If it breaks into

very small pieces, the DNA cannot be reassembled into the complete genome

again. The cell self-destructs (in biology this is known as apoptosis) rather

than trying to salvage its fractured DNA strands.

D. radiodurans is not like most cells. It can reassemble at least one com-

plete version of the genome even when radiation has fragmented all eight

copies of the DNA into sections of a few hundred letters each. This is a

grand biological version of the shortest superstring problem in computing;

we will talk about this in much greater detail when we cover sequence frag-

ment reassembly in Chapter 4.

It is not enough to simply reassemble one complete copy of the genome

after DNA fragmentation occurs. Cells also have to correct for damage to the

DNA letters themselves that occur because of exposure to the radiation. How

does D. radiodurans have such an amazing tolerance for radiation-induced

damage to its DNA sequence? Part of the answer may be that it has four

times as many DNA repair enzymes as most other cells. In conjunction with

having eight copies of the genome, this ensures that at least one copy can be

reconstructed.

Why does D. radiodurans have all these adaptations in the first place? It

is possible that these adaptations were selected because of the harsh living

conditions of the bacterium’s natural habitat. D. radiodurans lives on the

surfaces of rocks in the desert and is exposed to much higher levels of UV

radiation than most other organisms. So this might have been a necessary

adaptation for survival in its particular environment.

Or, if you want to be more fanciful, you can subscribe to the view pro-

moted by the late Francis Crick and the renowned astronomer Sir Fred Hoyle:

D. radiodurans is an extraterrestrial bacterium sent to this planet by a supe-

rior intelligence from somewhere else in the galaxy. Its adaptations ensured

it could make it here without being destroyed by the high levels of radiation

present in outer space [5].

Regardless of which explanation you prefer, the case of D. radiodurans

highlights the remarkable adaptability of life. It also emphasizes just how

critical data integrity and maintenance are for cellular systems. In this sense,

cells are no different from computing systems: their survival depends on the

accurate retention of information.

15
You can learn more about D. radiodurans by visiting a number of sites including:

http://deinococcus.allbio.org/

82 Chapter 2 Biological Basics

KEY TERMS

blueprints (2.1)

evolution (2.1)

species (2.1)

mutation (2.1)

natural selection (2.1)

selected (2.1)

speciation (2.1)

genes (2.1)

genotypic (2.1)

phenotypic (2.1)

stochastic process (2.1)

selection pressure (2.1)

prokaryotes (2.2)

eukaryotes (2.2)

organelle (2.2)

complexes (2.2)

ionic bond (2.2)

covalent bond (2.2)

dipole (2.2)

hydrogen bonds (2.2)

endothermic (2.2)

exothermic (2.2)

activation energy (2.2)

macromolecules (2.2)

organic (2.2)

cell membrane (2.2)

hydrophobic (2.2)

hydrophilic (2.2)

bilayer (2.2)

aqueous (2.2)

homeostasis (2.2)

receptors (2.2)

cytoplasm (2.2)

cytoskeleton (2.2)

nucleus (2.2)

genome (2.2)

mitochondria (2.2)

adenosine triphosphate

(ATP) (2.2)

synthesized (2.3)

integrating signals (2.3)

signaling cascades(2.3)

deoxyribosenucleic acid

(DNA) (2.3)

nucleotide (2.3)

sugar–phosphate backbone (2.3)

pyrimidines (2.3)

purines (2.3)

thymidine (2.3)

cytosine (2.3)

adenosine (2.3)

guanine (2.3)

double helix (2.3)

complement (2.3)

antiparallel (2.3)

reverse complement (2.3)

forward strand (2.3)

reverse strand (2.3)

gene family (2.3)

promoter (2.3)

operons (2.3)

lac operon (2.3)

repressor (2.3)

inducer (2.3)

transcription (2.3)

RNA polymerase (2.3)

messenger RNA (mRNA) (2.3)

uracil (2.3)

degraded (2.3)

translation (2.3)

amino acids (2.3)

ribosome (2.3)

codon (2.3)

genetic code (2.3)

code (2.3)

transfer RNA (tRNA) (2.3)

anticodon (2.3)

start codon (2.3)

stop codon (2.3)

central dogma of molecular

biology (2.3)

reverse transcriptase (2.3)

open reading frames (ORF) (2.4)

exon (2.4)

intron (2.4)

splicing (2.4)

spliceosome (2.4)

5 cap (2.4)

polyadenylation (2.4)

dirty bit (2.4)

peptide bond (2.5)

primary structure (2.5)

secondary structure (2.5)

alpha (α)-helix (2.5)

beta (β)-sheet (2.5)

peptide backbone (2.5)

disulfide bond (2.5)

tertiary structure (2.5)

globular (2.5)

fibrous (2.5)

quarternary structure (2.5)

ligand (2.5)

specificity (2.5)

transmembrane proteins (2.5)

enzyme (2.5)

metabolic pathways (2.5)

kinase (2.5)

phosphatase (2.5)

DNA replication (2.6)

template (2.6)

origin of replication (2.6)

DNA polymerase (2.6)

Okazaki fragments (2.6)

leading strand (2.6)

lagging strand (2.6)

histones (2.6)

nucleosome (2.6)

linker DNA (2.6)

euchromatin (2.6)

heterochromatin (2.6)

differentiated (2.6)

checksum (2.6)

mismatch repair enzyme (2.6)

Chapter 2 Biological Basics 83

BIBLIOGRAPHY

1. Bruce Alberts, Dennis Bray, Karen Hopkin,

et al. Essential Cell Biology. Garland Science

Publishing, New York, 2004.

2. T. Cormen, C. Leiserson, and R. Rivest.

Introduction to Algorithms. MIT Press,

Cambridge, MA, 1990.

3. Douglas R. Hofstadter. Metamagical Themas:

Questing for the Essence of Mind and Pattern.

Basic Books, New York, 1985.

4. John L. Holland. The Surprising Archaea:

Discovering Another Domain of Life. Oxford

University Press, New York, 2000.

5. Fred Hoyle. Evolution from Space: A Theory of

Cosmic Creationism. Simon & Schuster, New

York, 1981.

6. S. Kalir, J. McClure, K. Pabbaraju, et al.

Ordering genes in a flagella pathway by analysis

of expression kinetics from living bacteria.

Science, 292:2080–2083, 2001.

7. L. M. Keegan, A. Gallo, and M. A. O’Connell.

The many roles of an RNA editor. Nat Rev

Genet, 2:869–878, 2001.

8. N. J. A. MacWilliams, F. J. Sloane. The Theory

of Error-Correcting Codes. North-Holland,

Amsterdam, 1977.

9. Michael Majerus. Melanism: Evolution in

Action. Oxford University Press, New York,

1998.

3
Wet and Dry Lab
Techniques

“An idea which can be used once is a trick. If it can be used more than once it

becomes a method.”

—G. Polya in How to Solve It: A New Aspect of Mathematical Method

I
nChapter 2 you learned some basics of biology and, it’s to be hoped, gained

an appreciation for the spectacular mechanisms by which cells manage the

information of life. The discovery of DNA’s structure and the unraveling of

the genetic code truly revolutionized science, thereby explaining mysteries that

had persisted for more than a century. An important offshoot of the ensuing

increased understanding of the molecular biology of the cell has been another

revolution of sorts—in biotechnology, which is the field of applied biology. The

relationship between biology and biotechnology is akin to that between com-

puter science, with its emphasis on theory, and the application of that theory in

the fields of software engineering and information technology. In biotechnology

many scientists have combined biological knowledge and theory with advances in

engineering and technology to put molecules to work in the laboratory to enable

further discovery. Here we will introduce you to some of the major “wet lab”

techniques that biological scientists employ. Keep in mind that development of

effective and appropriate computational approaches toworkingwith andmanag-

ing biological data (“dry lab” techniques, if you will) requires an understanding

of the nature of those data, including their biological context and a myriad of

technical issues.

Throughout this chapter, as in the rest of the book, we will use the human

immunodeficiency virus (HIV) as an exemplar. HIV today remains one of the

major public health threats worldwide. Although the virus genome has only nine

genes and encodes only 15 proteins, which may seem on the surface a simple

problem, the virus does not kill directly but rather disrupts the host’s immune

system. Major efforts in the fight against HIV require an understanding of how

the virus interacts with human immune cells and how to block those interactions.

Bioinformatics has played a major role in these endeavors, providing the means

to store and manage laboratory data, as well as to share and mine those data.

84

Chapter 3 Wet and Dry Lab Techniques 85

Wewill explore many of the bioinformatics applications to HIV data throughout

this book but will start here with a look at many general types of data and the

technologies that generate them.

Consider the following scenario: A major research laboratory has the goal

of developing drug therapies for preventing and treating infection with HIV. To

do so, the scientists must understand how the proteins of the virus interact with

the proteins of the host cell to allow the virus to make many copies of itself

and eventually to disrupt the normal functioning of the immune cell leading to

disease. This problem can be reduced to asking questions such as: What is the

nature of the language of HIV? Which DNAStrings determine the important

“words,” and how is the expression of these words controlled? How does the

language of the virus, in a sense, rewrite the book of the healthy, normal cell? To

answer these questions, the scientist has an arsenal of tools at his or her disposal.

Manyhave been around for some time, andothers, especially the high-throughput

techniques, are relatively new.

The study of any biological entity, whether it be mice, fish, fruit flies, worms,

bacteria, cultured cells, or virus, requires that the scientist has a source of the

organism on hand. It is relatively straightforward (although often expensive) to

maintain mouse colonies, tanks of zebra fish, or jars of fruit flies. Maintaining

stocks of a lethal human pathogen, like HIV, requires special precautions. These

include not only extrememeasures to prevent exposurewhenhandling the virus or

virus-infected materials but also biological interventions which cripple the virus

by knocking out function in genes that are essential for the virus to replicate or

infect cells. Here, we won’t detail those measures but will assume that a stock of

virus is available.

How might one go about studying the molecules that control the virus and

its activities? In Chapter 2 you learned that HIV is a family of retroviruses. This

means that their genomes consist of RNA rather than DNA. Recall also that

RNA is difficult to work with because of its propensity to be degraded. So, one

solution to this problem is to work with DNA copies of the viral genome rather

thanRNA. Interestingly, this involves the use of an enzyme, reverse transcriptase,

an important tool for the molecular biologist, that was first discovered in retro-

viruses such as HIV. In order to see how DNA copies of the HIV genome can be

made it is necessary to provide a little background information about some of

the most basic techniques of molecular biology.

3.1 HYBRIDIZATION: PUTTING
BASE PAIRS TO WORK

A fundamental technique with broad application is nucleic acid hybridization.

Simply put, hybridization is the complementary (or Watson–Crick) base-pairing

of two single strands of nucleotides to form a double-stranded nucleotide prod-

uct. Since DNA is a double-stranded structure held together by chemical and

86 Chapter 3 Wet and Dry Lab Techniques

FIGURE 3.1

Hybridization occurs

when two nucleotide

sequences anneal by

the pairing of

complementary bases.

CTTAGACTCTCGACTCAGATC

GAATCTGAGAGCTGAGT
C
TA

G

FIGURE 3.2

Labeling of

nucleotides (*) allows

the detection of

hybridization.

CTGAGAGCTGAG

CTGAGAGCTGAG

CTTAGACTCTCGACTCAGATC

physical forces it can be separated by disrupting these forces. Two single-stranded

nucleotide sequences are able to reanneal (or hybridize) if there is sufficient

complementarity between the bases and if conditions are favorable (Figure 3.1).

Fortunately, forthesakeofexperimentation,manyconditionscanbeleveraged

to control hybridization. We might want to force double-stranded molecules to

come apart, or “melt;” we might want to allow only the best matched sequences

to anneal; or conversely, allow those that aren’t perfectly matched to anneal.

In addition to Watson–Crick base-pairing in the hybrid, another factor that

affects the stability of the hybrid is the contribution of CG base pairs, which

have three hydrogen bonds, relative to the less stable AT base pairs, which

have only two. Characteristics of the solution in which hybridization occurs

such as salt concentration, temperature, and presence of denaturants are also

important, as is the length of time that hybridization is allowed to progress. The

products of hybridization may be DNA:DNA, DNA:RNA, or RNA:RNA. In

an experimental situation, we need a way to determine whether hybridization

has occurred. In solutions we can take advantage of the fact that DNA absorbs

electromagnetic energy in the ultraviolet range (maximum at 260 nm) and that

single- and double-stranded nucleotides absorb differently. Thus, we canmeasure

the quantity of nucleotides that exist in the reannealed double-stranded state.

Moreoften, detectionof hybridization is accomplishedby incorporating a label of

some type in one sequence, often referred to as the “query” or “probe” sequence.

The label is usually a radioactive, fluorescent, or enzymatic tag (Figure 3.2).

To sum up, at the end of a hybridization experiment, detection of the tag or

double-stranded nucleotide strings in solution tells us that our specific sequence

of interest is present and, depending on the experimental design, may tell us

how much and where. A partial list of hybridization applications includes iden-

tification and quantification of specific sequences in solutions, in cells or on

artificially created experimental substrata such as nylon membranes or glass

slides, estimation of the relatedness of nucleotide sequences, localization of DNA

and RNA sequences along chromosomes and elsewhere within cells (in situ

hybridization), the establishment of effective transfer of nucleotides to another

Chapter 3 Wet and Dry Lab Techniques 87

organism, high-throughput sequencing, and amplification of specific sequences

(via polymerase chain reaction, PCR). Of course, hybridization has a more natu-

ral role too, as it is integral to many physiological processes including replication

and recombination, to name but two.

3.2 MAKING COPIES OF NUCLEOTIDE
SEQUENCES

Just as we are accustomed to easily generating copies of important or valuable

information contained in written or digital documents, the lab scientist can make

copies of the information contained in nucleotide sequence so as to generate

enough material for experimentation and for “back-up” of the original sequence

information. When working with RNA, one of the first steps is to make cDNA,

which is short for complementary DNA or copy DNA (complementary is the

more common term. Do a Google search to see for yourself). cDNA is produced

from anRNA template, a synthesis reactionmade possible by the enzyme reverse

transcriptase (RT), an RNA-dependent DNA polymerase discovered in groups

of viruses known as retroviruses, including HIV. Do you see any problem with

“reverse transcription”? Recall that this is one of the prime examples of exceptions

to the central dogma, that is, genetic information flows backward, from RNA

to DNA.

To understand just how remarkable this is, think of a computing process

that is usually a one-way street. For example, many programs can take a file of

postscript commands and correctly render the corresponding image to a screen.

Reverse transcription is as noteworthy as would be a program that converted a

screen image into a postscript file. Reverse transcriptase is critical for the HIV

life cycle, unfortunately allowing it to enter the human genome, but the discovery

of RT also made possible the generation of cDNA in the laboratory, a basic

technique that supports many advanced technologies.

Hybridization is an integral part of the techniques used to make cDNA.

Like the other DNA polymerases, such as the enzyme responsible for DNA

replication, RT requires a double-stranded sequence as a starting point. In the

lab this is accomplished most often via the poly(A) tail, a naturally occurring

string of A’s which is added on to the 3 end of mRNA molecules as one of

the posttranscriptional processing steps in eukaryotic cells. A synthetic poly(T)

oligonucleotide is used to hybridize to the poly(A) tail of the mRNA template

(makes a poly(A)/poly(T) hybrid) and provide a starting point or “prime” the

reaction (Figure 3.3).

If a mixture of different mRNA sequences is present, then cDNAs com-

plementary to all of them will be made, as long as they have a poly(A) tail.

Sometimes primers are designed that are complementary to other sequences in

the mRNA of interest. Applications of cDNA synthesis are many. cDNAs, made

double-stranded, are used in cloning, which in this context means the insertion

of the cDNA into another piece of DNA called a vector in order to copy it.

88 Chapter 3 Wet and Dry Lab Techniques

FIGURE 3.3

cDNA synthesis

begins with the

hybridization of a

poly d(T) primer to

the poly(A) region of

an mRNA or viral

RNA. Reverse

transcriptase

synthesizes a

cDNA/RNA hybrid.

After removal of the

RNA template, the

cDNA is made

double-stranded with

the enzyme DNA

polymerase I.

Digestion of mRNA

Hairpin forms and

acts as primer

DNA polymerase I, dNTPs

Nuclease S1

digestion of hairpin

Reverse transcriptase, dNTPs (A,T,G,C)

T-T-T-T-T 5⬘

5⬘

5⬘

Poly(T) oligonucleotide primer

mRNA templateA-A-A-A-A

cDNA/mRNA hybrid

Double-stranded cDNA

T-T-T-T-T 5⬘

T-T-T-T-T 5⬘

T-T-T-T-T 5⬘

T-T-T-T-T 5⬘

A-A-A-A-A

A-A-A-A-A

A-A-A-A-A

Although many, relatively stable copies of an individual RNA sequence can be

made through cDNA synthesis, cloning the resultant cDNA into a vector will

facilitate easy storage, copying, and manipulation of the sequence. Cloning vec-

tors (Figure 3.4) are self-replicating, double-stranded DNA into which foreign

DNAcan be inserted in a process that produces recombinantDNA. It is recombi-

nant because it is a combination of both vector DNA and foreign DNA. Vectors

used today are highly engineered, and their components have been obtained from

many different sources. Popular cloning vectors are plasmids, isolated from bac-

terial sources, viral vectors, and engineered artificial chromosomes derived from

(RECOMBINANT)
Selectable marker

Selectable marker

(TRANSFORMANT)

Cloning

Vector

Promotor

Common features of cloning vectors

Multiple

cloning site

Ori

FIGURE 3.4 Cloning vectors contain sites that control the origin of replication (Ori)

of the vector in the host cell, a multiple cloning site for opening the vector DNA and

inserting foreign DNA, a promoter to control expression of the inserted DNA, and sites

to detect whether the host cells carry the cloning vector (transformant) and whether the

vector contains foreign DNA (recombinant).

Chapter 3 Wet and Dry Lab Techniques 89

chromosomalDNAofyeast andbacteria (YACsandBACs, respectively). Vectors

have been engineered to have certain basic components: a multiple cloning site,

to provide easy ways to insert the foreign DNA using restriction enzymes, genes

that code for selectable characteristics of cells carrying foreign DNA, and, of

course, regulatory elements that control replication of the vector and expression

of the genes carried in the vector. One of the earliest and best known vectors is

named PBR322.

At this point we need to step back and discuss the restriction enzymes in

more depth. Restriction enzymes are commonly referred to as “molecular scis-

sors,” and their discovery provided one of the most useful tools to the molecular

biologist. Many of these enzymes belong to a group of enzymes known as endo-

nucleases. The prefix endo- means that they act on, and cut, nucleotide sequences

at positions within the interior of the nucleotide string, rather than at the ends.

The “restriction” component of the name derives from the history of their discov-

ery and from their biological function. In the 1950s and 1960s it was observed that

phage (virus particles) were restricted in their ability to infect different bacterial

cells. A given phage may be able to infect one type of bacterium but not another,

whereas a second phage could infect only the latter. Years of investigation led to

the understanding that phage could successfully infect a bacterial cell if the phage

DNA had been protected by a chemical modification known as methylation. As

a defensivemechanism by the bacterium, phageDNA can be chopped into pieces

by bacterial endonucleases (the restriction endonucleases) but only when certain

nucleotides are unmethylated. The same nucleotide sequence, when methylated,

is protected from the enzyme attack. Thus, infection in a given bacterial cell is

restricted to only those phage whose DNA is protected from that bacterium’s

arsenal of enzymes.

A major breakthrough came in 1968 when H. O. Smith, K. W. Wilcox, and

T. J. Kelley, working at Johns Hopkins University, isolated and characterized

the first restriction endonuclease,Hind II, whose function depended on a specific

DNA nucleotide sequence. Working with Haemophilus influenzae bacteria, this

group isolated an enzyme, now calledHind II (the name is derived from the genus

and species names of the bacteria). It was found that Hind II always cut DNA

molecules at a particular point within a specific sequence of 6 base pairs (bp) but

would not cut at any other sequences. The specific sequence became known as the

recognition sequence [19]. Moreover,Hind II always cut the sequence between the

third and fourthnucleotides onboth strands, leaving twopieceswith “blunt ends.”

Many hundreds of known restriction nucleases are now known, both endo-

and exonucleases, some of which have specific recognition sequences and others

which don’t. Another well known restriction endonuclease is EcoRI, discovered

in E. coli. LikeHindII, this endonuclease has a recognition sequence of 6 bp, but

unlikeHindII or small (Figure 3.5), it makes an asymmetrical cut leaving “sticky

ends” due to an overhang of base pairs at both ends of the molecule. Notably,

many of the recognition sequences of restriction endonucleases are palindromes,

meaning that the sequences (on the two strands) read the same way forward

as back. For example, the recognition sequence for EcoRI is GAATTC—reading

90 Chapter 3 Wet and Dry Lab Techniques

Sma I
CCC

GGG

CCC

GGG

GGG

CCC

GGG

CCC

G

C T T A A

A A T T C

G
EcoRI

G A A T T C

C T T A A G

FIGURE 3.5 Restriction endonuclease SmaI recognizes a specific 6-bp sequence and

cuts both strands at the same site, leaving “blunt ends.” EcoRI recognizes a different

specific 6-bp sequence and makes an asymmetrical cut with “sticky ends.”

from 5 to 3 on either strand will be the same. The palindrome sequence is impor-

tant for recognition of the sequence by the endonuclease and also positioning of

the cut. For EcoRI, the cut is made after the G on each strand, resulting in the

overhangs (Figure 3.5). The discovery of themolecular scissors provided ameans

by which molecular biologists could “cut and paste” DNA molecules in a pre-

dictable, useful way. For example, a DNA molecule to be cloned can be cut with

a restriction enzyme, like EcoRI, and vector DNA can be cut with EcoRI, as

well. The sticky ends of the two can then be pasted together, or ligated, into one

contiguous DNA molecule as their overhangs base-pair.

The vector, now carrying the foreign DNA, is then put into bacterial cells

(affectionately known as bugs), in a process known as transformation. Under the

proper conditions many copies of the vector and its inserted cDNA are produced

by the bacterial cells. The bacterial cells are grownunder conditions that allow the

scientist to recognize which bacteria contain the recombinant DNA, and these

can then be isolated (Figure 3.6). A culture of millions of bugs, each carrying

self-replicating, recombinant vectors will efficiently generate many copies of the

sequence (think gene) of interest, which can be used in hybridization experiments,

sequenced, and then used to introduce foreign genes into cells, among other uses.

Often scientists will refer to cDNA libraries. A cDNA library is simply a

collection of cDNAs, cloned into appropriate vectors, which, in theory, represent

all of the mRNAs expressed in a given cell type or organism. Today it is a routine

laboratory procedure tomake cDNAlibraries, and it is also possible to select from

among myriad cDNA libraries available for purchase from biotech companies.

For example, one canmake (or buy) a human liver library, aDrosophila library or

an HIV cDNA library. In our scenario, the laboratory studying HIV will likely

generate HIV cDNA clones in order to have ready supplies of viral sequences

for experimentation. You may think of creation of the cDNA library as a way

for the scientist to “back up” the lab’s data. In fact, it is common practice to

freeze stores of cloned sequences as back-up in the case that mutation occurs in

sequences currently in use in the lab. Although the specific methodologies vary,

it is also fairly routine to make genomic libraries, which carry cloned segments

of genomic DNA, rather than cDNA.

Let us continue our analogy comparing the “normal” central dogma direc-

tion to the generation of a screen image from a postscript file. A cDNA

library can be compared to a set of premade small segments of postscript

commands that can be used to generate a collection of graphical components

that are likely to be of use in a given context. For example, if the context is

Chapter 3 Wet and Dry Lab Techniques 91

Isolate and collect mRNA

Cell or tissue

of origin

Formation of a cDNA Library

RNA cDNA

Insert into

bacterial

plasmids

Insert plasmids

into bacterial cells

Grow

Isolate individual

plasmids and

purify DNA

Sequence

from

recombinant

plasmid
DNA

Reverse

transcriptase

A
T

C C T A T
C G T A G

C T G G C T G A C T T T A

FIGURE 3.6

DNA can be cloned

into a plasmid or

other vector.

Recombinant

plasmids are then

inserted into bacteria

to generate many new

copies of the DNA.

“UMLDiagrams” the set of premadegraphical componentsmight consist of rect-

angles, subdivided rectangles, vertical lines, horizontal lines, lines with arrows,

and so on.

Collections of cDNA have many uses, as we’ll discuss later in this chapter

when we consider methods for studying gene expression.

3.3 AN EXPLOSION OF COPIES

Imagine now that you have very small amounts of a DNA of interest, almost

too small to detect, and certainly too small to work with. What can be done?

The polymerase chain reaction (PCR) to the rescue! PCR is another way to get

many copies of a sequence and it has become famous in the public eye for its use

in forensics. Known as amplification, PCR is a rapid process that can be auto-

mated and generates billions of copies of DNA within a matter of a few hours.

The PCR process [17], invented by Kerry Mullis in 1983 and for which he won

the 1993 Nobel Prize in chemistry, was a major scientific breakthrough and was

made possible by the discovery of heat-stable polymerases in bacteria living in

hot springs. Thomas Brock, the bacteriologist who discovered and learned how

92 Chapter 3 Wet and Dry Lab Techniques

to grow the ancient heat-tolerant bacterium, was interested, in studying bacteria

in simple, real-world environments [3], he was not thinking about revolutionizing

the world of molecular biology. Brock donated a culture of Thermus aquaticus

to a public repository known as the American Type Culture Collection, enabling

the eventual discovery of Taq polymerase (from Thermus aquaticus) and its later

use in PCR—a great example of serendipity in science and a tribute to the value

of basic science. Unlike most polymerases, Taq remains active even at 100◦C

the boiling point of water and a temperature that would unfold and inactivate

other polymerases. That feature is critical because in order to make a copy, a

polymerase needs access to a single strand of the double-stranded DNA. In a

test tube, separation of the strands can be accomplished by heating to denature,

or “melt,” the DNA, breaking its bonds. In PCR, the DNA template is heated

to approximately 90–95◦C and then cooled somewhat to allow specific primers

to base-pair, or anneal, with the template DNA. Two primers, which bind to

opposite strands and are usually up to 400 bp apart along the template DNA,

are added and where these primers bind effectively delineates the region of the

DNA to be amplified and the place where replication starts. The PCR reaction is

set up in vitro (in a small vial) and contains template DNA, Taq polymerase, all

four nucleotides as building blocks, primers that flank the target sequence and

other goodies such as appropriate ions. Taq polymerase synthesizes a comple-

mentary strand of DNA from each primer so that each sequence has now been

doubled (Figure 3.7).

The novelty comes next when the entire solution is heated again (which is

okay with Taq) to denature the strands and allow another round of replication.

Each new strand can now act as a template and be doubled again. This process

of denaturing, annealing, and extension, known as a cycle, is repeated over and

over, typically for 30–40 cycles. After a few cycles, most of the newly synthesized

DNA is of a discrete size (determined by the distance between the two primers;

Figure 3.7), and this DNAwill be doubled with each cycle (logarithmically). The

number of copies at any given point, thus, is theoretically 2Ncycles (Figure 3.8).

Fortunately, a machine called a thermocycler can accomplish all of the nec-

essary temperature changes efficiently so that each cycle completes in less than

a minute. Once the reaction is started, human intervention is not needed until

the end. Not only is this process convenient, but it reduces the possibility of con-

tamination with trace amounts of DNA—a hallmark of the sensitivity of PCR.

Computer scientists are accustomed to thinking about performance issues when

writing code that requires the computer to perform many operations. It is not

a good sign when complexity analysis shows that an algorithm is exponential.

One way to enhance performance is to parallelize the algorithm so that multiple

processors can be crunching the numbers simultaneously. This requires that the

algorithmic operations can be separated into individual components and that the

communication between processors is good when the data are interdependent.

The PCR reaction rapidly generates new sequences exponentially and perhaps

can be thought of as a biological form of parallel computing. Each molecule of

Taqpolymerase canbe considered aprocessor that carries outmanyoperationson

the primed template, incorporating nucleotides one by one. These “processors”

Chapter 3 Wet and Dry Lab Techniques 93

(b) Primer

Primers

2 Primer 1

PCR amplification of target sequence

Target
double-stranded DNA

Extend primers

More cycles

(72⬚C)

(72⬚C)

Separate strands

and anneal primers

Separate strands

and anneal primers

5⬘

5⬘ 3⬘

5⬘ 3⬘

5⬘ 3⬘

5⬘ 3⬘

3⬘

5⬘3⬘

5⬘3⬘

5⬘3⬘
Primers for
next cycle

Extend primers

(c)

(d)

(a)

(65⬚C)

(94⫺96⬚C)

(94⫺96⬚C)

(65⬚C)

FIGURE 3.7 The target sequence, delineated between two primers, is amplified in a

reaction that is repeated many times.

can function independently and only depend on prior reactions for synthesis of

new template strands, which are easily “communicated” in the solution. The sim-

plicity and formidable power of this technique can probably best be appreciated

by considering Mullis’ own words [16]:

Beginning with a single molecule of the genetic material DNA, the PCR can

generate 100 billion similar molecules in an afternoon. The reaction is easy to

execute. It requires no more than a test tube, a few simple reagents and a source

of heat. The DNA sample that one wishes to copy can be pure, or it can be a

minute part of an extremely complex mixture of biological materials. The DNA

may come from a hospital tissue specimen, from a single human hair, from a

drop of dried blood at the scene of a crime, from the tissues of a mummified

brain or from a 40,000-year-old wooly mammoth frozen in a glacier.

Another important consideration is that sometimes we need to start our

amplification from RNA. To address that need a variation on PCR, RT-PCR,

has been developed. RT-PCR starts with a reverse transcriptase step (remember

cDNAsynthesis?) becauseTaqpolymerase cannot useRNAas a template. Exper-

imental conditions keep traditional RT-PCR from being truly quantitative and

94 Chapter 3 Wet and Dry Lab Techniques

Template DNA

1 molecule of double-stranded DNA
2 copies of gene of interest

2 molecules of double-stranded DNA
22
⫽ 4 copies of gene of interest

4 molecules of double-
stranded DNA
23
⫽ 8 copies of gene of interest

8 molecules of double-
stranded DNA
24
⫽ 16 copies of gene of interest

First cycle

Second

Third

Gene of interest

FIGURE 3.8 PCR reactions typically are carried out for 30–40 cycles. The number of

copies of DNA increases exponentially. Although not shown in this simple example,

early cycles produce DNA strands that are longer than the sequence of interest. After a

few cycles, most of the DNA in the reaction is of one size, determined by the distance

between the two primers.

limit its use for comparing amounts of RNA between samples. For example, the

reaction eventually runs out of steam, causing a gradual leveling off. A solution to

this problem is Real-time PCR, a technique in which each amplification reaction

is measured only when it is in its early logarithmic phase.

Exercise 3.1 Write aprogramto simulate thePCRprocess. Oneapproach is todefineaPCR
class that contains a collection of DoubleDNAStrand objects, a collection
of Nucleotides, a collection of Primer objects, and an empty collec-

tion of SingleDNAStrand objects. DoubleDNAStrand objects have a

denature() method that gives rise to two SingleDNAStrand objects.
Primer objects have an extend() method that relies on the availabil-

ity of Nucleotides to build a DoubleDNAStrand object containing the
Primer’s string of nucleotides together with the reverse-complement string
of theSingleDNAStrand object. Addmethods to thePCR class so that you
can simulate the denaturing and annealing processes. Add a certain amount

of randomness so that some SingleDNAStrand objects will fail to find the
required Primers to extend. Find out more about why PCR is not, in prac-

tice, an exactly exponential process. How close does your simulation come

to real-life experience?

3.4 SEQUENCING DNA STRINGS

Many applications in molecular biology and genetics require that we know the

sequence of a nucleic acid. Ideally, this means that the sequence is free of errors

Chapter 3 Wet and Dry Lab Techniques 95

and without breaks. In practice, we often settle for less, although the rapid, high-

throughput generation of DNA sequence today can be done with greater than

99% accuracy. DNA sequencing plays an important role in the study of HIV

pathogenesis and also in identifying viral variants, which is important for man-

aging the disease. Although the genome of HIV has been fully sequenced (many,

many times) and its nine genes and 15 proteins are known, the situation is not

as simple as it may seem. The sequence of HIV genomes is actually extremely

heterogeneous, primarily because the reverse transcriptase enzyme does not have

“proofreading” ability. That means that errors introduced spontaneously dur-

ing the viral reverse transcription process are not corrected and the sequence

is not copied with fidelity. The heterogeneity of the viral genome is one of the

major hurdles in developing effective vaccines and drugs to control HIV infec-

tion, and patients can develop drug resistance due to sequence variation over the

course of their treatment. It is important that researchers can accurately read

the sequence and identify variants of the virus. This process of genotyping and

DNA sequencing is the gold standard for genotyping HIV from patient serum or

typing laboratory stocks.

How is sequencing achieved? If we have only RNA, not surprisingly the

usual strategy is first to convert the sequence to cDNA, since RNA is so much

more difficult to handle. Of course, as previously mentioned, the intrinsic error

rate associated with reverse transcriptase already introduces a potential for some

inexactness in the sequence. In the case of genotyping HIV, it is common practice

to start with an RT-PCR reaction to generate sufficient amounts of viral DNA.

Assuming we have DNA, then, how can the nucleotide sequence be obtained?

Sequencing DNA on a large scale has been made possible by a breakthrough

that predated PCR but similarly dramatically changed the research landscape—

the development of new reagents and their use in new analytical methods. The

central role and importance of rapid DNA sequencing to the genome projects

(human and otherwise) cannot be overstated. As the term implies, DNA sequenc-

ing is the process of determining the precise sequence of nucleotides in a DNA

sample. In the mid-1970s new sequencing techniques were developed in two

competing research laboratories, and each method subsequently came to be

known among scientists by the names of its architects. Maxam and Gilbert

sequencing (named for Allan Maxam and Walter Gilbert) [15], determines the

DNA sequence by selective chemical cleavage of radioactively labeled DNA,

which produces a signature pattern. Sanger sequencing (named for Fred Sanger)

[20], also called dideoxy sequencing, relies on DNA synthesis in the presence

of chain-terminating dideoxy nucleotides to generate a set of fragments that

can be resolved to reveal the DNA sequence (Figure 3.9). The Maxam and

Gilbert method is considered to be outmoded and so will not be discussed in

any detail here, whereas the Sanger dideoxy chain-termination technique is the

cornerstone for much of the high-throughput automated sequencing used today.

The Sanger method applies the theory of DNA replication to the sequencing

problem. DNA polymerase is used to extend an oligonucleotide primer that is

annealed to the template single-strandedDNAof interest. DNA synthesis occurs

in the presence of natural precursor deoxynucleotide triphosphates (dNTPs)

96 Chapter 3 Wet and Dry Lab Techniques

and synthetic dideoxynucleotide triphosphates (ddNTPs). The latter are human-

made chemicals and their synthesis provided one of the breakthroughs leading

to the development of the Sanger method. Dideoxynucleotide triphosphates are

referred to as chain-terminating because once a ddNTP has been incorporated,

synthesis cannot continue due to the lack of a 3 -OH group.

To accomplish sequencing, four separate reactions are run—one for each of

the four ddNTPS (ddATP, ddCTP, ddGTP, ddTTP). The key is that all dNTPs

are present in excess relative to the given ddNTP in a single sequencing reaction.

As the replication machinery cranks out many, many DNA synthesis reactions,

all starting at the same position in the template, a normal dNTP usually is incor-

porated at each position, but every so often a ddNTP is incorporated. The chain

is terminated at that base and falls away from the enzyme. For example, in a given

reaction containing a template DNA sequence of interest, dNTP precursors, and

ddGTP, a nested set of all varying-length DNA products will be randomly gen-

erated starting at the first base after the oligonucleotide primer, each product

representing termination at a different “G.” So, all we have to do to find out

where all theG’s are in the sequence is to determine the length of each new DNA

product (Figure 3.10).

Similarly, we can find the positions of all the C’s, A’s, and T’s by analyzing

the length of the DNA sequences generated in each respective reaction. If you

think about it, it will make sense that the ratio of dNTP:ddNTP needs to be high

enough to generate sequence data for sequences that are hundreds of nucleotides

in length and also that it is more difficult to generate a sequence close to the

primer.

FIGURE 3.9

Dideoxy nucleotides

are used as chain

terminators in DNA

sequencing. The

dideoxy NTP lacks

the 3 hydroxyl.

O

CC

Base
Normal

nucleotide
triphosphates

Dideoxy

chain

terminators

OH

3⬘ 2⬘

1⬘4⬘

3⬘ 2⬘

1⬘4⬘

5⬘

5⬘

H

CH2

CC

P P P O

P P P O

O

CC

Base

H H

CH2

CC

Chapter 3 Wet and Dry Lab Techniques 97

TACCAGCGAT

ddATP

A G C T Primer

ddGTP ddCTP

Primer

ddTTP

Strand to be sequenced

4 Reaction mixtures

Each with different

“stopping” nucleotide

Nested set of products

Sequence

of

newly

synthesized

strand

A
T
C
G
C
T
G
G
T
A

A T C G C T G G T A

T C G C T G G T A

C G C T G G T A

G C T G G T A

C T G G T A

T G G T A

G G T A

G T A

T A

A

FIGURE 3.10 Individual sequencing reactions for each nucleotide are loaded into

separate lanes of a slab sequencing gel (or onto a column) to separate the newly

synthesized, and terminated, DNA sequences by size. The sequence may be read directly

from the gel.

Exercise 3.2Write a program to simulate Sanger sequencing. You will need a Primer
class (containing a string of Nucleotides) and a SingleDNAStrand
class.When you have objects of both classes, you can start theDNAsynthesis

process in the presence of a large number of nucleotides, a small proportion

of which are ddNTPs and which, as soon as they are incorporated into the

growing DNA, will terminate the process. Your simulation should enable

you to adjust the ratio of ddNTPs to dNTPs and obtain statistics about how

many DNA molecules of what length are produced. When your simulation

is successfully running, try to answer the following question: Do you have

“plenty” of molecules of all possible lengths? Or are there some lengths of

molecule in short supply?

Prior to the advent and wide availability of automated sequencers, scientists

would obtain the sequence by running each of the four samples in separate lanes

of a large polyacrylamide gel in a process known as electrophoresis. This sepa-

rates the DNA products by size and is done under conditions that can resolve

differences in length of only 1 nucleotide. Since the synthesized DNA products

contain some radioactive or chemically labeled precursors, we can detect them

and distinguish them from starting, template DNA. When run on a gel, which is

then dried and used to expose X-ray film, the products are visualized as bands,

and the sequence is simply read by following the ladder of bands across the four

lanes from the bottom to the top of the gel (see Figure 3.10).

98 Chapter 3 Wet and Dry Lab Techniques

In practice, to help ensure accurate sequencing and to produce contigu-

ous sequence, double-stranded DNA is usually sequenced from both ends and

the sequence is generated from at least six overlapping reads. You have probably

guessed that manual sequencing can be time-consuming and tedious, and created

a bottleneck for such ambitious projects as sequencing the entire human genome.

The technological advances that came about with automated DNA sequencers,

invented by Leroy Hood in 1986, broke down many of the barriers to rapid,

high-throughputDNAsequencing. Varying degrees of automation are nowavail-

able, ranging from automatic setup of the reactions to automatic readout of the

sequence to a computer. Rather than radionucleotides, safer, easier to dispose

of, fluorescent nucleotides are now used and all four sequencing reactions can be

run together through the gel (often now a small, capillary gel) because each fluo-

rescently labeled ddNTP can be distinguished by its unique color as it fluoresces

at a different wavelength under a laser. As the sequencing reactions run past the

laser, the fluorescence output is stored as a chromatogram (Figure 3.11).

Typically, the average read length of automated sequencers is about

600–700 bp of sequence/run but only about 500–550 bp of that sequence is con-

sidered reliable (see preceding discussion). A large number of errors resulting

from poor resolution toward the end of the sequence is to be expected and will

FIGURE 3.11 Automated sequencers produce a chromatogram showing individual

peaks at each position in the sequence and the outcome of base-calling for each peak.

Sequencing the relatively small HIV genome (<10,000 bp) seems like a fairly easy task

with current technology. Indeed, the major challenges reside in the need to sequence

many genomes, or specific portions of genomes, frequently because of the wild variation

that occurs. What about the case of the human genome?

Chapter 3 Wet and Dry Lab Techniques 99

require the scientist to do some editing. Today, because most of the biotechnol-

ogy of DNA sequencing has been standardized and automated, it is probably

fair to say that the major challenges for the lab scientist lie in working with the

computer and the software. Advances continue to be made in sequencing tech-

nologies, allowing more sequences to be obtained in a single run and facilitating

a faster total process. There is also room for improvement in the image processing

required for automatic reading of the sequence (known as “base-calling”) from

the laser scan. Typically, sequencing is carried out today in a DNA sequencing

facility where proprietary software specific to individual sequencers is used, and

the resultant sequence files are sent out to the investigator. Several free or rela-

tively inexpensive software packages are available for individuals to use outside of

the facility, which allows for viewing and manipulation of the electropherogram

and the text files. One such program is Chromas, which allows import, viewing,

base call editing, and export of sequence files.

In retrospect, perhaps the sequencing of the human genome seems a foregone

conclusion once scientists had DNA sequencing technology in hand. However,

the road to this achievement, although shorter than expected, was littered with

controversy. First formally proposed in the mid-1980s, some parties hotly con-

tested the feasibility and ethics, as well as the public versus private nature of

such a venture and related copyright and patent issues surrounding the genomic

sequence. A complete timeline of the major players and events that led up to the

sequencing of the human genome has been published in a special issue of Science

[22] that is free and open to the public, a situation that is telling of the importance

of this information.

The sequencing of the human genome is often portrayed as a race between

two competing entities: the government-sponsored Human Genome Project at

the National Center for Human Genome Research (NCHGR, renamed the

NationalHumanGenomeResearch Institute, NHGRI, in 1997) led first by James

Watson and then Francis Collins, and the private efforts by Craig Venter at The

Institute for Genome Research (TIGR) and Celera Genomics. The perception of

a race likely arose from the heated debates surrounding the different strategies

adopted by these two projects. Which would be fastest? Which would be more

effective at producing finished sequence? Althoughmired in ethical controversies

and disagreements over the “best” genome sequencing strategies, both efforts

published draft human sequences in the same week in 2001, one in the journal

Science [27] and the other in the journal Nature [11]. Moreover, each strategy

benefited from the other and, of note, current genome strategies are a hybrid of

both approaches.

3.5 THE HUMAN GENOME PROJECT:
COMPUTING TO THE RESCUE

For a moment, let us go back in time to late 1999. The human genome projects

are hurtling to a conclusion. There are two projects: one funded by a consortium

of international agencies, known as the “public” project, and the other funded

100 Chapter 3 Wet and Dry Lab Techniques

by the private company Celera Genomics Corporation. By all accounts, the lat-

ter is nearly ready for publication, while the former is struggling to completion.

The stakes are enormous, and the politics as heated as they can get in academia.

Scientists in both camps are busy making exorbitant claims and ludicrous accu-

sations. This is high drama as almost never happens in science. Then, suddenly,

in June 2000, both projects release versions of the genome simultaneously. In a

carefully scripted White House ceremony, then President Bill Clinton congratu-

lates Dr. Francis Collins, head of the International Human Genome Sequencing

Consortium, and Dr. J. Craig Venter, President of Celera, for their tremendous

contributions to mankind and scientific knowledge [24]. Everyone shakes hands,

takes pictures, and smiles. The story behind that happy little ceremony is an inter-

esting tale, and one which could have ended very differently but for a small group

of dedicated researchers who specialize in data visualization.

To understand the story of the Human Genome Project is to take a look at

some of the challenges and successes of the nascent field of bioinformatics. This

textbook has focused on introducing you to the methods and ideas that created

this field. This project, however, will take you on a tour of a different kind: you

will encounter both sophisticated computational solutions to extremely difficult

data management problems and the people who participated in the innovations

you will read about. The story of the human genome is as much about the people

who sequenced almost all of the 3 billion base pairs of humanDNA as it is about

each base pair of that final, published sequence.

3.5.1 Mission Impossible:
Sequencing the Human Genome

In the latter part of the 1980s, scientists at theNational Institutes ofHealth (NIH)

and its counterparts in Europe and Japan began proposing an ambitious new

project. They argued that it was time to stop sequencing small sections of human

genes and take the big plunge. It was time to sequence the entire human genome

so that the full complexity of it would be laid bare and ready for investigation.

At the time this project was proposed, it was audacious in the extreme.

Sequencing technology was in its infancy, and even sequencing a few megabases

(millions of base pairs) of DNA required months if not years of effort. In

Section 9.1, you will see how visualization aids the process of calling bases in

DNA after a sequencer has completed its run. In the late 1980s, the process of

deciding what each base of the sequence should be was still done by hand. That

is, a human being would sit down with a picture of the sequencing electrophore-

sis gel and try to decide what each base of the sequence would be. An example

sequencing gel is shown in Figure 3.12.

Given the state of technology, and the fact that reading even a few hundred

bases fromagel inonedaywas considered fast, many scientists scoffed, “Sequenc-

ing the human genome,” they said, “will be the graveyard of a thousand graduate

students.” Or words to that effect. Essentially, the argument against sequencing

the human genome went like this: it will take too long and require too many peo-

ple to dedicate so much of their time as to be impossible. In a sense, the naysayers

Chapter 3 Wet and Dry Lab Techniques 101

G TA C

FIGURE 3.12 An example of a sequencing electrophoresis gel. Each column

represents one of the four nucleotides. The position of the band in each column and row

indicates the base at the position in the sequence. To read the sequence, you would start

from the bottom of the gel and work your way up.

(© Scott Camazine/PhototakeUSA.com)

were right. It would take a long time. The initial estimate by the NIH was that it

would take 20 years, but that was considered an optimistic timetable.1 It would

require a huge amount of staffing power and resources, and some argued that

those resources should be dedicated to other, more pressing causes.

Yet, the romantic visionaries won out. They argued that sequencing the

humangenomewouldbe like landingapersonon themoon. Itwouldbe a singular

accomplishment of the truly extraordinary, and that whatever quibbling might

occur regarding its scientific merits, the opportunity was ripe to aim for some-

thing bigger and better than anything we had done before. Through the late

1980s, the debate wandered back and forth, until finally, a new voice weighed in.

James Watson, the codiscoverer of the structure of DNA, appeared in public on

numerous occasions championing the cause of the Human Genome Project. His

tremendous stature within the biological community settled the debate once and

for all; the NIH and a consortium of international research institutes would fund

the sequencing of the human genome.

In the early 1990s, an ambitious young molecular biologist became excited

about the idea of sequencing genomes. He had a new method for sequencing,

1
In reality, it took just under a decade.

102 Chapter 3 Wet and Dry Lab Techniques

and he was convinced it was ready for use in sequencing genomes. That man was

Dr. J. CraigVenter, and hewould go on to play a central role in the human genome

drama. But back in the early 1990s, Venter was more interested in a new sequenc-

ing technology known as whole-genome shotgun sequencing (see Chapter 4).

Using this method, he and his colleagues sequenced one of the first complete

genomes. Itwas the genomeof a nasty bacterium,Hemophilus influenzae, that can

cause fatal illnesses in young children and the elderly [6]. They did the sequencing

in a record 9 months, a fact that Venter would tout often in the years to come.

Venter took the whole-genome sequencing technology with him when he

founded a company, Celera Genomics, to sequence other genomes. The group at

Celera sequenced several other bacterial genomes, and then in quick succession,

portions of a variety of eukaryotic genomes. Then they tackled a real challenge:

the genomeof the fruit fly,Drosophilamelanogaster.With theDrosophila genome,

the group at Celera had many things to prove. They had to prove that the whole-

genome shotgun sequencing approach could yield a reliable final assembly; that

the assembly process could overcome obstacles such as repeat regions, trans-

posons, and other oddities; and that it could yield a final assembly on a genome

that was nearly a hundred times the size of the bacterial genomes they had com-

pleted before. In early 2000, the Celera group published the genome of the fruit

fly to great fanfare and general enthusiasm [1]. Again, they managed to sequence

the genome in record time, with relatively fewmajor errors or inaccuracies. Venter

was convinced that the human genome lay within his reach; indeed sequencing of

the human genome had been going on apace with that of theDrosophila genome.

Even as the team at Celera celebrated the release of the fruit fly genome,

they were preparing to assemble the human genome. It looked, for all the world,

that a private company would surpass the public effort at NCHGR and that

the human genome would be shrouded behind the proprietary walls of Celera’s

subscription-only database. Where was the public attempt? NCHGR, though it

had started earlier than Venter and Celera, had initially committed to a slower,

more conservative sequencing approach. Chunks of DNA about 100,000 bases

long were sequenced at a time, and then carefully assembled along maps of the

chromosomes that had been developed earlier. The process was slower, more

painstaking, but NCHGR’s lead scientists argued it would be more reliable than

Celera’s hurried approach toDNAsequencing. As the 1990s progressed, however,

it became apparent that NCHGR’s stepwise approach was cumbersome, difficult

to automate, and did not really yield any better assembly than could be obtained

with whole-genome shotgun sequencing. Eventually, as Venter’s rhetoric became

more inflammatory and the pace of sequencing at Celera picked up, NCHGR

began incorporating whole-genome shotgun sequencing runs into its assembly

as well.

So we came to 1999, the critical year in which Venter claimed to be just

months from completing the human genome, and the public work could honestly

say that only about 85% of the genome had been sequenced at a level sufficient for

publication [25]. NCHGR had much in its favor, however, including the claim to

themoral high ground: its version of the human genomewould be freely available.

While Celera laid out an ambitious plan to charge for access to its version, the

Chapter 3 Wet and Dry Lab Techniques 103

NCHGR touted the fact that its version would be free of charge and completely

open to all.2

The biggest problem for NCHGRwas not that it was behind in the sequenc-

ing. By the time the race between Celera and NCHGR had heated up, the

international consortium had just as many if not more sequencers than Celera,

and it had a huge collection of resources, staff power, and expertise at its disposal.

In essence, the leaders of the public effort were confident they would complete the

sequencing in time to publish with or even slightly ahead of Celera. The problem

was both very simple and very challenging. There was no way to organize the

genome data or allow users to access, explore, or utilize it. There was no cen-

tral interface that would allow users to ask the interesting biological questions.

Rather, vast collections of sequences, partial assemblies, and other segments of

the genome were deposited onto the ftp servers of GenBank, EMBL (European

Molecular Biology Laboratory), and DDBJ (DNA Data Bank of Japan). These

three repositories of sequence data around the world together serve as central

storage sites for most of the sequence data generated across the entire biological

community. They were not the vehicles for presenting the human genome data

to the world; they were simply storage sites for it.

The reason this was such a problem for the public effort was simple.

Researchers need more than a way to access some portion of the 3 billion bases

of DNA that constitute the human genome. They want to be able to find specific

genes, identify regulatory elements, investigate gene expression, consider protein

structure, and all the myriad things we have discussed so far in this textbook.

The number of researchers who want to download the individual sequences of a

genomic region pales in comparison to the number of biologists who want to use

those data to ask questions about human biology. In essence, there was no point

in sequencing the human genome if the consortium could not find a way to guide

users through the morass of data.

Celera had the upper hand here. From the start, its business plan was pred-

icated on users paying to access not only the raw sequence data but all the

bioinformatics analysis that would result from those data. As a result, they had

built a sophisticated interface that would allow users to explore the data in a mil-

lion different ways with the touch of a mouse. At early demonstrations of their

technology, the Celera team made a point of highlighting the ease of using their

database in contrast to the apparently clunky organization of the NCHGR’s

data. As the millenium dawned and the two projects rushed to completion,

it became apparent that NCHGR’s greatest failing might not be its sequencing

approach but its lack of thought regarding data visualization. With just months

to go before the publication of both genomes, a small team of researchers at the

2
A side argument that raged for months was whether Celera should be allowed to publish its version

of the human genome in a peer-reviewed journal at all. One of the predications for publication in
most journals is that the data on which the work is based must be made available to anyone in the
research community who asks for it. Celera would not be making the data publicly available because
they planned to charge for access to their version of the genome. Eventually Sciencemagazine found
a loophole in its policy that allowed it to go ahead with publication, but not before it had raised a
very acrimonious debate among scientists.

104 Chapter 3 Wet and Dry Lab Techniques

University of California Santa Cruz (UCSC) took up the challenge. The pub-

lic effort would have its interface, and it would not only be as sophisticated as

Celera’s, they promised it would be better.

The key player was a PhD student named Jim Kent working with a well-

knownbioinformatics scientist, DavidHaussler. Kent hadalready spent a lifetime

in software design and development, but in the late 1990s, he went back to school

to learn more about the new field of bioinformatics. Coming as he did from

the world of software development and spectacular dotcom successes, Kent was

an ardent devotee of the open-source movement. To his mind, the possibility

that Celera might have the only usable version of the human genome trapped

behind a subscription-only database was a travesty. If the only thing standing in

NCHGR’s way was a good interface, then that was a simple problem indeed. Jim

Kent decided he would create that interface and populate it with an assembled

version of the human genome.

Therewere two challenges. The first became apparent even beforeKent began

work on the interface. NCHGR’s version of the human genome was not fully

assembled. Some pieces had been pulled together, and several chromosomes were

assembled. The majority, however, remained in long but disparate chunks. The

first task, then, was to create an assembled version of the entire genome.With just

2 months to go before the proposed announcement of the release of the genome,

Kent frantically pulled together an algorithm and the code needed to assemble

the genome [13].

His next problem was to organize all the myriad analyses of the assembled

genome so that researchers could explore the results of the assembly and the

bioinformatics analysis that accompanied it. Working essentially nonstop for

over a month, Kent designed and implemented the Human Genome Browser,

a sophisticated interface for exploring the vast amount of data and analyses

that NCHGR had contributed over the past decade [14]. It is available at:

http://genome.ucsc.edu/cgi-bin/hgGateway

One of the hallmarks of the Human Genome Browser is that it can zoom in

to the level of individual nucleotides or all the way out to the level of the entire

genome. Another key point is that at each level along the way, it incorporates all

the information available from any publicly available resource anywhere in the

world. As a result, it is a one-stop shopping solution for researchers trying to

understand any aspect of human biology that has been documented to date.

How you use theHumanGenomeBrowser depends onwhat type of question

you want to ask. If you are interested in a specific sequence region, you might

enter its coordinates and zoom into the level of individual nucleotides. Or you

might zoomout slightly to consider one or several genes in a chromosome region.

For example, researchers suspect that a small section of chromosome 22 may be

associatedwith certain kinds of schizophrenia. Using the genomebrowser, we can

explore the genes in this region and ask which of those genes might be expressed

in the brain. These might then be good candidates for further investigation.

In addition to tying information about genes and sequences together, the

Human Genome Browser provides an interesting display of the sequence con-

servation with other genomes. As more genomes are sequenced, this last aspect

Chapter 3 Wet and Dry Lab Techniques 105

of the genome browser has become quite powerful. You can now compare any

region of the human genomewith its corresponding region in themouse, rat, dog,

chicken, and even armadillo or elephant. Regions of high conservation likely indi-

cate areas of critical genes, whereas those with little conservation might highlight

genes unique to primates or even possibly to our species. These sorts of compar-

isons can provide the launching pad for many interesting research speculations

and questions.

The final assembly of the genome, the browser, and the entire computing

infrastructure were in place just 4 days before President Clinton congratulated

Francis Collins and Craig Venter at the White House. With nearly superhuman

effort, NCHGR had caught up to the Celera team. Together, the two teams

made peace and electrified the world with the release of not just one but two

nearly complete human genomes. But without Jim Kent and his assembly and

interface, theremight not have been verymuch to celebrate. In the end, asmuch as

anything else, the story of the human genome sequencing projects is the story of

why data organization and visualization are paramount if data is to be anything

more than a string of letters or numbers.

3.6 HUMAN GENOME SEQUENCING STRATEGIES

The need for special strategies is related to several challenges posed by the nature

of the human genome—not the least of which is its size of 3 billion base pairs.

Factor in other characteristics such as its double-stranded, antiparallel nature,

its distribution among 23 pairs of chromosomes, and the presence of a large

proportion of repetitive sequence.

Where to start? A first step is to break the genome apart into smaller, more

workable pieces, which is made possible by cloning fragments that are generated

by mechanical shearing or restriction digestion. Many different cloning vectors

are available, each able to accommodate different sizes of DNA insert, typically

ranging from a few kilobases to about 1 Mb. This helps, but each cloned piece is

still too big to sequence in a single sequencing run (recall 500–600 bp), and there

are a lot of them! A technique that can “walk” along a piece of DNA in order

to sequence it is called directed sequencing. Here, each sequencing run provides

new sequence information that can then be used to custom design a new primer

and to extend the sequence with a follow-up reaction. This sequential approach,

although useful, is slow and expensive and so, by itself, was not considered a

feasible solution to the human genome sequencing problem.

The two major sequencing efforts tackled the problem by designing new

and different strategies. The method championed by Craig Venter, took advan-

tage of rapid technological advances in automated sequencing and an approach

known as whole-genome shotgun sequencing (WGS). In WGS the entire genome

is broken into pieces and these varied-sized pieces are cloned into vectors. Three

different-sizedvectorswereused. The cloned inserts are then sequenced fromboth

sides—double-barreled sequencing—and thedistance between the two sequenced

portions is determined based on the size of the insert and the length of DNA that

106 Chapter 3 Wet and Dry Lab Techniques

Human Genome Mapping Strategies

Celera
Whole Genome Shotgun

Human Genome Project
Clone-by-Cloning Mapping

1. Shotgun
fragmentation
and insertion
of small and large
fragments into
vectors for
sequencing

2. Assembly
of contigs

3. Integration
of sequence
and map data

1. Create maps
of ordered
genetic markers
for each chromosome
(Landmark maps)

2. Insert large
fragments into BAC
vectors and select
minimal tiling set
anchored to landmark
map

3. Shotgun sequencing
of BACs in tiling
set. Fragment
assembly and
finishing by
direct sequencing

FIGURE 3.13 The two major human sequencing projects used different, but

complementary, approaches to arrive at a draft sequence at approximately the same

time.

was sequenced (Figure 3.13). This is done enough times to provide reasonable

coverage of the entire genome.

The computational problem then is to reassemble the sequence from the

many individual sequence reads, to create contigs, or contiguous sequences—and

then to join them into scaffolds, keeping in mind the many challenges outlined

earlier. The double-barreled sequencing, producing “mate-pairs,” or two reads

from the same cloned piece of DNA, was a plus. If mate-pairs occurred in two

different contigs, they could be joined in the scaffolding process. What about

the many repetitive sequences? In which orientation is the insert in the vector?

AlthoughWGSis fast and requires fewcloning steps, theassemblyposes adifficult

computational problem. (See Chapter 4 for an in-depth look at this.)

The Human Genome Project attacked some of the challenges from the start

to try to reduce the problem, rather than relying on the prowess of automated

sequencing and the potential of computational fragment assembly. Instead,

a time-consuming physical map-based strategy, known as the clone-by-clone

Chapter 3 Wet and Dry Lab Techniques 107

approach was adopted. Initially, the genome was broken into relatively large

fragments of about 100,000 bp, which could be cloned into bacterial artificial

chromosomes (BACs). The ends of these clones were sequenced to allow them to

bemapped to individual chromosomes (using many different experimental meth-

ods andmarkers that allow these sequences to be localized to particular regions).

Through this physical mapping process a tiling set, the least number of BACs

needed to provide coverage of the genome, was defined. Each of the BAC inserts

was fragmented and then cloned into sequencing vectors for WGS using rapid

DNA sequencing. A major disadvantage of this approach is the need to create

many DNA libraries and the accompanying error that results from the instability

of these libraries. The computational assembly problem is a smaller one than

WGS since each BAC is sequenced separately and the mapping of the BAC to

the chromosome is known, a trade-off with the slow initial mapping process.

3.7 FROM STRUCTURE TO FUNCTION

The sequencing of the human genome truly revolutionized science, and its effect

onmedicine is just beginning to emerge. It enabled amajor shift in the mindset of

the research biologist from consideration of one or a few genes to consideration of

whole sets or even the entire genome. Emphasis hasmoved fromgenome sequenc-

ing andmapping, or structural genomics, to studying gene function. This new era

of functional genomics has been described as the “development and application

of global (genome-wide or system-wide) experimental approaches to assess gene

function by making use of the information and reagents provided by structural

genomics” [10]. Not only do modern-day biologists have the necessary tools to

analyze many genes, it is expected by funding agencies that they will do so. As we

will see, this has created a whole new set of associated computational challenges

that has made the collaborative efforts between biologists and computational

scientists even more critical.

Let’s return to ourHIV laboratory scenario. At this point we have considered

some possible techniques for creating “reagents” for experimentation (e.g., viral

cDNA and cDNA clones of individual viral genes) and have learned about DNA

sequencing, one of the mainstays of understanding genome structure. Using

techniques such as these, the large, international community of HIV researchers

collectively have defined and characterized the genomes of many variants of HIV

and these are publicly available to support ongoing studies aimed at understand-

ing the functionandpathologyofHIV.Oneof themajor repositories is atDivision

of AIDS of the National Institute of Allergy and Infectious Diseases (NIAID),

a part of the NIH. Another is the Stanford University HIV Drug Resistance

Database.

We’ll now turn to some important laboratory techniques in functional

genomics. Developing effective treatments for HIV requires an understanding

of which genes or, using our book analogy, words, are expressed, and how they

interact with components of the host cell to rewrite the book. Recall the central

dogma, and the flow of genetic information from DNA to RNA and protein.

108 Chapter 3 Wet and Dry Lab Techniques

When scientists use the term gene expression they usually are referring to the

production of messenger RNA (mRNA), although protein is usually the ulti-

mate product of gene expression and usually the functional one. We’ll stick to

that convention and discuss the expression of mRNA first here. Although high-

throughput, multiple-gene techniques have become state of the art, it is still worth

discussing single-gene expression analysis techniques because they are still widely

relied on in verification experiments and for gene localization studies. Earlier

we described one technique—RT-PCR. An older technique, the Northern blot,

another method for analyzing between one and a few genes, has been around

longer and is a technique of high fidelity. Although RNA is difficult to work

with, we sometimes choose to work with it in spite of its instability and the preva-

lence and stubbornness of enzymes—RNAses—that are everywhere and out to

degrade RNA. Often, too, the RNA of interest is isolated from a tissue or sample

that cannot be reproduced. This means that the biologist usually has only small

amounts of RNA to work with and those samples are considered to be precious.

This affects how many experiments can be run, which, in turn, affects later data

analysis.

Gene expression analysis begins with the isolation of the RNA, either total

RNA or only mRNA, from the sample. In the HIV research lab, viral and host

cellular transcript RNAs will typically be isolated from patient serum or infected

cells in culture (Figure 3.14). This extract will contain all of the RNAs that

were “expressed” at the time of extraction and identifying them will create a

transcriptional profile.

Remember from the discussions in Chapter 2 that the pathway fromDNA to

mature mRNA in eukaryotic cells is a complex one, with lots of processing steps

as the RNA moves from the nucleus into the cytoplasm. So, we need to think of

the profile of RNAs in the sample extract as just a “snapshot in time.” Cells are

very sensitive to their environments and can respond to changes at the level of

gene expression. If we had taken that sample at a different time, or if the cells had

been exposed to different conditions, the subset of RNAs in the sample would

most likely be at least partly different.

Essentially, the Northern blot allows us to separate and identify individual

mRNAs fromwithin a sample extract (Figure 3.15). ThemRNAs, which differ in

FIGURE 3.14

Total RNA or mRNA

can be isolated from

cells and tissues.

Samples

Fluids Tissues Cultured
cells

Plants

Isolation of
total RNA or

mRNA

Chapter 3 Wet and Dry Lab Techniques 109

Size separation

of molecules

by electrophoresis

Markers

Blot apparatus

(Cross-section)

Weight

1

2 Transfer

from gel

to filter

by blotting

3 Remove

filter

4 Hybridize

filter with

labelled probe

Gel
Support

Paper towels

Absorbent paper

Dish containing solution

5 Bands hybridized

by probe are

visualized

Absorbent

paper in

contact with

transfer solution

Sealed

bag

with

solution

Filter

FIGURE 3.15 RNA extracts are analyzed by Northern Blot. RNA molecules are

separated electrophoretically, transferred to nitrocellulose and hybridized to labeled

specific probes for genes of interest.

size, are separated electrophoretically. That is, in an aqueous solution they move

through a porous gel, composed of agarose, which is placed within an electrical

field. Nucleic acids have a net negative charge and so will migrate through the gel

toward the positive pole. The pores of the gel come into play as they cause the

nucleic acids to migrate differentially according to size. Smaller molecules move

more rapidly because larger ones spend more time moving in and out of the

pores. The result of the separation can be visualized under ultraviolet (UV) light

when stained with ethidium bromide. Normally, a ladder of DNA standards

or markers is run in an adjoining lane to help determine the size of bands of

interest.

Notice that individual bands cannot really be discerned in the sample, and

moreover we still don’t have any idea about the identity of mRNAs in the sample.

110 Chapter 3 Wet and Dry Lab Techniques

This is where hybridization comes in. Following transfer of the gel to a solid

support such as nylon or nitrocellulose, we next incubate it with a labeled probe,

which is complementary to our gene of interest. Often today, scientists are using

enzyme-linked probes and chemiluminescence to detect the signal as a safer alter-

native to radioactivity. Under the proper conditions, the probewill hybridize only

where complementary and will “find” the mRNA within the sample. We see the

RNAas a band on the gel. The identity of theRNAof interest by its hybridization

xxxxxx

x

x

x

x

x

x

x x x x x

xxxxxxx(B)

x
x
x
x
x
x
x

x x x x

(A)

FIGURE 3.16 (A) Northern blot showing that full-length (f), singly spliced (s), and

multiply spliced (m) transcripts are suppressed in infected cells with increasing dose of

drug, roscovitine. The control transcript, GAPDH shows that RNA was present in all

lanes. (B) shows a dose-response curve generated by determining the abundance of

transcripts in each sample [18].

(Credit: AMERICAN SOCIETY OF NEPHROLOGY JOURNAL by Peter J. Nelson,

Irwin H. Gelman, and Paul E. Klotman. © 2001 by American Society of Nephrology.

Reproduced with permission of American Society of Nephrology in the format

Textbook via Copyright Clearance Center.)

Chapter 3 Wet and Dry Lab Techniques 111

FIGURE 3.17 Dot blots can be used to measure mRNA expression in multiple

samples simultaneously.

to a specific probe may be verified by its size, if known, determined by relative

migration in the gel.We can determine theRNA’s apparent size and comparewith

the expected size, bymeasuring its migration in the gel relative to themigration of

standards of known size.We also get data about the relative amount of expression

of the gene of interest from the darkness or intensity of the band on the gel when

compared with controls (genes that are not expected to vary under the conditions

of interest, such as the GAPDH “house-keeping” gene). For example, scientists

studying HIV infection are interested in finding drugs that will suppress expres-

sion of viral genes. In a study by Nelson and colleagues [18], Northern blotting

was used to show that a drug that inhibits cell division also inhibits HIV gene

expression (Figure 3.16).

Variations on the Northern blot can be used to analyze mRNA. In one

example, the dot blot, mRNA samples are applied by pipetting or vacuum onto

the nylon membrane instead of being separated by electrophoresis (Figure 3.17).

Information about size is lost but it is often a good rapid alternative when one

has many samples to assay.

3.8 PROFILING THE TRANSCRIPTOME

The single-gene expression techniques are often used as an adjunct to the high-

throughput, system-wide approaches made possible by the advent of microarray

technology. As in programming, think of an array as an orderly arrangement

of elements, in this case the elements are nucleotide sequences, which are

present in small spots, and thus referred to as microarrays. Arrays are known

by many names including cDNA arrays, oligoarrays, gene chips, DNA arrays,

and biochips, to name a few. The high-throughput array allows the researcher

to assay the expression of tens of thousands of genes simultaneously and has

dramatically changed the types of questions that can be asked. For example,

the HIV researcher may be interested in profiling the expression of genes in

a specific cell type at different stages of HIV infection in order to develop

new targets for drug intervention. Large-scale transcriptional profiling may

lead to discovery of genes that were not previously thought to be involved in

infection.

Two major formats of arrays prevail today: the spotted cDNA micro-

array and the Affymetrix oligonucleotide array. The cDNA array has been

widely used and made popular through the work of Patrick Brown at Stanford

112 Chapter 3 Wet and Dry Lab Techniques

FIGURE 3.18

Representation of the

output of two-color

spotted array.

(Courtesy of the

Center for Array

Technologies at the

University of

Washington)

University [21]. Although they can be produced by hand, microarrays are usu-

ally fabricated by a high-speed robotic method, which spots cDNA “probes”

onto solid supports, usually glass slides. Thousands of cDNAs are spotted

onto an individual array, and these probes, of known identity, are used to

“query” by complementarity, the RNAs in a sample of unknowns. The cDNA

array uses a two-color, red/green, fluorescent assay, labeling the experimental

sample with one color and a reference sample with the other. Both labeled

samples are hybridized simultaneously to the probes on the array, and the

array is viewed under both laser wavelengths. Reading in both the red and

the green channels allows the determination of relative binding of experi-

mental:reference for each probe, which is represented as an expression ratio

(Figure 3.18).

The fact that expression levels are relative, not absolute, and the high degree

of experimental variation in microarrays present great difficulty for the scientist

in terms of comparing results from array to array and in terms of compar-

ing results from one lab to the next. The cDNA microarray technique has

more than 100 experimental steps and creates a huge potential for experimental

variation.

The oligoarray, developed by Affymetrix Inc., contains oligonucleotide

probes 25 nucleotides in length (25-mers), which are synthesized on the chip by

a patented process of photolithography coupled with combinatorial chemistry

(Figure 3.19).

These 25-mers are designed to be complementary to sequences within genes

of interest, with a given gene being represented by many probes. For exam-

ple, on a region of the chip an individual gene will be represented by 16 probe

pairs, where each probe pair consists of a perfect-match 25-mer and a mismatch

25-mer, with a single-nucleotide mismatch at the thirteenth base in the 25-mer.

The latter is designed to measure nonspecific binding of sample RNA to the

probe. The Affymetrix technique employs a single fluorescent label, which is

incorporated into the sample during a cRNA synthesis step, and internal con-

trols within the array provide reference to determine relative expression levels

(Figure 3.20).

Chapter 3 Wet and Dry Lab Techniques 113

Hybridized cRNA

Oligonucleotide

(25 mer)

FIGURE 3.19 The design of the oligoarray by Affymetrix, Inc. Shown are 25-mer

probes that have been hybridized to labeled cRNA.

(Courtesy of Affymetrix, Inc. and Louis M. Mansky)

mRNA reference sequence

Oligo probes
(25 nt long)

5⬘ 3⬘

Perfect match (PM)

Mismatch (MM)

Probe

Pair

Probe
set

PM Probe
cell

PM is
complementary to

transcript sequence

MM has
mismatch in position 13 of oligo

MM Probe
cell

MM

PM

FIGURE 3.20 Probesets on oligoarrays consist of 16 perfect match (PM)/mismatch

(MM) pairs of 25 nucleotide-long probes.

Although these array types differ in their technical aspects, cost, and ease of

use, both allow scientists to perform massively parallel gene expression studies

and to characterize the transcriptional profile, known as the transcriptome. This

topic is explored in depth in Chapter 8. DNA array technology also is applied in

large-scale assays of genetic variation (SNP-chips).

Up to this point, with the exception of DNA and genome sequencing, most

of the molecular biology lab techniques we have discussed have probably not

raised any data management “red flags.” It is fairly straightforward to keep good

lab records of individual experiments when measuring the expression of a few

genes or the localization of genes and proteins within cells and tissues. Most

114 Chapter 3 Wet and Dry Lab Techniques

biologists are accustomed to keeping detailed lab notebooks and comfortably

turn to spreadsheet tools such as Excel for routine data management, statistical

analysis, and graphing capabilities. When we are talking about high-throughput

data generation techniques, such as DNA sequencing and microarrays, how-

ever, the data management issues are quite different. For one, consider the

size of the datasets. Running 10 arrays with 25,000 probesets in a study, for

example, will generate many, many datapoints when considering all of the var-

ious measurements that are taken for each probeset. Many scientists still use

Excel to manage these datasets, and many of the analysis tools for microarray

data are designed for Excel import/export. However, Excel began as a spread-

sheet application (granted, it now has considerable additional functionality) and

doesn’t provide some of the capability that one may achieve by putting the data

into a relational database. In addition to facilitating data storage, the organiza-

tion of the data into tables in a relational database, rather than a flat file, and

the ability to query the database using the structured query language (SQL),

gives the scientist a more flexible access to the data. (Note: Microsoft Office

2007 now offers an SQL add-on for Excel). Individual laboratories may use

a relatively small relational database management system such as Microsoft

Access, but labs generating a lot of microarray data, for example, increas-

ingly use larger, more robust systems such as the free MySQL or PostGres or

the proprietary Oracle Database Management System. Taking data manage-

ment to the next level, large laboratories and especially centers carrying out

high-throughput DNA sequencing and microarray studies, are turning to the

Laboratory Information Management Systems (LIMS). LIMS track, manage,

and store all information associated with a laboratory. This includes customers,

samples, protocols, parameters, results, operators, passwords, among other

things. The system may be integrated with laboratory instruments and with rela-

tional databases such as MySQL and is designed to match laboratory workflow.

Depending on the type of data being collected, a fully integrated LIMS may

link to multiple resources, providing a wide variety of information related to the

data. Some good examples are the SPINE LIMS system, a system that supports

collaborative structural proteomics work [7] and LIMaS, an integrated system

for microarray analysis [23]. The large, integrated systems known as knowl-

edge environments (KE) are state-of-the-art systems designed to help biomedical

researchers manage and interpret data as well as integrate information from

the data with related knowledge. One example of a KE is the signal transduc-

tion knowledge environment (SDKE) developed by the American Association

for the Advancement of Science and Science magazine [8]. Another example

is caBIG (Cancer Biomedical Informatics Grid), which was launched by the

National Cancer Institute. The goals of KE are to promote sharing of data

among researchers in scientific communities and to support new insight and

discovery leading to hypothesis generation and eventually understanding of bio-

logical processes. Major challenges remain in developing these systems, especially

in creating effective standards and mechanisms for data sharing and integration.

As is typical in bioinformatics there is a need for computing and domain experts

to work together.

Chapter 3 Wet and Dry Lab Techniques 115

Another possible application of DNA arrays may be for sequencing ge-

nomes. “Sequencingbyhybridization” is anattractive conceptbecause it leads toa

more tractable computing problem than does the sequencing approach described

earlier. The basic idea is to use a DNA chip to determine which k-mers appear

in a genome of interest, and which do not. In Chapter 4 we will see how this

information may be of use in reconstructing a genomic sequence.

A method that addresses the lack of quantitative analysis offered by micro-

arrays is serial analysis of gene expression (SAGE). SAGE uses DNA sequencing

technology to generate a quantitative profile of cellular gene expression. Unlike

microarrays, SAGE is quantitative because, rather than measuring relative

levels of expression, it actually generates counts of the occurrences of spe-

cific sequence “tags.” Each transcriptional product has a specific tag of 9–11

nucleotides, and counts of these tags are generated by DNA sequencing. The

output of SAGE is a list of tags, each with their corresponding count values.

The major computational challenge, then, lies in unambiguous identification

of the gene from a given 9- to 11-bp tag. To learn more about the specific

technical aspects of this technique, see the original paper by Velculescu and

co-workers [26].

3.9 A FEW PROTEOMICS TECHNIQUES

In our HIV scenario, we would like to understand the physiological effects of

viral infection on immune cells. Just as we profiled the transcriptome, we want to

understand the proteome—those proteins that are expressed by the virus and the

infected cells at different phases of infection. This is useful information for many

reasons. As examples, we can gain anunderstanding of cellular pathways andpro-

cesses that are involved in infection andwe can also identify possible drug targets.

Many of the laboratory techniques for protein analysis have significant similari-

ties to those for RNA analysis. A major difference is that, whereas we detect and

identify nucleic acids via hybridization, proteins are often detected and identified

through the use of specific antibodies. Antibodies are themselves proteins, which

recognize and bind to antigens in a highly specific manner (Figure 3.21).

These antigens often are sites on proteins that are recognized as foreign by

the individual’s immune system. Of course, the production of antibodies is a natu-

ral physiological process with which we are all familiar, but in the lab the scientist

can engineer antibodies to recognize proteins of interest. Polyclonal antibodies

are generated by injecting a protein, usually into a rabbit or goat, to cause the

animal to produce antibodies against the protein. The antiserum, isolated from

the blood, contains antibodies that are polyclonal in nature, because they are

produced bymore than one cell. Each antibody in the serummay recognize a dif-

ferent site on the protein. A monoclonal antibody, which is produced in a culture

dish by a clone of a single cell, called a hybridoma cell, is more specific because

it recognizes only one antigenic site.

In terms of the analysis of single to a few proteins the Western blot is the

counterpart to the Northern blot, and its name was coined in a similar fashion.

116 Chapter 3 Wet and Dry Lab Techniques

Labeled
antibody

Solid
Phase

Ag
Antigen

in sample

Immobilized
antibody

FIGURE 3.21 Proteins (antigens; Ag) can be localized and identified using specific

antibodies.

Briefly, proteins are extracted from a given sample, the extract is electrophoresed,

the separated proteins are transferred from the gel to a nitrocellulose membrane,

and then put through the blotting procedure with specific antibodies. Rather than

an agarose gel, the cross-linked polymer acrylamide is used, and the proteins

are solubilized in a detergent solution. The detergent, usually sodium dodecyl-

sulfate (SDS), wraps around the proteins, denaturing them and giving them a net

negative charge. You will hear biologists refer to this technique as SDS-PAGE,

the acronym for sodiumdodecyl/sulfate polyacrylamide gel electrophoresis. After

the blotting procedure, the bound primary antibodies can be detected using a

secondary antibody that recognizes the primary. For example, if the primary is

a polyclonal antibody made in goat, then the secondary antibody would be a

generic antigoat antibody, linked with some type of agent to facilitate fluorescent

or chemical detection.

Many more proteins can be analyzed simultaneously using a variation on

SDS-PAGE known as 2-dimensional (2-D) electrophoresis. This technique allows

amuchbetter separationof proteins and thus permits the scientist to resolvemany

more different proteins from a given extract. 2D-gel electrophoresis first employs

a separation of proteins by charge. Recall that in SDS-PAGE the detergent gave

all of the proteins a negative charge and the separation primarily depends on

differences in size, commonly referred to as molecular weight. What appears to

be a single band on SDS-PAGE is actually a collection of proteins of similar size.

Thefirst dimensionof 2D-gel electrophoresis separates proteins according to their

overall charge by running them through a pH gradient in a tiny tube gel. This gel

is then placed across the top of an SDS-PAGE gel and further electrophoresed

in the second dimension to separate proteins by size. Individual proteins can be

visualized on the gel by staining although proteins present only at trace levels

may require a more sensitive radioactive-labeling procedure. Like in SDS-PAGE,

the proteins of the D-gel can be transferred and subjected to Western blotting.

(Figure 3.22).

Chapter 3 Wet and Dry Lab Techniques 117

100

A
pI

4.0 4.8 5.2 5.5 5.7 6.0 6.6 7.8 9.0

1 2

3

4

5

6

7

8 9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 41

42 43

44
45

46 47

48 49

50 51

52 53

54 55

56

57 58

59 60

61 62

63 64

65
66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86
87

88

89

90

91

92

93

94

95

96

97

98

99

100

101102

103
104

105

106107

108109

110111

112113

114115

116117

118

119120

121
122

123
124

125
126

127
128

129
130

131
132

Mr (kDa)

80

60

50

40

30

25

20

15

165

166 167

168 169

170
171

172

173
174

175
176

177
178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199200

201
202

203204205

206

207

208

209

210

211

212213

214
215

216217

218219

220221

222
223

224

225

226

227

228

229

230

6.66.05.75.55.2
B

40

30

25

20

pI

Mr (kDa)

231

133

134

135 136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

FIGURE 3.22 A proteomics map of the human monocyte, one of the cells that can be

infected by HIV. The map has been created by 2D-gel electrophoresis followed by mass

spectrometry of the most abundant proteins. Numbers indicate proteins that have been

identified. This figure from a highly accessed, open access article by Jin et al., 2006 [12].

(Photos reprinted Courtesy of Ming Jin, et al, Two-dimensional gel proteome reference

map of blood monocytes, Proteome Science 2006, 4:16; licensee Biomed Central Ltd)

118 Chapter 3 Wet and Dry Lab Techniques

Ion
source Accelerator

Positive

Sample
ionized

by
source

Sample

Ions are
accelerated

by force

Ions are
deflected

according to
their mass/charge

ratio

ions

Electromagnet
Detector

FIGURE 3.23 Separation of masses in a mass spectrometer.

The marriage of 2D-gel techniques to mass spectrometry has allowed this

approach to develop into an effective high-throughput analysis for proteins. To

identify individual proteins in the gel, spots can be excised, and proteins can be

separated from the gel material and then subjected to further analysis.

For mass spectrometry (Figure 3.23), the proteins are first digested into pep-

tide fragments using enzymes known as proteases. Some proteases, such as the

enzyme trypsin, will cut proteins in a reproducible manner. Trypsin will make

cuts in the peptide bonds next to the amino acids lysine and arginine. In the mass

spectrometer the fragmented proteins are given charge (ionized) then themachine

uses electric and magnetic fields to measure the mass (“weight”) of the charged

particles. This results in the generation of a “fingerprint,” a particular pattern of

behaviors by the protein fragments related to theirmass. The computational chal-

lenge, then, is to match up that fingerprint with theoretical fingerprints derived

from sequence data in the genomics databases.

The profile of proteins expressed in a given cell or tissue, the proteome,

can be analyzed using high-throughput arrays, in a manner similar to the DNA

microarrays used to analyze the transcriptome. Protein arrays use proteins (e.g.,

antibody) or other ligand-bonding reagents immobilized on a surface, such

as glass, membranes mass spectrometer plates, or beads, among others. The

immobilized protein can “capture” other proteins from a mixture in a specific

manner. Like the DNA microarray, a major advantage is that many proteins

can be assayed in parallel. Bioinformatics support is important because the data

handling demands sophisticated software. Fortunately, some of the software,

hardware, and detection systems can be adapted from that used for DNA arrays.

3.10 PUTTING IT ALL TOGETHER

The high-throughput assay techniques are considered to be best for generating

new hypotheses (for discussion see Chapter 8), rather than finding answers, and

results usually need to be verified through other lab techniques. Moreover, we

Chapter 3 Wet and Dry Lab Techniques 119

would like to have a complete picture of where and when genes and their prod-

ucts are expressed and how each gene functions within networks of other genes

and gene products. A major thrust of bioinformatics today is to build an under-

standing of how entire systems function, starting with data on biomolecules and

integrating these data with biological “knowledge.” The picture can be gener-

ated using both web lab techniques and computing approaches. For example,

in the HIV scenario, microarray studies may suggest that a particular gene is

up-regulated. To understand its possible role in infection we would like to know

where within a tissue or even at the subcellular level the gene is expressed. An

exciting new technology for the former is single-cell PCR, in which individual

cells are harvested from within tissue sections by laser ablation, and their gene

expression assayed by RT-PCR (see previous discussion). Another method is to

perform in situ hybridization, literally doing the hybridization experiment at the

site of origin. Individual cells or prepared sections of tissues are hybridized with

labeled probes, processed to develop the signal, and viewed under a conventional

light microscope or even an electron microscope (Figure 3.24 and Figure 3.25).

As in situ hybridization can help us relate gene expression patterns to known

networks by localizing time and place of expression, “knockout” experiments

can help identify downstream network components. The term knockout refers to

the elimination of the function of specific genes by genetic ablation of the gene or

by inactivating an intact gene. The knockout mouse is created using homologous

recombination to remove specific genes in embryonic stem cells. Inactivation

of genes in cell culture can be accomplished by expression of antisense RNA,

which blocks the complementary expressed RNA, or more recently by the tech-

nique of RNA interference (see Chapter 9 for more details on this technique).

Both approaches have been used for the study of gene networks involved in HIV

infection (for examples, see [2,4]). Functional knockout often reveals interesting

phenotypes but also may demonstrate the relationships between the inactivated

gene and other genes in its functional network. In Chapter 9 we explore some of

FIGURE 3.24 In situ hybridization has been used to localize HIV-1 (white areas) in

infected lymph node tissue. Molecular Histology, Inc.

(Dr. Cecil H. Fox)

120 Chapter 3 Wet and Dry Lab Techniques

FIGURE 3.25 In situ hybridization of RNA used in conjunction with histochemical

techniques to localize specific proteins allows the researcher to relate HIV infection to

cellular phenotype. Here a cell expressing HIV-1 transcript (dark grains) is adjacent to a

cell expressing a particular cellular gene product (arrows).

(Dr. Cecil H. Fox)

the ways that computers are used to reconstruct networks and to build models

and simulations of biological systems. These approaches are at the forefront of

bioinformatics today and have already been applied to the important problem of

HIV infection (for example, see [9]).

3.11 A FEW SELECTED DRY LAB TECHNIQUES

So far in this chapter, we have discussed techniques developed primarily by biol-

ogists for use mainly in biological laboratory settings. Equally important in

bioinformatics are algorithmic, programming, theoretical, mathematical, ana-

lytical, statistical, and empirical techniques developed primarily by computer

scientists for use and study mainly in laboratories equipped with computing

equipment. The term wet lab has been in vogue for some years to describe the

former setting; let us coin the equally inadequate term dry lab to describe the

second setting—the computing lab. We will assume you have some familiarity

with the kinds of topics taught in elementary computing courses, and hope the

descriptions here will kindle some (fond, we hope) memories of your days as

neophytes in the dry labs.

3.11.1 Algorithms

An algorithm3 is a procedure for solving a problem.

Bioinformatics presents us with plenty of problems. Some are variants on

problems that have been well studied over the years by researchers in diverse

3
The term algorithm is derived from the Latin form of the name of the ninth-century scholar

Muhammad ibn Musa al-Khwarizmi who lived not far from modern-day Baghdad. Interestingly,
he is also responsible for the name algebra which derives from the title of his book on mathematics,
“Al-jabr wa’l muqabala.”

Chapter 3 Wet and Dry Lab Techniques 121

fields. It is important for bioinformatics practitioners to maintain a healthy and

inquiring interest in all fields of science and the humanities.Many of the problems

arising in phylogenetics, for example, which we will study in Chapter 6, bear a

striking resemblance to problems relating to the origins and evolution of human

languages. Many of the problems relating tomining huge deposits of information

for nuggets of scientific truth are shared among bioinformatics, astrophysics,

and meteorology, as well as other fields. Some of the algorithms developed for

sequence alignments are among the most intricate studied by mathematicians

and theoretical computer scientists.

String algorithms will be useful when we turn to pattern matching for study-

ing fragment reassembly in Chapter 4 and sequence alignment in Chapter 5.

Familiarity with recursive programs will aid us in developing algorithms that

reduce the difficulty of the main problem by subdividing it into smaller ones.

Skillful use of recursion enables us to develop algorithms that are convincingly

plausible. By this wemean that the algorithm is so closely related to the statement

of the problem that we can be confident that it will lead to a correct4 program.

Sometimes, we will know from our dry lab studies that certain problems

are not amenable to correct and computationally feasible solutions. When that

happens, we turn to the repertory of approximate algorithms that sacrifice a

certain and, we hope, measurable amount of exactness in return for realistic

running times. As an example, consider the problem of packing a container with

the largest weight of items.

Container Packing Problem

Youare given the dimensions (length, breadth, andheight) of a container together

with a set of rectangular boxes. You are given the dimensions and the weight of

each box. The problem is to pack some of the boxes into the container in such a

way that you maximize the weight.

As a first example, your container is 50 cm by 80 cm by 20 cm high. Your

boxes are:

• 40 by 60 by 20, weight 30 kg

• 40 by 40 by 17, weight 19 kg

• 20 by 20 by 20, weight 15 kg

• four boxes, each 25 by 20 by 10, each weighing 10 kg

• 20 boxes, each 5 by 5 by 5, each weighing 100 g

An obvious approach to this problem is to start by placing the heaviest box

first, then the second heaviest, and so on. This approach is referred to by the

not-too-technical name greedy algorithm. In general, a greedy algorithm is one

that proceeds by steps, at each stage making the obviously optimal local choice in

the hope that this process will lead to an optimal global solution when the steps

are combined.

Some problems are amenable to the greedy approach. Consider the problem

of trying to find, in a connected graph all of whose edges are labeled with aweight

4
But we will note in Section 3.11.2 that plausibility and efficiency often do not go hand in hand.

122 Chapter 3 Wet and Dry Lab Techniques

or cost, a tree whose edges span the whole graph but whose total edge weight is

as small as possible. This is often called the minimum spanning tree problem. The

following (greedy) algorithm can be proved to produce an optimal solution:

input: a connected graph G on n vertices with a cost on each edge;
initialize result to an empty set of edges;
repeat {
remove the lowest cost edge eMin from G;
if eMin does not form a cycle when added to result then {

add eMin to result;
}

} until result contains n−1 edges

Pseudocode describing an algorithm to find the minimum spanning tree of a

graph.

Other problems are not amenable to a greedy solution. Nevertheless, the

greedy algorithm will, although not producing an optimal solution, produce a

pretty goodone. InChapter 4wewill lookat a greedyalgorithmfor reconstructing

a genome sequence from examination of hundreds or thousands of fragments.

In the case of the fragment reconstruction problem, no known optimal algo-

rithm runs in time better than exponential in the number of fragments. Fragment

reconstruction is an example of anNP complete problem, a class of problems for

which computer scientists strongly suspect there are no polynomial time algo-

rithms. The container packing problemmentioned previously is another example

of an NP complete problem.

Other problems, although not being amenable to a greedy solution, do,

however, have optimal algorithms that run in acceptable polynomial time. In

Chapter 5 we will meet algorithms that can align genomic sequences to demon-

strate evolutionary relatedness. Alignment problems are generally solvable using

dynamic programming techniques.

3.11.2 Analysis

What do the public, the great unobservant public, who could hardly tell a weaver by

his tooth or a compositor by his left thumb, care about the finer shades of analysis

and deduction!

—SherlockHolmes: TheAdventure of The Copper Beeches,Arthur ConanDoyle

Current usage of the word analysis is very broad. SherlockHolmes would analyze

a problem as a step towards its solution. That’s the kind of analysis we did in

the preceding section: Problem analysis is a cognitive skill involving finding basic

principles underlying a problem statement, and the application of knowledge

and experience to find an appropriate algorithmic solution. Chemical analysis

is less a cognitive skill but involves techniques for breaking a complex whole

Chapter 3 Wet and Dry Lab Techniques 123

into constituents that are amenable to methodical examination leading to a more

thorough understanding of the whole. Psychiatric analysis is another realm. And

literary and musical analyses seem to be a different pursuit altogether.

But all senses of the word indicate that analysis involves studying small parts

in order to gain an understanding of the whole. This section looks at a very

specialized kind of analysis:

• Carefully consider how often each step of a program is executed in order to

estimate total running time, and

• Carefully consider each part of a program that may make demands on

resources (such as memory) in order to estimate total resource needs.

Traditionally, program analysis of this kind has required fairly sophisticated

mathematical knowledge. And we will use mathematical techniques like recur-

rence relations and series summation as tools for program analysis. Often, the

variation in runtime and resource allocation for different instances is so great that

we will need to develop average-case andworst-case scenarios. Average-case anal-

ysis is the pragmatic person’s tool—most of the time predicted performance will

be a fairly good match with actual performance; but, once in a while, things may

turn out significantly worse. For this reason, it is wise to also perform worst-case

analysis.

When analyzing programs, we tend to look at structured components, espe-

cially recursive procedures and loops. When we look at loops, we can often tell

that its code will be executed a maximum of n times, where n is a number related

to the size of the problem instance or the size of the input to the program. Because

of conditionals and other factors, we often are unable to say exactly how many

steps will be executed for each iteration of the loop, but we can often tell that

there will be at most a constant number, such as 42 steps. No matter how large

the constant, as long as it is a constant and in no way depends on n, computer

scientists will say that such a loop that is executed at most n times has running

time of order O(n) (pronounced “big oh of n”).

Mathematicians, as is their wont, use somewhat more formal language, and

defineO(n) in terms of limits and upper bounds. Good discussions of the concept

are to be found in [5]. As an example of loop analysis, let us analyze the code in

Figure 3.26.

The input to the program consists of two ints, start, and finish. With

integer inputs, it is usual5 to say that the size of the input to a program that

works with ints is simply related to the input ints. In this particular case, we’d
say: “Let n = finish – start be the size of the input.” To continue with our
analysis, we’d observe that the loop in Figure 3.26 is executed n times (or is it

n + 1? A neat thing about big Oh notation is that it doesn’t matter if we’re off by

one or two in cases like this). And each time through the loop, an int is squared
and the result accumulated in variable result. It’s easy to see that each iteration

5
It is usual but not universal. Sometimes, such as when analyzing programs dealing with large primes,

we prefer to measure the input in terms of the length of the sequence of digits that represents that
number. In this book, however, we’ll adopt the simpler and commoner usage.

124 Chapter 3 Wet and Dry Lab Techniques

public int sumsquares(int start, int finish) {
// Sum the squares of the integers from start to finish inclusive
// Precondition: finish > start
int value = 0;
for (int i = start; i <= finish; i++) {

value += (i * i);
}
return value;

}

FIGURE 3.26 A program to sum the squares of integers. Can you estimate its runtime?

int[] candidates;
public boolean find(int target, int lo, int hi) {

int mid;
if (lo >= hi) return (target == candidates[lo]);
else {

mid = (lo + hi) / 2;
if (target == candidates[mid]) return true;
else if (target < candidates[mid]) return find(target, lo, mid-1);
else return find(target, mid+1, hi);

}
}

FIGURE 3.27 Binary Search Program. Is the target contained in the sorted array candidates? Can you
analyze it for expected runtime?

of the loop consists of a constant number6 of integer operations. Since the loop

is executed n times, the expected runtime is O(n). In this example, the worst-case

runtime is also O(n).

We will find that analysis of runtime performance of programs involving

calls to recursive procedures often leads to the derivation of recurrence relations.

A recurrence relation is like a mathematical equation that gives the runtime of

a procedure when input is of size n in terms of runtimes of the same procedure

when input is smaller. Together with clear base cases, we may be able to solve the

recurrence to obtain an estimate for the runtime.

The binary search procedure of Figure 3.27 looks in an array candidates
between the indexes lo and hi for a target. By looking at the center element
mid, midway below lo and hi, the procedure can decide whether to immediately
return success or to continue searching in one half or the other of the array. When

so much halving has taken place that lo>= hi, we reach our base case and can
determine the answer very easily.

6
(in this case 2) but it really doesn’t matter. What’s important is that the number of steps executed in

any one iteration of the loop is in no way connected to n.

Chapter 3 Wet and Dry Lab Techniques 125

Let Tn denote the expected runtime when the input size (hi - lo) is n. The
most work required in the current incarnation of the procedure find is

• a comparison of lo to hi
• a computation of mid = (lo + hi) / 2 for three arithmetic operations
• two comparisons of target to candidates[mid]
• a recursive call with input half the size of this incarnation’s input

Thus, in the worst case, we have the recurrence:

Tn = Tn
2

+ 6

Together with the base case:

To = 2

We can now embark on solving this recurrence equation. By repeatedly

applying the recurrence we get:

Tn = Tn
2

+ 6 =

�
Tn

4
+ 6

�
+ 6 =

�
Tn

8
+ 6

�
+ 6 + 6

It is clear that we can keep on halving, each time adding 6, until it is no longer

possible to halve. So how often is that? How many times can you halve n before

you reach 0? Well, that’s almost the definition of log(n) when log is taken to the

base 2 (as it always is in computer science).

So the worst-case runtime of binary search is six operations log(n) times plus

the two operations needed when we reach the base case. Since the exact values

of 6 and 2 are disputable and irrelevant, we prefer to say that runtime is order

O(log(n)).

So far, we’ve looked in fairly informal terms at traditional mathematical

techniques for runtime analysis. Less traditionally, we will encourage experimen-

tation and empirical studies, not as a replacement for mathematics, but as a

speedy indication of what is going on when we are developing algorithmic solu-

tions to new and fascinating problems. We realize that simulation is only rarely

an acceptable substitute for mathematical rigor, but we recognize that in experi-

mental laboratory situations strict mathematical rigor is not always immediately

called for.7

KEY TERMS

hybridization (3.1)

cDNA (3.2)

restriction enzyme (3.2)

cDNA library (3.2)

polymerase chain

reaction (3.3)

Maxam and Gilbert

sequencing (3.4)

Sanger sequencing (3.4)

7
Just as, in grammatical rigor, ending sentences with prepositions is a sloppy habit up with which we

will not put (W.L.S. Churchill, attrib.)

126 Chapter 3 Wet and Dry Lab Techniques

dideoxy sequencing (3.4)

electrophoresis (3.4)

directed sequencing (3.6)

whole-genome shotgun

sequencing (WGS) (3.6)

contigs (3.6)

scaffolds (3.6)

clone-by-clone (3.6)

bacterial artificial chromosomes

(BACs) (3.6)

mapped (3.6)

structural genomics (3.7)

functional genomics (3.7)

microarray (3.8)

transcriptome (3.8)

serial analysis of gene expression

(SAGE) (3.8)

antibodies (3.9)

monoclonal antibody (3.9)

western Blot (3.9)

SDS-PAGE (3.9)

primary antibodies (3.9)

secondary antibody (3.9)

2-dimensional (2-D)

electrophoresis (3.9)

greedy algorithm (3.11)

weight (3.11)

cost (3.11)

minimum spanning tree

problem (3.11)

NP complete (3.11)

problem analysis (3.11)

average-case (3.11)

worst-case (3.11)

base cases (3.11)

BIBLIOGRAPHY

1. Mark D. Adams, Susan E. Celniker, Robert A.

Holt, et al. Galle. The Genome Sequence of

Drosophila melanogaster. Science, 287:

2185–2195, 2000.

2. D. Boden, O. Pusch, R. Silbermann, et al.

Enhanced gene silencing of HIV-1 specific sirna

using microRNA designed hairpins. Nucleic

Acids Res, 32(3):1154–1158, 2004.

3. T. D. Brock. Life at High Temperatures.

Yellowstone Association for Natural Science,

Yellowstone National Park, 1994.

4. E. Castigli, F. W. Alt, L. Davidson, et al.

Cd40-deficient mice generated by

recombination-activating gene-2-deficient

blastocyst complementation. Proc Nat Acad

Sci, 91:12135–12139, 1994.

5. T. Cormen, C. Leiserson, and R. Rivest.

Introduction to Algorithms. MIT Press,

Cambridge, MA, 1990.

6. R. D. Fleischmann, M. D. Adams, O. White,

et al. Whole genome random sequencing and

assembly of Haemophilus influenzae Rd.

Science, 269:496–512, 1995.

7. Chern-Sing Goh, Ning Lan, Nathaniel Echols,

et al. Spine 2: A system for collaborative

structural proteomics within a federated

database framework. Nucl Acids Res,

31(11):2833–2838, 2003.

8. Nancy R. Gough. Science’s signal transduction

knowledge environment. The connections

maps database. Ann N Y Acad Sci,

971(1):585–587, 2002.

9. A. Grilo, A. Caetano, and A. Rosa. Immune

system simulation through a complex adaptive

system model. In Proceedings of the Third

Workshop on Genetic Algorithms and

Artificial Life (GAAL1999), 1999.

10. P. Hieter and M. Boguski. Functional

genomics: It’s all how you read it. Science,

278:601–602, 1997.

11. The International Human Genome Sequencing

Consortium. Initial sequencing and analysis of

the human genome. Nature, 409:860–921, 2001.

12. M. Jin, P. T. Diaz, T. Bourgeois, et al.

Two-dimensional gel proteome reference map

of blood monocytes. Proteome Sci, 4(16), 2006.

13. James W. Kent and David Haussler. Assembly

of the working draft of the Human Genome

with GigAssembler. Genome Res, 11:

1541–1548, 2001.

14. James W. Kent, Charles W. Sugnet, Terrence S.

Furey, et al. The Human Genome Browser at

UCSC. Genome Res, 12:996–1006, 2002.

15. A. M. Maxam and W. Gilbert. A new method

for sequencing DNA. Proc Natl Acad Sci USA,

74:560–564, 1977.

16. K. B. Mullis. The unusual origin of the

polymerase chain reaction. Sci Am, 262:

56–65, 1990.

17. K. B. Mullis, F. A. Faloona, S. Scharf, et al.

Specific enzymatic amplification of DNA

in vitro: The polymerase chain reaction.

In Cold Spring Harb Symp Quant Biol,

51:263–273, 1986.

Chapter 3 Wet and Dry Lab Techniques 127

18. P. J. Nelson, I. H. Gelman, and P. E. Klotman.

Suppression of HIV-1 expression by inhibitors

of cyclin-dependent kinases promotes

differentiation of infected podocytes. J Am Soc

Nephrol, 12:2827–2831, 2001.

19. Richard J. Roberts. Perspective: How restric-

tion enzymes became the workhorses of

molecular biology. PNAS, 102(17):5905–5908,

2005.

20. F. Sanger, S. Nicklen, and A. R. Coulson.

DNA sequencing with chain-terminating

inhibitors. Proc. Natl. Acad. Sci. USA,

74:5463–5467, 1977.

21. M. Schena, D. Shalon, R. W. Davis, and

P. O. Brown. Quantitative monitoring of gene

expression patterns with a complementary

DNA microarray. Science, 270(5235):467–470,

1995.

22. Special issue on “The Human Genome.”

Science, 291:1145–1434, February 2001.

23. S. C. Webb, A. Attwood A, T. Brooks T., et al.

Limas: The java-based application and

database for microarray experiment tracking.

Mamm Genome, 15(9):740–747, 2004.

24. White House Press Release. Remarks by the

president...on the completion of the first survey

of the entire human genome project.

http://clinton5.nara.gov/WH/New/html/genome-

20000626.html

25. Wired News Story. Genome mappers to make

amends. http://www.wired.com/news/

technology/0,36815–0.html

26. V. E. Velculescu, L. Zhang, B. Vogelstein, and

K. W. Kinzler. Serial analysis of gene

expression. Science, 270:484–487, 1995.

27. J. Craig Venter, Mark D. Adams, Eugene W.

Myers, et al. The sequence of the human

genome. Science, 291:1304–1351, 2001.

4
Fragment Assembly

“Humpty Dumpty sat on the wall.

Humpty Dumpty had a great fall.

All the kings horses and all the kings men

couldn’t put Humpty together again.”

T
he announcement of the sequencing of the human genome and accom-

plishments of the Human Genome Project and Celera Genomics have

brought the attention of the world’s media to the field of bioinformatics.

This work was described in some detail in Chapter 3. Another good point from

which to start exploring the history and achievements of the Human Genome

Project is [8].

The Human Genome Project, initially headed by James Watson, was set

up by the U.S. National Institutes of Health (specifically the National Human

Genome Research Institute) and the Department of Energy in 1990. One of its

many goals was the determination of the entire nucleotide sequence of the human

genome by 2005.

Apress release issuedonApril 14, 2003, by the InternationalHumanGenome

Sequencing Consortium asserts that as of that date, all the goals of the Human

Genome Project have been met or surpassed.

Recall from Chapter 3 that sequencing machines can reliably produce the

nucleotide sequences of DNA segments of length up to about 500 bp. To deter-

mine the sequences of each of the chromosomes of the human genome, it is

necessary to somehow “stitch together” lots of these 500-bp pieces and recon-

struct unbroken stretches of hundreds of millions of base pairs. In this chapter,

we will look at techniques and algorithms that can be used toward that end.

4.1 THE NATURE OF THE PROBLEM

4.1.1 Two Analogies

In Chapter 3 we described the laboratory techniques that result in reliable

sequences of approximately 500 nucleotides (500-mers). If all we have are lots

and lots of 500-mers, we don’t really knowmuch about the original genome from

which these 500-mers were produced. It’s as if somebody cut up several copies

128

Chapter 4 Fragment Assembly 129

of Great Expectations into 5-cm square pieces of paper and gave you some of

the pieces. Although you might thus accumulate a significant amount of Charles

Dickens’ novel, can you truly say that you have much insight into the story?

Let’s call this scenario the “book reconstruction” puzzle. As we shall see, the

analogy will provide us with useful insights into our real target: the sequence

reconstruction puzzle.

Jigsaw puzzles offer another analogy for the genome-sequencing problem.

Just as jigsaw puzzles break up a complete picture into several pieces that need

to be joined to re-create the original picture, laboratory sequencing techniques

produce lots of relatively small (500-nucleotide) pieces that need to be joined

together to reassemble theoriginal large sequence. But there is aweaknesswith the

jigsaw puzzle analogy: The pieces of a jigsaw puzzle are disjoint and fit together

closely with no overlap. Each individual point in the completed picture of the

jigsaw puzzle belongs to one, and only one, jigsaw piece. It is important to realize

that the laboratory techniques in Chapter 3 produce pieces that will overlap;

furthermore, each point in the genome will likely occur in several different pieces.

A small jigsaw puzzle is shown in Figure 4.1.

Amore accurate analogywith the fragment reassembly problem can bemade

if we imagine several companies producing jigsaw puzzles of the same scene. Each

company cuts up the scene into pieces in its own independent way.

Now we can construct a different puzzle that is more akin to the sequence

reconstruction puzzle. We are given a large number of jigsaw pieces with no way

of telling which pieces came from which company’s jigsaw puzzle. We are to

reconstruct the original scene from which all the individual jigsaw puzzles were

created.

Let’s recap: Several companies have each produced a different jigsaw puzzle

of the same scene. Each company cut up the scene in its own way. We are given a

large number of jigsaw pieces taken from each of the different companies, and we

FIGURE 4.1 Jigsaw puzzles have disjoint pieces. Sequence reconstruction puzzles

have overlapping pieces.

130 Chapter 4 Fragment Assembly

don’t know which piece came from which company. We probably don’t have all

the pieces from all the companies. Our task is to generate a picture of the original

scene. That’s the multiple jigsaw puzzle.1

The book reconstruction puzzle presented us with lots of 5-cm squares cut

by different people in different ways from several copies of a novel. We probably

don’t have all the pieces from all of the book vandals. Our task is to generate one

copy of the original book.

The fragment reconstruction problem presents you with a large number of

fragments, such as:

ACC AC AT

AC AT GG ACTTA TC

CGT CGG TG TT TT

GG ACTTA TC A GTCA ACT AC AAT

CAT GA GAC ATTC

Your aim is to figure out what the original sequence might have been before the

DNA strand was cut into tiny pieces. By laying out the preceding fragments in

this tableau:

ACC CAT GA GAC ATTC

AC AT GG ACTTA TC

CGT CGG TG TT TT

A GTCA ACT AC AAT

you might decide the original sequence was

ACCGTCATCGGGACTGACTTAATTC

Unlike in a jigsaw, we have overlaps, and this fragment reconstruction prob-

lem corresponds to approximately 2* coverage. Each nucleotide in the original

sequence occurs about twice in the fragments.

On the other hand, jigsaw puzzles like the one in Figure 4.2 have exactly 1*

coverage, and there is no overlap between the pieces.

The sequence reassembly puzzle presents us with several lengths of nucleotide

string, each about 500 nucleotides in length and all taken from the same stretch

of DNA. But several copies of that stretch of DNAwere cut up in different ways.

We probably don’t have the entirety of any one copy of the original DNA stretch.

Our task is to generate the sequence of that original stretch of DNA.

4.1.2 The Need for Multiple Coverage

For the book reconstruction puzzle we would like a guarantee that from among

all the pieces of paper in our possession, we have at least one copy of every single

occurrence of every single word in the book. For the multiple jigsaw puzzle we

1
To make it more realistic, imagine that the number of ways the pieces of a jigsaw puzzle can be cut

is more restricted than it really is; so that many pieces might fit with one another.

Chapter 4 Fragment Assembly 131

FIGURE 4.2 A puzzle more akin to fragment reassembly. Several copies of

La Giocanda (or theMona Lisa) have been cut up. Your task is to put together one

perfect copy of the whole.

would like someassurance that every single pixel of the original scene appears in at

least one of the jigsaw pieces in our possession. And for the sequence reassembly

puzzle, we’d like to be certain that every occurrence of every nucleotide in the

original stretch is represented at least once somewhere among our collection of

500-mers.

It is too much to expect our somewhat random processes to provide an abso-

lute guarantee of any of these conditions. However, it is possible to engineer the

132 Chapter 4 Fragment Assembly

circumstances of the puzzle in such a way that it is overwhelmingly likely that

our puzzle is complete by our definition. The key is to ensure an adequate level

of coverage. For the book reconstruction puzzle, we do this by starting with an

adequate number of copies of the book and collecting a large number of 5-cm

squares from those available. For the multiple jigsaw puzzle the more companies

making different individual jigsaw puzzles of the same scene, and the more pieces

we obtain from them, the more likely are we to have adequate representation.

For the DNA sequence reassembly puzzle we need many copies of the genome,

randomly sheared to generate many overlapping fragments of different size, and

we need to sequence a large number of the resulting pieces to provide adequate

input to our algorithms. The best we can do is to aim for an average coverage rate

that is sufficient to make it statistically extremely unlikely that we have missed

any section of the genome. Exercise 4.1 will investigate just howmuch of this type

of overkill is necessary to guarantee a reasonable level of certainty that nothing

has been missed.

Another important reason to use many copies of the human genome is that

there is not a human genome sequence. Recall from Chapters 2 and 3 that the

variation in our genomes is what makes us unique individuals and is a driving

force in evolution. The human genome sequencing projects were based on agree-

ment that the completed sequence should be a composite of several individuals

representing both genders and diverse ethnic backgrounds.

4.2 PUTTING THE PIECES TOGETHER

Let’s now suppose that we have some reasonable assurance that among all the

small squares of paper in our possession we actually have full coverage of the

novel. Or some assurance that we have full coverage of the scene for the jigsaw

puzzle. Or some assurance that we have adequate coverage of our stretch of

genome.

Now we need to fit the pieces together. It will be useful for us to continue

in this section with our Great Expectations and with our multiple jigsaw puzzle

analogies.

4.2.1 Location, Location, Location

Experience has taught us some “tricks” to help us put jigsaw puzzles together.

For example:

• Corner pieces are easy to recognize because two straight edges meet in a right

angle. These pieces are easy to locate correctly.

• Side pieces are recognizable because of their straight edge, but it’s not quite

so easy to place them precisely in their final positions.

• Some visual clues may help us. For example, we know that a piece contain-

ing an eye is likely to be close to and above a piece containing a mouth or

a nose.

Chapter 4 Fragment Assembly 133

Similar clues pertain to the DNA-sequencing puzzle. Prior research has

established some useful pointers for us. For example:

• A certain gene is known to be located on a particular chromosome.

• A certain sequence of a small number of nucleotides is known to occur only

in one place. Such sequences are called sequence-tagged sites (or STS).

• The amount of separation between two identified locations is known.

4.2.2 Mapping

Over the years, scientists have built up abase of knowledge about certain locations

on the genome. Careful studyof this information canbeused to construct apartial

schematic map indicating relative locations of salient genomic features.

Imagine that some scholars of Great Expectations have published important

facts about the book that can be used to help us locate our little 5-cm squares. As a

rather fanciful example, suppose that a biblical scholar was seeking connections

between the book of Jeremiah and Dickens’ Great Expectations. This scholar

read the novel very carefully, and among the conclusions, she remarks that the

word lamentation appears exactly once in Great Expectations toward the end of

Chapter 22.2 So if the word lamentation appears on one of our 5-cm squares, we

can place that square in its approximate location, correct to within a chapter.

Once we have the unique location of lamentation we can look around at

the context. In the case of this word the context found at the Website of

http://www.literature.org happens to be3

We were waiting, I supposed, for Mr Pocket to come out to us; at any rate we

waited there, and so I had an opportunity of observing the remarkable family

phenomenon that whenever any of the children strayed near Mrs Pocket in their

play, they always tripped themselves up and tumbled over her—always very

much to her momentary astonishment, and their own more enduring lamenta-

tion. I was at a loss to account for this surprising circumstance, and could not

help givingmymind to speculations about it, until by-and-byMillers came down

with the baby, which baby was handed to Flopson, which Flopson was handing

it to Mrs Pocket, when she too went fairly head foremost over Mrs Pocket, baby

and all, and was caught by Herbert and myself.

4.2.3 Using Overlaps

Let’s say we find the preceding quote fromGreat Expectations on one of our 5-cm

squares. Where do we go from here? One approach would be to look for other

2
You may think we’re going overboard with this analogy, but we’re making the entirely serious

point that published research conducted without specific thought for the use of its results for genome
sequencing can, in fact, provide important mapping information to help us solve today’s reassembly
puzzles.
3
A subtle complication occurs here: If we look at the quote carefully, we will see that lamentation

has, in fact, been erroneously rendered as lamenta- tion at this Website. Most likely this transcription
occurred at some stage of the scanning process. Similar errors occur often in the biological world.
It is quite common for humans or programs to miscall or simply miss or duplicate a base. Robust
algorithms need to take this into account, as we shall discuss later.

134 Chapter 4 Fragment Assembly

5-cm squares that have some words in common with this one. We can look for

overlap. Suppose we find a square of paper containing

about it, until by-and-by Millers came down with the baby, which baby was

handed to Flopson, which Flopson was handing it to Mrs Pocket, when she

too went fairly head foremost over Mrs Pocket, baby and all, and was caught

by Herbert and myself. ‘Gracious me, Flopson!’ said Mrs Pocket, looking off

her book for a moment, ‘everybody’s tumbling!’ ‘Gracious you, indeed, Mum!’

returned Flopson, very red in the face; ‘what have you got there?’ ‘I got here,

Flopson?’ asked Mrs Pocket.

What do we conclude? Did you notice the significant overlap between the

two squares? The “suffix”

about it, until by-and-by Millers came down with the baby, which baby was

handed to Flopson, which Flopson was handing it to Mrs Pocket, when she too

went fairly head foremost over Mrs Pocket, baby and all, and was caught by

Herbert and myself.

of the first sequence is also a “prefix” of the second. This enables us to place the

second immediately after the first. In sequence assembly this joining process using

overlaps results in the formation of a longer sequence from the two sequences

being joined. Once the fragments begin joining in this way, we refer to those

longer sequences as contigs. More and larger contigs are then ordered and ori-

ented relative to one another as they are assembled into a higher order structure

known as a “scaffold.” Can you also see that you’re going to appreciate the assis-

tance of a computer program that can seekout overlaps like this? Despite efforts at

complete coverage of the genome, gaps inevitably exist between contigs and scaf-

folds. Some sections of DNA will simply not be covered by any of the fragments

we sequenced. One approach to resolving these gaps relies on obtaining new

sequence data. Primers can be designed to facilitate the generation of sequence

segments that flank other existing ones. As each fragment is identified, a primer

is derived from the “newly discovered” end, and used to discover the next new

fragment. This technique has been given the evocative name sequence walking.

Reliance on and generation of mapping information was one of the differ-

ences in approachbetween the public and the private teams sequencing the human

genome. The public project intended to rely heavily on mapping knowledge to

ensure a high level of confidence in correct placement of sequenced fragments

and to reduce the problem space of the sequence reassembly.

4.2.4 Whole-Genome Sequencing

More cavalierly, perhaps, Craig Venter and Celera advocated a whole-genome

shotgun strategy that relied heavily on the power of the new automatic sequencers

and computer algorithms that used overlap information to try to locate the

sequenced segments relative to each other.

As usual in biological science, nothing is quite that simple. The public project

emphasized mapping but needed reassembly programs to fill in the frame pro-

vided by mapping information. The private enterprise made use of the mapping

Chapter 4 Fragment Assembly 135

information gathered by the public project and employed derived scaffolds to

assist the whole-genome shotgun reassembly programs.

4.2.5 The Problem of Repeats

Some short sequences (such as lamentation in Great Expectations) are rare, and

when found, the information derived is very valuable. Other sequences are more

common. For example, if we were to find the sequenceMagwitch on one of our

5-cm squares, and if we were fortunate enough that prior scholars had investi-

gated the appearances ofMagwitch very carefully, it would not enable an exact

placement of our square of paper; only that it belongs in one of Chapters 40,

42, 46, 53, 54, 55, or 56. This information is not definitive, but it does help

a little in our reconstruction problem. More extremely, the value of finding a

common string like Pip on one of our squares of paper is very small. (Pip is the

main character of the novel, and his name appears at least once in most of the

chapters.) Frequently occurring words like the, and and is provide essentially no

useful information. In fact, using an overlap as short or as commonly repeated

as the would be most unlikely to help us correctly reconstruct the novel.

The same phenomenon occurs in biology. Some sequences are very com-

monly repeated throughout the genome. It is important to identify them so we

do not rely on their occurrences to compute likely overlaps between sequence seg-

ments. Repeated subsequences can cause reassembly algorithms to miss sections

of genome in between the repeats. Consider the following simple, unrealistically

small example to illustrate how this can happen:

4.2.6 A Worked Example

Suppose our original sequence is

ACGATTGAGAATTCCGA

and suppose our wet lab sequencers presented us with fragments

(a) GAGA

(b) ATTC

(c) AC

(d) GATT

(e) CGA

(f) ACGAT

(g) TGAGAA

(h) TTCCGA

(If you are patient enough, you will note that we have exactly 2* coverage of the

original sequence, but that is just a fortuitous accident.)

Most reconstruction algorithms will immediately throw out fragments (a),

(c), and (e) on account of their being entirely contained in other fragments, and

thus providing no useful information. We are left with

(b) ATTC

(d) GATT

136 Chapter 4 Fragment Assembly

(f) ACGAT

(g) TGAGAA

(h) TTCCGA

Asweknow fromSection 4.2.3, information about the ovelaps between fragments

is one of the most important clues in any reassembly process. The huge overlaps

between (b) and (h), between (f) and (d), and then between (d) and (b) makes it

almost a certainty that any reassembly algorithm would place (f)(d)(b)(h) all in a

row to form ACGAT GATT ATTCTTCCGA. Compressing the overlaps results in

a predicted reassembly ofACGATTCCGA. If you go back and compare this result

with the original sequenceACGATTGAGAATTCCGA, you see that the repetition

of ATT within the sequence has caused the reassembly algorithm to short-circuit

by collapsing the underlined section ACGATTGAGAATTCCGA. It takes a very

sophisticated reassembly algorithm to resist the temptations provided by all those

large overlaps.

4.3 THE SIZE OF THE PROBLEM

Aswehave seen, mapping information canbeused to subdivide themain reassem-

bly problem and to provide clues as to location of some fragments. Taken literally,

whole-genome shotgun sequencing would use no localization, mapping, or sub-

division and would attempt to reconstruct a genome of 3.5 billion nucleotides,

using segments of approximate length 500. With a 10-fold coverage we should

have 3,500,000,000∗10
500

or 70,000,000 fragments. Each of thesewould be a sequence of

500 nucleotides, and our program would need to investigate all possible pairwise

overlaps.

More modestly, suppose we did a reasonable amount of mapping. To start

with, we should divide the genome into 25 chromosomes for instance. And then

let’s say our mapping techniques are good enough that we can subdivide each

chromosome into about 100 pieces that we know how to place relative to one

another. Now the average reassembly problem is to correctly combine a sequence

of length, 3,500,000,000
25∗100

or 1,400,000. Againassuming10-fold coverageby500-mers,

we would expect a more reasonable 28,000 inputs. Of course, we would have 2500

problems, each with 28,000 fragments; but, as we shall see, this should be more

manageable than a single problem with 70,000,000 inputs.

Think what it takes to create programs that input n sequences of length k,

find overlaps, and arrange the pieces in the likely complete order fromwhich they

were disintegrated. Such programs cannot afford to be inefficient. Just reading

and storing the inputs will require time andmemory proportional to the kn bytes.

Investigating pairwise overlaps requires us to look at all possible pairs, and com-

pare up to k bytes within each. A straightforward approach would take time

proportional to kn2 since there are about n2 ways to find pairs among n objects.4

We’re not even finished yet: We still need to reconstruct the sequence from the

overlap information.We’ll study the algorithm further, sowe leave the complexity

4
You may recall that the exact number here is

n(n−1)
2

which is certainly of the same magnitude as n2.

Chapter 4 Fragment Assembly 137

Where Do Repeats Come From?

The problem of repeated sequences within genomes has been a major

stumbling block for any reassembly algorithm. Oddly enough, the larger the

genome, the more regions are repeated sections that do not appear to carry

any relevant information. These regions are called repeat regions in biology,

and genomes acquire these stretches of sequence in a number of ways. We

do not yet know if these repeat regions serve a specific biological purpose,

but they are faithfully copied from generation to generation. As one exam-

ple, the human Y chromosome, which is carried by all males, is composed

almost exclusively of repeat regions. The few genes on the Y chromosome are

critical for our species (without them we would have no males and hence no

reproduction! Or, at the very least, reproduction would contrast greatly with

our current method.), but they are buried in endless stretches of apparently

nonsense DNA.

The puzzle about repeat regions extends in many different directions.

Aside from the puzzle of their purpose, if any, the second most interesting

puzzle is how they arose in the first place. Some repeat regions are the result

of mistakes in replication in which a section of DNA is accidentally copied

several times. Another possible resaon for repeat regions is that a section

of DNA is transferred from one chromosome to another, creating a second

copy of a DNA sequence. An interesting class of repeat regions appears to

be capable of facilitating their own transport and replication: they will cut

themselves out of onepart of a genomeandpaste themselves elsewhere. These

regions are collectively known as transposons [9].

One relatively common way a genome acquires a transposon is through

a retrovirus such as HIV. Retroviruses use an unusual strategy to ensure

their replication and persistence in cells. Once they enter a cell, they gen-

erate a DNA copy of their RNA genomes using a special enzyme called

a reverse transcriptase. The DNA copy of the viral genome is then some-

times integrated into the host cell’s genome. From there, it will be faithfully

recopied along with the entire genome every time the cell replicates. At cer-

tain times, the viral sequence can be activated in such a way that it “jumps

out” of the cellular genome and reintegrates elsewhere. This can allow a

genome to acquire many hundreds of copies of the viral genome. The really

astonishing feature of these viral transposons is that they can direct the syn-

thesis of viral proteins under certain circumstances, triggering reinfection

of the cell or its neighbors. These remarkable bits of DNA, known collec-

tively as retrotransposons, are a major constituent of our genomes. Indeed,

some estimates suggest that nearly half of our genomic sequences are the

result of retrotransposon activity by past viral infections [2]. So one could

almost speculate that half of who we are is foreign DNA from some very

ambitious viruses.

138 Chapter 4 Fragment Assembly

TABLE 4.1 Minimum Time and Memory Requirements
for a Fragment-Reassembly Program
Assuming n Fragments of Size k

Task Time Memory

Read the sequences O(nk) O(nk)

Measure and store all potential overlaps O(kn2) O(n)

Determine full sequence ? ?

of that final part of our algorithm undefined in the summary information in

Table 4.1.

Table 4.1 shows the absolute minimum “Big O” requirements of time and

space for any reassembly program. With n at our original 70,000,000 and k at

500, kn2 is 2,450,000,000,000,000,000, or about 2.45 quintillion operations. Even

with a computer capable of 10 billion operations per second, this would take

245,000,000 seconds, or almost 3000 years.

By subdividingourproblem into 2500problems, eachwithn= 28,000, wewill

find kn2 is a more reasonable 392,000,000,000. On currently available personal

computers, a billion operations per second is standard, and each kn2 is achievable

in amatter ofminutes. Of course, wewill have 2500 separate problems, but even so

we are back in the realm of the realistic. In practice, fragments of about 2,000,000

nucleotides are cloned into plasmids. With coverage at 10 times and sequenced

pieces of length about 500 nucleotides, this would lead to a value for n of about,
2,000,000∗10

500
or about 40,000. More details of sequence reconstruction strategy are

described in [7].

We are acutely aware that we are working at the limits of current computer

technology and barely within the limits of human patience. And that only gets us

to the first stage, the identification of pairwise overlaps between the fragments, an

operation that is of magnitude O(kn2). If the expected runtime of any other part

of our reassembly algorithm significantly exceeds theO(kn2) required for overlap

investigation, then the entire algorithm ceases to beworkable for problems of cur-

rently expected size on contemporary computing equipment (See Exercise 4.2).

In Exercise 4.3 you will consider the effects on expected running time of various

schemes for subdividing the fragment-reassembly problem.

4.4 A PURELY COMBINATORIAL PROBLEM

In this section, we will describe an idealized5 problem that will enable us to tackle

the essential elements of our problem in a setting amenable to straightforward

analysis techniques. We postpone consideration of the real biological sequence

5
An idealized problem is a mathematical simplification that is used for preliminary investigations,

analyses, and algorithm development without the complicating and often distracting “clutter” often
associated with real-life problems.

Chapter 4 Fragment Assembly 139

reassembly problem until we have a firm understanding of the underlying

combinatorial principles.

4.4.1 Problem Statement

Several (let us say c) copies of an original sequence of length l over an alphabet

of a symbols have been cut into subsequences of average length k. We call those

subsequences fragments, and suppose there are a total of n fragments. Our input

is the set of n fragments of average length k. We do not know c or l. There is no

particular advantage to be had from dealing with generalized alphabets, so let us

simply state that a is 4, corresponding to the number of nucleotides. Our goal is

to find a minimum length sequence s with the property that each and every one

of our input fragments appears as a subsequence of s.

Computer scientists more often speak of strings and substrings rather than

sequences and subsequences, so the problem we have just described is commonly

referred to as the shortest common superstring problem.

The shortest common superstring problem is not the same as the biologi-

cal fragment-reassembly problem. In particular, it does not take into account

difficulties associated with:

• repeated sections of sequence (Exercise 4.4)

• inexact recording of some nucleotides within fragments (Exercise 4.5)

• the bidirectional nature of DNA (Exercise 4.6)

Nevertheless, study of the shortest common superstring problemwill provide

us with valuable insights into the nature of the biological sequence reassembly

problem and will indicate how to proceed to solve it and to understand solutions

proposed by others.

It turns out that the shortest common superstring problem is NP-

complete [4]. This means that the only completely reliable solutions are likely to

be about as slow as an exhaustive search program. Such programs are not prac-

tical for problems even a fraction of the size of those in which we are interested.

With the numerous and large instances associated with fragment reassembly, we

must make compromises and seek quick algorithms that are likely to produce

solutions that are acceptable and useful, even if they are not necessarily optimal.

4.5 SOLVING THE COMBINATORIAL PROBLEM

4.5.1 Overlaps

Given n strings (fragments) of average length k, find the shortest superstring that

contains each and every one of the n strings as a substring.

The first step toward solving this problem is to obtain all the information we

need about overlaps between the fragments and to place that information into a

data structure that enables quick access.

An overlap occurs if a suffix of one fragment is a prefix of another.

For example CG, is both a suffix of S = ATCGATCCG and a prefix of T

= CGATCCGATTAT.

140 Chapter 4 Fragment Assembly

IsCG the only overlap between ATCGATCCG andCGATCCGATTAT? Well,

no, it isn’t. Did you notice thatCGATCCG is both a suffix of S and a prefix of T ?

BecauseCGATCCG is longer thanCG it is preferred. Intuitively, since a sequence

within overlaps is involved in accounting for more of the fragments within the

eventual superstring, we expect that longer overlaps recorded between pairs of

fragments will lead to shorter superstrings. Computer scientists would say that

seeking long overlaps is a useful heuristic. Other folks might prefer to say that we

have a hunch that the longer overlap is correct. Exercise 4.7 will investigate this

question further.

For now, let’s accept the fact that CGATCCG is the overlap between S

= ATCGATCCG and T = CGATCCGATTAT. That’s because CGATCCG is the

longest suffix of S that is also a prefix of T . That’s our definition:

Definition 4.1 The overlap between string S and string T is the longest

suffix of S that is also a prefix of T .

Notice that ourdefinitionof overlap is order-dependent. Theoverlapbetween

S andT is not the same as the overlap betweenT andS. For our example stringsS

= ATCGATCCG and T =CGATCCGATTAT, the overlap between T and S is AT.

Figure 4.3 shows pseudocode for a simple algorithm to find the best overlap

between two fragments. Notice that it contains one loop that will be executed an

average of k times. (Recall that k is an average length for our fragments.) Within

that loop is a comparison of each suffix of the first string with the equal-length

prefix of the second string. The average length of each suffix (and prefix) will

be k
2
. This naïve algorithm will thus run in time O(k2). Exercise 4.8 asks you to

develop a O(k) algorithm.

4.5.2 Fragments Within Fragments

What would the program in Figure 4.3 return as the overlap between S

= ATTACCTACT and T = TCGATTACCTACTTTAG? The given code would

String overlap(String s, String t) {
int best = 0;
int slen = s.length();
int tlen = t.length();
int shorter;
if (slen < tlen) shorter = slen;
else shorter = tlen;
for (int i = 1; i < shorter; i++)

if (s.substring(slen-i,slen).equals(t.substring(0,i))) best = i;
return(t.substring(0,best));

}

FIGURE 4.3 Naïve algorithm to find overlap between two strings.

Chapter 4 Fragment Assembly 141

frags is a collection of fragments;
if any fragment is entirely contained in another fragment {

remove the shorter fragment;
}
for each pair (x,y) of fragments {

record the overlap between x and y;
record the overlap between y and x;

}

FIGURE 4.4 Pseudocode for the beginning stages of our Shortest Common Superstring solver. Java code is to

be found in package alg:greedy.

return the single-nucleotide string T, and that would be correct. But it’s not

what we really want.

Did you notice that ATTACCTACT is a substring entirely contained within

TCGATTACCTACTTTAG? In terms of solving the shortest superstring problem,

the fragmentATTACCTACT provides us with no useful information beyond what

we already have knowing that TCGATTACCTACTTTAG is a fragment.

To obtain truly useful overlap information for our set of fragments, we first

need to remove any fragments that are entirely contained within another frag-

ment. One way to do this is to preprocess the set of fragments through a filter

that removes any fragment entirely contained in another. Anaïve approach to this

would add a procedure taking O(nk) steps to our developing program. It might

be better if containment detection were incorporated into the overlap detection

code. This will also be discussed in Exercise 4.8.

To recap, Figure 4.4 summarizes the first few steps in our solution to the

shortest common superstring problem:

4.5.3 A Graph Model

A good data structure for storing information about fragments and about over-

laps between pairs of fragments is a directed graph. The nodes will be labeled

with the strings corresponding to each fragment. The directed edge (arc) from

the node labeled with fragment x to the node labeled with fragment y will be

labeled with the overlap between x and y. A small example of an overlap graph

for the fragment set ATCC CCTA AAA is shown in Figure 4.5.

Some of the Java classes defined in packagealg.greedy (source code avail-
able on the website http://mhhe.com/gopal) are used to represent this kind of data

structure. Look especially at classes GraphNode and GraphArc.
A path in an overlap graph corresponds to a superstring of all the labels of

the nodes encountered in the path. The labels of the arcs encountered in the path

indicate how that superstring can be contracted by not repeating the suffix of the

label at the tail of the arc (which, by definition, is the same as the prefix of the

label at the head of the arc). For example, in Figure 4.5 the path from ATCC to

CCTA to AAA corresponds to the common superstring ATCCTAAA and avoids

repetition of the arc labels CC and A. The path from AAA to CCTA to ATCC

142 Chapter 4 Fragment Assembly

ATCC

AAACCTA a

a

a

cc

FIGURE 4.5 Overlap graph for ATCC CCTA AAA. Arcs with empty labels are

omitted.

corresponds to the much longer superstring AAACCTATCC because the edge

labels on this path provide so little opportunity to reuse sections of overlap.

In order that its corresponding string should include all of the fragments

in an instance of the shortest common superstring problem, a path must visit

each and every node of the overlap graph. Paths that visit every node of a

graph are called Hamilton paths after the Irish mathematician William Rowan

Hamilton, the Astronomer Royal of Ireland, who in 1857 invented “The Trav-

eller’s Dodecahedron—A Voyage Round the World” (also called the “Icosian

Game”), a boardgame involving finding a Hamilton path on a dodecahedron

[6, 10]. In order that its corresponding string be short, it helps if the arcs along

a path have labels as long as possible. This is because long labels correspond to

large overlaps, which in turn lead to more reuse of genome sequence and hence a

shorter overall string. Wewill refer to the length of an arc label as the arc’sweight.

These observations motivate the following lemma:

Lemma 4.1 The shortest superstring containing all the fragments is given

by a Hamilton path with maximal sum of arc weights.

Solving the shortest common superstring problem can thus be done by finding

an optimally weighted Hamilton path in the overlap graph. Sadly, the Hamilton

problem is NP-complete [4], and therefore we cannot expect an efficient accurate

algorithm to develop from this approach.

4.5.4 A Nonoptimal Greedy Algorithm

When a problem isNP-complete, computer scientists seek compromise solutions.

It is not possible to program a solution that is guaranteed to be optimal in any

Chapter 4 Fragment Assembly 143

but the smallest problem instances. Instead, we look for a plausible program that

might feasibly produce fairly reliable results. Of course, we’ll also need analytical

or statistical techniques to test the accuracy of our admittedly imperfect solution.

We proceed to develop a program that we can reasonably expect to produce a

good reassembly of fragments, and we’ll develop some experiments to measure

how good the reassemblies are.

Greedy algorithms are often quite successful at solving optimization prob-

lems. Optimization problems may often be posed in terms of trying to make

a succession of choices. For example, the problem of trying to find an optimal

Hamiltonian path in a graph can be posed in terms of successivelymaking choices

for the first node, then the second node, then the third, and so on. A greedy algo-

rithm works by measuring a simple quantity and successively making the best

looking choice in terms of that simple quantity at every stage. A greedy algo-

rithm for finding an optimal Hamiltonian path starts by selecting the heaviest

weighted arc in the graph and removing that arc from further consideration.

The greedy algorithm continues through several stages by selecting the heaviest

weighted arc, subject only to the condition that it should not close a cycle when

added to the already chosen arcs. Java code implementing this algorithm can be

found in the package alg.greedy. The ideas to look for in the code are the

use of a priority queue to store the arcs, so that the arc with the longest label

is always readily available, and the need to detect possible cycles in the emerg-

ing contigs. Most of this code is in the class GreedyAlg.java in the package

alg.greedy.
The program produces a list of contigs. If we are very lucky, it will be a single

contig corresponding to a list of GraphArcs that form a single path that visits

each and every node in the overlap graph. It’s not guaranteed to be a maximum-

weight Hamilton path, but we have reason to believe it may not be too bad.

Sometimes, however, the list of arcs produced by greedyHamiltonian will

not give rise to a single path; rather it will be a set of two or more disjoint paths.

Each of these corresponds to a sequence of nucleotides spanned by a subset

of the input fragments. The contig may, or may not, be a subsequence of the

original sequence that we are trying to reassemble. There are at least two reasons

why the greedy algorithm might produce multiple contigs instead of a single

path:

• It may be that the fragments do not cover the entire target sequence; because

of inadequate coverage, pieces are missing.

• It may be that the greedy algorithm erroneously placed a fragment where it

doesn’t belong, and, as a result, it is no longer possible to correctly continue

to build up a correct solution.

If the first eventuality has arisen, then even a correct reassembly program would

fail to produce a single correct contig. If the second is the case, we cannot be

sure: We know the greedy algorithm has failed, but we don’t know for sure that

a correct program would succeed.

Exercise 4.9 asks you to construct sets of fragments that will lead to both

scenarios.

144 Chapter 4 Fragment Assembly

Programming Project 4.1

Write a program to empirically test the credibility of the results of the greedy

fragment-reassembly algorithm. You will need to:

1. Write aprogramto input anucleotide string, adesiredaverage coverage,

a desired range of fragment sizes, and output a set of fragments.

2. Run the greedy program on sets of fragments generated by your

program.

3. Collect and analyze your results.

(a) How often did the greedy program produce a single correct config?

(b) How often did the greedy program produce a single incorrect

config?

(c) How often did the greedy program produce several configs?

i. How many of these would have been correctly handled by a

perfect program?

ii. Of the others, why would the perfect program fail?

iii. Would the greedy program fail in the same way?

This project asks you to combine your programming skills, your skills for

simulation experiments, and your skills for analyzing empirically derived

data. As such, it’s an ideal bioinformatics project!

4.5.5 Improving on Greed

Because the problem is NP-complete, a correct algorithm for the shortest com-

mon superstring problem must in all probability require time exponential in the

length of the input. The greedy algorithm we have described is fast, but its reli-

ability is poor. Is there a compromise program, slower than greedy, but not

exponential, and more likely to produce better solutions?

Think of our problem as a series of choices. Our first choice is any of the

arcs of the overlap graph. The greedy algorithm considers only one choice: the

heaviest arc, whereas the exponential algorithm needs to consider all the possible

choices. Now comes the second choice: choose one of the remaining arcs. The

greedy algorithmknows exactly which one it will choose, whereas the exponential

algorithm needs to consider all possible choices.

The selection process is therefore a treelike phenomenon (Figure 4.6). The

tree is as deep as the number of nodes in the overlap graph. X denotes a path that

fails on account of prematurely forming a cycle. Such a path need not be consid-

ered further. Y denotes a path that has a node with in-degree 2 or out-degree 2.

Again, such paths deserve no further consideration. Paths marked Z can be elim-

inated from consideration because they are rearrangements of others already

considered. A perfect, correct algorithmwill search all the remaining paths in the

tree. Even though it can perform a great deal of pruning by terminating paths

as soon as an X, Y, or Z condition is detected, it still requires examination of a

Chapter 4 Fragment Assembly 145

ATCC

AAACCTA

start

Pick an arc:

Pick an arc:

4a

2a

3a

1

cc

1 2

2 3 4 1 3 4 2 1 4 2 3 1

3 4

X X Y Y Y Z Y Z Z

FIGURE 4.6 The tree of choices for solving the Hamiltonian path problem for the

overlap graph of fragments in Figure 4.5.

number of paths exponential in the height of the tree. The greedy algorithm, by

contrast, heads unidirectionally down a single path and hopes for the best.

A significant portion of the early study of artificial intelligence [11] was,

fundamentally, tree search of this kind. A correct solution requires exhaustive

backtracking, and its runtime is exponential in the size of the input. Many

applications of artificial intelligence involved the development of heuristics, or

hunches, that could be incorporated into the search code to reduce the search

space. Other applications, particularly game playing, sought numerical bound

approaches to allow large-scale pruning of the search tree. The ultimate in prun-

ing, of course, is to be found in greedy algorithms—they prune the entire search

space down to a single twig!

146 Chapter 4 Fragment Assembly

We can improve on the greedy algorithm by allowing some branching in the

effective search space. To keep runtimes manageable, we must place limits on the

number of nodes to be expanded at each level of the search tree. Some approaches

to this will be explored in Exercise 4.10.

4.6 BIOLOGICAL SEQUENCE REASSEMBLY

So far we have presented sequence reassembly as an interesting and fun combi-

natorial problem leading to interesting computation problems. These questions

require computational compromises because the underlying problems are NP-

complete and problems encountered in the field will be large. At best we hope to

produce good solutions even though we know we cannot guarantee optimality.

As if these difficulties were not enough, we still need to tackle the additional

complications that arise because the real problem is more than a fascinating

combinatorial puzzle. They derive from experimentally derived biological data

that present us with new and fascinating real-world dilemmas that add to the

mathematical challenges.

Many technical issues arise as a result of the laboratory processes required for

sequencing. Sequencing projects require the construction of high-quality plasmid

libraries. For example, quality controls ensure that sequencing libraries have

sufficient clones representative of the entire genome, that there are few clones

without inserts, and that there is as little contamination as possible from sources

such as the vector itself, E.coli, or human mitochondrial DNA. Even so, these

all occur and must be detected.

Another important consideration is the accuracy of the sequence data.

Although error rates are very lowwith automatic sequencers, even a small amount

of error can negatively affect the assembly process.

Supposewehave an error rate of 1miscalledbase per 10,000. And suppose the

average size of our fragments is 500. There is a 5% chance that a given fragment

contains an error. If a reassembly algorithm is very “headstrong” and literal, it

will insist that a section of genome containing an error must be disjoint from the

same section sequenced and reported without the error. For example, suppose

twooverlapping segmentswere sequenced and that one of the sequencersmissed a

basewithin the overlapportion. Thuswithin the overlap, one sequencingmachine

reported

- - -***CGAGGCA***

where as another sequencing machine reported

CGAGCA---

The *** indicates nucleotide sequence where both machines agreed 100%, and

the - - - indicates parts of the two fragments that extend beyond the overlapping

section. A highly “literal-minded” reassembly algorithm will fail to recognize

the overlap on account of the one-nucleotide difference. A reassembly algorithm

Chapter 4 Fragment Assembly 147

that relies on exact pattern matching6 to detect overlaps will fail to recognize

any overlaps in which even one of the overlapping fragments contains a base-

calling error. As a result, reassembly programs that use exact pattern matching

for overlap detection will predict reassembled sequences that are far too long.

Ironically, increasing the level of coverage exacerbates this problem. As the

coverage increases, the number of overlapping sections increases, as will the num-

ber of overlapping sections in which at least one of the fragments contains a

base-calling error. Each such error causes the program to place the fragment con-

taining it elsewhere in the reconstruction rather than recognize the fragment as a

participant in the overlap. Inflexibility of patternmatching and insistence on exact

matching will lead to predicted reassemblages that are too long. The greater the

level of coverage, the greater the general overage in the predicted sequence length.

On the other hand, multiple coverage makes it possible to detect and even

to correct most base-calling errors. If a program can look at a large number

of fragments that all contain a certain section, and if one of those fragments

contains a miscall within the section, then it is not difficult for the programmer

to include code so that a consensus is formed of what the section should be, and

even to compute the correctionnecessary for the rogue fragment. Sadly, such error

detection and correction is possible only if we know just where each fragment

belongs. Herein lies our conundrum: We need the reassembly to determine where

each fragment belongs, and we need to determine where each fragment belongs

to gather evidence to arbitrate and correct sequence errors so that we can produce

a correct reassembly!

The logic circle can be broken by compromise. The pattern matching neces-

sary for overlap detection needs to be less literal-minded. The overlap detection

aspect of the reassembly algorithm can be made more flexible so that overlaps

can be recorded even if a base is miscalled within the overlapping section. Of

course, if the overlap detection becomes too flexible, the algorithm will begin to

report nonexistent overlaps as possible overlaps, and this will lead to predictions

of reassemblage that will be too short.

Phrap andPhred (http://www.phrap.org) are programs developed at the Uni-

versity of Washington that deal with these types of technical issues. For example,

Phred trims the vector by comparing the generated sequence with a known vector

sequence. Phred also has algorithms to assess the quality of base-calling at the

ends of segments, where sequence quality is known to degrade. Phrap constructs

a consensus based on a mosaic of the highest quality base-calling reads gener-

ated by Phred at each position. Phrap’s algorithms avoid the complex problems

associated with multiple alignment algorithms (see Chapter 5).

The biological issues in sequence reassembly are due to the nature of DNA,

chromosome structure, and composition. One factor we have yet to consider is

sequence orientation. Recall that the two strands of DNA are antiparallel. When

randomly sheared DNA fragments are inserted into plasmid vectors for cloning,

we don’t know the orientation of that insert. For each fragment retrieved from

6
The topic of exact pattern matching is described more fully in Chapter 5.

148 Chapter 4 Fragment Assembly

sequencingmachines, we have no idea if it belongs to the forward or to the reverse

strand. We don’t know which strand we have sequenced and so don’t know how

a given fragment should be oriented relative to others. We need to realize that

what we have is effectively two linked puzzles. It’s almost as if we had two jigsaw

puzzles printed on opposite sides of the same piece of wood. One aspect of this

makes our solving process harder: We don’t know which side of the puzzle piece

should be up. On the other hand, having two problems to solve in parallel, makes

our task easier. Especially if we are solving the puzzles on a glass table and are

able to see the emerging reassemblage on the bottom as well as on the top. In

short, the presence of the two DNA strands requires us to add some logical com-

plexity to the (combinatorial) fragment reassembly algorithm in order to make

it applicable for (two antiparallel strand) fragment reassembly. But the heart of

the algorithm is unchanged.

Amore problematic issue is the occurrence of a large proportion of repetitive

sequence in the human genome. Some sequences, such as the 2- to 6-bp sequences

known as microsatellites, are present in millions of copies in the genome. Longer

repetitive sequences, including Alu and long interspersed elements (LINE), as

well as tRNAs and rRNAs, occur hundreds of thousands of times, throughout

the genome. These sequences confound the overlap process as well as the ability

to generate unambiguous order and orientation when creating scaffolds. Con-

sequently, reassembly pipelines generally find and mask repeats so that these

sequences don’t adversely affect the overlap process as described in Section 4.2.5.

Resolving repeats in order to construct a finished sequence has been one of the

most challenging aspects of the genome projects.

4.7 SEQUENCING BY HYBRIDIZATION

Some of the inventors7 of DNA microarrays envisaged their use for sequenc-

ing. Recall from Chapter 3 that a microarray has on its surface many different

oligos (short sequences of nucleotides). When a sample is washed over the array,

hybridization occurs at those oligos on the array that are the reverse complements

of sequences present in the sample.

Imagine now that our DNA array has on its surface all the possible oligos of

length k. This requires that the array have 4k different oligos. So, realistically, k

is likely to be in the range 5 to 10 (corresponding to arrays of about a thousand

to about a million spots). After hybridizing with our sample we know precisely

which k-tuples are present and which are not present in our sample. After such

an experiment we have a set of, say m k-tuples, that we know will occur in the

target sequence we wish to identify.

Is that enough information to determine the target sequence? The general

combinatorial problem is: Given a set ofmk-tuples that are known to be precisely

those k-tuples that occur within a target sequence, find that target sequence. Let’s

7
DNA-chip technologies were simultaneously and independently invented in the late 1980s in

England, Russia, and Yugoslavia. Later claims are made for inventors in other countries.

Chapter 4 Fragment Assembly 149

consider a simplified example in which the value of k is an unrealistically low 3,

and m is 14.

4.7.1 A Worked Example

Let’s say a hybridization experiment assures us that the following 3-tuples occur

in our sample:

ACC AGC ATG CAG CAT CCA CCG CGT CTT GCA GCC GCT GTG TGC

Our task is to construct a target sequence whose length-3 subsequences are

exactly those given.

First note that any sequence of length n has exactly n − 2 length-3 subse-

quences. Since we have a set of 14 triples, this suggests a target sequence of

length 16. Interestingly, it turns out that this particular set of triples is going to

require at least 17 nucleotides in any solution sequence. Thiswill becomeapparent

as we develop the algorithm.

We develop the algorithm for the general problem where we are given m

k-tuples. As with many combinatorial problems, the first step in the solution is

the construction of a graph. The graph we make has 4k−1 nodes, corresponding

to the possible (k− 1)-tuples of nucleotides. Each node is labeled with one of

the possible (k− 1)-tuples. Our illustrative example has 16 nodes, as shown in

Figure 4.7. Our graph is actually a directed graph, or digraph, with m arcs, each

of which corresponds to one of the k-tuples. Specifically, the arc corresponding

to the k-tuple a1, a2, . . . , ak joins the node labeled a1, a2, . . . , ak−1 to the node

labeled a2, . . . , ak−1, ak .

Note that some of the nodes in the digraph of Figure 4.7 are not connected

to anything. They can safely be discarded. The remaining nodes and arcs have

been repositioned in Figure 4.8 to help us visualize the rest of the algorithm.

Our intention is to find a sequence of nucleotides that contains each of them

given k-tuples (and no others). As is true for the greedy algorithm for reassembly,

it is desirable that the target sequence be as short as possible. Notice that any

path within the graph of Figure 4.8 corresponds in a natural way to a sequence

of nucleotides. For example, the path through the nodes labeledCA, AT,TG, and

GC, using the arcs labeled CAT, ATG, and TGC, corresponds to the sequence

CATGC. In an equally natural way, that path “consumes” the triples CAT, ATG,

and TGC that appear as labels along its arcs.

Notice that we are seeking a path through the digraph that consumes, in

this sense, each and every one of the arc labels. For economy, and to ensure the

shortest target sequence possible, we would like to use each and every arc exactly

once. As we shall see, this is not quite possible for our illustrative example. In the

mathematical literature, paths that traverse each arc of a digraph exactly once are

calledEulerian paths.Many theorems and algorithms are known concerning such

paths. In particular, the following is a theoremdue to the Swissmathematician for

whom the paths were named (Leonhard Euler,8 1707–1783). Before we state the

8
Euler has long been considered the founder in 1736 [1] of the field of mathematics called graph

theory. His theorem can be used to solve a famous puzzle concerning the bridges of Königsberg.

150 Chapter 4 Fragment Assembly

CAG

CAT

CCGCCA

AGC

GCT
CTT

ATG

GTGTGC

CGT

GCCGCA

AA AC AG AT

AGC

GA GC GG GT

CA CC CG CT

TA TC TG TT

FIGURE 4.7 The digraph corresponding to our illustrative example of sequencing by

hybridization. Nodes are the possible (k − 1)-tuples of nucleotides. Arcs correspond to

the m given k-tuples.

theorem, we shoulddefine the in-degreeof anode tobe thenumberof arcs entering

that node, and the out-degree of a node to be the number of arcs that exit it.

Theorem (Euler): A connected digraph will have an Eulerian path if and

only if each of its nodes, except perhaps two, has in-degree equal to its out-

degree. Of the exceptional nodes, one will have in-degree = out-degree− 1

and will be called the start node, and the other will have in-degree = out-

degree+ 1 and will be called the end node. If no exceptional nodes occur, the

digraph will contain a closed Eulerian cycle.

We will not prove the theorem here, but will observe that, except for its start

and its end, an Eulerian path enters each node exactly the same number of times

as it leaves. That observation is key to the proof of the theorem and helps us

understand the rest of the algorithm.

We mark each node with a pair of integers: the in-degree and the out-degree

as shown in Figure 4.8. Notice that the digraph does not meet the conditions of

Euler’s theorem, and so there is no Eulerian path. In the interest of keeping our

Chapter 4 Fragment Assembly 151

AC

ACC

CC

CG

CGT

ATG

TGC

GCC

AT

CAT

GCA

CAG

AGC

AG

CA

GC

CT

CTT

TT

GCT

GTG

GT

TG

1-1

1-1

2-3

1-1

1-1

1-0

1-1

2-1

CCG
CCA

2-2

2-2

0-1

FIGURE 4.8 The digraph of Figure 4.7 with disconnected nodes removed and the

remainder repositioned for ease of viewing. The nodes have been annotated with their

in-degree and out-degree.

eventual solution as short as possible, we need to add as few arcs as possible to

ensure that the digraph doesmeet the conditions of Euler’s theorem. One way to

do this is shown in Figure 4.9. In the general problem you need to add as few arcs

as possible in order to ensure the conditions of Euler’s theorem. It is important,

however, only to add duplicates of existing arcs. Otherwise you would be adding

arcswhose labelswould need to correspond to k-tuples that did not hybridizewith

your sample. You would thus be solving for data from a different hybridization

experiment. In any case, it is not a difficult exercise to design an algorithm to

add as few duplicates of existing arcs as possible to ensure the existence of an

Eulerian path. See Exercise 4.11.

Now all that remains is to find an Eulerian path in the digraph. For this you

can use an algorithm due to a rather obscure mathematician, André-Hercule de

Fleury (the Abbot of Fleury) in 1883 [3].

152 Chapter 4 Fragment Assembly

AC

ACC

CC

CG

CGT

ATG

TGC

TGC

GCC

AT

CAT

GCA

CAG

AGC

AG

CA

GC

CT

CTT

TT

GCT

GTG

GT

TG

1-1

1-1

3-3

1-1

1-1

1-0

1-1

2-2

CCG
CCA

2-2

2-2

0-1

FIGURE 4.9 The digraph of Figure 4.8 with one additional arc used to ensure the

resulting digraph contains an Eulerian path. Note that the added arc must duplicate an

existing arc to ensure that we do not introduce any extraneous k-tuples.

Algorithm (Fleury): Find an Eulerian path in a digraph satisfying the

conditions of Euler’s theorem. Start with a node whose out-degree exceeds

its in-degree. If the digraph has no such node, start with any node. At each

step select an arc whose removal does not disconnect the digraph, unless you

have no choice, in which case select an arc whose removal could disconnect

the digraph. Add that arc to your growing Eulerian path and remove it from

the digraph. Repeat these steps until no arcs are left, at which point you will

have an Eulerian path.

Chapter 4 Fragment Assembly 153

Following this algorithm in our illustrative case in Figure 4.9 we must

1. start at AC,

2. proceed to CC,

3. at which point we have a choice: let’s choose CA;

4. at which point we again have a choice: let’s choose AT;

5. now we must proceed to TG,

6. then to GC. Choosing CT now would disconnect the digraph, so we

7. proceed to CA.

8. There is no choice as we have already consumed the arc to AT, so we

9. proceed to AG,

10. then to GC. Again, we must not choose CT and have already used the arc

to CA, so this time we must

11. proceed to CC, where there remains only the arc to

12. CG, from which we must

13. proceed to GT,

14. then to TG, and use the second available arc to

15. GC, where this time we have no choice but to

16. proceed to CT and

17. end at TT.

Our travels have traced the path AC CC CA AT TG GC CA AG GC CC CG GT

TG GC CT TT, corresponding to a target sequence ACCATGCAGCCGTGCTT.

You can verify that this 17-nucleotide sequence has exactly 14 different 3-tuples

that exactly match the tuples we were initially given. The 3-tuple TGC occurs

twice because we duplicated the arc labeled TGC.

We did, during our execution of Fleury’s algorithm, encounter a number

of choices. The choices we made resulted in our solution ACCATGCAGCCGT-

GCTT. Different, but equally valid, choices can predict different solutions, such

as ACCGTGCATGCCAGCTT.

There is no way to distinguish which of the possible solutions is “the correct

solution.” The technique of sequencing by hybridization can lead to multiple

solutions, and another technique must be used to distinguish the likely true

sequence.

Furthermore, the techniquemaybe vulnerable to inaccuracies fromanumber

of causes, such as:

• imprecise readings of the microarrays,

• repeats within the target sequence

An enormous saving grace of the technique of sequencing by hybridization,

however, comes from the fact that Fleury’s algorithm is easily coded to run in

time polynomial in the number of nodes. Despite the superficial similarity of

the Hamilton path problem (which needs to be solved for reassembly by overlap

computation) to theEulerianpathproblem (which is theworkhorse of sequencing

by hybridization), the first is NP-complete but the second is easily tractable.

154 Chapter 4 Fragment Assembly

Although vastly interesting to the algorithm specialist, this distinction may

not be enough to persuade the general biological community to vigorously

pursue sequencing by hybridization, especially since sequencing machines have

been developed to produce very accurate sequences very quickly. Reassembly as

described earlier in this chapter is likely to remain the predominant technique for

the sequencing of large genomes.

However, sequencing by hybridization has been eagerly adopted by some

researchers who work with HIV. One of the biggest problems with treating HIV

infection is that the virus mutates very rapidly. Often, patients receiving one

form of drug treatment will develop a drug-resistant strain of the virus within

months of beginning the regimen. It is also generally the case that an individual

will be infected with multiple strains of the virus, some of which will evince

resistance to thenext drug that is triedor the one after that. As a result, controlling

the development of the illness into full-blown AIDS requires knowing ahead of

time which strains are present and anticipating what treatments would be best

for a given individual with a given complement of virus strains. In this specific

context, sequencing by hybridization seems to be the best answer [5] because this

method can report even small changes in the target sequence, helping researchers

detect the sometimes tiny differences in strains of HIV. Using sequencing by

hybridization, it is possible that every HIV-infected individual could be screened

to identify those drugs that are most likely to control the virus. In a clinical

setting such as this, sequencing by other methods would be expensive and time-

consuming. Sequencing by hybridization, in contrast, could be very cost-effictive.

So sequencing by hybridization may become more widely used in applications in

which rapid, accurate results are needed.

Programming Project 4.2

Write programs to:

1. Generate long sequences of “random” nucleotides to be regarded as

target sequences.

2. Simulate the biological cutting of a target sequence into fragments of

average size 500 nucleotides with varying levels of coverage of the target.

3. Simulate a hybridization experiment for a target with variable values

of k.

4. Attempt to reconstruct the sequence from the “biologically cut” frag-

ments using the greedy algorithm (using code like that in package

alg.greedy).
5. Attempt to reconstruct the sequence by building a digraph from

the hybridization results and finding an Eulerian path with Fleury’s

algorithm.

Use these programs to evaluate the time taken to reconstruct the targets. Develop

your own methods for evaluating the quality of the reconstructions.

Chapter 4 Fragment Assembly 155

4.8 EXERCISES FOR CHAPTER 4

Exercise 4.1Suppose you have a sequence of length n symbols and you write a program

to randomly generate m subsequences of average length k. For any one of

the symbols in the original sequence, what is the expected number of sub-

sequences in which it will appear? Obviously, you will have to make some

assumptions about what happens near each end of the original sequence,

and you should answer the question for symbols away from the ends. This

exercise may be solved statistically if you enjoymathematics or by simulation

if you enjoy programming.

Exercise 4.2Investigate the greedy algorithm for fragment reassembly given in this chapter

and estimate (in big-ohnotation) its runtime for n fragments of average length

k. What would happen to this estimated runtime if you decided to use an

exhaustive search for the optimal sequence instead of the greedy algorithm?

Exercise 4.3Compare expected running times for a single reassembly problem with n

pieces of size k and a pair of reassembly problems, each involving n
2
fragments

of size k. Does this say anything about the advisability of subdividing a large

sequencing project into smaller separate problems?

Exercise 4.4Design an experiment to investigate how repeats affect the fragment reassem-

bly problem. If you completed Programming Project 4.2 you can adapt your

random sequence generator to produce various levels of repetition of various

expected lengths. How do these changes affect the accuracy of your reassem-

bly programs? Although it is conceivable that you can apply mathematical

analysis to this exercise, we strongly recommend that you approach it through

simulation.

Exercise 4.5Similar to Exercise 4.4, design an experiment to investigate how sequence

read errors affect the problem and its solution.

Exercise 4.6Discuss which changes are necessary in your reassembly programs for Pro-

gramming Project 4.2 if the fragments input could come from both a forward

and a reverse strand of DNA.

156 Chapter 4 Fragment Assembly

Exercise 4.7 For the fragmentsCAGCA,ACCA,CACA,CACAG,CCAC,ACC, andCAG

from the target sequence ACCACAGCA you will observe that the greedy

algorithm leads to a correct prediction. Construct a small simple example

of a fragment reassembly problem in which the greedy algorithm leads to an

incorrect solution.

Exercise 4.8 Design an algorithm for finding the overlap between two fragments of aver-

age size k whose runtime is O(k). Your algorithm should also detect if one

fragment is entirely contained in the other.

Hint: Read ahead about suffix trees in Chapter 5.

Exercise 4.9 Construct two sets of fragments that will lead to both scenarios described in

the text.

• fragments that fail to ensure coverage,

• fragments that lead the greedy algorithm to yield two or more contigs

instead of the correct path.

Exercise 4.10 One way to limit the time spent on exhaustive search for the optimal

Hamiltonian path through a graph is to perform a breadth-first search that

allows only the best b nodes at each level to be investigated. Determining

the “best” nodes at any level requires an estimating function to try to predict

which bof the possible nodeswill result in good solutions. Such estimators are

often referred to as heuristics. A good heuristic is rather like a good hunch.

Because the number of nodes investigated at each level of the search tree

is constant, the process resembles a parallel beam of light aimed through

the tree. For this reason, the technique is sometimes referred to as beam

search. Analyze the expected runtime of beam search for fragment reassem-

bly. You can do this by implementing the algorithm and running simulations,

or you can do the mathematics. For your heuristic, choose something simple

like “how much overlap has been used so far?” If you choose the simulation

method, see if you canmeasure any improvement in accuracy of beam search

compared with the greedy algorithm. If you chose the mathematical route,

try to concoct data that will lead to a successful prediction with beam search

while failing to predict correctly with the greedy algorithm.

Exercise 4.11 Write a program to input a connected digraph and output a supergraph that

satisfies the conditions of Euler’s theorem and thus contains an Eulerian

path. One caveat: You may only add duplicates of existing arcs; you may not

add arcs that connect two nodes that are not already connected by an arc. Is

this always possible? If not, what should your program do?

Chapter 4 Fragment Assembly 157

KEY TERMS

multiple jigsaw puzzle (4.1)

book reconstruction puzzle (4.1)

sequence reassembly puzzle (4.1)

overlap (4.2)

contigs (4.2)

sequence walking (4.2)

repeat regions (4.2)

reverse transcriptase (4.2)

retrotransposons (4.2)

idealized (4.4)

fragments (4.4)

strings (4.4)

substrings (4.4)

sequences (4.4)

subsequences (4.4)

shortest common superstring (4.4)

overlap (4.5)

heuristic (4.5)

hunch (4.5)

overlap graph (4.5)

Hamilton paths (4.5)

weight (4.5)

Phrap (4.6)

Phred (4.6)

digraph (4.7)

Eulerian paths (4.7)

in-degree (4.7)

out-degree (4.7)

start (4.7)

end (4.7)

beam search (4.8)

BIBLIOGRAPHY

1. E. Biggs, K. Lloyd, and R. Wilson. Graph

Theory 1736–1936. Oxford University Press,

London, 1986.

2. N. de Parseval and T. Heidmann. Human

endogenous retroviruses: From infectious

elements to human genes. Cytogenet Genome

Res, 110:318–332, 2005.

3. André-Hercule de Fleury. Deux problemes de

geometrie de situation. J. Math Element,

257–261, 1883.

4. Michael R. Garey and David S. Johnson.

Computers and Intractability: A Guide to the

Theory of NP-Completeness.W. H. Freeman,

1979.

5. George J. Hanna, Victoria A. Johnson, Daniel

R. Kuritzkes, et al. Comparison of sequencing

by hybridization and cycle sequencing for

genotyping of human immunodeficiency virus

type 1 reverse transcriptase. J. Clin. Microbiol,

38:2715–2721, 2000.

6. Puzzle Museum. http://www.puzzlemuseum

.com/month/picm02/200207icosian.htm

7. J. Craig Venter, Mark D. Adams, Eugene

W. Myers, et al. The sequence of the human

genome. Science, 291:1304–1351, 2001.

8. Web author. http://www.genomics.energy.gov/

9. H. A. Wichman, R. A. Van den Bussche,

M. J. Hamilton, and R. J. Baker. Transposable

elements and the evolution of genome

organization in mammals. Genetica,

86:287–293, 1992.

10. R. J. Wilson. Introduction to Graph Theory.

Academic Press, New York, 1972.

11. Patrick Henry Winston. Artificial Intelligence.

Addison-Wesley, Reading, MA, 1981.

5
Sequence Alignment

“If I could get to the top of that hill: and here’s a path that leads straight to it—

at least, no, it doesn’t do that—’ (after going a few yards along the path, and turning

several sharp corners), ‘but I suppose it will at last. But how curiously it twists! It’s

more like a corkscrew than a path! Well, THIS turn goes to the hill, I suppose—no,

it doesn’t! This goes straight back to the house!”

—Alice in Through the Looking Glass by Lewis Carroll

A
lignment refers to the process of placing two things next to each other in

such a manner as to make their similarities and their differences stand

out clearly. We say thing because we want to be as general as possible in

this introduction; however, whenwegetdown to specifics in the following sections,

our things will generally be strings or nucleotide sequences. But the same ideas

have many interesting applications where the aim is to align two images, or two

sound files, or two fingerprints.

Before we proceed to examine alignment in a biological context, we need to

refresh our ideas about patternmatching. Computer scientists speak of searching

for a patternwithin a target text. The pattern is a string, and the target is typically

a single string or a collection of strings. For the concept to make sense, target

strings are typically much longer than the pattern.

At their most fundamental levels computers and general-purpose computer

programs are well suited to tasks involving exact pattern matching. The goal in

pattern matching is to find each and every occurrence of a pattern (usually a

string) in a set of objects within which the pattern might occur. For example,

we might be searching a movie database and want to find every occurrence of

Bogart within an entry in the actor category. Database programs provide power-

ful tools for efficiently searching for exact matches for this type of application.

Most programming languages provide excellent support for programmers in the

area of pattern matching and substring search. The programming language Perl

sometimes appears to be dedicated to the proposition that pattern matching is

the be-all and end-all of the art of programming. Data structures both simple

and intricate have been invented to facilitate and expedite the pattern-matching

process. Internet search engines apply much of the expertise developed by gener-

ations of users and designers to quickly search the gigantic distributed collection

of data called the World Wide Web. On June 15 of 2005, Google reported over

158

Chapter 5 Sequence Alignment 159

5 million hits when asked to search the Web for pattern matching. That means

that an awful lot of references to pattern matching have found their ways to pages

on various Websites. Doubtless, many of these are copies of other posted pages,

but the fact remains that today’s computing facilities enable extremely fast and

efficient searching of a huge target to find all occurrences of a given pattern.

Unfortunately, exact pattern matching is too inflexible for many important

applications. Searching adatabase for an exactmatchwith anewly sequencedpor-

tion of some genome is very unlikely to succeed (unless the portion is not, in fact,

newly sequenced!). BLAST (basic local alignment search tool) is a very popular

engine for detecting biologically meaningful similarities between a new sequence

and previously entered data. BLAST is a kind of inexact pattern matcher, which

can tell the user that the newly sequenced segment is similar to some number of

existing sequences within the database.

Not only biological applications can benefit from inexact pattern-matching

techniques. Popular search engines fail to perform well when their users mistype

a word. Who among us can honestly claim to have never mistyped a word? The

previously noted 5 million hits from aGoogle search for pattern matching shrank

to a mere 112 when Google was asked for the mistyped patturn matching. And

on a particularly bad day, the user might commit two typos and get no hits

whatsoever for patturn matchong (until, of course, somebody posts the text of

this textbook!). But sometimes errors can compound and compensate for each

other. Due no doubt to contributors’ typos, a search forBogarte in the cast lists of

moviesmaywell produce some successes, but nothing like the correct information

we seek forHumphreyBogart. Some of the hitsmay even come fromyet another’s

typos while entering Dirk Bogarde’s name!

Without specializedprogramming, similaritydetection is not in the repertoire

of most computers. It is difficult to write correct programs that can tell that

two photographs taken from slightly different angles are of the same person

or object. It is difficult to write programs that can identify when two different

performances are of the same symphony. But humans are, in general, pretty

good at such approximate pattern matching. You can recognize friends even if

they change their hairstyles and wear a Groucho disguise. You would know what

I wanted if I asked for a list of movies featuringHumphrey Bogarte. Many people

can identify both the theme and the composer being mimicked when they listen

to Joshua Rifkin’s Baroque Beatles Book (a 1965 record featuring Baroque-like

arrangements of early works by the Beatles). Many people can tell a genuine

Picasso from a good forgery. However, a computer program to perform such

human feats of approximate matching would require major breakthroughs in

several fields, including cognition and artificial intelligence.

Bioinformatics has more need for similarity detection than for exact pattern

matching. To compare genomic sequences it is important to align them in such a

way that similarities are apparent and differences can be quantified. In this way,

it may be possible to infer degrees of relatedness, or even to estimate propensities

for disease. Variation in genetic sequences distinguishes individuals and drives

evolution. The ability to detect and measure degrees of relatedness is crucial to

our endeavors in investigating life processes.

160 Chapter 5 Sequence Alignment

Nevertheless, techniques used in exact patternmatching can help us properly

understand issues involved in alignment and inexact pattern matching. On some

occasions we may also need to search exactly for patterns even in bioinformatics.

This chapter begins, therefore, with an overview of exact pattern matching.

5.1 EXACT PATTERN MATCHING

Computers can do exact pattern matching extremely well and much faster than

humans. Google searches of theWeb takemere seconds, dictionary lookups occur

in times so short we don’t even notice any delay. And that’s because exact search is

straightforward, well adapted to computer architectures, and supported by some

very clever data structures and algorithms. We’ll look at some of those aspects

in this section mostly because they will help us understand and develop inexact

patternmatching ideas later on. But also because they are very interesting in their

own right.

5.1.1 The Naïve Algorithm

Because of the excellent support for string searching provided by most program-

ming languages, we must resort to working with arrays of characters in order

to emphasize the inner workings of pattern-matching algorithms. If we instead

worked with strings, you would quite rightly chastise us for not using the built-in

features of Java’s String class. So, let’s pose:

Problem: Pattern match

Input: An array pattern[] of m chars

An array target[] of n chars

Output: A list of ints i such that for each i

target[i] = pattern[0]

target[i+1] = pattern[1]
...

target[i+m−1] = pattern[m−1]

To visualize the naïve algorithm’s working, think of a small template

pattern sliding along a large string target one letter at a time. If we were
looking for gcca in agcagccatgc we would start with:

gcca

agcagcca t gc

We immediately fail with the mismatch of g above the a, and so move on to
the next stop:

gcca

agcagcca t gc

Chapter 5 Sequence Alignment 161

At each stop, characters in pattern and the portion of target under the
template are compared one at a time until either

• a mismatch is found, or

• we run out of pattern

In this case, a mismatch is found at the third letter, so we move the template

forward and start comparing again:

gcca

agcagcca t gc

Immediate failure leads to another shift:

gcca

agcagcca t gc

and another immediate failure causes one more shift:

gcca

agcagcca t gc

This time we reach the end of the pattern, and we need to report the finding

of this occurrence of pattern within target before we move the template
forward and continue.

Figure 5.1 has Java code implementing the naïve algorithm. Exercise 5.1 asks

you to modify the program so that the target string is read from a file. In this
way, you can run the program to count the occurrences of the word varlet within

the complete works of Shakespeare.With a fewmore adjustments you can answer

questions such as “How often do four consecutive STOP codons appear in the

genome of rice?” Before we embark on too many searches of large data files, it

is worth pausing to consider how long we expect to have to wait for our results.

A simple approach to this is to note that most modern computers are capable of

about a billion comparisons per second; so a rough count of expected number of

comparisons would be useful.

5.1.2 Algorithm Analysis

The naïve pattern matcher takes at least one and at most m comparisons in its

inner loop to find a mismatch or to discover that the match needs to be reported,

where m is the length of pattern. Since the template needs to move forward
n − m times, where n is the length of target, it is clear that the running of the
naïve pattern matcher requires at least n−m and at most (n−m)m comparisons.

Because of the upper bound, we are able to note that this algorithm exhibits

O(nm) time requirements. However, to achieve anything approaching this upper

bound, the naïve algorithm needs to make significant progress through its inner

loop each time. For this to happen requires that a lot of patternmatches occur
many times within target. In searching English text, this is not likely to happen
very often.

162 Chapter 5 Sequence Alignment

import java.util.*;
public class Naive {

// Naive algorithm for finding occurrences of pattern in target
// Uses char arrays to demonstrate action
public Vector <Integer> find(char[] pattern, char[] target) {

boolean failed;
Vector <Integer> matches = new Vector <Integer> ();
for (int i=0; i<target.length − pattern.length; i++) {

failed = false;
for (int j=0; j<pattern.length && !failed; j++) {

if (pattern[j] != target[i+j]) failed = true;
}
if (!failed) matches.add(i);

}
return matches;

}
public static void main(String[] args) {

// For testing Naive.
Naive test = new Naive();
System.out.println(args[0] + " appears in " + args[1] + " at ");
System.out.println(test.find(args[0].toCharArray(),

args[1].toCharArray()));
}

}

FIGURE 5.1 Naïve algorithm to find all occurrences of pattern within target. Call it with two string
command line arguments. The code uses arrays of char rather than Strings to emphasize the nitty-gritty
details of each individual comparison the algorithm requires.

The best case analysis of Naïve occurs when a mismatch is immediately
detected as soon as the inner loop is invoked. This would occur if no character in

targetmatched the first character inpattern. Thebest case, then, is extremely
unlikely, but would result in exactly n − m comparisons.

The worst case occurs when the inner loop is exited as late as possible. This

requires the firstm−1 characters of pattern to match the firstm−1 characters

of that part of target that’s currently under the template. For this to occur at
every position is also extremely unlikely, but if it did our program would make

m(n − m) comparisons.

Calculating the expected case requires us to do a little elementary probability

and statistics. So let’s suppose that pattern is a random string of length m

characters taken from an alphabet of k letters. Similarly target is a random
string of n characters from the same k-letter alphabet.

Whenever we position the template, there is a 1 in k chance that the first

character oftarget under the templatematches the first character ofpattern.
The probability that the first two characters under the template match the first

two characters of pattern is 1
k2
. The probability of i consecutive matches is 1

ki .

Chapter 5 Sequence Alignment 163

TABLE 5.1 The number of comparisons we can expect will occur if the
naïve algorithm searches for a random pattern of length m

within a target string of length n. k is the size of the alphabet

Event Number of

comparisons

needed

Probability

of this

event

Expected

number of

occurrences

Total

number of

comparisons

0 matches 1 k−1
k

(n−m)(k−1)
k

(n−m)(k−1)
k

1 match 2 k−1
k2

(n−m)(k−1)

k2
2 (n−m)(k−1)

k2

2 matches 3 k−1
k3

(n−m)(k−1)

k3
3 (n−m)(k−1)

k3

..

i matches i + 1 k−1
ki+1

(n−m)(k−1)

ki+1 (i+1) (n−m)(k−1)

ki+1

..

m matches m 1
km

(n−m)
km m

(n−m)
km

We are interested in a slightly different probability. What is the probability

that exactly i consecutive characters in the target match the first i characters of

the pattern. For this, we need i matches (probability 1
ki) followed by a mismatch

(probability k−1
k
). The combined probability (k−1)

(ki+1)
is the probability of exactly i

matches.

Table 5.1 summarizes some of our analysis. The inner loop of the naïve

algorithm will be executed i + 1 times whenever the first i characters (and no

more) of the pattern appear consecutively in the target. This can be expected to

happen (i + 1) × (n−m)(k−1)

ki+1 times, and i can take any value from 0 to m − 1.

Additionally, there is a probability of 1
km thatm comparisons are needed because

a match is found. So the expected number of comparisons is:

m−1
i=0

(i + 1)(n − m)(k − 1)

ki+1
+ m

(n − m)

km
(5.1)

That formula may look complicated, but it’s easy to write a dozen lines of

code to input three values for n, m and k and calculate the result. If you write

the program suggested in Exercise 5.3 you will be able to satisfy yourself that the

expected behavior of the naïve algorithm is much closer to the best case than to

the worst case in all but the most degenerate cases.

5.1.3 Other Pattern-Matching Algorithms

Pattern matching is a very well-studied area of algorithmics. Richard M. Karp

and Michael O. Rabin [10] proposed an algorithm that uses hashing. A 1977

algorithm due to J. Strother Moore and Robert Boyer [2] preprocesses the pat-

tern so that a scan can be made of the target string in such a way that a template

makes long leaps rather than just the single position shift of the naïve algorithm.

164 Chapter 5 Sequence Alignment

Similarly, the Knuth-Morris-Pratt [11] algorithm also achieves sublinear perfor-

mance. (The term sublinear is applied to these algorithmsbecause some characters

in the target string need never be consulted. In many cases, the pattern matching

can be done with fewer than n comparisons.)

We have noted that the naïve algorithm performs well for many purposes.

Exercise 5.5 asks you to research faster algorithms. If you find your program

being held up too much by your use of the naïve algorithm, then you should

consider incorporating a faster method. While you are developing code for new

explorations (of which there are many in the field of bioinformatics) it is not a

bad strategy to keep it quick and simple and leave the incorporation of more

sophisticated pattern matchers until the consistent need for speed is apparent.

That is because the context of the search is important for the selection of the best

algorithm. The next two sections will look at DFAs and suffix trees: DFAs are

good for searching for the same pattern in many targets, whereas a suffix tree

developed for one target string provides fast searches for many different patterns.

5.1.4 DFAs for Search

Deterministic finite-state automata (DFAs) derive from theoretical considerations

and, like most of the theoretical concepts in computer science, have tremendous

practical applicability. There are different views of DFAs and different ways to

represent them.

Our first view is as a picture. Look at Figure 5.2. The DFA shown has five

states, each represented by a labeled circle. We refer to a state by its label. The

DFA in Figure 5.2 has a set of five states: {0, 1, 2, 3, 4}. In general, we can say that

a DFA has a finite number of states. In the picture view of a DFA each state will

be represented by a labeled circle. The label can be thought of as the name of the

state.

A DFA also has a number of transitions, shown in Figure 5.2 as labeled arcs.

An arc labeled c from state x to state y indicates that if the DFA is in state x

3

2

410

a

a

t

t

t
t

c

c
a, g

c, g

g

a, c, g, t

a, c, g

FIGURE 5.2 A DFA to recognize sequences containing a stop codon (TAG or TAA or
TGA).

Chapter 5 Sequence Alignment 165

and reads the symbol c then it will change to state y. For instance, looking at

Figure 5.2 you can see that if the DFA is in state 1 and reads a g then it will enter
state 2. Likewise, if the DFA is in state 0 and it reads g then it will stay in state 0.
Thus loops indicate transitions that leave the state unchanged.

To properly understand the workings of a DFA, you need to consider

sequences of transitions. Look again at Figure 5.2 and follow what happens

when it starts in state 0 and reads the sequence acctgtga. It eats the first a and
stays in state 0; then reads c again staying in state 0; and another c leaves it still in
state 0. Now a t takes it to state 1 and a g takes it to state 2. But a t takes it back
to state 1. Then a g takes it to state 2 and the final a takes it to state 4. To recap,
the DFA started in state 0 and eating the string acctgtga proceeds through states
0, 0, 0, 1, 2, 1, 2, and 4.

Study the DFA of Figure 5.2. Try to follow its sequence of states for various

strings. Satisfy yourself that if it ever enters state 4 then it will stop because it has

nowhere to go. Satisfy yourself that the only way to enter state 4 is by reading

one of the sequences taa, tag, or tga. Satisfy yourself further that if started in
state 0, the DFA will always enter state 4 if it reads one of those three sequences

anywhere. Since it is well known that taa, tag, and tga are the stop codons, we
see that the DFA of Figure 5.2 is a machine to detect stop codons.

The last few details of the general picture definition of a DFA are:

• You need to specify a start state. In Figure 5.2 we intend to use state 0 as the

start state. We use a thick arrow in to denote the start state.

• Create a list of final states at which some action will be performed. In the

case of Figure 5.2, 4 is a final state and the picture indicates this by using

a double circle. The action is to declare that a stop codon has been found.

DFAs may contain several final states, some with different actions; but can

only contain one start state. In our picture, once the DFA enters state 4 then

it stays there forever. But be warned that in general, such behavior is not

required and DFAs can enter and leave final states just like any other state.

In this sense, it is confusing that computer scientists still use the terminology

final state.

Another way to specify a DFA is by providing a table of its transitions. The

DFA of Figure 5.2 has the transitions listed in Table 5.2.

Table 5.2 indicates, as does Figure 5.2, how the DFA changes states on

reading a symbol. To be sure you understand the picture, satisfy yourself that our

DFA in state 2 reading a t goes into state 1, and our DFA in state 1 reading an a
goes into state 3.

Again, to complete the specification of a DFA it is necessary to designate

one of the states as the start state and some states as final states with specified

actions.

Youmay wonder where DFAs come from. Given a regular expression (which

will be formally defined on pages 171 & 172), it is an interesting puzzle to create

a DFA to recognize exactly those strings that contain a match to the regular

expression. Exercise 5.17 asks you to design some DFAs.

166 Chapter 5 Sequence Alignment

TABLE 5.2 The transition matrix for a
DFA to detect stop codons

In state∗ Reading

A C G T
0 0 0 0 1

1 3 0 2 1

2 4 0 0 1

3 4 0 4 1

4 4 4 4 4

∗From the state named in the first column of row i reading the

character listed at the head of column j, a transition occurs that

causes the DFA to enter the state at the jth entry of row i. For

instance, the DFA in state 3 reading a G will change to state 4.

Finally, we need to dot some “i”’s and cross some “t”’s. It is traditional to

denote inputs to DFAs using lower case letters; that is why Figure 5.2 labels

arcs with acgt even though we have usually used uppercase ACGT to denote
nucleotides. A DFA is considered deterministic if from any one state only one

transition is possible when reading one particular symbol. Machines without

this property are called nondeterministic finite automata, or NFAs. You can read

about them in any textbook on computer theory such as [9]. Lastly, we don’t

like DFAs to get stuck, meaning that in any state reading any potential input,

a transition must be specified. Some authors make an exception to this rule for

final states. In such cases we can restore sanity by simply adding loops back to

the final state labeled with each possible input. Such modified DFAs will always

consume all their input and end up in the first final state they enter.

5.1.5 DFAs as Programs

Another view of DFAs is as programs. It is not difficult1 to look at the picture of

a DFA and write a Java program to simulate its action. A program equivalent to

Figure 5.2 is given in Figure 5.3.2

Each state of the DFA gives rise to a section of code that consumes one

character of the input string and causes a transfer of control to the section of

code corresponding to the next state. This can effectively be managed by a series

of labels and switch statements or by (less efficiently) using the method-calling
mechanisms of Java as we have done in Figure 5.3.

1
Exercise 5.11 asks you to automate this process by writing a program to write programs equivalent
to descriptions of DFAs that are input.
2
You will probably realize that representing states by individual methods in a Java program as this
program does is not very efficient. For greater efficiency, we should replace method calling by a more
direct transfer of control without the overhead of procedure calling. The Java program, although
inefficient, does, however, map directly to the transition matrix of the DFA (Table 5.2) and clarifies
the connection between the concepts.

Chapter 5 Sequence Alignment 167

public class StopDetector {
// Rhys Price Jones, July 11, 2005
// Implements DFA of Chapter 5 to detect stop codons
String target;
int pointer;
public StopDetector(String s) {

target = s;
pointer = 0;

}
void state0() throws TerminateException {

if (pointer >= target.length())
throw new TerminateException("Reject -- not found");

else {
System.out.println("State 0");
char myChar = target.charAt(pointer++);
if (myChar == ’a’) state0();
if (myChar == ’c’) state0();
if (myChar == ’g’) state0();
if (myChar == ’t’) state1();
throw new TerminateException("Bad character in target");

}
}
void state1() throws TerminateException {

if (pointer >= target.length())
throw new TerminateException("Reject -- not found");

else {
System.out.println("State 1");
char myChar = target.charAt(pointer++);
if (myChar == ’a’) state3();
if (myChar == ’c’) state0();
if (myChar == ’g’) state2();
if (myChar == ’t’) state1();
throw new TerminateException("Bad character in target");

}
}
void state2() throws TerminateException {

if (pointer >= target.length())
throw new TerminateException("Reject -- not found");

else {
System.out.println("State 2");
char myChar = target.charAt(pointer++);
if (myChar == ’a’) state4();
if (myChar == ’c’) state0();
if (myChar == ’g’) state0();
if (myChar == ’t’) state1();
throw new TerminateException("Bad character in target");

}
}

FIGURE 5.3 A program equivalent to the DFA in Figure 5.2. (continued)

168 Chapter 5 Sequence Alignment

void state3() throws TerminateException {
if (pointer >= target.length())

throw new TerminateException("Reject -- not found");
else {

System.out.println("State 3");
char myChar = target.charAt(pointer++);
if (myChar == ’a’) state4();
if (myChar == ’c’) state0();
if (myChar == ’g’) state4();
if (myChar == ’t’) state1();
throw new TerminateException("Bad character in target");

}
}
void state4() throws TerminateException {

System.out.println("State 4");
throw new TerminateException("Accept -- stop codon found at location"

+ (pointer-3));
}
public static void main(String[] args) {

if (args.length != 1)
System.out.println("Usage: java StopDetector string");

else {
StopDetector sd = new StopDetector(args[0]);
try {

sd.state0();
}
catch(TerminateException e) {

// end the execution
}

}
}

}
class TerminateException extends Exception {

public TerminateException(String message) {
System.out.println(message);

}
}

FIGURE 5.3 (continued)

We have shown how a DFA can find occurrences of any member of the set

{TAG,TAA,TGA} bymaking a single scan of the target string. Furthermore, there
is a straightforward way, given a description of the DFA, to produce a program

efficiently implementing the action of the DFA. What we have not yet discussed

is how to devise the required DFA in the first place.

Let us beginbydefiningwhatwemeanbya regular expression andbya regular

set.3 First of all, any single character such as a from our alphabet is a regular

3
Most computer science theory books use the term language to refer to a set of strings.

Chapter 5 Sequence Alignment 169

expression and it denotes the regular set consisting of the single one-character

string {a}. Next, if r1 and r2 are regular expressions denoting the regular sets R1
and R2, respectively, then (r1 + r2) is also a regular expression and denotes the

regular set R1 ∪ R2, which is the union of R1 and R2. Also (r1r2) is a regular

expression and denotes the concatenation R1R2 = {xy|x ∈ R1, y ∈ R2}. Another

way to obtain a new regular set from an old regular set R is to form its Kleene

closure R∗: Informally, the Kleene closure R∗ is the set of strings each of which

is the concatenation of zero or more strings from R.

This brings us to a tricky point. As Martin Gardner has pointed out in the

first two chapters (originally columns in Scientific American) of [7], nothingness

is a difficult concept. What exactly is the concatenation of zero strings? We’ll use

the symbol to denote the empty string, or the string of length 0. And that’s what

we get if we concatenate zero strings, we get . Let us use Ri to denote the set

of all strings that are formed by concatenating i strings from the set R. Then R0

denotes the set { } consisting of the single string . Notice that this is not the same

as the empty set ∅ = { }, which is a set consisting of no strings. R0 consists of

exactly one, albeit empty, string; so it is not the same as the empty set ∅.

With this clarification, we are now ready to proceed with the third formula

for getting new regular sets from old. We already saw union and concatenation.

Now for Kleene closure. If r is a regular expression denoting the regular set R,

then (r)∗ is a regular expression denoting the (infinite) union

R0 ∪ R1 ∪ R2 ∪ . . . ∪ Ri ∪ . . .

more conveniently denoted R∗.

Before we write the full formal definition, we need base cases. All recursive

definitions require base cases, something to start from. We already noted that for

any character x in the alphabet, x is a regular expression denoting the set {x}. We

also need to introduce the regular expression denoting the regular set { } and

the regular expression ∅ denoting the regular set ∅ or { }.

In summary, here is our definition of regular expressions and regular sets:

For any character a in our alphabet and any regular expressions r, r1, r2 denoting

the regular sets R, R1, R2, respectively

• ∅, , a are regular expressions denoting { }, { }, {a} respectively;
• (r1 + r2) is a regular expression denoting the regular set R1 ∪ R2;

• (r1r2) is a regular expression denoting the regular set R1R2;

• (r)∗ is a regular expression denoting the regular set R∗;

• parentheses may be omitted if meaning is clear.

For exampleTAA+TAG+TGA is a regular expression denoting the set {TAA,
TAG,TGA} of stop codons. (ATG)∗ denotes the infinite set of repetitions of a triple
coding for methionine { , ATG, ATGATG, ATGATGATG, . . .}. AT∗G denotes the
infinite set of strings starting with A, ending with G and having any number

(including 0) of Ts in between.
It is a remarkable fact that there is a procedure for obtaining a DFA

to recognize exactly the regular set associated with any regular expression.

Exercise 5.15 leads you through the first few steps toward a proof of this

170 Chapter 5 Sequence Alignment

fact. To deal with unions and Kleene closures, however, requires the use of

nondeterministic finite-state automata. This is beyond the scope of this book,

and the interested reader is referred to [9].

If you are familiar with the Perl programming language, or if you have used

the grep command in Unix, you are already familiar with the notion of regu-
lar expression. Both Perl and Unix can automatically generate efficient search

programs specific to any regular expression following the principles already dis-

cussed. Furthermore, they both extend the syntax of regular expressions to make

it easier and more friendly for the user. In essence, however, the principles and

theory are as we have described in our minimal setting. We have established that,

given any pattern that can be stated as a regular expression, automatically gen-

erating an efficient program that can search any target string for that pattern is a

straightforward matter. Exercise 5.16 asks you to manually generate a program

to search sequences for possible introns based solely on the observation that the

5 end of an intron is marked by GT and the 3 end by an AG pair.

5.1.6 Suffix Trees

If frequent searches are made within the same target for different patterns, then

it becomes worthwhile to consider preprocessing the target string to enable faster

searches for many patterns. One way to do this is by using suffix trees [14] as

proposed by Edward McCreight in 1976. They are described in a very readable

1996 article by Mark Nelson [16]. Once a suffix tree has been constructed for a

target string of length n, then all locations of a substring pattern of lengthm can

be found with just m comparisons.

In Java code provided for Chapter 4 at http://mhhe.com/gopal, we used suffix

trees in our development of a program to implement the greedy algorithm for

fragment reassembly. Recall that in the code and in Exercise 4.8, we built a suffix

tree. Then, in order to find the overlap between f1 and f2 we would use successive

characters from f2 to index our way through the suffix tree for f1. If we reach a

leaf, we know that we have traced a prefix of f2 that is also a suffix of f1, giving

us the longest overlap between f1 and f2. If we fail to proceed, then the overlap is

empty.

5.1.7 A Worked Example: abracadabara

Look at Figure 5.4. If you use successive characters from the word arabian to
index your way through the tree, you will reach the leaf labeled 9 as soon as

you have consumed the initial ara. This indicates that ara is the overlap between
abracadabara and arabian. The significance of the 9 is that the overlapping suffix
begins at the ninth character of abracadabara (remember computer scientists
always start counting at 0). If, on the other hand, you were to use the suffix tree

ofFigure 5.4 tofind theoverlapbetweenabracadabaraandbarbarian, youwould
start by following the b arc from the root, and proceed into the ar.. arc, where
you would get stuck. This indicates there is no overlap between abracadabara
and barbarian.

Chapter 5 Sequence Alignment 171

c

a

d

a

b

a

r

a

$

c

a

d

a

b

a

r

a

$

c

a

d

a

b

a

r

a

$

d

a

b

a

c

a

$

a

r

a

$
a
r
a
$

r

a

$

r

a

a b

b r
a
c
a
d
a
b
a
c
a
$

r
a
c
a
d
a
b
a
c
a
$

$

$

d
a
b
a
r
a
$

$

12

11

0

7

3

5

9

8

1

4

6

10

2

FIGURE 5.4 A suffix tree for abracadabara$. The $ is added to ensure that no suffix
is also a prefix—a condition that makes the suffix tree be potentially ill-defined.

That’s a reminder of how we used suffix trees in Chapter 4. Now we will

discuss the use of suffix trees to find different patterns within a single target. Once

we have built a suffix tree for the target [which can be done in time O(n log(n)),

where n is the length of the target], then for any pattern, we can start to trace

its characters and index through the tree. If we fail to proceed, then the pattern

appears nowhere in the target, and we will have discovered this fact in at most

m comparisons, where m is the length of the pattern. If we consume the entire

pattern within the trace of our tree, then all the leaves below the point at which

we ran out of pattern will correspond to starting points for the pattern within the

target.

For example, suppose our target is abracadabara so that we can again use the

suffix tree of Figure 5.4. If we search for the pattern ab we will trace down the

highest a arc, then to the b arc that leads us to an internal node fromwhich grows

a subtree with two leaves: the leaf labeled 0 and the leaf labeled 7. We deduce

that the pattern ab appears twice in our target: once at location 0 and again at

location 7.

5.1.8 Recap of Exact Pattern Matching

In summary then we note:

• Exact pattern matching is well understood.

• For many purposes the O(mn) naïve algorithm is quick, easy to code, and

adequate in performance.

• But when called for, there are faster, more efficient algorithms.

172 Chapter 5 Sequence Alignment

• When the same pattern is being sought in many different targets, it may be a

good investment to generate a specialized program (such as a DFA) to search

for the pattern. Such a search program will have O(n) time complexity.

• When seeking many different patterns is necessary in a single fixed target,

it may be a good investment to build a specialized structure (e.g., a suffix

tree) that can be used to find all occurrences of a pattern of length m in

time O(m).

The field of pattern matching is well studied and can provide us with some

superb and well-aimed armaments for attacking our search problems. When

designing algorithmic solutions to bioinformatics problems it is important to

know how to apply some of these big guns. It is equally important to know when

the sophisticated fast tool is not really warranted so that short, simple, reliable

code can be used without penalty.

5.2 THINGS PEOPLE DO WELL:
SIMILARITY DETECTION

Have you ever found yourself waiting for a friend or a relative to emerge from

an airport terminal. You scan hundreds or thousands of faces in a period of

minutes. But when your party appears, you “immediately” recognize him. And

you’ll recognize him even though he may have aged many years since you last

met, or even if he’s cut his hair dramatically shorter, or grown a beard, or put

on lots of weight. You’ll recognize him whether he’s looking straight at you or

looking left or right.

We hear much about the need for quickly recognizing people, for example

those on the FBI’s most wanted terrorist list [4]. Despite significant investment

for developing programs to perform these tasks, security services still distribute

photographs, knowing that agents and normal citizens can often outperform

machines.

Certainly, progress is being made in the fields of motion tracking and inter-

pretation, and in face detection and recognition. In particular, clearly defined

problems in feature-based facial recognition have seen significant progress. Pro-

grams picking out faces with specified ratios between the lengths of various

features have met with success. Nevertheless, the human brain currently excels

in detecting unanticipated patterns and discovering unexpected coincidences.

Humans do not have to be told precisely what to look out for in minute and

precise detail. It’s conceivable that a computer program could see past a false

mustache and still recognize a wanted person as long as the programmer had

anticipated and coded for this. And the programmer won’t think of everything:

Theprogram that succeeded in recognizing a villain even througha falsemustache

might well be fooled by a nose job or a wig.

Evolution has rewarded those of our ancestors who were adaptable, inno-

vative and creative in dealing with the unexpected. As a result, these are human

Chapter 5 Sequence Alignment 173

traits. Unfortunately, we do not understand these skills well enough yet to confer

the same abilities on our computer programs.

In a young science like bioinformatics, it is important for researchers to be

ready for anything. Theymust expect the unexpected. Theymust adapt in the face

of unanticipated changes and new discoveries. In essence, bright researchers need

to be as different as possible from the inflexible programs of today’s computers.

But we also need to know when we need to write programs to help us acquire or

analyze the signals that we detect.

5.3 COMPUTERS HELPING PEOPLE:
PRESENTING DOTPLOTS

DotPlots are easily generated by computer and can present a lot of informa-

tion in a compact format that helps humans scrutinize the data. The programs

presented here will generate primitive ASCII-graphics. More sophisticated pro-

grams can easily be constructed that can take advantage ofmuch finer resolutions

available on today’s screens and printouts. We refrain from presenting such

sophisticated graphics programs here because we do not want to distract from

the underlying theory. So we will use * for a dot and a space for a lack of a

dot. Our graphs are low resolution, but will illustrate our points well. Inter-

ested readers are encouraged to pursue higher resolution graphics programs and

animations.

We begin with a straightforward search for substrings that match exactly.

We’ll modify that exact matcher to produce an inexact matcher that is more

suited to finding evolutionarily linked substrings. That will raise issues affect-

ing selectivity and sensitivity. A highly selective program will filter out all but

the best candidates, whereas a highly sensitive program will present the user

with all the candidates, even the weak ones. Selectivity is the ability to reject all

but the best candidates, and sensitivity is the ability to accept even the weakest

candidates. Clearly there is a tradeoff between selectivity and sensitivity. With

selectivity too high, the user can miss interesting links; but with sensitivity too

high, the user can be swamped by a tsunami of false-positives.

When in later sections we look at heuristic alignment programs, you may

notice how these simple dotplot programs may well have provided the origi-

nal inspiration for the programs that are in such common use in bioinformatics

today.

5.3.1 Straight DotPlot:
Searching for Areas of Exact Matching

Consider the rather clumsy program presented in Figure 5.5. When two strings

are input, the program lays one out along a horizontal axis and the other along

a vertical axis. A ∗ is placed in the (i, j) position if the ith character of the first

string matches the jth character of the second.

174 Chapter 5 Sequence Alignment

// DotPlot.java
// Simple dot plot of two strings entered on command line
// Example usage:
// java DotPlot CANYOUDANCETHECANCAN YESICANDANCETHECANCAN

public class DotPlot {
public static void main(String[] args) {

StringBuffer x = new StringBuffer(args[0]);
StringBuffer y = new StringBuffer(args[1]);
// Print header:
System.out.print(" ");
for (int j=0; j<x.length(); j++) System.out.print(x.charAt(j)+" ");
// and separator
System.out.println();
System.out.println();
// For each character of second string
for (int i=0; i<y.length(); i++) {

// print it at left edge of table
System.out.print(" "+y.charAt(i)+" ");
// and compare it with each member of the first string
for (int j=0; j<x.length(); j++) {

// print a * if they match; otherwise a space
if (x.charAt(j)==y.charAt(i)) System.out.print("* ");
else System.out.print(" ");

}
System.out.println();

}
}

}

FIGURE 5.5 Program DotPlot.java plots two strings against each other, placing a * at (i, j) locations where
the strings match.

5.3.2 A Worked Example:
Can You Dance the Can-Can?

When we run the program DotPlot with inputs CANYOUDANCETHE-
CANCANandYESICANDANCETHECANCANwe obtain the output shown

in Figure 5.6.

Do you notice the many diagonal lines that go in the direction top-left to

bottom-right? You should satisfy yourself that they correspond to substrings

within the two input strings that match each other. The longest such diagonal

line, of course, corresponds to the common substring DANCETHECANCAN.

But there are other shorter diagonals corresponding to shorter matches within

the two input strings. Andwhat do youmake of the short bottom-left to top-right

diagonals? (Hint: Look for short substrings of one string that appear backwards

in the other.)

Chapter 5 Sequence Alignment 175

C A N Y O U D A N C E T H E C A N C A N

Y *
E * *
S
I
C * * * *
A * * * *
N * * * *
D *
A * * * *
N * * * *
C * * * *
E * *
T *
H *
E * *
C * * * *
A * * * *
N * * * *
C * * * *
A * * * *
N * * * *

FIGURE 5.6 Output of java DotPlot CANYOUDANCETHECANCAN
YESICANDANCETHECANCAN showing the asterisks where the strings match. The
diagonal patterns indicate matching subsequences.

DotPlot.java is an example of a program that produces output that helps
humans find patterns. Some of the patterns are wholly expected, but others might

be a surprise.

Certainly the long top-left to bottom-right diagonals were no surprise to

anybody; and it would be an easy matter to extend the program so that it could

“discover” such long stretches of perfect match and identify them to the user. But

the perpendicular diagonals corresponding to “reverse partial matches” are the

kind of unanticipated pattern that humans are so good at discerning.

Exercise 5.18 asks you to examine some outputs from the DotPlot program
and interpret them.

5.3.3 Controlling Sensitivity and Selectivity

Run the previous DotPlot program with the command

java DotPlot 1000011010101000 101011100000001010001010

You will see patterns, but there are so many that it’s difficult to assign any

meaning to them. Because there are only two symbols (0 and 1) in the strings

many spurious matches occur, which contribute to a veritable surfeit of asterisks.

176 Chapter 5 Sequence Alignment

The program is too sensitive, or equivalently, not sufficiently selective, to give us

the feedback we really want.

One way to make the program less sensitive, and thereby more selective, is to

refrain from inserting an asterisk unless two consecutive characters from the first

stringmatch the two corresponding consecutive characters in the second string. A

program thatwould require three consecutivematches before allowing an asterisk

is even less sensitive.

Exercise 5.19 asks you to modify the DotPlot.java program to make it
more selective by insisting onmore than just one charactermatch before inserting

an asterisk.

English speakers would agree that the words culler (one who culls or gathers)

and color sound pretty similar. Run the DotPlot program with the command

java DotPlot culler color

to see a relative paucity of asterisks that indicate next to nothing.

This time, the DotPlot program just isn’t sensitive enough. Sure it catches
the matches between the consonansts. But it regards the vowel o as completely
distinct from the vowel u even though, in the words culler and color they can be
pronounced the same. Similarly, the e of culler is pronounced the same as the
second o of color.

A similar phenomenon arises when comparing biological sequences. Often

small mutations can replace one amino acid with another whose properties are

very similar to the original. We would like sensitive dotplot programs to indicate

when two characters, although not identical, represent similar functionality.

We will return to this topic when we look at PAM and BLOSUM matrices.

In the meantime look at Exercise 5.20.

5.4 PEOPLE HELPING COMPUTERS:
ALGORITHMS

In the previous section, graphics programs helped us investigate patterns that

arisewhenwe compare two sequences. In particular, they helped us to understand

what features we need to measure in order to discover biologically meaningful

comparisons of pairs of sequences. Computer programs drewpictures that helped

us humans to evaluate connections between sequences.

In this section, our aim is to have the computer programs evaluate the connec-

tions between sequences. Wemust somehow convert our experience and intuition

into computer code that produces desirable results.

5.4.1 Alignment

In 1967 an amusing book was published under the titleMots d’Heures: Gousses,

Rameswith the subtitleThe d’Antin Manuscript [19]. It consists of fragmentedbits

of French syntax put together, not to make any particular meaningful statement

Chapter 5 Sequence Alignment 177

in French, but to sound rather like familiar English nursery rhymes even while

being intoned in French. If you have any knowledge of French try to read aloud

the first part of the first of these rhymes:

Un petit d’un petit

S’étonne aux Halles

Familiar? No? Try again! We will shortly see an alignment of this verse with

another that you probably recognize.

Even the title of The d’Antin Manuscript is intended to invoke thoughts

of Mother Goose Rhymes. Instinctively, we feel that mothergooserhymes and
motsdheuresgoussesrames are similar. Note that we’ve now removed punctu-
ation and capitalization to make our example a more appropriate analog of the

similarity problem for sequences of amino acids.

Let us place the two strings mothergooserhymes and motsdheuresgouss-
esrames one above the other and try to position them to enhance any similarity.
We’ll try to place identical symbols together and introduce spacers “-” in order
to facilitate this. We’ll also try to put letters or combinations of letters that fulfill

similar tasks (e.g., ER and EURE or OO and OU) in close proximity.

MOT--HE-R--GOOS-E-RHYMES
MOTSDHEURESGOUSSESR-AMES

This is an alignment of the two strings: In each column we have either

• two identical letters, or

• two letters of similar function (whatever that means!), or

• a letter and a -

For one more alignment let’s return to the two lines given earlier:

Un petit d’un petit

S’étonne aux Halles

and perform the promised “alignment”:

-UNPETITDUNPETITSETONNEAUXHALLES
HUMP-TY-DUMP-TY-SATON--THEWALL

This “alignment” of letters is far from perfect. But if we look at the

functionality of the letters; that is if we consider the sounds produced by a native

speaker reading those letters, we note that we have a great match. So it is also

with biological sequence comparisons: When two sequences are very distantly

related, it is often the case that exact nucleotide matches have all but disap-

peared. Nevertheless, when we compare the functionality (perhaps the amino

acids corresponding to groupings of nucleotides into triplets), we often find the

similarity between the sequences still persists even though exact letter matches

have long since eroded through nonlethal mutation.

178 Chapter 5 Sequence Alignment

Returning to the more orthodox alignments of biological sequences, it is

intuitively clear that the fewer- symbols used and themore oftenwe find identical
ones aligned, the more similar are the strings. It is important to quantify this

notion of similarity.

5.4.2 Quality of Alignments: Scoring Schemes

Consider two sequences CAAACCGTCGT and AACCCGCCGTA. If we run our
simple DotPlot program to compare them, we obtain:

C A A A C C G T C G T

A * * *
A * * *
C * * * *
C * * * *
C * * * *
G * *
C * * * *
C * * * *
G * *
T * *
A * * *

We can see significant evidence of substringmatching between the two sequences.

A human might select a long promising diagonal from the following dotplot.

We’ve changed the asterisks into periods except for those matches that we want

to select. With this approach we’re trying to find a good alignment between the

sequences by eyeballing a good long diagonal. An * in our diagonal “indicates”

an exact match between the corresponding characters. Skipping both downward

and across without an asterisk indicates a mismatch, and moving horizontally or

vertically introduces a gap. Let’s say we pick this diagonal:

C A A A C C G T C G T

A . * .
A . . *
C . * . .
C . . * .
C
G * .
C
C . . . *
G . *
T . *
A . . .

Chapter 5 Sequence Alignment 179

This selected near-diagonal indicates that we have lined up the sequences as

C A A A C C – G T C G T –
– – | | | | – | X | | | –
– – A A C C C G C C G T A

Our convention is to use | for a match, X for a mismatch and – for an insertion
or deletion. Whether it’s an insertion or a deletion depends on which sequence

you consider primary. Since we are, at this stage, utterly unbiased, we’ll use the

single term indel to refer to either.

Look at the aligned sequences carefully, and be sure that you understand the

relationship between the alignment and the selection of the near-diagonal in the

dotplot.

We might just as reasonably have selected the following near-diagonal:

C A A A C C G T C G T

A * . .
A . * .
C
C . * . .
C . . * .
G * .
C
C . . . *
G . *
T . *
A . . .

corresponding to the alignment

C A A A C C G T C G T –
– | | X | | | X | | | –
– A A C C C G C C G T A

How likely is it that the two sequences CAAACCGTCGT and AACCCGC-
CGTA are “related”? Of the two alignments

C A A A C C – G T C G T – C A A A C C G T C G T –
– – | | | | – | X | | | – and – | | X | | | X | | | –
– – A A C C C G C C G T A – A A C C C G C C G T A

which is more likely to be biologically meaningful?

180 Chapter 5 Sequence Alignment

The truth is, of course, that we cannot really know. But we would like to

propose a criterion for which we can write a computer program that can select

the “best” alignment of two sequences.

A simple criterion involves a scoring system. Let’s score +5 for each match,

−10 for each mismatch, and −3 for each indel. Under this scoring system, the

first alignment scores 40 for eight matches, −10 for its mismatch and −12 for its

four indels. That’s a total of 18. The second alignment scores 40 − 20 − 6 for a

total of 14. So, under the 5,−10,−3 scoring scheme, the first alignment is better.

Now let’s try a different scoring scheme. This time, let’s make it +2 for each

match, −1 for each mismatch and −2 for each indel. This time the alignments

score 7 and 10, respectively, making the second alignment the preferred one.

Another scoring scheme for an alignment is to calculate what is sometimes

called the distance measure or the edit distance corresponding to the alignment.

This scores 0 for a match and 1 for a mismatch or an indel. Unlike our other

schemes, in this one the alignment with the smaller score is preferred. For our

two alignments we get distance measures of 5 and 4, respectively, again inclining

us to choose the second alignment over the first.

Therefore, to be able to quantify the quality of an alignment, we must first

specify a scoring scheme.

5.4.3 Global Alignments:
The Needleman–Wunsch Algorithms

In 1970, Saul Needleman and ChristianWunsch [15] proposed a general method

for finding similarity between two amino acid sequences based on principles of

dynamic programming.

5.4.4 A Worked Example

Let’s begin with a small example illustrating how their algorithm works.

Suppose we want to align CACGA and CATTGA and we want to score +2
for matches, 0 for mismatches, and −1 for indels. We’re going to write the first

sequence along a horizontal axis and the second along a vertical axis like this:

C A C G A

C
A
T
T
G
A

We’re going to fill in amatrix of values where the (i, j) entry is the score of the

best alignment between the first i characters of the second sequence and the first j

characters of the first sequence. When i is 0, we are looking at the best alignment

between the first j characters of CACGA and the empty string. Clearly, the best

Chapter 5 Sequence Alignment 181

such alignment consists of as many indels as are required to match the lengths.

For example to get the (0, 3) entry, we need to look at

CAC

– – –

with a score of −3. Thus we can fill in the top row:

C A C G A

0 −1 −2 −3 −4 −5

C
A
T
T
G
A

By a similar argument, we can fill in the first column:

C A C G A

0 −1 −2 −3 −4 −5

C −1
A −2
T −3
T −4
G −5
A −6

Notice that the (0, 0) entry comes from aligning the empty sequence with the

empty sequence. There are nomatches, nomismatches, and no indels, so the score

must be 0. Now let’s consider the (1, 1) entry. It comes about by extending the

(0, 0) entry with amatch betweenC andC, resulting in a score of 0+ 2 (extending
from the northwest), or from extending the (0, 1) entry with an indel for a score

of (−1)+(−1) giving a total of−2 (extending from the north), or from extending

the (1, 0) entry with an indel for a score of−2 (extending from the west). Clearly

the first alternative is to be preferred. So now we have:

C A C G A

0 −1 −2 −3 −4 −5

C −1 2
A −2
T −3
T −4
G −5
A −6

182 Chapter 5 Sequence Alignment

Now consider the (1, 2) position. We can either extend the (0, 1) alignment

from the northwest with a mismatch of A and C, giving a total score of −1, or
we can extend the (0, 2) alignment from the north with an indel, for a score of

−3, or we can extend the (1, 1) alignment from the west with an indel for a score

of 1 (2 in the (1, 1) position plus−1 for the indel). This time we choose to extend

from the west. By a similar process we can fill in the whole of row 1:

C A C G A

0 −1 −2 −3 −4 −5

C −1 2 1 0 −1 −2
A −2
T −3
T −4
G −5
A −6

Notice that the 0 in position (1, 3) can come either from the west, corre-

sponding to the alignment

CAC

C – –

or from the northwest, corresponding to the equally good alignment

CAC

– – C

By a symmetrical process, we can fill in column 1:

C A C G A

0 −1 −2 −3 −4 −5

C −1 2 1 0 −1 −2
A −2 1
T −3 0
T −4 −1
G −5 −2
A −6 −3

Exactly the same reasoning can be used for the next row and column. Satisfy

yourself that the following are correct:

C A C G A

0 −1 −2 −3 −4 −5

C −1 2 1 0 −1 −2
A −2 1 4 3 2 1
T −3 0 3
T −4 −1 2
G −5 −2 1
A −6 −3 0

Chapter 5 Sequence Alignment 183

Continuing in this mode, we complete the table:

C A C G A

0 −1 −2 −3 −4 −5

C −1 2 1 0 −1 −2
A −2 1 4 3 2 1
T −3 0 3 4 3 2
T −4 −1 2 3 4 3
G −5 −2 1 2 5 4
A −6 −3 0 1 4 7

That bottom right entry, 7, gives the score for the best alignment. To recreate

the alignment, we must backtrack through our process. Where did the 7 come

from? It came from the northwest, so the alignment must end with

A

A

tacked on to the alignment that led to the 5 that is to the northwest.

Similarly, that 5 came from the northwest indicating that our optimal

alignment proceeds from the alignment that led to the 3 at (4, 3) and ends with

GA

GA

Now the 3 at (4, 3) could have come from the north, extending the alignment

at (3, 3) with

–GA

TGA

or it could have come from the northwest, extending the alignment at (3, 2) with

CGA

TGA

It is not unusual, especially with simple scoring schemes like this one, for

there to be several optimal alignments, each with the same score.

By completing the process, one of the alignments with a score of 7 for our

example is

CAC –GA

CAT TGA

Exercise 5.21 asks you to find another.

With this specific example in mind, let us proceed to develop the general

algorithm. In developing our version of theNeedleman–Wunsch algorithm, we’ll

follow amethod popularized byUdiManber [13]. Manber encourages the design

of algorithms by induction. We will develop a recurrence relation for the score of

the best alignment between two sequences a1, a2, . . . , an and b1, b2, . . . , bm using

the principle of mathematical induction. Translation of that recurrence relation

184 Chapter 5 Sequence Alignment

into a program in your favorite programming language will complete the process.

This is a common, useful, and reliable way to develop algorithms.

We write A(k, l) to denote the best alignment score between the prefix

sequences a1, a2, . . . , ak and b1, b2, . . . , bl . So, assume that we know A(k, l) for

every pair (k, l) that precedes pair (i, j). For our purposes, we say that (k, l)

precedes (i, j) if either

• k < i and l ≤ j, or

• l < j and k ≤ i.

Roughly speaking, points to the left and high in the grid occur earlier in the

ordering.

With the ordering established, we can proceed to derive a recursive equation

for A(i, j).

How does the best alignment for a1, a2, . . . , ai and b1, b2, . . . , bj relate to its

predecessors? There are three possible scenarios:

• Alignment for a1, a2, . . . , ai−1 and b1, b2, . . . , bj−1 followed by ai matched or

mismatched with bj

• Alignment for a1, a2, . . . , ai and b1, b2, . . . , bj−1 followed by a gap with bj

• Alignment for a1, a2, . . . , ai−1 and b1, b2, . . . , bj followed by a gap with ai

Pictorially, these three cases look like:

•

previous

alignment

ai

bj

•

previous

alignment

−

bj

•

previous

alignment

ai

−

Now let’s do some analysis for each of these cases:

•

previous

alignment

ai

bj

In this case, the best previous alignment is (using our inductive hypothesis)

A(i − 1, j − 1). We add to that either the match score (if ai = bj) or the

mismatch score (otherwise). Let’s denote that additional amount by s(ai , bj).

In this case the calculated new alignment score would be A(i − 1, j − 1) +

s(ai , bj).

•

previous

alignment

−

bj

In this case, the best previous alignment is (againusing the inductionhypothe-

sis)A(i, j−1). We need to add on the gap penalty. Let’s denote the gap penalty

by g. In this case therefore the calculated new alignment score isA(i−1, j)+g.

•

previous

alignment

ai

−

Chapter 5 Sequence Alignment 185

By a similar argument, the calculated new alignment score in this case is

A(i, j − 1) + g

Sincewewant the highest possible score, wemust choose the case that leads to

the largest value for the calculated newalignment.A(i, j) is thus themaximumof

• A(i − 1, j − 1) + s(ai , bj)

• A(i, j − 1) + g

• A(i − 1, j) + g

We have derived the recurrence

A(i, j) = max

⎧⎨
⎩

A(i − 1, j − 1) + s(ai , bj)

A(i, j − 1) + g

A(i − 1, j) + g

This immediately suggests the program portion:

int A(int i, int j) {
if ... // ... denotes our yet to be determined base cases
then return ...// to be determined
else return max(A(i-1,j-1)+s(a[i],b[j]), A(i,j-1)+g, A(i-1,j)+g);

}

As usual, the recursive case of our program is easy to derive. To ensure proper

termination of the recursionwemust correctly specify the base cases. These occur

as each of the subscripts i and j get to 0 in the top row and left column of our

tableau. The A(0, j) entry corresponds to matching the first j characters of one

sequence with a collection of “j indels” characters. It incurs a penalty score of jg.

Similarly, the other base cases A(i, 0) can be dealt with.

In view of what we’ve just seen, look carefully at program NW.java in
Figure 5.7. It is a simple implementation of the Needleman–Wunsch algorithm.

In the exercises you will be modifying and extending it. For now use it to check

your hand-derived arrays.

The program in Figure 5.7 outputs a dynamic programming matrix that can

be used to produce a corresponding alignment. You will construct the corre-

sponding alignment by hand in the exercises. Exercise 5.6 expects you to generate

small dynamic programming matrices by hand and check them by program.

Exercise 5.7 is similar, but you’ll use a distance measure for scoring purposes.

This makes for significant differences in the program. You will need to minimize

the northwest-, north-, and west-derived scores. You will need to change more

than just three lines of NW.java.
The program inFigure 5.7 produces the scoringmatrix showing at every posi-

tion (i, j) the score of the best alignment to that point. It is possible to backtrack

from the bottom-right entry to the top-left entry and reconstruct the correspond-

ing alignment. The backtracking process involves working backwards, figuring

out which of the choices (from the north, from the west, from the northwest)

occurred to create the current entry. In this way, we know whether to insert a

gap in the first sequence or in the second sequence, or to match or mismatch a

186 Chapter 5 Sequence Alignment

// NW.java
//
// Simple Needleman-Wunsch global alignment of
// two strings entered on command line
// Example usage:
// java NW IamAGoodString IamAnotherString

public class NW {
// Using simple linear gap score (-2 per indel)
// and 4 for a match, -1 for a mismatch
// Feel free to change this

public static final int gapscore = -2;
public static final int matchscore = 4;
public static final int mismatchscore = -1;

private String x; // First string
private String y; // Second string
private int xlen, ylen; // their lengths
private int[][] scoreArray;

public NW(String a, String b) {
x = a;
y = b;
xlen = x.length();
ylen = y.length();
scoreArray = new int[ylen+1][xlen+1];

}

public void fillScoreArray() {
int row, col; // for indexing through array
int northwest, north, west; // (row, col) entry will be max of these
int best; // will be the max
// Fill the top row and left column:
for (col=0; col less than or equal xlen; col++) scoreArray[0][col] = gapscore*col;
for (row=0; row less than or equal ylen; row++) scoreArray[row][0] = gapscore*row;
// Now fill in the rest of the array:
for (row=1; row less than or equal ylen; row++) {

for (col=1; col less than or equal xlen; col++) {
if (x.charAt(col-1)==y.charAt(row-1))

northwest = scoreArray[row-1][col-1] + matchscore;
else northwest = scoreArray[row-1][col-1] + mismatchscore;
west = scoreArray[row][col-1] + gapscore;
north = scoreArray[row-1][col] + gapscore;
best = northwest;
if (north>best) best = north;
if (west>best) best = west;
scoreArray[row][col] = best;

}
}

}

FIGURE 5.7 A simple implementation of the Needleman–Wunsch algorithm.

Chapter 5 Sequence Alignment 187

public void print3(int x) {
// Print x in 3 spaces
String s = ""+x;
if (s.length() == 1) System.out.print(" "+s);
else if (s.length() == 2) System.out.print(" "+s);
else if (s.length() == 3) System.out.print(s);
else System.out.print("***");

}

public void printArray() {
for (int row=0; row less than scoreArray.length; row++) {

for (int col=0; col less than scoreArray[row].length; col++)
print3(scoreArray[row][col]);

System.out.println();
}

}

public static void main(String[] args) {
NW nw = new NW(args[0], args[1]);
nw.fillScoreArray();
nw.printArray();

}
}

FIGURE 5.7 (continued)

character from both sequences. Working back from the bottom right to the top

left, we create the alignment whose score we have recorded.

Exercise 5.8 asks you to write a program to perform the backtracking so

you won’t have to do it by hand. The program in Figure 5.8 achieves that by

simulating theprocess youprobablyused todo thebacktrackingbyhand. Abetter

approach is to have your program build another array that contains in the (i, j)

entry the direction from which the value in the (i, j) entry of the scoring matrix

was calculated. Exercise 5.8 asks you to write your own program that takes this

more elegant (and efficient) approach.

5.4.5 Local Alignments:
The Smith–Waterman Algorithm

So far, we have looked at programs for performing global alignment between two

sequences. This means that we have looked for the best alignment between the

whole of the first sequenceX and the whole of the second sequenceY . Such com-

parisons are done, for example, when determining the evolutionary relatedness

of a given gene sequence among different species.

Perhaps it is more “biologically useful” to find a subsequence of X and a

subsequence of Y such that the global alignment score between the two subse-

quences is as large as possible. That’s what we mean by a local alignment between

X andY .We throwawaypartsofboth sequences fromthe left and the right ends in

188 Chapter 5 Sequence Alignment

// NW1.java
//
// Goes beyond NW.java by analysing array to produce alignment
// Simple Needleman-Wunch global alignment of
// two strings entered on command line
// Example usage:
// java NW1 IamAGoodString IamAnotherString

public class NW1 {
// Using simple linear gap score (-2 per indel)
// and 4 for a match, -1 for a mismatch
// Feel free to change this

public static final int gapscore = -2;
public static final int matchscore = 4;
public static final int mismatchscore = -1;

private String x; // First string
private String y; // Second string
private int xlen, ylen; // their lengths
private int[][] scoreArray;

private String xalig, yalig; // for the alignments

public NW1(String a, String b) {
x = a;
y = b;
xlen = x.length();
ylen = y.length();
scoreArray = new int[ylen+1][xlen+1];

}

public void fillScoreArray() {
int col,row; // for indexing through array
int northwest, north, west; // (row,col) entry will be max of these
int best; // will be the max
// Fill the top row and left column:
for (col=0; col<=xlen; col++) scoreArray[0][col] = gapscore*col;
for (row=0; row<=ylen; row++) scoreArray[row][0] = gapscore*row;
// Now fill in the rest of the array:
for (row=1; row<=ylen; row++) {

for (col=1; col<=xlen; col++) {
if (x.charAt(col-1)==y.charAt(row-1))

northwest = scoreArray[row-1][col-1] + matchscore;
else northwest = scoreArray[row-1][col-1] + mismatchscore;
west = scoreArray[row][col-1] + gapscore;

FIGURE 5.8 An extension of the NW.java program that backtracks through the array to reproduce the
“winning” alignment.

Chapter 5 Sequence Alignment 189

north = scoreArray[row-1][col] + gapscore;
best = northwest;
if (north>best) best = north;
if (west>best) best = west;
scoreArray[row][col] = best;

}
}

}

public void print3(int x) {
// Print x in 3 spaces
String s = ""+x;
if (s.length() == 1) System.out.print(" "+s);
else if (s.length() == 2) System.out.print(" "+s);
else if (s.length() == 3) System.out.print(s);
else System.out.print("***");

}

public void printArray() {
for (int row=0; row<scoreArray.length; row++) {

for (int col=0; col<scoreArray[row].length; col++)
print3(scoreArray[row][col]);

System.out.println();
}

}

public void setAlignment() {
int row = ylen; // start at end of sequence 2
int col = xlen; // and at end of sequence 1
xalig = ""; // start with empty alignment
yalig = ""; // ditto for sequence 2
while ((col>0) || (row>0)) {

// work your way from bottom right to top left
if ((row>0) &&

(scoreArray[row][col] == scoreArray[row-1][col] + gapscore)) {
// came from north
xalig = "-" + xalig; // gap in sequence 1
yalig = y.charAt(row-1) + yalig; // consume char from sequence 2
row--; // move up in array

}
else if ((col>0) &&

(scoreArray[row][col] == scoreArray[row][col-1] + gapscore)) {
// came from west
xalig = x.charAt(col-1) + xalig; // consume char from sequence 1
yalig = "-" + yalig; // gap in sequence 2
col--; // move left

}

FIGURE 5.8 (continued)

190 Chapter 5 Sequence Alignment

else {
// came from northwest
xalig = x.charAt(col-1) + xalig; // consume char from sequence 1
yalig = y.charAt(row-1) + yalig; // and from sequence 2
col--; // move left
row--; // and up

}
// Uncomment these if you want to see the buildup:
// System.out.println(xalig);
// System.out.println(yalig);

}
}

public void printAlignment() {
System.out.println(xalig);
System.out.println(yalig);

}

public static void main(String[] args) {
NW1 nw = new NW1(args[0], args[1]);
nw.fillScoreArray();
nw.printArray();
nw.setAlignment();
nw.printAlignment();

}
}

FIGURE 5.8 (continued)

C –G– – A – A
CTGCGAGA

a global alignment scoring 0 (+4 for the matches and −4 for the indels).

CGAA
CTGCGAGA

a local alignment scoring 3 (+3 for the matches and 0 for the mismatch).

Leading or trailing indels do not score against a local alignment, but do

count against in global alignments.

FIGURE 5.9 The best global (upper) and the best local (lower) alignment between

CGAA and CTGCGAGA, scoring by +1 for a match, 0 for a mismatch, −1 for an indel.

such a way that the remaining pieces have as large as possible an alignment

score. Peripheral pieces of both sequences that do nothing but hurt the score are

discarded. Figure 5.9 shows the best global and the best local alignment between

CGAA and CTGCGAGA with a scoring system that applies +1 for a match, 0

for a mismatch, and −1 for an indel.

Chapter 5 Sequence Alignment 191

In 1981, Michael Smith and Temple Waterman [18] proposed an adaptation

to the Needleman–Wunsch algorithm that would identify the longest stretch of

high-scoring alignment within two sequences.

It takes very little to modify our alignment program to give the best local

alignment between two sequences. As long as your alignment scoring method is

such that

• two empty strings align with score 0 and

• mismatches and indels both contribute negative scores and

• matches contribute positive scores,

all you need do is ensure that you never insert a negative number into yourmatrix.

After generating the matrix, search it for the largest score. From that, you can

deduce the best local alignment within your sequences.

5.4.6 A Worked Example

For example with match +2, mismatch −1, indel −2, a global alignment of

ACTACT and GTAC can be obtained from the scoring matrix:

− A C T A C T
− 0 −2 −4 −6 −8 −10 −12
G −2 −1 −3 −5 −7 −9 −11
T −4 −3 −2 −1 −3 −5 −7
A −6 −2 −4 −3 1 −1 −3
C −8 −4 0 −2 −1 3 1

Youcanderive correspondingglobal alignments bybacktracking to get either

A C T A C T
– X | | | –
– G T A C –

with global score 1, or, just as good:

A C T A C T
X – | | | –
G – T A C –

With the same scoring, an optimal local alignment can be deduced from the

Smith–Waterman scoring matrix:

– A C T A C T
– 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0
T 0 0 0 2 0 0 2
A 0 2 0 0 4 2 0
C 0 0 4 2 2 6 4

Notice that the only modification is that we never allow negative scores to

enter the tableau. Where the old algorithm would generate a negative entry, the

new algorithm simply inserts a 0. Otherwise, the entries are computed in exactly

192 Chapter 5 Sequence Alignment

the same way as in the Needleman–Wunsch program. This Smith–Waterman

matrix indicates the alignment

a c T A C t
g T A C

where lowercase letters indicate nucleotides not involved in the alignment. It is

obtained by backtracking from the largest score location in the matrix.

Exercise 5.9 asks you to modify your previous Needleman–Wunsch program

to find local alignments. That produces a basic implementation of the Smith–

Waterman algorithm.

5.5 AFFINE GAP PENALTIES

The version of the Needleman–Wunsch algorithm presented earlier scores each

occurrence of an indel exactly the same. This is a gross oversimplification of the

original algorithm, which accommodated more general gap penalties in which

the cost of a gap depends on its length. It recognized that gaps should be scored in

terms of block indels rather than as individual, independent single indels. Biolo-

gists have found that a long consecutive sequence of n gaps is muchmore likely to

have occurred than n separate gaps of length 1. When we make the cost of a gap

to be a function g(x) that depends on the length X of the gap, adjustments need

to be made in the derivation of the algorithm. Instead of the single recurrence:

A(i, j) = max

⎧⎨
⎩

A(i − 1, j − 1) + s(ai , bj)

A(i, j − 1) + g

A(i − 1, j) + g

we now deal with a system of recurrences:

N(i, j) = mink∈{0...i−1} A(k, j) + g(i − k)

W (i, j) = mink∈{0...j−1} A(i, k) + g(j − k)

A(i, j) = min

⎧⎨
⎩

A(i − 1, j − 1) + s(ai , bj)

N(i, j)

W (i, j)

where N(i, j) is the best alignment that ends with a gap in the second sequence

(we call itN because it’s from the north), andW (i, j) is the best alignment ending

with a gap in the first sequence (from the west), and g(x) is the penalty assigned

to a gap of length x.

These recursions, together with base cases for instances when i or j are 0, lead

to the originalNeedleman–Wunsch algorithm. It deals in amore satisfactoryway

with gaps by allowing appropriate scoring for block indels. But this approach

slows performance (see Exercise 5.12).

Nevertheless, as pointed out by Fitch and Smith [5], some kind of block indel

scoring appears to be essential for finding alignments that are biologically rele-

vant. A way to achieve this, without the performance hit of general gap penalties,

Chapter 5 Sequence Alignment 193

is to use affine gap penalties. Instead of a general g(x) an affine gap penalty takes

the form g(x) = s + cx, where s can be thought of as the gap start, or initiation,

penalty and c as the gap continuation penalty. It remains true that a single long

gap will be more heavily penalized than a single short gap, but the important

(and significant for biological applicability) point is that a single long gap will

be preferred to several shorter gaps that add up to the same total length. For

example, with an initialization penalty of 10 and a continuation penalty of 1,

a single gap of length 8 will be penalized 17 points (one initialization and seven

continuations), whereas four gaps each of length 2 would be penalized 44 points

(four initialization penalties plus four continuation penalties).

The previous recurrences become:

N(i, j) = min

A(i − 1, j) + s

N(i − 1, j) + c

W (i, j) = min

A(i, j − 1) + s

W (i, j − 1) + c

A(i, j) = min

⎧⎨
⎩

A(i − 1, j − 1) + s(ai , bj)

N(i, j)

W (i, j)

Exercise 5.13 asks you to implement this version of the Needleman–Wunsch

algorithm with affine penalties, and to verify that the performance hit is

acceptable.

5.6 EVOLUTIONARY CONSIDERATIONS

5.6.1 PAM and BLOSUM

During the 1960s, Margaret Dayhoff [3] and her colleagues produced a set

of substitution matrices based on global alignments of closely related protein

sequences.

Dayhoff’s Atlas of Protein Structure represented a monumental amount of

work, much of which compared protein sequences. The notion of point accepted

mutation (PAM) was proposed—a measure of divergence between sequences.

1 PAM is the amount of divergence that occurs when 1% of amino acids have

changed. By extensive study, it is possible to devise Table 5.3, where the (i, j) entry

indicates the observed frequency with which the ith amino acid has been replaced

by the jth. For example, since the A-A entry is .9867, experiment indicated that

98.67% of the alanines would have been conserved between the entire available

set for which 1% of amino acids were observed to have changed. The A-S entry

is .0028 and indicates that 0.28% of the alanines were replaced by serines in the

same set.

The table was obtained by considering a large set of very similar sequences.

They were pairwise-aligned (using a simple scoring method that worked well

because the sequences were very similar) and then the occurrences of each amino

T
A
B
L
E

5
.3

O
b
se

rv
ed

fr
eq

u
en

ci
es

o
f
a
m

in
o

a
ci
d

re
p
la

ce
m

en
t
d
u
ri
n
g

1
P
A
M

o
f
d
iv

er
g
en

ce

A
R

N
D

C
Q

E
G

H
I

L
K

M
F

P
S

T
W

Y
V

A
.9
8
6
7
.0
0
0
2
.0
0
0
9
.0
0
1
0
.0
0
0
3
.0
0
0
8
.0
0
1
7
.0
0
2
1
.0
0
0
2
.0
0
0
6
.0
0
0
4
.0
0
0
2
.0
0
0
6
.0
0
0
2
.0
0
2
2
.0
0
3
5
.0
0
3
2
.0
0
0
0
.0
0
0
2
.0
0
1
8

R
.0
0
0
1
.9
9
1
3
.0
0
0
1
.0
0
0
0
.0
0
0
1
.0
0
1
0
.0
0
0
0
.0
0
0
0
.0
0
1
0
.0
0
0
3
.0
0
0
1
.0
0
1
9
.0
0
0
4
.0
0
0
1
.0
0
0
4
.0
0
0
6
.0
0
0
1
.0
0
0
8
.0
0
0
0
.0
0
0
1

N
.0
0
0
4
.0
0
0
1
.9
8
2
2
.0
0
3
6
.0
0
0
0
.0
0
0
4
.0
0
0
6
.0
0
0
6
.0
0
2
1
.0
0
0
3
.0
0
0
1
.0
0
1
3
.0
0
0
0
.0
0
0
1
.0
0
0
2
.0
0
2
0
.0
0
0
9
.0
0
0
1
.0
0
0
4
.0
0
0
1

D
.0
0
0
6
.0
0
0
0
.0
0
4
2
.9
8
5
9
.0
0
0
0
.0
0
0
6
.0
0
5
3
.0
0
0
6
.0
0
0
4
.0
0
0
1
.0
0
0
0
.0
0
0
3
.0
0
0
0
.0
0
0
0
.0
0
0
1
.0
0
0
5
.0
0
0
3
.0
0
0
0
.0
0
0
0
.0
0
0
1

C
.0
0
0
1
.0
0
0
1
.0
0
0
0
.0
0
0
0
.9
9
7
3
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
1
.0
0
0
1
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
1
.0
0
0
5
.0
0
0
1
.0
0
0
0
.0
0
0
3
.0
0
0
2

Q
.0
0
0
3
.0
0
0
9
.0
0
0
4
.0
0
0
5
.0
0
0
0
.9
8
7
6
.0
0
2
7
.0
0
0
1
.0
0
2
3
.0
0
0
1
.0
0
0
3
.0
0
0
6
.0
0
0
4
.0
0
0
0
.0
0
0
6
.0
0
0
2
.0
0
0
2
.0
0
0
0
.0
0
0
0
.0
0
0
1

E
.0
0
1
0
.0
0
0
0
.0
0
0
7
.0
0
5
6
.0
0
0
0
.0
0
3
5
.9
8
6
5
.0
0
0
4
.0
0
0
2
.0
0
0
3
.0
0
0
1
.0
0
0
4
.0
0
0
1
.0
0
0
0
.0
0
0
3
.0
0
0
4
.0
0
0
2
.0
0
0
0
.0
0
0
1
.0
0
0
2

G
.0
0
2
1
.0
0
0
1
.0
0
1
2
.0
0
1
1
.0
0
0
1
.0
0
0
3
.0
0
0
7
.9
9
3
5
.0
0
0
1
.0
0
0
0
.0
0
0
1
.0
0
0
2
.0
0
0
1
.0
0
0
1
.0
0
0
3
.0
0
2
1
.0
0
0
3
.0
0
0
0
.0
0
0
0
.0
0
0
5

H
.0
0
0
1
.0
0
0
8
.0
0
1
8
.0
0
0
3
.0
0
0
1
.0
0
2
0
.0
0
0
1
.0
0
0
0
.9
9
1
2
.0
0
0
0
.0
0
0
1
.0
0
0
1
.0
0
0
0
.0
0
0
2
.0
0
0
3
.0
0
0
1
.0
0
0
1
.0
0
0
1
.0
0
0
4
.0
0
0
1

I
.0
0
0
2
.0
0
0
2
.0
0
0
3
.0
0
0
1
.0
0
0
2
.0
0
0
1
.0
0
0
2
.0
0
0
0
.0
0
0
0
.9
8
7
2
.0
0
0
9
.0
0
0
2
.0
0
1
2
.0
0
0
7
.0
0
0
0
.0
0
0
1
.0
0
0
7
.0
0
0
0
.0
0
0
1
.0
0
3
3

L
.0
0
0
3
.0
0
0
1
.0
0
0
3
.0
0
0
0
.0
0
0
0
.0
0
0
6
.0
0
0
1
.0
0
0
1
.0
0
0
4
.0
0
2
2
.9
9
4
7
.0
0
0
2
.0
0
4
5
.0
0
1
3
.0
0
0
3
.0
0
0
1
.0
0
0
3
.0
0
0
4
.0
0
0
2
.0
0
1
5

K
.0
0
0
2
.0
0
3
7
.0
0
2
5
.0
0
0
6
.0
0
0
0
.0
0
1
2
.0
0
0
7
.0
0
0
2
.0
0
0
2
.0
0
0
4
.0
0
0
1
.9
9
2
6
.0
0
2
0
.0
0
0
0
.0
0
0
3
.0
0
0
8
.0
0
1
1
.0
0
0
0
.0
0
0
1
.0
0
0
1

M
.0
0
0
1
.0
0
0
1
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
2
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
5
.0
0
0
8
.0
0
0
4
.9
8
7
4
.0
0
0
1
.0
0
0
0
.0
0
0
1
.0
0
0
2
.0
0
0
0
.0
0
0
0
.0
0
0
4

F
.0
0
0
1
.0
0
0
1
.0
0
0
1
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
1
.0
0
0
2
.0
0
0
8
.0
0
0
6
.0
0
0
0
.0
0
0
4
.9
9
4
6
.0
0
0
0
.0
0
0
2
.0
0
0
1
.0
0
0
3
.0
0
2
8
.0
0
0
0

P
.0
0
1
3
.0
0
0
5
.0
0
0
2
.0
0
0
1
.0
0
0
1
.0
0
0
8
.0
0
0
3
.0
0
0
2
.0
0
0
5
.0
0
0
1
.0
0
0
2
.0
0
0
2
.0
0
0
1
.0
0
0
1
.9
9
2
6
.0
0
1
2
.0
0
0
4
.0
0
0
0
.0
0
0
0
.0
0
0
2

S
.0
0
2
8
.0
0
1
1
.0
0
3
4
.0
0
0
7
.0
0
1
1
.0
0
0
4
.0
0
0
6
.0
0
1
6
.0
0
0
2
.0
0
0
2
.0
0
0
1
.0
0
0
7
.0
0
0
4
.0
0
0
3
.0
0
1
7
.9
8
4
0
.0
0
3
8
.0
0
0
5
.0
0
0
2
.0
0
0
2

T
.0
0
2
2
.0
0
0
2
.0
0
1
3
.0
0
0
4
.0
0
0
1
.0
0
0
3
.0
0
0
2
.0
0
0
2
.0
0
0
1
.0
0
1
1
.0
0
0
2
.0
0
0
8
.0
0
0
6
.0
0
0
1
.0
0
0
5
.0
0
3
2
.9
8
7
1
.0
0
0
0
.0
0
0
2
.0
0
0
9

W
.0
0
0
0
.0
0
0
2
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
0
.0
0
0
1
.0
0
0
0
.0
0
0
1
.0
0
0
0
.9
9
7
6
.0
0
0
1
.0
0
0
0

Y
.0
0
0
1
.0
0
0
0
.0
0
0
3
.0
0
0
0
.0
0
0
3
.0
0
0
0
.0
0
0
1
.0
0
0
0
.0
0
0
4
.0
0
0
1
.0
0
0
1
.0
0
0
0
.0
0
0
0
.0
0
2
1
.0
0
0
0
.0
0
0
1
.0
0
0
1
.0
0
0
2
.9
9
4
5
.0
0
0
1

V
.0
0
1
3
.0
0
0
2
.0
0
0
1
.0
0
0
1
.0
0
0
3
.0
0
0
2
.0
0
0
2
.0
0
0
3
.0
0
0
3
.0
0
5
7
.0
0
1
1
.0
0
0
1
.0
0
1
7
.0
0
0
1
.0
0
0
3
.0
0
0
2
.0
0
1
0
.0
0
0
0
.0
0
0
2
.9
9
0
1

W
.J
.
W
il
b
u
r,
“
O
n
th
e
P
A
M
m
a
tr
ix
m
o
d
el
o
f
p
ro
te
in
ev
o
lu
ti
o
n
,”

M
o
le

cu
la

r
B

io
lo

g
y

a
n
d

E
vo

lu
ti

o
n
,
1
9
8
5
,
V
o
l
2
,
4
3
4
–
4
4
7
,
b
y
p
er
m
is
si
o
n
o
f
T
h
e
S
o
ci
et
y
fo
r
M
o
le
cu
la
r
B
io
lo
g
y
a
n
d
E
v
o
lu
ti
o
n
.

194

Chapter 5 Sequence Alignment 195

acid and how often it aligned with a different amino acid were counted. The

counts were then converted into probabilities by scaling. Scaling is necessary

because the definition of the PAM unit requires one accepted mutation per 100.

It is necessary to weight the sum of all mutations by the frequency of occurrence

of the mutating amino acid to ensure conformation with this standard.

Notice how the numbers in each column sum (within the accuracy of our

table) to 1. This is because something must happen to each amino acid i: either

it stays the same (probability given by the i, i entry) or it is replaced by some

other amino acid j (probability given by the j, i entry). Scaling has ensured that

the sum of each diagonal element weighted by the frequency of occurrence of its

corresponding amino acid amounts to 0.99. To the 1 accepted point mutation,

this 0.99 represents the 99 “accepted nonmutations.”

Akey aspect of the use of PAMmatrices in evolutionary studies is that succes-

sive powers of the original PAM-1 transition matrix provide expected transition

probabilities for successive degrees of PAMdivergence. If youmultiply thePAM-1

matrix of Table 5.3 by itself, you obtain the PAM-2 matrix, whose entries indi-

cate the frequencies with which one amino acid can be expected to be replaced by

another over a period of divergence of 2 PAMunits. By the timewe take the 250th

power of the PAM-1 matrix we will have measures of likelihoods of mutation of

one amino acid to another over a period for which the PAMdivergence measure4

is 250.

Margaret Dayhoff used the PAM-nmatrices to derive a scoring scheme that

has been used extensively for aligning sequences of amino acids. The key idea is

that some matches are more frequently observed in nature than others. The same

is true for somemismatches. The scoringmethodwe have used since Section 5.4.2

assumes that all matches are equal and deserve the same reward. Also all mis-

matches are equally bad and deserve the same punishment. This is not so in real

life. The PAMmatrices offer some guidance on how to develop a scoring system

that is relevant to biological observations. From a given PAM-n transitionmatrix

with entries mi, j , Margaret Dayhoff derived a scoring matrix by forming

si,j =

10 log10

mi, j

pj

where pj is the frequency of occurrence of the amino acid j. The and notation

indicates the “ceiling” function: one should round the enclosed quantity up,

thereby guaranteeing an integer scoring matrix.

Exercise 5.22 asks you to modify your DotPlot program to make use of

a scoring matrix. All that is necessary is to enter the scoring matrix into a

two-dimensional array score[20][20]. The simple existing DotPlot program
decides if an asterisk is placed in position (i, j) depending on how many matches

of corresponding characters from the substrings starting at i and j in each string

4
We defined a PAM of divergence to be the amount of divergence that has occurred in order that
1% of amino acids have changed. You may be curious as to how 250% of the amino acids can be
expected to have mutated! In truth, the definition does not generalize as-is; the definition itself needs
to mutate. By the time we get to PAM-250 we should be clear that 250 PAM units is the amount of
divergence needed so that each amino acid has, on average, undergone 2.5 mutations.

196 Chapter 5 Sequence Alignment

are contained in the window. Instead of counting 1 for a match and 0 for a

mismatch, your new program will sum the values

score [string1.charAt[i+k], string2.charAt[j+k]]

for values of k from 0 to w (i.e., within the window).
Similarly, your Needleman–Wunsch and Smith–Waterman programs can

easily be adapted to use a scoring matrix like PAM250. All you have to

do to modify your Needleman–Wunsch or Smith–Waterman programs to use

a PAM scoring matrix is to enter the matrix into a two-dimensional array

score[20][20]. Then, instead of adding matchscore or mismatchscore
to compute a value for the variablenorthwest, youwill do a lookup in the array
score for the PAMscore corresponding to the two amino acids being compared.

You will encounter this task in slightly modified form in Exercise 5.24.

Another family of scoring matrices is based on the work of Jorja and Steven

Heniko [8]. BLOSUM (a contraction of blocks substitution matrix) matrices are

based on the frequencies with which pairs of amino acids are aligned with each

other in multiple alignments of well-conserved portions within protein families.

We will discuss multiple alignments in Section 5.9.

The number following BLOSUM (e.g., 62 in BLOSUM 62) indicates that a

weighting has been applied normalizing for pairs of sequences that are 62% or

more identical.WhereashighernumberedPAMmatrices aremoreappropriate for

comparing more distantly related sequences, the reverse is true for the BLOSUM

family. More distant relatedness calls for lower numbered BLOSUMmatrices.

Most programs for alignment of protein sequences allow the user to choose

from a menu of PAM and BLOSUM matrices. The algorithmic aspect of align-

ment is fixed. Choices in scoring schemes for matches, mismatches, and indels

should be made with an understanding of biological and evolutionary consid-

erations. Whereas computer scientists would like precise definitions of quality

of alignment, biology requires versatile programs that can use different criteria

depending on evolutionary distance and other considerations.

Computer scientists can learn from this. Although a mundane program like

the Unix utility diffmight seem straightforward, the truly curious will appreci-
ate the ability to customize the comparison of two files. For example, the differ-

ences of interest between version 7.1 and 7.2 of an established program are prob-

ably minor, and a diff program needs to be very sensitive and point out all the
differences nomatter howminor. But if you’re comparing version 4.0 and 7.8 you

will be overwhelmed by trivial differences and won’t see the big picture unless you

can tune the utility so it emphasizes the major changes and downplays the trivial.

5.7 SPACE/TIME ANALYSIS OF DYNAMIC
PROGRAMMING ALGORITHMS

The Needleman–Wunsch and Smith–Waterman algorithms both work by filling

in n × m arrays of numbers in a systematic and progressive manner. It is not

difficult to deduce that both algorithms requireO(nm) runtime andO(nm)mem-

ory. For gene sequences, m and n are likely to be hundreds to tens of thousands

Chapter 5 Sequence Alignment 197

in magnitude. Even in the tens of thousands, mn is still only hundreds of mil-

lions, so the algorithms will have runtimes of the order of seconds and storage

requirements well within the range of modern computers.

For focused comparisons of sequences of lengths in the hundreds or tens

of thousands, therefore, the dynamic programming algorithms are eminently

practical. Time and memory problems, however, may arise when it is necessary

to compare one sequence of interest with a very large selection of the sequences

within some large collection. Millions of sequences are possible in the collection,

and the dynamic programming programs would then need runtimes of perhaps

millions of seconds. A million seconds is almost 2 weeks. Runtimes of this length

mean problems.

5.8 HEURISTIC APPROACHES: FastA AND BLAST

A heuristic approach uses past experience to select portions of the inputs to

guide decision making when it is not possible to explore all the possibilities. It

is a way of reducing the search space using “hunches.” Aligning a newly discov-

ered sequence with a collection of known sequences in a large data bank is a

case in point. We saw earlier that the dynamic programming approaches of the

Needleman–Wunsch and Smith–Waterman programs may be too slow.

5.8.1 A Worked Example: Bill Gates at Ballgames

As we know, the alignment problem consists of searching a two dimensional-

space as constructed by a DotPlot program for the longest more-or-less diagonal

line of dots. To align BILLGATES with ATBALLGAMES requires exploring a
11× 9 grid looking for a largely diagonal line.

B I L L G A T E S
A *
T *
B *
A *
L * *
L * *
G *
A *
M
E *
S *

In general, the dynamic programmingmethodswill visit every one ofmn locations

in an m × n field. Can we impart any insights, intuitions, or pieces of wisdom to

the program so as to eliminate vast tracts of this field?

In 1980, William Pearson described the FastA suite of programs. FastA does

exactly what we have been describing: It uses an insight (technically we speak of

198 Chapter 5 Sequence Alignment

a heuristic) to eliminate vast tracts of the search space. The cost is that we may

as a result miss the best alignment. But with a good heuristic, that risk should be

minimal.

FastA begins by selecting a tuple size k. Let’s say we pick a tuple size of 2 for

our BILLGATES–ATBALLGAMES alignment problem. Then our 2-tuples are:

• in BILLGATES— BI IL LL LG GA AT TE and ES
• in ATBALLGAMES— AT TB BA AL LL LG GA AM ME and ES

We’ll consider BILLGATES to be our specimen string and ATBALLGAMES
to be our database string. FastA calculates a numerical value for each k-tuple in

the specimen. Exercise 5.25 asks you to do this for amino acids. For the purposes

of our BILLGATES–ATBALLGAMES example, we’ll calculate a number for each
single letter that is its position in the alphabet: A is 0, B is 1, etc. For a 2-tuple xy

we’ll take 26 times the number for x added to the number for y. So the numerical

values for BILLGATES in our example are:

• in BILLGATES— 34 219 297 292 156 19 498 and 122

FastA associates with each k-tuple a number indicating its position in the string.

Now for our BILLGATES example, the values and positions are:

• in BILLGATES— 34:0 219:1 297:2 292:3 156:4 19:5 498:6 and 122:7

FastA proceeds to investigate the database string (ATBALLGAMES in our
example). For each 2-tuple, it computes the numerical value and figures out a set

of offsets indicating how far off the main diagonal it is from any k-tuple in the

specimen string.

The first 2-tuple AT has value 19, occurs at position 0 in the database string
and at position 5 in the specimen for an offset of −5. Looking at the 2-tuple TB,
we calculate its numerical value is 26× 19+ 1 or 495. It happens there is no 495

value in the specimen string, so the set of offsets for TB is empty. Similarly BA
and AL contribute no offset. But LL (position 4 in the database string) has the
numerical value of 297, which does exist with position 2 in the specimen string.

This gives an offset of 2.

In this way, FastA counts how many times each possible offset occurs.

A diagonal of asterisks in the dotplot corresponds to a large number of

identical offsets. A near-diagonal in the dotplot corresponds to a large number

of offsets fairly close to each other. The heuristic behind FastA is to begin a

dynamic programming search in areas corresponding to offsets that occur very

frequently. Exercise 5.26 takes you through the first few steps of theFastAprocess.

When you’ve done that, you’ll appreciate that this O(n) algorithm identi-

fies the diagonals with the highest numbers of matches along them. The rest of

the program will join up some of the diagonals, allowing for gaps and rescoring

according to some scoringmatrix. Except in the most pathological and extremely

unlikely contrived cases, the entire stitching process is easily bound above

by O(n).

In 1990, the original paper [1] on the basic local alignment search tool

(BLAST), authored by Stephen Altschul and colleagues, appeared in the Journal

Chapter 5 Sequence Alignment 199

of Molecular Biology. ScienceWatch [17] reports that it is the third most cited

paper in the two decades from 1983 through 2003.

Similar to FastA, BLAST applies a heuristic to reduce the search space.

Instead of seeking exact matches of k-tuples BLAST preprocesses the k-tuples to

extend the specimen’s set of k-tuples to include more k-tuples that are within a

certain threshold of scoring of occurring in the specimen. For example, if the user

chooses to use the PAM250 scoring matrix, and if the 2-tuple MM occurs in the
specimen, then BLAST would add to the 2-tuple set any 2-tuple whose PAM250

score with MM is at least some threshold value. If the threshold value is, say 9,

then the 2-tuples ML and LM would be added because their PAM250 score with
MM is 10 according to this small extract from the PAM250 table:

I L K M

I 5 2 −2 2

L 2 6 −3 4

K −2 −3 5 0

M 2 4 0 6

Like FastA, BLAST begins by applying its heuristic so that its subsequent

action works only with a segment of size O(n) of the original search space (size

O(mn)). There is a very small possibility ofmissing the best alignment. In practice

that possibility is negligible.

Both FastA and BLAST are now capable of estimating the statistical rele-

vance of the alignments they find. The computations involved are straightforward

and if you are interested in developing your own programs, you should study the

statistics involved.

5.9 MULTIPLE ALIGNMENTS

A traveler in Scotland once remarked “It’s just like Wales but there’s more of it.”

Both of these Celtic countries have extensive difficult mountainous terrain that

for centuries enabled them to maintain their identities apart from the English

invaders. Scotland is that much larger thanWales, its mountains are a tad higher,

and its features are somewhat more extensive.

So it is with multiple alignment. It’s just like pairwise alignment, but there’s

more of it. To align two sequences, you try to find a way to write them one above

the other, perhaps admitting some gaps, so that you can see their connectedness.

For example

ACC –GGCA – – T T AC

– CCAG– – AT T T T – C

200 Chapter 5 Sequence Alignment

is a fairly decent alignment of the sequences ACCGGCATTAC and CCA-
GATTTTC.

Multiple alignment is a similar concept, only there are more than two

sequences that need to be simultaneously compared. What do you think of

ACCGT T A – CCAT AC

A – –GT T T A – CAT – C

T CCGAT T – – CAGAC

AC –GT AT ACCCG–G

as an alignment between the four sequencesACCGTTACCATAC,AGTTTACATC,
TCCGATTCAGAC, ACGTATACCCGG? How would you measure the goodness
of the alignment? Just as in the pairwise alignment case, one way to do this is to

add up the total agreement/disagreement in each column. You need to decide a

score for a match, a score for a mismatch, and a score for an indel. It’s just like

pairwise alignment, but there’s more of it! If you have sequences of amino acids

to multiply align, the ideas are similar. But you may want to take into account an

evolutionarily based scoring matrix such as PAM or BLOSUM. There are many

ways to count up the scores in each column. Probably the simplest and most

believable is to add up all the scores for all the pairs that occur in a column. For

the first column of the previous alignment, you need a score for each of the pairs

AA, AT, AA, AT, AA, and TA. In general, if k sequences are being aligned, there

will be

k

2

pairs that need to be considered.

We’ve dealt with how to score a multiple alignment. It’s just like scoring a

pairwise alignment, but there are several pairs to score and sum in each column

instead of just one. Next we need to consider how to find good alignments.

In the case of two sequences DotPlots presented a useful visual technique.

We wrote one sequence along the x-axis, the other along the y-axis. We draw a

dot at any point (x0, y0)where the x0th member of the first sequence matches the

y0th member of the second. Or we can ask for many matches or a threshold of

numbers of matches within a window just as we did in Section 5.3.

When we have several sequences we need to progress to higher dimensions.

Not too bad for amultiple alignment of three sequences: We just write each of the

sequences along the x-axis, the y-axis, and the z-axis. We’ll place dots at any point

(x0, y0, z0) where the corresponding members of the sequences match. Then we

look for linear clusters in the three-dimensional space.

Beyond three sequences, it’s harder for us humans to visualize the multi-

dimensional dotplots that arise in the obvious way. But we can write computer

programs either to help us with the visualization or to locate likely looking linear

clusters. If you think about it, such programs would just be fairly easy extensions

of the part of the FastA algorithm that looked for frequently occurring offsets.

DotPlots, FastA, and BLAST all generalize to the multiple-alignment

scenario in fairly straightforward ways. They just become bigger! The Smith–

Waterman dynamic programming algorithm also generalizes. Recall that the

Chapter 5 Sequence Alignment 201

Sequence Z

S
e

q
u

e
n

c
e

 Y

Sequence X

i, j, k

FIGURE 5.10 The dynamic programming approach to alignment of two sequences

requires a two-dimensional array to be filled with values. A multiple alignment of three

sequences X,Y,Z will fill a three-dimensional array. The entry at (i, j, k) will be the score
of the best multiple alignment of the subsequences X.substring(0,i),
Y.substring(0,j) and Z.substring(0,k).

pairwise alignment version of the Smith–Waterman program keeps track of par-

tial alignments from three directions: north, west, and northwest. The relevant

part of the code is:

if (x.charAt(col-1)==y.charAt(row-1))
northwest = scoreArray[row-1][col-1] + matchscore;

else northwest = scoreArray[row-1][col-1] + mismatchscore;
west = scoreArray[row][col-1] + gapscore;
north = scoreArray[row-1][col] + gapscore;
best = northwest;
if (north>best) best = north;
if (west>best) best = west;
scoreArray[row][col] = best;

For aligning two sequences, you needed to keep track of alignment scores

in the 2-dimensional array scoreArray. For k sequences you will need a

k-dimensional scoreArray. In two dimensions, you picked the best of three
calculated scores west, north, and northwest. To align k sequences you will

need to pick the best of 2k − 1 calculated scores. Same algorithmic idea, it’s just

that there’s more of it! Figure 5.10 indicates this idea when k = 3.

Notice that the running time of the generalized Smith–Waterman algorithm

posited earlier increases exponentially with the number of sequences being multi-

ply aligned. That’s because to fill each entry of an increasingly dimensioned array

takes O(2k) computations. In each sequence of length n, there are nk entries

to be computed. Overall, therefore, the generalization of the two-dimensional

pairwise alignment programs to work with k sequences, although fairly straight-

forward, will have running time bounded by O(2knk). The dynamic program-

ming approach to multiple alignment quickly becomes infeasible for realistic

sequences.

202 Chapter 5 Sequence Alignment

Because of this, most practical multiple-alignment programs adopt a

pragmatic approach. It can be summed up in the following gross approximation

to an algorithm:

begin with a set of k objects
-- the k sequences you want to multiply align;

repeat {
pick the 2 most similar objects;
replace them with a consensus object;

} until there is only one object

5.9.1 A Worked Example

Let’s apply that algorithm to form a multiple alignment of the four sequences

S1 = ACCGTTACCATAC, S2 = AGTTTACATC, S3 = TCCGATTCAGAC, and
S4 = ACGTATACCCGG.

First we need to decide which are the two most similar objects. For this

purpose we compute an alignment score for each of the possible pairs.

Using a scoring system of 0 for a match and 1 for a mismatch or indel, we

can form the pairwise scores for each possible pairwise matching:

S1 S2 S3 S4

S1 5 5 6

S2 7 6

S3 8

S4

With this scoringof course, less is better, so thebest alignmentoccurs between

S1 andS2 with a score of 5. Actually, the score between S1 andS3 is equally good,

but we are allowed to decide ties arbitrarily. An alignment between S1 and S2
that scores 5 is:

ACCGT T – ACCAT AC

A – –GT T T AC – AT – C

and a resulting consensus sequence is ACCGTTTACCATAC. We have simply
replaced gaps by the corresponding nucleotide in the other sequence. This is

by no means the only way to proceed; it’s one of many plausible interpretations

of “consensus.”

Now we’re reduced to the problem of multiply aligning the consensus object

ACCGTTTACCATAC with the original S3 and S4. We seek the best pairwise

alignment among these three objects:

consensus12 S3 S4
consensus12 5 6

S3 8

S4

Chapter 5 Sequence Alignment 203

The best alignment is between the consensus object and S3.

ACCGT T T ACCAT AC

T CCGAT T – – CAGAC

The new consensus is XCCGXTTACCAYAC, where X is a symbol meaning
half A and half T,Y is a symbol meaning half G and half T. Gaps have just been
filled as before. Now we’re down to just two objects: the new consensus and the

original S4. We have to modify the global alignment procedure so it can take care

of hybrid symbols like X andY. Basically the score for X and another nucleotide
will be the average of the score that A would fetch and that T would fetch. So
here’s an alignment of XCCGXTTACCAYAC and ACGTATACCCGG:

XCCGXT T ACCAY AC

AC –GT AT ACCCGG–

It scores

• 0.5 for the X and A mismatch
• 1 for the C and – for the gap
• 0.5 for the second X and T mismatch
• 1 for the following T and A mismatch
• 1 for the A and C mismatch
• 0.5 for theY and G mismatch
• 2 more for the final two positions (a mismatch and a gap)

for a total of 6.5. We obtain the corresponding multiple alignment by “undoing”

the consensus building:

ACCGT T – ACCAT AC
ACCGT T T ACCAT AC A – –GT T T AC – AT – C

XCCGXT T ACCAY AC T CCGAT T – – CAGAC T CCGAT T – – CAGAC
AC –GT AT ACCCGG– AC –GT AT ACCCGG– AC –GT AT ACCCGG–

At the beginning of this section, we postulated

ACCGT T – ACCAT AC

A – –GT T T AC – AT – C

T CCGAT T – – CAGAC

AC –GT AT ACCCGG–

as a multiple alignment between these four sequences. The algorithm we just

described led us to:

ACCGT T A – CCAT AC

A – –GT T T A – CAT – C

T CCGAT T – – CAGAC

AC –GT AT ACCCG–G

Which do you like better? Technically, we don’t know which is better. So much

depends on your choice of scoring method.

204 Chapter 5 Sequence Alignment

Mostpractical algorithms formultiple alignmentwork roughly like this:They

perform lots of pairwise alignments, and from those they create a larger multiple

alignment using some form of consensus-building to extend pairwise alignments

to ever-increasing numbers of sequences. The choice of which pairs of original

sequences to start with is often directed by a guide tree. The guide tree for the

rough algorithm we described is built up as the algorithm executes. It starts by

conjoining nodes corresponding to the two nearest neighbors among the original

sequences into a new fork consisting of a consensus and its two children. It pro-

ceeds to conjoin pairs of near objects (be they original sequences or consensuses)

into new forks until only one object remains. That object’s structure is the guide

tree associatedwith our process. Its leaves are the original sequences, and its inter-

nal nodes are consensus-formed at different stages of the process. The root of the

tree corresponds to the final “grand consensus” of all the original sequences.

Different multiple-alignment algorithms differ mainly in their generation of

guide tree and in their notions of consensus. Exercise 5.27 asks you to investigate

this idea further.

5.9.2 Analysis of Multiple-Alignment Algorithms

The natural generalization of dynamic programming pairwise alignment to deal

with k sequences, as we noted earlier, requiresO(2knk). Some improvements have

been proposed over the years, but essentially we observe that exact alignment of

large numbers of sequences is not feasible.

The practical algorithms essentially start with a pairwise alignment of two

sequences and then continue to add to the alignment by repeatedly performing

pairwise alignments, sometimesbetween sequences but often involving intermedi-

ate consensus objects. They start with k objects and continue performing pairwise

alignments until only one object remains. Each pairwise alignment reduces the

number of objects by 1. Thus k − 1 pairwise alignments are required. Addi-

tionally, the practical algorithms need to construct a guide tree or otherwise

decide an order for performing the individual pairwise alignments. Typically, this

requires evaluating about

k

2

pairwise alignments. Since this is bounded by k2,

we conclude that the inexact but practical algorithms for multiple alignment will

have running times approximately k2 times the running times of the pairwise

alignment methods they employ.

Since both BLAST and FastA are close to O(n) in their running times for

sequencesof lengthn, we conclude that algorithms suchasT-Coffee andClustalW

are likely to run in time proportional to k2n.

Multiple Sequence Alignments and HIV

Whymight youwant to build amultiple-sequence alignment?We ask for pairwise

alignments to learn whether a newly sequenced portion of a genome resembles

anything we have already sequenced. In multiple sequence alignments, we are

Chapter 5 Sequence Alignment 205

asking if a given sequence resembles a family of other sequences, all of which

share some similarity.

A key idea here is the notion of “relationship”: we assume that sequences

that share similarity are related in evolutionary history. We will explore this in

much greater detail in Chapter 6. For now, let us take it for granted that if two

or more sequences are similar, then they share an evolutionary history. With this

assumption, we can use multiple sequence alignments to try and understand the

origins of HIV.

HIV is a virus specific to humans, but it appears to be closely related to

several viruses that infect other primates, and monkeys. The most similar virus

to HIV is known as simian immunodeficiency virus, or SIV. SIV infects a wide

range of primates, including chimpanzees, which are thought to be our closest

nonhuman relatives. So it makes sense to expect that SIV in chimpanzees (known

as SIVcpz) might be related to HIV. Can we prove that this is the case, however?

The actual details of the experiment that demonstrated the relationship

between HIV and SIVcpz are quite involved, and you can read the full account

here [6]. In brief, however, researchers identified a chimpanzee that appeared

to have an immune response to HIV, even though this animal had never been

exposed to HIV. When they analyzed viral sequences extracted from some of the

chimp’s tissues, they discovered that the animal had been infected with a strain

of SIVcpz. To determine whether this strain of SIVcpz was similar to HIV, the

researchers sequenced the strain of SIVcpz and, using a multiple-alignment pro-

gram known as ClustalX (a more recent version of ClustalWmentioned earlier),

attempted to align it to known sequences of HIV. Although there were some dif-

ferences, the similarities were striking, suggesting that this strain of SIVcpz could

be the ancestral origin of HIV in humans. A small portion of the sequence align-

ment between SIVcpz strains and HIV strains is shown in Figure 5.11 derived

from [12].

The researchers used this sequence alignment to build an evolutionary tree of

how SIVcpz could have given rise toHIV, but that will be discussed inmore detail

in the next chapter. As you will see in the ensuing chapters, sequence alignments

are the foundation for much of the analysis of genomes.

A1.TZ.01.A341_AY253314 1 MAGRSGS--S-D-EE--LLR-AIRTIKILYESNP-YP----KPRG
B.AU.x.1181_AF538302 1 MAGRSGG--S-D-ED--LLK-TVRLIKQLYQSNP-PP----SPEG
O.SN.99.SEMP1300_AJ302647 1 MAGRS-D--G-D-QP--LLR-AIQIIKILYQSNP-HPX--XPTTG
CPZ.CD.x.ANT_U42720 1 MAGREEL--E-G-TDXXQLLKAVKIIKILYQSNP-YP----KPAG
CPZ.CM.x.CAM3_AF115393 1 MAGRSEG--D-D-DAXXLLQ-AVRIIKVLYS-NP-YP----DNKG
CPZ.CM.98.CAM5_AJ271369 1 MAGRSEG--D-E-DTXXLLQ-AVRIIKILYD-NP-YP----DNKG
CPZ.GA.x.CPZGAB_X52154 1 MAGRSEP--Q-D-DAXXLLQ-AVKIIKILYQSNP-YP----SPEG

FIGURE 5.11 A multiple sequence alignment of some strains of SIVcpz and HIV show enough sequence

conservation to suggest that SIVcpz and HIV share a common ancestral viral genome. The human strains begin

with the letters A1, B, and O. The chimp SIV strains begin with CPZ in the first column. From

http://www.hiv.lanl.gov/content/hiv-db/ALIGN_CURRENT/ALIGN-INDEX.html.

(Courtesy of data derived from http://www.hiv.lanl.gov/cgi-bin/NEWALIGN/align.cgi)

206 Chapter 5 Sequence Alignment

5.10 EXERCISES FOR CHAPTER 5

Exercise 5.1 Modify the naïve pattern-matcher program so that it reads the target string

from a file whose name can be entered on the command line.

Exercise 5.2 Extend your program from Exercise 5.1 so that it can print out data about

its own working and operation. In particular, have it count the number of

comparisons it performs between characters. See if you can figure out any

relationship between the number of compares and the lengths of the strings

and the size of the underlying alphabet. This exercise asks you to empirically

analyze your programbymeans of instrumenting. It is a valid andworthwhile

technique for evaluating analgorithmanddeciding if devising amore efficient

program is worthwhile. Exercises 5.3 and 5.4 will guide you through more

traditional methods of algorithm performance analysis.

Exercise 5.3 Write a program to input three numbers and evaluate formula 5.1

(page 163).

1. Use your program to analyze the growth of the number of comparisons

with the length of the pattern when the alphabet consists of just one

letter. In other words, run your program with the n input set to 10,000,

the k input set to 1, and let them input range from 1 to 10. Howdoes the

number of comparisons vary with m? How does this compare with the

worst-case analysis of the naïve algorithm?

2. Use your program to analyze the growth of the number of comparisons

with the length of the pattern when the alphabet consists of two letters.

In other words, run your program with the n input set to 10,000, the k

input set to 2, and let the m input range from 1 to 10. How does the

number of comparisons vary with m? How does this compare with the

worst-case analysis of the naïve algorithm? How does it compare with

the best-case analysis?

3. The nucleotide alphabet consists of four symbols. Repeat the preceding

experiments with the k input set to 4.

4. Repeat your experiments with the amino acid alphabet (20 symbols)

and the English alphabet (26 letters, upper- and lowercase, together

with punctuation).

Exercise 5.4 Instead of using a program to evaluate formula 5.1, see if you can create

a closed form expression for the sum. (Hint: You can use your calculus

knowledge to differentiate the formula for the sum of a geometric series. If

you have not studied calculus, skip this exercise!)

Chapter 5 Sequence Alignment 207

Exercise 5.5Perform an online search for fast pattern-matching algorithms. Look in par-

ticular for animations that can help you understand theirmethod ofworking.

Decide which is your favorite. Find an implementation of your favorite, and

then devise an experiment to compare its performance with that of the naïve

algorithm. Place your experiment within a practical context that appeals to

you. For example, if you are interested in stop codons within the worm’s

genome, design an experiment to compare the pattern matchers’ ability to

help you locate them.

Exercise 5.6Produce dynamic programming matrices for ACCTGCTAC and

TCCAGCTTC using the scoring scheme 4 for a match, −1 for a mis-

match, −2 for an indel. Check your calculations by running NW.java.
Now repeat using 5 for a match, 0 for a mismatch, −4 for an indel.

Check your calculations by modifying NW.java (three small changes is all
you need) and running it.

Exercise 5.7Produce a dynamic programming matrix for ACCTGCTAC and

TCCAGCTTC, using the distance measure (0 for a match, +1 for

either a mismatch or an indel). Check your answer by modifying NW.java
and running it.

Exercise 5.8Write your own NW1 using the auxiliary array fromWhere so that you
print out an optimal alignment of your command line arguments. It should

behave thus:

>java NW1 ACGTCGT GCACGTA
java NW1 ACGTCGT GCACGTA

0 -2 -4 -6 -8 -10 -12 -14
-2 -1 -3 0 -2 -4 -6 -8
-4 -3 3 1 -1 2 0 -2
-6 0 1 2 0 0 1 -1
-8 -2 4 2 1 4 2 0

-10 -4 2 8 6 4 8 6
-12 -6 0 6 12 10 8 12
-14 -8 -2 4 10 11 9 10
ACGTCGT-
GCA-CGTA

(continued)

208 Chapter 5 Sequence Alignment

Here are some suggestions:

1. // define some constants:
public static final int NOTDEF = 0;
public static final int FROMNW = 1;
public static final int FROMN = 2;
public static final int FROMW = 3;

// define the score array:
private int[][] scoreArray;
// and the direction array:
private int[][] fromWhere;
// will hold values
NOTDEF, FROMNW, FROMN or FROMW

2. Then find the portion of code where the scoreArray entries are made. At the same time you
make those entries, it should be possible to make the correct entry in the fromWhere array.

3. Finally, here is code to generate the alignments. Fill in the gaps. Assume you have instance

variables xalig and yalig that have been declared as Strings

int row = __________; // Start row and col
int col = __________; // in the bottom right corner
xalig = ""; // Initialize the alignments
yalig = "";
while (___________________) { // condition for continuing in loop

if (fromWhere[row][col] == FROMN) {
// came from north
xalig = "-" + xalig;
yalig = y.charAt(row-1) + yalig;
row--;

}
else if (fromWhere[row][col] == FROMW) {

// came from west
xalig = x.charAt(col-1) + xalig;
yalig = "-" + yalig;
col--;

}
else {

if(fromWhere[row][col]!=FROMNW) // ERROR -- just print warning
System.out.println("Goofy row col "+ row+" "+col);

xalig = x.charAt(col-1) + xalig;
yalig = y.charAt(row-1) + yalig;
col--;
row--;

}
}

}

Chapter 5 Sequence Alignment 209

Exercise 5.9Rewrite your previous program so it finds the best local alignment between

the two sequences. You will need to ensure that you never create a negative
score (that’s the essential difference between local alignment and global).

Following is a list of some code hints that you may use if you wish.

When you have completed this exercise, you will have programmed the

Smith–Waterman algorithm for local sequence alignment. Your output

should match (or be better than):

> java SW ACTACT GTAC
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 2 0 0 2
0 2 0 0 4 2 0
0 0 4 2 2 6 4

Best (row,col) is (4,5)
Match ACTACT from 2 to 4
with GTAC from 1 to 3
TAC
|||
TAC

Hints:

// Instance variables
private int bestrow, bestcol; // for location of best entry
private int bestval; // for best entry
private int startrow, startcol; // for location of start of alignment

...
// As you’re filling the score-array:
if (best > bestval) {

bestval = best;
bestrow = row;
bestcol = col;

// Your alignment will end at (bestrow, bestcol)
// which is where your backtracking will start

Exercise 5.10Modify your program to accept its sequences from files whose names

are entered on the command line. For example, to align the sequences in

file1.txt and file2.txt you will type

java SWFile file1.txt file2.txt

Because you are now able to handle large inputs, you will want to modify

the way you print out the alignments. I would suggest printing out
(continued)

210 Chapter 5 Sequence Alignment

BASESPERLINE characters from the first sequence (or -’s), followed by

BASESPERLINE alignment symbols

X | -

followed by BASESPERLINE characters from the second sequence (or -’s),

all on separate lines, followed by a blank line before the next cluster. For

example, with BASESPERLINE set to 60, some of your output might look

like:

ABCDEFJASDLKFJKLDAJFKLJELAHRJKRHJTHZHGJKDFHKJ--------HKLHKJR
|||||||||--------|||||||||||||||X||||||||||||--------X||||||
ABCDEFJAS--------AJFKLJELAHRJKRHKTHZHGJKDFHKJAIOEWREFDKLHKJR

EHTKLWEHTLKHKLJHKFSDHKGLJHASDJFJASJHDFLH--------------ASDHFJ
|||||||||||||||||||X||||||||||||||||||||--------------X|||||
EHTKLWEHTLKHKLJHKFSCHKGLJHASDJFJASJHDFLHAADSFLDJFLJASDJSDHFJ

KSDHFKJHDSAHFKJDHHFSKDHFKJHDSKJFHDKSHFKJHSADHKJ--ERIOTRBKJSB
|||X|||||||||||||||||||||||||----------------||--||||X||||||
KSDAFKJHDSAHFKJDHHFSKDHFKJHDS----------------KJFHERIOSRBKJSB

ADKFDKEIIREITREWRTVNMNVHCNBEYFDHDUYJDFHUASDBHFKJADFHALJDHFAD
|||||||---|||||||||||||||||X||||||||||||XXX|||||||||||||||||
ADKFDKE---EITREWRTVNMNVHCNBFYFDHDUYJDFHUUUNBHFKJADFHALJDHFAD

---AFJDALKHKDHALHDKHKAJHAHDKFHKJADHKLAHFKJHADHFJOIEO--------
---X||||||||||X||||||||||||||||||||||||||||||X||||||--------
AALLFJDALKHKDHBLHDKHKAJHAHDKFHKJADHKLAHFKJHADIFJOIEOANKLDALL

------JRKLWEIFLLDSIJLASNDLNFAKHDKJANJDNFKLANKDNFKADNK
------||||||||||||||||--------------||||||||||X||||||
DJDLFKJRKLWEIFLLDSIJLA--------------JDNFKLANKDMFKADNK

Exercise 5.11 Write a program to input:

• A list of names of states,

• A list of characters in an alphabet,

• The name of one of the states to serve as the start state

• The names of some of the states to serve as final states

• A transition matrix

The output should consist of two things:

• A picture of the DFA that has just been input (like Figure 5.2), and

• a Java program that is equivalent to that DFA

Chapter 5 Sequence Alignment 211

Exercise 5.12Show that the Needleman–Wunsch algorithm with the general gap penalty

g(x) depending on length x of gap takes time O(mn(m + n)), where m and n

are the lengths of the two sequences. Hint: Show that the N and W entries

take time O(m + n) to compute.

Exercise 5.13Implement theNeedleman–Wunsch algorithmwith affine gap penalties. Per-

formexperiments to compare its performancewith theprogramofFigure 5.7.

Run both programs on several pairs of inputs with different lengths and

see if there is a simple correlation between the running times of both

programs.

Exercise 5.14What values for gap initiation penalty (s) and gap continuation penalty

(c) would make the Needleman–Wunsch program with affine gap penalties

equivalent to the original Needleman–Wunsch program of Figure 5.7?

Exercise 5.15Construct a DFA to accept no strings. (Hint: Any DFA that can continue

regardless of result but which has no final states will do. But then so will any

DFA that makes no transitions. All DFAs need a start state, but an empty

transition matrix is acceptable.) Next construct a DFA to accept just the

empty string and nothing else. (Hint: It’s very similar to, but not quite the

same as, the first DFA. What’s the difference?) For each character x of the
alphabet, construct a DFA to accept the set {x}. Finally, given two DFAs,

the first accepting set R1 and the second accepting set R2, how would you

connect them to form a new DFA that accepts the concatenation R1R2?

Exercise 5.16In Chapter 7 we will study ways to discover genes in genomes. A feature of

eukaryotic genes is introns, segments within genes that are not themselves

translated. The 5 end of an intron is marked by a GT pair and the 3 end
by an AG pair. A regular expression representing this oversimplified notion
of intron is easily seen to be GT (A + C + G + T)* AG. See if you can build
a DFA to recognize such an intron. The action of your DFA should be to

terminate in a final state after the first occurrence of such an intron. Once

you have drawn your DFA, write a program based on it (as described in the

text) to be a single-scan search program for an intron.

212 Chapter 5 Sequence Alignment

Exercise 5.17 Construct DFAs to accept each of the following sets:

1. The set of strings of symbols acgt that start with three as.
2. The set of strings of symbols acgt that end in three as.
3. The set of strings of symbols acgt that contain three consecutive as.
4. The set of strings of symbols acgt that do not contain three
consecutive as.

Exercise 5.18 Run the DotPlot program with the following inputs. Explain the visual

features you observe in the output in terms of sequence features in the input

strings.

1. aaaaaaaaaaaaabbbbbbbbb and aaaaaaaaabbbbbbbbbbbbbbb
2. abcdefghijkpqrstuvwxyz andabcdefghijklmnopqrstuvwxyz
3. forwards and sdrawrof

Exercise 5.19 Modify the code in DotPlot.java so that the resulting program, let’s call
it DotPlotWindow, will accept an extra integer on the command line. The
command

java DotPlot 1000011010101000 101011100000001010001010 3

should produce a grid of blanks and asterisks, with asterisks only appearing

at positions where three consecutive characters of each string match.

Exercise 5.20 Modify the code in DotPlot.java to produce a more sensitive program.
It should place an asterisk in any position corresponding to a vowel in each

string, even though the vowels may not be the same. Call the new program

SensitiveDotPlot. It should perform like this:

java SensitiveDotPlot culler color
c u l l e r

c *
o * *
l * *
o * *
r *

Chapter 5 Sequence Alignment 213

Exercise 5.21In the text we found an optimal alignment for CACGA and CATTGA using

a scoring scheme of +2 for a match, 0 for a mismatch, and −1 for an indel.

We found

CAC –GA
| | | | |

CA T TGA

Find another alignment with the same global score.

Exercise 5.22Modify your existing dotplot program to use a PAM scoring matrix for

comparing two sequences of amino acids. You should be able to set a

window size and a threshold so that, whenever the summed PAM scores

of corresponding amino acids within a window exceed the threshold, an

asterisk is output for the top left point of the windows; otherwise leave it

blank. A portion of the PAM250 scoring matrix is:

I L K M

I 5 2 −2 2

L 2 6 −3 4

K −2 −3 5 0

M 2 4 0 6

Use Google or any search engine to help you find a complete listing of

PAM250. When plottingMMMM againstMILK with a window size of 1 and
a threshold of 3, we obtain

MMMM
M****
I
L****
K

becauseM againstM and L againstM both score more than the threshold 3.
Likewise with a window of 2 and a threshold of 5, we obtain

MMMM
M***
I***
L
K

becauseMI againstMM and IL againstMM both score more than the thresh-
old 5, whereas LK against MM scores a total of 4 which is below the

threshold.

When you have completed your program, use it on sections of HIV 1

and 2, and find values for window and threshold that give good diagonal

dotplots for similar sections.

214 Chapter 5 Sequence Alignment

Exercise 5.23 The PAM250 scoring matrix is appropriate for comparing sequences where

approximately 250 point-accepted mutations may have occurred for every

100 positions.

1. Is PAM250 a good scoring matrix for HIV 1 and 2? Why or why not?

2. Would you obtain a better diagonal dotplot in Exercise 5.22 by using a

smaller numbered PAM like PAM2? Why?

3. Would you obtain a better diagonal dotplot in Exercise 5.22 by using a

larger numbered PAM like PAM500? Why?

Exercise 5.24 Modify your Needleman–Wunsch or Smith–Waterman program to use

BLOSUM 62. Compare sections of HIV 1 and 2. Would another BLOSUM

matrix be more appropriate for comparing these sequences? Why?

Exercise 5.25 Write a program to give a numerical value to a k-tuple of amino acids. Each

single amino acid a should be associated with a number n(a) in the range 0

to 19. The tuple a1a2 . . . ak should have the value 20
k−1n(a1)+20

k−2n(a2)+

. . . + n(ak).

Exercise 5.26 In this exercise, you will code the early stages of the FastA algorithm in

Java, mainly to persuade you that the whole program ends up running in

O(n) time.

import java.util.*;
public class FastA {

//The beginnings of FastA on a specimen protein
//and a database member dbaseString
private String specimen;
private String dbaseString;

We’re importing java.util.* because we need Vectors in which to
store the list of suffixes at which each k-tuple begins. Think of the two

strings that FastA is going to align as a specimen that you have just
sequenced, and a string dbaseString that is stored in a database. We’ll
further assume that the k-tuple size is 2.

Chapter 5 Sequence Alignment 215

You’ll need a way to convert amino acids to ints. Use the following
code if you like (but if you’re smart you’ll write your own and use the

indexOf(char c) method of the String class):

private int aaToN(char c) {
if (c==’A’) return(0);
else if (c==’R’) return(1);
else if (c==’N’) return(2);
else if (c==’D’) return(3);
else if (c==’C’) return(4);
else if (c==’Q’) return(5);
else if (c==’E’) return(6);
else if (c==’G’) return(7);
else if (c==’H’) return(8);
else if (c==’I’) return(9);
else if (c==’L’) return(10);
else if (c==’K’) return(11);
else if (c==’M’) return(12);
else if (c==’F’) return(13);
else if (c==’P’) return(14);
else if (c==’S’) return(15);
else if (c==’T’) return(16);
else if (c==’W’) return(17);
else if (c==’Y’) return(18);
else if (c==’V’) return(19);
else {

System.out.println("BAD Amino Acid");
return(-1);

}
}

Since we’re assuming k-tuples of size 2, we’ll need to convert pairs of

amino acids to int. A convenient way to do this that gives a unique int
to each possible pair is 20*aaToN(first) + aaToN(second), where
first and second are the amino acids. For example, since D converts to
3 and C converts to 4, CD will convert to 20*3+4 or 64.

Verify that DC converts to 83.
For each possible pair of amino acids, we’ll need to keep track of all the

locations in specimen where that pair appear. So let’s declare:

private Vector[] spec;
// for storing the indexes in specimen where each
// pair appears spec(x) will store the list of all indexes
// where pairs that code to x begin in specimen

(continued)

216 Chapter 5 Sequence Alignment

You’ll need code to fill up that array of Vectors. Here’s mine:

for (int i=0; i < 400; i++) spec[i] = new Vector();
for (i=0; i < specimen.length()-1; i++)

(spec[20*aaToN(specimen.charAt(i)) +
aaToN(specimen.charAt(i+1))]).add(new Integer(i));

If you use my code, be sure you understand it.
Now that we’ve filled the spec array of Vectors, let’s look at the other

string dbaseString. We’ll look at each consecutive pair of amino acids,
and determine the offsets at which the same pair appears in the first string

specimen. Suppose we’re looking at the pair beginning at index i. Now
let’s convert the pair to an int: (20*aaToN(dbaseString.charAt(i))
+ aaToN(dbaseString.charAt(i+1))). Let’s name that value j. We
can look up spec[j] to find all the indexes in specimen at which the same
pair occurs. For each of those indexes, you’ll want to compute the offset:

for (i=0; i < dbaseString.length()−1; i++) {
j = 20*aaToN(dbaseString.charAt(i)) +

aaToN(dbaseString.charAt(i+1));
Enumeration e = (spec[j]).elements();
while (e.hasMoreElements())

(offsets[dbaseString.length()+
((Integer)(e.nextElement())).intValue()
- i])++;

Notice that the program counts the number of times each possible offset occurs

by incrementing the entry in an array of possible offsets. It previously declared

that as:

private int[] offsets;

and initialize all entries to 0:

offsets = new int[specimen.length()+dbaseString.length()];
for {int i=0; i < offsets.length; i++)offsets[i] = 0;

Finally, let’s print the offsets, and have a main program to drive the whole

operation:

public void printOffsets() {
for (int i=-dbaseString.length(); i < specimen.length(); i++)

System.out.println("Offsets at "+i+" : "+
offsets[dbaseString.length() + i]);

}
public static void main(String[] args) {

FastA fa = new FastA(args[0], args[1]);
fa.printOffsets();

}

Chapter 5 Sequence Alignment 217

Write the program FastA to calculate and print the offsets corresponding to

args[0] and args[1] on the command_line.

>java FastA ACACAC CACACACC
java FastA ACACAC CACACACC
Offsets at -8 : 0
Offsets at -7 : 0
Offsets at -6 : 0
Offsets at -5 : 1
Offsets at -4 : 0
Offsets at -3 : 3
Offsets at -2 : 0
Offsets at -1 : 5
Offsets at 0 : 0
Offsets at 1 : 4
Offsets at 2 : 0
Offsets at 3 : 2
Offsets at 4 : 0
Offsets at 5 : 0

Now you’ve written a major component of the FastA program. Now

we ask you to perform a simple analysis of your code.

Argue informally that the running time of the program you wrote for

the previous exercise is O(n), where both the inputs have length O(n).

Exercise 5.27Find out what you can about some common multiple-alignment programs

including T-Coffee and ClustalW. Can you discern their guide tree and their

concept of consensus?

KEY TERMS

alignment (Intro)

pattern (Intro)

target text (Intro)

pattern matching (Intro)

best case (5.1)

worst case (5.1)

expected case (5.1)

sublinear (5.1)

deterministic finite-state automata

(DFAs) (5.1)

state (5.1)

transition (5.1)

stop codon (5.1)

start state (5.1)

final state (5.1)

deterministic (5.1)

nondeterministic (5.1)

regular expression (5.1)

regular set (5.1)

union (5.1)

concatenation (5.1)

Kleene closure (5.1)

concatenation of zero

strings (5.1)

empty string (5.1)

unanticipated patterns (5.2)

unexpected coincidences (5.2)

ASCII (5.3)

selectivity (5.3)

sensitivity (5.3)

functionality (5.4)

indel (5.4)

218 Chapter 5 Sequence Alignment

dynamic programming

matrix (5.4)

minimize (5.4)

global alignment (5.4)

local alignment (5.4)

block indel (5.5)

affine gap penalty (5.5)

gap start penalty (5.5)

initiation penalty (5.5)

gap continuation penalty (5.5)

point accepted mutation

(PAM) (5.6)

specimen (5.8)

database string (5.8)

guide tree (5.9)

instrumenting (5.10)

BIBLIOGRAPHY

1. S. F. Altschul, W. Gish, W. Miller, et al. Basic

local alignment search tool. J Mol Biol,

215:403–410, 1990.

2. Robert S. Boyer and J. Strother Moore. A fast

string searching algorithm. Communications of

the ACM, 20:762–772, October 1977.

3. M. O. Dayhoff, R. M. Schwartz, and

B. C. Orcutt. A model of evolutionary change

in proteins. In M. O. Dayhoff, editor, Atlas of

Protein Structure, volume 5(Suppl. 3),

pp. 345–352. National Biomedical Research

Foundation, Silver Spring, MD., 1979.

4. FBI. http://www.fbi.gov/wanted.htm

5. W. S. Fitch and T. F. Smith. Optimal sequence

alignments. Proc Natl Acad Sci USA,

80:1382–1386, 1983.

6. Feng Gao, Elizabeth Bailes, David L.

Robertson, et al. Origin of HIV-1 in the

chimpanzee Pan troglodytes. Nature,

397:436–441, 1999.

7. Martin Gardner.Mathematical Magic Show.

Alfred A. Knopf, New York, 1977.

8. S. Heniko and J. G. Heniko. Amino acid

substitution matrices from protein blocks.

Proc Natl Acad Sci USA, 89:10915–10919,

1992.

9. John E. Hopcroft and Jeffrey D. Ullman.

Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, New York,

1979.

10. Richard M. Karp and Michael O. Rabin.

Efficient randomized pattern-matching

algorithms. IBM J Res Dev, 31:249–260,

March 1987.

11. D. E. Knuth, J. H. Morris, and V. R. Pratt.

Fast pattern matching in strings. SIAM J

Comput, 6:323–350, 1977.

12. Los Alamos National Lab. HIV Sequence

Database. http://www.hiv.lanl.gov/content/

hiv-db/HTML/outline.html

13. U. Manber. Introduction to Algorithms : A

Creative Approach. Addison-Wesley, New

York, 1989.

14. Edward M. McCreight. A space-economical

suffix tree construction algorithm. J ACM,

23:262–272, April 1976.

15. Saul B. Needleman and Christian D. Wunsch.

A general method applicable to the search for

similarity in the amino acid sequences of two

proteins. J Mol Biol, 48:443–453, 1970.

16. M. Nelson. Fast string searching with suffix

trees. Dr. Dobbs Journal, August 1996.

17. Science Watch. Twenty Years of Citation

Superstars, September 2003.

http://www.sciencewatch.com

18. T. F. Smith and M. S. Waterman. Identification

of common molecular sequences. J Mol Biol,

147:195–197, 1981.

19. Luis d’Antin van Rooten.Mots d’Heures:

Gousses, Rames. Grossman Publishers, New

York, 1967.

6
Simulating and Modeling
Evolution

“Biologically the species is the accumulation of the experiments of all

its successful individuals since the beginning.”

—H. G. Wells, A Modern Utopia

6.1 THE BIOLOGICAL TIME MACHINE

Since the dawn of life on Earth many species have arisen, developed, and died

out. Imagine that you could build a time machine that could take you back

over those billions of years. As you traveled back in time, you would see today’s

many species go through a reverse development process. At various points in

the journey you would see species merging into their common ancestor. Richard

Dawkins describes just such a journey in [2], where he uses the term concestor to

mean the common ancestor of multiple species. Eventually we would arrive at a

concestor for all of the forms of life on Earth. Perhaps surprisingly, almost all of

the descendant species of that concestor are now extinct. We, together with the

apes, hippos, fish, insects, bacteria, and other living species, are the exceptions.

We are the rare survivors.

In Chapter 2, we introduced the tree of life (Figure 6.1) as one way of rep-

resenting the relationships among species. The tree of life depends on some very

important assumptions:

1. All life on Earth is related;

2. All life shares a common, universal ancestor (known as LUCA for last

universal common ancestor) lost in the mists of time, and

3. The position of a given species within the tree of life allows us to under-

stand some of the fundamental aspects of the biology of a group or family

of species.

This last point needs some explanation. Many features of a biological species

point (often unreliably) to its position within the tree of life. It’s like a biological

219

220 Chapter 6 Simulating and Modeling Evolution

Eubacteria
Eukaryotes

Last universal common ancestor

Archaebacteria

Phylogenetic Tree of Life

FIGURE 6.1 A tree of life showing the three main groups of organisms alive today

and postulating a universal common ancestor.

Web address, if you will. The Web address of a server can indicate all sorts of

information (none of which is reliable!):

• Is the server affiliated with an academic institution (indicated by .edu) or a

commercial establishment (.com)?

• Is the server in the United Kingdom (indicated by .uk) or the United States

(indicated by the lack of a country designation)?

• Does the server use the hypertext transfer protocol (http) or the file transfer

protocol (ftp)?

Why do we say that Web addresses are unreliable? As noted, an

address ending in .edu typically denotes an educational institution. But

nothing prevents profit-driven diploma mills from masquerading under the

.edu flag (http://www.rushmore.edu). United Kingdom companies often use

the .co.uk ending, but archetypically British companies can choose not to

(http://www.marksandspencer.com).

So it is with nature. Many species conspire to confuse our efforts at accurate

classification. Mammals are characterized by live birth, and yet the duck-billed

platypus defies this rule. Birds fly don’t they? What then of the ostrich? Accu-

rate classification of Websites and of species require much more than a quick

inspection of simple features like Web addresses and obvious physical traits.

Nevertheless, just as each server on the Web has a precise physical loca-

tion (at least instantaneously) and a definite purpose, so each species has a unique

positionwithin the tree of life. Biologists use a series of names to describe the loca-

tion of the species. We start with the broadest category, such as prokaryote (bac-

teria or archaebacteria) or eukaryote (cells like ours). Within eukaryotes, there

are several kingdoms of organisms: plants, animals (including us), fungi, and so

on. Each kingdom has several phyla; for example we are classified as being in the

kingdomAnimalia (animals) and the phylum Chordata (organisms with a spinal

cord).We are also further classified as being in classMammalia (mammals), order

Chapter 6 Simulating and Modeling Evolution 221

Primates (including all the other apes), family Hominidae (includes the many

extinct precursors to modern humans), genusHomo, and, finally, species sapiens.

Our position within the tree of life is uniquely defined by these terms. This

helps us to identify and categorize the species that are alive at present. Most of the

species that have lived on this planet, however, are already extinct. Over the course

of the evolution of life, many more species have gone extinct than are currently

alive. So for most of our studies, we have to reconstruct the past. Because of

the vast timescale over which evolution has occurred, the reconstruction of its

history must be mostly a process of inference. Fossil evidence and carbon dating

offer some clues to guide us in this process. It is possible thus to construct a

chronological sequence dating some species relative to others. The collected body

of evidence overwhelmingly supports evolutionary theory, and the evolutionary

relationships between species is one of the strongest tenets of modern science.

6.1.1 Evolutionary Processes

In Chapter 2, we introduced the concept of evolution and the primary force that

drives it: mutation.What is mutation? Any change to the information content of

a genome, even if it is very slight, constitutes a mutation. This is a very broad

definition of amutation, so ifwe are to understandmutations, we need to consider

the different ways in which they can occur.

Mutations are of three kinds: point mutations, insertions, and deletions. The

most common typeare thepointmutations. Thesemutations changea single letter

of the DNA sequence of an organism’s genome. We also refer to such mutations

as substitutions because one nucleotide is substituted for another. Substitution

mutations can have dramatic effects when they occur within the protein-coding

regions of genes (see Chapter 2) because even a single-letter change can affect

the amino acid encoded by a DNA sequence. Insertions represent mutations in

which a nucleotide or set of nucleotides is introduced into the existing DNA

sequence. Not surprisingly, insertions can garble the overall coding message by

introducing new codons into a coding region or by affecting promoters or other

signals. Deletions are the opposite of insertions; they are instances in which one

or more nucleotides are excised from the DNA, thereby removing information

that might be critical. Insertions and deletions are much rarer than substitutions,

so the majority of this discussion will focus on substitutions.

Because of the random nature of mutations, a mutation’s location is largely

the result of chance. When a mutation occurs, its effect is also a consequence

of its location. Sometimes the mutation occurs in a coding region of a gene.

These mutations are most likely to have a dramatic influence on the organism.

However, most mutations do not occur in coding regions. This is partly because,

in the larger genomes, there is usually much more noncoding DNA than coding

DNA. As a result, the probability of a mutation occurring at random is higher

in a noncoding region than a coding region.

In a population, a mutation can have one of three effects: it can damage the

organism, it can aid the organism, or it can be entirely neutral with no effect at

all. An example of detrimental mutations are those that lead to cancer; in cancer,

222 Chapter 6 Simulating and Modeling Evolution

the accumulation of mutations eventually results in uncontrolled cell growth and

the death of the organism. Most mutations are deleterious. Like those that cause

cancer, they tend to disadvantage the organism rather than help it. Occasionally

however, amutationwill afford a specific advantage to an organism, allowing it to

flourish in a particular environment. Such an organismwill havemore opportuni-

tiestoreproduce, anditssuccesswill translate intomoremembersofthepopulation

sharing its advantages. This is where natural selection comes into play: organisms

with advantageous mutations tend to dominate the population, but those with

deleterious mutations are eliminated.We say that the advantageous mutation has

been selected in the population because it comes to dominate the population.

Mutations are believed to occur at a relatively steady background rate, but

the assumption of a regularly ticking “molecular clock” is not strictly necessary

for our understanding of evolutionary history. Organisms and species must con-

stantly adapt to their changing environments. Mutations provide the basis for

these adaptations, since each organism in a population will have a slightly differ-

ent set of mutations. Natural selection causes some organisms to succeed where

others die off, and we say that the successful organisms are “well adapted” to

their environments.

The original basis for the theory of evolution, as formulated by Charles

Darwin, was derived from just such a situation in which organisms had become

well adapted to the specific demands of their environment. Darwin visited the

Galapagos Islands, each of which has a specific microenvironment. Darwin

noticed that finches, a type of bird, were common to all the islands, but the shape

of thefinches’ beaks varied abit from island to island. It turns out that the shapeof

thefinch’sbeak isadapted forparticular foodtypes. Somefinches feedonseedsand

have large, rounded beaks; others feed on fruit or insects and have narrow, sharp

beaks. Although the finches all descended from one common finch species many

thousands of years ago, they have since evolved and adapted to the food available

on each of the islands. The changes in beak shapewere the result ofmutations that

were selected because they provided a specific advantage in a particular environ-

ment. This is theclassic exampleof evolution inaction.An interestingmodern-day

study of watching bacterial evolution in action is described in the next section.

6.2 E. COLI EVOLUTION

Ordinarily, we think of evolution as occurring on a large time scale, on the order

of many thousands or millions of years. However, the rate of evolution is actually

tied more directly to the rate at which an organism reproduces. The reason for

this should be obvious: natural selection can only operate on the existing set of

mutations present in a population. Each new generation is likely to have some

slightly different mutations or combinations of mutations, and these variations

are the playground for natural selection. So evolution operates at different time

scales depending on the generation time, defined as the time it takes for a genera-

tion to produce offspring. If you look at humans, for example, it takes on average

between 20 and 30 years to produce a new generation of human beings (i.e., you

Chapter 6 Simulating and Modeling Evolution 223

grow up and have children who are now the new generation). So evolution in

humans is limited to selection about once every 25 years. For finches, the genera-

tion time is about 2 years, so natural selection can operate much faster in finches.

If we now consider bacteria, which produce a new generation on average every

20 minutes, we are talking about evolution occurring at a much more accelerated

pace than in humans. So if we want to ask questions about the ways in which

natural selection and mutation operate on a population, and we want to have

answers to those questions in a reasonable amount of time, we have to look at

organisms with very rapid generation times.

One of the best documented instances of watching evolution in action is

based on the work of two researchers: Richard E. Lenski and Albert F. Ben-

nett. In 1988, Lenski and some graduate students set up a series of bacterial

cultures of E. coli. They started with a set of genetically identical E. coli, but

placed them into separate flasks. Each flask represented an independent envi-

ronment, and each population evolved in isolation from its compatriots in the

other flasks. The isolation of these populations was complete: at no time did

any of the bacteria in one flask mix with their neighbors. So in some ways, this

was an even better set up than the case with Darwin’s finches on the relatively

isolated islands of the Galápagos. Unlike the finches, which could fly from one

island to the next occasionally, the isolation of Lenski’s bacterial populations was

absolute.

After allowing the bacterial populations to evolve for 2000 generations,

Lenski and his colleagues decided to see how different the populations had

become. To do this, they introduced what are known as “stresses” to the pop-

ulations of bacteria. The idea was to make the environment just a little less

comfortable for the bacteria and then see how each population would respond

to the shift in environmental conditions. One of the most common stresses for a

bacterium is a change in the temperature of its environment. Ordinarily, E. coli

grow best at a temperature of 37◦C, although they can accommodate some shifts

in temperature, tolerating temperatures up to 40◦C. Above that temperature,

a normal E. coli (also known as wild type) will die because the higher temper-

ature damages critical cellular components. The question Lenski and Bennett

wanted to ask was this: If the E. coli in the flasks were exposed to a higher tem-

perature, would they adapt to this new temperature and flourish or would they

all die just like their original, wild-type counterparts?

Based on the behavior of the wild-type strain, Lenski and Bennett decided to

test the populations at a temperature of 41.5◦C. At this temperature, the ances-

tral (i.e., original) E. coli were severely stressed. Rather than reproducing every

20 minutes, they did so sporadically or not at all, and their overall growth was

reduced. However, in some of the flasks where the E. coli had been evolving

on their own, a few bacteria survived and seemed to thrive. They were able to

reproduce and their offspring proved to be robust in the higher temperature. In

other words, some members of the population had a beneficial mutation that

allowed them to tolerate the higher temperature. Over time, these organisms

came to dominate the flask populations, so that all the organisms in the flasks

were able to tolerate the new, higher temperature.

224 Chapter 6 Simulating and Modeling Evolution

The researchers next decided to ask what specific changes had occurred to

allow the bacteria to tolerate this higher temperature. They decided to look at

a set of genes that are known to be involved in the normal response to higher

environmental temperatures. These genes, known as heat shock genes, are present

in almost all organisms studied to date, including humans. The proteins made

by these genes protect critical parts of the cellular machinery from the damage

caused by higher temperatures. When Lenski and Bennett looked at the heat

shock genes in their flask populations, they discovered some very interesting

variations. First, they noticed that the activity level of many of the heat shock

genes was higher than in the original strain. This is not surprising since any

adaptation to higher temperaturesmust involvemakingmore heat shock proteins

to protect cellular components. Interestingly, all the flasks tested seemed to have

the same shifts in gene activity, specifically an increase in the activity of 5 of the

27 known heat shock proteins. Although each flask had evolved independently,

only five of the genes seemed to be critical for survival at the new temperature. It

was these changes in gene expression that contributed to the success of the flask

populations at the higher temperature [15].

Anumber of lessonswere learned from this innovative set of experiments. The

first is that evolution in isolatedpopulations canaccumulatemutations thatwill be

beneficial to the population at some future point. Remember that as far as natural

selection is concerned, the key point is survival of the species, not of individuals.

As long as some individuals survive long enough to reproduce, evolution can

proceed. When the flask populations of E. coliwere first introduced to the higher

temperature, most of the organisms died just as in the ancestral strain. The few

individuals who did survive were able to reproduce and repopulate the flasks with

E. coli that were robust in the new temperature.

A second interesting observation from the work by Lenski and Bennett is

that the advantageous mutations seem to have clustered in specific genes rather

than across all the possible genes that could be influenced. That is, rather than

randomly affecting all 27 known heat shock genes, the flask populations all seem

tohave focusedon changes to just 5 of them. This suggests that althoughmutation

itself may be a random process, evolution can occur in a more targeted fashion.

That is, it is possible to have a very large pallet of possible combinations to choose

from, but the most successful combinations will be from a more limited set.

Whymight this be the case? Consider for amoment thatE. coli has over 4000

genes, and thatmutations tomanyof themwill kill the bacteriumwell before it has

a chance todealwith shifts in the environmental temperature. Inotherwords, even

bacteria are very complex webs of interacting genes, and most changes perturb

the system so dramatically that they kill the organism before it has a chance to

adapt to its environment. Because of these constraints, advantageous mutations

must occur in such away that they do not jeopardize any other part of the system.

It should be obvious now why advantageous mutations are so rare: they occur at

random, but they have to be changes that will not in any way perturb the system

even while they afford some selective advantage.

This is alsowhy the randomprocessofmutation cangive rise to theperception

that a process has been designed rather than evolved. The problem is not in the

Chapter 6 Simulating and Modeling Evolution 225

process but in our observation of it. We usually observe the endpoint of the

process, when an advantageous mutation has come to dominate a population, as

in the case with the heat-resistant E. coli. At this point, it is easy to look at the

population and say, “The E. coli knew that it had to modify its heat shock genes.

That’s proof of a creator, or at least, of intelligence!” In reality, however, we tend

to forget that the vast majority of E. coli in the flasks died. They either missed the

memo from the creator informing them tomutate their heat shock genes, or, more

realistically, they simply were not lucky enough to have a mutation in one of the

necessary heat shock genes. What we see are the rare, but extremely successful,

mutations. The history of this planet is replete with species and organisms that

failed to survive. So although it might appear that the myriad species today

had to be designed to achieve the level of complexity we see, if we could see

all the intermediates who failed to make it, we would see the jerky forward–

backward motion of random mutations alternately aiding and interfering with

species’ survival.

6.3 SIMULATING EVOLUTION IN SILICO

Another way to study and think about evolution is to mimic its processes on

the computer. The term in silico is very much in vogue because it refers to the

idea of studying biological processes computationally rather than in the organism

(in vivo) or in the laboratory (in vitro). By simulating the process of evolution

through a program, we can speed up evolution times significantly. In theory, we

could compress a million or even a billion years into a few seconds of processor

time. So from the perspective of studying evolution, a program that mimics the

process is a very exciting alternative.

Theother sideof the coin is that evolution is demonstrably a very effectiveway

for entities to emerge that are highly robust and capable of adapting to, and even

flourishing in, novel and unexpected surroundings. In contrast, today’s software

engineers tend to produce entities that are almost the antithesis of the robustness

and adaptability we see in nature. Programmers would, of course, be very pleased

to be able to produce programs that could adapt to every vagary of the user’s

whim, every newdevelopment or change in the program’s operating environment,

every new desideratum that arises among the computing community. A program

that could satisfactorily adapt to succeed even when unanticipated changes occur

in its environmentwithout any interventionby its creatorwould truly be awonder.

If you are willing to think of organisms as programs, then this is in fact what we

have in the biological world.

Programmers try to anticipate every eventuality; but, by the very definition

of the word, unanticipated eventualities are beyond the capabilities of standard

software engineering. The intelligent design that pervadesmost software develop-

ment is incapable of producing robustness and adaptability to unforeseen events.

Aprogramcompiled for thePowerPCarchitecture runningMacOSwill fail catas-

trophically tomorrow if loaded onto an Intel machine running Windows. But a

226 Chapter 6 Simulating and Modeling Evolution

domesticated overindulged pedigree Siberian husky in New York City could be

released into the wilds of Snowdonia andmight flourish. The differences between

computer platforms are trivial compared with the chasm that separates the cen-

trally heated home of the New York pampered pooch and the rugged terrain

of the North Wales mountains. The products of intelligent design (programs)

are utterly pathetic and unadaptable compared with the robust achievements of

evolution (life). If only we could evolve programs instead of creating them we

would have a chance to find suitable solutions to the problems at hand and the

ability to achieve new solutions as the environment subtly changes the specifi-

cations of the problems. The day when computer programs evolve instead of

being created is a long way off. But it may be time for the first few cautious

steps.

The study of evolutionary programming and genetic algorithms is relatively

new. The basic idea is to mimic the process of evolution. Instead of designing

specific programs to achieve specific tasks in carefully prescribed ways (standard

programming), we allow pools of programs to mutate and evolve in order to

achieve desired goals. To achieve results within acceptable time frames, we must

make massive compromises that detract from the purity of true evolution. The

biggest departure is that nature does not have any particular goal in mind for

evolution; we, however, will be trying to evolve programs that achieve specific

purposes. Nature’s fitness function is simple: “Whatever is fit to survive will

survive.” We will subvert that simplicity by substituting our own fitness rule:

“Whatever gets closest to doing what we want will survive.” It’s a perversion,

but, as we shall see, we can have fun and amaze ourselves with the results even in

our artificial settings.

6.3.1 Genetic Algorithms: A First Pass

Let us take a minute to think about what sort of things we would need to evolve

programs instead of organisms. When we look at how organisms evolve, we can

reduce the many complexities to three critical features. We need a “genome,” or

information stored in a specific structure. This information will be passed on

from generation to generation, with mutation changing bits of the information

from time to time. Since mutations act on genomes, the two are necessarily inter-

twined.We also need away to “select” individuals who arewell adapted to a given

situation and eliminate those that are poorly adapted. So if we want to evolve

something, at a minimumwe need an entity that has a genome that mutation and

selection can act on.

Now let us turn to the idea of a program that evolves as new challenges

appear. What is a program? For simplicity’s sake, let’s say it’s something that

converts input to output. In general, input can be arbitrarily complicated and

output can require many components, but in essence we can represent input as

a single string and output as a single string. Though this oversimplification may

chafe, it is, in theory, perfectly sound. A program is a function that takes a string

as input and produces a string as output.

Chapter 6 Simulating and Modeling Evolution 227

How can we represent a program? We know we can write programs in our

favorite language and store them in files. Those files are just a convenient way to

store strings. So we can represent a program as a string. Since a program converts

a string to a string, and since a program can itself be represented by a string, is it

reasonable to consider programs that input and output programs? Certainly it is.

You’ve already met the Java compiler, a program that inputs programs written in

Java and outputs programs written in Byte code.

Just as the information necessary for the production of an individual life

form is encoded in its DNA, so our program that creates programs needs to

encode information. Specifically, we need to encode the information necessary

for the generation of a program in some kind of data structure. We can think

of this data structure as similar to the genome of an organism; it serves the

purpose of holding all the relevant information. We have one constraint on the

data structure: it must be flexible enough to allow us to easily mutate or alter

bits of information in a random fashion. In the simplest example, a program

would be stored as a binary string, and then we can flip bits at random to imitate

mutation.

We now have two of the requisite items: a genome structure and a way to

enact mutations. This leaves us to address the final element for evolution: a

mechanism for selection of entities, be they organisms or programs. How do

we determine what criteria are appropriate for selection of programs? What is a

“good” machine-generated program? If there is some way to measure how good

a program is, then we can select among the large number of machine-generated

programs and choose one that suits our needs. For organisms, the measure of a

“good” individual is one who can reproduce. So that is a pretty straightforward

measure, but it is not going to help us find a “good program” when we define it

as a program that does what we need it to do.

We therefore have to introduce a numerical value of “fitness,” wherewe define

fitness in terms of parameters and standards that describe the desired goal of our

optimal program. Then we allow our programs to mutate and evolve, and in

each “generation” of programs, we ask what the fitness of each program is. If

“unfit” programs are removed from the pool and “fit” programs retain their

place and even multiply or merge (i.e., cross breed) with each other, the hope is

that the pool of programs will improve over time. By maintaining a diversity of

successful programs, one can evenhope that thepoolwill be able to copewith envi-

ronmental changes and adapt new and better programs as operating conditions

change.

Suppose we start with a diverse population of 100 programs. If we can

measure how good each is, then we can keep the best 90, kill the worst 10,

and replace them with programs similar to the best performing programs. By

“similar to,” we mean that the new programs are produced from old programs

by processes like mutation and cross-breeding. The initial population of 100

programs thus is replaced by a new population consisting of the best 90 of the

original programs together with 10 new programs derived from the best of the

original population. We hope that the programs of this second generation are,

228 Chapter 6 Simulating and Modeling Evolution

on average, a little better than the programs of our initial population. These

hopes will become reality if and only if we have identified an appropriate mea-

sure of fitness because this is what drives the decision to keep a program or

terminate it.

In practice, what we need is some kind of fitness function for programs.

The programs that achieve high fitness scores will survive; the others will per-

ish. The term genetic algorithm is applied to program generation schemes that

follow this roughly Darwinian scenario. The essential features are:

• Away to represent programs such thatmutation and other processes can lead

to runnable descendant programs

• A fitness function that can be used to measure the quality of a program

• An initial population of programs

• A driver loop to create new generations from old, allowing the high-quality

programs to survive and the others to disappear

6.3.2 Monkey Shakespeare: An Extended Example

What is the probability that a monkey provided with a typewriter and a lot of

paper will produce the complete works of William Shakespeare? What is the

probability that a tornado moving through a junkyard will assemble a Boeing

747 aircraft?

Both these ridiculousquestionshavebeenposed in the contextof asserting the

unlikelihood that an enzymemadeupof, say200aminoacids, can come intobeing

without some kind of divine intervention. If all three processes, monkey typing,

tornado assembly, and enzyme assembly, are essentially random processes, then

of course each probability is as close to zero as makes no difference.

But evolution is not a randomprocess. Individualmutationsmay be random,

but Darwinian natural selection is what makes the eventual products so fit for

their environments. Let’s follow Richard Dawkins [1] and show how a simple

simulation of natural selection can encourage Shakespearean traits in simulated

simian outputs. We’ll present the argument as a sequence of exercises that will

lead you to a simple evolutionary (but guided) program.

Let’s simplify the typewriter to have only 27 keys, one for each letter a-z and

one space bar. Rather than the complete works of Shakespeare, let’s adopt the

more modest target of the phrase “Methinks it is like a weasel.”

Exercise 6.1 In which work of Shakespeare does the phrase “methinks it is like a weasel”

occur? This is an exercise to remind you of the tools you have at your disposal

to find target phrases in large files and to locate large files on and download

them from the Internet.

The next exercise asks you to write a simulation of a fixated monkey. This

monkey will always generate exactly the same (almost certainly nonsense) phrase.

Chapter 6 Simulating and Modeling Evolution 229

Exercise 6.2Create a random sequence of 28 characters, each of which is a lowercase

letter or a space. Write a program MyMonkey that returns that precise

sequence every time it is called. Hint: You can use whatever technique you

like to generate a random phrase, store that phrase in a String variable, and

have your method simply return that String whenever it is called.

Example usage:

java MyMonkey
ldncjfd djshskfj htwoxd sjyx
java MyMonkey
ldncjfd djshskfj htwoxd sjyx
java MyMonkey
ldncjfd djshskfj htwoxd sjyx

The random 28-character phrase is irrelevant, but the same gibberish should

appear each time you run the program.

What is the probability that your monkey will produce the phrase “methinks

it is like a weasel”? Since each of precisely 28 character positions needs to be

exactly 1 among 27 characters, the chances are just 1 in 2728. This is about 1 in

1040. The universe is estimated to be at most 20 billion years old. That’s about

6×1017 seconds. Even if you did Exercise 6.2 once per second for 20 billion years,

it is virtually impossible that you will have a monkey whose phrase is “methinks

it is like a weasel.”

Exercise 6.2 cries out for automation.

Exercise 6.3Write a class Monkey to do Exercise 6.2. Each time you call the constructor

of this class, it will create a new simulated fixated monkey. Each simulated

monkey so produced will have its own randomly generated 28-character

phrase, which it will print each time it is run. If you add the following main

method,

public static void main(String[] args) {
Monkey anne = new Monkey();
Monkey paul = new Monkey();
anne.print();
paul.print();
anne.print();

}

then your output should consist of a random-looking, 28-character phrase,

followed by another, followed by a repeat of the first phrase.

Now you have a program that can generate monkeys for you. In a little while

you’ll call it to produce an initial population of many hundreds of monkeys.

230 Chapter 6 Simulating and Modeling Evolution

Exercise 6.4 Write a method to mutate a monkey. Here’s a skeleton:

Monkey mutateMonkey(Monkey inMonkey) {
// return a new monkey whose output phrase is different from
// inMonkey’s by replacing one character with another

}

Now you can see how useful mutation in a population can be. Instead of

having to generate entirely new strings each time, you can get many variations

on existing phrases. The problem is that even with mutation, your monkeys are

very unlikely to produce the desired phrase because we are still relying on pure

chance to get all the positions right.

However, given enough time, some of your monkeys might in fact get parts

of the phrase right. For example, perhaps after generating many thousands of

monkeys, you have monkey A that produces the phrase “methinks ip lak ea

pavmaiva” and monkey B that has come up with “apvoamvpai vakv a weasel.”

This is pure conjecture, but bear with us for a moment. Ideally, what you want to

have happen next is thatmonkeyA andmonkeyB combine their phrases, because

then you might get “methinks ip lak ea a weasel” which is almost what you want.

Mutating this new string could get you much closer to the desired final result

“methinks it is like a weasel.” To do this, we have to allow monkey sex. That is,

we have to allow monkeys to cross breed so that we can evaluate their offspring.

Monkey sex in this context is very prosaic. We take monkey A and monkey B

and recombine the phrases by splitting the strings at a randomly selected point.

We glue a piece of A to a piece of B to generate an “offspring” monkey that is

now a legitimate member of the population. The following exercise outlines how

you can do this for your monkeys.

Exercise 6.5 Write a method to cross breed two monkeys and produce an offspring that

combines portions of each parent’s phrases. For example, if you cross a

monkey whose phrase is aaaaaaaaaaaaaaaaaaaaaaaaaaaa with a monkey

whose phrase is bbbbbbbbbbbbbbbbbbbbbbbbbbbb the output should be a

monkey whose phrase consists of some a’s followed by some b’s followed

by enough a’s to make a phrase of length 28. The precise location of the

boundaries should be random. A possible output for the inputs is a monkey

whose phrase is aaabbbbbbbbbbbbbbbbbbaaaaaaa.

Finally, we come to the critical engine of our monkey evolution program. To

drive the evolution, we need a fitness function. This is crucial to our goal. The

better the fitness function, the more likely we’ll succeed in evolving a monkey

that can type Shakespeare!

Chapter 6 Simulating and Modeling Evolution 231

Why Sex?

The question, “Why sex?” tends to haunt those who spend their careers

looking closely at evolution. This is not because evolutionary biologists are

by nature a tedious, hidebound lot who don’t appreciate the finer things of

life (although this may also be true). Biologists spend a lot of time thinking

about why species choose sexual reproduction because, on the face of it, there

does not seem to be enough biological reward for the amount of energy it

requires. To solve this enigma, let’s consider an example.

Consider one of North America’s native finches, the cardinal. The male

spends most of the Spring singing, instead of eating or sleeping, in order

to attract a mate. This cardinal has put its own survival in jeopardy in

many ways: aside from not eating and sleeping, it is also doing a great

deal to attract the attention of predators. The cardinal has made life very

easy for a predator because it is making so much noise and its bright

red plumage makes it easy to spot in a tree. Why does the cardinal risk

its own survival to find a mate? What could possibly be so important as

to put individual survival, a trait that we have already said is selected for,

at risk?

We hope you can begin to see the outlines of the problem that intrigues

biologists. The problem is this: sexual reproduction in any species requires

individuals to devote a significant amount of their time and energy to finding

potential mates, attracting a mate, and maintaining a relationship with that

mate, however briefly. These activities take up precious resources, require

individuals to expose themselves to much greater risks, and to generally

endanger their own survival in ways that we would think would ensure their

extinction. Yet, when we look across the natural world, most multicellular

organisms reproduce sexually. As we know, multicellular organisms aremore

complex andpresumably are evolutionarilymore advanced than single-celled

organisms. So the fact that they nearly all reproduce sexually suggests that

sex has some significant advantage to offer.

In contrast, most single-celled organisms are perfectly happy to just

clone themselves. When a bacterium decides to make descendents, it usu-

ally just splits in half, generating two daughter cells from the one parent cell.

Each daughter cell is genetically identical to the other daugher cell and to the

parent cell. Since there are more bacteria in the period at the end of this sen-

tence than there are people on the planet, it would seem that bacteria have the

competitive advantage. However, think back toLenski and colleagues’ exper-

iment. When they raised the temperature of the flasks, most of the organisms

in each flask died. Only the rare individual survived. This was because

almost all the organisms in each flask were identical, so when conditions

changed, none of them could adapt in new ways. The rare individual with

an advantageous mutation survived, but the population as a whole did not

make it.
(continued)

232 Chapter 6 Simulating and Modeling Evolution

Now consider a sexually reproducing population of individuals such

as human beings. During the Middle Ages, repeated epidemics of bubonic

plague (the Black Death) swept across Europe, often killing as much as

a third to a half of the population of a town. In some towns nearly

80% of the population was wiped out. However, humans survived in

Europe despite this terrible catastrophe. Had we been asexually repro-

ducing organisms like bacteria, then likely all of the European popu-

lation would have gone extinct. Luckily for us, though, we reproduce

sexually.

Sexual reproduction offers one critical advantage over asexual repro-

duction: the genetic information of two individuals is combined in a new

and entirely novel way in each offspring. So if two individuals have mod-

erate resistance to the plague, their children might be even more resistant

because they get the protection of beneficial mutations from each parent.

Indeed, this is the strongest argument in favor of sexual reproduction:

your offspring might get new combinations of genes that will give them

a significant advantage when conditions change. With sexual reproduc-

tion, organisms no longer have to wait for the chance mutation to help

them survive disaster. They can take any mutations already present in the

population and mix and match. This increases the likelihood that at least

some offspring will make it, even if no individual in the original population

does.

The advantage of mixing and matching existing mutations in a popula-

tion is so powerful that species choose sexual reproduction whenever they

can. Even bacteria will have “sex,” if we define sex as trading bits of genetic

information. Bacteria are known to pass along small circles of DNA called

plasmids when they meet other bacteria. These plasmids often have handy

genes that allow the receiving bacterium to gain some advantage, such as

resistance to an antibiotic. Sexual reproduction is favored in multicellular

organisms precisely because they are so complex: too many things could

go wrong if you just waited for a random mutation to confer advantageous

adaptations. Rather, you combine two individuals who already have reason-

ably good adaptations and hope that the offspring are even better suited to

their environment.

So, why sex? The tremendous risk to personal survival is worth it because

the reward is equally tremendous: your offspring might survive, thrive, and

therefore reproduce at a faster rate. This means that at least some of your

genetic information will persist in the population. That chance at immortal-

ity, at least for your genes, is worth the myriad risks of sex. So, in some basic

sense, this is why the cardinal sings and why you make an extra effort to look

good for that next party you plan to attend.

Chapter 6 Simulating and Modeling Evolution 233

Exercise 6.6Write a fitness function that assigns a numeric value to a monkey. Your aim

is to give high ratings to monkeys according to how Shakespeare-like their

phrases are. Here are some suggestions:

• Reward a good proportion of spaces. No spaces at all is bad because

English doesn’t usually run for 28 characters without a break. But a

dozen spaces is also bad, because that gives too many short words, or

sequences of two or more spaces in a row.

• Reward a good ratio of consonants to vowels. (What is a good ratio?

You can either guess, or you can write a program to figure out what the

ratio is in, say, one of Mr. Shakespeare’s plays.)

• Punish long sequences of consonants without vowel or long sequences

of vowels without consonants.

• Highly reward an exact hit with the sequence “methinks it is like a

weasel.” For example, if the fifth letter in your monkey’s phrase is an i,

then give the monkey lots of points.

This last suggestion is, perhaps, too brazen for the kind of evolution we’re

trying to simulate, but it may be necessary for you to get results that are

satisfying.

Exercise 6.7Now you’re ready to evolve a monkey that can type Shakespeare! Here’s the
outline:

create a pool of, say, 100 monkeys;
repeat {

use the fitness function to assign a score to each monkey;
remove the bottom, say 4, monkeys from the pool;
add a mutation of each of two good monkeys to the pool;
add two offspring from cross-breeding good monkeys;

} until your best monkey phrase is sufficiently Shakespearian

By the time you’ve completed Exercise 6.7 you will have had a lot of fun,

and you will have programmed a very simple genetic algorithm. It shows how a

combination of reproduction, mutation, cross-breeding, and, most importantly,

natural selection can gradually build up objects that initially might seem impos-

sibly complicated. It’s not really a fair illustration of how real evolution works,

because the fitness function is so artificial and so clearly designed to produce a

particular outcome. True evolution in nature proceeds with no particular goal,

but it produces even more spectacular results: creatures that appear perfectly

designed to survive in their environments. They are not, of course, designed by

234 Chapter 6 Simulating and Modeling Evolution

anybody or anything. It’s just that their fitness function is precisely “do well and

succeed in your environment.”

6.3.3 Monkey Evolution:
Making Whales from Weasels

If you run your monkey evolution for many thousands of generations, you might

find that after a while, certain monkeys dominate the population. This domi-

nance is partly because they are very fit, but also because we start with a limited

pool of original monkeys. Eventually, all the monkeys that differ substantially

from the dominant monkey will have died out. The driving force of evolutionary

programming is to keep the successful and lose the unsuccessful. An unfortunate,

and undesirable, side effect is that diversity within the gene pool suffers. All the

survivingmonkeys will be very similar, and cross-breeding will no longer produce

sufficient change.

In the artificial evolution of genetic algorithms, this stagnation of the popu-

lation is actually quite common. Indeed, one way that researchers decide that

the evolution has gone on long enough is to look for this plateau in fitness

improvement. That is, when no significant improvement takes place in fitness

after many hundreds of generations, we say that the genetic algorithm has found

the best possible answers with this particular population. Continued evolution

in this case is pointless because it would produce only minor variations on

the same answer. This can be a good thing, in that you may have found the

right answer and be done with your work. Or it might be a very bad thing,

in that the genetic algorithm has gotten “stuck” in some solution that is not

optimal.

Exercise 6.8
1. Apply your fitness function from Exercise 6.6 to each of the monkeys

whose outputs are listed here:

• methings ip is ghrusitb
• meghings ip is ghrusitb
• methings in is ghrusitb
• methings ip it ghrusitb
• methings ip is ghvusitb
• methings ip is ghrusjtb
• methings ip iskghrusitb
• messings ip is ghrusitb
• methingstip is ghrusitb
• methingstip is ghrusity
• methingstip iskghrusitb

Chapter 6 Simulating and Modeling Evolution 235

2. Apply your fitness function from Exercise 6.6 to each of the monkeys

whose outputs are listed here:

• dsafas adufejlsei kasle
• iertmre erkgsiemasa dke
• menalejgiouoa nlkaejkal
• jklpdasekljeksljke asel
• dsklgpelg pejjka wesitb
• methings ip is ghrusjtb
• melkp emlkr jleksejgilp
• messi rlkwj ijal ndkjeq
• methink tip is ghrusitb
• polkjauggekgke htazzity
• dsfsdin slkjgleas lfogh

3. When you add the individual scores of each monkey in the preceding

sets, which is the higher scoring set?

4. What do you conclude about the desirability of diversity in a popula-

tion?

In the natural world, this kind of stagnation of a population is very rare.

Indeed, a population in which the individuals are very similar usually presages

imminent extinction. That is, we rarely see a situation in which a population

has become so perfectly attuned to its environment that it can no longer evolve,

which would be the natural corollary to the genetic algorithm of finding the

“right” solution. More often we see a population that has become so inbred that

it can no longer find new solutions to the perennial problem of adapting to an

environment. This is the natural corollary of the genetic algorithm getting stuck

in a less than optimal solution with no way out.

So what do we do when our genetic algorithm is working well yet is unable

to move beyond some locally optimal solution to find the best solution possible?

We simulate what happens from time to time in the natural world: catastrophe. In

the natural world, species are forever in a race to adapt to a current environment

before something changes. Change can be subtle, such as the change of seasons.

Or change can be dramatic, such as hurricanes, volcanic eruptions, earthquakes,

ormeteoric impacts. Thesedramatic changes force species toadapt veryquickly to

new conditions or die. The dinosaurs were so well adapted to their environments

that they dominated the planet for 300 million years. But one catastrophic event,

a comet or meteor crashing into the planet, wiped them out in the space of a few

million years. But that disastrous event was not all bad news. Small shrew-like

creatures with fur and relatively bigger brains survived by adapting to the new

conditions, and we, their mammalian descendants, are here to tell the tale.

When running a genetic algorithm program, we might simulate such dis-

asters by randomly wiping out 90% of the population and starting fresh with

236 Chapter 6 Simulating and Modeling Evolution

whatever is left together with a lot of random “new blood.” For example, sup-

pose your monkey evolution was stuck in a rut, unable to get past some variation

on “methavao it issss ali a wesel.” What could you do? Well, one option would be

to increase the number of cross-breedings between the very fittest of your mon-

keys in the hope that one of them would have some variation to get you past

this obstacle in the evolutionary path. This tactic might solve your problem, or

it might make it much worse because the best monkeys in your population are

all so similar that recombination just reinforces the status quo. In that case, you

might have to go with the brute force of catastrophe, randomly killing most of

your monkeys and introducing a whole lot of new ones.

Exercise 6.9 Modify your program from Exercise 6.7. Occasionally1 you will depart from

the normal sequence of code by arbitrarily deleting some large (perhaps 90%

or more) proportion of your population. The deleted individuals can be

replaced by new random monkeys.

Let us say that after creating your catastrophe, you begin re-evolving your

monkeys. After a fewhundred generations, you look to seewhat the best perform-

ing monkeys are producing. To your surprise, they have come up with “methinks

it is like a whale.” Now, on the one hand, this is not the phrase you wanted.

On the other hand, this is still a genuine English phrase, and the fact that this

evolved from a bunch of random monkeys is still striking. What do we do with

these new monkeys? For the specific context of the genetic algorithm, it depends

on what you wanted the answer to be. But in the context of the natural world, this

is a perfectly common occurrence — called speciation. In speciation, new species

emerge from existing ones as the result of some kind of selection pressure. The

selection pressure might be slight or it might be dramatic, but the new species

that evolves now has its own place in the environment.

Sohowdidwe get a bunchofmonkeys talking aboutwhaleswhen the original

populationwereworking towardweasels? Recall that eachmonkey in the popula-

tion has a specific string, and that this string is mutated and interbred with other

strings over the course of the evolution. As long as the resulting strings in each

generation pass our fitness function, they continue to mutate, mix, and match.

The samehappens innatural populations. Organisms in apopulationhave specific

adaptations for their particular environment. When the environment changes, or

new challenges are presented, some organisms in the population will adapt faster

than others. This is because each organism has its own unique set of mutations.

Many of those mutations may have had little or no effect in the old environ-

ment, but they might be of use in the new one. Organisms lucky enough to have

advantageous mutations in the new environment adapt more quickly, are able to

reproduce faster, and therefore come to dominate the new population. Over time,

1
One way to do this is to select a random number, and if it exceeds some threshold, it should trigger
the catastrophe code; otherwise you should just continue.

Chapter 6 Simulating and Modeling Evolution 237

the new populationmay alter enough from the old one that it no longer bears any

resemblance to the original population. At this point, we usually designate the

new population as being a new species, separate from the ancestor population

from which it arose.

Sometimes theoldpopulationdies out altogether or is entirely replacedby the

new, better adaptedpopulation. At other times, however, the twopopulations and

eventually two species may live side by side. The finches on theGalápagos Islands

are a good example of this. Darwin’s finches all descended from a single common

ancestor, but they evolved into 14 species. These new species were produced

by two pressures: isolation of populations on each island and the need to find

a reliable food source. On some islands, only one population of finches existed.

Here, the competition to find food wasminimal, and these finches could afford to

be generalists, eating whatever was available. Other populations did not have this

luxury. If more than one populationwas present on an island, the competition for

food would be quite intense. Generalist finches might have to compete with many

other generalists for any one food source. However, if a finch or a population of

finches is able to specialize, it might stand a better chance of getting enough food

without having to constantly fight off competitors. This is why some of the finches

adapted to eating seeds, and others became fruit or insect eaters. That way, each

population was able to identify an appropriate niche, or specialized environment,

that reduced the overall competition for food. Eventually, the finch populations

got to be different enough that they were identified as separate species.

How do we define a population as a new species? This is a tricky business,

and biologists do not always agree. In the past, it was generally accepted that

we delineate a population as a species when it can no longer interbreed with

other populations. So if we were to mix our whale monkeys with our weasel

monkeys and found that they could not cross breed, then we would say we had

two species of monkeys. In our artificial scenario, though, there would not be

much to prevent the weasel and whale monkeys from cross-breeding because we

are simply mixing and matching strings of letters. In the natural world, however,

the changes that accompany speciation are usually so extensive that they inhibit

successful interbreeding.

There are plenty of examples of populations that we have designated as

species, but we do not actually know if they could produce viable offspring if

interbred. For example, we think of Neanderthals as being a different species

from us, but we do not know if we could interbreed with them because there

aren’t any around to check. So biologists now say that a population has become

a new species when enough has changed between the new and original species that

we can make a clear distinction. For example, we could observe that “methinks

it is like a weasel” and “methinks it is like a whale” have a total of four letter

changes and the loss of one character. We could argue that this is sufficient to say

that they are two independent species. This distinction is less clear than the one

about interbreeding, but like much of biology, it better describes the murky state

of reality.

Designers of genetic algorithms take pains to create environments and fitness

functions that ensure their goals will bemet. Rather than allowing for new species

238 Chapter 6 Simulating and Modeling Evolution

to develop or letting the genetic algorithm get stuck, the goal is to get the right

answer. A real-life example is described in Section 6.3.4.

Evolutionary programming is in its infancy. From our discussion, we can

derive the following broad conclusions:

• Robustness and adaptability are a natural consequence of evolutionary pro-

cesses; robustness and adaptability are extremely difficult to achieve through

traditional software design.

• Diversity is essential to avoid unproductive plateaus.

• Current computer limitations necessitate compromises that make evolution-

ary programming distinct from real evolution:

• Encoding schemes aredeveloped to ensure thatmostmutatedoffspringare

viable and allowed to compete. In life, almost all mutations are deleterious

and lead to death.

• The “fitness function” used to determine what programs survive into

the next generation is goal-oriented. In life, survival happens through

a combination of factors: the measure of fitness has no goal—it just

happens.

• Most evolutionary programming concentrates on the evolution of one

“species.” In nature, fitness derives from complicated interactions and

relationships among many.

Just because it’s complicated is no reason for us not to study and learn from life

and apply some of what we observe to our own ends.

6.3.4 A Worked Example:
A Genetic Algorithm for Gene Finding

In many areas of bioinformatics, including the design of drugs, it is important

to be able to identify the DNA sequence corresponding to an individual gene.

We will see in Chapter 7 that a number of clues can indicate the starting and

ending locations of genes within a chromosome or genome. Some of the gene

clue features can be detected easily by a simple program:

• Stretches of DNA between potential start codons and in-frame2 stop codons

are easy to identify using straightforward pattern matching. Such stretches

are open reading frames (ORFs) that are candidates for being genes.

• Variations in local densities of nucleotides are easy to detect, again via a

simple program. Some variations, such as high concentrations of C and G

nucleotides, have been noted as indicative of the start of genes.

• Manybacterial species exhibit aShine–Dalgarno region [17], a short sequence

of nucleotides that seems to provide a grip for the ribosome to attach to the

mRNA transcript and begin translation. Many genes will be preceded in

2
In-frame means that an integral number of triples of nucleotides occurs between the start and the
stop, none of which is itself a stop codon.

Chapter 6 Simulating and Modeling Evolution 239

their sequence by a close approximation (not necessarily an exact match)

to the Shine–Dalgarno sequence. This approximate match occurs a short-

ish distance, perhaps 12 to 30 nucleotides, before the start codon of the

gene. Approximate pattern-matching techniques allow us to locate Shine–

Dalgarno candidates and measure the closeness of the fit.

• There are other signals and features, all of which can be straightforwardly

detected programmatically.

A gene-finding program can certainly find lots of clues, but the challenging

question is to determine which of the features and signals, and in what combina-

tion, are truly indicative of a functioning gene. The entire community of scientists

has yet to come upwith a definitive answer. And yet, the cellularmachinery seems

to have little difficulty locating the genes it is going to transcribe and translate. If

we want to write a program that performs even approximately as well as the cell,

we couldwait until the academic community understands the sciencewell enough

to precisely define how a nucleotide sequence operates as a functioning gene, and

then translate that specification into a program. Unfortunately, we might have a

very long wait. In the meantime, we can write the best possible program based

on the current state of science.

The current state of the art microbial gene finder used at the Institute for

Genomic Research (TIGR) is called Glimmer (gene locator and interpolated

Markovmodeler), whichusesMarkovmodels to locate genes inbacterial genomes

[3].Markov models are used to study systems that at any one time can be in any

one of a finite number of states. Imagine a hypothetical device that is making its

way along a strand of DNA. Let’s suppose it can be in any one of two states:

coding or noncoding. As it proceeds along the strand, it observes the current

nucleotide and may change state. In a first-order Markov model, the next state is

effectively determined knowing just the current state and the current nucleotide.

In a second-order Markov model, the next state depends on two previous states

and so on. Glimmer currently uses a combination of Markov models from first

to eighth order. To determine the transition matrices for each of the orders, we

need information about known genes in the organism under study. Those known

genes are the training set. Once the parameters of the models have been deter-

mined, Glimmer can go into predictive mode and attempt to predict genes in the

rest of the genome.

Glimmer is a sophisticated program incorporating the best of scientific

investigation, statistical and mathematical understanding, and skillful program

development. Glimmer is reported to be able to identify the start sites of known

genes in E.coli with an accuracy of 87.4% [3]. Ribosomes, the cellular machines

that translate mRNA into proteins and have never spent even a minute studying

in a university, do significantly better!

Ribosomes were never programmed. There is no designer or programmer

responsible for life. They evolved. Ribosomes that are good at translation con-

tribute to the success of their hosts, who will therefore be more likely to produce

offspring, who will in turn have similar ribosomes that are good at their job.

Unsuccessful ribosomes let down their hosts and are less likely to persist.

240 Chapter 6 Simulating and Modeling Evolution

In [14] the authors simulate the process of evolution to develop programs

that predict the start sites of bacterial genes. They begin with a pool of programs,

each of which has the code necessary to identify and quantify many features

associated with gene start sites. Each program implements its own formula to

combine the measurements made for every potential start site and come up with

a single numerical value. In this way, each program produces its own assessment

of each potential start site in the genome.

We can compute a score for several features that contribute to an overall

evaluation of a potential start site for a gene. Let us call these feature scores f1,

f2, . . . , fk . Each fi is an easily evaluated feature, such as:

• the resulting length of the gene

• the percentage CG content in the neighborhood of the start

• the quality of the potential binding sites preceding the start

In [14] each program is encoded by a parameter value set (PVS)

[α1,α2, . . . ,αk]. The program uses these parameters to form a linear combination

of the feature scores at every potential start site: α1 f1+α2 f2+· · ·αk fk . Therefore,

a program parameterized by [α1,α2, . . . ,αk], is effectively a start site evaluation

function. Because some functions perform better than others in predicting the

known start sites of the genes in the training set, they provide the fitness function

to drive the genetic algorithm.

An initial population of random vectors, each of the form [α1,α2, . . . ,αk] is

created. In each generation:

1. A subset S of the training set is selected.

2. Each of the vectors is used to evaluate all of the potential start sites for

genes in S. The highest scoring potential start site is noted as that vector’s

prediction.

3. The total number of correct predictions is calculated for each of the vectors.

The vectors are ranked by these scores.

4. The highest scoring vectors are cross bred (intermingled) with other vectors;

the lowest scoring vectors are deleted; the remaining vectors are subjected

to random mutation.

5. This results in a new population of vectors ready for the next generation.

After hundreds or thousands of generations this programwill develop a good

set of α parameters resulting in a good start site predictor. The success of this

genetic algorithm can be measured by seeing how well the resulting predictor

performs on the remainder of the verified set.

The genome ofE. coli has been very well studied in the EcoGene [16] project,

and a large number of verified start sites are reported. In [14] the genes with veri-

fied starts are divided into a training set and a testing set. That pool of programs

mentioned earlier is let loose on the training set. Whenever a program produces

a high assessment for the verified start site, it is rewarded with survival points;

any time it produces a high assessment for other sites or a low assessment for the

verified site, it is punished by losing survival points.

Chapter 6 Simulating and Modeling Evolution 241

The pool of programs undergoes several generations. In each generation, a

subset of the training set is selected. Each program in the pool assesses a value

for each of the potential start sites for each of the genes in the training set and

receives or loses survival points according to the quality of its predictions. Some

programs will do better than others.

The essence of a genetic algorithm is that the programs that do well should

persist into the next generation, perhaps with minor modifications, and the

unsuccessful programs should disappear. Ideally, it should be possible to per-

form mutations on the surviving programs, and it should be possible to produce

“offspring” programs from two or more “parent” programs. By thus simulating

the process of evolution, the authors of [14] report a program evolved that cor-

rectly predicted the verified start sites of the genes outside of the training set with

a success rate of 95%.

6.4 MODELING EVOLUTIONARY RELATIONSHIPS

When we design a genetic algorithm we have the advantage of simulating evolu-

tion at a pace at which we can observe the changes relatively rapidly. In reality, of

course, most evolutionary change occurs over such a long time span that we sim-

ply cannot see the steps in the process. All we usually have is the endpoint of those

evolutions. Therefore, the second, and more fundamental task for evolutionary

biologists is to model evolution given an observed endpoint and a presumed start

point.

Suppose we have a population of creatures whomwe shall designate as being

of species A. At some point in the history of this species an event occurred that

physically separated one group of A from the rest. Perhaps a river changed direc-

tion or some volcanic activity separated this group. As time went on, mutations

occurred in the separated group as well as in the rest. It is statistically implausible

that exactly the same mutations occurred in both populations, so over time, the

two populations undergo speciation. The exact moment at which the speciation

event occurred is not determinable. There may have been a longish period when

the populations were not entirely incompatible: For example it may be that for

a time some, but not all, individuals of the breakoff population were capable of

breeding with some individuals of the other group. Although we cannot deter-

mine an exact moment at which a new species arose from a population, we can

often determine a time interval during which it happened.

So we start with population A, which after splitting and mutation, becomes

species B andC.We say that populationAwas the common ancestor or concestor.

Species B and C are the new species. Notice that individuals of A and B or of A

and C can never coexist: They belong to distinct eras; they will never meet; so the

question of whether an A can produce offspring with a B is moot. Accordingly,

we generally represent evolutionary separations of species as bifurcation events:

One concestor species gives rise to two new species. (Figure 6.2).

The choice of B or C to be the continuation of species A is arbitrary. The

creatures of the C community being considered the same species as A is depicted

242 Chapter 6 Simulating and Modeling Evolution

A

B

C

FIGURE 6.2 Species A bifurcates and gives rise to species B and species C.

A

B

A

FIGURE 6.3 Species A continues, but a new species B splits off.

in Figure 6.3. It is important to realize, however, that significant mutation will

have occurred, and the genomes of the two communities both labeled A will be

very different. It can never, of course, be known if it is possible for parents, one

from each of the two groups labeled A, to produce viable offspring.

As an example, consider humans and chimpanzees. Humans and chim-

panzees likely share a concestor. Declaring that concestor a chimpanzee is another

arbitrary call. Some physiological evidence may exist to support or to refute the

claim; but one thing is for sure: Much mutation has occurred between the two

groups named “chimpanzee.” It can never be verified if the two groups labeled

“chimpanzee” are, in fact, the same species. If somebody chooses to claim that

they are, we will not contradict them. The naming of the groups is irrelevant to

the computational study of phylogeny. Nevertheless, such distinctions do severely

vex many worthy scientists. Phylogeny can be very controversial.

Let us list the properties that we believe underlie the speciation process:

1. Speciation occurs by bifurcation: One concestor gives rise to two new species

(one of which may, accidentally and largely meaninglessly, share the name

of the concestor species).

2. It is not generally possible to identify the exact moment when bifurcation

occurs. Nevertheless, it does occur, and we can put limits on that event.

3. Every pair of species has exactly one nearest concestor.

This means that there exists a “tree of life.” At its root is the concestor of all

the species extant on Earth today or that ever existed at any point in the past.

Species living today occur as leaves of the tree (they may or may not be the same

species as the species corresponding to an internal “parent” node, but that is

irrelevant and untestable). Extinct species occur as leaves of the tree (and again,

they may or may not be the same as a parent species at an internal node). If you

Chapter 6 Simulating and Modeling Evolution 243

AC

B

AB

C

FIGURE 6.4 Other possible ancestral relationships between the species of Figure 6.2.

wish, you may claim all species at internal nodes are effectively extinct; or you

may say that they continue by being the same as a child species. Figure 6.1 shows

one version of a tree of life.

Ideally, the tree of life is a directed, rooted binary tree. One more factor fur-

ther complicates our process. Sometimes we have no way of telling the direction

of the arrows. Consider the relationships shown in Figure 6.2: Species A bifur-

cated to produce species B and species C. How do we know that? We don’t. If all

we possess is unreliably dated fossil evidence for the existence at one time of all

three species, how can we know that the relationship is not, in fact, one of those

depicted in Figure 6.4? Answering this question is the central challenge of the

field of phylogenetics, the study of evolution as it has occurred. The output from

a phylogenetic reconstruction is a phylogenetic tree—a visual representation of

the postulated evolutionary history of a species. We say “postulated evolutionary

history” because we cannot be certain that a given path was the actual path of

evolution. We simply make our best guess based on the evidence available from

molecular as well as fossil records.

6.4.1 Models of Mutation

To decide which of several possibilities represents the correct history of the evo-

lution of a set of species, evolutionary biologists usually examine the history of

mutations within each species. The idea is that the differences in the genomic

sequences of species A, B, and C will help us organize them hierarchically so that

we can more confidently say that A gave rise to B and C. In essence, we argue

that if B and C share certain sequences with A, then they probably inherited

those sequences from A. Therefore, A is the concestor of B and C. Any changes

from A that we observe in B and C are mutations that accrued after speciation.

By tracking the number of changes between concestor A and its descendants B

and C, we can estimate a time interval during which A gave rise to species B

and C. This is what we meant in the previous section when we said we could

determine the interval during which speciation might have occurred but that we

cannot pinpoint the specific moment of speciation. We use mutations to guess

the time points at which speciation events occur, so to model evolution, we have

to first model mutations.

When considering a mutation we need to know if it alters the information

content of a given DNA sequence. A mutation that occurs in a coding region

results in two possibilities: either it alters the information content, or it does not

and is silent. Recall from Chapter 2 that triplets of nucleotides compose codons.

More than one codon can code for an amino acid, so it is possible to alter a

codon without altering the corresponding amino acid. When a mutation in a

244 Chapter 6 Simulating and Modeling Evolution

coding region results in a change that does not affect the downstream product,

we say it is a synonymous substitution. Synonymous mutations are essentially

silent mutations that occur in coding regions. If the mutation changes the amino

acid, it is a nonsynonymous substitution.

Consider a family of proteins known as the histones. These proteins play a

critical role in the cell: they are used to package and compress DNA so it can be

stored within the nucleus of the cell. Because correct DNA packaging is essential

for the cell to be able to store and protect its genetic content, any changes to the

histones will result in cell death. As a result, the histone proteins in your cells

look nearly identical to the histone proteins of every other eukaryote. In fact, our

histone proteins have just three amino acid changes from the ones used in yeast.

Several hundred million years ago humans and yeast diverged from a common

ancestor. So the relative lack of change is striking. To give you a sense of how

well conserved these proteins are, consider that up to 70% of the amino acids

have changed between the average human protein and its yeast counterpart.

If three amino acid changes have occurred between the human histone and

the yeast histones, we can say that three nonsynonymous substitutions have taken

place. Finding these substitutions is easy. We simply align the protein sequences

and note where the amino acids do not match exactly. In contrast, to find the

synonymous substitutions, we must look at the DNA sequences. When we line

up the DNA sequences of human and yeast histones, as many as 57 changes

are evident. Of these, 54 are synonymous substitutions (remember that there

were three nonsynonymous substitutions too). So you can see how synonymous

mutations can bemuchmore frequent without ever affecting the fitness of a given

individual.

The mutation rate is not evenly distributed across a genome. Some regions

of the genome have more mutations over time than other regions. In general,

mutations tend to accrue in regions of the genome where changes to the DNA

have little or no effect on the organism’s survival. The reason for this should be

obvious: silent mutations do not confer any advantages, but they are also not

deleterious. There is no selective pressure on these mutations, so they simply

accumulate over time. For example, the noncoding regions of genes (introns),

have many more changes than the coding regions (exons). In fact, one way to

find the exons in a genome is to compare it with a related species. The conserved

regions are most likely to be the exons, and the unconserved regions are the

introns or other noncoding regions of the genome.

Because the well-conserved regions of the genome are likely to be functional,

we say these regions are functionally constrained. That is, there is strong pressure

for these regions to be unchanged.What does this mean? It means that organisms

that sustain a mutation in these regions are likely to be eliminated from the

population. This is true for two reasons. First, the majority of mutations will be

deleterious because random modification of nucleotides will more often disrupt

the information content of the genome than enhance it. Second, if the region

in question is critical for the organism’s survival, then any mutation, however

small, is likely to upset the organism’s overall functioning. Again, this leads to

death.

Chapter 6 Simulating and Modeling Evolution 245

Functionally constrained regions can have variable rates of mutation,

however. Remember that synonymous substitutions are well tolerated because

they have a minimal effect on the downstream products. They do not alter the

overall information content of the region. Nonsynonymous substitutions alter

the information content and they are therefore likely to be deleterious. Since

mutations are random by nature, we expect that a given genomic region will have

about equal numbers of synonymous and nonsynonymous substitutions. In real-

ity, however, the ratio of synonymous to nonsynonymous can vary dramatically

across a genome, a genomic region, and evenwithin a gene. The variability results

from whether a functional constraint exists in that region.

When estimating the background rate of mutation, therefore, we must con-

sider whether our genomic region is under a functional constraint. If it is, then

any estimates of themutation ratewill be skewed. Given this consideration, where

should we look for the best estimate of the background rate? Obviously, we want

those regions of the genome that have little or no functional constraints. Repeat

regions are a good bet because they do not usually serve a vital function within

the organism’s genome, but they do accrue mutations just like the rest of the

genome.

A Worked Example: Modeling Mutation Rates in HIV

Let us say we want to determine the rate of mutation in the HIV genome. As with

any genome, rates vary across the genome because of functional and other con-

straints. The background mutation rate, or the average across the entire genome,

is likely to be very different from the rates within specific regions of the genome.

So when we consider the mutation rate for HIV we have to ask ourselves which

rate we are most interested in determining.

Considering the mutation rates in a viral genome such as HIV adds another

twist. In Chapter 2, we mentioned that HIV is a member of a family of viruses

known as retroviruses. Recall that the HIV genome is actually RNA that is

reverse-transcribed toDNAbefore being transcribed and translated into the pro-

teins that are required for the virus to infect and replicate in host cells. The reverse

transcription process is more prone to error thanDNA toDNA replication. This

is because unlike in DNA to DNA replication, no proofreading of the newly

synthesized strand takes place during reverse transcription. This is somewhat

like copying a program’s code without spell-checking the code during the copy-

ing process. Every now and then, a spelling mistake or typo might be introduced,

and no attempt ismade to check the new copy to see if such an error has occurred.

As a result, although the error rate for DNA to DNA replication is barely 1 error

per 1 billion bases, (1 × 10−9) the error rate with reverse transcription is closer

to 5 to 7 errors in every 10,000 bases (5 × 10−4). Since the HIV genome is 9749

nucleotides long, we can reasonably expect about five to seven errors with each

round of reverse transcription. The end result is that each viral particle is likely

to have five to seven mutations compared with its parent. Each “generation” of

virus particles is likely to be much more diverse as a population than in a species

with high-fidelity replication. In essence, a population of HIV virus particles will

be much more diverse than a similar population of bacteria or humans.

246 Chapter 6 Simulating and Modeling Evolution

This brings up a key point. The background mutation rate in HIV will be

several-fold higher than it is for organisms that use DNA as their genomic mate-

rial. However, even if the rate of mutation is higher, the types and effects of these

mutations will be the same as they would be in an organism such as E. coli. In

otherwords, we can still look atHIVas ameans for understanding howmutations

occur and how they influence the survival of a population.

We have already discussed the types of mutations that can occur. As with

DNA replication, reverse transcription errors most often result in substitution

mutations. That is, one nucleotide is accidentally replaced by another. The fre-

quency with which any particular nucleotide is replaced is not evenly distributed,

however. Certain nucleotide replacements are more common than others. In

Chapter 2, we explained that nucleotides come in two forms: pyrimidines and

purines (Figure 6.5). In DNA, the nucleotides A and G are purines and the

nucleotidesC andT are pyrimidines. In RNA as in theHIV genome,T is replaced

byU, which is also a pyrimidine. It is muchmore common for an A to be replaced

by aG or vice versa than it is for anA to be replaced by aC. That is, it ismore com-

mon to accidentally replace one purine with another than to replace a purine with

a pyrimidine. When a mutation results in a change between two purines (A to G,

for example), we say that a transition mutation has occurred. The rarer case of a

purine to pyrimidine change (A to C for example) is known as a transversion.We

can build a table (known as a transition–transversion matrix) of the probabilities

of transitions versus transversions for a given species. Table 6.1 is an example of

how we might construct such a table.

In the HIV genome as with other genomes, transitions are much more

frequent than transversions. In addition, certain transitions are particularly com-

mon. For example, a recent study found that themost commonmutation between

generations of HIV particles was a G to A transition. The set of mutations iden-

tified in this study are reproduced in Table 6.2. As you can see, substitution

mutations and especially transitions are very common. Some transversions never

occurred, at least in this sample, but that might reflect the nature of the study and

the data rather than some unusual frequency distribution. In any case, the gen-

eral principle holds: substitution mutations are most common, with transition

substitutions being the most frequent type of substitution. As you can see from

Table 6.2, insertions and deletions are very rare.

N

N

N

N

N

N
N

N

H O

HPurine Pyrimidine

H

HO

H

FIGURE 6.5 Purine and pyrimidine structures.

Chapter 6 Simulating and Modeling Evolution 247

TABLE 6.1 Transition–Transversion matrix∗

A G C T

A 1− a − 2b a b b

G a 1− a − 2b b b

C b b 1− a − 2b a

T b b a 1−a−2b

∗This table is an example of a transition–transversion matrix. We estimate the rate of transitions (a) and

transversions (b) from a set of representative sequences. The table then allows us to plug in the estimated

values. For the identity transitions (i.e., A → A or G → G), we estimate the probability that no change

occurred as what remains if neither a transition nor a transversion takes place. Hence, we say it is (1−a−2b).

We have to include both possible transversions (2b) because an A could have become either a C or a T,

whereas the only transition possible for an A would be to G.

TABLE 6.2 Types and frequency of mutations in HIV

Nucleotide change(s) Number of recovered mutants

G to A 15

C to T 6

T to C 2

T to G 1

T to A 1

deletion of 8 nucleotides 1

deletion of 21 1

deletion of 33 1

deletion of 4, insertion of 15 1

Total 38

L. M. Mansky and H. M. Temin. Lower in vivo mutation rate of human immunodefi-

ciency virus type 1 than that predicted from the fidelity of purified reverse transcriptase.

J Virol, 69:5087–5094, 1995, by permission of the American Society for Microbiology.

Tallying the number and type of mutations in a genome is known as estimat-

ing the rate of mutation. Because substitutions are the most common mutations,

we frequently estimate only the rate of substitution and use this to extrapolate

the overall rate of mutation in a genome. To estimate the rate of substitution, we

have to compare the genomes of the population after every generation with the

original or parent strain. In this study, for example, HIV particles were compared

with those of the parent strain after just one generation. Because of the high error

rate of reverse transcriptase, we can get a reasonably good sense of the mutation

rate after just one generation of HIV particles. In other organisms, we would

need to wait many more generations before estimating the rate of substitution

because of the higher fidelity of DNA replication. In any case, estimating the rate

of substitution is a simple process: we count up the number of substitutions in

the progeny generation’s genome and compare it with the number in the parent

generation’s genome. The key point is that we can use sequence comparisons and

248 Chapter 6 Simulating and Modeling Evolution

some knowledge of the nature of mutations to estimate the rates of mutation in

a specific organism or virus such as HIV.

Modeling Mutation Rates in General

Although substitution rates for individual species and organisms can be valuable,

we need a more general sense of the rates of mutation across a variety of species

and conditions. That way, we can begin to understand how evolution operates

across a broad spectrum. We therefore want to use individual estimates of sub-

stitution rates from various species to create a general model of substitution.

A model of substitution is a fairly straightforward concept. We want to capture

the idea that some substitutions are more common than others (e.g., transitions

versus transversions), and we want to quantify these observations so that they

can be applied across a variety of species.

With a generalized model of substitution, we can ask how genomes and

organisms are related to each other. We do this by considering howmany changes

exist between two organisms or their genomes. Themore changes in the genomes,

the farther apart the two are on the tree of life. This is because we expect sub-

stitutions and mutations in general to accrue over time, so the more differences

that occur, the longer the two genomes have been apart as separate species. If we

want to create a tree of relationships amongst organisms, we must have a way

of modeling the substitutions we see between their genomes. So the model of

substitution becomes a key prerequisite for building phylogenetic trees.

There are three commonly used models of substitution. The simplest is

known as Jukes–Cantor, after Thomas H. Jukes and Charles R. Cantor who

first proposed the model in 1969. In this model, we weight all substitutions the

same. At first glance, this seems hardly worth the effort; we already know that

some kinds of substitutions seem to bemore common than others. Oddly enough,

however, the Jukes–Cantor model remains surprisingly robust. In other words,

many times, just using the simple, unweighted measure of substitutions generates

as good a phylogenetic tree as one with a more complex model. This suggests

that despite the fact that some differences occur in the types of substitutions, the

differences may not be as important over long evolutionary periods of time. This

is actually the key reason for using the Jukes–Cantor model: when we look across

millions of years of evolution, the number of substitutions is sufficiently large that

slight differences in the transition versus the transversion rate are smoothed out.

In other words, the preference for transitions over transversions gets averaged

out over time and has little influence on the overall evolutionary history between

two species.

Despite the success of the Jukes-Cantormethod, in some situationswe need a

more nuanced model of substitution. For example, when we compare two closely

related species, such as chimpanzees and bonobos (Pan paniscus), the number

of substitutions is likely to be small. In this case, we want to be able to weight

each transition and transversion a little differently so that we can maximize the

importance of every substitution we can identify. For these situations, we use

a model of substitution known as the Kimura 2 parameter. Named after the

mathematical biologist Motoo Kimura, the “2 parameter” part of the model

Chapter 6 Simulating and Modeling Evolution 249

name refers to the idea of having two weights: one for transitions and one for

transversions. We do not worry too much about whether the transition is from A

to G or T to C or some other combination. In the Kimura 2 parameter model,

all transitions and all transversions are equally probable events. The difference in

frequency is between transitions and transversions, not between specific instances

of either.

Between the Jukes–Cantor model and the Kimura 2 parameter, almost all

phylogenetic problems can be adequatelymodeled. In addition, because these are

relatively simple models with few parameters (variables), we can use them even

when we have limited data available about the substitutions between two species.

However, in some rare instances we need even more detail than either model can

provide. For example, if wewere trying to understand the evolutionary divergence

of strains of HIV, we may need to model not just transitions and transversions

but the specific frequency of substitutions that transform an A to a G or vice

versa. Since there are four nucleotides, a total of 12 transformations are possible

(excluding the 4 identity transformations ofA toA,C toC,G toG, andT toT).We

can weight each of these separately and then model the rate of substitution. This

is known as the full-parameter model. To use this model, however, you would

need a very large amount of reliable data on substitutions so that you could

accurately estimate the frequency of each transformation. The full-parameter

model is used very rarely, in part because the need for large, reliable data sets

limits its use. Generally, the results from the Jukes–Cantor model or the Kimura

2 parameter give a good enough approximation so using a more complex model

is unnecessary.

6.5 DISCOVERING EVOLUTIONARY
RELATIONSHIPS

We now have all the pieces in place to build a phylogenetic tree. We have some

data from species, an understanding of how evolution works, and a likely model

of mutations. What next? Here is where things start to get murky. Phylogenetic

reconstruction is almost as much an art as a science.

The art of phylogenetic analysis is the plausible reproduction of the most

likely tree of relationships between species based on a study of observed changes.

But what do we mean by “most likely tree of relationships”? Since we do not

know the exact trajectory of a species’ evolutionary history, we have to rely on

conjecture. Is it possible to discern this trajectory working from first principles?

How can we transfer our reasoning process to an algorithm that can generate the

most plausible trees? There are no easy answers. That’s what makes phylogeny

such an interesting challenge.

Beforewe look at techniques that have beenused in bioinformatics, let us note

that the problem of how best to build phylogenies is not unique to our discipline.

For example, linguists have tried to establish ancestral relationships between lan-

guages. They might begin with the observation that Italian and Spanish share

250 Chapter 6 Simulating and Modeling Evolution

much vocabulary and syntax, indicating that both may be “descended” from a

common ancestor. Then German and English are fairly similar and likely share a

recent common ancestor. Then one might seek common ancestry between those

ancestors . . . It’s a very similar problem to ours. Indeed, in a recent paper, some

linguists used a phylogenetic technique calledmaximumparsimony (Section 6.5.1)

to try and figure out the “evolution” of language in the peoples who colonized

the Pacific islands and Australia [8].

Because of the uncertainty inherent in any reconstruction of the past, each of

the methods we describe in this section can only yield a “best guess” phylogenetic

tree. This is one of those areas where there may be no single right answer or even

any right answer. This is part of what makes phylogenetics so difficult: sometimes

all the hard work of reconstruction yields a solution that we then have to aban-

don as completely incorrect. The following example demonstrates this in some

detail.

Figure 6.6 presents three options for the possible phylogeny of snakes, chick-

ens, and humans. We concentrate on one physiological feature: In humans, its

arms; in chickens its wings; and in snakes its nothing. Which of “snake first,”

“chicken first,” “human first” presents the most plausible scenario?

Chicken

wings

no arms

Human

no wings

arms

Snake first

Chicken first

Human first

Snake

no wings

no arms

Human

no wings

arms

Snake

no wings

no arms

Chicken

wings

no arms

Snake

no wings

no arms

Chicken

wings

no arms

Human

no wings

arms

FIGURE 6.6 Three plausible phylogenies for snakes, chickens, and humans.

Chapter 6 Simulating and Modeling Evolution 251

“Chicken first,” in which chickens beget humans and snakes, requires chick-

ens to lose their wings in one branch and to lose wings and gain arms in the

other branch. That’s a total of three major mutations. Humans beget snakes

and chickens in “human first”: One branch loses arms, the other loses arms and

gains wings. Again “human first” requires threemajormutations. The left branch

of “snake first” shows snakes begetting chickens and gaining wings (one major

mutation), and the right branch depicts snakes begetting humans by gaining arms

(one more major mutation). So the scenario in “snake first” requires fewer major

mutations than the other scenarios, and on that basis we consider it to be the

most plausible of the three. It’s a simpler, more economical explanation of the

relationships between the three species, and therefore to be preferred. In phylo-

genetic analysis, we say this is the most parsimonious explanation. In general,

scientists prefer parsimonious, or simple, explanations over more complex ones.

This idea derives fromOccam’s razor, a central tenet tomost scientific enterprises

formulated by William of Occam in the fourteenth century. William of Occam

suggested that “entities should not be needlessly multiplied,” or in modern-day

parlance, “keep it simple, stupid!”

Nevertheless, the analysis is wrong! There is much evidence that snakes and

birds are descended froma reptilian ancestorwho shares a common ancestorwith

humans. The more plausible phylogeny is shown in Figure 6.7. Three changes

occur along arcs of this new tree: protoarms to wings, protoarms disappearing to

vestigial arms, and protoarms becoming human arms. In a sense, these changes

are not as drastic as those along any of the arcs in Figure 6.6. The approach we

used in generating our trees is fundamentally flawed and leads to the wrong tree.

We will return to why our approach produced the wrong tree in Section 6.5.3.

In the meantime, here’s the problem: Given a set of species, each with its own

set of characteristics (be they physiological or molecular), place the species as

vertices in a tree, possibly adding new intermediate ancestral nodes, in such a way

that it represents the plausible evolutionary history of the species. The next sections

describe different ways we can solve this problem algorithmically.

Protoarms

Protoarms

Human

arms

Chicken

wings

Vestigial

arms

FIGURE 6.7 Another phylogenetic tree linking snakes, chickens, and humans.

252 Chapter 6 Simulating and Modeling Evolution

6.5.1 Parsimony

As we discussed earlier in the context of ancestral relationships between birds,

snakes, and humans, parsimony seeks the evolutionarily most economical ances-

tral relationship among species of interest. That is that the one that requires the

fewest evolutionary events to explain itself. In principle, seeking the maximally

parsimonious tree is an excellent way to reconstruct the likely progress of evolu-

tion in producing a diversity of species. In practice, however, parsimony is limited

because of the intractably large number of potential trees. Exercise 6.10 helps you

explore this for yourself.

Exercise 6.10 How many binary trees are there on n nodes? (Hint: A good way to answer

this question is to observe that every binary tree on n nodes has a left child

on k nodes (for some k) and a right child on (n− k − 1) nodes. There is one

binary tree onone node. This gives a recursive formula for the number of trees

on n nodes. You’ll need to sum over all the possible k values. So you’ll have

a recursive function implementing the recurrence Tn =
�
TkTn−k−1 with

appropriate ranges for k and appropriate base cases. Your program should

predict that the number of trees on 1, 2, 3, 4, 5, and 6 nodes, respectively are

1, 2, 5, 14, 42, and 132. It’s a very fast growing sequence, and if you want to

know more about it, do an Internet search for “catalan numbers.”)

Technically in Exercise 6.10 we are counting rooted binary trees, and the case

can be made that evolutionary trees should be unrooted. Either way, it doesn’t

make much difference to the observation that for significant n (more than just a

few species) the number of possible evolutionary trees is so large as to prevent

a thorough examination of every single possibility. Beyond the difficulty that

the number of trees on n nodes is so large, consider also the fact that there are

about n! ways to place each species at a node. And beyond that, we have not even

considered the additional complexity of adding new common ancestral nodes! To

get an answer in a reasonable amount of time, most implementations ofmaximum

parsimony use workarounds to simplify the problem so that we do not have to

search the entire space of all possible trees. We will return to these workarounds

shortly.

A worked example: The Curious Incident of the Skunk

Phylogenetic reconstruction is not just an idle entertainment in speculating

whether snakes came before chickens or wings before arms. It provides very

important insights into the biology of extant (alive today) species. The myste-

rious case of the skunk is one such example. Most of us think of skunks, if we

think of them at all, as stinky roadkill. However, from a biologist’s perspective

they represent a very interesting puzzle. The mysterious case of the skunk is an

example of howmisclassification can lead to all sorts of confusion; much like the

diploma mills can masquerade as real educational institutions by using the .edu

Web address suffix.

Chapter 6 Simulating and Modeling Evolution 253

For many decades it was thought that skunks were a member of the weasel

family. Before the advent of rapid genome-sequencing technologies, biologists

classified organisms based on their physical characteristics, known asmorpholog-

ical characters.Whenwewere trying to decide ifwings or arms camefirst earlier in

this section, we were looking at morphological characters. Today, most phyloge-

netic analyses use genetic data, but morphological characters remain important

in some areas, especially when genetic data is lacking.

Sometimes the appearances of a species are deceptive. For example, both the

leopard moth and the leopard cat have dark spots against a pale yellow back-

ground. Does this make the moth and the cat closely related species? Hardly!

Both the moth and the cat have these markings because spots help camouflage

them in the dappled shade ofwooded areas. The fact that they each independently

developed the same solution is an example of convergent evolution. Sometimes,

natural selection strikes on the same solution, even though the starting points

were entirely different. One of the difficulties with using morphological charac-

ters to classify species is that convergent evolution gets in the way. Indeed, one

of the reasons that our parsimonious solution to the “arms first” versus “wings

first” analysis was incorrect was because we were focusing on large-scale, mor-

phological characters instead of the underlying subtle changes that would drive

protoarms to wings (in chickens), arms (in humans), and no arms (in snakes).

Which brings us to the case of the skunk. In appearance, skunks, look a great

deal like weasels. The mystery arose because although skunks certainly look like

weasels, their genomic organization and composition are very different. How

could they share a common ancestor with weasels if there is so little similarity in

their genetic makeup? This might not seem like an important problem. So what

if skunks were badly misunderstood? Unfortunately, the wrong classification of

skunks has led to all sorts of confusion, not only about skunks but also about

weasels [4].

To build a family tree of weasels, skunks, and other species, two researchers

decided to look at DNA sequences from mitochondria of these species. The

mitochondria are unique in that they contain their own DNA (see Chapter 2),

and they are passed exclusively through the maternal (mother’s) line. In other

words, all themitochondria in your body are genetically identical to those in your

mother. This is a great asset because any changes that occur in the mitochondrial

genome are entirely the result of mutations and random forces, rather than the

result of combining with genetic information from other sources. This contrasts

with the DNA in the nucleus of cells, where one copy comes from each of the two

parents.

To compare themitochondrial sequences of these species and determine their

relationships to one another, the researchers followed the standard procedure

in phylogenetics [19]. They started by lining up the sequences using a multiple

sequence alignment algorithm (see Chapter 5). Each point where some of the

sequences differed would be noted. For example, Table 6.3 shows a segment of

the alignment among four sequences from different species.

To build a tree of relationships among species, we look at the columns of

the alignment. We want to determine the likely ancestral relationships among

254 Chapter 6 Simulating and Modeling Evolution

TABLE 6.3 An example of a multiple sequence alignment
that can be used in phylogenetic analyses∗

Species Nucleotide Sequence

1 2 3 4 5 6

Species I C T G A A C

Species II C T G A A T

Species III C A A A G C

Species IV C A G A G C

∗An example of a multiple sequence alignment that can be used in phylogenetic analyses. The

objective is to identify those nucleotide positions that are informative, or that would allow you

to distinguish between two or more possible phylogenetic trees.

IV

III

I

II

FIGURE 6.8 Is this the ancestral relationship between the species aligned in Table 6.3?

species I, II, III, and IV. Is it likely to be as shown in Figure 6.8? Or do the

labels at the leaves need to be permuted? We will apply the principle of maximum

parsimony to help us decide. First of all, we need to identify those columns of

the alignment that will help us to build a tree of the relationships among the

species. In Table 6.3, columns 1 and 4 contain the same nucleotide in all four

species. We therefore assume that any ancestral sequence probably had a C in

position 1 and an A at position 4. Any other assumption would make us less

parsimonious! But the column gives us no information at all as to whether the

positioning of the species as shown in Figure 6.8 is correct. Columns 1 and 4 are

termed uninformative.

In each of the other columns the sequence changes from one species to

another. These are the columns we care about. But not all of these columns

can help us identify a parsimonious tree. If two species have one nucleotide and

two others have a different one, then we can say that the change occurred after

the first two species had evolved but before the other two species became distinct.

Consider column 2: species I and II have a T in that position, but species III and

IV have an A. This suggests that species I and II are more closely related than

species I and III. In other words, the information in column 2 helps us make a

decision about relationships. We consider such a position to be informative. It

supports the top labeling we have shown in Figure 6.9 over the second labeling,

because the sum of letter-changes over all edges of the top diagram is only one,

whereas in the lower diagram, there is no way to label the inner nodes to produce

a total of fewer than two letter changes.

Chapter 6 Simulating and Modeling Evolution 255

IV

III

IT

T

T

A

T

A

A

A

T

A

II

II

III

I

IV

? ?

FIGURE 6.9 Column 2 of Table 6.3 is informative. It enables us to recognize the

upper tree as more parsimonious than the lower.

IV

III

I
G

G

G

G

G

GG

A

G

A

II

II

III

I

IV

GG

FIGURE 6.10 Column 3 of Table 6.3 is uninformative. It does not enable us to

distinguish between these two trees.

Sometimes a column contains the same nucleotide in three positions (see

column 3). What can we deduce from this column? We can conclude that species

III had a mutation that differentiates it from the other three species. However,

we cannot directly draw any further conclusions about the relationship of species

III to the other species. This is because we can draw several different trees from

this one column of information, but they all look the same (Figure 6.10), and

the total number of letter changes on edges of all possible trees is just one (the

single change fromG to A on the edge leading to species III). So column 3 is also

uninformative.

256 Chapter 6 Simulating and Modeling Evolution

IV

III

I

II

FIGURE 6.11 Columns 2 and 5 of Table 6.3 are the informative sites. Both sites

support the same tree.

In our example alignment (see Table 6.3), only columns 2 and 5 have infor-

mative sites. In these columns two species have one nucleotide and the other two

have a different nucleotide. The simplest explanation for the information in col-

umn 2, is that a mutation occurred after species I and II had evolved and that

this mutation is carried in species III and IV. The information in column 5 also

supports this tree as the more parsimonious solution. Figure 6.11 shows the final

version of a putative tree of the four species.

So what was the final result of the maximum parsimony analysis of skunk

mitochondrial DNA? The results were surprising. It turns out that skunk

sequences are much more ancient than any other members of the weasel family.

Skunks evolved well before the common ancestor of weasels, minks, and badgers.

In fact, the phylogenetic analysis elevated skunks to a new, prestigious position:

oldest extant carnivore [4]. In other words, skunks are now believed to be the

only living members of Earth’s first family of carnivorous mammals. The phylo-

genetic analysis using genetic data also resolved the mystery of the skunks within

the weasel family; they are not members of that family at all. Instead, skunks

are now classified in their own family (Mephitidae), which is derived from the

Latin root for “noxious odor.” So the mystery of the skunk turns out to be a case

of mistaken identity; it is also an example of how computational and molecular

techniques can help further our understanding of biology.

The Parsimony Approach

In general, algorithms employing maximum parsimony use the following steps

to identify the most parsimonious tree from a set of sequence data.

1. Generate an unrooted tree with nodes that represent each of the species (or

taxa, a more general term often used in this context).

2. Evaluate the number of changes required to generate this tree.

3. Compare this value with the values from other trees.

4. Select the tree that has the lowest value (least number of changes).

Most algorithms iterate this procedure across each column of the multiple

sequence alignment, summing the number of changes required for each informa-

tive site. The algorithm then identifies the tree that best explains each informative

site in the alignment. When we say a tree “best explains” an informative site, we

mean that it represents an organization of the taxa in a way that requires the

fewest possible changes to go from one taxa to the next. Exercise 6.11 allows you

Chapter 6 Simulating and Modeling Evolution 257

to try your hand at the maximum parsimony approach using a simplified version

of the required input data.

Exercise 6.11Write a program to determine which of the sites in the multiple-sequence

alignment are informative. Then, draw the trees derived from each of these

informative sites and identify themost parsimonious tree. Howmanychanges

in total does this tree require to explain the informative changes observed?

Taxa 1 2 3 4 5 6

Species I C G T T A C

Species II C T A A T G

Species III C G A T C C

Species IV G T A A G G

So far, we have taken straightforward examples of four species and a few

informative sites per alignment. Obviously, these simple examples are not repre-

sentative of the full complexity of a problem such as figuring out the evolutionary

history of skunks. In the specific case of the skunk analysis, the researchers com-

pared sequences from 26 different species. Each DNA sequence analyzed was

over 1100 base pairs long. So you can see how this would require a good deal

more work than the simple examples we have presented here. If you go back to

Exercise 6.10, you can estimate the number of rooted trees possible for 26 taxa.

The number of unrooted trees and the kind of trees generated by maximum

parsimony, would be several orders of magnitude higher.

Workarounds to Exhaustive Searching

This illustrates the first problem with maximum parsimony: The search space

for the maximum parsimony algorithm includes a potentially enormous number

of candidate trees. To evaluate every possible tree in this huge search space is

an NP-hard problem. As with other problems in the biological realm that are

either NP-complete or NP-hard (think of global pairwise sequence alignment

from Chapter 5), however, we can find a way around this apparent obstacle.

A common approach is to start by building a candidate tree using a different

tree-building method, such as neighbor joining or UPGMA (see Section 6.5.2).

These methods are faster computationally, and they help provide a sense of the

right “neighborhood” of trees. That is, given the set of all possible trees, which

would be impossible to search completely, we narrow our search to those trees

most likely to be “right.” You can probably see the inherent problems with this

approach immediately: how do we know that we are looking at the trees that are

most likely to be “right?” And if we know what the right tree is, why are we even

bothering to build a tree in the first place? The danger with this approach, also

known as branch and bound, is that we end up like the proverbial drunk searching

258 Chapter 6 Simulating and Modeling Evolution

for his car keys under the lamppost because “there’smore light here,” even though

we lost the key somewhere else.

Having said that, our situation is better than the drunk’s because, unlike

locating a lost object in the dark, phylogenetic reconstruction is contingent on

several, related factors. Remember that the evolutionary history of an organism

is captured in its genomic record through the mutations and changes that accrue

over time. Phylogenetic reconstruction focuses on these changes, and any tree-

building method will derive a tree based in some fashion on the mutation records

of the species of interest. Therefore, using a quick method to find the right neigh-

borhood and then an iterative, intensive method such as maximum parsimony

can help solve an otherwise intractable problem.

To better understand why this might be the case, imagine you are trying to

locate your friend’s house in a new city. Your friend has just moved there, so you

cannot remember the exact street address of his new home. What he can tell you

is that his home is “the yellow house down the street from the gas station.” With

only this bit of information, locating his home in any sizable city might prove

impossible. Certainly if his home were the only yellow house in the entire city, or

near the only gas station in the city, youwould have a good chance. But otherwise,

you are left with a bewildering set of options: many yellow houses, some coin-

cidentally near gas stations, and no idea of which is your friend’s. This scenario

is similar to an exhaustive maximum parsimony search, in which every possible

tree must be evaluated to identify the best tree. Sometimes this method works: in

those cases where the best tree is so distinctive (like the only yellow house or the

only gas station) that it pops up. Usually, this is not the case. Instead, days, weeks,

months later, the algorithm is still considering possible trees, and you would have

likely moved on to other pursuits that do not require phylogenetics at all.

Now suppose that just as you are despairing of ever finding your friend’s

new home, you suddenly remember the zip code for his new address. Things are

suddenly much more promising: with a zip code, you can now hunt around a

relatively small area for the yellow house by the gas station. The chances are

greater that within any given zip code, there will only be one or maybe a handful

of yellow houses near gas stations.3 Searching for your friend’s home among this

limited area is more likely to yield success.

The same logic applies to branch and bound. You use another tree-building

method to get to the right “zip code” of the tree space, and then you hunt for the

best (i.e., most parsimonious) tree among the trees in this area. If it turns out that

none of these trees are particularly parsimonious, you can iterate the procedure:

try a different tree-building method, locate a different part of the tree space,

reevaluate the trees there with maximum parsimony and see if the best tree exists

in that region. So branch and bound approaches are not nearly as foolish as they

might appear at first glance. More on branch and bound and other workarounds

to exhaustive searching can be found by following some of these references [9,18].

3
Unless of course you are in some bizarre wonderland where every house is yellow and every block
has a gas station!

Chapter 6 Simulating and Modeling Evolution 259

Workarounds to Multiple Most Parsimonious Trees

Maximum parsimony creates some other roadblocks on the path to success-

ful phylogenetic reconstruction. One of the biggest problems is illustrated in

Exercise 6.12.

Exercise 6.12Identify the informative sites from the followingmultiple-sequence alignment

and identify the most parsimonious tree from these data.

Taxa 1 2 3 4 5 6

Species I G A T A T C

Species II G C T A T A

Species III T C T A G A

Species IV T A T G G C

Can you identify just one tree that yields the best explanation for the changes

you see in the table? As it turns out, there are actually two trees, both of them

equally parsimonious, that can explain the data we see here. This leads to one

of the biggest disadvantages of maximum parsimony: more than one tree can

yield the same or a very similar level of parsimony. The problem is that each tree

postulates a different evolutionary history, so you are then left to decide which

of the trees is the most likely. Sometimes, you can use other evidence, such as the

fossil record, to discard some of the trees as unlikely. Unfortunately, all too often

you have to pick a tree based on relatively arbitrary criteria.

For example, in the past the phylogenetic analysis of humans, chimps,

organutans, and gorillas came up with two equally parsimonious trees. In the

one tree (Figure 6.12) humans share a common ancestor with chimps; gorillas

and orangutans are presumed to have diverged at an earlier point. The equally

likely alternative, however, was that humans shared a common ancestor with

gorillas, and chimps and orangutans had diverged earlier (Figure 6.13). Which is

the true evolutionary history of our species? At the time, no one knew for sure.

Since then, additional genetic analyses have swayed opinion toward the first tree

(see Figure 6.12).

The larger the number of taxa analyzed, the more likely that maximum par-

simony will yield multiple, equally parsimonious trees. This is such a prevalent

problem in the field, it has its own acronym: multiple MPTs (most parsimonious

trees). The problem of multipleMPTs arises in part because we often do not have

enough data to reliably pick the one best tree. This is certainly the case in Exer-

cise 6.12, where we are looking at just six columns of an alignment. If we looked

at more of the alignment, one of the two trees might become more encumbered

with changes, thereby helping us to pick the other as the more parsimonious.

Unfortunately, in most phylogenetic analyses, the data we have is all the data we

will ever have. So asking for more data to help refine MPTs is usually unfeasible.

260 Chapter 6 Simulating and Modeling Evolution

Chimp

Gorilla

Orangutan

Human

FIGURE 6.12 One version of a phylogenetic tree of extant (living) species of primates. Here, humans share

a common ancestor with chimps and are more diverged from gorillas and orangutans.

Instead, researchers in the field have devised some very clever statistical

manipulations that can give us a good estimate of what trees are likely to be

among the best. The chief method here is called bootstrapping, and at first glance,

the approach will seem counterintuitive. We have just said that the multipleMPT

problem arises because of a lack of data. In bootstrapping, you actually throw

away parts of the data and ask how well you do with an even smaller dataset. So

how can this possibly work? Here’s a brief overview of the steps in bootstrapping:

1. Start by randomly picking informative sites from the overall dataset.

Selection is not exclusive: you might pick the same site several times or

not at all. The key here is that the selection of sites is random.

2. Use maximum parsimony to build trees.

3. Identify and save the set of MPTs.

4. Repeat steps 1 through 3 many times.

5. Note any trees that always show up in step 3.

6. Combine these trees using consensus tree techniques.

Chapter 6 Simulating and Modeling Evolution 261

Chimp

Gorilla

Orangutan

Human

FIGURE 6.13 Another version of a phylogenetic tree for the same four species as Figure 6.13. Here, humans

and gorillas share a common ancestor, and chimps and orangutans are more diverged.

The idea behind bootstrapping is that some of the data in your set may actu-

ally be adding noise instead of information. This is especially true of biological

data: Somemutations may have no effect on the fitness of the population, and we

might as well not look at those changes because they add nothing to the history

of the species. So if you resample the data, randomly picking enough sites to fill

your dataset, and then check the trees, you might overcome the noise in the data.

In other words, by randomly sampling the data in different ways, you might be

able to see through the distractions that the full dataset introduces in the analy-

sis. In [10], the full algorithmic and implementation details for bootstrapping are

provided in exhaustive detail.

You might still wonder what is so great about a technique that first elimi-

nates data and then, over multiple iterations, generates even more MPTs than

you started with (presumably each iteration of bootstrapping will yield several

more MPTs)! Why would anyone ask for more confusion? The point is that if

the data are consistent, then some of the trees will show up again and again.

We will not delve into the details here, but it can be demonstrated statistically

262 Chapter 6 Simulating and Modeling Evolution

Chimp

Gorilla

Orangutan

Human

FIGURE 6.14 A consensus tree for primate species that contains a multifurcating

node to accomodate uncertainties in the relationships between humans, chimps and

gorillas.

that consistent data4 will yield the same set of MPTs over multiple iterations of

bootstrapping [10,11]. Bootstrapping, therefore, highlights those trees that are

the best of the best. Of course, we are still left with the problem of picking among

our cream of the crop.

This is where the final clever trick comes into play. Generally, the MPTs that

surface from bootstrapping are all relatively similar. They may vary slightly in

some branches, but the overall shapes are likely to be nearly identical. So rather

than picking among entirely different trees, we now have to choose between trees

that have only slight differences. Consider again the differences between the trees

in Figures 6.12 and 6.13. In both trees, orangutans are on a different branch

than humans. So we have to make a decision about just two species: chimps

and gorillas. Which one goes with humans? This is at least a narrower problem

than the question, “Which of humans, chimps, gorillas, and orangutans are most

closely related?”

At this point, many phylogeneticists will simply start to combine trees using

consensus tree techniques. Basically, wherever all the trees agree, such as that

orangutans are always farther away from humans, that branch is transferred as

is to the “master” tree. For places where trees are in dispute, the branches are

merged into a multifurcating node rather than a bifurcating node. This approach

essentially “passes the buck,” in that it defers making a decision about whether

one tree or another is right by equitably offering the possibility that all of them

are right. Figure 6.14 shows the consensus tree thatmight derive from the analysis

of humans, chimps, gorillas, and orangutans.

4
Note the emphasis on consistent data; if you have conflicting data, you will never get any closer to
solving the problem. However, with bootstrapping, you will at least know that you have conflicting
data, which is a step toward fixing the problem.

Chapter 6 Simulating and Modeling Evolution 263

6.5.2 Other Ways to Build Trees

Maximum parsimony is not a perfect solution to the phylogeny problem. Despite

Occam’s exhortations, the fact remains that the most parsimonious tree may not

be the true tree. This is probably as much a consequence of the random nature of

mutation as it is a reflection of the method itself. However, maximum parsimony

is among the best methods for phylogenetic reconstruction available today. As a

result, it tends to dominate the field.

Although maximum parsimony can yield a tree or set of trees that are likely

to represent the evolutionary history of a group of species, the end result can be

intellectually rather dissatisfying. For example, as we’ve already discussed, the

multiple MPTs and the difficulty in trying to determine which (if any) is best is a

problem.

This does not mean that there are not other ways to build trees. Indeed, we

have already alluded to two other methods: neighbor joining and UPGMA. We

turn next to these two methods. Both have several attractive advantages over

maximum parsimony: they are computationally fast and they can often yield

good estimates of the true tree. By “true tree” we mean the tree that represents

the real evolutionary history of a group of species.

Furthermore, neighbor joining and UPGMA can give us something that

maximum parsimony cannot: they can estimate the time since two species

diverged. From an evolutionary perspective this is the real advantage. Imag-

ine reading an entire history of World War II, but without ever knowing that

it happened in the twentieth century. If you didn’t know that, you might just

as easily assume it happened during the time of the Egyptian pharaohs. You

would then marvel at their technological prowess. With a sense of timescale,

however, we gain both a perspective on what was impressive (the rapid devel-

opment of technologies such as radar and the atom bomb) and what was more

prosaic (the use of tanks and artillery to bombard the front lines). The same

is true for phylogenetic reconstruction. It is all well and good to know that

humans probably share a common ancestor with chimps, but how much bet-

ter if we can say we think that chimps diverged from humans about the time

that the savannahs began to expand in Africa. Now we can not only postu-

late the evolutionary history of humans and chimps, we can place them in an

ecosystem and a context. Essentially, if we want to gain a sense of life at a

point in the past, we need more than the narration of events, we need time

as well.

So let’s turn our attention to the problem of figuring out a numerical mea-

sure for the difference between two adjacent nodes in a phylogenetic tree. If the

nodes contain purely sequence information, be it protein sequence or nucleotide

sequence, we have seen enough examples whenwe studied alignment in Chapter 5

to know several ways to assign a measure to the distance between the two

sequences. If the data at the nodes are morphological, then the methods for

measuring the difference along the arc are far more arbitrary. For example, how

would you assign a numerical value to the difference between a simple eye and

a compound eye? Although biologists in the past have certainly attempted to

264 Chapter 6 Simulating and Modeling Evolution

assign distances based on morphological characteristics, we will focus here on

sequence data.

A worked example: Tree building with UPGMA

One technique that has been used with some success is known by the unfortunate

and almost unpronounceable acronymUPGMA (unweighted pair groupmethod

with arithmetic mean). This fairly straightforward clustering technique depends

on the assignment of numeric values to the differences between each pair of

original nodes. Let’s illustrate the technique with some invented data.

Suppose we have seven species: armadillo, beaver, cat, dog, elephant, flatfish,

and gnu. And suppose we have a friendly biologist who assigns numeric values

indicating how different each pair are from each other pair. Perhaps our biologist

reckons cats and dogs are fairly similar (difference value 2), whereas armadilloes

and flatfish are very different (value 23). In summary, after much persuasion, our

friendly biologist fills in the matrix given in Figure 6.15.

The first step in the UPGMA process is to identify the closest neighbors,

indicated by the lowest nonzero entry in the matrix. In our case, it is the dog and

the cat, and their evolutionary distance is 2. So we create a new node, combining

the dog and the cat, labeled CD. Think of it as the common ancestor of dog and

cat, and it divided into the species 2 arbitrary time units ago. We now remove C

and D from consideration, but replace them by the new node CD. The distance

of CD from any other species X is the arithmetic mean of the distance of C from

X and the distance of D from X. We obtain a new matrix shown in Figure 6.16.

Again we seek the lowest nonzero entry and combine them as in Figure 6.17.

It is traditional to use a longer vertical line from AB to indicate the greater

evolutionary distance between the common ancestor of A and B and its chil-

dren. The next few steps are indicated in Figure 6.18. The common ancestor of

ABEGCD and F is finally seen to be the root of our tree, and the last merge can

take place, resulting in the tree shown in Figure 6.19.

In summary, UPGMA is a fairly simple clustering technique that relies on

a measure of differences between the original nodes. It gradually pairs nearest

neighbors, replacing a pair by a “commonancestor” that is at the arithmeticmean

A B C D E F G

A 0 7 12 13 9 23 11

B 0 7 9 10 19 10

C 0 2 11 24 13

D 0 12 22 12

E 0 18 9

F 0 24

G 0

FIGURE 6.15 Numerical values to pairwise species differences.

Chapter 6 Simulating and Modeling Evolution 265

A B CD E F G

A 0 7 12.5 9 23 11 CD

B 0 8 10 19 10 | distance 2

CD 0 11.5 23 12.5 ____|____

E 0 18 9 | |

F 0 24 C D

G 0

FIGURE 6.16 Step 1, C and D are merged.

AB CD E F G AB

AB 0 10.25 9.5 21 10.5 | distance 7

CD 0 11.5 23 12.5 ____|____

E 0 18 9 | |

F 0 24 A B

G 0

FIGURE 6.17 Step 2, A and B are merged.

distance from its progeny. The process repeats, on each iteration, substituting a

postulated common ancestor node for the lowest differing pair of nodes until

only one node remains. That is the root, and the rest of the phylogeny can be

inferred by going through the merging process in reverse, separating out pairs of

children from each common ancestor.

Much criticism can be directed at the resulting phylogeny. The scaled dis-

tances don’t make a lot of sense. They show the cat and the dog significantly

closer to the common ancestor than the elephant and the gnu. Is that a neces-

sary consequence of the algorithm? Can you think of a modification to the given

algorithm that would correct for this anomaly?

In fact, most implementations ofUPGMAare a bitmore sophisticated about

the distances. Instead of always using the smallest number that was picked from

AB CD EG F

AB 0 10.25 10 21

CD 0 12 23 E and G merge ancestral distance 9

EG 0 21

F 0

ABEG CD F

ABEG 0 11.125 21

CD 0 23 AB and EG merge ancestral distance 10

F 0

ABEGCD F

ABEGCD 0 22

F 0 ABEG and CD merge ancestral distance 11.125

FIGURE 6.18 Steps 3, 4, and 5.

266 Chapter 6 Simulating and Modeling Evolution

ABEGCDF

F ABEGCD

AB EG

ABEG CD

C D

EBA G

FIGURE 6.19 The resulting phylogenetic tree.

A B

F

AB EG CD

ABEGCD

ABEG

C D
E G

ABEGCDF

FIGURE 6.20 The resulting phylogenetic tree when better distance calculations are

used.

the array, it is possible to go back to the original data and calculate amore reliable

distance for, say CD from ABEGCD if we know that F is a completely unrelated

species. This is certainly the case for this dataset: We would expect that a fish like

the flatfish would have diverged from the other species, which are all mammals,

many millions of years before the mammals diverged from one another. So we

can have UPGMA adjust the distances by using the very long distance to F as a

way of determining which branch lengths should be shorter among the remaining

species. This is known as using an outgroup—a species unrelated to the ones we

are interested in. Such an approach can yield a tree similar to Figure 6.20, which

is actually a better representation of the evolutionary history of these species than

Figure 6.19. Exercise 6.13 asks you to learn more about the methods available

for adjusting distances appropriately. One place to start is [7].

One of the reasons we get the somewhat strangely organized branch lengths

in Figure 6.19 is that UPGMA makes one assumption that simplifies the

tree-building process. It assumes that all species and all regions of a genome

acquire mutations at a steady rate. This is known as the molecular clock hypoth-

esis. Based on what we discussed about functional constraints in Section 6.4.1,

Chapter 6 Simulating and Modeling Evolution 267

you can probably already say why this assumption is incorrect. Recall the his-

tones, a class of proteins that appear to have changed very little over extremely

large stretches of time. Other proteins, however, have changed dramatically in

that time. The reason for this is that functional constraints vary for different

genes, and the rates of mutation will therefore also vary. Using an outgroup can

compensate for some of the problems of the molecular clock hypothesis, but it

remains a problem for any tree generated by UPGMA. As a result, UPGMA is

used only rarely for phylogenetic reconstructions. Nevertheless, it is the simplest

and easiest way to implement many of the tree-building methods available, and

when the molecular clock hypothesis is justified, it can provide a rapid method

to use in a branch and bound analysis in maximum parsimony. That is why we

ask you to explore your own implementation of UPGMA in Exercise 6.13.

Exercise 6.13Implement a better way to calculate distances between hypothetical common

ancestors and each of their children after doing a library or Internet search

to identify resources for adjusting UPGMA tree distances. One place to

start would be [7]. Test your program on the following data from Fitch and

Margoliash [5]. You will note that these data provide the lower half of a

symmetric matrix, whereas the earlier example used the upper half.

Turtle Man Tuna Chicken Moth Monkey Dog

Man 19

Tuna 27 31

Chicken 8 18 26

Moth 33 36 41 31

Monkey 18 1 32 17 35

Dog 13 13 29 14 28 12

Neighbor Joining

Amore reliable way of building a tree based on a distance matrix such as the one

shown in Figure 6.15 is to use neighbor relations methods. Neighbor relations

is a broad category of methods that try to build unrooted phylogenetic trees by

grouping those taxa that are most similar together as “neighbors.” The idea is

that you build the tree from the bottom up, asking at each step, “What is the

closest pair of taxa to my current branch?”

Of these methods, neighbor joining is the most frequently used. Here is an

overview of the steps in neighbor joining:

1. Start by assuming all taxa are on the ends of their own, equal-length

branches. This creates a star pattern as shown in Figure 6.21.

2. Now calculate the sum of distances between each pair of taxa.

3. Identify the pair of taxa that has the shortest distance between them and all

other pairs.

268 Chapter 6 Simulating and Modeling Evolution

A

B

C D

E

FIGURE 6.21 In the initial step of neighbor joining, all species are assumed to be

equidistant from each other. This results in a star shape as shown here.

4. Group these into a consensus node.

5. Compare this consensus node with the remaining taxa to identify the next

closest neighbor.

6. Iterate steps 1 through 4 until all taxa have been placed in a tree.

Let us walk through the UPGMA data in Figure 6.15 and use neighbor

joining to generate the tree instead. The first step of neighbor joining is to create

a list of the sums of distances between each node and every other node. To

simplify the process, neighbor joining generally compares four species at a time,

progressively mixing and matching until all the distances among all the species

have been calculated. For any four species, there will be three sums of distances if

comparing pairs (e.g., AB vs. CD, AC vs. BD, and AD vs. BC). Using the sum of

distances for each pair, neighbor joining then picks the pair with the lowest sum

of distances. After the initial analysis, neighbor joining picks the pair that appears

most frequently. In other words, neighbor joining picks the pair of species that

most often end up together because the sum of distances from this pair to any

other pair is the smallest possible. Table 6.4 shows a partial calculation of sums

of distances for a few of the nodes in the full dataset shown in Figure 6.15.

Based on just this preliminary analysis, it would appear that the pair CD is

the first neighbor pair. This is because in Table 6.4, the (CD) pair appears three

times and is therefore the one with the smallest sum of distances among the five

species compared here. Exercise 6.14 asks you to complete the table for all of the

species in the distance matrix of Figure 6.15.

Exercise 6.14 Write a program to compute the pairwise distances among all the species

using distance data from Figure 6.15. Confirm that CD is in fact the first

neighbor pair.

After this initial analysis, the next step resembles UPGMA. The distances

are recalculated based on the arithmetic mean between each remaining species

and the CD pair. So you next obtain the matrix shown in Figure 6.16. Then the

process iterates, comparing each pair of remaining species with the CD pair to

identify the next pair of closest neighbors, and so on through the set of species.

Chapter 6 Simulating and Modeling Evolution 269

TABLE 6.4 Partial calculation of sums of distances for a few of the
nodes in the full dataset shown in Figure 6.16∗

Species Sum of pairwise distances Neighbor pairs chosen

A, B, C, D dAB + dCD = 7+ 2 = 9 (AB),(CD)

dAC + dBD = 13+ 7 = 20

dAD + dBC = 12+ 9 = 21

A, B, C, E dAB + dCE = 7+ 11 = 18 (AB),(CE)

dAC + dBE = 12+ 10 = 22

dAD + dBC = 13+ 7 = 20

A, B, D, E dAB + dDE = 7+ 12 = 19 (AE),(BD)

dAD + dBE = 13+ 10 = 23

dAE + dBD = 9+ 9 = 18

A, C, D, E dAC + dDE = 12+ 12 = 24 (AE),(CD)

dAD + dCE = 13+ 11 = 24

dAE + dCD = 9+ 2 = 11

B, C, D, E dBC + dDE = 7+ 12 = 19 (BE),(CD)

dBD + dCE = 9+ 11 = 20

dBE + dCD = 10+ 2 = 12

∗The first column (Species) lists the four species currently being considered by neighbor joining. The second

column (Sum of pairwise distances) shows the sum of distances for pairing up these species in the three possible

ways. Distance values are drawn from the original distance matrix shown in Figure 6.15. After each set of four

species are compared, neighbor joining picks the two pairs most likely to be neighbors based on the smallest

sum of distances. This is shown in the final column of the table (Neighbor pairs chosen). Pairs are shown within

parentheses [e.g., (AB) is a pair]. After [7].

Exercise 6.15 asks you to implement a version of neighbor joining based on the

steps outlined earlier.

Exercise 6.15Implement a version of neighbor joining based on the data in Exercise 6.13.

You can use the code from Exercise 6.14 to calculate the pairwise distances

for each distance matrix. Your code from Exercise 6.13 can be adapted to

calculate the new distance matrix at each iteration so you will only need a

method for selecting the neighbor pair after each iteration.

The end result of neighbor joining will often look a great deal like a tree

fromUPGMA. Like UPGMA, neighbor joining tries to find the shortest branch

lengths, but unlike UPGMA, neighbor joining groups taxa into pairs first and

then tries to organize the pairs with respect to one another. As a result, neighbor

joining will produce an unrooted tree. By working on pairs of taxa at a time,

neighbor joiningdoesnotneed toassumeanequal rate ofmutation (themolecular

clock) across all taxa. So itwillmore likely yield a tree similar toFigure 6.20 rather

than the version that UPGMA prefers (in Figure 6.19). Of course, the tree will

be unrooted, so it will look more like Figure 6.22.

270 Chapter 6 Simulating and Modeling Evolution

A
C

D

F

B

E

G

FIGURE 6.22 This tree illustrates the most likely tree as generated by neighbor

joining. Note that it is very similar to the UPGMA tree in Figure 6.20 in this instance,

although that is not always the case.

Neighbor joining and UPGMA have one critical advantage over maximum

parsimony and other methods—they are computationally fast. As a result, you

can get a quick answer to any pressing phylogenetics question. However, they

are less rigorous approaches and are more or less limited to those datasets with

sequence data. Maximum parsimony, in contrast, can work on either sequence

data or physiological characteristics. For these reasons, you will most often see

neighbor joiningorUPGMAusedas subsidiarymethods tomaximumparsimony

rather than being employed as stand-alone methods.

One example of neighbor joining is the attempt to identify the ancestral virus

that gave rise to HIV in humans. We know that HIV is related to a number of

viruses in other primates, collectively known as SIV (simian immunodeficiency

virus). In Chapter 5, we discussed some recent work that helped identify a strain

of SIV in chimpanzees (SIVcpz) as the possible ancestral strain ofHIV in humans

[6]. This work began with a multiple sequence alignment (see Chapter 5), but the

main thrust of the work built a phylogenetic tree of the sequences from SIVcpz

and various strains of HIV. The first step of this work used a neighbor-joining

approach to develop a quick assessment of the likelihood that SIVcpz might be

an ancestral sequence to one of the various strains of HIV.

The initial analysiswith neighbor joiningwas so positive, the researchers then

went on to do a much more rigorous analysis of the sequences to estimate the

date of divergence and the early evolution of HIV from SIVcpz [6]. For that, the

researchers used a powerful newmethod for tree building—maximum likelihood.

We discuss maximum likelihood and its uses in the following section.

6.5.3 Maximum Likelihood

We have now covered three methods of building trees, each of which has advan-

tages anddisadvantages for particular situations. The final approach is a relatively

new introduction to the phylogenetics realm. However, it shows great promise

Chapter 6 Simulating and Modeling Evolution 271

and has such significant advantages over the other three methods that many

researchers expect it to become dominant in the field in the next few years. This

method, maximum likelihood (abbreviated ML), involves building a statistical

model of the most probable evolutionary history of a set of species and gener-

ating a tree from that model. The central advantage of ML methods is that all

the power and sophistication of statistical analysis can be brought to bear on the

problem of phylogenetic trees.

One of the interesting features of the ML approach is that we start by devel-

oping a model of evolution. If this sounds grandiose, it is. In reality, we cannot

fully model evolution because we cannot yet predict what random changes will

happen in the future. Rather, we build our model based on our observation of

changes that have already occurred in our taxa. As we discussed in Section 6.4,

although we cannot model the overall process of evolution, we can build models

of how and when mutations will occur.

In Section 6.4.1, we discussed models for rates of mutation. The Jukes–

Cantor and Kimura 2-parameter models have relatively few parameters: one in

the case of Jukes–Cantor and two in the latter instance. InML,wedevelop amuch

more complex model with many more parameters. Each parameter in the ML

model assigns a specific likelihood estimate to different transitions, transversions,

and other mutations.

The resulting models resemble the PAM or BLOSUMmatrices you encoun-

tered in Chapter 5, except that the values in the rows and columns represent the

likelihood of such transformations as a T becoming an A and vice versa. Essen-

tially, we need to assign a likelihood (akin to a probability) for each possible

modification of a nucleotide or amino acid. Usually, we obtain the likelihood

values as simple estimates of the relative frequency of a given mutation within a

large dataset.

Look back at Table 6.2 to see the first step of this process. There, we counted

up the number of occurrences of different mutations in HIV. To generate a like-

lihood, we simply transform these raw counts into relative frequencies. For

example, T to C mutations occurred twice, and mutations of T to G and T to

A occurred once each. Therefore, the likelihood of a T to C mutation is 2/4, or

0.5. This is because there were a total of four occurrences ofTmutating to some-

thing else. If we continued in this fashion we would develop a set of likelihood

values for HIV mutations. This might help us in generating a phylogenetic tree

of HIV strains. To generalize this procedure for use with any species, we sample

mutations across many different species to determine general likelihood values,

which are most often used in ML analyses.

Once we have the likelihood values, we can then try to decide which changes

are more likely and assign these to branches of a tree. Wemultiply the likelihoods

for each change in each branch of the tree to obtain the overall likelihood for

the tree.5 Then we compare the likelihood values of the various trees and decide

5
In practice, multiplying very small likelihoods rapidly leads to vanishingly small numbers. In most
implementations, the negative log transformed values of likelihoods are used instead. These are

272 Chapter 6 Simulating and Modeling Evolution

which is the best tree. The best tree in this approach is the one that is most likely

given our starting model.

Simulations of phylogenetic data and statistical analyses have demonstrated

that of all the methods for tree building, ML is the only one statistically guaran-

teed to find the true tree [20]. Of course, how you define “true” tree depends on

what you already know about the evolutionary history of the species of interest.

When we say that ML is guaranteed to find the true tree, we are using the results

of many simulated experiments in which the correct tree is known in advance. In

these circumstances, maximum parsimony will sometimes find the right tree and

sometimes not, for reasons we will cover in the next section. ML, however, will

always find the correct tree. This is whatmakesML so promising for phylogenetic

reconstruction.

Exercise 6.16 Use the description of how to estimate mutation rates to develop a program

that builds anMLmodel formutations inHIV.You can use the data provided

in Table 6.2 on page 250. To build a complete model, you will need to obtain

the full data-set from the original reference [13]. Can you generalize your

program so that it is applicable for any species?

Maximum Likelihood versus Maximum Parsimony

ML is an approach that’s similar in spirit to maximum parsimony, but it substi-

tutes probabilities where parsimony makes a more qualitative distinction about

informative and uninformative sites. The difference in ML is that rather than

identifying the tree with the simplest explanation for the observations, the ML

approach purports to find the tree that is most likely to represent the evolution-

ary history of the organisms. This assumes, of course, that our selected model for

mutations is the correct one and that it represents the true model for the observed

mutations. So the choice of mutation model greatly influences the end result of

ML analysis. A full discussion of the models used in ML analysis is beyond our

scope here, but the literature in this area abounds. A good place to start is [20].

Interestingly, when relatively few closely related taxa are used, the ML tree

and the tree(s) generated by maximum parsimony tend to be very similar. Fur-

thermore, ML is computationally so intensive that it can take days or weeks to

run an analysis. So why not just use maximum parsimony and forget about ML

altogether? There are several reasons to favorML. Chief among them is thatML

rests on a solid statistical foundation. Many powerful statistical methods can be

applied to the evaluation of trees when using ML, and we can generate results

that are highly reliable and reproducible [12].

The solid statistical foundation for ML is in sharp contrast to that for max-

imum parsimony, a method that is by nature a qualitative assessment of trees.

summed to generate the likelihood value for the tree (remember that to multiply logs you sum them).
Thus, the most likely tree is the one with the lowest negative log likelihood value.

Chapter 6 Simulating and Modeling Evolution 273

The most severe criticism of maximum parsimony is that under certain condi-

tions maximum parsimony will reliably return the wrong tree. This tends to occur

when the species being analyzed diverge significantly—a problem referred to as

long-branch attraction. Briefly, long-branch attraction refers to the tendency for

maximum parsimony to place taxa that are equally distant from each other next

to each other, thereby implying that they are more closely related than, in fact,

they are.

This might seem an obscure problem, but you have already encountered it! If

you think back to the example in Section 6.5 with snakes, chickens, and humans,

you will see a version of this problem. The most parsimonious tree was the one in

which snakeswith no arms give rise to chickenswithwings and humanswith arms

(see Figure 6.6). But we know this is the wrong tree. The problem is that we are

comparing species that diverged many hundreds of millions of years ago, and the

actual history of their evolution suggests that snakes lost protoarms and chickens

transformed arms into wings. Remember that species can change in many ways:

• Gain a feature after speciation

• Inherit a feature from an ancestor species

• Lose a feature after speciation

• Gain a feature through some other process such as convergent evolution

“Feature” in this instance could be anything: arms or wings or, more com-

monly, a nucleotide substitution mutation of some kind. The reason maximum

parsimony is susceptible to long-branch attraction is that maximum parsimony

assumes that features in a species are acquired by either the first or second pro-

cess we described earlier. This is usually true but not always. And when that

assumption fails, maximum parsimony yields the wrong tree. MLmakes no such

assumption about the mechanism by which a feature was acquired, and it has

been shown statistically with simulated data that ML is very resistant to the

long-branch attraction problem [12].

Stumbling Blocks to Maximum Likelihood

All this may suggest that the method of choice for phylogenetic reconstruction

should be maximum likelihood. You would be right to assume this is the case.

Yet, most of the actual reconstructions of species are done with maximum parsi-

mony or some other method. Why? Until recentlyML could not be implemented

at all for any analysis that compared more than a handful of species. This is

because ML is incredibly computationally intensive, since it must evaluate every

tree before it can identify the most likely one. If you remember the results of

Exercise 6.10, you know that for even a dozen species the number of trees to be

evaluated can be astronomical. The same workarounds we discussed for maxi-

mum parsimony (see Section 6.5.1) can be applied here, but then we also lose the

statistical guarantee of finding the true tree. As computing power has increased

in the last decade, however, ML has become more popular [20].

The other stumbling block to using ML is that large datasets are required to

estimate the likelihoods in the underlying model of mutation. The large datasets

are necessary because the likelihood values are essentially estimated from the

274 Chapter 6 Simulating and Modeling Evolution

frequency of occurrences observed. If you start with too small a dataset, you run

the risk of overestimating somemutation frequencies and underestimating others.

Indeed, this is one reasonwhyBLOSUMhas becomemore popular as a sequence

alignmentmatrix than PAM(seeChapter 5). BLOSUM is based on amuch larger

dataset than PAM and therefore is more reliable when comparing sequences that

have greater divergence times. As the size of the sequence databases has increased

over time, the models needed by ML have become more reliable as well. We can

now estimate the frequencies of mutations for a wide range of species using the

data from GenBank and other sequence repositories.

So in essence, ML represents the best path forward for phylogenetic recon-

struction. As computing power and sequence data have increased exponentially,

ML has become more and more feasible. It remains to be seen if it will be widely

adopted by the phylogenetic community, but the early trends suggest that ML

will soon come to dominate the field.

In general, phylogenetic reconstruction is as much an art as a science. As

you’ve seen in this chapter, there are manymethods for studying evolution, build-

ing trees, and analyzing the results.We can simulate evolution to understandmore

about the larger questions of how evolutionmight occur or what its consequences

might be. We can model evolution to some extent, and this allows us to ask spe-

cific questions about evolution. For example, we can ask, “Where did HIV come

from?” and obtain a clear answer: HIV arose from a strain of chimpanzee SIV.

But as we have discussed in this chapter, each of the methods available to us

for reconstructing phylogenies has advantages and disadvantages. The biological

time machine that is the genome can only take us so far in reconstructing the

history of life. Some aspects will probably always be left to conjecture. But for

many problems, we now have a way to at least investigate the process of evolution

and to evaluate the answers in a meaningful way. That, at least, is a step in the

right direction.

KEY TERMS

kingdom (6.1)

phyla (6.1)

class (6.1)

order (6.1)

family (6.1)

genus (6.1)

species (6.1)

mutation (6.1)

point mutation (6.1)

insertion (6.1)

deletion (6.1)

fitness function (6.3)

genetic algorithm (6.3)

cross breed (6.3)

speciation (6.3)

Markov models (6.3)

training set (6.3)

testing set (6.3)

common ancestor (6.4)

phylogenetics (6.4)

phylogenetic tree (6.4)

synonymous substitution (6.4)

nonsynonymous substitution (6.4)

functionally constrained (6.4)

transition (6.4)

transversion (6.4)

maximum parsimony (6.5)

parsimonious (6.5)

morphological characters (6.5)

convergent evolution (6.5)

uninformative (6.5)

informative (6.5)

branch and bound (6.5)

bootstrapping (6.5)

consensus tree techniques (6.5)

outgroup (6.5)

molecular clock hypothesis (6.5)

neighbor relations (6.5)

neighbor joining (6.5)

maximum likelihood (6.5)

Chapter 6 Simulating and Modeling Evolution 275

BIBLIOGRAPHY

1. Richard Dawkins. The Blind Watchmaker: Why

the Evidence of Evolution Reveals a Universe

Without Design. Norton, London, 1986.

2. Richard Dawkins. The Ancestor’s Tale: A

Pilgrimage to the Dawn of Evolution. Houghton

Mifflin, Boston, 2004.

3. A. L. Delcher, D. Harmon, S. Kasif, et al.

Improved microbial gene identification with

GLIMMER. Nucl Acids Res, 27:4636–4641,

1999.

4. Jerry W. Dragoo and Rodney L. Honeycutt.

Systematics of mustelid-like carnivores. J

Mammol, 78:426–443, 1997.

5. W. M. Fitch and E. Margoliash. Construction

of phylogenetic trees. Science, 155:279–284,

1967.

6. Feng Gao, Elizabeth Bailes, David L.

Robertson, et al. Origin of HIV-1 in the

chimpanzee Pan troglodytes troglodytes.

Nature, 397:436–441, 1999.

7. Dan Graur and Wen-Hsiung Li. Fundamentals

of Molecular Evolution, 2nd edition. Sinauer

Associates, Sunderland, MA, 2000.

8. Russell D. Gray and Fiona M. Jordan.

Language trees support the express-train

sequence of Austronesian expansion. Nature,

405:1052–1055, 2000.

9. M. D. Hendy and D. Penny. Branch and bound

algorithms to determine minimal evolutionary

trees.Math. Biosci, 60:133–142, 1982.

10. D. M. Hillis and J. J. Bull. An empirical test of

bootstrapping as a method for assessing

confidence in phylogenetic systems. Syst Biol,

42:182–192, 1993.

11. D. M. Hillis, J. P. Huelsenbeck, and

C. W. Cunningham. Application and accuracy

of molecular phylogenies. Science,

264:671–677, 1994.

12. Carolin Kosiol, Lee Bofkin, and Simon

Whelan. Phylogenetics by likelihood:

Evolutionary modeling as a tool for

understanding the genome. J Biomed Inform,

39:51–61, 2006.

13. L. M. Mansky and H. M. Temin. Lower in vivo

mutation rate of human immunodeficiency

virus type 1 than that predicted from the

fidelity of purified reverse transcriptase. J Virol,

69:5087–5094, 1995.

14. Rhys Price Jones, David P. Russell, James

Thompson, and Robert J. Zagursky. Bacterial

protein start prediction program using a

genetic algorithm. Unpublished work.

15. M. M. Riehle, A. F. Bennett, R. E. Lenski, and

A. D. Long. Evolutionary changes in

heat-inducible gene expression in Escherichia

coli lines evolved at high temperature. Physiol

Genomics, 14:47–58, 2003.

16. K. E. Rudd. Ecogene: A genome sequence

database for Escherichia coli k-12. Nucleic

Acids Res, 28(1):60–64, 2000.

17. J. Shine and L. Dalgarno. The 3 -terminal

sequence of Escherichia coli 16S ribosomal

RNA: Complementarity to nonsense triplets

and ribosome binding sites. Proc Nat Acad Sci

U S A, 74:1342–1346, 1974.

18. K. Takahashi and M. Nei. Efficiencies of fast

algorithms of phylogenetic inference under the

criteria of maximum parsimony, minimum

evolution, and maximum likelihood when a

large number of sequences are used.Mol Biol

Evol, 17:1251–1258, 2000.

19. Mikael Thollesson. Phylogenetic inference.

http://artedi.ebc.uu.se/course/X3-2004/

Phylogeny/

20. Simon Whelan, Pietro Lio, and Nick Goldman.

Molecular phylogenetics: State-of-the-art

methods for looking into the past. Trends

Genet, 17:262–272, 2001.

7
Gene Finding

“In all cases of secret writing, the first question regards the language of the cipher;

for the principles of solution . . . depend upon and are varied by the genius of the

particular idiom. In general, there is no alternative but experiment (directed by

probabilities) of every [possible solution] . . . until the true one be attained.”

—William Legrand, in The Gold Bug by Edgar Allan Poe.

7.1 A MODERN CRYPTOGRAPHIC PUZZLE

Imagine for a moment that you have access to a powerful radio telescope. Every

day you pick up many “transmissions,” most of which are dismissed as random

background noise from outer space. Every now and then, however, you receive

a signal that does not look quite like random noise. Rather, you think it may be

a coded message from some extraterrestrial intelligent being. How might you go

about proving that your new transmission is actually a coded message and not

just random noise?

Now suppose that instead of a message from outer space, the “transmission”

you have is genomic sequence. You have just discovered a new species of bacteria

with the ability to convert household waste into a usable product; perhaps your

miracle bug can convert waste into gas for your car. Using the methods described

in Chapters 3 and 4, you have isolated and sequenced the genome of your miracle

bug. How do you figure out which parts of the genome enable your miracle bug

to do its magic? Which parts of the genome are actually functional?

These two examples may seem completely unrelated, but they, in fact, share

a common puzzle. Both involve coded messages, and the challenge is to crack the

code so you can understand the message. In computer science, solving puzzles

of this nature comes under the purview of the field of cryptography. Whether

you are trying to decipher a message from outer space or the genome of a new

organism, the challenges and solutions are very similar.

Richard Dawkins [4] has noted how DNA “carries information in a very

computer-like way.” Genomes are rather like hard disks. Some of the informa-

tion is in current use and constantly being accessed for purposes related to the

workings of the organism. Active genes are like the files on a hard drive we are

constantly accessing. Other areas of the disk contain older versions of current

files, or perhaps back-ups of some kind. Likewise, genomes contain repeats, some

276

Chapter 7 Gene Finding 277

exact, others perhaps an echo of an older version of a gene. Yet other areas of the

hard drive have been written and rewritten many times, fragmented and defrag-

mented over and over—so much so that their contents would appear to be nearly

random. Perhaps some areas of our genomes are so far removed from a time

when they were in use and subject to evolutionary pressure to conserve pattern

and function that by now those regions are essentially indistinguishable from

random.

In this chapter, we will try to crack the genome code. What does it mean to

decipher a genome? In essence, it means we have found and documented all the

instructions for making the parts of an organism. Each of those instructions is a

gene, so to crack the genome code is essentially to find all the genes.

Finding genes is actually an interesting variation on the standard crypto-

graphic puzzle: given a string, howdo youdecide if it has anymeaningful content?

You can see how this is actually a similar problem to monitoring radio trans-

missions from outer space. How would you decide whether these transmissions

(or genomic sequences) were meaningful bits of a message rather than random

noise?

In the 1940s, a young mathematician at Bell Laboratories formulated a

powerful set of ideas for distinguishing between truly random noise and encoded

messages. Claude Shannon proposed that you could identify messages by several

features. Shannon’s theory distinguishes

• meaningful information

• redundancy

• noise

Genes and regulatory signals correspond to meaningful information. Mod-

ified “old” genes and repeats provide redundancy. And currently the term “junk

DNA” is sometimes applied to what may be genomic “noise.”

Meaningful information tends to go hand in hand with redundancy. We

are able to detect meaningful transmissions in a cacophony of radio noise by

identifying patterns. True noise is completely random, and any patterns detected

are fleeting. Meaningful transmissions show themselves by presenting detectable

features that persist. Redundancy helps preserve meaningful data. All data is

subject tomutation: DNA replication errors occur, wire or wireless transmissions

suffer from vagaries due to sunspots or thunderstorms. Human communication

is notoriously uncertain. By adding redundancy, the information is more robust.

With multiple copies of genetic material and with predicable patterns in expected

places, DNA can repair many mutations before any lasting damage occurs. As

another example, accountants add checksumdigits to columns of numbers. These

checksums are designed to cause all columns to add to a known total (often 9

when the addition is modulo 10). If a received transmission contains a column

with a different total, then the receiver knows that an error occurred. Checksums

are an example of error-detecting codes: they add enough redundancy that most

errors can be detected. Somewhat more sophisticated are the error-correcting

codes described by Richard Hamming [9].

278 Chapter 7 Gene Finding

7.1.1 Detecting Encryption

In this chapter we focus on ways of analyzing sequences to find patterns and

identify their biologically meaningful aspects. How do we identify meaningful

patterns? We look for redundancy. Let us start with an example from English.

The word the is one of the most common words in English. It occurs far more

often thanwould be expected at random, even given the frequency with which the

letters t, h, and e occur in the language. Someone trying to decode an encrypted

message originally written in English might notice that a particular pattern of

three characters was repeated at a frequency much greater than expected at ran-

dom. This redundancy would be a hint that such a pattern might represent the

word the.

The frequency with which a meaningful pattern is repeated within a longer

string is related to the Shannon entropy. Shannon entropy measures the average

minimum number of bits required to encode the information in the string. The

more repetition in the string, the more compression is possible, and so fewer bits

are needed to encode the information. The likelihood that a pattern ismeaningful

(contains information) is derived as a measure of how often we might expect to

see that pattern at random. To estimate the likelihood of occurrence at random,

Shannon proposed that we measure the complexity of the string.

In this context, complexity is shorthand forhoweasy it is to compress a string.

The more meaningful a string is, the more easily it is compressed. In other words,

ameaningful string is less complex (more compressible) than ameaningless string

(less compressible). Interestingly, what Shannon proposed is that a completely

random string cannot be compressed at all.1 It is infinitely complex. This concept

is the key finding of Shannon’s theory of information [15].

Let us consider an example from DNA. One of the key patterns used in

finding genes is the TATA box. This short string, usually TATAA, is found at

the start of many genes in eukaryotes. Let’s suppose we want to encode the

information contained in the string TATAA using a bitstring. If we establish a

table associating T with 0 and A with 1, the encoding can be done in 5 bits:

01011. We achieve even more compression by associating TA with 0 and A

with 1. Now it’s down to 3 bits: 001. To be fair, the latter encoding is somewhat
too specialized to be part of a generally useful encoding scheme. Nevertheless, the

pattern TATAA is highly compressible and is therefore likely to be a meaningful

pattern.

On the other hand, consider a more random pattern such as ACCGT.

No plausible scheme is going to encode this string in fewer than 10 bits. ACCGT

is therefore less compressible and consequently more complex. It is more likely

to be a random string than is TATAA.

1
Much information today is subject to compression. For example .jpeg files can represent the same

information as much larger bit pattern files. Typically, compression programs work by identifying
oft-repeated components and using short identifiers for each occurrence. In principle, you might
think you could keep compressing until there was no more repetition. The resulting file would then
be indistinguishable from random noise. In practice, that degree of compression is not possible.

Chapter 7 Gene Finding 279

Sowhat does all this have to do with finding genes? Simply put, given a string

of DNA nucleotides in a genome, is there any meaningful content (i.e., are there

any genes)? If so, where is it? This is the classic cryptographic puzzle, and we can

use Shannon’s information theory to help us crack the code.

Any cryptographic puzzle presents challenges. First, you have to know that

the message is encoded in some way. Shannon’s information theory can help in

this respect by determining the probability that meaningful information exists

in a given string. Then, you need to know something about the language of the

original, unencoded message. As we discussed, if you know the original language

was English, then you might look for patterns of three characters that always

occur together as a way to identify the characters for the letters t-h-e. Finally, you

need to know where to look. For example, the encryptors might have embedded

themeaningful parts of themessage in a longer, random string. Again, Shannon’s

information theory can be of help.

7.1.2 Encoding Information

The most used encoding system for characters is called ASCII (for American

Standard Code for Information Interchange). ASCII is pronounced “ask-ee”

and has been in use since the late 1960s. It may eventually be supplanted by a

standard (such asUnicode) that is more friendly to languages other than English.

ASCII contains 33 nonprinting characters (largely obsolete control characters

from earlier days of computing) and 95 characters that can be typed from a

normal American keyboard and printed to a normal printer. Throughout the

world, regional variations make for some amusing or annoying difficulties in

reading documents. Table 7.1 lists all theASCII codes for the printable characters.

Notice that ASCII uses exactly 7 bits to represent each and every one of

its printable characters. Accordingly, any text consisting of n characters can be

encoded using ASCII into 7n bits. In practice, all computers will add a leading

0 to all the 7-bit codes so that characters are stored in 8-bit byte locations. Thus

a file consisting of n characters will require 8n bits of storage in a real computer.

It is possible to extend the ASCII code by using some of the 8-bit patterns that

begin with 1 for special characters.

The word Code is represented in 7-bit ASCII as

1000011110111111001001100101

but in the 8-bit code used in computers, Code would be:

01000011011011110110010001100101

It is possible to use ASCII to encode sequences of nucleotides. For exam-

ple, you would use 1000001 for A, 1000011 for C, 1000111 for G, and

1010100 for T. In a computer you would need 01000001 for A, 01000011
forC, 01000111 forG, and 01010100 forT. Using ASCII encoding, a genome

with n base pairs would require a computer file of size 8n bytes. In the exer-

cises, you will investigate ways to improve on this and discover what some of the

popular Websites do to encode genomes.

280 Chapter 7 Gene Finding

TABLE 7.1 The ASCII codes for printable characters

Binary Decimal Hexadecimal Character Binary Decimal Hexadecimal Character

0100000 32 20 space 1010000 80 50 P

0100001 33 21 ! 1010001 81 51 Q

0100010 34 22 " 1010010 82 52 R

0100011 35 23 # 1010011 83 53 S

0100100 36 24 $ 1010100 84 54 T

0100101 37 25 % 1010101 85 55 U

0100110 38 26 & 1010110 86 56 V

0100111 39 27 ’ 1010111 87 57 W

0101000 40 28 (1011000 88 58 X

0101001 41 29) 1011001 89 59 Y

0101010 42 2A * 1011010 90 5A Z

0101011 43 2B + 1011011 91 5B [

0101100 44 2C , 1011100 92 5C \

0101101 45 2D − 1011101 93 5D]

0101110 46 2E . 1011110 94 5E ˆ

0101111 47 2F / 1011111 95 5F _

0110000 48 30 0 1100000 96 60 ‘

0110001 49 31 1 1100001 97 61 a

0110010 50 32 2 1100010 98 62 b

0110011 51 33 3 1100011 99 63 c

0110100 52 34 4 1100100 100 64 d

0110101 53 35 5 1100101 101 65 e

0110110 54 36 6 1100110 102 66 f

0110111 55 37 7 1100111 103 67 g

0111000 56 38 8 1101000 104 68 h

0111001 57 39 9 1101001 105 69 i

0111010 58 3A : 1101010 106 6A j

0111011 59 3B ; 1101011 107 6B k

0111100 60 3C < 1101100 108 6C l

0111101 61 3D = 1101101 109 6D m

0111110 62 3E > 1101110 110 6E n

0111111 63 3F ? 1101111 111 6F o

1000000 64 40 @ 1110000 112 70 p

1000001 65 41 A 1110001 113 71 q

1000010 66 42 B 1110010 114 72 r

1000011 67 43 C 1110011 115 73 s

1000100 68 44 D 1110100 116 74 t

1000101 69 45 E 1110101 117 75 u

1000110 70 46 F 1110110 118 76 v

1000111 71 47 G 1110111 119 77 w

1001000 72 48 H 1111000 120 78 x

1001001 73 49 I 1111001 121 79 y

1001010 74 4A J 1111010 122 7A z

1001011 75 4B K 1111011 123 7B {

1001100 76 4C L 1111100 124 7C |

1001101 77 4D M 1111101 125 7D }

1001110 78 4E N 1111110 126 7E ∼

1001111 79 4F O 1111111 127 7F DEL

Chapter 7 Gene Finding 281

7.2 CRACKING THE GENOME: A FIRST PASS

When we apply the principles of decoding messages in a biological context, we

must grapple with the same challenges of any cryptographic puzzle. We gain

some advantages in this particular context, but face some interesting twists as

well. Unlike the problem of detecting meaningful extracts from signals received

from outer space, we can safely assume that at least some part of a complete

genome sequence contains information. So we are already one step ahead of the

cryptologist faced with the transmission from outer space. However, we still have

the daunting task of trying to decide which of the more than 3 billion base pairs

of DNA in the human genome, as one example, carry information and which are

just random noise.

One of the biggest challenges faced by the cryptologist in the biological con-

text is not always knowing the languageof themessage. Recall that if youknow the

language of the encoded message, it is relatively easy to look for common words.

For example, if we knew that a message must have been written in English, we

might look for sets of three symbols that always occurred together. These would

most likely be the word the or and. However, in the context of genomic sequence,

we do not always know the exact language of the original message. As we dis-

cussed in Chapter 2, the language we call DNAStrings has many thousands if not

millions of words. We do not have a complete dictionary of terms in the genomic

language, making it more difficult for us to find and utilize its vocabulary.

A further complication is that time and evolution have altered and occasion-

ally degraded the meaningful parts of the genome. As discussed in Chapter 5,

genes from different species often differ in their nucleotide sequences. The end

result may be very similar proteins, but at the genomic level, there can be a great

deal of variation. Because the processes of evolution are based on randommuta-

tion, we cannot predict in advance how a gene sequence will change from one

species to another. Rather, for each new genome, we have to come to a fresh

understanding of its particular use of the language.

Finding genes in a genomic sequence presents one more challenge. Just like

the clever encryptor who hides his message in a longer stream of gibberish, only

some parts of the genomic sequence contain genes. The rest is made up of regions

that control genes, regions of repeats, and some areas that have no apparent func-

tion. When we assemble genomic sequence, as described in Chapter 4, we have to

account for all the pieces of the genome. But having assembled the sequence, the

challenge is to find the parts that are meaningful. In other words, we must find

the genes and their regulatory regions within a much longer string of potentially

random gibberish.

Of course, genes and genomes possess features that are common across the

spectrumof species.We canuse these commonpatterns to help us locate the genes.

We begin by considering some of the shorter signals in the genome. These signals

can regulate genes, help maintain chromosome structure, assist in replication of

the genome, and myriad other tasks necessary for the survival of the cell. Each

of these signals modifies the behavior of the cell under certain circumstances, so

decoding the genome requires us to identify as many of these signals as possible.

282 Chapter 7 Gene Finding

Finding the genes themselves is of course the biggest part of decoding a genome,

but it is in essence a special subset of the larger problem of finding any meaning-

ful sequence within the genome. We will return to gene finding in particular in

Section 7.3.

From here onward, we use the term signal to mean a pattern or string that

helps with some aspect of biological processing. This definition is deliberately

vague because, as you will see, many different kinds of signals perform a variety

of functions within the genomes of cells.

7.2.1 A Worked Example: HIV Integration Sites

To start our investigation of signals within genomes, let’s look at one signal

that is actually not of much use to the cell, but is of critical importance to an

invader: HIV. Among its many activities within an infected cell, HIV sometimes

integrates its genome into the cell’s genomic sequence. The integration of the

viral genome into the cell’s genome gives the virus certain distinct advantages.

For one, the virus’ genome will now be faithfully copied and passed on to all the

cell’s descendants. This means that at some future point the virus can reactivate

in one of these daughter cells and reinfect a new population of neighboring cells.

A second advantage is that integration allows the virus to remain dormant inside

an infected cell, helping to escape detection by the immune system. Because of

these distinct advantages, viruses will often seek to “immortalize” their genomes

by adding them to the cellular genome. As we noted in the sidebar following

Section 4.2, cells carry around large chunks of such integrated viral sequences as

repeat regions within their genomes.

The choice of where to integrate the viral genome is somewhat loose. The

virus cares mostly about getting into the cell’s genome and not very much about

where it integrates. So at first glance it might appear that integration occurs in

an essentially random fashion. On the other hand, biologists tell us that cutting

and pasting DNA is a complex process that requires several enzymes, and that

cutting generally occurs at very specific sequences of DNA. So this suggests that

the virus will seek to integrate where it finds a particular sequence of DNA. We

can consider this sequence of DNA to be a “signal” of sorts. It is a signal to the

virus that integration might be possible here.

Before we consider such a signal in more detail, let us consider why the virus

cares about inserting itself in a way that makes cutting and pasting of DNA easy.

You can probably answer this question yourself. If the virus has to use the cellular

machinery to cut and paste DNA, then it is in the “best interests” of the virus

to make that cutting and pasting easy. This ensures that the virus gets into the

genome without mangling the genome so badly that the cell dies, which would

defeat the entire purpose of integrating into the genome. So viruses are obviously

at some pains, one might say, to keep the cell alive if they are going to integrate

into the cellular genome.

Given the requirement that the virus must keep the cell alive, which requires

minimal damage to the genome, we can see why the virus might wish to integrate

at specific sites or at least near sequences that are amenable to cutting and

Chapter 7 Gene Finding 283

pasting DNA. So nowwemust try to find if any signals occur immediately before

or after the site of integration. Our hypothesis is that such signals exist; the null

hypothesis is that there are no such preferences and the virus is simply inserting

itself willy-nilly.

How do we go about finding this signal, if it exists, if we have no idea what

it should be? The answer is to turn to information theory. Essentially, we can use

the Shannon entropy tomeasure the likelihood that a given pattern of nucleotides

is meaningful in the context of integration signals.

Here is how we might go about doing this. We start by collecting a set of

sequences thatweknowcontainHIV integrated into the genome. For example, we

can collect DNA samples fromAIDS patients and use polymerase chain reaction

(PCR, see Chapter 3) to get out those regions that contain HIV sequences. We

can then map those regions back to the human genome to get the surrounding

sequences thatwould originally have been the site ofHIV integration. The specific

details of this work are reported in [19].

With this dataset of possible integration regions, we can begin looking for

patterns.What sort of patterns arewemost interested in finding? FromShannon’s

theory, we know that patterns that occur with very high or very low frequencies

compared with random sequence are most likely to be informative. So the first

step might be to try and find short patterns that occur at unexpected frequency.

Many such patternsmay occur, and sifting through them all could be difficult

in the absence of any other criteria. We can use biology to narrow our search a

bit. We know from other systems2 that cutting and pasting of DNA works best

when the sequences at either end of the cut site are identical. In fact, we usually

look for palindromes, sequences that read the same backward and forward. For

example, the word noon is a palindrome in English. In DNA, we can have two

kinds of palindromes. A sequence such as:

GAATAAG

is a palindrome of nucleotides in the same way that noon is a palindrome in

English. You can read this word from beginning to end or end to beginning and

get the same sequence.

However, recall that DNA is made up of two strands, each running anti-

parallel to the other (Chapter 2). As a result, it is possible to have a sequence on

one strand that reads the same on the other strand. In biology, the most common

type of palindromes are these. Let us consider an example. The string:

ACGT

does not appear to be a palindrome at the moment. But now consider that its

complement sequence would be:

TGCA

2
Specifically, in bacteria, a number of enzymes specialize in cutting sequences at specific sites.

These enzymes, known as restriction endonucleases, are utilized in a wide array of applications
in experimental biology for cutting and manipulating DNA. See Chapter 3 for more.

284 Chapter 7 Gene Finding

Again, not the same sequence. However, remember that one strand of DNA is

the reverse complement of the other. In other words, we need to both complement

and reverse the order of the string to get the sequence on the other strand. What

happens if you reverse the complement sequence? You get:

ACGT

So, in fact, ACGT is a DNA palindrome.

Let’s consider a longer example. In English, the sentence “Ablewas I ere I saw

Elba,” attributed to Napoleon, is a palindrome. If you were to read it backward,

you would get the same sentence. Now take a look at the following sequence:

GAATTC

Its complement sequence is

CTTAAG

and its reverse complement sequence is:

GAATTC

So this string is also a DNA palindrome.

The advantage of cutting DNA at sites such as GAATTC is that it is easy to

glue everything back together again because the cut points will base pair nicely

with each other (Figure 7.1). We can speculate that the virus will also prefer to

integrate at a palindromic sequence and look at those patterns that also happen

to be palindromes. This will help us to narrow the search to the most likely set of

patterns that might be part of the signal for integration.

Finding Patterns in Sequence Data

The first step in determining whether a signal exists at the HIV integration sites is

to build amultiple sequence alignment (Chapter 5). Table 7.2 shows some sample

sequences thatmight representHIV integration regions. In this and all the further

discussion, we denote the nucleotides that are upstream (5) of the integration site

as negative values (−1, −2, etc.) and those nucleotides downstream (3) of the

integration site as positive values (1, 2, etc.). The virus will integrate between the

−1 and +1 positions. This nomenclature will help us keep track of the orientation

of the signal within a given strand of DNA.

As you look at this alignment, you might be concerned that at no position

do all of these sequences share the same nucleotide. That is, we cannot develop

an exact pattern that represents the signal for integration. This is often the case

in biology. As discussed in Chapter 5, exact pattern matching rarely yields infor-

mative signals in a biological context. Instead, we need to rely on inexact pattern

matching or matching that allows for some fuzziness.

So, do any inexact patterns occur among these sequences? To check for this,

we need to tally up the relative frequency of a nucleotide occurring in any given

position within our alignment. Based on just the six sequences in Table 7.2, we

have calculated the relative frequencies for the four nucleotides in each position

(see Table 7.3).

Chapter 7 Gene Finding 285

EcoRI cuts here

EcoRI cuts here

DNA sticky ends

Recombinant DNA

Old sequence New sequence

FIGURE 7.1 Cutting at palindromic sequences makes it easy to splice in a new

piece of DNA because the ends will base pair with each other. This is shown for the

specific case of an enzyme known as EcoRI, which cuts at the palindromic sequence

GAATTC.

TABLE 7.2 Sample alignment of putative sites of integration for HIV∗

−5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10

Seq1 C G T A G A T T A C A C A T G

Seq2 A T G T G G A A T C C T A A T

Seq3 C T T G A G T A A C A T A C C

Seq4 G A T T G G T A A T C A T C T

Seq5 T C A G G G T T A C C A C T C

Seq6 C C T A A A T T A T C C A T T

∗The virus will integrate between the nucleotides at −1 and +1 positions in this scale. Adapted from [19].

At first glance, it is obvious that at some positions a particular nucleotide

tends to dominate. As one example, consider position 4. All but one sequence

has an A at this position. Similarly, position 2 is dominated by T (five out of

six sequences). Less striking, but perhaps just as important, are those posi-

tions where one nucleotide is predominant: positions −1 and 1 favor G (four

of six sequences), positions 5 and 6 favor C, position 8 favors A and position −3

favorsT. These may all be part of an inexact pattern that constitutes the signal for

integration.

Note also that at some positions certain nucleotides are never present. Take,

for example, positions −3 to +4. In these positions, none of our sequences had

286 Chapter 7 Gene Finding

TABLE 7.3 Relative frequencies of each nucleotide in each position of the putative integration
sites shown in Table 7.2∗

−5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10

A 1
6

1
6

1
6

2
6

2
6

2
6

1
6

3
6

5
6

0 2
6

2
6

4
6

1
6

0

C 3
6

2
6

0 0 0 0 0 0 0 4
6

4
6

2
6

1
6

2
6

2
6

G 1
6

1
6

1
6

2
6

4
6

4
6

0 0 0 0 0 0 0 0 1
6

T 1
6

2
6

4
6

2
6

0 0 5
6

3
6

1
6

2
6

0 2
6

1
6

3
6

3
6

a C. Similarly in positions 2 through 9, none of our sequences had a G. The

absence of a particular nucleotide in a specific position might also be important.

So taken with those positions where a nucleotide dominates, we may be able to

develop a pattern that could represent the HIV integration signal.

Measuring the Shannon Entropy of Sequences

The question then becomes: Of these positions, which deviate enough from ran-

dom to be significant? This is where information theory provides some elegant

solutions. We are not able in this text to explore the statistical basis of many of the

metrics used in an information theory analysis, but you can learn more about the

specific application of information theory to biological sequence analysis here [6].

Instead, we look at just two relatively simple measures derived from information

theory.

Recall from Section 7.1.1 that Shannon’s theory includes a concept termed

entropy. If you are familiar with thermodynamics, then you know that a system

with high entropy is very disordered. For instance, a liquid, where the molecules

can slide around more freely, has higher entropy than a solid, where all the

molecules are rigidly held in place. Shannon wanted to convey the same idea for

information. When the Shannon entropy of a given string is high, the string is

more disordered and therefore likely to have been generated by a random process.

When the Shannon entropy of a string is low, it is more ordered and therefore

more likely to have arisen from a specific process. That is, it is more likely to be

meaningful. In the biological context, wewould say that a stringwith low entropy

is one that is likely to be part of a specific signal.

To measure the entropy of a string, we have to ask how likely it is that

each individual nucleotide within the string could have occurred in that position.

Formally, we will need to know the probability of each nucleotide occurring in

each position of the string. In practice, we can roughly estimate the probability

by looking at a set of sequences, such as the HIV integration regions, to develop

a sense of the probability for each nucleotide in each position. That is, we can

use the relative frequencies shown in Table 7.3 as a rough measure of the overall

probabilities of nucleotide occurrence in each position.

Chapter 7 Gene Finding 287

Let’s take an example. Suppose we want to know the probability of an A

occurring in the +4 position. From Table 7.3, the relative frequency of A in this

position is 5/6, or 0.83. Assuming our small sample here is representative of the

entire dataset of HIV integration regions, we would say that the probability of A

in the +4 position, p(A4), is 0.83.

How unusual is it that A seems to occur 83% of the time in our dataset at

this position? It might be very unusual, thereby suggesting that it is part of a

signal, or it might be very common. To determine how unusual the occurrence

of A is in this position, we need to consider the overall frequency of A and the

length of the string in which the A might occur. For the case of A occurring in

position +4, our “string” has a length of one because we are interested in just

this one position. The overall frequency of A in this position is 5/6, and of T is

1/6 times.

Let us now suppose that we have a machine that spits out a nucleotide each

time we request one. The machine generates nucleotides at random, but with the

same frequency as we observed in column+4 of Table 7.3.What is the probability

itwill produce anA?Wealreadyknow the answer: 0.83. Butwhat is the probability

that it will spit out one A, then a second A, and a third A? That is, what is the

probability over time that this random generator will keep on producing an A?

Shannon entropy captures the answer to this question. In essence, the Shannon

entropy tells you the likelihood of getting an A at random in a given position

based on the overall observed frequencies for that position.

Here is how we calculate the Shannon entropy for position +4. We know

that our machine can generate one of four symbols: A, C, G, orT. We also know

the probabilities (in our case, relative frequencies) of getting each of these four

symbols. We could just multiply the relative frequencies of the four symbols and

get an overall probability for a nucleotide occurring in this position. However, it

would be a very small value since multiplying fractions yields smaller and smaller

values. To work around this, we take the logarithm. Basic algebra tells us that

the log of a product is equal to the sum of the logs, so we will simply sum up

the logarithms of the relative frequencies. Taking the logarithm also allows us

to interpret the results more meaningfully. If we take the log2, our answer will

be the number of bits of information contained in position +4. That is, we will

know how many bits are required to encode the information contained in this

position.

The Shannon entropy is calculated as

H(X) = −

n�
i

p(xi) log2 p(xi) (7.1)

where H(X) is the entropy of position X , p(xi) is the probability of the ith

nucleotide in position X and i . . . n is the set of all possible nucleotides in

that position (A, C, G, or T). We will not be deriving this equation as it is

beyond our scope here, but you can read about how to arrive at this formulation

in [14,15].

288 Chapter 7 Gene Finding

TABLE 7.4 The values for calculating the Shannon entropy in
position +4 from our dataset of HIV integration sites

p(xi) log2 p(xi) p(xi) × log2 p(xi)

p(A) = 5/6 log2(p(A)) = −0.26 5/6 × −0.26 = −0.22

p(C) = 0 log2(p(C)) = −∞ 0

p(G) = 0 log2(p(G)) = −∞ 0

p(T) = 1/6 log2(p(T)) = −2.58 1/6 × −2.58 = −0.43

H(X) = −(−0.22 + 0 + 0 − 0.43) = 0.65

TABLE 7.5 The same entropy calculation for
purely random sequence with equal
probabilities for all four nucleotides

p(xi) log2 p(xi) p(xi) × log2 p(xi)

p(A) = 1/4 log2(p(A)) = −2 1/4 × −2 = −0.5

p(C) = 1/4 log2(p(C)) = −2 1/4 × −2 = −0.5

p(G) = 1/4 log2(p(G)) = −2 1/4 × −2 = −0.5

p(T) = 1/4 log2(p(T)) = −2 1/4 × −2 = −0.5

H(X) = −(−0.5 − 0.5 − 0.5 − 0.5) = 2

For position +4, the values required to calculate the Shannon entropy are

shown in Table 7.4. The entropy or H(X) would be the sum of the values in the

third column, 0.65. We lose the negative sign because in Equation 7.1 there is

a minus outside the sum, and the two minuses cancel each other. This value

means that we require 0.65 bits to encode the information contained in this

position.

What if the sequencewere entirely random? Then each nucleotidewould have

an equal chance of occurring in this position, the entropy for this is calculated in

Table 7.5. In randomsequenceH(X)wouldbe2. That is, a randomsequence com-

prises 2 bits of information, whereas our position requires only 0.65 bits. Recall

from Shannon’s theory that a random sequence is more complex than a mean-

ingful sequence, and as a result, a random sequence has a much higher entropy.

Exercise 7.1 asks you to calculate the entropy for each position in Table 7.3.

Based on your findings, do you think a signal for HIV integration exists in this

region?

Assessing the Likelihood of Occurrence

Entropy can tell us that a meaningful signal exists in a given sequence, but it

cannot tell us the likelihood of finding a specific nucleotide in a given position.

For that, we will use a different measure, the log odds ratio. The log odds ratio is

a measure of how much a set of observed frequencies deviates from the expected

(i.e., at random) frequencies. In someways, it is like entropy, butwe canuse the log

Chapter 7 Gene Finding 289

odds ratio to determine whether a particular position of an alignment is more or

less important. The ratio reflects the likelihood that the given nucleotide in a spe-

cific position is not simply the consequence of random fluctuations in nucleotide

composition. In other words, the log odds ratio can tell us how unusual the com-

bination of nucleotides within the string is given the background frequencies for

nucleotides in that genome.

The challenge now is to decide what constitutes an unusual frequency distri-

bution for sequence patterns. For this, we need to find a comparable dataset in

which we know the signal cannot exist. One way to do this is simply to generate

a large amount of random data and count up the frequencies with which any

particular nucleotide or pattern occurs. If we choose to go the route of gener-

ating a random sequence, we need to ensure that we are comparing apples to

apples. In other words, our random sequence has to be as closely representative

of the actual sequences in our dataset as possible, while retaining a random ele-

ment. The most common way to generate a random sequence is to match the

randomly generated sequences to the frequencies observed in known sequences.

For example, if you were looking for a six-nucleotide pattern, you would want

your randomsequence to have the same frequency of six-nucleotide combinations

as your known sequences. In our case, we simply match the random sequence to

the known dataset at the single-nucleotide composition level. In other words, if

the frequency of A in the known sequences is 20%, then 20% of the nucleotides

generated by our random sequence generator should also be As.

We now have two datasets: a set of sequences from known sites of HIV

integration and a set of comparable, randomly generated sequences. Just as we

generated a set of nucleotide frequencies for theHIV integration data inTable 7.3,

Table 7.6 shows the frequencies in randomlygenerated sequences that arematched

at the single-nucleotide composition level with sequences in the HIV dataset.

Now we can calculate a log odds ratio between the observed frequencies in

the HIV dataset and the random dataset for each position. We calculate the log

odds ratio in Equation 7.2:

L(X) = log2
Fobs

Fexp
(7.2)

TABLE 7.6 Relative frequencies of random sequences generated to have the same
single-nucleotide frequencies as known HIV integration sites

−5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10

A 1
6

1
6

1
6

2
6

2
6

2
6

2
6

2
6

2
6

1
6

2
6

1
6

1
6

1
6

0

C 3
6

2
6

2
6

1
6

1
6

2
6

2
6

1
6

1
6

2
6

1
6

1
6

2
6

2
6

2
6

G 1
6

1
6

1
6

2
6

2
6

1
6

1
6

2
6

2
6

1
6

2
6

2
6

2
6

0 1
6

T 1
6

2
6

2
6

1
6

1
6

1
6

1
6

1
6

1
6

2
6

1
6

2
6

1
6

3
6

3
6

290 Chapter 7 Gene Finding

where L(X) is the log odds ratio for position X of an alignment, Fobs is the

observed frequency for a given nucleotide in position X (from the HIV dataset

in this case), and Fexp is the expected frequency for that nucleotide in position X

(determined from the random dataset). You can consult [6] for more on how this

equation is derived.

Let’s look at a specific position and see what the log odds ratio can tell us. In

position −5, the frequency of C in the HIV dataset from Table 7.3 is 3/6. It is the

same in the random dataset (see Table 7.6). So for this position, the log odds ratio

is 0 (log2 of 1 will be 0). This suggests that position −5 in our alignment does not

actually have any meaningful information regarding the signal, even though the

entropy of the sequence region suggests it contains a signal. So already the log

odds ratio has helped us understand that some parts of our alignment might be

superfluous.

Let us now consider a different positionwithin the alignment. Let us suppose

that we have a candidate integration site with a G in the −1 position. From

Table 7.3, the frequency of G in this position is 4/6. The frequency in random

data is 2/6 (see Table 7.6). Plugging in these values into Equation 7.2, the log odds

ratio for position −1 will be 1.02. The positive value of this ratio indicates that a

G in this position is likely part of a signal. This is because it is more frequent in

the HIV dataset than in the random dataset. A negative value from the log odds

ratiowould indicate that the nucleotide in that position is less frequently observed

in the HIV dataset than in the random dataset.3 Information theory tells us that

both over- (higher than random frequency) and under-representation (lower than

random frequency) are important and can be part of a signal. Exercise 7.2 asks

you to write a program to calculate the log odds ratios for a given sequence

alignment such as the one shown in Table 7.2. We can use the log odds ratio to

score a putative integration site and use the score as away of identifying candidate

sites for HIV integration. This is described in much greater detail in [6].

Generating a Consensus Sequence

So far, wehave used the entropy todeterminewhether a given regionmight harbor

a signal, and then used log odds ratios to identify which positions within that

region are particularly important for the signal. The next question is whether

a specific pattern exists in these positions that could be used to search other

sequences for similar signals. The nucleotide pattern for this signal can be derived

in a number of ways, and we will start with the simplest method. The method

involves using the relative frequencies of nucleotides in each position to generate

a consensus pattern, or sequence. The consensus pattern describes what is most

commonly found at each position in our alignment. For example, in position 4,

five of our sequences had anA. This is an overwhelming preponderance, sowewill

3
This is one of the conveniences of using a log scale: values less than 1 become negative, and values

greater than 1 are positive. As a result, the sign of the log odds ratio can immediately tell us whether
a given nucleotide or string is more or less likely to occur in our known dataset than in the random
dataset.

Chapter 7 Gene Finding 291

say that in position 4, we should usually expect anA. Starting from the beginning

of the alignment, here are our possible conclusions:

−5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10

C [CT] T [AGT] G G T [AT] A C C [ACT] A T T

At some positions, one of the nucleotides clearly dominates, and we can select

this nucleotide to be the primary one in our consensus sequence. In position 4,

for example, A is predominant, so we simply put an A in that position in our

consensus sequence. But in positions −4, −2, 3, and 7, more than one nucleotide

seems to be possible. We can try to force a choice here, but we do not have

enough information to justify picking one over the other. For example, can we

justify picking A in position −2, given that G and T have equal frequencies?

Rather than try to make tough choices, we can more equitably say that any of the

three nucleotides are possible there. To denote this, we put the three nucleotides

in brackets: [AGT]. So our consensus sequence is

C[CT]T[AGT]GGT[AT]ACC[ACT]ATT

From the earlier log odds ratio analysis, we know that positions −5, −4, 9, and

10 are uninformative (see Exercise 7.2), so the actual pattern we would want to

use is:

T[AGT]GGT[AT]ACC[ACT]A

Whenwe originally began this exploration, we said that the integration signal

might be a palindrome because this enables easy cutting and pasting of DNA

after viral integration into the cellular genome. Is this sequence a palindrome?

The overall consensus sequence is not, but the portion based on the log odds ratio

is: T[AGT]GGT.ACC[ACT]A.4 Note that we do not count the central nucleotide

(represented here as . the dot betweenT and A) because the palindrome will read

both ways regardless of what nucleotide occupies that position. So, in fact, it does

appear that HIV prefers to integrate at a palindromic sequence [19].

Searching for Instances of a Signal

Now that we have a sense of what the integration signal might be, how can we

find places in the genome where such integration might occur? If we had an exact

pattern, we could use any of a number of excellent computational methods to

search for a substring (the signal) within a longer string (the genome). In some

ways, our consensus sequence gives us a near exact pattern, with the exception of

the two positions where more than one nucleotide seems acceptable. So we could

simply search the genome for all the places where this occurs. Exercise 7.3 asks

you to search a chromosome of the human genome and identify all the putative

sites of HIV integration.

4
This sequence renders a palindrome some of the time, depending on what nucleotides occupy the

two optional positions. For example, TAGGT.ACCTA is a palindrome, but TAGGT.ACCCA would
not be.

292 Chapter 7 Gene Finding

A more sophisticated approach to finding these locations is to look for

any region of the genome that shares the nucleotide frequency distributions

we observed in our set of known HIV integration sites. That is, we can search

sequences and score them based on their compositional similarity by using the

valueswedetermined inTable 7.3. Table 7.3 is actuallyknownasa position-specific

weight matrix (PSWM). Each column represents a position within the consen-

sus sequence; hence the term position-specific weight matrix. The weight of each

nucleotide in a given position is simply the frequency with which it appears. We

can use this matrix to score sequences based on the frequencies of the nucleotides

in each position.

Look again at a sample sequence that might be an integration signal:

−5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10

C C T A G G T A A C C A A T T

Would this sequence be a possible candidate for HIV integration? This is an

artificial situation; just looking at this sequence you can probably see that it

satisfies the consensus sequence we just developed. But let’s say you were trying

to search the entire genome for such strings and you have hundreds of instances.

You probably do not want to devote several hours to examining each putative site

and deciding the likelihood that it qualifies as an HIV integration site. To help

automate the procedure, you would want to assign a quantitative score to it.

This is where the PSWM comes into play. With a PSWM, we can score the

sequence based on the frequencies we have observed in Table 7.3. We will assume

independence among thenucleotidepositions; that is, eachnucleotideoccurs in its

position independent of its neighbors’ frequencies of occurrence. Wewill see later

in Section 7.4 how to account for interdependencies among nucleotides. For now,

assuming independence among the positions allows us to use basic probability

theory to determine the overall likelihood that this string might occur. We will

simply multiply the frequencies of the nucleotides in each position based on the

values in Table 7.3. The number is vanishingly small: 0.00014, but we can take

the − log2 of the value to get a positive integer value. In this case, the score now

becomes 12.8.

Now let’s consider a string that looks very similar:

−5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10

C C T A G C T A A T C G A T T

This string also contains a palindrome, so might it also qualify as an integration

site? Again, we use our PSWM to score this sequence, which yields a score of 0.

This is because a C in position 1 has a frequency of 0 in Table 7.3 as does having

a G in position 7. The power of the PSWM is in detecting these relatively small

changes: just two nucleotides differ between this sequence and the first one we

considered, yet the scores are dramatically different.

The advantage of the PSWM is that it is relatively easy to build the matrix

and to score instances of a sequence. Some assumptions inherent to PSWM do

Chapter 7 Gene Finding 293

need to be kept in mind, however. The PSWM is best when the signal is made

up of a well-conserved nucleotide pattern and is of a constant length, such as the

HIV integration signal we used here. In the next section, we will explore some

ways to find signals that are not well conserved either in sequence composition

or in length.

7.2.2 Regulating Genes:
Transcription Factor-Binding Sites

The signal used by HIV to identify sites for integration is useful for the virus but

incidental to the cell’s behavior. However, many of the methods we developed in

trying to find the HIV integration signal can come to our aid as we try to find

those signals most important for the cell.

Recall from Chapter 2 that the control of when genes are turned on and

off is critical for the survival of the cell. The careful control of gene expression

is necessary for the cell to modulate its behavior as things within the cell and

its environment change. We will explore how to measure and model changes in

gene expression in Chapter 8. The regulation of gene expression is carried out

at many different levels within the cell, but by far the most important level of

control is in the decision to transcribe a gene into mRNA. Biologists refer to

this level of control as transcriptional control, and the regulation of transcription

is largely controlled by short sequences upstream of the gene in the promoter

region.

The promoter region may be a very small region of DNA immediately

upstream of the gene, but its role in regulating the gene is crucial. In prokaryotes

such as bacteria, the promoter region is usually very close to the start of the

gene, andmany promoter sequences in bacteria are short (six to eight nucleotides

long) strings. In eukaryotes such as our cells, promoter sequences can be located

at variable distances from the start of the gene, and they can be quite complex

in composition. Regardless of where a promoter sequence is located, the way

in which it functions is common to all organisms. Special proteins known as

transcription factors bind to the specific DNA sequences in a promoter region,

allowing the rest of the transcriptionalmachinery to assemble at the start of a gene

and transcribe the mRNA. If we can identify the sites where transcription factors

bind, we gain some insight into the regulation of genes. As a result, identifying

transcription factor-binding sites (TFBSs) is a very important task for decoding a

genome.

We can usemany of themethodswe have already discussed to identify TFBSs

in a genome. The TFBSs are sometimes close to the start of genes, so we can

take the regions immediately upstream of the genes, align them as we did the

sequences in Table 7.2, and build a PSWM.This has been done formany bacterial

genes and some eukaryotic genes [7]. The short stringTATAA, known as theTATA

box (discussed in Section 7.1.1), is an example of a promoter sequence that was

identified using a consensus sequence and PSWM approach.

Unfortunately, different genes are regulated by different transcription factors

and therefore have different sequences in the promoter region. Often, the length

294 Chapter 7 Gene Finding

of the signal varies for different regions. Consider these sequences, which could

all be promoter sequences:

Sequence #1 CACACGC

Sequence #2 AGCACGCTC

Sequence #3 GCACGT

Sequence #4 CGCACGT

Sequence #5 CACGTGTT

Sequence #6 CCACGTATT

We could try to use multiple sequence alignment with gaps to develop a

common set of patterns and then a PSWM. But our consensus sequence would

also have gaps then, making it harder to search and retrieve other instances that

might belong to this family of promoter sequences.5

Myriad statistical sampling techniques are available, somederived from infor-

mation theory, that can come to our rescue in this situation. Essentially, we can

scan the entire genome looking for “words,” combinations of nucleotides that

always occur together. Their frequency distributions can be compared with what

we would expect at random using entropy and log odds ratios, for example, to

determine whether their presence indicates a signal. In this case, the signal we are

looking for is a putative TFBS that regulates a gene or set of genes. Statistical

sampling techniques are quite sophisticated and beyond the scope of what we can

cover here. You can read more about methods that rely on statistical sampling in

these references [11,12].

One method that has proven very effective compares the upstream regions of

genes from related species. From Chapter 6, you know that related species tend

to have similar sequences, and these sequences accrue mutations more rapidly

in the nonfunctional regions of the genome than in the functional regions. As

long as the species we are comparing diverged relatively recently in evolutionary

history, we can draw on sequence conservation to guide us in finding TFBSs.

Because regulation of genes is critical for survival, mutations in these regions

tend to be selected out. As a result, there should be good sequence conservation

in those regions that regulate genes. It may not be as good a level of conservation

as we would see in the protein-coding region of a gene, but nevertheless it should

be sufficient to help us identify candidate sites. Recent work that ties phylo-

genetic analysis with statistical sampling methods has had very good results in

this area [16].

Finally, many TFBSs are actually clusters of short sequences that together

act as a regulatory module. Different TFBSs might incorporate different short

sequences, but the cluster overall retains a certain organization. We can use this

organizational pattern as a guide in identifying some of the signals that make up

the cluster. Such approaches marry statistical sampling, phylogenetic analysis,

5
You might note that all these sequences share a four-nucleotide sequence: CACG. So you could just

search the genome with this four-letter string. However, given 3 billion nucleotides and a short string
like this, how many occurrences would you expect at random?

Chapter 7 Gene Finding 295

gene expression patterns, and PSWMs into complex algorithms that can yield

very accurate predictions of likely TFBSs [2,17]. This is an area of active research,

so it is likely that newer methods will continually improve our ability to find these

critical but often elusive signals within the genome.

7.3 A BIOLOGICAL DECODER RING

Wenowturnour attention tooneof themost obviousproblems encounteredwhen

trying to decode a genome: how to locate the precise positions of the genes within

the genome. Before we begin, we need to emphasize that no method for finding

genes is perfect. That is, no single gene prediction algorithm finds 100% of the

genes in a genome while eliminating all the things that look like genes but are not

biologically functional. As we discuss the different approaches to finding genes

and predicting their presence in genomes, we will highlight the advantages and

disadvantages of each approach. Although many people consider the problem of

gene finding to have been solved, no gene prediction algorithm has proved more

than about 85% accurate. So there is still room for investigation and improvement

in this area.

Gene finding, or gene prediction, requires us to identify signals such as genes

within longer strings of potential nonsense or misleading information. As we saw

in earlier sections, we can use some of the ideas from information theory to locate

those regions of the genome that are more likely to contain meaningful informa-

tion. This approach helped us identify the signal that appears to be associated

with HIV integration sites. Shannon’s theory can help establish the presence of

meaningful information, but it cannot on its own tell us what that meaningful

information is. To determine what the potential signals are, we need to draw on

biology.

One of themost important aspects of genes is that theymust be regulated.We

discussed in Section 7.2.2 how to locate promoters. We expect that downstream

of a promoter or set of promoter sequences will be a functional gene. So locating

promoters can also help us identify the location of genes. Similarly, signals at the

end of genes indicate where the transcript should end. Collectively these signals

are known as terminators. One signal found at the end of genes that is common

to many eukaryotes (cells like ours) is known as the polyadenylation signal. It is

a short string, usually AATAAA, used to demarcate the end of a transcript.

Signals such as promoters and terminators are very useful in helping us locate

the regions of genomes that are likely to contain genes. To find the actual genes,

we need to consider other biological features. Before we begin, recall that most

genes code for proteins. A smaller subset of genes code for RNAmolecules, many

ofwhich serve critical functionswithin the cell. FindingRNAgenes ismuchmore

challenging, so we will leave that aside for now. The rest of this chapter focuses

on finding protein-coding genes.

The best hint that a genomic region contains a gene is that the DNA in that

area can generate an mRNA (messenger RNA) that could be translated into a

296 Chapter 7 Gene Finding

Transcription start

Promoter region Coding region Termination

signals

35

FIGURE 7.2 Diagrammatic representation of a typical gene. The gene region includes

more than just the portion that codes for protein. In addition to this coding region,

regulatory regions occur that include the promoter and termination signals.

Transcription (the process of copying DNA sequence into mRNA) starts downstream of

the promoter region and ends at the termination signals.

meaningful amino acid sequence. The challenge is deciding what is a meaning-

ful amino acid sequence. Luckily, we can use what we know of the biology of

organisms to lay out some ground rules.

The first is quite simple. Every protein we know of is synthesized beginning

with a specific amino acid: methionine (Met or M). This methionine may be

removed in later stages of processing, but every protein-coding genemust contain

the nucleotide codon forMet at the start of the protein-coding region. The special

codon that encodes Met is known as the start codon (see also Chapter 2).

Similarly, the end of the protein-coding region is marked by one of three

specific nucleotide codons—the stop codons. So locating start and stop codons

are the first hints to finding genes within a genome. In the DNA, the start codon

would be ATG,6 and the stop codons are TAA, TAG, and TGA. Recall, however,

that in the mRNA, the T is replaced by U. So in the mRNA, we would look for

AUG and UAA, UAG, and UGA. Exercise 7.4 asks you to find start and stop

codons within the HIV genome.

For a gene to be able to code for a protein, it requires more than a start and

stop codon. Between these two goal posts, as it were, the gene needs codons that

encode the amino acid sequence of the protein. So in addition to looking for start

and stop codons, we need to check that a translatable set of intervening codons

exists. In any given gene region, several AUGs and stop codons can occur, but

only one pair brackets a region of translatable codons. That region is known as

an open reading frame (ORF).

The ORF is really more of a computational concept than a biological one.

It is defined as being a region of the genome defined by a start codon, a set of

translatable codons, and a stop codon. Not all ORFs actually code for proteins,

but all genes must in some way yield an ORF. So at first glance, the challenge

of finding a gene boils down to finding an ORF, which, in turn, encapsulates

something called the coding region of a gene. Most biologists think of a gene

region as including the promoter region, a coding region, and signals for ending

the transcript (Figure 7.2). So the coding region is the subset of the gene region

that actually codes for the protein. During gene finding, our primary focus is on

finding the coding region.

6
For most organisms, ATG is the only start codon, although a few bacteria also use GTG and TTG

as start codons.

Chapter 7 Gene Finding 297

The coding region of a gene can be continuous, meaning that it begins with

a start codon, extends through a series of translatable codons, and ends with a

stop codon. Genes with this organization are most often found in viruses and

prokaryotes such as bacteria. So in these organisms, ORFs are equivalent to

coding regions. In eukaryotes, however, the situation is more complex. Recall

from Chapter 2 that genes in eukaryotes are composed of both coding and non-

coding regions. The coding regions are known as exons, and together all the exons

of a gene compose an ORF. However, in the genomic sequence, the exons are

interspersed with noncoding regions known as introns. The introns are removed

(spliced) so that the exons can be assembled into a continuous coding region.

To find genes in eukaryotes, therefore, we cannot look just for ORFs in the

genomic sequence. Rather, we also need to look for bits of coding regions, the

exons, and assemble them into anORF. Some signals present in exons and introns

can help us find the boundaries, and we will discuss them in more detail in the

next section.

7.3.1 A First Try at Decryption: ORF Finding

As mentioned earlier, the idea of an ORF is more of a computational concept

than a biological one. It is important to remember that not all ORFs are genes,

but all genes generate ORFs (eukaryotes splice their exons together to create the

ORF). To help keep this distinction in mind, we use the term ORF to refer to

any putative region of the genome that could code for a gene. We use the term

coding region when we refer to an ORF that is part of a functional gene.

Before we consider ORF finding as a means for gene finding, we need to

consider some aspects of ORFs. Recall that each codon has three nucleotides

and that each triplet combination encodes one amino acid. Since the nucleotide-

to-amino-acid correspondence is 3:1, each codon has three positions. We can

begin reading a set of codons from position 1, from position 2, or from position

3 of the first codon (Table 7.7).

TABLE 7.7 Reading frames for a short segment of
DNA sequence translated into amino
acids∗

Frame 1:

AUG GCC CUU GAC CUU UGA

Met Ala Leu Asp Leu Stop

Frame 2:

A UGG CCC UUG ACC UUU GA

Trp Pro Leu Thr Phe

Frame 3:

AU GGC CCU UGA CCU UUG A

Gly Pro Stop Pro Leu

∗Note how the amino acid sequence changes dramatically from frame to frame as

a result of shifting the start point for each codon.

298 Chapter 7 Gene Finding

Each of these three positions is known as a reading frame. Since there are

two strands of DNA (DNA forms a double helix with two strands), a total of six

reading frames are possible for a genomic sequence. That is, three frames each are

present on the forward and reverse strands. The challenge is to figure out which

of the six frames contains a gene in any given location. One way to simplify the

search is to draw on what we know of the biology of gene organization within

genomes. It is extremely rare to find a coding region on one strand that overlaps

extensivelywith a coding region on the other strand. That is, if a gene is present on

the forward strand, then it is highly unlikely that a gene exists in the same region

on the reverse strand. There are exceptions, of course, mostly among viruses and

other organisms with extremely small genomes. Nevertheless, it is usually safe

to assume that if a coding region is present on one strand, then there cannot be

a functional coding region in the exact region on the other strand. Generally, if

you find two ORFs, one on each strand, that overlap significantly, then one of

the two is nonfunctional (Figure 7.3).

Another feature of coding regions that we can use to our advantage is that

they tend to be fairly long. Short ORFs are less likely to code for functional

genes than longer ORFs. The reason is obvious: proteins tend to be fairly large

molecules composed ofmany amino acids. The coding regions that generate these

proteins must, because of the 3:1 relationship of nucleotides to amino acids, be

three times longer. As a result, most gene-finding tools set a lower limit on how

short an ORF can be if it is to be considered a likely coding region. For example,

many gene-finding programs eliminate ORFs that are less than 100 amino acids

(300 nucleotides) in length. The length restriction is somewhat arbitrary, and

it can lead to problems. Some well-known regulatory proteins have very short

amino acid sequences, which are often missed by traditional gene-finding pro-

grams. Sometimes the only way to find them is through experimental work in the

laboratory.

Why not just find all ORFs regardless of their length? The problem is one

of false positives. Basically, including every possible ORF of any length results in

thousands if not hundreds of thousands of ORFs that are six or nine nucleotides

long. Do all of these code for proteins? Which ones do? Which ones do not?

It is difficult to tell from a computational perspective, and a human being cannot

possibly be expected to look at a hundred thousand ORFs to decide which are

relevant.Wemust therefore filter out the least likely candidates in someway. Aswe

proceed through this chapter, we return again to this problem of false positives, or

Forward strand

ORF 1

ORF 2

Reverse strand

FIGURE 7.3 When an ORF is found on each of the two strands of DNA, we need to

decide which ORF to select. Generally, the longer ORF is taken to be the more likely of

the two. In this instance, the ORF 2 on the reverse strand is selected, and the ORF 1 on

the forward strand is eliminated during gene finding.

Chapter 7 Gene Finding 299

A

D E

F G

B C

FIGURE 7.4 When finding open reading frames (ORFs), any segment of DNA can

have putative ORFs on each of the three frames within a strand of DNA. ORFs are

eliminated as unlikely to code based on a handful of criteria. In this example, ORFs A,

C, and E are very short and unlikely to code for true proteins. ORFs B and F overlap

with the longer ORF D. Similarly, C overlaps with the longer ORF G. After eliminating

the unlikely ORFs, we are left withD andG in the set of genes predicted by ORF finding.

the problemof overpredictingORFs for a genome.Mostmethods that findORFs

use criteria such as length and overlaps to eliminate unlikely candidates from the

set of predictions for a genome. Figure 7.4 shows how this might work in a given

region of a genome.

In Exercise 7.5 you will write programs to identify gene candidates within

segments of genome.

NCBI’s ORF Finder

Finding ORFs in a genomic sequence is a relatively straightforward

computational task. A number of such ORF-finding programs are publicly

available, and you will be designing your own such program in Exercise 7.5.

As an example of one such program, the National Center for Biotechnology

Information (NCBI) offers a Web-based version called ORF Finder. ORF

Finder essentially takes two inputs: a sequence file in a standard format

known as the FASTA format and information about the codon usage profile.

Whymight we need to know the codon usage of an organism before pre-

dicting ORFs? It turns out some organisms have relatively unusual codons

for starts and stops as well as for the regular amino acids. For example, some

bacteria use several different start codons. So rather than justAUG, they also

use GUG and UUG. Similarly, a few bacteria use only one of the three stop

codons. The other two codons usually reserved for stops are instead used to

code for amino acids. AnORF-finding program has to take these details into

account if it is to find the ORFs appropriate to a given organism’s biology.

You can find out more about NCBI’s ORF finder and try it out at:

http://www.ncbi.nlm.nih.gov/gorf/gorf.html

300 Chapter 7 Gene Finding

Codon Usage: Additional Clues for Decryption

One of the problems with using ORFs as a basis for finding genes is that we must

decide which ORFs are most likely to be coding regions. The simple constraints

we discussed, such as length of the ORF or the presence of overlaps, can only

get us so far. Even after eliminating many ORFs as unlikely candidates, we are

still likely to have several thousand ORFs from which to chose. Is there a way to

distinguish amongst them to find those most likely to be coding regions?

Once again, we draw on biology to help identify likely coding regions. In

Chapter 2, we discussed the process of translation, in which the mRNA copy of

a coding region is used to create a string of amino acids that will become the

protein. A key part of the translation process are the tRNAs, specialized RNA

molecules that match up codons with amino acids. Although 61 possible codon

combinations encode amino acids (the three remaining codons are stop codons

and do not encode amino acids), only about 20 to 40 unique tRNAs usually

occur in any cell. Why might this be the case? One reason for the smaller number

of possible tRNAs is that many genes in an organism preferentially use one of

several possible codons to encode any given amino acid. Because there are many

more codons than possible amino acids (61 codons to 20 amino acids), organisms

can favor the use of one codon over anotherwithout affecting the final amino acid

output from the translation process. Preferential use of codons is very common,

and biologists use the term codon usage to refer to this phenomenon.

Let us consider an example. The amino acid valine can be encoded by one

of four codon combinations: GUA, GUC, GUG, GUU. 7 So species have a choice

of four possible combinations of nucleotides, each of which codes for the valine

amino acid. However, in most species, these four codons do not occur with equal

frequency within genes. Rather, a strong preference exists for the GUG codon to

encode valine. Nearly half of all the valine amino acids in proteins are encoded

by the GUG codon. Although the other codon combinations are present, they

are found at much lower frequencies. The frequencies of different codons across

a spectrum of species is shown in Table 7.8.

Can we use this phenomenon to our advantage in gene finding? Indeed we

can. Given an ORF that has passed our length and overlap constraints, we still

need to decide if it is likely to be a real coding region. One clue is whether the

codon usage of the ORF matches what we know to be the codon usage pattern

for that genome. For example, if an ORF has many GUG codons but not many

GUC codons, then it is likely to be a real coding region because we know GUG

codons are preferentially used over the other codons for valine in many species.

In contrast, if an ORF is composed largely of rarely used codon combinations,

then it is less likely to be a real coding region.

Whymight rare codonusagebe an important clue that anORF is not a coding

region? The answer lies in efficiency: more copies of the tRNAs for frequently

used codons occur than for rarely used codons. If a coding region utilizes many

7
Recall that at the mRNA level, thymidine (T) nucleotides are replaced by uridine (U). So the codons

at the DNA level would be GTA, GTC, GTG, and GTT.

Chapter 7 Gene Finding 301

TABLE 7.8 The standard genetic code reflects the codon
usage of most species used as models of
biology∗

AminoAcid Codon Number /1000 Fraction

Gly GGG 566992.00 16.55 0.25

Gly GGA 562361.00 16.42 0.25

Gly GGT 369863.00 10.80 0.16

Gly GGC 770084.00 22.48 0.34

Glu GAG 1360828.00 39.73 0.58

Glu GAA 979887.00 28.61 0.42

Asp GAT 743866.00 21.72 0.46

Asp GAC 863505.00 25.21 0.54

Val GTG 970825.00 28.34 0.47

Val GTA 242244.00 7.07 0.12

Val GTT 375620.00 10.97 0.18

Val GTC 498469.00 14.55 0.24

∗Individual species may vary somewhat from the standard genetic code, and some species may

have dramatically different codon usage. A sample from the standard code is shown here.

rare codon combinations, then translation of that transcript will be very slow as

themachinery awaits the arrival of the rare tRNAencoding the appropriatematch

to that codon. Over time, species have tried to optimize their coding regions for

fast and efficient translation of transcripts. So an ORF with many rare codons is

unlikely to be a real coding regionbecause its translationwouldbe very inefficient.

To apply the idea of codon usage to gene finding, we can simply compare the

codons in a given ORF with a table like the one in Table 7.8. If we find an ORF

with many frequently used codons, then it is more likely to be a coding region

than an ORFwith many rare codons. Of course, real biology is never this cut and

dried. So we need to use more sophisticated techniques to assess the likelihood

that a given ORF has a codon usage pattern consistent with what we know of the

species’ codon preferences.

7.3.2 Accounting for Discontinuous Coding Regions

Finding ORFs in genomes is a relatively straightforward computational prob-

lem, and as we have discussed, some strategies can help pick out those ORFs

most likely to be coding regions. However, not all coding regions are continuous

ORFs. Recall that in eukaryotes the coding regions are discontinuous. In other

words, the ORF is assembled after transcription by piecing together the bits of

the coding region, the exons (Figure 7.5). In Chapter 2, we compared the non-

coding portions, the introns, to comments in a piece of code. The introns must

be removed before the transcript is ready for translation, just as comments are

ignored or removed during compilation of a program.

The process of removing introns is known in biology as splicing. Before

an intron can be removed from a segment of mRNA, it has to be identified

302 Chapter 7 Gene Finding

DNA

Prokaryotes Eukaryotes

Protein

OPEN READING FRAME

DNA

Pre-mRNA

Exons Introns

Splicing

mRNA

mRNA

Protein

FIGURE 7.5 Prokaryotic genes usually have one continuous coding region. In

contrast, eukaryotic genes may have discontinuous coding regions, with exons coding

for the protein and introns removed prior to translation.

as an intron. You can imagine what a disaster would ensue if parts of exons

were accidentally removed because the spliceosome erroneously decided they

were introns instead. So the process of splicing has to be carefully regulated and

orchestrated. A complex piece of machinery, the spliceosome, actually removes

the introns through a series of chemical steps. The spliceosome is composed

of RNA molecules and proteins known as the small nuclear ribonucleoprotein

particles (snRNPs, pronounced as “snurps” to rhyme with “smurfs”). At least

five components of the spliceosome participate directly in splicing. We focus

primarily on the U1 and U2 snRNPs because these two molecules are the critical

parts for recognizing the ends of introns within a transcript.

The first step in splicing is the recognition of a short signal at the 5 or

beginning of an intron. The signal is a two nucleotide pattern: GU (GT in the

DNA). Obviously, this is a very small signal and could be expected to occur at

random once every 16 nucleotides. In addition to the GU, the first four or five

nucleotides of the intron tend to be well conserved in some species, and we can

use this slightly longer signal in finding the 5 end of each intron.

At the other end of the intron, the 3 end, a second signal exists. This is also

a two-nucleotide signal: AG. However, in many species, the sequences just before

the AG are reasonably well conserved. The region tends to be pyrimidine-rich

(many Cs and Us), and some of the nucleotides immediately upstream of the AG

are very well conserved in groups of species such as mammals.

Chapter 7 Gene Finding 303

AG GU[AG]AGU

Exon1 Exon2Intron Intron

Branch point

CT[AG]A[CT][CT]

[CT]{7}CAG G...

FIGURE 7.6 Some of the signals associated with intron removal. These signals tend to be the best conserved

patterns in known introns, but even within a single species, different introns can have widely different versions of

these signals [1].

Somewhere in the middle of the intron is a third signal of critical importance

for splicing. This signal is known as the branch-point adenine (A). It is a single

A located in the last third of the intron and is required for the chemical reaction

that allows the intron to be removed from the transcript. All three of the signals

associated with splicing are shown in Figure 7.6.

Although the signals associated with the intron appear to be well conserved

in Figure 7.6, these signals, in fact apply to only a limited subset of all introns.

Even in well-studied organisms such as mammals, a great deal of variation exists

in the composition and juxtaposition of these signals. It is important to remember

that we probably do not yet know all the signals associated with splicing and that

the signals described here apply only to some portion of all possible intronic

sequences in various genomes.

Regardless of what we know about the signals for splicing, we need a way

to model these signals. After all, the key to finding coding regions in eukaryotes

is to find the boundaries between introns and exons. Once we find the bound-

aries we can skip over the intronic sequences and assemble the ORF from the

exonic sequences. We will describe several strategies for finding the ends of the

introns, regions known as the intron–exon boundaries.Once we knowwhere those

boundaries are, in theory it is a trivial step to assemble the ORF and iden-

tify likely coding regions. As always with biology, though, the devil is in the

details.

Finding Introns Through Conserved Signals

In developing algorithms for finding eukaryotic genes, methods often focus on a

particular species. This is partly because enoughvariation in intronic signals exists

between species and especially across classes of species that a generic solution

is unlikely to be reliable. So, for example, several methods focus primarily on

mammals or just on humans. We restrict the discussion of methods to a more

general level here, but it is important to keep in mind that many methods must

be adapted to allow species-specific differences in signals and composition.

Asyou saw inFigure 7.6, some signals in the5 and3 regionsof the introns are

relatively well conserved. We can use these conserved regions to try and identify

potential intron–exon boundaries. Note that the signals are well conserved and of

304 Chapter 7 Gene Finding

a consistent length. We can use PSWMs (see Section 7.2.1) to build a consensus

sequence of these regions of the intron. You will develop a PSWM based on

intron–exon boundary sequences in Exercise 7.6.

Finding Introns Through Spliceosomal Signals

The signals we have discussed so far are derived from sets of known introns.

We know that these signals are used by the spliceosome to find the boundaries

between introns and exons prior to splicing. However, these signals vary some-

what in the composition from intron to intron. Although we can use PSWMs

to capture some of this variability and quantify it, the matrices are not a fool-

proof way of accounting for every variation present in known introns. Indeed,

one of the difficulties with PSWMs is that they tend to blur subtle differences in

composition by favoring the most common nucleotide(s) in each position of an

alignment. As a result, it is possible to miss signals that might affect the efficiency

of the splicing of a given intron.

This is a particular problemwhen considering alternative splicing, the process

in which some exons are selectively skipped (treated like introns) to yield a variant

protein from the same gene region. Many researchers believe that alternative

splicing occurs quite frequently in higher eukaryotes, and any method for finding

genes in these species must be able to account for this phenomenon. PSWMs

derived from sets of intronic sequences are not very reliable in this realm because

they tend to gloss over the subtle variation thatmightmean the difference between

retaining or excluding an exon during alternative splicing.

An alternative is to look instead to the spliceosomal components. For exam-

ple, the U1 and U2 snRNPs each have a section of RNA that must base pair

with the relevant sequence on the intron before splicing can occur. So rather

than model the variability of sequences on the intron, we can derive a PSWM

from looking at the U1 and U2 sequences directly. PSWMs derived from U1

and U2 snRNPs of a variety of species can give us a more generalized model

and account for a wider range of sequence variability than just looking at sets of

known introns. This approach is utilized by the most successful eukaryotic gene

prediction algorithm, Genscan [3].

Finding Introns Through Sequence Homology

Each of the methods for finding introns we have discussed so far has a criti-

cal stumbling block: the problem of false positives. With any predictive method,

somepredictions are false. In this case, eachmethodwill generate some fractionof

predictions that are a figment of the methodology rather than true introns. Obvi-

ously, we want to find a method that completely eliminates, or at least minimizes,

false positives.

The problem of false positives arises because each of the methods discussed

attempts to find the intron–exon boundaries in a given sequence without any

prior knowledge about the location of a gene. In other words, given a sequence

of some length, PSWMs and hidden Markov model (HMMs Section 7.4.3) will

Chapter 7 Gene Finding 305

attempt a bests guess at the presence or absence of introns and exons. This is

critical when we are trying to find genes in a newly sequenced genome.

However, this is not always the case. For example, even before the completion

of the Human Genome Project, many hundreds of human genes had been iden-

tified and characterized experimentally. So one approach is to take advantage of

previously characterized genes to resolve intron–exon boundaries.

The key to this approach, sometimes known as gene prediction through

sequence homology, or reverse mapping, is that the final translated transcript

is, in essence, an ORF. That is, it is a continuous coding region with a clearly

demarcated start and stop. The clever solution to the problem of how to find the

intron–exon boundaries is to take this continuous coding region and map it back

to the original genome sequence. Sequences where the coding region exactly

matches the genomic sequence must be exons. Any intervening, unmatched

sequences represent introns. Figure 7.7 shows how this might work.

There are two ways to go about the reverse mapping. The simplest is to take

the final mRNA transcript, after it has been spliced, and reverse-map it to the

genome. However, the more common, albeit difficult, approach is to start from

the protein sequence. Given a known protein sequence, the idea is to reverse-

translate it into all the possible mRNA transcripts, and then map each one back

to the genome.

The first challenge with reverse translation is that the amino-acid-to-

nucleotide-codon correspondence is not 1:1 for most amino acids. Recall that

the genetic code is degenerate, meaning several codons exist for most amino

acids. The challenge is to figure out the correct codon present in the mRNA

Genomic sequence

Exon 2

Exon 3

Protein

Putative exons

Exon 1

FIGURE 7.7 This example shows how reverse mapping of a protein can provide exact

boundaries between exons and introns. The protein sequence is reverse-translated into

DNA, and the putative exons are then mapped to the genomic sequence. The end result

is a set of genomic exons that should yield the correct protein [8].

306 Chapter 7 Gene Finding

transcript. You can see how this could easily become a complex, combinatorial

problem. Codon usage patterns can help guide the selection of which codon

we use for each amino acid, but this is only a partial simplification of the

problem.

The second challenge is how we map the reverse-translated sequences to

the genome. We need an efficient algorithm to find regions of exact or near

exact matches, a problem that is distinct from the sequence alignment problem

described in Chapter 5.

The advantage with reverse-mapping approaches is that they produce no

false positives. In essence, we can only map back proteins we already know exist

in that particular species, so we avoid the problem of false positives altogether.

So at first glance, this seems the way to go for gene prediction. Can you think of

a reason why this might not be a suitable approach?

The problem lies with the other kind of error inherent to predictive methods.

That is, a method can fail to find a known intron–exon boundary because it did

not have sufficient information to determine the boundary. We call such errors

false negatives because the method wrongly skips a known instance of an intron

or other signal. Reverse-mappingmethods present a very great possibility of false

negatives because we do not have a protein sequence for every possible protein

in most genomes. So, some novel genes, for which we have not yet identified

the protein, will be missed by the reverse-mapping approaches. If we only use

reverse-mapping techniques, we will never find new genes; we will simply confirm

the presence of known genes.

How do we work around these problems? One solution is to combine

approaches, so that the false positives generated by one method are corrected by

another. Conversely, the false negatives generated by one method can be accom-

modated by adding in predictions from other approaches. The end result will be

a more complete set of gene predictions for a genome than any single method

could produce on its own.

7.4 FINDING GENES THROUGH MATHEMATICS

Many fields of modern scientific endeavor are swamped with a huge amount of

data. Use Google or another search engine to find out how much data arrives

from radio telescopes daily. Find out how much data is entered into biological

sequence databases every day. Some of the data may be “noise” in the sense that

it does not currently contain information we understand or can use. Some may

just be plain noise derived from interference with equipment or inaccuracies in

laboratory technique. We will describe just two of the many mathematical tech-

niques developed to scan large datasets to identify what is “meaningful.” First,

we look at a simple implementation of an approximation to the complexity mea-

sure associated with Shannon entropy. Then we examine a straightforward way

in which Markov models can be used to construct a discriminator for differently

featured sequences.

Chapter 7 Gene Finding 307

7.4.1 Linguistic Complexity

A fast method for determining the complexity of strings was described by

Troyanskaya [18]. For each length k it is possible to determine how many dif-

ferent words of length k might exist in a string and how many different words of

that length actually occur in the string. In Exercise 7.7 you will write code to do

this. Linguistic complexity is computed by summing over a range of reasonable

values of k the ratio of actual to possible numbers of different k-tuples.

Take a look at the following two nucleotide sequences:

• A T T AGT GA T T AGT GA T T AGT GA T T AGT GA T T AGT GA T T AGT GA T T AGT GA

T T AGT GA T T AGT GA T T AGT GA T T AGT GA T T A T AGCA T CA T T T T T T A A A T T

• A AGA A A A A A AGA T T A A A A ACA ACCA AC T CGC T T T CGC T T T A AGCC T T T T T

A A T GGCGT GT T AGA A A A A A T CA A T GA A A T T GACGCCC T CA T CGAGCCGCA

Both are highly repetitive. When we apply the method described in [18] to

the first sequence, we find its linguistic complexity is .286, whereas for the second

sequence the linguistic complexity value is .917.

In the paper [18], the authors measure the changing linguistic complexity

of various prokaryotic genomes within a sliding window. They note peaks and

troughs and areas of increasing and decreasing complexity. With windows of size

40 they note complexity measurements ranging from 0.2 to 0.999. In Exercise 7.8

you are invited to follow their steps. We emphasize that this is an area where

you may make significant discoveries. The connections between complexity and

biological meaning are not well understood. Exercise 7.8 is a research exercise.

It will help you understand the ways in which we can search for the meaningful

components, primarily genes, within the longer stretches of genomic sequence

that may or may not contain relevant information.

7.4.2 Looks Like a . . .

Once we find the meaningful regions of a genomic string, we are faced with a

much more difficult task. We must assume that these meaningful regions contain

genes. But how do we know what a gene looks like? RNA polymerase, which

generates the mRNA transcripts in a cell, is capable of recognizing those por-

tions of a genome that can be transcribed and eventually translated. So why

can’t we?

An old adage assures us that if it looks like a duck, walks like a duck, and

quacks like a duck, then it probably is a duck. But to someone who has never seen

nor heard a duck, the adage seems self-referential and useless for identification

purposes. Buried in the adage is a fundamental truth: Experience is an important

factor in recognizing objects. Later in the chapter, we’ll look at other factors based

on scientific knowledge and reasoning. For now, however, we examine ways to

formalize the method of developing a familiarity with a class of objects and then

308 Chapter 7 Gene Finding

using that familiarity to classify new objects not previously encountered. This is

how a lot of classification gets done. For example:

• Experienced classical musicians have heard a lot of Mozart’s music, and

they’ve heard a lot of Beethoven’s music. When they hear a previously

unheard work by one of these masters, they are able to tell, from experience,

that it “sounds like Mozart” or “sounds like Beethoven.”

• Experienced art curators know that something “looks like a Vermeer” or

“looks like a fake.”

Does some mysterious “intuition” develop as you gain experience? Or is it

something more tangible?

Look at the following sequences:

11101100110100111101101101001110000101011100001101
00010101010011100100110100100100000100000110011101

and

00001100010111000110100111010101011001111100111000
11001011011000110011011110010010110110000100011011

You may be interested to know that one of these strings is a short extract

from an ASCII representation of Shakespeare’s Twelfth Night, and the other is a

randomly generated binary sequence that uses 0 and 1 in the same proportions

as they occur in the ASCII Twelfth Night. Exercise 7.17 asks you to figure out

which is which.

If you were able to distinguish between the sequences, you were most likely

considerably helped by knowing the ASCII encoding scheme. Without that key,

the task would have been much harder. For some biological problems, scien-

tists have effectively obtained the key. We know a relationship between triplets

of nucleotides and amino acids. This key lets us solve some related biological

problems. Unfortunately, for many other biological “code-breaking” problems,

we are very far from understanding the encoding scheme. In such cases, statistical

techniques may come to our aid.

7.4.3 Markov Models

Consider the task of the Shakespearian scholar who is confronted with a new

discovery, a play that purports to be by the Bard of Avon, but that has lain

hidden for centuries. How can the scholar verify, or refute, the authenticity of the

new play?

One method is to form a frequency count of how often each word in the

play occurs, and compare that with a frequency count obtained from already

authenticated Shakespearian works. For example, of the 21,172 words in Twelfth

Night, the word to appears 395 times, the word and appears 521 times, but the

word foul appears only twice. If in the new play the word and appears only half

as often as the word to, the scholar has pretty strong evidence that this play is not

Chapter 7 Gene Finding 309

by Shakespeare. Similarly, if the scholar finds widespread use of the word foul,

she needs to look closely at the text to decide if this were dictated by the needs

of conveying meaning (and therefore potentially Shakespeare) or just random

(indicating a forgery).

The unit of counting need not be the individual word. The scholar might

count the relative frequencies of each of the letters in the alphabet. Unfortunately

she will not be able to discern much from this approach because the relative

frequencies of the letters do not vary much between one author and another if

both write in English.

On the other hand, relative frequencies of individual letters might be used by

somebody with no knowledge of Earthly languages to discern that a play written

in English is very different from a play written in Italian. Or if a certain text

contains about the same number of q’s as it does t’s, it is most likely not written

byShakespeare because it is unlikely to bewritten inEnglish. This presupposes, of

course, that the un-Earthly researcher already knows that q is a rarely used letter

in the English language, but t is a very common letter. In short, consideration of

relative frequencies of individual units can give us some insight into authorship

or origin. But the insight is limited.

Can we expect to get better information if we look at consecutive pairs of

units? That is the thinking behind Markov models. If a system is currently in

one state, what is the probability that it will enter into each of the possible other

states? For example, suppose the questionable manuscript contains the word to.

What is the probability that the next word will be be? Is that probability similar

to the probability that Shakespeare would have transitioned from writing a to

to writing a be? In the world of genomes, suppose we’re tracing a sequence of

nucleotides.We just saw aG.What’s the probability that the next base is aC?Does

that conditional probability differ if we’re within a coding region as opposed to,

say, within a promoter?

The kind of analysis we’re proposing is this: For each possible pair of units

i and j count up how often i is followed by j and call this total nij . Now count

up how often i appears, call it ni . Then figure pij =
nij
ni
. This is the transition

probability from i to j. You can form a matrix of all the pij to summarize your

findings.

If the process you are studying is a trueMarkov process, the transitionmatrix

of thepij you just createdwill be very informative. This is because aMarkovprocess

is one in which the next state is a probabilistic function of nothing more than the

current state.

Is Shakespeare a Markov process? Certainly not. Is the formation of a

genome a Markov process? Almost certainly not. Nevertheless, the assump-

tion that they approximate Markov processes turns out to have useful predictive

consequences.

Suppose we have two Markov processes either of which can give rise to a

sequence of characters. Suppose one has a transition matrix with entries pij , and

the other has entries qij . If we obtain a sequence S of characters it is possible to

perform some analysis and decide if pij is a more or less likely explanation for S

than the other.

310 Chapter 7 Gene Finding

Basically, the idea is to look at every consecutive pair in S. Using an obvious

notation, such a pair can be denoted by Sk and Sk+1. If pSkSk+1
is more than

qSkSk+1
then the presence of the pair SkSk+1 tends to corroborate pij as the

explanation for SkSk+1 rather than qij . Now we need to form a grand aggregate

of all the indications we obtain by looking at all the consecutive pairs in S. Let’s

form the log of the ratio of each pair rij = log
�
pij
qij

�
. If rxy is positive, it indicates

that the pij matrix is the better explanation for x followed by y. If rxy is negative,

it indicates that the qij matrix is the better explanation for x followed by y.

Mathematically we form the sum:

S.length()−2�
k=0

rSkSk+1
(7.3)

This is our predictor. It has summed the rxy values for all the successive pairs

x, y in string S. If the total is positive, the pij matrix is the better explanation for

string S. If it’s negative, qij is a better predictor explaining S.

A Worked Example: Was Twelfth Night Written by a Markov Process?

You’ll need to use your imagination here. Imagine that you are an archaeologist

of the future. You have just unearthed a large number of compact disks that,

remarkably, have survived in a readable form so that you can discern the sequence

of 0’s and 1’s on each disk. Further imagine that a museum has preserved a single

copy of a compact disk on which was stored an encoded version of Shakespeare’s

Twelfth Night. Time has erased all human memory of ASCII, and this is all you

have:

• A CD that the museum certifies contains a meaningful string of 0’s and 1’s

attributed to somebody called “William Shakespeare,” and

• A bunch of CDs whose content is unknown.

• Furthermore, you have the technology to read the sequences of 0’s and 1’s on

each of the CDs.

Perhaps now you can see the parallels with today’s large bioinformatics

problems:

• We have some DNA that laboratory scientists have identified as something

called “coding,” and

• We have a bunch of DNA about which we know nothing.

• Furthermore, we have the technology to read the sequences of nucleotides in

each of our samples.

Lab scientists take the place of the museum and attach some attribution to

some test data. We have other unclassified data and want to know if it is likely to

have come about by the same process as the designated test data.

On the Website http://www.mhhe.com/gopal you will find a file master. It’s
not crucial for you to know this, but it was generated by converting the text

of Shakespeare’s Twelfth Night into 7-bit ASCII. Think of this file as the CD

Chapter 7 Gene Finding 311

attributed by the museum as a genuine “Shakespeare.” Also at the sameWebsite,

you will find files mystery1, mystery2, and mystery3. These three files
also contain binary data and take the place of the CDs the future archaeologist

has unearthed.

You can do some preliminary analysis of your data by writing a program to:

• Count the number n0 of 0,

• Count the number n1 of 1,

• Calculate the frequency, n0
n0+n1

of 0,

• Calculate the frequency, n1
n0+n1

of 1.

For the Twelfth Night file, you find that the frequencies are about .4946 and

.5054. When you do the same for mystery1 you get .5258 and .4742; for file

mystery2 you obtain .4652 and .5348; and for file mystery3 you obtain .5280
and .4720.

All we can deduce from these results is that mystery1 and mystery3
have somewhat similar frequencies of bits, but that master and mystery2 are

different. Not particularly illuminating.

Now let’s go one level deeper and make the assumption that master was

generated by a Markov process. This may seem like an arrogant assumption

given that we know that the pattern of 0’s and 1’s ultimately derived from the

creative genius of the Bard; but it’s no less reasonable than the assumption made

by thousands of scientists every day who use assumptions of hidden Markov

models to enable them to compare biological sequences. The justification is that

the assumption of a Markov process behind complicated phenomena leads to

valuable results and insights. The entire scholarly endeavor behind the genius of

Shakespeare or the wonders of evolution are far beyond our humble abilities. But

we obtain valuable insights andmake progress in our understanding by beginning

with a simplifying assumption that lets us use our data.

Assuming a Markov process behind our master data, we write a program

to analyze the data. Our program will:

• Count the number n00 of times that 0 follows 0

• Count the number n01 of times that 1 follows 0

• Count the number n10 of times that 0 follows 1

• Count the number n11 of times that 1 follows 1

We’re assuming a Markov process that has two states:

• In the first state called A, the process will write a 0,

• In the second state called B, the process will write a 1

After each write, the process may advance to the other state, or it may stay in the

same state. The probabilities:

• p00 of staying in state A,

• p01 of changing from state A to state B,

• p10 of changing from state B to state A,

• p11 of staying in state B

form the transition matrix for the Markov process.

312 Chapter 7 Gene Finding

We can compute the transition matrix pij for the Markov process behind the

data contained in master. The probability pij that the system next goes to state j

given it is currently in state i is the quotient of the number of times j follows i

divided by the number of times that i occurs.

pij =
nij

ni
(7.4)

When you write a program to find the transition matrix for the data in

master you will find the matrix is approximately:

�
.49947 .50053

.48984 .51016

�

To build a statistical classifier for sequences, we also need a transition

matrix for the null hypothesis. The null hypothesis is that a sequence is gen-

erated, not by a Markov process, but by a random process. One way to do

this is to generate a random file of the same size that contains 0’s and 1’s in

the same ratio as the test file master. You can find such a file at the Website

randomsamelentwelthnightbin.txt. Analyze that filewith the same pro-
gram you used to analyze the test data in master, and you will obtain the null
hypothesis transition matrix qij :

�
.49536 .50464

.49430 .50570

�

Now we’re ready for the classification program shown in Figure 7.8. When

you run java TwelfthNight mystery1 you will obtain a large positive

result. That should not be surprising because we can now reveal that mystery1
is the 7-bit ASCII encoding ofHamlet: Prince of Denmark. mystery3 produces
a negative output, and again it’s not surprising because we can now reveal that

mystery3 contains the 7-bit ASCII encoding of a Java program (that we don’t

think was written by William Shakespeare). mystery2 also produces a positive
output. This may be surprising because it’s the 7-bit ASCII encoding of a text

written in Latin: De Bello Gallico, or Julius Caesar’s Gallic Wars.

In the exercises, we will pursue possibilities that use the same techniques to

pursue more sophisticated classifiers. Had we worked with groups of, say 4 bits,

as our basic unit, so that the transition matrices were 16 by 16 instead of 2 by 2,

we might have ended up with a more accurate discrimination of Shakespeare

works. Or we could even use characters, or, better still, individual words. Fur-

ther sophisticated discrimination becomes possible as we learn more about the

underlying “genomic puzzle.” For our discussion we asked you to pretend you

were completely in the dark. As we learn more about the underlying science, our

Markov assumptions can becomemore sophisticated and producemore accurate

discriminators.

Chapter 7 Gene Finding 313

import java.io.*;
public class TwelfthNight{

/* A simple statistical classifier for binary sequences.
Rhys Price Jones: January 2006.
Array p is the transition matrix for the 7-bit ASCII Twelfth Night
Array q is for the null hypothesis, a random sequence of equal
length with the same bit frequencies
Array s contains the log of the ratio of the transition probabilities
If r[i][j] is positive, p is a better predictor
If r[i][j] is negative, q is a better predictor
We’ll sum all the contributions for every pair in the input

Usage: java TwelfthNight filename
filename contains a sequence of 0s and 1s (nothing else)
Positive output indicates similarity to Twelfth Night!

*/

private static int NR_STATES = 2;
private static double[][] s= new double[NR_STATES][NR_STATES];
private static double[][] q= // transition probs for random
{{0.49536, 0.50464},
{0.49430, 0.50570}};
private static double[][] p= // transition probs for twelfth night
{{0.49947, 0.50053},
{0.48984, 0.51016}};

public TwelfthNight() {
// Instantiate the Log Odds Matrix r[][]:
for (int i=0; i<NR_STATES; i++)

for (int j=0; j<NR_STATES; j++)
r[i][j] = Math.log(p[i][j]/q[i][j]);

}
public double tprob(char c, char d) {

// Get log likelihood to move from c to d
return (r[c-’0’][d-’0’]);

}
public static void main(String[] args) {
int i;
StringBuffer sb = new StringBuffer();
try {

FileReader fr = new FileReader(args[0]);
i = fr.read();
while (i>0) {

sb.append((char) i);
i = fr.read();

}
}

FIGURE 7.8 Program TwelfthNight, a discriminator showing similarity to the Markov process behind the

ASCII encoding of the play.
(continued)

314 Chapter 7 Gene Finding

catch (IOException ioe) {
}
TwelfthNight tn = new TwelfthNight();
String x = new String(sb);
double tot = 0.0;
char[] a = x.toCharArray();
for (int j=0; j<a.length-2; j++) {

tot += tn.tprob(a[j], a[j+1]);
}
System.out.println("Total Estimator for "+args[0]+" evaluates to "+tot);
System.out.println("Normalized it’s "+100000*tot/x.length());

}
}

FIGURE 7.8 (continued)

7.4.4 Genes as Markov Processes

We can also adapt the program in Figure 7.8 to distinguish between coding and

noncoding sequences of DNA. The principles are the same. Known stretches of

coding DNA serve as our master. Known stretches of noncoding DNA serve

as our null hypothesis. We obtain a 4 by 4 transition matrix pij for the coding

segments, and a 4 by 4 transition matrix qij for the noncoding segments. We form

an sij matrix via

for (int i=0; i<4; i++)
for (int j=0; j<4; j++)

r[i][j] = Math.log(p[i][j]/q[i][j]);

and by summing the r values that occur in a mystery sequence, we can tell by

obtaining apositive sum that themystery sequence is likely codingor by anegative

sum that the sequence is likely noncoding. We don’t need to know everything

about the science of the cell and its biological processes; we can work with what

we have, and hope to learn more.

A certain beauty andmeaning lies behind the seemingly random strings of 0’s

and 1’s that constitute anASCII encoding of Shakespeare. We know that because

essentially we understand the plays and the process of encoding. That’s what

creates and explains the language of binary-encoded Shakespeare, something

that future archaeologists may dig up and try to interpret, not having the benefit

of our literary education.

Similarly, we conjecture that there is a beauty and a meaning behind the

seemingly random strings of nucleotides we obtain from the DNA of nature. We

don’t understand the science behindmost of the processes governed by theDNA.

But, as we’ve seen in this section, we are making some progress in understanding

the science that explains the language of those seemingly random sequences.

Markov models have been used extensively in many areas of biological sequence

analysis. In the following discussion, we explore the use of Markov models to

distinguish between introns (noncoding regions) and exons (coding regions).

Chapter 7 Gene Finding 315

Recall in Section 7.3.1we noted thatORFs that are functional coding regions

tend to have distinctive biases in codon composition. That is, coding regions

favor some codons over others. We can use this to our advantage in building a

Markov model to identify putative coding regions. Just as with ORFs, we expect

that true exons will have preferential codon usage, and so we can use nucleotide

composition to better identify exons and introns. The exons are constrained,

of course, in that they must code for amino acids using the nucleotide triplets or

codons. The introns, on the other hand, can be more or less randomly organized,

save for the short signals needed for splicing at the 5 , 3 , and branch points. We

can use this shift between carefully ordered nucleotide composition to relatively

random distributions of nucleotides to better pinpoint the regions that contain

exons and introns, respectively.

The idea is quite simple. We expect exons to contain ordered sets of three

nucleotides that abide by the codon usage patterns of the species in question.

It turns out that the best way to evaluate nucleotide composition in exons is

actually to consider two codons at once [3,5]. When we look at six nucleotides

worth of information, we aremore likely to see the sort of codon trends thatmight

occur when an exon is actually part of a functional gene. That is, certain amino

acids that never occur right next to each other, and others almost always occur

in conjunction. By looking across six nucleotides of sequence, we are essentially

asking if at least two amino acids are juxtaposed in a way that would suggest a

functional gene, given the trends seen in that species.

If the hexamers of nucleotides correspond to known codon usage, then we

are likely looking at an exonic sequence. When the hexamers shift in composition

and no longer correspond well with known codon usage, we may be in an intron.

If the hexameric composition shifts back to correlate with codon usage, then we

have once again transitioned into an exon. So the shifts in nucleotide composition

can be a very powerful way of determiningwhether we are in an exonic or intronic

sequence.

The advantages of this approach are numerous. First, we can focus on known

exons and introns and build a statistical model of what hexameric composition

patterns are relevant for exons versus introns. Second, we can do this in a species-

specific fashion, which enables us to account for species-specific variations in

composition. Finally, we canuse a powerfulmethodknownas the hiddenMarkov

model (HMM) to scan longgenomic sequences to identify likely exons and introns

based on their composition. HMMs have become the mainstay of nearly every

gene prediction algorithm available today [3,5,10].

Genscan

One very popular tool used for finding genes in the human genome

is Genscan. Developed by Chris Burge and Sam Karlin in 1997, Genscan

remains one of the most accurate gene-finding tools available for the human

genome and a few other genomes [13]. We present a brief description of the

Genscan algorithm here, but interested students should consider reading the

original Genscan paper to get a sense of the full scale of this algorithm [3].
(continued)

316 Chapter 7 Gene Finding

Genscan combines several of the approaches we have discussed here. It

starts by looking for patterns that might indicate promoters or terminators

immediately upstream and downstream of a putative gene region. Promoter

finding is mediated through a PSWM in much the manner that we discussed

in Section 7.2.2. Genscan looks specifically for the TATA box, the short

sequence of TATAA or variants thereof found at the start of most human

genes.

After identifying a putative promoter region, Genscan utilizes a fairly

standard HMM (see Section 7.4) to identify putative exons. As with other

programs, it considers hexameric nucleotide compositionandemploys afifth-

order Markov model to evaluate the likelihood that a given sequence region

has the right composition to be an exon.

PSWMs are again brought into play to find the intron–exon boundaries.

Using information from the spliceosome components, Burge and Karlin

developed a PSWM to identify the sequences that must exist at the 5 and 3

ends of the intron for splicing to occur. The PSWM is used to check for these

conserved signals whenever the HMM indicates that the codon composition

no longer matches the pattern expected for a coding exon.

In addition to these methods, Genscan incorporates a length constraint.

In human genes, introns tend to have a very distinctive length distribution,

and Genscan takes advantage of this to check that any predicted intron

falls within the known distribution. So, as the algorithm proceeds along

the sequence, assembling exons and looking for intron boundaries, it also

checks that the length of any putative introns fit the known distribution. An

intron that looks too short, for example, might indicate an instance where

Genscan has overextended an exon into the intron boundary. In these cases,

Genscan can “back up” and revise the intron boundary so that the intron

is more in keeping with the known distribution. Similarly, if an intron is

unusually long, then Genscan may try to find an earlier splice site that would

adjust the intron length and perhaps lead to the prediction of an additional

exon for that gene.

The other reason to check the intron length is to determine if we are still

inside a gene or if we have moved into an intergenic region. For example,

a very long intron may actually be two separate genes. In this instance the

“intron” is actually just intergenic sequence. Thus, Genscan avoids concate-

nating genes by checking that the introns between coding segments fit the

known distribution for intron length. A very long intron is a good indication

that Genscan should split the “gene” in two and find a promoter sequence

at the start of each gene.

By combining all of these techniques, Genscan is remarkably accurate

on human genomic sequences. However, it is worth noting that “remark-

ably accurate” is a relative term: the average accuracy of Genscan is about

80%, although it does perform better when presented with smaller sequence

segments or with regions where shorter genes (i.e., fewer exons) prevail [3,13].

Chapter 7 Gene Finding 317

Nevertheless, 80% accuracy is possibly the best that any gene prediction

program can achieve in the human genome. This is because there are so

many alternative possibilities for gene structures within the length of the

human genome that any prediction method is likely to generate some false

positives and false negatives.

Genscan is valuable both as a reliable predictor of genes in genomic

sequence and as an example of an algorithm that combines both statistical

information and models (e.g., the HMMs for exon finding) with empirical

informationandexperimental knowledge (e.g., thePSWMstofindpromoters

and intron boundaries). Genscan represents one of the best examples of how

computational approaches can benefit from experimental results and vice

versa during the design and implementation of an algorithm.

7.5 GENE FINDING BY LEARNING:
LETTING A COMPUTER DO IT

At this point, we have looked at a number of individual strategies for identifying

the components of a gene. We can look for ORFs, as described in Section 7.3.1,

we can try to find likely coding regions by looking at codon usage statistics (see

Section 7.3), and we can try to identify splice signals if needed (see Section 7.3.2).

We can also try to find the promoters and terminator signals as described in

Section 7.2. Each of these signals constitutes a part of a gene. But canwe combine

the different methods and signals to create one cohesive gene-finding system?

A number of algorithms are available for gene finding, but most of them

select a subset of gene features, such as finding ORFs, or splice signals, or pro-

moters, or some combination thereof. These methods each have their strengths,

but they also have their weaknesses. In a given genome, it might be easy to find

ORFs, but then difficult to decide which ORFs are functional and which are false

positives. It helps in this instance to also check if codon usage is appropriate in

each predicted ORF. Similarly, in another genome we might have a dependable

way to find splice site boundaries so that we have a large collection of reliably

predicted exons. But then we must determine which exons go with which genes.

So, even though we have manymethods for finding the individual components of

a gene, we sometimes have difficulty figuring out whichmethods to use to reliably

locate genes in a given genome.

We have two options in this situation. We can turn to the experimental biol-

ogists and ask them to help us identify those features of a gene that can be used

to reliably identify genes in that genome. For example, a biologist might tell you

that all functional ORFs in a single-celled organism are preceded by a particular

signal sequence that is 5 of the start codon. This handy piece of information can

be used to validate ORFs predicted by other methods. Thus we might tailor our

gene-finding program in this organism to only report ORFs that also have the

318 Chapter 7 Gene Finding

5 signal sequence. Similarly, we can build up a repertoire of other signals and

evidence to support our primary gene-finding method.

Theadvantageof this approach is thatweuseonly the informationweneed, as

suggested by experimental evidence. This ensures that weminimize false positives

(predicting genes where none exist). The disadvantage of this method is that we

also generatemore false negatives, that is, skipping real genes because they do not

match our criteria. Thesemight be new genes that have not yet been characterized

or that have some novel mechanism of regulation. So if we take this approach,

we risk missing out on something new and interesting that might appear if we

were less restrictive in our searching.

Given this concern, what are some alternatives? One option is to try out lots

of different combinations of gene features until we hit upon one that reliably finds

all the known genes and can find new genes with some reasonable confidence that

the latter are likely to be functional. If we do this by hand, we could easily be

at it for the rest of our lives. In this chapter, we have come up with eight key

features for genes: ORFs, start and stop codons, codon usage and bias, splice

signals, promoters, and terminators. In theory, therefore, we can combine these

features in eight factorial (8!) ways. Again in theory, we have to test all of those

combinations to figure out what works for a particular genome.

In reality, we can rule out some of the combinations. For instance, we gen-

erally know that if a gene is usually present as a continuous ORF, then we do

not have to search for splice signals. Alternatively, if we know that a gene is dis-

continuous, we will not search for ORFs, and we place less emphasis on a start

codon right at the start of the coding region. Rather, we need to determine that a

start codon occurs somewhere within the overall gene structure. Even with these

shortcuts, the challenge remains: Which of the various features of a gene aremost

indicative of a truly functional gene in a given genome?

One way to decide this is to turn over the reins to an algorithm that can try

out many different combinations of features and determine which combination

works best. In Chapter 6, we introduced the concept of the genetic algorithm

(GA), a computational method that mimics the biological process of evolution.

We can use GAs to “evolve” a solution to the gene-finding challenge. In essence,

we provide the GA with all the known features of functional genes and a set

of candidate genes. We then ask to weight each feature based on that feature’s

ability to reliably identify known genes. After many rounds of evolution, the GA

returns a set of optimized weights, each of which tells us the relative importance

of a given feature.

Another method that has shown some promise is a neural network in which

each node represents the relative importance of a given feature. By altering the

nodes and optimizing the path through the neural net, we can identify those

features most important for genes in a given genome. Other machine learning

methods also offer promise in this regard, and we may yet see the next gener-

ation of gene prediction algorithms moving away from the very deterministic

approaches used so far toward more open-ended methods that can yield inter-

esting and possibly unexpected solutions. As we said at the start of this chapter,

algorithms for finding signals in a genome are far fromperfect, and there is plenty

of room for new approaches and ideas.

Chapter 7 Gene Finding 319

7.6 EXERCISES FOR CHAPTER 7

Exercise 7.1Calculate the Shannon entropy for each of the positions in the Table 7.3.

Which positions are most likely to be part of a signal for HIV integration?

Exercise 7.2Write a program that can calculate the log odds ratios for positions in an

alignment. The input to your programwill be a multiple-sequence alignment

such as the one shown in Table 7.2. You will need to calculate the nucleotide

frequencies in each position. You will also need an equivalent set of ran-

dom sequence data. You can generate random sequences by determining the

overall nucleotide frequencies from your input data and then randomly gen-

erating strings of the same length as your input alignment. After building the

two position-specific matrices (similar to those shown in Tables 7.3 and 7.6),

calculate the log odds ratio for each position. Using the data from the HIV

integration example, can you determine which positions are important for

the integration signal?

Exercise 7.3Use the resources at the National Center for Biotechnology Information

(NCBI) (http://ncbi.nlm.nih.gov) or the University of California at Santa

Cruz Human Genome Browser (http://genome.ucsc.edu/) to search one of

the chromosomes of the human genome for the consensus pattern we have

identified for HIV integration. How many such sites exist on your selected

chromosome? Can you determine whether any of these sites occur within a

known gene? What might be the effect of HIV integrating in the midst of a

gene?

Exercise 7.4Download the HIV genome sequence from NCBI and identify all the

instances ofATG andTAG.Doanyof the intervening sequencesmatchknown

HIV genes? How could you discover this?

Exercise 7.5Pick a prokaryote and download its genome. A Web search will give you

plenty of choices.

While developing your programs, you might want to have a

“minigenome” consisting of, perhaps, the first 10,000 nucleotides. Youmight

find the following code helpful. It prints out the locations of the first
(continued)

320 Chapter 7 Gene Finding

STOP codon in a genome whose filename is passed in on the command

line:

import java.io.*;
class Orf1 {

String genome;
String[] stops = {"TAG","TAA","TGA"};
String[] starts = {"ATG","GTG","TTG"};

public Orf1(String filename) throws Exception {
BufferedReader br =

new BufferedReader
(new InputStreamReader
(new FileInputStream(filename)));

StringBuffer myString = new StringBuffer();
String line = br.readLine();
while (line != null) {

myString.append(line);
line = br.readLine();

}
genome = new String(myString);

}

public boolean isStart(int n) {
// return true if a start-codon begins at n
String myThree = genome.substring(n,n+3);
int i = 0;
while (i<3) {

if (myThree.equals(starts[i])) break;
else i++;

}
return(i<3);

}

public boolean isStop(int n) {
// return true if a stop-codon begins at n
String myThree = genome.substring(n,n+3);
int i = 0;
while (i<3) {

if (myThree.equals(stops[i])) break;
else i++;

}
return(i<3);

}

Chapter 7 Gene Finding 321

public int nextStop(int n) {
// return location of next stop in genome at n or later
if (n>genome.length()-2) return(-1); // no more stops
if (isStop(n)) return(n);
return nextStop(n+1);

}

public static void main(String [] args) {
Orf1 foo = null;
try {

foo = new Orf1(args[0]);
}
catch(Exception e) {

System.out.println("Bad file");
System.exit(-1);

}
System.out.println("First stop "+foo.nextStop(0));

}
}

Assuming this code is in a file called Orf1.java, you compile with

javac Orf1.java

And you run it via, say,

java Orf1 ecoli.txt

or whatever organism you have the sequence for. Notice that the file

Orf1.java has a few other utilities you may find useful for the rest of this

exercise.

1. Write a program to locate the first stop codon after some number n in

your sequence. For example:

java Orf2 ecoli.txt 777777
First stop after 777777 occurs at 777809

2. Write a program to locate the first in-frame stop codon after some

number n in your sequence. For example:

java Orf3 ecoli.txt 777777
First stop after 777777 occurs at 777813

3. Now let’s combine the two searches from Orf2 and Orf3. Write a

program that accepts a genome, a location loc, and a minimum size

min. It should search through the genome, starting at loc going one (continued)

322 Chapter 7 Gene Finding

nucleotide at a time until it finds a stop, say at location first. Then
it searches IN-FRAME for the next IN-FRAME stop at location,

say, second. If the distance from first to second is at least min, then
your program prints out its solution and halts: It has found the first

stop–stop frame after loc that has length at least min. Otherwise your
program continues its search at first+1, looking for an IN-FRAME

stop that gives a stop–stop length of at least min.
Write a program to find the first stop–stop frame in the genome

stored in args[0] after location args[1] that has length at least

args[2] nucleotides. For example:

java Orf4 ecoli.txt 777777 500
First stop-stop of size at least 500 after 777777
occurs from 778262 to 778808

Incidentally, don’t worry too much about what happens if your pro-

gram runs off the end of the genome. Let it crash or try to terminate

elegantly, it doesn’t matter for the purposes of this exercise. Of course,

we assume you know how to terminate elegantly.

4. Write a program that prints a list of possible start codons within the

stop–stops generated by Orf4. For example

java Orf5 ecoli.txt 777777 500
First stop-stop of size at least 500 after 777777
occurs from 778262 to 778808
Possible in-frame starts occur at

778265
778289
778304
778319
778337
778394
778415
778442
778472
778547
778679

Exercise 7.6 Given the following intronic sequences, can you construct a relevant PSWM

for each of the three signals at the 5 , branch point, and 3 sites within an

intron? The sequences associated with each signal are included separated by

. . .

>ACU08131_1 641, 1065

GTGAGCCCAG...AATCCAGCTGCAAG...TAACTTTTCCCTTCTCTGGCAG

Chapter 7 Gene Finding 323

>ACU08131_2 1362, 1859

GTAAGAGACA...AATCAATTGCTGGG...CTTGTGCTCCTCTTCTCCATAG

>ACU08131_3 2028, 2636

GTGAGTGTGA...AATCAGTATAAGGG...CCTTTTTCAACTTTTTCTCTAG

>ACU08131_4 2802, 3557

GTAGGTACTA...AATCTCTTTCCTCA...TCCTTACCTTTCTCATACACAG

>ACU08131_5 3797, 4130

GTAATTTTCT...AATCCAAACACAGT...TCTTCCTTTTTTCTTCTGGCAG

>AGGGLINE_6 3157, 3280

GTAGGCTCTG...AATCT...CACAG

Exercise 7.7Write a program to measure the linguistic complexity of a string of

nucleotides. Following [18] you can:

• For each k calculate how many different sequences of nucleotides

of length k can exist in a string of length m. Write a method

maxNumWords(int m, int k) to do this, observing that the

returned value should be the smaller of 4k and k − m − 1.

• For each k calculate how many different sequences of nucleotides

of length k actually occur in your string s. Write a method

actualNumWords(String s, int k) to do this. Your task will

be facilitated by adroit use of data structures in SunMicrosystem’s Java

Collections.

• The linguistic complexity of a string can now be computed by form-

ing the sum over a reasonable range of values of k of the ratio of the

actual to the maximum numbers of words of length k. Write the method

lingComplexity(String s) to return

10�
k=1

actualNumWords(s,k)

maxNumWords(s.length(),k)

Test your program on some coding and noncoding prokaryotic genome.

Exercise 7.8Adapt the code you wrote for Exercise 7.7 to investigate changes in linguistic

complexity within a sliding window of various sizes along a genome. See if

the troughs and peaks you detect correspond to any features noted in the

published annotations for the genomes.

324 Chapter 7 Gene Finding

Exercise 7.9 Encode the string “To be or not to be” as a binary string using the 7-bit ASCII

code of Table 7.1.

Exercise 7.10 Decode the binary string

0111010 0100000 1110100 1101000 1100001 1110100
0100000 1101001 1110011 0100000 1110100 1101000
1100101 1110001 1110101 1100101 1110011 1110100
1101001 1101111 1101110 0101110

using the 7-bit ASCII code of Table 7.1.

Exercise 7.11 In the text we noted that using ASCII, an n-base pair genome requires 8n

bits to store on modern computer systems. Find out if the popular sites use

ASCII encoding for genomes. Find and download some genome files. Use

the Unix wc utility, or whatever tools you have available, to find the size of

the file and the actual length of the genome. What do you conclude about

the encoding in use at that Website?

Exercise 7.12 Invent another encoding for genome data. Since all you need to encode are

the four symbols A C G T, you should be able to invent a 2-bit encoding

scheme.

Exercise 7.13 If you did adopt a 2-bit encoding scheme as described in Exercise 7.12 then

you would need to create an encoding program (to convert a genome to

your 2-bit encoding scheme) and a decoding program (to recover standard

genomic notation from your 2-bit code). Either of these is a trivial challenge

in a programming language like Perl. Discuss the pros and cons of adopting

a 2-bit binary code for storing and exchanging genomic data on the Internet.

Exercise 7.14 Morse code came into use in the mid-1830s to ensure rapid communication

on channels that did not have the capacity for voice transmission. Instead, it

employed short and long“beeps” in various combinations to relay characters.

For example, transmitting a D involved sending a long followed immedi-

ately by two short beeps. This was often referred to as “dash-dot-dot” or

“—..”. Today, we might use 1 for a dash and 0 for a dot, rendering D as

100. With this notation, Table 7.9 gives the Morse code for the English

alphabet.

Chapter 7 Gene Finding 325

TABLE 7.9 Part of the Morse Code

A B C D E F G H I J K L M

01 1000 1010 100 0 0010 110 0000 00 0111 101 0100 11

N O P Q R S T U V W X Y Z

10 111 0110 1101 010 000 1 001 0001 011 1001 1011 1100

Notice that commonly occurring letters such as E and T are given short

encodings, whereas the rarer letters like Q and Z get longer encodings.

Encode the string “All the world ” using our binary version of the Morse

code. How many bits are necessary?

Exercise 7.15Decode the “binary Morse code” message:

00 000 01 000 1 01 110 0

Exercise 7.16Something is fraudulent about our use of the “binary”Morse code. We used

another character – the pause, denoted in Exercise 7.15 by a space, and it is

necessary. How else could you tell the difference betweenMORSE (11 111
010 000 0) and TONDS (1 111 10 100 000). In pure binary they are
both 111110100000 and indistinguishable.

It is thereforemisleading to say that theMorse code enables us to encode

MORSE as a 12-bit string. In practice, something must be used to separate

the individual letters. Nevertheless, Morse code gives some indication that

savings can be obtained by using variable-length encodings. Some variable-

length encodings have a highly desirable prefix property. No encoding is

a prefix of any other encoding. This means that as your read an encoded

message from left to right you will know exactly when one character ends

and another begins. Find out what you can about variable-length codes and

Huffman coding.

Exercise 7.17Look at the following sequences:

11101100110100111101101101001110000101011100001101
00010101010011100100110100100100000100000110011101

and

00001100010111000110100111010101011001111100111000
11001011011000110011011110010010110110000100011011

(continued)

326 Chapter 7 Gene Finding

One of these strings is a short extract from an ASCII representation of

Shakespeare’s Twelfth Night, and the other is a randomly generated binary

sequence that uses 0 and 1 in the same proportions as they occur in theASCII

Twelfth Night. Your task is to tell which is which. Remember:

• ASCII is a 7-bit code as given in Table 7.1.

• You are not guaranteed that either of the sequences actually begins at a

boundary between two 7-bit codes.

Exercise 7.18 Write a program, similar to the one given in Figure 7.8 but that looks at

transitions from a pair of bits to a pair of bits. Your arrays will need to be 4

by 4 instead of 2 by 2. You must also determine which entries should be for

the pij and qij arrays. This requires analysis of files by counting how often

one binary pair (say, 01) is followed by another binary pair (say, 11). Does
this improve on the discrimination obtained by the program in Figure 7.8?

Exercise 7.19 Write a program, similar to the one given in Figure 7.8 but that looks at

transitions from one character to another. Your arrays will need to be 95 by

95 instead of 2 by 2 to account for all the possible printing ASCII characters

you may encounter. You need to determine the entries for the pij and qij
arrays. This will require analysis of files, counting how often one character

(say, ’) is followed by another character (say, s). You will need to analyze text

files to obtain these values. You can obtain many literature files from Project

Gutenberg. Does the resulting discriminator improve on the discrimination

obtained by the program in Figure 7.8?

Exercise 7.20 Write a program, similar to the one given in Figure 7.8 but that looks at

transitions from one nucleotide to another. Your arrays will need to be 4 by 4

instead of 2 by 2 to account for the four nucleotidesA, C, G, andT. Youmust

figure out which entries should be included in the pij and qij arrays. This will

require analysis of files, countinghowoftenonenucleotide (say,C) is followed

by another nucleotide (say, G). You will need to analyze genomic data files to

obtain these values. In particular, you need to identify some coding sequence

fromwhich to derive the pij matrix and somenoncoding sequence fromwhich

to compute the qij matrix. Note that our null hypothesis now corresponds

to known noncoding data rather than randomly generated data. Can you

devise convincing ways to test your discriminator?

Chapter 7 Gene Finding 327

KEY TERMS

gene (7.1)

error-detecting code (7.1)

error-correcting code (7.1)

Shannon entropy (7.1)

Shannon’s theory of

information (7.1)

TATA box (7.1)

reverse complement (7.2)

log odds ratio (7.2)

consensus pattern (7.2)

position-specific weight matrix

(PSWM) (7.2)

transcriptional control (7.2)

promoter (7.2)

transcription factor (7.2)

transcription factor-binding site

(TFBS) (7.2)

terminator (7.3)

polyadenylation (7.3)

start codon (7.3)

stop codon (7.3)

open reading frame (ORF) (7.3)

coding region (7.3)

exon (7.3)

intron (7.3)

reading frame (7.3)

codon usage (7.3)

splicing (7.3)

spliceosome (7.3)

branch-point adenine (7.3)

intron–exon boundaries (7.3)

alternative splicing (7.3)

reverse mapping (7.3)

false negatives (7.3)

false positives (7.3)

transition probability (7.4)

prefix property (7.6)

BIBLIOGRAPHY

1. B. Alberts, D. Bray, A. Johnson, et al. Essential

Cell Biology, 2nd ed. Garland Publishing,

New York, 2003.

2. A. Ambesi-Impiombato, M. Bansal, P. Lio, and

D. di Bernardo. Computational framework for

the prediction of transcription factor binding

sites by multiple data integration. BMC

Neurosci, 7:Suppl 1:S8, 2006.

3. C. Burge and S. Karlin. Prediction of complete

gene structures in human genomic DNA. J Mol

Biol, 268:78–94, 1997.

4. Richard Dawkins. The Information Challenge,

The Skeptic, 18(4), Dec 1998.

5. A. L. Delcher, D. Harmon, S. Kasif, et al.

Improved microbial gene identification with

GLIMMER. Nucl Acids Res, 27:4636–4641,

1999.

6. R. Durbin, S. Eddy, A. Krogh, and

G. Mitchison. Biological Sequence Analysis.

Cambridge University Press, Cambridge, UK,

1998.

7. J. W. Fickett and A. G. Hatzigeorgiou.

Eukaryotic promoter recognition. Genome Res,

7:861–878, 1997.

8. Mikhail S. Gelfland, Andrey A. Mironov, and

Pavel A. Pevzner. Gene recognition via spliced

sequence alignment. Proc Natl Acad Sci USA,

93:9061–9066, 1996.

9. R. W. Hamming. Error detecting and error

correcting codes. Bell Sys Tech J, 29(2):147–160,

April 1950. Reprinted in E. E. Swartzlander,

Computer Arithmetic, Vol. 2, IEEE Computer

Society Press Tutorial, Los Alamitos, CA, 1990.

10. A. Krogh. Two methods for improving

performance of an HMM and their application

for gene finding. In D. J. State, P. J. Agarwal,

T. Gaasterland, et al (eds.), In Proceedings of the

Fifth International Conference on Intelligent

Systems for Molecular Biology, pages 179–186,

Menlo Park, CA, 1997. AAAI Press.

11. C. E. Lawrence, S. F. Altschul, M. S. Bogouski,

et al. Detecting subtle sequence signals: A Gibbs

sampling strategy for multiple alignment.

Science, 262:208–214, 1993.

12. H Li, V. Rhodius, C. Gross, and E. D. Siggia.

Identification of the binding sites of regulatory

proteins in bacterial genomes. Proc Natl Acad

Sci USA, 99:11772–11777, 2002.

13. Sanja Rogic, Alan K. Mackworth, and B. F.

Francis Ouellette. Evaluation of gene-finding

programs on mammalian sequences. Genome

Res, 11:817–832, 2001.

14. Thomas D. Schneider. Information theory

primer with an appendix on logarithms.

Web-based primer, 2007. http://www.ccrnp

.ncifcrf.gov/toms/suggested-reading.html

328 Chapter 7 Gene Finding

15. C. E. Shannon and W. Weaver. The

Mathematical Theory of Information. University

Press, Urbana, IL, 1949.

16. R. Siddharthan, E. D. Siggia, and E. van

Nimwegen. PhyloGibbs: A Gibbs sampling

motif finder that incorporates phylogeny. PLoS

Comput Biol, 1:e67, 2005.

17. S. Sinha, E. van Nimwegen, and E. D. Siggia. A

probabilistic method to detect regulatory

modules. Bioinformatics, 19:Suppl 1:i292–301,

2003.

18. O. G. Troyanskaya, O. Arbell, Y. Koren, et al.

Sequence complexity profiles of prokaryotic

genomic sequences: A fast algorithm for

calculating linguistic complexity. Bioinformatics,

18:679–688, 2002.

19. Xiaolin Wu, Yuan Li, Bruce Crise, et al. Weak

palindromic consensus sequences are a common

feature found at the integration target sites of

many retroviruses. J Virol, 79:5211–5214, 2005.

8
Gene Expression

“Life is a relationship among molecules and not a property of any molecule.”

—Linus Pauling

8.1 INTRODUCTION

The nucleus of a cell has much in common with a modern digital library. Both

are repositories for vast amounts of information, and accessing information in

the cell parallels the process of using a digital library. Imagine you have a pro-

gramming assignment requiring you to incorporate some new database andWeb

technologies. Your university library has a database of computing textbooks that

you can access online but that can’t be “checked out” in the traditional sense.

Rather, you are able to read them online and print out pages of interest. So, you

look through several books and select and print the pages best suited to your

needs. Think of the individual books as resembling DNA organized into genes

(pages or sections of the book) that can be selectively transcribed (printed) to

address a specific context or problem. The books themselves can’t be “checked

out,” just like DNA does not leave the nucleus, but the information stored there

can be accessed by changing it into another form (the printed page), similar to

what occurs inRNA transcription. Consider further that the database is provided

to the university library as a paid service, so its usemust be tracked and controlled.

To that end, the online service needs to know which pages are printed, howmany

copies of each are printed, which topics generate a lot of interest and activity,

and which appear to be related in terms of interest to the user (think of Amazon’s

“customers who bought this book also bought . . .” function). Similarly, the cell

biologist wants to know which genes are expressed (transcribed) and at what lev-

els. Discovering relationships between genes’ expression patterns is important for

reconstructing genetic networks and pathways, and can take the biologist closer

to understanding the context or “topics” to which the expressed genes belong.

8.2 GENES IN CONTEXT

The concept of the genehas changeddramatically over time. Prior to thediscovery

of the chemical and physical structure of chromosomes, the gene was primarily

a mental construct used to explain patterns of heredity in plants and animals.

329

330 Chapter 8 Gene Expression

The existence of some type of hereditary material was appreciated, but neither its

physical basis nor any mechanisms for its activity were known. Although today

we still think of the gene as a unit of heredity, aided by a good understanding

of the chemical basis of gene structure, our view of the gene has changed and

expanded. Scientists today recognize that understanding gene function is central

to understanding how cellular processes are controlled. Moreover, the experi-

mentalist view has changed from a gene to many genes. Very few physical states

or diseases are controlled by a single gene. How then can we decipher which of

the 30,000 or so genes in the human genome control each of themyriad of cellular

processes, states, and diseases?

When exploring this question, first consider the idea of context. Although all

cells in an organism have the same genes, not all of them are active in a given cell.

Which genes are active (i.e., expressed) depends on the cellular context. Context

is important in information systems also. When an author creates a new work,

he or she must make many choices, including determining the language, words

and sentence structure, format, and layout. The set of elements from which to

choose is available to all, but the selection and use of specific elements, influenced

by the context of the work, sets the style. For example, the style of Dickens is

different from that of Dumas [24]. Similarly, the style of an e-commerce Website

is different from that of an academic one. They share elements but the final works

vary according to their intended context of use. Because context influences gene

expression, we must monitor all of the conditions surrounding a gene expression

experiment. We will return to this topic later in the chapter when we discuss data

management.

8.3 GENOTYPE TO PHENOTYPE

How are gene expression and cellular context related?

To address the complexity inherent in this seemingly simple question we

must revisit the central dogma of molecular biology. Along the way, we also will

reviewmany of the concepts and laboratory techniques thatwere covered in detail

in Chapters 2 and 3. Recall that the usual flow of genomic information in the cell

is from DNA to RNA to protein. RNA is the first information transfer step

between gene and protein. To measure a gene’s expression or activity, a scientist

often collects, measures, andanalyzesmRNA,which carries the information from

the nucleus to the cytoplasm, where it may be translated into protein. Until now,

our primary focus has been on the genome itself; that is, on theDNA component.

We have explored sequencing of the genomicDNA; reassembly of the fragmented

genome; and identificationofopen-reading frames, exons, introns, and regulatory

regions to delineate genes. All these activities define the structure, or anatomy,

of the genome. To date, the major effect of the Human Genome Project and of

genomics in general has been that of defining the genomic structures of not only

the human but also of many other organisms. Hundreds of complete genomes

have been sequenced, ranging from Archaea, to Bacteria, to Eukaryota, and

major inroads have been made into identifying their coding genes. Defining this

Chapter 8 Gene Expression 331

underlying structure is absolutely essential to understanding how the components

work together to direct the myriad complex biological processes at work in any

living organism. This genome-centric view of biology is evolving towards a more

functional view and ultimately to a systems view. The study of how genes regulate

life processes fromembryology, to control ofmetabolism, to cancer has oftenbeen

called “physiological genetics,” which now falls within the realm of functional

genomics. To achieve the long-term goal of understanding normal cell physiology

anddisease and to enable drugdiscovery, itwill be necessary to relate gene identity

to gene function and, even more challenging, to decipher the intricate networks

of interactions between genes and their products.

This takes us back to the flow of information but now with an emphasis on

RNA and protein, the major players in the functional genomics story. When we

say “gene expression” we are usually referring to the formation of RNA, (i.e., the

transcript or mRNA), through the process of transcription. However, keep in

mind that proteins are the major workhorses of the cell and the true players

in functional genomics. Why then, do we study RNA expression? Are there

limitations to this approach? These questions, andmany others, will be addressed

in this chapter as we explore the many challenges presented by the biology itself,

by RNA expression data, and by the computational approaches being developed

for gene expression analysis. As you read this chapter, also consider that the

methods used to generate, manage, and analyze data are much better established

for structural than they are for functional genomics. Computational approaches

to analyzing gene expression data are undergoing continual change as talented

individuals from a variety of fields focus on the problem. Consequently, there

is no “one correct way.” Indeed, entire courses and textbooks are devoted to

in-depth discussions of the many biological, biotechnical, and computational

issues of microarrays and gene expression analysis. This chapter is intended to

introduce you tomanyof these topics, with some illustrative examples, and cannot

provide full coverage of each. We encourage you to do some further reading of

the references provided throughout this chapter.

8.4 THE EXPECTED (BY NOW)
COMPLICATIONS OF BIOLOGY

Before delving into the data analysis issues we need to review some of the funda-

mental properties of gene expression in cells. Understanding the basics of gene

expression will enable us to appreciate the nature and complexity of the cur-

rently available technologies and to approach data analysis and interpretation

from an informed, biologically relevant perspective. First, consider again the

central dogma in the context of the following questions: What is the relationship

between an organism’s DNA and its RNA?Does all DNA give rise to RNA? The

answer to the latter, of course, is no. Not all DNA is transcribed to RNA (even

when considering all types of RNA). In prokaryotes most of the DNA codes

for proteins (through mRNA), but in eukaryotes, such as humans, only a small

percentage of total DNA codes for proteins.

332 Chapter 8 Gene Expression

Do all cells in an organism have the samemRNA?This is the critical question

for functional studies! As we already discussed, although all cells of an organism

carry the same genes (i.e., the genotype), not all genes are active. The cellular

context determines which genes are active. The subset of active genes (expressed)

varies with context: from cell type to cell type; between normal and diseased

states of the cell; between different developmental stages of a given cell; and in

response to environmental stimuli such as exposure to chemicals, pathogens, heat,

and ultraviolet light, among others. The expression of a subset of genes and their

complex and orchestrated interactions and networks confer specific properties on

the cell, thereby establishing its phenotype.Gene expression is dynamic and, as a

result, the cellular phenotype is rather fluid. We say that genes are “differentially

expressed,” meaning that two samples may differ in which genes are expressed or

in how much any given gene is expressed (or in both). Figure 8.1 illustrates some

examples: muscle cells differ from epithelial cells in the outer layer of the skin. A

muscle cell expresses a high level of the mRNA transcribed from genes that code

for the muscle fiber proteins, actin and myosin, whereas a skin cell makes a lot

Single cell

Mitosis

Two daughter cells

containing identical

copies of DNA

Expression

of muscle-

specific

genes

Expression

of epithelial-

specific

genes

Muscle
Epithelial

cell

FIGURE 8.1 Differential gene expression is responsible for the phenotype of different

cells. All cells within an organism have the same DNA, but not all genes are expressed in

every cell. A skin epithelial cell expresses only genes specific to skin, whereas a muscle

cell expresses genes necessary for its development.

Chapter 8 Gene Expression 333

of keratins, which are fibrous proteins that make the cell tough and able to resist

the wear and tear of exposure to the external environment. In genetic diseases

that result from defects in crucial muscle genes, breakdown occurs in the muscle

tissue but not the skin. Conversely, in some genetic skin diseases, inheritance of

defective keratin genes results in skin that blisters extremely easily, but muscle

(where these genes are not expressed) is unaffected. Cells are highly influenced,

at the level of gene expression, by their external environments. When we expose

our skin to excessive UV light from the sun, our skin cells respond by changing

expression of genes whose products enable recovery from the DNA damage and

inflammation associated with sunburn. When cells of the immune system are

infected by HIV, gene expression in the infected cell changes dramatically—a

change that continues over time. These examples show that to understand a

phenotype wemust identify the genes constituting the expression subset. Wemay

also want to determine when a gene is expressed in the context of an event that

is expected to cause a change in gene expression.

Remember that, from a functional point of view, we ultimately want to know

which proteins are present in a given cell or under a given condition. So, is it fair to

measure RNA expression as a true representation of “gene expression”? Usually,

yes, but biology is full of exceptions. For example, the correspondence, in time or

space, between RNA and protein is not strictly one-to-one.

This complication must be recognized and considered during the design and

interpretation of studies of RNA expression. As usual, the story is far simpler

for prokaryotes than eukaryotes. As described in Chapter 2, bacterial genes are

organized into operons. The expression of these functionally related genes is

regulated primarily by a simple “on/off” mechanism of transcriptional control.

Because prokaryotes have no discrete nucleus, transcription and translation are

usually coupled, meaning that the protein is made from the RNA template even

while the RNA template is still being transcribed on the DNA. That is, as soon

as one end of the new strand of RNA emerges from the transcriptional machine

on the bacterial chromosome, the translational machines of the ribosomes get

to work making protein. In most cases the delay between synthesis of RNA and

protein is short. This supports the notion that by measuring RNA expression in

prokaryotes we generate a fairly complete picture of gene expression.

Let us turn now to the more complicated situation in eukaryotes, in which

regulation of related genes located at disparate sites in the genome is coordi-

nated, as opposed to the operon organization seen in prokaryotes. Eukaryotes

require more intricate mechanisms than the operon. Gene expression is not only

controlled by anon/off switch but also a “volume control,” or rheostat-like, mech-

anism so that more refined patterns of differential gene expression are possible.

Additionally, transcription is spatially separated from translation in eukaryotes

due to the presence of the nucleus. Much evidence suggests that the concentration

of mRNAwithin a eukaryotic cell is poorly correlated with the actual abundance

of that protein [1]. Why? In the eukaryotic cell mRNAs must be processed and

transported out of the nucleus in order to be available to the ribosome. As a

result, at least six different levels of regulation determine the functional activity

of a gene: transcription, RNA processing, mRNA transport from the nucleus to

334 Chapter 8 Gene Expression

the cytoplasm, mRNA degradation, mRNA translation, and post-translational

modifications of protein. In spite of this complexity, the good news is that the

structural relationship between mRNA and protein is closer than that between

gene and protein (due to splicing), and experimentally we can select and study

cytoplasmic mRNAs, which are a pretty good indicator of active genes. Inac-

curacies in data interpretation can still arise because some mRNAs present in a

given sample may be prevented from being translated. As a result, an experiment

could show high copy numbers of the transcript but these transcripts might result

in only a small amount of protein. Another concern in interpretation of data is

post-translational chemical modifications, which occur in both prokaryotes and

eukaryotes. These can affect the folding of the protein, its stability, and the pro-

tein’s location in the cell—all of which are important to protein function. So, we

ask, if a particular mRNA occurs in a sample, is its protein necessarily present

and functional? Moreover, when we carry out multigene analyses, can we make

inferences about which genes may function together? Although these questions

have no straightforward, simple answers, keep in mind that the RNA measured

fromany single sample represents only a snapshot of that cell’s or tissue’s dynamic

transcriptional profile. Evenwith all of the caveats, studying theRNAcomponent

of cells is a highly informative approach to understanding the cellular phenotype.

All involved in such study, whether designing experiments in the lab or analyzing

the data, should keep in mind the complexities of gene regulation and be wary of

overinterpreting their results.

8.5 A FLOOD OF DATA

Current gene expression analysis is exemplified by the use of high-throughput

techniques such as the DNA microarray or serial analysis of gene expression

(SAGE) that have effectively moved transcript analysis from one or a few genes

at a time to whole-genome global approaches. (For the details on these gene

expression analysis platforms and technologies, refer to Chapter 3.) The ability

to capture information about the activity of most or even all of the genome has

ushered in the era of functional genomics on the heels of structural genomics.

Phil Hieter and Mark Boguski aptly described functional genomics as:

“The development and application of global (genome-wide or system-wide)

experimental approaches to assess gene function by making use of the

information and reagents provided by structural genomics It is characterized

by high throughput or large-scale experimental methodologies combined with

statistical and computational analysis of the results. The fundamental strategy

is to expand the scope of biological investigation from studying single genes or

proteins to studying all genes or proteins at once in a systematic fashion” [15].

With the sequencing of the human genome it rapidly became apparent that

new technologies were needed for large-scale analyses rather than the typical one-

gene approach. Everything fell into place—gene sequence information became

Chapter 8 Gene Expression 335

available to enable measurement of protein-coding genes (whether the gene iden-

tity was known or still a mystery), hybridization and cloning techniques were

refined, and advanced molecular chemistry was developed that allowed scientists

to label gene sequences for experimental detection. Through the imagination of

scientists such as Patrick Brown, the cDNA spotted microarray first became

available, and the oligonucleotide array was soon to follow. (See Chapter 3

for a detailed description of the methods and technologies.) These technologies

enabled scientists to carry out the simultaneous measurement of the expression

levels of thousands of genes. The new terms transcriptional profiling and transcrip-

tome became part of the scientist’s lexicon for describing the process and output

of this high-throughput approach. Think of the transcriptome as the complete set

of transcripts present within a cell. A profile is generated experimentally that can

be considered characteristic of a given cell or cell state. In practice, it is hoped that

gene expression profiling will define signature patterns that will support future

molecular characterization of disease.

Today many array-based technologies are used, and not only for analysis of

RNA expression. Gene expression analysis, one of the first and best developed,

has received the most attention, and the major use of microarrays today remains

the investigation of genetic mechanisms, such as comparative transcriptional

profilingbetween tumors andnormal cells. These applicationshavealready shown

great promise. Other uses of arrays include high-throughput genotyping with

single-nucleotide polymorphisms (SNPs) [9, 25], protein expression [20], DNA

sequencing [10], and even DNA computing [11].

In general, high-throughput approaches produce vast amounts of data never

before encountered by the biologist. Unfortunately, just because one can gen-

erate the data does not mean that one can effectively analyze or interpret those

data. Consider that, in a typical study, thousands to tens of thousands of indi-

vidual genes may be assayed simultaneously, in several different samples, and

often in replicate, producing on the order of millions of data points. New and

better computational approaches are needed for image processing and analysis,

data preprocessing, data analysis, data mining and interpretation, data storage,

retrieval, and integration. Currently, each of these areas has borrowed tried and

true techniques frommathematics, statistics, and computing, but all have required

considerable modification to meet the unusual needs imposed by biological sys-

tems. Interestingly, gene expression analysis is clearly a two-way street. Not only

are computing approaches beingmodified tomeet gene expression analysis needs

but also, as these analytical approaches evolve, the feedbackaffects howbiologists

conduct their experiments.

The development of computational approaches to the analysis of gene

expression data is a dynamic, exciting area ripe for the intellectual input of

interdisciplinary teams.

A case in which the computing specialist may be called in at the pre-analysis

stage is for custom design of a microarray. Although a wide selection of commer-

cial arrays is available, it is not unusual for an experiment to focus on a particular

set of genes for which an array does not exist. Perhaps prior research has gen-

erated an interest in genes belonging to a particular molecular pathway or to a

336 Chapter 8 Gene Expression

cellular process. It then makes sense, from both a technical and data analysis

standpoint, to focus the analysis on a specific set of genes rather than adopt a

genome-wide approach.

Selection and design of probes for a custom array can be fairly compli-

cated. Desired attributes of the array are that it has sufficient specificity and

sensitivity and its quality should guarantee that the results are reproducible. Con-

sideration must be given to the types of the probes. Should they be full-length

cDNAs, expressed sequence tags (ESTs), or oligonucleotides? If the last, then

what length? Here, we focus on the design of oligonucleotide probes and discover

how a “pipeline” of analysis techniques can be used to generate a solution. It

is not uncommon in bioinformatics that a series of computing programs can be

stitched together and used in sequence to generate a desired result. In fact, just

such an integrated pipeline is available in theMicroarray Oligonucleotide Design

and Integrative Tool (MODIT), available from theUniversity of North Carolina,

Charlotte (http://gaia.uncc.edu/modit/index.html).

The terms sensitivity and selectivity were introduced in earlier discussions

of sequence alignment in Chapter 5. In the context of oligonucleotide probes,

a sensitive probe is one that generates a strong signal for its complementary

target sequence when it is present in the sample. Factors that negatively affect

sensitivity are secondary structure in the probe or target sequence or binding to

other identical probes on the array. Specificity means that the probe sequence

generates at most a weak signal when the target is absent from the sample. This

means that it does not hybridize to other targets. Cross-hybridization is primar-

ily a consequence of base-pairing, and nonspecific hybridization can be caused

by the presence of G-quarters, which are hydrogen-bonded G-tetraplexes, in the

sequences [19, 30]. Another desired attribute of probes selected for the custom

array is that they be isothermal so that all probes behave similarly under the

changing conditions of the hybridization. Such changes include changes in tem-

perature and the concentrations of salt and other agents in the hybridization

solution. Choosing probes that have similar melting temperatures (the tempera-

ture at which 50% of a double-stranded DNA species becomes single-stranded)

is a usual strategy [30].

What follows is a series of analysis steps that may be taken in oligo-

nucleotide design as proposed by Stekel [30] (see also [19, 32]). First, choose

genes to be used as probes for the array. This, of course, depends on the purpose

of the experiment but likely involves exploration of resources such as GenBank

(for sequence and annotation data), UniGene (which has clusters of mRNAs

and ESTs for genes in GenBank), and the Gene Ontology (which can provide

information regarding cellular component, biological process, and molecular

function). It is advantageous to select well-annotated genes, where possible. Next,

for each gene, select a sequence within a few hundred nucleotides of the 3 end

of the target sequence (because labeled target molecules are usually prepared

with a 3 primer giving them a 3 bias). Eliminate low-complexity regions in

the sequence (using a program such as RepeatMasker), and then select oligo-

nucleotides from nonrepetitive regions. We are interested in short oligo-

nucleotides (e.g., 25 nucleotides long), so many oligonucleotide sequences are

possible. Now check these for homology, and discard any that are strong

Chapter 8 Gene Expression 337

candidates for cross-hybridization. To do this effectively, you may need to refresh

your understanding of BLAST and the various bioinformatics databases. Deter-

mining the melting temperature Tm of remaining candidate probes is a more

complicated process. The Tm depends on both the length of the oligonucleotide

and the nucleotide makeup. DNA–DNA duplexes will have different properties

from DNA–RNA duplexes (the type that occur in Affymetrix arrays). The the-

ory and methodology for determining melting temperature is detailed in [30], if

you wish to learn more about it, and several of the commercial oligonucleotide

design pipelines have implemented an algorithm to calculate Tm. The final step

in determining probe secondary structure relies on some of the same thermody-

namic measures as the melting temperature. In this case we are concerned with

a probe forming structures such as a hairpin due to complementarity within the

sequence itself. The most commonly used program for measuring this property

is MFold, a Web-based application that predicts secondary structure in RNA or

DNA [38]. With any luck, after rejecting those probes with significant secondary

structure, enough candidates will remain so that a few probes can be selected for

each gene on the custom array.

8.6 NOISY DATA

Before setting off down any road to data analysis, consider the quality of your

data. First note that DNAmicroarray data are typically very “noisy.” We need to

separate genuine experimental variation (i.e., differential gene expression) from

noise—a process akin to tuning into a radio station with a lot of static. The signal

to noise ratio can be increased using a variety of established techniques. In the

biological sense, noise is systematic variability resulting from the experimental

techniques themselves rather than the biological system under study. Variability

in DNA microarray data comes from many sources. Suppose we’re trying to

compare the expression pattern of immune cells infected with HIV to those not

infected, so as to characterize the cellular response to infection. First, consider the

source—the living, biological system. Cells are living objects with great built-in

environmental sensors. We would like the only differences in the genes expressed

to be due to the viral infection. This means we must control everything else

that might affect the living state of the cell, such as how crowded the cells are

in the culture dish, how many nutrients are available, and how warm they are.

Unfortunately, it is difficult, if not impossible, to precisely control all the elements

of the cells’ environment, so variation between our samples is likely. Consider

another common scenario, in which the transcriptional profiles of tumors from

manydifferent people are compared. Tumors are inherently heterogeneous.Many

tumors are composed of more than one cell type, and each tumor in a study

usually comes from a different patient. So, again, the potential for variability in

gene expression data is great right from the start.

Next, we must extract RNA and label the expressed sequences from each of

the cell conditions or samples, in other words wemust prepare themicroarray tar-

get. RNA is extremely sensitive to degradation, and its extraction involves several

338 Chapter 8 Gene Expression

complicated steps and painstaking laboratory technique. It’s possible that in one

sample the test tube was not properly sterilized and RNase enzymes might have

chewed up some of the RNA. Or perhaps the chemicals were not entirely mixed.

The possibilities for error are numerous, and any one could affect the quality of

RNA in one or more of the samples—yet another source of variability. Recall

from Chapter 3 that analysis using a spotted two-color microarray requires that

each RNA in the sample be copied to cDNA and given a fluorescent label. This

process creates more room for error and hence more possibility for experimental

variability. For example, in a two-color cDNA array, the experimental and con-

trol samples are labeled with different fluorescent dyes. If one labeling reaction

works better than the other, a situation known as dye bias occurs that can lead

to misinterpretation of the data.

The microarray itself provides yet another major source of variation. In

either a spotted cDNA or synthesized oligonucleotide array, inconsistencies in

placement or quality of the probe DNA across the array can occur. If some

probes are applied less efficiently or if some regions of the array are faulty, the

data will be unreliable. A microarray experiment includes a total of more than a

hundred experimental steps. Fortunately, major advancements in the laboratory

techniques and production of commercial microarrays make them more reliable.

In fact, one study involving eight universities showed that with 2005 technologies,

the variance in lab procedures is far greater than in the arrays themselves [16]. The

Microarray Array Quality Consortium (MAQC) recently showed a high degree

of intra- and interplatform consistency in microarrays [18]. These studies help

relieve some of the doubts about microarray reliability and the research that uses

them. The task now is for scientists to establish and maintain good experimental

technique. The bad news is that laboratory and data analysis methods are con-

tinually changing for microarrays, and experiments are still relatively expensive.

According to one study [31] the cost to analyze one gene is down to pennies when

using a microarray. This still adds up when considering that an array typically

has tens of thousands of genes. A typical microarray experiment (one array per

experiment) cost in the range of $1000 to $2000 in 2006.

8.6.1 Turning down the Noise

Noise in the data is common enough in computer science as well as in statistics.

Much unwanted variability in statistics can be limited through good experimental

design—an axiom that also applies for the DNA microarray. For example, we

can apply the principle of randomization in our design. Several copies of a given

probe sequence may be placed randomly at different locations on the array to

control for inconsistencies across the array. Replication is another desirable fea-

ture of experimental practice. Replication simply means the ability to repeat an

experiment. In addition to confirming observations, replication canhelp diminish

the corrupting contributions of uncontrollable factors. Another purpose of the

replicate is to estimate the experimental error. The extent of replication, in terms

of howmany of the individual steps are repeated, should be considered when cre-

ating the experimental design. Unfortunately, because themicroarray experiment

Chapter 8 Gene Expression 339

requires so many experimental steps, it is financiallly and logistically impractical

to undertake the entire process more than once. True replication (repeating every

step individually) of a microarray experiment is therefore infeasible. One array

does not make a study since each is just a snapshot of the genes expressed in that

particular sample. More often, the scientist is comparing a series of transcrip-

tional profiles over time or amongmultiple samples (e.g., comparing tumors from

several patients). Even with very limited replication, a study can likely involve 10

to 20 individual microarray experiments. Rather than strive for true replication,

only certain elements of the design are typically repeated. For example, to control

for position on the array, the probe may be repeated elsewhere. To replicate the

RNA extraction process, each sample can be divided and extracted more than

once. To control for a potential difference in dye-labeling efficiencies, it is com-

mon to divide the samples and conduct a separate labeling reaction with each

fluorescent dye. Evenwhen the extraction steps and labeling are replicated, it may

not be possible to replicate the hybridization on the array. Often, the amount of

starting sample is sufficient for only a single array, as in the case of small tumor

specimens.

Ultimately, data analysis requires that we be discriminating when doing com-

parisons between and amongDNAmicroarray experiments. Determine precisely

how the experiment was conducted. Decide how you can conclude whether dif-

ferences observed are real andmeaningful or a reflection of “noise” in the system.

We will return to these issues later when we discuss statistical methods designed

to remove unwanted variation from the data.

8.7 THE MANY MODES OF GENE
EXPRESSION DATA

What do gene expression data look like?

Return to the example in which we compare the transcriptional profile of

HIV-infected cells with noninfected ones. The initial output from the experi-

ment is image data generated in the following way (This example is developed

for the two-color array. It would differ in some aspects for the oligonucleotide

array.):

• The experimental and control (reference) RNA samples are separately pre-

pared as targets by labeling with spectrally distinct dyes. For example, the

infected, experimental sample may be labeled with Cy5 (red), and the nonin-

fected control sample labeledwithCy3 (green). Note the choice of fluorescent

label for the experimental and reference samples is arbitrary.

• The labeled targets are then queried simultaneously by washing them over

the spotted probe sequences that are immobilized on the solid support of the

microarray. This allows them to hybridize.

• After hybridization is complete fluorescence intensities aremeasured for each

spot on the array with a confocal laser scanner, which can excite and detect

each dye individually.

340 Chapter 8 Gene Expression

• The intensities in the red and green channels are measured and stored in a

computer file for each spot, which is identified on the basis of its position on

the array.

• These data may be used to create an image using synthetic colors that enable

the scientist to visualize the results.

Computers are goodat dealingwith thepredictable, but human scientistsmay

see something unexpected in the visualization. There is always the chance that

theywill observe a key feature that explains important principles. Good computer

programs that effectively present visualizations of data to skilled scientists are

of immense value. Typically, such visualizations show a composite of red- and

green-labeled spots, representing the relative levels of themRNA from each target

sample and thus eachgene’s activity in both the experimental and control samples.

For example, if the gene is more active in the infected cells, the probe spot will

fluoresce more strongly in the red channel, whereas if the gene is more highly

expressed in the control cells, fluorescence is stronger in the green range. Although

these dyes are measured individually with a laser, the final output of synthetic

color for each spot may be red, green, or a mixture (yellow) as the fluorescence

in each channel is overlaid.

It’s difficult to extract meaning from a very large, complex pattern like that

of the DNA microarray image in Figure 8.2. Nevertheless, examining the raw

image is valuable for quality control purposes. It’s relatively easy to determine

if the experiment was successful by evaluating the color intensities and search-

ing for any anomalies such as smearing or drying. Images of the raw data, like

that in Figure 8.2, are typically stored in a database (if the database design can

accommodate images) and made available to anyone using the data. Computer

programs have been developed to assist the scientist in identifying spot locations

and in evaluating the quality and usefulness of the data.

Image analysis software performs three fundamental functions: gridding,

segmentation, and information extraction.Gridding locates each spot on the slide.

FIGURE 8.2 Courtesy of the Center for Array Technologies at the University of

Washington. This picture shows part of the composite image obtained by scanning a

microarray to detect fluorescence from Cy3- and Cy5-labelled cDNAs. The experiment

was a study of T-cell gene expression following infection with HIV-1.

Chapter 8 Gene Expression 341

This process is also referred to as “spot finding” in some of the available soft-

ware packages. Segmentation differentiates the pixels within a spot-containing

region into foreground (true signal) and background. Information extraction

includes two parts: spot intensity extraction and background intensity extrac-

tion. Spot intensity extraction refers to the calculation of fluorescence signal from

the foreground determined from the segmentation process. Background intensity

extraction employs different algorithms to estimate the background signal due

to the nonspecific hybridization on the glass. Many algorithms have been devel-

oped to achieve these ends. The method selected can affect the final intensity

measurement, which subsequently influences downstream data analysis meth-

ods. Therefore, it is important to choose the image analysis process best suited to

the experiments and to use methods consistently when comparing results across

experiments [37].

A wide assortment of software packages is available for microarray image

processing and analysis—some free and open source, others commercial and

proprietary. For example, ScanAnalyze is free software that can be downloa-

ded from Stanford University. It provides an interactive graphical environment

for semiautomated gridding and information extraction (including fluorescence

intensities, background intensities, fluorescence ratios, and several quality con-

trol measures). SpotFinder has similar functionality and is offered free and open

source from The Institute of Genomic Research (TIGR). Spot, which is com-

mercially available, supports automatic grid location; flexible spot segmentation,

and morphological background estimation.

The output of each program differs, but some typical values of interest to the

scientist are shown in Figure 8.3.

Recall that to find instances of differential gene expression, we must:

• run the microarray experiments

• scan the arrays

• extract data from the images.

This provides us with measurements of fluorescence intensities (channel 1,

CH1 red, and channel 2, CH2 green), background intensities, and fluorescence

ID-Ref VALUE PRE_VALUE CH1_MEDIAN CH1_BKD_MED CH2_MEDIAN CH2_BKD_MED

159769_1 −0.392 0.762 3195 600 2502 861

160345_1 −0.121 0.919 3544 565 3077 804

160921_1 −0.941 0.521 3036 567 1899 832

161497_1 −0.571 0.673 3020 552 2194 815

162073_1 0.658 1.578 3135 520 4237 813

FIGURE 8.3 Partial data from one microarray in a time course series of gene expression analyses of

HIV-infected and uninfected lymphocytes using the two-color cDNA spotted array. The ID-Ref identifies the

probe (gene) and the replicate number. For each probe, intensity and background values are given for both the red

and green channels. The Value column shows the usual number of interest as the log2-transformed ratio of

experimental (channel 2, CH2) to reference (channel 1, CH1). Data retrieved from the Gene Expression Omnibus

(GEO, Accession GSE 1441).

342 Chapter 8 Gene Expression

ratios. In the two-color system, where both experimental and reference sam-

ples are hybridized simultaneously, the value of primary interest is the ratio of

experimental: control or red (Cy5) channel to green (Cy3) channel. This ratio

represents the expression of any given gene in the experimental situation rela-

tive to that in the control situation and can be an indicator of differential gene

expression. For example, if a gene is activated in response to HIV expression, we

expect to see a higher measurement of fluorescence intensity in the experimental

sample (because more of the mRNA was available in that sample to hybridize

to the array) than in the control, thus producing a ratio greater than 1. If the

gene’s activity is suppressed, the ratio would be less than 1. Remember that these

ratios represent relative rather than absolute measurements of gene expression.

Thus, we can say that a gene’s expression is increased twofold relative to the ref-

erence sample, but we cannot say, for example, that 1000 copies of the mRNA

are expressed for that gene based on microarray data.

8.8 A WORKED EXAMPLE: GENE EXPRESSION
IN HIV-INFECTED CELLS

8.8.1 Data Preprocessing

Cleaning up the Noisy Data

At this point we have produced potentially noisy data that were generated by the

use of several microarrays (different experiments) and even possibly by several

different laboratories. The experimental variability (which exists even despite

heroic efforts to prevent it) does not stop the biologist from looking for interest-

ing patterns in the data. After all, the goals of microarray analysis are to discover

genes whose expression changes with different conditions or to find gene sig-

natures that are characteristic of given samples. These goals require that data

be analyzed across many array experiments. Remember that the fundamental

quest is to identify differences in gene expression that are due to biological forces

rather than to experimental variability. Ideally, in order to make comparisons,

the data should be independent of the particular experiment and the particular

technology used. Most computational methods for analyzing gene expression

data rely heavily on statistical approaches. What can be done to reduce the uncer-

tainty in the data and to make the data more manageable? Prior to mining the

data for patterns of gene expression several data preprocessing steps are typically

carried out, including gene filtering, scaling, normalization, and transforma-

tion. These steps have a significant influence on the process of data analysis.

Many different methods are available, and these are continuously evolving. In

many cases the methods available are platform-dependent. Along with reliabil-

ity of the array itself, variation in data preprocessing has been somewhat of a

stumbling block for the adoption of microarray data in clinical and regulatory

settings.

Chapter 8 Gene Expression 343

Gene Filtering

Mostmicroarray software packages include functionality for gene filtering, a pro-

cess for removing some genes from the final analysis. What types of genes should

be filtered out? Some “control” genes may be from a different species than the

one being studied and so are not useful outside of the particular microarray. For

example, a known amount ofE. coli cDNAmay be spiked into the target mixture

before it is applied to the microarray for hybridization. The extent of hybridiza-

tion (determined by measuring the intensity of that spot) serves as an important

control for the experimental process, but its value is otherwise irrelevant to the

biological question at hand. Through the filtering function the spot can be iden-

tified and removed from the data before analysis. Outliers and replicates can

also be identified and removed, if desired. Another type of filtering is possible

through software designed to be used with the Affymetrix oligonucleotide arrays.

The proprietary software makes a “call” for each probeset on the area, based on

the intensity values of the perfect match (PM) and mismatch (MM) sequences

for each probeset. (See Chapter 3 for some technical details of the Affymetrix

array design.) The calls of “present,” “marginal,” and “absent” are indicators of

relative amounts of RNAs in the target. When choosing data for analysis, the

end user may filter to select only those that meet a certain criterion. For example,

when comparing HIV-infected versus noninfected cells, one may choose only to

look at genes that are labeled as “present” in the infected and “absent” in the

noninfected sample. This strategy may enable the discovery of genes that are

activated on viral infection.

Transformation of the Data

Another means of interpreting the data is via log2 transformation. This method

makes sense for two reasons. One is historical and related to the ease of

some types of calculations with logarithmic data. The other is easier to under-

stand from a biological perspective. If we consider a gene that is up-regulated

twofold (often the minimum considered significant by many biologists), then

its ratio (experimental to reference) is 2. If the same gene is down-regulated

twofold, then its ratio is 0.5. In fact, the values of all down-regulated genes

are compressed between 0 and 1. And the values for up-regulated genes vary

from 1 to infinity. Figure 8.4 is a histogram showing the gene expression

ratios for HIV-infected versus uninfected cells. These values have not been

transformed.

By taking the log transformation, we obtain values for down-regulation that

range from 0 to negative infinity, and for up-regulation values that range from 0

to positive infinity (Figure 8.5). Genes whose expression levels don’t change are

associated with a value of 0. We also restore a sensible correspondence between

the values: Fourfold up-regulation has a log value of +2, and fourfold down-

regulation results in a log value of−2. In general, down-regulation by a factor of

n results in a log value that is the negative of the log value of up-regulation by the

same factor. It just makes more sense from the biological perspective, because

344 Chapter 8 Gene Expression

Ratio of Cy5 to Cy3

F
re

q
u

e
n

c
y

0 1 2 3 4 5

0

500

1000

1500

2000

2500

3000

FIGURE 8.4 Histogram of gene expression ratios of experimental (HIV-infected lymphocytes; Cy5) and

reference (noninfected lymphocytes; Cy3). Note that the distribution of ratios is compressed in the 0 to 1 range.

Based on partial data from study available from Gene Expression Omnibus (GE0, Accession GSE 1441).

of the relative nature of measurements from DNA microarrays, to take loga-

rithms. Why do we use base 2? The base really doesn’t matter. Mathematicians

like natural logs; in the days when logs were used to facilitate computation, base

10 logs were favored; computer scientists like base 2 for many reasons, not least

of which is the binary nature of raw computer data. Taking logs in base 2 has

the property that doubling expression corresponds to log2(2), or a value of +1,

and halving of expression gives rise to −1 because log2(0.5) = −1. For graph-

ing purposes log transformation makes the data more symmetrical and more

normal.

Normalization Within and Across Arrays

Scalingmay be done to control for dynamic range across experiments. For exam-

ple, intensities may differ from array to array simply due to the settings of the

scanner. Scaling is a type of per array normalization that may correct for these

Chapter 8 Gene Expression 345

Log2of ratio of Cy5 to Cy3

F
re

q
u

e
n

c
y

 −3 −2 −1 0 1 2

0

200

400

600

800

1000

1200

FIGURE 8.5 Log2 transformation of the gene expression ratios shown in Figure 8.4. It is more apparent that

the distribution is normal and centered around zero. Note, that this is not a perfect normal distribution, but

perfection is rare in real data.

Based on data available from Gene Expression Omnibus (GEO, Accession GSE 1441).

differences across arrays. Scaling helps eliminate minor variations in fluores-

cent dye labeling or hybridization. It is analogous to turning the brightness

up or down on the monitor. It may, however, obscure more significant differ-

ences that could indicate a failed experiment. Scaling up the intensity on a very

dim array may cover up the fact that the labeling reaction was bad and cause

the user to spend time analyzing bad data. One way to scale is to subtract the

mean log ratio of all data on the array from each log ratio on the array, thus

ensuring that the means of all the distributions (each array) are equal and equal

to 0 [30].

Other types of normalization are done within arrays to enable comparisons.

Quackenbush [26] describes threemajor techniques for data normalizationwithin

a single microarray experiment (i.e., within an array). All of these assume that

some subset of genes within the array will have an expression ratio equal to 1.

That is, we expect certain genes to be expressed at some steady-state level so

346 Chapter 8 Gene Expression

that equal amounts occur in both the experimental and control sample. For

example, these may be cDNAs that have been spiked into each sample, or they

may be “housekeeping” genes (more on this later). The normalization factor

corrects for any experimental variability by adjusting to this ratio across the

array.

The first method, total intensity normalization, is based on the rationale

that across a given sample, some genes will be induced and some suppressed, but

most genes will remain unchanged and so the average log ratio will be 0. This

is reasonable because biological comparisons made on microarrays are often

quite specific and do not affect all genes. If we assume that a symmetry exists

between the up- and down-regulated genes, then differences should average out.

The total amount of red dye integrated into one sample should be about the same

as the total amount of green dye in the other, and so the intensities are adjusted.

(This is also based on the underlying assumption that the quality of RNA in each

sample is the same.) We can check the the validity of this assumption by swapping

the dyes and repeating the experiment. Consider, for example, Figures 8.6–8.10,

which show a series of scatterplots illustrating the effects of dye swap and total

intensity normalizationon gene expressiondata fromexperimental (HIV-infected

lymphocytes) and reference (noninfected lymphocytes).

0 50,000 100,000 150,000 200,000 250,000

0

20,000

40,000

60,000

80,000

Cy3 - Experimental

C
y
5
 -

 C
o

n
tr

o
l

FIGURE 8.6 Plot of the data with Cy5 as the control and Cy3 as the experimental.

Figure 8.7 shows the dye swap with Cy5 as the experimental.

Based data from GEO (Assession GSE 1441).

Chapter 8 Gene Expression 347

0 50,000 100,000 150,000 200,000

Cy5 - Experimental

C
y3

 -
 C

o
n

tr
o

l

100,000

80,000

60,000

40,000

20,000

0

FIGURE 8.7 Plot of the same data as in Figure 8.6 with Cy3 as control. Both plots

with multiple points below the reference line (x = y) show that many genes in the

HIV-infected cells are down-regulated.

Based on data from GEO (Accession GSE 1441).

Cy3

C
y
5

200,000

200,000 250,000

Control-Cy5

Control-Cy3
150,000

150,000

100,000

100,000

50,000

50,000

0

0

FIGURE 8.8 Plot of both dye-swap datasets on the same scatterplot.

Based on data from GEO (Accession GSE 1441).

348 Chapter 8 Gene Expression

Cy3

C
y
5

200,000

200,000 250,000

150,000

150,000

100,000

100,000

50,000

50,000

0

0

Reference line

Regression line

FIGURE 8.9 A regression line is plotted and can be used to adjust gene expression

values in datasets based on differences in labeling efficiencies between the dyes.

Based on data from GEO (Accession GSE (1441).

When we combine the results of the dye-swap experiments, we can see where

biases exist (Figure 8.8).

The second method is normalization by regression techniques. Here again,

the rationale is that when comparing two closely related samples (e.g., exper-

imental vs. control), some genes are induced and some suppressed, but most

are unchanged. A scatterplot of red versus green intensities shows that most

points fall along a line with a slope of 1. Regression techniques are used to cal-

culate the best fit and to adjust the distribution to a line with slope of 1. More

often, a localized regression approach is used to smooth the data (Figure 8.9).

The data can then be scaled using the slope of the regression line, as shown in

Figure 8.10.

A third method uses statistical analysis of the ratio of the so-called house-

keeping genes, which, by definition, are involved in basic cellular functions and

are assumed to be always turned on at relatively constant levels. The ratio of

housekeeping genes in experimental and control samples is assumed to be 1

(or log2 ratio of 0) and is used to normalize ratios of other genes across the

array. This topic deserves some further explanation because the value in using

housekeeping genes has been somewhat controversial. One of the problems with

all normalization techniques, including this one, is that they are based on sev-

eral assumptions that may not hold up. For example, some genes that have

long been identified as housekeeping genes (i.e., are constitutively expressed;

Chapter 8 Gene Expression 349

Scaled Cy3 - Experimental

C
y
5
 -

 C
o
n
tr

o
l

0

0

Reference line

Regression line

50,000 100,000 150,000

20,000

40,000

60,000

80,000

FIGURE 8.10 Effect of scaling gene expression data. Cy3 values were adjusted

according to the slope of the regression line (slope = 0.680968).

Based on data from GEO (Accession GSE (1441).

not differentially expressed even under varied conditions), were in fact, later

found to be differentially expressed under some conditions and thus not suit-

able for use in normalization. One example is the beta-actin gene. This gene

has been one of the most widely used internal controls for RNA experiments

based on the assumption (now known to be faulty) that its expression levels

remain constant under all conditions [27]. The bottom line is that faulty bio-

logical assumptions can corrupt the data even when the intention is to do the

opposite!

Another classical method of data normalization, Z score transforma-

tion, is often used for microarray data analysis. This also provides a way of

standardizing data across awide range of experiments and allows the comparison

of microarray data independent of the original hybridization intensities. The Z

score transformation approach for microarrays corrects data internally within a

single hybridization. The transformation is achieved by subtracting themean and

dividing by the standard deviation. Correction is done before sample-to-sample

comparison and is therefore comparison-independent. Comparisons across sam-

ples or across experiments are then performed on equivalently transformed data,

and changes in gene expression are expressed as differences between Z ratios.

Figure 8.11 shows how data from Figure 8.4 would be transformed with this

approach. This approach is implemented in many available software packages

350 Chapter 8 Gene Expression

Z transformation of the ratio of Cy5 to Cy3

1 0 1 2 3 4

F
re

q
u
e

n
c
y

0

1000

2000

3000

FIGURE 8.11 Z score transformation of the same data as in Figure 8.4. In this case,

Z score transformation has not been as effective as log2 transformation.

Based on data from GEO (Accession GSE 1441).

such as the open-source Java-based MicroarrayExplorer (MAExplorer) and the

TM4 application.

8.9 PROGRAMS TO WORK WITH GENES AND
EXPRESSION VECTORS

Programs to analyze genes and gene expression data first require an object that

corresponds to a gene and its expression levels over a set of experiments. Use

a String for the name and an array of doubles for the expression levels.

Figure 8.12 defines a Gene class.

Exercise 8.3 asks you to write a program to test the Gene class. In most cases

you will be working with real data, but it is useful to generate some random data

for the purposes of program development. As already discussed, much work is

needed to preprocess the data. A normalizing step is needed to eliminate some of

the experimental biases inherent in the process. After normalizing the data, logs

must be taken. A random-number generator approach can be employed to create

data with the required characteristics. Figure 8.13 is code to generate N genes

Chapter 8 Gene Expression 351

class Gene {

private String name;

private double[] expressionLevels;

public Gene(String n, double[] es) {

name = n;

expressionLevels = new double[es.length];

for (int i=0; i < es.length; i++) expressionLevels[i] = es[i];

}

public String toString() {

String retVal = "Gene "+name+" has expression levels ";

for (int i=0; i < expressionLevels.length; i++) {

retVal += expressionLevels[i]+" ";

}

return retVal;

}

public double[] getExpressionLevels() {

return expressionLevels;

}

public String getName() {

return name;

}

}

FIGURE 8.12 An implementation of a gene object and its expression levels.

double[] expressionLevels = new double[M];

for (int i=0; i < N; i++) {

expressionLevels[0] = 0.0;

expressionLevels[1] = 6.0*Math.random()-3.0;

for (int j=2; j < M; j++) {

// Create data :

// 0, randomly -3->3, then successive values incremental

// mimicking log transformed microarray data

expressionLevels[j] = expressionLevels[j-1]+Math.random()-0.5;

}

genes[i] = new Gene("+i, expressionLevels);

}

FIGURE 8.13 Code to create random gene expression data.

with M expression values each. This might correspond to M microarray experi-

ments involving expressionmeasurements forN genes. Tomake the data look like

normalized, log-transformed data, the first expression level value should be 0.0.

The next expression level for each gene is a uniformly distributed random value

between −3.0 and 3.0. After that, each next expression value is obtained from

the current expression value by adding a uniformly distributed random number

352 Chapter 8 Gene Expression

public String round2(double x) {

double rax = Math.abs(x) + 0.005;

String srax;

if (x < 0.0) srax = "-"+rax;

else srax = " "+rax;

int i = 0;

while (srax.charAt(i) != ’.’) i++;

return(srax.substring(0,i+3));

}

public double distance(double[] x, double[] y) {

double d = 0.0;

for (int i=0; i < x.length; i++) {

d += (x[i]-y[i]) * (x[i]-y[i]);

}

return d; // True euclidean distance would take a square root here

}

public void printData () {

for (int i=0; i < N; i++) {

System.out.print(genes[i].getName()+": ");

for (int j=0; j < M; j++) {

System.out.print(round2(genes[i].expressionLevels[j])+ " ");

}

System.out.println();

}

}

FIGURE 8.14 Implementation of some utilities for random gene expression data.

between −0.5 and 0.5. Figure 8.13 shows the code. This could be placed within

the constructor for an ExpressionExperiment class. But you can make your

own choices.

Figure 8.14 shows some handy utilities that will allow you to round the

data to two decimal places, to calculate Euclidean distances, and to print out

the data.

The utilities from Figure 8.14 will be necessary in Exercises 8.4, 8.6, and 8.7.

8.10 MINING THE GENE EXPRESSION DATA

What Does It All Mean?

To draw inferences about the biological principles underlying development, dis-

ease, and other phenotypic changes it is necessary to analyze large-scale spatial

and temporal gene expression patterns. The DNA microarray platforms and

other high-throughput technologies such as SAGE [35] can certainly provide

huge volumes of data but leave the biologist with the daunting task of trying

to extract relevant information and interpret it. Many different approaches have

Chapter 8 Gene Expression 353

been developed, ranging from analysis of individual genes to examination of the

entire set.

8.10.1 A Worked Example: Looking for
Differentially Expressed Genes

Some Simple Approaches

Typically, in a gene expression experiment the scientist is interested in finding dif-

ferences between twoormore conditions (e.g., HIV-infected vs. uninfected; young

mice vs. middle-aged mice vs. old mice, or across a time course of treatments).

A series of samples is often chosen because the researcher is interested in the

process, not just the endpoint of differential gene expression. The search for

differentially expressed genes by a simplefold change approach may initially

be chosen. That is, one may decide (somewhat arbitrarily) that a threshold of

twofold change, either up or down, is of interest. In the simplest case, such genes

may be identified on a scatterplot of log2-transformed data plotted as experi-

mental versus control values or on histograms of these ratios. These are good

first approaches because they support easy visualization of the data. In the scat-

terplot, the genes that are up-regulated or down-regulated are easily identified

by looking for points that fall above or below the diagonal, respectively (see

Figure 8.10). The scatterplot is implemented in an R package, Standardization

and NOrmalization of MicroArray Data (SNOMAD), which is available on the

Web at www.snomad.org.

This approach is not without its limitations, however. First, the scatterplot

allows comparison of a given gene only among two or three experiments. When

plotted in two dimensions, those two are usually experimental versus control

values, where the y-coordinate is the Cy5 intensity and the x-coordinate is the

Cy3 intensity. We could add another experimental condition if we plot in three

dimensions, but what do we do in the case that we have 10 or 20 conditions or

samples? This interesting problem arises because of the high dimensionality of

the data. With so many conditions or samples, which do we choose to look at? In

Chapter 9wewill consider one solution to this problem. Agroup at theUniversity

of Maryland, College Park, implemented an interactive discovery tool for high-

dimensional data like the microarray, in the Hierarchical Clustering Explorer

[28]. Also, from the biological perspective, looking at simplefold changes is not

always meaningful, considering the wide spectrum of expression levels in a given

cell or condition. A twofold increase in a gene that is normally expressed at a low

level may have quite different biological significance than a twofold increase in

a highly expressed gene. Finally, from a statistical perspective the fold increase

approach is unsound. It does not take into account the variability in expression

levels of each gene between individual subjects in the experiment, and it doesn’t

account for sample size. If we are interested in generalizing from our results

then we need to be more careful about how we draw inferences. Statisticians

use methods known as hypothesis testing that test observed data against a null

hypothesis using probabilistic models.

354 Chapter 8 Gene Expression

8.10.2 Testing Biological Hypotheses
with Statistical Hypotheses

Applying Prior Biological Knowledge

In samples that seem to belong to two different groups or conditions (e.g., con-

trol cells vs. infected cells, or different times of treatment, or different tumors),

we may ask which genes change with the condition. We may have paired data,

for example, an immune cell before and after infection with HIV-1, or unpaired

data, such as different patients with one of two types of tumor. Often, based on

biological knowledge, we already have particular genes of interest in mind and

we want to focus on possible changes in those genes. Or perhaps, we would like

to analyze each gene in the set individually. Here, we can apply some classical

statistical approaches to data analysis. In this case, we employ a statistical tech-

nique called hypothesis testing.We decide on a null and an alternative hypothesis.

The null hypothesis is a statement of no difference. The alternative hypothesis

is a statement which we wish to prove true. It is sometimes referred to as the

researcher’s hypothesis. In the case of gene expression, the hypothesis could be:

H0: Gene expression level is unchanged

HA: Gene expression level is changed

We make our decision about whether to reject the null hypothesis based on a

test statistic. Note here that we never actually accept the null hypothesis, we just

conclude that there is not enough evidence to reject it.

Since a decision is made based on sample data, there is always a chance for a

wrong choice. Hypothesis testing comes with two types of errors. Type I, denoted

by A, is the probability that the null hypothesis is rejected although it is true. It is

considered the significance level of the test. A type II error is the probability that

the null hypothesis is not rejected although it is, in fact, false. Usually after data are

collected, a test statistic is determined and a p-value is calculated. A p-value is

the lowest value at which we would reject the null hypothesis. The majority of

statistics packages will calculate p-values for hypothesis tests. The decision is

made typically by comparing the p-value with the α risk. If the p-value is less that

or equal to α, then we reject the null hypothesis. Otherwise, we fail to reject the

null hypothesis.

If the two groupswe are testing come from independent normal distributions,

then we can base our decision on a t-test, which is the test statistic in this case.

Assume that xi , s2i , and ni are the means, variances, and sample sizes for the two

groups, assuming that the two-sample t-test becomes

tstat =
(x1 − x2)�

s21
n1
+

s22
n2

(8.1)

Traditionally, statisticians have used the t-test to tell if the averages of two

groups in a study are statistically different. For example, in Figure 8.15, a t-test is

done to determine if a difference exists over two time points in HIV-infected cells

Chapter 8 Gene Expression 355

H0 : µ24hr = µ0hr

HA : µ24hr = µ0hr

ni x̄i si

0 hr 5 0.191 0.852
24 hr 4 −0.246 0.601

tstat =
(0.191+ 0.246)�
0.8522

5 + 0.6012

4

= 0.90

p = 2[P(t6 > |0.90|)] = 0.403

FIGURE 8.15 This example is based on a time-course study of HIV-infected

lymphocytes treated with a drug to activate the virus compared with noninfected

lymphocytes. Cells were treated with the drug and sampled at different times after

treatment. Shown is a t-test for the difference between 0 hr and 24 hr for GeneID:

411811. Assume that α = 0.05. Since the p-value is larger than 0.05, we fail to reject the

null hypothesis.

Deta retrieved from Gene Expression Omninus (GEO, Accession GSE 1441).

that have been treated with a drug. The t-test is the instrument of choice in such

circumstances. It takes into account, not only the averages (means) of the two

groups, but also a measurement called the standard error of the differences of the

means. As usual, the derivation and explanations for the statistical formulae are

quite involved, but once you see the formulae writing programs to perform the

analysis is relatively straightforward.

Paired t-tests are implemented in many software packages, both for general

statistics and those developed for bioinformatics. In addition to MIDAS and R

packages mentioned earlier, packages include SAS, Excel, and GeneSpring, to

name a few. Recall that we assume that the two datasets come from independent

populations that follow normal distributions. If these assumptions are invalid,

then other methods for testing hypotheses should be employed. Bootstrap and

permutation tests are examplesof computer-intensive techniques that canbeused.

Also, some nonparametric techniques, such as theMann–Whitney test andmany

of the nonparametric statistics, are also supported in available software packages.

The importance of applying careful statistical analyses, rather than just

fold-change calculations, is apparent in a review of microarray data on gene

modulation by HIV-1. This review of more than 6 years of studies considered

only those studies that were validated using statistical significance based on

p-values and an estimate of the false discovery rate, along with a few other

considerations [12].

Often, we want to extend the analysis to more than two groups. For exam-

ple, we have run experiments over a range of times following infection and have

replicates at each time point. In this case, the analysis of variance (ANOVA)

test, which is an extension of the t-test, or variations of the ANOVA [23] can

be applied. This is a technique by which the equality of the means is assessed

through comparing variances. The between-group variation is compared with

356 Chapter 8 Gene Expression

H0 : µ0hr = µ0.5hr = µ3hr = · · · = µ72hr
HA : µi = µj for at least one (i, j) pair

Source DF SS MS F p

Hours 10 85.43 8.54 1.33 0.273
Error 24 154.66 6.44
Total 34 240.09

FIGURE 8.16 The following example is based on a time-course study of

HIV-infected lymphocytes treated with a drug to activate the virus compared with

noninfected lymphocytes. Cells were treated with the drug and sampled at different times

after treatment. Shown is an ANOVA analysis for difference in all of the means (all time

points) for GeneID: 411881. Since the p-value, 0.273, is greater than 0.05, the null

hypothesis is not rejected.

Data retrieved from Gene Expression Omnibus (GEO, Accession GSE 1441).

the within-group variation. Any statistical package can calculate these summary

statistics and create an ANOVA table fromwhich one can extract the p-value and

make a decision on the null hypothesis. (Figure 8.16). Again, it’s possible to scan

through the derivations of the statistical formulae and then write programs to

perform the required analysis. Many good sources are available on the Internet

to help you select appropriate statistical tools in addition to the ones that we have

already mentioned. Google or any other search engine is, as always, your friend

in finding these. In addition we mention www.socialresearchmethods.net as an

effective source for many useful formulae and their explanations.

Study of fold change and use of the simple statistical approaches seem appro-

priate when you already have a good idea of which genes are of greatest interest

and you can form some hypotheses about a few genes. However, it can be argued

that such gene-by-gene approaches fail to take advantage of the strength of

microarray data—the ability to examine more global, system-wide changes. We

want to be able to explore the data more fully. What we need are some methods

to discover new patterns in the very large datasets typical of microarray studies.

8.11 A WORKED EXAMPLE:
FORMING NEW HYPOTHESES

8.11.1 Organizing the Data

Regardless of the number of genes that enter the final analysis, the first step

is usually to organize the data from multiple gene expression experiments into

a gene expression matrix (Figure 8.17). We have already discussed some of the

steps leading to creation of the matrix:

• Raw data, consisting of the microarray image produced after confocal

scanning of the multiple arrays in a study is quantified through image

processing.

Chapter 8 Gene Expression 357

Quantification

matrices

Gene expression

data matrix

Array scans

Raw data

Quantifications

G
e
n
e
s

Samples

S
p
o
ts

Quantification

datum

Gene

expression

level

FIGURE 8.17 Steps involved in the construction of a gene expression data matrix.

From Quakenbush [26].

• A quantification matrix is generated for each array experiment that relates

fluorescence intensity measurements to individual spots on the array. Typi-

cally, each spot hasmultiplemeasurements, the exact nature ofwhichdepends

on the particular array platform and software used.

• Quantification matrices are combined into a single gene expression matrix

for visualizing expression values across array experiments (individual sam-

ples) and for preparing the data as proper input to many analysis programs.

Generally, genes (ranging in the thousands) constitute the individual rows

of the gene expression data matrix, and samples (on the order of 10’s) make

up the columns. To build the gene expression data matrix, data from sev-

eral quantificationmatrices (representing a single experiment) are combined.

A single value is selected for each “spot” (probe or gene), and that value

is entered into a cell in the gene expression data matrix for the appropriate

gene. For example, the value chosen is often the background-corrected ratio

of experimental to reference data.

• Data preprocessing steps (filtering, scaling, log2 transformation, normaliza-

tion) may be performed along the way.

The gene expression data matrix then represents the combined data from a

set of individual, related, microarray experiments. A row of the gene expression

matrix is created for each gene, and a column for each microarray experiment

(Figure 8.18).

Now we can do some operations on the combined data. By grouping rows

that go up and down together like synchronized swimmers we can identify genes

with similar transcriptional patterns that are perhaps also functionally related.

For example, finding genes that go up or down (or both) together across a set of

samples taken at different times, after a viral infection perhaps, indicates that they

may participate in the same biological process such as cell division or cell death.

They may belong to the same gene network or pathway. Grouping columns that

are similar can provide information about samples that behave similarly. These

358 Chapter 8 Gene Expression

no PMA no PMA 0.5 hr 0.5 hr 3 hr 3 hr 6 hr

ID_REF UNIGENE GSM24324 GSM24325 GSM24331 GSM24333 GSM24334 GSM24336 GSM24341

159762_1 411881 1.67 −0.523 1.255 −0.878 −0.595 −3.149 −1.5

159763_1 25155 0.502 0.119 0.958 0.081 −0.255 0.625 0.105

159764_1 386741 −0.424 0.048 0.458 0.521 0.078 0.228 0.029

159765_1 0.467 −0.3 −1.554 −1.115 −0.933 −1.264 −1.423

159766_1 446393 −0.186 −0.006 3.048 0.163 0.327 3.262 −0.236

159767_1 338207 −0.082 −0.715 1.067 0.44 0.034 0.965 0.086

159768_1 435789 −0.568 −0.434 0.384 0.732 0.158 0.307 0.337

159769_1 256278 −0.392 −0.667 −1.285 −0.31 0.076 0.001 −0.403

159770_1 440896 1.345 −0.233 −0.497 0.322 −0.582 9.149 0.983

159771_1 0.233 −0.456 0.582 0.319 −0.335 0.216 −0.074

FIGURE 8.18 A gene expression matrix constructed from several individual microarray experiments of

chronically HIV-infected lymphocytes treated with phorbol myristate acetate (PMA) to activate the virus and

control compared with uninfected lymphocytes.∗

∗Shown are two replicate arrays (no PMA) representing the untreated condition, two replicate arrays of samples

treated for 0.5 hr with PMA, two for 3 hr and one array for a sample treated for 6 hr. ID_REF, which identifies the

probe, and UNIGENE ID are given, where known. For each probe, a value representing the log2-transformed

intensity ratio of HIV-infected versus uninfected is given for each array. For example, the value −0.392 (in bold)

was taken from the array shown in Figure 8.3. Data retrieved from the Gene Expression Omnibus (GEO),

GSE 1441.

might correspond to similarly endowed individuals or to conditions that have

similar effects on many genes. For example, two patients’ tumors may be of the

same type, indicated by similar expression levels of many genes. Similarly, an

HIV-infected cell culture treated with a drug may return to pretreatment gene

expression levels several hours after treatment. Simply looking across the rows

of the gene expression matrix to identify functionally related genes or down the

columns to find similar samplesmay be possible. More likely, however, thematrix

will be too large to analyze the data and reach conclusions efficiently by eye.

Statistical approaches and computational power are required.

8.11.2 Clustering

Cluster analysis is oneof themost popular approaches to looking for relationships

in gene expression data. Clustering is the process of grouping together similar

things—in our case, similar genes or similar samples. Those genes that end up in

a cluster will bemore similar to one another than to genes in another cluster. This

multivariate technique has the characteristic that no a priori biological knowl-

edge about the data is required. That is, it is an uninformed approach. Patterns

and relationships may be discovered on the basis of the data alone (i.e., only the

expression measurements). This may be an advantage or disadvantage, depend-

ing on the point of view. From one perspective, it means that developing effective

clustering algorithms does not necessarily require a complete understanding of

the biological problem. In fact, excluding biological information about the par-

ticular genes or samples may even limit or eliminate bias imposed by faulty or

Chapter 8 Gene Expression 359

incomplete knowledge. Nevertheless, a plethora of valuable data and knowledge

stemming from decades of research has been accumulated for many of genes on

the microarray. Can it be incorporated in to the process? The short answer here,

is yes. In the machine-learning realm, techniques known as supervised learning

can take various parameters as input to the process. We will return to this topic

later.

To group similar entities together requires somemeasurement of “similarity.”

Remember that in a microarray study we typically carry out multiple micro-

array experiments and, thus, generate multiple measurements for each gene in

thematrix. Each gene can be thought of as a point in n-dimensional space, with n,

for example being the number of microarray experiments. From the perspective

of samples or experiments, n represents the number of genes measured for each

experiment. Consider then the measurements across a given gene as a vector

pointing somewhere in n-dimensional space (Figure 8.19).

Of the many similarity measurements employed in gene expression studies,

we consider the Pearson correlation here.

Its popularity may stem from the fact that correlation between two entities

is fairly easy to understand and also because this method can detect inverse

relationships. That is, we can easily see when one gene generally goes up when

the other gene goes down or vice versa across each experiment in the microarray

dataset. The formula for the Pearson correlation can be expressed in many ways

including:

r =
1

n− 1

n�
i=1

�
xi − x

sx

��
yi − y

sy

�

where: n is the number of conditions

x is the average expression of gene x in all n conditions

y is the average expression of gene y in all n conditions

sx is the standard deviation of the xi

sy is the standard deviation of the yi

x3

x4

xn-1

x0

x2

x1

0

FIGURE 8.19 n-dimensional space.

360 Chapter 8 Gene Expression

A positive correlation between gene x and gene y means that they change in

the same way across experiments. In which cases do we find positive correlation

values? Suppose that an x value is above the average, as is the associated y value.

Then the product (xi − x̄)(yi − ȳ) is the product of two positive numbers, which

is therefore positive. If the x value and the y value are both below average, their

product would be of two negative numbers and would therefore also be positive.

Therefore, a positive correlation is evidence of a general tendency that rela-

tively large positive values of x are associated with relatively large values of y and

large negative values of x are associated with large negative values of y.

Conversely, consider the case where an x value is above average, and the

associated y value is below average. Then the product (xi − x̄)(yi − ȳ) is the

product of a positive and a negative number, which makes it negative. Similarly,

if the x value is below average and the y value is above average, their product is

also negative.

It follows that a negative correlation is evidence of a general tendency that

relatively large values of x are associated with relatively small values of y and

relatively small values of x are associated with relatively large values of y. An

analysis of data from the HIV-infected cells data using Pearson correlation is

shown in Figure 8.20.

Gene ID

411881 25155 386741 435789 256278 440896 287721

Gene ID 411881 1.000 0.191 0.247 0.130 −0.251 0.036 −0.009
25155 0.191 1.000 0.237 0.243 0.374 0.408 0.080

386741 0.247 0.237 1.000 0.798 0.080 0.140 −0.276
435789 0.130 0.243 0.798 1.000 0.185 0.084 −0.212
256278 −0.251 0.374 0.080 0.185 1.000 0.320 0.327
440896 0.036 0.408 0.140 0.084 0.320 1.000 0.049
287721 −0.009 0.080 −0.276 −0.212 0.327 0.049 1.000

Pairwise correlation between genes 435789 and 386741 across treatment time

course:

r = 1
(n−1)

n�
i=1

�
xi−x̄

sx

� �
yi−ȳ

sy

�

x = 0.1795 sx = 0.354

y = 0.2498 sy = 0.4097

r = 1
(35−1)

��
(−0.424−0.1795)

0.354
(−0.568−0.2498)

0.4097

�
+ · · · +

�
(0.505−0.1795)

0.354
(0.425−0.2498)

0.4097

��
= 0.798

FIGURE 8.20 Pearson correlation table for seven genes from the time-course dataset

(35 samples) of HIV-infected and noninfected lymphocytes.∗

∗Pairwise correlations are shown in the table. Genes 435789 and 386741 show strong

correlation (positive value relatively close to 1) in expression over the time course

sampled. Genes 287721 and 411881 show almost no correlation as the value is close to 0.

Genes 287721 and 386741 show low correlation but in the opposite direction (small,

negative value). Sample calculation is shown for Genes 435789 and 386741 below the

table.

Chapter 8 Gene Expression 361

Another popular distance measure is the Euclidean distance, which is based

on the Pythagorean theorem. The distance between two points can be expressed

by the hypotenuse of a right triangle according to the formula: a2 + b2 = c2.

For gene X = (x1, x2, . . . xn) and gene Y = (y1, y2, . . . yn)

d(X ,Y) =

�
(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)

2

The Euclidean distance measures the absolute distance between two points

in space, which in this case are defined by two expression vectors. Each of these

similarity measures comes with its own set of advantages and disadvantages,

and which is chosen affect downstream analyses. The Euclidean distance, for

example takes into account both the direction and magnitude of the vectors,

whereas the Pearson correlation accounts for shape but not magnitude of a series

of gene expression measurements. Two genes may be close in Euclidean distance

but dissimilar in terms of their correlation, especially if they are outliers within

the gene expression measurements. Figures 8.21 and 8.22 show two different

clustering results using Euclidean distance.

14

12

10

8

6

4

2

0

4
11

8
8
1

1
0

7
5

2
6

6
6

5
4

2

4
4

0
8

9
6

1
4

5
8

2
0

2
5

15
5

7
5

3
1
8

2
3

2
0

2
1

1
6

9
3

7
8

9
0

2
8

1
5

5
2

0
6

3
8

6
7
4
1

4
3

5
7

8
9

8
9

7
6

8

2
5

6
2

7
8

2
8

7
7

2
1

4
4

6
3

9
3

3
3

8
2

0
7

H
e

ig
h

t

Dendrogram for agglomerative clustering genes

Euclidean distance and single linkage method

FIGURE 8.21 Hierarchical clustering of gene expression data from a time-course

study of activation of HIV in lymphocytes. Here, we show the result of clustering using

the Euclidean distance metric and a clustering method known as single linkage.

Data retrieved from GEO (GSE 1441)

362 Chapter 8 Gene Expression

25

20

15

10

5

0 4
4

0
8

9
6

1
4

5
8

2
0

1
0

7
5

2
6

2
3

2
0

2
1

1
6

9
3

7
8

9
0

2
8

1
5

5
2

0
6

3
8

6
7
4
1

4
3

5
7

8
9 2

5
6

2
7

8

2
8

7
7

2
1

8
9

7
6

8

4
11

8
8
1

6
6

5
4

2

2
5
1
5

5

7
5

3
1
8

4
4

6
3

9
3

3
3

8
2

0
7

H
e

ig
h

t

Dendrogram for agglomerative clustering genes

Euclidean distance and complete linkage method

FIGURE 8.22 Hierarchical clustering of the same data as Figure 8.21 but with

complete linkage clustering instead of single linkage clustering.

Clustering usually begins with the matrix of the pairwise similarity/distance

measurements among the genes or samples analyzed. There are many different

clustering algorithms, and, like similarity measures, each comes with its own

assumptions, capabilities, and limitations. As a result, the same dataset can be

clustered in various ways, and even the same distance metric can yield different

results as seen in Figures 8.21 and 8.22. Add in the choices of similarity/distance

metric, clustering algorithm, and a host of other possible initial conditions on

the input, and the variety of results can be daunting. Remember that the primary

value of cluster analysis is to look for trends in the data and to form hypotheses

rather than to provide “answers.”

The following quote from the NCBI Gene Expression Omnibus (GEO) site

appears there in red!

“Cluster analyses help provide insight into the relationships between data. It

is recommended that care is taken with biological interpretation using cluster

results; classifications are based on basic clustering algorithms over a variety of

dataset types, making no prior assumptions on original data distribution and

range. Alternative algorithms, normalization procedures and distance metrics

will generate different cluster outputs.” [22]

Chapter 8 Gene Expression 363

Hierarchical Clustering

Hierarchical clustering has been used since the inception of microarrays and also

has found its way into sequence analysis and phylogenetic trees. Starting from the

correlation or distance/similarity matrix, the algorithm recursively assembles all

of the elements (genes) into a tree. This may be by a bottom-up (agglomerative)

or top-down approach (divisive). In the bottom-up approach the process starts

by assigning a leaf of the tree to each gene. Then, the two most similar genes

(from the matrix) are joined. The two vectors representing the two genes are then

averaged to create a new vector for the node. Next, a new matrix is computed,

with the newly created vector replacing the two joined elements, and the process

is repeated until a single node remains. There are multiple ways to compute

the distances between clusters, as well. Some examples are single linkage, which

is the distance between the two closest neighbors in the clusters (shown with

Euclidean distance in Figure 8.21), and complete linkage, which is the average

distance between all pairs of vectors, one from each cluster (see Figure 8.22). The

latter method obviously requires more computation. The output of the process is

a tree, rather than a set of clusters. This tree represents the hierarchy of categories,

based on similarities and is known as a dendrogram.

An upper bound for the complexity of the bottom-up clustering approach

can vary between O(N2) and O(N3), depending on which linkage method is

chosen. Consider that for N starting points (e.g., genes) the process is repeated

at most N − 1 times until a single node remains.

The divisive approach works by splitting large clusters into smaller ones and

requires that another clustering approach first be used to partition the dataset

into two major clusters. These tend to be faster than agglomerative techniques

but are sensitive to the partitioning algorithm chosen to initiate the process.

Figures 8.23 and 8.24 show the results of divisive clustering using Euclidean and

Pearson distances, respectively.

k-Means Clustering

One of the most widely used algorithms is the k-means clustering algorithm. It is

both simple and fast. In a typical implementation, the number of clusters, k, is

given as a user input value, based on the expected number of clusters. The algo-

rithm begins by randomly assigning k points as the centers of the clusters. Then,

each gene in the set is assigned to a cluster based on its distance from the cluster

center. New centers are then computed and genes are then reassigned to clusters.

This continues until no genes continue to move among clusters (Figure 8.25).

One pitfall is that random selection of centers may provide values not close to

any of the data and result in empty clusters. To prevent this, randomly selected

data are commonly used to initiate the cluster centers. Obviously, this algorithm

is sensitive to the value chosen for k as well as the method used to select the initial

cluster centers. It is not uncommon, therefore, to find that different clusters can

be achieved each time the program is run. Techniques have been devised to assess

the quality of such clusters [8].

364 Chapter 8 Gene Expression

25

20

15

10

5

0

4
11

8
8
1

2
5
1
5

5

2
3

2
0

2
1

3
8

6
7
4
1

4
3

5
7

8
9

1
5

5
2

0
6 9

0
2

8

2
5

6
2

7
8

2
8

7
7

2
1

8
9

7
6

8

1
6

9
3

7
8

7
5

3
1
8

1
0

7
5

2
6

6
6

5
4

2

4
4

6
3

9
3

3
3

8
2

0
7

4
4

0
8

9
6

1
4

5
8

2
0

H
e

ig
h

t

Dendrogram for divisive clustering genes

Euclidean distance

FIGURE 8.23 This dendrogram shows the same data as in previous clustering figures,

but with a method that subdivides groups into smaller clusters. Note differences in the

relationships between genes, depending on which methods are used. This clustering used

Euclidean distances.

A Program for k-Means Clustering

Implementing a Cluster class is made easier by naming each cluster, so that we

can observe the progress of our clustering algorithms. Since our clusters will be

generated ad hoc, a good strategy is to use an int as the name. Each cluster will

thus have an identifier (int name). The cluster must also record the dimension

of the space in which it resides, because we’ll need to calculate the centroid1 of the

cluster for somealgorithms. Forothers, weneed tofigure thedistancebetween two

points in the cluster. In either case, the code to calculate that quantity—centroid

or distance—requires the dimension of the space.

Figure 8.26 gives a possible implementation for the Cluster class:

Exercise 8.4 asks you to create a program to test the Cluster class.

For k-means clustering, you’ll need an array of Clusters: Cluster[]

clusters; and you’ll need to specify your integer k for the number of clusters.

1
The centroid of a set of points is the point whose coordinates are the arithmetic mean of the

coordinates of all the points. In physics, if equal weights were placed at each of the points, the
centroid would be their center of mass.

Chapter 8 Gene Expression 365

H
e

ig
h

t

4
11

8
8
1

2
5

6
2

7
8

7
5

3
1
8

4
3

5
7

8
9

8
9

7
6

8

1
4

5
8

2
0

6
6

5
4

2

1
6

9
3

7
8 4

4
6

3
9

3

2
3

2
0

2
1

2
5
1
5

5

4
4

0
8

9
6

1
0

7
5

2
6

9
0

2
8

3
8

6
7
4
1

2
8

7
7

2
1

1
5

5
2

0
6

3
3

8
2

0
z

Dendrogram for divisive clustering genes

Pearson correlation

FIGURE 8.24 The dendrogram shows the same divisive approach as in Figure 8.23

but with Pearson correlation.

a

b b

Before After

a

FIGURE 8.25 One pass of the k-means algorithm. On noting that point a is closer to

the median of the black points than it is to the median of the gray, we move it to the

black cluster. Similarly the gray b switches its allegiance to the blacks.

366 Chapter 8 Gene Expression

class Cluster extends Vector{ // Note to self: import java.util.* !!!

public int name;

public int dimension;

double[] centroid;

public Cluster(int n, int d) { // Cluster called n, in d-dimensional space

super();

name = n;

dimension = d;

centroid = new double[d];

}

public void add(Gene gene) {

addElement(gene);

}

public void remove(Gene gene) {

if (!removeElement(gene))

System.out.println("Oops - removing nonexistent gene");

// Print a warning in case of bad usage

}

public void calculateCentroid() {

Enumeration e = elements();

for (int i=0; i < dimension; i++) centroid[i] = 0.0;

while (e.hasMoreElements()) {

Gene g = (Gene) e.nextElement();

double[] c = g.getExpressionLevels();

for (int i=0; i < dimension; i++) {

centroid[i] += c[i];

}

}

for (int i=0; i < dimension; i++) centroid[i] /= size();

}

}

FIGURE 8.26 Program for Cluster objects to be used in k-means clustering.

You should also have an array Gene[] genes of N genes (earlier, we demon-

strated how to generate these randomly). Initially, these genes will be allocated

to arbitrary clusters, except that each cluster must contain at least one gene

(Figure 8.27).

Do you see how we ensured that each cluster contained at least one gene?

Basically, for i from0 tok−1we just putgene[i] intocluster[i]. After that,

we assigned the remaining genes randomly. It’s helpful to determine which cluster

each gene is in. The int[] myCluster provides the answer as long as we keep

updating it. In particular, we should make sure that each myCluster[i] starts

out with the correct value.

Exercise 8.6 asks you to write a program to test the methods you have so far

included in your public class ExpressionExperiment (or whatever you want

to call your class).

Chapter 8 Gene Expression 367

public void makeClusters(int k) {

numClusters = k;

clusters = new Cluster[numClusters];

// ensure each cluster has at least one datapoint:

for (int i=0; i < numClusters; i++) {

clusters[i] = new Cluster(i,M);

clusters[i].add(genes[i]);

myCluster[i] = i;

}

// Now assign the rest of the genes to clusters at random:

for (int i=numClusters; i < N; i++) {

int c = (int)(Math.random()*numClusters);

clusters[c].add(genes[i]);

myCluster[i] = c;

}

}

FIGURE 8.27 Program to create initial cluster for k-means clustering.

The main workhorse of k-means analysis is the code that looks at each gene,

figures out which of the clusters it’s closest to, and then if needed, moves the gene

to that cluster. We need to do that for each gene. We put the code in a Boolean

method reconsider().

Figure 8.28 is code to indicate how reconsider() works:

Why Boolean? Because, in order to determine when we’re done, we need to

know if any genes changed cluster during this particular pass. A Booleanmethod

to scan all the genes can return true if somebody moved, false otherwise.

Now, after all this is done, the essence of k-means clustering is:

public void kMeans () {

makeClusters(k);

boolean somethingChanged = true;

while (somethingChanged) {

printClusters();

somethingChanged = reconsider();

}

}

Finally, Let’s put thek-meansanalysis intoa classExpressionExperiment

(Exercise 8.7). Figure 8.29 shows some of the necessary instance variables and

initializations.

Figure 8.30. provides a main method to drive the whole process.

Self-Organizing Maps

Another type of clustering algorithm is the SOM (self-organizing map). SOMs

were devised by TeuvoKohonen, and first used by [31] to analyze gene expression

368 Chapter 8 Gene Expression

public boolean reconsider() {

int jMinDist;

boolean change = false;

double[] dists = new double[k];

for (int i = 0; i < N; i++) {

jMinDist = 0;

for (int j = 0; j < k; j++) {

dists[j] = distance(clusters[j].centroid,

genes[i].expressionLevels);

if (dists[j] < dists[jMinDist]) jMinDist = j;

}

if (jMinDist != myCluster[i]) {

// Next line provides running commentary

System.out.println("Moving "+i+" from "+myCluster[i]+

" to "+jMinDist);

clusters[myCluster[i]].remove(genes[i]);

clusters[jMinDist].add(genes[i]);

myCluster[i] = jMinDist;

change = true;

}

}

return(change);

}

FIGURE 8.28 Implementation of a method to move genes within clusters in k-means clustering.

public class ExpressionExperiment {

int N; // Number of datapoints

int M; // Number of experiments, dimension of

// cluster space

int numClusters; // How many clusters

Gene[] genes;

Cluster[] clusters;

int[] myCluster;

public ExpressionExperiment(int numgenes, int numexperiments, int k) {

N = numgenes;

M = numexperiments;

numClusters = k;

genes = new Gene[N];

myCluster = new int[N];

double[] expressionLevels = new double[M];

}

}

FIGURE 8.29 Implementation of the ExpressionExperiment class.

Chapter 8 Gene Expression 369

public static void main(String[] args) {

ExpressionExperiment ee = new ExpressionExperiment(

Integer.parseInt(args[0]),

Integer.parseInt(args[1]),

Integer.parseInt(args[2]));

ee.printData();

ee.kMeans();

}

FIGURE 8.30 Implementation of the main method for the k-means clustering

program.

data. The SOM is a type of neural network that reduces the dimensionality of the

gene expression data bymapping it to one or two dimensions so that relationships

can be visualized more easily. To initiate the SOM the user defines a geometric

configuration for the partitions by specifying the x and y dimensions of the map.

For example, if 3× 3 is chosen, nine partitions occur. Then, nine random vectors

are initialized, one for each partition. These vectors are of the same dimensional-

ity as in the gene expression dataset. For instance if you have 10 experiments, then

the vectorswill be 10-dimensional; that is theywill have 10 coordinates. An impor-

tant concept is that the partitions have a physical relationship to one another, in

that they sit in a two-dimensional grid. Thus, one partition can be considered to

be physically closer to another partition than it is to a third. At the beginning,

the map is unorganized. That is, the relationship of the partitions in physical

space has no bearing on the relationships between the vectors that associate with

them. Next, the SOM is refined. A gene from the list is picked at random, and its

expression pattern is compared (using some selected distance measure) to each

of the vectors that were initialized randomly in the first step. The vector to which

the expression vector of the picked gene is most similar is thenmodified, so that it

more closely resembles the expression vector of that gene. In addition, the vectors

that belong to the partitions that are physically closest (in the two-dimensional

grid) to the partition whose vector was just modified are also modified, so that

they too resemble the gene’s expression vector a little more closely. This process

is repeated many times. Essentially a circle is drawn on the two-dimensional grid,

with its center being in the center of the partition whose vector was most similar

to the picked gene’s expression pattern. Any partitions that fall within that circle

are considered “close,” and so their vectors are modified. The radius of this circle

decreases with each iteration. With each iteration fewer vectors are modified by

smaller amounts, so that the map eventually stops changing. In the end, the vec-

tors of neighboring partitions are somewhat similar to each other, and vectors of

partitions that are physically distant are dissimilar to each other. Thus the map

has become organized. After all iterations have occurred, the genes are then par-

titioned. Usually, the contents of each partition are then clustered by hierarchical

clustering.

370 Chapter 8 Gene Expression

8.11.3 Classification

In contrast to the unsupervised approaches of clustering, classification is a

machine-learning technique that uses a supervised approach to organize the data

into meaningful groups. The main goal of classification is the ability to assign a

new sample to a previously specified class, based on sample features and a trained

classifier. Building the classifier involves the identification of features (genes) that

discriminate between classes.

One of the first applications of classification to microarray data was by Todd

Golub and collaborators in what has now become a “classical” study [13] serving

as amodel formany to follow. The research team tackled the challenging problem

of diagnosing two related, but different types of leukemia: acutemyeloid leukemia

(AML) and acute lymphoblastic leukemia (ALL). At that time no single reliable

test was available that could distinguishAML fromALL yet it remained critically

important to do so because both the clinical course and response to treatment

differed greatly depending on the type of leukemia.

They reasoned that global gene expression profiles could be used to distin-

guishamong these cancer types if genes couldbe identified that strongly correlated

with one type or the other. The study design was to first perform microarray

experiments on tumors known to be either AML or ALL. Over 6000 genes were

assayed in 27 ALL samples and 11 AML samples. The statistical technique of

neighborhood analysis was then used to assess all genes in terms of their correla-

tion to an “idealized” pattern of expression for a gene that discriminates between

the two types. For example, an ideal gene would be expressed at a uniformly high

level across the ALL tumors and low level in AML, or vice versa. Figure 8.31

shows an example of an expression vector, c, for such a hypothetical ideal gene.

Gene 1 shows a strong correlation with c, whereas gene 2 does not.

Eleven hundred of the approximately 6000 genes followed the class distinc-

tion, many more than would be expected purely by chance. Of these an arbitrary

number of genes (50) were chosen to build the class predictor. Next, the predictor

was tested by cross-validation (one sample was withheld and the predictor built

c = (1,1,1,1,1,1,0,0,0,0,0,0)

Gene1 = (e1, e2, e3, . . . , e12)

Gene2 = (e1, e2, e3, . . . , e12)

AML ALL

FIGURE 8.31 Discrimination between AML and ALL.

Source: Golub et al

Chapter 8 Gene Expression 371

Gene1

AML ALL
AML ALL Weight

v1 w1

w2

w3

w4

w5

v2

v4

v5

v3

Gene2

Gene3

Gene4

Gene5

FIGURE 8.32 Expression levels of genes “vote” for inclusion of sample in AML or

ALL class.

Source: Golub et al

from the remaining 37 samples; this was repeated for each sample). The predic-

tor was then tested on an independent dataset from unknown tumor types. The

method of prediction was one of weighted votes. That is, the gene expression

measurement for each gene in the unknown sample was compared with that in

the known sample. If the level was similar to the mean value for that gene in

AML, the gene “voted” for AML (Figure 8.32). The vote weight was calculated

based on how well the gene correlated with the class distinction and also on how

well the unknown sample matched the known sample.

Importantly, this classifier was able to make strong predictions for 29 of

34 unknown samples and did so with 100% accuracy, and predictors based on

as few as 10 genes or as many as 200 genes performed similarly. The patterns

in Figure 8.33 demonstrate that no single gene would serve as a reliable classi-

fier by itself. In contrast, the power of the predictor comes from the collective

measurements of the 50 genes.

In addition to its power in classification, another important feature of this

type of analysis is the identification of discriminating genes. This provides a

window into the biology underlying these tumors. Figure 8.33 shows the identi-

fications of the 50 genes in the classifier. Further exploration of these genes may

be used to clarify misdiagnoses, to understand which biological processes are

perturbed, to predict clinical outcomes, and to plan therapeutic treatments.

8.11.4 Using Visualization Techniques
to Aid Interpretation

Figure 8.33 exemplifies one of the important aspects of any data-mining approach

in gene expression: visualization of the output. Although not always consistently

done, even simple techniques such as color coding are helpful in supporting the

easy recognition of interesting patterns in the data. Another valuable feature of

many types of programoutput and their visualization tools is the ability to explore

relationships and make discoveries interactively. Many such applications provide

“clickable” elements that allow biologists to access additional detailed informa-

tion about a selected gene, such as its name, aliases, function, and the location of

the gene product within the cell, to name a few. This is accomplished by linking

372 Chapter 8 Gene Expression

ALL AML

0 0.5 1 1.5 2 2.5 3

Low Normalized expression High

FIGURE 8.33 Expression levels of the 50 genes used in the classifier for ALL and

AML.

Source: Golub et al

to a major database at a public site such as the NCBI or a custom database asso-

ciated with the application. The knowledgeable biologist armed with effective

visualization tools is thereby enabled in the discovery of meaningful biological

relationships in the data. TheHierarchical Clustering Explorer (HCE) developed

at the University of Maryland is one such tool that combines a powerful clus-

tering algorithm with a visualization tool to enable interactive exploration by a

Chapter 8 Gene Expression 373

domain expert [30]. GenMAPP is another free computer application designed

to visualize gene expression and other genomic data. We will meet GenMAPP

again in Chapter 9. In this application gene expression data can be visualized

on maps representing biological pathways and groupings of genes. GenMAPP

supports interpretation of expression data in the context of hundreds of pathways

and thousands of gene ontology terms [6]. Recognizing the value of visualiza-

tion, Heer and colleagues [14] have produced Prefuse, a user interface toolkit for

building interactive visualizations of structured and unstructured data. Using

the toolkit, developers can create responsive, animated graphical interfaces for

visualizing, exploring, and manipulating data. This software could be used to

visualize hierarchies of gene expression data as well as gene networks and will

also be revisited in Chapter 9. Prefuse is written in Java using the Java2D graphics

library and is designed to integrate with any application written using the Java

Swing user interface library.

8.11.5 Advanced Classification Algorithms

Genetic Algorithms

Classification is another problem that may be suited to attack by a genetic algo-

rithm (GA). As noted in Chapters 6 and 7, GAs are suitable when we have lots

of measurable data but are uncertain how to combine them usefully, and when

we have a fitness function that can be used to drive the evolutionary GA.

In the case of the classification problem enormous quantities of data are

provided by themicroarrays. The parameters subject to slippage and convergence

via a GA include:

1. parameters pertaining to how we normalize the data,

2. the number of clusters we aim for,

3. parameters determining how we measure distance between samples,

4. parameters for thresholds determining when we switch clusters,

5. and many other potential parameters.

The fitness function depends on the utility of the clusters produced by the

parameters. As a simple first approximation, the fitness function can even be

determined as the opinion of a human evaluator. References [7, 17, 33] provide a

sample of research in this area.

Support Vector Machines

The support vector machine (SVM) is a supervised learning approach that

exploits prior knowledge of gene function to find genes with similar function.

Used first by Brown and coworkers [4] to analyze gene expression data, this tech-

nique is rapidly gaining in popularity and breadth of application. This study

showed the SVM outperformed several other machine-learning classification

algorithms when used on a large dataset (2467 genes from 79 microarrays) from

budding yeast. SVMs have many mathematical features that make them par-

ticularly appropriate for gene expression data. These include flexibility when

choosing a similarity function, the ability to handle large feature spaces, the

374 Chapter 8 Gene Expression

ability to deal with outliers, and, finally, the capacity to create a few solutions

from large datasets [4]. The algorithm proceeds through two main stages. First

is a training stage in which an initial presumptive classification (from supplied

knowledge) and the expression data serve as inputs. The output of the training

stage is a set of weights that will be used during the second, classification, stage.

The weights and the expression data are used to assign a score to each element,

which then places that element into or out of a class. The SVM is implemented

in the TM4 suite of microarray analysis tools available from TIGR.

8.12 DATA MANAGEMENT

As the cost of microarrays has decreased and exciting findings have been pub-

lished, more and more laboratories and individual scientists have been drawn to

the power and promise genome-wide studies offer. This has had a huge impact

on science, as evidenced by the tens of thousands of publications reporting the

results of microarray data [34]. The unfortunate repercussion of the onslaught of

data generated using the wide variety of technologies and platforms available for

high-throughput gene expression analysis is the rather difficult problem of data

management. Perhaps analogous to the state of DNA sequence databases more

than a decade ago, today a large number of distributed databases exist containing

gene expression data. Moreover, these data may come not only frommicroarrays

but also SAGE or other analysis techniques. They may be scattered among many

independent sites (accessible via Internet) or not publicly available at all. Accord-

ing to a 2006 review, about 3% of the more than 400 biological databases store

microarray data [34].

The types of data management tools used for microarray data have evolved

along with techniques for the generation and use of the data. In the infancy of the

microarray when individual labs were creating arrays and running rather small

studies, the data were typically kept on local computers in flat files or in a spread-

sheet application. Even then, however, it was necessary to share data with other

scientists because some labs could not afford to run their own arrays. Sharing

data has a real advantage . Not only does it help to promote reproducibility of

study results, but when the datasets are large it also promotes discovery. That

is, different data analysis approaches or different algorithms used to explore the

same microarray dataset are known to result in different discoveries. Both flat

files and spreadsheets are limited when it comes to storing and exchange data.

First, there is the problem with the metadata, or data about the data, a familiar

term to those versed in database technologies. Whether using flat files or spread-

sheets the metadata is not likely to be stored along with the data, but rather

resides in another file or files. For any automated process (other than the scientist

simply reading the file) the files must be parsed, using a language such as Perl,

to extract the information in the metadata. In terms of the gene expression data,

the spreadsheet offers some advantages over the flat file such as the ability to

sort, do some data analysis, and produce graphs and charts. In fact, many adds-

ons avaliable for Excel, particularly for statistical analysis, have been developed

Chapter 8 Gene Expression 375

for microarray data. However, the spreadsheet has severe limitations in terms of

updating, sharing, and exploring the data.

Relational database management systems have generally been the preferred

solution formicroarray data, although that is changing. In the relational database

model, data are represented in two-dimensional tables. The table, or relation,

has rows and columns, and tables are related through primary or foreign keys.

The relational model supports several algebraic operations that can be used to

manipulate the data. For example, the user can retrieve data elements of interest,

such as gene expression ratios, from all tables containing the values of interest,

using the SELECT command. Most commonly, the structured query language

(SQL) is used to formulate and perform database queries. SQL is supported by

many database management systems commonly used for gene expression data,

including MS-Access, MySQL, PostgreSQL, and Oracle. A database schema

is often provided as a graphical representation of the design of the relational

database tables.

Microarray databases tend to be pretty big. Even the relational model is

not totally suited to microarray data. For example, certain types of data such as

images and documents are not handled well by the relational model, especially

when scalability of the database is considered. For that reason, researchers are

turning toobject-orienteddatabases or object-relational databases for larger scale

systems. Themain advantage of such systems is that data can be encapsulated into

objects so that some of the complexity is hidden and data can be accessed more

easily through methods that operate on objects. In addition the object model is

more extensible and reusable than the relational model.

Extraction of information from these large datasets and integration of bio-

logical knowledge are key to finding biological meaning in the data. This means

that scientists not only need to be able to share data, but must also understand

the nature of the shared data and relate gene expression data to other biological

information stored in a variety of formats. Data management, integration, and

annotation problems highlight a need for standardization that enables sharing.

Clearly, there is far too much variability in gene expression data to easily share

and use the data because of the need to document experimental details. Fur-

thermore, many current databases differ in annotation, database structure, and

availability.

8.12.1 Controlled Vocabularies and
Standardization of Microarray Data

Microarray experiments are not only high-throughput, they are complex. Recall

the large number of experimental steps required to carry amicroarray experiment

through to completion. The precise experimental conditions must be known in

order to use or reproduce the data. For example, the type of experiment must be

known, as well as the nature of the samples, how theywere labeled, the conditions

of hybridization, what controls were present on the array, if and how the data

normalizationwas done . . . and on and on. Naming conventionsmust be adhered

to consistently; for example, the word probe refers to the immobilized DNA on

376 Chapter 8 Gene Expression

an array and not the labeled sample (the more traditional use of the word prior to

the microarray) used to hybridize the array. This poses a major challenge because

biologists have had a long tradition of personally naming cell types, organelles,

genes, and proteins at the time of their discovery. Often the same gene or protein

has been given a different name by a different researcher who may have studied it

in a different context. Textual information used to describe biological molecules,

processes, and experiments has generally been free-form. The lack of consistency

and standards causes real problems for data exchange and integration and has

led to widespread recognition that vocabularies need to be controlled throughout

the different domains of biomedical research as well as in clinical and regulatory

practice.

Controlled vocabularies are used to capture and formalize knowledge in a

given domain, such as the microarray. The vocabulary consists of a list of terms

and their relationships, which have been explicitly specified in an ontology. The

use of terms belonging to a controlled vocabulary solves the computing prob-

lems that arise when writing parsers to search for terms and phrases in free text.

This has been a common problem in the sharing of microarray data, especially

when researchers provided the microarray data in flat files or when the metadata

accompanying a relational database was written in a free-formmanner. Probably

the best known, and also most mature, ontology used in bioinformatics today is

the Gene Ontology (GO). This project began in 1998 as a collaboration between

threemodel organismdatabases, FlyBase, the SaccharomycesGenomeDatabase,

and the Mouse Genome Database, and grew to what is now the Gene Ontology

Consortium (GOC). The GO project was proposed in response to the prolifera-

tion of disparate biological databases containing gene and genome data, and the

GOC has spearheaded its implementation. The GOC noted the inconsistencies

in annotation, arbitrary classifications, and multiple spellings and uses of terms

and proposed three ontologies based on molecular function, biological process,

and cellular component [2]. Today, the GO is widely adopted by the biological

community. Used by at least 30 major bioinformatics databases it has become

the de facto standard for biological database ontologies [5, 34]. New tools for

data analysis using the GO are continually springing up. For example, ADGO

is a Web application that supports analysis of differentially expressed gene sets

with composite GO annotations. It is based on the principal that coordinated

expression changes of specific gene sets, or modular expression, is most typical of

biological processes. Gene annotation can be used to specify such gene sets. This

tool, however, rather than relying on a single category to look for patterns, uses

intersecting categories.When for example, some genes categorized by a particular

molecular function are unaffected by an experimental condition, it may be that

only those genes that also share a certain cellular component are affected. The

ADGO can then find significant associations at the intersection of genesets that

are revealed with unary annotations. Interestingly, the exemplary analysis used

for ADGO is for gene expression in the HIV-1 immune response [21].

Fortunately, today a concerted effort is underway to standardize microarray

data, along with the other types of “omics” data. For microarray data this work

is being carried out at the U.S. National Center for Biotechnology Information

Chapter 8 Gene Expression 377

(Gene Expression Omnibus), at the European Bioinformatics Institute (Array-

Express), and also at Stanford University where much of the first microarray

analysis was done.

TheMicroarrayGeneExpressionDatabase (MGED)group, www.mged.org,

is theprimary forcebehind standardizationof gene expressiondataanddatabases.

The MGED working group is a multidisciplinary group collaborating to define

and standardize the terminology required to publish a microarray experiment.

Initially, four main projects were underway. The MGED has recently expanded

to also address standardization issues in other “omics” such as toxicogenomics,

environmental genomics, and nutrigenomics. One major microarray project [3],

known as minimum information about a microarray experiment (MIAME), has

worked toward defining the information required to interpret and verify microar-

ray results. TheMIAMEgrouphas published guidelines (see theMGEDWebsite)

that strictly define what information should be reported so that someone outside

of the reporting lab can interpret the data. Many, if not most, databases today

are required to be MIAME-compliant. Another group, Microarray and Gene

Expression (MAGE), is concernedwith the establishment of anXML-based data

exchange format (MAGE-ML) and data exchange model (MAGE-OM), mod-

eled using the Unified Modeling Language (UML), for microarray experiments.

MAGE-ML is a type of eXtensibleMarkupLanguage (XML)—the international

standard for defining descriptions of the structure and content of electronic doc-

uments. The document type definition (DTD) of MAGE-ML specifies all of the

rules or declarations, allowable tags, and the content of tags for microarray data.

XMLallows information in different representations to be exchanged in a generic

format and also provides a software- and hardware-independent mechanism for

data sharing.

In addition to the definition of the information needed to describe a micro-

array experiment (provided by MIAME) and a mechanism to standardize data

for exchange (provided by MAGE-OM and MAGE-ML), a controlled termi-

nology for data annotation was also needed. Therefore, another major MGED

project developed ontologies for microarray experiment description and biologi-

cal material (biomaterial) annotation in particular. The MGEDOntology (MO)

wasdevelopedas a resource for semantics-baseddescriptionsofmicroarray exper-

iments. It provides terms for annotation that comply with MIAME guidelines,

and it supports the MAGE-OM. A detailed example of use can be found in the

recently released, original paper describing the MO [38]. The MO is used pri-

marily in three ways, depending on the needs of the user. It may be used by a

biologist who has little knowledge of MO structure itself, when it is embedded

within applications, to annotate, or to query data. The MOmay be used directly

by annotators andmay be used by software developers for producing applications

that use theMO [36]. The Transformation andNormalization working group has

undertaken the development of recommendations on experimental controls and

data normalization methods.

Another major effort toward microarray standardization is the MicroArray

Quality Control (MAQC) Project [18]. In this project microarray specialists from

almost 30organizations areworkingwith theU.S.FoodandDrugAdministration

378 Chapter 8 Gene Expression

to provide quality control tools and develop data analysis guidelines. Another

important collaboration is the External RNA Controls Consortium (ERCC). It

involves more than 110 participants from approximately 70 organizations, who

are collaborating to develop a set of external RNAcontrol transcripts. These con-

trols can be “spiked” into RNA preparations before cDNA synthesis and used

to assess the technical performance of gene expression assays. These controls

will also be qualified by the National Institutes of Standards and Technology

(NIST)—the same group that qualifies universal standards such as atomic time,

temperature, and mass. Eventually, with a better understanding of the variabil-

ity and comparability among different arrays and methods and by developing

standardized data representations, scientists and clinicians will be able to use

appropriate procedures to ensure accurate results and will be able to combine

their transcriptional profiling efforts.

8.13 EXERCISES FOR CHAPTER 8

Exercise 8.1 Choose one of the HIV-1 genes. Write a program that uses this sequence

as input and provide a list of candidate oligonucleotide probes that fit the

following criteria:

• 25 nucleotides in length

• within 300 bp of the 3 end of the coding sequence

Next, using some publicly available tools, test any candidate oligonucleotides

for the following:

• repetitive elements

• significant homology to other known sequence

For extra credit, suggest ways that you could link your program to the others

so that it could run with less user intervention.

Exercise 8.2 Locate some gene expression data from one of the public repositories. Exam-

ine the data to understand its format. Depending on the data selected,

perform some t-tests or ANOVA analyses using available tools. Report on

your findings.

Exercise 8.3 Write a program to test the Gene class. Your main method should create

a Gene with name and expression levels from the command line, and then

output the values from the gene.

> java GeneTest fred 0.0 1.0 2.0

Gene fred has expression levels 0.0 1.0 2.0

Chapter 8 Gene Expression 379

Exercise 8.4Write a program to test the Cluster class provided in this chapter.

Exercise 8.5Write a program to perform a Pearson correlation. Test your program on an

appropriate data set.

Exercise 8.6Write a program to test the methods created in this chapter for k-means

clustering.

Exercise 8.7Create a program to generate random expression data and cluster it using

k-means analysis. All the code is included in this chapter, in various places.
Running the code with java ExpressionExperiment 20 5 3 will set

up randomdata for an experiment involving fivemeasurements of expression

levels of 20 genes and clustering into three clusters. Your program might

behave like the following:

java ExpressionExperiment 20 5 3

0: 0.00 0.92 0.87 1.12 1.50

1: 0.00 1.44 1.30 1.75 1.31

2: 0.00 1.98 1.70 1.48 1.56

3: 0.00 -2.02 -2.15 -1.81 -1.49

4: 0.00 1.94 2.38 2.78 3.23

5: 0.00 -2.90 -3.11 -3.35 -3.69

6: 0.00 -1.19 -0.73 -0.61 -0.21

7: 0.00 1.12 1.46 1.01 0.78

8: 0.00 0.49 0.44 0.07 0.49

9: 0.00 2.39 2.73 2.96 3.14

10: 0.00 -1.55 -1.90 -1.50 -1.34

11: 0.00 2.75 2.80 2.71 2.96

12: 0.00 -2.54 -2.94 -3.28 -3.11

13: 0.00 0.14 -0.32 -0.52 -0.97

14: 0.00 1.92 1.64 1.94 1.96

15: 0.00 -0.39 -0.08 0.09 0.51

16: 0.00 -1.36 -1.61 -1.68 -1.73

17: 0.00 -0.70 -0.79 -0.80 -0.53

18: 0.00 1.67 1.60 2.02 2.08

19: 0.00 -0.19 -0.52 -0.31 0.13

Cluster 0: 0 3 16 18 19 Centroid: (0.00, -0.19, -0.36, -0.13, 0.10)

Cluster 1: 1 5 8 9 11 12 13 14 15 Centroid: (0.00, 0.37, 0.27, 0.26, 0.29)

Cluster 2: 2 4 6 7 10 17 Centroid: (0.00, 0.27, 0.35, 0.40, 0.58) (continued)

380 Chapter 8 Gene Expression

Moving 0 from 0 to 2

Moving 1 from 1 to 2

Moving 5 from 1 to 0

Moving 6 from 2 to 0

Moving 9 from 1 to 2

Moving 10 from 2 to 0

Moving 11 from 1 to 2

Moving 12 from 1 to 0

Moving 13 from 1 to 0

Moving 14 from 1 to 2

Moving 15 from 1 to 0

Moving 17 from 2 to 0

Moving 18 from 0 to 2

Cluster 0: 3 16 19 5 6 10 12 13 15 17 Centroid: (0.00, -1.27, -1.41, -1.38, -1.24)

Cluster 1: 8 Centroid: (0.00, 0.49, 0.44, 0.07, 0.49)

Cluster 2: 2 4 7 0 1 9 11 14 18 Centroid: (0.00, 1.79, 1.83, 1.97, 2.06)

Moving 0 from 2 to 1

Moving 7 from 2 to 1

Moving 13 from 0 to 1

Moving 15 from 0 to 1

Moving 19 from 0 to 1

Cluster 0: 3 16 5 6 10 12 17 Centroid: (0.00, -1.75, -1.89, -1.86, -1.73)

Cluster 1: 8 0 7 13 15 19 Centroid: (0.00, 0.35, 0.31, 0.24, 0.41)

Cluster 2: 2 4 1 9 11 14 18 Centroid: (0.00, 2.01, 2.02, 2.24, 2.32)

Moving 6 from 0 to 1

Moving 17 from 0 to 1

Cluster 0: 3 16 5 10 12 Centroid: (0.00, -2.07, -2.34, -2.33, -2.27)

Cluster 1: 8 0 7 13 15 19 6 17 Centroid: (0.00, 0.02, 0.04, 0.01, 0.21)

Cluster 2: 2 4 1 9 11 14 18 Centroid: (0.00, 2.01, 2.02, 2.24, 2.32)

KEY TERMS

genotype (8.4)

phenotype (8.4)

differential gene expression (8.4)

transcriptional profiling (8.5)

transcriptome (8.5)

sensitivity (8.5)

selectivity (8.5)

gridding (8.7)

segmentation (8.7)

information extraction (8.7)

spot intensity extraction (8.7)

background intensity

extraction (8.7)

gene filtering (8.8)

perfect match (PM) (8.8)

mismatch (MM) (8.8)

log2 transformation (8.8)

scaling (8.8)

hypothesis testing (8.10)

p-value (8.10)

gene expression matrix (8.11)

clustering (8.11)

Pearson correlation (8.11)

Euclidean distance (8.11)

SOM (self-organizing map) (8.11)

classification (8.11)

machine-learning technique (8.11)

supervised approach (8.11)

structured query language

(SQL) (8.12)

probe (8.12)

metadata (8.12)

ontology (8.12)

Chapter 8 Gene Expression 381

BIBLIOGRAPHY

1. L. Anderson and J. Seilhamer. A comparison of

selected mRNA and protein abundances in

human liver. Electrophoresis, 18:533–537, 1997.

2. M. Ashburner, C. A. Ball, J. A. Blake, et al.

Gene ontology: Tool for the unification of

biology. The gene ontology consortium. Nat

Genet, 25:25–29, 2000.

3. Alvis Brazma. On the importance of

standardisation in life sciences. Bioinformatics,

17:113–114, 2001.

4. Michael P. S. Brown, William Noble Grundy,

David Lin, et al. Knowledge-based analysis of

microarray gene expression data by using

support vector machines. PNAS, 97:262–267,

2000.

5. Evelyn Camon, Michele Magrane, Daniel

Barrell, et al. The gene ontology annotation

(GOA) database: Sharing knowledge in uniprot

with gene ontology. Nucleic Acids Res, 32

(Database-Issue):262–266, 2004.

6. K. D. Dahlquist, N. Salomonis, K. Vranizan,

et al. GenMAPP, a new tool for viewing and

analyzing microarray data on biological

pathways. Nat Genet, 31:19–20, 2002.

7. J. M. Deutsch. Evolutionary algorithms for

finding optimal gene sets in microarray

prediction. Bioinformatics, 19:45–42, 2003.

8. S. Draghici. Data Analysis Tools for DNA

Microarrays. Chapman and Hall/CRC,

New York, 2003.

9. J. B. Fan, X. Chen, M. K. Halushka, et al.

Parallel genotyping of human SNPs using

generic high-density oligonucleotide tag arrays.

Genome Res, 10:853–860, 2000.

10. Alan M. Frieze, Franco P. Preparata, and Eli

Upfal. Optimal reconstruction of a sequence

from its probes. J Comput Biol, 6(3/4), 1999.

11. Max H. Garzon, Vinhthuy T. Phan, Kiran C.

Bobba, and Raghuver Kontham. Sensitivity and

capacity of microarray encodings. In Alessandra

Carbone and Niles A. Pierce, editors, DNA,

volume 3892 of Lecture Notes in Computer

Science, pages 81–95. Springer, 2005.

12. M. S. Giri, M. Nebozhyn, L. Showe, and

L. J. Montane. Microarray data on gene

modulation by HIV-1 in immune cells:

2000–2006. J Leukocyte Biol, 80:1031, 2006.

13. T. R. Golub, D. K. Slonim, P. Tamayo, et al.

Molecular classification of cancer: Class

discovery and class prediction by gene expression

monitoring. Science, 286:531–537, 1999.

14. J. Heer, S. K. Card, and J. A. Landay. Prefuse: A

toolkit for interactive information visualization.

In CHI 2005: Human Factors in Computing

Systems, 2005.

15. P. Heiter and M. Boguski. Functional genomics:

It’s all how you read it. Science, 278:601–602,

1997.

16. R. A. Irizarry, D. Warren, F. Spencer, et al.

Multiple-laboratory comparison of microarray

platforms. Nat Methods, 2:345–349, 2005.

17. Leping Li, Clarice R. Weinberg, Thomas A.

Darden, and Lee G. Pedersen. Gene selection for

sample classification based on gene expression

data: Study of sensitivity to choice of parameters

of the ga/knn method. Bioinformatics,

17:1131–1142, 2001.

18. MAQC. Cross-platform comparability of

microarray technology: Intraplatform

consistency and appropriate data analysis

procedures are essential. BioMed Central

Ltd., 2005.

19. R. Mei, E. Hubbell, S. Bekiranov, et al. Probe

selection for high-density oligonucleotide arrays.

Proc Natl Acad Sci USA, 100:11237–11242,

2003.

20. P. Mitchell P. A perspective on protein

microarrays. Nat Biotechnol, 20:225–229,

2002.

21. D. Nam, S-B. Kim, S-K. Kim, et al. Adgo:

analysis of differentially expressed gene sets

using composite go annotation. Bioinformatics,

22:2249–2253, 2006.

22. NCBI Gene Expression Omnibus (GEO)

http://www.ncbi.nlm.nih.gov/projects/geo/info/

cluster.html

23. Taesung Park, Sung-Gon Yi, Seungmook

Lee, et al. Statistical tests for identifying

differentially expressed genes in time-course

microarray experiments. Bioinformatics,

19:694–703, 2003.

24. Rhys Price Jones, S. J. Harrington, J. F. Naveda,

et al. On the Structure of Style Space for

Documents. Presented at the American

382 Chapter 8 Gene Expression

Association for Artificial Intelligence (AAAI)

Symposium on Style and Meaning in Language,

Art, Music, and Design, Washington DC,

October 2004.

25. H. Primdahl, F. P. Wikman, H. von der Maase,

et al. Allelic imbalances in human bladder

cancer: Genome-wide detection with

high-density single-nucleotide polymorphism

arrays. J Natl Cancer Inst, 94:216–223, 2002.

26. J. Quackenbush. Computational analysis of

microarray data. Nat RevGenet, 2:418–427,

2001.

27. S. Selvey, E. W. Thompson, K. Matthaei, et al.

Beta-actin-an unsuitable internal control for

RT-PCR. Mol Cell Probes, 15:307–311, 2001.

28. J. Seo and B. Shneiderman. Interactively

exploring hierarchical clustering results. IEEE

Computer, 35:80–86, 2002.

29. R. L. Stears, T. Martinsky, and M. Schena.

Trends in microarray analysis. Nat Med,

9:140–145, 2003.

30. Dov Stekel. Microarray Bioinformatics.

Cambridge University Press, 2003.

31. P. Tamayo, D. Slonim, J. Mesirov, et al.

Interpreting patterns of gene expression with

self-organizing maps: Methods and application

to hematopoietic differentiation. Proc Natl

Acad Sci USA, 96:2907–2912, 1999.

32. Stefan Tomiuk and Kay Hofmann. Microarray

probe selection strategies. Briefings

Bioinformatics, 2:329–349, 2001.

33. Huai-Kuang Tsai, Jinn-Moon Yang, Yuan-Fang

Tsai, and Cheng-Yan Kao. An evolutionary

approach for gene expression patterns. IEEE

Transact Infor Technol Biomedicine, 8:69–78,

2004.

34. Willy Valdivia-Granda and Christopher Dwan.

Microarray data management. An enterprise

information approach: Implementations and

challenges, 2006. In Zongmin Ma and Jake

Chen, Jake (editors): Database Modeling in

Biology: Practices and Challenges. Springer

Sciences & Business Media.

35. V. E. Velculescu, L. Zhang, B. Vogelstein, and

K. W. Kinzler. Serial analysis of gene expression.

Science, 270:484–487, 1995.

36. Patricia L. Whetzel, Helen Parkinson, Helen C.

Causton, et al. TheMGED ontology: A resource

for semantics-based description of microarray

experiments. Bioinformatics, 22:866–873, 2006.

37. Y. H. Yang, M. J. Buckley, and T. P. Speed.

Analysis of cDNA microarray images. Brief

Bioinform, 2:341–349, 2001.

38. Michael Zuker. MFold web server for nucleic

acid folding and hybridization prediction.

Nucleic Acids Res, 31:3406–3415, 2003.

9
Projects

“The men of experiment are like the ant, they only collect and use; the reasoners

resemble spiders, who make cobwebs out of their own substance. But the bee takes

the middle course: it gathers its material from the flowers of the garden and field,

but transforms and digests it by a power of its own.”

—Francis Bacon

I
n this chapter, we are touching on several different topics, many of them

currently at the cutting edge of the field of bioinformatics. Each section

begins by describing some accomplishments, at the end of which we turn

it “over to you” by suggesting exercises or projects that venture further into the

topics. Finally, each section ends with a list of annotated resources to encourage

more exploration into the computational challenges.

9.1 VISUALIZATION AND EXPLORATION
OF COMPLEX DATASETS

Like any lively flourishing science bioinformatics does not have all the answers.

In fact, we don’t even know all the questions! But thanks to truly amazing tech-

nological advances such as those described in Chapter 3 we do have huge, and

we mean truly prodigious and colossal, quantities of data. The data are so vast

and complex that we cannot effectively investigate it ourselves. For the science

of bioinformatics to advance, we need to be able to examine those data and

formulate the questions, frame the hypotheses, and test our conclusions, all in

the context of unsolved biological problems. What makes bioinformatics really

exciting is that sometimes, nay, often, we have no idea what we’re looking for

as we develop ways to examine the data. We cannot therefore write programs to

perform that investigation.

Instead we need to work in an evolving partnership with our computers.

Programs can be written to organize our data and present it to us in ways that

enable us to make new discoveries. Only humans are capable of discovering

new and unexpected patterns that eventually lead to new and testable science.

Computers themselves are incapable of creative and original investigation. But

because of their ability to process large amounts of data very quickly, suitably

383

384 Chapter 9 Projects

programmed computers will play an indispensable role in the advancement of our

science.

What do we mean by “suitably programmed computers”? The smart aleck

(and, incidentally, correct) answer to this question is thatwe donot know.We can-

not in general know in advance precisely how computers can aid the process of

scientific investigation. Here is our single most compelling reason for writing this

book. Talented, curious, investigative scientists are needed who are comfortable

enough with computing machinery and its capabilities that they can demand,

obtain, or create the exact tools and data configurations to spur effective scien-

tific research. We hope our readers are the scientists who will know what can be

accomplished with computers and how to get it done.

Our first project looks at how computers have been used to arrange data so

that scientists can immediately see important correlations and formulate valuable

hypotheses.

9.1.1 Sequencing Gel Visualization

To illustrate the ways in which human investigators can use evolving computer

algorithms to advance science, let’s conduct a mind experiment and pay a visit

to the year 1977. Pioneers including Maxam, Gilbert, and Sanger are developing

sequencing techniques. Eventually it is possible to create a set of DNA fragments

of varying lengths starting at a predetermined primer site in which the final ter-

minating dideoxynucleotide is labeled such that each corresponding nucleotide

fluoresces with a different color spectrum. These fragments are forced through a

gel and arrive sorted by size. As they pass by a laser the laser excites the fragments,

making each fluoresce within a measurable range of spectral intensities.

That’s the theory. Now technology creates sequencing machines to speed

up the process. Output from these machines creates a huge amount of numeric

data indicating output intensities at different wavelengths in the spectrum as the

fragments in strict order of size pass by a fixed reader.

Table 9.1 is a (very much simplified and reduced) set of such data. Each row

shows the four intensity readings at a single time. Reading down a column shows

how the intensity of each wavelength varies as time proceeds.

A human is hard pressed to detect and record the patterns in the data within

any reasonable time frame. As we study the data we note that each wavelength

varies as time proceeds. To truly understand what that variation means, how-

ever, we need to see the data displayed graphically. To paraphrase a great truism

“A picture is worth a million numbers.”

These days we’d just import the numbers into some standard software, may-

be a spreadsheet, and click the right buttons to draw the graph. But remember

this is a thought experiment and we are in the 1970s. So we write a program to

read the data series for each wavelength and draw the graphs shown in Figure 9.1.

At each wavelength, we can see a series of peaks. Presumably a peak corre-

sponds to the passage of a fragment and its corresponding terminal dideoxy-

nucleotide past the detector. Looking at the four separate graphs does not help

us determine the sequence. Perhaps we conclude that we need to superimpose

Chapter 9 Projects 385

TABLE 9.1 Simplified sequencer output

10 12 11 12

12 14 7 14

11 8 6 13

12 3 7 28

13 2 6 16

10 3 7 32

17 1 6 12

25 2 7 13

14 1 5 12

15 3 6 13

12 11 7 12

10 2 21 13

11 3 29 11

12 1 16 13

10 2 8 32

9 1 7 35

10 3 6 31

6 12 7 14

10 13 6 13

11 7 5 13

10 3 6 18

12 2 5 28

11 1 7 13

10 5 16 12

10 1 30 14

10 2 22 12

9 2 31 13

11 1 15 12

18 3 7 13

28 1 6 13

25 2 7 14

16 1 6 12

12 3 27 14

11 1 6 13

9 2 7 17

10 3 8 29

10 1 7 17

9 2 8 15

11 1 6 33

12 3 7 14

the graphs and have a separate pattern for the graph for each column. Again

(remember we’re pretending to be in the 1970s) we need towrite a simple program

to produce the visual output that will let us figure out what is going on.

Figure 9.2 shows the output fromour newprogram. Commercial base-calling

software takes advantage of color to differentiate the graphs for each column.

386 Chapter 9 Projects

FIGURE 9.1 Graphs of each column of data. It is next to impossible to determine the

order in which peaks occur.

40

35

30

A

C

G

T

25

20

15

10

5

0

FIGURE 9.2 One graph for all four columns of data. It is difficult to identify the

nucleotides corresponding to a consecutive sequence of peaks.

Chapter 9 Projects 387

We can see that peaks of different nucleotides appear at different times. Unfortu-

nately, it is very difficult to see the sequence of peaks because the intensities of the

four frequencies vary in such different ranges. The C peaks occur at roughly the

same level as theT troughs. This makes it very difficult to extract the information

we need from the graph. We therefore need to normalize the data and scale each

column’s information so that peaks and troughs of each appear at roughly the

same heights. That’s not hard to do using current standard software, but since

we’re imagining this in the 1970s we need to write another program. It must nor-

malize each column of data to establish maxima and minima at the same levels.

You’ll be asked for the formula in Exercise 9.1.

Figure 9.3 shows the result on our simplified dataset. The human researcher

could conclude that the sequence for this piece of DNA was

CT T ACGTCTGGAGT T

1 2 3 4

The process is named “calling the sequence,” and it is a good early example of

cooperation between the experienced and skillful biologist and a far from perfect

program analyzing perhaps noisy data. Notice that our call is by no means the

1.2

1

0.8

0.6

0.4

0.2

0

A

C

G

T

FIGURE 9.3 One graph for all four columns of normalized data. The sequence of

bases is fairly discernible.

388 Chapter 9 Projects

only possible reading of the data in the graph. As you scan Fig. 9.3 here are some

legitimate questions raised by the data:

1. Could this be two successive A’s or is it just one slightly fat A?

2. Is there a C peak ahead of this G peak?

3. Are we sure there are exactly two G peaks here?

This list is by no means exhaustive. Are the low C peaks just noise? Or are more

real C nucleotides hiding there?

Sequence-calling software evolved along with improvements in the sequenc-

ing machines themselves. As the quality of the raw data improved, so did the

opportunity for the base-calling software to succeed. By now, the programs are

good enough to proceed with no human intervention. Not only do they do a

good job of calling the bases, they actually associate a quality score with each of

their calls. This quality score is based on such measurable quantities as the peak

height, the distance between successive peaks, or the presence of multiple peaks

in close proximity.

Perhaps our normalization procedure was too simplistic. Figure 9.4 shows

the result of applying a transformation to the data that results in a mean of 0 and

a standard deviation of 1 for the data in each column. Do you think that is better?

4

3

2

1

0

A

C

G

T

FIGURE 9.4 One graph for all four columns of data normalized to the same mean

and standard deviation. The sequence of bases is readily discernible.

Chapter 9 Projects 389

Do you think you could write software to call the bases unaided by any human

expert?

9.1.2 Microarray Data Visualization

Microarrays are another example of the simultaneous evolution of software,

human understanding, and technological developments to glean meaning from

large datasets.

As discussed in Chapter 8, because studying the expression of one gene or

even a fewgenes rarely captures the attention of grant reviewers, many researchers

opt forwhole-genome, system-wide studies instead.Unfortunately, carrying these

studies to conclusion is rife with pitfalls and hurdles, not the least of which is the

torrent of data produced by experiments. So much so that it seems devoid of any

meaning. Fortunately, many data analysis tools are currently available, both free

and commercial, to aid the researcher in transforming data into information and

integrating that new information with current knowledge. The best of these tools

use sophisticated data visualization techniques to help the researcher understand

the data.

Recall the challenges with microarray datasets: they are large, they are noisy,

and they are multidimensional. Today it is relatively easy to analyze thousands

of variables at the same time but more difficult to gain insights into complex

and dynamic biological processes from these data. Multivariate datasets are not

unique to microarrays or even to biology. Indeed, they are also commonly found

in physics, astronomy, geology, medicine, business, and the social sciences. In a

lighter vein, multivariate analyses of baseball statistics are often featured in the

national press. Think about using the same approach to analyzing data about

the weather or stock market trends. What would you want to know? What are

the challenges? Due to their size alone all of these datasets would be difficult to

analyze without the help of computers. Another feature many large, multivari-

ate datasets share is the way in which they are used. Typically, users of these

datasets are explorers. That is, they are engaged in search activities in which

the target may be undefined. We might not know which stocks will plummet

after a devastating hurricane or which will soar after the Federal Reserve chair-

man speaks a few words before the Senate Banking Committee (although some

people make their living claiming to know). We may not know which genes

are important in the cell’s defense against HIV attack. What is needed in all

these circumstances is an open-ended, exploratory approach to multivariate data

analysis. As discussed in Chapter 8, biologists often turn to computing tech-

niques that allow them to discover relationships in microarray data without prior

knowledge of what those relationships might be. Unsupervised clustering algo-

rithms, such as hierarchical clustering, allow them to find groups based on the

characteristics of the data alone. This is a useful first step but it is not usu-

ally sufficient to extract meaning from those groups; that is, to derive biological

inferences.

The high dimensionality of the data makes it difficult to explore the many

clusters, to find interesting patterns within those clusters, and to integrate

390 Chapter 9 Projects

any resultant biological knowledge. This is where data visualization tools

come in.

9.1.3 Data Visualization Tools

A primary purpose of a data visualization tool is to provide domain-relevant

insight into the data and support domain-specific data exploration strategies.

Theoretically, the tool should allow an individual with expertise in a particular

field to gain new insights and develop new hypotheses through data exploration

and discovery [34]. This means that the developer of a visualization tool must

understand the domain in which the tool is to be used. A developer in the field

of biology, for instance, must understand how the biologist thinks and solves

biological problems. How is a problem-solving task done and in what context?

What other information will help elucidate the problem? Is a biologist simi-

lar to a computer scientist or a statistician in terms of experience, expertise,

work habits, and error tolerance? Not surprisingly, some of the most innova-

tive and effective visualization tools in bioinformatics have been designed by

researchers in human computer interaction working with biologists and bioin-

formaticists. These teams have applied cognitive theory and understanding of

human perception and problem-solving with analysis of biological tasks to create

new visualization tools.1

Sequence Visualization

The human genome sequence makes dull reading. It consists of about 3 billion

base pairs. By comparison, let’s work out how many letters occur in a typical

novel.

One version of The Picture of Dorian Gray [41] extends over 193 pages. Each

page has about 40 lines, and each line has about 60 characters. That makes a total

of about 463,200 characters. To match the number of characters in the human

genome, we would need about 6000 novels of the length of Oscar Wilde’s 1890

gothic horror classic.

Put another way, if you could read one-novel’s worth of the human genome

every day, it would take you more than 17 years to get through the whole thing.

That’s assuming you could stay awake!

We need tools to help us visualize the information. The rate at which we

humans can absorb information by scanning a scene is much faster than the

speed with which we can read character-by-character. It is well established that

the average person can recognize a face in about 170 milliseconds (ms). We don’t

need megapixel resolution to form a recognizable image of a human face. Let’s

conservatively estimate that 100-pixel resolution is adequate. On these assump-

tions, it seems that evolution has equipped us to process visual information at a

rate of 100 × 100 units per 170 ms, or well over 50,000 units per second. By con-

verting the human genome data into, say, 3 billion such visual units, we could

1
See the resources in Section 9.1.4 for more information about such tools.

Chapter 9 Projects 391

Mouse
Mus musculus

Human
Homo sapiens

Chicken
Gallus gallus

Rhesus Macaque
Gallus gallus

Chimp
Pan troglodytes

FIGURE 9.5 An image from Circos. This emphasizes gene similarities between

human, rhesus monkey, chimp, chicken, and mouse genomes. Shaded arcs connect

similar regions. Line charts and bar charts indicate the degree of similarities.

© M. Krzywinski (2005) Circos http://mkweb.bcgsc.ca/circos

expect to scan the whole thing in 51,000 seconds or slightly more than 14 hours.

Contrast this with the 17 years it would take us to “read” the genome.

By contrast, computers are famously fast at processing character data and

notoriously poor and slow at processing image data. A good solution is to have

the computer process the raw character data of the genome into visual images

for us humans to scan.

One such programdeveloped inCanada byMartinKrzywinski is Circos [22].

Please visit the website to see the effectiveness of color in images like Figure 9.5.

Youwill see the kindof visual image that canbeproducedby this freely distributed

software. You will encounter more visualization tools as scientists recognize the

need for help in absorbing and interpreting large datasets. The following two are

currently in use for viewing genomic sequence data:

• Artemis (http://www.sanger.ac.uk/Software/Artemis/) is a free genome

viewer and annotation tool written in Java and is available from the Sanger

Institute of the Wellcome Trust.

• As mentioned earlier, the USCS Genome Browser is available at

http://genome.ucsc.edu/

Tools for Microarray Visualization

An example of a successful solution (albeit a continually improving one) to the

microarray visualization problem is the Hierarchical Clustering Explorer (HCE)

developedbyJinwookSeoandBenShneiderman in2002at theHumanComputer

Interaction Lab (HCIL) at the University of Maryland. This visualization tool,

392 Chapter 9 Projects

developed with a user-centered approach, extended and improved on the static

visualization tools that were available at the time. Whereas a static tool allows

researchers to visualize the outcomeof hierarchical clustering via the dendrogram

and employs useful visualization techniques such as color-coding, it falls short of

supporting the biologists’ needs for solving some important data analysis prob-

lems. Over more than three years of iterative development, Seo and Shneiderman

have expanded the functionality of HCE based on users’ needs [see following

reference list 5–8]. This interactive tool allows researchers to explore clustering

results and provides many useful visualization tools, including one-dimensional

histograms, two-dimensional scatterplots, parallel coordinates, tabular views,

and a gene ontology viewer, all as coordinated windows. Knowledge discovery

strategies were investigated by interviewing users of high-dimensional data in

many fields. Based on this, Seo and Shneiderman developed a set of guiding

principles known as “graphics, ranking, and interaction for discovery” (GRID).

GRID is a structured knowledge discovery strategy that supports analyses of

multivariate datasets using low-dimensional projections. GRID is implemented

in HCE and is known as the rank-by-feature framework. The basic idea is that

the researcher starts with one-dimensional and then two-dimensional projections

of the data (consider fewer variables at a time in order to find interesting pat-

terns) and views them according to ranking criteria such as signal-to-noise ratios.

Ordered one-dimensional histograms or two-dimensional scatterplots can then

be interactively explored and integrated with other useful information through

use of features such as the Gene Ontology viewer. Case studies of HCE in use by

researchers have shown the rank-by-feature framework to be an effective support

of the biologists’ problem-solving strategies.

The HCIL Website (http://www.cs.umd.edu/hcil/) chronicles the history of

HCE development. Related papers on visualization problems not limited to

microarray or bioinformatics data, such as papers on the visualization of a vari-

ety of types of network, are also available. Another success in the campaign to

help people visualize complex datasets is prefuse (prefuse.org), an extensible soft-

ware framework developed by user interface research groups at the University

of California at Berkeley, Xerox PARC, and the University of Washington [11].

Data modeling, visualization, and interaction can all be supported easily using

the prefuse toolkit at http://prefuse.org.

9.1.4 Over to You

Exercise 9.1 If you take a set of numbers lying within an arbitrary range, say from xmin

to xmax, and subtract xmin from each, you obtain a transformed set whose

range is from 0 to some upper limit. What is that upper limit? Now if you

divide each of the transformed numbers by that upper limit you obtain a set

of numbers each of which lies between 0 and 1. Effectively what you have

done is to normalize the original set of numbers to the range 0 to 1. Write a

program to normalize a set of integers.

Chapter 9 Projects 393

Exercise 9.2Visualization tools to aid the scientist in relating gene expression and other

types of genomic data to knowledge about biological networks and pathways

constitute another area of ongoing research and development in bioin-

formatics. For example, GenMapp (http:www.genmapp.org) and PathDb

(http://www.intl-pag.org/8/abstracts/pag8684.html) are two such tools that

have evolved to allow the visualization of varied data types in the context of

multiple, user-defined or user-selected networks or pathways. For this project

your tasks are

1. Investigate the implementation of one or more network/pathway

visualization tools.

2. Create a small prototype tool of your own.

The tool you investigate need not be for biological data, although that is

okay, too. Start with some of the papers andWebsites provided in this section

and do whatever exploration is needed to develop an understanding of the

computing technologies and methods used. Develop a small sample set of

data, alongwith somegeneontologyornetworkdata.Use these to implement

a prototype visualization tool that allows the user to input, visualize, and

explore biological relationships.

9.1.5 Resources for Visualization
1. K. D. Dahlquist, N. Salomonis, K. Vranizan, et al. GenMAPP, a new tool for

viewing and analyzing microarray data on biological pathways. Nat Genet, 1:19–20,

2002.

The original paper describing the conceptual framework for the GenMapp tool.

2. Jeffrey Heer, Stuart K. Card, and James A. Landay. Prefuse: A toolkit for interac-

tive information visualization, CHI ’05: Proceedings of the SIGCHI conference on

human factors in computing systems, ACM Press, ISBN 1-58113-998-5, 421–430,

2005.

Description of a usable Java-based tool for visualization.

3. H. Javahery, A. Seah, and T. Radhakrishnan. Beyond power: Making bioinformatics

tools user-centered. Comm ACM, 47:59–63, 2004.

An overview of the need for and value of user-centered design approaches for bioinfor-

matics tool development. Provides several examples of tools developed with UCD.

4. P. Saraiya, C. North, and K. Duca. An evaluation of microarray visualization tools

for biological insight. IEEE Trans Vis Comput Graph, 11:443–456, 2005.

An empirical evaluation of five microarray visualization tools. The authors identify and

quantify several characteristics of “insight” as a means of evaluating and comparing

tools.

394 Chapter 9 Projects

5. J. Seo and B. Shneiderman. Interactively exploring hierarchical clustering results.

Computer, 35:80–86, 2002.

The original paper describing the development of the HCE tool. Provides motivation

for dynamic visualizations of microarray data.

6. J. Seo, M. Bakau, Y-W. Chen, et al. Interactively optimizing signal-to-noise ratios

in expression profiling: Project-specific algorithm selection and detection p-value

weighting in Affymetrix microarrays. Bioinformatics, 20:2534–2544, 2004.

Description of a ranking feature used in HCE. This paper describes the idea that dif-

ferent mRNA profiling projects have varying sources and degrees of confounding noise

which alter the choice of a specific probe set algorithm.

7. J. Seo and B. Shneiderman. A rank-by-feature framework for interactive exploration

of multidimensional data. Info Vis, 4:99–113, 2005.

Describes the support of knowledge discovery based on the GRID principles.

8. J. Seo and B. Shneiderman. Knowledge discovery in high dimensional data: Case

studies and a user survey for the rank-by-feature framework. IEEETrans Vis Comput

Graph, 12:311–322, 2006.

Evaluation of the HCE tool by users of high-dimensional data in diverse fields.

Highlights tool features and demonstrates evaluation methodologies.

9.2 RNA STRUCTURE AND
FUNCTION PREDICTION

Much of the material in this book covers the use of computers to find and ana-

lyze signals embedded in DNA, RNA, or protein sequences. Since sequences

contain most of the information content of a cell, it seems reasonable to focus

our computational efforts in this area. However, keep in mind that the cell is

more than a package for retaining information. Because cells carry out many

complex activities to ensure their survival they rely on large molecules such as

proteins to interact with one another in specific ways. So if we wish to trulymodel

the ways in which cells work, we must look beyond the one-dimensional level of

sequence information by considering the two- and three-dimensional structure of

a molecule.

The three-dimensional structure, or shape, of a molecule is critical for deter-

mining its function in a biological context. As a result, biologists almost always

talk about structure and function in the same breath. What they mean is that if

we can identify the structure of a molecule, we almost immediately have a very

good sense of its likely function.

To understand why this is the case, consider a simple example from a differ-

ent realm. Archaeologists specialize in identifying artifacts from long-departed

societies. They use these objects to conjecture about the ways in which those

societies worked. When an archaeologist uncovers a settlement with many large

jars, the shape of the jars can provide insights into what kind of goods could

Chapter 9 Projects 395

be stored in them. Low, flat jars were likely to hold grain, but jars with spouts

were likely to be used to pour liquids. In other words, the structure of a jar indi-

cates its likely function. Of course, we need to back up our ideas about the uses

of the jars by considering other factors. If we know that the region around the

settlement was especially good for growing grapes or wheat, we might be able

to make more specific guesses about the function of a given set of jars. On the

other hand, we cannot discount the possibility that what we consider “reason-

able guesses” are in fact completely off track. For example, we could be looking

at a society of practical jokers who put their rice in tall, fluted jars with spouts

because it provided entertainment when a thirsty person tipped the grain out into

a cup.

Where archaeologists consider jars and pots, biologists look at cellular

machines: proteins, RNAs, and other molecules. The idea is that the shape of

the molecule, its structure, dictates its function. In the same way that an archae-

ologist might argue that a jar with a spout would contain liquids, a biologist will

argue that a protein with a rotary component is likely to be part of a cellular

motor. Usually, the archaeologist is right about the spouted jar, and the biologist

is right about the rotor protein. But we must always remember that evolution can

be a prankster too.

9.2.1 Solving Structures for Functional RNAs:
Early Successes

In Chapter 2 we introduced the idea of protein structure, but RNAs also exhibit a

structurewhen the single-strandedmolecules fold upon themselves throughbase-

pairing. Unlike proteins, which can form structures through many different types

of bonds, most RNA structures are entirely the result of base-pairing. Because

the structures are formed by specific interactions among the nucleotides, these

interactions produce what is known as secondary structure. We will discuss the

higher levels of structure, tertiary and quaternary structure, in Project 9.3.

Why are we talking about structure in RNAs? Isn’t the function of RNA to

act as a go-between, carrying information from DNA to protein as stated in the

central dogma? The answer, like many things in biology, starts with, “Yes but. . .”

Yes, a certain type of RNA, known as messenger RNA (mRNA) does indeed

carry information copied from the DNA and directs the synthesis of proteins.

But this is just one type of RNA. The cell has many other kinds of RNAs. In fact,

mRNA makes up only about 1% of the total RNA content of a cell. The rest of

the RNAs in a cell also play important roles in the translation of proteins and in

many other cellular activities. These RNAs, sometimes referred to as structural

RNAs, are tinymachines in their own right. Although they are made up of RNA,

their structure drives their ability to do the work of the cell.

One of the most distinctive and well-studied examples of RNA structure is

that of transfer RNA. Transfer RNA (tRNA) acts like a decoder ring, matching

up nucleotide triplets on the mRNA with the appropriate amino acid during

translation of the mRNA (see Chapter 2). The structure of the tRNA not only

396 Chapter 9 Projects

allows it to serve its function as a decoder, it is also critical for enabling the

ribosome, the translation machine within the cell, to recognize the tRNA.

Given how important tRNAs are for cellular function, developing computa-

tional approaches to predicting their structure might seem reasonable. However,

why is this needed? After all, we already know how the structure looks. The

answer is that although we know how tRNAs look, we need to be able to locate

them within the genome.

The challenge of finding RNA genes in a genome is threefold. First, because

these genes do not code for proteins, many of the features we discussed in

Chapter 7 are not applicable in this instance. For example, RNA genes do not

have to contain start and stop codons. Indeed, RNA does not always follow

the pattern of retaining the triple-nucleotide codon. Secondly, many RNA genes

vary greatly at the sequence level, even if they all generate the same or similar

structures. This may in part be because the selection pressure to retain a con-

served sequence is not crucial as long as the structure remains conserved over

time. Finally, most RNA genes tend to be small, and, in a surprising twist, are

often found within the introns of other, protein-coding genes. These three aspects

of RNA genes make them especially tricky to identify.

One method for identifying many classes of RNAs is to use structure to find

the genes in a genome. It has been especially successful with the tRNAs because

of their distinctive, well-conserved structure. An added advantage is that many

tRNA genes do have some sequence conservation as well. Several algorithms

have been developed to find tRNA structures in a given sequence. Most begin

by comparing a putative tRNA sequence with known sequences to gauge the

likelihood that the gene of interest is a tRNA gene. Following this, at least one

method uses a hiddenMarkovmodel (HMM, seeChapter 7) to checkwhether the

sequence can fold into the classic tRNA shape [6]. As you can see in Figure 9.6,

the tRNA structure involves four regions of strong base-pairing, known as stems.

Three of the stems end in a loop area, and the fourth ends with the distinctive

nucleotide sequence that allows for amino acid attachment. So an algorithm can

check to see if the sequence supports base-pairing in the areas where the stems

should occur. The final step of the analysis is to check whether the sequence,

when folded, would be thermodynamically stable. We will return to this issue in

Section 9.2.3.

In terms of complexity, the prediction of the tRNA structure and its use in

gene finding are probably the easiest problems to solve. In the next sections, we

will consider the prediction of RNA structures for many different RNA genes,

some of which are not nearly as well conserved or well understood as the tRNA.

The success of RNA structure prediction in tRNAs stands as a small triumph

in the structure prediction world, but it is just the tip of the structure–function

iceberg.

9.2.2 Structural RNAs and Gene Regulation

An area of research that has dramatically expanded of late is the study of func-

tional RNAs and their effect on gene regulation. Specifically, it now appears

Chapter 9 Projects 397

Amino acid

attaches here

Stem-loop

Anticodon

loop

(base pairs

with mRNA codon)

Base-pairing

FIGURE 9.6 The structure of the tRNA forms a distinctive “cloverleaf” shape with

four stem regions and three loops. The loop at the “bottom” of the structure contains the

anticodon that will base pair with the appropriate codon in the mRNA. The 3 end of

the tRNA sequence includes a distinctive set of nucleotides (the acceptor arm) that allow

for binding to the correct amino acid.

that a variety of RNAs are actually involved in regulating when and how often a

protein-coding gene is expressed. Inmost of these cases, the structure of theRNA

is critical to its ability to regulate gene expression. In addition, as in the case of

tRNAs, finding the genes that encode these RNAs requires searching the genome

for structural rather than sequence conservation.

A relatively simple example comes from the viral regulation of gene expres-

sion in HIV. Several of the mRNAs that are generated by HIV have a special

RNA secondary structure known as the Rev responsive element (RRE). This

region allows the mRNA to bind to an HIV protein known as Rev. Rev helps

transport these mRNAs from the nucleus, where they are synthesized, to the

cytoplasm where they can be translated. The presence of the RRE structure is

critical for the mRNAs that encode the viral capsid proteins. If these mRNAs are

not translated, the virus cannot assemble new particles to spread to other cells.

So in the absence of the RRE structure or the Rev protein, the virus stalls inside

the first cell it enters.

The RRE is a distinctive structure. The key aspect seems to be a double

stem around an internal loop. The Rev protein appears to bind to this region

as a way of identifying the viral mRNA. This structure may also help keep the

mRNA attached to the Rev protein as it is transported out of the nucleus. So

the structure of the RRE serves two important functions: identification and a

creation of a latch-on region for transport. Not much is known about the exact

mechanics of the RRE–Rev interaction, but it is an area of active research [2].

398 Chapter 9 Projects

A A

A G

Loop

Stem

Base-pairing

G G

C G

C G

C G

A U

G C

U A

U A

FIGURE 9.7 The typical hairpin structure of a RNA has two portions: a stem part

where base-pairing occurs and a loop section where nucleotides are not paired. In

miRNAs, the two halves of the miRNA gene base pair to form the stem region. A small

section in the center of the gene yields the loop region.

Many viruses in the same family as HIV use RRE type signals to regulate

the expression of their mRNAs. A recent computational survey of these viral

genomes has yielded a large collection of putative RRE structures [23]. This

represents an interesting example of how the computational prediction of RNA

secondary structure can further our understanding of a biological structure and

its putative function.

Gene Regulation by RNAs in Higher Eukaryotes

The regulation of genes by RNA structures in HIV is perhaps not so surprising.

Since HIV has a RNA genome, we might expect that many of its gene-regulatory

operations would be adapted to take advantage of the RNA world. However,

the recent discovery of regulatory RNAs in higher eukaryotes including humans

suggests that such strategies are commonplace in organisms across the spectrum

of life.

Researchers have identified a class of small, structural RNAs that may be

involved in gene regulation. These RNAs, collectively known as microRNAs

(miRNA), are found in humans. The miRNA transcript is about 70 nucleotides

long, and once it is synthesized, it forms a simple hairpin structure (Figure 9.7).

This hairpin structure is then cut, and a small fragment of about 20 to 25

nucleotides is released. The small fragment is the active miRNA. These short

sequences are complementary to the 3 ends of mRNAs that code for a variety

of proteins. When the miRNA binds to the 3 end of the mRNA, it can inhibit

protein translation or trigger changes in the mRNA that affect protein synthesis.

As a result, miRNAs can dramatically alter the production of a given protein.

MicroRNAs seem to have a role in cancer as well, with some very aggressive

tumors exhibitingmanymoremiRNAs than normal cells. This is an area of active

research, however, so there are still many unanswered questions about miRNAs,

their role in healthy cells, and their potential role in disease [27]. Exercise 9.4 asks

you how you might find miRNA genes within a genome.

Chapter 9 Projects 399

dsRNA

Chromatin

siRNA

siRNA

mRNA

Nucleolus

Nucleus

mRNARISC

Degradation
of mRNA

FIGURE 9.8 Small interfering RNAs (siRNAs) work by finding complementary

sequences within the target mRNA. They base pair with these mRNAs, which triggers

degradation through a complex known as the RNA-inducing silencing complex (RISC).

The end result is that the mRNA is chopped up into small fragments rather than being

translated.

MicroRNAs are actually just one member of a class of small RNAs that

seem to be involved in gene regulation in eukaryotes. In plants and some lower

eukaryotes, small interferingRNAs (siRNAs) can be used to eliminate expression

of a given gene (Figure 9.8). This is known as RNA interference, or RNAi. In

plants, researchers have been able to use siRNA to specifically target genes and

exquisitely tweak their expression. They can almost play genes like a piano—

sometimes dampening expression to negligible levels, then letting it ramp back

up, then down again, and so on. They are able to do this because siRNAs are

simply short stretches of RNA that are the reverse complement of the mRNA

that a gene produces. If you add a specially designed siRNA to a plant cell, it

finds its complementary mRNA, binds to it, and shuts down protein translation.

If you wait for a while, the siRNA degrades, and gene expression surges back up.

At which point, you can reintroduce the siRNA and snap the lid on expression

again. Figure 9.8 shows how siRNAs might work.

To understand how siRNAs can shut down gene expression, we need to

digress for a moment to talk about viruses. As you know from Chapter 2, many

viruses including HIV have RNA genomes. When the RNA genome of a virus

enters the cell, it hijacks the translation apparatus of the cell and uses it to make

viral proteins. Cells have evolved ways to combat viral infection, chief among

which is to be “on the lookout” for unusual RNA structures that might indicate

the presence of a viral genome.

400 Chapter 9 Projects

Virus enters cell

Viral RNA genome (negative sense)

Viral RNA polymerase

Viral RNA translated
New viral genome

Viral genome packaged

and exits cell

RNA complement (sense strand)

Viral RNA (sense strand)
used as template for

new copy of viral genome

FIGURE 9.9 This schematic summarizes very briefly the life cycle of RNA viruses

that have a negative sense genome. In order to make its proteins and replicate its genome,

a negative sense virus must first generate the complement RNA. This sense strand serves

two functions: it is the mRNA from which proteins are translated, and it is also the

template for replication of the viral genome.

Viral RNAgenomes can be either single- or double-stranded. HIV, for exam-

ple, has a single-stranded RNA genome. The single-stranded RNA genome

contains the coding sequences that need to be translated, and ribosomes translate

this RNA strand as if it were mRNA. The problem is that ribosomes move in

just one direction: starting at the 5 end and heading toward the 3 end of an

RNA sequence. When the viral genes are organized in such a way that a ribo-

some can proceed in the 5 -to-3 direction and actually translate the genes, the

virus is said to have a “sense strand” genome. However, some RNA viruses have

a different arrangement: their genes occur in the reverse orientation, requiring

that a complementary copy of the RNA be made first before translation. They

are known as “negative sense strand” viruses. These viruses use specialized RNA

polymerases to make a complementary copy of their genome that contains the

correct orientation for the translatable genes.

The upshot is that in the process of generating the complementary mRNA,

there is a phase when the viral RNA polymerase generates double-stranded

RNA (dsRNA) molecules. Figure 9.9 shows a brief summary of the life cycle

of RNA viruses and why dsRNA is a critical step in the replication of the virus.

Since dsRNA almost never occurs in normal, uninfected plant cells, the sudden

appearance of such a construct triggers the plant’s immune response. It targets

the dsRNA for immediate degradation, thereby destroying the viral genome and

its ability to further damage the cell.

Chapter 9 Projects 401

With RNAi, researchers basically co-opt this mechanism to target spe-

cific genes for down-regulation. They generate complementary sequences to the

mRNAs of the gene, and then inject those sequences, the siRNAs, into the plant

cell. The plant then responds as if it has been infected by a virus, targeting both the

siRNA and its complementary mRNA sequence in the double-stranded portion

for degradation. In the process, it destroys the mRNA for the gene that was tar-

geted, and, as a result, the gene’s expression is suppressed. Because siRNAs are

susceptible to degradation even when they are not in a double-stranded config-

uration, over time the cell clears out any remaining siRNAs. Eventually gene

expression of the targeted gene regains its former level as the unused siRNAs are

cleared out [5, 26].

What makes RNAi so attractive is that it offers researchers a simple,

reversible, and exquisitely targeted suppressor of gene expression. Because

siRNAs degrade over time, the cell’s gene expression is not permanently altered.

But for short periods a gene’s protein products can be completely eradicated from

the cell. Some pharmaceutical agents can stall protein synthesis in cells, but most

of these drugs are broad-spectrum, turning off protein synthesis altogether. In

contrast, siRNA can target a specific gene so that only its product is affected. The

rest of the cell’s activities continue unabated. These properties of siRNAs have

made them very attractive to researchers trying to design drugs to treat a variety

of diseases from genetic disorders to cancer [33].

RNAi presents some problems, however, as a therapy. Chief among

these is that humans have a specialized signaling pathway, known as the

interferon-signalingpathway, that is designed to spotdsRNAs.WheneverdsRNA

is encountered, cells shut down all transcription and translation. They also signal

to neighboring cells to shut down their transcription. The interferon system is

present in animals including humans, and it is the corollary of the plant immune

response to viral infection. The problem is that while plants target dsRNA for

degradation, they do not shut down overall translation activity in the cell. The

interferon pathway, in contrast, basically triggers complete cellular shutdown for

a few hours or even days. So even though the siRNA targets a specific gene the

unfortunate consequence is that it effectively shuts down cells altogether. Some

promising new directions for siRNA research might one day find a path around

the interferon obstacle, but for now, siRNA therapy in humans seems a more

distant hope [5, 33].

Healthy cells also seem to use siRNAs to regulate their genes. This has been

demonstrated in plants (where it is called post-transcriptional gene silencing,

or PTGS) and in some eukaryotes including worms and fruit flies [26]. So it is

possible that siRNAs are already a part of the arsenal of gene-regulatorymethods

that cells use to control gene expression and protein synthesis.

9.2.3 RNA Structures in Machines:
Solving Complex Structures

So far, we have considered relatively simple secondary structures such as stems,

loops, and hairpins. The algorithmic solutions to finding these structures are

402 Chapter 9 Projects

relatively straightforward. The challenge is to predict the structures of much

more complex molecules.

One of the most complex structures involving RNA is the ribosome. This

cellular machine translates proteins by linking tRNAs with their respective

codons and then creating the special peptide bond that connects the amino

acids brought to the site by the tRNAs. The ribosome is a complex mix of

proteins and RNAs, but the key steps in the translation process are all han-

dled by RNAs within the ribosome. Current research suggests that the critical

function of peptide bond formation is catalyzed entirely by a single RNA—a

ribozyme.

A number of other RNAs also show catalytic activity. For example, the splic-

ing of introns frommRNArelies onRNA–protein complexes called small nuclear

ribonucleoprotein particles (snRNPs) (see Chapter 2). As with the ribosome, the

structure of specific RNAs within the snRNPs enables splicing to occur. Like the

ribosomal RNAs, the RNA components of the splicing machinery are able to

accomplish their function because of their unique structures.

Solving Structures Through Minimum Free Energy

To solve the structures of these more complex molecules, we cannot rely solely

on context-free grammars such as HMMs or sequence conservation. Rather, we

must consider the physical and chemical properties of the RNA sequence and

take these into consideration as we develop a prediction.

The first law of thermodynamics states that energymust be added to a system

for it to do work. This seems about as obvious a statement as one could make,

but it has some interesting consequences for our purposes. The measure of the

amount of energy available to do work in a system is known as free energy.

The free energy of a system is expendable, and it is ruled by the second law of

thermodynamics. That law states that over time, systems tend toward entropy. In

other words, a system devolves into chaos over time unless energy is put into the

system to maintain order.

What does all this have to do with RNA structure? It turns out that, like

all other physical systems, an RNA strand requires a finite amount of energy

to maintain a particular shape. In the absence of that energy, the RNA strand

will lapse into some simpler structure that does not require as much energy to

maintain. The state with the least energy, of course, would be free nucleotides.

Given enough time and a closed system where new energy cannot be added,

the laws of thermodynamics predict that an RNA structure will eventually fall

apart into its constituent nucleotides. However, long before an RNA strand dis-

assembles, it can find certain structures and configurations that require a small

amount of energy to maintain but not so much that it is impossible to retain the

structure for an extended time. This known as the minimum free energy config-

uration. We say that molecules in their minimum free energy configuration are

stable.

We can use this configuration to determine the structure of a given RNA

sequence by assuming that an RNA structure is necessary for a given function. It

Chapter 9 Projects 403

is therefore in the cell’s best interest to develop a structure that can be stable long

enough to accomplish its task. Stability in the complex chemical soup that is the

cell’s interior requires that the molecule maintain its structure with the smallest

possible input of energy. This ensures that the structure is not easily perturbed

by small changes in the environment that might be the consequence of other,

unrelated processes. What are the properties of such a structure? They are similar

to, if not identical to, those of the minimum free energy configuration. Therefore,

to predict the structure of an RNA sequence, we start by determining what the

free energy is for each of thousands of possible structures. We then select the few

shapes that require the least energy to maintain their configuration. One of these

is the RNA structure we seek. In other words, the structure that requires the least

energy to maintain is the biologically relevant structure.

The idea is simple. It requires more energy to form an open-ended loop

than one that comes together to form a stem. This is because the base-pairing in

the stem region increases stability and reduces the amount of energy needed to

keep the structure intact. Similarly, a hairpin is more stable than a structure that

tries to force every nucleotide on one side into a base-paired arrangement with a

nucleotide on the other side. Some nucleotides simply can’t base pair with each

other, and forcing them right next to each other requires a good deal more energy

than letting them drift apart in a loop.

This is where the idea and logic stop being so simple. The rules that gov-

ern how much energy is required to maintain a particular structure are incredibly

complex anddetailed. The goodnews for us is thatmost of the hardwork of deter-

mining the amount of energy required to keep a particular string of nucleotides

in a given shape has already been done.

What remains now is applying that information to structure prediction. To

predict a structure, these rules about the amount of energy required for base-

pairing and loop-and-stem formation are applied iteratively across a given RNA

sequence. Computing every possible structure, however, is a difficult problem.

Exercise 9.4 introduced you to some of the difficulties, even when we placed

severe limits on the nature of the targets of our search. The number of possi-

ble structures is overwhelming when considering RNA sequences for complex

RNAs such as the ribosomal RNAs. For the challenge we face here we need

a shortcut through all possible structures to those most likely to minimize free

energy.

The challenge here is remarkably similar to a problemwe discussed earlier. In

Chapter 5 we presented the problem of aligning two sequences and encountered

the same challenge of finding an optimal solution without necessarily testing

every combination of a query sequence with every member of a database of

possible matching sequences. In that instance, we used dynamic programming to

solve smaller parts of the problem and thereby approximate the optimal solution.

The same approach has been used in RNA structure prediction. Using dynamic

programming, we can search for some of the configurations that likely minimize

free energy. We do this by filling a dynamic programming matrix not with scores

for gaps, matches, and mismatches as we did in Chapter 5 but with scores for

the amount of energy required to maintain a small section of the sequence in

404 Chapter 9 Projects

a given structure. By combining these small sections using the traceback of the

dynamic programming matrix, we can identify a structure that is likely to mini-

mize the overall free energy. We presume that this structure is then the biologically

relevant one.

The original implementation of this approach, known as mfold, continues to

dominate the field. Other approaches have been developed, but they tend to draw

on mfold. For example, more recent algorithms use a graph theory approach

to identify the minimum free energy structure and, of course, if something is

known about the structure, then a context-free grammar can sometimes succeed

in conjunction with minimizing free energy. Some of the references at the end of

this project section will help you explore these other methods in more detail.

Problems with the Minimum Free Energy Approach

How effective is this approach in predicting the structure of an RNA? It depends.

The overall accuracy of these methods depends heavily on the evaluation set of

sequences. When these sequences have relatively straightforward structures, such

as those of the tRNAs, then the minimum free energy approach works extremely

well. However, the longer and more complex a RNA sequence, the greater the

likelihood that this approach fails to identify a relevant structure.

It is difficult to know why some sequences yield accurate predictions and

others prove unproductive. At least four sources of error seem to be associated

with the prediction of RNA structures using the minimum free energy approach.

First, it is possible that the energy measurements for a particular base-pairing

or structure are incorrect or not entirely reliable. Although every effort may be

made to determine the exact energy required, making the actual experimental

measurements is still something of an art as well as a science. As a result, the very

first step of the algorithm, the calculation of the free energy of a given section of

the sequence, may prove its undoing.

Second, having calculated a structure based on minimizing the free energy

of the components of the sequence, the traceback through the dynamic pro-

gramming matrix can yield more than one reasonable solution. The question

then becomes, which of these possible solutions is the biologically correct one?

Initially, methods such as mfold selected whichever structure seemed to require

the absolute least free energy, but these predictions were rarely the biologically

relevant ones. As a result, mfold now reports several structures, highlighting

the configuration that has the least free energy, but also listing numerous “sub-

optimal” configurations. Sometimes the biologically relevant structure is found

in these alternative structures.

This leads to the third problem with predicting structure by minimizing free

energy. The argument can be made that structures probably evolve that require

little energy to maintain their shape, but sometimes the longevity of a structure is

not critical. For example, a component of a cellular machine may need to acquire

a structure for just a fraction of a second to accomplish its function. After that,

it might lapse into some other shape that does not require as much energy to

maintain. In other words, there is no reason to expect that the biologically active

configuration is the same as the one with the least energy. As a result, what is

Chapter 9 Projects 405

predicted by a minimum free energy approach may not have any correlation to

the functional version of the RNA in the cell.

The final source of error is that some structures involve complex over-

lapping sections of the sequence that are difficult to model using a dynamic

programming approach. One of the fundamental assumptions of the dynamic

programming matrix is that a given nucleotide or set of nucleotides will be

involved in just one structural component. However, this is not always the case.

Chief among such structures is something known as the pseudoknot, the bane

of RNA structure prediction in general. A pseudoknot is a double stem loop

in which the first stem’s loop forms part of the stem of a second stem loop.

Because the loop and stem overlap, the nucleotides involved in the pseudo-

knot cannot be modeled in a traditional dynamic programming table. One way

around this is to use a stochastic context-free grammar rather than dynamic pro-

gramming to develop the structure. Alternatively, we can modify the dynamic

programming scoring scheme to accommodate overlapping segments of struc-

tures. Both approaches have been reasonably successful. However, pseudoknots

remain a very difficult problem for any RNA structure prediction approach

to solve.

9.2.4 Over to You

Project Activity

One solution to some of the challenges inherent with a pure minimum free energy

approach uses hints from sequence conservation. Earlier, we said thatmanyRNA

genes have poorly conserved sequences. However, although two related RNA

sequences are rarely identical, they often show a consensus. That is, although

one sequence might have AGGA and the otherGAGA, we might notice that these

sequences are exclusivelymade up of purines (As andGs). Since purines share cer-

tain chemical properties as well as certain preferences for base-pairing, the overall

structural interactions possible will be similar for both sequences. In other words,

although the sequences do not match exactly, the properties of the nucleotides

in each sequence are generally similar. We can use these conserved properties of

the sequence to help guide our structure prediction. Some of the references to

this area of research are listed [7, 12, 14, 25, 32]. These papers will provide you

with more insight into the algorithms that utilize sequence conservation to guide

the prediction of RNA structures. Develop a description of these algorithms and

methods and present this information in the form of a term paper or presentation

to the class.

Exercise 9.3Explore the following hypothetical question: Do any cellular RNAs have

RRE-like structures? What features would an RNA sequence need to form

this distinctive structure? How might you determine such a structure given

these sequence features?

406 Chapter 9 Projects

Exercise 9.4 Recall that an miRNA gene typically arises from a fragment that is approxi-

mately 70 nucleotides long, in which strict base-pairing occurs from the ends

of the stretch extending inward to reach an inner portion that forms the loop

portion of the hairpin. For this exercise, we assume that possible miRNA

genes consist of a stretch of between 60 and 80 nucleotides, with strict base-

pairing occurring from the ends except for a loop section between 2 and 8

nucleotides long.

1. Write a program to input an RNA sequence s1s2 . . . sn. Your out-

put must list pairs (i1, j1)(i2, j2) . . . (ik , jk), for which each (i, j) pair

corresponds to an miRNA gene candidate. Specifically:

• 60 ≤ j − i ≤ 80

• si+p is the complement of sj−p for each value of p from 0 to q, where

• 2 ≤ j − i − 2q ≤ 8

2. Estimate the running time of your program as a function of n.

9.2.5 Resources for Structure Prediction

General References and Reviews

1. Paul P. Gardner and Robert Giegerich. A comprehensive comparison of compar-

ative RNA structure prediction approaches, BMC Bioinformatics, 5:140, 2004.

http://www.biomedcentral.com/1471-2105/5/140

Excellent review of many different RNA prediction programs and their comparative

strengths and weaknesses.

2. Michael Zuker. Calculating nucleic acid secondary structure, Curr Opin Struct Biol,

10:303–310, 2000.

The original developer of mfold has produced a comprehensive review of RNA sec-

ondary structure and the many approaches to predicting these structures. This is

probably the best resource for references to the primary literature and a compre-

hensive overview of the approaches, successes, and problems in the field. It is also,

consequently, rather dense and somewhat difficult to access for the novice in the field.

We recommend that you consider some of the other references in this list first, and

once familiar with the area, plunge into this exegesis on RNA and DNA secondary

structure.

tRNA Structure Prediction

1. SeanR.Eddy andRichardDurbin. RNAsequence analysis using covariancemodels.

Nucleic Acids Res, 22:2079–2088, 1994.

One of the original papers that proposed a strategy for identifying tRNA genes in a

genome, this paper is a classic in the field.

Chapter 9 Projects 407

HIV RRE-Rev Interactions

1. K. Boris-Lawrie, T. M. Roberts T.M., and S. Hull S. Retroviral RNA elements inte-

grate components of post-transcriptional gene expression. Life Sci, 69:2697–709,

2001.

This article is a more focused description of the biology of the Rev-RRE interaction and

its role in HIV infections of cells.

2. E. A. Lesnik, R. Sampath, and D. J. Ecker. Rev response elements (RRE) in

lentiviruses: An RNAMotif algorithm-based strategy for RRE prediction. Med Res

Rev, 22:617–636, 2002.

This paper describes a simple approach to predicting the secondary structure known

as RRE (Rev response element) used by HIV to transport certain mRNAs out of the

nucleus of infected cells. The exercise included in this project was inspired by the work

done here.

MicroRNAs, Small Interfering RNAs, and RNA Interference

1. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=coffeebrk.chapter.33

More about microRNAs, small interfering RNAs, and RNA interference can be found

through the short description and links here.

2. Derek M. Dykxhoorn, Carl D. Novina, and Philip A. Sharp. Killing the messenger:

Short RNAs that silence gene expression. Nat Rev, 4:457–465, 2003.

A detailed look at siRNA and RNAi from a biological perspective. This article is

particularly commended by the wealth of references to the primary biological literature.

3. Richard Robinson. RNAi therapeutics: How likely, how soon?” PLoS Biol, 2(1):

e28, 2004.

An elegant review of the state of RNAi therapy to date, this review is more accessible

to nonbiologists.

4. Marjori A. Matzke and J. M. Antonius. Planting the seeds of a new paradigm. PLoS

Biol, 2(5): e133, 2004.

A good introductory review of RNA interference in plants, and the contributions

that plant researchers have made to the RNAi and siRNA fields. This is particularly

recommended as a very easy introduction to the area for nonbiologists.

Original Papers on Structure Prediction Methods

1. Michael Zuker. On finding all suboptimal foldings of an RNA molecule. Science,

244:48–52, 1989.

This article describes the mfold algorithm in good detail.

2. E. Rivas and S. Eddy. A dynamic programming algorithm for RNA structure

prediction including pseudoknots. J Mol Biol, 285:2053–2068, 1999.

For a look at the best approach to predicting pseudoknots in RNA sequences using

a variant on the standard dynamic programming approach to minimizing free energy,

consider this article.

408 Chapter 9 Projects

3. Robert Gigerich, Bjorn Voss, Marc Rehmsmeier. Abstract shapes of RNA.

Nucleic Acids Res, 32:4843–4851, 2004.

http://nar.oxfordjournals.org/cgi/content/full/32/16/4843

This article suggests a different kind of approach to RNA structure prediction by clas-

sifying predicted structures into classes of shape. This simplifies the evaluation of the

many structures generated by RNA structure prediction programs.

9.3 RATIONAL DRUG DESIGN THROUGH
PROTEIN STRUCTURE AND
FUNCTION PREDICTION

9.3.1 A Pharmaceutical Fairy Tale

Once upon a late twentieth century decade, chemists at a major pharmaceutical

company were working with a set of compounds that might be useful in control-

ling high blood pressure. The compounds were involved in a newly discovered

signaling pathway that used the gas nitric oxide (NO). Cells release this gas into

their vicinity, triggering the dilation (opening up) of blood vessels. The set of

compounds the chemists were studying could mimic the effect of NO, causing

blood vessels to dilate. The chemists theorized that by dilating the blood vessels,

these compounds might reduce blood pressure. This in turn would make it easier

for the heart to pump the blood and prevent the formation of clots. Clot forma-

tion is often a precursor to a heart attack or stroke. Since heart disease is one of

the top killers of Americans every year, the potential to make a life-saving and

very profitable drug was enormous.

Aftermuch study, a single compound that came to be known as sildenafil was

selected for development as a drug to manage heart problems. The first step in

evaluating its efficacy was to study its effects in research animals. Animal models

are often used to evaluate the toxicity of a drug; many compounds are very

effective at a local level, but have devastating systemic (across the body) effects.2

So the first step in studying the effects of the drug was to inject it into mice and

see what effect, if any, it had on the mouse’s heart and blood vessels.

Unfortunately for the pharmaceutical company, the drug did not seem to

elicit a sufficient response in mice. Some general blood vessel dilation did occur,

but not nearly enough to help treat high blood pressure. It seemed that sildenafil

would join the countless other compounds on the pharmaceutical junk heap.

Then, an observant technician noticed something. The mice being treated with

sildenafil might not have lower blood pressure, but unlike their counterparts

receiving a placebo, they seemed pretty active. In fact, it looked for all the world

like they were maybe having a little bit too much fun in their cages.

2
One such example, the antibiotic Neosporin (a compound containing three other antibiotics: bac-

itracin, neomycin, and polymyxin B) found in over-the-counter antibiotic creams is a very effective
antibiotic when applied on the skin. However, taken as a pill, it is deadly.

Chapter 9 Projects 409

Further study, including clinical trials inhumans, proved that sildenafilwould

never be a good medication for treating high blood pressure, but it did dilate the

blood vessels of the male penis, helping men to achieve and maintain an erection.

The pharmaceutical company was Pfizer, and the drug developed from sildenafil

wasViagra. Itwenton tobeablockbuster drug, generatingover abilliondollars in

revenues for Pfizer and setting off an entire industry, not only in pharmaceuticals

but in spam advertisements for variants of the drug.

9.3.2 Drug Development: One in a Million Chances

The story of the discovery of sildenafil’s ancillary properties may seem to fit

more into the realm of urban legend than scientific fact. Surprisingly, the gen-

eral outlines of the story are more common than you might imagine. Many of

the drugs available to treat diseases today are the result of serendipitous discov-

ery. The search for new drugs usually starts with a known compound that has

some demonstrated effect on a particular physiological condition. A large num-

ber are derived from natural sources and purified ormodified tomake themmore

effective. The list of such drugs is long and varied: aspirin is derived from a com-

pound in willow bark, penicillin from thePenicilliummold, digitalis (for irregular

heart activity) from the common garden flower, the foxglove. Many plants, fungi,

bacteria, and even animals produce compounds with important medical benefits.

The traditional approach to drug development is to start with a panel of

hundreds or even thousands of compounds. Each of these compounds is chemi-

cally similar, but has some minor modification to it. Usually the basic chemical

structure is extracted from a source, such as a plant or a bacterium, known to

have somemedicinal properties. For example, penicillin comes in several varieties

today, such as amoxicillin, ampicillin, and methicillin. Each of these compounds

has the same basic chemical structure with some relatively small modifications.

The drug panel that yielded sildenafil contained many different variants on a

chemical compound that could trigger nitric oxide signaling in cells.

The entire panel of compounds is rigorously tested to identify those that are

most effective in treating the specific problem of interest, such as blood vessel

dilation. The best compounds, usually less than 10% of the initial panel, are

selected and subjected to extensive screening for other concerns, such as toxicity

and efficacy in animal systems. Most compounds are too toxic to be of any use;

many compounds have so many side effects as to be useless; and a large number

of compounds fail to have any efficacy at all when introduced into the complex

environment of a living organism. As a result, less than 0.1% of the initial panel

of compounds ever make it to the point where drug development can begin.

Beyond that initial screening, each candidate drug must pass through an

extremely complicated set of hurdles, including numerous trials and evaluations

in a variety of animalmodels. Each phase of screening is usually followed bymore

chemical tinkering to adjust the properties of the compound. Then another round

of testing is conducted, followed by more adjustments, and so on. Eventually,

the rare compound makes it to the point where human clinical trials can begin.

The U.S. Food and Drug Administration (FDA) requires three levels of trials,

410 Chapter 9 Projects

starting with patients who are healthy volunteers. These individuals volunteer

to take a drug at different dosages to help the researchers determine the correct

dosage and to assess the likelihood of serious side effects.

If the drugmakes it past the first round of trials, then itmust still pass through

two more levels of clinical investigation. When all the stages of clinical trials have

been completed to the satisfaction of the scientists at the FDA, the drug can

finally be made available to the general public. It remains under close scrutiny

for a few years after that, as well, and any signs of trouble can cause the FDA

to trigger a recall, such as what happened recently with Vioxx and some other

drugs. The road to the blockbuster drug status of sildenafil and many other drugs

is littered with obstacles. Few drugs make it.

The problems with this approach are immediately apparent. Obviously,

screening thousands of compounds for one rare successful drug is incredibly

inefficient. The cost of screening all those candidates alone is staggering, on the

order of millions of dollars. The cost escalates with each step of the process, so

that a drug that makes it to phase III clinical trials (the last step in the process)

and then fails has already cost the developer an astronomical sum.

Aside from the cost, the process itself is inefficient because we must rely on

chance to find that rare successful drug. It would be far more efficient if we could

design a compound that had all the properties of the perfect drug. Such a process

would shortcut the many thousands of hours of effort and simplify the entire

drug manufacturing process.

The idea that we can design a drug to have a specific action within the body is

the basis of an entire realm of research known as rational drug design. The theory

behind this approach is to first identify the target of the drug, figure out how to

control it, and then design a molecule that fits the target like a key in a lock. Then

this specially designed molecule is used to control the target, usually a protein.

The wealth of knowledge and data generated in the past decade on the

genomes and proteomes (the full complement of proteins) of myriad organisms

should provide an excellent resource in the rational drug design effort. The idea

is that given the full parts list of the human genome, we should be able to design

drugs that specifically target a particular gene or protein. In other words, rather

than waiting for a chance compound like sildenafil to fall into our laps, we should

try to target a specific protein within cells and design a drug to control that indi-

vidual protein’s behavior. The challenge is to figure out what sort of drugs can

interact with the target protein [13].

9.3.3 Structure-Based Drug Design

To design a drug based on a target protein, we must understand the protein’s

structure or shape. Determining protein structures is not easy. Researchers have

traditionally taken one of two general approaches. They can try to determine the

structure of a protein experimentally—the “gold standard” for protein structure

analysis. However, experimental approaches are time-consuming and fraught

with problems. As a result, researchers have also sought ways to computationally

predict the structure of a protein based on a variety of criteria.

Chapter 9 Projects 411

A common theme for all structure prediction, regardless of the type of

molecule being studied, is that the shape of a molecule must be stable. That

is, it must remain in a particular conformation for a significant period of time

in order to accomplish its function. The laws of thermodynamics suggest that

a conformation that requires little energy to maintain it is more stable, or lasts

longer, than one that requires a great deal of energy to maintain. As a result,

most molecules adopt a conformation that requires the least energy necessary.

We call this shape theminimum free energy conformation (see Project 9.2 for more

about the thermodynamics of structure prediction). The idea in protein structure

prediction is to identify this minimum free energy structure because it is likely to

be the biologically relevant conformation as well.

Predicting the structure of a protein can occur at many levels. As discussed

in Chapter 2, the primary structure of a protein is its amino acid sequence. This

sequence can form local bonds to create the secondary structure. The secondary

structures can then form interactions with other secondary structures to yield

the three-dimensional structure, known as the tertiary structure. Large tertiary

structures can then further conglomerate into a protein’s quaternary structure.

For the purposes of structure prediction, computational methods focus pri-

marily on the secondary and tertiary levels of structure. Although secondary

structures are important for determining some of the shape of the protein,

they are rarely on their own sufficiently detailed to be relevant for drug design.

We therefore focus on tertiary structure prediction methods.

It turns out that tertiary structures are so complex that we do not really

have the computational methods in place to reliably predict more than a handful

of complete tertiary protein structures. Instead, researchers have tried to iden-

tify something called protein folds. These groups of secondary structures create

defined three-dimensional shapes but do not necessarily represent the entire ter-

tiary structure of a protein. A protein fold can include the areas of the protein

that are of specific interest to a drug manufacturer, and predicting the structure

of the fold can help direct the design of the drug.

The process of rational drug design is somewhat akin to a criminal trying

to pick a lock. The lock is the target protein in a cell or organism, and the key

or keys are the molecules that can interact with that target protein. Sometimes

we want to open the lock by designing a key that fits it. Other times, we want

to gum up the lock. Either way, the drug (key) we want to design looks much

like the natural keys that would ordinarily open the lock (protein). The natural

keys are known as ligands, and the general idea is simple. After determining the

structure of our lock, we computationally design a key to fit the keyhole. Just

as the shape of a lock limits the size, shape, and orientation of the keys that can

fit it, the target protein’s structure limits the size, shape, and orientation of the

molecules that it can bind.

Of particular interest is the keyhole of the lock, which in the case of a protein

is usually its active site. Just like the keyhole, the active site serves to limit which

ligands can interact with the protein. The right bits have to line up perfectly

before the lock will turn or the protein will activate. In essence, we want to do

what criminals in novels always do: pour some wax in a lock, extract the shape

412 Chapter 9 Projects

of the key and then make a new duplicate key that can open up the lock or gum

it up so it cannot function.

Early Success: HIV Protease Inhibitors

One of the first successes with rational drug design came in the development of

new drugs to combat AIDS. As you know, AIDS is caused by HIV, which has

a number of unusual proteins. A key compound is needed to enable the virus to

infect a healthy cell—the HIV protease, an enzyme that chops up other proteins.

The HIV protease is critical because it helps generate the coat proteins that HIV

uses to bind to host cells and enter them. The coat proteins occur as one large

protein, and the HIV protease then chops up this large protein at specific sites to

generate the individual coat proteins. Without theHIVprotease, the coat proteins

cannot be made, and as a result, the virus remains trapped within the first cell it

enters.

The HIV protease would make a great target for a drug because disabling

this protein could directly affect the virus’ ability to infect other cells. However,

to disable the protease, researchers had to first determine its structure and mode

of action.

Researchers took a two-pronged approach to the problem. One group of

researchers tried to determine the structure of HIV protease using laboratory

methods, which seek theprecise locationsof the individual atomswithin aprotein.

The information about the positions of these atoms is then used to determine the

three-dimensional structure of the protein. X-ray crystallography uses X-rays

and nuclear magnetic resonance (NMR) imaging uses high-intensity magnetic

fields to determine the locations of the atoms. Either approach is exacting and

time-consuming, and X-ray crystallography can require large amounts of sample

material.

While one group of researchers began the process of experimentally deter-

mining the structure of HIV protease, other investigators sought a faster route

to developing a drug to interfere with this protein. The second group decided

to use existing knowledge about proteases to try and develop an inhibitor drug.

They sequenced the HIV genome and discovered that the HIV protease amino

acid sequence looked a great deal like that of another virus protease, the Rous

sarcoma virus protease. The structure of that protease had already been deter-

mined, so researchers decided to “guess” at the structure of the HIV protease

based on what they knew about Rous sarcoma virus protease. In other words,

they used sequence homology to develop a model for the structure of HIV

protease.

Using sequence homology to model three-dimensional structures has been

oneof the bestways topredict the structure of a protein. This is becausemanypro-

teins that have similar amino acid sequences acquire the same three-dimensional

structures. The three-dimensional structure of a protein is determined by the

kinds of chemical interactions that occur among its amino acids (see Chapter 2).

If two proteins have similar amino acid sequences, it is reasonable to assume

that they are able to form similar chemical bonds and thereby yield similar

structures.

Chapter 9 Projects 413

Using the Rous sarcoma virus protease structure as a guide, researchers

at three pharmaceutical companies began developing drugs they hoped would

interfere with the protease. They were looking for a molecule that could fit in the

protease precisely at the active site and therefore prevent the viral proteins from

being cleaved. The protein has two halves that come together, creating the active

site in the center of the molecule.

Returning to our lock-and-key analogy, recall that the lock represents the

HIV protease, and its keyhole can fit certain kinds of proteins (the keys). We

need to inactivate this lock. One way is to gum up the keyhole. If we stuff the

keyhole with a bit of bubble gum, no keys can enter it and nothing can unlock the

lock. The researchers wanted to design amolecule that would act like a bit of gum

in the lock. It would essentially sit inside the protease in the active site, preventing

the protease from binding its usual ligands and cleaving the viral proteins.

While the researchers were developing the molecular “gum,” the structure of

HIV protease was published. And it proved to be nearly identical to the structure

that had been predicted based on sequence homology with Rous sarcoma virus

protease. As a result, the drug companies sped forward with the development of a

collection of drugs, the HIV protease inhibitors. These were the first set of drugs

devised specifically for HIV treatment, and they revolutionized the treatment

of AIDS. Suddenly, a diagnosis of AIDS was not an immediate death sentence.

Many millions of infected people were given the possibility of living out a normal

life span [28].

Other Approaches to Protein Structure Prediction and Drug Design

Since the HIV protease inhibitors were developed, this same approach of using

predicted protein structure to design a molecule has been used in many other

areas. In the case ofHIVproteases, the sequence homology toRous sarcomavirus

helped simplify the process of predicting the structure. Unfortunately, a close

homolog is not always available to enable this approach. From a computational

perspective, one of the biggest complications in predicting protein structure is that

two proteins with very different amino acid sequences can have the same three-

dimensional structure. This is because many amino acids have similar chemical

and physical properties and can be used interchangeably, at least to some extent.

To model these proteins, we have to use other approaches [17].

One successful approach, knownashomology threading, compares the struc-

tures of the proteins rather than analyzing them at the sequence level. A known

structure is used as a scaffold. The amino acid sequence for the protein of interest,

the structure of which is not known, is then “threaded” onto the scaffold. We then

try to match up each amino acid in our protein with some part of the scaffold. At

each step, we ask if the amino acid in our query protein “fits” into the structure

at that position. For an amino acid to fit, it must satisfy some basic constraints

of physics and chemistry. For instance, an uncharged amino acid cannot stably

fit into a region of a protein that is highly charged. Similarly, a hydrophobic

(water-hating) amino acid cannot remain stable in a region exposed to the watery

environment of the cell. These considerations limit which amino acids can be

414 Chapter 9 Projects

present in a given part of a structure and can be used to quantitatively assess

possible amino acid candidates [18].

We need to identify a structure for the amino acid sequence that requires

the least amount of energy to maintain its structure. The optimal structure is

one in which each amino acid of the sequence exists in an environment favorable

to its particular chemical and physical properties. This should correspond to its

minimum free energy conformation. For many proteins, the biologically active

structure and minimum free energy structure are similar if not identical.

There are other methods for predicting the minimum free energy conforma-

tionof a protein, including ab initio approaches that try todetermine the structure

purely from the energetic constraints present at the amino acid sequence level. In

these approaches, the structure of a region of a protein is determined by trying

out many different conformations and identifying the one with the least energy

requirements. Such approaches have some promise, but remain far too theoretical

to be of much use in the rational drug design arena [1].

9.3.4 A Pharmaceutical Cautionary Tale

We focused here on the benefits of rational drug design and its potential to both

simplify and accelerate the process of drug discovery. However, the road to suc-

cessful drug development is litteredwithmany promising compounds that turned

out not to have much use in the complex systems of the human body. Other drugs

have survived the complex process of selection only to fail spectacularly after

being launched on the market. This is the story of Vioxx, the most famous failure

of rational drug design in recent years.

The story begins about a decade ago, with researchers who were trying to

better understand how pain is perceived. Several receptors on cells in the skin and

organs communicate pain. One of the pathways that allows for pain signaling to

occur begins at the surface of these cells with a specific receptor protein known

as cyclooxygenase-2 (COX-2). One of the early success stories of rational drug

design was the development of a compound that could bind to and block the

signaling of COX-2 receptors. The COX-2 inhibitors, as these drugs were known,

were developed based on computational modeling of the active site in COX-2

receptors.

When this class of drugs first made it to the market, they were hailed as

a revolution in pain management. Instead of generally reducing perception of

pain, which most other pain medications do, these new drugs directly targeted

a specific pathway involved in pain regulation. As a result, they would have

fewer side effects, they would be more effective, and patients would likely be

able to take them for longer periods without developing tolerance to a given drug

dosage. Thesewere all considered critical features of the perfect painmanagement

drug.

Unfortunately, the class of COX-2 inhibitors had some unforeseen serious

side effects. The most infamous of the COX-2 inhibitors is a drug called rofe-

coxib, better known as Vioxx. Vioxx is exceptionally good at blocking COX-2

receptors, and as a result, it was considered an excellent treatment for the chronic

pain associated with arthritis and other ailments. Unfortunately for Merck, the

Chapter 9 Projects 415

company that developedVioxx, the compound also seems to trigger heart attacks

and stroke in a significant minority of people who took it. As a result, Merck

withdrew Vioxx from the market in September 2004, but the company is involved

in litigation with many people who suffered ill effects from taking Vioxx.

The moral of this story is one of caution—that even the very best science is

not always enough to predict what will happen in a complex system such as the

human body. Nevertheless, rational drug design remains the best path forward

in identifying drug targets and designing drugs to interact with those targets.

It is certainly a more intellectually satisfying approach to developing drugs than

the old-fashioned, trial-and-error approach. As a result, it is likely to remain a

prominent aspect of pharmaceutical research anddevelopment for the foreseeable

future. But for every success story such as the HIV protease inhibitors, there are

cautionary tales like that of Vioxx. The search for the perfect drug is still as much

about luck as it is about science and technology.

9.3.5 Over to You

As you learned in this chapter, synthetic chemists traditionally generated shelves

full of compounds that are chemically similar to known active agents. These

were then tested with the hope that one would be the next new drug or it would

have fewer deleterious side effects than current drugs. Here we want you to con-

sider how to harness the power of the computer to generate a series of potential

new compounds. Evolutionary algorithms have been introduced in several con-

texts in this book, and their use in reducing the search space for computational

chemistry is another. In this project you will apply some of what you have learned

about evolutionary algorithms to explore their use for drug design.

First, you must address the fact that important drug targets (e.g., active

sites of enzymes) or receptor-binding sites are functionally dependent on their

three-dimensional structure. You need to represent structures in a fairly simple

way so their quality can be evaluated. Find out what you can about pharma-

cophores. What are they? How might these compounds be used when designing

an evolutionary approach to drug development?

Also, to make the problem tractable you need to convert the chemical and

biological entities into formats that the computer can use. One approach to the

formatting issue has been to convert the structure into a linear representation

known as a simplified molecular input line entry system (SMILE) string. David

Weininger created this representation based on concepts that should be familiar

to you from graph theory. Atoms are nodes and bonds are edges, for example

[40]. Find out what you can about SMILE strings. How might they be used in

the design of an evolutionary algorithm? Is any information lost in the conver-

sion? Here is a good starting point, and additional references follow. Start at:

http://www.daylight.com/smiles/. This approach has been applied to the HIV-I

protease, one of the major drug targets [37].

To complete this project you may either (1) propose a high-level design for

an evolutionary algorithm to be used for rational drug design. Describe the

components and how it will work, but you are not required to write code, or (2)

find a paper describing the implementation and use of an evolutionary algorithm

416 Chapter 9 Projects

for rational drug design. Present this paper, the algorithm design, and its findings

to the class.

9.3.6 Resources for Rational Drug Design
1. D.Weininger. SMILES, a chemical languageand information system. 1. Introduction

to methodology and encoding rules. J Chem Inf Comput Sci, 28:31–36, 1988.

A description of the language used to convert protein structures into the linear repre-

sentations (strings) used by some computer programs

2. http://www2.chemie.uni-erlangen.de/projects/sol/drugdesign.html

A discussion of the pharmacophore

3. http://www.netsci.org/Science/Cheminform/feature02.html

A tool for pharmacophore searching

4. A recent review of computer-based drug design appears in [36]. You can read about

a genetic algorithm approach to drug design in [4].

9.4 INFORMATION-BASED MEDICINE

Emerging scientific fields are in constant flux. Terminology and methodologies

change along with concepts and paradigms and even our understanding of what

“the field” is. The emerging field of bioinformatics is no exception. Even the name

bioinformatics means different things to different people. The term is applied to

almost all the related fields of study that have arisen along with the advances

in high-throughput technologies and computer analysis of their data. In this

book we have focused mainly on “bioinformatics computing,” the use of com-

puters and algorithms to work with and understand basic biological data. Often,

dependingon the context, the termsgenomics, biomedical informatics, andmedical

informatics, among others are used almost synonymously with bioinformatics,

largely because the lines between these fields have blurred as new synergies among

them arise.

It has become increasingly clear that most, if not all, human diseases and our

response to them have a genetic component—from developmental disorders, to

cancer, to immune systemresponses to the environment. Even somepsychological

disorders have genetic roots. From the very start, scientists and clinicians have

seen the promise ofmolecular biology and genomics for health care. If we can find

the genetic causes of disease and discover how these genes work, then the door

is open to the development of therapies to target those genetic roots. By under-

standing individual genetic variation in disease-causing genes or in genes that

determine how a person responds to a particular drug, precise targeting can

lead to personalized effective health care. Treatments and medications based on

an individual patient’s genetic profile can maximize a medication’s effectiveness

while avoiding adverse side effects.

The convergence of life sciences, health care, and information technol-

ogy today is revolutionizing the practice of medicine and the discovery of new

Chapter 9 Projects 417

treatments andhas led towhat is nowknownas information-basedmedicine. This

is not entirely new. Physicians have always relied on a combination of knowledge,

experience, and clinical observation to treat patients. Contemporary medical

practice is expanding the traditional realms of knowledge and clinical observa-

tion to include new types of biomedical data, and doctors are being required

to access this information via electronic patient health records. Another major

change is in the way medications are developed and prescribed. The approach to

drugdevelopmentknownas rational drugdesign is described inSection9.3. In the

past, new medicines were designed as “one size fits all” rather than customized

for individual patients. The new paradigm of information-based medicine seeks

to target medications and treatments based on each patient’s complete medical

profile.

What information is needed to achieve information-based medicine? Cer-

tainly all the bioinformatics topics in this book could conceivably contribute to a

full understandingof humanhealth. Knowledge of genes, their products (whether

protein or RNA), their functions, and interactions are all important. Here our

focus is identifying the genes associated with a disease or those involved in drug

response pathways and characterizing individual variants of these genes in the

population.

9.4.1 Identifying Simple Disease Genes

Early Successes

Prior to the molecular biology revolution of the 1980s, genetic contributions to

the relief of human disease were limited to those diseases whose biochemical

basis was well understood because the defective gene product could be isolated

and identified directly and its variants could be studied. The field of biochemi-

cal genetics waged an early war on disorders such as the hemophilias, diseases

which are characterized by a failure of the blood to clot due to defective proteins.

Unfortunately, inmost cases we don’t knowwhich defective gene product or com-

binations of products are responsible for a specific human disease. Techniques

were needed to find and characterize genes that had obvious effects on human

health (a recognizable phenotype) even though the biochemical nature of the

phenotype was not understood.

Mapping the Genome

The advent of molecular biology and the ushering in of large-scale genome

sequencing greatly changed the strategies for identifying disease genes. One of

the early goals set out by the proponents of the Human Genome Project was to

create a complete map of the human genome. Like a roadmap which shows the

location of towns and cities and important landmarks and the spacing between

them, a genetic map would show the locations and relative positions of all the

genes, as well as other useful genetic landmarks. If we can navigate to those genes

then we can begin to understand how they work or how to manipulate them to

our advantage.

418 Chapter 9 Projects

Creating Maps

There aremany strategies ofmapping and different types ofmaps. Just asMendel

traced generations of peas to study vegetative traits, so today’s investigators trace

generations of human families to establish linkages between genes and inherited

disorders and to discover informative DNA markers. Linkage means that genetic

loci (such as a gene associated with an inherited disorder and some other specific

DNA marker) are inherited together. The two are linked because they physically

reside on the same chromosome. If two markers are very closely linked, the

probability is low that DNA recombination can occur between them as a result of

crossing-over duringmeiosis. An informativeDNAmarker is some characteristic

of theDNAthatwe can recognize in the lab and that exists in twoormoredifferent

forms in the population. The Human Genome Project has identified thousands

of useful DNA markers.

Maps constructed by following inheritance patterns among related organ-

isms, families, or populations are considered to be of low resolution because the

identifiable markers are generally located fairly far apart in the genome. They are

sometimes called genetic maps.

Physical maps are created by actually characterizing the physical nature of

the genome. The contig map, constructed during fragment assembly discussed in

Chapter 4, is a type of physical map. The ultimate high-resolutionmap, of course,

is the complete and accurate sequence of the entire genome. From that, we can

eventually identify and place all of the genes and other interesting sequences so

that we can directly investigate the genetic basis of disease.

Simple Genetic Disorders

The earliest success stories in mapping human disease genes came prior to the

HumanGenome Project and prior to high-throughput sequencing [39]. “Simple”

genetic disorders, such as Duchenne muscular dystrophy, cystic fibrosis, and

Huntington disease were among the first. These genetic diseases are relatively

rare but are considered simple in the sense that they result from mutation in a

single gene andare inherited in aMendelian fashion. Passingonof genes and their

variations can easily be followed from generation to generation for these human

diseases. Thefirst of thesedisorders tobemapped,Duchennemusculardystrophy,

is the most common of a group of related, but clinically and genetically distinct

disorders, all of which are known as muscular dystrophies and are characterized

bydegenerationof skeletalmuscle fibers. Duchennemuscular dystrophy is a lethal

disease that affects 1 in 3500 males so it is not surprising that great attention has

been paid to it in the scientific and medical communities.

The defective gene, named DMD, was the first gene to be identified, in 1987,

through a process sometimes known as “reverse genetics” [42]. Contrary to the

traditional genetic approach, theDMD gene was identified without first knowing

anything about the structure, function, or pathological mechanism of the gene’s

protein product. Instead, the gene was identified using the strategy of positional

cloning; that is, first mapping the location of a human disease gene by link-

age analysis and then using the mapped location on the chromosome to clone

(or copy) the gene. Only later was the protein product characterized. Positional

Chapter 9 Projects 419

cloning is an established approach today and has been used in the discovery of

manyother genes responsible for disease, including cystic fibrosis andHuntington

disease.

Howwasmapping accomplishedwith no knowledge of the gene itself ? Recall

that we need two things—informative genetic markers and families—to follow

inheritance. In the experimental organisms commonly used in laboratory-based

genetic studies, such as the Arabidopsis plant or fruit flies, we can create and use

phenotypic markers for genetic mapping of mutations. Since these are laboratory

organismswith short generation timeswe can set upmultiple crossings to examine

the offspring in many generations. We can easily look for and count malformed

flowers or red eyes, for example, and can generate sufficient data for reliable anal-

ysis. Obviously, this is not possible for mapping genes associated with diseases in

humans. However, clever scientists realized that molecular DNA markers could

be powerful tools for mapping genes. The initial mapping strategies took advan-

tage of the new field of recombinant DNA technology and specifically of the

discovery of restriction enzymes. One of the first types of commonly used DNA

markers is referred to as a restriction fragment-length polymorphism (RFLP).

RFLPs are variations among individuals in the length of restriction fragments

produced from identical regions of the genome.

In all organisms natural DNA sequence variations occur throughout the

genome. Some estimates place variations in human DNA every 200 nucleotides

or so apart. These naturally occurring DNA variations are referred to as DNA

polymorphisms. DNA polymorphisms may create or destroy restriction-enzyme

recognition sites so that the pattern of restriction fragment lengths from a region

of the genome may differ between two individuals or even between two homolo-

gous chromosomes of one individual. Recall that restriction enzymes recognize

specific sequences and work like molecular scissors to cut DNA into fragments.

The fragments can be isolated in the lab and their sizes measured. Loss of a site

due to sequence variation results in the appearance of a larger fragment and the

disappearance of the two smaller fragments. Gain of a new site results in the loss

of a larger fragment and its replacement with two smaller fragments. Changes in

the number and size of fragments can be detected by probing for specific single-

copy regions (genes) in the DNA of interest. These inherited changes in DNA

are used as polymorphic markers for mapping in a fashion analogous to the

phenotypic markers used in classical genetic studies.

Multigenerational families of related individuals, some with and some with-

out the disease, allowus to follow inheritance of the disease alongwith inheritance

of informative markers. Generations are needed so that recombination frequen-

cies between markers can be estimated (remember that recombination occurs

duringmeiosis in formation of the gametes to produce the next generation). Once

suitable families are identified, RFLP analysis is used to determine if members

of the family who have the disease have particular DNA sequences at specific

locations (marker locations) that healthy family members do not. This process

involves collecting blood from family members for DNA isolation, genetic anal-

ysis of the RFLP markers, and statistical analyses to determine the significance

of sequence differences between affected and nonaffected family members.

420 Chapter 9 Projects

A particular DNA marker is said to be “linked” to the disease if, in general,

familymemberswith certainnucleotides at themarker alwayshave thedisease and

familymembers with other nucleotides at themarker do not have the disease. The

marker and the disease gene are so close to each other on the chromosome that

the likelihood of crossover is very small. Linkage analysis in humans is difficult

because in a family pedigree (a chart that displays all the known family members,

their mates, siblings, and offspring over multiple generations) the number of

progeny is low. Establishing linkage required the development of a method that

combined data from different families and provided some statistical evidence for

linkage. The LoD, or logarithm of the odds, score was developed for this purpose.

Exercise 9.5 will ask you to find out more about LoD scores.

Once linkage is established more markers are examined until a small enough

region of the chromosome is identified and the region can be cloned and

sequenced. Today it is quite likely that the sequence is available immediately. The

gene must also be definitely linked to the disease. This is usually accomplished by

identifying and characterizing individualmutants in the gene and establishing the

molecular connections among mutation, aberrant gene product, and disease. For

example, a mutation that converts an amino acid codon to a stop codon results

in a truncated, abnormal protein. A mutation in a splice site results in abnormal

splicing and likely failure of translation of a pre-mRNA.

In the cases of Duchenne muscular dystrophy, cystic fibrosis, Huntington

disease and many others, the positional cloning strategy was highly successful

and led to great advances in understanding the disease physiology, in dissecting

the many different mutations that result in gene defect, in early diagnosis, and in

some cases in treatment. Check out OMIM, the OnlineMendelian Inheritance in

Mandatabase at theNCBI for a detailed history of these andmany other diseases.

One of the great strengths of this bioinformatics resource is the integration of

multiple types of data and information as well as organization of those data for

easy access.

9.4.2 The Challenge of Mapping Complex Diseases

The genetic diseases discussed so far are “simple” because the correlation between

genotype and phenotype is fairly complete. Most human diseases have a much

more complicated genetic story. Common genetic diseases in humans tend to be

more complex and cluster in families but do not follow Mendelian inheritance

patterns [8, 16, 31]. Indeed they result from the action ofmultiple genes. Alleles of

these genes are “susceptibility factors,” andmost factors are neither necessary nor

sufficient to produce disease. Making the situation even more difficult, a complex

interaction between the environment and these susceptibility alleles contributes

to disease. Well-known examples of complex diseases include diabetes, asthma,

cardiovascular disease, many cancers, hypertension, and Alzheimer disease.

The phenomena described in simple Mendelian studies are discontinuous;

that is, a pea plant is either “short” or it is “tall.” In contrast, complex traits don’t

fall into these discrete classes. Consider a breeding experiment involving corn.

If corn with short ears is crossed with long-eared corn the first generation has

Chapter 9 Projects 421

ears of intermediate length. The next generation ranges from short to tall with

intermediate lengths in a normal distribution. The values are in a continuous

range, and accordingly we call these “continuous,” or “quantitative, traits.” In

the agriculture industry and in agricultural bioinformatics, genes that contribute

to complex phenomena are known as quantitative trait loci (QTL) [8].

The study of complex diseases is challenging because the contribution of

multiple genes is coupled with environmental influences. To further complicate

matters, conflicting theories seek to explain the evolutionary origin of common

disease variants [16]. One theory, known as the common disease/common variant

(CD/CV) theory, contends that most of the susceptibility alleles for common

diseases existed prior to the global dispersal of humans or are alleles that are

subject to positive selection. As a result we would expect the disease variants to

be common, occurring throughout human populations. The opposing theory,

known as the common disease/rare allele theory, argues that most mutations

underlying common diseases occurred after the divergence of populations. We

would then expect significant heterogeneity in the variations found among the

disease genes. Which theory is to be tested has a major influence on the strategy

we employ for searching for disease genes. Here we consider the CD/CV theory

and the use of single-nucleotide polymorphisms (SNPs).

The CD/CV theory predicts that the susceptibility alleles should occur at

relatively high rates in the population (at least 1%) and suggests that association

studies in large cohort populations (unrelated individuals sharing the common

disease) will be fruitful. Compare this to the strategy for simple disease traits

where we need to look within families to find evidence of causative genes. Since

each of the susceptibility alleles contributes only a portion of the risk, looking

outside of families eliminates the background noise that arises from shared genes

in closely related individuals and that have nothing to do with the disease of

interest.

SNPs have greatly facilitated the search for common disease variants. Con-

sider a single location on the human genome. If in about 99% of the population

the base is, say, a C but in the remaining 1% of the population it is instead an

A nucleotide, then we say that a single-nucleotide polymorphism occurs at that

position of the genome. In other words, a SNP is a single base that is different in a

small portion of the population than inmost people. Each SNP occurs in approx-

imately 1% of the population and is stable. Bear in mind that many SNPs occur,

so they fit our need for informative DNA markers. It has been estimated that

humans share about 99.9% sequence identity. Much of the other 0.1% (about

3 million bases) are SNPs. Although “hot-spots” occur with high densities of

SNPs, it is thought that SNPs occur about every 1000 bases. Most SNPs have

only two alleles (one of two different nucleotides at that position), but because

SNPs are relatively close together, any given genemay have several SNPs or SNPs

probably occur close by that serve as potential markers.

As a bioinformaticist it is important to be mindful of the origin and qual-

ity of SNP data. It comes from many different sources including genome-wide

sequencing with multiple coverage, data mining of expressed-sequence tags

(EST), sequencing within suspected disease genes, sequencing of BAC clones,

422 Chapter 9 Projects

and sequencing of individual chromosomes. Skepticism about the validity of SNP

data is therefore prudent. Questions to consider are: Could the investigators be

identifying sequencing errors rather than genuine SNPs? Is a suspected SNP sim-

ply a splice variant? Could recombination or other duplication of regions have

occurred during the cloning process?

Note also that most SNPs are not in coding regions. The immediate value of

studyingSNPs is not somuch inunderstanding changes to genes as it is in their use

as polymorphic, informative markers to find and identify possible disease genes.

As in the case of simple diseasemapping, we look for amarker that is located near

a gene associatedwith a disease. We try to find evidence of linkage disequilibrium,

meaning that the disease and the marker are genetically associated at a higher

frequency than would be expected if there were no relationship between them.

We carry out what are known as association studies by comparing genome-wide

SNP profiles from individuals who have the disease with those who do not have

the disease. The difference identifies a putative disease profile that may eventually

be used in diagnosis or prediction of disease and for the identification of new drug

targets. We may also identify some of the susceptibility factors by using SNPs

from known genes in the profile. One well-known example of this comes from

association studies of patients with Alzheimer disease. One associated gene, the

ApoE gene, has two SNPs. Between the variants of these two SNPs fall three

alleles of the ApoE gene: ApoE2, ApoE3, and ApoE4. Inheritance of the ApoE4

allele has been associated with Alzheimer disease, and the APOE4 protein has

been found in brain lesions of patients with the disease [15, 38].

The high-throughput analysis and computing challenges in studying genetic

diseases are not unlike those encountered when we studied gene expression

microarrays. Genotyping of SNPs can be accomplished via oligonucleotide

arrays by isolating DNA isolated from only a few drops of blood. For exam-

ple, Affymetrix has 10-K and 100-K arrays. Knowing which individuals to study,

which SNPs to study, and how to find patterns of inheritance are major hurdles.

Like the gene expression problem, measurements across many, many genes can

result. The fact that each of these genes contributes only an unknown measure

of risk, and that environmental influences are also factors, necessitate the use

of advanced statistical approaches for analysis. This is a prime example of the

need for biologists, computer scientists, mathematicians and statisticians, among

others, to work together as teams in bioinformatics.

One of the major bioinformatics efforts at mapping complex disease traits is

the InternationalHapMapProject. Thismulticountry effort seeks to characterize

and categorize genetic differences in humans. It is a public resource designed to

help researchers find genes that are not only associated with human disease but

also genes that control an individual’s response to drug treatments. Recall that

SNPs occur rather close together in the genome. Those too close together are

not useful individually as markers because the likelihood of recombination is

low; that means they will always be inherited together. A set of closely linked

genetic markers present on one chromosome that tend to be inherited together

is known as a haplotype. This haplotype, or set of SNPs, can be used to look

for evidence of disease association, as in the ApoE example. Knowing which

SNPs are inheritied together effectively reduces the number of SNPs that need

Chapter 9 Projects 423

to be analyzed when genotyping individuals. This has greatly reduced the costs

of running large association studies. To learn more about this interesting project,

and about gene mapping, in general, check out the Website for the HapMap

Project at http://www.hapmap.org.

This brings us to one of the other major components of information-based

medicine: the field(s) knownas pharmacogenetics or pharmacogenomics. Pharma-

cogenetics is the science of the influence of heredity on the response to drugs [29].

Pharmocogenomics refers to the general study of all of the many different genes

that determine drug behavior. These related fields are concerned with research

that identifies and characterizes polymorphic genes encoding drug metabolizing

enzymes, transporters, receptors, and other drug targets in humans and animals.

The driving force behind this field is that individual variation in response to drugs

is amajor clinical problem. Issues range from severe adverse reactions, to no reac-

tion at all, to problems with drug interactions. Since much individual response

to drugs is now believed to be inherited, it is hoped that pharmacogenetics can

make a significant contribution to knowledge in drug design and refinement. It

has been predicted that in the future guidelines will be established for prescribing

drugs based on differences in metabolism established in clinical studies. Personal

pharmocogenetic profiles will be established for individuals, doses and drug inter-

actions will be determined on the basis of these profiles, and new drugs will be

developed for individuals rather than the one size fits all approach. Already there

have been successes in identifying genetic variants associated with adverse drug

reactions and differences in drug metabolism. One of the best known, which was

discovered before the age of genomics, isCYP2D6, the cytochrome P450 2D6 gene

that is involved in the metabolism of many drugs. Variations in this gene cause

some people to be slow metabolizers, some fast, whereas some don’t metabolize

well at all [29]. Advancement in this field will require the integration of many

types of genomic and clinical data [35].

9.4.3 Over to You

Exercise 9.5Investigate the LoD score. Find a small set of sample data and write some

code to generate the LoD score.

Exercise 9.6Many computing challenges lie ahead in the effort to create individual genetic

profiles for better managing and treating human disease and for support-

ing information-based medicine, in general. Many of the leading attempts

involve collaborations between industry and academia. For example, IBM

has partnered with the Mayo Clinic, and Providence Health Care is work-

ing with the University of British Columbia. For this exercise you must

explore and report on one or more examples of major projects. What are

the challenges? What solutions have been implemented?

424 Chapter 9 Projects

9.4.4 Resources for Information-Based Medicine
1. R. G. Worton and M. W. Thompson. Genetics of Duchenne muscular dystrophy.

Annu Rev Genet, 22:601–629, 1988.

Reference [42] is a good review article describing an early example of mapping by

positional cloning.

2. Three review articles that cover theoretical and technical issues of complex disease

mapping with examples are [8, 16, 31].

9.5 SYSTEMS BIOLOGY

9.5.1 Introduction

Anatomy can be thought of as the study of the component parts of the human

body. Physiology can be thought of as the science of how one individual human

works, what makes one human functionally different from another. Sociology

is the science of how entire networks of individual humans work together and

achieve complex ends. Up to this point our study of bioinformatics has concen-

trated on the anatomy of a genome: how small pieces can be discerned whose

purposewe can infer. Nowwe embarkon the “physiology” (how the samegenome

can achieve vastly different functionalities in different cells) and the “sociology”

(how different components interact in networks to achieve communal goals) of

genomic science. We use the term systems biology to cover both the functional

differentiation and the collaborative aspects.

We have discussed ways of interpreting some of the information content of a

genome in a localized and nonintegrated sense. For example, our study of genes

has indicated how certain stretches of DNA lead to the generation of proteins

that then fold into shapes that achieve a specific goal for the genome’s organ-

ism. Our knowledge of the workings of many single genes is fairly advanced. A

genome, however, contains the information necessary for the entire operation of

the organism, including how to differentially regulate individual genes depending

on the location of the cell within an organism. Every living form begins as just a

single cell. That cell divides into two. Each of those divides into two more, each

of which divides, and so on. This exponential growth results in over a thousand

cells in the time required for 10 divisions, more than a million after 20, over a

billion after 30, and trillions soon after that. Every one of those trillions of cells

contains the same genomic sequence. Some of those cells become constituents

of bones, some become part of an eye, some participate in the action of muscles,

and some contribute to the working of a brain. Vastly different functionality,

all deriving from essentially identical individual information units. The genome

contains the information that enables differential expression of genes so that cells

can achieve different functionalities in the appropriate settings, resulting in a suc-

cessfully functioning complete organism. Differentiated cells are characterized

by their specialized proteins, which constitute the specific structures, enzymes,

networks, and pathways of a given cell type. These differentiated characteristics

determine how a cell responds to its neighboring cells, the intercellular milieu,

Chapter 9 Projects 425

and to external influences. It is a complicated situation, but we already know a

lot about the workings of such systems.

Decades of traditional biological research has taught us much about the

nature of biological systems. See resources 5, 6, 7 at the end of this section for

some reviews. We can draw generalities from this knowledge so that we can better

model these systems. First, biology can be characterized by a notion of function,

or “purpose,” unlike the other natural sciences. This, of course, is related to natu-

ral selection and the relationship of function to fitness and selection [3]. Genetic

variation and environmental perturbation are among the forces that influence

cell function and its survival. Although, purpose in biology is not at the level of

consciousness, it still differentiates a living being from an inanimate object (e.g.,

a rock) that nonetheless may be shaped by its environment. An understanding of

biological function must always take this into account.

Biological systems are large and complex. Biological systems are set apart

from most other large, complex systems by their large number of functionally

diverse and multifunctional elements as opposed to large collections of simple

and identical elements that occur in other familiar systems (e.g., computer net-

works, integrated circuits). Rather than creating complex behaviors, components

of biological systems interact selectively to produce “coherent” behaviors [3]—the

behavior makes sense given the biological context. An oft-used example is that

of p53, the tumor suppressor protein [21]. This protein’s function depends on

the cellular context, and p53 itself is actively modified by other elements of its

network. Sometimes p53 protein causes cells to stop dividing and sometimes it

causes them to die. Each is a coherent behavior that arises from different selective

interactions within the network.

Biological systems are robust [3, 20]. In computing we often refer to robust

hardware or software systems, meaning that they are unlikely to crash under

unexpected or unusual circumstances. Similarly, biological systems have evolved

numerous mechanisms by which to adapt to environmental flux and also become

relatively insensitive to alterations in internal parameters. We commonly refer

to the ability of cells to maintain “homeostasis”—the normal, stable body state.

Maintenance of a constant internal body temperature is a simple example. Cer-

tainly, you are most aware of the relatively rare times in which your body has

failed in this respect when you have run a fever. Sometimes robustness is not a

good thing. In fact, this property is often exploited by pathological mechanisms

and can account, for example, for the resistance of some cancer cells to chemo-

therapy or radiation. One strategy for developing new therapeutic interventions

for cancer treatment and for diseases such as AIDS is to find and target fragile

points in the mechanisms controlling robustness.

Many different mechanisms contribute to the robustness of biological sys-

tems. One of these is feedback, which can be either positive or negative. Here,

again, the p53 protein is an informative example. When DNA is damaged, for

example when cells are exposed to ultraviolet light from the sun, p53 is activated

by other proteins. Its role is to act like a brake to stop the cell cycle so that DNA

can be repaired. Once DNA repair is complete a feedback loop causes p53 to be

released and the cell cycle continues.

426 Chapter 9 Projects

Another factor that contributes to robustness of biological systems is redun-

dancy. Redundancy means that the same function may be accomplished in more

than one way. This interesting characteristic has caused its share of surprises and

disappointments in the research community. Redundancy occurs at many levels.

For example, different genes encode similar proteins and multiple networks have

complementary functions. Some of the surprises came from “knock-out” exper-

iments. Although there are many ways to inactivate, or “knock out,” a gene’s

function, one of the most time-consuming and expensive has been the generation

of gene-targeted, or knock-out, mice in which both copies of a particular gene

have been rendered inactive. The idea is that the gene’s functionmay be elucidated

by loss of function and study of the resultant new, abnormal phenotype. It is not

at all unusual, however, for no new phenotype to arise because redundancy in

genes and pathways takes over the function being studied. Some genes turn out

to be not as indispensable as the researcher thought!

Modularity is another aspect of robust biological systems. Functional mod-

ules, composed of many types of interacting components such as DNA, RNA,

and proteins, are considered by systems biology researchers to be a critical level

of biological organization [3, 10]. The function of a module is a property of the

whole rather than the individual components. The function is separable from

other modules, but it may also interact with other modules. Modules may be

isolated chemically in biochemical reactions or spatially by their cellular local-

ization. Some examples of biological modules are networks and pathways such as

a signal transduction pathway, or structural entities such as the mitotic spindle.

Even organelles such as a ribosome might be considered as modules. Given some

thought, one can imagine modules at many different levels of complexity.

Human beings originated as the result of a speciation event from an ances-

tral species. The precise moment of separation of one species from another is

not an easily identifiable event, but we can be certain that soon afterwards the

number of human individuals was small. Each had its own genome. As with

modern humans, there were minor differences between the genomes of pairs of

members of the new species. Because of the very nature of speciation, however,

we know that the human genomes were sufficiently similar to allow breeding

and replication between pairs, and sufficiently different from all other species’

genomes to make breeding and replication impossible across species borders.

Human society began with a small number of essentially identical individuals.

Exponential growth occurred, not necessarily at a fixed rate, but exponential

in the aggregate, over millennia. Now there are billions of essentially identical

human beings. We are not trying to detract from the importance of individuality

when we say that all humans are essentially identical. So few differences exist

between pairs of human genomes that, prima facie, there is no obvious reason

why one individual’s role cannot be adequately filled by any other individual. In

this sense, human society is composed of billions of people who all share essen-

tially identical information units. Some of those individuals function as doctors,

some as lawyers, some as farmers, some as artists. Vastly different functionality,

all deriving from essentially identical individual information units. Just like cells,

a large number of individuals eachwith the same instruction set, each interpreting

those instructions differently to achieve different functionalities to contribute in

Chapter 9 Projects 427

different ways to a larger entity. Human society is a self-regulated system within

which billions of essentially identical individuals each adopt a functionality that

enables the entire human society to work.3 A living entity is a self-regulated sys-

tem within which trillions of essentially identical cells adopt a functionality that

enables the entire organism to work.

One of the most fascinating aspects of this discussion is the self-regulatory

nature of the collections of cells and the collections of individual humans. No

“intelligent designer” directs each cell to develop in its own way. Except in the

most extreme dictatorial societies, no paternalist presence tells each human being

what role he or she must play in society at large. Collections of computers are

different. They donot self-regulate. Althoughour knowledge of computer science

may help us understand some of the networking and collaboration aspects of

systems biology, it will not help us understand how one program, in the form

of one genome, can lead to differential cell functionalities. We are tied to the

determinism of current computers, and will need to shed that limitation. Who

knows? We may contribute to a new understanding that will result in far more

versatile computing networks.

Think of all the computers in the world today. Despite the claims of the

manufacturers, they are all essentially identical individuals. They have different

functionalities. Some contribute to air traffic control, some keep track of com-

mercial inventory, some help to write homework essays, some attempt to extract

information from intercepted telephone conversations. Each individual computer

is capable of being used in any of these roles.4

Computers are similar to cells in this regard: They are a large number of

essentially identical units, each of which can perform any of several different

tasks within a system. One huge difference distinguishes computer networks

from biological systems: Each individual computer in a network is deliberately

programmed to achieve its functionality. It requires specific direction on how to

achieve its own purpose. Each computer is given its own specific code controlling

its actions, and that code is deliberately placed in that machine by a skilled soft-

ware engineer who went to great lengths to calculate what steps were necessary to

deterministically achieve the results desired by the customer. Most programmers

are very frugal, or efficient, in that they provide a minimal sequence of actions

to achieve one specific deterministic purpose. They avoid redundancy. Any slight

mutation in the code results in a nonfunctional component. It is inconceivable

that a computer programmed for one purpose will ever evolve into anything that

can act, not even in a minuscule way, differently from its initial programming.

This is not so for biological systems. No programmer tells one cell as opposed to

anotherwhat todo. Theprogram in every single cell, in the formof itsDNAstring,

is identical to the program in every other cell. No “grand designer” specifies the

3
Cynicsmight argue that human society can hardly be claimed to “work,” considering all the struggle,

war, and strife that beset us. We use the term work here in the same way that a predator species could
be said to “work” even though the prey might disapprove of our use of the word.
4
We are minimizing the importance of differences between “normal” computers and supercomput-

ers: within a short period of time, today’s supercomputer will be equivalent to tomorrow’s normal
computer.

428 Chapter 9 Projects

cell’s precise actions. In all likelihood, each cell will function correctly in its

appropriate role. The information required for each functionality is contained

in the one genome. The cell’s environment somehow causes it to function in its

appropriate way.

Computer programmers often aim for economy and efficiency. Indeed, these

qualities are valued within the profession. It is clear that biological programming

is different. Redundancy and the possibility of deviation from the “normal”

functioning of components are built into the system. Diseases and malfunctions

occur in cells. New functionalities evolve. And although analogies can be drawn

between computer networks and biological networks, the analogy stretches only

so far. The intelligent design of current computing is insufficient to maintain life

onEarth. Lasting and robust life requires redundancy, inaccuracy, mutation, and,

above all, self-regulation without any outside direction apart from theDarwinian

effects of the environment. At times, our discussion of systems biology may

remind you of something you know about computer networks. But remember

that computer networks, being designed entities, are so very simple compared

with evolved biological systems. Systems biology is a challenge.

9.5.2 Inputs

Earlier we raised the question of how a single program (genome) could produce

vastly different behaviors in different circumstances. An obvious answer, at least

in the case of computer programs, is by providing different inputs, tailored for

each of the circumstances. Inputs need not be simple numeric or character data

supplied by a user in a text field or selection box. Computers can be equipped

with sensing devices that allow the environment direct input to the computation.

Biological systems are also provided with ample sensory input devices.

An example of a computer with a sensing device we see in our own homes

or dorms is the heating and cooling system controlled by a computer with an

attached thermostat. When the thermostat indicates to the computer that the

temperature is below a preset threshold, then the computer turns on the furnace,

and if the ambient temperature rises above another threshold, the air conditioner

is turned on. In this way, thermostatically controlled heating/cooling systems

maintain an indoor temperature between two thresholds.

Such devices act differently depending on their environment. Evidence sug-

gests that similar environmentally determined differences in functioning occur

in biological entities. Many mammals respond to cold environments by increas-

ing their metabolism to warm their bodies. Others respond by reducing their

metabolism tominimal levels to survive during hibernation. Both indicate amod-

ification of functional operation in response to environmental factors. Similarly,

creatures respond to an unusually hot environment by modifying some func-

tion. Dogs, for example, can reduce internal temperatures by panting to enhance

evaporation; humans achieve a similar result by sweating.

Both mechanical and biological thermostatically controlled systems work by

causing functional or behavioral changes in response to detected environmental

factors. The similarity is largely superficial, however. The important distinction

between mechanical thermostats and their biological counterparts is that the

Chapter 9 Projects 429

behavior of a mechanical device is deterministically programmed by a designer

who makes assumptions that necessarily limit the environmental potentialities to

which the device respondswell. If something unexpected happens, themechanical

device cannot be expected to respond well. If the whole structure of the house is

removed by, say, a tornado, and the thermostat and heating/cooling system are

left intact, the system will persist in wasting energy in impossibly attempting to

maintain a nonexistent internal temperature!

Nature employs a much more robust strategy than the intelligent design of

today’s software engineers. Someprogramcomponents (genes) occur in subtlydif-

ferent versions (alleles) between one device (creature) and another. Under normal

circumstances these small differences have no effect on the survival characteristics

of the devices. But when the unexpected happens, it may be that one allele causes

a behavior in one device that leads to its destruction, whereas another allele leads

to behavior that enables its survival. Darwinian selection ensures that in the long

term devices respond sensibly to rare events. It even provides for adaptation to

the completely unexpected.

The study of artificial life and genetic algorithms as discussed in Chapter 7

is an attempt by computer scientists to break loose from the limitations of prede-

termined computer behavior. We know that this science is in its infancy and has

much to learn from the living world. The study of systems biology may have sig-

nificant consequences for computer science aswe learnmore about the robustness

and versatility of living forms.

9.5.3 Outputs

Every component of a biological system is capable of affecting the other com-

ponents. Indeed, we would be very surprised if this were not the case. When we

focus on just one component, it is natural to apply our computing experience and

abstract that component into a device that transforms certain inputs into various

outputs.

It is difficult to choose the appropriate level of detail (what programmers refer

to as granularity) with which to approach biological systems. If the granularity

is too coarse, we risk failing to understand the microeffects fundamental to the

process. If the granularity is too fine, we expend toomuch effort on specific inputs

and outputs of pieces when, in fact, the net input and net output of a group of

these pieces is our true focus.

9.5.4 Modern Approach to Systems Biology

Systems biology builds on a long tradition of experiments and investigations

that provide us with detailed information about small parts of life. In fact, only

rare biological functions can be attributed to one or a few molecules; most are

controlled bymultiple interacting components. But biologists have always known

that such detailed information is but a small step on the road to comprehending

the vast landscape of how life operates.

Modern experimental techniques, including high-throughput devices,

produce enormous quantities of data with an intricacy of detail that is unprece-

dented. In addition, powerful machines can now process, categorize, and share

430 Chapter 9 Projects

these large data resources. The paradigm of systems biology starts with data from

high-throughput biotechnologies such as microarrays and mass spectroscopy,

then creates models to simulate and predict system behaviors, and finally tests

these models to measure their validity. The latter steps represent a return to

hypothesis-driven research as opposed to the data-driven hypothesis-free data-

mining approaches that have emerged along with the generation of almost

unmanageable volumes of data.

Dr. Douglas Lauffenburger, who trained as a chemical engineer and who is

one of the leaders in the field, refers to this process as the “four M’s” of systems

biology: measurement, mining, modeling, and manipulation. “Manipulation

and measurement are on the experimental side. Mining and modeling are on the

computational side. These four M’s are part of an iterative process, beginning

with manipulating the system. Once a system is perturbed, it is measured using a

high-throughput, multivariate technology. The data are then mined to elucidate

hypotheses that, when cast in terms of formal computational models, form the

basis for a new manipulation of the system” [1].

Modeling and simulation bring a whole new set of complications to the

problem. Some of these are computational and some are biological. One of the

main challenges is the need to integrate different levels of information. It is not

enough to study genes or proteins or pathways or cells in isolation to understand

howbiological systems function. Anunderstandablemodel of awhole systemwill

ultimately represent all of the relationships and interactions between the various

and diverse parts of a biological system.

Although we emphasize the computing side in this book, it is important

to remember that traditional experimental, lab-based methods continue to play

a crucial role in systems biology. Many wet lab techniques help the scientist

integrate findings from mining high-throughput data with biological “knowl-

edge” to elucidate interactions and relationships. For example, individual, specific

RNAs and proteins can be localized at the cellular and tissue levels using in situ

hybridization and antibody localization techniques, respectively. These tech-

niques provide an understanding of where, when, and sometimes even why a

particular molecule is present and functioning in the cell. At another level,

scientists study genetic variation, either natural or experimentally induced, to

understand the relationships between genes and their functions in individuals

and in populations. Studies of normal physiology and disease at the levels of

cells, tissues, organs, organisms, and populations continue to set a foundation on

which mathematical and computational models can be built.

9.5.5 Feedback, Equilibrium, and Attractors

As we shall see when we study the Rasp example in the Over to You in Section

9.5.7, one important aspect of genetic networks is that the expression of one gene

(Tym) can affect the expression of another (Haa). But it omits another important

and ubiquitous aspect of genetic networks. The Rasp system lacks any feedback

mechanism. The incorporation of feedback into networks makes their analysis a

good deal more complicated. Sometimes the resulting networks are amenable to

mathematical analysis, albeit more complicated analysis than any required by the

Chapter 9 Projects 431

Rasp network. Often however, the investigating scientists resort to using com-

puter simulation to study the properties of a network. The main reason for this

is that networks admitting feedback are susceptible to what mathematicians call

chaotic behavior. Tiny differences in initial settings can quickly amplify, leading

to enormous differences in the network performance in a short time.

Avery simple feedback equation is the basis for the formationof the famously

challenging Mandelbrot set described by Benoit Mandelbrot in [24] and depicted

graphically in Figure 9.10. The figure’s shading indicates the points c of the

complex plane forwhich the feedback equation znew = z2+c startingwith z = 0+

0i produces a sequence of values that do not tend to infinity. The unexpectedness

and the beauty of this set have been well described in books and articles. A simple

description is given by James Gleick in [9], and Roger Penrose goes into more

depth and raises questions about the decidability of the set in [30].

Let’s look at how feedback can produce very complex behaviors in even the

simplest of networks. Figure 9.11 indicates how the levels of product of each

of four genes regulates each gene. The simplest gene in the network is D whose

activityproduces a constant leveld ofproduct.B’s output is such that it isb= 1−a,

so it is down-regulated by A. C’s activity is regulated by all three A,B, and D;

indeed its level of production is given by c = abd . Finally note that A’s activity

is controlled by C’s level, so that a equals c. Levels a, b, and c are numbers that

stay in the range 0.0 to 1.0. We allow more flexibility for d .

Concentrating on what happens to the activity of A within a given period,

elementary algebra assures us that anew = da(1 − a). This is a feedback equation

showing us how the level of activity of A changes in the presence of this network

acting as described. Let’s investigate with some actual numbers.

Suppose d is 3.0, and the initial value of a is 0.5. After one iteration, the

value of a becomes da(1−a) or 3.0×0.5.5 = 0.75. The next iteration gives a new

FIGURE 9.10 The Mandelbrot set.

© Stephen Gerard/Photo Researchers, INC

432 Chapter 9 Projects

a c

c abd a b 1 a

d
C

A B

D

FIGURE 9.11 A simple genetic network with feedback. The level a of protein from

gene A regulates the level b of protein from gene B to be b = 1 − a, and also regulates the

action of gene C. C is also regulated by the level b from B and the level d from gene D so

that the level of c is given by c = abd . The feedback becomes apparent when we note that

the activity of A is regulated by the level of c.

value for a of 3.0.75 × 0.25, or 0.5625. It’s easy to write a program to produce

the successive values

0.5 0.75 0.5625 0.73828125 0.5796661376953125
0.7309599195141345 0.5899725467340735 0.7257148225025549
0.5971584567079203 0.7216807028704055 0.6025729979246489
0.7184363402902498 0.6068566957218066 0.7157449397382518
0.6103623629320143 0.713460446544187 0.6133039132834688
0.7114866697039566 0.6158201656125887 0.7097570677124175
0.6180059176340649...

We can continue for a few hundred iterations, and the sequence seems to

settle down:

0.6590985347359144 0.6740629687346551 0.6591062487458353
0.6740556048300851 0.6591139392816997 0.6740482629787787
0.6591216064622096 0.6740409430706571 0.659129250405229
0.6740336449964098 0.6591368712277909 0.6740263686474885
0.6591444690461052 0.6740191139160997 0.6591520439755666
0.674011880695198 0.6591595961307606 0.6740046688784795

After tens of thousands of iterations, our program produces something like:

0.6648538916610314 0.6684695832126388 0.6648539985964792
0.6684694774402561 0.664854105513021 0.6684693716865052
0.6648542124106624 0.6684692659513806 0.6648543192894091
0.6684691602348767 0.6648544261492663 0.6684690545369883
0.6648545329902398 0.6684689488577098 0.6648546398123352
0.6684688431970357 0.6648547466155579 0.6684687375549606

Chapter 9 Projects 433

and we are tempted to believe that the network is settling into a steady state in

which the level of activity of gene A resolves to a value close to .665.5

Try the same thing with a different value of d , say 3.3. Again starting with

a = 0.5 the sequence begins with the following:

0.5 0.825 0.47643750000000007 0.8231678683593749
0.4803563452381904 0.8237266185310761 0.4791635522996359
0.8235672800758589 0.4795039103722253 0.8236137040229017
0.4794047628763067

After 10 thousand iterations, we see:

0.8236032832060689 0.47942701982423414 0.823603283206069
0.4794270198242338 0.8236032832060687 0.4794270198242346
0.8236032832060689 0.47942701982423414 0.823603283206069
0.4794270198242338 0.8236032832060687 0.4794270198242346
0.8236032832060689 0.47942701982423414 0.823603283206069
0.4794270198242338 0.8236032832060687 0.4794270198242346

It looks as if the value of a alternates between two limits. Over time then, the

activity of the gene A rapidly alternates between two values. After 10 thousand

iterations with the level of D set at 3.5, we find that the activity of A alternates

between four values as seen in the following output:

0.8749972636024641 0.38281968301732416 0.8269407065914387
0.5008842103072179 0.8749972636024641 0.38281968301732416
0.8269407065914387 0.5008842103072179 0.8749972636024641
0.38281968301732416 0.8269407065914387 0.5008842103072179
0.8749972636024641 0.38281968301732416 0.8269407065914387
0.5008842103072179 0.8749972636024641 0.38281968301732416
0.8269407065914387 0.5008842103072179 0.8749972636024641
0.38281968301732416 0.8269407065914387 0.5008842103072179
0.8749972636024641 0.38281968301732416 0.8269407065914387
0.5008842103072179 0.8749972636024641 0.38281968301732416
0.8269407065914387 0.5008842103072179 0.8749972636024641
0.38281968301732416 0.8269407065914387 0.5008842103072179
0.8749972636024641 0.38281968301732416 0.8269407065914387
0.5008842103072179

What was one limit at d = 3.0 bifurcated by d = 3.3 into two limits and

divided again by d = 3.5 into four limits. After 3.5 the behavior becomes even

5
Mathematically astute readers may wish to prove that the value to which the sequence converges is,

in fact 2
3
.

434 Chapter 9 Projects

3

3.2

3.4

3.6

3.8

4
0.90.80.70.60.5

Final States

0.40.30.20.10 1

r

FIGURE 9.12 A graph indicating the onset of chaos in our simple feedback gene

network. As the value of d increases from 3.0 to 4.0, the ultimate behavior of a after

thousands of iterations of the feedback a = da(1 − a) progresses from approaching just

one limit, to two limits, to four, and so on. Then at about 3.56, chaos sets in.

more chaotic; splitting into 8 limits, then 16, and so on. Indeed, the term chaos

is used by mathematicians to describe precisely the situation we are observing

(Figure 9.12).

Exercise 9.8 will ask you to write programs to investigate this phenomenon

further.

The set of values to which the value of a ultimately gravitates is called the

attractor. At d values near 3.0, the attractor is a single point. By 3.3 the attractor

becomes a set of two points, then a set of four, and so on until, somewhere

around d = 3.56 the attractor becomes very strange. In chaos theory (an area of

mathematics) such sets are called strange attractors.

Even the simplest of networks of genes can result in long-term behavior that

is extremely difficult to predict. But the bioinformatics problem is even more dif-

ficult. It’s almost the reverse of the chaos problem. Typically, we would beginwith

some rather chaotic data, perhaps the expression levels of various genes under

many different conditions as indicated by a series of microarray experiments. The

systems biology challenge is to reconstruct from that chaotic data what kind of

relationships must exist between the genes in order to produce such chaotic data.

In other words, can we discover what sort of network relationships between the

Chapter 9 Projects 435

genes produce the observed behavior? Chaos theory is good at displaying how

even very simple dynamic systems can produce extremely complex outputs. Our

challenge is to find simple networks that explain very complex data. We’re follow-

ing a generally acceptedmaxim that, in science, the most economical explanation

for a set of observations is often correct. Compare this notion withOccam’s razor

as described in Chapter 6. The challenge of systems biology is to “reverse engi-

neer” the biological networks to explain a flood of data. If you are interested

in how dynamic systems can become chaotic, a good starting reference is James

Gleick’s book [9].

9.5.6 What Kind of Model?

How detailed a model do we need? Should we seek the simplest explanation

possible for observed phenomena?

Boolean

Earlier we saw how even four interacting genes, each having continuous possible

expression levels, could easily lead to chaotic and unpredictable behavior. Some

researchers have tried to simplify the situation by positing networks where gene

activity can take on only one of two values: The expression of a gene in the

network is either off (0) or on (1). On the face of it, this simplification would

seem to make network behavior more amenable to analysis. In practice, it is

still possible for chaotic behavior to emerge from even simple Boolean networks.

Kauffman’s [19] book discusses models based on Boolean logic.

Differential Equations

In our simple example the levels of the various genes were expressed as simple

functions of the expression levels of other genes. Is it more realistic to assume

that the rate of change of the expression level rather than the expression level

itself is a function of other genes’ expressions? If so, we obtain a model based

on differential equations. This has the advantage of being similar to many other

dynamical systems that have been studied in other areas besides bioinformatics,

such as thermodynamics. Nevertheless, themathematics is complicated! A library

or Internet search for terms like “reaction kinetics” may give you some leads on

this topic.

Stochastic Models

When the next configuration of a part of a network is determined from the cur-

rent configuration according to some fixed probability vector, the model is called

stochastic. We briefly entered into this domain earlier when we discussed evo-

lutionary mutation matrices such as the PAM transition matrix and when we

looked at hidden Markov models. If you postulate a stochastic model to explain

a large dataset, it is possible to perform backpropagation, or Bayesian analysis,

to guess at the probability vectors that best explain the observations. Library or

Internet searches for stochastic network model should provide you with ample

resources to pursue this issue.

436 Chapter 9 Projects

Hybrid Models

Of course, aspects of each modeling system can be combined with aspects of

others, often with encouraging results.

In Summary

Once again we observe that bioinformatics is a science in its infancy. Many huge

questions still remain unanswered, so don’t be afraid to follow even your cra-

ziest hunches if you think you have an explanation for some of the phenomena

described here.

9.5.7 Over to You

The Rasp

We now embark on an extended exercise, containing two specific smaller indi-

vidual exercises, to help us understand the kinds of complex interactions that

make systems biology such a fascinating study. The Rasp is an imaginary crea-

ture. The Rasp lives in an environment where its survival is largely governed by

three factors:

• The temperature (given as a daily average),

• The availability of food (given as a 30-day average),

• The availability of water (given as a 30-day average).

For our exercise we rate the survivability of various minor mutations of the

Rasp over a 360-day experimental period. Inputs are as follows:

• 360 integers, each representing a daily average temperature,

• 12 floating point numbers in the range 0.0 to 1.0, indicating the availability

of food (0.0 = nonexistent, 1.0 = plenty),

• 12 floating point numbers in the range 0.0 to 1.0, indicating the availability

of water (0.0 = nonexistent, 1.0 = plenty).

An example input file is provided on the book’s Website as rasp1.dat. The

following four genes and their products are of interest in this exercise:

1. Tym, whose product level controls two threshold temperatures at which pro-

duction of Haa begin to be down-regulated. The product level of Tym is

scaled to be a number tym in the range 0.0 to 1.0. The upper threshold tem-

perature for down-regulation of Haa is given by the expression hiThresh =

20tym + 10, and the lower threshold temperature by loThresh = 20tym − 10.

2. Gop,whoseproduct level determines the rate atwhichHaa is down-regulated.

The level of Gop is a number gop again scaled to be in the range 0.0 to 1.0. The

level of Haa, representedby thenumber haa, is givenas a functionof theday’s

average temperature θ. Above hiThresh the level haa = 1.0 − gop (θ−hiThresh)
(50−hiThresh)

;

and below loThresh the level haa = 1.0 − gop (loThresh−θ)

(loThresh+10)
.

3. Haa, whose product level haa determines the quantity of food required to

flourish given a difference between ideal body temperature (30) and the aver-

age daily temperature (given as an input). The quantity of food required is

Chapter 9 Projects 437

foodNeed = haa|θ−30|

40
, unless the temperature is below loThresh, in which

case an additional .02(loThresh − θ) is needed.

4. Pri,whose product level determines the quantity of water needed to properly

digest food and to achieve cooling if the day’s temperature is below loThresh.

The quantity of water necessary is waterNeed = prifoodNeed if the temper-

ature is below hiThresh and waterNeed = prifoodNeed + 0.03(θ − hiThresh)

otherwise.

The “magic numbers” given in the preceding formulas are the result of levels

of other gene products in the Rasp anatomy. As always in systems biology, we

must simplify ourmodel to achieve manageable computations. Somemoremagic

numbers are required to formulate a survivability index for the Rasp.

The survivability index depends on the availability of food and water and on

the Rasp’s needs for food andwater. If the availability exceeds the needs, the Rasp

will survive very well. Problems arise when availability is low. To continue our

simplified model, recall that the availability of food and water are both inputs to

our experiment and are given as 30-day averages. A simple fitness function can

be defined by

• If theRasp needsmore food than is available andmorewater than is available,

then its fitness that day is −0.3.

• If its food needs are satisfied, but not its water needs, then its fitness is −0.05.

• If both its food and its water needs are provided for by the food and water

availabilities, then the fitness that day is +0.2.

The fitness of the Rasp over a period of time is calculated by summing its

daily fitness over each of the days in the period.

Exercise 9.7

1. Write code for a Rasp class. A Rasp object is instantiated with four

values for its levels of Tym, Gop, Haa, and Pri. Create a method to

compute its food and water needs from the preceding formulas, and

update the values of itsTym, Gop, Haa, and Pri for a given temperature

θ. This method will be called whenever we need an update step for the

Rasp object. If you wish you may use the following code for the step

method:

public void step(double theta) {
hiThresh = 20*tym + 10;
loThresh = 20*tym - 10;
if (theta > hiThresh)

haa = 1.0 - gop*(theta - hiThresh)/(50 - hiThresh);
else if (theta < loThresh)

haa = 1.0 - gop*(loThresh - theta)/(loThresh+10);

(continued)

438 Chapter 9 Projects

foodNeed = haa * Math.abs(theta - 30)/40.0;
if (theta < loThresh) foodNeed += 0.02*(loThresh - theta);
waterNeed = pri * foodNeed;
if (theta > hiThresh) waterNeed += 0.03*(theta - hiThresh);

}

The Rasp class must also provide public accessor methods that return the

values of foodNeed and waterNeed. We call these food() and water():

public double food () {
return foodNeed;

}
public double water () {

return waterNeed;
}

2. Write a program to:

• Input four floating point numbers in the range 0.0–1.0;
• Create a Rasp object whose initial levels of tym, gop, haa, and pri are

the four values you just input;
• Read 360 daily temperatures, 12 levels of food availability, and 12 levels

of water availability from a file; (Recall that these levels of food and

water persist over a 300-day period.)
• Accumulate a total fitness for this Rasp over that 360-day period.

We provide a method to do this based on the fitness functions given

earlier, assuming the daily food and water availabilities have been

entered into arraysfoodAvail[] andwaterAvail[] and the daily

temperatures are in array temps[], is given by:

public double fitness(Rasp r) {
double fit = 0.0;
for (int i = 0; i<360; i++) {

r.step(temps[i]);
fit -= 0.3;
if (r.food() < foodAvail[i]) fit += 0.25;
if (r.water() < waterAvail[i]) fit += 0.25;

}
return fit;

}

3. Enter different values of the four initial settings for Tym, Gop, Haa, and

Pri to find the fittest possible Rasp. In other words, find four numbers that

when used to create a Rasp object produce a Rasp r such that fitness(r) is

as large as possible.

Chapter 9 Projects 439

Exercise 9.8For this exercise, find the parameters that create the fittest Rasp given a file

of temperature and food and water availabilities. Do this by a process of trial

and error, looping through many possible values for each parameter to the

Rasp constructor and keeping track of the ones that produce the objects of

highest fitness.

For a greater challenge, you can try to evolve the best Rasp by means of

a genetic algorithm. Start with a population of, say, 50 Rasp objects, each of

which has been constructed with random parameter values. Now introduce

ways to:

1. Mutate one Rasp object into another slightly different object;

2. Take two Rasp objects and produce an “offspring” object that in some

way is an aggregate of its “parents.”

3. Measure the fitness of all 50 Rasps, keep the best, say, 40, of them,

replace the worst, say, 10, of them by mutations and offspring of the

fittest Rasps.

4. Repeat this step for hundreds or thousands of generations.

If your genetic algorithm is successful, you will end up with a population

of fit Rasps. You will have simulated the process of evolution in a very

oversimplified and artificial setting.

Exercise 9.9Write a program to input two numbers: d and an initial value for a. Your

program should run the feedback a = da(1 − a) 10 thousand times and

then print the next 40 values of a. (The 10 thousand iterations ensure that

the system has settled into its ultimate behavior pattern.) Test the following

propositions:

1. For a given value of d , it does not really matter what value of a you

enter as long as it is between 0.0 and 1.0. The behavior in the limit is

the same.

2. There is a value for d below which there is just one limit and above

which there are more limits. Find this value.

3. What happens to the limits as d gradually increases. Test if the graph

in Figure 9.12 is accurate.

If you are adept at such things, you may be interested in adapting your

program so you provide d and a via sliders and produce graphic output.

9.5.8 Resources for Systems Biology
1. Benoit B. Mandelbrot. The Fractal Geometry of Nature, W. H. Freeman, New York,

1982.

440 Chapter 9 Projects

This interesting coffee-table book contains more about fractals and beautiful designs

generated by feedback equations.

2. Roger Penrose. The Emperor’s New Mind, Oxford University Press, Oxford, 1990.

Penrose’s masterly and approachable (though far from elementary) critique of hard

artificial intelligence places the issues in the context of computability theory, which he

describes very effectively.Hard is the term applied to the aspect of artificial intelligence

(AI) that maintains that everything that goes on in the human brain can be reproduced

in silicon. Penrose provides a well-reasoned case that the state of AI is nowhere near

achieving such goals.

3. James Gleick. Chaos: The Making of a New Science, Viking Adult, New York, 1987.

Gleick’s book provides an elementary introduction to how dynamic systems can become

chaotic.

4. S. A. Kauffman. The Origins of Order, Oxford University Press, Oxford, 1993.

Kauffman’s book discusses system models based on Boolean logic.

5. Marie E. Csete and John C. Doyle. Reverse engineering of biological complexity.

Science, 295:1664–1669, 2002.

Describes similarities and differences between advanced technologies and biological

systems.

6. H. L. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray. From molecular to

modular cell biology. Nature, 402:C47–52, 1999.

This paper presents the case that biological systems are modular and can be understood

by applying principles that govern other modular systems.

7. H. Kitano. Cancer as a robust system: Implications for anticancer therapy. Nat Rev

Cancer, 4:227 –235, 2004.

A perspective of cancer from the point of view of systems biology.

KEY TERMS

normalize (9.1)

structure (9.2)

secondary structure (9.2)

ribozyme (9.2)

free energy (9.2)

minimum free energy

configuration (9.2)

biologically active (9.2)

pseudoknot (9.2)

rational drug design (9.3)

minimum free energy

conformation (9.3)

protein folds (9.3)

ligand (9.3)

active site (9.3)

linkage (9.4)

restriction fragment-length

polymorphism (RFLP) (9.4)

linkage analysis (9.4)

pharmacogenetics (9.4)

pharmacogenomics (9.4)

systems biology (9.5)

chaotic (9.5)

Mandelbrot set (9.5)

steady state (9.5)

bifurcated (9.5)

chaos attractor (9.5)

strange attractor (9.5)

rate of change (9.5)

stochastic (9.5)

stochastic network model (9.5)

Chapter 9 Projects 441

BIBLIOGRAPHY

1. D. Baker and A. Sali. Protein structure

prediction and structural genomics. Science,

294:93–96, 2001.

This is a good general review of protein structure

prediction methods and the road ahead for

computational approaches.

2. K. Boris-Lawrie, T. M. Roberts, and S. Hull.

Retroviral RNA elements integrate

components of post-transcriptional gene

expression. Life Science, 69:2697–2709, 2001.

This article is a more focused description of the

biology of the Rev-RRE interaction and its role

in HIV infections of cells.

3. Marie E. Csete and John C. Doyle. Reverse

engineering of biological complexity. Science,

295:1664–1669, 2002.

4. Dominique Douguet, Etienne Thoreau, and

Gérard Grassy. A genetic algorithm for the

automated generation of small organic

molecules: Drug design using an evolutionary

algorithm. J Comput Aided Mol Des,

14:449–466, 2000.

5. Derek M. Dykxhoorn, Carl D. Novina, and

Philip A. Sharp. Killing the messenger: Short

RNAs that silence gene expression. Nat Rev,

4:457–465, 2003.

A detailed look at siRNA and RNAi from a

biological perspective. This article is particularly

commended by the wealth of references to the

primary biological literature.

6. Sean R. Eddy and Richard Durbin. RNA

sequence analysis using covariance models.

Nucleic Acids Res, 22:2079–2088, 1994.

One of the original papers that proposed a

strategy for identifying tRNA genes in a genome,

this paper is a classic in the field.

7. Paul P. Gardner and Robert Gigerich. A

comprehensive comparison of comparative

RNA structure prediction approaches. BMC

Bioinformatics, 5:140, 2004.

This paper reviews several existing algorithms

for RNA structure prediction using sequence

conservation guidance. A good place to start in

learning more about the existing approaches in

this area.

8. Anne M. Glazier, Joseph H. Nadeau, and

Timothy J. Aitman. Finding genes that underlie

complex traits. Science, 298:2345–2349, 2002.

9. James Gleick. Chaos: The Making of a New

Science. Viking Adult, New York, 1987.

10. H. L. Hartwell, J. J. Hopfield, S. Leibler, and

A. W. Murray. From molecular to modular cell

biology. Nature, 402(SUPP):C47–C52, 1999.

11. J. Heer, S. K. Card, and J. A. Landay. Prefuse:

A toolkit for interactive information

visualization. In CHI 2005: Human Factors in

Computing Systems, 2005.

12. I. Hofacker, M. Fekete, and P. Stadler.

Secondary structure prediction for aligned

RNA sequences. J Mol Biol, 319:1059–1066,

2002.

This paper describes a popular algorithm for the

prediction of RNA structures using sequence

conservation.

13. A. S. Ivanov, A. V. Veselovsky, A. V. Dubanov,

and V. S. Skvortsov. Bioinformatics platform

development: from gene to lead compound.

Methods Mol Biol, 316:389–431, 2006.

This comprehensive review of rational drug

design proposes a more ambitious goal: the

computational development of drugs directly

from targets in sequenced genomes.

14. Y. Ji, X. Xu, and G. Stormo. A graph

theoretical approach for predicting common

RNA secondary structure motifs including

pseudoknots in unaligned sequences.

Bioinformatics, 20:1591–1602, 2004.

This approach to RNA structure prediction uses

an interesting algorithm drawn from graph

theory. It offers a novel way of thinking about

structures and the process of RNA folding.

15. John M. Olichney, Lawrence A. Hansen,

Richard Hofstetter, et al. Association between

severe cerebral amyloid angiopathy and

cerebrovascular lesions in Alzheimer disease is

442 Chapter 9 Projects

not a spurious one attributable to apolipoprotein

e4. Arch Neurol, 57:869–874, 2000.

16. G. C. L Johnson and J. A. Todd. Strategies in

complex disease mapping. Curr Opin Gen Dev,

10:330–334, 2000.

17. D. T. Jones. Protein structure prediction in the

postgenomic era. Curr Opin Struct Biol,

10:371–379, 2000.

A comprehensive review of protein structure

prediction methods, with a wealth of references.

18. D. T. Jones, W. R. Taylor, and J. M. Thornton.

A new approach to protein fold recognition.

Nature, 358:86–89, 1992.

The original paper describing the homology

threading technique and its application to protein

structure prediction.

19. S. A. Kauffman. The Origins of Order. Oxford

University Press, Oxford, 1993.

20. H. Kitano. Systems biology: a brief overview.

Science, 295:1662–1664, 2002.

21. H. Kitano. Cancer as a robust system:

Implications for anticancer therapy. Nat Rev

Cancer, 4:227–235, 2004.

22. Martin Krzywinski. Circos.

http://mkweb.bcgsc.ca/circos/

23. E. A. Lesnik, R. Sampath, and D. J. Ecker. Rev

response elements (RRE) in lentiviruses: an

RNAMotif algorithm-based strategy for RRE

prediction. Med Res Rev, 22:617–636, 2002.

This paper describes a simple approach to

predicting the secondary structure known as RRE

(Rev response element) used by HIV to transport

certain mRNAs out of the nucleus of infected cells.

The exercise included in this project was inspired

by the work done here.

24. Benoit B. Mandelbrot. The Fractal Geometry of

Nature. W. H. Freeman, New York, 1982.

25. D. Mathews and D. Turner. Dynalign: An

algorithm for finding the secondary structure

common to two RNA sequences. J Mol Biol,

317:191–203, 2002.

One of the best algorithms for RNA structure

prediction using sequence conservation is

Dynalign. This paper describes the algorithm in

detail.

26. Marjori A. Matzke and Antonius J. M. Matzke.

Planting the seeds of a new paradigm. PLoS

Biol, 2:e133, 2004.

An accessible review of RNA interference in plants

and the contributions that plant researchers have

made to the RNAi and siRNA fields. This is

particularly recommended as a very easy

introduction to the area for nonbiologists.

27. NCBI Coffee Break on Micro RNAs.

http://www.ncbi.nlm.nih.gov/books/

bv.fcgi?rid=coffeebrk.chapter.33

More about microRNAs, small interfering RNAs,

and RNA interference can be found through the

short description and links here.

28. National Institute of General Medical Sciences.

Structure-based drug design: From the computer

to the clinic. http://publications.nigms.nih.gov/

structlife/chapter4.html

This short introduction to rational drug design

through protein structure prediction is a good

place to start in learning more about how HIV

protease inhibitors were developed.

29. Kevin M. O’Shaughnessy. Hapmap,

pharmacogenomics, and the goal of

personalized prescribing. Br J Clin Pharmacol,

61:783–786, 2006.

30. Roger Penrose. The Emperor’s New Mind.

Oxford University Press, Oxford, 1990.

31. Mayeux R. Mapping the new frontier: Complex

genetic disorders. J Clin Invest, 115:1404–1407,

2005.

32. E. Rivas and S. Eddy. The language of RNA:

a formal grammar that includes pseudoknots.

Bioinformatics, 16:334–340, 2000.

This paper proposes a formal stochastic grammar

for RNA structure prediction. It was also one of

the first to specifically target the prediction of

pseudoknots in RNA secondary structure.

33. Richard Robinson. RNAi Therapeutics: How

likely, how soon? PLoS Biol, 2(1):e28, 2004.

An elegant review of the state of RNAi therapy to

date, this review is more accessible to

nonbiologists.

Chapter 9 Projects 443

34. Purvi Saraiya, Chris North, and Karen Duca.

An insight-based methodology for evaluating

bioinformatics visualizations. IEEE Trans Vis

Comput Graph, 11:443–456, 2005.

35. E. E. Schadt, S. A. Monks, and S. H. Friend.

A new paradigm for drug discovery: Integrating

clinical, genetic, genomic and molecular

phenotype data to identify drug targets. Biochem

Soc Trans, 31:437–443, 2003.

36. Gisbert Schneider and Uli Fechner.

Computer-based de novo design of drug-like

molecules. Nat Rev Drug Discov, 4:649–663,

2005.

37. Priyadarsini Soundararajan. Ligevolver: A Tool

for Ligand Formulation Using Genetic Algorithm.

Master’s Thesis, Rochester Institute of

Technology, 2006.

38. W. J. Strittmatter and A. D. Roses.

Apolipoprotein e and Alzheimer disease. Proc

Natl Acad Sci U S A, 92:4725–4727, 1995.

39. J. D. Terwilliger and H. H. Goring. Gene

mapping in the 20th and 21st centuries:

Statistical methods, data analysis, and

experimental design. Hum Biol, 72:63–132, 2000.

40. D. Weininger. Smiles, a chemical language and

information system. 1. Introduction to

methodology and encoding rules. J Chem Inf

Comput Sci, 28:31–36, 1988.

41. Oscar Wilde. Plays, Prose Writings and Poems.

Everyman’s Library, London, 1930.

42. R. G. Worton and M. W. Thompson. Genetics

of Duchenne muscular dystrophy. Annu Rev

Genet, 22:601–629, 1988.

Index

A

absent indicators, 343–345

accounting for discontinuous coding

regions, 301–306

acquired immunodeficiency

syndrome, 17

activation energy, 31

active site, 411

acute lymphoblastic leukemia (ALL),

370–372

acutemyeloid leukemia (AML),

370–372

adenosine, 40

adenosine (A), 42

adenosine triphosphate (ATP), 35, 36

advanced classification algorithms,

373–374

affine gap penalties, 192–193

Affymetrix oligonucleotide array, 114

Affymetrix oligonucleotide arrays,

115, 337, 343

algorithm analysis, 160–163

algorithms, 176–178

alignment

BLAST (basic local alignment

search tool), 159, 197–199

defined, 158

global, 180–187

local, 187–192

multiple, 199–204

multiple sequence, 204–205

alpha-helix, 62, 64, 65

alternative splicing, 304

Altschul, Stephen, 198

Alzheimer disease, 422

American Type Culture

Collection, 92

amine group, 62

amino acids, 49, 62, 63

amoebae, 35

amplification, 91, 93

analysis of variance (ANOVA)

test, 356

analytical engine, 2

antibodies, 118, 119

anticancer drugs, 17

anticodon, 54

anticodon end, 54

antiparallel orientation, 42, 43

application realm, 7

application scientist, 7, 8

aptosis, 83

aqueous environment, 32, 33

archaea, 26, 27

Archaebacteria, 27

array-based technologies, 335

array names, 113–114

arrays, 344. See also microarrays

Artemis (genome viewer and

annotation tool), 391

ASCII Character Codes, 52

ASCII codes, 51, 52, 279

ASCII graphics, 173

assembly

examples, 135–136

location clues, 132–133

mapping, 133

overlaps, 133–134

repeats, 135

whole-genome shotgun sequencing

(WGS), 134–135

Atlas of Protein Sequences

(Dayhoff), 5

Atlas of Protein Structure

(Dayhoff), 193

ATP, 70–72

attractors, 434

automated DNA sequencers, 100

average-case scenarios, 126

445

446 Index

B

Babbage, Charles, 2

background intensity

extraction, 341

backing up DNA data, 70

back propagation, 435

bacteria, 26–27, 58

bacterial artificial chromosomes

(BACs), 107, 109

bacterial cells (bugs), 90

base-calling, 99

base cases, 127

base-pairing vs. hybridization, 87–88

basic local alignment search tool

(BLAST), 8, 159, 197–199

Bayesian analysis, 435

beam search, 156

Bennett, Albert F., 223

best case, 162

beta-actin gene, 349

beta-sheet, 62, 65

bifurcated results, 433

bilayer, 32, 33

bioinformatics

discussion about, 1–7

in action, 16–17

defined, 6, 20

and HIV, 17–19

integration of knowledge in,

122–124

origins of, 5

bioinformatics in action, 15–18

bioinformatics team, 6–9

biological decoder ring

discussion about,295–296

accounting for discontinuous

coding regions, 301–306

ORF finding, 297–301

biological effects of exposure to

radiation, 16

biological hypotheses, 354–356

biologically active configuration,

404–405

biological sequence reassembly,

146–148

biology, 10–16

block indels, 192

BLOSUM, 193–196, 274

blueprints, 21, 22

Boguski, Mark, 334

book reconstruction puzzle, 129, 130

Boolean models, 435

bootstrapping, 260

Boyer, Robert, 163

branch and bound, 257–258

branch-point adenine, 303

Brock, Thomas, 91–92, 93

Brown, Patrick, 114

bugs (bacterial cells), 90

Burge, Chris, 315

C

calling the sequence process, 387

cancer, 81

cancers, 79

Cantor, Charles R., 248

carbon chain, 62

cDNA (complementary DNA), 87

cDNA array, 114

cDNA libraries, 92

cDNA library, 90

Celera Genomics, 99, 101, 102, 104

cell features, 27

cell language

discussion about, 36–37

interpretation of, 39–47

operating system for, 37–39

cell membrane, 32, 33

cells

deciphering, 38–39

languages of, 36–58

programming concepts for, 45

cellular approaches to data

integrity, 78

cellular internet, 11

cellular organization and complexity,

26–28

cellular processors for

DNAStrings, 54

cell wall, 33

Index 447

central dogma of molecular biology,

13, 14, 56

centroid, 364

chain-termination technique, 95

chaos attractor, 434

chaos models, 430–435

chaotic behavior, 431

checksum, 76, 80

chemical bonds, 27–28

chemical bonds and energy, 31–32

chemistry and life, 28–29

chloroplast, 35

chloroplasts, 36

Chromas (software), 99

chronic myelogenous leukemia

(CML), 17

Circos (program), 391

class, 220

classification, 370–373

Clinton, William Jefferson (Bill), 100,

102, 107

clone-by-clone, 106

clone-by-clone approach, 108, 110

cloning vectors, 88, 90

Clostridium botulinum, 80, 83

clustering, 358–369

codes, 51, 59–60

coding region, 296, 297

codons, 50

codon usage, 300

coherent behaviors, 425

collagen, 66, 67

Collins, Francis, 99, 100, 102, 105, 107

combinatorial problems, 138–146

combinatorial problem solution

fragments, 140–141

graph model, 141–142

improving on greed, 144–146

nonoptimum greedy model,

142–144

overlaps, 139–140

common ancestor (concestor),

241, 242

common disease/common variant

(CD/CV) theory, 421

common disease/rare allele

theory, 421

complement, 42, 43

complementary DNA (cDNA), 87, 89

complex datasets

data visualization tools, 390–394

microarray data

visualization, 389

sequencing gel visualization,

384–389

visualization and exploration of,

383–390

complexes, 26, 27

complexity, 278

complex networks, 10

complex systems, 9

computers

origins of, 2, 3–5

searching for genes, 317–318

computer systems vs. living

systems, 10

concatenation, 169

concatenation of zero strings, 169

consensus pattern, 290

consensus sequence, 290

consensus tree techniques, 264

conserved signals, 303

contigs (contiguous sequence), 106,

108, 134, 418

controlled vocabularies and

standardization of microarray

data, 375–378

convergent evolution, 253

copies, explosion of, 91–92, 93–97

copies of nucleotide sequences, 87–93

copy DNA (cDNA), 87

cost, 125

covalent bonds, 29, 30, 41

Crick, Francis, 43, 44–45, 81, 83

cross breeding, 230

cryptographic puzzles

detecting encryption, 278–279

encoding encryption, 279–280

cycles, 92

cyclooxygenase-2 (COX-2) inhibitors,

414–415

448 Index

cystic fibrosis, 418–419

cytoplasm, 34

cytosine (C), 40, 42

cytoskeleton, 34, 35

D

Darwin, Charles, 23, 24, 222

database string, 198

data compression, 74, 76–78, 80

data flood, 334–337

data integrity

cellular approaches to, 78, 80–81

in extremis, 80–81, 83–84

verification of, 76

data integrity verification, 74

data interfaces, 103–104

data maintenance and integrity tasks

backing up DNA data, 70–74

data management challenges, 74–81

data management, 374–378

catching and fixing errors, 81–82

cellular approaches to data

integrity, 80–81

challenges of, 76–84

data compression, 76–78

data integrity in extremis, 83–84

redundancy and data

compression, 80

stem cells and differentiation, 79

verifying data integrity, 76

data preprocessing, 342–350

data transformation, 343

data visualization tools, 390–394

Dawkins, Richard, 219, 228, 276

Dayhoff, Margaret, 5, 193, 195

Dayhoff, Margaret O., 5

Dayhoff matrices, 8

Deep Blue, 22

de Fleury, André-Hercule, 151

degradability of messenger RNA

(mRNA), 50

Deinococcus radiodurans, 83–84

deletions, 221

denaturing process, 92

deoxynucleotide triphosphates

(dNTPs), 95

deoxyribonucleic acid (DNA).

See DNA (deoxyribonucleic

acid)

deoxyribose nucleic acid (DNA), 38

detecting encryption, 278–279

deterministic finite-state automata

(DFAs)

as programs, 166–170

for search, 164–166

development realm, 7

dideoxy sequencing, 95, 98

difference engine, 2

differential equations, 435

differentially expressed genes, 332, 353

differentiated cells, 76, 78

differentiation and stem cells, 77

digraphs, 149

dinosaurs, 10

dipole, 29

dipole bonds, 31

directed sequencing, 105, 107

dirty bits, 61, 62

disease genes

identifying simple, 417–421

mapping complex, 420–421

disulfide bond, 65

disulfide bonds, 64, 65

Division of AIDS of the National

Institute of Allergy and

Infectious Diseases

(NIAID), 110

DNA (deoxyribonucleic acid), 12,

13, 39

duplicating RAID arrays, 71–72

sugar-phosphate backbone of, 40

top or head of molecule, 43

DNA computing, 335

DNA microarrays, 334

DNA packaging, 75

DNA polymerase, 72

DNA polymorphisms, 419

DNA replication, 71, 75

DNA sequencing, 97, 335

DNAStrings

alphabet of, 39–41

cellular processors for, 53, 54

Index 449

executable files from, 48–49

executing code from, 49–50, 56–57

execution of, 56

further nuances in, 57–61

as human language,38–40

nouns in, 44–45

program compilation,

46–47

sequencing, 94–102

synopsis of, 55–56

DNAStrings Code, 59–60

DNAStrings programs,

compiling, 46

dotplots, 173–174

double helix, 40, 42

double-stranded RNA (dsRNA)

molecules, 400–401, 402

Drosophila melanogaster, 102, 104

drug design, structure-based,

408–416. See also rational

drug design

drug development, 409–410

Druker, Brian, 17

dry lab, 124

dry lab techniques, 86, 123–128

Duchenne muscular dystrophy,

418–419

dye bias, 338

dynamic programming algorithms,

196–197

dynamic programming matrices, 185

E

E. coli, 37

EcoRI, 89

electron shells, 28–29

electrophoresis, 97, 100

empty strings, 169

encoding encryption, 279–280

end node, 150

endonucleases, 89, 91

endothermic reactions, 31

energy and chemical bonds, 31–32

entropy, 286

enzyme reverse transcriptase (RT),

87, 89

enzymes, 69, 70

error-correcting codes, 277

error-detecting codes, 277

errors, 81–82

Escherichia coli

adaptations by, 38–39

evolution of, 222–225

protein receptors of, 67

euchromatin, 76, 78

Euclidean distance, 361

eukaryotes, 26, 398–403

eukaryotic cell pathways, 12

eukaryotic genes, 59–60

Euler, Leonhard, 149

Eulerian paths, 149

Euler’s therorm, 150

European Molecular Biology

Laboratories (EMBL), 16

evolution, 9, 22

discussion about, 24–25

catastrophes and, 235–236

changes occurring though, 24

defined, 21

of Escherichia coli, 222–225

functioning of, 23

reverse, 219

tools of, 25

evolutionary considerations, 193–196

evolutionary processes, 221–223

evolutionary programming,

226, 238

evolutionary relationships

discovery of, 249–252

maximum likelihood, 270–274

parsimony, 252–262

tree building alternates, 263–270

exact matching, 173–174

exact pattern matching, 171–172

algorithm analysis, 160–163

DFS’s as programs, 166–170

DFS’s for search, 164–166

naive algorithm, 160–161

pattern matching algorithms,

163–164

suffix trees, 170

450 Index

exhaustive searching, workarounds to,

257–258

exons, 59, 60, 297

exothermic reactions, 31

expected case, 162

expressed-sequence tags

(EST), 421

extension, 92

External RNA Controls Consortium

(ERCC), 378

extinction, 235

extinct species, 242

F

false negatives, 306

false positives, 298

family, 221

FastA, 197–199

fatty acids, 32

feedback, equilibrium, and attractors,

430–435

fibrous proteins, 66

fibrous tertiary structure, 65, 66

final states, 165

fitness, 227

fitness function, 228, 238

5’ cap, 61

five prime end, 42

Fleury’s algorithm, 152

forward strand, 43

four M’s of systems biology, 430

Fox, George, 27

fragment assembly, 128

fragments, 139, 140–141

free energy, 402

from structure to function,

109–110

full-parameter model, 249

functional genomics, 107, 110, 334

functionality, 177

functionally constrained regions,

244–245

function and structure, 394–395

function prediction, 395–410

function prediction and RNA

structure, 395–410

G

Galapagos Islands finches, 222, 237

gap continuation penalty, 193

gap start penalty, 193

GenBank, 16, 336

gene appearance, 307–308

gene expression, 38, 110

discussion about, 329

complications, 331–334

data flood, 334–337

data preprocessing, 342–350

genes in context, 329–330

genotype to phenotype, 330–331

in HIV-infected cells, 342–350

mining data for, 352–355

gene expression

modes of data, 339–342

noisy data, 337–338

gene expression analysis, 108,

335–336

gene expression matrix, 356

gene family, 45

gene filtering, 343

gene finding by learning, 317–318

Gene Ontology (GO), 336, 376

gene prediction, 305

gene regulation by RNAs, 398–403

genes, 24, 25, 277

discussion about, 277

computer searching for, 317–318

in context, 329–330

as Markov processes, 314–317

genes and expression vectors,

351–353

genes found through mathematics

discussion about, 306–307

gene appearance, 307–308

genes as Markov processes,

314–317

linguistic complexity, 307

Markov models, 308–314

genetic algorithms (GAs), 228, 373

evolving solutions with, 318

a first pass, 226–228

for gene finding, 238–241

Index 451

genetic code, 50

GenMAPP (tool), 373, 393

genome, 16, 34, 35, 37, 39–40

genome cracking, 281–295

genome mapping, 417

genomic sequence data, 6

genotype, 332

genotype to phenotype, 330–331

genotypic changes, 24, 25

Genscan, 315

genus, 221

Gilbert, Walter, 95, 98, 384

Gleevec (imatinib mesylate), 17

Gleick, James, 431

Glimmer (gene locator and

interpolated Markov

modeler), 239

global alignment, 180–187

globular proteins, 66

globular tertiary structure, 65, 66

glycolysis, 69

Golub, Todd, 370

goodness, 227

granularity, 429

graphics, ranking, and interaction for

discovery (GRID) strategy, 392

graph model, 141–142

greedy algorithm, 125, 143, 144–146

gridding, 340

guanine, 40

guanine (G), 42

guide tree, 204

H

Haemophilus influenzae, 89, 91

Hamilton, William Rowan, 142

Hamilton paths, 142

Hamming, Richard, 277

haplotypes, 422

hashing, 163

Haussler, David, 104–105, 106

heat shock genes, 224

heat-tolerant bacteria, 90

hemoglobin, 66

hemophilias, 417

Hemophilus influenzae, 102, 104

Herceptin (trastuzumab), 17

heterochromatin, 76, 78

heterogeneity of viral genome, 95

heuristic approaches, 197–199

heuristics, 140

hidden Markov model (HMM), 315

hierarchical clustering, 363

Hierarchical Clustering Explorer

(HCE) (program), 353, 372,

391–392

Hieter, Phil, 334

Hind II, 89

histones, 75, 77, 244

HIV

discussion about, 84–85

and bioinformatics, 17–19

gene expression of, 108

heterogeneity of, 97

modeling mutation rates in,

246–247

and multiple sequence alignments,

204–205

types and frequency of mutations

in, 247

HIV drug development, 17

HIV-infected cells, 342–350

HIV integration sites, 282–283

HIV protease inhibitors, 412–413

homeostasis, 33, 34, 425

homology threading approach,

413–414

Hood, Leroy, 98, 100

housekeeping genes, 346, 349

Hoyle, Fred, 81, 83

human genome, 16, 101

Human Genome Browser,

104–105, 106

Human Genome Project,

99, 101, 128

approach shift, 107–111

computing to the rescue, 102–107

data access, 105–106

mission impossible, 102–107

putting it all together, 121–122

sequencing of, 100–105

sequencing strategies, 105–107

452 Index

human immunodeficiency virus (HIV)

discussions of, 17–18

as exemplar, 86

protease inhibitors for, 17

hunches, 140

Huntington disease, 418–419

hybridization, 85–86

vs. base-pairing, 87–88

putting base pairs to work,

87–89

sequencing by, 148–155

hybrid models, 436

hybridoma cells, 119

hydrogen bonds, 30, 31

hydrophilic acids, 32, 33

hydrophobic acids, 32, 33

hypotheses

advanced classification algorithms,

373–374

classification, 370–373

clustering, 358–369

forming new, 356–357

organizing data, 356–358

visualization techniques to aid

interpretation, 371–373

hypothesis testing, 354

I

idealized problems, 138

identifying simple disease genes,

417–421

imatinib mesylate (Gleevec), 17

in-degree, 150

indel, 179

inducers, 46

information-based medicine

discussion about, 416–417

identifying simple disease genes,

417–421

mapping complex diseases,

420–421

resources for information-based

medicine, 424

information extraction, 341

informative sequences, 254

in-frame, 238

initiation penalty, 193

inputs in systems biology, 428–429

insertions, 221

in silico, 225

in situ hybridization, 86, 122

Institute for Genome Research

(TIGR), 99

The Institute for Genome Research

(TIGR), 101

instrumenting, 206

integrating signals, 38

intelligent design, 225, 427–428

International HapMap Project, 422

Internet, 11

intron-exon boundaries, 303

introns, 59, 60, 297

found through conserved

signals, 303

found through sequence

homology, 304

found through spliceosomal

signals, 304

in vitro, 225

in vivo, 225

ionic bonds, 29, 30

J

jigsaw puzzles, 129

Journal of Molecular Biology, 199

Jukes, Thomas H., 248

Jukes-Cantor model, 248

K

Karlin, Sam, 315

Karp, Richard M., 163

Kasparov, Gary, 22

Kent, Jim, 104–105, 106, 107

Kimura, Motoo, 248

Kimura 2 parameter, 248

kinases, 70, 72

kingdoms, 220

Kleene closure, 169

k-means clustering, 363–364

knockout experiments,

122–123, 426

knowledge environments (KE), 118

Index 453

Knuth-Morris-Pratt algorithm, 164

Krzywinski, Martin, 391

L

Laboratory Information Management

Systems (LIMS), 118

lac operons, 46

lagging strand, 73, 75

language evolution, 249–250

last universal common ancestor

(LUCA), 219

Lauffenburger, Douglas, 430

leading strand, 73, 75

Lenski, Richard E., 223

life, 9–11

ligands, 67, 69, 411

likelihood of occurrence, 288

linguistic complexity, 307

linkage, 418

linkage analysis, 420

linker DNA, 75, 77

local alignment, 187–192

location clues, 132–133

log2 transformation, 343

logarithm of the odds (LoD)

score, 420

log odds ratio, 288

long-branch attraction, 273

long interspersed elements

(LINE), 148

Los Alamos National

Laboratory, 16

Lovelace, Ada, 4–5

M

machine-learning technique, 370

macromolecules, 31, 32

malaria (Plasmodium falciparum),

26, 27

Manber, Udi, 183

Mandelbrot, Benoit, 431

Mandelbrot set, 431

mapping, 107, 109, 133

of complex diseases, 420–421

of the Internet, 11

marginal indicators, 343

Markov models, 239, 308–314

Markov processes, 314–317

mass spectrometry, 120

Maxam, Allan, 95, 98, 384

Maxam and Gilbert sequencing,

95, 98

maximum likelihood, 270–274

maximum parsimony, 250, 256

meaningful information, 277

measurement of Shannon entropy of

sequences, 286

Mendel, Gregor, 1

Mendel’s laws, 1

messenger RNA (mRNA), 48, 49

metabolic pathways, 69

metadata, 374

methylation, 89, 91

MFold (program), 336

mfold approach, 404

MGED Ontology (MO), 377

micelles, 33

Microarray and Gene Expression

(MAGE), 377

Microarray Array Quality

Consortium (MAQC), 338

microarray databases, 375

microarray data visualization, 390

MicroarrayExplorer (MAExplorer)

(software), 350

Microarray Gene Expression

Database (MGED), 377

Microarray Oligonucleotide Design

and Integrative Tool

(MODIT), 336

MicroArray Quality Control (MAQC)

Project, 377

microarrays, 5, 111, 113

microarray technology, 111, 113

microbial gene finder, 239

microRNAs (miRNA), 398

minimizing scores, 185

minimum free energy approach

problems, 404–405

minimum free energy

configuration, 402

454 Index

minimum free energy

conformation, 411

minimum free energy conformation of

a protein, 414

minimum information about a

microarray experiment

(MIAME), 377

minimum spanning tree problem, 125

mining data, 352–355

mismatch (MM) sequences, 343

mismatch repair enzymes, 79, 82

mitochondria, 35, 36

mitochondrial sequences, 253–254

modeling evolutionary relationships

discussion about, 241–249

models of mutation, 243–249

model selection, 435–436

models of mutation, 243–249

modern approach to systems biology,

429–430

modes of data, 339–342

modularity, 426

modular systems, 10

module, 10

molecular clock hypothesis, 222, 266

molecular scissors, 89

molecules, structure of, 394

monkey evolution, 234–238

monkey Shakespeare, 228–230, 234

monoclonal antibodies, 119

Moore, J. Strother, 163

morphological characters, 253

Morse code, 51, 53

Mullis, Kerry, 91, 93

multi-celled organisms, 25

multiple alignments, 199–205

multiple coverage, 130–132

multiple jigsaw puzzle, 130

multiple most parsimonious trees

(multiple MPTs), 259–262

multiple sequence alignments and

HIV, 204–205

mutation, 23, 24, 221, 226

mutation rates

estimating, 247

modeling, 248

N

naive algorithm, 160–161

National Human Genome Research

Institute (NHGRI), 99, 101

National Institutes of Health, 16

National Institutes of Health

(NIH), 102

natural selection, 23, 24

Nature, 99, 102

NCBI Gene Expression Omnibus

(GEO), 362

Needleman, S. B., 5

Needleman-Wunsch algorithms, 5,

180–187

neighbor joining, 267

neighbor relations, 267

nodes, 150

noise, 277

noise reduction, 338

noisy data, 337–338

cleaning up, 342–343

noise reduction, 338

nondeterministic finite-state automata

(NFAs), 166

nonoptimum greedy model, 142–144

nonsynonymous substitution, 244

normalization, 387

within and across arrays, 344–345

by regression techniques

method, 347

Northern blot, 108–113

NP complete problem, 126

nuclear magnetic resonance

(NMR), 412

nucleosomes, 75, 77

nucleotide properties, 405

nucleotides, 40

nucleotide sequences, 87–93

nucleus, 34, 35

O

object-oriented databases, 375

Occam, William of, 251

Occam’s razor, 251, 435

Okazaki fragments, 73, 74, 75

Index 455

oligoarray, 114, 115

oligoes, 148

oligonucleotide design, 336–337

Online Mendelian Inheritance in Man

(OMIM) database, 420

On the Origin of Species (Darwin),

23, 24

ontologies, 376

open reading frames (ORFs), 57,

58, 296

operons, 46

ORF finding, 297–301

organelles, 26, 27, 36

organic molecules, 31–32

organizing data, 356–358

origin of replication, 72, 74

out-degree, 150

outgroup, 266

outputs, 429

overlap graph, 141

overlaps, 133–134, 139–140

P

paired t-tests, 355

palindromic sequences, 283

PAM, 193–196, 274

Paramecium, 26

parsimonius explanations, 251

parsimony, 252–262

PathDb (tool), 393

pathways within an eukaryotic

cell, 12

pattern, 158

pattern matching, 159

pattern matching algorithms, 163–164

patterns found in sequence

data, 284

PCR amplification, 95

PCR reactions, 96

Pearson, William, 195

Pearson correlation, 359–360

Penrose, Roger, 431

Peppered Moth (Biston betularia), 22,

23–24

peptide backbone, 64, 65

peptide bonds, 56, 62, 64

perfect match (PM) sequences, 343

periodic table of elements, 27–28, 29

phages, 89

pharmaceutical cautionary tale,

414–415

pharmaceutical fairy tale, 409–410

pharmaceutical research, 16

pharmacogenetics, 423

pharmacogenomics, 423

phenotype, 330–331, 332

phenotypic changes, 24, 25

phosphatase, 70, 72

Phrap, 147

Phred, 147

phyla, 220

phylogenetic analyses, 254

phylogenetic reconstruction, 258

phylogenetics, 243

phylogenetic tree, 243

phylogeny, 242

physical maps, 418

physiological genetics, 331

plasmids, 88, 232

pluripotent cells, 79

point accepted mutation (PAM), 193

point accepted mutation (PAM)

matrices, 8

point mutations, 221

polyadenylation, 61, 62

polyadenylation signal, 295

polymerase chain reaction (PCR), 87,

91. See also amplification

polymorphic markers, 419

position-specific weight matrix

(PSWM), 292

post-transcriptional gene

silencing, 402

prediction of minimum free energy

conformation of a protein, 414

prefix property, 325

Prefuse (toolkit), 373, 392

present indicators, 343–345

primary antibodies, 120

primary structure, 62, 65

primates, 259–260

primers, 87, 134

456 Index

probability analysis, 162–163

probes, 336, 375

probe sequence, 86, 88

problem analysis, 126

problem statement, 139–140

profiling, 114–118

programming concepts, 45

programming languages, 5

programs. See software/programs

prokaryotes, 26, 57, 58

prokaryotic genes, 58

promoter, 45

promoter region, 293

protease inhibitors for HIV, 17

protein expression, 335

protein folds, 411

protein interactions, 67, 68–69

protein machines, 68–69, 70–71

proteins

as cellular hardware, 62–72

as cellular machines, 61–70

as engineered machines, 67–70

as engineered molecules, 68–72

as molecules, 62–68

protein structure, 62, 65

protein structure prediction and drug

design, 413–415

protein synthesis, 38

proteomics techniques, 118–122

protozoa, 26, 27

pseudoknots, 405

purines, 40, 42

p-value, 354

pyrimidines, 40, 42

Q

quantitative trait loci (QTL), 421

quarternary structure, 66, 68

query sequence, 86, 88

R

Rabin, Michael O., 163

RAID1 array approach, 82

RAID arrays, 71

randomization, 338

Rasp system, 430–431

rate of change, 435

rational drug design, 16, 17

drug development, 409–410

pharmaceutical cautionary tale,

414–415

pharmaceutical fairy tale, 408–409

resources for, 416

structure-based drug design,

408–416

through protein structure and

function prediction, 414–415

ratio of the so-called housekeeping

genes method, 349

R chain, 62

reading frame, 298

reagents for experimentation, 110

real-time PCR, 96

real-time PCR (RT-PCR), 93

real-time RT-PCR, 110

reannealing, 86, 88

receptors, 33, 34

recombinant DNA, 88

recombinant plasmids, 93

redundancy, 76, 80, 277, 426

regular expression, 168

regular set, 168

regulating genes, 293–295

relationships, 205

RepeatMasker (program), 336

repeat regions, 137

repeats, 135

replication, 338–339

replication module, 12, 13

repressors, 46

resources

for information-based

medicine, 424

for rational drug design, 416

for structure prediction, 406–407

for systems biology, 439–440

restriction endonucleases, 283

restriction enzymes, 89, 91

restriction fragment-length

polymorphism (RFLP), 419

retrotransposons, 137

retroviruses, 85, 87

Index 457

reverse complement, 43, 284

reverse genetics, 418

reverse mapping, 305

reverse strand, 43

reverse transcriptase, 56, 87, 137

reverse transcription, 87, 89

reverse translation, 305

Rev responsive element (RRE), 398

ribonucleic acid (RNA). See RNA

(ribonucleic acid)

ribosomes, 49, 54–56, 238–239,

333–334, 400, 402

ribozyme, 402

RNA (ribonucleic acid), 13

gene expression, 108, 335

in higher eukaryotes, 398–403

sequencing, 95

RNA expression, 331

RNA interference (RNAi), 399, 401

RNA polymerase, 46, 47

RNA structures

and function prediction, 395–410

identification of, 396–397

in machines, 401–405

resources for structure prediction,

406–407

solving structures for functional

RNAs, 395–397

structural RNAs and gene

regulation, 398–403

robust, 9

robustness, 10

robust systems, 9

rofecoxib, 414–415

RT-PCR reaction, 97

Rutherford, Ernest, 8, 9

S

Sanger, Fred, 95, 98, 384

Sanger sequencing, 95, 98

scaffolds, 106, 108, 134

scaffold structure, 413

scaling, 344

ScanAnalyze (software), 341

Science, 99, 101, 102

SDS-PAGE, 120

secondary antibodies, 65, 120

secondary structures, 62, 395

segmentation, 341

selecting/selection, 226

selection, 23

selection pressure, 24, 25

selectivity, 173, 175–176, 336

self-organizing maps (SOMs),

367, 369

self-reproduction, 9

sensitivity, 173, 175–176, 336

Seo, Jinwook, 391–392

sequence-calling software, 388

sequence conservation, 104, 107

sequence data, 284

sequence homology, 304, 412

sequence reassembly puzzle, 130

sequence reconstruction puzzle, 129

sequences, 139

sequence-tagged sites (STS), 133

sequence visualization, 390–391

sequence walking, 134

sequencing

DNAstrings, 97–102

of electrophoresis gel, 103

of human genome, 101

strategies for the human

genome, 109

sequencing by hybridization,

148–155

sequencing gel visualization, 384–389

sequencing techniques, 95

serial analysis of gene expression

(SAGE), 118, 334

setting permissions, 60–61

sex, 231–232

sexual reproduction, 231–232

Shannon, Claude, 277

Shannon entropy, 278, 287

Shannon entropy of sequences, 286

Shannon’s theory, 277, 278

Shine-Dalgarno region, 238–239

shortest common superstring

problem, 139

signal, 282

signaling cascades, 38

458 Index

signals, 291

simian immunodeficiency virus (SIV),

205, 270

similarity, 359

similarity detection, 159, 172–173

simplified molecular input line entry

system (SMILE) string, 415

simulating evolution

first pass genetic algorithms,

226–228

gene finding genetic algorithms,

238–241

monkey evolution, 234–238

monkey Shakespeare, 228–230, 234

in silico, 225–241

single-celled organisms, 25

single-nucleotide polymorphisms

(SNPs), 335, 421

size of problems, 136–138

skunks vs. weasels, 253–254, 256

small interfering RNAs (siRNAs),

399, 401–402

small nuclear ribonucleoprotein

particles (snRNPs), 302, 402

Smith, Michael, 191

Smith-Waterman algorithm,

187–192

software/programs

Chromas (software), 99

Circos (program), 391

Hierarchical Clustering Explorer

(HCE) (program), 391–392

MFold (program), 336

MicroarrayExplorer (MAExplorer)

(software), 350

origins of, 4–5

Prefuse (toolkit), 373, 392

RepeatMasker (program), 336

ScanAnalyze (software), 341

sequence-calling software, 388

Spot (software), 341

SpotFinder (software), 341

Standardization and

NOrmalization of MicroArray

Data (SNOMAD)

(software), 353

statistical software packages, 355

to work with genes and expression

vectors, 350–351

solving structures for functional

RNAs, 395–410

space/time analysis of dynamic

programming algorithms,

196–197

speciation, 23, 24, 236

speciation process, 242

species, 21, 22, 221

specificity, 67, 69

specimen string, 198

spliceosomal signals, 304

spliceosome, 60–61, 302

splicing, 60, 301

Spot (software), 341

SpotFinder (software), 341

spot intensity extraction, 341

spotted cDNA microarray, 114, 115

Standardization and NOrmalization

of MicroArray Data

(SNOMAD) (software), 353

Stanford University HIV Drug

Resistance Database, 110

start codons, 55, 296

start node, 150

start state, 165

states, 164

statistical hypotheses, 354–356

statistical software packages, 355

steady state, 433

stem cells and differentiation, 77, 79

stochastic models, 435

stochastic network model, 435

stochastic process, 24, 25

stop codons, 55, 165, 296

strange attractors, 434

strategies for sequencing the human

genome, 109

stress, 223

strings, 139

structural genomics, 107, 110, 334

structural RNAs, 395

structural RNAs and gene regulation,

398–403

Index 459

structure, 394–395

structure-based drug design, 408–416.

See also rational drug design

structured query language (SQL), 375

sublinear performance, 164

subsequences, 139

substrings, 139

suffix trees, 170

sugar-phospahte backbone, 40

supervised approach, 370

support vector machine (SVM),

373–374

synonymous substitution, 244

synthesized, 38

synthesized proteins, 38

synthetic dideoxynucleotide

triphosphates (ddNTPs), 96

systems approach to biology, 11–15

systems biology, 11, 13

discussion about, 424–428

feedback, equilibrium, and

attractors, 430–435

four M’s of, 430

inputs, 428–429

model selection, 435–436

modern approach to, 429–430

outputs, 429

resources for, 439–440

T

Taq polymerase, 92, 94

target text, 158

TATA box, 278

T cells, 69

templates, 72

terminators, 295

tertiary structure, 65, 66, 67, 411

testing biological hypotheses, 354–356

testing set, 240

theoretical, 7

theoretical realm, 7

thermocyclers, 92, 94

Thermus aquaticus, 92, 94

three-dimensional structure of

a molecule, 394

thymidine, 40, 42

thymine (T), 43, 48

total intensity normalization

method, 346

training set, 239, 240

transcription, 13, 47

transcriptional control, 293

transcriptional profile

(transcriptome), 116

transcriptional profiling, 335

transcription factor-binding sites

(TFBSs), 293

transcription factors, 293

transcriptomes, 114–118, 335

transfer RNA (tRNA), 54, 395–396

transformation, 90, 92, 343

transition mutation, 246

transition probability, 309

transitions, 164

translation, 13, 49

transmembrane (TM) proteins, 68, 70

transponsons, 137

transversion, 246

trastuzumab (Herceptin), 17

tree building alternates, 263–270

tree of life, 25, 26, 219, 220, 242

t-test, 354–355

2-dimensional (2-D)

electrophoresis, 120

tyrosine kinase, 17

U

unanticipated eventualities, 225

unanticipated patterns, 172

unexpected coincidences, 172

UniGene, 336

uninformative sequences, 254

union, 169

unsupervised clustering

algorithms, 389

unweighted pair group method with

arithmetic mean (UPGMA),

263–270

uracil, 48

U.S. Department of Energy, 16

users, 7, 8

460 Index

U.S. Food and Drug Administration

(FDA), 409

U.S. Human Genome Project

(HGP), 16

U.S. Human Genome Project (HGP)

project, 15–16

V

Venter, J. Craig, 99, 100, 101, 102,

104, 105, 107

Vioxx story, 414–415

viral genome heterogeneity, 95

viruses, 67, 69

visualization and exploration of

complex datasets, 383–390

visualization techniques to aid

interpretation, 371–373

W

Waterman, Temple, 191

Watson, James, 43, 44, 99, 102, 104

Watson-Crick base pairing, 43, 85–86

weasels vs. skunks, 253–254, 256

weight, 125, 142

Weininger, David, 415

western blot, 119

wet lab, 124

wet lab techniques, 86

whole-genome shotgun sequencing

(WGS), 104–107, 108, 134–135

Woese, Carl, 27

worst case, 162

worst-case scenarios, 126

Wunsch, C. D., 5

X

X-ray crystallography, 412

Z

Z score transformation, 349

FIGURE 1.5 A microarray.

(Courtesy of the Center for Array Technologies at the University of Washington)

FIGURE 9.1 Graphs of each column of data. It is next to impossible to determine the

order in which peaks occur.

40

35

30

A

C

G

T

25

20

15

10

5

0

FIGURE 9.2 One graph for all four columns of data. It is difficult to identify the

nucleotides corresponding to a consecutive sequence of peaks.

1.2

1

0.8

0.6

0.4

0.2

0

A

C

G

T

FIGURE 9.3 One graph for all four columns of normalized data. The sequence of

bases is fairly discernible.

4

3

2

1

0

A

C

G

T

FIGURE 9.4 One graph for all four columns of data normalized to the same mean

and standard deviation. The sequence of bases is readily discernible.

Mouse
Mus musculus

Human
Homo sapiens

Chicken
Gallus gallus

Rhesus Macaque
Gallus gallus

Chimp
Pan troglodytes

FIGURE 9.5 An image from Circos. This emphasizes gene similarities between

human, rhesus monkey, chimp, chicken, and mouse genomes. Shaded arcs connect

similar regions. Line charts and bar charts indicate the degree of similarities.

© M. Krzywinski (2005) Circos http://mkweb.bcgsc.ca/circos

	Title
	Contents
	Chapter 1 Road Map
	1.1 What Is Bioinformatics?
	1.2 A Bioinformatics Team
	1.3 What Defines Life?
	1.4 A Systems Approach to Biology
	1.5 Bioinformatics in Action
	1.5.1 Deciphering a Killer: HIV and Bioinformatics

	1.6 The Road Ahead
	Summary
	Key Terms
	Bibliography

	Chapter 2 Biological Basics
	2.1 The Blind Engineer
	2.1.1 The Case of the Peppered Moth
	2.1.2 How Evolution Works
	2.1.3 Evolution’s Palette

	2.2 Compute Machine par Excellence
	2.2.1 Cellular Organization and Complexity
	2.2.2 Chemistry and Life
	2.2.3 A Parts List for Life

	2.3 The Languages of the Cell
	2.3.1 Operating Systems for Cells
	2.3.2 Deciphering the Language of Cells
	2.3.3 Compiling DNAStrings Programs
	2.3.4 Executing Code from DNAStrings

	2.4 Further Nuances in DNAStrings
	2.5 Proteins: Cellular Machines
	2.5.1 Proteins as Molecules
	2.5.2 Proteins as Engineered Machines

	2.6 Data Maintenance and Integrity Tasks
	2.6.1 Backing up DNA Data
	2.6.2 The Challenges of Data Management

	Key Terms
	Bibliography

	Chapter 3 Wet and Dry Lab Techniques
	3.1 Hybridization: Putting Base Pairs to Work
	3.2 Making Copies of Nucleotide Sequences
	3.3 An Explosion of Copies
	3.4 Sequencing DNA Strings
	3.5 The Human Genome Project: Computing to the Rescue
	3.5.1 Mission Impossible: Sequencing the Human Genome

	3.6 Human Genome Sequencing Strategies
	3.7 From Structure to Function
	3.8 Profiling the Transcriptome
	3.9 A Few Proteomics Techniques
	3.10 Putting It All Together
	3.11 A Few Selected Dry Lab Techniques
	3.11.1 Algorithms
	3.11.2 Analysis

	Key Terms
	Bibliography

	Chapter 4 Fragment Assembly
	4.1 The Nature of the Problem
	4.1.1 Two Analogies
	4.1.2 The Need for Multiple Coverage

	4.2 Putting the Pieces Together
	4.2.1 Location, Location, Location
	4.2.2 Mapping
	4.2.3 Using Overlaps
	4.2.4 Whole-Genome Sequencing
	4.2.5 The Problem of Repeats
	4.2.6 A Worked Example

	4.3 The Size of the Problem
	4.4 A Purely Combinatorial Problem
	4.4.1 Problem Statement

	4.5 Solving the Combinatorial Problem
	4.5.1 Overlaps
	4.5.2 FragmentsWithin Fragments
	4.5.3 A Graph Model
	4.5.4 A Nonoptimal Greedy Algorithm
	4.5.5 Improving on Greed

	4.6 Biological Sequence Reassembly
	4.7 Sequencing by Hybridization
	4.7.1 A Worked Example

	4.8 Exercises for Chapter 4
	Key Terms
	Bibliography

	Chapter 5 Sequence Alignment
	5.1 Exact Pattern Matching
	5.1.1 The Naïve Algorithm
	5.1.2 Algorithm Analysis
	5.1.3 Other Pattern-Matching Algorithms
	5.1.4 DFAs for Search
	5.1.5 DFAs as Programs
	5.1.6 Suffix Trees
	5.1.7 A Worked Example: abracadabara
	5.1.8 Recap of Exact Pattern Matching

	5.2 Things People Do Well: Similarity Detection
	5.3 Computers Helping People: Presenting DotPlots
	5.3.1 Straight DotPlot: Searching for Areas of Exact Matching
	5.3.2 A Worked Example: Can You Dance the Can-Can?
	5.3.3 Controlling Sensitivity and Selectivity

	5.4 People Helping Computers: Algorithms
	5.4.1 Alignment
	5.4.2 Quality of Alignments: Scoring Schemes
	5.4.3 Global Alignments: The Needleman–Wunsch Algorithms
	5.4.4 A Worked Example
	5.4.5 Local Alignments: The Smith–Waterman Algorithm
	5.4.6 A Worked Example

	5.5 Affine Gap Penalties
	5.6 Evolutionary Considerations
	5.6.1 PAM and BLOSUM

	5.7 Space/Time Analysis of Dynamic Programming Algorithms
	5.8 Heuristic Approaches: Fast A and BLAST
	5.8.1 A Worked Example: Bill Gates at Ballgames

	5.9 Multiple Alignments
	5.9.1 A Worked Example
	5.9.2 Analysis of Multiple-Alignment Algorithms

	5.10 Exercises for Chapter 5
	Key Terms
	Bibliography

	Chapter 6 Simulating and Modeling Evolution
	6.1 The Biological Time Machine
	6.1.1 Evolutionary Processes

	6.2 E. coli Evolution
	6.3 Simulating Evolution in Silico
	6.3.1 Genetic Algorithms: A First Pass
	6.3.2 Monkey Shakespeare: An Extended Example
	6.3.3 Monkey Evolution: Making Whales from Weasels
	6.3.4 A Worked Example: A Genetic Algorithm for Gene Finding

	6.4 Modeling Evolutionary Relationships
	6.4.1 Models of Mutation

	6.5 Discovering Evolutionary Relationships
	6.5.1 Parsimony
	6.5.2 Other Ways to Build Trees
	6.5.3 Maximum Likelihood

	Key Terms
	Bibliography

	Chapter 7 Gene Finding
	7.1 A Modern Cryptographic Puzzle
	7.1.1 Detecting Encryption
	7.1.2 Encoding Information

	7.2 Cracking the Genome: A First Pass
	7.2.1 A Worked Example: HIV Integration Sites
	7.2.2 Regulating Genes: Transcription Factor-Binding Sites

	7.3 A Biological Decoder Ring
	7.3.1 A First Try at Decryption: ORF Finding
	7.3.2 Accounting for Discontinuous Coding Regions

	7.4 Finding Genes Through Mathematics
	7.4.1 Linguistic Complexity
	7.4.2 Looks Like a
	7.4.3 Markov Models
	7.4.4 Genes as Markov Processes

	Key Terms
	Bibliography
	7.5 Gene Finding by Learning: Letting a Computer Do It
	7.6 Exercises for Chapter 7

	Chapter 8 Gene Expression
	8.1 Introduction
	8.2 Genes in Context
	8.3 Genotype to Phenotype
	8.4 The Expected (by now) Complications of Biology
	8.5 A Flood of Data
	8.6 Noisy Data
	8.6.1 Turning down the Noise

	8.7 The Many Modes of Gene Expression Data
	8.8 A Worked Example: Gene Expression in HIV-Infected Cells
	8.8.1 Data Preprocessing

	8.9 Programs to Work with Genes and Expression Vectors
	8.10 Mining the Gene Expression Data
	8.10.1 A Worked Example: Looking for Differentially Expressed Genes
	8.10.2 Testing Biological Hypotheses with Statistical Hypotheses

	8.11 A Worked Example: Forming New Hypotheses
	8.11.1 Organizing the Data
	8.11.2 Clustering
	8.11.3 Classification
	8.11.4 Using Visualization Techniques to Aid Interpretation
	8.11.5 Advanced Classification Algorithms

	8.12 Data Management
	8.12.1 Controlled Vocabularies and Standardization of Microarray Data

	8.13 Exercises for Chapter 8
	Key Terms
	Bibliography

	Chapter 9 Projects
	9.1 Visualization and Exploration of Complex Datasets
	9.1.1 Sequencing Gel Visualization
	9.1.2 Microarray Data Visualization
	9.1.3 Data Visualization Tools
	9.1.4 Over to You
	9.1.5 Resources for Visualization

	9.2 RNA Structure and Function Prediction
	9.2.1 Solving Structures for Functional RNAs: Early Successes
	9.2.2 Structural RNAs and Gene Regulation
	9.2.3 RNA Structures in Machines: Solving Complex Structures
	9.2.4 Over to You
	9.2.5 Resources for Structure Prediction

	9.3 Rational Drug Design Through Protein Structure and Function Prediction
	9.3.1 A Pharmaceutical Fairy Tale
	9.3.2 Drug Development: One in a Million Chances
	9.3.3 Structure-Based Drug Design
	9.3.4 A Pharmaceutical Cautionary Tale
	9.3.5 Over to You
	9.3.6 Resources for Rational Drug Design

	9.4 Information-Based Medicine
	9.4.1 Identifying Simple Disease Genes
	9.4.2 The Challenge of Mapping Complex Diseases
	9.4.3 Over to You
	9.4.4 Resources for Information-Based Medicine

	9.5 Systems Biology
	9.5.1 Introduction
	9.5.2 Inputs
	9.5.3 Outputs
	9.5.4 Modern Approach to Systems Biology
	9.5.5 Feedback, Equilibrium, and Attractors
	9.5.6 What Kind of Model?
	9.5.7 Over to You
	9.5.8 Resources for Systems Biology

	Key Terms
	Bibliography

	Index

