
Computer Programming

As per

JNTU-Kakinada

Syllabus regulation 

2013

First Edition



ABOUT THE AUTHOR

E Balagurusamy, former Vice Chancellor, Anna University, Chennai, is currently Chairman, EBG 

Foundation, Bangalore. He is a teacher, trainer, and consultant in the fi elds of Information Technology and 

Management and Member, Union Public Service Commission (UPSC), New Delhi. 

He holds an ME (Hons) in Electrical Engineering and PhD in Systems Engineering from the Indian 

Institute of Technology, Roorkee. His areas of interest include Object-Oriented Software Engineering, 

Electronic Business, Technology Management, Business Process Re-engineering, and Total Quality 

Management.

A prolifi c writer, he has authored a large number of research papers and several books. His best-selling 

books, among others, include

 ∑ Fundamentals of Computers

 ∑ Computing Fundamentals and C Programming

 ∑ Programming in ANSI C, 5/e

 ∑ Programming in Java, 4/e

 ∑ Object Oriented Programming with C++, 5/e

 ∑ Programming in BASIC, 3/e

 ∑ Programming in C#, 3/e

 ∑ Numerical Methods

 ∑ Reliability Engineering

A recipient of numerous honours and awards, he has been listed in the Directory of Who’s Who of Intellectuals 

and in the Directory of Distinguished Leaders in Education.



Computer Programming

E Balagurusamy

Founder

EBG Foundation

Coimbatore

As per

JNTU-Kakinada

Syllabus regulation 

2013

First Edition

McGraw Hill Education (India) Private Limited
NEW DELHI

McGraw Hill Education Offi ces

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto



McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

P-24, Green Park Extension, New Delhi 110 016

Computer Programming, 1e

Copyright © 2014, by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, 

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of 

the publishers. The program listing (if any) may be entered, stored and executed in a computer system, but they may not 

be reproduced for publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited. 

ISBN (13): 978-93-5134-294-6

ISBN (10): 93-5134-294-8

Vice President and Managing Director: Ajay Shukla 

Head—Higher Education Publishing and Marketing: Vibha Mahajan

Publishing Manager (SEM & Tech. Ed.): Shalini Jha

Editorial Executive—Acquisitions: S. Vamsi Deepak

Manager—Production Systems: Satinder S Baveja 

Assistant Manager—Editorial Services: Sohini Mukherjee

Senior Production Executive: Suhaib Ali

Assistant General Manager—Higher Education (Marketing): Vijay Sarathi

Senior Product Specialist: Tina Jajoriya

Senior Graphic Designer—Cover: Meenu Raghav

General Manager—Production: Rajender P Ghansela

Production Manager—Reji Kumar 

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable. 

However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information 

published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions, 

or damages arising out of use of this information. This work is published with the understanding that McGraw Hill Education 

(India) and its authors are supplying information but are not attempting to render engineering or other professional services. 

If such services are required, the assistance of an appropriate professional should be sought.

Typeset at Text-o-Graphics, B-1/56, Aravali Apartment, Sector-34, Noida 201 301, and printed at

Cover Printer: 



 Preface ix

 Roadmap to the Syllabus xi

Unit 1 Introduction to Computers, Problem Solving and Basic of C 1.1

 Introduction to Computers and Problem Solving 1.1

 1.1 Introduction 1.1

 1.2 Computer Systems (Hardware & Software Concepts) 1.2

 1.3 Programming Languages (Computer Languages) 1.11

 1.4 Programming Environment 1.14

 1.5 Creating and Running Programs 1.15

 1.6 Software Development Method (Program Development Steps) 1.21

 1.7 Applying Software Development Method 1.25

 1.8 Problem Solving 1.26

 1.9 Algorithms 1.26

 1.10 Flowcharts 1.29

 1.11 Pseudocodes 1.37

 1.12 Problem-Solving Examples 1.40

 Basics of C 1.45

 1.13 History of C 1.45

 1.14 Importance of C 1.46

 1.15 Sample Program 1: Printing a Message 1.47

 1.16 Sample Program 2: Adding Two Numbers 1.49

 1.17 Sample Program 3: Interest Calculation 1.51

 1.18 Sample Program 4: Use of Subroutines 1.52

 1.19 Sample Program 5: Use of Math Functions 1.53

 1.20 Basic Structure of C Programs 1.54

 1.21 Programming Style 1.55

 1.22 Program Development Steps 1.56

 1.23 Unix System 1.57

 1.24 MS-DOS System 1.58

 1.25 Introduction to Constants, Variables, and Data Types 1.59

 1.26 Character Set 1.59

 1.27 C Tokens 1.60

 1.28 Keywords and Identifi ers 1.61

 1.29 Constants 1.62

 1.30 Variables 1.65

 1.31 Data Types 1.66

 1.32 Declaration of Variables 1.69

 1.33 Declaration of Storage Class 1.72

 1.34 Assigning Values to Variables 1.73

 1.35 Defi ning Symbolic Constants 1.77

 1.36 Declaring a Variable as Constant 1.79

 1.37 Declaring a Variable as Volatile 1.79

CONTENTS



vi Contents

 1.38 Overfl ow and Underfl ow of Data 1.79

 1.39 Introduction to Managing Input and Output Operations 1.80

 1.40 Reading a Character 1.80

 1.41 Writing a Character 1.83

 1.42 Formatted Input 1.84

 1.43 Formatted Output 1.92

 1.44 Introduction to Operators and Expresssions 1.99

 1.45 Arithmetic Operators 1.99

 1.46 Relational Operators 1.101

 1.47 Logical Operators 1.102

 1.48 Assignment Operators 1.103

 1.49 Increment and Decrement Operators 1.105

 1.50 Conditional Operator 1.105

 1.51 Bitwise Operators 1.106

 1.52 Special Operators 1.106

 1.53 Arithmetic Expressions 1.108

 1.54 Evaluation of Expressions 1.108

 1.55 Precedence of Arithmetic Operators 1.109

 1.56 Some Computational Problems 1.111

 1.57 Type Conversions in Expressions 1.112

 1.58 Operator Precedence and Associativity 1.115

 1.59 Mathematical Functions 1.116

Unit 2 Selection and Decision  Making 2.1

 2.1 Introduction 2.1

 2.2 Decision Making with if Statement 2.1

 2.3 Simple if Statement 2.2

 2.4 The if.....else Statement 2.5

 2.5 Nesting of if....else Statements 2.7

 2.6 The else if Ladder 2.9

 2.7 The Switch Statement 2.12

 2.8 The ? : Operator 2.15

 2.9 The goto Statement 2.17

Unit 3 Arrays 3.1

 3.1 Introduction 3.1

 3.2 One-Dimensional Arrays 3.2

 3.3 Declaration of One-Dimensional Arrays 3.3

 3.4 Initialization of One-Dimensional Arrays 3.5

 3.5 Two-Dimensional Arrays 3.14

 3.6 Initializing Two-Dimensional Arrays 3.18

 3.7 Multi-Dimensional Arrays 3.21

 3.8 Dynamic Arrays 3.22

 3.9 More about Arrays 3.22

Unit 4 Strings and Iteration 4.1

 4.1 Introduction 4.1

 4.2 Declaring and Initializing String Variables 4.1



Contents vii 

 4.3 Reading Strings from Terminal 4.3

 4.4 Writing Strings to Screen 4.7

 4.5 Arithmetic Operations on Characters 4.11

 4.6 Putting Strings Together 4.12

 4.7 Comparison of Two Strings 4.13

 4.8 String-Handling Functions 4.14

 4.9 Table of Strings 4.19

 4.10 Other Features of Strings 4.20

 4.11 Decision Making and Looping 4.20

 4.12 The while Statement 4.22

 4.13 The do Statement 4.24

 4.14 The for Statement 4.26

 4.15 Jumps in Loops 4.33

Unit 5 Functions—Modular  Programming 5.1

 5.1 Introduction 5.1

 5.2 Need for User-Defi ned Functions 5.1

 5.3 A Multi-Function Program 5.2

 5.4 Elements of User-Defi ned Functions 5.4

 5.5 Defi nition of Functions 5.4

 5.6 Return Values and their Types 5.6

 5.7 Function Calls 5.7

 5.8 Function Declaration 5.9

 5.9 Category of Functions 5.10

 5.10  No Arguments and No Return Values 5.11

 5.11 Arguments but No Return Values 5.12

 5.12 Arguments with Return Values 5.15

 5.13 No Arguments but Returns a Value 5.18

 5.14 Functions that Return Multiple Values 5.19

 5.15 Nesting of Functions 5.20

 5.16 Recursion 5.21

 5.17 Passing Arrays to Functions 5.22

 5.18 Passing Strings to Functions 5.29

 5.19 The Scope, Visibility and Lifetime of Variables  5.30

 5.20 Multifi le Programs 5.38

 5.21 Tower of Hanoi 5.40

 5.22 Preprocessor Commands 5.42

Unit 6 Pointers 6.1

 6.1 Introduction 6.1

 6.2 Understanding Pointers 6.1

 6.3 Accessing the Address of a Variable 6.3

 6.4 Declaring Pointer Variables 6.4

 6.5 Initialization of Pointer Variables 6.5

 6.6 Accessing a Variable Through its Pointer 6.6

 6.7 Chain of Pointers 6.8

 6.8 Pointer Expressions 6.9

 6.9 Pointer Increments and Scale Factor 6.10



viii Contents

 6.10 Pointers and Arrays 6.11

 6.11 Pointers and Character Strings 6.14

 6.12 Array of Pointers 6.16

 6.13 Pointers as Function Arguments 6.17

 6.14 Functions Returning Pointers 6.19

 6.15 Pointers to Functions 6.20

 6.16 Pointers and Structures 6.22

 6.17 Introduction 6.25

 6.18 Dynamic Memory Allocation 6.25

 6.19 Allocating a Block of Memory: Malloc 6.26

 6.20 Allocating Multiple Blocks of Memory: Calloc 6.28

 6.21 Releasing the Used Space: Free 6.28

 6.22 Command Line Arguments 6.29

Unit 7 Structure and Union Types 7.1

 7.1 Introduction 7.1

 7.2 Defi ning a Structure 7.1

 7.3 Declaring Structure Variables 7.2

 7.4 Accessing Structure Members 7.4

 7.5 Structure Initialization 7.5

 7.6 Copying and Comparing Structure variables 7.6

 7.7 Operations on Individual Members 7.8

 7.8 Arrays of Structures 7.8

 7.9 Arrays within Structures 7.11

 7.10 Structures within Structures 7.12

 7.11 Structures and Functions 7.14

 7.12 Unions 7.17

 7.13 Size of Structures 7.18

 7.14 Bit Fields 7.18

 7.15 Typedef 7.20

 7.16 Enum 7.21

Unit 8 File Handling 8.1

 8.1 Introduction 8.1

 8.2 Types of Files 8.2

 8.3 Defi ning and Opening a File 8.2

 8.4 Closing a File 8.3

 8.5 Input/output Operations on Files 8.4

 8.6 Error Handling During i/o Operations 8.9

 8.7 Random Access to Files 8.11

 Appendix A A.1

 Appendix B B.1

 Solved Question Paper Set-1 SQP-1.1

 Solved Question Paper Set-2 SQP-2.1

 Solved Question Paper Set-3 SQP-3.1

 Solved Question Paper Set-4 SQP-4.1



It gives me great pleasure to present this edition of Computer Programming for JNTU Kakinada. This book 

on Computer Programming is for undergraduate students who take up the foundation course in their fi rst 

semester at JNTU Kakinada. The Computer Programming portion derived from the best-selling book 

Programming in ANSI C provides time-tested material, which more than a million readers have used to learn 

programming in C in the past two decades. It follows a simplifi ed approach to Computer Programming sup-

ported by numerous programming examples and exhaustive pedagogy.

Salient Features

 ∑ Comprehensively in sync with the latest syllabus of JNTU Kakinada

 ∑ Enhanced chapter structure with inclusion of ‘Key Terms’, ‘Just Remember’ and ‘Multiple-Choice 

Questions’

 ∑ Precise theory presented in lucid language

 ∑ Student-friendly approach

 ∑ Carries useful case studies with relevant chapters with stepwise solution provided for each Case Study

 ∑ Rich pedagogy:

 � 186 Solved C Programs

 � 22 Case Studies

 � 162 Multiple-Choice Questions

 � 277 Review Questions

 � 189 Programming Exercises

 ∑ The book comes with a CD which has

 � Previous Years’ Solved Question Papers

 � 208 Additional Objective/Review/Debugging type questions covering each unit

 � Program description in solved examples showing the key points in the program 

 � Lab programs as per the new syllabus

Unit Organisation

The book has been divided into eight units. Unit 1 is divided into two parts—the fi rst part gives an overview 

of computers, their development, characteristics and evolution. Next, the language C and its basics are intro-

duced in the second part. Unit 2 explains selection and decision making. Unit 3 explains string manipulation, 

branching and looping statements and how to use these in C programs. Unit 4 covers creation of arrays and 

the different types of arrays. Functions, as a part of modular programming, are discussed in Unit 5. Pointers 

are covered in Unit 6. Unit 7 is on structures and union types. Finally, fi le handling is covered in Unit 8.

 A large number of illustrations and example programs are provided to reinforce learning. Wherever 

necessary, concepts are explained pictorially to facilitate easy grasping and better understanding. Each unit 

includes a set of review questions, multiple-choice questions and programming exercises, which can be used 

by the readers to test their understanding of the concepts discussed in the unit.

PREFACE



x Preface

Acknowledgements

I would like to thank all those who provided me with valuable feedback and inputs during the preparation of 

this book, and especially those at McGraw Hill Education (India), without whose help and cooperation, this 

book would not have had a timely release. I wish to express my appreciation to Mrs. Nagaratna Hegde for the 

content-development work she had done in this edition. The support, patience and inspiration that I got from 

my wife, Dr Sushila, are something that I cherish above all. Special thanks are also due to all my teacher 

friends and students for their encouragement. I hope everyone who desires to be a part of the next generation 

of computing will fi nd this book interesting and useful. Further suggestions for improvement will always be 

welcome.

Feedback

Constructive suggestions and criticism always go a long way in enhancing any endeavour. We request all 

readers to email us their valuable comments/views/feedback for the betterment of the book at

tmh.csefeedback@gmail.com, mentioning the title and author name in the subject line. Also, please feel free 

to report any piracy of the book spotted by you.



File Handling xi 

COMPUTER PROGRAMMING

Jawaharlal Nehru Technological University Kakinada

ROADMAP TO THE SYLLABUS

Module 1: Unit objective: Notion of Operation of a CPU, Notion of an algorithm and computational 

procedure, editing and executing programs in Linux 

Introduction: Computer systems, Hardware and Software Concepts, 

Problem Solving: Algorithm I Pseudo code, fl owchart, program development steps, computer languages: 

machine, symbolic and highlevel languages, Creating and Running Programs: 

Writing, Editing(vi/emacs editor), Compiling( gee), Linking and Executing in under Linux. BASICS 

OF C: Structure of a c program, identifi ers, basic data types and sizes. Constants, Variables, Arithmetic, 

relational and logical operators, increment and decrement operators, conditional operator, assignment 

operator, expressions, type conversions, Conditional Expressions, precedence and order of evaluation, 

Sample Programs. 

Module 2: Unit objective: understanding branching, iteration and data representation using arrays 

SELECTION-MAKING DECISION: Two WAY SELECTION: if-else, null else, nested if, examples, 

Multi-way selection: switch, else-if, examples. 

ITERATIVE: loops- while, do-while and or statements, break, continue, initialization and updating, event 

and counter controlled loops, Looping applications: Summation, powers, smallest and largest. 

ARRAYS: Arrays- concepts, declaration, defi nition, accessing elements, storing elements, Strings and 

String Manipulations, l-D arrays, 2-D arrays and character arrays, string manipulations, Multidimensional 

arrays, array applications: Matrix operations, checking the symmetricity of a Matrix. 

STRINGS: concepts, c strings. 

GO TO:

CHAPTER 1 Introduction to Computers, Problem Solving and Basic of C

GO TO:

CHAPTER 2 Selection and Decision  Making

CHAPTER 3 Arrays

CHAPTER 4 Strings and Iteration



Module 3: Objective: Modular programming and recursive solution formulation 

FUNCTIONS- MODULAR PROGRAMMING: functions, basics, parameter passing, storage classes 

extern, auto, register, static, scope rules, block structure, user defi ned functions, standard library 

functions, recursive functions, Recursive solutions for fi bonacci series, towers of Hanoi, header fi les, C 

Preprocessor, example c programs, Passing l-D arrays, 2-D arrays to functions. 

GO TO:

CHAPTER 5 Functions—Modular  Programming

Module 4: Objective: Understanding pointers and dynamic memory allocation 

POINTERS: pointers-concepts, initialization of pointer variables, pointers and function arguments, 

passing by address-dangling memory, address arithmetic, character pointers and functions, pointers to 

pointers, pointers and multi-dimensional arrays, dynamic memory management functions, command 

line arguments 

Module 5: Objective: Understanding miscellaneous aspects of C 

ENUMERATED, STRUCTURE AND UNION TYPES: Derived types- structures  declaration, defi nition 

and initialization of structures, accessing structures, nested structures, arrays of structures, structures 

and functions, pointers to structures, self referential structures, unions, typedef, bit-fi elds, program 

applications 

BIT-WISE OPERATORS: logical, shift, rotation, masks. 

Module 6: Objective: Comprehension of fi le operations 

FILE HANDLING: Input and output-concept of a fi le, text fi les and binary fi les, Formatted I/O, File I/O 

operations, example programs 

GO TO:

CHAPTER 6 Pointers

GO TO:

CHAPTER 7 Structure and Union Types

GO TO:

CHAPTER 8 File Handling

xii Roadmap to the Syllabus



 1
Introduction to Computers, 
Problem Solving and 
Basic of C

U N I T

Introduction to Computers and Problem Solving

P
A
R
T

A

The term computer is derived from the word 

compute. A computer is an electronic device that 

takes data and instructions as an input from the 

user, processes data, and provides useful infor-

mation known as output. This cycle of operation 

of a computer is known as the input–process–

output cycle and is shown in Fig. 1.1 The elec-

tronic device is known as hardware and the set of instructions is known as software.

A computer consists of various components that function as an integrated system to perform computa-

tional tasks. These components include:

Central Processing Unit (CPU)•  It is the brain of the computer that is responsible for controlling 

and executing program instructions. 

Monitor•  It is a display screen, which shows information in visual form.

Keyboard and Mouse•  These are the peripheral devices used by the computer for receiving inputs 

from the user.

Figure 1.2 shows the various components of a computer.

1.1 INTRODUCTION

PROCESS
INPUT

Data
OUTPUT

Information

Instructions

Fig. 1.1 Input–process–output concept

Fig. 1.2 The components of a computer

Monitor

Keyboard

ouse

CPU



1.2 Computer Programming

The unique capabilities and characteristics of a computer have made it very popular among its various users, 

including engineers, managers, accountants, teachers, students, etc. 

Some of the key characteristics of a modern digital computer include, among others:

Speed•  Computer is a fast electronic device that can solve large and complex problems in few 

seconds. The speed of a computer generally depends upon its hardware confi guration.

Storage capacity•  A computer can store huge amount of data in many different formats. The storage 

area of a computer system is generally divided into two categories, main memory and secondary 

storage.

Accuracy•  A computer carries out calculations with great accuracy. The accuracy achieved by a 

computer depends upon its hardware confi guration and the specifi ed instructions.

Reliability•  A computer produces results with no error. Most of the computer-generated errors are in 

actuality human errors that are instigated by the user itself. Therefore, computers are regarded as quite 

trustworthy machines.

Versatility•  Computers are versatile machines. They can perform varied tasks and can be used for 

many different purposes.

Diligence•  Computers can perform repetitive calculations any number of times with the same level 

of accuracy. 

These capabilities of computers have enabled us to use them for a variety of tasks. Application areas may 

broadly be classifi ed into the following major categories.

1. Data processing (commercial use)

2. Numerical computing (scientifi c use)

3. Text (word) processing (offi ce and educational use)

4. Message communication (e-mail)

5. Image processing (animation and industrial use)

6. Voice recognition (multimedia)

A computer system comprises of hardware and software components. Hardware refers to the physical parts 

of the computer system and software is the set of instructions or programs that are necessary for the function-

ing of a computer to perform certain tasks. Hardware includes the following components:

Input devices•  They are used for accepting the data on which the operations are to be performed. 

The examples of input devices are keyboard, mouse and track ball.

Processor•  Also known as CPU, it is used to perform the calculations and information processing on 

the data that is entered through the input device.

Output devices•  They are used for providing the output of a program that is obtained after performing 

the operations specifi ed in a program. The examples of output devices are monitor and printer.

Memory•  It is used for storing the input data as well as the output of a program that is obtained after 

performing the operations specifi ed in a program. Memory can be primary memory as well as 

secondary memory. Primary memory includes Random Access Memory (RAM) and secondary 

memory includes hard disks and fl oppy disks.

Software supports the functioning of a computer system internally and cannot be seen. It is stored on 

 secondary memory and can be an  application software as well as  system software. The application software 

is used to perform a specifi c task according to requirements and the system software is mandatory for running 

application software. The examples of application software include Excel and MS Word and the examples of 

system software include operating system and networking system.

1.2 COMPUTER SYSTEMS 



Introduction to Computers, Problem Solving and Basic of C 1.3

All the hardware components interact with each other as well as with the software. Similarly, the different 

types of software interact with each other and with the hardware components. The interaction between vari-

ous hardware components is illustrated in Fig. 1.3.

1.2.1 Input Devices

Input devices can be connected to the computer system using cables. The most commonly used input devices 

among others are:

Keyboard• 

Mouse• 

Scanner• 

Output
Media

Magnetic
TapeTT

Magnetic
Disk

EXTERNAL STORAGE UNITS

Memory
Unit

Arithmetic
Unit

Output
Unit

Input
Unit

Input
Media

Control
Unit

CPU

Data and results flow

Control Instructions to units

Instructions to control unit

Fig. 1.3 Iteraction among hardware components

Keyboard

A standard keyboard includes alphanumeric keys, function keys, modifi er keys, cursor movement keys, 

spacebar, escape key, numeric keypad, and some special keys, such as Page Up, Page Down, Home, Insert, 

Delete and End. The alphanumeric keys include the number keys and the alphabet keys. The function keys 

are the keys that help perform a specifi c task such as searching a fi le or refreshing a Web page. The modifi er 

keys such as Shift and Control keys modify the casing style of a character or symbol. The cursor movement 

keys include up, down, left and right keys and are used to modify the direction of the cursor on the screen. 

The spacebar key shifts the cursor to the right by one position. The numeric keypad uses separate keypads for 

numbers and mathematical operators. A keyboard is show in Fig. 1.4.



1.4 Computer Programming

Function Keys
(F1 to F12)

Escape Key

Modifier Keys

Spacebar KeyAlphanumeric
Keys

Cursor Movement
Keys

Special Keys

Numeric Keypad

Fig. 1.4 Keyboard

Mouse

The mouse allows the user to select elements on the screen, such 

as tools, icons, and buttons, by pointing and clicking them. We can 

also use a mouse to draw and paint on the screen of the computer 

system. The mouse is also known as a pointing device because it 

helps change the position of the pointer or cursor on the screen. 

The mouse consists of two buttons, a wheel at the top and a ball 

at the bottom of the mouse. When the ball moves, the cursor on the 

screen moves in the direction in which the ball rotates. The left 

button of the mouse is used to select an element and the right button, when clicked, displays the special 

options such as open and explore and shortcut menus. The wheel is used to scroll down in a document or a 

Web page. A mouse is shown in Fig. 1.5.

Scanner

A scanner is an input device that converts documents and images as the digitized images understandable by 

the computer system. The digitized images can be produced as black and 

white images, gray images, or  colored images. In case of colored images, 

an image is considered as a collection of dots with each dot  representing a 

combination of red, green, and blue colors, varying in proportions. The 

proportions of red, green, and blue colors assigned to a dot are together 

called as color description. The scanner uses the color description of the 

dots to produce a digitized image. Figure 1.6 shows a scanner.

There are the following types of scanners that can be used to produce 

digitized images:

Flatbed scanner•  It contains a scanner head that moves across a 

page from top to bottom to read the page and converts the image or 

text available on the page in digital form. The fl atbed scanner is 

used to scan graphics, oversized documents, and pages from books.

Drum scanner•  In this type of scanner, a fi xed scanner head is used and the image to be scanned is 

moved across the head. The drum scanners are used for scanning prepress materials.

Slide scanner•  It is a scanner that can scan photographic slides directly to produce fi les understandable 

by the computer. 

Fig. 1.5 Mouse

Wheel

RighR t Button

Left Button

g y

Fig. 1.6 Scanner



Introduction to Computers, Problem Solving and Basic of C 1.5 

Handheld scanner•  It is a scanner that is moved by the end user across the page to be scanned. This 

type of scanner is inexpensive and small in size.

1.2.2 CPU

The CPU consists of Control Unit (CU) and ALU. CU stores the instruction set, which specifi es the  operations 

to be performed by the computer. CU transfers the data and the instructions to the ALU for an arithmetic 

operation. ALU performs arithmetical or logical operations on the data received. The CPU registers store the 

data to be processed by the CPU and the processed data also. Apart from CU and ALU, CPU seeks help from 

the following hardware devices to process the data:

 Motherboard 

It refers to a device used for connecting the CPU with the input and output devices. The components on the 

motherboard are connected to all parts of a computer and are kept insulated from each other. Some of the 

components of a motherboard are:

Buses•  Electrical pathways that transfer data and instructions among different parts of the computer. 

For example, the data bus is an electrical pathway that transfers data among the microprocessor, 

memory and input/output devices connected to the computer. The address bus is connected among the 

microprocessor, RAM and Read Only Memory (ROM), to transfer addresses of RAM and ROM 

locations that is to be accessed by the microprocessor.

System clock•  It is a clock used for synchronizing the activities performed by the computer. The 

electrical signals that are passed inside a computer are timed, based on the tick of the clock. As a 

result, the faster the system clock, the faster is the processing speed of the computer.

Microprocessor•  CPU component that performs the processing and controls the activities performed 

by the different parts of the computer. The microprocessor is plugged to the CPU socket placed on the 

motherboard.

ROM•  Chip that contains the permanent memory of the computer that stores information, which 

cannot be modifi ed by the end user. 

 Random Access Memory (RAM)

It refers to primary memory of a computer that stores information and programs, until the computer is used. 

RAM is available as a chip that can be connected to the RAM slots in the motherboard. 

 Video Card/Sound card

The video card is an interface between the monitor and the CPU. Video cards also include their own RAM 

and microprocessors that are used for speeding up the processing and display of a graphic. These video cards 

are placed on the expansion slots, as these slots allow us to connect the high-speed graphic display cards to 

the motherboard. A sound card is a circuit board placed on the motherboard and is used to enhance the sound 

capabilities of a computer. The sound cards are plugged to the Peripheral Component Interconnect (PCI) 

slots. The PCI slots also enable the connection of networks interface card, modem cards and video cards, to 

the motherboard. A motherboard is shown in Fig. 1.7

1.2.3 Output Devices

The data, processed by the CPU, is made available to the end user by the output devices. The most commonly 

used output devices are:

Monitor• 

Printer• 



1.6 Computer Programming

Speaker• 

Plotter• 

Monitor 

A monitor is the most commonly used output device that produces visual displays generated by the computer. 

The monitor, also known as a screen, is connected as an external device using cables or connected either as a part 

of the CPU case. The monitor connected using cables, is connected to the video card placed on the expansion slot 

of the motherboard. The display device is used for visual presentation of textual and graphical information. 

The monitors can be classifi ed as cathode ray tube (CRT) monitors or liquid 

crystal display (LCD)  monitors. The CRT monitors are large, occupy more space 

in the computer, whereas LCD monitors are thin, light weighted, and occupy 

lesser space. Both the monitors are available as monochrome, gray scale and 

color models. However, the quality of the visual display produced by the CRT is 

better than that produced by the LCD.

A monitor can be characterized by its size and resolution. The monitor size 

is the length of the screen that is measured diagonally. The resolution of the screen 

is expressed as the number of picture elements or pixels of the screen. The resolu-

tion of the monitor is also called the dot pitch. The monitor with a higher resolu-

tion produces a clearer image. A monitor is shown in Fig. 1.8

Printer

The  printer is an output device that is used to produce a hard copy of the electronic text displayed on the 

screen, in the form of paper sheets that can be used by the end user. The printer is an external device that is 

connected to the computer system using cables. The computer needs to convert the document that is to be 

printed to data that is understandable by the printer. The printer driver software or the print driver software

is used to convert a document to a form understandable by the computer. When the computer components are 

upgraded, the upgraded printer driver software needs to be installed on the computer.

Fig. 1.7 A motherboard

Fig. 1.8 Monitor



Introduction to Computers, Problem Solving and Basic of C 1.7

The performance of a printer is measured in terms of dots per inch (DPI) and pages per minute (PPM) 

produced by the printer. The greater the DPI parameter of a printer, the better is the quality of the output 

generated by it. The higher PPM represents higher effi ciency of the printer. Printers can be classifi ed based 

on the technology they use to print the text and images:

Dot matrix printers•  Dot matrix printers are impact printers that use 

perforated sheet to print the text. The process to print a text involves 

striking a pin against a ribbon to produce its impression on the paper.

Inkjet printers•  Inkjet printers are slower than dot matrix printers and 

are used to generate high quality photographic prints. Inkjet printers are 

not impact printers. The ink cartridges are attached to the printer head 

that moves horizontally, from left to right.

Laser printers•  The laser printer may or may not be connected to a 

computer, to generate an output. These printers consist of a micro-

processor, ROM and RAM, which can be used to store the textual 

information. The printer uses a cylindrical drum, a toner and the laser 

beam. A printer is shown in Fig. 1.9.

 Speaker

The speaker is an electromechanical transducer that converts an electrical 

 signal into sound. They are attached to a computer as output devices, to provide 

audio output, such as warning sounds and Internet audios. We can have built-in 

speakers or attached speakers in a computer to warn end users with error audio 

messages and alerts. The audio drivers need to be installed in the computer to 

produce the audio output. The sound card being used in the computer system 

decides the quality of audio that we listen using music CDs or over the Internet. 

The computer speakers vary widely in terms of quality and price. The sophisti-

cated computer speakers may have a subwoofer unit, to enhance bass output. 

Speakers are shown in Fig. 1.10.

 Plotter

The plotter is another commonly used output device that is connected to a computer to print large documents, 

such as engineering or constructional drawings. Plotters use multiple ink pens or inkjets with color cartridges 

for printing. A computer transmits binary signals to all the print heads of the plotter. Each binary signal 

 contains the coordinates of where a print head needs to be positioned for printing. Plotters are classifi ed on 

the basis of their performance, as follows:

Drum plotter•  They are used to draw perfect circles and other graphic images. They use a drawing 

arm to draw the image. The drum plotter moves the paper back and forth through a roller and the 

drawing arm moves across the paper. 

Flat-bed plotter•  A fl at bed plotter has a fl at drawing surface and the two drawing arms that move 

across the paper sheet, drawing an image. The plotter has a low speed of printing and is large in size.

Inkjet plotter•  Spray nozzles are used to generate images by spraying droplets of ink onto the paper. 

However, the spray nozzles can get clogged and require regular cleaning, thus resulting in a high 

maintenance cost.

Electrostatic plotter•  As compared to other plotters, an electrostatic plotter produces quality print 

with highest speed. It uses charged electric wires and special dielectric paper for drawing. A plotter is 

shown in Fig. 1.11.

Fig. 1.9 Printer

Fig. 1.10 Speakers



1.8 Computer Programming

1.2.4 Memory

The memory unit of a computer is used to store data, instructions for processing data, intermediate results of 

processing and the fi nal processed information. The memory units of a computer are classifi ed as primary 

memory and secondary memory. Figure 1.12 shows the memory categorization in a computer system.

Fig. 1.12 Categorization of Memory Devices

Control

Buttons

Plotted

paper

Fig. 1.11 An ink-jet plotter.



Introduction to Computers, Problem Solving and Basic of C 1.9

Primary Memory

The primary memory is available in the computer as a built-in unit of the computer. The primary memory is 

represented as a set of locations with each location occupying 8 bits. Each bit in the memory is identifi ed by 

a unique address. The data is stored in the machine-understandable binary form in these memory locations. 

The commonly used primary memories are:

ROM•  ROM represents Read Only Memory that stores data and instructions, even when the computer 

is turned off. It is the permanent memory of the computer where the contents cannot be modifi ed by 

an end user. ROM is a chip that is inserted into the motherboard. It is generally used to store the Basic 

Input/Output system (BIOS), which performs the Power On Self Test (POST).

RAM•  RAM is the read/write memory unit in 

which the information is retained only as long 

as there is a regular power supply. When the power 

supply is interrupted or switched off, the infor-

mation stored in the RAM is lost. RAM is a 

volatile memory that temporarily stores data and 

applications as long as they are in use. When the 

use of data or the application is over, the content in 

RAM is erased. 

Cache memory•  Cache memory is used to store 

the data and the related application that was last processed by the CPU. When the processor performs 

processing, it fi rst searches the cache memory and then the RAM, for an instruction. The cache 

memory is always placed between CPU and the main memory of the computer system. 

Table 1.1 depicts some of the key differences between RAM and ROM:

Table 1.1

RAM ROM

It is a read/write memory It is a read only memory

It is volatile storage device It is a permanent storage device

Data is erased as soon as power supply is turned off Data remains stored even after power supply has been turned off

It is used as the main memory of a computer system It is used to store Basic input output system (BIOS).

Secondary Memory

Secondary memory represents the external storage devices that are connected to the computer. They provide 

a non-volatile memory source used to store information that is not in use currently. A storage device is either 

located in the CPU casing of the computer or is connected externally to the computer. The secondary storage 

devices can be classifi ed as:

Magnetic storage device • The magnetic storage 

devices store information that can be read, erased 

and rewritten a number of times. These include 

fl oppy disk, hard disk and magnetic tapes. 

Optical storage device • The optical storage 

devices are secondary storage devices that use 

laser beams to read the stored data. These include 

 Fig. 1.13 RAM

gIntegrated
chips

Fig. 1.14 Magnetic tape



1.10 Computer Programming

CD-ROM, rewritable compact disk (CD-RW), and digital video disks with read only memory (DVD-

ROM). 

TracksTT

Sectors

Fig. 1.15 Magnetic disk

Incident laser beam
Reflected laser beam

Fig. 1.16 Optical Disk

Magneto-optical storage device•  The magneto-optical devices are generally used to store 

information, such as large programs, fi les and backup data. The end user can modify the information 

stored in magneto-optical storage devices multiple times. These devices provide higher storage 

capacity as they use laser beams and magnets for reading and writing data to the device. Examples of 

magneto-optical devices include Sony MiniDisc, Maxoptix T5-2600, etc.

Universal serial bus (USB) drive•  USB drive or commonly known as pen drive is a removable 

storage device that is interfaced on the USB port of a computer system. It is pretty fast and compact 

in comparison to other storage devices like CD and fl oppy disk. One of the most important advantages 

of a USB drive is that it is larger in capacity as compared to other removable storage devices. Off late, 

it has become very popular amongst computer users.



Introduction to Computers, Problem Solving and Basic of C 1.11

The operations of a computer are controlled by a set of instructions (called a computer program). These 

instructions are written to tell the computer:

1. what operation to perform

2. where to locate data 

3. how to present results

4. when to make certain decisions

The communication between two parties, whether they are machines or human beings, always needs a 

common language or terminology. The language used in the communication of computer instructions is 

known as the programming language. The computer has its own language and any communication with the 

computer must be in its language or translated into this language.

Three levels of programming languages are available. They are:

1. machine languages (low level languages)

2. assembly (or symbolic) languages

3. procedure-oriented languages (high level languages) 

1.3 PROGRAMMING LANGUAGES

Fig. 1.17 Magneto-optical disk

cDielectricDielectricDielectricDielectricDielectricDielectricDielectricDielectricDielectricDielectricDielectricDielectricDielectricDielectricDielectricDielectricDielectricDielectricDielectriDielectriDielectriDielectriDielectriDielectriDielectriDielectriDielectriDielectriDielectriDielectriDielectriDielectriDielectrDielectrDielectrielectrielectrielectrielectrielectrielectrielectrielectrielectrielectrielectrielectrielectrielectrielectrelectrelectelectelectelectelectelectelectelectelectelectelectelectelectelectelectelecteleceleceleceleceleclecleclecleclecleclecleclecec
slayerslayerslayerslayerslayerslayerslayerslayerslayerslayerslayerslayerslayersayersayersayersayersayerayerayerayerayerayerayerayerayerayerayerayerayerayerayerayerayerayerayeryeryeyeyeyeyeyeyeye

Laser beams

Lens
Substrate layer

Protective coating

Reflective aluminium layer Magneto optical flim

Fig. 1.18 USB drive



1.12 Computer Programming

 Machine Language

As computers are made of two-state electronic devices they can understand only pulse and no-pulse  (or ‘1’ 

and ‘0’) conditions. Therefore, all instructions and data should be written using binary codes 1 and 0. The 

binary code is called the machine code or machine language. 

Computers do not understand English, Hindi or Tamil. They respond only to machine language. Added to 

this, computers are not identical in design, therefore, each computer has its own machine language. (However, 

the script 1 and 0, is the same for all computers). This poses two problems for the user.

First, it is diffi cult to understand and remember the various combinations of 1’s and 0’s representing 

numerous data and instructions. Also, writing error-free instructions is a slow process.

Secondly, since every machine has its own machine language, the user cannot communicate with other 

computers (If he does not know its language). Imagine a Tamilian making his fi rst trip to Delhi. He would 

face enormous obstacles as the language barrier would prevent him from communicating.

Machine languages are usually referred to as the fi rst generation languages.

 Assembly Language

The Assembly language, introduced in 1950s, reduced programming complexity and provided some 

 standardization to build an application. The assembly language, also referred to as the second-generation 

programming language, is also a low-level language. In an assembly language, the 0s and 1s of machine 

language are replaced with abbreviations or mnemonic code. 

The main advantages of an assembly language over a machine language are:

As we can locate and identify syntax errors in assembly language, it is easy to debug it.• 

It is easier to develop a computer application using assembly language in comparison to machine • 

language.

Assembly language operates very effi ciently.• 

An assembly language program consists of a series of instructions and mnemonics that correspond to a 

stream of executable instructions. An assembly language instruction consists of a mnemonic code followed 

by zero or more operands. The mnemonic code is called the operation code or opcode, which specifi es the 

operation to be performed on the given arguments. Consider the following machine code:

10110000 01100001

Its equivalent assembly language representation is:

mov al, 061h

In the above instruction, the opcode “move” is used to move the hexadecimal value 61 into the processor 

register named ‘al’. The following program shows the assembly language instructions to subtract two 

numbers:

ORG 500 /Origin of program is location 500

LDA SUB /Load subtrahend to AC

CMA /Complement AC

INC /Increment AC

ADD MIN /Add minuend to AC

STA DIF /Store difference

HLT /Halt computer

MIN, DEC 56 /Minuend

SUB, DEC -2 /Subtrahend

DIF, HEX 0 /Difference stored here

END /End of symbolic program



Introduction to Computers, Problem Solving and Basic of C 1.13 

It should be noted that during execution, the assembly language program is converted into the machine 

code with the help of an assembler. The simple assembly language statements had one-to-one correspon-

dence with the machine language statements. This one-to-one correspondence still generated complex 

 programs. Then, macroinstructions were devised so that multiple machine language statements could be 

represented using a single assembly language instruction. Even today programmers prefer to use an assembly 

language for performing certain tasks such as:

To initialize and test the system hardware prior to booting the operating system. This assembly • 

language code is stored in ROM

To write patches for disassembling viruses, in anti-virus product development companies• 

To attain extreme optimization, for example, in an inner loop in a processor-intensive algorithm • 

For direct interaction with the hardware • 

In extremely high-security situations where complete control over the environment is required • 

To maximize the use of limited resources, in a system with severe resource constraints• 

 High-Level Languages

High level languages further simplifi ed programming tasks by reducing the number of computer operation 

details that had to be specifi ed. High level languages like COBOL, Pascal, FORTRAN, and C are more 

abstract, easier to use, and more portable across platforms, as compared to low-level programming languages. 

Instead of dealing with registers, memory addresses and call stacks, a programmer can concentrate more on 

the logic to solve the problem with help of variables, arrays or Boolean expressions. For example, consider 

the following assembly language code:

LOAD A 

ADD B 

STORE C

Using FORTRAN, the above code can be represented as: 

C = A + B

The above high-level language code is executed by translating it into the corresponding machine language 

code with the help of a compiler or interpreter.

High-level languages can be classifi ed into the following three categories:

 • Procedure-oriented languages (third generation)

Problem-oriented languages (fourth generation)• 

Natural languages (fi fth generation)• 

Procedure-oriented Languages

High-level languages designed to solve general-purpose problems are called procedural languages or third-

generation languages. These include BASIC, COBOL, FORTRAN, C, C++, and JAVA, which are designed 

to express the logic and procedure of a problem. Although, the syntax of these programming languages is 

different, they use English-like commands that are easy to follow. Another major advantage of third-genera-

tion languages is that they are portable. We can use the compiler (or interpreter) on any computer and create 

the object code. The following program represents the source code in C language: 

if( n>10)
{
  do 
  {
    n++;
  }while ( n<50);
}



1.14 Computer Programming

The third generation programming languages are considered as domain-specifi c programming languages 

because they are designed to develop software applications for a specifi c fi eld. For example, the third 

 generation programming language, COBOL, was designed to solve a large number of problems specifi c to 

the business fi eld.

Problem-oriented Languages

Problem-oriented languages are used to solve specifi c problems and are known as the fourth-generation 

 languages. These include query Languages, Report Generators and Application Generators which have 

 simple, English-like syntax rules. Fourth-generation languages (4 GLs) have reduced programming efforts 

and overall cost of software development. These languages use either a visual environment or a text environ-

ment for program development similar to that of third-generation languages. A single statement in a fourth-

generation language can perform the same task as multiple lines of a third-generation language. Further, the 

programmer just needs to drag and drop from the toolbar, to create various items like buttons, text boxes, 

labels, etc. Also, the programmer can quickly create the prototype of the software application.

These languages are typically used in the WYSIWYG (What You See Is What You Get) environment to 

facilitate faster and convenient application development. Visual Studio is one such environment that encom-

passes a number of programming tools as well multiple programming language support to ensure fl exibility 

to the programmer during application development.

Natural Languages

Natural languages are designed to make a computer to behave like an expert and solve problems. The 

 programmer just needs to specify the problem and the constraints for problem-solving. Natural languages 

such as LISP and PROLOG are mainly used to develop artifi cial intelligence and expert systems. These 

 languages are widely known as fi fth generation languages.

The programming languages of this generation mainly focus on constraint programming, which is  somewhat 

similar to declarative programming. It is a programming paradigm in which the programmer only needs to specify 

the solution to be found within the constraints rather than specifying the method of fi nding the desired solution.

The programming languages of this generation allow the users to communicate with the computer system 

in a simple and an easy manner. Programmers can use normal English words while interacting with the 

 computer system.

A programming environment comprises all those components that facilitate the development of a program. 

These components are largely divided under two categories—programming tools and Application Programming 

Interfaces (APIs). They are regarded as the building blocks of any programming environment. 

An API can be defi ned as a collection of data structures, classes, protocols, and pre-defi ned functions 

stored in the form of libraries. These libraries are included in the software packages of the programming 

languages like C, C++, etc. An API makes the development task easier for the programmers, as in-built API 

components are used again and again, ensuring reusability.

The software application which is used for the development, maintenance and debugging of a software 

program is known as programming tool. A good programming tool ensures that the programming activities 

are performed in an effi cient manner. The following are some of the main categories of programming tools:

Integrated Development Environment (IDE)•  It is the most commonly used tool that offers an 

integrated environment to the programmers for software development. It contains almost all the 

components for software development such as compiler, editor, debugger, etc. 

1.4 PROGRAMMING ENVIRONMENT



Introduction to Computers, Problem Solving and Basic of C 1.15 

Debugging tool•  It is a specialized tool that helps the programmer to detect and remove bugs or 

errors from a program. 

Memory usage tool•  As the name suggests, memory usage tool helps the programmer to manage the 

memory resources in an effi cient manner.

A programmer should adopt standard methodologies and approaches to program development. Software 

or program development life cycle is one such standard methodology that is applicable to all types 

of  program development scenarios. It comprises of a number of interlinked phases with each phase 

 serving a defi nite purpose. We will study the program development life cycle in more detail in the next 

section. 

1.5.1 Structured Programming

Another important program development approach is structured programming, which is a subset of one of 

the key programming paradigms, i.e., procedural programming. 

It helps in making a program easily understandable and debuggable. A program that is not based on the 

 structured programming approach is very diffi cult to maintain, debug and understand.

Structured programming approach mainly focuses on the order of execution of the statements within a 

program. It suggests the use of sequential execution of statements in a program. Thus, structured  programming 

approach suggests the use of mainly three types of control structures—sequential, repetitive and selective. 

Further, it suggests avoiding the use of goto, break and continue statements in a program as all these are 

unconditional branch statements.

1.5.2 System Development Tools

The successful development and execution of programs requires the usage of a number of tools. Some of 

these typical system development tools are

Language translators• 

Linkers• 

Debuggers• 

Editors• 

Language Translators

 • Assembler An assembler is a computer program that translates assembly language statements into 

machine language codes. The assembler takes each of the assembly language statements from the 

source code and generates a corresponding bit stream using 0’s and 1’s. The output of the assembler 

in the form of sequence of 0’s and 1’s is called object code or machine code. This machine code is 

fi nally executed to obtain the results. 

A modern assembler translates the assembly instruction mnemonics into opcodes and resolves 

symbolic names for memory locations and other entities to create the object code. Several sophisti-

cated assemblers provide additional facilities that control the assembly process, facilitate program 

development, and aid  debugging. The modern assemblers like Sun SPARC and MIPS based on RISC 

architectures, optimize instruction scheduling to attain effi cient utilization of CPU. The modern 

assemblers generally include a macro facility and are called macro assemblers.

1.5 CREATING AND RUNNING PROGRAMS



1.16 Computer Programming

Assemblers can be classifi ed as single-pass assemblers and two-pass assemblers. The single-pass 

 assembler was the fi rst assembler that processed the source code once to replace the mnemonics with 

the binary code. The single-pass assembler was unable to support advanced source-code optimization. 

As a result, the two-pass assembler was developed that read the program twice. During the fi rst pass, 

all the  variables and labels are read and placed into the symbol table. On the second pass, the label gaps 

are fi lled from the table by replacing the label name with the address. This helps to attain higher opti-

mization of the source code. The translation process of an assembler consists of the following tasks:

Replacing symbolic addresses like LOOP, by numeric addresses • 

Replacing symbolic operation code by machine operation codes • 

Reserving storage for the instructions and data • 

Translating constants into their machine representation • 

 • Compiler The compiler is a computer program that translates the source code written in a high-

level  language into the corresponding object code of the low-level language. This translation process 

is called compilation. The entire high-level program is converted into the executable machine code 

fi le. A program that translates from a low-level language to a high-level one is a decompiler. Compiled 

languages include COBOL, FORTRAN, C, C++, etc. 

In 1952, Grace Hopper wrote the fi rst compiler for the A-0 programming language. In 1957, John 

Backus at IBM introduced the fi rst complete compiler. With the increasing complexity of computer 

architectures and expanding functionality supported by newer programming languages, compilers 

have become more and more complex. Though early compilers were written in assembly languages, 

nowadays it has become  common practice to implement a compiler in the language it compiles. 

Compilers are also classifi ed as single-pass compilers and multi-pass compilers. Though single-pass 

compilers are generally faster than multi-pass  compilers, for sophisticated optimization, multi-pass 

assemblers are required to generate high-quality code. 

 • Interpreter The interpreter is a translation program that converts each high-level program statement 

into the corresponding machine code. This translation process is carried out just before the program 

statement is executed. Instead of the entire program, one statement at a time is translated and executed 

immediately. The commonly used interpreted languages are BASIC and PERL. Although, interpreters 

are easier to create as  compared to compilers, the compiled languages can be executed more effi ciently 

and are faster.

Linkers

Most of the high-level languages allow the developer to develop a large program containing multiple  modules. 

Linker arranges the object code of all the modules that have been generated by the language translator into a 

single program. The execution unit of the computer system is incapable of linking all the modules at the 

execution time and therefore, linker is regarded as one of the important software because of its ability to com-

bine all the modules into a single program. Linker assembles the various objects generated by the  compiler in 

such a manner that all the objects are accepted as a single program during execution. Linker also includes the 

links of various objects, which are defi ned in the runtime libraries. In many cases, linker inserts the symbolic 

address of the objects in place of their real address. Figure 1.19 illustrates the working of a linker.

Debuggers

Debugger is the software that is used to detect the errors and bugs present in the programs. The debugger 

locates the position of the errors in the program code with the help of what is known as the Instruction 

Set Simulator (ISS) technique. ISS is capable of stopping the execution of a program at the point where an 

erroneous statement is encountered.



Introduction to Computers, Problem Solving and Basic of C 1.17

Debugger is divided into two types, namely machine-level debugger and symbolic debugger. The machine-

level debugger debugs the object code of the program and shows all the lines where bugs are detected. 

On the other hand, the symbolic debugger debugs the original code, i.e., the high-level language code of 

the  program. It shows the position of the bug in the original code of the program developed by the 

programmer.

While debugging a program, the debugger performs a number of functions other than debugging, such as 

inserting breakpoints in the original code, tracking the value of specifi c variables, etc. In order to debug the 

program, a debugger helps perform the following tasks:

Step-by-step execution of a program• 

Back tracking for checking the previous steps• 

Stopping the execution of the program until the errors are corrected• 

Editors

Editor is a special program that allows the user to work with text in a computer system. It is used for the 

 documentation purposes and enables us to edit the information present in an existing document or a fi le. The 

editor enables us to perform various editing operations such as copy, cut and paste while editing the text. On 

the basis of the content edited by the editors, they are divided into the following categories:

Text editor•  It is used to edit plain text. An operating system always includes a text editor for 

updating the confi guration fi les.

Digital audio editor•  It is used to edit the information related to the audio components of a multimedia 

application. These editors are used in audio applications where editing the music and the sound signals 

is necessary.

Graphics editor•  It is used to edit the information related to the graphical objects. These editors 

are generally used in the multimedia applications where the user is working with multiple animation 

objects.

Fig. 1.19 Working of a linker



1.18 Computer Programming

Binary fi le editor•  It is used to edit the digital data or the binary data, i.e., data having strings of 0s 

and 1s.

HTML editor•  It is used to edit the information included in the Web pages.

Source code editor•  It is used to edit the source code of a program written in a programming language 

such as C, C++ and Java.

1.5.3 Developing a Program

Developing a program refers to the process of writing the source code for the required application by  following 

the syntax and the semantics of chosen programming language. Syntax and semantics are the set of rules that 

a programmer needs to adhere while developing a program. 

Before actually developing a program, the aim and the logic of the program should be very clear to the 

programmer. Therefore, the fi rst stage in the development of a program is to carry out a detailed study of the 

program objectives. The objectives make the programmer aware of the purpose for which the program is 

being developed. After ascertaining the program objectives, the programmer needs to list down the set of 

steps to be followed for program development. This set of program development steps is called algorithm. 

The programmer may also use a graphical model known as fl owchart to represent the steps defi ned in the 

program algorithm.

After the logic of the program has been developed either by an algorithm or a fl owchart, the next step is to 

choose a programming language for actual development of the program code. There are a number of factors 

that should be taken into consideration while selecting the target programming language, such as performance 

and effi ciency of the programming language, programmer’s prior experience with the language, etc. 

A programming language is typically bundled together with an IDE containing the necessary tools for 

developing, editing, running and debugging a computer program. For instance, Turbo C is provided with a 

strong and powerful IDE to develop, compile, debug and execute the programs.

Figure 1.20 shows the IDE of C language.

Fig. 1.20. The IDE of C Language.



Introduction to Computers, Problem Solving and Basic of C 1.19

Suppose we are required to develop a program for calculating the percentage of marks of two subjects 

for student and display the result. The fi rst step in the development of a program for this problem is the 

 preparation of an algorithm, as shown below:    

Step 1 – Input the marks for first subject. (mark1)
Step 2 – Input the marks for second subject. (mark2)
Step 3 – Calculate the percentage.
    percentage = (mark1 + mark2)/200*100
Step 4 – If percentage > 40
Step 5 – Display Pass
Step 6 – Else
Step 7 – Display Fail

Figure 1.21 shows the fl owchart for the above algorithm.

Start

Input Marks1, Marks2

Total = MarTT ks1+ Marks2

Perc = (Total/200)*100TT

Is

Perc > 40?
Display “Pass”

Display “Fail”

End

False

True

Fig. 1.21. Flowchart for calculating the percentage of marks and displaying the result.



1.20 Computer Programming

After developing the algorithm and fl owchart, the actual development of the program can be started in the 

source code editor of C language. The following code shows the C language program for calculating the 

percentage of marks in two different subjects for a student.

#include<stdio.h>
#include<conio.h>
void main()
{
float mark1,mark2;
float percentage;
clrscr();
printf(“\n Enter marks of first subject:”);
scanf(“\n %f”, &mark1);
printf(“\n Enter marks of second subject:”);
scanf(“\n %f”, &mark2);
percentage =((mark1+mark2)/200)*100;
if(percentage>40)
printf(“\n The student is passed”);
else
printf(“\n The student is failed”);
getch();
}

Fig. 1.22 Program for calculating the percentage of marks in two subjects

Figure 1.23 shows the program code in the source code editor of C language.

Fig. 1.23 Developing a program in the source code editor of C language.



Introduction to Computers, Problem Solving and Basic of C 1.21

1.5.4 Running a Program

After developing the program code, the next step is to compile the program. Program compilation helps 

 identify any syntactical errors in the program code. If there are no syntax errors in the source code, then the 

compiler generates the target object code. It is the machine language code that the processor of the computer 

system can understand and execute. 

Once the corresponding object code or the executable fi le is built by the compiler, the program can be run 

in order to check the logical correctness of the program and generate the desired output. The logical errors 

also called semantic errors might cause the program to generate undesired results. Programming languages 

provide various mechanisms such as exception handling for handling these logical errors. If the output gener-

ated by the program corresponding to the given inputs matches with the desired result, then the purpose of 

developing the program is served. Otherwise, the logic of the program should be checked again to obtain the 

correct solution for the given problem

Figure 1.24 shows the output of the program developed in C language.

Fig. 1.24 Running a program.

The above fi gure shows the output generated by running the C program. We can run a program in C by 

either selecting Run � Run or by pressing the Alt and F9 keys simultaneously.

The entire process of software development and implementation involves a series of steps. Each successive 

step is dependent on the outcome of the previous step. Thus, the team of software designers, developers 

and operators are required to interact with each other at each stage of software development so as to ensure 

that the end product is as per the client’s requirements.   Figure 1.25 shows the various software development 

steps:

1.6 SOFTWARE DEVELOPMENT METHOD



1.22 Computer Programming

Fig. 1.25 Software development steps

1.6.1 Analysing the Requirements

In this step, the requirements related to the software, which is to be developed, are understood. Analysing the 

requirements or requirement analysis is an important step in the process of developing a software. If the 

requirements of the user are not properly understood, then the software is bound to fall short of the end user’s 

expectations. Thus, requirement analysis is always the fi rst step towards development of a software. 

Software is abstract in nature; as a result, the users may not be able to provide the complete set of require-

ments pertaining to the desired software during the requirement analysis stage. Thus, there should be continu-

ous interaction between the software development team and the end users. Moreover, the software development 

team also needs to take into account the fact that the requirements of the users may keep changing during the 

development process. Thus, proper analysis of user requirements is quite essential for developing the soft-

ware within a given timeframe. It will not only help in controlling the software development cost but will also 

lead to faster and accurate development of a software. 

The task of requirement analysis is typically performed by a business analyst. The person is a professional 

in this fi eld who understands the requirements of the novice end user, and documents and shares it with the 

development team. 

1.6.2 Feasibility Analysis

In this step, the feasibility of developing the software in terms of resources and cost is ascertained. In order 

to determine the feasibility of software development, the existing system of the user is analysed properly. 



Introduction to Computers, Problem Solving and Basic of C 1.23 

Apart from studying the existing system, this step involves identifying the need of automation in the existing 

system. The analysis done in this step is documented in a standard document called feasibility report, which 

contains the observations and recommendations related to the task of software development. Some of the 

important activities performed during the feasibility analysis stage are as follows: 

Determining development alternatives•  This activity involves searching for the different 

alternatives that are available for the development of software. There are mainly four alternatives 

available for the development of a software. The fi rst alternative is to allow the existing system to 

continue without developing a new software for automation. The second alternative can be to develop 

the new software using specifi c programming languages such as Java, C++, Visual Basic etc. The 

third alternative is to develop the software using the architectural technologies such as Java 2 Enterprise 

Edition (J2EE) and mainframe based with thin clients. The fourth development alternative is to buy 

an already developed software along with its source code from the market and customise it according 

to the client’s requirements. 

Analysing economic feasibility•  This activity involves determining whether the development of a 

new software will be fi nancially benefi cial or not. This type of feasibility analysis is performed to 

determine the overall profi t that can be earned from the development and implementation of the 

software. This feasibility analysis activity involves evaluating all the alternatives available for 

development and selecting the one which is most economical. 

Assessing technical feasibility•  The technical feasibility assessment involves analysing various 

factors such as performance of the technologies, ease of installation, ease of expansion or reduction in 

size, interoperability with other technologies, etc. The technical feasibility activity typically involves 

the study of the nature of technology as to how easily it can be learnt and the level of training required 

to understand the technology. This type of feasibility assessment greatly helps in selecting the 

appropriate technologies to be used for developing the software. The selection should be made after 

evaluating the requirement specifi cation of the software. In addition, the advantages and disadvantages 

of each identifi ed technology must also be evaluated during technical feasibility assessment. 

Analysing operational feasibility•  Operational feasibility assessment involves studying the software 

on operational and maintenance fronts. The operational feasibility of any software is done on the basis 

of several factors, such as:

  – Type of tools needed for operating the software

  – Skill set required for operating the software

  – Documentation and other support required for operating the software 

1.6.3 Creating the Design 

After the feasibility analysis stage, the next step is creating the architecture and design of the new software. 

This step involves developing a logical model or basic structure of the new software. For example, if the new 

software is based on client–server technology then this step would involve determining and specifying the 

number of tiers to be used in the client–server design. This step also involves documenting the varied 

 specifi cations pertaining to database and data structure design. The fl ow of the development process is mainly 

illustrated in this stage using a special language known as Unifi ed Modelling Language (UML). UML uses 

pictorial representation methods for depicting the fl ow of data in the software. Some of the key features, 

which are considered while designing a software, are:

Extensibility•  The design of the software should be extensible so that it allows the addition of some 

new options or modules in future. The architecture of the software should be fl exible enough to not 

get disturbed with the addition of new functionality. 



1.24 Computer Programming

Modularity•  The software should be modular in nature so that its working and data fl ow can be 

understood easily. Modularity also helps in parallel development of the various software modules, 

which are later integrated into a single software product. 

Compatibility•  Software should run correctly in the existing system with an older version or with 

other software. Thus, software should be compatible and work well in conjunction with other 

software. 

Security•  Software must be able to control unauthorised access. While designing a new software, it 

is ensured that there are proper security mechanisms incorporated in the product. 

Fault tolerance•  The software should be capable of handling exceptions or faults that may occur 

during its operation. The software must have the capability to recover from failures. 

Maintainability•  The design of the software should be created in a simple manner with appropriate 

details so that it is easy to maintain.

1.6.4 Developing the Code 

In this step, the code for the different modules of the new software is developed. The code for the different 

modules is developed according to the design specifi cations of each module. The programmers in the  software 

development team use tools like compilers, interpreters and debuggers to perform tasks such as fi nding errors 

in the code and converting the code into machine language for its execution. The code can be written using 

programming languages such as C, C++ or Java. The choice of the programming language to be used for 

developing the code is made on the basis of the type of software that is to be developed. There are certain key 

points or conventions, which must be kept in mind while writing code; for instance:

There should be proper indentation in the code.• 

Proper naming conventions should be followed for naming the variables, methods and program fi les.• 

Proper comments should be included to ensure ease of understanding during maintenance. • 

The code for different modules of the new software must be simple so that it can be easily • 

understood. 

The code must be logically correct so as to minimise logical errors in the program.• 

1.6.5 Testing the Software

Testing is basically performed to detect the prevalence of any errors in the new software and rectify those errors. 

One of the reasons for the occurrence of errors or defects in a new software is that the requirements of the users 

or client were not properly understood. Another reason for the occurrence of errors is the common mistakes 

committed by a programmer while developing the code. The two important activities that are  performed during 

testing are verifi cation and validation. Verifi cation is the process of checking the software based on some pre-

defi ned specifi cations, while validation involves testing the product to ascertain whether it meets the user’s 

requirements. During validation, the tester inputs different values to ascertain whether the software is generat-

ing the right output as per the original requirements. The various testing methodologies include:

Black box testing• 

White box testing • 

Gray box testing• 

Nonfunctional testing • 

Unit testing • 

Integration testing • 

System testing • 

Acceptance testing • 



Introduction to Computers, Problem Solving and Basic of C 1.25 

1.6.6 Deploying the Software

In this step, the newly developed and fully tested software is installed in its target environment. Software 

documentation is handed over to the users and some initial data are entered in the software to make it 

 operational. The users are also given training on the software’s interface and its other functions. 

1.6.7 Maintaining the Software

Once the software has been deployed successfully, a continuous support is provided to it for ensuring its 

 full-time availability. A corrupt fi le, a virus infection and a fatal error are some of the situations where the 

maintenance personnel are asked to fi x the software and bring it back to its normal functioning. Further, a 

software may also be required to be modifi ed if its environment undergoes a change. In order to successfully 

maintain the software, it is required that it should have been properly documented at the time of its develop-

ment. This is because the maintenance person might not be the same who was originally involved in the 

development of the software. Thus, a good code documentation serves vital for the maintenance person to fi x 

the software. 

To understand how software development method is applied, consider a simple scenario where it is required 

to convert the temperature given in Fahrenheit to its corresponding Celsius value. 

Program Objective

To convert the temperature value from Fahrenheit to Celsius

Analysis

Input: Temperature value in Fahrenheit

Output: Temperature value in Celsius

Conversion method: The formula C = (F-32) / 1.8 can be used to generate the desired output

Data elements:  Real Variable F is used to store the input temperature value in Fahrenheit

Real Variable C is used to store the resultant temperature value in Celsius

Design

Algorithm
Step 1 – Read F
Step 2 – Compute C = (F-32) / 1.8
Step 3 – Display C

Development

1.7 APPLYING SOFTWARE DEVELOPMENT METHOD

(Contd.)

Program
#include <stdio.h>
#include <conio.h>

void main()
{
 float F, C;



1.26 Computer Programming

 clrscr();

 printf(“Enter the temperature value in Fahrenheit: “);
 scanf(“%f”,&F);

 C=(F-32.0)/1.8;

 printf(“The equivalent temperature value in degrees Celsius is: %.2f”,C);
 getch();
}

Testing

The program must be tested with multiple input values so as to ensure that there are no logical errors present 

in the code.

Enter the temperature value in Fahrenheit: 0
The equivalent temperature value in degrees Celsius is: -17.78

Enter the temperature value in Fahrenheit: 175
The equivalent temperature value in degrees Celsius is: 79.44

Enter the temperature value in Fahrenheit: 250
The equivalent temperature value in degrees Celsius is: 121.11

Problems that can be solved through a computer may range in size and complexity. Since computers do not 

possess any common sense and cannot make any unplanned decisions, the problem, whether it is simple or 

complex, has to be broken into a well-defi ned set of solution steps for the computer to implement.

Problem solving is the process of solving a problem in a computer system by following a sequence of 

steps, which include: 

1. Developing an algorithm An algorithm is a sequence of steps written in the form of English  phrases 

that specify the tasks that are performed while solving a problem. It involves identifying the variable 

names and types that would be used for solving the problem. 

2. Drawing the fl owchart A fl owchart is the graphical representation of the fl ow of control and logic 

in the solution of a problem. The fl owchart is a pictorial representation of an algorithm.

3. Writing the Pseudocode Pseudocode is pretty much similar to algorithms. It uses generic syntax 

for describing the steps that are to be performed for solving a problem. Along with the statements 

written using generic syntax, pseudocode can also use English phrases for describing an action. 

Algorithms help a programmer in breaking down the solution of a problem into a number of sequential steps. 

Corresponding to each step a statement is written in a programming language; all these statements are col-

lectively termed as a program. 

1.8 PROBLEM SOLVING

1.9 ALGORITHMS



Introduction to Computers, Problem Solving and Basic of C 1.27 

The following is an example of an algorithm to add two integers and display the result:

Algorithm 
Step 1 – Accept the first integer as input from the user.

 (num1)

Step 2 – Accept the second integer as input from the user.

 (num2)

Step 3 – Calculate the sum of the two integers.

 (sum = num1 + num2)

Step 4 – Display sum as the result.

Fig. 1.26 Algorithm to add two integers and display the result

There is a time and space complexity associated with each algorithm. Time complexity specifi es the 

amount of time required by an algorithm for performing the desired task. Space complexity specifi es the 

amount of memory space required by the algorithm for performing the desired task. While solving a complex 

problem, it is possible to have multiple algorithms for obtaining the required solution. The algorithm that 

ensures best time and space trade off should be chosen for obtaining the desired solution. 

1.9.1 Characteristics of Algorithms

The typical characteristics that are necessary for a sequence of instructions to qualify as an algorithm are the 

following:

The instructions must be in an ordered form.• 

The instructions must be simple and concise. They must not be ambiguous.• 

There must be an instruction (condition) for program termination. • 

The repetitive programming constructs must possess an exit condition. Otherwise, the program might • 

run infi nitely. 

The algorithm must completely and defi nitely solve the given problem statement.• 

1.9.2 Advantages of Algorithms

Some of the key advantages of algorithms are the following:

It provides the core solution to a given problem. This solution can be implemented on a computer • 

system using any programming language of user’s choice.

It facilitates program development by acting as a design document or a blueprint of a given problem • 

solution.

It ensures easy comprehension of a problem solution as compared to an equivalent computer • 

program.

It eases identifi cation and removal of logical errors in a program.• 

It facilitates algorithm analysis to fi nd out the most effi cient solution to a given problem.• 

1.9.3 Disadvantages of Algorithms

Apart from the advantages, algorithms also posses certain limitations, which are

In large algorithms, the fl ow of program control becomes diffi cult to track.• 

Algorithms lack visual representation of programming constructs like fl owcharts; thus, understanding • 

the logic becomes relatively diffi cult. 



1.28 Computer Programming

EXAMPLE 1.1 Write an algorithm to fi nd out whether a given number is prime or not.

Solution

Algorithm
Step 1 - Start
Step 2 – Accept a number from the user (num)
Step 3 – Initialize looping counter i = 2
Step 4 – Repeat Step 5 while i < num
Step 5 – If remainder of num divided by i (num%i) is Zero then goto Step 6 else goto Step 4
Step 6 - Display “num is not a prime number” and break from the loop
Step 7 – If i = num then goto Step 8 Else goto Step 9
Step 8 – Display “num is a prime number”
Step 9 - Stop

Fig. 1.27 Algorithm to fi nd out whether a given number is prime

EXAMPLE 1.2 Write an algorithm to fi nd the average of marks obtained by a student in three subjects.

Solution

Algorithm
Step 1 - Start
Step 2 – Accept the marks in three subjects from the user (marks1, marks2, marks3)
Step 3 – Calculate average marks using formula, average = (marks1 + marks2 + marks3)/3
Step 4 – Display the computed average of three subject marks 
Step 5 - Stop

Fig. 1.28 Algorithm to fi nd the average marks of three subjects

EXAMPLE 1.3 Write an algorithm to determine whether the given year is a leap year or not.

Solution

Algorithm
Step 1 - Start
Step 2 – Accept an year value from the user (year)
Step 3 – If remainder of year value divided by 4 (year%4) is 0 then goto Step 4 else goto Step 5
Step 4 – Display “’year’ is a leap year” and goto Step 6
Step 5 – Display “’year’ is not a leap year”]
Step 6 - Stop

Fig. 1.29 Algorithm to determine a leap year

EXAMPLE 1.4 Write an algorithm to fi nd out whether a given number is even or odd.

Solution

Algorithm
Step 1 - Start
Step 2 – Accept a number from the user (num)

(Contd.)



Introduction to Computers, Problem Solving and Basic of C 1.29

Fig. 1.30 Algorithm to fi nd out whether a number is even or odd

Step 3 – If remainder of num divided by 2 (num/2) is Zero then goto Step 4 else goto Step 5
Step 4 – Display “num is an even number” and goto Step 6
Step 5 – Display “num is an odd number”
Step 6 - Stop

EXAMPLE 1.5 Write an algorithm to determine whether a given string is a palindrome or not.

Solution

Algorithm
Step 1 - Start
Step 2 – Accept a string from the user (str)
Step 3 – Calculate the length of string str (len)
Step 4 – Initialize looping counters left=0, right=len-1 and chk = ‘t’
Step 5 – Repeat Steps 6-8 while left < right and chk = ‘t’
Step 6 – If str(left) = str(right) goto Step 8 else goto step 7
Step 7 – Set chk = ‘f’
Step 8 – Set left = left + 1 and right = right + 1
Step 9 - If chk=’t’ goto Step 10 else goto Step 11
Step 10 – Display “The string is a palindrome” and goto Step 12
Step 11 – Display “The string is not a palindrome”
Step 12 - Stop

Fig. 1.31 Algorithm to determine a palindrome

A fl owchart can be defi ned as the pictorial representation of a process, which describes the sequence and fl ow 

of control and information within the process. The fl ow of information is represented inside the fl owchart in 

a step-by-step form. This technique is mainly used for developing business workfl ows and solving problems 

using computers. 

Flowchart uses different symbols for depicting different activities, which are performed at different stages 

of a process. The various symbols used in a fl owchart are: 

Start and end•  It is represented by an oval or a rounded rectangle. It represents the starting and the 

ending of a process. Every process starts and ends at some point so a fl owchart always contains one 

start as well as one end symbol. Figure 1.32 shows the start and the end symbols used in a fl owchart.

or

Fig. 1.32 Start and end symbol.

Input or output•  It is represented by a parallelogram. It represents the inputs given by the user to the 

process and the outputs given by the process to the user. Figure 1.33 shows the input or output 

symbol.

1.10 FLOWCHARTS



1.30 Computer Programming

Fig. 1.33 Input or output symbol. 

Action or process•  It is represented by a rectangle. It represents the actions, logics and calculations 

taking place in a process. Figure 1.34 shows the action or process symbol.

Fig. 1.34 Action or process symbol. 

Decision or condition•  It is represented by a rhombus or a diamond shape. It represents the condition 

or the decision-making step in a fl owchart. The result of the decision is a Boolean value, which is 

either true or false. Each of these values takes the fl ow of the program to a certain point, which is 

shown with the help of arrows. Figure 1.35 shows the decision or condition symbol.

Fig. 1.35 Decision or condition symbol. 

Arrow•  It is represented by a directed line. It represents the fl ow of process and the sequence of steps 

in a fl owchart. It guides the process about the direction and the sequence, which is to be followed 

while performing the various steps in the process. Figure 1.36 shows the arrow symbol.

Fig. 1.36 Arrow symbol.

Connector•  It is represented by a circle in a fl owchart. It represents the continuation of the fl ow of 

steps when a fl owchart continues to the next page. A character such as an alphabet (a to z) or a symbol 

(α, β or χ), etc. can be placed in the circle at the position where the fl ow is broken and the same 

character is also placed in the circle at the position from where the fl owchart continues. Figure 1.37 

shows the connector symbol.



Introduction to Computers, Problem Solving and Basic of C 1.31

Fig. 1.37 Connector symbol.

In addition to the above mentioned basic fl owchart symbols, certain other symbols are also used inside 

fl owcharts for depicting advanced operations. Table 1.2 shows some of these advanced fl owchart symbols:

Symbol Description

Represents the internal memory of a computer system, such as RAM and ROM

Represents a database

Represents a subroutine

Represents a set of documents

Represents an idle or waiting state

Merges multiple data sets into one 

Extracts individual sets of data items from a single data set

Represents a combination of merge and extract actions. It extracts multiple data sets 

from multiple input data sets.

In order to understand how a fl owchart represents the fl ow of information; consider an example of a 

 fl owchart for adding two numbers, as shown in Fig. 1.38. 



1.32 Computer Programming

Flowchart

Start

 

    

Stop

Fig. 1.38 Flowchart for addition of two numbers. 

1.10.1 Flowchart Design Rules

Some of the standard guidelines or rules that must be followed while designing a fl owchart are 

It must begin with a “Start” and end with a “Stop” symbol. • 

The standard process fl ow should be either from top to bottom or from left to right.• 

The instructions specifi ed in the fl owchart must be crisp and concise. • 

The arrows must be aligned properly so as to clearly depict the fl ow of program control.• 

The use of connectors should be generally avoided as they make the program look more complex.• 

A process or action fl owchart symbol must have only one input arrow and one output arrow.• 

Two arrows must never intersect or cross each other; if such a need arises, then appropriate bridge or • 

crossover symbols must be used.

1.10.2 Advantages of Flowcharts 

Some of the key advantages of using a fl owchart in program design are

It helps to understand the fl ow of program control in an easy way. • 

Developing program code by referring its fl ow chart is easier in comparison to developing the program • 

code from scratch.

It helps in avoiding semantic errors.• 

Any concept is better understood with the help of visual representation. This fact also holds true for • 

fl owcharts. It is easier to understand the pictorial representation of a programming logic. 

A fl owchart acts as documentation for the process or program fl ow.• 

The use of fl owcharts works well for small program design.• 



Introduction to Computers, Problem Solving and Basic of C 1.33

1.10.3 Disadvantages of Flowcharts

Flowcharts also have certain limitations, such as the following:

For a large program, the fl ow chart might become very complex and confusing.  • 

Modifi cation of a fl owchart is diffi cult and requires almost an entire rework. • 

Since fl owcharts require pictorial representation of programming elements, it becomes a little tedious • 

and time consuming to create a fl owchart. 

Excessive use of connectors in a fl owchart may at times confuse the programmers.• 

EXAMPLE 1.6 Draw a fl owchart for the problem statement given in Example 1.1.

Solution

Is i=num ?

Start

Read num

Is i=num-1?

Display “Not a

Prime Number”

Yesee

Stop

No

i = 2

Is num%i=0? i = i + 1

Display “Prim e

Number”

Yesee

No

Yesee

No

Fig. 1.39 Flowchart to fi nd out whether a given number is prime or not



1.34 Computer Programming

EXAMPLE 1.7 Draw a fl owchart for the problem statement given in Example 1.2. 

Solution

Start

Read marks1, marks2,

marks3

Stop

average = (marks1 + marks2

+ marks3)/3

Display average

Fig. 1.40 Flowchart to fi nd the average of marks obtained by a student

EXAMPLE 1.8 Draw a fl owchart for the problem statement given in Example 1.3. 

Solution

Fig. 1.41 Flowchart to determine whether the given year is a leap year or not

Start

Read year

Is

(year%4)=0?

Yes

Stop

No

Display “Leap year”
Display

“Not a Leap year”



Introduction to Computers, Problem Solving and Basic of C 1.35

EXAMPLE 1.9 Draw a fl owchart for the problem statement given in Example 1.4.

Solution

Fig. 1.42 Flowchart to fi nd out whether a given number is even or odd

Start

Read num

Is

(num%2)=0?

Yes

Stop

No

Display “Even Number” Display “Odd Number”



1.36 Computer Programming

EXAMPLE 1.10 Draw a fl owchart for the problem statement given in Example 1.5. 

Solution

Start

Read str

Yes

No

Stop

len = strlen(str)

left = 0

right = len-1

chk=‘t’

Is left<right

AND

chk=‘t’

Yes

No

Yes

No

Is str(left)=

str(right)?

chk=‘f’

Is chk=‘t’?

left = left + 1

right = right - 1

Display “Palindrome

String”

Display “Not a

Palindrome String”

Fig. 1.43 Flowchart to determine whether a given string is a palindrome or not



Introduction to Computers, Problem Solving and Basic of C 1.37 

Analyzing a detailed algorithm before developing a program is very time consuming. Hence, there arises a 

need of a specifi cation that only focuses on the logic of the program. Pseudocodes serve this purpose by 

specifying only the logic, which is used by the programmer for developing a computer program.

Pseudocode is not written using specifi c syntax of a programming language rather it is written with a 

combination of generic syntax and normal English language. It helps the programmer understand the basic 

logic of the program after which it is the programmer’s choice to write the fi nal code in any programming 

language. 

The example of a pseudocode to add two numbers and display the result is shown below:

Pseudocode

DEFINE: Integer num1, num2, result
READ: Integer num1
READ: Integer num2
SET: result = num1 + num2
Display: result

Fig. 1.44 Pseudocode to add two numbers and display the result

After the pseudocode for a computer program has been written, it is used to develop the source code for 

the computer program. The source code is developed using a programming language, which can be an 

 assembly language or a high level programming language. 

1.11.1 Pseudocode Rules 

Some of the standard guidelines or rules that must be followed while developing pseudocodes are

Instruction or operation code in a pseudocode statement must be kept all capitalized; for example • 

READ (specifying input operation), PRINT (specifying print command), and so on. 

The ending of looping and decision-making constructs must be labelled appropriately with • 

corresponding “END” keywords.

The pseudocode instructions must be properly indented just like the statements are indented in a • 

computer program.

Convoluted programming instructions must be avoided by writing simple and clear instructions. • 

1.11.2 Advantages of Pseudocodes

Some of the key advantages of using a pseudocode in program design are

It is easy to comprehend as it uses English phrases for writing program instructions.• 

Developing program code using pseudocode is easier in comparison to developing the program code • 

from scratch.

Developing program code using pseudocode is also easier in comparison to developing the program • 

code from fl owchart.

The pseudocode instructions are easier to modify in comparison to a fl owchart.• 

The use of pseudocode works well for large program design.• 

1.11 PSEUDOCODES



1.38 Computer Programming

1.11.3 Disadvantages of Pseudocodes

Pseudocodes also have certain limitations, as explained below:

Since pseudocode does not use any kind of pictorial representations for program elements; it may at • 

times become diffi cult to understand the program logic. 

There is no standard format for developing a pseudocode. Therefore, it may become a challenge to use • 

the same pseudocode by different programmers.

Pseudocodes are at a disadvantage in comparison to fl owhcarts when it comes to understanding the • 

fl ow of program control.

EXAMPLE 1.11 Write the pseudocode for the problem statement given in Example 1.1. 

Solution

BEGIN

DEFINE: Integer num, i

DISPLAY: “Enter a number: “

READ: num

FOR: i = 2 to num-1

   IF: num%i=0

      DISPLAY: “’num’ is not a prime number”

      BREAK

   END IF

END FOR

IF: i=num

   DISPLAY: “’num’ is a prime number”

END IF

END

Fig. 1.45 Pseudocode to fi nd out whether a given number is prime or not

EXAMPLE 1.12 Write the pseudocode for the problem statement given in Example 1.2.

Solution

BEGIN

DEFINE: Integer marks1, marks2, marks3

DEFINE: Real average

DISPLAY: “Enter the marks in three subjects: “

READ: marks1, marks2, marks3

COMPUTE: average = (marks1 + marks2 + marks3)/3

DISPLAY: “The average value of marks is ‘average’”

END

Fig. 1.46 Pseudocode to fi nd the average of marks obtained by a student



Introduction to Computers, Problem Solving and Basic of C 1.39 

EXAMPLE 1.13 Write the pseudocode for the problem statement given in Example 1.3.

Solution

BEGIN

DEFINE: Integer year

DISPLAY: “Enter the year value: “

READ: year

IF: year%4=0

   DISPLAY: “’year’ is a leap year”

ELSE

   DISPLAY: “’year’ is not a leap year”

END IF

END

Fig. 1.47 Pseudocode to determine whether the given year is a leap year or not

EXAMPLE 1.14 Write the pseudocode for the problem statement given in Example 1.4.

Solution

BEGIN

DEFINE: Integer num

DISPLAY: “Enter a number: “

READ: num

IF: num%2=0

   DISPLAY: “’num’ is an even number”

ELSE 

   DISPLAY: “’num’ is an odd number”

END IF

END

Fig. 1.48 Pseudocode to fi nd out whether a given number is even or odd

EXAMPLE 1.15 Write the pseudocode for the problem statement given in Example 1.5.

Solution

BEGIN

DEFINE: String str

DEFINE: Character chk

(Contd.)



1.40 Computer Programming

DEFINE: Integer left, right, len

SET: chk = ‘t’

DISPLAY: “Enter a string: “

READ: str

COMPUTE: len = strlen(str)

SET: left = 0

SET: right = len-1

REPEAT

   IF: str(left)=str(right)

   CONTINUE

   ELSE

   SET: chk = ‘f’

   END IF

   COMPUTE: left = left + 1

   COMPUTE: right = right - 1

UNTIL: left<right AND chk=’t’

IF: chk=’t’

   DISPLAY: “’str’ is a palindrome string”

ELSE

   DISPLAY: “’str’ is not a palindrome string”

END IF

END

Fig. 1.49 Pseudocode to determine whether a given string is a palindrome or not

EXAMPLE 1.16 Design and develop the solution for fi nding the roots of a quadratic equation.

Solution

Algorithm

Step 1 - Start

Step 2 – Accept three numbers (a, b, c) from the user for the quadratic equation ax2 + bx + c 

Step 3 – Calculate root1=((-1)*b+sqrt(b*b-4*a*c))/2*a

Step 4 – Calculate root2=((-1)*b-sqrt(b*b-4*a*c))/2*a

Step 5 – Display the computed roots of the quadratic equation

Step 6 - Stop

Fig. 1.50 Algorithm for fi nding the roots of a quadratic equation

1.12 PROBLEM-SOLVING EXAMPLES



Introduction to Computers, Problem Solving and Basic of C 1.41

Flowchart

Start

Read a,b,c

Stop

Display root1, root2

root1 = ((-1)*b+sqrt(b*b-4*a*c))/2*a

root2 = ((-1)*b-sqrt(b*b-4*a*c))/2*a

Fig. 1.51 Flowchart for fi nding the roots of a quadratic equation

Pseudocode

BEGIN
DEFINE: Integer a, b, c
DEFINE: Real root1, root2
DISPLAY: “Enter the values of a, b and c for the quadratic equation ax2 + bx + c: “
READ: a, b, c
COMPUTE: root1=((-1)*b+sqrt(b*b-4*a*c))/2*a
COMPUTE: root2=((-1)*b-sqrt(b*b-4*a*c))/2*a
DISPLAY: “The roots of the quadratic equation are ‘root1’ and ‘root2’
END

Program

#include <stdio.h>
#include <conio.h>
#include <math.h>

void main()
{
int a,b,c;
float root1,root2; /*Declaration of variables to store root values*/
clrscr();
printf(“\nEnter the value a, b and c for the quadratic equation axx+bx+c: “);
scanf(“%d %d %d”,&a, &b, &c); /*Reading values of a, b and c*/
root1=((-1)*b+sqrt(b*b-4*a*c))/2*a; /*Computing quadratic root1*/ 
root2=((-1)*b-sqrt(b*b-4*a*c))/2*a; /*Computing quadratic root2*/
printf(“\n\nThe roots of the quadratic equation are: %.2f %.2f”,root1, root2); /*Displaying resultant 

roots*/

(Contd.)



1.42 Computer Programming

EXAMPLE 1.17 Design and develop the solution for determining whether there is profi t or loss during 

the selling of an item.

Solution

Algorithm

Step 1 - Start
Step 2 – Accept the cost price and selling price of an item from the user (cp, sp)
Step 3 – If sp>cp then goto step 4 else goto step 5
Step 4 – Display “There is a profit of (sp-cp)” and goto Step 8
Step 5 – If cp>sp then goto step 6 else goto step 7
Step 6 - Display “There is a loss of (cp-sp)”
Step 7 - Display “No profit no loss!”
Step 8 - Stop

Flowchart

Start

Read cp, sp

Is sp>cp?

Is cp>sp?
Yes

Yes

NO

NO

Stop

Display profit = sp-cp Display “No Profit

No Loss”

Display loss = cp-sp

Fig. 1.52 Program to fi nd the roots of a quadratic equation

getch();
}

Output
Enter the value a, b and c for the quadratic equation axx+bx+c: 1
-7
12

The roots of the quadratic equation are: 4.00 3.00



Introduction to Computers, Problem Solving and Basic of C 1.43 

Pseudocode

BEGIN
DEFINE: Long Integer cp, sp 
DISPLAY: “Enter the cost price and selling price of an item: “
READ: cp, sp
IF: sp>cp
   DISPLAY: “There is a profit of ‘sp-cp’”
ELSE 
   IF: cp>sp
      DISPLAY: “There is a loss of ‘cp-sp’”
  ELSE
      DISPLAY: “No profit no loss!”
   END IF
END IF
END

Program

Fig. 1.53 Solution for calculating profi t and loss

#include <stdio.h>
#include <conio.h>

void main()
{
long cp, sp;
clrscr();
printf(“\nEnter the cost price and selling price of an item: “);
scanf(“%ld %ld”,&cp, &sp); /*Reading CP and SP*/
if(sp>cp) /*Checking condition of profit*/
printf(“\n\nThere is a profit of %ld units”, sp-cp);
else if(sp<cp) /*Checking condition of loss*/
printf(“\n\nThere is a loss of %ld units”, cp-sp);
else
printf(“\n\nNo Profit No Loss!”);
getch();
}

Output
Enter the cost price and selling price of an item: 24
30

There is a profit of 6 units

EXAMPLE 1.18 Design and develop the solution for fi nding the area of a circle.

Solution

Algorithm

Step 1 - Start
Step 2 – Accept the radius of the circle from the user (radius)
Step 3 – Calculate area of the circle using formula area = 3.14 * radius * radius
Step 4 – Display the computed area of the circle
Step 5 - Stop



1.44 Computer Programming

Flowchart

Start

Read radius

Stop

Display area

area = 3.14*radius*radius

Pseudocode

BEGIN
DEFINE: Real radius, area
DISPLAY: “Enter the radius of the circle: “
READ: radius
COMPUTE: area = 3.14*radius*radius
DISPLAY: “The area of the circle is ‘area’”
END

Program

#include <stdio.h>
#include <conio.h>
#include <math.h>

void main()
{
float radius, area;
clrscr();
printf(“\nEnter the radius of the circle: “);
scanf(“%f”,&radius); /*Reading value of radius*/
area=3.14*radius*radius; /*Computing area of the circle*/
printf(“\n\nThe area of the circle having radius of %.2f is %.2f”,radius, area); /*Displaying 

result*/
getch();
}

Output
Enter the radius of the circle: 4

The area of the circle having radius of 4.00 is 50.24

Fig. 1.54 Solution for calculating area of a circle



Introduction to Computers, Problem Solving and Basic of C 1.45

Basics of C

P
A
R
T

B

‘C’ seems a strange name for a programming language. But this strange sounding language is one of the most 

popular computer languages today because it is a structured, high-level, machine independent language. It 

allows software developers to develop programs without worrying about the hardware platforms where they 

will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was the fi rst com-

puter language to use a block structure. Although it never became popular in USA, it was widely used in 

Europe. ALGOL gave the concept of structured programming to the computer science community. Computer 

scientists like Corrado Bohm, Guiseppe Jacopini and Edsger Dijkstra popularized this concept during 1960s. 

Subsequently, several languages were announced.

In 1967, Martin Richards developed a language called  BCPL (Basic Combined Programming Language) 

primarily for writing system software. In 1970, Ken Thompson created a language using many features of 

BCPL and called it simply B. B was used to create early versions of UNIX operating system at Bell 

Laboratories. Both BCPL and B were “typeless” system programming languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in 1972. C uses 

many concepts from these languages and added the concept of data types and other powerful features. Since 

it was developed along with the UNIX operating system, it is strongly associated with UNIX. This operating 

system, which was also developed at Bell Laboratories, was coded almost entirely in C. UNIX is one of the 

most popular network operating systems in use today and the heart of the Internet data superhighway.

For many years, C was used mainly in academic environments, but eventually with the release of many C 

compilers for commercial use and the increasing popularity of UNIX, it began to gain widespread support 

among computer professionals. Today, C is running under a variety of operating system and hardware 

platforms.

During 1970s, C had evolved into what is now known as “traditional C”. The language became 

more popular after publication of the book ‘The C Programming Language’ by Brian Kerningham and 

Dennis Ritchie in 1978. The book was so popular that the language came to be known as “K&R C” 

among the  programming community. The rapid growth of C led to the development of different versions 

of the language that were similar but often incompatible. This posed a serious problem for system 

developers.

To assure that the C language remains standard, in 1983, American National Standards Institute (ANSI) 

appointed a technical committee to defi ne a standard for C. The committee approved a version of C in 

December 1989 which is now known as ANSI C. It was then approved by the International Standards 

Organization (ISO) in 1990. This version of C is also referred to as C89.

During 1990’s, C++, a language entirely based on C, underwent a number of improvements and changes 

and became an ANSI/ISO approved language in November 1977. C++ added several new features to C to 

make it not only a true object-oriented language but also a more versatile language. During the same period, 

Sun Microsystems of USA created a new language Java modelled on C and C++.

All popular computer languages are dynamic in nature. They continue to improve their power and scope 

by incorporating new features and C is no exception. Although C++ and Java were evolved out of C, 

the  standardization committee of C felt that a few features of C++/Java, if added to C, would enhance the 

1.13 HISTORY OF C



1.46 Computer Programming

 usefulness of the language. The result was the 1999 standard for C. This version is usually referred to as  C99. 

The history and development of C is illustrated in Fig. 1.55

Fig. 1.55 History of  ANSI C

Although  C99 is an improved version, still many commonly available compilers do not support all of the new 

features incorporated in C99. We, therefore, discuss all the new features added by C99 in an appendix separately 

so that the readers who are interested can quickly refer to the new material and use them wherever possible.

 

The increasing popularity of C is probably due to its many desirable qualities. It is a robust language whose 

rich set of built-in functions and operators can be used to write any complex program. The C compiler 

 combines the capabilities of an assembly language with the features of a high-level language and therefore 

it is well suited for writing both system software and business packages. In fact, many of the C compilers 

available in the market are written in C.

Programs written in C are effi cient and fast. This is due to its variety of data types and powerful operators. 

It is many times faster than BASIC. For example, a program to increment a variable from 0 to 15000 takes 

about one second in C while it takes more than 50 seconds in an interpreter BASIC.

There are only 32 keywords in  ANSI C and its strength lies in its built-in functions. Several standard 

 functions are available which can be used for developing programs.

1.14 IMPORTANCE OF C



Introduction to Computers, Problem Solving and Basic of C 1.47

C is highly portable. This means that C programs written for one computer can be run on another with little 

or no modifi cation. Portability is important if we plan to use a new computer with a different operating 

system.

C language is well suited for structured programming, thus requiring the user to think of a problem in 

terms of function modules or blocks. A proper collection of these modules would make a complete program. 

This modular structure makes program debugging, testing and maintenance easier.

Another important feature of C is its ability to extend itself. A C program is basically a collection of 

 functions that are supported by the C library. We can continuously add our own functions to C library. With 

the availability of a large number of functions, the programming task becomes simple.

Before discussing specifi c features of C, we shall look at some sample C programs, and analyze and under-

stand how they work.

Consider a very simple program given in Fig. 1.56.

This program when executed will produce the following output:

I see, I remember

Let us have a close look at the program. The fi rst line informs the 

system that the name of the program is main and the execution 

begins at this line. The  main( ) is a special function used by the 

C system to tell the computer where the program starts. Every 

program must have exactly one main function. If we use more 

than one  main function, the compiler cannot understand which 

one marks the beginning of the program.

The empty pair of parentheses immediately following main indicates that the function main has no 

arguments (or parameters). The concept of arguments will be discussed in detail later when we discuss 

 functions (in Chapter 12).

The opening brace “{ ” in the second line marks the beginning of the function main and the closing brace 

“}” in the last line indicates the end of the function. In this case, the closing brace also marks the end of the 

program. All the statements between these two braces form the function body. The function body contains a 

set of instructions to perform the given task.

In this case, the function body contains three statements out of which only the printf line is an executable 

statement. The lines beginning with /* and ending with */ are known as comment lines. These are used in a 

program to enhance its readability and understanding. Comment lines are not executable statements and 

therefore anything between /* and */ is ignored by the compiler. In general, a comment can be inserted 

 wherever blank spaces can occur—at the beginning, middle or end of a line—“but never in the middle of a 

word”.

Although comments can appear anywhere, they cannot be nested in C. That means, we cannot have 

 comments inside comments. Once the compiler fi nds an opening token, it ignores everything until it fi nds a 

closing token. The comment line

/* = = = =/* = = = = */ = = = = */

is not valid and therefore results in an error.

Since comments do not affect the execution speed and the size of a compiled program, we should use them 

liberally in our programs. They help the programmers and other users in understanding the various functions 

1.15 SAMPLE PROGRAM 1: PRINTING A MESSAGE

main( )
{
/*…………printing begins………………*/
  printf(“I see, I remember”);
/*………………printing ends…………………*/
}

Fig. 1.56 A program to print one line of text



1.48 Computer Programming

and operations of a program and serve as an aid to debugging and testing. We shall see the use of comment 

lines more in the examples that follow.

Let us now look at the  printf( ) function, the only executable statement of the program.

printf(“I see, I remember”);

 printf is a predefi ned standard C function for printing output. Predefi ned means that it is a function that 

has already been written and compiled, and linked together with our program at the time of linking. The 

concepts of compilation and linking are explained later in this chapter. The printf function causes everything 

between the starting and the ending quotation marks to be printed out. In this case, the output will be:

I see, I remember

Note that the print line ends with a semicolon. Every statement in C should end with a semicolon (;) 

mark.

Suppose we want to print the above quotation in two lines as

I see,
I remember!

This can be achieved by adding another printf function as shown below:

printf(”I see, \n”);
printf(“I remember !”);

The information contained between the parentheses is called the argument of the function. This argument 

of the fi rst printf function is “ I see, \n” and the second is “I remember !”. These arguments are simply strings 

of characters to be printed out.

Notice that the argument of the fi rst printf contains a combination of two characters \ and n at the end of 

the string. This combination is collectively called the newline character. A newline character instructs the 

computer to go to the next (new) line. It is similar in concept to the carriage return key on a typewriter. After 

printing the character comma (,) the presence of the newline character \n causes the string “I remember !” to 

be printed on the next line. No space is allowed between \ and n.

If we omit the newline character from the fi rst printf statement, then the output will again be a single line 

as shown below.

I see, I remember !

This is similar to the output of the program in Fig. 1.56. However, note that there is no space between, 

and I.

It is also possible to produce two or more lines of output by one printf statement with the use of newline 

character at appropriate places. For example, the statement

printf(“I see,\n I remember !”);

will output

I see,
I remember !

while the statement

printf( “I\n.. see,\n… … … I\n… … … remember !”);

will print out

I
.. see,
… … … I
… … … remember !



Introduction to Computers, Problem Solving and Basic of C 1.49

NOTE: Some authors recommend the inclusion of the statement

#include <stdio.h>

at the beginning of all programs that use any input/output library functions. However, this is not necessary for the 

functions printf and scanf which have been defi ned as a part of the C language. See Chapter 5 for more on input and 

output functions.

Before we proceed to discuss further examples, we must note one important point. C does make a distinc-

tion between uppercase and lowercase letters. For example, printf and PRINTF are not the same. In C, 

everything is written in lowercase letters. However, uppercase letters are used for symbolic names  representing 

constants. We may also use uppercase letters in output strings like “I SEE” and “I REMEMBER”

The above example that printed I see, I remember is one of the simplest programs. Figure 1.57 highlights 

the general format of such simple programs. All C programs need a main function.

main ( ) Function name

Program statements

End of program

Start of program

Fig. 1.57 Format of simple C programs

The main is a part of every C program. C permits different forms of main statement. Following forms are allowed.

 • main()

 • int main()

 • void main()

 • main(void)

 • void main(void)

 • int main(void)

The empty pair of parentheses indicates that the function has no arguments. This may be explicitly indicated by using 

the keyword void inside the parentheses. We may also specify the keyword int or void before the word main. The 

 keyword void means that the function does not return any information to the operating system and int means that the 

function returns an integer value to the operating system. When int is specifi ed, the last statement in the program must 

be “return 0”. For the sake of simplicity, we use the fi rst form in our programs.

  The main Function

Consider another program, which performs addition on two numbers and displays the result. The complete 

program is shown in Fig. 1.58.

1.16 SAMPLE PROGRAM 2: ADDING TWO NUMBERS

/* Program ADDITION                       line-1 */
/* Written by EBG                        line-2 */
main()                          /*   line-3 */
{                          /*   line-4 */

(Contd.)



1.50 Computer Programming

This program when executed will produce the following output:

100
106.10

The fi rst two lines of the program are comment lines. It is a good practice to use comment lines in the 

beginning to give information such as name of the program, author, date, etc. Comment characters are also 

used in other lines to indicate line numbers.

The words number and amount are variable names that are used to store numeric data. The numeric data 

may be either in integer form or in real form. In C, all  variables should be declared to tell the compiler what 

the variable names are and what type of data they hold. The variables must be declared before they are used. 

In lines 5 and 6, the declarations

int number;
float amount;

tell the compiler that number is an integer (int) and amount is a fl oating  (fl oat) point number. Declaration 

statements must appear at the beginning of the functions as shown in Fig. 1.58. All declaration statements end 

with a semicolon; C supports many other data types and they are discussed in detail in Chapter 1.

The words such as int and fl oat are called the keywords and cannot be used as variable names. A list of 

keywords is given in Chapter 1.

Data is stored in a variable by assigning a data value to it. This is done in lines 8 and 10. In line-8, an 

integer value 100 is assigned to the integer variable number and in line-10, the result of addition of two real 

numbers 30.75 and 75.35 is assigned to the fl oating point variable amount. The statements

number = 100;
amount = 30.75 + 75.35;

are called the assignment statements. Every assignment statement must have a semicolon at the end.

The next statement is an output statement that prints the value of number. The print statement

printf(“%d\n”, number);

contains two arguments. The fi rst argument “%d” tells the compiler that the value of the second argument 

number should be printed as a decimal integer. Note that these arguments are separated by a comma. The 

newline character \n causes the next output to appear on a new line.

The last statement of the program

printf(“%5.2f”, amount);

prints out the value of amount in fl oating point format. The format specifi cation %5.2f tells the compiler 

that the output must be in  fl oating point, with fi ve places in all and two places to the right of the decimal 

point.

 int number;                       /*   line-5 */

 float amount;                      /*   line-6 */

                          /*   line-7 */

 number = 100;                      /*   line-8 */

                          /*   line-9 */

 amount = 30.75 + 75.35;                   /*  line-10 */

 printf(“%d\n”,number);                   /*  line-11 */

 printf(“%5.2f”,amount);                   /*  line-12 */

}                          /*  line-13 */

Fig. 1.58 Program to add two numbers



Introduction to Computers, Problem Solving and Basic of C 1.51 

The program in Fig. 1.59 calculates the value of money at the end of each year of investment, assuming an 

interest rate of 11 percent and prints the year, and the corresponding amount, in two columns. The output 

is shown in Fig. 1.60 for a period of 10 years with an initial investment of 5000.00. The program uses the 

 following formula:

Value at the end of year = Value at start of year (1 + interest rate)

In the program, the variable value represents the value of money at the end of the year while amount 

represents the value of money at the start of the year. The statement

amount = value ;

makes the value at the end of the current year as the value at start of the next year.

/*—————————— INVESTMENT PROBLEM ——————————*/
#define PERIOD 10
#define PRINCIPAL 5000.00
/*—————————— MAIN PROGRAM BEGINS ——————————*/
main()
{ /*————————— DECLARATION STATEMENTS ————————*/
 int year;
 float amount, value, inrate;
/*————————— ASSIGNMENT STATEMENTS —————————*/
 amount = PRINCIPAL;
 inrate = 0.11;
 year = 0;
/*————————— COMPUTATION STATEMENTS —————————*/
/*——————— COMPUTATION USING While LOOP ————————*/
 while(year <= PERIOD)
 { printf(“%2d %8.2f\n”,year, amount);
    value = amount + inrate * amount;
     year = year + 1;
   amount = value; 
 }
/*——————————— while LOOP ENDS ——————————*/
}
/*———————————— PROGRAM ENDS ———————————*/

Fig. 1.59 Program for investment problem

Let us consider the new features introduced in this program. The second and third lines begin with #defi ne 

instructions. A  #defi ne instruction defi nes value to a symbolic constant for use in the program. Whenever a 

symbolic name is encountered, the compiler substitutes the value associated with the name automatically. To 

change the value, we have to simply change the defi nition. In this example, we have defi ned two symbolic 

constants PERIOD and PRINCIPAL and assigned values 10 and 5000.00 respectively. These values remain 

constant throughout the execution of the program.

1.17 SAMPLE PROGRAM 3: INTEREST CALCULATION

 0 5000.00
 1 5550.00
 2 6160.50
 3 6838.15

(Contd.)



1.52 Computer Programming

A #defi ne is a preprocessor compiler directive and not a statement. Therefore #defi ne lines should not end with a 

 semicolon. Symbolic constants are generally written in uppercase so that they are easily distinguished from lowercase 

variable names. #defi ne instructions are usually placed at the beginning before the main() function. Symbolic constants 

are not declared in declaration section. 

  The #defi ne Directive

We must note that the defi ned constants are not variables. We may not change their values within the pro-

gram by using an assignment statement. For example, the statement

PRINCIPAL = 10000.00;

is illegal.

The declaration section declares year as integer and amount, value and inrate as fl oating point numbers. 

Note all the fl oating-point variables are declared in one statement. They can also be declared as

 float amount;
float value;
float inrate;

When two or more variables are declared in one statement, they are separated by a comma.

All computations and printing are accomplished in a while loop. while is a mechanism for evaluating 

repeatedly a statement or a group of statements. In this case as long as the value of year is less than or equal 

to the value of PERIOD, the four statements that follow while are executed. Note that these four statements 

are grouped by braces. We exit the loop when year becomes greater than PERIOD.

C supports the basic four arithmetic operators (–, +, *, /) along with several others.

So far, we have used only printf function that has been provided for us by the C system. The program shown 

in Fig. 1.61 uses a user-defi ned function. A function defi ned by the user is equivalent to a subroutine in 

FORTRAN or subprogram in BASIC.

Figure 1.61 presents a very simple program that uses a  mul ( ) function. The program will print the 

 following output:

Multiplication of 5 and 10 is 50

1.18 SAMPLE PROGRAM 4: USE OF  SUBROUTINES

Fig. 1.60 Output of the investment program

 4 7590.35
 5 8425.29
 6 9352.07
 7 10380.00
 8 11522.69
 9 12790.00
 10 14197.11

  /*————————— PROGRAM USING FUNCTION —————————*/
  int mul (int a, int b); /*——— DECLARATION ——————*/
  /*—————————— MAIN PROGRAM BEGINS ——————————*/
    main ()
    {
      int a, b, c;

(Contd.)



Introduction to Computers, Problem Solving and Basic of C 1.53 

The mul ( ) function multiplies the values of x and y and the result is returned to the main ( ) function 

when it is called in the statement

c = mul (a, b);

The mul ( ) has two arguments x and y that are declared as integers. The values of a and b are passed on 

to x and y respectively when the function mul ( ) is called. User-defi ned functions are considered in detail in 

Chapter 9.

We often use standard mathematical functions such as cos, sin, exp, etc. We shall see now the use of a 

 mathematical function in a program. The standard mathematical functions are defi ned and kept as a part of C 

 math library. If we want to use any of these mathematical functions, we must add an  #include instruction in 

the program. Like #defi ne, it is also a compiler directive that instructs the compiler to link the specifi ed math-

ematical functions from the library. The instruction is of the form

#include  <math.h>

math.h is the fi lename containing the required function. Figure 1.62 illustrates the use of cosine function. The 

program calculates cosine values for angles 0, 10, 20………….180 and prints out the results with headings.

1.19 SAMPLE PROGRAM 5: USE OF  MATH FUNCTIONS

      a = 5;
      b = 10; 
      c = mul (a,b);  
    
      printf (“multiplication of %d and %d is %d”,a,b,c);
    }
  /* ——————————   MAIN PROGRAM ENDS      
         MUL() FUNCTION STARTS —————————————*/
     int mul (int x, int y)
     int p;
     {
        p = x*y;
        return(p);
     }
  /* —————————————— MUL () FUNCTION ENDS —————————————*/

Fig. 1.61 A program using a user-defi ned function

  /*——————— PROGRAM USING COSINE FUNCTION ——————— */
  #include <math.h>
  #define PI 3.1416
  #define MAX 180
  main ( )
  { 
    int angle;
    float x,y;
    angle = 0;
    printf(“ Angle  Cos(angle)\n\n”);
    while(angle <= MAX)

(Contd.)



1.54 Computer Programming

Another #include instruction that is often required is

#include <stdio.h>

stdio.h refers to the standard I/O header fi le containing standard input and output functions

As mentioned earlier, C programs are divided into modules or functions. Some functions are written by users, like us, 

and many others are stored in the C library. Library functions are grouped category-wise and stored in different fi les 

known as header fi les. If we want to access the functions stored in the library, it is necessary to tell the compiler about 

the fi les to be accessed.

This is achieved by using the preprocessor directive #include as follows:

#include<fi lename>

fi lename is the name of the library fi le that contains the required function defi nition. Preprocessor directives are placed 

at the beginning of a program.

 The #include Directive

The examples discussed so far illustrate that a C program can be viewed as a group of building blocks 

called functions. A  function is a subroutine that may include one or more statements designed to perform 

1.20 BASIC STRUCTURE OF C PROGRAMS

    {
      x = (PI/MAX)*angle;
      y = cos(x);
      printf(“%15d %13.4f\n”, angle, y);
      angle = angle + 10;
    }
  }
Output
 Angle Cos(angle)
 0 1.0000
 10 0.9848
 20 0.9397
 30 0.8660
 40 0.7660
 50 0.6428
 60 0.5000
 70 0.3420
 80 0.1736
 90 –0.0000
 100 –0.1737
 110 –0.3420
 120 –0.5000
 130 –0.6428
 140 –0.7660
 150 –0.8660
 160 –0.9397
 170 –0.9848
 180 –1.0000

Fig. 1.62 Program using a math function



Introduction to Computers, Problem Solving and Basic of C 1.55

a specifi c task. To write a C program, we fi rst create 

functions and then put them together. A C program may 

contain one or more sections as shown in Fig. 1.63.

The documentation section consists of a set of 

comment lines giving the name of the program, the 

author and other details, which the programmer 

would like to use later. The link section provides 

instructions to the compiler to link functions from the 

system library. The defi nition section defi nes all sym-

bolic constants.

There are some variables that are used in more 

than one function. Such variables are called  global

 variables and are declared in the  global declaration 

section that is outside of all the functions. This sec-

tion also declares all the user-defi ned functions.

Every C program must have one main() function 

section. This section contains two parts, declaration 

part and executable part. The declaration part declares 

all the variables used in the executable part. There is 

at least one statement in the executable part. These 

two parts must appear between the opening and 

the closing braces. The program execution begins at 

the opening brace and ends at the closing brace. The 

closing brace of the main function section is the logi-

cal end of the program. All statements in the declaration and  executable parts end with a semicolon(;).

The subprogram section contains all the user-defi ned functions that are called in the main function. 

 User-defi ned functions are generally placed immediately after the main function, although they may appear 

in any order.

All sections, except the main function section may be absent when they are not required.

Unlike some other programming languages (COBOL, FORTRAN, etc.,) C is a free-form language. That is, 

the C compiler does not care, where on the line we begin typing. While this may be a licence for bad program-

ming, we should try to use this fact to our advantage in developing readable programs. Although several 

alternative styles are possible, we should select one style and use it with total consistency.

First of all, we must develop the habit of writing programs in lowercase letters. C program statements are 

written in lowercase letters. Uppercase letters are used only for symbolic constants.

Braces, group program statements together and mark the beginning and the end of functions. A proper 

indentation of braces and statements would make a program easier to read and debug. Note how the braces 

are aligned and the statements are indented in the program of Fig. 1.59.

Since C is a free-form language, we can group statements together on one line. The statements

a = b;
x = y + 1;
z = a + x;

can be written on one line as

1.21 PROGRAMMING STYLE

Documentation Section

Link Section

Definition Section

Global Declaration Section

main ( ) Function Section

Declaration part

Executable part

{

}

Subprogram section

Function 1

Function 2

-

-

Function n

(User-defined functions)

Fig. 1.63 An overview of a C program



1.56 Computer Programming

a = b; x = y+1; z = a+x;

The program

main( )
{
   printf(“hello C”);
}

may be written in one line like

main( ) {printf(“Hello C”)};

However, this style makes the program more diffi cult to understand and should not be used. In this book, 

each statement is written on a separate line.

The generous use of comments inside a program cannot be overemphasized. Judiciously inserted  comments 

not only increase the readability but also help to understand the program logic. This is very important for 

debugging and testing the program.

Executing a program written in C involves a series 

of steps. These are:

1. Creating the program;

2. Compiling the program;

3. Linking the program with functions that 

are needed from the C library; and

4. Executing the program.

Figure 1.64 illustrates the process of creating, 

compiling and executing a C program. Although 

these steps remain the same irrespective of the 

operating system, system commands for imple-

menting the steps and conventions for naming 

fi les may differ on different systems.

An operating system is a program that controls 

the entire operation of a computer system. All 

input/output operations are channeled through the 

operating system. The operating system, which is 

an interface between the hardware and the user, 

handles the execution of user programs.

The two most popular operating systems today 

are UNIX (for minicomputers) and MS-DOS (for 

microcomputers). We shall discuss briefl y the pro-

cedure to be followed in executing C programs 

under both these operating systems in the  following 

sections.

1.22 PROGRAM DEVELOPMENT STEPS

System Ready

Program Code

C Compiler

System Library

Source Program

ecObje t Code

rrorNo Er s

No

Executable Object Code

Yes

Logic Error

Enter Program

Edit
Source Program

Compile
Source Program

Link with
System Library

Execute
Object Code

Input Data

CORRECT OUTPUT

Stop

Syntax
Errors ?

Logic and Data
Errors ?

Data Error

Fig. 1.64 Process of compiling and running a C program



Introduction to Computers, Problem Solving and Basic of C 1.57 

1.23.1 Creating the Program

Once we load the UNIX operating system into the memory, the computer is ready to receive program. The 

program must be entered into a fi le. The fi le name can consist of letters, digits and special characters, fol-

lowed by a dot and a letter c. Examples of valid fi le names are:

hello.c

program.c

ebg1.c

The fi le is created with the help of a text editor, either ed or vi. The command for calling the editor and 

creating the fi le is

ed filename

If the fi le existed before, it is loaded. If it does not yet exist, the fi le has to be created so that it is ready to 

receive the new program. Any corrections in the program are done under the editor. (The name of your sys-

tem’s editor may be different. Check your system manual.)

When the editing is over, the fi le is saved on disk. It can then be referenced any time later by its fi le name. 

The program that is entered into the fi le is known as the  source program, since it represents the original form 

of the program.

1.23.2 Compiling and Linking

Let us assume that the source program has been created in a fi le named ebg1.c. Now the program is ready for 

compilation. The compilation command to achieve this task under UNIX is

cc ebg1.c

The source program instructions are now translated into a form that is suitable for execution by the 

 computer. The translation is done after examining each instruction for its correctness. If everything is alright, 

the compilation proceeds silently and the translated program is stored on another fi le with the name ebg1.o. 

This program is known as object code.

Linking is the process of putting together other program fi les and functions that are required by the 

 program. For example, if the program is using exp() function, then the object code of this function should be 

brought from the math library of the system and linked to the main program. Under UNIX, the linking is 

automatically done (if no errors are detected) when the cc command is used.

If any mistakes in the syntax and semantics of the language are discovered, they are listed out and the 

compilation process ends right there. The errors should be corrected in the source program with the help of 

the editor and the compilation is done again.

The compiled and linked program is called the executable object code and is stored automatically in 

another fi le named a.out.

Note that some systems use different compilation command for linking mathematical functions.

cc filename - lm

is the command under UNIPLUS SYSTEM V operating system.

1.23.3 Executing the Program

Execution is a simple task. The command

a.out

1.23  UNIX SYSTEM



1.58 Computer Programming

would load the executable object code into the computer memory and execute the instructions. During execu-

tion, the program may request for some data to be entered through the keyboard. Sometimes the program 

does not produce the desired results. Perhaps, something is wrong with the program logic or data. Then it 

would be necessary to correct the source program or the data. In case the source program is modifi ed, the 

entire process of compiling, linking and executing the program should be repeated.

1.23.4 Creating Our Own  Executable File

Note that the linker always assigns the same name  a.out. When we compile another program, this fi le will 

be overwritten by the executable object code of the new program. If we want to prevent from happening, we 

should rename the fi le immediately by using the command.

mv a.out name

We may also achieve this by specifying an option in the cc command as follows:

cc –o name source-file

This will store the executable object code in the fi le name and prevent the old fi le a.out from being 

destroyed.

1.23.5  Multiple Source Files

To compile and link multiple source program fi les, we must append all the fi les names to the cc command.

cc filename-1.c …. filename-n.c

These fi les will be separately compiled into object fi les called

filename-i.o

and then linked to produce an executable 

 program fi le a.out as shown in Fig. 1.65.

It is also possible to compile each fi le 

 separately and link them later. For example, the 

commands

cc –c mod1.c
cc –c mod2.c

will compile the source fi les mod1.c and mod2.c

into objects fi les mod1.o and mod2.o. They can 

be linked together by the command

cc mod1.o mod2.o

we may also combine the source fi les and object fi les as follows:

cc mod1.c mod2.o

Only mod1.c is compiled and then linked with the object fi le mod2.o. This approach is useful when one of 

the multiple source fi les need to be changed and recompiled or an already existing object fi les is to be used 

along with the program to be compiled.

The program can be created using any word processing software in non-document mode. The fi le name 

should end with the characters “.c” like program.c, pay.c, etc. Then the command

MSC pay.c 

1.24  MS-DOS SYSTEM

.C .C

a.out

.C

Compiler and
preprocessor

.O .O .O Library

Linker

Fig. 1.65 Compilation of multiple fi les



Introduction to Computers, Problem Solving and Basic of C 1.59 

under MS-DOS operating system would load the program stored in the fi le pay.c and generate the object 

code. This code is stored in another fi le under name pay.obj. In case any language errors are found, the 

 compilation is not completed. The program should then be corrected and compiled again.

The linking is done by the command

LINK pay.obj

which generates the executable code with the fi lename pay.exe. Now the command

pay

would execute the program and give the results.

A programming language is designed to help process certain kinds of data consisting of numbers, characters 

and strings and to provide useful output known as information. The task of processing of data is  accomplished 

by executing a sequence of precise instructions called a program. These instructions are formed using certain 

symbols and words according to some rigid rules known as syntax rules (or grammar). Every program 

instruction must confi rm precisely to the syntax rules of the language.

Like any other language, C has its own vocabulary and grammar. In this chapter, we will discuss the 

 concepts of constants and variables and their types as they relate to C programming language.

The characters that can be used to form words, numbers and expressions depend upon the computer on which 

the program is run. However, a subset of characters is available that can be used on most personal, micro, 

mini and mainframe computers. The characters in C are grouped into the following categories:

1. Letters

2. Digits

3. Special characters

4. White spaces

The entire character set is given in Table 1.3.

The compiler ignores white spaces unless they are a part of a string constant. White spaces may be used 

to separate words, but are prohibited between the characters of keywords and identifi ers.

 Trigraph Characters

Many non-English keyboards do not support all the characters mentioned in Table 1.3. ANSI C introduces the 

concept of “trigraph” sequences to provide a way to enter certain characters that are not available on some 

keyboards. Each trigraph sequence consists of three characters (two question marks followed by another 

character) as shown in Table 1.4. For example, if a keyboard does not support square brackets, we can still 

use them in a program using the trigraphs ??( and ??).

Table 1.3 C  Character Set

Letters Digits

Uppercase A.....Z All decimal digits 0 .....9

Lowercase a.....z

1.25 INTRODUCTION TO CONSTANTS, VARIABLES, AND DATA TYPES

1.26  CHARACTER SET



1.60 Computer Programming

Special Characters

, comma & ampersand

. period ^ caret

; semicolon * asterisk

: colon – minus sign

? question mark + plus sign

‘ apostrophe < opening angle bracket

“ quotation mark (or less than sign)

! exclamation mark > closing angle bracket

| vertical bar (or greater than sign)

/ slash ( left parenthesis

\ backslash ) right parenthesis

~ tilde [ left bracket

_ under score ] right bracket

$ dollar sign { left brace

% percent sign } right brace

# number sign

White Spaces

Blank space

Horizontal tab

Carriage return

New line

Form feed

Table 1.4  ANSI C Trigraph Sequenes

Trigraph sequence Translation

??= # number sign

??( [ left bracket

??) ] right bracket

??< { left brace

??> } right brace

??! | vertical bar

??/ \ back slash

??/ ^ caret

??- ~ tilde

In a passage of text, individual words and punctuation marks are called tokens. Similarly, in a C program the 

smallest individual units are known as C tokens. C has six types of tokens as shown in Fig. 1.66. C programs 

are written using these tokens and the syntax of the language.

1.27   C TOKENS



Introduction to Computers, Problem Solving and Basic of C 1.61

Keywords

float
while

+ –
* ,

"ABC"
"year"

–15.5
100

Identifiers

main
amount

[ ]
{ }

Special Symbols

C TOKENS

StringsConstants Operators

Fig. 1.66 C tokens and examples

Every C word is classifi ed as either a  keyword or an  identifi er. All keywords have fi xed meanings and these 

meanings cannot be changed. Keywords serve as basic building blocks for program statements. The list of all 

keywords of ANSI C are listed in Table 1.5. All keywords must be written in lowercase. Some compilers may 

use additional keywords that must be identifi ed from the C manual.

NOTE: C99 adds some more keywords. See the Appendix  “C99 Features”.

Table 1.5  ANSI C Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const fl oat short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Identifi ers refer to the names of variables, functions and arrays. These are user-defi ned names and consist 

of a sequence of letters and digits, with a letter as a fi rst character. Both uppercase and lowercase letters are 

permitted, although lowercase letters are commonly used. The underscore character is also permitted in 

 identifi ers. It is usually used as a link between two words in long identifi ers.

1.28  KEYWORDS AND IDENTIFIERS



1.62 Computer Programming

1. First character must be an alphabet (or underscore).

2. Must consist of only letters, digits or underscore.

3. Only fi rst 31 characters are signifi cant.

4. Cannot use a keyword.

5. Must not contain white space.

Rules for Identifi ers

Constants in C refer to fi xed values that do not change during the execution of a program. C supports several 

types of constants as illustrated in Fig. 1.67.

Fig. 1.67 Basic types of C constants

1.29.1  Integer Constants

An  integer constant refers to a sequence of digits. There are three types of integers, namely,  decimal integer, 

octal integer and hexadecimal integer.

Decimal integers consist of a set of digits, 0 through 9, preceded by an optional – or + sign. Valid examples 

of decimal integer constants are:

123 – 321 0 654321 +78

Embedded spaces, commas, and non-digit characters are not permitted between digits. For example,

15 750 20,000 $1000

are illegal numbers. 

NOTE: ANSI C supports unary plus which was not defi ned earlier.

An octal integer constant consists of any combination of digits from the set 0 through 7, with a leading 0. 

Some examples of octal integer are:

037 0 0435 0551

1.29  CONSTANTS



Introduction to Computers, Problem Solving and Basic of C 1.63 

A sequence of digits preceded by 0x or 0X is considered as hexadecimal integer. They may also include 

alphabets A through F or a through f. The letter A through F represent the numbers 10 through 15. Following 

are the examples of valid hex integers:

0X2 0x9F 0Xbcd 0x

We rarely use octal and hexadecimal numbers in programming.

The largest integer value that can be stored is machine-dependent. It is 32767 on 16-bit machines and 

2,147,483,647 on 32-bit machines. It is also possible to store larger integer constants on these machines by 

appending qualifi ers such as U,L and UL to the constants. Examples:

 56789U or 56789u (unsigned integer)

 987612347UL or 98761234ul (unsigned long integer)

 9876543L or 9876543l (long integer)

The concept of unsigned and l0ong integers are discussed in detail in Section 1.7.

EXAMPLE 1.19 Representation of integer constants on a 16-bit computer.

The program in Fig. 1.68 illustrates the use of integer constants on a 16-bit machine. The output in Fig. 1.68 

shows that the integer values larger than 32767 are not properly stored on a 16-bit machine. However, when 

they are qualifi ed as long integer (by appending L), the values are correctly stored.

Program
main()
{

 printf(“Integer values\n\n”);
 printf(“%d %d %d\n”, 32767,32767+1,32767+10);
 printf(“\n”);
 printf(“Long integer values\n\n”);
 printf(“%ld %ld %ld\n”, 32767L,32767L+1L,32767L+10L);

}
Output
 Integer values
 32767 -32768 -32759
 Long integer values
 32767 32768 32777

Fig. 1.68 Representation of integer constants on 16-bit machine

1.29.2   Real Constants

Integer numbers are inadequate to represent quantities that vary continuously, such as distances, heights, 

temperatures, prices, and so on. These quantities are represented by numbers containing fractional parts like 

17.548. Such numbers are called real (or fl oating point) constants. Further examples of real constants are:

0.0083 –0.75 435.36 +247.0

These numbers are shown in decimal notation, having a whole number followed by a decimal point 

and the fractional part. It is possible to omit digits before the decimal point, or digits after the decimal point. 

That is,

215. .95 –.71 +.5

are all valid real numbers.



1.64 Computer Programming

A real number may also be expressed in exponential (or scientifi c) notation. For example, the value 215.65 

may be written as 2.1565e2 in exponential notation. e2 means multiply by 102. The general form is:

mantissa e exponent

The  mantissa is either a real number expressed in decimal notation or an integer. The exponent is an 

 integer number with an optional plus or minus sign. The letter e separating the mantissa and the exponent 

can be written in either lowercase or uppercase. Since the exponent causes the decimal point to “fl oat”, 

this  notation is said to represent a real number in fl oating point form. Examples of legal fl oating-point 

 constants are:

0.65e4 12e-2 1.5e+5 3.18E3 -1.2E-1

Embedded white space is not allowed.

Exponential notation is useful for representing numbers that are either very large or very small in 

 magnitude. For example, 7500000000 may be written as 7.5E9 or 75E8. Similarly, -0.000000368 is 

 equivalent to –3.68E-7.

Floating-point constants are normally represented as double-precision quantities. However, the suffi xes 

f or F may be used to force single-precision and l or L to extend double precision further.

Some examples of valid and invalid numeric constants are given in Table 1.6.

Table 1.6 Examples of Numeric Constants

Constant Valid ? Remarks

698354L Yes Represents long integer

25,000 No Comma is not allowed

+5.0E3 Yes (ANSI C supports unary plus)

3.5e-5 Yes

7.1e 4 No No white space is permitted

-4.5e-2 Yes

1.5E+2.5 No Exponent must be an integer

$255 No $ symbol is not permitted

0X7B Yes Hexadecimal integer

1.29.3 Single Character Constants

A single character constant (or simply character constant) contains a single character enclosed within a pair 

of single quote marks. Example of character constants are:

‘5’ ‘X’ ‘;’ ‘ ’

Note that the character constant ‘5’ is not the same as the number 5. The last constant is a blank space.

Character constants have integer values known as ASCII values. For example, the statement

printf(“%d”, ‘a’);

would print the number 97, the ASCII value of the letter a. Similarly, the statement

printf(“%c”, ‘97’);

would output the letter ‘a’. ASCII values for all characters are given in Appendix II.

Since each character constant represents an integer value, it is also possible to perform arithmetic opera-

tions on character constants. They are discussed in Chapter 9.



Introduction to Computers, Problem Solving and Basic of C 1.65 

1.29.4   String Constants

A string constant is a sequence of characters enclosed in double quotes. The characters may be letters, 

 numbers, special characters and blank space. Examples are:

“Hello!” “1987” “WELL DONE” “?...!” “5+3” “X”

Remember that a character constant (e.g., ‘X’) is not equivalent to the single character string constant 

(e.g., “X”). Further, a single character string constant does not have an equivalent integer value while a 

 character constant has an integer value. Character strings are often used in programs to build meaningful 

programs. Manipulation of character strings are considered in detail in Chapter 11.

1.29.5  Backslash  Character Constants

C supports some special backslash character constants that are used in output functions. For example, the 

symbol ‘\n’ stands for newline character. A list of such backslash character constants is given in Table 1.7. 

Note that each one of them represents one character, although they consist of two characters. These  characters 

combinations are known as escape sequences.

Table 1.7 Backslash Character Constants

Constant Meaning

‘\a’ audible alert (bell)

‘\b’ back space

‘\f’ form feed

‘\n’ new line

‘\r’ carriage return

‘\t’ horizontal tab

‘\v’ vertical tab

‘\” single quote

‘\”’ double quote

‘\?’ question mark

‘\\’ backslash

‘\0’ null

A   variable is a data name that may be used to store a data value. Unlike constants that remain unchanged 

during the execution of a program, a variable may take different values at different times during execution. 

In Chapter 3, we used several variables. For instance, we used the variable amount in Sample Program 3 to 

store the value of money at the end of each year (after adding the interest earned during that year).

A variable name can be chosen by the programmer in a meaningful way so as to refl ect its function or 

nature in the program. Some examples of such names are:

Average

height

1.30  VARIABLES



1.66 Computer Programming

Total

Counter_1

class_strength

As mentioned earlier, variable names may consist of letters, digits, and the underscore(_) character,  subject 

to the following conditions:

1. They must begin with a letter. Some systems permit underscore as the fi rst character.

2. ANSI standard recognizes a length of 31 characters. However, length should not be normally more 

than eight characters, since only the fi rst eight characters are treated as signifi cant by many compilers. 

(In C99, at least 63 characters are signifi cant.)

3. Uppercase and lowercase are signifi cant. That is, the variable Total is not the same as total or 

 TOTAL.

4. It should not be a keyword.

5. White space is not allowed.

Some examples of valid variable names are:

 John Value T_raise

 Delhi x1 ph_value

 mark sum1 distance

Invalid examples include:

 123 (area)

 % 25th

Further examples of variable names and their correctness are given in Table 1.8.

Table 1.8 Examples of  Variable Names

Variable name Valid? Remark

First_tag Valid

char Not valid char is a keyword

Price$ Not valid Dollar sign is illegal

group one Not valid Blank space is not permitted

average_number Valid First eight characters are signifi cant

int_type Valid Keyword may be part of a name

If only the fi rst eight characters are recognized by a compiler, then the two names

average_height

average_weight

mean the same thing to the computer. Such names can be rewritten as

avg_height and avg_weight

or

ht_average and wt_average

without changing their meanings.

C language is rich in its  data types. Storage representations and machine instructions to handle constants 

 differ from machine to machine. The variety of data types available allow the programmer to select the type 

appropriate to the needs of the application as well as the machine.

1.31  DATA TYPES



Introduction to Computers, Problem Solving and Basic of C 1.67

ANSI C supports three classes of data types:

1. Primary (or fundamental) data types

2. Derived data types

3. User-defi ned data types

The primary data types and their extensions are discussed in this section. The user-defi ned data types are 

defi ned in the next section while the derived data types such as arrays, functions, structures and pointers are 

discussed as and when they are encountered.

All C compilers support fi ve fundamental  data types, namely integer  (int), character  (char), fl oating point 

(fl oat), double-precision fl oating point  (double) and  void. Many of them also offer extended data types such as 

long int and long double. Various data types and the terminology used to describe them are given in Fig. 1.69. 

The range of the basic four types are given in Table 1.9. We discuss briefl y each one of them in this section.

NOTE: C99 adds three more data types, namely _Bool, _Complex, and _Imaginary. See the Appendix “C99 

Features”.

PRIMARY DATA TYPES

Integral TypeTT

signed

int

short int

long int

float double Long double
void

unsigned type

Floating point TypeTT

unsigned int

char

Integer Character

unsigned short int

signed char

unsigned long int

unsigned char

Fig. 1.69 Primary data types in C

Table 1.9 Size and Range of Basic  Data Types on 16-bit Machines

Data type Range of values

char –128 to 127

int –32,768 to 32,767

fl oat 3.4e–38 to 3.4e+e38

double 1.7e–308 to 1.7e+308

1.31.1 Integer Types

Integers are whole numbers with a range of values supported by a particular machine. Generally, integers 

occupy one word of storage, and since the word sizes of machines vary (typically, 16 or 32 bits) the size of 



1.68 Computer Programming

an integer that can be stored depends on the computer. If we use a 16 bit word length, the size of the integer 

value is limited to the range –32768 to +32767 (that is, –215 to +215–1). A signed integer uses one bit for 

sign and 15 bits for the magnitude of the number. Similarly, a 32 bit word length can store an integer ranging 

from -2,147,483,648 to 2,147,483,647.

In order to provide some control over the range of numbers and storage space, C has three classes of 

 integer storage, namely short int, int, and long int, in both signed and unsigned forms. ANSI C defi nes these 

types so that they can be organized from the smallest to the largest, as shown in Fig. 1.70. For example, short 

int represents fairly small integer values and requires half the amount of storage as a regular int  number uses. 

Unlike signed integers, unsigned integers use all the bits for the magnitude of the number and are always 

positive. Therefore, for a 16 bit machine, the range of 

unsigned integer numbers will be from 0 to 65,535.

We declare  long and  unsigned integers to increase the 

range of values. The use of qualifi er signed on integers is 

optional because the default declaration assumes a signed

number. Table 1.10 shows all the allowed combinations of 

basic types and qualifi ers and their size and range on a 

16-bit machine.

NOTE: C99 allows long long integer types. See the Appendix “C99 Features”.

Table 1.10 Size and Range of Data Types on a 16-bit Machine

Type Size (bits) Range

char or signed char 8 –128 to 127

unsigned char 8 0 to 255

int or signed int 16 –32,768 to 32,767

unsigned int 16 0 to 65535

short int or

signed short int 8 –128 to 127

unsigned short int 8 0 to 255

long int or

signed long int 32 –2,147,483,648 to 2,147,483,647

unsigned long int 32 0 to 4,294,967,295

fl oat 32 3.4E – 38 to 3.4E + 38

double 64 1.7E – 308 to 1.7E + 308

long double 80 3.4E – 4932 to 1.1E + 4932

1.31.2 Floating Point Types

Floating point (or real) numbers are stored in 32 bits (on all 16 bit and 32 bit machines), with 6 digits 

of  precision. Floating point numbers are defi ned in C by the keyword fl oat. When the accuracy provided 

by a fl oat number is not suffi cient, the type double can be used to defi ne the number. A double data 

type  number uses 64 bits giving a precision of 14 digits. These are known as double precision numbers. 

Remember that double type represents the same data type that fl oat represents, but with a greater precision. 

short int

long int

int

Fig. 1.70 Integer types



Introduction to Computers, Problem Solving and Basic of C 1.69

To extend the precision further, we may use long double

which uses 80 bits. The relationship among fl oating types 

is  illustrated in Fig. 1.71.

1.31.3   Void Types

The void type has no values. This is usually used to spec-

ify the type of functions. The type of a function is said to 

be void when it does not return any value to the calling function. It can also play the role of a generic type, 

meaning that it can represent any of the other standard types.

1.31.4   Character Types

A single character can be defi ned as a character(char) type data. Characters are usually stored in 8 bits (one 

byte) of internal storage. The qualifi er signed or unsigned may be explicitly applied to char. While unsigned 

chars have values between 0 and 255, signed chars have values from –128 to 127.

After designing suitable variable names, we must declare them to the compiler. Declaration does two 

things:

1. It tells the compiler what the variable name is.

2. It specifi es what type of data the variable will hold.

The declaration of variables must be done before they are used in the program.

1.32.1 Primary Type Declaration

A variable can be used to store a value of any data type. That is, the name has nothing to do with its type. The 

syntax for declaring a variable is as follows:

data-type v1,v2,....vn ;

v1, v2, ....vn are the names of variables. Variables are separated by commas. A declaration statement must end 

with a semicolon. For example, valid declarations are:

int count;
int number, total;
double ratio;

int and double are the keywords to represent integer type and real type data values respectively. Table 1.11 

shows various data types and their keyword equivalents.

Table 1.11  Data Types and Their Keywords

Data type keyword equivalent

Character char

Unsigned character unsigned char

Signed character signed char

Signed integer signed int (or int)

(Contd.)

1.32   DECLARATION OF VARIABLES

Fig. 1.71 Floating-point types

float

long double

double



1.70 Computer Programming

Signed short integer signed short int

(or short int or short)

Signed long integer signed long int

(or long int or long)

Unsigned integer unsigned int (or unsigned)

Unsigned short integer unsigned short int

(or unsigned short)

Unsigned long integer unsigned long int

(or unsigned long)

Floating point fl oat

Double-precision

fl oating point double

Extended double-precision

fl oating point long double

The program segment given in Fig. 1.72 illustrates declaration of variables. main() is the beginning of 

the program. The opening brace { signals the execution of the program. Declaration of variables is usually 

done immediately after the opening brace of the program. The variables can also be declared outside (either 

before or after) the main function. The importance of place of declaration will be dealt in detail later while 

discussing functions.

NOTE: C99 permits declaration of variables at any point within a function or block, prior to their use.

main() /*.........Program Name........................ */

{

 /*................Declaration.......................*/

  float   x, y;

  int    code;

  short int   count;

  long int  amount;

  double   deviation;

  unsigned  n;

  char    c;

 /*...............Computation....................... */

  . . . .

  . . . .

  . . . .

} /*.............Program ends.........................*/

Fig. 1.72 Declaration of variables

When an adjective (qualifi er) short, long, or unsigned is used without a basic data type specifi er, C 

 compilers treat the data type as an int. If we want to declare a character variable as unsigned, then we must 

do so using both the terms like unsigned char.



Introduction to Computers, Problem Solving and Basic of C 1.71 

Integer constants, by default, represent int type data. We can override this default by specifying unsigned or long after 

the number (by appending U or L) as shown below:

 Literal Type Value

 +111 int 111

 –222 int –222

 45678U unsigned int 45,678

 –56789L long int –56,789

 987654UL unsigned long int 9,87,654

Similarly, fl oating point constants, by default represent double type data. If we want the resulting data type to be fl oat or 

long double, we must append the letter f or F to the number for fl oat and letter l or L for long double as shown 

 below:

 Literal Type Value

 0. double  0.0

 .0 double  0.0

 12.0 double 12.0

 1.234 double  1.234

 –1.2f fl oat  –1.2

 1.23456789L long double  1.23456789

 Default values of Constants

1.32.2   User-Defi ned \Type Declaration

C supports a feature known as “type defi nition” that allows users to defi ne an identifi er that would represent 

an existing data type. The user-defi ned data type identifi er can later be used to declare variables . It takes the 

general form:

typedef type identifier;

Where type refers to an existing data type and “identifi er” refers to the “new” name given to the data type. 

The existing data type may belong to any class of type, including the user-defi ned ones. Remember that the 

new type is ‘new’ only in name, but not the data type. typedef cannot create a new type. Some examples of 

type defi nition are:

typedef int units;
typedef float marks;

Here, units symbolizes int and marks symbolizes fl oat. They can be later used to declare variables as 

follows:

units batch1, batch2;
marks name1[50], name2[50];

batch1 and batch2 are inclared as int variable and name1[50] and name 2[50] are declared as 50 element 

fl oating point array variables. The main advantage of typedef is that we can create meaningful data type 

names for increasing the readability of the program.

Another user-defi ned data type is enumerated data type provided by ANSI standard. It is defi ned as 

follows:

enum identifier {value1, value2, ... valuen};

The “identifi er” is a user-defi ned enumerated data type which can be used to declare variables that can have 

one of the values enclosed within the braces (known as enumeration constants). After this defi nition, we can 

declare variables to be of this ‘new’ type as below:

enum identifier v1, v2, ... vn;



1.72 Computer Programming

The enumerated variables v1, v2, ... vn can only have one of the values value1, value2, ... valuen. The 

assignments of the following types are valid:

v1 = value3;
v5 = value1;

An example:

enum day {Monday,Tuesday, ... Sunday};
enum day week_st, week_end;
week_st = Monday;
week_end = Friday;
if(week_st == Tuesday)
week_end = Saturday;

The compiler automatically assigns integer digits beginning with 0 to all the enumeration constants. That 

is, the enumeration constant value1 is assigned 0, value2 is assigned 1, and so on. However, the automatic 

assignments can be overridden by assigning values explicitly to the enumeration constants. For example:

enum day {Monday = 1, Tuesday, ... Sunday};

Here, the constant Monday is assigned the value of 1. The remaining constants are assigned values that 

increase successively by 1.

The defi nition and declaration of enumerated variables can be combined in one statement. Example:

enum day {Monday, ... Sunday} week_st, week_end;

Variables in C can have not only data type but also storage class that provides information about their 

 location and visibility. The storage class decides the portion of the program within which the variables are 

recognized. Consider the following example:

  /* Example of storage classes */

 int m;

 main()

 {

  int i;

  float balance;

  ....

  ....

  function1();

 }

 function1()

 {

  int i;

  float sum;

  ....

  ....

 }

The variable m which has been declared before the main is called  global variable. It can be used in all the 

functions in the program. It need not be declared in other functions. A global variable is also known as an 

external variable.

The variables i, balance and sum are called  local variables because they are declared inside a function. 

Local variables are visible and meaningful only inside the functions in which they are declared. They are not 

1.33  DECLARATION OF  STORAGE CLASS



Introduction to Computers, Problem Solving and Basic of C 1.73 

known to other functions. Note that the variable i has been declared in both the functions. Any change in the 

value of i in one function does not affect its value in the other.

C provides a variety of storage class specifi ers that can be used to declare explicitly the scope and lifetime 

of variables. The concepts of scope and lifetime are important only in multifunction and multiple fi le  programs 

and therefore the storage classes are considered in detail later when functions are discussed. For now, remem-

ber that there are four storage class specifi ers (auto, register, static, and extern) whose meanings are given 

in Table 1.12.

The storage class is another qualifi er (like long or unsigned) that can be added to a variable declaration as 

shown below:

auto int count;
register char ch;
static int x;
extern long total;

Static and external (extern) variables are automatically initialized to zero. Automatic (auto) variables 

contain undefi ned values (known as ‘garbage’) unless they are initialized explicitly.

Table 1.12  Storage Classes and Their Meaning

Storage class Meaning

auto Local variable known only to the function in which it is declared. Default is auto.

static Local variable which exists and retains its value even after the control is 

 transferred to the calling function.

extern Global variable known to all functions in the fi le.

register Local variable which is stored in the register.

Variables are created for use in program statements such as,

value = amount + inrate * amount;
while (year <= PERIOD)
{
 ....
 ....
 year = year + 1;
}

In the fi rst statement, the numeric value stored in the variable inrate is multiplied by the value stored in 

amount and the product is added to amount. The result is stored in the variable value. This process is 

 possible only if the variables amount and inrate have already been given values. The variable value is called 

the  target variable. While all the variables are declared for their type, the variables that are used in expres-

sions (on the right side of equal (=) sign of a computational statement) must be assigned values before they 

are encountered in the program. Similarly, the variable year and the symbolic constant PERIOD in the while 

statement must be assigned values before this statement is encountered.

1.34.1  Assignment Statement

Values can be assigned to variables using the assignment operator = as follows:

variable_name = constant;

1.34  ASSIGNING VALUES TO VARIABLES



1.74 Computer Programming

We have already used such statements in Chapter 1. Further examples are:

initial_value = 0;
final_value  = 100;
balance  = 75.84;
yes  = ‘x’;

C permits multiple assignments in one line. For example

initial_value = 0; final_value = 100;

are valid statements.

An assignment statement implies that the value of the variable on the left of the ‘equal sign’ is set equal to 

the value of the quantity (or the expression) on the right. The statement

year = year + 1;

means that the ‘new value’ of year is equal to the ‘old value’ of year plus 1.

During assignment operation, C converts the type of value on the right-hand side to the type on the left. 

This may involve truncation when real value is converted to an integer.

It is also possible to assign a value to a variable at the time the variable is declared. This takes the follow-

ing form:

data-type variable_name = constant;

Some examples are:

int final_value = 100;
char yes    = ‘x’;
double balance  = 75.84;

The process of giving initial values to variables is called initialization. C permits the initialization of more 

than one variables in one statement using multiple assignment operators. For example the statements

 p = q = s = 0;
 x = y = z = MAX;

are valid. The fi rst statement initializes the variables p, q, and s to zero while the second initializes x, y, and 

z with MAX. Note that MAX is a symbolic constant defi ned at the beginning.

Remember that external and static variables are initialized to zero by default. Automatic variables that are 

not initialized explicitly will contain garbage.

EXAMPLE 1.20 Program in Fig. 1.73 shows typical declarations, assignments and values stored in 

various types of variables.

The variables x and p have been declared as fl oating-point variables. Note that the way the value of 

1.234567890000 that we assigned to x is displayed under different output formats. The value of x is displayed 

as 1.234567880630 under %.12lf format, while the actual value assigned is 1.234567890000. This is because 

the variable x has been declared as a fl oat that can store values only up to six decimal places.

The variable m that has been declared as int is not able to store the value 54321 correctly. Instead, it con-

tains some garbage. Since this program was run on a 16-bit machine, the maximum value that an int variable 

can store is only 32767. However, the variable k (declared as unsigned) has stored the value 54321 correctly. 

Similarly, the long int variable n has stored the value 1234567890 correctly.

The value 9.87654321 assigned to y declared as double has been stored correctly but the value is printed as 

9.876543 under %lf format. Note that unless specifi ed otherwise, the printf function will always display a 

fl oat or double value to six decimal places. We will discuss later the output formats for displaying numbers.



Introduction to Computers, Problem Solving and Basic of C 1.75 

Program
 main()
 {
 /*..........DECLARATIONS............................*/
  float x, p ;
  double y, q ;
  unsigned k ;
 /*..........DECLARATIONS AND ASSIGNMENTS............*/
  int m = 54321 ;
  long int n = 1234567890 ;
 /*..........ASSIGNMENTS.............................*/
  x = 1.234567890000 ;
  y = 9.87654321 ;
  k = 54321 ;
  p = q = 1.0 ;
 /*..........PRINTING................................*/
  printf(“m = %d\n”, m) ;
  printf(“n = %ld\n”, n) ;
  printf(“x = %.12lf\n”, x) ;
  printf(“x = %f\n”, x) ;
  printf(“y = %.12lf\n”,y) ;
  printf(“y = %lf\n”, y) ;
  printf(“k = %u p = %f q = %.12lf\n”, k, p, q) ;
 }
Output
 m = -11215
 n = 1234567890
 x = 1.234567880630
 x = 1.234568
 y = 9.876543210000
 y = 9.876543
 k = 54321 p = 1.000000 q = 1.000000000000

Fig. 1.73 Examples of assignments

1.34.2 Reading Data from Keyboard

Another way of giving values to variables is to input data through keyboard using the scanf function. It is a 

general input function available in C and is very similar in concept to the printf function. It works much like 

an INPUT statement in BASIC. The general format of scanf is as follows:

  scanf(“control string”, &variable1,&variable2,....);

The control string contains the format of data being received. The ampersand symbol & before each variable 

name is an operator that specifi es the variable name’s address. We must always use this operator, otherwise 

unexpected results may occur. Let us look at an example:

scanf(“%d”, &number);

When this statement is encountered by the computer, the execution stops and waits for the value of the 

variable number to be typed in. Since the control string “%d” specifi es that an integer value is to be read 

from the terminal, we have to type in the value in integer form. Once the number is typed in and the ‘Return’ 

Key is pressed, the computer then proceeds to the next statement. Thus, the use of scanf provides an interac-

tive feature and makes the program ‘user friendly’. The value is assigned to the variable number.



1.76 Computer Programming

EXAMPLE 1.21 The program in Fig. 1.74 illustrates the use of scanf function.

The fi rst executable statement in the program is a printf, requesting the user to enter an integer number. This 

is known as “prompt message” and appears on the screen like

Enter an integer number

As soon as the user types in an integer number, the computer proceeds to compare the value with 100. If 

the value typed in is less than 100, then a message

Your number is smaller than 100

is printed on the screen. Otherwise, the message

Your number contains more than two digits

is printed. Outputs of the program run for two different inputs are also shown in Fig. 1.74.

Program
 main()
 {
  int number;
  printf(“Enter an integer number\n”);
  scanf (“%d”, &number);
  if ( number < 100 )
   printf(“Your number is smaller than 100\n\n”);
  else
   printf(“Your number contains more than two digits\n”);
 }
Output
 Enter an integer number
 54
 Your number is smaller than 100
 Enter an integer number
 108
 Your number contains more than two digits

Fig. 1.74 Use of scanf function for interactive computing

Some compilers permit the use of the ‘prompt message’ as a part of the control string in scanf, like

 scanf(“Enter a number %d”,&number);

In Fig. 1.74 we have used a decision statement if...else to decide whether the number is less than 100. 

Decision statements are discussed in depth in Chapter 8.

EXAMPLE 1.22 Sample program 3 discussed in Chapter 4 can be converted into a more fl exible 

interactive program using scanf as shown in Fig. 1.75.

In this case, computer requests the user to input the values of the amount to be invested, interest rate and 

period of investment by printing a prompt message

Input amount, interest rate, and period

and then waits for input values. As soon as we fi nish entering the three values corresponding to the three 

variables amount, inrate, and period, the computer begins to calculate the amount at the end of each year, 

up to ‘period’ and produces output as shown in Fig. 1.75.



Introduction to Computers, Problem Solving and Basic of C 1.77 

Program
main()
{
 int year, period ;
 float amount, inrate, value ;
 printf(“Input amount, interest rate, and period\n\n”) ;
 scanf (“%f %f %d”, &amount, &inrate, &period) ;
 printf(“\n”) ;
 year = 1 ;
 while( year <= period )
 {
 value = amount + inrate * amount ;
 printf(“%2d Rs %8.2f\n”, year, value) ;
 amount = value ;
 year = year + 1 ;
 }
}
Output
Input amount, interest rate, and period
 10000 0.14 5
 1 Rs 11400.00
 2 Rs 12996.00
 3 Rs 14815.44
 4 Rs 16889.60
 5 Rs 19254.15
Input amount, interest rate, and period
 20000 0.12 7
 1 Rs 22400.00
 2 Rs 25088.00
 3 Rs 28098.56
 4 Rs 31470.39
 5 Rs 35246.84
 6 Rs 39476.46
 7 Rs 44213.63

Fig. 1.75 Interactive investment program

Note that the scanf function contains three variables. In such cases, care should be exercised to see that 

the values entered match the order and type of the variables in the list. Any mismatch might lead to unex-

pected results. The compiler may not detect such errors.

We often use certain unique constants in a program. These constants may appear repeatedly in a number of 

places in the program. One example of such a constant is 3.142, representing the value of the mathematical 

constant “pi”. Another example is the total number of students whose mark-sheets are analysed by a ‘test 

analysis program’. The number of students, say 50, may be used for calculating the class total, class average, 

standard deviation, etc. We face two problems in the subsequent use of such programs. These are

1. problem in modifi cation of the program and

2. problem in understanding the program.

1.35  DEFINING  SYMBOLIC CONSTANTS



1.78 Computer Programming

1.35.1  Modifi ability

We may like to change the value of “pi” from 3.142 to 3.14159 to improve the accuracy of calculations or the 

number 50 to 100 to process the test results of another class. In both the cases, we will have to search through-

out the program and explicitly change the value of the constant wherever it has been used. If any value is left 

unchanged, the program may produce disastrous outputs.

1.35.2  Understandability

When a numeric value appears in a program, its use is not always clear, especially when the same value 

means different things in different places. For example, the number 50 may mean the number of students at 

one place and the ‘pass marks’ at another place of the same program. We may forget what a certain number 

meant, when we read the program some days later.

Assignment of such constants to a symbolic name frees us from these problems. For example, we may 

use the name STRENGTH to defi ne the number of students and PASS_MARK to defi ne the pass 

marks required in a subject. Constant values are assigned to these names at the beginning of the program. 

Subsequent use of the names STRENGTH and PASS_MARK in the program has the effect of causing 

their defi ned values to be automatically substituted at the appropriate points. A constant is defi ned as 

follows:

#define symbolic-name value of constant

Valid examples of constant defi nitions are:

#define STRENGTH 100

#define PASS_MARK 50

#define MAX 200

#define PI 3.14159

Symbolic names are sometimes called constant identifi ers. Since the symbolic names are constants (not 

variables), they do not appear in declarations. The following rules apply to a #defi ne statement which defi ne 

a symbolic constant:

1. Symbolic names have the same form as variable names. (Symbolic names are written in CAPITALS 

to visually distinguish them from the normal variable names, which are written in lowercase letters. 

This is only a convention, not a rule.)

2. No blank space between the pound sign ‘#’ and the word defi ne is permitted.

3. ‘#’ must be the fi rst character in the line.

4. A blank space is required between #defi ne and symbolic name and between the symbolic name and 

the constant.

5.  #defi ne statements must not end with a semicolon.

6. After defi nition, the symbolic name should not be assigned any other value within the program by 

using an assignment statement. For example, STRENGTH = 200; is illegal.

7. Symbolic names are NOT declared for data types. Its data type depends on the type of constant.

8. #defi ne statements may appear anywhere in the program but before it is referenced in the program 

(the usual practice is to place them in the beginning of the program).

#defi ne statement is a preprocessor compiler directive and is much more powerful than what has been 

mentioned here. More advanced types of defi nitions will be discussed later. Table 1.13 illustrates some invalid 

statements of #defi ne.



Introduction to Computers, Problem Solving and Basic of C 1.79

Table 1.13 Examples of Invalid  #defi ne Statements

Statement Validity Remark

#defi ne X = 2.5 Invalid ‘=’ sign is not allowed

# defi ne MAX 10 Invalid No white space between # and defi ne

#defi ne N 25; Invalid No semicolon at the end

#defi ne N 5, M 10 Invalid A statement can defi ne only one name.

#Defi ne ARRAY 11 Invalid defi ne should be in lowercase letters

#defi ne PRICE$ 100 Invalid $ symbol is not permitted in name

We may like the value of certain variables to remain constant during the execution of a program. We can 

achieve this by declaring the variable with the qualifi er const at the time of initialization. Example:

const int class_size = 40;

const is a new data type qualifi er defi ned by ANSI standard. This tells the compiler that the value of the 

int variable class_size must not be modifi ed by the program. However, it can be used on the right_hand side 

of an assignment statement like any other variable.

ANSI standard defi nes another qualifi er volatile that could be used to tell explicitly the compiler that a vari-

able’s value may be changed at any time by some external sources (from outside the program). For 

example:

volatile int date;

The value of date may be altered by some external factors even if it does not appear on the left-hand side 

of an assignment statement. When we declare a variable as volatile, the compiler will examine the value of 

the variable each time it is encountered to see whether any external alteration has changed the value.

Remember that the value of a variable declared as volatile can be modifi ed by its own program as well. If 

we wish that the value must not be modifi ed by the program while it may be altered by some other process, 

then we may declare the variable as both const and volatile as shown below:

volatile const int location = 100;

NOTE: C99 adds another qualifi er called restrict. See the Appendix “C99 Features”.

Problem of data overfl ow occurs when the value of a variable is either too big or too small for the data type 

to hold. The largest value that a variable can hold also depends on the machine. Since fl oating-point values 

are rounded off to the number of signifi cant digits allowed (or specifi ed), an overfl ow normally results in the 

largest possible real value, whereas an underfl ow results in zero.

1.36  DECLARING A VARIABLE AS CONSTANT

1.37  DECLARING A VARIABLE AS VOLATILE

1.38 OVERFLOW AND UNDERFLOW OF DATA



1.80 Computer Programming

Integers are always exact within the limits of the range of the integral data types used. However, an over-

fl ow which is a serious problem may occur if the data type does not match the value of the constant. C does 

not provide any warning or indication of integer overfl ow. It simply gives incorrect results. (Overfl ow nor-

mally produces a negative number.) We should therefore exercise a greater care to defi ne correct data types 

for handling the input/output values.

Reading, processing, and writing of data are the three essential functions of a computer program. Most pro-

grams take some data as input and display the processed data, often known as information or results, on a 

suitable medium. So far we have seen two methods of providing data to the program variables. One method 

is to assign values to variables through the assignment statements such as x = 5; a = 0; and so on. Another 

method is to use the input function scanf which can read data from a keyboard. We have used both the meth-

ods in most of our earlier example programs. For outputting results we have used extensively the function 

printf which sends results out to a terminal.

Unlike other high-level languages, C does not have any built-in input/output statements as part of its syn-

tax. All input/output operations are carried out through function calls such as printf and scanf. There exist 

several functions that have more or less become standard for input and output operations in C. These func-

tions are collectively known as the standard I/O library. In this chapter, we shall discuss some common I/O 

functions that can be used on many machines without any change. However, one should consult the system 

reference manual for exact details of these functions and also to see what other functions are available.

It may be recalled that we have included a statement

#include <math.h>

in the Sample Program 5 in Chapter 4, where a math library function cos(x) has been used. This is to instruct 

the compiler to fetch the function cos(x) from the math library, and that it is not a part of C language. 

Similarly, each program that uses a standard input/output function must contain the statement

#include <stdio.h>

at the beginning. However, there might be exceptions. For example, this is not necessary for the functions 

printf and scanf which have been defi ned as a part of the C language.

The fi le name  stdio.h is an abbreviation for standard input-output header fi le. The instruction #include 

<stdio.h> tells the compiler ‘to search for a fi le named stdio.h and place its contents at this point in the pro-

gram’. The contents of the header fi le become part of the source code when it is compiled.

The simplest of all input/output operations is reading a character from the ‘standard input’ unit (usually the 

keyboard) and writing it to the ‘standard output’ unit (usually the screen). Reading a single character can be 

done by using the function getchar. (This can also be done with the help of the scanf function which is dis-

cussed in Section 1.4.) The getchar takes the following form:

variable_name = getchar( );

variable_name is a valid C name that has been declared as char type. When this statement is encountered, 

the computer waits until a key is pressed and then assigns this character as a value to getchar function. Since 

getchar is used on the right-hand side of an assignment statement, the character value of getchar is in turn 

assigned to the variable name on the left. For example

1.39 INTRODUCTION TO MANAGING INPUT AND OUTPUT OPERATIONS

1.40  READING A CHARACTER



Introduction to Computers, Problem Solving and Basic of C 1.81

 char name;

 name = getchar();

Will assign the character ‘H’ to the variable name when we press the key H on the keyboard. Since 

getchar is a function, it requires a set of parentheses as shown.

EXAMPLE 1.23 The program in Fig. 1.76 shows the use of getchar function in an interactive 

environment.

The program displays a question of YES/NO type to the user and reads the user’s response in a single char-

acter (Y or N). If the response is Y or y, it outputs the message

My name is BUSY BEE

otherwise, outputs

You are good for nothing

NOTE: There is one line space between the input text and output message.

Program

 #include <stdio.h>
 main()
 {
  char answer;
  printf(“Would you like to know my name?\n”);
  printf(“Type Y for YES and N for NO: “);
  answer = getchar(); /* .... Reading a character...*/
  if(answer == ‘Y’ || answer == ‘y’)
   printf(“\n\nMy name is BUSY BEE\n”);
  else
   printf(“\n\nYou are good for nothing\n”);
 }
Output

 Would you like to know my name?
 Type Y for YES and N for NO: Y
 My name is BUSY BEE
 Would you like to know my name?
 Type Y for YES and N for NO: n
 You are good for nothing

Fig. 1.76 Use of getchar function to read a character from keyboard

The getchar function may be called successively to read the characters contained in a line of text. For 

example, the following program segment reads characters from keyboard one after another until the ‘Return’ 

key is pressed.
— — — –———–

 — — — –———–

 char character;

 character = ‘ ‘;

 while(character != ‘\n’)

 {

   character = getchar();

 }



1.82 Computer Programming

 — — — –———–
 — — — –———–

The  getchar() function accepts any character keyed in. This includes RETURN and TAB. This means when we enter 

single character input, the newline character is waiting in the input queue after getchar() returns. This could create 

problems when we use getchar() in a loop interactively. A dummy getchar() may be used to ‘eat’ the unwanted newline 

character. We can also use the ffl ush function to fl ush out the unwanted characters.

WARNING

NOTE: We shall be using decision statements like if, if…else and while extensively in this chapter. They are 

discussed in detail in Chapters 8 and 9.

EXAMPLE 1.24 The program of Fig. 1.77 requests the user to enter a character and displays a message 

on the screen telling the user whether the character is an alphabet or digit, or any other 

special character.

This program receives a character from the keyboard and tests whether it is a letter or digit and prints out a 

message accordingly. These tests are done with the help of the following functions:

isalpha(character)

isdigit(character)

For example,  isalpha assumes a value non-zero (TRUE) if the argument character contains an alphabet; 

otherwise it assumes 0 (FALSE). Similar is the case with the function isdigit.

Program

#include <stdio.h>
#include <ctype.h>
main()
{

 char character;
 printf(“Press any key\n”);
 character = getchar();
 if (isalpha(character) > 0)/* Test for letter */ 
 printf(“The character is a letter.”);
  else
  if (isdigit (character) > 0)/* Test for digit */
   printf(“The character is a digit.”);
  else
   printf(“The character is not alphanumeric.”);

}
Output

 Press any key
 h
 The character is a letter.
 Press any key
 5
 The character is a digit.
 Press any key
 *
 The character is not alphanumeric.

Fig. 1.77 Program to test the character type



Introduction to Computers, Problem Solving and Basic of C 1.83 

C supports many other similar functions, which are given in Table 1.14. These character functions are 

contained in the fi le  ctype.h and therefore the statement

#include <ctype.h>

must be included in the program.
Table 1.14 Character Test Functions

Function Test

isalnum(c) Is c an alphanumeric character?

isalpha(c) Is c an alphabetic character?

isdigit(c) Is c a digit?

islower(c) Is c lower case letter?

isprint(c) Is c a printable character?

ispunct(c) Is c a punctuation mark?

isspace(c) Is c a white space character?

isupper(c) Is c an upper case letter?

Like getchar, there is an analogous function putchar for writing characters one at a time to the terminal. It 

takes the form as shown below:

 putchar (variable_name);

where variable_name is a type char variable containing a character. This statement displays the character 

contained in the variable_name at the terminal. For example, the statements
 answer = ‘Y’;

 putchar (answer);

will display the character Y on the screen. The statement
 putchar (‘\n’);

would cause the cursor on the screen to move to the beginning of the next line.

EXAMPLE 1.25 A program that reads a character from keyboard and then prints it in reverse case is 

given in Fig. 1.78. That is, if the input is upper case, the output will be lower case and 

vice versa.

The program uses three new functions:  islower,  toupper, and  tolower. The function islower is a conditional 

function and takes the value TRUE if the argument is a lowercase alphabet; otherwise takes the value FALSE. 

The function toupper converts the lowercase argument into an uppercase alphabet while the function tolower 

does the reverse.

Program

#include <stdio.h>
#include <ctype.h>
main()
{
 char alphabet;
 printf(“Enter an alphabet”);
 putchar(‘\n’); /* move to next line */

1.41 WRITING A CHARACTER



1.84 Computer Programming

 alphabet = getchar();
 if (islower(alphabet))
  putchar(toupper(alphabet));/* Reverse and display */
 else
  putchar(tolower(alphabet)); /* Reverse and display */
}

Output

Enter an alphabet
a
A
Enter an alphabet
Q
q
Enter an alphabet
z
Z

Fig. 1.78 Reading and writing of alphabets in reverse case

Formatted input refers to an input data that has been arranged in a particular format. For example, consider 

the following data:

15.75 123 John

This line contains three pieces of data, arranged in a particular form. Such data has to be read conforming 

to the format of its appearance. For example, the fi rst part of the data should be read into a variable fl oat, the 

second into int, and the third part into char. This is possible in C using the scanf function. (scanf means scan 

formatted.)

We have already used this input function in a number of examples. Here, we shall explore all of the options 

that are available for reading the formatted data with scanf function. The general form of scanf is

scanf (“control string”, arg1, arg2, ...... argn);

The control string specifi es the fi eld format in which the data is to be entered and the arguments arg1, 

arg2, ...., argn specify the address of locations where the data is stored. Control string and arguments are 

separated by commas.

Control string (also known as format string) contains fi eld specifi cations, which direct the interpretation 

of input data. It may include:

Field (or format) specifi cations, consisting of the conversion character %, a data type character (or • 

type specifi er), and an optional number, specifying the fi eld width.

Blanks, tabs, or newlines.• 

Blanks, tabs and newlines are ignored. The data type character indicates the type of data that is to be 

assigned to the variable associated with the corresponding argument. The fi eld width specifi er is optional. 

The discussions that follow will clarify these concepts.

1.42.1 Inputting   Integer Numbers

The fi eld specifi cation for reading an integer number is:

% w sd

1.42  FORMATTED INPUT



Introduction to Computers, Problem Solving and Basic of C 1.85

The percentage sign (%) indicates that a conversion specifi cation follows. w is an integer number that 

specifi es the fi eld width of the number to be read and d, known as data type character, indicates that the num-

ber to be read is in integer mode. Consider the following example:

scanf (“%2d %5d”, &num1, &num2);

Data line:

50 31426

The value 50 is assigned to num1 and 31426 to num2. Suppose the input data is as follows:

31426 50

The variable  num1 will be assigned 31 (because of %2d) and num2 will be assigned 426 (unread part of 

31426). The value 50 that is unread will be assigned to the fi rst variable in the next scanf call. This kind of 

errors may be eliminated if we use the fi eld specifi cations without the fi eld width specifi cations. That is, the 

statement

scanf(“%d %d”, &num1, &num2);

will read the data

31426 50

correctly and assign 31426 to num1 and 50 to num2.

Input data items must be separated by spaces, tabs or newlines. Punctuation marks do not count as separa-

tors. When the scanf function searches the input data line for a value to be read, it will always bypass any 

white space characters.

What happens if we enter a fl oating point number instead of an integer? The fractional part may be 

stripped away! Also, scanf may skip reading further input.

When the scanf reads a particular value, reading of the value will be terminated as soon as the number of 

characters specifi ed by the fi eld width is reached (if specifi ed) or until a character that is not valid for the 

value being read is encountered. In the case of integers, valid characters are an optionally signed sequence of 

digits.

An input fi eld may be skipped by specifying * in the place of fi eld width. For example, the statement

scanf(“%d %*d %d”, &a, &b)

will assign the data

123 456 789

as follows:

123 to a
456 skipped (because of *)
789 to b

The data type character d may be preceded by ‘l’ (letter ell) to read long integers and h to read short 

integers.

NOTE: We have provided white space between the fi eld specifi cations. These spaces are not necessary with the 

numeric input, but it is a good practice to include them.

EXAMPLE 1.26 Various input formatting options for reading integers are experimented in the program 

shown in Fig. 1.79.



1.86 Computer Programming

Program

main()

 {

  int a,b,c,x,y,z;

  int p,q,r;

  printf(“Enter three integer numbers\n”);

  scanf(“%d %*d %d”,&a,&b,&c);

  printf(“%d %d %d \n\n”,a,b,c);

  printf(“Enter two 4-digit numbers\n”);

  scanf(“%2d %4d”,&x,&y);

  printf(“%d %d\n\n”, x,y);

  printf(“Enter two integers\n”);

  scanf(“%d %d”, &a,&x);

  printf(“%d %d \n\n”,a,x);

  printf(“Enter a nine digit number\n”);

  scanf(“%3d %4d %3d”,&p,&q,&r);

  printf(“%d %d %d \n\n”,p,q,r);

  printf(“Enter two three digit numbers\n”);

  scanf(“%d %d”,&x,&y);

  printf(“%d %d”,x,y);

 }

Output

  Enter three integer numbers

  1 2 3

  1 3 -3577

  Enter two 4-digit numbers

  6789 4321

  67 89

  Enter two integers

  44 66

  4321 44

  Enter a nine-digit number

  123456789

  66 1234 567

  Enter two three-digit numbers

  123 456

  89 123

Fig. 1.79 Reading integers using  scanf

The fi rst scanf requests input data for three integer values a, b, and c, and accordingly three values 1, 2, 

and 3 are keyed in. Because of the specifi cation %*d the value 2 has been skipped and 3 is assigned to the 

variable b. Notice that since no data is available for c, it contains garbage.

The second scanf specifi es the format %2d and %4d for the variables x and y respectively. Whenever we 

specify fi eld width for reading integer numbers, the input numbers should not contain more digits that the 

specifi ed size. Otherwise, the extra digits on the right-hand side will be truncated and assigned to the next 

variable in the list. Thus, the second scanf has truncated the four digit number 6789 and assigned 67 to x and 

89 to y. The value 4321 has been assigned to the fi rst variable in the immediately following scanf 

statement.



Introduction to Computers, Problem Solving and Basic of C 1.87

NOTE: It is legal to use a non-whitespace character between fi eld specifi cations. However, the scanf expects a 

matching character in the given location. For example,

scanf(“%d-%d”, &a, &b);

 accepts input like

123-456

  to assign 123 to a and 456 to b.

1.42.2 Inputting   Real Numbers

Unlike integer numbers, the fi eld width of real numbers is not to be specifi ed and therefore scanf reads real 

numbers using the simple specifi cation %f for both the notations, namely, decimal point notation and expo-

nential notation. For example, the statement

scanf(“%f %f %f”, &x, &y, &z);

with the input data

475.89 43.21E-1 678

will assign the value 475.89 to x, 4.321 to y, and 678.0 to z. The input fi eld specifi cations may be separated 

by any arbitrary blank spaces.

If the number to be read is of double type, then the specifi cation should be %lf instead of simple %f. A 

number may be skipped using %*f specifi cation.

EXAMPLE 1.27 Reading of real numbers (in both decimal point and exponential notation) is illustrated 

in Fig. 1.80.

Program

 main()

 {

  float x,y;

  double p,q;

  printf(“Values of x and y:”);

  scanf(“%f %e”, &x, &y);

  printf(“\n”);

  printf(“x = %f\ny = %f\n\n”, x, y);

  printf(“Values of p and q:”);

  scanf(“%lf %lf”, &p, &q);

  printf(“\n\np = %.12lf\np = %.12e”, p,q);

 }

Output

  Values of x and y:12.3456 17.5e-2

  x = 12.345600

  y = 0.175000

  Values of p and q:4.142857142857 18.5678901234567890

  p = 4.142857142857

  q = 1.856789012346e+001

Fig. 1.80 Reading of real numbers



1.88 Computer Programming

1.42.3 Inputting   Character Strings

We have already seen how a single character can be read from the terminal using the getchar function. The 

same can be achieved using the scanf function also. In addition, a scanf function can input strings containing 

more than one character. Following are the specifi cations for reading character strings:

%ws or %wc

The corresponding argument should be a pointer to a character array. However, %c may be used to read a 

single character when the argument is a pointer to a char variable.

EXAMPLE 1.28 Reading of strings using %wc and %ws is illustrated in Fig. 1.81.

The program in Fig. 1.81 illustrates the use of various fi eld specifi cations for reading strings. When we use 

%wc for reading a string, the system will wait until the wth character is keyed in.

NOTE: Note that the specifi cation %s terminates reading at the encounter of a blank space. Therefore, name2

has read only the fi rst part of “New York” and the second part is automatically assigned to name3. 

However, during the second run, the string “New-York” is correctly assigned to name2.

Program

 main()
 {
  int no;
  char name1[15], name2[15], name3[15];
  printf(“Enter serial number and name one\n”);
  scanf(“%d %15c”, &no, name1);

  printf(“%d %15s\n\n”, no, name1);
  printf(“Enter serial number and name two\n”);
  scanf(“%d %s”, &no, name2);

  printf(“%d %15s\n\n”, no, name2);
  printf(“Enter serial number and name three\n”);
  scanf(“%d %15s”, &no, name3);

  printf(“%d %15s\n\n”, no, name3);
 }

Output

  Enter serial number and name one
  1 123456789012345
  1 123456789012345r
  Enter serial number and name two
  2 New York
  2       New
  Enter serial number and name three
  2       York
  Enter serial number and name one
  1 123456789012
  1 123456789012r
  Enter serial number and name two
  2 New-York
  2      New-York
  Enter serial number and name three
  3 London
  3    London

Fig. 1.81 Reading of  strings



Introduction to Computers, Problem Solving and Basic of C 1.89 

Some versions of scanf support the following conversion specifi cations for strings:

  %[characters]

  %[^characters]

The specifi cation %[characters] means that only the characters specifi ed within the brackets are permis-

sible in the input string. If the input string contains any other character, the string will be terminated at the 

fi rst encounter of such a character. The specifi cation %[^characters] does exactly the reverse. That is, the 

characters specifi ed after the circumfl ex (^) are not permitted in the input string. The reading of the string will 

be terminated at the encounter of one of these characters.

EXAMPLE 1.29 The program in Fig. 1.82 illustrates the function of %[ ] specifi cation.

Program-A

 main()

 {

  char address[80];

  printf(“Enter address\n”);

  scanf(“%[a-z]”, address);

  printf(“%-80s\n\n”, address);

 }

Output

  Enter address

  new delhi 110002

  new delhi

Program-B

 main()

 {

  char address[80];

  printf(“Enter address\n”);

  scanf(“%[^\n]”, address);

  printf(“%-80s”, address);

 }

Output

 Enter address

 New Delhi 110 002

 New Delhi 110 002

Fig. 1.82 Illustration of conversion specifi cation%[ ] for strings

We have earlier seen that %s specifi er cannot be used to read strings with blank spaces. But, this can be done with the 

help of %[ ] specifi cation. Blank spaces may be included within the brackets, thus enabling the scanf to read strings with 

spaces. Remember that the lowercase and uppercase letters are distinct. See Fig. 1.82.

Reading Blank Spaces

1.42.4 Reading  Mixed Data Types

It is possible to use one scanf statement to input a data line containing mixed mode data. In such cases, care 

should be exercised to ensure that the input data items match the control specifi cations in order and type. 

When an attempt is made to read an item that does not match the type expected, the scanf function does not 

read any further and immediately returns the values read. The statement



1.90 Computer Programming

scanf (“%d %c %f %s”, &count, &code, &ratio, name);

will read the data

15 p 1.575 coffee

correctly and assign the values to the variables in the order in which they appear. Some systems accept inte-

gers in the place of real numbers and vice versa, and the input data is converted to the type specifi ed in the 

control string.

NOTE: A space before the %c specifi cation in the format string is necessary to skip the white space before p.

1.42.5 Detection of Errors in Input

When a scanf function completes reading its list, it returns the value of number of items that are successfully 

read. This value can be used to test whether any errors occurred in reading the input. For example, the 

statement

scanf(“%d %f %s, &a, &b, name);

will return the value 3 if the following data is typed in:

20 150.25 motor

and will return the value 1 if the following line is entered

20 motor 150.25

This is because the function would encounter a string when it was expecting a fl oating-point value, and 

would therefore terminate its scan after reading the fi rst value.

EXAMPLE 1.30 The program presented in Fig. 1.83 illustrates the testing for correctness of reading of 

data by scanf function.

The function  scanf is expected to read three items of data and therefore, when the values for all the three 

variables are read correctly, the program prints out their values. During the third run, the second item does 

not match with the type of variable and therefore the reading is terminated and the error message is printed. 

Same is the case with the fourth run.

In the last run, although data items do not match the variables, no error message has been printed. When 

we attempt to read a real number for an int variable, the integer part is assigned to the variable, and the trun-

cated decimal part is assigned to the next variable.

NOTE: The character ‘2’ is assigned to the character variable c.

Program

 main()
 {
  int a;
  float b;
  char c;
  printf(“Enter values of a, b and c\n”);
  if (scanf(“%d %f %c”, &a, &b, &c) == 3)



Introduction to Computers, Problem Solving and Basic of C 1.91

   printf(“a = %d b = %f c = %c\n” , a, b, c);
  else
   printf(“Error in input.\n”);
 }

Output

 Enter values of a, b and c
   12 3.45 A
   a = 12  b = 3.450000  c = A
   Enter values of a, b and c
   23 78 9
   a = 23  b = 78.000000  c = 9
   Enter values of a, b and c
   8 A 5.25
   Error in input.
   Enter values of a, b and c
   Y 12 67
   Error in input.
   Enter values of a, b and c
   15.75 23 X
   a = 15  b = 0.750000  c = 2

Fig. 1.83 Detection of errors in scanf input

Commonly used scanf format codes are given in Table 1.15

Table 1.15 Commonly used scanf Format Codes

Code Meaning

%c read a single character

%d read a decimal integer

%e read a fl oating point value

%f read a fl oating point value

%g read a fl oating point value

%h read a short integer

%i read a decimal, hexadecimal or octal integer

%o read an octal integer

%s read a string

%u read an unsigned decimal integer

%x read a hexadecimal integer

%[..] read a string of word(s)

The following letters may be used as prefi x for certain conversion characters.

 h for short integers

 l for long integers or double

 L for long double

NOTE: C99 adds some more format codes.



1.92 Computer Programming

1.42.6 Points to Remember while Using  scanf

If we do not plan carefully, some ‘crazy’ things can happen with scanf. Since the I/O routines are not a part 

of C language, they are made available either as a separate module of the C library or as a part of the operating 

system (like UNIX). New features are added to these routines from time to time as new versions of systems 

are released. We should consult the system reference manual before using these routines. Given below are 

some of the general points to keep in mind while writing a scanf statement.

 1. All function arguments, except the control string, must be pointers to variables.

 2. Format specifi cations contained in the control string should match the arguments in order.

 3. Input data items must be separated by spaces and must match the variables receiving the input in the 

same order.

 4. The reading will be terminated, when scanf encounters a ‘mismatch’ of data or a character that is not 

valid for the value being read.

 5. When searching for a value, scanf ignores line boundaries and simply looks for the next appropriate 

character.

 6. Any unread data items in a line will be considered as part of the data input line to the next scanf 

call.

 7. When the fi eld width specifi er w is used, it should be large enough to contain the input data size.

 • Each variable to be read must have a fi led specifi cation.

 • For each fi eld specifi cation, there must be a variable address of proper type.

 • Any non-whitespace character used in the format string must have a matching character in the user input.

 • Never end the format string with whitespace. It is a fatal error!

 • The scanf reads until:

 – A whitespace character is found in a numeric specifi cation, or

 – The maximum number of characters have been read or

 – An error is detected, or

 – The end of fi le is reached

Rules for scanf

We have seen the use of printf function for printing captions and numerical results. It is highly desirable that 

the outputs are produced in such a way that they are understandable and are in an easy-to-use form. It is 

therefore necessary for the programmer to give careful consideration to the appearance and clarity of the 

output produced by his program.

The  printf statement provides certain features that can be effectively exploited to control the alignment 

and spacing of print-outs on the terminals. The general form of printf statement is:

printf(“control string”, arg1, arg2, ....., argn);

Control string consists of three types of items:

 1. Characters that will be printed on the screen as they appear.

 2. Format specifi cations that defi ne the output format for display of each item.

 3. Escape sequence characters such as \n, \t, and \b.

The control string indicates how many arguments follow and what their types are. The arguments arg1, 

arg2, ....., argn are the variables whose values are formatted and printed according to the specifi cations of the 

control string. The arguments should match in number, order and type with the format specifi cations.

1.43  FORMATTED OUTPUT



Introduction to Computers, Problem Solving and Basic of C 1.93 

A simple format specifi cation has the following form:

% w.p type-specifier

where w is an integer number that specifi es the total number of columns for the output value and p is another 

integer number that specifi es the number of digits to the right of the decimal point (of a real number) or the 

number of characters to be printed from a string. Both w and p are optional. Some examples of formatted 

printf statement are:

 printf(“Programming in C”);

 printf(“ “);

 printf(“\n”);

 printf(“%d”, x);

 printf(“a = %f\n b = %f”, a, b);

 printf(“sum = %d”, 1234);

 printf(“\n\n”);

printf never supplies a newline automatically and therefore multiple printf statements may be used to 

build one line of output. A newline can be introduced by the help of a newline character ‘\n’ as shown in some 

of the examples above.

1.43.1  Output of  Integer Numbers

The format specifi cation for printing an integer number is:

% w d

where w specifi es the minimum fi eld width for the output. However, if a number is greater than the specifi ed 

fi eld width, it will be printed in full, overriding the minimum specifi cation. d specifi es that the value to be 

printed is an integer. The number is written right-justifi ed in the given fi eld width. Leading blanks will appear 

as necessary. The following examples illustrate the output of the number 9876 under different formats:

 Format   Output

 printf(“%d”, 9876)  9 8 7 6

 printf(“%6d”, 9876) 9 8 7 6

 printf(“%2d”, 9876) 9 8 7 6

 printf(“%-6d”, 9876) 789 6

 printf(“%06d”, 9876) 900 8 7 6

It is possible to force the printing to be left-justifi ed by placing a minus sign directly after the % character, 

as shown in the fourth example above. It is also possible to pad with zeros the leading blanks by placing a 0 

(zero) before the fi eld width specifi er as shown in the last item above. The minus (–) and zero (0) are known 

as fl ags.

Long integers may be printed by specifying ld in the place of d in the format specifi cation. Similarly, we 

may use hd for printing short integers.

EXAMPLE 1.31 The program in Fig. 1.84 illustrates the output of integer numbers under various 

formats.



1.94 Computer Programming

Program

 main()
 {
  int m = 12345;
  long n = 987654;
  printf(“%d\n”,m);
  printf(“%10d\n”,m);
  printf(“%010d\n”,m);
  printf(“%-10d\n”,m);
  printf(“%10ld\n”,n);
  printf(“%10ld\n”,-n);
 }

Output

  12345
   12345
  0000012345
  12345
   987654
   – 987654

Fig. 1.84 Formatted output of integers

1.43.2  Output of  Real Numbers

The output of a real number may be displayed in decimal notation using the following format specifi cation:

% w.p f

The integer w indicates the minimum number of positions that are to be used for the display of the value and 

the integer p indicates the number of digits to be displayed after the decimal point (precision). The value, 

when displayed, is rounded to p decimal places and printed right-justifi ed in the fi eld of w columns. Leading 

blanks and trailing zeros will appear as necessary. The default precision is 6 decimal places. The negative 

numbers will be printed with the minus sign. The number will be displayed in the form [ – ] mmm-nnn.

We can also display a real number in exponential notation by using the specifi cation:

% w.p e

The display takes the form

[ - ] m.nnnne[ ± ]xx

where the length of the string of n’s is specifi ed by the precision p. The default precision is 6. The fi eld width 

w should satisfy the condition.

 w ≥ p+7

The value will be rounded off and printed right justifi ed in the fi eld of w columns.

Padding the leading blanks with zeros and printing with left-justifi cation are also possible by using fl ags 0 

or – before the fi eld width specifi er w.

The following examples illustrate the output of the number y = 98.7654 under different format 

specifi cations:

 Format    Output

 printf(“%7.4f”,y)  7.89 6 5 4



Introduction to Computers, Problem Solving and Basic of C 1.95 

 printf(“%7.2f”,y)  89 . 7 7

 printf(“%-7.2f”,y) 7.89 7

 printf(“%f”,y)  7.89 6 5 4

 printf(“%10.2e”,y) 88.9 e + 0 1

 printf(“%11.4e”,-y) 678.9− 5 e + 0 1

 printf(“%-10.2e”,y) +e88.9 0 1

 printf(“%e”,y)  5678.9 4 0 e + 0 1

Some systems also support a special fi eld specifi cation character that lets the user defi ne the fi eld size at 

run time. This takes the following form:

printf(“%*.*f”, width, precision, number);

In this case, both the fi eld width and the precision are given as arguments which will supply the values for w 

and p. For example,

printf(“%*.*f”,7,2,number);

is equivalent to

printf(“%7.2f”,number);

The advantage of this format is that the values for width and precision may be supplied at run time, thus 

making the format a dynamic one. For example, the above statement can be used as follows:

  int width = 7;
  int precision = 2;
  ........
  ........
  printf(“%*.*f”, width, precision, number);

EXAMPLE 1.32 All the options of printing a real number are illustrated in Fig. 1.85.

Program

 main()
 {
  float y = 98.7654;
  printf(“%7.4f\n”, y);
  printf(“%f\n”, y);
  printf(“%7.2f\n”, y);
  printf(“%-7.2f\n”, y);
  printf(“%07.2f\n”, y);
  printf(“%*.*f”, 7, 2, y);
  printf(“\n”);
  printf(“%10.2e\n”, y);
  printf(“%12.4e\n”, -y);
  printf(“%-10.2e\n”, y);
  printf(“%e\n”, y);
 }

Output 

  98.7654
  98.765404
  98.77



1.96 Computer Programming

  98.77

  0098.77

  98.77

  9.88e+001

  -9.8765e+001

  9.88e+001

  9.876540e+001

Fig. 1.85 Formatted output of real numbers

1.43.3 Printing of a  Single Character

A single character can be displayed in a desired position using the format:

% wc

The character will be displayed right-justifi ed in the fi eld of w columns. We can make the display left-justifi ed

by placing a minus sign before the integer w. The default value for w is 1.

1.43.4  Printing of  Strings

The format specifi cation for outputting strings is similar to that of real numbers. It is of the form

% w.ps

where w specifi es the fi eld width for display and p instructs that only the fi rst p characters of the string are to 

be displayed. The display is right-justifi ed.

The following examples show the effect of variety of specifi cations in printing a string “NEW DELHI 

110001”, containing 16 characters (including blanks).

N

1 1

N

N

N

N

N

E

1

E

E

E

E

E

W

3 11

W

W

W

W

W

D

D

D

D

D

D

E

1

E

E

E

E

L

L

L

L

L

H

1

H

H

H

H

I

211 0 098653 6432 765432

I

I

I

I

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

OutputSpecification

%s

%20s

%20.10s

%-20.10s

%.5s

%5s

EXAMPLE 1.33 Printing of characters and strings is illustrated in Fig. 1.86.



Introduction to Computers, Problem Solving and Basic of C 1.97

Fig. 1.86 Printing of characters and strings

Program

 main()
 {
  char x = ‘A’;
  char name[20] = “ANIL KUMAR GUPTA”;
  printf(“OUTPUT OF CHARACTERS\n\n”);
  printf(“%c\n%3c\n%5c\n”, x,x,x);
  printf(“%3c\n%c\n”, x,x);
  printf(“\n”);
  printf(“OUTPUT OF STRINGS\n\n”);
  printf(“%s\n”, name);
  printf(“%20s\n”, name);
  printf(“%20.10s\n”, name);
  printf(“%.5s\n”, name);
  printf(“%-20.10s\n”, name);
  printf(“%5s\n”, name);
 }

Output

  OUTPUT OF CHARACTERS
  A
   A
    A
   A
  A
  OUTPUT OF STRINGS
  ANIL KUMAR GUPTA
   ANIL KUMAR GUPTA
     ANIL KUMAR
  ANIL
  ANIL KUMAR
  ANIL KUMAR GUPTA

1.43.5  Mixed Data Output

It is permitted to mix data types in one printf statement. For example, the statement of the type

printf(“%d %f %s %c”, a, b, c, d);

is valid. As pointed out earlier, printf uses its control string to decide how many variables to be printed and 

what their types are. Therefore, the format specifi cations should match the variables in number, order, and 

type. If there are not enough variables or if they are of the wrong type, the output results will be incorrect.

The following letters may be used as prefi x for certain conversion characters.

 h for short integers

 l for long integers or double

 L for long double.

NOTE: C99 adds some more format codes.

1.43.6 Enhancing the Readability of Output

Computer outputs are used as information for analysing certain relationships between variables and for 

 making decisions. Therefore the correctness and clarity of outputs are of utmost importance. While the 



1.98 Computer Programming

 correctness depends on the solution procedure, the clarity depends on the way the output is presented. 

Following are some of the steps we can take to improve the clarity and hence the readability and understand-

ability of outputs.

 1. Provide enough blank space between two numbers.

 2. Introduce appropriate headings and variable names in the output.

 3. Print special messages whenever a peculiar condition occurs in the output.

 4. Introduce blank lines between the important sections of the output.

The system usually provides two blank spaces between the numbers. However, this can be increased by 

selecting a suitable fi eld width for the numbers or by introducing a ‘tab’ character between the specifi cations. 

For example, the statement

printf(“a = %d\t b = %d”, a, b);

Table 1.16 Commonly used printf Format Codes

Code Meaning

%c print a single character

%d print a decimal integer

%e print a fl oating point value in exponent form

%f print a fl oating point value without exponent

%g print a fl oating point value either e-type or f-type depending on 

%i print a signed decimal integer

%o print an octal integer, without leading zero

%s print a string

%u print an unsigned decimal integer

%x print a hexadecimal integer, without leading Ox

Table 1.17 Commonly used Output Format Flags

Flag Meaning

– Output is left-justifi ed within the fi eld. Remaining fi eld will be blank.

+ + or – will precede the signed numeric item.

0 Causes leading zeros to appear.

# (with o or x) Causes octal and hex items to be preceded by O and Ox, respectively.

# (with e, f or g) Causes a decimal point to be present in all fl oating point numbers, even if it is 

whole number. Also prevents the truncation of trailing zeros in g-type conversion.

will provide four blank spaces between the two fi elds. We can also print them on two separate lines by using 

the statement

 printf(“a = %d\n b = %d”, a, b);

Messages and headings can be printed by using the character strings directly in the printf statement. 

Examples:

 printf(“\n OUTPUT RESULTS \n”);

 printf(“Code\t Name\t Age\n”);

 printf(“Error in input data\n”);

 printf(“Enter your name\n”);



Introduction to Computers, Problem Solving and Basic of C 1.99 

C supports a rich set of built-in operators. We have already used several of them, such as =, +, –, *, & and 

<. An operator is a symbol that tells the computer to perform certain mathematical or logical manipulations. 

Operators are used in programs to manipulate data and variables. They usually form a part of the mathematical 

or logical expressions.

C operators can be classifi ed into a number of categories. They include:

 1. Arithmetic operators

 2. Relational operators

 3. Logical operators

 4. Assignment operators

 5. Increment and decrement operators

 6. Conditional operators

 7. Bitwise operators

 8. Special operators

An expression is a sequence of operands and operators that reduces to a single value. For example,

10 + 15

is an expression whose value is 25. The value can be any type other than void.

C provides all the basic arithmetic operators. They are listed in Table 1.18. The operators +, –, *, and / all 

work the same way as they do in other languages. These can operate on any built-in data type allowed in C. 

The unary minus operator, in effect, multiplies its single operand by –1. Therefore, a number preceded by a 

minus sign changes its sign.
Table 1.18 Arithmetic Operators

Operator Meaning

+ Addition or unary plus

– Subtraction or unary minus

* Multiplication

/ Division

% Modulo division

Integer division truncates any fractional part. The modulo division operation produces the remainder of an 

integer division. Examples of use of arithmetic operators are:

 a – b a + b

 a * b a / b

 a % b –a * b

 Here a and b are variables and are known as operands. The modulo division operator % cannot be used 

on fl oating point data. Note that C does not have an operator for exponentiation. Older versions of C does not 

support unary plus but ANSI C supports it.

1.45.1 Integer Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the expression is called an 

integer expression, and the operation is called integer arithmetic. Integer arithmetic always yields an integer 

1.44 INTRODUCTION TO OPERATORS AND EXPRESSSIONS

1.45 ARITHMETIC OPERATORS



1.100 Computer Programming

value. The largest integer value depends on the machine, as pointed out earlier. In the above examples, if a 

and b are integers, then for a = 14 and b = 4 we have the following results:

 a – b = 10

 a + b = 18

 a * b = 56

 a / b = 3 (decimal part truncated)

 a % b = 2 (remainder of division)

 During integer division, if both the operands are of the same sign, the result is truncated towards zero. If 

one of them is negative, the direction of truncation is implementation dependent. That is,

6/7 = 0 and –6/–7 = 0

but –6/7 may be zero or –1. (Machine dependent)

 Similarly, during modulo division, the sign of the result is always the sign of the fi rst operand (the 

dividend). That is

   –14 % 3 = –2

 –14 % –3 = –2

   14 % –3 =   2

EXAMPLE 1.34 The program in Fig. 1.87 shows the use of integer arithmetic to convert a given 

number of days into months and days.

Program

 main ()
 {
  int months, days ;

  printf(“Enter days\n”) ;
  scanf(“%d”, &days) ;

  months = days / 30 ;
  days = days % 30 ;
  printf(“Months = %d Days = %d”, months, days) ;
 }

Output

 Enter days
 265
 Months = 8 Days = 25
 Enter days
 364
 Months = 12 Days = 4
 Enter days
 45
 Months = 1 Days = 15

Fig. 1.87 Illustration of integer arithmetic

The variables months and days are declared as integers. Therefore, the statement

months = days/30;

truncates the decimal part and assigns the integer part to months. Similarly, the statement

days = days % 30;



Introduction to Computers, Problem Solving and Basic of C 1.101 

assigns the remainder part of the division to days. Thus the given number of days is converted into an 

equivalent number of months and days and the result is printed as shown in the output.

1.45.2 Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real operand may assume 

values either in decimal or exponential notation. Since fl oating point values are rounded to the number of 

signifi cant digits permissible, the fi nal value is an approximation of the correct result. If x, y, and z are fl oats, 

then we will have:

 x = 6.0/7.0 = 0.857143

 y = 1.0/3.0 = 0.333333

 z = –2.0/3.0 = –0.666667

The operator % cannot be used with real operands.

1.45.3 Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a mixed-mode arithmetic 

expression. If either operand is of the real type, then only the real operation is performed and the result is 

always a real number. Thus

15/10.0 = 1.5

whereas

15/10 = 1

More about mixed operations will be discussed later when we deal with the evaluation of expressions.

We often compare two quantities and depending on their relation, take certain decisions. For example, we 

may compare the age of two persons, or the price of two items, and so on. These comparisons can be done 

with the help of relational operators. We have already used the symbol ‘<‘, meaning ‘less than’. An expres-

sion such as

a < b or 1 < 20

containing a relational operator is termed as a relational expression. The value of a relational expression is 

either one or zero. It is one if the specifi ed relation is true and zero if the relation is false. For example

10 < 20 is true

but

20 < 10 is false

C supports six relational operators in all. These operators and their meanings are shown in Table 1.19.

Table 1.19 Relational Operators

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

== is equal to

!= is not equal to

1.46 RELATIONAL OPERATORS



1.102 Computer Programming

A simple relational expression contains only one relational operator and takes the following form:

ae-1 relational operator ae-2

ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or combination of them. 

Given below are some examples of simple relational expressions and their values:

4.5 <= 10 TRUE

4.5 < –10 FALSE

–35 >= 0 FALSE

10 < 7+5 TRUE

a+b = c+d TRUE only if the sum of values of a and b is equal to the sum of values of c and d.

When arithmetic expressions are used on either side of a relational operator, the arithmetic expressions will 

be evaluated fi rst and then the results compared. That is, arithmetic operators have a higher priority over 

relational operators.

Relational expressions are used in decision statements such as if and while to decide the course of action 

of a running program. Decision statements are discussed in detail in Chapters 8 and 9.

Among the six relational operators, each one is a complement of another operator.

 > is complement of  <=

 < is complement of  >=

 == is complement of  !=

We can simplify an expression involving the not and the less than operators using the complements as shown 

below:

 Actual one Simplifi ed one

 !(x<y) x >= y

 !(x>y) x <= y

 !(x!=y) x == y

 !(x<=y) x > y

 !(x>=y) x < y

 !(x == y)  x != y

Relational Operator Complements

In addition to the relational operators, C has the following three logical operators.

 && meaning logical AND

 || meaning logical OR

 ! meaning logical NOT

The logical operators && and || are used when we want to test more than one condition and make deci-

sions. An example is:

a > b && x == 10

An expression of this kind, which combines two or more relational expressions, is termed as a logical 

expression or a compound relational expression. Like the simple relational expressions, a logical expression 

also yields a value of one or zero, according to the truth table shown in Table 1.20. The logical expression 

given above is true only if a > b is true and x == 10 is true. If either (or both) of them are false, the expression 

is false.

1.47 LOGICAL OPERATORS



Introduction to Computers, Problem Solving and Basic of C 1.103

Table 1.20 Truth Table

Value of the expression

op-1 op-2 op-1 && op-2 op-1 || op-2

Non-zero Non-zero 1 1

Non-zero 0 0 1

0 Non-zero 0 1

0 0 0 0

Some examples of the usage of logical expressions are:

 1. if (age > 55 && salary < 1000)

 2. if (number < 0 || number > 100)

We shall see more of them when we discuss decision statements.

NOTE: Relative precedence of the relational and logical operators is as follows:

 Highest !

  > >= < <=

  == !=

  &&

 Lowest ||

It is important to remember this when we use these operators in compound expressions.

Assignment operators are used to assign the result of an expression to a variable. We have seen the usual 

assignment operator, ‘=’. In addition, C has a set of ‘shorthand’ assignment operators of the form

v op= exp;

where v is a variable, exp is an expression and op is a C binary arithmetic operator. The operator op= is known 

as the shorthand assignment operator.

The assignment statement

v op = exp;

is equivalent to

v = v op (exp);

with v evaluated only once. Consider an example

x += y+1;

This is same as the statement

x = x + (y+1);

The shorthand operator += means ‘add y+1 to x’ or ‘increment x by y+1’. For y = 2, the above statement 

becomes

xp += 3;

and when this statement is executed, 3 is added to x. If the old value of x is, say 5, then the new value of x is 

8. Some of the commonly used shorthand assignment operators are illustrated in Table 1.21.

1.48 ASSIGNMENT OPERATORS



1.104 Computer Programming

Table 1.21 Shorthand Assignment Operators

Statement with simple assignment operator Statement with shorthand operator

a = a + 1 a += 1

a = a – 1 a –= 1

a = a * (n+1) a *= n+1

a = a / (n+1) a /= n+1

a = a % b a %= b

The use of shorthand assignment operators has three advantages:

 1. What appears on the left-hand side need not be repeated and therefore it becomes easier to write.

 2. The statement is more concise and easier to read.

 3. The statement is more effi cient.

These advantages may be appreciated if we consider a slightly more involved statement like

value(5*j–2) = value(5*j–2) + delta;

With the help of the += operator, this can be written as follows:

value(5*j–2) += delta;

It is easier to read and understand and is more effi cient because the expression 5*j–2 is evaluated only 

once.

EXAMPLE 1.35 Program of Fig. 1.88 prints a sequence of squares of numbers. Note the use of the 

shorthand operator *= .

 The program attempts to print a sequence of squares of numbers starting from 2. The statement
a *= a;

which is identical to
a = a*a;

replaces the current value of a by its square. When the value of a becomes equal or greater than N (=100) the 

while is terminated. Note that the output contains only three values 2, 4 and 16. 

Fig. 1.88 Use of shorthand operator *=

Program

 #define  N 100
 #define  A 2
 main()
 {
  int a;
  a = A;
  while( a < N )
  {
   printf(“%d\n”, a);
   a *= a;
  }
 }
Output

 2
 4
 16



Introduction to Computers, Problem Solving and Basic of C 1.105 

C allows two very useful operators not generally found in other languages. These are the increment and 

decrement operators:
++ and — –

 The operator ++ adds 1 to the operand, while – – subtracts 1. Both are unary operators and take the 

following form:
++m; or m++;

– —m; or m– —;

++m; is equivalent to m = m+1; (or m += 1;)
–  —m; is equivalent to m = m–1; (or m –= 1;)

We use the increment and decrement statements in for and while loops extensively.

While ++m and m++ mean the same thing when they form statements independently, they behave differ-

ently when they are used in expressions on the right-hand side of an assignment statement. Consider the 

following:
m = 5;

  y = ++m;

In this case, the value of y and m would be 6. Suppose, if we rewrite the above statements as
m = 5;

  y = m++;

then, the value of y would be 5 and m would be 6. A prefi x operator fi rst adds 1 to the operand and then the 

result is assigned to the variable on left. On the other hand, a postfi x operator fi rst assigns the value to the 

variable on left and then increments the operand.

Similar is the case, when we use ++ (or – –) in subscripted variables. That is, the statement

a[i++] = 10;

is equivalent to
a[i] = 10;

    i = i+1;

The increment and decrement operators can be used in complex statements. Example:
m = n++ –j+10;

Old value of n is used in evaluating the expression. n is incremented after the evaluation. Some compilers 

require a space on either side of n++ or ++n.

• Increment and decrement operators are unary operators and they require variable as their operands.

• When postfi x ++ (or – –) is used with a variable in an expression, the expression is evaluated fi rst using the 

original value of the variable and then the variable is incremented (or decremented) by one.

• When prefi x ++(or – –) is used in an expression, the variable is incremented (or decremented) fi rst and then the 

expression is evaluated using the new value of the variable.

• The precedence and associatively of ++ and – – operators are the same as those of unary + and unary –.

Rules for ++ and – – Operators

A ternary operator pair “? :” is available in C to construct conditional expressions of the form

exp1 ? exp2 : exp3

where exp1, exp2, and exp3 are expressions.

1.49 INCREMENT AND DECREMENT OPERATORS

1.50 CONDITIONAL OPERATOR



1.106 Computer Programming

The operator ? : works as follows: exp1 is evaluated fi rst. If it is nonzero (true), then the expression exp2 

is evaluated and becomes the value of the expression. If exp1 is false, exp3 is evaluated and its value becomes 

the value of the expression. Note that only one of the expressions (either exp2 or exp3) is evaluated. For 

example, consider the following statements.
           a = 10;

           b = 15;

           x = (a > b) ? a : b;

 In this example, x will be assigned the value of b. This can be achieved using the if..else statements as 

follows:
            if (a > b)

             x = a;

            else

             x = b;

C has a distinction of supporting special operators known as bitwise operators for manipulation of data at bit 

level. These operators are used for testing the bits, or shifting them right or left. Bitwise operators may not be 

applied to fl oat or double. Table 1.22 lists the bitwise operators and their meanings.

Table 1.22 Bitwise Operators

Operator Meaning

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

<< shift left

>> shift right

C supports some special operators of interest such as comma operator, sizeof operator, pointer operators (& 

and *) and member selection operators (. and –> ). The comma and sizeof operators are discussed in this 

section while the pointer operators are discussed in Chapter 14. Member selection operators which are used 

to select members of a structure are discussed in Chapters 13 and 14.

1.52.1 The Comma Operator

The comma operator can be used to link the related expressions together. A comma-linked list of expressions 

are evaluated left to right and the value of right-most expression is the value of the combined expression. For 

example, the statement

value = (x = 10, y = 5, x+y);

fi rst assigns the value 10 to x, then assigns 5 to y, and fi nally assigns 15 (i.e. 10 + 5) to value. Since comma 

operator has the lowest precedence of all operators, the parentheses are necessary. Some applications of 

comma operator are:

In for loops:

for ( n = 1, m = 10, n <=m; n++, m++)

1.51 BITWISE OPERATORS

1.52 SPECIAL OPERATORS



Introduction to Computers, Problem Solving and Basic of C 1.107 

In while loops:
while (c = getchar( ), c != ‘10’)

Exchanging values:
t = x, x = y, y = t;

1.52.2 The sizeof Operator

The sizeof is a compile time operator and, when used with an operand, it returns the number of bytes the 

operand occupies. The operand may be a variable, a constant or a data type qualifi er.

Examples:  m = sizeof (sum);

    n = sizeof (long int);

    k = sizeof (235L);

The sizeof operator is normally used to determine the lengths of arrays and structures when their sizes are 

not known to the programmer. It is also used to allocate memory space dynamically to variables during 

execution of a program.

EXAMPLE 1.36 In Fig. 1.89, the program employs different kinds of operators. The results of their 

evaluation are also shown for comparison.

Notice the way the increment operator ++ works when used in an expression. In the statement
c = ++a – b;

new value of a (= 16) is used thus giving the value 6 to c. That is, a is incremented by 1 before it is used in 

the expression. However, in the statement
d = b++ + a;

the old value of b (=10) is used in the expression. Here, b is incremented by 1 after it is used in the 

expression.

We can print the character % by placing it immediately after another % character in the control string. This 

is illustrated by the statement
printf(“a%%b = %d\n”, a%b);

The program also illustrates that the expression
c > d ? 1 : 0

assumes the value 0 when c is less than d and 1 when c is greater than d.

Program

 main()
 {
   int a, b, c, d;
   a = 15;
   b = 10;
   c = ++a - b;
   printf(“a = %d b = %d c = %d\n”,a, b, c);
   d = b++ +a;
   printf(“a = %d b = %d d = %d\n”,a, b, d);
   printf(“a/b = %d\n”, a/b);
   printf(“a%%b = %d\n”, a%b);
   printf(“a *= b = %d\n”, a*=b);
   printf(“%d\n”, (c>d) ? 1 : 0);
   printf(“%d\n”, (c<d) ? 1 : 0);
 }



1.108 Computer Programming

Output

  a = 16 b = 10 c = 6
  a = 16 b = 11 d = 26
  a/b = 1
  a%b = 5
  a *= b = 176
  0
  1

Fig. 1.89 Further illustration of arithmetic operators

An arithmetic expression is a combination of variables, constants, and operators arranged as per the syntax of 

the language. We have used a number of simple expressions in the examples discussed so far. C can handle 

any complex mathematical expressions. Some of the examples of C expressions are shown in Table 1.23. 

Remember that C does not have an operator for exponentiation.

Table 1.23 Expressions

Algebraic expression C expression

a x b - c a * b - c

(m+n) x+y) (m+n) * (x+y)

⎛
⎝⎜
⎛
⎝

⎞
⎠⎟
⎞⎞⎞
⎠⎠⎠

a * b/c

3x2 +2x+1 3 * x * x + 2 * x + 1

⎛
⎝⎜
⎛
⎝⎝⎝

⎞
⎠⎟
⎞
⎠⎠⎠
+ x/y+c

Expressions are evaluated using an assignment statement of the form:

variable = expression;

Variable is any valid C variable name. When the statement is encountered, the expression is evaluated fi rst 

and the result then replaces the previous value of the variable on the left-hand side. All variables used in the 

expression must be assigned values before evaluation is attempted. Examples of evaluation statements are

    x = a * b - c;

    y = b / c * a;

z = a - b / c + d;

The blank space around an operator is optional and adds only to improve readability. When these statements 

are used in a program, the variables a, b, c, and d must be defi ned before they are used in the expressions.

EXAMPLE 1.37 The program in Fig. 1.90 illustrates the use of variables in expressions and their 

evaluation.

1.53 ARITHMETIC EXPRESSIONS

1.54 EVALUATION OF EXPRESSIONS



Introduction to Computers, Problem Solving and Basic of C 1.109

Output of the program also illustrates the effect of presence of parentheses in expressions. This is discussed 

in the next section.

Program

 main()
 {
  float a, b, c, x, y, z;
  a = 9;
  b = 12;
  c = 3;

  x = a – b / 3 + c * 2 - 1;
  y = a – b / (3 + c) * (2 - 1);
  z = a – (b / (3 + c) * 2) - 1;

  printf(“x = %f\n”, x);
  printf(“y = %f\n”, y);
  printf(“z = %f\n”, z);
 }

Output

 x = 10.000000
 y = 7.000000
 z = 4.000000

Fig. 1.90 Illustrations of evaluation of expressions

An arithmetic expression without parentheses will be evaluated from left to right using the rules of precedence 

of operators. There are two distinct priority levels of arithmetic operators in C:

 High priority * / %

 Low priority + –

 The basic evaluation procedure includes ‘two’ left-to-right passes through the expression. During the fi rst 

pass, the high priority operators (if any) are applied as they are encountered. During the second pass, the low 

priority operators (if any) are applied as they are encountered. Consider the following evaluation statement 

that has been used in the program of Fig. 1.91.

1.55 PRECEDENCE OF ARITHMETIC OPERATORS

9 – 12/3 3*2+ –3*2
(1)

1

(2)

(4)

10

(5)

(3)

44

55

111

66

Fig. 1.91 Illustration of hierarchy of operations



1.110 Computer Programming

 x = a–b/3 + c*2–1

When a = 9, b = 12, and c = 3, the statement becomes

 x = 9–12/3 + 3*2–1

and is evaluated as follows

First pass

Step1: x = 9–4+3*2–1

Step2: x = 9–4+6–1

Second pass

Step3: x = 5+6–1

Step4: x = 11–1

Step5: x = 10

These steps are illustrated in Fig. 1.91. The numbers inside parentheses refer to step numbers.

However, the order of evaluation can be changed by introducing parentheses into the an expression. 

Consider the same expression with parentheses as shown below:

 9–12/(3+3)*(2–1)

Whenever parentheses are used, the expressions within parentheses assume highest priority. If two or 

more sets of parentheses appear one after another as shown above, the expression contained in the left-most 

set is evaluated fi rst and the right-most in the last. Given below are the new steps.

First pass

Step 1: 9-12/6 * (2-1)

Step 2: 9-12/6 * 1

Second pass

Step 3: 9-2 * 1

Step 4: 9-2

Third pass

Step 5: 7

This time, the procedure consists of three left-to-right passes. However, the number of evaluation steps 

remains the same as 5 (i.e equal to the number of arithmetic operators).

Parentheses may be nested, and in such cases, evaluation of the expression will proceed outward from the 

innermost set of parentheses. Just make sure that every opening parenthesis has a matching closing parenthe-

sis. For example

 9 – (12/(3+3) * 2) – 1 = 4

whereas

 9 – ((12/3) + 3 * 2) – 1 = –2

While parentheses allow us to change the order of priority, we may also use them to improve understand-

ability of the program. When in doubt, we can always add an extra pair just to make sure that the priority 

assumed is the one we require.

• First, parenthesized sub-expression from left to right are evaluated.

• If parentheses are nested, the evaluation begins with the innermost sub-expression.

• The precedence rule is applied in determining the order of application of operators in evaluating 

 sub-expressions.

• The associativity rule is applied when two or more operators of the same precedence level appear in a 

 sub-expression.

• Arithmetic expressions are evaluated from left to right using the rules of precedence.

• When parentheses are used, the expressions within parentheses assume highest priority.

Rules for Evaluation of Expression



Introduction to Computers, Problem Solving and Basic of C 1.111 

When expressions include real values, then it is important to take necessary precautions to guard against 

certain computational errors. We know that the computer gives approximate values for real numbers and the 

errors due to such approximations may lead to serious problems. For example, consider the following 

statements:
a = 1.0/3.0;
b = a * 3.0;

We know that (1.0/3.0) 3.0 is equal to 1. But there is no guarantee that the value of b computed in a pro-

gram will equal 1.

Another problem is division by zero. On most computers, any attempt to divide a number by zero will 

result in abnormal termination of the program. In some cases such a division may produce meaningless 

results. Care should be taken to test the denominator that is likely to assume zero value and avoid any division 

by zero.

The third problem is to avoid overfl ow or underfl ow errors. It is our responsibility to guarantee that oper-

ands are of the correct type and range, and the result may not produce any overfl ow or underfl ow.

EXAMPLE 1.38 Output of the program in Fig. 1.92 shows round-off errors that can occur in computation 

of fl oating point numbers.

Program

 /*————————— Sum of n terms of 1/n ————————-—*/

 main()

 {

  float sum, n, term ;

  int count = 1 ;

  sum = 0 ;

  printf(“Enter value of n\n”) ;

   scanf(“%f”, &n) ;

  term = 1.0/n ;

  while( count <= n )

  {

   sum = sum + term ;

   count++ ;

  }

  printf(“Sum = %f\n”, sum) ;

 }

Output

  Enter value of n

  99

  Sum = 1.000001

  Enter value of n

  143

  Sum = 0.999999

Fig. 1.92 Round-off errors in fl oating point computations

We know that the sum of n terms of 1/n is 1. However, due to errors in fl oating point representation, the 

result is not always 1.

1.56 SOME COMPUTATIONAL PROBLEMS



1.112 Computer Programming

1.57.1 Implicit Type Conversion

C permits mixing of constants and variables of different types in an expression. C automatically converts any 

intermediate values to the proper type so that the expression can be evaluated without losing any signifi cance. 

This automatic conversion is known as implicit type conversion.

During evaluation it adheres to very strict rules of type conversion. If the operands are of different types, 

the ‘lower’ type is automatically converted to the ‘higher’ type before the operation proceeds. The result is of 

the higher type. A typical type conversion process is illustrated in Fig. 1.93.

Given below is the sequence of rules that are applied while evaluating expressions.

All short and char are automatically converted to int; then

 1. if one of the operands is long double, the other will be converted to long double and the result will 

be long double;

 2. else, if one of the operands is double, the other will be converted to double and the result will be 

double;

 3. else, if one of the operands is fl oat, the other will be converted to fl oat and the result will be fl oat;

 4. else, if one of the operands is unsigned long int, the other will be converted to unsigned long int and 

the result will be unsigned long int;

 5. else, if one of the operands is long int and the other is unsigned int, then

 (a) if unsigned int can be converted to long int, the unsigned int operand will be converted as such 

and the result will be long int;

 (b) else, both operands will be converted to unsigned long int and the result will be unsigned long int;

 6. else, if one of the operands is long int, the other will be converted to long int and the result will be 

long int;

 7. else, if one of the operands is unsigned int, the other will be converted to unsigned int and the result 

will be unsigned int.

1.57 TYPE CONVERSIONS IN EXPRESSIONS

Fig. 1.93 Process of implicit type conversion



Introduction to Computers, Problem Solving and Basic of C 1.113

Note that, C uses the rule that, in all expression except assignments, any implicit type conversion are made from a 

lower size type to a hgher size type as shown below:

Conversion Hierachy

Note that some versions of C automatically convert all fl oating-point operands to double precision.

The fi nal result of an expression is converted to the type of the variable on the left of the assignment sign 

before assigning the value to it. However, the following changes are introduced during the fi nal assignment.

 1. fl oat to int causes truncation of the fractional part.

 2. double to fl oat causes rounding of digits.

 3. long int to int causes dropping of the excess higher order bits.

1.57.2 Explicit Type Conversion

We have just discussed how C performs type conversion automatically. However, there are instances when 

we want to force a type conversion in a way that is different from the automatic conversion. Consider, for 

example, the calculation of ratio of females to males in a town.

ratio = female_number/male_number

Since female_number and male_number are declared as integers in the program, the decimal part of the 

result of the division would be lost and ratio would represent a wrong fi gure. This problem can be solved by 

converting locally one of the variables to the fl oating point as shown below:

ratio = (fl oat) female_number/male_number

The operator (fl oat) converts the female_number to fl oating point for the purpose of evaluation of the 

expression. Then using the rule of automatic conversion, the division is performed in fl oating point mode, 

thus retaining the fractional part of result.

Note that in no way does the operator (fl oat) affect the value of the variable female number. And also, the 

type of female number remains as int in the other parts of the program.

The process of such a local conversion is known as explicit conversion or casting a value. The general 

form of a cast is:

(type-name)expression



1.114 Computer Programming

where type-name is one of the standard C data types. The expression may be a constant, variable or an 

expression. Some examples of casts and their actions are shown in Table 1.24.

Table 1.24 Use of Casts

Example Action

x = (int) 7.5 7.5 is converted to integer by truncation.

a = (int) 21.3/(int)4.5 Evaluated as 21/4 and the result would be 5.

b = (double)sum/n Division is done in fl oating point mode.

y = (int) (a+b) The result of a+b is converted to integer.

z = (int)a+b a is converted to integer and then added to b.

p = cos((double)x) Converts x to double before using it.

Casting can be used to round-off a given value. Consider the following statement:

x = (int) (y+0.5);

If y is 27.6, y+0.5 is 28.1 and on casting, the result becomes 28, the value that is assigned to x. Of course, 

the expression, being cast is not changed.

EXAMPLE 1.39 Figure 1.94 shows a program using a cast to evaluate the equation SUM = 

Program

 main()

 {

  float sum ;

  int n ;

  sum = 0 ;

  for( n = 1 ; n <= 10 ; ++n )

  {

   sum = sum + 1/(float)n ;

   printf(“%2d %6.4f\n”, n, sum) ;

  }

 }

Output

  1  1.0000

  2  1.5000

  3  1.8333

  4  2.0833

  5  2.2833

  6  2.4500

  7  2.5929

  8  2.7179

  9  2.8290

 10  2.9290

Fig. 1.94 Use of a cast



Introduction to Computers, Problem Solving and Basic of C 1.115 

As mentioned earlier each operator, in C has a precedence associated with it. This precedence is used to 

determine how an expression involving more than one operator is evaluated. There are distinct levels of pre-

cedence and an operator may belong to one of these levels. The operators at the higher level of precedence 

are evaluated fi rst. The operators of the same precedence are evaluated either from ‘left to right’ or from ‘right 

to left’, depending on the level. This is known as the associativity property of an operator. Table 1.25 provides 

a complete list of operators, their precedence levels, and their rules of association. The groups are listed in 

the order of decreasing precedence. Rank 1 indicates the highest precedence level and 15 the lowest. The list 

also includes those operators, which we have not yet discussed.

It is very important to note carefully, the order of precedence and associativity of operators. Consider the 

following conditional statement:

if (x == 10 + 15 && y < 10)

The precedence rules say that the addition operator has a higher priority than the logical operator (&&) 

and the relational operators ( == and < ). Therefore, the addition of 10 and 15 is executed fi rst. This is equiva-

lent to:

if (x == 25 && y < 10)

The next step is to determine whether x is equal to 25 and y is less than 10. If we assume a value of 20 for 

x and 5 for y, then

x == 25 is FALSE (0)

y < 10 is TRUE (1)

Note that since the operator < enjoys a higher priority compared to ==, y < 10 is tested fi rst and then x == 

25 is tested.

Finally we get:

if (FALSE && TRUE)

Because one of the conditions is FALSE, the complex condition is FALSE.

In the case of &&, it is guaranteed that the second operand will not be evaluated if the fi rst is zero and in 

the case of ||, the second operand will not be evaluated if the fi rst is non-zero.

Table 1.25 Summary of  C Operators

Operator Description Associativity Rank

( ) Function call Left to right 1

[ ] Array element reference

+ Unary plus

– Unary minus Right to left 2

++ Increment

– – Decrement

! Logical negation

~ Ones complement

* Pointer reference (indirection)

& Address

sizeof Size of an object

(type) Type cast (conversion)

* Multiplication Left to right 3

1.58 OPERATOR PRECEDENCE AND ASSOCIATIVITY



1.116 Computer Programming

/ Division

% Modulus

+ Addition Left to right 4

– Subtraction

<< Left shift Left to right 5

>> Right shift

< Less than Left to right 6

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equality Left to right 7

|= Inequality

& Bitwise AND Left to right 8

^ Bitwise XOR Left to right 9

| Bitwise OR Left to right 10

&& Logical AND Left to right 11

|| Logical OR Left to right 12

?: Conditional expression Right to left 13

= Assignment operators Right to left 14

* = /= %=

+= –= &=

^= |=

<<= >>=

, Comma operator Left to right 15

• Precedence rules decides the order in which different operators are applied

• Associativity rule decides the order in which multiple occurrences of the same level operator are applied

Rules of Precedence and Associativity

Mathematical functions such as cos, sqrt, log, etc. are frequently used in analysis of real-life problems. 

Most of the C compilers support these basic math functions. However, there are systems that have a more 

comprehensive math library and one should consult the reference manual to fi nd out which functions are 

available. Table 1.26 lists some standard math functions.

Table 1.26  Math functions

Function Meaning

Trigonometric

acos(x) Arc cosine of x

asin(x) Arc sine of x

atan(x) Arc tangent of x

atan 2(x,y) Arc tangent of x/y

1.59 MATHEMATICAL FUNCTIONS



Introduction to Computers, Problem Solving and Basic of C 1.117 

cos(x) Cosine of x

sin(x) Sine of x

tan(x) Tangent of x

Hyperbolic

cosh(x) Hyperbolic cosine of x

sinh(x) Hyperbolic sine of x

tanh(x) Hyperbolic tangent of x

Other functions

ceil(x) x rounded up to the nearest integer

exp(x) e to the x power (ex)

fabs(x) Absolute value of x.

fl oor(x) x rounded down to the nearest integer

fmod(x,y) Remainder of x/y

log(x) Natural log of x, x > 0

log10(x) Base 10 log of x, x > 0

pow(x,y) x to the power y (xy)

sqrt(x) Square root of x, x > = 0

Note: 1. x and y should be declared as double.

  2. In trigonometric and hyperbolic functions, x and y are in radians.

  3. All the functions return a double.

  4. C99 has added fl oat and long double versions of these fuctions.

  5. C99 has added many more mathematical functions.

  6. See the Appendix “C99 Features” for details.

As pointed out earlier, to use any of these functions in a program, we should include the line:

# include <math.h>

in the beginning of the program.



1.118 Computer Programming

Just Remember

All the devices that expand the capabilities of • 

a computer in some way are termed as 

peripheral devices. Examples: printer, plotter, 

disk drive, speaker, microphone, etc.

Cache memory has the fastest access time • 

followed by RAM, and secondary storage 

devices.

High-level language is the most user-friendly, • 

followed by assembly and machine language.

Machine-level language is the most effi cient • 

followed by assembly and high-level 

language.

It is always advisable to fi rst create the • 

algorithm and then the actual program. It 

helps to develop the code in a more systematic 

manner which is less error-prone. 

It is always advisable to test a program in • 

varied test scenarios so as to ensure that there 

is no prevalence of any semantic error.

Describing the process step-by-step is called • 

as algorithm.

Representing the various steps in the form of • 

a diagram is called as fl ow chart.

Parallel computing•  was developed to speed 

up things and ultimately try to imitate human 

actions in artifi cial intelligence.

Sequence involves a series of steps that we • 

perform one after the other.

Selection•  involves making a choice from 

multiple available options.

Iteration involves performing repetitive tasks.• 

The above three basic categories of activities • 

combined in different ways can form the basis 

for describing any algorithm.

Programs without go to statements are easy to • 

understand and therefore, easy to maintain.

We can combine two or more conditions into • 

a single compound condition.

Putting an • if within another if forms a nested 

condition.

It is always a good practice to do a walkthrough • 

of an algorithm with a variety of values.

The process of removing a bug from an • 

algorithm is called as debugging.

Every C program requires a • main() function 

(Use of more than one main() is illegal). The 

place main is where the program execution 

begins.

The execution of a function begins at the • 

opening brace of the function and ends at the 

corresponding closing brace.

C programs are written in lowercase letters. • 

However, uppercase letters are used for 

symbolic names and output strings.

All the words in a program line must be • 

separated from each other by at least one 

space, or a tab, or a punctuation mark.

Every program statement in a C language • 

must end with a semicolon.

All variables must be declared for their types • 

before they are used in the program.

We must make sure to include header fi les • 

using #include directive when the program 

refers to special names and functions that it 

does not defi ne.

Compiler directives such as • defi ne and include 

are special instructions to the compiler to help it 

compile a program. They do not end with a 

semicolon.

The sign # of compiler directives must appear • 

in the fi rst column of the line.

When braces are used to group statements, • 

make sure that the opening brace has a 

corresponding closing brace.

C is a free-form language and therefore a • 

proper form of indentation of various sections 

would mprove legibility of the program.

A comment can be inserted almost anywhere • 

a space can appear. Use of appropriate 

comments in proper places increases 

readability and understandability of the 

program and helps users in debugging and 

testing. Remember to match the smbols /* 

and */ appropriately.

C is the best suited programming language • 

for systems programming.

C is a procedural language and not object-• 

oriented.



Introduction to Computers, Problem Solving and Basic of C 1.119 

If no explicit return type is specifi ed then a • 

function takes void as the default return type. 

It is always advisable to use format specifi ers • 

so as to generate the output in a well-formatted 

form. 

Alt + R is the shortcut for running a program • 

in C.

Do not use the underscore as the fi rst character • 

of identifi ers (or variable names) because 

many of the identifi ers in the system library 

start with underscore.

Use only 31 or less characters for identifi ers. • 

This helps ensure portability of programs.

Do not use keywords or any system library • 

names for identifi ers.

Use meaningful and intelligent variable names.• 

Do not create variable names that differ only • 

by one or two letters.

Each variable used must be declared for its • 

type at the beginning of the program or 

function.

All variables must be initialized before they • 

are used in the program.

Integer constants, by default, assume • int 

types. To make the numbers long or unsigned, 

we must append the letters L and U to them.

Floating point constants default to • double. To 

make them to denote fl oat or long double, we 

must append the letters F or L to the 

numbers.

Do not use lowercase l for long as it is usually • 

confused with the number 1.

Use single quote for character constants and • 

double quotes for string constants.

A character is stored as an integer. It is • 

therefore possible to perform arithmetic 

operations on characters.

Do not combine declarations with executable • 

statements.

A variable can be made constant either by • 

using the preprocessor command #defi ne at 

the beginning of the program or by declaring 

it with the qualifi er const at the time of 

initialization.

Do not use semicolon at the end of • #defi ne 

directive.

The character # should be in the fi rst column.• 

Do not give any space between • # and defi ne.

C does not provide any warning or indication • 

of overfl ow. It simply gives incorrect results. 

Care should be exercised in defi ning correct 

data type.

A variable defi ned before the main function is • 

available to all the functions in the program.

A variable defi ned inside a function is local to • 

that function and not available to other 

functions.

Variable names can not have any special • 

symbols except underscore. 

The limitation of a keyboard for supporting • 

some special characters can be removed with 

the help of trigraph sequences.

No whitespace is permitted between any • 

identifi er or keyword.

Typedef is a very useful keyword for user-• 

defi ned type declarations particularly in large 

programs where declarations are required to 

be made frequently.

Symbolic constants serve the purpose of • 

changing a particular value at all its instances 

in the program, at once.

While using•  getchar function, care should be 

exercised to clear any unwanted characters in 

the input stream.

Do not forget to include <• stdio.h> headerfi les 

when using functions from standard input/

output library.

Do not forget to include <• ctype.h> header 

fi le when using functions from character 

handling library.

Provide proper fi eld specifi cations for every • 

variable to be read or printed.

Enclose format control strings in double quotes.• 

Do not forget to use address operator & for • 

basic type variables in the input list of scanf.

Use double quotes for character string • 

constants.

Use single quotes for single character constants.• 

Provide suffi cient fi eld to handle a value to be • 

printed.

Be aware of the situations where output may • 

be imprecise due to formatting.



1.120 Computer Programming

Do not specify any precision in input fi eld • 

specifi cations.

Do not provide any white-space at the end of • 

format string of a scanf statement.

Do not forget to close the format string in the • 

scanf or printf statement with double quotes.

Using an incorrect conversion code for data • 

type being read or written will result in 

runtime error.

Do not forget the comma after the format • 

string in scanf and printf statements.

Not separating read and write arguments is an • 

error.

Do not use commas in the format string of a • 

scanf statement.

Using an address operator & with a variable in • 

the printf statement will result in runtime error.

Use %[] for reading blank spaces.• 

Always provide complete fi eld specifi cations • 

corresponding to all the variables to be read 

in the scanf function call. 

Use %o for printing an octal integer and %x • 

for printing a hexadecimal number.

Use L for long double conversion.• 

Use the 0 fl ag for causing leading zeros to • 

appear in the output.

Use • decrement and increment operators 

carefully. Understand the difference between 

postfi x and prefi x operations before using 

them.

Add parentheses wherever you feel they would • 

help to make the evaluation order clear.

Be aware of side effects produced by some • 

expressions.

Avoid any attempt to divide by zero. It is • 

normally undefi ned. It will either result in a 

fatal error or in incorrect results.

Do not forget a semicolon at the end of an • 

expression.

Understand clearly the precedence of • 

operators in an expression. Use parentheses, 

if necessary.

Associativity is applied when more than one • 

operator of the same precedence are used in 

an expression. Understand which operators 

associate from right to left and which associate 

from left to right. 

Do not use • increment or decrement operators 

with any expression other than a variable 

identifi er.

It is illegal to apply modules operator % with • 

anything other than integers.

Do not use a variable in an expression before • 

it has been assigned a value.

Integer division always truncates the decimal • 

part of the result. Use it carefully. Use casting 

where necessary.

The result of an expression is converted to the • 

type of the variable on the left of the 

assignment before assigning the value to it. 

Be careful about the loss of information 

during the conversion.

All mathematical functions implement • double 

type parameters and return double type 

values.

It is an error if any space appears between the • 

two symbols of the operators ==, !=, <= and 

>=.

It is an error if the two symbols of the • 

operators !=, <= and >= are reversed.

Use spaces on either side of binary operator • 

to improve the readability of the code.

Do not use increment and decrement operators • 

to fl oating point variables.

Do not confuse the equality operator == with • 

the assignment operator =.

Always remember that relational operators • 

result in either 0 or 1.

Use the bitwise operators carefully as they • 

directly operate on bits.

Remember that *, /, and % have higher • 

priority than + and −.

Remember that arithmetic operators are • 

operated from left to right using the 

precedence rules.

Understand the implicit type conversion • 

hierarchy properly so as to avoid getting 

unexpected results.



Introduction to Computers, Problem Solving and Basic of C 1.121 

Multiple Choice Questions

 1. Which of the following is used to perform 

computations on the entered data?

(a) Memory (b) Processor

(c) Input device (d) Output device

 2. Which of the following is not an input device?

(a) Plotter (b) Scanner

(c) Keyboard (d) Mouse

 3. Which of the following is not an output device?

(a) Plotter (b) Scanner

(c) Printer (d) Speaker

 4. Which of the following is used as a primary 

memory of the computer?

(a) Magnetic storage device

(b) RAM

(c) Optical storage device

(d) Magneto-optical storage device

 5. Which of the following is used as a secondary 

memory of the computer?

(a) Magnetic storage device

(b) RAM

(c) Cache memory

(d) ROM

 6. Which of the following is defi ned as a 

computer program for performing a particular 

task on the computer system?

(a) Hardware (b) Software

(c) Processor (d) Memory

 7. Which type of operating system allows more 

than one program to run at the same time in a 

computer system?

(a) Multi-threading operating system

(b) Interactive operating system

(c) Multi-user operating system

(d) Multi-tasking operating system

 8. Which one of the following converts 

assembly language into machine language?

(a) Interpreter (b) Compiler

(c) Assembler (d) Algorithm

  9. In which of the following languages, the 

instructions are written in the form of 0s 

and 1s?

(a) Assembly language

(b) Programming language

(c) High-level language

(d) Machine language

10. Which one of the following is known as the 

‘language of the computer’?

(a) Programming language

(b) High-level language

(c) Machine language

(d) Assembly language

11. What are the three main categories of 

high-level language?

(a) Low-level languages

(b) Procedure oriented languages

(c) Mechanical languages

(d) Natural languages

(e) Problem oriented languages

12. Which of the following is not a translator 

program?

(a) Linker (b) Assembler

(c) Compiler (d) Interpreter

13. Any C program 

(a) Must contain at least one function

(b) Need not contain any function

(c) Needs input data

(d) None of the above

14. In which year C language was developed?

(a) 1951 (b) 1962

(c) 1972 (d) 1947

15. Which one of the following is appropriate to 

describe the C language?

(a) Structured language

(b) Object-oriented language

(c) Machine language

(d) Assembly language

16. What is the number of keywords reserved in 

C language?

(a) 45 (b) 30

(c) 32 (d) 24

17. The execution of a program written in a C 

language begins at:

(a) main( )

(b) scanf( )

(c) printf( )

(d) #include<iostream.h>



1.122 Computer Programming

18. Which one of the following is an example of 

a valid fi le name in C language?

(a) system (b) system.c

(c) system.cpp (d) system.java

19. Which of the following is the correct syntax 

for the printf statement? 

(a) printf(‘Hello world’);

(b) printf(“Hello world”)

(c) printf(“Hello world”);

(d) printf{‘Hello world’};

20. What does %6.2f format specifi cation 

signify?

(a) A normal fl oating point number

(b) A fl oating point number with six places

in all and two places to the right of 

 decimal

(c) A fl oating point number with eight 

places in all and two places to the right of 

 decimal

(d) None of the above

21. Which of the following is an example of a 

 free-form language?

(a) FORTRAN (b) COBOL 

(c) C  (d) None of the above

22. Which of the following are UNIX editors?

(a) vi (b) ed

(c) Edit! (d) Notepad

23. Which of the following is an intermediary 

fi le generated during the execution of a C 

program?

(a) .c (b) .obj

(c) .exe (d) .bak

24. Which of the following will run 

successfully in C?

(a) main() 

 {

 printf(“ Hello world”);

   }

(b) main() 

 { printf(“ Hello world”); }

(c) main() {printf(“ Hello world”);}

(d) All of the above

25. Which of the following is the correct 

form of writing comments?

(a) /* comment */ (b) /* comment /*

(c) */ comment /* (d) */comment */

 26. Which one of the following does not fall 

under the category of integer constants?

(a) 999 (b) 0 (c) +719

(d) –210 (e) 1,35,000

 27. Which one of the following is not a real 

constant?

(a) 15.25 (b) 0.962

(c) 10 (d) +24.85

 28. Which one of the following is a string constant?

(a) ‘5’ (b) “hello”

(c) 25 (d) None of the above

29. Which one of the following does not 

represent a variable?

(a) % (b) height

(c) xy1 (d) m_width

 30. The range of values for a char data type is 

(a) -128 to 127

(b) 3.4e-38 to 3.4e+38

(c) 1.7e-308 to 1.7e+308

(d) -32,768 to 32,768

 31. Which one of the following is a fl oating-point 

data type?

(a) int (b) long int

(c) double (d) None of the above

 32. Which command is used for reading data 

from keyboard in C language?

(a) cout (b) cin

(c) printf ( ) (d) scanf ( )

 33. Which one of the following commands is 

used for the purpose of displaying output in C 

language?

(a) scanf ( ) 

(b) printf ( )

(c) system.out.println ( )

(d) None of the above

 34. Which of the following is the trigraph 

sequence for representing #?

(a) ??= (b) ??-

(c) ??( (d) v??>

 35. Which of the following is not a C keyword?

(a) typedef (b) volatile

(c) register (d) class

 36. Which of the following is a legible variable 

name?

(a) income_tax (b) income-tax

(c) income.tax (d) income,tax



Introduction to Computers, Problem Solving and Basic of C 1.123 

 37. Constants are broadly divided into two 

categories ______ and ______.

(a) numeric, string

(b) integer, string

(c) numeric, character 

(d) integer, character

 38. For the real number 3.265e4, which of the 

following is correct?

(a) mantissa -3.265, exponent 4

(b) mantissa -4, exponent 3.265

(c) mantissa -3, exponent -4 

(d) mantissa .3265, exponent -4

 39. Which of the following is not a string? 

(a) “S”

(b) ‘S’

(c) “\”S\””

(d) All of the above are strings

 40. Which of the following can not be used for 

declaring integer type variables?

(a) int (b) short int 

(c) long int (d) double int

 41. Which of the following is the correct range 

for data type double?

(a) 1.7E-308 to 1.7E+308 

(b) 1.7E-318 to 1.7E+318

(c) 3.4E-4932 to 1.1E+4932

(d) 3.4E-38 to 3.4E+38

 42. Which of the following storage class variable 

declaration leads to fastest memory access?

(a) auto (b) static

(c) extern (d) register

 43. Which of the following is not a predefi ned C 

header fi le?

(a) math.h (b) conio.h

(c) scientifi c.h (d) ctype.h

 44. Which of the following function is suitable 

for reading one character at a time?

(a) scanf (b) getchar

(c) getch (d) gets

 45. Which of the following function is suitable 

for displaying one character at a time? 

(a) printf (b) putchar

(c) putch (d) puts

 46. Which of the following is used to determine 

whether a character is in lowercase?

(a) islower (b) islow

(c) islowercase (d) isupper

 47. ispunct(c) does which of the following:

(a) Determines whether c is a punctuation 

character

(b) Determines whether c is a printable character

(c) Determines whether c is a special character

(d) None of the above

 48. What does 2 signify in the statement 

scanf(“%2d “, &num);

(a) Read two digit decimal numbers

(b) Read a real number with two places to 

the right

(c) Read two decimal numbers simultane-

ously 

(d) None of the above

 49. While reading a string what does %wc signify?

(a) Read w-character string

(b) Read (w-1) character string

(c) Read a string and upon on encountering 

‘return’, embed blank spaces till 

wth place

(d) None of the above

 50. Which of the following will not read an 

integer number?

(a) %d (b) %f

(c) %ld (d) %c

 51. Which of the following is used for reading a 

hexadecimal number?

(a) %i (b) %x

(c) %d (d) %u

 52. What will be the output of printf(“ %.08d\n”, 

n); if n =123

(a) 00000123 (b) 00000000123

(c) 123 (d) None of the above

 53. Which of the following fl ags are used for left-

justifying the output with in the fi eld?

(a) + (b) -

(c) 0 (d) None of the above

 54. Character test functions are present in which 

of the fl owing header fi les?

(a) conio.h (b) stdio.h

(c) ctype.h (d) None of the above

 55. Which of the following is not an arithmetic 

operator?

(a) + (b) -

(c) * (d) &



1.124 Computer Programming

 56. Which of the following operators are used for 

obtaining the remainder in a division operation? 

(a) / (b) %

(c) ! (d) None of the above

 57. Which of the following is the relational 

operator for ‘not equal to’? 

(a) ! (b) !=

(c) !== (d) =!

 58. Which of the following is the correct 

statement for computing logical AND?

(a) a<b & x>y (b) a<b && x>y

(c) a<b AND x>y (d) None of the above

 59. Which of the following is true?

(a) ! has higher priority than !=

(b) || has higher priority than &&

(c) == has higher priority than <=

(d) >= has higher priority than <=

 60. a +=1 will result in:

(a) a = a + a (b) a = a+1

(c) a = 1+1 (d) a = a + (a+1)

 61. In which of the following, the expression 

is evaluated fi rst and then the variable is 

incremented? 

(a) a++ (b) ++a

 62. Which of the following is the correct syntax 

for ternary operator “?:”?

(a) exp1 ? exp2 ::exp3

(b) exp1 ? exp2 :exp3

(c) exp1 : exp2 ?exp3

(d) None of the above

 63. Which of the following is the bitwise left shift 

operator?

(a) < (b) <<

(c) <<< (d) ^

 64. How will a=(int)32.2/(int)4.3 be evaluated?

(a) 32.3/4.3 (b) 32/4

(c) 32.0/4.0 (d) None of the above

 65. Which of the following has the highest 

precedence?

(a) [ ] (b) ( )

(c) { } (d) ++

 66. Which of the following has the lowest 

precedence?

(a) <= (b) !

(c) , (d) ?:

 67. Which of the following is not a math function?

(a) asin (b) acos

(c) pow (d) sizeof

 68. c= ++a – b will result in which of the 

following (if a=10, b=5):

(a) 5 (b) 6

(c) 7 (d) -6

 69. Logical NOT operator is represented by 

which of the following?

(a) || (b) !

(c) !! (d) NOT

Case Study

1. Calculation of  Average of Numbers

A program to calculate the average of a set of N numbers is given in Fig. 1.95.

Program

 #define N 10  /* SYMBOLIC CONSTANT */
 main()
 {
   int count ;   /* DECLARATION OF */
   float sum, average, number ; /* VARIABLES */
   sum = 0 ;   /* INITIALIZATION */
   count = 0 ;   /* OF VARIABLES */
   while( count < N )
     {
   scanf(“%f”, &number) ;
   sum = sum + number ;

Cont’d



Introduction to Computers, Problem Solving and Basic of C 1.125

    count = count + 1 ;
   }
   average = sum/N ;
   printf(“N = %d Sum = %f”, N, sum);
   printf(“ Average = %f”, average);
 }
Output

 1
 2.3
 4.67
 1.42
 7
 3.67
 4.08
 2.2
 4.25
 8.21
 N = 10 Sum = 38.799999 Average = 3.880

Fig. 1.95 Average of N numbers

The variable number is declared as fl oat and therefore it can take both integer and real numbers. Since the 

symbolic constant N is assigned the value of 10 using the  #defi ne statement, the program accepts ten values 

and calculates their sum using the while loop. The variable count counts the number of values and as soon 

as it becomes 11, the while loop is exited and then the average is calculated.

Notice that the actual value of sum is 38.8 but the value displayed is 38.799999. In fact, the actual value 

that is displayed is quite dependent on the computer system. Such an inaccuracy is due to the way the fl oating 

point numbers are internally represented inside the computer.

2.  Temperature Conversion Problem

The program presented in Fig. 1.96 converts the given temperature in fahrenheit to celsius using the  following 

conversion formula:

C =
F 32

1.8

Program

 #define F_LOW 0 /* — — — — — — — — — — — — — — */
 #define F_MAX 250 /* SYMBOLIC CONSTANTS  */
 #define STEP 25 /* — — — — — — — — — — — — — —  */
 main()
 {
   typedef float REAL ;    /* TYPE DEFINITION */
   REAL fahrenheit, celsius ; /* DECLARATION */
   fahrenheit = F_LOW ;  /* INITIALIZATION */
   printf(“Fahrenheit Celsius\n\n”) ;
   while( fahrenheit <= F_MAX )
   {     
    celsius = ( fahrenheit - 32.0 ) / 1.8 ;
    printf(“ %5.1f %7.2f\n”, fahrenheit, celsius);
    fahrenheit = fahrenheit + STEP ;
   }
 }



1.126 Computer Programming

The program prints a conversion table for reading temperature in celsius, given the fahrenheit values. The 

minimum and maximum values and step size are defi ned as symbolic constants. These values can be changed 

by redefi ning the #defi ne statements. An user-defi ned data type name REAL is used to declare the variables 

fahrenheit and celsius.

The formation specifi cations %5.1f and %7.2 in the second printf statement produces two-column output 

as shown.

3. Inventory Report

Problem: The ABC Electric Company manufactures four consumer products. Their inventory position on a 

particular day is given below:

Code Quantity Rate (Rs)

F105 275 575.00

H220 107 99.95

I019 321 215.50

M315 89 725.00

It is required to prepare the inventory report table in the following format:

INVENTORY REPORT

Code Quantity Rate Value

—— —— —— ——

—— —— —— ——

—— —— —— ——

—— —— —— ——

Total Value: ——

The value of each item is given by the product of quantity and rate.

Program: The program given in Fig. 1.97 reads the data from the terminal and generates the required 

 output. The program uses subscripted variables which are discussed in Chapter 10.

Output

Fahrenheit Celsius
 0.0 -17.78
 25.0 -3.89
 50.0 10.00
 75.0 23.89
 100.0 37.78
 125.0 51.67
 150.0 65.56
 175.0 79.44
 200.0 93.33
 225.0 107.22
 250.0 121.11

Fig. 1.96 Temperature conversion—fahrenheit-celsius



Introduction to Computers, Problem Solving and Basic of C 1.127 

Program

 #define ITEMS 4

 main()

 {  /* BEGIN */

  int i, quantity[5];

  float rate[5], value, total_value;

  char code[5][5];

  /* READING VALUES */

  i = 1;

  while ( i <= ITEMS)

  {

   printf(“Enter code, quantity, and rate:”);

   scanf(“%s %d %f”, code[i], &quantity[i],&rate[i]);

   i++;

  }

 /*.......Printing of Table and Column Headings.......*/

  printf(“\n\n”);

  printf(“ INVENTORY REPORT \n”);

  printf(“— — — — — — — — — — — — — — — — — — — — — \n”);

  printf(“ Code Quantity Rate Value \n”);

  printf(“— — — — — — — — — — — — — — — — — — — — — \n”);

 /*.......Preparation of Inventory Position..........*/

  total_value = 0;

  i = 1;

  while ( i <= ITEMS)

  {

   value = quantity[i] * rate[i];

   printf(“%5s %10d %10.2f %e\n”,code[i],quantity[i],

   rate[i],value);

   total_value += value;

   i++;

  }

 /*.......Printing of End of Table..................*/

  printf(“— — — — — — — — — — — — — — — — \n”);

  printf(“Total Value = %e\n”,total_value);

  printf(“— — — — — — — — — — — — — — — — \n”);

 } /* END */

Output

 Enter code, quantity, and rate:F105 275  575.00

 Enter code, quantity, and rate:H220 107 99.95

 Enter code, quantity, and rate:I019 321 215.50

 Enter code, quantity, and rate:M315 89 725.00

      INVENTORY REPORT

 Code Quantity  Rate    Value  

 F105  275   575.00   1.581250e+005

 H220  107    99.95   1.069465e+004

 I019  321   215.50   6.917550e+004

 M315   89   725.00   6.452500e+004

    Total Value = 3.025202e+005

Fig. 1.97 Program for inventory report



1.128 Computer Programming

4. Reliability Graph

Problem: The reliability of an electronic component is given by

reliability (r) = e – λ t

where λ is the component failure rate per hour and t is the time of operation in hours. A graph is required to 

determine the reliability at various operating times, from 0 to 3000 hours. The failure rate λ (lambda) is 0.001.

Problem

 #include <math.h>
 #define LAMBDA 0.001
 main()
 {
  double t;
  float r;
  int i, R;
  for (i=1; i<=27; ++i)
  {
   printf(“–—”);
  }
  printf(“\n”);
  for (t=0; t<=3000; t+=150)
  {
   r = exp(–LAMBDA*t);
   R = (int)(50*r+0.5);
   printf(“ |”);
   for (i=1; i<=R; ++i)
   {
    printf(“*”);
   }
   printf(“#\n”);
  }
  for (i=1; i<3; ++i)
  {
   printf(“ |\n”);
  }
 }
Output

 –––––––––––––––––––––––––––––––––––––––––––
 |**************************************************#
 |*******************************************#
 |*************************************#
 |********************************# 
 |***************************#
 |************************#
 |********************#
 |*****************#
 |***************#
 |*************#
 |***********#
 |**********#
 |********#
 |*******#
 |******#
 |*****#



Introduction to Computers, Problem Solving and Basic of C 1.129 

 |*****# 
 |****#
 |***#
 |***#
 |**#

Fig. 1.98 Program to draw reliability graph

Program: The program given in Fig. 1.98 produces a shaded graph. The values of t are self-generated by 

the for statement
for(t=0; t <= 3000; t = t+150)

in steps of 150. The integer 50 in the statement

R = (int)(50*r+0.5)

is a scale factor which converts r to a large value where an integer is used for plotting the curve. Remember 

r is always less than 1.

5. Salesman’s Salary

A computer manufacturing company has the following monthly compensation policy to their sales-persons:

Minimum base salary    : 1500.00

Bonus for every computer sold  : 200.00

Commission on the total monthly sales : 2 per cent

Since the prices of computers are changing, the sales price of each computer is fi xed at the beginning of every 

month. A program to compute a sales-person’s gross salary is given in Fig. 1.99.

Program

 #define BASE_SALAR 1500.00
 #define BONUS_RATE 200.00
 #define COMMISSION 0.02
 main()
 {
  int quantity ;
  float gross_salary, price ;
  float bonus, commission ;
  printf(“Input number sold and price\n”) ;
  scanf(“%d %f”, &quantity, &price) ;
  bonus = BONUS_RATE * quantity ;
  commission = COMMISSION * quantity * price ;
  gross_salary = BASE_SALARY + bonus + commission ;
  printf(“\n”);
  printf(“Bonus = %6.2f\n”, bonus) ;
  printf(“Commission = %6.2f\n”, commission) ;
  printf(“Gross salary = %6.2f\n”, gross_salary) ;
 }
Output

 Input number sold and price
 5 20450.00
 Bonus   = 1000.00
 Commission  = 2045.00
 Gross salary = 4545.00

Fig. 1.99  Program of salesman’s salary



1.130 Computer Programming

Given the base salary, bonus, and commission rate, the inputs necessary to calculate the gross salary are, 

the price of each computer and the number sold during the month.

The gross salary is given by the equation:

Gross salary = base salary + (quantity * bonus rate) + (quantity * Price) * commission rate

6. Solution of the Quadratic Equation

An equation of the form

ax2 + bx + c = 0

is known as the quadratic equation. The values of x that satisfy the equation are known as the roots of the 
equation. A quadratic equation has two roots which are given by the following two formulae:

− −

=
− −

=

2

2

A program to evaluate these roots is given in Fig. 1.100. The program requests the user to input the values 

of a, b and c and outputs root 1 and root 2.

Program

 #include <math.h>

 main()

 {

  float a, b, c, discriminant,

  root1, root2;

  printf(“Input values of a, b, and c\n”);

  scanf(“%f %f %f”, &a, &b, &c);

  discriminant = b*b - 4*a*c ;

  if(discriminant < 0)

    printf(“\n\nROOTS ARE IMAGINARY\n”);

  else

  {

    root1 = (-b + sqrt(discriminant))/(2.0*a);

    root2 = (-b - sqrt(discriminant))/(2.0*a);

    printf(“\n\nRoot1 = %5.2f\n\nRoot2 = %5.2f\n”,

    root1,root2 );

  }

 }

Output

 Input values of a, b, and c

 2 4 -16

 Root1 = 2.00

 Root2 = -4.00

 Input values of a, b, and c

 1 2 3

 ROOTS ARE IMAGINARY

Fig. 1.100 Solution of a quadratic equation



Introduction to Computers, Problem Solving and Basic of C 1.131 

The term (b2–4ac) is called the discriminant. If the discriminant is less than zero, its square roots cannot 

be evaluated. In such cases, the roots are said to be imaginary numbers and the program outputs an appropri-

ate message.

Review Questions

 1.1 State whether the following statements are 

true or false.

 (a) The alphanumeric keys are the keys that 

help perform a specifi c task such as search-

ing a fi le or refreshing the Web pages.

 (b) Dot matrix printers are slower than inkjet 

printers and are used to generate high 

quality photographic prints.

 1.2 Fill in the blanks with appropriate words in 

the following statement.

 (a) The______keys include the number keys 

and the alphabet keys.

 1.3 What are input devices? Briefl y explain some 

popular input devices.

 1.4 What is the purpose of an output 

device? Explain various types of output 

devices.

 1.5 What is assembly language? What are its 

main advantages?

 1.6 What is high-level language? What are the 

different types of high-level languages?

 1.7 What do we understand by a compiler and an 

assembler?

 1.8 What is a fl ow chart? How is it different from 

an algorithm?

 1.9 What are the functions of a fl ow chart?

 1.10  Point down the differences between an 

algorithm and a fl owchart.

 1.11 Write an algorithm for withdrawing Rs. 1000 

from the bank.

 1.12 Draw a fl owchart for the above.

 1.13 Describe in detail the steps involved in testing.

 1.14 Discuss sequence, selection and iteration in 

detail.

 1.15 State whether the following statements are 

true or false.

(a) Describing the process step by step is 

called as fl owchart.

(b) Algorithm involves very complex process.

(c) When we break up a big task into smaller 

steps, what we actually do is to create an 

algorithm.

(d) Each step in an algorithm can be called as 

an instruction.

(e) Parallel computing slows down the things.

(f) In general, the steps in an algorithm can 

be divided in fi ve basic categories.

(g) Making a choice from multiple available 

options is called as a sequence.

(h) Performing repetitive tasks is called as 

iteration.

(i) The positioning of End-if can change the 

meaning in a process.

(j) Avoiding a goto in a program, makes it a 

goto-less or top-down or structured.

(k) goto-less programs are diffi cult to 

 understand.

(l) We can combine two or more conditions 

into a single compound condition.

(m) If there is an if within another if then it is 

called as a compound condition.

(n) Checking to see if our algorithm gives the 

desired result is called as a test case.

(o) A group of test cases makes up the test data.

(p) Sequence, selection and iteration form 

the building blocks for writing any 

 algorithm.

 1.16 State whether the following statements are 

true or false.

(a) Every line in a C program should end 

with a semicolon.

(b) In C language lowercase letters are 

 signifi cant.

(c) Every C program ends with an END word.

(d) main( ) is where the program begins its 

execution.

(e) A line in a program may have more than 

one statement.



1.132 Computer Programming

(f) A printf statement can generate only one 

line of output.

(g) The closing brace of the main( ) in 

a  program is the logical end of the 

 program.

(h) The purpose of the header fi le such as 

stdio.h is to store the source code of a 

program.

(i) Comments cause the computer to print 

the text enclosed between /* and */ when 

executed.

(j) Syntax errors will be detected by the 

compiler.

 1.17 Which of the following statements are true?

(a) Every C program must have at least one 

user-defi ned function.

(b) Only one function may be named main( ).

(c) Declaration section contains instructions 

to the computer.

 1.18 Which of the following statements about 

comments are false?

(a) Use of comments reduces the speed of 

execution of a program.

(b) Comments serve as internal documenta-

tion for programmers.

(c) A comment can be inserted in the middle 

of a statement.

(d) In C, we can have comments inside com-

ments.

 1.19 Fill in the blanks with appropriate words in 

each of the following statements.

(a) Every program statement in a C program 

must end with a __________

(b) The __________ Function is used to 

display the output on the screen.

(c) The __________ header fi le contains 

mathematical functions.

(d) The escape sequence character 

__________ causes the cursor to move to 

the next line on the screen.

 1.20 Remove the semicolon at the end of the 

printf statement in the program of Fig. 1.2 

and execute it. What is the output?

 1.21 In the Sample Program 2, delete line-5 and 

execute the program. How helpful is the error 

message?

 1.22 Modify the Sample Program 3 to display the 

following output:

 Year Amount

 1 5500.00

 2 6160.00

 - ________

 - ________

 10 14197.11

 1.23 Find errors, if any, in the following program:
    /* A simple program

    int main( )

    {

      /* Does nothing */

    }

 1.24 Find errors, if any, in the following program:
    #include (stdio.h)

    void main(void)

    {

      print(“Hello C”);

    }

 1.25 Find errors, if any, in the following program:
    Include <math.h>

    main { }

    (

      FLOAT X;

      X = 2.5;

      Y = exp(x);

      Print(x,y);

    )

 1.26 Why and when do we use the #defi ne directive?

 1.27 Why and when do we use the #include 

directive?

 1.28 What does void main(void) mean?

 1.29 Distinguish between the following pairs:

(a) main( ) and void main(void)

(b) int main( ) and void main( )

 1.30 Why do we need to use comments in 

programs?

 1.31 Why is the look of a program is important?

 1.32 Where are blank spaces permitted in a C 

program?

 1.33 Describe the structure of a C program.

 1.34 Describe the process of creating and 

executing a C program under UNIX system.

 1.35 How do we implement multiple source 

program fi les?

 1.36 State whether the following statements are 

true or false.



Introduction to Computers, Problem Solving and Basic of C 1.133 

(a) Any valid printable ASCII character can 

be used in an identifi er.

(b) All variables must be given a type when 

they are declared.

(c) Declarations can appear anywhere in a 

program.

(d) ANSI C treats the variables name and 

Name to be same.

(e) The underscore can be used anywhere in 

an identifi er.

(f) The keyword void is a data type in C.

(g) Floating point constants, by default, 

denote fl oat type values.

(h) Like variables, constants have a type.

(i) Character constants are coded using 

double quotes.

(j) Initialization is the process of  assigning 

a value to a variable at the time of 

 declaration.

(k) All static variables are automatically 

initialized to zero.

(l) The scanf function can be used to read 

only one value at a time.

 1.37 Fill in the blanks with appropriate words.

(a) The keyword __________ can be used to 

 create a data type identifi er.

(b) __________ is the largest value that an 

unsigned short int type variable 

can store.

(c) A global variable is also known as 

__________ variable.

(d) A variable can be made constant 

by  declaring it with the qualifi er 

__________ at the time of initialization.

 1.38 What are trigraph characters? How are they 

useful?

 1.39 Describe the four basic data types. How 

could we extend the range of values they 

represent?

 1.40 What is an unsigned integer constant? What 

is the signifi cance of declaring a constant 

unsigned?

 1.41 Describe the characteristics and purpose of 

escape sequence characters.

 1.42 What is a variable and what is meant by the 

“value” of a variable?

 1.43 How do variables and symbolic names differ?

 1.44 State the differences between the declaration 

of a variable and the defi nition of a symbolic 

name.

 1.45 What is initialization? Why is it important?

 1.46 What are the qualifi ers that an int can have at 

a time?

 1.47 A programmer would like to use the word 

DPR to declare all the double-precision 

fl oating point values in his program. How 

could he achieve this?

 1.48 What are enumeration variables? How are 

they declared? What is the advantage of using 

them in a program?

 1.49 Describe the purpose of the qualifi ers const 

and volatile.

 1.50 When dealing with very small or very 

large numbers, what steps would you 

take to improve the accuracy of the 

calculations?

 1.51 Which of the following are invalid constants 

and why?

0.0001  5 ´ 1.5   99999

+100   75.45 E-2  “15.75”

–45.6  –1.79 e + 4 0.00001234

 1.52 Which of the following are invalid variable 

names and why?

Minimum First.name n1+n2     &name

doubles  3rd_row   n$     Row1

fl oat    Sum Total Row Total Column-total

 1.53 Find errors, if any, in the following 

declaration statements.
 Int x;
 float letter,DIGIT;
 double = p,q
 exponent alpha,beta;
 m,n,z: INTEGER
 short char c;
 long int m; count;
 long float temp;

 1.54 What would be the value of x after execution 

of the following statements?
 int x, y = 10;
 char z = ‘a’;
 x = y + z;

 1.55 Identify syntax errors in the following 

program. After corrections, what output 

would you expect when you execute it?



1.134 Computer Programming

 #define PI 3.14159
 main()
 {
 int R,C;    /* R-Radius of circle
 float perimeter; /* Circumference of circle 

*/
 float area;   /* Area of circle */
 C = PI
 R = 5;
 Perimeter = 2.0 * C *R;

 Area = C*R*R;
 printf(“%f”, “%d”,&perimeter,&area)
 }

 1.56 State whether the following statements are 

true or false.

(a) The purpose of the header fi le <studio.h> is 

to store the programs created by the users.

(b) The C standard function that receives 

a single character from the keyboard is 

getchar.

(c) The getchar cannot be used to read a line 

of text from the keyboard.

(d) The input list in a scanf statement can 

contain one or more variables.

(e) When an input stream contains more data 

items than the number of specifi cations in 

a scanf statement, the unused items will be 

used by the next scanf call in the program.

(f) Format specifi ers for output convert 

 internal representations for data to 

 readable characters.

(g) Variables form a legal element of the 

 format control string of a printf  statement.

(h) The scanf function cannot be used to read 

a single character from the keyboard.

(i) The format specifi cation %+ –8d prints 

an integer left-justifi ed in a fi eld width 

of 8 with a plus sign, if the number is 

 positive.

(j) If the fi eld width of a format specifi er is 

larger than the actual width of the value, 

the value is printed right-justifi ed in the 

fi eld.

(k) The print list in a printf statement can 

contain function calls.

(l) The format specifi cation %5s will print 

only the fi rst 5 characters of a given 

string to be printed.

 1.57 Fill in the blanks in the following statements.

(a) The __________ specifi cation is used to 

read or write a short integer.

(b) The conversion specifi er __________ 

is used to print integers in hexadecimal 

form.

(c) For using character functions, we must 

include the header fi le __________ in the 

program.

(d) For reading a double type value, we must 

use the specifi cation __________.

(e) The specifi cation __________ is used to 

read a data from input list and discard it 

without assigning it to many variables.

(f) The specifi cation __________ may be 

used in scanf to terminate reading at the 

encounter of a particular character.

(g) The specifi cation %[ ] is used for reading 

strings that contain __________.

(h) By default, the real numbers are printed 

with a precision of __________ decimal 

places.

(i) To print the data left-justifi ed, we must 

use __________ in the fi eld specifi cation.

(j) The specifi er __________ prints fl oating-

point values in the scientifi c notation.

 1.58 Distinguish between the following pairs:

(a) getchar and scanf functions.

(b) %s and %c specifi cations for reading.

(c) %s and %[ ] specifi cations for reading.

(d) %g and %f specifi cation for printing.

(e) %f and %e specifi cations for printing.

1.59 Write scanf statements to read the following 

data lists:

(a) 78 B 45 (b) 123 1.23 45A

(c) 15-10-2002 (d) 10 TRUE 20

 1.60 State the outputs produced by the following 

printf statements.

(a) printf (“%d%c%f”, 10, ‘x’, 1.23);

(b) printf (“%2d %c %4.2f”, 1234,, ‘x’, 

1.23);

(c) printf (“%d\t%4.2f”, 1234, 456);

(d) printf (“\”%08.2f\””, 123.4);

(e) printf (“%d%d %d”, 10, 20);

  For questions 5.6 to 5.10 assume that the 

following declarations have been made in the 



Introduction to Computers, Problem Solving and Basic of C 1.135 

program:
 int year, count;
 float amount, price;
 char code, city[10];
 double root;

 1.61 State errors, if any, in the following input 

statements.

(a) scanf(“%c%f%d”, city, &price, &year);

(b) scanf(“%s%d”, city, amount);

(c) scanf(“%f, %d, &amount, &year);

(d) scanf(\n”%f”, root);

(e) scanf(“%c %d %ld”, *code, &count, Root);

 1.62 What will be the values stored in the variables 

year and code when the data

1988, x

 is keyed in as a response to the following 

statements:

(a) scanf(“%d %c”, &year, &code);

(b) scanf(“%c %d”, &year, &code);

(c) scanf(“%d %c”, &code, &year);

(d) scanf(“%s %c”, &year, &code);

 1.63 The variables count, price, and city have the 

following values:

 count <—— 1275

 price <—— –235.74

 city <—— Cambridge

  Show the exact output that the following 

output statements will produce:

(a) printf(“%d %f”, count, price);

(b) printf(“%2d\n%f”, count, price);

(c) printf(“%d %f”, price, count);

(d) printf(“%10dxxxx%5.2f”,count, price);

(e) printf(“%s”, city);

(f) printf(%-10d %-15s”, count, city);

 1.64 State what (if anything) is wrong with each of 

the following output statements:

(a) printf(%d 7.2%f, year, amount);

(b) printf(“%-s, %c”\n, city, code);

(c) printf(“%f, %d, %s, price, count, city);

(d) printf(“%c%d%f\n”, amount, code, year);

 1.65 In response to the input statement

scanf(“%4d%*%d”, &year, &code, &count);

the following data is keyed in:

19883745

  What values does the computer assign to the 

variables year, code, and count?

 1.66 How can we use the getchar( ) function to 

read multicharac ter strings?

 1.67 How can we use the putchar ( ) function to 

output multicharacter strings?

 1.68 What is the purpose of scanf( ) function?

 1.69 Describe the purpose of commonly used 

conversion characters in a scanf( ) function.

 1.70 What happens when an input data item contains

(a) more characters than the specifi ed fi eld 

width and

(b) fewer characters than the specifi ed fi eld 

width?

 1.71 What is the purpose of print( ) function?

 1.72 Describe the purpose of commonly used 

conversion characters in a printf( ) function.

 1.73 How does a control string in a printf( ) 

function differ from the control string in a 

scanf( ) function?

 1.74 What happens if an output data item contains

(a) more characters than the specifi ed fi eld 

width and

(b) fewer characters than the specifi ed fi eld 

width?

 1.75 How are the unrecognized characters within 

the control string are interpreted in

(a)  scanf function; and

(b) printf function?

 1.76 State whether the following statements are 

true or false.

(a) All arithmetic operators have the same 

level of precedence.

(b) The modulus operator % can be used 

only with integers.

(c) The operators <=, >= and != all enjoy the 

same level of priority.

(d) During modulo division, the sign of the 

result is positive, if both the operands are 

of the same sign.

(e) In C, if a data item is zero, it is consid-

ered false.

(f) The expression !(x<=y) is same as the 

expression x>y.

(g) A unary expression consists of only one 

operand with no operators.

(h) Associativity is used to decide which 

of several different expressions is 

 evaluated fi rst.



1.136 Computer Programming

(i) An expression statement is terminated 

with a period.

(j) During the evaluation of mixed 

 expressions, an implicit cast is generated 

automatically.

(k) An explicit cast can be used to change the 

expression.

(l) Parentheses can be used to change the 

order of evaluation expressions.

 1.77 Fill in the blanks with appropriate words.

(a) The expression containing all the 

integer operands is called ________ 

expression.

(b) The operator ________ cannot be used 

with real operands.

(c) C supports as many as ________ 

 relational operators.

(d) An expression that combines two or 

more relational expressions is termed as 

________ expression.

(e) The ________ operator returns the 

 number of bytes the operand occupies.

(f) The order of evaluation can be changed 

by using ________ in an expression.

(g) The use ________ of on a variable can 

change its type in the memory.

(h) ________ is used to determine the 

order in which different operators in an 

 expression are evaluated.

 1.78 Given the statement

  int a = 10, b = 20, c;

  determine whether each of the following 

statements are true or false.

(a) The statement a = + 10, is valid.

(b) The expression a + 4/6 * 6/2 evaluates to 11.

(c) The expression b + 3/2 * 2/3 evaluates 

to 20.

(d) The statement a + = b; gives the values 

30 to a and 20 to b.

(e) The statement ++a++; gives the value 

12 to a

(f) The statement a = 1/b; assigns the value 

0.5 to a

 1.79 Declared a as int and b as fl oat, state whether 

the following statements are true or false.

(a) The statement a = 1/3 + 1/3 + 1/3; assigns 

the value 1 to a.

(b) The statement b = 1.0/3.0 + 1.0/3.0 + 

1.0/3.0; assigns a value 1.0 to b.

(c) The statement b = 1.0/3.0 * 3.0 gives a 

value 1.0 to b.

(d) The statement b = 1.0/3.0 + 2.0/3.0 

 assigns a value 1.0 to b.

(e) The statement a = 15/10.0 + 3/2; assigns 

a value 3 to a.

 1.80 Which of the following expressions are true?

(a) !(5 + 5 >=10)

(b) 5 + 5 = = 10 || 1 + 3 = = 5

(c) 5 > 10 || 10 < 20 && 3 < 5

(d) 10 ! = 15 && !(10<20) || 15 > 30

 1.81 Which of the following arithmetic 

expressions are valid ? If valid, give the 

value of the expression; otherwise give 

reason.

(a) 25/3 % 2 (e) –14 % 3

(b) +9/4 + 5 (f) 15.25 + – 5.0

(c) 7.5 % 3 (g) (5/3) * 3 + 5 % 3

(d) 14 % 3 + 7 % 2 (h) 21 % (int)4.5

 1.82 Write C assignment statements to evaluate the 

following equations:

(a) Area = π r 2 +2 π r h

(b) 
+

2

2

(c) +

(d) ×
⎡

⎣
⎢
⎡⎡⎡

⎣

  
⎤

⎦
⎥
⎤

⎦

 1.83 Identify unnecessary parentheses in the 

following arithmetic expressions.

(a) ((x–(y/5)+z)%8) + 25

(b) ((x–y) * p)+q

(c) (m*n) + (–x/y)

(d) x/(3*y)

 1.84 Find errors, if any, in the following 

assignment statements and rectify them.

(a) x = y = z = 0.5, 2.0. –5.75;

(b) m = ++a * 5;

(c) y = sqrt(100);



Introduction to Computers, Problem Solving and Basic of C 1.137 

(d) p * = x/y;

(e) s = /5;

(f) a = b++ –c*2

 1.85 Determine the value of each of the following 

logical expressions if a = 5, b = 10 and 

c = –6

(a) a > b && a < c

(b) a < b && a > c

(c) a == c || b > a

(d) b > 15 && c < 0 || a > 0

(e) (a/2.0 == 0.0 && b/2.0 != 0.0) || c < 0.0

 1.86 What is the output of the following program?
main ( )
{
 char x;
 int y;
 x = 100;
 y = 125;
 printf (“%c\n”, x) ;
 printf (“%c\n”, y) ;
 printf (“%d\n”, x) ;
}

 1.87 Find the output of the following program?
main ( )
{
 int x = 100;
 printf(“%d/n”, 10 + x++);
 printf(“%d/n”, 10 + ++x);
}

 1.88  What is printed by the following program?
main
{
 int x = 5, y = 10, z = 10 ;
 x = y == z;
 printf(“%d”,x ) ;
}

 1.89 What is the output of the following program?

main ( )
{
 int x = 100, y = 200;

 printf (“%d”, (x > y)? x : y);
}

 1.90 What is the output of the following program?
main ( )
{
 unsigned x = 1 ;
 signed char y = -1 ;
 if(x > y)
  printf(“ x > y”);
 else
  printf(“x<= y”) ;
}

Did you expect this output? Explain.

 1.91 What is the output of the following program? 

Explain the output.
main ( )
{
 int x = 10 ;
 if(x = 20) printf(“TRUE”) ;
 else printf(“FALSE”) ;
}

 1.92 What is the error in each of the following 

statements?

(a) if (m == 1 & n ! = 0)

 printf(“OK”);

(b) if (x = < 5)

 printf (“Jump”);

 1.93 What is the error, if any, in the following 

segment?
int x = 10 ;
float y = 4.25 ;
x = y%x ;

 1.94 What is printed when the following is executed?
for (m = 0; m <3; ++m)
printf(“%d/n”, (m%2) ? m: m+2);

 1.95 What is the output of the following segment 

when executed?
int m = −14, n = 3;
printf(“%d\n”, m/n * 10) ;
n = -n;
printf(“%d\n”, m/n * 10);

Programming Exercises

 1.1 Write a program that will print your mailing 

address in the following form:

 First line : Name

 Second line : Door No, Street

 Third line : City, Pin code

 1.2 Modify the above program to provide border 

lines to the address.

 1.3 Write a program using one print statement 

to print the pattern of asterisks as shown 

below:



1.138 Computer Programming

 *

 * *

 * * *

 * * * *

 1.4 Write a program that will print the following 

fi gure using suitable characters.

 1.5 Given the radius of a circle, write a 

program to compute and display its area. 

Use a symbolic constant to defi ne the 

p value and assume a suitable value for radius.

 1.6 Write a program to output the following 

multiplication table:

 5 ×  1  =   5

 5 ×  2  = 10

 5 ×  3  = 15

 .    .

 .    .

 5 × 10 = 50

 1.7 Given two integers 20 and 10, write a program 

that uses a function add( ) to add these two 

numbers and sub( ) to fi nd the difference of 

these two numbers and then display the sum 

and difference in the following form:

 20 + 10 = 30

 20 – 10 = 10

 1.8 Given the values of three variables a, b and c, 

write a program to compute and display the 

value of x, where

x
a

b c
=

  Execute your program for the following values:

 (a) a = 250, b = 85, c = 25

 (b) a = 300, b = 70, c = 70

  Comment on the output in each case.

 1.9 Relationship between Celsius and Fahrenheit 

is governed by the formula

F
9C

5
32= +

  Write a program to convert the temperature

(a) from Celsius to Fahrenheit and

(b) from Fahrenheit to Celsius.

 1.10 Area of a triangle is given by the formula

A SS( )S aS ( )S bb ( )S cS

  Where a, b and c are sides of the triangle and 

2S = a + b + c. Write a program to compute 

the area of the triangle given the values of a, 

b and c.

 1.11 Distance between two points (x
1
, y

1
) and 

(x
2
, y

2
) is governed by the formula

D2 = (x
2
 – x

1
)2 + (y

2
 – y

1
)2

  Write a program to compute D given the 

coordinates of the points.

 1.12 A point on the circumference of a circle 

whose center is (0, 0) is (4,5). Write a 

program to compute perimeter and area of 

the circle. (Hint: use the formula given in 

the Ex. 1.11)

 1.13 The line joining the points (2,2) and (5,6) 

which lie on the circumference of a circle is 

the diameter of the circle. Write a program to 

compute the area of the circle.

 1.14 Write a program to display the equation of a 

line in the form

ax + by = c

  for a = 5, b = 8 and c = 18.

 1.15 Write a program to display the following 

simple arithmetic calculator

  x =  y = 

  sum =  Difference = 

  Product =  Division = 

 1.16 Write a program to determine and print the 

sum of the following harmonic series for a 

given value of n:

1+ 1/2 +1/3 +....+ 1/n

  The value of n should be given interactively 

through the terminal.

 1.17 Write a program to read the price of an item 

in decimal form (like 15.95) and print the 

output in paise (like 1595 paise).

 1.18 Write a program that prints the even numbers 

from 1 to 100.

 1.19 Write a program that requests two fl oat type 

numbers from the user and then divides the 

fi rst number by the second and display the 

result along with the numbers.



Introduction to Computers, Problem Solving and Basic of C 1.139

 1.20 The price of one kg of rice is Rs. 16.75 and 

one kg of sugar is Rs. 15. Write a program to 

get these values from the user and display the 

prices as follows:

 *** LIST OF ITEMS ***

 Item Price

 Rice Rs 16.75

 Sugar Rs 15.00

 1.21 Write program to count and print the number 

of negative and positive numbers in a given 

set of numbers. Test your program with a 

suitable set of numbers. Use scanf to read the 

numbers. Reading should be terminated when 

the value 0 is encountered.

 1.22 Write a program to do the following:

(a) Declare x and y as integer variables and z 

as a short integer variable.

(b) Assign two 6 digit numbers to x and y

(c) Assign the sum of x and y to z

(d) Output the values of x, y and z

Comment on the output.

 1.23 Write a program to read two fl oating point 

numbers using a scanf statement, assign their 

sum to an integer variable and then output the 

values of all the three variables.

 1.24 Write a program to illustrate the use of 

typedef declaration in a program.

1.25 Write a program to illustrate the use of 

symbolic constants in a real-life application.

1.26 Given the string “WORDPROCESSING”, 

write a program to read the string from 

the terminal and display the same in the 

following formats:

(a) WORD PROCESSING

(b) WORD

 PROCESSING

(c) W.P.

1.27 Write a program to read the values of x 

and y and print the results of the following 

expressions in one line:

(a) 

(b) 
x + y

2

(c) (x+y)(x–y)

 1.28 Write a program to read the following 

numbers, round them off to the nearest integers 

and print out the results in integer form:

  35.7 50.21 – 23.73 – 46.45

 1.29 Write a program that reads 4 fl oating point 

values in the range, 0.0 to 20.0, and prints a 

horizontal bar chart to represent these values 

using the character * as the fi ll character. 

For the purpose of the chart, the values may 

be rounded off to the nearest integer. For 

example, the value 4.36 should be represented 

as follows.

 * * * *

 * * * *  4.36

 * * * *

  Note that the actual values are shown at the 

end of each bar.

 1.30 Write an interactive program to demonstrate 

the process of multiplication. The program 

should ask the user to enter two two-digit 

integers and print the product of integers as 

shown below.

    45

    37

 7 × 45 is  315

 3 × 45 is 135

 Add them 1665

 1.31 Write a program to read three integers from 

the keyboard using one scanf statement and 

output them on one line using:

(a) three printf statements,

(b) only one printf with conversion 

 specifi ers, and

(c) only one printf without conversion 

 specifi ers.

 1.32 Write a program that prints the value 

10.45678 in exponential format with the 

following specifi cations:

(a) correct to two decimal places;

(b) correct to four decimal places; and

(c) correct to eight decimal places.

1.33 Write a program to print the value 345.6789 

in fi xed-point format with the following 

specifi cations:

(a) correct to two decimal places;



1.140 Computer Programming

(b) correct to fi ve decimal places; and

(c) correct to zero decimal places.

1.34 Write a program to read the name ANIL 

KUMAR GUPTA in three parts using the 

scanf statement and to display the same in the 

following format using the printf statement.

(a) ANIL K. GUPTA

(b) A.K. GUPTA

(c) GUPTA A.K.

1.35 Write a program to read and display the 

following table of data.

 Name Code Price

 Fan 67831 1234.50

 Motor 450 5786.70

 The name and code must be left-justifi ed and 

price must be right-justifi ed. 

 1.36 Given the values of the variables x, y and z, 

write a program to rotate their values such 

that x has the value of y, y has the value of z, 

and z has the value of x.

 1.37 Write a program that reads a fl oating-point 

number and then displays the right-most digit 

of the integral part of the number.

 1.38 Modify the above program to display the two 

right-most digits of the integral part of the 

number.

 1.39 Write a program that will obtain the length 

and width of a rectangle from the user and 

compute its area and perimeter.

 1.40 Given an integer number, write a program 

that displays the number as follows:

First line   : all digits

Second line : all except fi rst digit

Third line    : all except fi rst two digits

…….

Last line : The last digit

  For example, the number 5678 will be 

displayed as:

5 6 7 8

6 7 8

7 8

8

 1.41 The straight-line method of computing the yearly 

depreciation of the value of an item is given by

       =
−

  Write a program to determine the salvage 

value of an item when the purchase price, 

years of service, and the annual depreciation 

are given.

 1.42 Write a program that will read a real number 

from the keyboard and print the following 

output in one line:

 Smallest integer The given Largest integer

not less than number  not greater than

the number   the number

 1.43 The total distance travelled by a vehicle in t 

seconds is given by

  distance = ut + (at 2)/2

  where u is the initial velocity (metres per 

second), a is the acceleration (metres per 

second 2). Write a program to evaluate the 

distance travelled at regular intervals of time, 

given the values of u and a. The program 

should provide the fl exibility to the user to 

select his own time intervals and repeat the 

calculations for different values of u and a.

 1.44 In inventory management, the Economic 

Order Quantity for a single item is given by

         
× ×

  and the optimal Time Between Orders

=
×

×

  Write a program to compute EOQ and TBO, 

given demand rate (items per unit time), setup 

costs (per order), and the holding cost (per 

item per unit time).

 1.45 For a certain electrical circuit with an 

inductance L and resistance R, the damped 

natural frequency is given by

−

  It is desired to study the variation of this 

frequency with C (capacitance). Write a 

program to calculate the frequency for 

different values of C starting from 0.01 to 0.1 

in steps of 0.01.



Introduction to Computers, Problem Solving and Basic of C 1.141 

Key Terms

Computer• : It is an electronic device that 

takes data and instructions as input from the 

user, processes the data, and generates useful 

information as an output.

Vacuum tube• : It was used in the fi rst 

generation computers for developing the 

circuitry. It comprised of glass and fi laments.

Transistor• : It is a solid state device used in 

the second generation computers. It replaced 

vacuum tubes.

IC• : It is a silicon chip that embeds an electronic 

circuit comprising of several components, 

such as transistors, diodes, and resistors. It is 

used in third generation computers.

Microprocessor• : It is a processor chip used 

in fourth generation computers. It integrates 

thousands of components on a single chip.

LAN• : It is a network, where multiple 

computers in a local area, such as home, 

offi ce, or small group of buildings, are 

connected and allowed to communicate 

among them.

WAN• : It is a network, which facilitates 

connection and communication of hundreds of 

computers located across multiple locations.

MAN• : It is a network that is used to connect 

the computers over a large geographical area, 

such as district or city.

GUI• : It is a user-friendly interface that 

provides icons and menus to interact with the 

various computer applications. 

Microcomputer• : It is defi ned as a computer 

that has a microprocessor as its CPU. 

Minicomputer• : It is a medium-sized 

computer that is designed to serve multiple 

users simultaneously.

Mainframe computer• : It is a computer, which 

helps in handling the information processing 

of various organizations like banks, insurance 

companies, hospitals and railways.

 1.46  Write a program to read a four digit integer 

and print the sum of its digits.

  Hint: Use / and % operators.

1.47 Write a program to print the size of various 

data types in C.

 1.48 Given three values, write a program to read 

three values from keyboard and print out the 

largest of them without using if statement.

 1.49 Write a program to read two integer values m 

and n and to decide and print whether m is a 

multiple of n.

 1.50 Write a program to read three values using 

scanf statement and print the following 

results:

(a) Sum of the values

(b) Average of the three values

(c)  Largest of the three

(d) Smallest of the three

 1.51 The cost of one type of mobile service is 

Rs. 250 plus Rs. 1.25 for each call made over 

and above 100 calls. Write a program to read 

customer codes and calls made and print the 

bill for each customer.

 1.52 Write a program to print a table of sin and 

cos functions for the interval from 0 to 180 

degrees in increments of 15 as shown below.

x (degrees) sin (x) cos (x)

0 ...... ......

15 ...... ......

...

...

180 ...... ......

 1.53 Write a program to compute the values of 

square-roots and squares of the numbers 0 

to 100 in steps 10 and print the output in a 

tabular form as shown below.

Number Square-root Square

0 0 0

100 10 10000

 1.54 Write a program that determines whether a 

given integer is odd or even and displays the 

number and description on the same line.

 1.55 Write a program to illustrate the use of cast 

operator in a real life situation.



1.142 Computer Programming

Supercomputer• : It is the most powerful and 

fastest computer. It is used for complex 

scientifi c applications.

Input devices• : Input devices accept the data 

from the end users on which the operations 

are to be performed. 

Output devices• : Output devices are used for 

providing the output of a program that is 

obtained after performing the operations 

specifi ed in a program.

CPU• : It is the heart of a computer that is used 

to process the data entered through the input 

device.

Memory• : It is used for storing the input data 

as well as the output of a program that is 

obtained after performing the operations in a 

program.

Scanner• : It is an input device that converts 

documents and images as the digitized images 

understandable by the computer system.

Motherboard• : It is a device used for connecting 

the CPU with the input and output devices.

RAM• : It is the primary memory of a computer 

that stores information and programs, until 

the computer is used.

Monitor• : It is an output device that produces 

visual displays generated by the computer.

Printer• : It is an output device that prints the 

computer generated information onto the 

paper sheets.

Speaker• : It is an electromechanical trans ducer 

that converts an electrical signal into sound.

Plotter• : It is an output device that is con nected 

to a computer to print large documents, such 

as engineering and constructional drawings.

System software• : It refers to a computer 

program that manages and controls hardware 

components.

Application software• : It is a computer 

program that is designed and developed for 

performing specifi c utility tasks; it is also 

known as end-user program.

Operating System• : It is the system software 

that helps in managing the resources of a 

computer system. It also provides a platform 

for the application programs to run on the 

computer system.

Binary number system• : It is a numeral 

system that represents numeric values using 

only two digits, 0 and 1, known as bits.

ASCII• : It is a standard alphanumeric code 

that represents numbers, alphabetic characters, 

and symbols using a 7-bit format. 

Logic gates• : These are the basic building 

blocks of a digital computer having two input 

signals and one output signal.

Assembler• : It is a computer program that 

translates assembly language statements into 

machine language codes.

Compiler• : It is a computer program that 

translates the source code written in a  high-

level language into the corresponding object 

code of the low-level language.

Interpreter• : It is a translation program that 

converts each high-level program statement 

into the corresponding machine code.

Algorithm• : It is a complete, detailed, and 

precise step-by-step method for solving a 

problem independently.

Flowchart• : It is a pictorial representation of 

an algorithm depicting the fl ow of various 

steps.

Function• : It is a subroutine that may include 

one or more statements designed to perform a 

specifi c task.

Global variable• : It is a variable that can be 

used in more than one function.

Function body• : It is the part of a program 

that contains all the statements between the 

two braces, i.e. { and }.

Newline character• : It instructs the computer 

to go to the next (new) line. 

Arguments• : Arguments are the values that 

are passed to a function as input.

Program• : A program contains a sequence of 

instructions written to perform a specifi c task. 

Identifi ers• : These are the names of variables, 

functions and arrays.

Constant• : It is a fi xed value that does not 

change during the execution of a program.



Introduction to Computers, Problem Solving and Basic of C 1.143 

String constant• : It is a sequence of characters 

enclosed in double quotes that represents a 

text string. 

Variable• : It is a data name that may be used 

to store a data value.

Information• : The processed data generated 

by a program is called information. 

Formatted input• : It refers to the input data 

that has been arranged in a particular 

format.

Control string• : It contains fi eld specifi cations, 

which direct the interpretation of input data. 

It is also known as format string.

Formatted output• : It refers to the generated 

output that has been arranged in a particular 

format.

printf• : It is a function used to print and 

display output of a program.

scanf• : It is a function used to read values 

entered by the user upon execution of a 

program.

 • Operator: It is a symbol that tells the 

computer to perform certain mathematical or 

logical computations.

 • Expression: It is a sequence of operands and 

operators that reduces to a single value.

 • Integer expression: When both the operands 

in a single arithmetic expression are integers, 

then that expression is termed as integer 

expression.

 • Real arithmetic: An arithmetic operation 

involving only real operands is known as real 

arithmetic.

 • Mixed-mode arithmetic: When one of the 

operands is real and the other is an integer, 

then the expression is known as a mixed-

mode arithmetic expression.

 • Relational operators: These operators are 

used for making comparisons between two 

expressions.

 • Logical operators: These operators are 

used for testing more than one condition and 

making decisions.

 • Assignment operators: These operators are 

used for assigning the result of an expression 

to a variable.

 • Bitwise operators: These operators are used for 

testing the bits, or shifting them right or left.

 • Comma operator: It is used to link the 

related expressions together.

 • Sizeof operator: It is a compile time operator 

and when used with an operand, it returns the 

number of bytes the operand occupies.

 • Arithmetic expressions: It is a combination 

of variables, constants and operators arranged 

as per the syntax of the language.





 2
Selection and Decision 
 Making

U N I T

We have seen that a C program is a set of statements which are normally executed sequentially in the order 

in which they appear. This happens when no options or no repetitions of certain calculations are necessary. 

However, in practice, we have a number of situations where we may have to change the order of execution 

of statements based on certain conditions, or repeat a group of statements until certain specifi ed conditions 

are met. This involves a kind of decision making to see whether a particular condition has occurred or not and 

then direct the computer to execute certain statements accordingly.

C language possesses such decision-making capabilities by supporting the following statements:

1. if statement

2. switch statement

3. Conditional operator statement

4. goto statement

These statements are popularly known as decision-making statements. Since these statements ‘control’ the 

fl ow of execution, they are also known as control statements.

We have already used some of these statements in the earlier examples. Here, we shall discuss their 

 features, capabilities and applications in more detail.

The if statement is a powerful decision-making statement and is used to control the fl ow of execution of 

 statements. It is basically a two-way decision statement and is used in conjunction with an expression. It takes 

the following form:

if (test expression)

It allows the computer to evaluate the expression fi rst and then, 

depending on whether the value of the expression (relation or condi-

tion) is ‘true’ (or non-zero) or ‘false’ (zero), it transfers the control to 

a particular statement. This point of program has two paths to  follow, 

one for the true condition and the other for the false condition as 

shown in Fig. 2.1.

Some examples of decision making, using if statements are:

1. if (bank balance is zero)

   borrow money

2.1 INTRODUCTION

2.2 DECISION MAKING WITH IF STATEMENT

Fig. 2.1 Two-way branching



2.2 Computer Programming

2. if (room is dark)

   put on lights

3. if (code is 1)

   person is male

4. if (age is more than 55)

   person is retired

The if statement may be implemented in different forms depending on the complexity of conditions to be 

tested. The different forms are:

1. Simple if statement

2. if.....else statement

3. Nested if....else statement

4. else if ladder.

We shall discuss each one of them in the next few sections.

The general form of a simple if statement is

if (test expression)
{
  statement-block;
}
statement-x;

The ‘statement-block’ may be a single statement or a 

group of statements. If the test expression is true, the 

 statement-block will be executed; otherwise the statement-

block will be skipped and the execution will jump to the 

statement-x. Remember, when the condition is true both the 

statement-block and the statement-x are executed in  sequence. 

This is illustrated in Fig. 2.2.

Consider the following segment of a program that is written 

for processing of marks obtained in an entrance examination.

.........

.........

if (category == SPORTS)

{

  marks = marks + bonus_marks;

}

printf(“%f”, marks);

.........

.........

The program tests the type of category of the student. If the student belongs to the SPORTS category, then 

additional bonus_marks are added to his marks before they are printed. For others, bonus_marks are not 

added.

EXAMPLE 2.1 The program in Fig. 2.3 reads four values a, b, c, and d from the terminal and evaluates 

the ratio of (a+b) to (c–d) and prints the result, if c–d is not equal to zero.

2.3 SIMPLE IF STATEMENT

False

statement - x

statement-block

Next statement

True

Entry

test
expression

?

Fig. 2.2 Flow chart of simple if control



Selection and Decision Making 2.3 

The program given in Fig. 2.3 has been run for two sets of data to see that the paths function properly. 

The result of the fi rst run is printed as,

Ratio = –3.181818

Program

 main()
 {
   int a, b, c, d;
   float ratio;

   printf(“Enter four integer values\n”);
   scanf(“%d %d %d %d”, &a, &b, &c, &d);

   if (c-d != 0) /* Execute statement block */
   {
     ratio = (float)(a+b)/(float)(c-d);
     printf(“Ratio = %f\n”, ratio);
   }
 }
Output

 Enter four integer values
 12 23 34 45
 Ratio = -3.181818

 Enter four integer values
 12 23 34 34

Fig. 2.3 Illustration of simple if statement

The second run has neither produced any results nor any message. During the second run, the value of 

(c–d) is equal to zero and therefore, the statements contained in the statement-block are skipped. Since no 

other statement follows the statement-block, program stops without producing any output.

Note the use of fl oat conversion in the statement evaluating the ratio. This is necessary to avoid truncation 

due to integer division. Remember, the output of the fi rst run –3.181818 is printed correct to six decimal 

places. The answer contains a round off error. If we wish to have higher accuracy, we must use double or long 

double data type.

The simple if is often used for counting purposes. The Example 2.2 illustrates this.

EXAMPLE 2.2 The program in Fig. 2.4 counts the number of boys whose weight is less than 50 kg 

and height is greater than 170 cm.

The program has to test two conditions, one for weight and another for height. This is done using the  compound 

relation

if (weight < 50 && height > 170)

This would have been equivalently done using two if statements as follows:

if (weight < 50)

if (height > 170)

count = count +1;



2.4 Computer Programming

If the value of weight is less than 50, then the following statement is executed, which in turn is another if 

statement. This if statement tests height and if the height is greater than 170, then the count is incremented 

by 1.

Program

 main()
 {
   int count, i;
   float weight, height;

   count = 0;
   printf(“Enter weight and height for 10 boys\n”);

   for (i =1; i <= 10; i++)
   {
     scanf(“%f %f”, &weight, &height);
     if (weight < 50 && height > 170)
       count = count + 1;
   }
   printf(“Number of boys with weight < 50 kg\n”);
   printf(“and height > 170 cm = %d\n”, count);
 }
Output

 Enter weight and height for 10 boys
 45  176.5
 55  174.2
 47  168.0
 49  170.7
 54  169.0
 53  170.5
 49  167.0
 48  175.0
 47  167
 51  170
 Number of boys with weight < 50 kg
 and height > 170 cm = 3

Fig. 2.4 Use of if for counting

While designing decision statements, we often come across a situation where the logical NOT operator is applied to 

a compound logical expression, like !(x&&y||!z). However, a positive logic is always easy to read and comprehend 

than a negative logic. In such cases, we may apply what is known as De Morgan’s rule to make the total expression 

positive. This rule is as follows:

“Remove the parentheses by applying the NOT operator to every logical expression component, while complementing 

the relational operators.” 

That is,

 x becomes !x

 !x becomes x

 && becomes ||

 || becomes &&

Examples:

 !(x && y || !z) becomes !x || !y && z

 !(x <=0 || !condition) becomes x >0&& condition

Applying De Morgan’s Rule



Selection and Decision Making 2.5

The if...else statement is an extension of the simple if statement. The general form is

If (test expression)
  {
   True-block statement(s)
  }
else

  {
   False-block statement(s)
  }

statement-x

If the test expression is true, then the true-block statement(s), immediately following the if statements are 

executed; otherwise, the false-block statement(s) are executed. In either case, either true-block or false-block

will be executed, not both. This is illustrated in Fig. 2.5. In both the cases, the control is transferred subse-

quently to the statement-x.

Let us consider an example of counting the 

number of boys and girls in a class. We use code 1 

for a boy and 2 for a girl. The program statement 

to do this may be written as follows:

.........

.........
if (code == 1)

 boy = boy + 1;
if (code == 2)

 girl = girl+1;
 .........
 .........

The fi rst test determines whether or not the 

 student is a boy. If yes, the number of boys is 

 increased by 1 and the program continues to the 

second test. The second test again determines 

whether the student is a girl. This is unnecessary. Once a student is identifi ed as a boy, there is no need to test 

again for a girl. A student can be either a boy or a girl, not both. The above program segment can be modifi ed 

using the else clause as follows:

..........

..........

if (code == 1)

 boy = boy + 1;

else

 girl = girl + 1;

 xxxxxxxxxx

 ..........

Here, if the code is equal to 1, the statement boy = boy + 1; is executed and the control is transferred to 

the statement xxxxxx, after skipping the else part. If the code is not equal to 1, the statement boy = boy + 1; 

is skipped and the statement in the else part girl = girl + 1; is executed before the control reaches the 

 statement xxxxxxxx.

2.4 THE IF.....ELSE STATEMENT

Fig. 2.5 Flow chart of if......else control



2.6 Computer Programming

Consider the program given in Fig. 2.3. When the value (c–d) is zero, the ratio is not calculated and the 

program stops without any message. In such cases we may not know whether the program stopped due to a zero 

value or some other error. This program can be improved by adding the else clause as follows:
..........
..........
if (c-d != 0)

 {
  ratio = (float)(a+b)/(float)(c-d);
  printf(“Ratio = %f\n”, ratio);
 } 
else

 printf(“c-d is zero\n”);
..........
..........

EXAMPLE 2.3 A program to evaluate the power series:

e x

x x
x + + + + < <x+

The power series contains the recurrence relationship of the type

  
⎛
⎝⎜
⎛⎛⎛
⎝

⎞
⎠⎟
⎞⎞⎞
⎠

>−

  T
1
 = x for n = 1

  T
0
 = 1

If  T
n-1 

(usually known as previous term) is known, then T
n
 (known as present term) can be easily found by 

multiplying the previous term by x/n. Then

ex = T
0
 + T

1 
+ T

2
 + ...... + T

n
 = sum

A program which uses if...else to test the accuracy is given in Fig. 2.6.

Program

 #define ACCURACY 0.0001
 main()
 {
  int n, count;
  float x, term, sum;

  printf(“Enter value of x:”);

  scanf(“%f”, &x);

  n = term = sum = count = 1;

  while (n <= 100)
 {
  term = term * x/n;
  sum = sum + term;
  count = count + 1;
  if (term < ACCURACY)
   n = 999;

(Contd.)



Selection and Decision Making 2.7 

  else
   n = n + 1;
 }
 printf(“Terms = %d Sum = %f\n”, count, sum);
   }

Output

 Enter value of x:0
 Terms = 2 Sum = 1.000000

 Enter value of x:0.1
 Terms = 5 Sum = 1.105171

 Enter value of x:0.5
 Terms = 7 Sum = 1.648720

 Enter value of x:0.75
 Terms = 8 Sum = 2.116997

 Enter value of x:0.99
 Terms = 9 Sum = 2.691232

 Enter value of x:1
 Terms = 9 Sum = 2.718279

Fig. 2.6 Illustration of if...else statement

The program uses count to count the number of terms added. The program stops when the value of the 

term is less than 0.0001 (ACCURACY). Note that when a term is less than ACCURACY, the value of n is 

set equal to 999 (a number higher than 100) and therefore the while loop terminates. The results are printed 

outside the while loop.

When a series of decisions are involved, we may have to use more than 

one if...else statement in nested form as shown below:

The logic of execution is illustrated in Fig. 2.7. If the condition-1 

is false, the statement-3 will be executed; otherwise it continues to 

 perform the second test. If the condition-2 is true, the statement-1 will 

be evaluated; otherwise the statement-2 will be evaluated and then the 

control is transferred to the statement-x.

A commercial bank has introduced an incentive policy of giving 

bonus to all its deposit holders. The policy is as follows: A bonus of 

2 per cent of the balance held on 31st December is given to every one, 

 irrespective of their balance, and 5 per cent is given to female account 

holders if their balance is more than Rs. 5000. This logic can be coded 

as follows:
.........

 if (sex is female)

{

 if (balance > 5000)

  bonus = 0.05 * balance;

 else

  bonus = 0.02 * balance;

}

2.5 NESTING OF IF....ELSE STATEMENTS

(test condition-1)

if (test condition-2);

statement -1;

statement -2;

statement -3;

statement -x;

else

else

if



2.8 Computer Programming

else

{
 bonus = 0.02 * balance;
}
 balance = balance + bonus;
 .........
 .........

When nesting, care should be exercised to match 

every if with an else. Consider the following alterna-

tive to the above program (which looks right at the 

fi rst sight):

if (sex is female)
 if (balance > 5000)
  bonus = 0.05 * balance;
else

  bonus = 0.02 * balance;
 balance = balance + bonus;

There is an ambiguity as to over which if the else

belongs to. In C, an else is linked to the closest 

 non-terminated if. Therefore, the else is associated 

with the inner if and there is no else option for the outer if. This means that the computer is trying to execute 

the statement

balance = balance + bonus;

without really calculating the bonus for the male account holders.

Consider another alternative, which also looks correct:

if (sex is female)
 {
  if (balance > 5000)
  bonus = 0.05 * balance;
 }
 else

  bonus = 0.02 * balance;
 balance = balance + bonus;

In this case, else is associated with the outer if and therefore bonus is calculated for the male account 

 holders. However, bonus for the female account holders, whose balance is equal to or less than 5000 is not 

calculated because of the missing else option for the inner if.

EXAMPLE 2.4 The program in Fig. 2.8 selects and prints the largest of the three numbers using nested 

if....else statements.

Program

 main()
 {
 float A, B, C;

 printf(“Enter three values\n”);
 scanf(“%f %f %f”, &A, &B, &C);

 printf(“\nLargest value is “);

(Contd.)

Fig. 2.7 Flow chart of nested if…else statements



Selection and Decision Making 2.9 

 if (A>B)
 {
  if (A>C)
   printf(“%f\n”, A);
  else
   printf(“%f\n”, C);
 }
 else
 {
  if (C>B)
   printf(“%f\n”, C);
  else
   printf(“%f\n”, B);
 }
   }
Output

 Enter three values
 23445 67379 88843

 Largest value is 88843.000000

Fig. 2.8 Selecting the largest of three numbers

One of the classic problems encountered when we start using nested if….else statements is the dangling else. This 

occurs when a matching else is not available for an if. The answer to this problem is very simple. Always match an else 

to the most recent unmatched if in the current block. In some cases, it is possible that the false condition is not required. 

In such situations, else statement may be omitted

“else is always paired with the most recent unpaired if”

Dangling Else Problem

There is another way of putting ifs together when multipath decisions are involved. A multipath decision is a 

chain of ifs in which the statement associated with each else is an if. It takes the following general form:

if ( condition 1)

else if ( condition 2)

else if ( condition 3)

else if ( condition n)

else

statement-1;

statement-2;

statement-3;

statement-n;

default-statement;

statement-x;

This construct is known as the else if ladder. The conditions are evaluated from the top (of the ladder), 

downwards. As soon as a true condition is found, the statement associated with it is executed and the control 

2.6 THE ELSE IF LADDER



2.10 Computer Programming

is transferred to the statement-x (skipping the 

rest of the ladder). When all the n conditions 

become false, then the fi nal else containing 

the default-statement will be executed. 

Figure 2.9 shows the logic of execution of 

else if ladder statements.

Let us consider an example of grading 

the students in an academic institution. The 

grading is done according to the following 

rules:

 Average marks  Grade

 80 to 100  Honours

 60 to 79  First Division

 50 to 59  Second Division

 40 to 49  Third Division

 0 to 39  Fail

This grading can be done using the else if

ladder as follows:

if (marks > 79)

  grade = “Honours”;

 else if (marks > 59)

   grade = “First Division”;

  else if (marks > 49)

    grade = “Second Division”;

   else if (marks > 39)

       grade = “Third Division”;

     else

      grade = “Fail”;

 printf (“%s\n”, grade);

Consider another example given below:

— — — —

— — — —

if (code == 1)

 colour = “RED”;

else if (code == 2)

  colour = “GREEN”;

 else if (code == 3)

    colour = “WHITE”;

   else

    colour = “YELLOW”;

———

— — —

Code numbers other than 1, 2 or 3 are considered to represent YELLOW colour. The same results can be 

obtained by using nested if...else statements.

if (code != 1)
 if (code != 2)
  if (code != 3)

Fig. 2.9 Flow chart of else..if ladder



Selection and Decision Making 2.11 

   colour = “YELLOW”;
  else

   colour = “WHITE”;
 else

   colour = “GREEN”;
else

   colour = “RED”;

In such situations, the choice is left to the programmer. However, in order to choose an if structure that is 

both effective and effi cient, it is important that the programmer is fully aware of the various forms of an if 

statement and the rules governing their nesting.

EXAMPLE 2.5 An electric power distribution company charges its domestic consumers as follows:

  Consumption Units Rate of Charge

   0 – 200  Rs. 0.50 per unit

   201 – 400  Rs. 100 plus Rs. 0.65 per unit excess of 200

   401 – 600  Rs. 230 plus Rs. 0.80 per unit excess of 400

   601 and above  Rs. 390 plus Rs. 1.00 per unit excess of 600

The program in Fig. 2.10 reads the customer number and power consumed and prints the amount to be 

paid by the customer.

Program

 main()
 {
  int units, custnum;
  float charges;
  printf(“Enter CUSTOMER NO. and UNITS consumed\n”);
  scanf(“%d %d”, &custnum, &units);
  if (units <= 200)
   charges = 0.5 * units;
  else if (units <= 400)
      charges = 100 + 0.65 * (units - 200);
       else if (units <= 600)
       charges = 230 + 0.8 * (units - 400);
        else
        charges = 390 + (units - 600);
  printf(“\n\nCustomer No: %d: Charges = %.2f\n”,
   custnum, charges);
 }
Output

 Enter CUSTOMER NO. and UNITS consumed 101 150
 Customer No:101 Charges = 75.00

 Enter CUSTOMER NO. and UNITS consumed 202 225
 Customer No:202 Charges = 116.25

 Enter CUSTOMER NO. and UNITS consumed 303 375
 Customer No:303 Charges = 213.75

 Enter CUSTOMER NO. and UNITS consumed 404 520
 Customer No:404 Charges = 326.00

(Contd.)



2.12 Computer Programming

 Enter CUSTOMER NO. and UNITS consumed 505 625
 Customer No:505 Charges = 415.00 

Fig. 2.10 Illustration of else..if ladder

When using control structures, a statement often controls many other statements that follow it. In such situations it is a 

good practice to use indentation to show that the indented statements are dependent on the preceding controlling 

 statement. Some guidelines that could be followed while using indentation are listed below:

• Indent statements that are dependent on the previous statements; provide at least three spaces of indentation.

• Align vertically else clause with their matching if clause.

• Use braces on separate lines to identify a block of statements.

• Indent the statements in the block by at least three spaces to the right of the braces.

• Align the opening and closing braces.

• Use appropriate comments to signify the beginning and end of blocks.

• Indent the nested statements as per the above rules.

• Code only one clause or statement on each line.

Rules for Indentation

We have seen that when one of the many alternatives is to be selected, we can use an if statement to control 

the selection. However, the complexity of such a program increases dramatically when the number of alterna-

tives increases. The program becomes diffi cult to read and follow. At times, it may confuse even the person 

who designed it. Fortunately, C has a built-in multiway decision statement known as a switch. The switch 

statement tests the value of a given variable (or expression) against a list of case values and when a match is 

found, a block of statements associated with that case is executed. The general form of the switch statement 

is as shown below:

switch (expression)
{
 case value-1:
      block-1
      break;

 case value-2:
      block-2
      break;

 ......
 ......
 default:

      default-block
      break;

}
statement-x;

The expression is an integer expression or characters. Value-1, value-2 ..... are constants or constant 

 expressions (evaluable to an integral constant) and are known as case labels. Each of these values should be 

unique within a switch statement. block-1, block-2 .... are statement lists and may contain zero or more 

 statements. There is no need to put braces around these blocks. Note that case labels end with a colon (:).

When the switch is executed, the value of the expression is successfully compared against the values 

value-1, value-2,.... If a case is found whose value matches with the value of the expression, then the block 

of statements that follows the case are executed.

2.7 THE SWITCH STATEMENT



Selection and Decision Making 2.13

The break statement at the end of each block signals the end of a particular case and causes an exit from 

the switch statement, transferring the control to the statement-x following the switch.

The default is an optional case. When 

 present, it will be executed if the value of the 

expression does not match with any of the case 

values. If not present, no action takes place if all 

matches fail and the control goes to the state-

ment-x. (ANSI C permits the use of as many as 

257 case labels).

The selection process of switch statement is 

illustrated in the fl ow chart shown in Fig. 2.11.

The switch statement can be used to grade 

the students as discussed in the last section. This 

is illustrated below:
— — —
— — —
index = marks/10

switch (index)

{   
 case 10:

 case 9:

 case 8:

   grade = “Honours”;
   break;
 case 7:

 case 6:

   grade = “First Division”;
   break;

case 5:

   grade = “Second Division”;
   break;
 case 4:

   grade = “Third Division”;
   break;
 default:

   grade = “Fail”;
   break;
}
printf(“%s\n”, grade);

— — —
— — —

NOTE: We have used a conversion statement

index = marks / 10;

where, index is defi ned as an integer. The variable index takes the following integer values.

 Marks  Index

 100  10

 90 – 99  9

 80 – 89  8

 70 – 79  7

Fig. 2.11 Selection process of the switch statement



2.14 Computer Programming

 60 – 69  6

 50 – 59  5

 40 – 49  4

 .  .

 .  .

 0  0

This segment of the program illustrates two important features. First, it uses empty cases. The fi rst three 

cases will execute the same statements
grade = “Honours”;

break;

Same is the case with case 7 and case 6. Second, default condition is used for all other cases where marks 

is less than 40.

The switch statement is often used for menu selection. For example:
— — — —
— — — —
printf(“ TRAVEL GUIDE\n\n”);
printf(“ A Air Timings\n” );
printf(“ T Train Timings\n”);
printf(“ B Bus Service\n” );
printf(“ X To skip\n” );
printf(“\n Enter your choice\n”);
character = getchar();
switch (character)
{
 case ‘A’ :
      air-display();
      break;
 case ‘B’ :
      bus-display();
      break;
 case ‘T’ :
      train-display();
      break;
default :
      printf(“ No choice\n”);
}
 — — — —
 — — — —

It is possible to nest the switch statements. That is, a switch may be part of a case statement. ANSI C 

permits 15 levels of nesting.

 

• The switch expression must be an integral type.

• Case labels must be constants or constant expressions.

• Case labels must be unique. No two labels can have the same value.

• Case labels must end with semicolon.

• The break statement transfers the control out of the switch statement.

• The break statement is optional. That is, two or more case labels may belong to the same statements.

• The default label is optional. If present, it will be executed when the expression does not fi nd a matching 

case label.

• There can be at most one default label.

• The default may be placed anywhere but usually placed at the end.

• It is permitted to nest switch statements.

Rules for Switch Statement



Selection and Decision Making 2.15

The C language has an unusual operator, useful for making two-way decisions. This operator is a combina-

tion of ? and :, and takes three operands. This operator is popularly known as the conditional operator. 

The general form of use of the conditional operator is as follows:

Conditional expression ? expression1 : expression2

The conditional expression is evaluated fi rst. If the result is nonzero, expression1 is evaluated and is returned 

as the value of the conditional expression. Otherwise, expression2 is evaluated and its value is returned. For 

example, the segment
if (x < 0)

 flag = 0;

else

 flag = 1;

can be written as
flag = ( x < 0 ) ? 0 : 1;

Consider the evaluation of the following function:

y = 1.5x + 3 for x ≤ 2

y = 2x + 5 for x > 2

This can be evaluated using the conditional operator as follows:

y = ( x > 2 ) ? (2 * x + 5) : (1.5 * x + 3);

The conditional operator may be nested for evaluating more complex assignment decisions. For example, 

consider the weekly salary of a salesgirl who is selling some domestic products. If x is the number of products 

sold in a week, her weekly salary is given by

⎧
⎨
⎪⎧
⎨
⎩⎪
⎨
⎩

This complex equation can be written as

salary = (x != 40) ? ((x < 40) ? (4*x+100) : (4.5*x+150)) : 300;

The same can be evaluated using if...else statements as follows:

if (x <= 40)

  if (x < 40)

   salary = 4 * x+100;

  else

   salary = 300;

else

   salary = 4.5 * x+150;

When the conditional operator is used, the code becomes more concise and perhaps, more effi cient. 

 However, the readability is poor. It is better to use if statements when more than a single nesting of condi-

tional operator is required.

EXAMPLE 2.6 An employee can apply for a loan at the beginning of every six months, but he will 

be sanctioned the amount according to the following company rules:

Rule 1 : An employee cannot enjoy more than two loans at any point of time.

Rule 2 : Maximum permissible total loan is limited and depends upon the category of the employee.

2.8 THE ? : OPERATOR



2.16 Computer Programming

A program to process loan applications and to sanction loans is given in Fig. 2.12.

Program

 #define MAXLOAN 50000

 main()

 {

  long int loan1, loan2, loan3, sancloan, sum23;

  printf(“Enter the values of previous two loans:\n”);

  scanf(“ %ld %ld”, &loan1, &loan2);

  printf(“\nEnter the value of new loan:\n”);

  scanf(“ %ld”, &loan3);

  sum23 = loan2 + loan3;

  sancloan = (loan1>0)? 0 : ((sum23>MAXLOAN)?

       MAXLOAN - loan2 : loan3);

  printf(“\n\n”);

  printf(“Previous loans pending:\n%ld %ld\n”,loan1,loan2);

  printf(“Loan requested = %ld\n”, loan3);

  printf(“Loan sanctioned = %ld\n”, sancloan);

 }

Output

  Enter the values of previous two loans:

  0 20000

  Enter the value of new loan:

  45000

  Previous loans pending:

  0 20000

  Loan requested = 45000

  Loan sanctioned = 30000

  Enter the values of previous two loans:

  1000 15000

  Enter the value of new loan:

  25000

  Previous loans pending:

  1000 15000

  Loan requested = 25000

  Loan sanctioned = 0

Fig. 2.12 Illustration of the conditional operator

The program uses the following variables:

loan3 - present loan amount requested

loan2 - previous loan amount pending

loan1 - previous to previous loan pending

sum23 - sum of loan2 and loan3

sancloan - loan sanctioned

The rules for sanctioning new loan are:

1. loan1 should be zero.

2. loan2 + loan3 should not be more than MAXLOAN.

Note the use of long int type to declare variables.



Selection and Decision Making 2.17

Complex mulitiway selection statements require special attention. The readers should be able to understand the logic 

easily. Given below are guidelines that would help inprove redability and facilitate maintenance.

• Avoid compound negative statements. Use positive statements wherever possible.

• Keep logical expressions simple. We can achieve this using nested if statements, if necessary (KISS - Keep It 

Simple and Short).

• Try to code the normal/anticipated condition fi rst.

• Use the most probable condition fi rst. This will eliminate unnecessary tests, thus improving the effi ciency of the 

program.

• The choice between the nested if and switch statements is a matter of individual’s preference. A good rule of 

thumb is to use the switch when alternative paths are three to ten.

• Use proper indentations (See Rules for Indentation).

• Have the habit of using default clause in switch statements.

• Group the case labels that have similar actions.

Some Guidelines for Writing Multiway Selection Statements

So far we have discussed ways of controlling the fl ow of execution based on certain specifi ed conditions. 

Like many other languages, C supports the goto statement to branch unconditionally from one point to 

another in the program. Although it may not be essential to use the goto statement in a highly structured 

language like C, there may be occasions when the use of goto might be desirable.

The goto requires a label in order to identify the place where the branch is to be made. A label is any valid 

variable name, and must be followed by a colon. The label is placed immediately before the statement where 

the control is to be transferred. The general forms of goto and label statements are shown below:

The label: can be anywhere in the program either before or after the goto label; statement.

During running of a program when a statement like

goto begin;

is met, the fl ow of control will jump to the statement immediately following the label begin:. This happens 

unconditionally.

Note that a goto breaks the normal sequential execution of the program. If the label: is before the state-

ment goto label; a loop will be formed and some statements will be executed repeatedly. Such a jump is 

known as a backward jump. On the other hand, if the label: is placed after the goto label; some statements 

will be skipped and the jump is known as a forward jump.

A goto is often used at the end of a program to direct the control to go to the input statement, to read  further 

data. Consider the following example:

main()

{
  double x, y;
  read:

2.9 THE GOTO STATEMENT



2.18 Computer Programming

  scanf(“%f”, &x);
  if (x < 0) goto read;
  y = sqrt(x);
  printf(“%f %f\n”, x, y);
  goto read;

}

This program is written to evaluate the square root of a series of numbers read from the terminal. The 

program uses two goto statements, one at the end, after printing the results to transfer the control back to the 

input statement and the other to skip any further computation when the number is negative.

Due to the unconditional goto statement at the end, the control is always transferred back to the input 

statement. In fact, this program puts the computer in a permanent loop known as an infi nite loop. The 

computer goes round and round until we take some special steps to terminate the loop. Such infi nite loops 

should be avoided. Example 2.7 illustrates how such infi nite loops can be eliminated.

EXAMPLE 2.7 Program presented in Fig. 2.13 illustrates the use of the goto statement.

The program evaluates the square root for fi ve numbers. The variable count keeps the count of numbers read. 

When count is less than or equal to 5, goto read; directs the control to the label read; otherwise, the program 

prints a message and stops.

Program

 #include <math.h>
 main()
 {
   double x, y;
   int count;
   count = 1;
   printf(“Enter FIVE real values in a LINE \n”);
 read:
   scanf(“%lf”, &x);
   printf(“\n”);
   if (x < 0)
    printf(“Value - %d is negative\n”,count);
   else
   {
    y = sqrt(x);
    printf(“%lf\t %lf\n”, x, y);
   }
   count = count + 1;
   if (count <= 5)
 goto read;
   printf(“\nEnd of computation”);
 }

Output

 Enter FIVE real values in a LINE
 50.70 40 -36 75 11.25
 50.750000   7.123903

(Contd.)



Selection and Decision Making 2.19

Another use of the goto statement is to transfer the control out of a loop (or nested loops) when certain 

peculiar conditions are encountered. Example:

— — — —
— — — —
while (— — — —)
{
 for (— — — —)
 {
 — — — —
 — — — —
 if (— — — —)goto end_of_program;
 — — — —

 } Jumping
— — — — out of
— — — — loops

}
end_of_program:

We should try to avoid using goto as far as possible. But there is nothing wrong, if we use it to enhance 

the readability of the program or to improve the execution speed.

 40.000000   6.324555
 Value -3 is negative
 75.000000   8.660254
 11.250000   3.354102
 End of computation

Fig. 2.13 Use of the goto statement

Just Remember

Be aware of dangling • else statements.

Be aware of any side effects in the control • 

expression such as if(x++).

Use braces to encapsulate the statements in•  if

and else clauses of an if…. else statement.

Check the use of =operator in place of the • 

equal operator = =.

Do not give any spaces between the two • 

symbols of relational operators = =, !=, >= 

and <=.

Writing !=, >= and <= operators like =!, => • 

and =< is an error.

Remember to use two ampersands (&&) and • 

two bars (||) for logical operators. Use of 

single operators will result in logical errors.

Do not forget to place parentheses for the if • 

expression.

It is an error to place a semicolon after the if • 

expression.

Do not use the equal operator to compare two • 

fl oating-point values. They are seldom exactly 

equal.

Do not forget to use a break statement when • 

the cases in a switch statement are exclusive.

Although it is optional, it is a good program-• 

ming practice to use the default clause in a 

switch statement.

It is an error to use a variable as the value in • 

a case label of a switch statement. (Only 

integral constants are allowed.)



2.20 Computer Programming

Do not use the same constant in two case • 

labels in a switch statement.

Avoid using operands that have side effects in • 

a logical binary expression such as (x––

&&++y). The second operand may not be 

evaluated at all.

Try to use simple logical expressions.• 

Always use if and switch statements to add • 

decision-making capabilities to your program. 

If no braces are specifi ed with an if block then • 

by default the very next statement after the if 

clause is considered to be the only statement 

inside the if block. Same is the case with else 

clause. 

An else clause has to be always preceded by • 

an if clause. 

Indent your program code properly so as to • 

avoid getting confused in case of nested 

if-else statements.

It is permitted to nest switch statements.• 

Always avoid using goto statement.• 

Multiple Choice Questions

 1. Which of the following is true for if statement?

(a) It is a looping construct

(b) It is a decision-making construct

(c) It is a logical construct

(d) None of the above

 2. What will be the output of the following 

code (if a=2, b=3): 

If (a>b)

 printf(“ Inside if”);

else ;

 printf(“Inside else”);

(a) Inside if (b) Inside else

(c) No output (Blank console)

(d) Compile time error

 3. What happens if break statements are not 

 included inside each case block? 

(a) All the cases get executed

(b) Only the fi rst case gets executed

(c)  All the cases after the selected case get 

executed

(d) Only the default case gets executed

 4. Which of the following statements are true 

for switch statement?

(a) It is mandatory to include a default case

(b) It is optional to include a default case

(c)  It is mandatory to include at least one case 

in the switch block.

(d)  There is no restriction on the number of 

cases that can be included in a switch 

statement

 5. Which of the following is true for goto statement?

(a)  It transfers the program control to the 

labelled position and later return to its 

original position.

(b)  It transfers the program control to the 

labelled position and does not return 

to its original position.

(c)  It is used inside a looping construct to 

exit the loop.

(d)  It is used inside a looping construct to 

terminate the current iteration and start 

with the next iteration. 

 6. Which of the following is true for break 

statement?

(a)  It is used to terminate the execution of the 

program

(b)  It is used inside a looping construct to exit 

the loop.

(c)  It is used inside a looping construct to 

terminate the current iteration and start 

with the next iteration. 

(d) None of the above

 7. Which of the following is true for continue 

statement? 

(a)  It is used to terminate the execution of the 

program at once and start the program all 

over again 

(b)  It is used inside a looping construct to 

terminate the current iteration and start 

with the next iteration.



Selection and Decision Making 2.21 

(c)  It is used inside a looping construct to 

exit the loop.

(d) None of the above

 8. Which of the following is the correct 

syntax for goto statement?

(a) goto label: (b) goto label

(c) goto label; (d) goto (label);

 9. Which of the following if-else blocks 

will not execute?

(a) if (test expression)

   { 

   Statement -block;

   } 

(b) if(test expression );{statement –block;}

(c) if(test expression);

(d) All of the above will execute

Case Study

1. Range of Numbers

Problem: A survey of the computer market shows that personal computers are sold at varying costs by the 

vendors. The following is the list of costs (in hundreds) quoted by some vendors:

 35.00, 40.50, 25.00, 31.25, 68.15,

 47.00, 26.65, 29.00, 53.45, 62.50

Determine the average cost and the range of values.

Problem analysis: Range is one of the measures of dispersion used in statistical analysis of a series of values. 

The range of any series is the difference between the highest and the lowest values in the series. That is

Range = highest value – lowest value

It is therefore necessary to fi nd the highest and the lowest values in the series.

Program: A program to determine the range of values and the average cost of a personal computer in the 

market is given in Fig. 2.14.

Program

 main()
 {
  int count;
  float value, high, low, sum, average, range;
  sum = 0;
  count = 0;
  printf(“Enter numbers in a line :
   input a NEGATIVE number to end\n”);
input:

  scanf(“%f”, &value);
  if (value < 0) goto output;
   count = count + 1;
  if (count == 1)
   high = low = value;
  else if (value > high)
    high = value;
   else if (value < low)
     low = value;
  sum = sum + value;
  goto input;



2.22 Computer Programming

When the value is read the fi rst time, it is assigned to two buckets, high and low, through the statement

high = low = value;

For subsequent values, the value read is compared with high; if it is larger, the value is assigned to high. 

Otherwise, the value is compared with low; if it is smaller, the value is assigned to low. Note that at a given 

point, the buckets high and low hold the highest and the lowest values read so far.

The values are read in an input loop created by the goto input; statement. The control is transferred out of 

the loop by inputting a negative number. This is caused by the statement

if (value < 0) goto output;

NOTE: This program can be written without using goto statements. Try.

2. Pay-Bill Calculations

Problem: A manufacturing company has classifi ed its executives into four levels for the benefi t of certain 

perks. The levels and corresponding perks are shown below:

Level
Perks

Conveyance allowance Entertainment allowance

1 1000 500

2 750 200

3 500 100

4 250 –

An executive’s gross salary includes basic pay, house rent allowance at 25% of basic pay and other perks. 

Income tax is withheld from the salary on a percentage basis as follows:

Output:

  average = sum/count;
  range = high - low;
  printf(“\n\n”);
  printf(“Total values : %d\n”, count);
  printf(“Highest-value: %f\nLowest-value : %f\n”,
     high, low);
  printf(“Range    : %f\nAverage : %f\n”,
     range, average);
 }

Output

 Enter numbers in a line : input a NEGATIVE number to end
 35 40.50 25 31.25 68.15 47 26.65 29 53.45 62.50 -1
 Total values : 10
 Highest-value : 68.150002
 Lowest-value : 25.000000
 Range : 43.150002
 Average : 41.849998

Fig. 2.14 Calculation of range of values



Selection and Decision Making 2.23 

Gross salary Tax rate

Gross <= 2000 No tax deduction

2000 < Gross <= 4000 3%

4000 < Gross <= 5000 5%

Gross > 5000 8%

 Write a program that will read an executive’s job number, level number, and basic pay and then compute 

the net salary after withholding income tax.

Problem analysis:

Gross salary = basic pay + house rent allowance + perks

Net salary = Gross salary –  income tax.

The computation of perks depends on the level, while the income tax depends on the gross salary. The 

major steps are:

1. Read data.

2. Decide level number and calculate perks.

3. Calculate gross salary.

4. Calculate income tax.

5. Compute net salary.

6. Print the results.

Program: A program and the results of the test data are given in Fig. 2.15. Note that the last statement should 

be an executable statement. That is, the label stop: cannot be the last line.

Program

 #define CA1 1000
 #define CA2 750
 #define CA3 500
 #define CA4 250
 #define EA1 500
 #define EA2 200
 #define EA3 100
 #define EA4 0
 main()
 {
  int level, jobnumber;
  float gross,
     basic,
     house_rent,
     perks,
     net,
     incometax;
  input:
  printf(“\nEnter level, job number, and basic pay\n”);
  printf(“Enter 0 (zero) for level to END\n\n”);
  scanf(“%d”, &level);
  if (level == 0) goto stop;
  scanf(“%d %f”, &jobnumber, &basic);
  switch (level)

(Contd.)



2.24 Computer Programming

  {
   case 1:
      perks = CA1 + EA1;
      break;
   case 2:
      perks = CA2 + EA2;
      break;
   case 3:
      perks = CA3 + EA3;
      break;
   case 4:
      perks = CA4 + EA4;
      break;
   default:
      printf(“Error in level code\n”);
      goto stop;
  }
  house_rent = 0.25 * basic;
  gross = basic + house_rent + perks;
  if (gross <= 2000)
   incometax = 0;
  else if (gross <= 4000)
     incometax = 0.03 * gross;
    else if (gross <= 5000)
      incometax = 0.05 * gross;
     else
      incometax = 0.08 * gross;
  net = gross - incometax;
  printf(“%d %d %.2f\n”, level, jobnumber, net);
  goto input;
  stop: printf(“\n\nEND OF THE PROGRAM”);
 }
Output

 Enter level, job number, and basic pay
 Enter 0 (zero) for level to END
 1 1111 4000
 1 1111 5980.00
 Enter level, job number, and basic pay
 Enter 0 (zero) for level to END
 2 2222 3000
 2 2222 4465.00
 Enter level, job number, and basic pay
 Enter 0 (zero) for level to END
 3 3333 2000
 3 3333 3007.00
 Enter level, job number, and basic pay
 Enter 0 (zero) for level to END
 4 4444 1000
 4 4444 1500.00
 Enter level, job number, and basic pay
 Enter 0 (zero) for level to END
 0
 END OF THE PROGRAM

Fig. 2.15 Pay-bill calculations



Selection and Decision Making 2.25 

Review Questions

 2.1 State whether the following are true or false:

(a) When if statements are nested, the last else 

gets associated with the nearest if without 

an else.

(b) One if can have more than one else clause.

(c)  A switch statement can always be replaced 

by a series of if..else statements.

(d) A switch expression can be of any type.

(e)  A program stops its execution when a 

break statement is encountered.

(f )  Each expression in the else if must test the 

same variable.

(g)  Any expression can be used for the if 

expression.

(h)  Each case label can have only one 

 statement.

(i)  The default case is required in the switch 

statement.

( j)  The predicate !( (x >= 10)¦(y = = 5) ) is 

equivalent to (x < 10) && ( y !=5 ).

 2.2 Fill in the blanks in the following statements.

(a)  The  operator is true only 

when both the operands are true.

(b)  Multiway selection can be accom-

plished using an else if statement or the 

 statement.

(c)  The  statement when executed 

in a switch statement causes immediate 

exit from the structure.

(d)  The ternary conditional expression using 

the operator ?: could be easily coded using 

 statement.

(e) The expression ! (x ! = y ) can be replaced 

by the expression .

 2.3 Find errors, if any, in each of the following 

 segments:

(a) if (x + y = z && y > 0)
      printf(“ “);

(b) if (code > 1);
      a = b + c

  else
      a = 0

(c) if (p < 0) || (q < 0)
      printf (“ sign is negative”);

 2.4 The following is a segment of a program:

x = 1;
y = 1;
if (n > 0)
  x = x + 1;
  y = y - 1;
printf(“ %d %d”, x, y);

 What will be the values of x and y if n assumes 

a value of (a) 1 and (b) 0.

 2.5 Rewrite each of the following without using 

compound relations:

(a) if (grade <= 59 && grade >= 50)
      second = second + 1;

(b) if (number > 100 || number < 0)
     printf(“ Out of range”);
   else
     sum = sum + number;

(c) if ((M1 > 60 && M2 > 60) || T > 200)
     printf(“ Admitted\n”);
   else
     printf(“ Not admitted\n”);

 2.6 Assuming x = 10, state whether the following 

logical expressions are true or false.

(a) x = = 10 && x > 10 && !x

(b) x = = 10 || x > 10 && ! x

(c) x = = 10 && x > 10 || ! x

(d) x = = 10 || x > 10 || !x

 2.7 Find errors, if any, in the following switch 

related statements. Assume that the variables 

x and y are of int type and x = 1 and y = 2

(a) switch (y);

(b) case 10;

(c) switch (x + y)

(d) switch (x) {case 2: y = x + y; break};

 2.8 Simplify the following compound logical 

expressions

(a) !(x <=10)

(b) !(x = = 10) ||! ( (y = = 5) || (z < 0) )

(c) ! ( (x +y = = z) && !(z > 5)

(d) !( (x <=5) && (y = = 10) & & (z < 5) )

 2.9 Assuming that x = 5, y = 0, and z = 1 initially, 

what will be their values after executing the 

following code segments?



2.26 Computer Programming

(a) if (x && y)
      x = 10;
  else
      y = 10;

(b) if (x || y || z)
      y = 10;
  else
      z = 0;

(c) if (x)
   if (y)
     z = 10;
  else
     z = 0;

(d) if (x = = 0 || x & & y)
   if (!y)
     z = 0;
  else
     y = 1;

 2.10 Assuming that x = 2, y = 1 and z = 0 initially, 

what will be their values after executing the 

following code segments?

(a) switch (x)
  {
     case 2:
          x = 1;
          y = x + 1;
     case 1:
          x = 0;
          break;
     default:
          x = 1;
          y = 0;
  }

(b) switch (y)
  {
     case 0:
          x = 0;
          y = 0;
     case 2:
          x = 2;
          z = 2;
     default:
          x = 1;
          y = 2;
  }

 2.11 Find the error, if any, in the following 

 statements:

(a) if ( x > = 10 ) then
   printf ( “\n”) ;

(b) if x > = 10
   printf ( “OK” ) ;

(c) if (x = 10)
   printf (“Good” ) ;

(d) if (x = < 10)
   printf (“Welcome”) ;

 2.12 What is the output of the following program?
main (  )
{
   int m = 5 ;
   if (m < 3) printf(“%d” , m+1) ;
   else if(m < 5) printf(“%d”, m+2);
   else if(m < 7) printf(“%d”, m+3);
   else printf(“%d”, m+4);
}

 2.13 What is the output of the following program?
main (  )
{
    int m = 1;
     if ( m==1)
    {
         printf ( “ Delhi “ ) ;
         if (m == 2)
         printf( “Chennai” ) ;
         else
         printf(“Bangalore”) ;
    }
    else;
     printf(“ END”);
}

 2.14 What is the output of the following program?
main( )
{
   int m ;
   for (m = 1; m<5; m++)
       printf(%d\n”, (m%2) ? m : m*2);
}

 2.15 What is the output of the following program?
main( )
{
    int m, n, p ;
    for ( m = 0; m < 3; m++ )
    for (n = 0; n<3; n++ )
    for ( p = 0; p < 3;; p++ )
    if ( m + n + p == 2 )
    goto print;
    print :
    printf(“%d, %d, %d”, m, n, p);
}

 2.16 What will be the value of x when the follow-

ing segment is executed?
  int x = 10, y = 15;
  x = (x<y)? (y+x) : (y-x) ;

 2.17 What will be the output when the following 

segment is exe cuted?
int x = 0;
if (x >= 0)



Selection and Decision Making 2.27 

if ( x > 0 )
printf(“Number is positive”);
else
printf(“Number is negative”);

 2.18 What will be the output when the following 

segment is exe cuted?
char ch = ‘a’ ;
switch (ch)
{ 
    case ‘a’ :
    printf( “A” ) ;
    case‘b’:
    Printf (“B”) ;
    default :
    printf(“ C “) ;
}

 2.19 What will be the output of the following 

segment when exe cuted?

int x = 10, y = 20;
if( (x<y) || (x+5) > 10 )
printf(“%d”, x);
else
printf(“%d”, y);

 2.20 What will be output of the following segment 

when executed?
int a = 10, b = 5;
if (a > b)
{
     if(b > 5)
     printf(“%d”, b);
}
else
     printf(“%d”, a);

Programming Exercises

 2.1 Write a program to determine whether a given 

number is ‘odd’ or ‘even’ and print the message

NUMBER IS EVEN

or

NUMBER IS ODD

(a) without using else option, and

(b) with else option.

 2.2 Write a program to fi nd the number of and sum 

of all integers greater than 100 and less than 

200 that are divisible by 7.

 2.3 A set of two linear equations with two 

 unknowns x1 and x2 is given below:

 ax
1
 + bx

2
 = m

 cx
1
 + dx

2
 = n

The set has a unique solution

 x
1
 = 

md bn

ad cb

-

-

 x
2
 = 

na mc

ad cb

-

-

provided the denominator ad – cb is not equal 

to zero.

Write a program that will read the values of 

constants a, b, c, d, m, and n and compute the 

values of x
1
 and x

2
. An appropriate message 

should be printed if ad – cb = 0.

 2.4 Given a list of marks ranging from 0 to 100, 

write a program to compute and print the 

number of students:

(a) who have obtained more than 80 marks,

(b) who have obtained more than 60 marks,

(c) who have obtained more than 40 marks,

(d) who have obtained 40 or less marks,

(e) in the range 81 to 100,

(f) in the range 61 to 80,

(g) in the range 41 to 60, and

(h) in the range 0 to 40.

The program should use a minimum number 

of if statements.

 2.5 Admission to a professional course is subject to 

the following conditions:

(a) Marks in Mathematics >= 60

(b) Marks in Physics >= 50

(c) Marks in Chemistry >= 40

(d) Total in all three subjects >= 200

 or

 Total in Mathematics and Physics >= 150

 Given the marks in the three subjects, write 

a program to process the applications to list 

the eligible candidates.



2.28 Computer Programming

 2.6 Write a program to print a two-dimensional 

Square Root Table as shown below, to provide 

the square root of any number from 0 to 9.9. 

For example, the value x will give the square 

root of 3.2 and y the square root of 3.9.

Square Root Table

Number 0.0 0.1 0.2 . . . . . . . . . . 0.9

0.0

1.0

2.0

3.0 x y

9.0

 2.7 Shown below is a Floyd’s triangle.

1

2 3

4 5 6

7 8 9 10

11 .. .. .. 15

.

.

79 .. .. .. .. .. .. 91

(a) Write a program to print this triangle.

(b) Modify the program to produce the 

following form of Floyd’s triangle.

 1

 0 1

 1 0 1

 0 1 0 1

 1 0 1 0 1

 2.8 A cloth showroom has announced the 

following seasonal discounts on purchase 

of items:

Purchase 

amount

Discount 

Mill cloth

Handloom 

items

0 – 100 – 5%

101 – 200 5% 7.5%

201 – 300 7.5% 10.0%

Above 300 10.0% 15.0%

Write a program using switch and if statements 

to compute the net amount to be paid by a 

customer.

 2.9 Write a program that will read the value of x 

and evaluate the following function

y = 

1 0

0 0

1 0

for x

for x

for x

<

=

- <

R

S
|

T
|

using

(a) nested if statements,

(b) else if statements, and

(c) conditional operator ? :

 2.10 Write a program to compute the real roots of a 

quadratic equation

ax2 + bx + c = 0

The roots are given by the equations

x
1
 = – b + 

b ac

a

2

2

x
2
 = – b – 

b ac

a

2

2

The program should request for the values of 

the constants a, b and c and print the values of 

x
1
 and x

2
. Use the following rules:

(a) No solution, if both a and b are zero

(b) There is only one root, if a = 0 (x = –c/b)

(c) There are no real roots, if b2 – 4ac is 

negative

(d) Otherwise, there are two real roots

 Test your program with appropriate data 

so that all logical paths are working as 

per your design. Incorporate appropriate 

output messages.

 2.11 Write a program to read three integer values 

from the keyboard and displays the output 

stating that they are the sides of right-angled 

triangle.

 2.12 An electricity board charges the following 

rates for the use of electricity:

For the fi rst 200 units: 80 P per unit

For the next 100 units: 90 P per unit

Beyond 300 units: Rs 1.00 per unit

All users are charged a minimum of Rs. 100 as 

meter charge. If the total amount is more than 

Rs. 400, then an additional surcharge of 15% 

of total amount is charged.

Write a program to read the names of users 



Selection and Decision Making 2.29

and number of units consumed and print out 

the charges with names.

 2.13 Write a program to compute and display the 

sum of all inte gers that are divisible by 6 but 

not divisible by 4 and lie between 0 and 100. 

The program should also count and display the 

number of such values.

 2.14 Write an interactive program that could read 

a positive integer number and decide whether 

the number is a prime number and display the 

output accordingly.

Modify the program to count all the prime 

numbers that lie bet ween 100 and 200.

NOTE:  A prime number is a positive integer that 

is divisible only by 1 or by itself.

 2.15 Write a program to read a double®l-type value x 

that repre sents angle in radians and a character-

type variable T that represents the type of 

trigonometric function and display the value of

(a) sin(x), if s or S is assigned to T,

(b) cos (x), if c or C is assigned to T, and

(c) tan (x), if t or T is assigned to T

 using (i) if......else statement and 

(ii) switch statement.

Key Terms

Decision-making statements• : These state-

ments control the fl ow of execution and make 

decisions to see whether a particular condition 

has occurred or not.

If statement• : It is a two-way decision state-

ment used for controlling the fl ow of execution 

of statements.

Switch statement• : It is built-in multiway 

decision statement used for testing the value of 

a given variable against a list of case values.

Conditional operator• : It is an operator 

comprising of three operands that is used for 

making two-way decisions.

Goto statement• : It is a statement used to 

transfer the fl ow of execution unconditionally 

from one point to another in a program.

Break statement• : It is a statement used to 

transfer the control out of a construct.





 3 Arrays

U N I T

So far we have used only the fundamental data types, namely char, int, fl oat, double and variations of int 

and double. Although these types are very useful, they are constrained by the fact that a variable of these 

types can store only one value at any given time. Therefore, they can be used only to handle limited amounts 

of data. In many applications, however, we need to handle a large volume of data in terms of reading, 

 processing and printing. To process such large amounts of data, we need a powerful data type that would 

facilitate effi cient storing, accessing and manipulation of data items. C supports a derived data type known as 

array that can be used for such applications.

An array is a fi xed-size sequenced collection of elements of the same data type. It is simply a grouping of 

like-type data. In its simplest form, an array can be used to represent a list of numbers, or a list of names. 

Some examples where the concept of an array can be used:

List of temperatures recorded every hour in a day, or a month, or a year.• 

List of employees in an organization.• 

List of products and their cost sold by a store.• 

Test scores of a class of students.• 

List of customers and their telephone numbers.• 

Table of daily rainfall data.• 

and so on.

Since an array provides a convenient structure for representing data, it is classifi ed as one of the data 

structures in C. Other data structures include structures, lists, queues and trees. A complete discussion of all 

data structures is beyond the scope of this text.

As we mentioned earlier, an array is a sequenced collection of related data items that share a common 

name. For instance, we can use an array name salary to represent a set of salaries of a group of employees in 

an organization. We can refer to the individual salaries by writing a number called index or subscript in brack-

ets after the array name. For example,

salary [10]

represents the salary of 10th employee. While the complete set of values is referred to as an array, individual 

values are called elements.

The ability to use a single name to represent a collection of items and to refer to an item by specifying the 

item number enables us to develop concise and effi cient programs. For example, we can use a loop construct, 

discussed earlier, with the subscript as the control variable to read the entire array, perform calculations, and 

print out the results.

3.1 INTRODUCTION



3.2 Computer Programming

We can use arrays to represent not only simple lists of values but also tables of data in two, three or more 

dimensions. In this chapter, we introduce the concept of an array and discuss how to use it to create and apply 

the following types of arrays.

One-dimensional arrays• 

Two-dimensional arrays• 

Multidimensional arrays• 

C supports a rich set of derived and user-defi ned data types in addition to a variety of fundamental types as shown  below:

Arrays and structures are referred to as structured data types because they can be used to represent data values that 

have a structure of some sort. Structured data types pro-

vide an organizational scheme that shows the relation-

ships among the individual elements and  facilitate 

effi cient data manipulations. In programming parlance, 

such data types are known as data structures.

In addition to arrays and structures, C supports 

 creation and manipulation of the following data 

 structures:

• Linked Lists

• Stacks

• Queues

• Trees

Data Structures

Fundmental

Types

User-defined

Types

Data Types

Derived

Types

- Arrays - Integral Types  - Structures

- Functions  - Float Types  - Unions

- Pointers - Character Types  - Enumerations

A list of items can be given one variable name using only one subscript and such a variable is called a single-

subscripted variable or a one-dimensional array. In mathematics, we often deal with variables that are single-

subscripted. For instance, we use the equation

A = 

x

n

i

i 1

n

∑

to calculate the average of n values of x. The subscripted variable x
i 
refers to the ith element of x. In C, single-

subscripted variable x
i
 can be expressed as

x[1], x[2], x[3],.........x[n]

The subscript can begin with number 0. That is

x[0]

is allowed. For example, if we want to represent a set of fi ve numbers, say (35,40,20,57,19), by an array 

 variable number, then we may declare the variable number as follows

int number[5];

and the computer reserves fi ve storage locations as shown below:

number[0]

number[1]

number[2]

number[3]

number[4]

3.2 ONE-DIMENSIONAL ARRAYS



Arrays 3.3 

The values to the array elements can be assigned as follows:

number[0] = 35;

number[1] = 40;

number[2] = 20;

number[3] = 57;

number[4] = 19;

This would cause the array number to store the values as shown below:

number[0] 35

number[1] 40

number[2] 20

number[3] 57

number[4] 19

These elements may be used in programs just like any other C variable. For example, the following are 

valid statements:

a = number[0] + 10;

number[4] = number[0] + number [2];

number[2] = x[5] + y[10];

value[6] = number[i] * 3;

The subscripts of an array can be integer constants, integer variables like i, or expressions that yield 

 integers. C performs no bounds checking and, therefore, care should be exercised to ensure that the array 

indices are within the declared limits.

Like any other variable, arrays must be declared before they are used so that the compiler can allocate space 

for them in memory. The general form of array declaration is

type variable-name[ size ];

The type specifi es the type of element that will be contained in the array, such as int, fl oat, or char and the 

size indicates the maximum number of elements that can be stored inside the array. For example,

float height[50];

declares the height to be an array containing 50 real elements. Any subscripts 0 to 49 are valid. Similarly,

int group[10];

declares the group as an array to contain a maximum of 10 integer constants. Remember:

Any reference to the arrays outside the declared limits would not necessarily cause an error. Rather, it • 

might result in unpredictable program results.

The size should be either a numeric constant or a symbolic constant.• 

The C language treats character strings simply as arrays of characters. The size in a character string 

 represents the maximum number of characters that the string can hold. For instance,

char name[10];

declares the name as a character array (string) variable that can hold a maximum of 10 characters. Suppose 

we read the following string constant into the string variable name.

“WELL DONE”

3.3 DECLARATION OF ONE-DIMENSIONAL ARRAYS



3.4 Computer Programming

Each character of the string is treated as an element of the array name and is stored in the memory as 

follows:

‘W’

‘E’

‘L’

‘L’

‘’

 ‘D’

‘O’

‘N’

‘E’

‘\0’

When the compiler sees a character string, it terminates it with an additional null character. Thus, the 

 element name[10] holds the null character ‘\0’. When declaring character arrays, we must allow one extra 

element space for the null terminator.

EXAMPLE 3.1 Write a program using a single-subscripted variable to evaluate the following 

expressions:

Total = x2
2

i 1

n

∑

The values of x1,x2,....are read from the terminal.

Program in Fig. 3.1 uses a one-dimensional array x to read the values and compute the sum of their squares.

Program 

  main()

   {

    int i ;

    float x[10], value, total ;

  /* . . . . . .READING VALUES INTO ARRAY . . . . . . */

    printf(“ENTER 10 REAL NUMBERS\n”) ;

    for( i = 0 ; i < 10 ; i++ )

    {

    scanf(“%f”, &value) ;

    x[i] = value ;

    }

  /* . . . . . . .COMPUTATION OF TOTAL . . . . . . .*/

    total = 0.0 ;

(Contd.)



Arrays 3.5

NOTE: C99 permits arrays whose size can be specifi ed at run time. See Appendix ‘C99 Features’. 

After an array is declared, its elements must be initialized. Otherwise, they will contain “garbage”. An array 

can be initialized at either of the following stages:

At compile time• 

At run time• 

3.4.1 Compile Time Initialization

We can initialize the elements of arrays in the same way as the ordinary variables when they are declared. The 

general form of initialization of arrays is:

type array_name[size]={ column_size };

3.4 INITIALIZATION OF ONE-DIMENSIONAL ARRAYS

    for( i = 0 ; i < 10 ; i++ )

    total = total + x[i] * x[i] ;

  /*. . . . PRINTING OF x[i] VALUES AND TOTAL . . . */

    printf(“\n”);

    for( i = 0 ; i < 10 ; i++ )

     printf(“x[%2d] = %5.2f\n”, i+1, x[i]) ;

    printf(“\ntotal = %.2f\n”, total) ;

  }

Output

 ENTER 10 REAL NUMBERS

 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10

   x[ 1] = 1.10

   x[ 2] = 2.20

   x[ 3] = 3.30

   x[ 4] = 4.40

   x[ 5] = 5.50

   x[ 6] = 6.60

   x[ 7] = 7.70

   x[ 8] = 8.80

   x[ 9] = 9.90

    x[10] = 10.10

   Total = 446.86

Fig. 3.1 Program to illustrate one-dimensional array



3.6 Computer Programming

The values in the list are separated by commas. For example, the statement

int number[3] = { 0,0,0 };

will declare the variable number as an array of size 3 and will assign zero to each element. If the number of 

values in the list is less than the number of elements, then only that many elements will be initialized. The 

remaining elements will be set to zero automatically. For instance,

float total[5] = {0.0,15.75,–10};

will initialize the fi rst three elements to 0.0, 15.75, and –10.0 and the remaining two elements to zero.

The size may be omitted. In such cases, the compiler allocates enough space for all initialized elements. 

For example, the statement

int counter[ ] = {1,1,1,1};

will declare the counter array to contain four elements with initial values 1. This approach works fi ne as long 

as we initialize every element in the array.

Character arrays may be initialized in a similar manner. Thus, the statement

char name[ ] = {‘J’,‘o’, ‘h’, ‘n’, ‘\0’};

declares the name to be an array of fi ve characters, initialized with the string “John” ending with the null 

character. Alternatively, we can assign the string literal directly as under:

char name [ ] = “John”;

(Character arrays and strings are discussed in detail in Chapter 10.)

Compile time initialization may be partial. That is, the number of initializers may be less than the declared 

size. In such cases, the remaining elements are inilialized to zero, if the array type is numeric and NULL if the 

type is char. For example,

int number [5] = {10, 20};

will initialize the fi rst two elements to 10 and 20 respectively, and the remaining elements to 0. Similarly, the 

declaration.

char city [5] = {‘B’};

will initialize the fi rst element to ‘B’ and the remaining four to NULL. It is a good idea, however, to declare 

the size explicitly, as it allows the compiler to do some error checking.

Remember, however, if we have more initializers than the declared size, the compiler will produce an 

error. That is, the statement

int number [3] = {10, 20, 30, 40};

will not work. It is illegal in C.

3.4.2 Run Time Initialization

An array can be explicitly initialized at run time. This approach is usually applied for initializing large arrays. 

For example, consider the following segment of a C program.

--------

--------

for (i = 0; i < 100; i = i+1)

{

 if  i < 50

   sum[i] = 0.0;     /* assignment statement */



Arrays 3.7 

 else

   sum[i] = 1.0;

}

--------

--------

The fi rst 50 elements of the array sum are initialized to zero while the remaining 50 elements are  initialized 

to 1.0 at run time.

We can also use a read function such as scanf to initialize an array. For example, the statements

     int x [3];

     scanf(“%d%d%d”, &x[0], &[1], &x[2]);

will initialize array elements with the values entered through the keyboard.

EXAMPLE 3.2 Given below is the list of marks obtained by a class of 50 students in an annual 

examination.

43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74 81 49 37

40 49 16 75 87 91 33 24 58 78 65 56 76 67 45 54 36 63 12 21

73 49 51 19 39 49 68 93 85 59

 Write a program to count the number of students belonging to each of following 

groups of marks: 0–9, 10–19, 20–29,.....,100.

The program coded in Fig. 3.2 uses the array group containing 11 elements, one for each range of marks. 

Each element counts those values falling within the range of values it represents.

For any value, we can determine the correct group element by dividing the value by 10. For example, 

consider the value 59. The integer division of 59 by 10 yields 5. This is the element into which 59 is 

counted.

Program

#define MAXVAL  50

#define COUNTER 11

main()

{

   float   value[MAXVAL];

   int    i, low, high;

   int group[COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};

   /* . . . . . . . .READING AND COUNTING . . . . . .*/

   for( i = 0 ; i < MAXVAL ; i++ )

   {

   /*. . . . . . . .READING OF VALUES . . . . . . . . */

    scanf(“%f”, &value[i]) ;

   /*. . . . . .COUNTING FREQUENCY OF GROUPS. . . . . */

    ++ group[ (int) ( value[i]) / 10] ;

   }

   /* . . . .PRINTING OF FREQUENCY TABLE . . . . . . .*/

   printf(“\n”);

   printf(“ GROUP  RANGE  FREQUENCY\n\n”) ;

(Contd.)



3.8 Computer Programming

Note that we have used an initialization statement.

int group [COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};

which can be replaced by

int group [COUNTER] = {0};

This will initialize all the elements to zero.

  for( i = 0 ; i < COUNTER ; i++ )

  {

    low = i * 10 ;

    if(i == 10)

     high = 100 ;

    else

      high = low + 9 ;

    printf(“ %2d %3d to %3d %d\n”,

       i+1, low, high, group[i] ) ;

  }

}

Output 

 43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74

 81 49 37 40 49 16 75 87 91 33 24 58 78 65 56 76 67 (Input data)

 45 54 36 63 12 21 73 49 51 19 39 49 68 93 85 59

 GROUP  RANGE  FREQUENCY

 1 0 to 9 2

 2 10 to 19 4

 3 20 to 29 4

 4 30 to 39 5

 5 40 to 49 8

 6 50 to 59 8

 7 60 to 69 7

 8 70 to 79 6

 9 80 to 89 4

 10 90 to 99 2

 11 100 to 100 0

Fig. 3.2 Program for frequency counting

Searching and sorting are the two most frequent operations performed on arrays. Computer Scientists have devised 

several data structures and searching and sorting techniques that facilitate rapid access to data stored in lists.

Sorting is the process of arranging elements in the list according to their values, in ascending or descending order. 

A sorted list is called an ordered list. Sorted lists are especially important in list searching because they facilitate rapid 

search operations. Many sorting techniques are available. The three simple and most important among them are:

 • Bubble sort

 • Selection sort

 • Insertion sort

Other sorting techniques include Shell sort, Merge sort and Quick sort.

Searching and Sorting



Arrays 3.9 

EXAMPLE 3.3 Write a program for sorting the elements of an array in descending order.

1. Set the size n of an array.

2. Store n elements in the array.

3. Read and store elements of the array in descending order.

4. Print the elements of array in descending order.

Figure 3.3 gives a program to implement this algorithm.

Searching is the process of fi nding the location of the specifi ed element in a list. The specifi ed element is often called 

the search key. If the process of searching fi nds a match of the search key with a list element value, the search said to 

be successful; otherwise, it is unsuccessful. The two most commonly used search techniques are:

 • Sequential search

 • Binary search

A detailed discussion on these techniques is beyond the scope of this text. Consult any good book on data structures 

and algorithms.

Program

#include <stdio.h>
#include <conio.h>
void main()
{
 int *arr,temp,i,j,n;
 clrscr();
 printf(“Enter the number of elements in the array:”);
 scanf(“%d”,&n);
 arr=(int*)malloc(sizeof(int)*n);
 for(i=0;i<n;i++)
 {
 printf(“Enter a number:”);
 scanf(“%d”,&arr[i]);
 }
 for(i=0;i<n;i++)
 {
   for(j=i+1;j<n;j++)
   {
    if(arr[i]<arr[j])
    {
    temp=arr[i];
    arr[i]=arr[j];
    arr[j]=temp;
   }
  }
 }
printf(“Elements of array in descending order are:\n”);
 for(i=0;i<n;i++)
  printf(“%d\n”,arr[i]);
 getch();
}

(Contd.)



3.10 Computer Programming

EXAMPLE 3.4 Write a program for fi nding the largest number in an array.

1. Set the size of the array as n.

2. Store n elements in the array.

3. Assign the fi rst element of the array to LARGE.

4. Compare each element in the array with LARGE.

5. If an element of the array is greater then LARGE, then set LARGE=element.

6. Else go to step 4. 

7. Repeat this process until it reaches the last element of the array.

8. Print the largest element found in the array.

Figure 3.4 gives a program to implement this algorithm.

Output

Enter the number of elements in the array:5

Enter a number:32 

Enter a number:43

Enter a number:23

Enter a number:57

Enter a number:47

Elements of array in descending order are:

57

47

43

32

23

Fig. 3.3 Program to sort the elements of an array in descending order

Program

#include <stdio.h>

#include <conio.h>

void main()

{

 int *arr,i,j,n,LARGE;

 clrscr();

 printf(“Enter the number of elements in the array:”);

 scanf(“%d”,&n);

 arr=(int*)malloc(sizeof(int)*n);

 for(i=0;i<n;i++)

 {

  printf(“Enter a number:”);

  scanf(“%d”,&arr[i]);

 }

 LARGE=arr[0];

(Contd.)



Arrays 3.11 

EXAMPLE 3.5 Write a program for removing the duplicate element in an array.

1. Set the size n of an array.

2. Store n elements in the array.

3. Read and store elements of the array in a sorted order.

4. Compare the fi rst element with the next element.

5. If elements are identical, then replace that element by shift complete array. 

6. Else start comparing element with the current element.

7. Repeat this process until it reaches the last element of the array.

8. Print the new array without duplicate elements.

A program to implement this is given in Fig. 3.5.

 for(i=1;i<n;i++)

 {

  if(arr[i]>LARGE)

   LARGE=arr[i];

 }

  printf(“The largest number in the array is: %d”,LARGE);

 getch();

}

Output

Enter the number of elements in the array:5

Enter a number:32

Enter a number:43

Enter a number:23

Enter a number:57

Enter a number:47

The largest number in the array is:57

Fig. 3.4 Program to fi nd the largest element in an array

Program

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
int main()
{
int *arr,i,j,n,x,temp;
 clrscr();
 printf(“Enter the number of elements in the array:”);
 scanf(“%d”,&n);
 arr=(int*)malloc(sizeof(int)*n);
 for(i=0;i<n;i++)
 {
  printf(“Enter a number:”);
  scanf(“%d”,&arr[i]);
 }

(Contd.)



3.12 Computer Programming

 for(i=0;i<n;i++)
 {
  for(j=i+1;j<n;j++)
  {
   if(arr[i]>arr[j])
   {
    temp=arr[i];
    arr[i]=arr[j];
    arr[j]=temp;
   }
  }
 }
 printf(“\nElements of array after sorting:”);
 for(i=0;i<n;i++)
  printf(“\n%d”,arr[i]);
 i=0;
 j=1;
 while(i<n)
 {
  if(arr[i]==arr[j])
  {
   for(x=j;x<n-1;x++)
    arr[x]=arr[x+1];
   n—;
  }
  else
  {
   i++;
   j++;
  }
 }
 printf(“\nElements of array after removing duplicate     elements:”);

 for(i=0;i<=n;i++)
  printf(“\n%d”,arr[i]);
 getch();
}
Output

Enter the number of elements in the array:5
Enter a number:3 
Enter a number:3
Enter a number:4
Enter a number:6
Enter a number:4
Elements of array after sorting:
3
3
4
4
6
Elements of array after removing duplicate elements:
3
4
6

Fig. 3.5 Program to sort the elements of an array and removing duplicate elements



Arrays 3.13 

EXAMPLE 3.6 Write a program for fi nding the desired kth smallest element in an array.

1. Set the size n of an array.

2. Store n elements in the array.

3. Read and store elements of the array in an ascending order.

4. Print the kth elements of sorted array.

A program is given in Fig. 3.6.

Program

#include <stdio.h>
#include <conio.h>
void main()
{
 int *arr,i,j,n,temp,k;
 clrscr();
 printf(“Enter the number of elements in the array:”);
 scanf(“%d”,&n);
 arr=(int*)malloc(sizeof(int)*n);
 for(i=0;i<n;i++)
 {
  printf(“Enter a number:”);
  scanf(“%d”,&arr[i]);
 }
 for(i=0;i<n;i++)
 {
  for(j=i+1;j<n;j++)
  {
   if(arr[i]>arr[j])
   {
    temp=arr[i];
    arr[i]=arr[j];
    arr[j]=temp;
   }
  }
 }
 printf(“\nElements of array after sorting:”);
 for(i=0;i<n;i++)
  printf(“\n%d”,arr[i]);
 printf(“\n\nWhich smallest element do you want to determine?”);
 scanf(“%d”,&k);
 if(k<=n)
 printf(“\nDesired smallest element is %d.”,arr[k-1]);
 else
 printf(“Please enter a valid value for finding the particular      

smallest element”);
 getch();
}
Output

Enter the number of elements in the array:5
Enter a number:33 

(Contd.)



3.14 Computer Programming

So far we have discussed the array variables that can store a list of values. There could be situations where a 

table of values will have to be stored. Consider the following data table, which shows the value of sales of 

three items by four sales girls:

Item1 Item2 Item3

Salesgirl #1 310 275 365

Salesgirl #2 210 190 325

Salesgirl #3 405 235 240

Salesgirl #4 260 300 380

The table contains a total of 12 values, three in each line. We can think of this table as a matrix consisting of 

four rows and three columns. Each row represents the values of sales by a particular salesgirl and each  column 

represents the values of sales of a particular item.

In mathematics, we represent a particular value in 

a matrix by using two subscripts such as v
ij
. Here v

denotes the entire matrix and v
ij
 refers to the value in 

the ith row and jth column. For example, in the above 

table v
23 

refers to the value 325.

C allows us to defi ne such tables of items by using 

two-dimensional arrays. The table discussed above 

can be defi ned in C as

v[4][3]

Two-dimensional arrays are declared as follows:

type array_name [row_size][column_size];

Note that unlike most other languages, which use one 

pair of parentheses with commas to separate array 

sizes, C places each size in its own set of brackets.

Two-dimensional arrays are stored in memory, as 

shown in Fig. 3.7. As with the single-dimensional 

3.5 TWO-DIMENSIONAL ARRAYS

Enter a number:32
Enter a number:46
Enter a number:68
Enter a number:47
Elements of array after sorting:
32
33
46
47
68
Which smallest element do you want to determine?3
Desired smallest element is 46.

Fig. 3.6 Program to determine Kth smallest element in an array

Fig. 3.7 Representation of a two-dimensional array in memory



Arrays 3.15

arrays, each dimension of the array is indexed from zero to its maximum size minus one; the fi rst index 

selects the row and the second index selects the column within that row.

EXAMPLE 3.7 Write a program using a two-dimensional array to compute and print the following 

information from the table of data discussed above:

 (a) Total value of sales by each girl.

 (b) Total value of each item sold.

 (c) Grand total of sales of all items by all girls.

The program and its output are shown in Fig. 3.8. The program uses the variable value in two-dimensions 

with the index i representing girls and j representing items. The following equations are used in computing 

the results:

(a) Total sales by mth girl = 
j 0

2

∑ value [m][j] (girl_total[m])

(b) Total value of nth item = 

i 0

3

∑ value [i][n] (item_total[n])

(c) Grand total = 

i 0

3

∑  
j 0

2

∑ value[i][j]

 = 

i 0

3

∑ girl_total[i]

 = 
j 0

2

∑ item_total[j]

 Program

   #define MAXGIRLS 4

   #define MAXITEMS 3

   main()

   {

    int value[MAXGIRLS][MAXITEMS];

    int girl_total[MAXGIRLS] , item_total[MAXITEMS];

    int i, j, grand_total;

  /*.......READING OF VALUES AND COMPUTING girl_total ...*/

    printf(“Input data\n”);

    printf(“Enter values, one at a time, row-wise\n\n”);

    for( i = 0 ; i < MAXGIRLS ; i++ )

    {

     girl_total[i] = 0;

(Contd.)



3.16 Computer Programming

     for( j = 0 ; j < MAXITEMS ; j++ )
     {
       scanf(“%d”, &value[i][j]);
       girl_total[i] = girl_total[i] + value[i][j];
     }
   }
   /*.......COMPUTING item_total..........................*/

    for( j = 0 ; j < MAXITEMS ; j++ )
    {
      item_total[j] = 0;
      for( i =0 ; i < MAXGIRLS ; i++ )
        item_total[j] = item_total[j] + value[i][j];
   }
  /*.......COMPUTING grand_total.........................*/

   grand_total = 0;
   for( i =0 ; i < MAXGIRLS ; i++ )
    grand_total = grand_total + girl_total[i];
  /* .......PRINTING OF RESULTS...........................*/

   printf(“\n GIRLS TOTALS\n\n”);

   for( i = 0 ; i < MAXGIRLS ; i++ )
     printf(“Salesgirl[%d] = %d\n”, i+1, girl_total[i] );
   printf(“\n ITEM TOTALS\n\n”);
   for( j = 0 ; j < MAXITEMS ; j++ )
     printf(“Item[%d] = %d\n”, j+1 , item_total[j] );
    printf(“\nGrand Total = %d\n”, grand_total);
   }

 Output

   Input data

   Enter values, one at a time, row_wise

   310 257 365

   210 190 325

   405 235 240

   260 300 380

   GIRLS TOTALS

   Salesgirl[1] = 950

   Salesgirl[2] = 725

   Salesgirl[3] = 880

   Salesgirl[4] = 940

   ITEM TOTALS

   Item[1] = 1185

   Item[2] = 1000

   Item[3] = 1310

   Grand Total = 3495

Fig. 3.8 Illustration of two-dimensional arrays



Arrays 3.17 

EXAMPLE 3.8 Write a program to compute and print a multiplication table for numbers 1 to 5 as 

shown below:

1 2 3 4 5

1 1 2 3 4 5

2 2 4 6 8 10

3 3 6 . . .

4 4 8 . . .

5 5 10 . . 25

The program shown in Fig. 3.9 uses a two-dimensional array to store the table values. Each value is  calculated 

using the control variables of the nested for loops as follows:

product[i] [j] = row * column

where i denotes rows and j denotes columns of the product table. Since the indices i and j range from 0 to 4, 

we have introduced the following transformation:

 row = i+1

 column = j+1

 Program

   #define  ROWS   5

   #define  COLUMNS 5

   main()

   {

    int row, column, product[ROWS][COLUMNS] ;

    int i, j ;

    printf(“ MULTIPLICATION TABLE\n\n”) ;

    printf(“ “) ;

    for( j = 1 ; j <= COLUMNS ; j++ )

    printf(“%4d” , j ) ;

   printf(“\n”) ;

   printf(“——————————————————————————————\n”);

   for( i = 0 ; i < ROWS ; i++ )

   { 

     
row = i + 1 ;

     printf(“%2d |”, row) ;

     for( j = 1 ; j <= COLUMNS ; j++ )

     {

      column = j ;

      product[i][j] = row * column ;

      printf(“%4d”, product[i][j] ) ;

     }

     printf(“\n”) ;

   }

  }

(Contd.)



3.18 Computer Programming

Like the one-dimensional arrays, two-dimensional arrays may be initialized by following their declaration 

with a list of initial values enclosed in braces. For example,

int table[2][3] = { 0,0,0,1,1,1};

initializes the elements of the fi rst row to zero and the second row to one. The initialization is done row by 

row. The above statement can be equivalently written as

int table[2][3] = {{0,0,0}, {1,1,1}};

by surrounding the elements of the each row by braces.

We can also initialize a two-dimensional array in the form of a matrix as shown below:

int table[2][3] = {

           {0,0,0},

           {1,1,1}

          };

Note the syntax of the above statements. Commas are required after each brace that closes off a row, 

except in the case of the last row.

When the array is completely initialized with all values, explicitly, we need not specify the size of the fi rst 

dimension. That is, the statement

int table [ ] [3] = {

            { 0, 0, 0},

            { 1, 1, 1}

           };

is permitted.

If the values are missing in an initializer, they are automatically set to zero. For instance, the statement

int table[2][3] = {

           {1,1},

           {2}

          };

will initialize the fi rst two elements of the fi rst row to one, the fi rst element of the second row to two, and all 

other elements to zero.

When all the elements are to be initialized to zero, the following short-cut method may be used.

int m[3][5] = { {0}, {0}, {0}};

The fi rst element of each row is explicitly initialized to zero while other elements are automatically 

 initialized to zero. The following statement will also achieve the same result:

int m [3] [5] = { 0, 0};

3.6 INITIALIZING TWO-DIMENSIONAL ARRAYS

 Output

   MULTIPLICATION TABLE

  1   2   3   4   5
  
  1  1  2  3  4  5
  2  2  4  6  8  10
  3  3  6  9  12  15
  4  4  8  12  16  20
  5  5  10  15  20  25

Fig. 3.9 Program to print multiplication table using two-dimensional array



Arrays 3.19 

EXAMPLE 3.9 A survey to know the popularity of four cars (Ambassador, Fiat, Dolphin and Maruti) 

was conducted in four cities (Bombay, Calcutta, Delhi and Madras). Each person 

surveyed was asked to give his city and the type of car he was using. The results, in 

coded form, are tabulated as follows:

M 1 C 2 B 1 D 3 M 2 B 4

C 1 D 3 M 4 B 2 D 1 C 3

D 4 D 4 M 1 M 1 B 3 B 3

C 1 C 1 C 2 M 4 M 4 C 2

D 1 C 2 B 3 M 1 B 1 C 2

D 3 M 4 C 1 D 2 M 3 B 4

Codes represent the following information:

 M – Madras   1 – Ambassador

 D – Delhi   2 – Fiat

 C – Calcutta  3 – Dolphin

 B – Bombay   4 – Maruti

Write a program to produce a table showing popularity of various cars in four cities.

A two-dimensional array frequency is used as an accumulator to store the number of cars used, under various 

categories in each city. For example, the element frequency [i][j] denotes the number of cars of type j used 

in city i. The frequency is declared as an array of size 5 × 5 and all the elements are initialized to zero.

The program shown in Fig. 3.10 reads the city code and the car code, one set after another, from the 

 terminal. Tabulation ends when the letter X is read in place of a city code.

Program

 main()
 {
  int i, j, car;
  int frequency[5][5] = { {0},{0},{0},{0},{0} };
  char city;
  printf(“For each person, enter the city code \n”);
  printf(“followed by the car code.\n”);
  printf(“Enter the letter X to indicate end.\n”);
 /*. . . . . . TABULATION BEGINS . . . . . */
  for( i = 1 ; i < 100 ; i++ )
  {
   scanf(“%c”, &city );
   if( city == ‘X’ )
    break;
   scanf(“%d”, &car );
   switch(city)
   {
      case ‘B’ : frequency[1][car]++;
           break;
      case ‘C’ : frequency[2][car]++;
           break;

(Contd.)



3.20 Computer Programming

      case ‘D’ : frequency[3][car]++;
           break;
      case ‘M’ : frequency[4][car]++;

           break;
    }
   }
  /*. . . . .TABULATION COMPLETED AND PRINTING BEGINS. . . .*/
   printf(“\n\n”);
   printf(“ POPULARITY TABLE\n\n”);
   printf(“——————————————————————————————–————–\n”);
   printf(“City Ambassador Fiat Dolphin Maruti \n”);

   printf(“———————————————————————————————————–\n”);
   for( i = 1 ; i <= 4 ; i++ )
   {
     switch(i)
     {
        case 1 : printf(“Bombay “) ;
         break ;
     case 2 : printf(“Calcutta “) ;
         break ;
     case 3 : printf(“Delhi “) ;
         break ;
     case 4 : printf(“Madras “) ;
         break ;
   }
   for( j = 1 ; j <= 4 ; j++ )
    printf(“%7d”, frequency[i][j] ) ;
   printf(“\n”) ;
  }
  printf(“——————————————————————————————————————————\n”);
  /*. . . . . . . . . PRINTING ENDS. . . . . . . . . . .*/
 }
Output

 For each person, enter the city code
 followed by the car code.
 Enter the letter X to indicate end.
 M 1 C 2 B 1 D 3 M 2 B 4
 C 1  D 3  M 4 B 2 D 1 C 3
 D 4  D 4  M 1 M 1 B 3 B 3
 C 1  C 1  C 2 M 4 M 4 C 2
 D 1  C 2  B 3 M 1 B 1 C 2
 D 3  M 4  C 1 D 2 M 3 B 4   X

 POPULARITY TABLE

 City    Ambassador   Fiat    Dolphin   Maruti 

 Bombay    2      1     3      2
 Calcutta   4      5     1      0
 Delhi    2      1     3      2
 Madras    4     1     1      4

Fig. 3.10 Program to tabulate a survey data



Arrays 3.21

C allows arrays of three or more dimensions. The exact limit is determined by the compiler. The general form 

of a multi-dimensional array is

type array_name[s1][s2][s3]....[sm];

where s
i
 is the size of the ith dimension. Some examples are:

int survey[3][5][12];

float table[5][4][5][3];

survey is a three-dimensional array declared to contain 180 integer type elements. Similarly table is a 

four-dimensional array containing 300 elements of fl oating-point type.

The array survey may represent a survey data of rainfall during the last three years from January to 

December in fi ve cities.

If the fi rst index denotes year, the second city and the third month, then the element survey[2][3][10]

denotes the rainfall in the month of October during the second year in city-3.

3.7 MULTI-DIMENSIONAL ARRAYS

The subscripts in the defi nition of a two-dimensional array represent rows and columns. This format maps the way that 

data elements are laid out in the memory. The elements of all arrays are stored contiguously in increasing memory 

 locations, essentially in a single list. If we consider the memory as a row of bytes, with the lowest address on the left and 

the highest address on the right, a simple array will be stored in memory with the fi rst element at the left end and the last 

element at the right end. Similarly, a two-dimensional array is stored “row-wise, starting from the fi rst row and ending with 

the last row, treating each row like a simple array. This is illustrated below.

Column

3 3 array

0

0

1

1

2

2

30

60

10 20

5040

8070 90

row

row 0 row 1 row 2

10 40 7020 50 8030 60 90

[0][0] [0][1] [0][2] 1[ 01][ ] [1][1] [1][2] [2][0] [2][1] [2][2]

1 2 3 4 5 6 7 8 9

Memory Layout

For a multi-dimensional array, the order of storage is that the fi rst element stored has 0 in all its subscripts, the second 

has all of its subscripts 0 except the far right which has a value of 1 and so on.

The elements of a 2 x 3 x 3 array will be stored as under

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

000 001 002 010 011 012 020 021 022 ..

.. 100 101 102 110 111 112 120 121 122

The far right subscript increments fi rst and the other subscripts increment in order from right to left. The sequence 

numbers 1, 2,……, 18 represents the location of that element in the list

Memory Layout



3.22 Computer Programming

 Remember that a three-dimensional array can be represented as a series of two-dimensional arrays as 

shown below:

month city 1 2 ………………… 12

Year 1 1

.

.

.

.

5

month city 1 2 ………………… 12

Year 2 1

.

.

.

.

5

ANSI C does not specify any limit for array dimension. However, most compilers permit seven to ten 

dimensions. Some allow even more.

So far, we created arrays at compile time. An array created at compile time by specifying size in the source 

code has a fi xed size and cannot be modifi ed at run time. The process of allocating memory at compile time 

is known as static memory allocation and the arrays that receive static memory allocation are called static 

arrays. This approach works fi ne as long as we know exactly what our data requirements are.

Consider a situation where we want to use an array that can vary greatly in size. We must guess what will 

be the largest size ever needed and create the array accordingly. A diffi cult task in fact! Modern languages 

like C do not have this limitation. In C it is possible to allocate memory to arrays at run time. This feature 

is known as dynamic memory allocation and the arrays created at run time are called dynamic arrays. This 

effectively postpones the array defi nition to run time.

Dynamic arrays are created using what are known as pointer variables and memory management functions 

malloc, calloc and realloc. These functions are included in the header fi le <stdlib.h>. The concept of dynamic 

arrays is used in creating and manipulating data structures such as linked lists, stacks and queues. 

What we have discussed in this chapter are the basic concepts of arrays and their applications to a limited 

extent. There are some more important aspects of application of arrays. They include:

using printers for accessing arrays;• 

passing arrays as function parameters;• 

arrays as members of structures;• 

using structure type data as array elements;• 

arrays as dynamic data structures; and• 

3.8 DYNAMIC ARRAYS

3.9 MORE ABOUT ARRAYS



Arrays 3.23 

manipulating character arrays and strings.• 

These aspects of arrays are covered later in the following chapters:

 Chapter 3 : Strings

 Chapter 5 : Functions

 Chapter 7 : Structures

 Chapter 6 : Pointers

Just Remember

We need to specify three things, namely, name, • 

type and size, when we declare an array.

Always remember that subscripts begin at 0 • 

(not 1) and end at size –1.

Defi ning the size of an array as a symbolic • 

constant makes a program more scalable.

Be aware of the difference between the “kth • 

element” and the “element k”. The kth 

element has a subscript k-1, whereas the 

element k has a subscript of k itself.

Do not forget to initialize the elements; • 

otherwise they will contain “garbage”.

Supplying more initializers in the initializer • 

list is a compile time error.

Use of invalid subscript is one of the common • 

errors. An incorrect or invalid index may 

cause unexpected results.

When using expressions for subscripts, make • 

sure that their results do not go outside the 

permissible range of 0 to size –1. Referring to 

an element outside the array bounds is an error.

When using control structures for looping • 

through an array, use proper relational 

expressions to eliminate “off-by-one” errors. 

For example, for an array of size 5, the 

following for statements are wrong:

for (i = 1; i < =5; i+ +)
for (i = 0; i < =5; i+ +)

for (i = 0; i = =5; i+ +)
for (i = 0; i < 4; i+ +)

Referring a two-dimensional array element • 

like x[i, j] instead of x[i][j] is acompile time 

error.

When initializing character arrays, provide • 

enough space for the terminating null 

character.

Make sure that the subscript variables have • 

been properly initialized before they are 

used.

Leaving out the subscript reference operator • 

[ ] in an assignment operation is compile time 

error.

During initialization of multi–dimensional • 

arrays, it is an error to omit the array size for 

any dimension other than the fi rst.

An array is just like any other variable with • 

the key exception that it stores multiple values 

of the same type.

A loop construct is most commonly used for • 

initializing an array when the input is to be 

provided by the end user. 

Use multiple arrays for realizing a matrix in a • 

program.

 Multiple Choice Questions

 1. Array is an example of which of the following?

(a) Derived types

(b) Fundamental types

(c) User-defi ned types

(d) None of the above

 2. Which of the following is not a data structure? 

(a) Linked list (b) Stack

(c) Tree (d) Pointer

 3. int a[n] will reserve how many locations in the 

memory?



3.24 Computer Programming

(a) n (b) n-1

(c) n+1 (d) None of the above 

 4. Which of the following is the correct syntax for 

initialisation of one-dimensional arrays?

(a) num[3]= {0 0 0 };

(b) num[3]= {0, 0, 0 };

(c) num[3]= {0; 0 ;0 };

(d) num[3]= 0 

 5. Which of the following is the correct syntax for 

initialisation of two-dimensional arrays?

(a) table[2][3]={0,0,0,1,1,1}

(b) table[2][3]={

  {0,0,0}

  {1,1,1}

  } 

(c) table[2][3]={0,1}, {0,1},{0,1}

(d) None of the above

 6. Which of the following multi-dimensional 

array declaration is correct for realising a 2 × 3 

matrix?

(a) int m[2][3]; (b) int m[3][2]; 

(c) int m[3], m[2]; (d) None of the above

 7. Which of the following is not the name of a 

sorting technique?

(a) Bubble (b) Selection 

(c) Binary (d) Insertion

 8. Which of the following is not the name of a 

searching technique?

(a) Selection

(b) Sequential

(c) Binary

(d) All of the above are searching techniques

  9. In a character string, the last element stores 

which of the following values?

(a) Last element of the string

(b) Blank space

(c) Null character

(d) Newline character

 10. Which of the following is the correct 

expression for retrieving the last–row-last-

column value of a 5 × 4 array matrix A?

(a) A[4,5] (b) A[5,4]

(c) A[5]-> A[4] (d) A[4]-> A[5]

Case Study

1.  Median of a List of Numbers

When all the items in a list are arranged in an order, the middle value which divides the items into two parts 

with equal number of items on either side is called the median. Odd number of items have just one middle 

value while even number of items have two middle values. The median for even number of items is therefore 

designated as the average of the two middle values.

The major steps for fi nding the median are as follows:

1. Read the items into an array while keeping a count of the items.

2. Sort the items in increasing order.

3. Compute median.

The program and sample output are shown in Fig. 3.11. The sorting algorithm used is as follows:

1. Compare the fi rst two elements in the list, say a[1], and a[2]. If a[2] is smaller than a[1], then 

 interchange their values.

2. Compare a[2] and a[3]; interchange them if a[3] is smaller than a[2].

3. Continue this process till the last two elements are compared and interchanged.

4. Repeat the above steps n–1 times.

In repeated trips through the array, the smallest elements ‘bubble up’ to the top. Because of this bubbling 

up effect, this algorithm is called bubble sorting. The bubbling effect is illustrated below for four items.



Arrays 3.25

80

Initial
values

35

After
step 1

35

After
step 2

35

After
step 3

35 80 65 65

65

Trip-1

65 80 10

10 10 10 80

35

35

35

10

35

65

10

65

35

10

10

65

Trip-2

Trip-3

10

65

65

80

80

80

80

80

During the fi rst trip, three pairs of items are compared and interchanged whenever needed. It should be 

noted that the number 80, the largest among the items, has been moved to the bottom at the end of the fi rst 

trip. This means that the element 80 (the last item in the new list) need not be considered any further. Therefore, 

trip-2 requires only two pairs to be compared. This time, the number 65 (the second largest value) has been 

moved down the list. Notice that each trip brings the smallest value 10 up by one level.

The number of steps required in a trip is reduced by one for each trip made. The entire process will be over 

when a trip contains only one step. If the list contains n elements, then the number of comparisons involved 

would be n(n–1)/2.

Program

 #define N 10

 main( )

 {

  int i,j,n;

  float median,a[N],t;

  printf(“Enter the number of items\n”);

(Contd.)



3.26 Computer Programming

  scanf(“%d”, &n);

 /* Reading items into array a */

  printf(“Input %d values \n”,n);

  for (i = 1; i <= n ; i++)

   scanf(“%f”, &a[i]);

 /* Sorting begins */

  for (i = 1 ; i <= n–1 ; i++)

  {   /* Trip-i begins */

   for (j = 1 ; j <= n–i ; j++)

  {

    if (a[j] <= a[j+1])

    { /* Interchanging values */

     t = a[j];

     a[j] = a[j+1];

     a[j+1] = t;

    }

    else

     continue ;

   }

  } /* sorting ends */

 /* calculation of median */

  if ( n % 2 == 0)

    median = (a[n/2] + a[n/2+1])/2.0 ;

  else

   median = a[n/2 + 1];

 /* Printing */

  for (i = 1 ; i <= n ; i++)

   printf(“%f “, a[i]);

  printf(“\n\nMedian is %f\n”, median);

 }

Output

 Enter the number of items

 5

 Input 5 values

 1.111 2.222 3.333 4.444 5.555

 5.555000 4.444000 3.333000 2.222000 1.111000

 Median is 3.333000

 Enter the number of items

 6

 Input 6 values

 3 5 8 9 4 6

 9.000000 8.000000 6.000000 5.000000 4.000000 3.000000

 Median is 5.500000

Fig. 3.11 Program to sort a list of numbers and to determine median



Arrays 3.27

2. Calculation of Standard Deviation

In statistics, standard deviation is used to measure deviation of data from its mean. The formula for calculat-

ing standard deviation of n items is

s = varience

where

variance = 
1

n

2

i 1

n

( )x mi∑

and

m = mean = 
1

n
xi

i 1

n

∑

The algorithm for calculating the standard deviation is as follows:

1. Read n items.

2. Calculate sum and mean of the items.

3. Calculate variance.

4. Calculate standard deviation.

Complete program with sample output is shown in Fig. 3.12.

Program

 #include <math.h>
 #define MAXSIZE 100
 main( )
 {
   int i,n;
   float value [MAXSIZE], deviation,
     sum,sumsqr,mean,variance,stddeviation;
   sum = sumsqr = n = 0 ;
   printf(“Input values: input –1 to end \n”);
   for (i=1; i< MAXSIZE ; i++)
   {
    scanf(“%f”, &value[i]);
    if (value[i] == -1)
     break;
   sum += value[i];
   n += 1;
  }
  mean = sum/(float)n;
  for (i = 1 ; i<= n; i++)
  {
   deviation = value[i] – mean;
   sumsqr += deviation * deviation;
  }
  variance = sumsqr/(float)n ;
  stddeviation = sqrt(variance) ;
  printf(“\nNumber of items : %d\n”,n);
  printf(“Mean : %f\n”, mean);
  printf(“Standard deviation : %f\n”, stddeviation);
 }

(Contd.)



3.28 Computer Programming

3. Evaluating a Test

A test consisting of 25 multiple-choice items is administered to a batch of 3 students. Correct answers and 

student responses are tabulated as shown below:

1

Student 1

Correct

answers

Student 2

Student 3

2

Items

9 098765430 1 2 1 2 3 4 5

The algorithm for evaluating the answers of students is as follows:

1. Read correct answers into an array.

2. Read the responses of a student and count the correct ones.

3. Repeat step-2 for each student.

4. Print the results.

A program to implement this algorithm is given in Fig. 3.13. The program uses the following arrays:

 key[i] - To store correct answers of items

 response[i] - To store responses of students

 correct[i] - To identify items that are answered correctly.

Output

 Input values: input -1 to end

 65 9 27 78 12 20 33 49 -1

 Number of items : 8

 Mean : 36.625000

 Standard deviation : 23.510303

Fig. 3.12 Program to calculate standard deviation

Program

 #define STUDENTS 3

 #define ITEMS 25

 main( )

 {

   char key[ITEMS+1],response[ITEMS+1];

   int count, i, student,n,

    correct[ITEMS+1];

 /* Reading of Correct answers */

   printf(“Input key to the items\n”);

   for(i=0; i < ITEMS; i++)

    scanf(“%c”,&key[i]);

(Contd.)



Arrays 3.29 

   scanf(“%c”,&key[i]);

   key[i] = ‘\0’;

 /* Evaluation begins */

   for(student = 1; student <= STUDENTS ; student++)

   {

 /*Reading student responses and counting correct ones*/

   count = 0;

   printf(“\n”);

   printf(“Input responses of student-%d\n”,student);

   for(i=0; i < ITEMS ; i++)

    scanf(“%c”,&response[i]);

   scanf(“%c”,&response[i]);

   response[i] = ‘\0’;

   for(i=0; i < ITEMS; i++)

    correct[i] = 0;

   for(i=0; i < ITEMS ; i++)

    if(response[i] == key[i])

    {

    count = count +1 ;

    correct[i] = 1 ;

    }

   /* printing of results */

   printf(“\n”);

   printf(“Student-%d\n”, student);

   printf(“Score is %d out of %d\n”,count, ITEMS);

   printf(“Response to the items below are wrong\n”);

   n = 0;

   for(i=0; i < ITEMS ; i++)

    if(correct[i] == 0)

   {

     printf(“%d “,i+1);

     n = n+1;

   }

   if(n == 0)

    printf(“NIL\n”);

   printf(“\n”);

  } /* Go to next student */

 /* Evaluation and printing ends */

 }

Output

 Input key to the items

 abcdabcdabcdabcdabcdabcda

 Input responses of student-1

 abcdabcdabcdabcdabcdabcda

 Student-1

 Score is 25 out of 25

(Contd.)



3.30 Computer Programming

4. Production and Sales Analysis

A company manufactures fi ve categories of products and the number of items manufactured and sold are 

recorded product-wise every week in a month. The company reviews its production schedule at every month-

end. The review may require one or more of the following information:

(a) Value of weekly production and sales.

(b) Total value of all the products manufactured.

(c) Total value of all the products sold.

(d) Total value of each product, manufactured and sold.

Let us represent the products manufactured and sold by two two-dimensional arrays M and S respectively. 

Then,

   M11  M12  M13  M14  M15 

  M = M21 M22 M23 M24 M25 

   M31 M32 M33 M34 M35 

  M41  M42 M43 M44 M45 

   S11  S12  S13  S14  S15 

  S = S21 S22 S23 S24 S25 

   S31 S32 S33 S34 S35 

  S41 S42 S43 S44 S45 

where Mij represents the number of jth type product manufactured in ith week and Sij the number of jth 

product sold in ith week. We may also represent the cost of each product by a single dimensional array C as 

follows:

C = C1 C2 C3 C4 C5

 Response to the following items are wrong

 NIL

 Input responses of student-2

 abcddcbaabcdabcdddddddddd

 Student-2 

 Score is 14 out of 25

 Response to the following items are wrong

 5 6 7 8 17 18 19 21 22 23 25

 Input responses of student-3

 aaaaaaaaaaaaaaaaaaaaaaaaa

 Student-3

 Score is 7 out of 25

 Response to the following items are wrong

 2 3 4 6 7 8 10 11 12 14 15 16 18 19 20 22 23 24

Fig. 3.13 Program to evaluate responses to a multiple-choice test



Arrays 3.31

where Cj is the cost of jth type product.

We shall represent the value of products manufactured and sold by two value arrays, namely, Mvalue and 

Svalue. Then,

Mvalue[i][j] = Mij x Cj

  Svalue[i][j] = Sij x Cj

A program to generate the required outputs for the review meeting is shown in Fig. 3.14. The following 

additional variables are used:

 Mweek[i] = Value of all the products manufactured in week i

 =
j

[ ]i [ ]j
=
∑

1

5

 Sweek[i] = Value of all the products in week i

 = Svalue
j

[ ]i [ ]j
=
∑

1

5

 Mproduct[j] = Value of jth type product manufactured during the month

 = Mvalue
i

[ ]i [ ]j
=
∑

1

4

 Sproduct[j] = Value of jth type product sold during the month

 = Svalue
i

[ ]i [ ]j
=
∑

1

4

 Mtotal = Total value of all the products manufactured during the month

 = Mproduct
i j

[ ]j
=j

∑ ∑Mweek [ ]i
4

1

5

 Stotal = Total value of all the products sold during the month

 = Sproduct
i j

[ ]j
=j

∑ ∑Sweek [ ]i
4

1

5

Program

 main( )

 {

   int M[5][6],S[5][6],C[6],

    Mvalue[5][6],Svalue[5][6],

    Mweek[5], Sweek[5],

    Mproduct[6], Sproduct[6],

    Mtotal, Stotal, i,j,number;

 /*  Input data   */

   printf (“ Enter products manufactured week_wise \n”);

   printf (“ M11,M12,——, M21,M22,—— etc\n”);

(Contd.)



3.32 Computer Programming

   for(i=1; i<=4; i++)

   for(j=1;j<=5; j++)

    scanf(“%d”,&M[i][j]);

   printf (“ Enter products sold week_wise\n”);

   printf (“ S11,S12,——, S21,S22,—— etc\n”);

   for(i=1; i<=4; i++)

   for(j=1; j<=5; j++)

    scanf(“%d”, &S[i][j]);

   printf(“ Enter cost of each product\n”);

    for(j=1; j <=5; j++)

    scanf(“%d”,&C[j]);

 /* Value matrices of production and sales */

   for(i=1; i<=4; i++)

   for(j=1; j<=5; j++)

   {

    Mvalue[i][j] = M[i][j] * C[j];

    Svalue[i][j] = S[i][j] * C[j];

   }

 /* Total value of weekly production and sales */

   for(i=1; i<=4; i++)

  {

    Mweek[i] = 0 ;

    Sweek[i] = 0 ;

   for(j=1; j<=5; j++)

   {

   Mweek[i] += Mvalue[i][j];

   Sweek[i] += Svalue[i][j];

   }

 }

 /* Monthly value of product_wise production and sales */

   for(j=1; j<=5; j++)

 {

   Mproduct[j] = 0 ;

   Sproduct[j] = 0 ;

   for(i=1; i<=4; i++)

   {

    Mproduct[j] += Mvalue[i][j];

    Sproduct[j] += Svalue[i][j];

   }

  }

 /* Grand total of production and sales values */

   Mtotal = Stotal = 0;

   for(i=1; i<=4; i++)

   {

    Mtotal += Mweek[i];

    Stotal += Sweek[i];

   }

(Contd.)



Arrays 3.33 

   /***********************************************

    Selection and printing of information required

   ***********************************************/

   printf(“\n\n”);

   printf(“ Following is the list of things you can\n”);

   printf(“ request for. Enter appropriate item number\n”);

   printf(“ and press RETURN Key\n\n”);

   printf(“ 1.Value matrices of production & sales\n”);

   printf(“ 2.Total value of weekly production & sales\n”);

   printf(“ 3.Product_wise monthly value of production &”);

   printf(“ sales\n”);

   printf(“ 4.Grand total value of production & sales\n”);

   printf(“ 5.Exit\n”);

   number = 0;

   while(1)

   {   /* Beginning of while loop */

    printf(“\n\n ENTER YOUR CHOICE:”);

    scanf(“%d”,&number);

    printf(“\n”);

    if(number == 5)

    {

     printf(“ G O O D B Y E\n\n”);

     break;

    }

   switch(number)

   { /* Beginning of switch */

 /* V A L U E M A T R I C E S */

   case 1:

    printf(“ VALUE MATRIX OF PRODUCTION\n\n”);

    for(i=1; i<=4; i++)

    {

     printf(“ Week(%d)\t”,i);

     for(j=1; j <=5; j++)

     printf(“%7d”, Mvalue[i][j]);

     printf(“\n”);

    }

    printf(“\n VALUE MATRIX OF SALES\n\n”);

   for(i=1; i <=4; i++)

   {

    printf(“ Week(%d)\t”,i);

    for(j=1; j <=5; j++)

     printf(“%7d”, Svalue[i][j]);

    printf(“\n”);

   }

   break;

 /* W E E K L Y A N A L Y S I S */

   case 2:

    printf(“ TOTAL WEEKLY PRODUCTION & SALES\n\n”);

    printf(“        PRODUCTION   SALES\n”);

(Contd.)



3.34 Computer Programming

    printf(“        —————     ——  \n”);

    for(i=1; i <=4; i++)

    {

     printf(“ Week(%d)\t”, i);

     printf(“%7d\t%7d\n”, Mweek[i], Sweek[i]);

    }

    break;

 /* P R O D U C T W I S E A N A L Y S I S */

   case 3:

    printf(“ PRODUCT_WISE TOTAL PRODUCTION &”);

    printf(“ SALES\n\n”);

    printf(“        PRODUCTION SALES\n”);

    printf(“        —————    ——  \n”);

    for(j=1; j <=5; j++)

    {

     printf(“ Product(%d)\t”, j);

     printf(“%7d\t%7d\n”,Mproduct[j],Sproduct[j]);

    }

   break;

 /* G R A N D T O T A L S */

   case 4:

    printf(“ GRAND TOTAL OF PRODUCTION & SALES\n”);

    printf(“\n Total production = %d\n”, Mtotal);

    printf(“ Total sales = %d\n”, Stotal);

    break;

 /* D E F A U L T */

   default :

    printf(“ Wrong choice, select again\n\n”);

    break;

  } /* End of switch */

 } /* End of while loop */

  printf(“ Exit from the program\n\n”);

 } /* End of main */

Output

 Enter products manufactured week_wise

  M11, M12, ——––, M21, M22, ——–– etc

  11   15  12  14  13

  13   13  14  15  12

  12   16  10  15  14

  14   11  15  13  12

 Enter products sold week_wise

  S11,S12,——––, S21,S22,——–– etc

  10  13  9  12  11

  12  10  12  14  10

  11  14  10  14  12

  12  10  13  11  10

(Contd.)



Arrays 3.35 

 Enter cost of each product

 10 20 30 15 25

 Following is the list of things you can

 request for. Enter appropriate item number

 and press RETURN key

 1.Value matrices of production & sales

 2.Total value of weekly production & sales

 3.Product_wise monthly value of production & sales

 4.Grand total value of production & sales

 5.Exit

 ENTER YOUR CHOICE:1

 VALUE MATRIX OF PRODUCTION

   Week(1)   110   300   360   210   325

   Week(2)   130   260   420   225   300

   Week(3)   120   320   300   225   350

   Week(4)   140   220   450   185   300

 VALUE MATRIX OF SALES

   Week(1)   100   260   270   180   275

   Week(2)   120   200   360   210   250

   Week(3)   110   280   300   210   300

   Week(4)   120   200   390   165   250

 ENTER YOUR CHOICE:2

 TOTAL WEEKLY  PRODUCTION &  SALES

    PRODUCTION   SALES

    __________  _______

  Week(1)   1305    1085

  Week(2)   1335    1140

  Week(3)   1315    1200

  Week(4)   1305   1125

 ENTER YOUR CHOICE:3

 PRODUCT_WISE TOTAL    PRODUCTION &  SALES

         PRODUCTION   SALES

        __________  _____

   Product(1)  500  450

   Product(2) 1100  940

   Product(3) 1530 1320

   Product(4) 855 765 

   Product(5) 1275 1075

 ENTER YOUR CHOICE:4

 GRAND TOTAL OF PRODUCTION & SALES

 Total production = 5260

 Total sales  = 4550

 ENTER YOUR CHOICE:5

 G O O D B Y E

 Exit from the program

Fig. 3.14 Program for production and sales analysis



3.36 Computer Programming

Review Questions

 3.1 State whether the following statements are 

true or false.

 (a) The type of all elements in an array must 

be the same.

 (b) When an array is declared, C automat-

ically initializes its elements to zero.

 (c) An expression that evaluates to an 

integral value may be used as a subscript.

 (d) Accessing an array outside its range is a 

compile time error.

 (e) A char type variable cannot be used as a 

subscript in an array.

 (f) An unsigned long int type can be used as 

a subscript in an array.

 (g) In C, by default, the fi rst subscript is zero.

 (h) When initializing a multidimensional 

array, not specifying all its dimensions is 

an error.

 (i) When we use expressions as a subscript, its 

result should be always greater than zero.

 (j) In C, we can use a maximum of 4 

dimensions for an array.

 (k) In declaring an array, the array size can be 

a constant or variable or an expression.

 (l) The declaration int x[2] = {1,2,3}; is 

illegal.

 3.2 Fill in the blanks in the following statements.

 (a) The variable used as a subscript in an 

array is popularly known as _______ 

variable.

 (b) An array can be initialized either at 

compile time or at _______.

 (c) An array created using malloc function at 

run time is referred to as _______ array.

 (d) An array that uses more than two 

subscript is referred to as _______ array.

 (e)  _______ is the process of arranging the 

elements of an array in order.

 3.3 Identify errors, if any, in each of the following 

array declaration statements, assuming 

that ROW and COLUMN are declared as 

symbolic constants:

 (a) int score (100);

 (b) fl oat values [10,15];

 (c) fl oat average[ROW],[COLUMN];

 (d) char name[15];

 (e) int sum[ ];

 (f) double salary [i + ROW]

 (g) long int number [ROW]

 (h) int array x[COLUMN];

 3.4 Identify errors, if any, in each of the following 

initialization statements.

 (a) int number[ ] = {0,0,0,0,0};

 (b) fl oat item[3][2] = {0,1,2,3,4,5};

 (c) char word[ ] = {‘A’,‘R’, ‘R’, ‘A’, ‘Y’};

 (d) int m[2,4] = {(0,0,0,0)(1,1,1,1)};

 (e) fl oat result[10] = 0;

 3.5 Assume that the arrays A and B are declared 

as follows:

  int A[5][4];

  fl oat B[4];

  Find the errors (if any) in the following 

program segments.

 (a) for (i=1; i<=5; i++)

  for(j=1; j<=4; j++)

  A[i][j] = 0;

 (b) for (i=1; i<4; i++)

  scanf(“%f”, B[i]);

 (c) for (i=0; i<=4; i++)

  B[i] = B[i]+i;

 (d) for (i=4; i>=0; i––)

  for (j=0; j<4; j++)

  A[i][j] = B[j] + 1.0;

 3.6 Write a for loop statement that initializes all 

the diagonal elements of an array to one and 

others to zero as shown below. Assume 5 

rows and 5 columns.

1 0 0 0 0 . . . . . 0

0 1 0 0 0 . . . . . 0

0 0 1 0 0 . . . . . 0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

0 0 0 0 0 . . . . . 1



Arrays 3.37

 3.7 We want to declare a two-dimensional integer 

type array called matrix for 3 rows and 5 

columns. Which of the following declarations 

are correct?

 (a) int maxtrix [3],[5];

 (b) int matrix [5] [3];

 (c) int matrix [1+2] [2+3];

 (d) int matrix [3,5];

 (e) int matrix [3] [5];

 3.8 Which of the following initialization 

statements are correct?

 (a) char str1[4] = “GOOD”;

 (b) char str2[ ] = “C”;

 (c) char str3[5] = “Moon”;

 (d) char str4[ ] = {‘S’, ‘U’, ‘N’};

 (e) char str5[10] = “Sun”;

 3.9 What is a data structure? Why is an array 

called a data structure?

 3.10 What is a dynamic array? How is it created? 

Give a typical example of use of a dynamic 

array.

 3.11  What is the error in the following program?
 main ( )

 {

    int x ;

    float y [ ] ;

    ......

 }

 3.12 What happens when an array with a specifi ed 

size is assigned

 (a) with values fewer than the specifi ed size; 

and

 (b) with values more than the specifi ed size.

 3.13 Discuss how initial values can be assigned to 

a multidimen sional array.

 3.14 What is the output of the following program?
 main ( )

 {

    int m [ ] = { 1,2,3,4,5 }

    int x, y = 0;

    for (x = 0; x < 5; x++ )

         y = y + m [ x ];

    printf(“%d”, y) ;

 }

 3.15 What is the output of the following program?
 main ( )

 {

    chart string [ ] = “HELLO WORLD” ;

    int m;

    for (m = 0; string [m] != ‘\0’; m++ )

      if ( (m%2) == 0)

      printf(“%c”, string [m] );

 }

Programming Exercises

 3.1 Write a program for fi tting a straight line 

through a set of points (x
i
,y

i
), i = 1,....,n.

  The straight line equation is

y = mx + c

  and the values of m an c are gven by

  

m
n x y

n

c
1

n
S y m S x

iy

2

i im S x

=
( ) ( )( )yiy

( )2 ( )xi

S= m( )

)xi (∑
)xi

2 − (

  All summations are from 1 to n.

 3.2 The daily maximum temperatures recorded in 

10 cities during the month of January (for all 

31 days) have been tabulated as follows:

City

day 1 2 3  - - -  - - - - - - - - - 10

1     - - -  - - - - - - - - -

2

3

-

-

-

-

31



3.38 Computer Programming

  Write a program to read the table elements 

into a two-dimensional array temperature, 

and to fi nd the city and day corresponding to

 (a) the highest temperature and

 (b) the lowest temperature.

 3.3 An election is contested by 5 candidates. The 

candidates are numbered 1 to 5 and the voting 

is done by marking the candidate number 

on the ballot paper. Write a program to read 

the ballots and count the votes cast for each 

candidate using an array variable count. In 

case, a number read is outside the range 1 to 

5, the ballot should be considered as a ‘spoilt 

ballot’ and the program should also count the 

number of spoilt ballots.

 3.4 The following set of numbers is popularly 

known as Pascal’s triangle.

  1 

  1 1

  1 2 1

  1 3 3 1

  1 4 6 4 1

  1 5 10 10 5 1

  - - - - - - -

  - - - - - - - -

  If we denote rows by i and columns by j, then 

any element (except the boundary elements) 

in the triangle is given by

p
ij
 = p 

i–1
, 

j–1
 + p 

i–1
,
j

  Write a program to calculate the elements of 

the Pascal triangle for 10 rows and print the 

results.

 3.5 The annual examination results of 100 

students are tabulated as follows:

Roll No. Subject 1 Subject 2 Subject 3 

.

.

.

  Write a program to read the data and 

determine the following:

 (a) Total marks obtained by each student.

 (b) The highest marks in each subject and the 

Roll No. of the student who secured it.

 (c) The student who obtained the highest 

total marks.

 3.6 Given are two one-dimensional arrays A and 

B which are sorted in ascending order.Write 

a program to merge them into a single sorted 

array C that contains every item from arrays A 

and B, in ascending order.

 3.7 Two matrices that have the same number 

of rows and columns can be multiplied to 

produce a third matrix. Consider the following 

two matrices.

  A = 

a a a

a a a

a a

11 12 1n

11 22 2n

n1 nn

�

�

⋅⋅
⋅⋅

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎦⎦

⎥⎥

. .

. .

. .

  B = 

b b b

b

. .

. .

. .

b b

11 12 1n

11

n1 nn

�⋅⋅⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎦⎦

⎥⎥

b b�⋅⋅22 2n

  The product of A and B is a third matrix C of 

size n × n where each element of C is given 

by the following equation.

C
ij
 = a

ik
b

kj

  Write a program that will read the values of 

elements of A and B and produce the product 

matrix C.

 3.8 Write a program that fi lls a fi ve-by-fi ve matrix 

as follows:

   • Upper left triangle with +1s

   • Lower right triangle with –1s

   • Right to left diagonal with zeros

  Display the contents of the matrix using not 

more than two printf statements

 3.9 Selection sort is based on the following idea:

  Selecting the largest array element and 

swapping it with the last array element leaves 

an unsorted list whose size is 1 less than the 

size of the original list. If we repeat this step 

again on the unsorted list we will have an 

ordered list of size 2 and an unordered list 



Arrays 3.39 

size n–2 . When we repeat this until the size 

of the unsorted list becomes one, the result 

will be a sorted list.

  Write a program to implement this algorithm.

 3.10 Develop a program to implement the binary 

search algorithm. This technique compares 

the search key value with the value of the 

element that is midway in a “sorted” list. 

Then;

 (a) If they match, the search is over.

 (b) If the search key value is less than the 

middle value, then the fi rst half of the list 

contains the key value.

 (c) If the search key value is greater than 

the middle value, then the second half 

contains the key value.

  Repeat this “divide-and-conquer” strategy 

until we have a match. If the list is reduced to 

one non-matching element, then the list does 

not contain the key value.

  Use the sorted list created in Exercise 3.9 or 

use any other sorted list.

 3.11 Write a program that will compute the length 

of a given character string.

 3.12 Write a program that will count the number 

occurrences of a specifi ed character in a given 

line of text. Test your program.

 3.13 Write a program to read a matrix of size m × n 

and print its transpose.

 3.14 Every book published by international 

publishers should carry an International 

Standard Book Number (ISBN). It is a 10 

character 4 part number as shown below.

0-07-041183-2

  The fi rst part denotes the region, the second 

represents pub lisher, the third identifi es the 

book and the fourth is the check digit. The 

check digit is computed as follows:

  Sum = (1 × fi rst digit) + (2 × second digit) + 

(3 × third digit) + - - - - + (9 × ninth digit).

  Check digit is the remainder when sum is 

divided by 11. Write a program that reads a 

given ISBN number and checks whether it 

represents a valid ISBN.

 3.15 Write a program to read two matrices A and B 

and print the following:

 (a) A + B; and (b) A – B.

Key Terms

Array• : It is a fi xed-size sequenced collection 

of elements of the same data type.

Structured data types• : These data types 

provide an organizational scheme that shows 

the relationships among the individual elements 

and facilitate effi cient data manipulations.

One-dimensional array• : In this array, a list 

of items is given one variable name using 

only one subscript.

Sorting• : It is the process of arranging 

elements in the list according to their values, 

in ascending or descending order.

Searching• : It is the process of fi nding the 

location of the specifi ed element in a list.

Two-dimensional array• : It is used to store a 

table of values with two dimensions.

Multi-dimensional array• : It is used to store 

data with three or more dimensions.

Static memory allocation• : It is the process 

of allocating memory at compile time.

Static arrays• : These are the arrays, which 

receive static memory allocation.

Dynamic memory allocation• : It is the 

process of allocating memory at run time.

Dynamic arrays• : These are the arrays created 

at run time.





 4 Strings and Iteration

U N I T

A string is a sequence of characters that is treated as a single data item. We have used strings in a number of 

examples in the past. Any group of characters (except double quote sign) defi ned between double quotation 

marks is a string constant. Example:

“Man is obviously made to think.”

If we want to include a double quote in the string to be printed, then we may use it with a back slash as 

shown below.

“\” Man is obviously made to think,\” said Pascal.”

For example,

printf (“\” Well Done !”\”);

will output the string

“ Well Done !”

while the statement

printf(“ Well Done !”);

will output the string

Well Done !

Character strings are often used to build meaningful and readable programs. The common operations 

performed on character strings include:

Reading and writing strings.• 

Combining strings together.• 

Copying one string to another.• 

Comparing strings for equality.• 

Extracting a portion of a string.• 

In this chapter, we shall discuss these operations in detail and examine library functions that implement 

them.

C does not support strings as a data type. However, it allows us to represent strings as character arrays. In C, 

therefore, a string variable is any valid C variable name and is always declared as an array of characters. The 

general form of declaration of a string variable is:

char string_name[ size ];

4.1 INTRODUCTION

4.2 DECLARING AND INITIALIZING STRING VARIABLES



4.2 Computer Programming

The size determines the number of characters in the string_name. Some examples are:

char city[10];
char name[30];

When the compiler assigns a character string to a character array, it automatically supplies a null character 

(‘\0 ‘) at the end of the string. Therefore, the size should be equal to the maximum number of characters in 

the string plus one.

Like numeric arrays, character arrays may be initialized when they are declared. C permits a character 

array to be initialized in either of the following two forms:

char city [9] = “ NEW YORK “;
char city [9]={‘N’,‘E’,‘W’,‘ ‘,‘Y’,‘O’,‘R’,‘K’,‘\0’};

The reason that city had to be 9 elements long is that the string NEW YORK contains 8 characters and one 

element space is provided for the null terminator. Note that when we initialize a character array by listing its 

elements, we must supply explicitly the null terminator.

C also permits us to initialize a character array without specifying the number of elements. In such cases, 

the size of the array will be determined automatically, based on the number of elements initialized. For 

example, the statement

char string [ ] = {‘G’,‘O’,‘O’,‘D’,‘\0’};

defi nes the array string as a fi ve element array.

We can also declare the size much larger than the string size in the initializer. That is, the statement.

char str[10] = “GOOD”;

is permitted. In this case, the computer creates a character array of size 10, places the value “GOOD” in it, 

terminates with the null character, and initializes all other elements to NULL. The storage will look like:

G O O D 0 0 0 0 0 0\ \ \ \ \ \

However, the following declaration is illegal.

char str2[3] = “GOOD”;

This will result in a compile time error. Also note that we cannot separate the initialization from declara-

tion. That is,

char str3[5];
str3 = “GOOD”;

is not allowed. Similarly,

char s1[4] = “abc”;
char s2[4];
s2 = s1; /* Error */

is not allowed. An array name cannot be used as the left operand of an assignment operator.

You must be wondering, “why do we need a terminating null character?” As we know, a string is not a data type in C, 

but it is considered a data structure stored in an array. The string is a variable-length structure and is stored in a fi xed-

length array. The array size is not always the size of the string and most often it is much larger than the string stored in it. 

 Therefore, the last element of the array need not represent the end of the string. We need some way to determine the end 

of the string data and the null character serves as the “end-of-string” marker.

Terminating Null Character



Strings and Iteration 4.3 

4.3.1 Using scanf Function

The familiar input function scanf can be used with %s format specifi cation to read in a string of characters. 

Example:

char address[10]
scanf(“%s”, address);

The problem with the scanf function is that it terminates its input on the fi rst white space it fi nds. A white 

space includes blanks, tabs, carriage returns, form feeds, and new lines. Therefore, if the following line of text 

is typed in at the terminal,

NEW YORK

then only the string “NEW” will be read into the array address, since the blank space after the word ‘NEW’ 

will terminate the reading of string.

The scanf function automatically terminates the string that is read with a null character and therefore 

the character array should be large enough to hold the input string plus the null character. Note that unlike 

previous scanf calls, in the case of character arrays, the ampersand (&) is not required before the variable 

name.

The address array is created in the memory as shown below:

Note that the unused locations are fi lled with garbage.

If we want to read the entire line “NEW YORK”, then we may use two character arrays of appropriate 

sizes. That is,

char adr1[5], adr2[5];
scanf(“%s %s”, adr1, adr2);

with the line of text

NEW YORK

will assign the string “NEW” to adr1 and “YORK” to adr2.

EXAMPLE 4.1 Write a program to read a series of words from a terminal using scanf function.

The program shown in Fig. 4.1 reads four words and displays them on the screen. Note that the string ‘Oxford 

Road’ is treated as two words while the string ‘Oxford-Road’ as one word.

4.3 READING STRINGS FROM TERMINAL

Program
 main( )
 {
   char word1[40], word2[40], word3[40], word4[40];

   printf(“Enter text : \n”);
   scanf(“%s %s”, word1, word2);
   scanf(“%s”, word3);
   scanf(“%s”, word4);

(Contd.)



4.4 Computer Programming

We can also specify the fi eld width using the form %ws in the scanf statement for reading a specifi ed 

number of characters from the input string . Example:

scanf(“%ws”, name);

Here, two things may happen.

1. The width w is equal to or greater than the number of characters typed in. The entire string will be 

stored in the string variable.

2. The width w is less than the number of characters in the string. The excess characters will be trun-

cated and left unread.

Consider the following statements:

char name[10];
scanf(“%5s”, name);

The input string RAM will be stored as:

The input string KRISHNA will be stored as:

4.3.2 Reading a Line of Text

We have seen just now that scanf with %s or %ws can read only strings without whitespaces. That is, they 

cannot be used for reading a text containing more than one word. However, C supports a format specifi cation 

known as the edit set conversion code %[. .] that can be used to read a line containing a variety of characters, 

   printf(“\n”);
   printf(“word1 = %s\nword2 = %s\n”, word1, word2);
   printf(“word3 = %s\nword4 = %s\n”, word3, word4);
 }
Output
 Enter text :
 Oxford Road, London M17ED

 word1 = Oxford
 word2 = Road,
 word3 = London
 word4 = M17ED

 Enter text :
 Oxford-Road, London-M17ED United Kingdom
 word1 = Oxford-Road
 word2 = London-M17ED
 word3 = United
 word4 = Kingdom

Fig. 4.1 Reading a series of words using scanf function



Strings and Iteration 4.5 

including whitespaces. Recall that we have used this conversion code in Chapter 5. For example, the program 

segment

char line [80];
scanf(”%[^\n]”, line);
printf(“%s”, line);

will read a line of input from the keyboard and display the same on the screen. We would very rarely use this 

method, as C supports an intrinsic string function to do this job. This is discussed in the next section.

4.3.3 Using getchar and gets Functions

We have discussed in Chapter 5 as to how to read a single character from the terminal, using the function 

getchar. We can use this function repeatedly to read successive single characters from the input and place 

them into a character array. Thus, an entire line of text can be read and stored in an array. The reading is ter-

minated when the newline character (‘\n’) is entered and the null character is then inserted at the end of the 

string. The getchar function call takes the form:

char ch;
ch = getchar( );

Note that the getchar function has no parameters.

EXAMPLE 4.2 Write a program to read a line of text containing a series of words from the terminal.

The program shown in Fig. 4.2 can read a line of text (up to a maximum of 80 characters) into the string line 

using getchar function. Every time a character is read, it is assigned to its location in the string line and then 

tested for newline character. When the newline character is read (signalling the end of line), the reading loop 

is terminated and the newline character is replaced by the null character to indicate the end of character 

string.

When the loop is exited, the value of the index c is one number higher than the last character position in 

the string (since it has been incremented after assigning the new character to the string). Therefore the index 

value c-1 gives the position where the null character is to be stored.

Program
 #include <stdio.h>
 main( )
 {
  char line[81], character;
  int c;
  c = 0;
  printf(“Enter text. Press <Return> at end\n”);
  do
  {
  character = getchar();
  line[c] = character;
  c++;
  }
  while(character != ‘\n’);
  c = c - 1;

(Contd.)



4.6 Computer Programming

Another and more convenient method of reading a string of text containing whitespaces is to use the 

library function gets available in the <stdio.h> header fi le. This is a simple function with one string param-

eter and called as under:

gets (str);

str is a string variable declared properly. It reads characters into str from the keyboard until a new-line 

 character is encountered and then appends a null character to the string. Unlike scanf, it does not skip 

whitespaces. For example the code segment

char line [80];
gets (line);
printf (“%s”, line);

reads a line of text from the keyboard and displays it on the screen. The last two statements may be combined 

as follows:

printf(“%s”, gets(line));

(Be careful not to input more character that can be stored in the string variable used. Since C does not check 

array-bounds, it may cause problems.)

C does not provide operators that work on strings directly. For instance we cannot assign one string to 

another directly. For example, the assignment statements.

string = “ABC”;
string1 = string2;

are not valid. If we really want to copy the characters in string2 into string1, we may do so on a character-

by-character basis.

EXAMPLE 4.3 Write a program to copy one string into another and count the number of characters 

copied.

The program is shown in Fig. 4.3. We use a for loop to copy the characters contained inside string2 into the 

string1. The loop is terminated when the null character is reached. Note that we are again assigning a null 

character to the string1.

  line[c] = ‘\0’;
  printf(“\n%s\n”, line);
 }
Output
 Enter text. Press <Return> at end
 Programming in C is interesting.
 Programming in C is interesting.
 Enter text. Press <Return> at end
 National Centre for Expert Systems, Hyderabad.
 National Centre for Expert Systems, Hyderabad.

Fig. 4.2 Program to read a line of text from terminal

Program
 main( )
 {
  char string1[80], string2[80];
  int i;

(Contd.)



Strings and Iteration 4.7 

4.4.1 Using printf Function

We have used extensively the printf function with %s format to print strings to the screen. The format %s can 

be used to display an array of characters that is terminated by the null character. For example, the statement

printf(“%s”, name);

can be used to display the entire contents of the array name.

We can also specify the precision with which the array is displayed. For instance, the specifi cation

%10.4

indicates that the fi rst four characters are to be printed in a fi eld width of 10 columns.

However, if we include the minus sign in the specifi cation (e.g., %-10.4s), the string will be printed left-

justifi ed. The Example 4.4 illustrates the effect of various %s specifi cations.

EXAMPLE 4.4 Write a program to store the string “United Kingdom” in the array country and display 

the string under various format specifi cations.

The program and its output are shown in Fig. 4.4. The output illustrates the following features of the %s 

specifi cations.

1. When the fi eld width is less than the length of the string, the entire string is printed.

2. The integer value on the right side of the decimal point specifi es the number of characters to be 

printed.

3. When the number of characters to be printed is specifi ed as zero, nothing is printed.

4. The minus sign in the specifi cation causes the string to be printed left-justifi ed.

5. The specifi cation % .ns prints the fi rst n characters of the string.

4.4 WRITING STRINGS TO SCREEN

Fig. 4.3 Copying one string into another

  printf(“Enter a string \n”);
  printf(“?”);

  scanf(“%s”, string2);
  for( i=0 ; string2[i] != ‘\0’; i++)
    string1[i] = string2[i];
  string1[i] = ‘\0’;

  printf(“\n”);
  printf(“%s\n”, string1);
  printf(“Number of characters = %d\n”, i );
 }
Output
 Enter a string
 ?Manchester

 Manchester
 Number of characters = 10

 Enter a string
 ?Westminster 

  Westminster
 Number of characters = 11



4.8 Computer Programming

The printf on UNIX supports another nice feature that allows for variable fi eld width or precision. For 

instance

printf(“%*.*s\n”, w, d, string);

prints the fi rst d characters of the string in the fi eld width of w.

This feature comes in handy for printing a sequence of characters. Example 4.5 illustrates this.

Program
 main()
 {
  char country[15] = “United Kingdom”;
  printf(“\n\n”);
  printf(“*123456789012345*\n”);
  printf(“ ----- \n”);
  printf(“%15s\n”, country);
  printf(“%5s\n”, country);
  printf(“%15.6s\n”, country);
  printf(“%-15.6s\n”, country);
  printf(“%15.0s\n”, country);
  printf(“%.3s\n”, country);
  printf(“%s\n”, country);
  printf(“----- \n”);
 }
Output
 *123456789012345*
 -----
 United Kingdom
 United Kingdom
    United
 United

 Uni
 United Kingdom
 -----

Fig. 4.4 Writing strings using %s format

EXAMPLE 4.5 Write a program using for loop to print the following output:

 C

 CP

 CPr

 CPro

 .....

 .....

 CProgramming

 CProgramming

 .....

 .....

 CPro

 CPr

 CP

 C



Strings and Iteration 4.9 

The outputs of the program in Fig. 4.5, for variable specifi cations %12.*s, %.*s, and %*.1s are shown in 

Fig. 4.6, which further illustrates the variable fi eld width and the precision specifi cations.

Program

 main()

 {

  int c, d;

  char string[] = “CProgramming”;

  printf(“\n\n”);

  printf(“------------\n”);

  for( c = 0 ; c <= 11 ; c++ )

  {

   d = c + 1;

   printf(“|%-12.*s|\n”, d, string);

  }

  printf(“|————————————|\n”);

  for( c = 11 ; c >= 0 ; c—— )

  {

   d = c + 1;

   printf(“|%-12.*s|\n”, d, string);

  }

  printf(“------------\n”);

 }

Output 

  C 

  CP 

  CPr 

  CPro

  CProg 

  CProgr

  CProgra

  CProgram

  CProgramm

  CProgrammi

  CProgrammin

  CProgramming

  CProgramming

  CProgrammin

  CProgrammi

  CProgramm

  CProgram

  CProgra

  CProgr

  CProg

  CPro

  CPr

  CP

  C

Fig. 4.5 Illustration of variable fi eld specifi cations by printing sequences of characters



4.10 Computer Programming

4.4.2 Using putchar and puts Functions

Like getchar, C supports another character handling function putchar to output the values of character vari-

ables. It takes the following form:

char ch = ‘A’;
putchar (ch);

The function putchar requires one parameter. This statement is equivalent to:

printf(“%c”, ch);

We have used putchar function in Chapter 5 to write characters to the screen. We can use this function 

repeatedly to output a string of characters stored in an array using a loop. Example:

char name[6] = “PARIS”
for (i=0, i<5; i++)
  putchar(name[i];
putchar(‘\n’);

Another and more convenient way of printing string values is to use the function puts declared in the 

header fi le <stdio.h>. This is a one parameter function and invoked as under:

puts ( str );

where str is a string variable containing a string value. This prints the value of the string variable str and then 

moves the cursor to the beginning of the next line on the screen. For example, the program segment

char line [80];
gets (line);
puts (line);

 C C| C|
 CP  CP|  C|
 CPr  CPr|   C|
 CPro CPro|    C|
 CProg  CProg|     C|
 CProgr  CProgr|      C|
 CProgra  CProgra|       C|
 CProgram  CProgram|        C|
 CProgramm  CProgramm|         C|
 CProgrammi  CProgrammi|          C|
 CProgrammin  CProgrammin|           C|
 CProgramming  CProgramming|            C|
 _________________ ___________________ ____________________

 CProgramming  CProgramming|            C|
 CProgrammin CProgrammin|           C|
 CProgrammi CProgrammi|          C|
 CProgramm CProgramm|         C|
 CProgram CProgram|        C|
 CProgra  CProgra|       C|
 CProgr  CProgr|      C|
 CProg  CProg|     C|
 CPro CPro|    C|
 CPr CPr|   C|
 CP CP|  C|
 C C| C|

 (a) %12.*s (b) %.*s (c) %*.1s

Fig. 4.6 Further illustrations of variable specifi cations



Strings and Iteration 4.11 

reads a line of text from the keyboard and displays it on the screen. Note that the syntax is very simple 

 compared to using the scanf and printf statements.

C allows us to manipulate characters the same way we do with numbers. Whenever a character constant or 

character variable is used in an expression, it is automatically converted into an integer value by the system. 

The integer value depends on the local character set of the system.

To write a character in its integer representation, we may write it as an integer. For example, if the machine 

uses the ASCII representation, then,

x = ‘a’;
printf(“%d\n”,x);

will display the number 97 on the screen.

It is also possible to perform arithmetic operations on the character constants and variables. For example,

x = ‘z’–1;

is a valid statement. In ASCII, the value of ‘z’ is 122 and therefore, the statement will assign the value 121 to 

the variable x.

We may also use character constants in relational expressions. For example, the expression

ch >= ‘A’ && ch <= ‘Z’

would test whether the character contained in the variable ch is an upper-case letter.

We can convert a character digit to its equivalent integer value using the following relationship:

x = character - ‘0’;

where x is defi ned as an integer variable and character contains the character digit. For example, let us 

assume that the character contains the digit ‘7’,

Then,

 x = ASCII value of ‘7’ – ASCII value of ‘0’

 = 55 – 48

 = 7

The C library supports a function that converts a string of digits into their integer values. The function 

takes the form

x = atoi(string);

x is an integer variable and string is a character array containing a string of digits. Consider the following 

segment of a program:

number = “1988”;
year = atoi(number);

number is a string variable which is assigned the string constant “1988”. The function atoi converts the 

string “1988” (contained in number) to its numeric equivalent 1988 and assigns it to the integer variable 

year. String conversion functions are stored in the header fi le <std.lib.h>.

EXAMPLE 4.6 Write a program which would print the alphabet set a to z and A to Z in decimal and 

character form.

The program is shown in Fig. 4.7. In ASCII character set, the decimal numbers 65 to 90 represent upper case 

alphabets and 97 to 122 represent lower case alphabets. The values from 91 to 96 are excluded using an if 

statement in the for loop.

4.5 ARITHMETIC OPERATIONS ON CHARACTERS



4.12 Computer Programming

Just as we cannot assign one string to another directly, we cannot join two strings together by the simple 

arithmetic addition. That is, the statements such as

string3 = string1 + string2;
string2 = string1 + “hello”;

are not valid. The characters from string1 and string2 should be copied into the string3 one after the other. 

The size of the array string3 should be large enough to hold the total characters.

The process of combining two strings together is called concatenation. Example 4.7 illustrates the concat-

enation of three strings.

EXAMPLE 4.7 The names of employees of an organization are stored in three arrays, namely fi rst_

name, second_name, and last_name. Write a program to concatenate the three parts 

into one string to be called name.

The program is given in Fig. 4.8. Three for loops are used to copy the three strings. In the fi rst loop, the 

 characters contained in the fi rst_name are copied into the variable name until the null character is reached. 

The null character is not copied; instead it is replaced by a space by the assignment statement

name[i] = ‘ ’ ;

Similarly, the second_name is copied into name, starting from the column just after the space created by 

the above statement. This is achieved by the assignment statement

name[i+j+1] = second_name[j];

4.6 PUTTING STRINGS TOGETHER

Program
 main()
 {
  char c;
  printf(“\n\n”);
  for( c = 65 ; c <= 122 ; c = c + 1 )
  {
   if( c > 90 && c < 97 )
    continue;
   printf(“|%4d - %c “, c, c);
  }
  printf(“|\n”);
 }
Output
 | 65 - A | 66 - B | 67 - C | 68 - D | 69 - E | 70 - F
 | 71 - G | 72 - H | 73 - I | 74 - J | 75 - K | 76 - L
 | 77 - M| 78 - N| 79 - O| 80 - P| 81 - Q| 82 - R
 | 83 - S| 84 - T| 85 - U| 86 - V| 87 - W| 88 - X 
 | 89 - Y| 90 - Z| 97 - a| 98 - b| 99 - c| 100 - d
 |101 - e| 102 - f| 103 - g| 104 - h| 105 - i| 106 - j
 |107 - k| 108 - l| 109 - m| 110 - n| 111 - o| 112 - p
 |113 - q| 114 - r| 115 - s| 116 - t| 117 - u| 118 - v
 |119 - w| 120 - x| 121 - y| 122 - z|

Fig. 4.7 Printing of the alphabet set in decimal and character form



Strings and Iteration 4.13 

If fi rst_name contains 4 characters, then the value of i at this point will be 4 and therefore the fi rst 

 character from second_name will be placed in the fi fth cell of name. Note that we have stored a space in the 

fourth cell.

In the same way, the statement

name[i+j+k+2] = last_name[k];

is used to copy the characters from last_name into the proper locations of name.

At the end, we place a null character to terminate the concatenated string name. In this example, it is 

important to note the use of the expressions i+j+1 and i+j+k+2.

Program
 main()
 {
  int i, j, k ;
  char first_name[10] = {“VISWANATH”} ;
  char second_name[10] = {“PRATAP”} ;
  char last_name[10] = {“SINGH”} ;
  char name[30] ;
 /* Copy first_name into name */
  for( i = 0 ; first_name[i] != ‘\0’ ; i++ )
   name[i] = first_name[i] ;
 /* End first_name with a space */
  name[i] = ‘ ‘ ;
 /* Copy second_name into name */
  for( j = 0 ; second_name[j] != ‘\0’ ; j++ )
  name[i+j+1] = second_name[j] ;
 /* End second_name with a space */
  name[i+j+1] = ‘ ‘ ;
 /* Copy last_name into name */
  for( k = 0 ; last_name[k] != ‘\0’; k++ )
  name[i+j+k+2] = last_name[k] ;
 /* End name with a null character */
  name[i+j+k+2] = ‘\0’ ;
  printf(“\n\n”) ;
  printf(“%s\n”, name) ;
 }
Output
 VISWANATH PRATAP SINGH

Fig. 4.8 Concatenation of strings

Once again, C does not permit the comparison of two strings directly. That is, the statements such as

if(name1 == name2)
if(name == “ABC”)

are not permitted. It is therefore necessary to compare the two strings to be tested, character by character. The 

comparison is done until there is a mismatch or one of the strings terminates into a null character, whichever 

occurs fi rst. The following segment of a program illustrates this.

4.7 COMPARISON OF TWO STRINGS



4.14 Computer Programming

i=0;
while(str1[i] == str2[i] && str1[i] != ‘\0’
    && str2[i] != ‘\0’)
  i = i+1;
if (str1[i] == ‘\0’ && str2[i] == ‘\0’)
   printf(“strings are equal\n”);
 else
  printf(“strings are not equal\n”);

Fortunately, the C library supports a large number of string-handling functions that can be used to carry out 

many of the string manipulations discussed so far. Following are the most commonly used string-handling 

functions. 

Function Action

strcat() concatenates two strings

strcmp() compares two strings

strcpy() copies one string over another

strlen() fi nds the length of a string

We shall discuss briefl y how each of these functions can be used in the processing of strings.

4.8.1 strcat() Function

The strcat function joins two strings together. It takes the following form:

strcat(string1, string2);

string1 and string2 are character arrays. When the function strcat is executed, string2 is appended to 

string1. It does so by removing the null character at the end of string1 and placing string2 from there. The 

string at string2 remains unchanged. For example, consider the following three strings:

Execution of the statement

strcat(part1, part2);

will result in:

4.8 STRING-HANDLING FUNCTIONS



Strings and Iteration 4.15 

while the statement

will result in:

We must make sure that the size of string1 (to which string2 is appended) is large enough to accommodate 

the fi nal string.

strcat function may also append a string constant to a string variable. The following is valid:

strcat(part1,”GOOD”);

C permits nesting of strcat functions. For example, the statement

strcat(strcat(string1,string2), string3);

is allowed and concatenates all the three strings together. The resultant string is stored in string1.

4.8.2 strcmp() Function

The strcmp function compares two strings identifi ed by the arguments and has a value 0 if they are equal. If 

they are not, it has the numeric difference between the fi rst nonmatching characters in the strings. It takes the 

form:

strcmp(string1, string2);

string1 and string2 may be string variables or string constants. Examples are:

strcmp(name1, name2);
strcmp(name1, “John”);
strcmp(“Rom”, “Ram”);

Our major concern is to determine whether the strings are equal; if not, which is alphabetically above. The 

value of the mismatch is rarely important. For example, the statement

strcmp(“their”, “there”);

will return a value of –9 which is the numeric difference between ASCII “i” and ASCII “r”. That is, “i” minus 

“r” in ASCII code is –9. If the value is negative, string1 is alphabetically above string2.

4.8.3 strcpy() Function

The strcpy function works almost like a string-assignment operator. It takes the form:

strcpy(string1, string2);

and assigns the contents of string2 to string1. string2 may be a character array variable or a string constant. 

For example, the statement

strcpy(city, “DELHI”);

will assign the string “DELHI” to the string variable city. Similarly, the statement



4.16 Computer Programming

strcpy(city1, city2);

will assign the contents of the string variable city2 to the string variable city1. The size of the array city1 

should be large enough to receive the contents of city2.

4.8.4 strlen() Function

This function counts and returns the number of characters in a string. It takes the form

n = strlen(string);

Where n is an integer variable, which receives the value of the length of the string. The argument may be 

a string constant. The counting ends at the fi rst null character.

EXAMPLE 4.8 s1, s2, and s3 are three string variables. Write a program to read two string constants 

into s1 and s2 and compare whether they are equal or not. If they are not, join them 

together. Then copy the contents of s1 to the variable s3. At the end, the program 

should print the contents of all the three variables and their lengths.

The program is shown in Fig. 4.9. During the fi rst run, the input strings are “New” and “York”. These strings 

are compared by the statement

x = strcmp(s1, s2);

Since they are not equal, they are joined together and copied into s3 using the statement

strcpy(s3, s1);

The program outputs all the three strings with their lengths.

During the second run, the two strings s1 and s2 are equal, and therefore, they are not joined together. In 

this case all the three strings contain the same string constant “London”.

Program
 #include <string.h>
 main()
 { char s1[20], s2[20], s3[20];
  int x, l1, l2, l3;
  printf(“\n\nEnter two string constants \n”);
  printf(“?”);
  scanf(“%s %s”, s1, s2);
 /* comparing s1 and s2 */
  x = strcmp(s1, s2);
  if(x != 0)
  {  printf(“\n\nStrings are not equal \n”);
   strcat(s1, s2); /* joining s1 and s2 */
  }
  else
    printf(“\n\nStrings are equal \n”);
 /* copying s1 to s3
  strcpy(s3, s1);
 /* Finding length of strings */
  l1 = strlen(s1);
  l2 = strlen(s2);
  l3 = strlen(s3);

(Contd.)



Strings and Iteration 4.17 

Other String Functions

The header fi le <string.h> contains many more string manipulation functions. They might be useful in cer-

tain situations.

4.8.5 strncpy() Function

In addition to the function strcpy that copies one string to another, we have another function strncpy that 

copies only the left-most n characters of the source string to the target string variable. This is a three-param-

eter function and is invoked as follows:

strncpy(s1, s2, 5);

This statement copies the fi rst 5 characters of the source string s2 into the target string s1. Since the fi rst 5 

characters may not include the terminating null character, we have to place it explicitly in the 6th position of 

s2 as shown below:

s1[6] =’\0’;

Now, the string s1 contains a proper string.

4.8.6 strncmp() Function

A variation of the function strcmp is the function strncmp. This function has three parameters as illustrated 

in the function call below:

strncmp (s1, s2, n);

this compares the left-most n characters of s1 to s2 and returns.

(a) 0 if they are equal;

(b) negative number, if s1 sub-string is less than s2; and

(c) positive number, otherwise.

Fig. 4.9 Illustration of string handling functions

 /* output */
  printf(“\ns1 = %s\t length = %d characters\n”, s1, l1);
  printf(“s2 = %s\t length = %d characters\n”, s2, l2);
  printf(“s3 = %s\t length = %d characters\n”, s3, l3);
 }
Output
 Enter two string constants
 ? New York

 Strings are not equal
 s1 = NewYork length = 7 characters
 s2 = York   length = 4 characters
 s3 = NewYork length = 7 characters

 Enter two string constants
 ? London London

 Strings are equal
 s1 = London length = 6 characters
 s2 = London length = 6 characters
 s3 = London length = 6 characters



4.18 Computer Programming

4.8.7 strncat() Function

This is another concatenation function that takes three parameters as shown below:

strncat (s1, s2, n);

This call will concatenate the left-most n characters of s2 to the end of s1. Example:

4.8.8 strstr() Function

It is a two-parameter function that can be used to locate a sub-string in a string. This takes the forms:

strstr (s1, s2);
strstr (s1, “ABC”);

The function strstr searches the string s1 to see whether the string s2 is contained in s1. If yes, the function 

returns the position of the fi rst occurrence of the sub-string. Otherwise, it returns a NULL pointer. Example.

if (strstr (s1, s2) == NULL)
  printf(“substring is not found”);
else
  printf(“s2 is a substring of s1”);

We also have functions to determine the existence of a character in a string. The function call

strchr(s1, ‘m’);

will locate the fi rst occurrence of the character ‘m’ and the call

strrchr(s1, ‘m’);

will locate the last occurrence of the character ‘m’ in the string s1.

• When allocating space for a string during declaration, remember to count the terminating null character.

• When creating an array to hold a copy of a string variable of unknown size, we can compute the size required 

using the expression 

  strlen (stringname) +1.

• When copying or concatenating one string to another, we must ensure that the target (destination) string has 

enough space to hold the incoming characters. Remember that no error message will be available even if this 

condition is not satisfi ed. The copying may overwrite the memory and the program may fail in an unpredictable 

way.

• When we use strncpy to copy a specifi c number of characters from a source string, we must ensure to append 

the null character to the target string, in case the number of characters is less than or equal to the source 

string.

Warnings



Strings and Iteration 4.19 

We often use lists of character strings, such as a list of the names of students in a class, list of the names of 

employees in an organization, list of places, etc. A list of names can be treated as a table of strings and a two-

dimensional character array can be used to store the entire list. For example, a character array student[30]

[15] may be used to store a list of 30 names, each of length not more than 15 characters. Shown below is a 

table of fi ve cities:

This table can be conveniently stored in a character array city by using the following declaration:

 char city[ ] [ ]

  {

   “Chandigarh”,

   “Madras”,

   “Ahmedabad”,

   “Hyderabad”,

   “Bombay”

  } ;

To access the name of the ith city in the list, we write

city[i-1]

and therefore city[0] denotes “Chandigarh”, city[1] denotes “Madras” and so on. This shows that once an 

array is declared as two-dimensional, it can be used like a one-dimensional array in further manipulations. 

That is, the table can be treated as a column of strings.

EXAMPLE 4.9 Write a program that would sort a list of names in alphabetical order.

A program to sort the list of strings in alphabetical order is given in Fig. 4.10. It employs the method of 

bubble sorting described in Case Study 1 in the previous chapter.

4.9 TABLE OF STRINGS

Program
 #define ITEMS 5
 #define MAXCHAR 20
 main( )
 {
  char string[ITEMS][MAXCHAR], dummy[MAXCHAR];
  int i = 0, j = 0;
  /* Reading the list */
  printf (“Enter names of %d items \n “,ITEMS);

(Contd.)



4.20 Computer Programming

Note that a two-dimensional array is used to store the list of strings. Each string is read using a scanf 

 function with %s format. Remember, if any string contains a white space, then the part of the string after 

the white space will be treated as another item in the list by the scanf. In such cases, we should read the 

entire line as a string using a suitable algorithm. For example, we can use gets function to read a line of text 

containing a series of words. We may also use puts function in place of scanf for output.

Other aspects of strings we have not discussed in this chapter include:

Manipulating strings using pointers.• 

Using string as function parameters.• 

Declaring and defi ning strings as members of structures.• 

These topics will be dealt with later when we discuss functions, structures and pointers.

We have seen in the previous chapter that it is possible to execute a segment of a program repeatedly by 

introducing a counter and later testing it using the if statement. While this method is quite satisfactory for all 

4.10 OTHER FEATURES OF STRINGS

4.11 DECISION MAKING AND LOOPING

  while (i < ITEMS)
   scanf (“%s”, string[i++]);
 /* Sorting begins */
  for (i=1; i < ITEMS; i++) /* Outer loop begins */
  {
   for (j=1; j <= ITEMS-i ; j++) /*Inner loop begins*/
  {
   if (strcmp (string[j-1], string[j]) > 0)
   { /* Exchange of contents */
    strcpy (dummy, string[j-1]);
    strcpy (string[j-1], string[j]);
    strcpy (string[j], dummy );
   }
  } /* Inner loop ends */
 } /* Outer loop ends */
 /* Sorting completed */
 printf (“\nAlphabetical list \n\n”);
 for (i=0; i < ITEMS ; i++)
  printf (“%s”, string[i]);
 }
Output
 Enter names of 5 items
 London Manchester Delhi Paris Moscow
 Alphabetical list
 Delhi
 London
 Manchester
 Moscow
 Paris

Fig. 4.10 Sorting of strings in alphabetical order



Strings and Iteration 4.21 

practical purposes, we need to initialize and increment a counter and test its value at an appropriate place in 

the program for the completion of the loop. For example, suppose we want to calculate the sum of squares of 

all integers between 1 and 10, we can write a program using the if statement as follows:

--------
--------
sum = 0;
n = 1;
loop:
sum = sum + n*n;
if (n == 10)
  goto print;
else
{
  n = n + 1;
  goto loop;
}
print:

--------
--------

This program does the following things:

1. Initializes the variable n.

2. Computes the square of n and adds it to sum.

3. Tests the value of n to see whether it is equal to 10 or not. If it is equal to 10, then the program prints 

the results.

4. If n is less than 10, then it is incremented by one and the control goes back to compute the sum 

again.

The program evaluates the statement

sum = sum + n*n;

10 times. That is, the loop is executed 10 times. 

This number can be increased or decreased eas-

ily by modifying the relational expression app-

ropriately in the statement if (n == 10). On such 

occasions where the exact number of repeti-

tions are known, there are more convenient 

methods of looping in C. These looping capa-

bilities enable us to develop concise programs 

containing repetitive processes without the use 

of goto statements.

In looping, a sequence of statements are exe-

cuted until some conditions for termination of 

the loop are satisfi ed. A program loop therefore 

consists of two segments, one known as the 

body of the loop and the other known as the 

control statement. The control statement tests 

certain conditions and then directs the repeated 

execution of the statements contained in the 

body of the loop.

L
o
o
p

n = 10,
end of loop

Fig. 4.11   Loop control structures



4.22 Computer Programming

Depending on the position of the control statement in the loop, a control structure may be classifi ed either 

as the entry-controlled loop or as the exit-controlled loop. The fl ow charts in Fig. 4.11 illustrate these struc-

tures. In the entry-controlled loop, the control conditions are tested before the start of the loop execution. If 

the conditions are not satisfi ed, then the body of the loop will not be executed. In the case of an exit-controlled 

loop, the test is performed at the end of the body of the loop and therefore the body is executed uncondition-

ally for the fi rst time. The entry-controlled and exit-controlled loops are also known as pre-test and post-test 

loops respectively.

The test conditions should be carefully stated in order to perform the desired number of loop executions. 

It is assumed that the test condition will eventually transfer the control out of the loop. In case, due to some 

reason it does not do so, the control sets up an infi nite loop and the body is executed over and over again.

A looping process, in general, would include the following four steps:

1. Setting and initialization of a condition variable.

2. Execution of the statements in the loop.

3. Test for a specifi ed value of the condition variable for execution of the loop.

4. Incrementing or updating the condition variable.

The test may be either to determine whether the loop has been repeated the specifi ed number of times or 

to determine whether a particular condition has been met.

The C language provides for three constructs for performing loop operations. They are:

1. The while statement.

2. The do statement.

3. The for statement.

We shall discuss the features and applications of each of these statements in this chapter.

Based on the nature of control variable and the kind of value assigned to it for testing the control expression, the loops 

may be classifi ed into two general categories:

1. Counter-controlled loops

2. Sentinel-controlled loops

When we know in advance exactly how many times the loop will be executed, we use a counter-controlled loop. We 

use a control variable known as counter. The counter must be initialized, tested and updated properly for the desired loop 

operations. The number of times we want to execute the loop may be a constant or a variable that is assigned a value. 

A counter-controlled loop is sometimes called defi nite repetition loop.

In a sentinel-controlled loop, a special value called a sentinel value is used to change the loop control expression 

from true to false. For example, when reading data we may indicate the “end of data” by a special value, like –1 and 999. 

The control variable is called sentinel variable. A sentinel-controlled loop is often called indefi nite repetition loop be-

cause the number of repetitions is not known before the loop begins executing.

Sentinel Loops

The simplest of all the looping structures in C is the while statement. We have used while in many of our 

earlier programs. The basic format of the while statement is

while (test condition)
{
   body of the loop
}

The while is an entry-controlled loop statement. The test-condition is evaluated and if the condition is 

true, then the body of the loop is executed. After execution of the body, the test-condition is once again 

4.12 THE WHILE STATEMENT



Strings and Iteration 4.23 

 evaluated and if it is true, the body is executed once again. This process of repeated execution of the body 

continues until the test-condition fi nally becomes false and the control is transferred out of the loop. On exit, 

the program continues with the statement immediately after the body of the loop.

The body of the loop may have one or more statements. The braces are needed only if the body con-

tains two or more statements. However, it is a good practice to use braces even if the body has only one 

statement.

We can rewrite the program loop discussed in Section 9.1 as follows:

    ========
    sum = 0;
    n = 1;          /* Initialization */
    while(n <= 10)       /* Testing */
    {
 loop    sum = sum + n * n;
       n = n+1;       /* Incrementing */
    }
    printf(“sum = %d\n”, sum);
    ========

The body of the loop is executed 10 times for n = 1, 2, ....., 10, each time adding the square of the value of 

n, which is incremented inside the loop. The test condition may also be written as n < 11; the result would be 

the same. This is a typical example of counter-controlled loops. The variable n is called counter or control 

variable.

Another example of while statement, which uses the keyboard input is shown below:

=========
character = ‘ ‘ ;
while (character != ‘Y’)
    character = getchar();
xxxxxxx;
=========

First the character is initialized to ‘ ‘. The while statement then begins by testing whether character is 

not equal to Y. Since the character was initialized to ‘ ‘, the test is true and the loop statement

character = getchar();

is executed. Each time a letter is keyed in, the test is carried out and the loop statement is executed until the 

letter Y is pressed. When Y is pressed, the condition becomes false because character equals Y, and the loop 

terminates, thus transferring the control to the statement xxxxxxx;. This is a typical example of sentinel-

controlled loops. The character constant ‘y’ is called sentinel value and the variable character is the condi-

tion variable, which often referred to as the sentinel variable.

EXAMPLE 4.10 A program to evaluate the equation

 y = xn

 when n is a non-negative integer, is given in Fig. 4.12.

The variable y is initialized to 1 and then multiplied by x, n times using the while loop. The loop control 

 variable count is initialized outside the loop and incremented inside the loop. When the value of count 

becomes greater than n, the control exists the loop.



4.24 Computer Programming

The while loop construct that we have discussed in the previous section, makes a test of condition before 

the loop is executed. Therefore, the body of the loop may not be executed at all if the condition is not 

 satisfi ed at the very fi rst attempt. On some occasions it might be necessary to execute the body of the loop 

before the test is performed. Such situations can be handled with the help of the do statement. This takes 

the form:

do

{

  body of the loop

}

while (test-condition);

On reaching the do statement, the program proceeds to evaluate the body of the loop fi rst. At the end of 

the loop, the test-condition in the while statement is evaluated. If the condition is true, the program continues 

to evaluate the body of the loop once again. This process continues as long as the condition is true. When 

the condition becomes false, the loop will be terminated and the control goes to the statement that appears 

immediately after the while statement.

Since the test-condition is evaluated at the bottom of the loop, the do...while construct provides an exit-

controlled loop and therefore the body of the loop is always executed at least once.

4.13 THE DO STATEMENT

Program

 main()

 {

  int count, n;

  float x, y;

  printf(“Enter the values of x and n : “);

  scanf(“%f %d”, &x, &n);

  y = 1.0;

  count = 1;     /* Initialisation */

  /* LOOP BEGINs */

  while ( count <= n)  /* Testing */

  {

   y = y*x;

   count++;    /* Incrementing */

  }

  /* END OF LOOP */

  printf(“\nx = %f; n = %d; x to power n = %f\n”,x,n,y);

 }

Output

 Enter the values of x and n : 2.5 4

 x = 2.500000; n = 4; x to power n = 39.062500

 Enter the values of x and n : 0.5 4

 x = 0.500000; n = 4; x to power n = 0.062500

Fig. 4.12 Program to compute x to the power n using while loop



Strings and Iteration 4.25 

A simple example of a do...while

do

printf ("Input a number \ n");

loop number = getnum ( );

(number > 0);while

This segment of a program reads a number from the keyboard until a zero or a negative number is keyed 

in, and assigned to the sentinel variable number.

The test conditions may have compound relations as well. For instance, the statement

while (number > 0 && number < 100);

in the above example would cause the loop to be executed as long as the number keyed in lies between 0 

and 100.

Consider another example:

  ------
  I = 1;            /* Initializing */
  sum = 0;
  do
  {
   sum = sum + I;
 loop  I = I+2;           /* Incrementing */
  }
  while(sum < 40 || I < 10);      /* Testing */
  printf(“%d %d\n”, I, sum);
  ------

The loop will be executed as long as one of the two relations is true.

EXAMPLE 4.11 A program to print the multiplication table from 1 x 1 to 12 x 10 is given in Fig. 4.13.

 This program contains two do.... while loops in nested form. The outer loop is controlled by the variable row 

and executed 12 times. The inner loop is controlled by the variable column and is executed 10 times, each 

time the outer loop is executed. That is, the inner loop is executed a total of 120 times, each time printing a 

value in the table.

Program:
 #define COLMAX 10
 #define ROWMAX 12
 main()
 {
   int row,column, y;
   row = 1;
   printf(“ MULTIPLICATION TABLE \n”);
   printf(“-----------------------\n”);
   do /*......OUTER LOOP BEGINS........*/
   {
     column = 1;

(Contd.)



4.26 Computer Programming

Notice that the printf of the inner loop does not contain any new line character (\n). This allows the 

 printing of all row values in one line. The empty printf in the outer loop initiates a new line to print the 

next row.

4.14.1 Simple ‘for’ Loops

The for loop is another entry-controlled loop that provides a more concise loop control structure. The general 

form of the for loop is

for ( initialization ; test-condition ; increment)
{
  body of the loop
}

The execution of the for statement is as follows:

1. Initialization of the control variables is done fi rst, using assignment statements such as i = 1 and count 

= 0. The variables i and count are known as loop-control variables.

2. The value of the control variable is tested using the test-condition. The test-condition is a relational 

expression, such as i < 10 that determines when the loop will exit. If the condition is true, the body of 

4.14 THE FOR STATEMENT

     do /*.......INNER LOOP BEGINS.......*/
     {
      y = row * column;
      printf(“%4d”, y);
      column = column + 1;
   }

   while (column <= COLMAX); /*... INNER LOOP ENDS ...*/
   printf(“\n”);
   row = row + 1;
   }
   while (row <= ROWMAX);/*..... OUTER LOOP ENDS .....*/
   printf(“---------------------------------\n”);
 }
Output
    MULTIPLICATION TABLE
 1 2 3 4 5 6 7 8 9 10
 2 4 6 8 10 12 14 16 18 20
 3 6 9 12 15 18 21 24 27 30
 4 8 12 16 20 24 28 32 36 40
 5 10 15 20 25 30 35 40 45 50
 6 12 18 24 30 36 42 48 54 60
 7 14 21 28 35 42 49 56 63 70
 8 16 24 32 40 48 56 64 72 80
 9 18 27 36 45 54 63 72 81 90
 10 20 30 40 50 60 70 80 90 100
 11 22 33 44 55 66 77 88 99 110
 12 24 36 48 60 72 84 96 108 120

Fig. 4.13 Printing of a multiplication table using do...while loop



Strings and Iteration 4.27

the loop is executed; otherwise the loop is terminated and the execution continues with the statement 

that immediately follows the loop.

 3. When the body of the loop is executed, the control is transferred back to the for statement after 

evaluating the last statement in the loop. Now, the control variable is incremented using an  assignment 

statement such as i = i+1 and the new value of the control variable is again tested to see whether it 

satisfi es the loop condition. If the condition is satisfi ed, the body of the loop is again executed. This 

process continues till the value of the control variable fails to satisfy the test-condition.

NOTE: C99 enhances the for loop by allowing declaration of variables in the initialization portion. See the 

Appendix “C99 Features”.

Consider the following segment of a program:

    for ( x = 0 ; x <= 9 ; x = x+1)
loop   {
      printf(“d”, x);
    }
    printf(“\n”);

This for loop is executed 10 times and prints the digits 0 to 9 in one line. The three sections enclosed 

within parentheses must be separated by semicolons. Note that there is no semicolon at the end of the 

increment section, x = x+1.

The for statement allows for negative increments. For example, the loop discussed above can be written 

as follows:

for ( x = 9 ; x >= 0 ; x = x–1 )
   printf(“d”, x);
printf(“\n”);

This loop is also executed 10 times, but the output would be from 9 to 0 instead of 0 to 9. Note that braces 

are optional when the body of the loop contains only one statement.

Since the conditional test is always performed at the beginning of the loop, the body of the loop may not 

be executed at all, if the condition fails at the start. For example,

for (x = 9; x < 9; x = x-1)
printf(“d”, x);

will never be executed because the test condition fails at the very beginning itself.

Let us again consider the problem of sum of squares of integers discussed in Section 4.1. This problem can 

be coded using the for statement as follows:

-----------------
sum = 0;
for (n = 1; n <= 10; n = n+1)
{
   sum = sum+ n*n;
}
printf(“sum = %d\n”, sum);
-----------------

The body of the loop

sum = sum + n*n;

is executed 10 times for n = 1, 2, ....., 10 each time incrementing the sum by the square of the value of n.



4.28 Computer Programming

One of the important points about the for loop is that all the three actions, namely initialization, testing, 

and incrementing, are placed in the for statement itself, thus making them visible to the programmers and 

users, in one place. The for statement and its equivalent of while and do statements are shown in Table 4.1.

Table 4.1 Comparison of the Three Loops

for while do

for (n=1; n<=10; ++n)

{

  ————

  ————

}

n = 1;

while (n<=10)

{

  ————

  ————

  n = n+1;

}

  n = 1;

do

{

  ————

  ————

  n = n+1;

}

while (n<=10);

EXAMPLE 4.12 The program in Fig. 4.14 uses a for loop to print the “Powers of 2” table for the 

power 

The program evaluates the value

p = 2n

successively by multiplying 2 by itself n times.

q = 2–n =
1

p

Note that we have declared p as a long int and q as a double.

4.14.2 Additional Features of for Loop

The for loop in C has several capabilities that are not found in other loop constructs. For example, more than 

one variable can be initialized at a time in the for statement. The statements

p = 1;
for (n=0; n<17; ++n)

can be rewritten as

for (p=1, n=0; n<17; ++n)

Program 

 main()

 {

  long int p;

  int n;

  double q;

  printf(“---------------------------------\n”);

  printf(“ 2 to power n    n    2 to power -n\n”);

  printf(“---------------------------------\n”);

(Contd.)



Strings and Iteration 4.29 

Note that the initialization section has two parts p = 1 and n = 1 separated by a comma.

Like the initialization section, the increment section may also have more than one part. For example, the 

loop

for (n=1, m=50; n<=m; n=n+1, m=m-1)
{
  p = m/n;
  printf(“d d d\n”, n, m, p);
}

is perfectly valid. The multiple arguments in the increment section are separated by commas.

  p = 1;

  for (n = 0; n < 21 ; ++n) /* LOOP BEGINS */

  {

   if (n == 0)

    p = 1;

   else

    p = p * 2;

   q = 1.0/(double)p ;

   printf(“%10ld %10d %20.12lf\n”, p, n, q);

  }             /* LOOP ENDS */

  printf(“---------------------------------\n”);

 }

Output  

 ------------------------------------------------------

2 to power n   n 2 to power -n

 ------------------------------------------------------

 1  0  1.000000000000

 2 1 0.500000000000

 4 2 0.250000000000

 8 3 0.125000000000

 16 4 0.062500000000

 32 5 0.031250000000

 64 6 0.015625000000

 128 7 0.007812500000

 256 8 0.003906250000

 512 9 0.001953125000

 1024 10 0.000976562500

 2048 11 0.000488281250

 4096 12 0.000244140625

 8192 13 0.000122070313

 16384 14 0.000061035156

 32768 15 0.000030517578

 65536 16 0.000015258789

 131072 17 0.000007629395

 262144 18 0.000003814697

 524288 19 0.000001907349

 1048576 20 0.000000953674

------------------------------------------------------

Fig. 4.14 Program to print ‘Power of 2’ table using for loop



4.30 Computer Programming

The third feature is that the test-condition may have any compound relation and the testing need not be 

limited only to the loop control variable. Consider the example below:

sum = 0;

for (i = 1; i < 20 && sum < 100; ++i)

{

  sum = sum+i;

  printf(“d d\n”, i, sum);
}

The loop uses a compound test condition with the counter variable i and sentinel variable sum. The loop 

is executed as long as both the conditions i < 20 and sum < 100 are true. The sum is evaluated inside the 

loop.

It is also permissible to use expressions in the assignment statements of initialization and increment 

 sections. For example, a statement of the type

for (x = (m+n)/2; x > 0; x = x/2)

is perfectly valid.

Another unique aspect of for loop is that one or more sections can be omitted, if necessary. Consider the 

following statements:

 -------

m = 5;

for ( ; m != 100 ; )

{

  printf(“d\n”, m);

  m = m+5;

}

-------

Both the initialization and increment sections are omitted in the for statement. The initialization has been 

done before the for statement and the control variable is incremented inside the loop. In such cases, the 

 sections are left ‘blank’. However, the semicolons separating the sections must remain. If the test-condition 

is not present, the for statement sets up an ‘infi nite’ loop. Such loops can be broken using break or goto state-

ments in the loop.

We can set up time delay loops using the null statement as follows:

       for ( j = 1000; j > 0; j = j-1)

         ;

This loop is executed 1000 times without producing any output; it simply causes a time delay. Notice that 

the body of the loop contains only a semicolon, known as a null statement. This can also be written as

for (j=1000; j > 0; j = j-1)

This implies that the C compiler will not give an error message if we place a semicolon by mistake at the 

end of a for statement. The semicolon will be considered as a null statement and the program may produce 

some nonsense.

4.14.3 Nesting of for Loops

Nesting of loops, that is, one for statement within another for statement, is allowed in C. For example, two 

loops can be nested as follows:



Strings and Iteration 4.31 

for (i = 1; i < 10; ++i)for (i = 1; i < 10; ++i)

for (j = 1; j != 5; ++j)

Inner
loop

Outer
loop

{

{

}

}

The nesting may continue up to any desired level. The loops should be properly indented so as to enable 

the reader to easily determine which statements are contained within each for statement. (ANSI C allows up 

to 15 levels of nesting. However, some compilers permit more.)

The program to print the multiplication table discussed in Example 4.2 can be written more concisely 

using nested for statements as follows:

 -------------

for (row = 1; row <= ROWMAX ; ++row)

{

 for (column = 1; column <= COLMAX ; ++column)

 {

   y = row * column;

   printf(“4d”, y);

 }

 printf(“\n”);

}

-------------

The outer loop controls the rows while the inner loop controls the columns.

EXAMPLE 4.13 A class of n students take an annual examination in m subjects. A program to read 

the marks obtained by each student in various subjects and to compute and print the 

total marks obtained by each of them is given in Fig. 4.15.

The program uses two for loops, one for controlling the number of students and the other for controlling 

the number of subjects. Since both the number of students and the number of subjects are requested by the 

program, the program may be used for a class of any size and any number of subjects.

The outer loop includes three parts:

(1) reading of roll-numbers of students, one after another;

(2) inner loop, where the marks are read and totalled for each student; and

(3) printing of total marks and declaration of grades.



4.32 Computer Programming

Program

 #define FIRST 360

 #define SECOND 240

 main()

 {

  int n, m, i, j,

    roll_number, marks, total;

  printf(“Enter number of students and subjects\n”);

  scanf(“%d %d”, &n, &m);

  printf(“\n”);

  for (i = 1; i <= n ; ++i)

  {

    printf(“Enter roll_number : “);

    scanf(“%d”, &roll_number);

    total = 0 ;

    printf(“\nEnter marks of %d subjects for ROLL NO %d\n”,

        m,roll_number);

    for (j = 1; j <= m; j++)

    {

      scanf(“%d”, &marks);

      total = total + marks;

    }

    printf(“TOTAL MARKS = %d “, total);

    if (total >= FIRST)

      printf(“( First Division )\n\n”);

    else if (total >= SECOND)

       printf(“( Second Division )\n\n”);

     else

       printf(“( *** F A I L *** )\n\n”);

  }   

 }

Output 

  Enter number of students and subjects

  3 6

  Enter roll_number : 8701

  Enter marks of 6 subjects for ROLL NO 8701

  81 75 83 45 61 59

  TOTAL MARKS = 404 ( First Division )

  Enter roll_number : 8702

  Enter marks of 6 subjects for ROLL NO 8702

  51 49 55 47 65 41

  TOTAL MARKS = 308 ( Second Division )

  Enter roll_number : 8704

  Enter marks of 6 subjects for ROLL NO 8704

  40 19 31 47 39 25

  TOTAL MARKS = 201 ( *** F A I L *** )

Fig. 4.15 Illustration of nested for loops



Strings and Iteration 4.33 

Loops perform a set of operations repeatedly until the control variable fails to satisfy the test-condition. The  number 

of times a loop is repeated is decided in advance and the test condition is written to achieve this. Sometimes, when 

executing a loop it becomes desirable to skip a part of the loop or to leave the loop as soon as a certain condition 

occurs. For example, consider the case of searching for a particular name in a list  containing, say, 100 names. A 

program loop written for reading and testing the names 100 times must be terminated as soon as the desired name 

is found. C permits a jump from one statement to another within a loop as well as a jump out of a loop.

4.15.1 Jumping Out of a Loop

An early exit from a loop can be accomplished by using the break statement or the goto statement. We have 

already seen the use of the break in the switch statement and the goto in the if...else construct. These 

 statements can also be used within while, do, or for loops. They are illustrated in Fig. 4.16 and Fig. 4.17.

4.15 JUMPS IN LOOPS

Given a problem, the programmer’s fi rst concern is to decide the type of loop structure to be used. To choose one of the 

three loop supported by C, we may use the following strategy:

• Analyse the problem and see whether it required a pre-test or post-test loop.

• If it requires a post-test loop, then we can use only one loop, do while.

• If it requires a pre-test loop, then we have two choices: for and while.

• Decide whether the loop termination requires counter-based control or sentinel-based control.

• Use for loop if the counter-based control is necessary.

• Use while loop if the sentinel-based control is required.

• Note that both the counter-controlled and sentinel-controlled loops can be implemented by all the three control 

structures.

Selecting a Loop

while

while

do

for for

for

if (condition) if (condition)

if (error)

if (condition)

(a) (b)

break; break;

;

break;

break;

Exit

from

loop

Exit

from

loop

Exit

from

loop

Exit

from

inner

loop

(      )

(      )

(      )(      )

(      )

Fig. 4.16 Exiting a loop with break statement



4.34 Computer Programming

When a break statement is encountered inside a loop, the loop is immediately exited and the program 

continues with the statement immediately following the loop. When the loops are nested, the break would 

only exit from the loop containing it. That is, the break will exit only a single loop.

Since a goto statement can transfer the control to any place in a program, it is useful to provide branching 

within a loop. Another important use of goto is to exit from deeply nested loops when an error occurs. A 

simple break statement would not work here.

EXAMPLE 4.14 The program in Fig. 4.18 illustrates the use of the break statement in a C program.

The program reads a list of positive values and calculates their average. The for loop is written to read 1000 

values. However, if we want the program to calculate the average of any set of values less than 1000, then we 

must enter a ‘negative’ number after the last value in the list, to mark the end of input.

while for

for

if(error)if (condition)

if (error)

stop;

error;

error;

stop:

(a) (b)

abc;

abc:

goto

goto
goto

Jump

within

loop

Exit

from

loop
Exit

from

two

loops

(      )(      )

(      )

Fig. 4.17 Jumping within and exiting from the loops with goto statement

Program
 main()
 {
  int m;
  float x, sum, average;
  printf(“This program computes the average of a
        set of numbers\n”);
  printf(“Enter values one after another\n”);
  printf(“Enter a NEGATIVE number at the end.\n\n”);
  sum = 0;
  for (m = 1 ; m < = 1000 ; ++m)
  {
    scanf(“%f”, &x);
    if (x < 0)
     break;
    sum += x ;
  }

(Contd.)



Strings and Iteration 4.35

Each value, when it is read, is tested to see whether it is a positive number or not. If it is positive, the value 

is added to the sum; otherwise, the loop terminates. On exit, the average of the values read is calculated and 

the results are printed out.

EXAMPLE 4.15 A program to evaluate the series

 
1

1 x
= 1 + x + x2 + x3 + ..... + xn

 for –1 < x < 1 with 0.01 per cent accuracy is given in Fig. 4.19. The goto statement is 

used to exit the loop on achieving the desired accuracy.

We have used the for statement to perform the repeated addition of each of the terms in the series. Since it is 

an infi nite series, the evaluation of the function is terminated when the term xn reaches the desired accuracy. 

The value of n that decides the number of loop operations is not known and therefore we have decided 

 arbitrarily a value of 100, which may or may not result in the desired level of accuracy.

  average = sum/(float)(m-1);
  printf(“\n”);
  printf(“Number of values = %d\n”, m-1);
  printf(“Sum       = %f\n”, sum);
  printf(“Average     = %f\n”, average);
 }
Output
 This program computes the average of a set of numbers
 Enter values one after another
 Enter a NEGATIVE number at the end.
 21 23 24 22 26 22 -1
 Number of values = 6
 Sum      = 138.000000
 Average    = 23.000000

Fig. 4.18 Use of break in a program

Program
 #define LOOP    100
 #define ACCURACY  0.0001
 main()
 {
  int n;
  float x, term, sum;
  printf(“Input value of x : “);
  scanf(“%f”, &x);
  sum = 0 ;
  for (term = 1, n = 1 ; n <= LOOP ; ++n)
  {
    sum += term ;
    if (term <= ACCURACY)
     goto output; /* EXIT FROM THE LOOP */
    term *= x ;
  }

(Contd.)



4.36 Computer Programming

The test of accuracy is made using an if statement and the goto statement exits the loop as soon as the 

accuracy condition is satisfi ed. If the number of loop repetitions is not large enough to produce the desired 

accuracy, the program prints an appropriate message.

Note that the break statement is not very convenient to use here. Both the normal exit and the break exit 

will transfer the control to the same statement that appears next to the loop. But, in the present problem, the 

normal exit prints the message

“FINAL VALUE OF N IS NOT SUFFICIENT

TO ACHIEVE DESIRED ACCURACY”

and the forced exit prints the results of evaluation. Notice the use of a null statement at the end. This is 

 necessary because a program should not end with a label.

Structured programming is an approach to the design and development of programs. It is a discipline of making a 

 program’s logic easy to understand by using only the basic three control structures:

• Sequence (straight line) structure

• Selection (branching) structure

• Repetition (looping) structure

While sequence and loop structures are suffi cient to meet all the requirements of programming, the selection struc-

ture proves to be more convenient in some situations.

The use of structured programming techniques helps ensure well-designed programs that are easier to write, read, 

debug and maintain compared to those that are unstructured.

Structured programming discourages the implementation of unconditional branching using jump statements such as 

goto, break and continue. In its purest form, structured programming is synonymous with “goto less programming”.

Do not go to goto statement!

Structured Programming

4.15.2 Skipping a Part of a Loop

During the loop operations, it may be necessary to skip a part of the body of the loop under certain conditions. 

For example, in processing of applications for some job, we might like to exclude the processing of data of 

  printf(“\nFINAL VALUE OF N IS NOT SUFFICIENT\n”);
  printf(“TO ACHIEVE DESIRED ACCURACY\n”);
  goto end;
  output:
  printf(“\nEXIT FROM LOOP\n”);
  printf(“Sum = %f; No.of terms = %d\n”, sum, n);
  end:
  ;    /* Null Statement */
 }
Output
 Input value of x : .21
 EXIT FROM LOOP
 Sum = 1.265800; No.of terms = 7
 Input value of x : .75
 EXIT FROM LOOP
 Sum = 3.999774; No.of terms = 34
 Input value of x : .99
 FINAL VALUE OF N IS NOT SUFFICIENT
 TO ACHIEVE DESIRED ACCURACY

Fig. 4.19 Use of goto to exit from a loop



Strings and Iteration 4.37 

applicants belonging to a certain category. On reading the category code of an applicant, a test is made to see 

whether his application should be considered or not. If it is not to be considered, the part of the program loop 

that processes the application details is skipped and the execution continues with the next loop operation.

Like the break statement, C supports another similar statement called the continue statement. However, 

unlike the break which causes the loop to be terminated, the continue, as the name implies, causes the loop 

to be continued with the next iteration after skipping any statements in between. The continue statement tells 

the compiler, “SKIP THE FOLLOWING STATEMENTS AND CONTINUE WITH THE NEXT ITERATION”. 

The format of the continue statement is simply

continue;

The use of the continue statement in loops is illustrated in Fig. 4.20. In while and do loops, continue 

causes the control to go directly to the test-condition and then to continue the iteration process. In the case of 

for loop, the increment section of the loop is executed before the test-condition is evaluated.

while (test-condition)            do

{                   {

 ---------                 ---------

 if (---------)               if (---------)

  continue;                   continue;

 ---------                  ---------

 ---------                  ---------

}                   } while (test-condition);

(a)                  (b)

       for (initialization; test condition; increment)

       {

         ---------

         if (---------)

           continue;

         ---------

         ---------

       }
         (c)

Fig. 4.20 Bypassing and continuing in loops

EXAMPLE 4.16 The program in Fig. 4.21 illustrates the use of continue statement.

The program evaluates the square root of a series of numbers and prints the results. The process stops when 

the number 9999 is typed in.

In case, the series contains any negative numbers, the process of evaluation of square root should be 

bypassed for such numbers because the square root of a negative number is not defi ned. The continue 

 statement is used to achieve this. The program also prints a message saying that the number is negative and 

keeps an account of negative numbers.

The fi nal output includes the number of positive values evaluated and the number of negative items 

encountered.



4.38 Computer Programming

Program:
 #include <math.h>
 main()
 {
  int count, negative;
  double number, sqroot;
  printf(“Enter 9999 to STOP\n”);
  count = 0 ;
  negative = 0 ;
  while (count < = 100)
  {
   printf(“Enter a number : “);
   scanf(“%lf”, &number);
   if (number == 9999)
    break;    /* EXIT FROM THE LOOP */
   if (number < 0)
   {
    printf(“Number is negative\n\n”);
    negative++ ;
    continue; /* SKIP REST OF THE LOOP */
   }
   sqroot = sqrt(number);
   printf(“Number   = %lf\n Square root = %lf\n\n”,
            number, sqroot);
   count++ ;
  }
  printf(“Number of items done = %d\n”, count);
  printf(“\n\nNegative items = %d\n”, negative);
  printf(“END OF DATA\n”);
 }
Output
 Enter 9999 to STOP
 Enter a number : 25.0
 Number    = 25.000000
 Square root  = 5.000000 
 Enter a number : 40.5
 Number    = 40.500000
 Square root  = 6.363961 
 Enter a number : -9
 Number is negative
 Enter a number : 16 
 Number    = 16.000000
 Square root  = 4.000000
 Enter a number : -14.75
 Number is negative
 Enter a number : 80
 Number    = 80.000000
 Square root  = 8.944272
 Enter a number : 9999
 Number of items done = 4 
 Negative items    = 2
 END OF DATA

Fig. 4.21 Use of continue statement



Strings and Iteration 4.39 

4.15.3 Avoiding goto

As mentioned earlier, it is a good practice to avoid using goto. There are many reasons for this. When goto 

is used, many compilers generate a less effi cient code. In addition, using many of them makes a program 

logic complicated and renders the program unreadable. It is possible to avoid using goto by careful program 

design. In case any goto is absolutely necessary, it should be documented. The goto jumps shown in Fig. 4.22 

would cause problems and therefore must be avoided.

Fig. 4.22 goto jumps to be avoided

4.15.4 Jumping out of the Program

We have just seen that we can jump out of a loop using either the break statement or goto statement. In a 

similar way, we can jump out of a program by using the library function exit( ). In case, due to some reason, 

we wish to break out of a program and return to the operating system, we can use the exit( ) function, as 

shown below:

........

........
if (test-condition) exit(0) ;
........
........

 The exit( ) function takes an integer value as its argument. Normally zero is used to indicate normal 

termination and a nonzero value to indicate termination due to some error or abnormal condition. The use of 

exit( ) function requires the inclusion of the header fi le <stdlib.h>.

Just Remember

Character constants are enclosed in single • 

quotes and string constants are enclosed in 

double quotes.

Allocate suffi cient space in a character array • 

to hold the null character at the end.

Avoid processing single characters as strings.• 

Using the address operator • & with a string 

variable in the scanf function call is an error.

It is a compile time error to assign a string to • 

a character variable.

Using a string variable name on the left of the • 

assignment operator is illegal.

When accessing individual characters in a • 

string variable, it is logical error to access 

outside the array bounds.

Strings cannot be manipulated with operators. • 

Use string functions.

Do not use string functions on an array•  char 

type that is not terminated with the null 

character.

Do not forget to append the null character to • 

the target string when the number of characters 

copied is less than or equal to the source 

string.

Be aware the return values when using the • 

functions strcmp and strncmp for comparing 

strings.

When using string functions for copying and • 

concatenating strings, make sure that the 

target string has enough space to store the 



4.40 Computer Programming

resulting string. Otherwise memory over-

writing may occur.

The header fi le <stdio.h> is required when • 

using standard I/O functions.

The header fi le <ctype.h> is required when • 

using character handling functions.

The header fi le <stdlib.h> is required when • 

using general utility functions.

The header fi le <string.h> is required when • 

using string manipulation functions.

A string is nothing but a character array • 

terminated with a null character. 

gets and puts are quite handy string i/o • 

functions. 

arithmetic operations are actually performed • 

on the ASCII values of the operand 

characters. 

Use strlen function to determine the length of • 

a string.

Do not forget to place the semicolon at the • 

end of do ….while statement.

Placing a semicolon after the control • 

expression in a while or for statement is not 

a syntax error but it is most likely a logic 

error.

Using commas rather than semicolon in the • 

header of a for statement is an error.

Do not forget to place the • increment statement 

in the body of a while or do…while loop.

It is a common error to use wrong relational • 

operator in test expressions. Ensure that the 

loop is evaluated exactly the required number 

of times.

Avoid a common error using = in place of = = • 

operator.

Do not change the control variable in both the • 

for statement and the body of the loop. It is a 

logic error.

Do not compare fl oating-point values for • 

equality.

Avoid using • while and for statements for 

implementing exit-controlled (post-test) 

loops. Use do…while statement. Similarly, 

do not use do…while for pre-test loops.

When performing an operation on a variable • 

repeatedly in the body of a loop, make sure 

that the variable is initialized properly before 

entering the loop.

Although it is legally allowed to place the • 

initialization, testing and increment sections 

outside the header of a for statement, avoid 

them as far as possible.

Although it is permissible to use arithmetic • 

expressions in initialization and increment 

section, be aware of round off and truncation 

errors during their evaluation.

Although statements preceding a • for and 

statements in the body can be placed in the 

for header, avoid doing so as it makes the 

program more diffi cult to read.

The use of • break and continue statements in 

any of the loops is considered unstructured 

programming. Try to eliminate the use of 

these jump statements, as far as possible.

Avoid the use of • goto anywhere in the 

program.

Indent the statements in the body of loops • 

properly to enhance readability and 

understandability.

Use of blank spaces before and after the loops • 

and terminating remarks are highly 

recommended.

Use the function • exit() only when breaking 

out of a program is necessary.

While writing a program never forget to • 

visualise and implement a loop-exit situation 

for any looping construct.

Choose the while and do-while loops carefully • 

as in the later case, the loop body is always 

executed at least once. 

Use the jump statements very carefully as • 

they alter the fl ow of program control. 

Use the continue statement for skipping the • 

remaining part of the current iteration of a 

loop. 



Strings and Iteration 4.41 

Multiple Choice Questions

 1. Which of the following is used to represent the 

end of a string?

(a) Blank space

(b) Null character

(c) Newline character

(d) Last element of the string

 2. Which of the following is used to display a 

string on the I/O console? 

(a) %s (b) %c

(c) %d (d) %f

 3. Which of the following is true for getchar?

(a) Read a string of characters

(b) Read a character 

(c) Read the characters until \n is encountered

(d) None of the above 

 4. What will be the result of the following 

 character arithmetic expression?

X= ‘A’-2;

(a) 63 (b) 64

(c) 65 (d) 66

 5. Which of the following is used to determine the 

length of a string?

(a) strlen (b) strcmp

(c) strcpy (d) strcat

 6. Which of the following header fi les are 

required to be included for performing string 

operations?

(a) string.h (b) conio.h

(c) stdio.h (d) ctype.h

 7. What value will strlen function return for the 

string {‘R’,’a’,’m’,’/0’} 

(a) 3 (b) 4

 8. During concatenation, which of the following 

situation will occur if the target string is of 

lesser space then the two source strings?

(a) Overfl ow (b) Underfl ow

(c) Memory leakage (d) None of the above 

 9. Which of the following is the correct syntax for 

copying a string S1 into S2?

(a) strcpy(S2,S1); (b) strcpy(S1,S2);

(c) strcmp(S1,S2); (d) strcmp(S2,S1);

 10. Which of the following should be used for 

printing a “ inside the printf statement? 

(a) “”” (b) “\

(c) \” (d) /”

 11. A typical loop comprises of which of the 

following?

(a) Body of the loop

(b) Control statement

(c) Break statement

(d) Continue statement

 12. do-while loop is an example of which of the 

following? 

(a) Exit controlled loop

(b) Entry controlled loop

(c) Pre-test loop

(d) Post-test loop

 13. Which of the following loop constructs execute 

body of the loop at least once? 

(a) while (b) do-while

(c) for (d) All of the above 

 14. If it is known in advance the number of times 

a loop is going to execute, then that loop is 

termed as:

(a) Counter-controlled loop

(b) Sentinel-controlled loop

(c) Defi nite repetitive loop

(d) Indefi nite repetitive loop

 15. Which of the following is the correct syntax for 

while loop?

(a) while (test condition)

   {

   Statement block

   }

(b) while (test condition)

   {

   Statement block

   };

(c) while 

   {

   statement block

   }(test condition)



4.42 Computer Programming

Case Study

1. Counting Words in a Text

One of the practical applications of string manipulations is counting the words in a text. We assume that a 

word is a sequence of any characters, except escape characters and blanks, and that two words are separated 

by one blank character. The algorithm for counting words is as follows:

1. Read a line of text.

2. Beginning from the fi rst character in the line, look for a blank. If a blank is found, increment words 

by 1.

3. Continue steps 1 and 2 until the last line is completed.

The implementation of this algorithm is shown in Fig. 4.23. The fi rst while loop will be executed once for 

each line of text. The end of text is indicated by pressing the ‘Return’ key an extra time after the entire text 

has been entered. The extra ‘Return’ key causes a newline character as input to the last line and as a result, 

the last line contains only the null character.

The program checks for this special line using the test

if ( line[0] == ‘\0’)

and if the fi rst (and only the fi rst) character in the line is a null character, then counting is terminated. Note 

the difference between a null character and a blank character.

(d) while 

   {

   statement block

   }

 16. Which of the following is the correct syntax for 

dowhile loop?

(a) do-while (test condition)

   {

   Statement block

   }(test condition)

(b) do 

   {

   Statement block

   }while(test condition);

(c) {

   statement block

   }do-while(test condition);

(d) do 

   {

   Statement block

   }while(test condition)

 17. Which of the following is the correct syntax of 

for loop?

(a) for (a=0: a<b: a++)  

(b) for (a=0, a<b, a++)

(c) for (a=0; a<b; a++)

(d) for (a=0; a++; a<b)

 18. Which of the following is typically used to 

jump out of loop? 

(a) jump; (b) goto;

(c) break; (d) None of the above

 19. The structured programming approach suggests 

avoiding the use of which of the following 

statements?

(a) goto (b) exit

(c) continue (d) sizeof

 20. Which of the following doesn’t alter the fl ow of 

program control?

(a) break

(b) continue

(c) exit 

(d) All of the above will alter the fl ow of pro-

gram control



Strings and Iteration 4.43 

Program
 #include <stdio.h>
 main()
 {
  char line[81], ctr;
  int i,c,
    end = 0,
    characters = 0,
    words = 0,
    lines = 0;
  printf(“KEY IN THE TEXT.\n”);
  printf(“GIVE ONE SPACE AFTER EACH WORD.\n”);
  printf(“WHEN COMPLETED, PRESS ‘RETURN’.\n\n”);
  while( end == 0)
  {
   /* Reading a line of text */
   c = 0;
   while((ctr=getchar()) != ‘\n’)
    line[c++] = ctr;
   line[c] = ‘\0’;
   /* counting the words in a line */
   if(line[0] == ‘\0’)
    break ;
   else
   {
    words++;
    for(i=0; line[i] != ‘\0’;i++)
      if(line[i] == ‘ ‘ || line[i] == ‘\t’)
       words++;
   }
   /* counting lines and characters */
   lines = lines +1;
   characters = characters + strlen(line);
  }
  printf (“\n”);
  printf(“Number of lines = %d\n”, lines);
  printf(“Number of words = %d\n”, words);
  printf(“Number of characters = %d\n”, characters);
 }
Output
 KEY IN THE TEXT.
 GIVE ONE SPACE AFTER EACH WORD.
 WHEN COMPLETED, PRESS ‘RETURN’.
 Admiration is a very short-lived passion.
 Admiration involves a glorious obliquity of vision.
 Always we like those who admire us but we do not
 like those whom we admire.
 Fools admire, but men of sense approve.
 Number of lines = 5
 Number of words = 36
 Number of characters = 205

Fig. 4.23 Counting of characters, words and lines in a text



4.44 Computer Programming

The program also counts the number of lines read and the total number of characters in the text. Remember, 

the last line containing the null string is not counted.

After the fi rst while loop is exited, the program prints the results of counting.

2. Processing of a Customer List

Telephone numbers of important customers are recorded as follows:

 Full name Telephone number

 Joseph Louis Lagrange  869245

 Jean Robert Argand  900823

 Carl Freidrich Gauss  806788

 ––––– –––––

 ––––– –––––

It is desired to prepare a revised alphabetical list with surname (last name) fi rst, followed by a comma and 

the initials of the fi rst and middle names. For example,

Argand,J.R

We create a table of strings, each row representing the details of one person, such as fi rst_name, middle_

name, last_name, and telephone_number. The columns are interchanged as required and the list is sorted on 

the last_name. Figure 4.24 shows a program to achieve this.

Program
 #define CUSTOMERS 10 

 main( ) 
 { 
   char  first_name[20][10], second_name[20][10], 
      surname[20][10], name[20][20], 
      telephone[20][10], dummy[20]; 

     int i,j; 

      printf(“Input names and telephone numbers \n”); 
    printf(“?”); 
     for(i=0; i < CUSTOMERS ; i++)
     { 
      scanf(“%s %s %s %s”, first_name[i], 
        second_name[i], surname[i], telephone[i]); 

       /* converting full name to surname with initials */ 

       strcpy(name[i], surname[i] ); 
      strcat(name[i], “,”); 
      dummy[0] = first_name[i][0]; 
      dummy[1] = ‘\0’; 
      strcat(name[i], dummy); 
      strcat(name[i], “.”); 
      dummy[0] = second_name[i][0]; 
      dummy[1] = ‘\0’; 
      strcat(name[i], dummy); 
   } 
    /* Alphabetical ordering of surnames */ 

 for(i=1; i <= CUSTOMERS-1; i++) 
 for(j=1; j <= CUSTOMERS-i; j++) 

(Contd.)



Strings and Iteration 4.45

3. Table of Binomial Coeffi cients

Problem: Binomial coeffi cients are used in the study of binomial distributions and reliability of multicom-

ponent redundant wsystems It is given by

B(m,x) = ( ) ,
m

x

m!

x!(m x)!
m x=

−
>

A table of binomial coeffi cients is required to determine the binomial coeffi cient for any set of m and x.

 if(strcmp (name[j-1], name[j]) > 0) 
       { 
       /* Swaping names */ 
 strcpy(dummy, name[j-1]); 
 strcpy(name[j-1], name[j]); 
 strcpy(name[j], dummy); 

  /* Swaping telephone numbers */ 
 strcpy(dummy, telephone[j-1]); 
 strcpy(telephone[j-1],telephone[j]); 
 strcpy(telephone[j], dummy); 
       } 
     /* printing alphabetical list */ 
    printf(“\nCUSTOMERS LIST IN ALPHABETICAL ORDER \n\n”); 
    for(i=0; i < CUSTOMERS ; i++) 
     printf(“ %-20s\t %-10s\n”, name[i], telephone[i]); 
   } 
Output 

   Input names and telephone numbers 
  ?Gottfried Wilhelm Leibniz 711518 
  Joseph Louis Lagrange 869245 
  Jean Robert Argand 900823 
  Carl Freidrich Gauss 806788 
  Simon Denis Poisson 853240 
  Friedrich Wilhelm Bessel 719731 
  Charles Francois Sturm 222031 
  George Gabriel Stokes 545454 
  Mohandas Karamchand Gandhi 362718 
  Josian Willard Gibbs 123145 

    CUSTOMERS LIST IN ALPHABETICAL ORDER 

        Argand,J.R  900823 
     Bessel,F.W   719731 
      Gandhi,M.K   362718 
     Gauss,C.F    806788 
     Gibbs,J.W    123145 
     Lagrange,J.L  869245 
     Leibniz,G.W   711518 
     Poisson,S.D   853240 
     Stokes,G.G   545454 
     Sturm,C.F    222031

Fig. 4.24 Program to alphabetize a customer list



4.46 Computer Programming

Problem Analysis: The binomial coeffi cient can be recursively calculated as follows:

B(m,o) = 1

B(m,x) = B(m,x–1)
m

x

− +x⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

1
, x = 1,2,3,...,m

Further,

B(o,o) = 1

That is, the binomial coeffi cient is one when either x is zero or m is zero. The program in Fig. 4.25 prints 

the table of binomial coeffi cients for m = 10. The program employs one do loop and one while loop.

Program
 #define MAX 10
 main()
 {
  int m, x, binom;
  printf(“ m x”);
  for (m = 0; m <= 10 ; ++m)
     printf(“%4d”, m);
  printf(“\n-------------------------------\n”);
  m = 0;
  do
  {
    printf(“%2d “, m);
    x = 0; binom = 1;
    while (x <= m)
    {
      if(m == 0 || x == 0)
       printf(“%4d”, binom);
      else
       {
         binom = binom * (m - x + 1)/x;
         printf(“%4d”, binom);
       }
      x = x + 1;
    }
    printf(“\n”);
    m = m + 1;
  }
  while (m <= MAX);
  printf(“-------------------------------\n”);
 }
Output
 mx 0 1 2 3 4 5 6 7 8 9 10

   ---------------------------------------------------------
 0  1
 1  1 1
 2 1 2 1
 3 1 3 3 1
 4 1 4 6 4 1
 5 1 5 10 10 5 1
 6 1 6 15 20 15 6 1

(Contd.)



Strings and Iteration 4.47 

2.  Histogram

Problem: In an organization, the employees are grouped according to their basic pay for the purpose of 

 certain perks. The pay-range and the number of employees in each group are as follows:

 Group Pay-Range Number of Employees

 1 750 – 1500  12

 2 1501 – 3000 23

 3 3001 – 4500 35

 4 4501 – 6000 20

 5 above 6000 11

Draw a histogram to highlight the group sizes.

Problem Analysis: Given the size of groups, it is required to draw bars representing the sizes of various 

groups. For each bar, its group number and size are to be written.

Program in Fig. 4.26 reads the number of employees belonging to each group and draws a histogram. The 

program uses four for loops and two if.....else statements.

 7 1 7 21 35 35 21 7 1
 8 1 8 28 56 70 56 28 8 1
 9 1 9 36 84 126 126 84 36 9 1
 10 1 10 45 120 210 252 210 120 45 10 1

   -----------------------------------------------------------

Fig. 4.25 Program to print  binomial coeffi cient table

Program
 #define N 5
 main()
 {
  int value[N];
  int i, j, n, x;
  for (n=0; n < N; ++n)
  {
   printf(“Enter employees in Group - %d : “,n+1);
   scanf(“%d”, &x);
   value[n] = x;
   printf(“%d\n”, value[n]);
  }
  printf(“\n”);
  printf(“|\n”);
  for (n = 0 ; n < N ; ++n)
  {
   for (i = 1 ; i <= 3 ; i++)
   {
     if ( i == 2)
      printf(“Group-%1d |”,n+1);
     else
      printf(“|”);
     for (j = 1 ; j <= value[n]; ++j)
      printf(“*”);

(Contd.)



4.48 Computer Programming

3. Minimum Cost

Problem: The cost of operation of a unit consists of two components C1 and C2 which can be expressed as 

functions of a parameter p as follows:

C1 = 30 – 8p

C2 = 10 + p2

 The parameter p ranges from 0 to 10. Determine the value of p with an accuracy of + 0.1 where the cost 

of operation would be minimum.

Problem Analysis:

Total cost = C
1
 + C

2
 = 40 – 8p + p2

     if (i == 2)
      printf(“(%d)\n”, value[n]);
     else
      printf(“\n”);
   }
   printf(“|\n”);
  }
 }
Output
 Enter employees in Group - 1 : 12
 12
 Enter employees in Group - 2 : 23
 23
 Enter employees in Group - 3 : 35
 35
 Enter employees in Group - 4 : 20
 20
 Enter Employees in Group - 5 : 11
 11
   |
   |************
 Group-1 |************(12)
   |************
   |
   |***********************
 Group-2 |***********************(23)
   |***********************
   |
   |***********************************
 Group-3 |***********************************(35)
   |***********************************
   |
   |********************
 Group-4 |********************(20)
   |********************
   |
   |***********
 Group-5 |***********(11)
   |***********
   |

Fig. 4.26 Program to draw a histogram



Strings and Iteration 4.49 

The cost is 40 when p = 0, and 33 when p = 1 and 60 when p = 10. The cost, therefore, decreases fi rst and 

then increases. The program in Fig. 4.27 evaluates the cost at successive intervals of p (in steps of 0.1) and 

stops when the cost begins to increase. The program employs break and continue statements to exit the 

loop.

Program

 main()

 {

  float p, cost, p1, cost1;

  for (p = 0; p <= 10; p = p + 0.1)

  {

    cost = 40 - 8 * p + p * p;

    if(p == 0)

    {

     cost1 = cost;

     continue;

   }

   if (cost >= cost1)

     break;

   cost1 = cost;

   p1 = p;

  }

  p = (p + p1)/2.0;

  cost = 40 - 8 * p + p * p;

  printf(“\nMINIMUM COST = %.2f AT p = %.1f\n”,

    cost, p);

 }

Output

 MINIMUM COST = 24.00 AT p = 4.0

Fig. 4.27 Program of minimum cost problem

4. Plotting of Two Functions

Problem: We have two functions of the type

y1 = exp (–ax)

y2 = exp (–ax2/2)

Plot the graphs of these functions for x varying from 0 to 5.0.

Program
 #include <math.h>
 main()
 {
  int i;
  float a, x, y1, y2;
  a = 0.4;
  printf(“ Y ----> \n”);

(Contd.)



4.50 Computer Programming

  printf(“ 0 -------------------------------\n”);

  for ( x = 0; x < 5; x = x+0.25)

  { /* BEGINNING OF FOR LOOP */

  /*......Evaluation of functions .......*/

   y1 = (int) ( 50 * exp( -a * x ) + 0.5 );

   y2 = (int) ( 50 * exp( -a * x * x/2 ) + 0.5 );

  /*......Plotting when y1 = y2.........*/

   if ( y1 == y2)

   {

    if ( x == 2.5)

      printf(“ X |”);

    else

      printf(“|”);

    for ( i = 1; i <= y1 - 1; ++i)

      printf(“ “);

    printf(“#\n”);

    continue;

   }

  /*...... Plotting when y1 > y2 .....*/

  if ( y1 > y2)

  {

   if ( x == 2.5 )

    printf(“ X |”);

   else

    printf(“ |”);

   for ( i = 1; i <= y2 -1 ; ++i)

    printf(“ “);

   printf(“*”);

   for ( i = 1; i <= (y1 - y2 - 1); ++i)

    printf(“-”);

   printf(“0\n”);

   continue;

  }

 /*........ Plotting when y2 > y1.........*/

  if ( x == 2.5)

   printf(“ X |”);

  else

   printf(“ |”);

  for ( i = 1 ; i <= (y1 - 1); ++i )

   printf(“ “);

  printf(“0”);

  for ( i = 1; i <= ( y2 - y1 - 1 ); ++i)

   printf(“-”);

  printf(“*\n”);

 }  /*.......END OF FOR LOOP........*/

  printf(“ |\n”);

   }

(Contd.)



Strings and Iteration 4.51 

Problem Analysis: Initially when x = 0, y1 = y2 =1 and the graphs start from the same point. The curves 

cross when they are again equal at x = 2.0. The program should have appropriate branch statements to print 

the graph points at the following three conditions:

1. y1 > y2

2. y1 < y2

3. y1 = y2

The functions y1 and y2 are normalized and converted to integers as follows:

y1 = 50 exp (–ax) + 0.5

y2 = 50 exp (–ax2/2 ) + 0.5

The program in Fig. 4.28 plots these two functions simultaneously. ( 0 for y1, * for y2, and # for the 

 common point.)

Review Questions

 4.1 State whether the following statements are 

true or false.

 (a) When initializing a string variable during 

its declaration, we must include the null 

character as part of the string constant, 

like “GOOD\0”.

 (b) The gets function automatically appends 

the null character at the end of the string 

read from the keyboard.

 (c) When reading a string with scanf, it 

automatically inserts the terminating null 

character.

 (d) String variables cannot be used with the 

assignment operator.

 (e) We cannot perform arithmetic operations 

on character variables.

 (f) We can assign a character constant or a 

character variable to an int type variable.

Output
Y

0

#

0 --- *

0------ *

0 ------- *

0------ *

0------ *

0 ---- *

0 - *

#

* -0

*X --- 0

*----- 0

* ------ 0

*-------0

*------- 0

*-------0

*-------0

*-------0

*------0

*-----0

Fig. 4.28 Plotting of two functions



4.52 Computer Programming

 (g) The function scanf cannot be used in any 

way to read a line of text with the white-

spaces.

 (h) The ASCII character set consists of 128 

distinct characters.

 (i) In the ASCII collating sequence, the 

uppercase letters precede lowercase 

letters.

 (j) In C, it is illegal to mix character 

data with numeric data in arithmetic 

operations.

 (k) The function getchar skips white-space 

during input.

 (l) In C, strings cannot be initialized at run 

time.

 (m) The input function gets has one string 

parameter.

 (n) The function call strcpy(s2, s1); copies 

string s2 into string s1.

 (o) The function call strcmp(“abc”, 

“ABC”); returns a positive number.

 4.2 Fill in the blanks in the following statements.

 (a) We can use the conversion specifi cation 

_________ in scanf to read a line of text.

 (b) We can initialize a string using the string 

manipulation function _________.

 (c) The function strncat has _________ 

parameters.

 (d) To use the function atoi in a program, we 

must include the header fi le _________.

 (e) The function _________ does not require 

any conversion specifi cation to read a 

string from the keyboard.

 (f) The function _________ is used to 

determine the length of a string.

 (g) The _________ string manipulation 

function determines if a character is 

contained in a string.

 (h) The function _________ is used to sort 

the strings in alphabetical order.

 (i) The function call strcat (s2, s1); appends 

_________ to _________.

 (j) The printf may be replaced by function 

_________ for printing strings.

 4.3 Describe the limitations of using getchar and 

scanf functions for reading strings.

 4.4 Character strings in C are automatically 

terminated by the null character. Explain 

how this feature helps in string 

manipulations.

 4.5 Strings can be assigned values as follows:

 (a) During type declaration

  char string[ ] = {“.......”};

 (b) Using strcpy function

  strcpy(string, “.......”);

 (c) Reading using scanf function

  scanf(“%s”, string);

 (d) Reading using gets function

  gets(string);

  Compare them critically and describe 

situations where one is superior to the others.

 4.6 Assuming the variable string contains the 

value “The sky is the limit.”, determine what 

output of the following program segments 

will be.

 (a) printf(“%s”, string);

 (b) printf(“%25.10s”, string);

 (c) printf(“%s”, string[0]);

 (d) for (i=0; string[i] != “.”; i++)

     printf(“%c”, string[i]);

 (e) for (i=0; string[i] != ‘\0’; i++;)

  printf(“%d\n”, string[i]);

 (f) for (i=0; i <= strlen[string]; ;)

  {

    string[i++] = i;

    printf(“%s\n”, string[i]);

  }

 (g) printf(“%c\n”, string[10] + 5);

 (h) printf(“%c\n”, string[10] + 5’)

 4.7 Which of the following statements will 

correctly store the concatenation of strings s1 

and s2 in string s3?

 (a) s3 = strcat (s1, s2);

 (b) strcat (s1, s2, s3);

 (c) strcat (s3, s2, s1);

 (d) strcpy (s3, strcat (s1, s2));

 (e) strcmp (s3, strcat (s1, s2));

 (f) strcpy (strcat (s1, s2), s3);

 4.8 What will be the output of the following 

statement?

 printf (“%d”, strcmp (“push”, “pull”));



Strings and Iteration 4.53 

 4.9 Assume that s1, s2 and s3 are declared as 

follows:
 char s1[10] = “he”, s2[20] = “she”,

 s3[30], s4[30];

  What will be the output of the following 

statements executed in sequence?
 printf(“%s”, strcpy(s3, s1));

 printf(“%s”, strcat(strcat(strcpy(s4, s1), 

“or”), s2));

 printf(“%d %d”, strlen(s2)+strlen(s3), 

strlen(s4));

 4.10 Find errors, if any, in the following code 

segments;

 (a) char str[10]

  strncpy(str, “GOD”, 3);

  printf(“%s”, str);

 (b) char str[10];

  strcpy(str, “Balagurusamy”);

 (c) if strstr(“Balagurusamy”, “guru”) = = 0);

  printf(“Substring is found”);

 (d) char s1[5], s2[10],

  gets(s1, s2);

 4.11 What will be the output of the following 

segment?

  char s1[ ] = “Kolkotta” ;

  char s2[ ] = “Pune” ;

  strcpy (s1, s2) ;

  printf(“%s”, s1) ;

 4.12 What will be the output of the following 

segment?

  char s1[ ] = “NEW DELHI” ;

  char s2[ ] = “BANGALORE” ;

  strncpy (s1, s2, 3) ;

  printf(“%s”, s1) ;

 4.13 What will be the output of the following 

code?

  char s1[ ] = “Jabalpur” ;

  char s2[ ] = “Jaipur” ;

  printf(strncmp(s1, s2, 2) );

 4.14 What will be the output of the following 

code?

  char s1[ ] = “ANIL KUMAR GUPTA”;

  char s2[ ] = “KUMAR”;

  printf (strstr (s1, s2) );

 4.15 Compare the working of the following 

functions:

 (a) strcpy and strncpy;

 (b) strcat and strncat; and

 (c) strcmp and strncmp.

 4.16 State whether the following statements are 

true or false.

 (a) The do…while statement fi rst executes 

the loop body and then evaluate the loop 

control expression.

 (b) In a pretest loop, if the body is executed 

n times, the test expression is executed

n + 1 times.

 (c) The number of times a control variable is 

updated always equals the number of loop 

iterations.

 (d) Both the pretest loops include 

initialization within the statement.

 (e) In a for loop expression, the starting 

value of the control variable must be less 

than its ending value.

 (f) The initialization, test condition and 

increment parts may be missing in a for 

statement.

 (g) while loops can be used to replace for 

loops without any change in the body of 

the loop.

 (h) An exit-controlled loop is executed a 

minimum of one time.

 (i) The use of continue statement is 

considered as unstructured programming.

 (j) The three loop expressions used in a 

for loop header must be separated by 

commas.

 4.17 Fill in the blanks in the following statements.

 (a) In an exit-controlled loop, if the body is 

executed n times, the test condition is 

evaluated _______ times.

 (b) The _______ statement is used to skip a 

part of the statements in a loop.

 (c) A for loop with the no test condition is 

known as _______ loop.

 (d) The sentinel-controlled loop is also 

known as _______ loop.

 (e) In a counter-controlled loop, variable 

known _______ as is used to count the 

loop operations.



4.54 Computer Programming

 4.18 Can we change the value of the control 

variable in for statements? If yes, explain its 

consequences.

 4.19 What is a null statement? Explain a typical 

use of it.

 4.20 Use of goto should be avoided. Explain a 

typical example where we fi nd the application 

of goto becomes necessary.

 4.21 How would you decide the use of one of the 

three loops in C for a given problem?

 4.22 How can we use for loops when the number 

of iterations are not known?

 4.23 Explain the operation of each of the following 

for loops.

 (a) for ( n = 1; n != 10; n += 2)
  sum = sum + n;

 (b) for (n = 5; n <= m; n -=1)
  sum = sum + n;

 (c) for (n = 1; n <= 5;)
  sum = sum + n;

 (d) for ( n = 1; ; n = n + 1)
  sum = sum + n;

 (e) for (n = 1; n < 5; n ++)
  n = n -1

 4.24 What would be the output of each of the 

following code segments?

 (a) count = 5;
  while (count -- > 0)
  printf(count);

 (b) count = 5;
  while ( -- count > 0)
  printf(count);

 (c) count = 5;
  do printf(count);
  while (count > 0);

 (d) for (m = 10; m > 7, m -=2)
  printf(m);

 4.25 Compare, in terms of their functions, the 

following pairs of statements:

 (a) while and do...while

 (b) while and for

 (c) break and goto

 (d) break and continue

 (e) continue and goto

 4.26 Analyse each of the program segments that 

follow and determine how many times the 

body of each loop will be executed.

 (a) x = 5;
  y = 50;
  while ( x <= y)
  {
     x = y/x;
     –––
     –––
  }

 (b) m = 1;
  do
  {
     –––
     –––
     m = m+2;
  }
  while (m < 10);

 (c) int i;
  for (i = 0; i <= 5; i = i+2/3)
  {
     –––
     –––
     –––
  }

 (d) int m = 10;
  int n = 7;
  while ( m % n >= 0)
  {
     –––
     m = m + 1;
     n = n + 2;
     –––
  }

 4.27 Find errors, if any, in each of the following 

looping segments. Assume that all the 

variables have been declared and assigned 

values.

 (a) while (count != 10);
  {
     count = 1;
     sum = sum + x;
     count = count + 1;
  }

 (b) name = 0;
  do { name = name + 1;
  printf(“My name is John\n”);}
  while (name = 1)

 (c) do;
  total = total + value;
  scanf(“%f”, &value);
  while (value != 999);



Strings and Iteration 4.55 

 (d) for (x = 1, x > 10; x = x + 1)
  {
     –––
     –––
     –––
  }

 (e) m = 1;
  n = 0;
  for ( ; m+n < 10; ++n);
  printf(“Hello\n”);
  m = m+10

 (f) for (p = 10; p > 0;)
  p = p - 1;
  printf(“%f”, p);

 4.28 Write a for statement to print each of the 

following sequences of integers:

 (a) 1, 2, 4, 8, 16, 32

 (b) 1, 3, 9, 27, 81, 243

 (c) – 4, –2, 0, 2, 4

 (d) –10, –12, –14, –18, –26, – 42

 4.29 Change the following for loops to while 

loops:

 (a) for (m = 1; m < 10; m = m + 1)
  printf(m);

 (b) for ( ; scanf(“%d”, & m) != -1;)
  printf(m);

 4.30 Change the for loops in Exercise 4.14 to do 

loops.

 4.31 What is the output of following code?
  int m = 100, n = 0;
  while ( n == 0 )
  {
      if ( m < 10 )
            break;
      m = m-10;

 4.32 What is the output of the following code?
  int m = 0 ;
  do
  {
      if (m > 10 )
           continue ;
       m = m + 10 ;
  } while ( m < 50 ) ;
  printf(“%d”, m);

 4.33 What is the output of the following code?
  int n = 0, m = 1 ;
  do
  {
      printf(m) ;
      m++ ;
  }
  while (m <= n) ;

 4.34 What is the output of the following code?
  int n = 0, m ;
  for (m = 1; m <= n + 1 ; m++ )
      printf(m);

 4.35 When do we use the following statement?
  for (; ; )

Programming Exercises

 4.1 Write a program, which reads your name 

from the keyboard and outputs a list of ASCII 

codes, which represent your name.

 4.2 Write a program to do the following:

 (a) To output the question “Who is the 

inventor of C ?”

 (b) To accept an answer.

 (c) To print out “Good” and then stop, if the 

answer is correct.

 (d) To output the message ‘try again’, if the 

answer is wrong.

 (e) To display the correct answer when the 

answer is wrong even at the third attempt 

and stop.

 4.3 Write a program to extract a portion 

of a character string and print the 

extracted string. Assume that m characters 

are extracted, starting with the nth 

character.

 4.4 Write a program which will read a text 

and count all occurrences of a particular 

word.

 4.5 Write a program which will read a string 

and rewrite it in the alphabetical order. For 

example, the word STRING should be written 

as GINRST.

 4.6 Write a program to replace a particular 

word by another word in a given string. 

For example, the word “PASCAL” 

should be replaced by “C” in the text 

“It is good to program in PASCAL 

language.”



4.56 Computer Programming

 4.7 A Maruti car dealer maintains a record of sales 

of various vehicles in the following form:

 Vehicle type Month of sales Price

 MARUTI-800  02/01  210000

 MARUTI-DX  07/01  265000

 GYPSY  04/02  315750

 MARUTI-VAN 08/02  240000

  Write a program to read this data into a table 

of strings and output the details of a particular 

vehicle sold during a specifi ed period. The 

program should request the user to input the 

vehicle type and the period (starting month, 

ending month).

 4.8 Write a program that reads a string from the 

keyboard and determines whether the string is 

a palindrome or not. (A string is a palindrome 

if it can be read from left and right with the 

same meaning. For example, Madam and Anna 

are palindrome strings. Ignore capitalization).

 4.9 Write program that reads the cost of an item 

in the form RRRR.PP (Where RRRR denotes 

Rupees and PP denotes Paise) and converts 

the value to a string of words that expresses 

the numeric value in words. For example, if 

we input 125.75, the output should be “ONE 

HUNDRED TWENTY FIVE AND PAISE 

SEVENTY FIVE”.

 4.10 Develop a program that will read and store the 

details of a list of students in the format

 Roll No. Name Marks obtained

 . . . . . . . .  . . . . . . . . . .  . . . . . . . . . .

 . . . . . . . .  . . . . . . . . . .  . . . . . . . . . .

 . . . . . . . .  . . . . . . . . . .  . . . . . . . . . .

  and produce the following output lits:

 (a) Alphabetical list of names, roll numbers 

and marks obtained.

 (b) List sorted on roll numbers.

 (c) List sorted on marks (rank-wise list)

 4.11 Write a program to read two strings and 

compare them using the function strncmp( ) 

and print a message that the fi rst string is 

equal, less, or greater than the second one.

 4.12 Write a program to read a line of text from 

the keyboard and print out the number of 

occurrences of a given substring using the 

function strstr ( ).

 4.13 Write a program that will copy m consecutive 

characters from a string s1 beginning at 

position n into another string s2.

 4.14 Write a program to create a directory of 

students with roll numbers. The program 

should display the roll number for a speci fi ed 

name and vice-versa.

 4.15 Given a string

char str [ ] = “123456789” ;

  Write a program that displays the following:

   1

   2 3 2

   3 4 5 4 3

   4 5 6 7 6 5 4

   5 6 7 8 9 8 7 6 5

 4.16 Given a number, write a program using while 

loop to reverse the digits of the number. For 

example, the number

    12345

  should be written as

    54321

  (Hint: Use modulus operator to extract the 

last digit and the integer division by 10 to 

get the n–1 digit number from the n digit 

number.)

 4.17 The factorial of an integer m is the product 

of consecutive integers from 1 to m. That is,

  factorial m = m! = m x (m–1) x ...... x 1.

  Write a program that computes and prints a 

table of factorials for any given m.

 4.18 Write a program to compute the sum of the 

digits of a given integer number.

 4.19 The numbers in the sequence

  1 1 2 3 5 8 13 21 .......

  are called Fibonacci numbers. Write 

a program using a do....while loop to 

calculate and print the fi rst m Fibonacci 

numbers.

  (Hint: After the fi rst two numbers in the 

series, each number is the sum of the two 

preceding numbers.)

 4.20 Rewrite the program of the Example 4.1 using 

the for statement.



Strings and Iteration 4.57 

 4.21 Write a program to evaluate the following 

investment equation

V = P(1+r)n

  and print the tables which would give the 

value of V for various combination of the 

following values of P, r, and n.

   P : 1000, 2000, 3000,........, 10,000

   r : 0.10, 0.11, 0.12, ......., 0.20

   n : 1, 2, 3, ...., 10

  (Hint: P is the principal amount and V is the 

value of money at the end of n years. This 

equation can be recursively written as

   V = P(1+r)

   P = V

  That is, the value of money at the end of fi rst 

year becomes the principal amount for the 

next year and so on.)

 4.22 Write programs to print the following outputs 

using for loops.

  (a) 1 (b) * * * * *

  2 2  * * * *

  3 3 3  * * *

  4 4 4 4  * *

  5 5 5 5 5  *

 4.23 Write a program to read the age of 100 

persons and count the number of persons in 

the age group 50 to 60. Use for and continue 

statements.

 4.24 Rewrite the program of case study 9.4 

(plotting of two curves) using else...if 

constructs instead of continue statements.

 4.25 Write a program to print a table of values of 

the function

y = exp (-x)

  for x varying from 0.0 to 10.0 in steps of 0.10. 

The table should appear as follows:

Table for Y = EXP(–X)

x 0.1 0.2 0.3 ................... 0.9

0.0

1.0

2.0

3.0

.

.

.

9.0

 4.26 Write a program that will read a positive 

integer and determine and print its binary 

equivalent.

  (Hint: The bits of the binary representation 

of an integer can be generated by repeatedly 

dividing the number and the successive 

quotients by 2 and saving the remainder, 

which is either 0 or 1, after each division.)

 4.27 Write a program using for and if statement to 

display the capital letter S in a grid of 15 rows 

and 18 columns as shown below.

  * * * * * * * * * * * * * * * * * * *

  * * - - - - - - - - - - - - - - - - - - - * *

  * * * * * * * * * - - - - - - - - - - * *

  * * * *

  * * * *

  * * * *

  * * * * * - - - - - - - - - - - - -* * * *

  - - - - - - - - - - - - - - - - - - - * * * *

  - - - - - - - - - - - - - - - - - - - * * * *

   * * * * 

   * * * *

   * * * *

  * * * * - - - - - - - - — - - - * * * *

  * * * - - - - - - - - - - - - - - * * * *

  * * - - - - - - - - - - - - - - - - * * * *

 4.28 Write a program to compute the value of 

Euler’s number e, that is used as the base 

of natural logarithms. Use the following 

formula.

  e = 1 + 1/1! + 1 /2! + 1 /3! + . . . . . + 1 /n!

  Use a suitable loop construct. The loop must 

terminate when the difference between two 

successive values of e is less than 0.00001.

 4.29 Write programs to evaluate the following 

functions to 0.0001% accuracy.

 (a) sinx = x – x3/3! + x5/5! – x7/7! + . . . . . .

 (b) cosx = 1 – x2/2! + x4/4! – x6/6! + . . . . .

 (c) SUM = 1 + (1/2)2 + (1/3)3 + (1/4)4 + . . . . .

 4.30 The present value (popularly known as book 

value) of an item is given by the relationship.

P = c (1–d)n

  where c = original cost

   d = rate of depreciation (per year)

    n = number of years

   p = present value after y years.



4.58 Computer Programming

  If P is considered the scrap value at the end 

of useful life of the item, write a program 

to compute the useful life in years given the 

original cost, depreciation rate, and the scrap 

value.

  The program should request the user to input 

the data interactively.

 4.31 Write a program to print a square of size 5 by 

using the character S as shown below:

 (a) S S S S S (b) S S S S S

  S S S S S  S S

  S S S S S  S  S

  S S S S S  S S

  S S S S S  S S S S S

 4.32 Write a program to graph the function

y = sin (x)

  in the interval 0 to 180 degrees in steps of 15 

degrees. Use the concepts discussed in the 

Case Study 4 in Chapter 7.

 4.33 Write a program to print all integers that are 

not divisible by either 2 or 3 and lie between 

1 and 100. Program should also account 

the number of such integers and print the 

result.

 4.34 Modify the program of Exercise 4.16 to print 

the character O instead of S at the center of 

the square as shown below.

S S S S S

S S S S S

S S O S S

S S S S S

S S S S S

 4.35 Given a set of 10 two-digit integers containing 

both posi tive and negative values, write a 

program using for loop to compute the sum of 

all positive values and print the sum and the 

number of values added. The program should 

use scanf to read the values and terminate 

when the sum exceeds 999. Do not use goto 

statement.

Key Terms

String• : It is a sequence of characters that is 

treated as a single data item.

strcat• : It is a function used to join two strings 

together.

strcmp• : It is a function used to compare two 

strings passed as arguments. It generates a 

value of 0 if they are equal. 

strcpy• : It is a function used to copy one string 

into another.

strstr• : It is a two-parameter function that is 

used to locate a sub-string in a string.

Program loop• : It consists of two segments, 

one known as the body of the loop and the 

other known as the control statement. On the 

basis of the control statement, the body of the 

loop is executed repeatedly.

Control statement• : It tests certain conditions 

and then directs the repeated execution of the 

statements contained in the body of the loop.

Infi nite loop• : It is a permanent loop in 

which the body is executed over and over 

again.

Counter-controlled loop• : It is used when it 

is certain how many times the loop will be 

executed. It is also known as defi nite repetition 

loop.

Sentinel-controlled loop• : It is used when the 

number of repetitions is not known before the 

loop begins executing. It is also known as 

indefi nite repetition loop.

While statement• : It is an entry-controlled 

loop statement in which the test-condition is 

evaluated fi rst and if the condition is true, 

then the body of the loop is executed.

Do statement• : It executes the body of the 

loop before the test is performed.

For statement• : It is another entry-controlled 

loop that provides initialization, testing and 



Strings and Iteration 4.59 

incrementation of control variable at one 

location (in the for statement itself).

Continue statement• : It causes the loop to be 

continued with the next iteration after skipping 

further statements in the current iteration.

Break statement• : It causes the loop to be 

terminated in which it is enclosed.





 5
Functions—Modular 
 Programming

U N I T

We have mentioned earlier that one of the strengths of C language is C functions. They are easy to defi ne and 

use. We have used functions in every program that we have discussed so far. However, they have been pri-

marily limited to the three functions, namely, main, printf, and scanf. In this chapter, we shall consider in 

detail the following:

How a function is designed?• 

How a function is integrated into a program?• 

How two or more functions are put together? and• 

How they communicate with one another?• 

C functions can be classifi ed into two categories, namely, library functions and user-defi ned functions. 

main is an example of user-defi ned functions. printf and scanf belong to the category of library functions. 

We have also used other library functions such as  sqrt,  cos, strcat, etc. The main distinction between these 

two categories is that library functions are not required to be written by us whereas a user-defi ned function 

has to be developed by the user at the time of writing a program. However, a user-defi ned function can later 

become a part of the C program library. In fact, this is one of the strengths of C language.

As pointed out earlier, main is a specially recognized function in C. Every program must have a main 

 function to indicate where the program has to begin its execution. While it is possible to code any program 

utilizing only main function, it leads to a number of problems. The program may become too large and 

 complex and as a result the task of debugging, testing, and maintaining becomes diffi cult. If a program is 

divided into functional parts, then each part may be independently coded and later combined into a single 

unit. These independently coded programs are called subprograms that are much easier to understand, debug, 

and test. In C, such subprograms are referred to as  ‘functions’.

There are times when certain type of operations or calculations are repeated at many points throughout 

a program. For instance, we might use the factorial of a number at several points in the program. In such 

 situations, we may repeat the program statements wherever they are needed. Another approach is to design a 

function that can be called and used whenever required. This saves both time and space.

This “division” approach clearly results in a number of advantages.

1. It facilitates top-down modular programming as shown in Fig. 5.1. In this programming style, the 

high level logic of the overall problem is solved fi rst while the details of each lower-level function are 

addressed later.

5.1 INTRODUCTION

5.2 NEED FOR   USER-DEFINED FUNCTIONS



5.2 Computer Programming

2. The length of a source program can be reduced 

by using functions at appropriate places. This 

factor is particularly critical with microcom-

puters where memory space is limited.

3. It is easy to locate and isolate a faulty function 

for further investigations.

4. A function may be used by many other 

 programs. This means that a C programmer 

can build on what others have already done, 

instead of starting all over again from scratch.

A function is a self-contained block of code that performs a particular task. Once a function has been designed 

and packed, it can be treated as a ‘black box’ that takes some data from the main program and returns a value. 

The inner details of operation are invisible to the rest of the program. All that the program knows about a 

function is: What goes in and what comes out. Every C program can be designed using a collection of these 

black boxes known as functions.

Consider a set of statements as shown below:

void printline(void)

{

  int i;

  for (i=1; i<40; i++)

    printf(“–”);

  printf(“\n”);

}

The above set of statements defi nes a function called  printline, which could print a line of 39-character 

length. This function can be used in a program as follows:

void printline(void); /* declaration */

 main( )

 {

    printline( );

    printf(“This illustrates the use of C functions\n”);

    printline();

 }

 void printline(void)

 {

 int i;

 for(i=1; i<40; i++)

 printf(“–”);

 printf(“\n”);

 }

5.3 A  MULTI-FUNCTION PROGRAM

Main Program

Function
A

Function
C

Function
B

B1 B2

Fig. 5.1 Top–down modular programming using 

functions



Functions—Modular Programming 5.3 

This program will print the following output:

—————————————————-

This illustrates the use of C functions

—————————————————-

The above program contains two user-defi ned functions:

main() function
printline() function

As we know, the program execution always 

begins with the main function. During execution of 

the main, the fi rst statement encountered is

printline( );

which indicates that the function printline is to be 

executed. At this point, the program control is 

 transferred to the function printline. After execut-

ing the printline function, which outputs a line of 

39 character length, the control is transferred back 

to the main. Now, the execution continues at the 

point where the function call was executed. After 

executing the printf statement, the control is again 

transferred to the printline function for printing the 

line once more.

The main function calls the user-defi ned print-

line function two times and the library function 

printf once. We may notice that the printline func-

tion itself calls the library function printf 39 times 

repeatedly.

Any function can call any other function. In fact, 

it can call itself. A ‘called function’ can also call 

another function. A function can be called more than 

once. In fact, this is one of the main features of using 

functions. Figure 5.2 illustrates the fl ow of control in 

a multi-function program.

Except the starting point, there are no other 

 predetermined relationships, rules of precedence, or 

hierarchies among the functions that make up a 

complete program. The functions can be placed in 

any order. A called function can be placed either before or after the calling function. However, it is the usual 

practice to put all the called functions at the end. See the box “Modular Programming”

Fig. 5.2 Flow of control in a multi-function program

Main (  )

function 1();

function 2();

function 2();

function 1();

function 3();

function 3();

function 1();

return

return

return

call

call

call

Modular programming is a strategy applied to the design and development of software systems. It is defi ned as orga-

nizing a large program into small, independent program segments called modules that are separately named and indi-

vidually callable program units. These modules are carefully integrated to become a software system that satisfi es the 

system requirements. It is basically a “divide-and-conquer” approach to problem solving. 

 Modular Programming

(Contd.)



5.4 Computer Programming

Modules are identifi ed and designed such that they can be organized into a top-down hierarchical structure (similar 

to an organization chart). In C, each module refers to a function that is responsible for a single task.

Some characteristics of modular programming are:

1. Each module should do only one thing.

2. Communication between modules is allowed only by a calling module.

3. A module can be called by one and only one higher module.

4. No communication can take place directly between modules that do not have calling-called relationship.

5. All modules are designed as single-entry, single-exit systems using control structures.

We have discussed and used a variety of data types and variables in our programs so far. However, declaration 

and use of these variables were primarily done inside the main function. As we mentioned in Chapter 4, func-

tions are classifi ed as one of the derived data types in C. We can therefore defi ne functions and use them like 

any other variables in C programs. It is therefore not a surprise to note that there exist some similarities 

between functions and variables in C.

Both function names and variable names are considered identifi ers and therefore they must adhere to • 

the rules for identifi ers.

Like variables, functions have types (such as int) associated with them.• 

Like variables, function names and their types must be declared and defi ned before they are used in a • 

program.

In order to make use of a user-defi ned function, we need to establish three elements that are related to 

functions.

1. Function defi nition.

2. Function call.

3. Function declaration.

The function defi nition is an independent program module that is specially written to implement the 

requirements of the function. In order to use this function we need to invoke it at a required place in the 

 program. This is known as the function call. The program (or a function) that calls the function is referred to 

as the calling program or calling function. The calling program should declare any function (like declaration 

of a variable) that is to be used later in the program. This is known as the function declaration or function 

prototype.

A  function defi nition, also known as function implementation shall include the following elements;

1. function name;

2. function type;

3. list of parameters;

4. local variable declarations;

5. function statements; and

6. a return statement.

All the six elements are grouped into two parts, namely,

function header (First three elements); and• 

function body (Second three elements).• 

5.4 ELEMENTS OF  USER-DEFINED FUNCTIONS

5.5 DEFINITION OF FUNCTIONS



Functions—Modular Programming 5.5 

A general format of a function defi nition to implement these two parts is given below:

function_type function_name(parameter list)
{
  local variable declaration;
  executable statement1;
  executable statement2;
  . . . . . 
  . . . . . 
  return statement;
}

The fi rst line function_type function_name(parameter list) is known as the function header and the state-

ments within the opening and closing braces constitute the function body, which is a compound statement.

 Function Header

The function header consists of three parts: the function type (also known as return type), the function name 

and the formal parameter list. Note that a semicolon is not used at the end of the function header.

 Name and Type

The function type specifi es the type of value (like fl oat or double) that the function is expected to return to the 

program calling the function. If the return type is not explicitly specifi ed, C will assume that it is an integer 

type. If the function is not returning anything, then we need to specify the return type as void. Remember, 

void is one of the fundamental data types in C. It is a good programming practice to code explicitly the return 

type, even when it is an integer. The value returned is the output produced by the function.

The function name is any valid C identifi er and therefore must follow the same rules of formation as other 

variable names in C. The name should be appropriate to the task performed by the function. However, care 

must be exercised to avoid duplicating library routine names or operating system commands.

 Formal Parameter List

The parameter list declares the variables that will receive the data sent by the calling program. They serve 

as input data to the function to carry out the specifi ed task. Since they represent actual input values, they 

are often referred to as formal parameters. These parameters can also be used to send values to the calling 

programs. This aspect will be covered later when we discuss more about functions. The parameters are also 

known as arguments.

The parameter list contains declaration of variables separated by commas and surrounded by parentheses. 

Examples:

float quadratic (int a, int b, int c) {. . . . }
double power (double x, int n) {. . . ..}
float mul (float x, float y) {. . . . }
int sum (int a, int b) {. . . . }

Remember, there is no semicolon after the closing parenthesis. Note that the declaration of parameter 

variables cannot be combined. That is, int sum (int a,b) is illegal.

A function need not always receive values from the calling program. In such cases, functions have no 

formal parameters. To indicate that the parameter list is empty, we use the keyword void between the paren-

theses as in

void printline (void)
{
   . . . . 
}



5.6 Computer Programming

This function neither receives any input values nor returns back any value. Many compilers accept an 

empty set of parentheses, without specifying anything as in

void printline ( )

But, it is a good programming style to use void to indicate a nill parameter list.

Function Body

The function body contains the declarations and statements necessary for performing the required task. The 

body enclosed in braces, contains three parts, in the order given below:

1. Local declarations that specify the variables needed by the function.

2. Function statements that perform the task of the function.

3. A return statement that returns the value evaluated by the function.

If a function does not return any value (like the printline function), we can omit the return statement.

However, note that its return type should be specifi ed as void. Again, it is nice to have a return statement even 

for void functions.

Some examples of typical function defi nitions are:

(a) float mul (float x, float y)
   {
    float result; /* local variable */
    result = x * y; /* computes the product */
    return (result); /* returns the result */
   }
(b) void sum (int a, int b)
   { 
    printf (“sum = %s”, a + b); /* no local variables */
    return;   /* optional */
   }
(c) void display (void)
   {   /* no local variables */
    printf (“No type, no parameters”);
    /* no return statement */
   }

NOTE: 

1. When a function reaches its  return statement, the control is transferred back to the calling  program. In the 

absence of a return statement, the closing brace acts as a void return.

2. A local variable is a variable that is defi ned inside a function and used without having any role in the 

communication between functions.

As pointed out earlier, a function may or may not send back any value to the calling function. If it does, it is 

done through the return statement. While it is possible to pass to the called function any number of values, 

the called function can only return one value per call, at the most.

The return statement can take one of the following forms:

return;
or 
return(expression);

5.6 RETURN VALUES AND THEIR TYPES



Functions—Modular Programming 5.7

The fi rst, the ‘plain’ return does not return any value; it acts much as the closing brace of the function. 

When a return is encountered, the control is immediately passed back to the calling function. An example of 

the use of a simple return is as follows:

if(error)
return;

NOTE: In C99, if a function is specifi ed as returning a value, the return must have value associated with it.

The second form of return with an expression returns the value of the expression. For example, the 

function

int mul (int x, int y)
{ 
  int p;
  p = x*y;
  return(p);
}

returns the value of p which is the product of the values of x and y. The last two statements can be combined 

into one statement as follows:

return (x*y);

A function may have more than one return statements. This situation arises when the value returned is 

based on certain conditions. For example:

if( x <= 0 )
 return(0);
else
 return(1);

What type of data does a function return? All functions by default return int type data. But what happens 

if a function must return some other type? We can force a function to return a particular type of data by using 

a type specifi er in the function header as discussed earlier.

When a value is returned, it is automatically cast to the function’s type. In functions that do computations 

using doubles, yet return ints, the returned value will be truncated to an integer. For instance, the function

int product (void)
{
   return (2.5 * 3.0);
}

will return the value 7, only the integer part of the result.

A function can be called by simply using the function name followed by a list of actual parameters (or 

 arguments), if any, enclosed in parentheses. Example:

main( )
{
  int y;
  y = mul(10,5);   /* Function call */
  printf(“%d\n”, y);
}

5.7  FUNCTION CALLS



5.8 Computer Programming

When the compiler encounters a function call, the control is transferred to the function mul(). This  function 

is then executed line by line as described and a value is returned when a return statement is encountered. 

This value is assigned to y. This is illustrated below:

main ()

int y;

int p;

p = x* y;

return (p);

int mul(int x,int y)

y = mul(10,5); /* call*/

/* local variable*/

/* x = 10, y = 5*/

The function call sends two integer values 10 and 5 to the function.

int mul(int x, int y)

which are assigned to x and y respectively. The function computes the product x and y, assigns the result to 

the local variable p, and then returns the value 25 to the main where it is assigned to y again.

There are many different ways to call a function. Listed below are some of the ways the function mul can 

be invoked.

mul (10, 5)

mul (m, 5)

mul (10, n)

mul (m, n)

mul (m + 5, 10)

mul (10, mul(m,n))

mul (expression1, expression2)

Note that the sixth call uses its own call as its one of the parameters. When we use expressions, they should 

be evaluated to single values that can be passed as actual parameters.

A function which returns a value can be used in expressions like any other variable. Each of the following 

statements is valid:

printf(“%d\n”, mul(p,q));

y = mul(p,q) / (p+q);

if (mul(m,n)>total) printf(“large”);

However, a function cannot be used on the right side of an assignment statement. For instance,

mul(a,b) = 15;

is invalid.

A function that does not return any value may not be used in expressions; but can be called in to perform 

certain tasks specifi ed in the function. The function printline( ) discussed in Section 5.3 belongs to this 

 category. Such functions may be called in by simply stating their names as independent statements.



Functions—Modular Programming 5.9

Example:

main( )
{
  printline( );
}

Note the presence of a semicolon at the end.

A function call is a postfi x expression. The operator (. .) is at a very high level of precedence. (See Table 4.8) Therefore, 

when a function call is used as a part of an expression, it will be evaluated fi rst, unless parentheses are used to change 

the order of precedence.

In a function call, the function name is the operand and the parentheses set (. .) which contains the actual parameters 

is the operator. The actual parameters must match the function’s formal parameters in type, order and number. Multiple 

actual parameters must be separated by commas.

 NOTE: 

1. If the actual parameters are more than the formal parameters, the extra actual arguments will be 

 discarded.

2. On the other hand, if the actuals are less than the formals, the unmatched formal arguments will be 

 initialized to some garbage.

3. Any mismatch in data types may also result in some garbage values.

  Function Call

Like variables, all functions in a C program must be declared, before they are invoked. A function declaration

(also known as function prototype) consists of four parts.

Function type (return type).• 

Function name.• 

Parameter list.• 

Terminating semicolon.• 

They are coded in the following format:

Function-type function-name (parameter list);

This is very similar to the function header line except the terminating semicolon. For example, mul function 

defi ned in the previous section will be declared as:

int mul (int m, int n); /* Function prototype */

Points to note:

1. The parameter list must be separated by commas. 

2. The parameter names do not need to be the same in the prototype declaration and the function defi ni-

tion.

3. The types must match the types of parameters in the function defi nition, in number and order.

4. Use of parameter names in the declaration is optional.

5. If the function has no formal parameters, the list is written as (void).

6. The return type is optional, when the function returns int type data.

7. The retype must be void if no value is returned.

8. When the declared types do not match with the types in the function defi nition, compiler will produce 

an error.

5.8  FUNCTION DECLARATION



5.10 Computer Programming

Equally acceptable forms of declaration of mul function are:

int mul (int, int);
mul (int a, int b);
mul (int, int);

When a function does not take any parameters and does not return any value, its prototype is written as:

void display (void);

A prototype declaration may be placed in two places in a program.

1. Above all the functions (including main).

2. Inside a function defi nition.

When we place the declaration above all the functions (in the global declaration section), the prototype is 

referred to as a  global prototype. Such declarations are available for all the functions in the program.

When we place it in a function defi nition (in the local declaration section), the prototype is called a  local 

prototype. Such declarations are primarily used by the functions containing them.

The place of declaration of a function defi nes a region in a program in which the function may be used by 

other functions. This region is known as the scope of the function. (Scope is discussed later in this chapter.) 

It is a good programming style to declare prototypes in the global declaration section before main. It adds 

fl exibility, provides an excellent quick reference to the functions used in the program, and enhances 

documentation.

Prototype declarations are not essential. If a function has not been declared before it is used, C will assume that its 

details available at the time of linking. Since the prototype is not available, C will assume that the return type is an integer 

and that the types of parameters match the formal defi nitions. If these assumptions are wrong, the linker will fail and we 

will have to change the program. The moral is that we must always include prototype declarations, preferably in global 

declaration section.

 Prototypes: Yes or No

Parameters (also known as arguments) are used in three places:

1. in declaration (prototypes),

2. in function call, and

3. in function defi nition.

The parameters used in prototypes and function defi nitions are called formal parameters and those used in function 

calls are called actual parameters. Actual parameters used in a calling statement may be simple constants, variables or 

expressions.

The formal and actual parameters must match exactly in type, order and number. Their names, however, do not need 

to match.

 Parameters Everywhere!

A function, depending on whether arguments are present or not and whether a value is returned or not, may 

belong to one of the following categories:

Category 1: Functions with no arguments and no return values.

Category 2:  Functions with arguments and no return values.

Category 3:  Functions with arguments and one return value.

Category 4: Functions with no arguments but return a value.

Category 5: Functions that return multiple values.

5.9 CATEGORY OF FUNCTIONS



Functions—Modular Programming 5.11 

In the sections to follow, we shall discuss these 

categories with examples. Note that, from now on, 

we shall use the term arguments (rather than param-

eters) more frequently:

5.10  NO   ARGUMENTS AND NO  
 RETURN VALUES

When a function has no arguments, it does not 

receive any data from the calling function. Similarly, 

when it does not return a value, the calling function 

does not receive any data from the called function. In effect, there is no data transfer between the  calling func-

tion and the called function. This is depicted in Fig. 5.3. The dotted lines indicate that there is only a transfer 

of control but not data. 

As pointed out earlier, a function that does not return any value cannot be used in an expression. It can 

only be used as an independent statement.

EXAMPLE 5.1 Write a program with multiple functions that do not communicate any data between 

them.

A program with three user-defi ned functions is given in Fig. 5.4. main is the calling function that calls 

 printline and value functions. Since both the called functions contain no arguments, there are no argument 

declarations. The printline function, when encountered, prints a line with a length of 35 characters as 

 prescribed in the function. The value function calculates the value of principal amount after a certain period 

of years and prints the results. The following equation is evaluated repeatedly:

value = principal(1+interest-rate)

Fig. 5.3 No data communication between functions

Program 
 /* Function declaration */
 void printline (void);
 void value (void);

  main() 
  { 
    printline(); 
     value(); 
    printline(); 
  } 
  /* Function1: printline( ) */ 
  void printline(void) /* contains no arguments */

  { 
    int i ; 
 for(i=1; i <= 35; i++) 
 printf(“%c”,’-’); 
 printf(“\n”); 
  } 

(Contd.)



5.12 Computer Programming

It is important to note that the function value receives its data directly from the terminal. The input data 

include principal amount, interest rate and the period for which the fi nal value is to be calculated. The while 

loop calculates the fi nal value and the results are printed by the library function printf. When the closing 

brace of  value( ) is reached, the control is transferred back to the calling function main. Since everything is 

done by the value itself there is in fact nothing left to be sent back to the called function. Return types of both 

printline and value are declared as void.

Note that no return statement is employed. When there is nothing to be returned, the return statement is 

optional. The closing brace of the function signals the end of execution of the function, thus returning the 

control, back to the calling function.

In Fig. 5.4 the main function has no control over the way the functions receive input data. For example, the 

function printline will print the same line each time it is called. Same is the case with the function value. 

We could make the calling function to read data from the terminal and pass it on to the called function. 

This approach seems to be wiser because the calling  function can check for the validity of data, if necessary, 

before it is handed over to the called function.

5.11 ARGUMENTS BUT NO RETURN VALUES

  /* Function2: value( ) */ 
  void value(void) /* contains no arguments */ 
  { 
   int year, period; 
   float inrate, sum, principal; 
   printf(“Principal amount?”); 
   scanf(“%f”, &principal); 
   printf(“Interest rate? “); 
   scanf(“%f”, &inrate); 
   printf(“Period? “); 
    scanf(“%d”, &period); 
 
   sum = principal; 
   year = 1; 
   while(year <= period) 
   {  
    sum = sum *(1+inrate); 
    year = year +1; 
   } 
   printf(“\n%8.2f %5.2f %5d %12.2f\n”, 
    principal,inrate,period,sum);
  } 
  
Output 
 — — — — — — — — — — — — — — — — — — — — — — — 
  Principal amount?  5000 
  Interest rate?   0.12 
  Period?      5 
 
 5000.00 0.12     5 8811.71 
  — — — — — — — — — — — — — — — — — — — — — — — 

Fig. 5.4 Functions with no arguments and no return values



Functions—Modular Programming 5.13 

The nature of data communication between the calling 

function and the called function with arguments but no 

return value is shown in Fig. 5.5.

We shall modify the defi nitions of both the called 

 functions to include arguments as follows:

void printline(char ch)

void value(fl oat p, fl oat r, int n)

The arguments ch, p, r, and n are called the formal 

 arguments. The calling function can now send values to 

these arguments using function calls containing appropriate arguments. For example, the function call 

value(500,0.12,5)

would send the values 500, 0.12 and 5 to the function

void value( fl oat p, fl oat r, int n)

and assign 500 to p, 0.12 to r and 5 to n. The values 500, 0.12 and 5 are the actual arguments, which become 

the values of the formal arguments inside the called function.

The  actual and  formal arguments should match in number, type, and order. The values of actual arguments are 

assigned to the formal arguments on a one to one basis, 

starting with the fi rst argument as shown in Fig. 5.6.

We should ensure that the function call has 

 matching arguments. In case, the actual arguments 

are more than the formal arguments (m > n), the extra 

actual arguments are discarded. On the other hand, if 

the actual arguments are less than the  formal argu-

ments, the unmatched formal arguments are initial-

ized to some garbage values. Any mismatch in data 

type may also result in passing of garbage values. 

Remember, no error message will be generated.

While the formal arguments must be valid vari-

able names, the actual arguments may be variable 

names, expressions, or constants. The variables used 

in actual arguments must be assigned values before 

the function call is made.

Remember that, when a function call is made, 

only a copy of the values of actual arguments is passed into the called function. What occurs inside the func-

tion will have no effect on the variables used in the actual argument list.

EXAMPLE 5.2 Modify the program of Example 5.1 to include the arguments in the function calls.

The modifi ed program with function arguments is presented in Fig. 5.7. Most of the program is identical to 

the program in Fig. 5.4. The input prompt and scanf assignment statement have been moved from value func-

tion to main. The variables principal, inrate, and period are declared in main because they are used in main 

to receive data. The function call

value(principal, inrate, period);

passes information it contains to the function value.

Fig. 5.5 One-way data communication

Fig. 5.6 Arguments matching between the function call 

and the called function



5.14 Computer Programming

The function header of value has three formal arguments p,r, and n which correspond to the actual 

 arguments in the function call, namely, principal, inrate, and period. On execution of the function call, the 

values of the actual arguments are assigned to the corresponding formal arguments. In fact, the following 

assignments are accomplished across the function boundaries:

p = principal;
r = inrate;
n = period;

Program 
 /* prototypes */
  void printline (char c);
  void value (float, float, int);
  
  main( ) 
  { 
    float principal, inrate; 
    int period; 
    printf(“Enter principal amount, interest”); 
     printf(“ rate, and period \n”); 
    scanf(“%f %f %d”,&principal, &inrate, &period); 
    printline(‘Z’); 
    value(principal,inrate,period); 
    printline(‘C’); 
  } 
  void printline(char ch) 
  { 
    int i ; 
     for(i=1; i <= 52; i++) 
      printf(“%c”,ch); 
    printf(“\n”); 
  } 
  void value(float p, float r, int n)
  { 
    int year ; 
     float sum ; 
    sum = p ; 
    year = 1; 
    while(year <= n) 
    { 
      sum = sum * (1+r); 
      year = year +1; 
   } 
      printf(“%f\t%f\t%d\t%f\n”,p,r,n,sum); 
  } 
Output 
  
  Enter principal amount, interest rate, and period 
  5000 0.12 5 
 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
  5000.000000 0.120000 5 8811.708984 
 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

Fig. 5.7 Functions with arguments but no return values



Functions—Modular Programming 5.15 

The variables declared inside a function are known as local variables and therefore their values are local to the 

function and cannot be accessed by any other function. We shall discuss more about this later in the chapter.

The function value calculates the fi nal amount for a given period and prints the results as before. Control is 

transferred back on reaching the closing brace of the function. Note that the function does not return any value.

The function printline is called twice. The fi rst call passes the character ‘Z’, while the second passes the 

character ‘C’ to the function. These are assigned to the formal argument ch for printing lines (see the output).

Some functions have a variable number of arguments and data types which cannot be known at compile time. The printf 

and scanf functions are typical examples. The ANSI standard proposes new symbol called the ellipsis to handle such 

functions. The ellipsis consists of three periods (…) and used as shown below:

double area(fl oat d,…)

Both the function declaration and defi nition should use ellipsis to indicate that the arguments are arbitrary both in 

number and type.

Variable Number of Arguments

The function value in Fig. 5.7 receives data from the calling function through arguments, but does not send 

back any value. Rather, it displays the results of calculations at the terminal. However, we may not always wish 

to have the result of a function displayed. We may use it in the calling function for further processing. Moreover, 

to assure a high degree of portability between programs, a function should generally be coded without involv-

ing any I/O operations. For example, different programs may require different output formats for display of 

results. These shortcomings can be overcome by handing over 

the result of a function to its calling function where the returned 

value can be used as required by the program.

A self-contained and independent function should behave 

like a ‘black box’ that receives a predefi ned form of input and 

outputs a desired value. Such functions will have two-way 

data communication as shown in Fig. 5.8.

We shall modify the program in Fig. 5.7 to illustrate the 

use of two-way data communication between the calling and 

the called functions.

EXAMPLE 5.3 In the program presented in Fig. 5.7 modify the function value, to return the fi nal 

amount calculated to the main, which will display the required output at the terminal. 

Also extend the versatility of the function printline by having it to take the length of 

the line as an argument.

The modifi ed program with the proposed changes is presented in Fig. 5.9. One major change is the movement 

of the printf statement from value to main.

5.12 ARGUMENTS WITH RETURN VALUES

Fig. 5.8 Two-way data communication between 

functions

Program
 void printline (char ch, int len);
 value (float, float, int);

(Contd.)



5.16 Computer Programming

The calculated value is passed on to main through statement:

return(sum);

Since, by default, the return type of value function is int, the ‘integer’ value of sum at this point is returned 

to main and assigned to the variable amount by the functional call

amount = value (principal, inrate, period);

The following events occur, in order, when the above function call is executed:

1. The function call transfers the control along with copies of the values of the actual arguments to the 

function value where the formal arguments p, r, and n are assigned the actual values of principal, 

inrate and period respectively.

  main( )

  {

   float principal, inrate, amount;

   int period;

   printf(“Enter principal amount, interest”);

   printf(“rate, and period\n”);

   scanf(%f %f %d”, &principal, &inrate, &period);

   printline (‘*’ , 52);

   amount = value (principal, inrate, period);

   printf(“\n%f\t%f\t%d\t%f\n\n”,principal,

    inrate,period,amount);

   printline(‘=’,52);

  }

 void printline(char ch, int len)

 {

   int i;

   for (i=1;i<=len;i++) printf(“%c”,ch);

   printf(“\n”);

 }

 value(float p, float r, int n) /* default return type */

 {

  int year;

  float sum;

   sum = p; year = 1;

   while(year <=n)

   {

    sum = sum * (l+r);

    year = year +1;

   }

   return(sum);  /* returns int part of sum */

 }

Output

 Enter principal amount, interest rate, and period

 5000  0.12 5

 ***************************************************

 5000.000000  0.1200000  5  8811.000000

 = = = = = = = = = = = = = = = = = = = = = = = = = =

Fig. 5.9 Functions with arguments and return values 



Functions—Modular Programming 5.17 

2. The called function value is executed line by line in a normal fashion until the return(sum);  statement 

is encountered. At this point, the integer value of sum is passed back to the function-call in the main 

and the following indirect assignment occurs:

value(principal, inrate, period) = sum;

3. The calling statement is executed normally and the returned value is thus assigned to amount, a fl oat 

variable.

4. Since amount is a fl oat variable, the returned integer part of sum is converted to fl oating-point value. 

See the output.

Another important change is the inclusion of second argument to printline function to receive the value 

of length of the line from the calling function. Thus, the function call

printline(‘*’, 52);

will transfer the control to the function printline and assign the following values to the formal arguments ch, 

and len;

ch = ‘*’ ;
len = 52;

5.12.1 Returning   Float Values

We mentioned earlier that a C function returns a value of the type int as the default case when no other type 

is specifi ed explicitly. For example, the function value of Example 5.3 does all calculations using fl oats but 

the return statement

return(sum);

returns only the integer part of sum. This is due to the absence of the type-specifi er in the function header. In 

this case, we can accept the integer value of sum because the truncated decimal part is insignifi cant compared 

to the integer part. However, there will be times when we may fi nd it necessary to receive the fl oat or double 

type of data. For example, a function that calculates the mean or standard deviation of a set of values should 

return the function value in either fl oat or double.

In all such cases, we must explicitly specify the return type in both the function defi nition and the  prototype 

declaration.

If we have a mismatch between the type of data that the called function returns and the type of data that 

the calling function expects, we will have unpredictable results. We must, therefore, be very careful to make 

sure that both types are compatible.

EXAMPLE 5.4 Write a function power that computes x raised to the power y for integers x and y and 

returns double-type value.

Figure 5.10 shows a power function that returns a double. The prototype declaration

double power(int, int);

appears in main, before power is called.

Program
main( )
{
int x,y;/*input data */

(Contd.)



5.18 Computer Programming

Another way to guarantee that power’s type is declared before it is called in main is to defi ne the power 

function before we defi ne main. Power’s type is then known from its defi nition, so we no longer need its type 

declaration in main.

There could be occasions where we may need to design functions that may not take any arguments but returns 

a value to the calling function. A typical example is the getchar function declared in the header fi le <stdio. h>. 

We have used this function earlier in a number of places. The getchar function has no parameters but it 

returns an integer type data that represents a character.

We can design similar functions and use in our programs. Example:

 int get_number(void);

 main

 {

   int m = get_number( );

   printf(“%d”,m);

 }

 int get_number(void)

 {

   int number;

   scanf(“%d”, &number);

   return(number);

 }

5.13 NO ARGUMENTS BUT RETURNS A VALUE

  double power(int, int);  /* prototype declaration*/
  printf(“Enter x,y:”);
  scanf(“%d %d” , &x,&y);
  printf(“%d to power %d is %f\n”, x,y,power (x,y));
 }
 double power (int x, int y);
 {
  double p;
  p = 1.0 ;    /* x to power zero */
  if(y >=0)
   while(y—–) /* computes positive powers */
    p *= x;
  else
   while (y++) /* computes negative powers */
    p /= x;   
  return(p);   /* returns double type */ 
 
 }
Output
 Enter x,y:16 2
 16 to power 2 is 256.000000
 Enter x,y:16 -2
 16 to power -2 is 0.003906

Fig. 5.10 Power functions: Illustration of return of fl oat values



Functions—Modular Programming 5.19 

Up till now, we have illustrated functions that return just one value using a return statement. That is because, 

a return statement can return only one value. Suppose, however, that we want to get more information from 

a function. We can achieve this in C using the arguments not only to receive information but also to send back 

information to the calling function. The arguments that are used to “send out” information are called output 

parameters.

The mechanism of sending back information through arguments is achieved using what are known as the 

address operator (&) and indirection operator (*). Let us consider an example to illustrate this.

 void mathoperation (int x, int y, int *s, int *d);

 main( )

 {

  int x = 20, y = 10, s, d;

  mathoperation(x,y, &s, &d);

  

  printf(“s=%d\n d=%d\n”, s,d);

 }

 void mathoperation (int a, int b, int *sum, int *diff)

 {

  *sum = a+b;

  *diff = a-b;

 }

The actual arguments x and y are input arguments, s and d are output arguments. In the function call, while 

we pass the actual values of x and y to the function, we pass the addresses of locations where the values of 

s and d are stored in the memory. (That is why, the operator & is called the address operator.) When the 

 function is called the following assignments occur:

value of  x to a

value of  y to b

address of  s to sum

address of  d to diff

Note that indirection operator * in the declaration of sum and diff in the header indicates these variables 

are to store addresses, not actual values of variables. Now, the variables sum and diff point to the memory 

locations of s and d respectively.

(The operator * is known as indirection operator because it gives an indirect reference to a variable through 

its address.)

In the body of the function, we have two statements:

 * sum = a+b;

 * diff = a-b;

The fi rst one adds the values a and b and the result is stored in the memory location pointed to by sum. 

Remember, this memory location is the same as the memory location of s. Therefore, the value stored in the 

location pointed to by sum is the value of s.

Similarly, the value of a–b is stored in the location pointed to by diff, which is the same as the location d. 

After the function call is implemented, the value of s is a+b and the value of d is a–b. Output will be:

 s = 30

d = 10

5.14 FUNCTIONS THAT RETURN  MULTIPLE VALUES



5.20 Computer Programming

The variables *sum and *diff are known as pointers and sum and diff as pointer variables. Since they are 

declared as int, they can point to locations of int type data. 

The use of pointer variables as actual parameters for communicating data between functions is called 

“pass by pointers” or “call by address or reference”. Pointers and their applications are discussed in detail in 

Chapter 6.

1. The types of the actual and formal arguments must be same.

2. The actual arguments (in the function call) must be the addresses of variables that are local to the calling 

 function.

3. The formal arguments in the function header must be prefi xed by the indirection operator *.

4. In the prototype, the arguments must be prefi xed by the symbol *.

5. To access the value of an actual argument in the called function, we must use the corresponding formal  argument 

prefi xed with the indirection operator *.

Rules for  Pass by Pointers

C permits nesting of functions freely. main can call function1, which calls function2, which calls function3, 

………. and so on. There is in principle no limit as to how deeply functions can be nested. 

Consider the following program:

 float ratio (int x, int y, int z);
 int difference (int x, int y);
 main( )
 {
  int a, b, c;
  scanf(“%d %d %d”, &a, &b, &c);
  printf(“%f \n”, ratio(a,b,c));
 }

 float ratio(int x, int y, int z)
 {
  if(difference(y, z))
   return(x/(y-z));
  else
   return(0.0);
 }
 int difference(int p, int q)
 {
  if(p != q)
   return (1);
  else
   return(0);
 }

The above program calculates the ratio
a

b c−

and prints the result. We have the following three functions:

  main( )

  ratio( )

  difference( )

5.15  NESTING OF FUNCTIONS



Functions—Modular Programming 5.21 

main reads the values of a, b and c and calls the function ratio to calculate the value a/(b–c). This ratio cannot 

be evaluated if (b–c) = 0. Therefore, ratio calls another function difference to test whether the difference 

(b–c) is zero or not; difference returns 1, if b is not equal to c; otherwise returns zero to the function ratio. 

In turn, ratio calculates the value a/(b–c) if it receives 1 and returns the result in fl oat. In case, ratio receives 

zero from difference, it sends back 0.0 to main indicating that (b–c) = 0.

Nesting of function calls is also possible. For example, a statement like

P = mul(mul(5,2),6);

is valid. This represents two sequential function calls. The inner function call is evaluated fi rst and the returned 

value is again used as an actual argument in the outer function call. If mul returns the product of its argu-

ments, then the value of p would be 60 (= 5×2×6).

Note that the nesting does not mean defi ning one function within another. Doing this is illegal.

When a called function in turn calls another function a process of ‘chaining’ occurs. Recursion is a special 

case of this process, where a function calls itself. A very simple example of recursion is presented below: 

 main( )

 {

  printf(“This is an example of recursion\n”)

  main( );

 }

When executed, this program will produce an output something like this:

This is an example of recursion

This is an example of recursion

This is an example of recursion

This is an ex

Execution is terminated abruptly; otherwise the execution will continue indefi nitely.

Another useful example of recursion is the evaluation of factorials of a given number. The factorial of a 

number n is expressed as a series of repetitive multiplications as shown below:

factorial of n = n(n–1)(n–2).........1.

For example,

factorial of 4 = 4×3×2×1 = 24

A function to evaluate factorial of n is as follows:

factorial(int n) 
 {
  int fact;
  if (n==1)
   return(1);
  else
   fact = n*factorial(n-1);
  return(fact);
 }

Let us see how the recursion works. Assume n = 3. Since the value of n is not 1, the statement

fact = n * factorial(n–1);

5.16  RECURSION



5.22 Computer Programming

will be executed with n = 3. That is,

fact = 3 * factorial(2);

will be evaluated. The expression on the right-hand side includes a call to factorial with n = 2. This call will 

return the following value:

2 * factorial(1)

Once again, factorial is called with n = 1. This time, the function returns 1. The sequence of operations 

can be summarized as follows:

 fact = 3 * factorial(2)
 = 3 * 2 * factorial(1)
 = 3 * 2 * 1
 = 6

Recursive functions can be effectively used to solve problems where solution is expressed in terms of succes-

sively applying the same solution to subsets of the problem. When we write recursive functions, we must 

have an if statement somewhere to force the function to return without the recursive call being executed. 

Otherwise, the function will never return.

  5.17.1 One-Dimensional Arrays

Like the values of simple variables, it is also possible to pass the values of an array to a function. To pass a 

one-dimensional an array to a called function, it is suffi cient to list the name of the array, without any sub-

scripts, and the size of the array as arguments. For example, the call

largest(a,n)

will pass the whole array a to the called function. The called function expecting this call must be appropri-

ately defi ned. The largest function header might look like:

fl oat largest(fl oat array[ ], int size)

The function largest is defi ned to take two arguments, the array name and the size of the array to specify 

the number of elements in the array. The declaration of the formal argument array is made as follows:

float array[ ];

The pair of brackets informs the compiler that the argument array is an array of numbers. It is not neces-

sary to specify the size of the array here.

Let us consider a problem of fi nding the largest value in an array of elements. The program is as follows:

 main( )
 {
  float largest(float a[ ], int n);
  float value[4] = {2.5,-4.75,1.2,3.67};
  printf(“%f\n”, largest(value,4));
 }
 float largest(float a[], int n)
 {
  int i;
  float max;
  max = a[0];
  for(i = 1; i < n; i++)

    if(max < a[i])

5.17 PASSING  ARRAYS TO FUNCTIONS



Functions—Modular Programming 5.23

   max = a[i];
   return(max);
  }

When the function call largest(value,4) is made, the values of all elements of array value become the 

 corresponding elements of array a in the called function. The largest function fi nds the largest value in the 

array and returns the result to the main.

In C, the name of the array represents the address of its fi rst element. By passing the array name, we are, 

in fact, passing the address of the array to the called function. The array in the called function now refers to 

the same array stored in the memory. Therefore, any changes in the array in the called function will be 

refl ected in the original array.

Passing addresses of parameters to the functions is referred to as pass by address (or pass by pointers). 

Note that we cannot pass a whole array by value as we did in the case of ordinary variables.

EXAMPLE 5.5 Write a program to calculate the standard deviation of an array of values. The array 

elements are read from the terminal. Use functions to calculate standard deviation and 

mean.

Standard deviation of a s t of n values is given by

S.D =
n

i

i

n
1 2

1

( )x xi

=

∑

where is the mean of the values.

Program 
  #include <math.h> 
  #define SIZE 5 
  float std_dev(float a[], int n);
  float mean (float a[], int n);
  main( ) 
  {
   float value[SIZE];
   int i; 

   printf(“Enter %d float values\n”, SIZE); 
   for (i=0 ;i < SIZE ; i++) 
     scanf(“%f”, &value[i]); 
   printf(“Std.deviation is %f\n”, std_dev(value,SIZE)); 
  } 
  float std_dev(float a[], int n) 

 { 
int i;

 

 float x, sum = 0.0; 
    x = mean (a,n); 
    for(i=0; i < n; i++) 
     sum += (x-a[i])*(x-a[i]); 
    return(sqrt(sum/(float)n)); 
  } 
  float mean(float a[],int n) 

(Contd.)



5.24 Computer Programming

A multifunction program consisting of main, std_dev, and mean functions is shown in Fig. 5.11. main 

reads the elements of the array value from the terminal and calls the function std_dev to print the standard 

deviation of the array elements. Std_dev, in turn, calls another function mean to supply the average value of 

the array elements.

Both std_dev and mean are defi ned as fl oats and therefore they are declared as fl oats in the global section 

of the program.

1. The function must be called by passing only the name of the array.

2. In the function defi nition, the formal parameter must be an array type; the size of the array does not need to be 

specifi ed.

3. The function prototype must show that the argument is an array.

Three Rules to  Pass an Array to a Function

When dealing with array arguments, we should remember one major distinction. If a function changes the 

values of the elements of an array, then these changes will be made to the original array that passed to the 

function. When an entire array is passed as an argument, the contents of the array are not copied into 

the formal parameter array; instead, information about the addresses of array elements are passed on to the 

function. Therefore, any changes introduced to the array elements are truly refl ected in the original array in 

the calling function. However, this does not apply when an individual element is passed on as argument. 

Example 5.6 highlights these concepts. 

EXAMPLE 5.6 Write a program that uses a function to sort an array of integers.

A program to sort an array of integers using the function sort() is given in Fig. 5.12. Its output clearly shows 

that a function can change the values in an array passed as an argument.

  { 
    int i ; 
    float sum = 0.0; 
    for(i=0 ; i < n ; i++) 
     sum = sum + a[i]; 
    return(sum/(float)n); 
  } 

 Output  
 Enter 5 float values 
  35.0 67.0 79.5 14.20 55.75 
  Std.deviation is 23.231582

Fig. 5.11 Passing of arrays to a function

Program 
  void sort(int m, int x[ ]); 
  main() 
  { 
   int i; 
   int marks[5] = {40, 90, 73, 81, 35}; 
 
   printf(“Marks before sorting\n”); 
   for(i = 0; i < 5; i++) 

(Contd.)



Functions—Modular Programming 5.25 

5.17.2   Two-Dimensional Arrays

Like simple arrays, we can also pass multi-dimensional arrays to functions. The approach is similar to the one 

we did with one-dimensional arrays. The rules are simple.

1. The function must be called by passing only the array name.

2. In the function defi nition, we must indicate that the array has two-dimensions by including two sets 

of brackets.

3. The size of the second dimension must be specifi ed.

4. The prototype declaration should be similar to the function header.

The function given below calculates the average of the values in a two-dimensional matrix.

double average(int x[][N], int M, int N)

{

  int i, j;

  double sum = 0.0;

  for (i=0; i<M; i++)

     for(j=1; j<N; j++)

    sum += x[i][j];

  return(sum/(M*N));

}

    printf(“%d “, marks[i]); 

   printf(“\n\n”); 

   sort (5, marks); 

   printf(“Marks after sorting\n”); 

   for(i = 0; i < 5; i++) 

    printf(“%4d”, marks[i]); 

   printf(“\n”); 

  } 

  void sort(int m, int x[ ])

  { 

   int i, j, t; 

 

   for(i = 1; i <= m-1; i++) 

    for(j = 1; j <= m-i; j++) 

   if(x[j-1] >= x[j]) 

   { 

    t = x[j-1]; 

    x[j-1] = x[j]; 

    x[j] = t; 

    } 

  } 

Output 

   Marks before sorting 

   40 90 73 81 35 

   Marks after sorting 

   35 40 73 81 90 

Fig. 5.12 Sorting of array elements using a function



5.26 Computer Programming

This function can be used in a main function as illustrated below:

 main( )
 {
  int M=3, N=2;
  double average(int [ ] [N], int, int);
  double mean;
  int matrix [M][N]=
   {
    {1,2},
    {3,4},
    {5,6}
   };
  mean = average(matrix, M, N);
  . . . . . .
  . . . . . .
 }

Matrix

An m × n (read as m by n) order matrix is a set of numbers arranged in m rows and n columns. Matrices of 

the same order can be added by adding the corresponding elements. Two matrices can be multiplied, the 

condition being that the number of columns of the fi rst matrix is equal to the number of rows of the second 

matrix. Hence, if an m × n matrix is multiplied with an n × r matrix, then the resultant matrix will be of the 

order m × r

 If a[i][j] is equal to a[j][j] then matrix is symmetric matrix

A two-dimensional array can function exactly like a matrix. Two-dimensional arrays can be visualized as 

a table consisting of rows and columns
 /*  a C program that uses functions to perform the following:
  i) Addition of Two Matrices
  ii) Multiplication of Two Matrices
 */
 
 #include<stdio.h>
 
 void main()
 {
 int ch,i,j,m,n,p,q,k,r1,c1,a[10][10],b[10][10],c[10][10];
 clrscr();
 printf(“************************************”);
 printf(“\n\t\tMENU”);
 printf(“\n**********************************”);
 printf(“\n[1]ADDITION OF TWO MATRICES”);
 printf(“\n[2]MULTIPLICATION OF TWO MATRICES”);
 printf(“\n[0]EXIT”);
 printf(“\n**********************************”);
 printf(“\n\tEnter your choice:\n”);
 scanf(“%d”,&ch);
 
 if(ch<=2 & ch>0)
 {
  printf(“Valid Choice\n”);
 }
 
 switch(ch)



Functions—Modular Programming 5.27 

 {
  case 1:
  printf(“Input rows and columns of A & B Matrix:”);
  scanf(“%d%d”,&r1,&c1);
  printf(“Enter elements of matrix A:\n”);
   for(i=0;i<r1;i++)
   {
   for(j=0;j<c1;j++)
   scanf(“%d”,&a[i][j]);
   }
  printf(“Enter elements of matrix B:\n”);
   for(i=0;i<r1;i++)
   {
   for(j=0;j<c1;j++)
   scanf(“%d”,&b[i][j]);
   }
  printf(“\n =====Matrix Addition=====\n”);
   for(i=0;i<r1;i++)
   {
   for(j=0;j<c1;j++)
   printf(“%5d”,a[i][j]+b[i][j]);
   printf(“\n”);
   }
  break;
 
  case 2:
  printf(“Input rows and columns of A matrix:”);
  scanf(“%d%d”,&m,&n);
  printf(“Input rows and columns of B matrix:”);
  scanf(“%d%d”,&p,&q);
  if(n==p)
  {
  printf(“matrices can be multiplied\n”);
  printf(“resultant matrix is %d*%d\n”,m,q);
  printf(“Input A matrix\n”);
  read_matrix(a,m,n);
  printf(“Input B matrix\n”);
  /*Function call to read the matrix*/
  read_matrix(b,p,q);
  /*Function for Multiplication of two matrices*/
  printf(“\n =====Matrix Multiplication=====\n”);
  for(i=0;i<m;++i)
   for(j=0;j<q;++j)
   {
   c[i][j]=0;
   for(k=0;k<n;++k)
  c[i][j]=c[i][j]+a[i][k]*b[k][j];
   }
 
  printf(“Resultant of two matrices:\n”);
   write_matrix(c,m,q);
   }
   /*end if*/
  else
  {
  printf(“Matrices cannot be multiplied.”);



5.28 Computer Programming

  }
  /*end else*/
  break;
 
  case 0:
  printf(“\n Choice Terminated”);
  exit();
  break;
 
  default:
  printf(“\n Invalid Choice”);
 }
 getch();
 }
 
 /*Function read matrix*/
 int read_matrix(int a[10][10],int m,int n)
  {
   int i,j;
   for(i=0;i<m;i++)
  for(j=0;j<n;j++)
  scanf(“%d”,&a[i][j]);
  return 0;
  }
 
  /*Function to write the matrix*/
 int write_matrix(int a[10][10],int m,int n)
  {
  int i,j;
   for(i=0;i<m;i++)
   {
  for(j=0;j<n;j++)
  printf(“%5d”,a[i][j]);
  printf(“\n”);
   }
   return 0;
   }
  /* program for symmetric matrix*/
 
 #include<stdio.h>  
 #include<conio.h>
  
 main()
 {
  int m, n, c, d, matrix[10][10], transpose[10][10];
  
  printf(“Enter the number of rows and columns of matrix\n”);
  scanf(“%d%d”,&m,&n);
  printf(“Enter the elements of matrix\n”);
  
  for (  c = 0 ; c < m ; c++ )
   for ( d = 0 ; d < n ; d++ )
   scanf(“%d”,&matrix[c][d]);
 
 if ( m == n ) /* check if order is same */
  {



Functions—Modular Programming 5.29 

   for ( c = 0 ; c < m ; c++ )
   {
   for ( d = 0 ; d < m ; d++ )
   {
    if ( matrix[c][d] != matrix[[d][c] )
    break;
   }
    if ( d != m )
    break;
   }
   if ( c == m )
   printf(“Symmetric matrix.\n”);
  }
  else
   printf(“Not a symmetric matrix.\n”);
  
  return 0;
 }

The strings are treated as character arrays in C and therefore the rules for passing strings to functions are very 

similar to those for passing arrays to functions. 

Basic rules are:

1. The string to be passed must be declared as a formal argument of the function when it is defi ned. 

Example:

 void display(char item_name[ ])

 {

  . . . . . .

  . . . . . .

 }

2. The function prototype must show that the argument is a string. For the above function defi nition, the 

prototype can be written as

void display(char str[ ]);

3. A call to the function must have a string array name without subscripts as its actual argument. 

 Example:

display (names);

  where names is a properly declared string array in the calling function.

  We must note here that, like arrays, strings in C cannot be passed by value to functions.

5.18  PASSING  STRINGS TO FUNCTIONS

(Contd.)

The technique used to pass data from one function to another is known as parameter passing. Parameter passing can 

be done in two ways:

• Pass by value (also known as call by value).

• Pass by pointers (also known as call by pointers).

In pass by value, values of actual parameters are copied to the variables in the parameter list of the called function. 

The called function works on the copy and not on the original values of the actual parameters. This ensures that the 

original data in the calling function cannot be changed accidentally.

 Pass by Value versus  Pass by Pointers



5.30 Computer Programming

In pass by pointers (also known as pass by address), the memory addresses of the variables rather than the copies 

of values are sent to the called function. In this case, the called function directly works on the data in the calling function 

and the changed values are available in the calling function for its use.

Pass by pointers method is often used when manipulating arrays and strings. This method is also used when we 

require multiple values to be returned by the called function.

Variables in C differ in behaviour from those in most other languages. For example, in a BASIC program, 

a variable retains its value throughout the program. It is not always the case in C. It all depends on the 

‘ storage’ class a variable may assume.

In C not only do all variables have a data type, they also have a storage class. The following variable 

 storage classes are most relevant to functions:

1. Automatic variables.

2. External variables.

3. Static variables.

4. Register variables.

We shall briefl y discuss the scope, visibility and longevity of each of the above class of variables. The 

scope of variable determines over what region of the program a variable is actually available for use (‘active’). 

Longevity refers to the period during which a variable retains a given value during execution of a program 

(‘alive’). So longevity has a direct effect on the utility of a given variable. The visibility refers to the 

 accessibility of a variable from the memory.

The variables may also be broadly categorized, depending on the place of their declaration, as internal 

(local) or external (global). Internal variables are those which are declared within a particular function, while 

external variables are declared outside of any function.

It is very important to understand the concept of storage classes and their utility in order to develop 

 effi cient multifunction programs.

 5.19.1 Automatic Variables

Automatic variables are declared inside a function in which they are to be utilized. They are created when the 

function is called and destroyed automatically when the function is exited, hence the name automatic. 

Automatic variables are therefore private (or local) to the function in which they are declared. Because of this 

property, automatic variables are also referred to as local or internal variables.

A variable declared inside a function without storage class specifi cation is, by default, an automatic 

 variable. For instance, the storage class of the variable number in the example below is automatic.

main( ) 

{

  int number;

  –––––

  –––––

}

We may also use the keyword auto to declare automatic variables explicitly.

main( )
{
  auto int number;

5.19 THE SCOPE, VISIBILITY AND LIFETIME OF VARIABLES 



Functions—Modular Programming 5.31 

  -----
  –––--
}

One important feature of automatic variables is that their value cannot be changed accidentally by what 

happens in some other function in the program. This assures that we may declare and use the same variable 

name in different functions in the same program without causing any confusion to the compiler.

EXAMPLE 5.7 Write a multifunction to illustrate how automatic variables work.

A program with two subprograms  function1 and  function2 is shown in Fig. 5.13. m is an automatic variable 

and it is declared at the beginning of each function. m is initialized to 10, 100, and 1000 in function1, 

 function2, and main respectively.

When executed, main calls function2 which in turn calls function1. When main is active, m = 1000; but 

when function2 is called, the main’s m is temporarily put on the shelf and the new local m = 100 becomes 

active. Similarly, when function1 is called, both the previous values of m are put on the shelf and the latest 

value of m (=10) becomes active. As soon as function1 (m=10) is fi nished, function2 (m=100) takes over 

again. As soon it is done, main (m=1000) takes over. The output clearly shows that the value assigned to 

m in one function does not affect its value in the other functions; and the local value of m is destroyed when 

it leaves a function.

Program 
  void function1(void);
  void function2(void); 
  main( ) 
  {
    int m = 1000; 
    function2(); 
 
    printf(“%d\n”,m); /* Third output */ 
  } 
   void function1(void) 
  { 
    int m = 10; 
 
    printf(“%d\n”,m); /* First output */ 
  } 
 
  void function2(void) 
  { 
    int m = 100; 
    function1(); 
    printf(“%d\n”,m); /* Second output */ 
  } 
 
Output 
  10 
  100 
  1000 

Fig. 5.13 Working of automatic variables



5.32 Computer Programming

There are two consequences of the scope and longevity of auto variables worth remembering. First, 

any variable local to main will be normally alive throughout the whole program, although it is active only in 

main. Secondly, during recursion, the nested variables are unique auto variables, a situation similar to 

 function-nested auto variables with identical names.

5.19.2   External Variables

Variables that are both alive and active throughout the entire program are known as external variables. They 

are also known as global variables. Unlike local variables, global variables can be accessed by any function 

in the program. External variables are declared outside a function. For example, the external declaration of 

integer number and fl oat length might appear as:

int number;

float length = 7.5;

main( )

{

 – – – – – – –

 – – – – – – –

}

function1( )

{

 – – – – – – –

 – – – – – – –

}

function2( )

{

 – – – – – – –

 – – – – – – –

}

The variables number and length are available for use in all the three functions. In case a local variable 

and a global variable have the same name, the local variable will have precedence over the global one in the 

function where it is declared. Consider the following example:

int count;

main( )

{

 count = 10; 

 – – – – –

 ––– – –

}

function( )

{

 int count = 0;

 ––––––

 ––––––

 count = count+1;

}

When the function references the variable count, it will be referencing only its local variable, not the 

global one. The value of count in main will not be affected.



Functions—Modular Programming 5.33 

EXAMPLE 5.8 Write a multifunction program to illustrate the properties of global variables.

A program to illustrate the properties of global variables is presented in Fig. 5.14. Note that variable x is used 

in all functions but none except fun2, has a defi nition for x. Because x has been declared ‘above’ all the func-

tions, it is available to each function without having to pass x as a function argument. Further, since the value 

of x is directly available, we need not use return(x) statements in fun1 and fun3. However, since fun2 has a 

defi nition of x, it returns its local value of x and therefore uses a return statement. In fun2, the global x is not 

visible. The local x hides its visibility here.

Program 
  int fun1(void);
  int fun2(void);
  int fun3(void); 
  int x ;    /* global */ 
  main( ) 
  { 
   x = 10 ;    /* global x */  
   printf(“x = %d\n”, x); 
   printf(“x = %d\n”, fun1()); 
   printf(“x = %d\n”, fun2()); 
   printf(“x = %d\n”, fun3()); 
  } 
  fun1(void) 
  { 
    x = x + 10 ; 
  } 
  int fun2(void) 
  { 
    int x ;     /* local */ 
    x = 1 ; 
    return (x); 
  }  
  fun3(void) 
  { 
    x = x + 10 ;  /* global x */ 
  } 

Output  
 x = 10 
  x = 20 
  x = 1 
  x = 30

Fig. 5.14 Illustration of properties of global variables

Once a variable has been declared as global, any function can use it and change its value. Then, subsequent 

functions can reference only that new value.

(Contd.)

Since all functions in a program source fi le can access global variables, they can be used for passing values between 

the functions. However, using global variables as parameters for passing values poses certain problems.

 Global Variables as Parameters



5.34 Computer Programming

• The values of global variables which are sent to the called function may be changed inadvertently by the called 

function.

• Functions are supposed to be independent and isolated modules. This character is lost, if they use global 

 variables.

• It is not immediately apparent to the reader which values are being sent to the called function.

• A function that uses global variables suffers from reusability.

One other aspect of a global variable is that it is available only from the point of declaration to the end of 

the program. Consider a program segment as shown below:

main( )
{
  y = 5;
  . . . . 
  . . . .
}
int y;   /* global declaration */
func1( )
{
   y = y+1;
}

We have a problem here. As far as main is concerned, y is not defi ned. So, the compiler will issue an error 

message. Unlike local variables, global variables are initialized to zero by default. The statement

y = y+1;

in fun1 will, therefore, assign 1 to y.

5.19.3  External Declaration

In the program segment above, the main cannot access the variable y as it has been declared after the main 

function. This problem can be solved by declaring the variable with the storage class extern. 

For example:

main( )
{
  extern int y;  /* external declaration */
  . . . . . 
  . . . . .
}
func1( )
{
  extern int y;  /* external declaration */
  . . . . . 
  . . . . .
}
int y;       /* definition */

Although the variable y has been defi ned after both the functions, the external declaration of y inside the 

functions informs the compiler that y is an integer type defi ned somewhere else in the program. Note that 

extern declaration does not allocate storage space for variables. In case of arrays, the defi nition should 

include their size as well.



Functions—Modular Programming 5.35 

Example:

main( )
{  int i;
  void print_out(void);
  extern float height [ ];
  . . . . . 
  . . . . .
  print_out( );
}
void print_out(void)
{
  extern float height [ ];
  int i;
  . . . . .
  . . . . .
}
float height[SIZE];

An  extern within a function provides the type information to just that one function. We can provide type 

information to all functions within a fi le by placing external declarations before any of them.

Example:

extern float height[ ];
main( )
{
  int i;
  void print_out(void);
  . . . . . 
  . . . . .
  print_out( );
}
void print_out(void)
{
  int i;
  . . . . .
  . . . . .
}
float height[SIZE];

The distinction between defi nition and declaration also applies to functions. A function is defi ned when its 

parameters and function body are specifi ed. This tells the compiler to allocate space for the function code and 

provides type information for the parameters. Since functions are external by default, we declare them (in the 

calling functions) without the qualifi er extern. Therefore, the declaration

void print_out(void);

is equivalent to

extern void print_out(void);

Function declarations outside of any function behave the same way as variable declarations.

  Static Variables

As the name suggests, the value of static variables persists until the end of the program. A variable can be 

declared static using the keyword  static like

static int x;
static float y;



5.36 Computer Programming

A static variable may be either an internal type or an external type depending on the place of declaration.

Internal static variables are those which are declared inside a function. The scope of internal static  variables 

extend up to the end of the function in which they are defi ned. Therefore, internal static variables are similar 

to  auto variables, except that they remain in existence (alive) throughout the remainder of the program. 

Therefore, internal static variables can be used to retain values between function calls. For example, it can 

be used to count the number of calls made to a function. 

EXAMPLE 5.9 Write a program to illustrate the properties of a static variable.

The program in Fig. 5.15 explains the behavior of a static variable.

Program
 void stat(void); 
 main ( ) 
 { 
  int i; 
  for(i=1; i<=3; i++) 
  stat( ); 
 } 
 void stat(void) 
 { 
  static int x = 0; 
  x = x+1; 
  printf(“x = %d\n”, x); 
 } 
Output 
 x = 1 
 x = 2 
 x = 3

Fig. 5.15 Illustration of static variable

A static variable is initialized only once, when the program is compiled. It is never initialized again. 

During the fi rst call to stat, x is incremented to 1. Because x is static, this value persists and therefore, the 

next call adds another 1 to x giving it a value of 2. The value of x becomes three when the third call is made.

Had we declared x as an auto variable, the output would have been:

 x = 1

 x = 1

 x = 1

This is because each time stat is called, the auto variable x is initialized to zero. When the function 

 terminates, its value of 1 is lost.

An external static variable is declared outside of all functions and is available to all the functions in that 

program. The difference between a static external variable and a simple external variable is that the static 

external variable is available only within the fi le where it is defi ned while the simple external variable can be 

accessed by other fi les.

It is also possible to control the scope of a function. For example, we would like a particular function 

accessible only to the functions in the fi le in which it is defi ned, and not to any function in other fi les. This 

can be accomplished by defi ning ‘that’ function with the storage class static.



Functions—Modular Programming 5.37 

  Register Variables

We can tell the compiler that a variable should be kept in one of the machine’s registers, instead of keeping 

in the memory (where normal variables are stored). Since a register access is much faster than a memory 

access, keeping the frequently accessed variables (e.g. loop control variables) in the register will lead to faster 

execution of programs. This is done as follows:

register int count;

Although, ANSI standard does not restrict its application to any particular data type, most compilers allow 

only int or char variables to be placed in the register.

Since only a few variables can be placed in the register, it is important to carefully select the variables for 

this purpose. However, C will automatically convert register variables into non-register variables once the 

limit is reached.

Table 5.1 summarizes the information on the visibility and lifetime of variables in functions and fi les.

Table 5.1 Scope and Lifetime of Variables

Storage Class Where declared Visibility (Active) Lifetime (Alive)

None Before all functions in a fi le 

(may be initialized)

Entire fi le plus other fi les 

where variable is declared 

with extern

Entire program 

 (Global)

extern Before all functions in a fi le 

(cannot be initialized)

extern and the fi le where 

originally declared as global.

Entire fi le plus other fi les 

where variable is declared

Global

static Before all functions in a fi le Only in that fi le Global

None or

auto

Inside a function (or a block) Only in that function or 

block

Until end of function 

or block

register Inside a function or block Only in that function or 

block

Until end of function 

or block

static Inside a function Only in that function Global

5.19.4  Nested Blocks

A set of statements enclosed in a set of braces is known a block or a compound statement. Note that all func-

tions including the main use compound statement. A block can have its own declarations and other state-

ments. It is also possible to have a block of such statements inside the body of a function or another block, 

thus creating what is known as nested blocks as shown below:



5.38 Computer Programming

When this program is executed, the value c will be 10, not 30. The statement b = a; assigns a value of 20 

to b and not zero. Although the scope of a extends up to the end of main it is not “visible” inside the inner 

block where the variable a has been declared again. The inner a hides the visibility of the outer a in the inner 

block. However, when we leave the inner block, the inner a is no longer in scope and the outer a becomes 

visible again.

Remember, the variable b is not re-declared in the inner block and therefore it is visible in both the blocks. 

That is why when the statement

int c = a + b;

is evaluated, a assumes a values of 0 and b assumes a value of 10.

Although main’s variables are visible inside the nested block, the reverse is not true.

Scope

The region of a program in which a variable is available for use.

Visibility

The program’s ability to access a variable from the memory.

Lifetime

The lifetime of a variable is the duration of time in which a variable exists in the memory during execution.

Rules of use

1. The scope of a global variable is the entire program fi le.

2. The scope of a local variable begins at point of declaration and ends at the end of the block or function in which 

it is declared.

3. The scope of a formal function argument is its own function.

4. The lifetime (or longevity) of an auto variable declared in main is the entire program execution time, although its 

scope is only the main function.

5. The life of an auto variable declared in a function ends when the function is exited.

6. A static local variable, although its scope is limited to its function, its lifetime extends till the end of program 

execution.

7. All variables have visibility in their scope, provided they are not declared again.

8. If a variable is redeclared within its scope again, it loses its visibility in the scope of the redeclared variable.

Scope Rules

So far we have been assuming that all the functions (including the main) are defi ned in one fi le. However, 

in real-life programming environment, we may use more than one source fi les which may be compiled 

 separately and linked later to form an executable object code. This approach is very useful because any 

change in one fi le does not affect other fi les thus eliminating the need for recompilation of the entire 

program.

Multiple source fi les can share a variable provided it is declared as an external variable appropriately. 

Variables that are shared by two or more fi les are global variables and therefore we must declare them accord-

ingly in one fi le and then explicitly defi ne them with extern in other fi les. Figure 5.16 illustrates the use of 

extern declarations in a multifi le program.

The function main in fi le1 can reference the variable m that is declared as global in fi le2. Remember, 

 function1 cannot access the variable m. If, however, the extern int m; statement is placed before main, then 

both the functions could refer to m. This can also be achieved by using extern int m; statement inside each 

function in fi le1.

5.20  MULTIFILE PROGRAMS



Functions—Modular Programming 5.39 

The extern specifi er tells the compiler that the following variable types and names have already been 

declared elsewhere and no need to create storage space for them. It is the responsibility of the linker to resolve 

the reference problem. It is important to note that a multifi le global variable should be declared  without 

extern in one (and only one) of the fi les. The extern declaration is done in places where secondary references 

are made. If we declare a variable as global in two different fi les used by a single program, then the linker 

will have a confl ict as to which variable to use and, therefore, issues a warning.

  file1.c            file2.c

 #main( )            int m /* global variable */

 {             function2( )

  extern int m;         {

  int i;              int i;

  . . . . .             . . . . .

  . . . . .             . . . . .

 }             }

 function1( )          function3( )

 {             {

  int j;              int count;

  . . . . .             . . . . . . . .

  . . . . .             . . . . . . . . . 

 }             }

Fig. 5.16 Use of extern in a multifi le program

The multifi le program shown in Fig. 5.16 can be modifi ed as shown in Fig. 5.17.

  file1.c            file2.c

 int m; /* global variable */     extern int m;

 main( )            function2( )

 {             {

  int i;              int i;

  . . . . .             . . . . .

 }             }

 function1( )          function3( )

 {             {

  int j;              int count;

  . . . . .             . . . . . 

 }             }

Fig. 5.17 Another version of a multifi le program

When a function is defi ned in one fi le and accessed in another, the later fi le must include a function dec-

laration. The declaration identifi es the function as an external function whose defi nition appears elsewhere. 

We usually place such declarations at the beginning of the fi le, before all functions. Although all functions are 

assumed to be external, it would be a good practice to explicitly declare such functions with the storage class 

extern.



5.40 Computer Programming

(Contd.)

Numbers of Fibonacci sequence are known as Fibonacci numbers. First few numbers of series are 0, 1, 1, 

2, 3, 5, 8, etc. Except fi rst two terms in sequence every other term is the sum of two previous terms. For 

example, 8 = 3 + 5 (addition of 3, 5). This sequence has many applications in mathematics and computer 

science.

 #include<stdio.h>
 #include<conio.h>
  
 int fibonacci(int);
  
 main()
 {
  int n, i = 0, c;
 
  scanf(“%d”,&n);
 
   printf(“Fibonacci Series in C using recursion\n\n”);
 
  for ( c = 1 ; c <= n ; c++ )
  {
  printf(“%d\n”, fibonacci(i));
  i++; 
  }

  getch();
  return 0;
 }

 int fibonacci(int n)
 {
  if ( n == 0 )
   return 0;
  else if ( n == 1 )
   return 1;
  else
   return ( fibonacci(n-1) + fibonacci(n-2) );
 }

The tower of Hanoi problem is a game, which comprises of three towers with discs stacked around the fi  rst 

tower initially. The game involves shifting the disks across the adjoining towers. There are some conditions 

that need to be adhered during the shifting:

 1. A larger disk can not be placed on a smaller disk

 2. Only one disc can be shifted at a time.

The end objective is to replicate the initial stack of discs into another tower.

Figure 5.18 shows a C program to realize the tower of Hanoi problem.

Program
 #include<conio.h>
 #include<stdio.h>
 void tower_hanoi( int num_disk_f,char tower1, char tower2, char tower3)

5.21  TOWER OF HANOI



Functions—Modular Programming 5.41 

 {
  if ( num_disk_f == 1 )
  {
   printf( “\nShift uppermost disk from tower %c to tower %c.”, tower1, tower2 );
   return;
  }
  tower_hanoi( num_disk_f - 1,tower1, tower3, tower2 );
  printf( “\nShift uppermost disk from tower %c to tower %c.”, tower1, tower2 );
  tower_hanoi( num_disk_f - 1,tower3, tower2, tower1 );
 }
 void main()
 {
  int num_of_disk;
  clrscr();
  printf(“\nEnter the number of disks: “);
  scanf(“%d”,&num_of_disk);
  if(num_of_disk<1)
  printf(“\n There are no disks to shift”);
  else
  printf(“\nThere are %d disks in tower 1\n “,num_of_disk);
  tower_hanoi(num_of_disk,’1’,’2’,’3’);
  printf(“\n\nThe %d disks in tower 1 are shifted in tower 2”,num_of_disk);
  getch();
 }
Output
 Enter the number of disks: 4
 There are 4 disks in tower 1
 Shift uppermost disk from tower 1 to tower 3.
 Shift uppermost disk from tower 1 to tower 2.
 Shift uppermost disk from tower 3 to tower 2.
 Shift uppermost disk from tower 1 to tower 3.
 Shift uppermost disk from tower 2 to tower 1.
 Shift uppermost disk from tower 2 to tower 3.
 Shift uppermost disk from tower 1 to tower 3.
 Shift uppermost disk from tower 1 to tower 2.
 Shift uppermost disk from tower 3 to tower 2.
 Shift uppermost disk from tower 3 to tower 1.
 Shift uppermost disk from tower 2 to tower 1.
 Shift uppermost disk from tower 3 to tower 2.
 Shift uppermost disk from tower 1 to tower 3.
 Shift uppermost disk from tower 1 to tower 2.
 Shift uppermost disk from tower 3 to tower 2.
 The 4 disks in tower 1 are shifted in tower 2

Fig. 5.18 Tower of Hanoi

Header Files

A header fi le is a fi le containing C declarations and macro defi nitions to be shared between several source 

fi les. Header fi le can be used in program by including it, with the C preprocessing directive ‘#include’. 

Header fi les serve two purposes. 

System header fi les declare the interfaces to parts of the operating system. You include them in your • 

program to supply the defi nitions and declarations you need to invoke system calls and libraries.



5.42 Computer Programming

User defi ned  header fi les contain declarations for interfaces between the source fi les of program. If • 

each time a group of related declarations and macro defi nitions all or most of which are needed in 

several different source fi les, it is a good idea to create a header fi le for them. 

Including a header fi le produces the same results as copying the header fi le into each source fi le that needs 

it. Such copying would be time-consuming and error-prone. With a header fi le, the related declarations appear 

in only one place. If they need to be changed, they can be changed in one place, and programs that include 

the header fi le will automatically use the new version when next recompiled. The header fi le eliminates the 

labor of fi nding and changing all the copies as well as the risk that a failure to fi nd one copy will result in 

inconsistencies within a program.

Preprocessor commands, as the name suggests, are the instructions that are executed before the source code 

passes through the compiler. The program that processes the preprocessor command lines or directives is 

called a preprocessor.

Preprocessor directives are placed in the source program before the main line. Before the source code 

passes through the compiler, it is examined by the preprocessor for any preprocessor directives. If there are 

any, appropriate actions (as per the directives) are taken and then the source program is handed over to the 

compiler.

Preprocessor directives follow special syntax rules that are different from the normal C syntax. They all 

begin with the symbol # in column one and do not require a semicolon at the end.

Table 5.2 lists some of the key preprocessor directives and their functions:

Table 5.2 Preprocessor Directives

Directive Function

#defi ne Defi nes a macro substitution

#undef Undefi nes a macro

#include Specifi es the fi les to be included

#ifdef Test for a macro defi nition

#endif Specifi es the end of #if.

#ifndef Tests whether a macro is not defi ned.

#if Test a compile-time condition

#else Specifi es alternatives when #if test fails.

The preprocessor directives are broadly classifi ed under three categories:

Macro substitution• 

File inclusion• 

Conditional inclusion• 

5.22.1 Macro Substitution Directives

Macro substitution is a process where an identifi er in a program is replaced by a predefi ned string composed 

of one or more tokens. The preprocessor accomplishes this task under the direction of #defi ne statement. This 

statement, usually known as a macro defi nition (or simply a macro) takes the following general form

#defi ne identifi er string

5.22 PREPROCESSOR COMMANDS



Functions—Modular Programming 5.43 

If this statement is included in the program at the beginning, then the preprocessor replaces every occurrence of 

the identifi er in the source code by the string. The keyword #defi ne is written just as shown (starting from the 

fi rst column) followed by the identifi er and a string, with at least one blank space between them. Note that 

the defi nition is not terminated by a semicolon. The string may be any text, while the identifi er must be a valid 

C name.

There are different forms of macro substitution. The most common forms are:

 1. Simple macro substitution.

 2. Argumented macro substitution.

 3. Nested macro substitution.

Simple Macro Substitution

Simple string replacement is commonly used to defi ne constants. Examples of defi nition of constants are:

#defi ne COUNT 100

#defi ne FALSE 0

#defi ne SUBJECTS 6

#defi ne PI 3.1415926

#defi ne CAPITAL “DELHI”

Notice that we have written all macros (identifi ers) in capitals. It is a convention to write all macros in capitals 

to identify them as symbolic constants. A defi nition, such as

#defi ne    M    5

will replace all occurrences of M with 5, starting from the line of defi nition to the end of the program. 

However, a macro inside a string does not get replaced. Consider the following two lines:

total = M * value; 
printf(“M = %d\n”, M);

These two lines would be changed during preprocessing as follows:

total = 5 * value; 
printf(“M = %d\n”,  5);

Notice that the string “M=%d\n” is left unchanged.

A macro defi nition can include more than a simple constant value. It can include expressions as well.

Following are valid defi nitions:

#defi ne AREA 5 * 12.46

#defi ne SIZE sizeof(int) * 4

#defi ne TWO-PI 2.0 * 3.1415926

Argumented Macro Substitution

The preprocessor permits us to defi ne more complex and more useful form of replacements. It takes the 

form:

#defi ne       identifi er(f1, f2, .............fn) string

Notice that there is no space between the macro identifi er and the left parentheses. The identifi ers f1, f2, … 

... .,fn are the formal macro arguments that are analogous to the formal arguments in a function defi nition. 

There is a basic difference between the simple replacement discussed above and the replacement of macros 

with arguments. Subsequent occurrence of a macro with arguments is known as a macro call (similar to a 

function call). When a macro is called, the preprocessor substitutes the string, replacing the formal parameters 

with the actual parameters. Hence, the string behaves like a template.



5.44 Computer Programming

A simple example of a macro with arguments is

#defi ne  CUBE(x) (x*x*x)

If the following statement appears later in the program

volume = CUBE(side);

Then the preprocessor would expand this statement to:

volume = (side * side * side );

Nested Macro Substitution

We can also use one macro in the defi nition of another macro. That is, macro defi nitions may be nested. For 

instance, consider the following macro defi nitions.

#defi ne M 5

#defi ne N M+1

#defi ne SQUARE(x) ((x) * (x))

#defi ne CUBE(x) (SQUARE (x) * (x))

#defi ne SIXTH(x) (CUBE(x) * CUBE(x))

The preprocessor expands each #defi ne macro, until no more macros appear in the text. For example, the last 

defi nition is fi rst expanded into

((SQUARE(x) * (x)) * (SQUARE(x) * (x)))

Since SQUARE (x) is still a macro, it is further expanded into

( ( ((x)*(x)) * (x)) * ( ((x) * (x)) * (x)))

 which is fi nally evaluated as x6.

5.22.2 File Inclusion Directive

An external fi le containing functions or macro defi nitions can be included as a part of a program so that we 

need not rewrite those functions or macro defi nitions. This is achieved by the preprocessor directive

#include “fi lename”

where fi lename is the name of the fi le containing the required defi nitions or functions. At this point, the 

preprocessor inserts the entire contents of fi lename into the source code of the program. When the fi lename is 

included within the double quotation marks, the search for the fi le is made fi rst in the current directory and then 

in the standard directories. 

Alternatively this directive can take the form

#include <fi lename>

without double quotation marks. In this case, the fi le is searched only in the standard directories.

Nesting of included fi les is allowed. That is, an included fi le can include other fi les. However, a fi le cannot

include itself.

If an included fi le is not found, an error is reported and compilation is terminated.

Let use assume that we have created the following three fi les:

SYNTAX.C contains syntax defi nitions.

STAT.C contains statistical functions.

TEST.C contains test functions.

We can make use of a defi nition or function contained in any of these fi les by including them in the program as:

#include <stdio.h>

#include “SYNTAX.C”

#include “STAT.C”

#include “TEST.C”



Functions—Modular Programming 5.45 

#defi ne M 100

main ()

{

 --------------

 ------------

 ------------

}

5.22.3 Conditional Inclusion Directives

Some directives are used to compile a part of the program based on certain conditions. It means that if a spe-

cifi c condition is fulfi lled, then the program will be executed otherwise not. These conditional directives are # 

if, # ifdef, # ifndef, # elif, # else and # endif, as explained below:

#ifdef This directive is used to compile a part of the program only if the macro is defi ned as a parameter 

in the program irrespective of its value. The use of #ifdef can be explained with the help of the following 

example:

#ifdef max_marks
int marks[max_marks];
#endif

In the above example, the second statement will be executed only if the macro max_marks has been 

defi ned before in the program. If it has not been defi ned previously, then the int statement will not be included 

in the program execution.

#ifndef This directive is the opposite of #ifdef directive. It means that the statements written between 

#ifndef and #endif will be executed only if the identifi er has not been defi ned previously. The use of #ifnfdef can 

be explained with the help of the following example:

#ifndef max marks
#define max marks 100
#endif

According to this directive, the second statement will be executed only if the macro max_marks has not 

been defi ned earlier.

#if, #else, #elif These directives are used in between a program to allow or prevent the further execution 

of the program. #if is used to check whether the result of a given expression is zero or not. If the result is not 

zero, then the statements after #if are compiled else not. The use of #if, #else and #elif can be explained with the 

help of the following example:

main()
{
 #if AGE<=18
 printf(“Juvenile”);
 #elif AGE>=18 AGE<=50
 printf(“Adult”);
 #else
 printf(“Aged”);
 #endif
}

 



5.46 Computer Programming

It is a syntax error if the types in the declaration • 

and function defi nition do not match.

It is a syntax error if the number of actual • 

parameters in the function call do not match 

the number in the declaration statement.

It is a logic error if the parameters in the • 

function call are placed in the wrong order.

It is illegal to use the name of a formal • 

argument as the name of a local variable.

Using • void as return type when the function 

is expected to return a value is an error.

Trying to return a value when the function • 

type is marked void is an error.

Variables in the parameter list must be • 

individually declared for their types. We 

cannot use multiple declarations (like we do 

with local or global variables).

A • return statement is required if the return 

type is anything other than void.

If a function does not return any value, the • 

return type must be declared void.

If a function has no parameters, the parameter • 

list must be declared void.

Placing a semicolon at the end of header line • 

is illegal.

Forgetting the semicolon at the end of a • 

prototype declaration is an error.

Defi ning a function within the body of another • 

function is not allowed.

It is an error if the type of data returned does • 

not match the return type of the function.

It will most likely result in logic error if there • 

is a mismatch in data types between the actual 

and formal arguments.

Functions return integer value by default.• 

A function without a return statement cannot • 

return a value, when the parameters are passed 

by value.

A function that returns a value can be used in • 

expressions like any other C variable.

When the value returned is assigned to a • 

variable, the value will be converted to the 

type of the variable receiving it.

Function cannot be the target of an assignment.• 

A function with void return type cannot be • 

used in the right-hand side of an assignment 

statement. It can be used only as a stand-alone 

statement.

A function that returns a value cannot be used • 

as a stand-alone statement.

A • return statement can occur anywhere 

within the body of a function.

A function can have more than one return • 

statement.

A function defi nition may be placed either • 

after or before the main function.

Where more functions are used, they may be • 

placed in any order.

A global variable used in a function will retain • 

its value for future use.

A local variable defi ned inside a function is • 

known only to that function. It is destroyed 

when the function is exited.

A global variable is visible only from the point • 

of its declaration to the end of the program.

When a variable is redeclared within its scope • 

either in a function or in a block, the original 

variable is not visible within the scope of the 

redeclared variable.

A local variable declared • static retains its 

value even after the function is exited.

Static variables are initialized at compile time • 

and therefore they are initialized only once.

Use parameter passing by values as far as • 

possible to avoid inadvertent changes to vari-

ables of calling function in the called function.

Although not essential, include parameter • 

names in the prototype declarations for 

documentation purposes.

Avoid the use of names that hide names in • 

outer scope.

The use of functions gives C a modular-based • 

programming approach. 

A function is typically characterised by its • 

name, type and parameters. 

It is a good practice to name a function on the • 

lines of its functionality. 

A function can return multiple values.• 

Just Remember



Functions—Modular Programming 5.47 

 1. The default return type of a function is _______

(a) void (b) int

(c) fl oat (d) char

 2. Which of the following are the incorrect 

function declarations? 

(a) int funct(int a, b;);

(b) int funct(int a, int b);

(c) int funct(int , int );

(d) int funct(int , );

 3. Which of the following is not feasible?

(a) Functions with no arguments and no return 

values

(b) Functions with arguments and no return 

values

(c) Functions with no arguments but a return 

value

(d) All of the above are feasible

 4. ‘Call by reference’ function call uses the 

following type of parameter:

(a) Pointer variables

(b) Integer variables

(c) Address variables

(d) Memory variables

 5. Recursion is a situation where:

(a) A function calls the main function

(b) A function calls any of the system  functions

(c) A function calls itself

(d) None of the above

 6. Which of the following is not a variable storage 

class?

(a) automatic (b) external

(c) static (d) dynamic

 7. Which of the following keywords is used for 

declaring an external variable? 

(a) external (b) extern

(c) auto extern (d) ext

 8. Which of the following types of variables 

remain alive for the entire life time of a 

program?

(a) extern  (b) auto

(c) static (d) register

 9. Which of the following refers to the region of a 

program where a variable is available for use?

(a) scope (b) visibility

(c) life time (d) None of the above

10. The formal arguments in the function header 

must be prefi xed by which of the following 

indirection operator? 

(a) * (b) +

(c) - (d) /

11. Which of the following is optional in a function 

defi nition?

(a) Function name

(b) Function type

(c) Local variable declaration

(d) Return statement

 Multiple Choice Questions

In case of ‘pass by reference’ function call, • 

the addresses of the variables are passed. 

Make sure that the parameters of a function • 

are declared as pointer types for implementing 

pass by reference technique. 

Case Study

Calculation of Area under a Curve

One of the applications of computers in numerical analysis is computing the area under a curve. One simple 

method of calculating the area under a curve is to divide the area into a number of trapezoids of same width 

and summing up the area of individual trapezoids. The area of a trapezoid is given by

Area = 0.5 * (h1 + h2) * b

where h1 and h2 are the heights of two sides and b is the width as shown in Fig. 5.19.



5.48 Computer Programming

The program in Fig. 5.21 calculates the area for a 

curve of the function

f(x) = x2 + 1

between any two given limits, say, A and B.

Input

Lower limit (A)

Upper limit (B)

Number of trapezoids

Output

Total area under the curve between the given limits.

Algorithm

1. Input the lower and upper limits and the number of 

trapezoids.

2. Calculate the width of trapezoids.

3. Initialize the total area.

4. Calculate the area of trapezoid and add to the total 

area.

5. Repeat step-4 until all the trapezoids are completed.

6. Print total area.

The algorithm is implemented in top-down modular 

form as in Fig. 5.20.

The evaluation of f(x) has been done using a separate 

function so that it can be easily modifi ed to allow other functions to be evaluated.

The output for two runs shows that better accuracy is achieved with larger number of trapezoids. The 

actual area for the limits 0 and 3 is 12 units (by analytical method).

f(x)
h1 h2

b

A Bx

Curve

Fig. 5.19 Area under a curve

Fig. 5.20 Modular chart

Program
#include <stdio.h>
float start_point,      /* GLOBAL VARIABLES */
   end_point,
   total_area;
int  numtraps;
main( )
{
 void  input(void);
 float find_area(float a,float b,int n); /* prototype */
 print(“AREA UNDER A CURVE”);
 input( );
 total_area = find_area(start_point, end_point, numtraps);
 printf(“TOTAL AREA = %f”, total_area);
}
void input(void)
{
 printf(“\n Enter lower limit:”);
 scanf(“%f”, &start_point);

(Contd.)



Functions—Modular Programming 5.49 

 printf(“Enter upper limit:”);
 scanf(“%f”, &end_point);
 printf(“Enter number of trapezoids:”);
 scanf(“%d”, &numtraps);
}
float find_area(float a, float b, int n)
{
 float base, lower, h1, h2; /* LOCAL VARIABLES */
 float function_x(float x); /* prototype */
 float trap_area(float h1,float h2,float base);/*prototype*/

 base = (b-1)/n;
 lower = a;
 for(lower =a; lower <= b-base; lower = lower + base)
  {
   h1  = function_x(lower);
   h1  = function_x(lower + base);
   total_area += trap_area(h1, h2, base);
  }
    return(total_area);
float trap_area(float height_1,float height_2,float base)
{
 float area;   /* LOCAL VARIABLE */
 area = 0.5 * (height_1 + height_2) * base;
 return(area);
}
float function_x(float x)
{
  /* F(X) = X * X + 1 */
  return(x*x + 1);
}

Output
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 30
TOTAL AREA = 12.005000

AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 100
TOTAL AREA = 12.000438

Fig. 5.21 Computing area under a curve



5.50 Computer Programming

 5.1 State whether the following statements are 

true or false.

 (a) C functions can return only one value 

under their function name.

 (b) A function in C should have at least one 

argument.

 (c) A function can be defi ned and placed 

before the main function.

 (d) A function can be defi ned within the 

main function.

 (e) An user-defi ned function must be called 

at least once; otherwise a warning 

message will be issued.

 (f) Any name can be used as a function 

name.

 (g) Only a void type function can have void 

as its argument.

 (h) When variable values are passed to 

functions, a copy of them are created in 

the memory.

 (i) Program execution always begins in the 

main function irrespective of its location 

in the program.

 (j) Global variables are visible in all blocks 

and functions in the program.

 (k) A function can call itself.

 (l) A function without a return statement is 

illegal.

 (m) Global variables cannot be declared as 

auto variables.

 (n) A function prototype must always 

be placed outside the calling function.

 (o) The return type of a function is int by 

default.

 (p) The variable names used in prototype 

should match those used in the function 

defi nition.

 (q) In parameter passing by pointers, 

the formal parameters must be 

prefi xed with the symbol * in their 

declarations.

 (r) In parameter passing by pointers, the 

actual parameters in the function call may 

be variables or constants.

 (s) In passing arrays to functions, the 

function call must have the name of the 

array to be passed without brackets.

 (t) In passing strings to functions, the 

actual parameter must be name of the 

string post-fi xed with size in brackets.

 5.2 Fill in the blanks in the following statements.

 (a)  The parameters used in a function call are 

called __________.

 (b)  A variable declared inside a function is 

called __________.

 (c) By default, __________ is the return type 

of a C function.

 (d) In passing by pointers, the variables 

of the formal parameters must be 

prefi xed with in __________ their 

declaration.

 (e) In prototype declaration, specifying is 

__________ optional.

 (f) __________ refers to the region where a 

variable is actually available for use.

 (g) A function that calls itself is known as a 

__________ function.

 (h) If a local variable has to retain its value 

between calls to the function, it must be 

declared as __________.

 (i) A __________ aids the compiler to 

check the matching between the actual 

arguments and the formal ones.

 (j) A variable declared inside a function by 

default assumes __________ storage class.

 5.3 The main is a user-defi ned function. How 

does it differ from other user-defi ned 

functions?

 5.4 Describe the two ways of passing parameters 

to functions. When do you prefer to use each 

of them?

 5.5 What is prototyping? Why is it necessary?

 5.6 Distinguish between the following:

 (a) Actual and formal arguments

 (b) Global and local variables

 (c) Automatic and static variables

 (d) Scope and visibility of variables

 (e) & operator and * operator

 Review Questions



Functions—Modular Programming 5.51 

 5.7 Explain what is likely to happen when the 

following situations are encountered in a 

program.

 (a) Actual arguments are less than the formal 

arguments in a function.

 (b) Data type of one of the actual arguments 

does not match with the type of the 

corresponding formal argument.

 (c) Data type of one of the arguments in a 

prototype does not match with the type of 

the corresponding formal parameter in the 

header line.

 (d) The order of actual parameters in the 

function call is different from the order of 

formal parameters in a function where all 

the parameters are of the same type.

 (e) The type of expression used in return 

statement does not match with the type of 

the function.

 5.8 Which of the following prototype declarations 

are invalid? Why?

 (a) int (fun) void;

 (b) double fun (void)

 (c) float fun (x, y, n);

 (d) void fun (void, void);

 (e) int fun (int a, b);

 (f) fun (int, float, char);

 (g) void fun (int a, int &b);

 5.9 Which of the following header lines are 

invalid? Why?

 (a) float average (float x, float y, float z);

 (b) double power (double a, int n – 1)

 (c) int product (int m, 10)

 (d) double minimum (double x; double y;)

 (e) int mul (int x, y)

 (f) exchange (int *a, int *b)

 (g) void sum (int a, int b, int &c)

 5.10 Find errors, if any, in the following function 

defi nitions:

 (a) void abc (int a, int b)
  {
     int c;
     . . . .
     return (c);
  }

 (b) int abc (int a, int b)
  {

     . . . .
     . . . .
  }

 (c) int abc (int a, int b)
  {
     double c = a + b;
     return (c);

  }

 (d) void abc (void)
  {
     . . . .
     . . . .
     return;
  }

 (e) int abc(void)
  {
     . . . . 
     . . . . 
     return;
  }

5.11 Find errors in the following function calls:

 (a) void xyz ( );

 (b) xyx ( void );

 (c) xyx ( int x, int y);

 (d) xyzz ( );

 (e) xyz ( ) + xyz ( );

5.12 A function to divide two fl oating point 

numbers is as follows:
   divide (float x, float y)
   {
      return (x / y);
   }

  What will be the value of the following 

function calls:

 (a) divide ( 10, 2)

 (b) divide ( 9, 2 )

 (c) divide ( 4.5, 1.5 )

 (d) divide ( 2.0, 3.0 )

 5.13 What will be the effect on the above function 

calls if we change the header line as follows:

 (a) int divide (int x, int y)

 (b) double divide (fl oat x, fl oat y)

 5.14 Determine the output of the following 

program?
  int prod( int m, int n);
  main ( )
  {
   int x = 10;
   int y = 20;
   int p, q;



5.52 Computer Programming

   p = prod (x,y);
   q = prod (p, prod (x,z));
   printf (“%d %d\n”, p,q);
  }
   int prod( int a, int b)
  {
   return (a * b);
  }

5.15 What will be the output of the following 

program?
  void test (int *a);
  main ( )
  {
      int x = 50;
      test ( &x);
      printf(“%d\n”, x);
  }
  void test (int *a);
  {
      *a = *a + 50;
  }

 5.16 The function test is coded as follows:
  int test (int number)
  {

      int m, n = 0;
      while (number)
      {
          m = number % 10;
          if (m % 2)
              n = n + 1;
              number = number /10;
      }
      return (n);
  }

  What will be the values of x and y when the 

following statements are executed?
  int x = test (135);
  int y = test (246);

5.17  Enumerate the rules that apply to a function call.

5.18 Summarize the rules for passing parameters to 

functions by pointers.

5.19 What are the rules that govern the passing of 

arrays to function?

5.20 State the problems we are likely to encounter 

when we pass global variables as parameters 

to functions.

 Programming Exercises

 5.1 Write a function exchange to interchange the 

values of two variables, say x and y. Illustrate 

the use of this function, in a calling function. 

Assume that x and y are defi ned as global 

variables.

 5.2 Write a function space(x) that can be used to 

provide a space of x positions between two 

output numbers. Demonstrate its application.

 5.3 Use recursive function calls to evaluate 

f
x x x

( )x
! ! !

.....= +x − +

3 5x 7

3! 7

 5.4 An n_order polynomial can be evaluated as 

follows:

  P = (.....(((a
0
x+a

1
)x+a

2
)x+a

3
)x+..+a

n
)

  Write a function to evaluate the polynomial, 

using an array variable. Test it using a main 

program.

 5.5 The Fibonacci numbers are defi ned 

recursively as follows:

  F
1
 = 1

  F
2
 = 1

  F
n
 = F 

n–1
+F 

n–2
, n > 2

  Write a function that will generate and 

print the fi rst n Fibonacci numbers. Test the 

function for n = 5, 10, and 15.

 5.6 Write a function that will round a fl oating-

point number to an indicated decimal place. 

For example the number 17.457 would yield 

the value 17.46 when it is rounded off to two 

decimal places.

 5.7 Write a function prime that returns 1 if its 

argument is a prime number and returns zero 

otherwise.

 5.8 Write a function that will scan a character 

string passed as an argument and convert all 

lowercase characters into their uppercase 

equivalents.

 5.9 Develop a top_down modular program to 

implement a calculator. The program should 

request the user to input two numbers and 

display one of the following as per the desire 

of the user:

 (a) Sum of the numbers



Functions—Modular Programming 5.53

 (b) Difference of the numbers

 (c) Product of the numbers

 (d) Division of the numbers

  Provide separate functions for performing 

various tasks such as reading, calculating 

and displaying. Calculating module should 

call second level modules to perform the 

individual mathematical operations. 

The main function should have only function 

calls.

 5.10 Develop a modular interactive program using 

functions that reads the values of three sides 

of a triangle and displays either its area or its 

perimeter as per the request of the user. Given 

the three sides a, b and c.

Perimeter = a + b + c

Area = ( )s a ( )s b)(s c)a (s

where s = ( a+b+c )/2

 5.11 Write a function that can be called to fi nd the 

largest element of an m by n matrix.

 5.12 Write a function that can be called to compute 

the product of two matrices of size m by n and 

n by m. The main function provides the values 

for m and n and two matrices.

 5.13 Design and code an interactive modular 

program that will use functions to a matrix of 

m by n size, compute column averages and 

row averages, and then print the entire matrix 

with averages shown in respective rows and 

columns.

 5.14 Develop a top-down modular program that 

will perform the following tasks:

 (a) Read two integer arrays with unsorted 

elements.

 (b) Sort them in ascending order

 (c) Merge the sorted arrays

 (d) Print the sorted list

  Use functions for carrying out each of the 

above tasks. The main function should have 

only function calls.

 5.15 Develop your own functions for performing 

following operations on strings:

 (a) Copying one string to another

 (b) Comparing two strings

 (c) Adding a string to the end gof another 

string

  Write a driver program to test your functions.

 5.16 Write a program that invokes a function called 

fi nd( ) to perform the following tasks:

 (a) Receives a character array and a single 

character.

 (b) Returns 1 if the specifi ed character is 

found in the array, 0 otherwise.

 5.17 Design a function locate ( ) that takes two 

character arrays s1 and s2 and one integer 

value m as parameters and inserts the string 

s2 into s1 immediately after the index m.

  Write a program to test the function using a 

real-life situation. (Hint: s2 may be a missing 

word in s1 that represents a line of text.)

 5.18 Write a function that takes an integer 

parameter m representing the month number 

of the year and returns the corresponding 

name of the month. For instance, if m = 3, the 

month is March.

  Test your program.

 5.19 In preparing the calendar for a year we need 

to know whether that particular year is leap 

year or not. Design a function leap( ) that 

receives the year as a parameter and returns 

an appro priate message.

  What modifi cations are required if we want 

to use the function in preparing the actual 

calendar?

 5.20 Write a function that receives a fl oating point 

value x and returns it as a value rounded to 

two nearest decimal places. For example, the 

value 123.4567 will be rounded to 123.46. 

(Hint: Seek help of one of the math functions 

available in math library.)



5.54 Computer Programming

Key Terms

Modular programming• : It is a programming 

approach of organizing a large program into 

small, independent program segments known 

as modules.

Program defi nition• : It is an independent 

program module that is specially written 

to implement the requirements of the 

function. 

Calling program• : It is the program that calls 

the function.

Function type• : It specifi es the type of value 

that the function is supposed to return.

Parameter list• : It declares the variables that 

will receive the data sent by the calling 

program.

Function body• : It contains the declarations 

and statements necessary for performing the 

required task.

Local variables• : The variables declared inside 

a function are known as local variables.

Recursion• : It is the process in which a called 

function in turn calls another function.

Internal variables• : These are the variables, 

which are declared within a particular function

External variables• : These variables are 

declared outside of any function. These are 

alive and active throughout the entire 

program.

Block statement• : It is a set of statements 

enclosed in a set of braces.



 

6 Pointers

U N I T

A pointer is a derived data type in C. It is built from one of the fundamental data types available in C. Pointers 

contain memory addresses as their values. Since these memory addresses are the locations in the computer 

memory where program instructions and data are stored, pointers can be used to access and manipulate data 

stored in the memory.

Pointers are undoubtedly one of the most distinct and exciting features of C language. It has added power 

and fl exibility to the language. Although they appear little confusing and diffi cult to understand for a  beginner, 

they are a powerful tool and handy to use once they are mastered.

 Pointers are used frequently in C, as they offer a number of benefi ts to the programmers. They include:

1. Pointers are more effi cient in handling arrays and data tables.

2. Pointers can be used to return multiple values from a function via function arguments.

3. Pointers permit references to functions and thereby facilitating passing of functions as arguments to 

other functions.

4. The use of pointer arrays to character strings results in saving of data storage space in memory.

5. Pointers allow C to support dynamic memory management.

6. Pointers provide an effi cient tool for manipulating dynamic data structures such as structures, linked 

lists, queues, stacks and trees.

7. Pointers reduce length and complexity of programs.

8. They increase the execution speed and thus reduce the program execution time.

Of course, the real power of C lies in the proper use of pointers. In this chapter, we will examine the 

 pointers in detail and illustrate how to use them in program development. 

The computer’s memory is a sequential collection of storage cells as shown in Fig. 6.1. Each cell, commonly 

known as a byte, has a number called address associated with it. Typically, the addresses are numbered 

 consecutively, starting from zero. The last address depends on the memory size. A computer system having 

64 K memory will have its last address as 65,535.

Whenever we declare a variable, the system allocates, somewhere in the memory, an appropriate location 

to hold the value of the variable. Since, every byte has a unique address number, this location will have its 

own address number. Consider the following statement

int quantity = 179;

6.1 INTRODUCTION

6.2 UNDERSTANDING  POINTERS



6.2 Computer Programming

This statement instructs the system to fi nd a location for the integer variable quantity and puts the value 

179 in that location. Let us assume that the system has chosen the address location 5000 for quantity. We 

may represent this as shown in Fig. 6.2. (Note that the address of a variable is the address of the fi rst byte 

occupied by that variable.)

During execution of the program, the system always associates the name quantity with the address 

5000. (This is something similar to having a house number as well as a house name.) We may have access 

to the value 179 by using either the name quantity or the address 5000. Since memory addresses are 

simply  numbers, they can be assigned to some variables, that can be stored in memory, like any other vari-

able. Such variables that hold memory addresses are called   pointer variables. A pointer variable is, 

therefore, nothing but a variable that contains an address, which is a location of another variable in 

memory.

Remember, since a pointer is a variable, its value is also stored in the memory in another location. Suppose, 

we assign the address of quantity to a variable p. The link between the variables p and quantity can be 

visualized as shown in Fig. 6.3. The address of p is 5048.

Since the value of the variable p is the address of the variable quantity, we may access the value of 

 quantity by using the value of p and therefore, we say that the variable p ‘points’ to the variable quantity. 

Thus, p gets the name ‘pointer’. (We are not really concerned about the actual values of pointer variables. 

They may be different everytime we run the program. What we are concerned about is the relationship 

between the variables p and quantity.)

Fig. 6.1  Memory organisation

Fig. 6.2 Representation of a variable

Fig. 6.3 Pointer variable



Pointers 6.3 

The actual location of a variable in the memory is system dependent and therefore, the address of a variable 

is not known to us immediately. How can we then determine the address of a variable? This can be done with 

the help of the operator & available in C. We have already seen the use of this address operator in the scanf 

function. The operator & immediately preceding a variable returns the address of the variable associated with 

it. For example, the statement

p = &quantity;

would assign the address 5000 (the location of quantity) to the variable p. The & operator can be remem-

bered as ‘address of’.

The & operator can be used only with a simple variable or an array element. The following are illegal uses 

of address operator:

1. &125 (pointing at constants).

2. int x[10];

&x (pointing at array names).

3. &(x+y) (pointing at expressions).

If x is an array, then expressions such as

&x[0] and &x[i+3]

are valid and represent the addresses of 0th and (i+3)th elements of x.

EXAMPLE 6.1 Write a program to print the address of a variable along with its value.

The program shown in Fig. 6.4, declares and initializes four variables and then prints out these values with 

their respective storage locations. Note that we have used %u format for printing address values. Memory 

addresses are unsigned integers.

6.3 ACCESSING THE ADDRESS OF A  VARIABLE

Pointers are built on the three underlying concepts as illustrated 

below:

Memory addresses within a computer are referred to as pointer 

constants. We cannot change them; we can only use them to store 

data values. They are like house numbers.

We cannot save the value of a memory address directly. We can 

only obtain the value through the variable stored there using the 

address operator (&). The value thus obtained is known as pointer 

value. The pointer value (i.e. the address of a variable) may change 

from one run of the program to another.

Once we have a pointer value, it can be stored into another variable. The variable that contains a pointer value is 

called a pointer variable.

Underlying Concepts of Pointers

 Program                                                                    
    main()                                                           
     {
       char   a;                                                    

(Contd.)



6.4 Computer Programming

In C, every variable must be declared for its type. Since pointer variables contain addresses that belong to a 

separate data type, they must be declared as pointers before we use them. The declaration of a pointer variable 

takes the following form:

data_type *pt_name;

This tells the compiler three things about the variable pt_name.

1. The asterisk (*) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data_type.

For example,

int *p;   /* integer pointer */

declares the variable p as a pointer variable that points to an integer data type. Remember that the type int 

refers to the data type of the variable being pointed to by p and not the type of the value of the pointer. 

Similarly, the statement

float *x;   / * float pointer */

declares x as a pointer to a fl oating-point variable.

The declarations cause the compiler to allocate memory locations for the pointer variables  p and x. Since 

the memory locations have not been assigned any values, these locations may contain some unknown values 

in them and therefore they point to unknown locations as shown:

int *p;  

6.4 DECLARING POINTER VARIABLES

       int    x;                                                    

       float  p, q;                                                 

                                                                    

 a  = ‘A’;                                                    

        x  = 125;                                                    

       p  = 10.25, q = 18.76;                                       

     printf(“%c is stored at addr %u.\n”, a, &a);                 

      printf(“%d is stored at addr %u.\n”, x, &x);                 

     printf(“%f is stored at addr %u.\n”, p, &p);                

     printf(“%f is stored at addr %u.\n”, q, &q);                 

   }                                                                

Output                                                           

    A is stored at addr 4436.                                        

   125 is stored at addr 4434.                                      

   10.250000 is stored at addr 4442.                                

    18.760000 is stored at addr 4438.

Fig. 6.4 Accessing the address of a variable



Pointers 6.5 

The process of assigning the address of a variable to a pointer variable is known as  initialization. As pointed 

out earlier, all uninitialized pointers will have some unknown values that will be interpreted as memory 

addresses. They may not be valid addresses or they may point to some values that are wrong. Since the com-

pilers do not detect these errors, the programs with uninitialized pointers will produce erroneous results. It is 

therefore important to initialize pointer variables carefully before they are used in the program.

Once a pointer variable has been declared we can use the assignment operator to initialize the variable. 

Example:

int quantity;
int *p; /* declaration */
p = &quantity; /* initialization */

We can also combine the initialization with the declaration. That is,

int *p = &quantity;

is allowed. The only requirement here is that the variable quantity must be declared before the initialization 

takes place. Remember, this is an initialization of p and not *p.

We must ensure that the pointer variables always point to the corresponding type of data. For example,

float a, b;
int x, *p;
p = &a; /* wrong */
b = *p;

will result in erroneous output because we are trying to assign the address of a fl oat variable to an integer 

pointer. When we declare a pointer to be of  int type, the system assumes that any address that the pointer 

will hold will point to an integer variable. Since the compiler will not detect such errors, care should be taken 

to avoid wrong pointer assignments. 

It is also possible to combine the declaration of data variable, the declaration of pointer variable and the 

initialization of the pointer variable in one step. For example,

int x, *p = &x; /* three in one */

6.5 INITIALIZATION OF POINTER VARIABLES

Pointer variables are declared similarly as normal variables except for the addition of the unary * operator. This symbol 

can appear anywhere between the type name and the printer variable name. Programmers use the following styles:

 int*   p; /* style 1 */

 int   *p; /* style 2 */

 int  *   p; /* style 3 */

However, the style2 is becoming increasingly popular due to the following reasons:

1. This style is convenient to have multiple declarations in the same statement. Example:

int *p, x, *q;

2. This style matches with the format used for accessing the target values. Example:

int x, *p, y;

x = 10;

p = & x;

y = *p; /* accessing x through p */

*p = 20; /* assigning 20 to x */ 

We use in this book the style 2, namely,

int *p;

Pointer Declaration Style



6.6 Computer Programming

is perfectly valid. It declares x as an integer variable and  p as a pointer variable and then initializes p to the 

address of x. And also remember that the target variable x is declared fi rst. The statement

int *p = &x, x;

is not valid.

We could also defi ne a pointer variable with an initial value of NULL or 0 (zero). That is, the following 

statements are valued

int *p = NULL;
int *p = 0;

Pointers are fl exible. We can make the same pointer to point to different data variables in different statements. 

 Example;

 int x, y, z, *p; 

 . . . . .

 p = &x;

 . . . . . 

 p = &y;

 . . . . . 

 p = &z; 

 . . . . . 

We can also use different pointers to point to the same data variable. Example.

 int x; 

 int *p1 = &x;

 int *p2 = &x;

 int *p3 = &x;

 . . . . .  

 . . . . .  

Pointer Flexibility

x

p1 p2 p3

With the exception of NULL and 0, no other constant value can be assigned to a pointer variable. For 

example, the following is wrong:

int *p = 5360; / *absolute address */

Once a pointer has been assigned the address of a variable, the question remains as to how to access the value 

of the variable using the pointer? This is done by using another unary operator * (asterisk), usually known as 

the indirection operator. Another name for the indirection operator is the dereferencing operator. Consider 

the following statements:

int quantity, *p, n;
quantity = 179;
p = &quantity;
n = *p;

The fi rst line declares quantity and n as integer variables and p as a pointer variable pointing to an integer. 

The second line assigns the value 179 to quantity and the third line assigns the address of quantity to the 

pointer variable p. The fourth line contains the indirection operator *. When the operator * is placed before a 

pointer variable in an expression (on the right-hand side of the equal sign), the pointer returns the value of the 

variable of which the pointer value is the address. In this case, *p returns the value of the variable quantity, 

6.6 ACCESSING A VARIABLE THROUGH ITS POINTER



Pointers 6.7 

because p is the address of quantity. The * can be remembered as ‘value at address’. Thus the value of n 

would be 179. The two statements

p = &quantity;
n = *p;

are equivalent to

n = *&quantity;

which in turn is equivalent to

n = quantity;

In C, the assignment of pointers and addresses is always done symbolically, by means of symbolic names. 

You cannot access the value stored at the address 5368 by writing *5368. It will not work. Example 6.2 

 illustrates the distinction between pointer value and the value it points to.

EXAMPLE 6.2 Write a program to illustrate the use of indirection operator ‘*’ to access the value 

pointed to by a printer.

The program and output are shown in Fig. 6.5. The program clearly shows how we can access the value of a 

variable using a pointer. You may notice that the value of the pointer ptr is 4104 and the value it points to is 

10. Further, you may also note the following equivalences:

x = *(&x) = *ptr = y
&x = &*ptr

Program                                                                               
    main()                                                           
   {
         int   x, y;                                                  
         int   *ptr;                                                  
        x = 10;                                                      
         ptr = &x;                                                    
         y = *ptr;                                                    
         printf(“Value of x is %d\n\n”,x);                            
        printf(“%d is stored at addr %u\n”, x, &x);                  
         printf(“%d is stored at addr %u\n”, *&x, &x);                
        printf(“%d is stored at addr %u\n”, *ptr, ptr);              
         printf(“%d is stored at addr %u\n”, ptr, &ptr);              
         printf(“%d is stored at addr %u\n”, y, &y);                  
         *ptr = 25;                                                   
         printf(“\nNow x = %d\n”,x);                                  
                                                                    
    }
Output                                                           
    Value of x is 10                                                 
    10  is stored at addr 4104                                        
    10  is stored at addr 4104                                        
    10  is stored at addr 4104                                        
   4104 is stored at addr 4106                                      
   10  is stored at addr 4108                                        
   Now x = 25                                                     

Fig. 6.5 Accessing a variable through its pointer



6.8 Computer Programming

The actions performed by the program are illustrated in Fig. 6.6. The statement  ptr = &x assigns the 

address of x to ptr and y = *ptr assigns the value pointed to by the pointer ptr to y.

Note the use of the assignment statement

*ptr = 25;

This statement puts the value of 25 at the memory location whose address is the value of  ptr. We know 

that the value of ptr is the address of x and therefore, the old value of x is replaced by 25. This, in effect, is 

equivalent to assigning 25 to x. This shows how we can change the value of a variable indirectly using a 

pointer and the indirection operator.

It is possible to make a pointer to point to another pointer, 

thus creating a chain of pointers as shown.

x

4104

Values in the storage cells and their addressesStage

Declaration

x = 10

ptr = &x

y = *ptr

*ptr = 25

4104

4104

4104

4104

y

4108

4108

4108

4108

pointer to x

4106

4108

ptr

4106
address

address

address

address

4106

4106

4106

25

1010

10

10

10

4104

4104

4104

Fig. 6.6 Illustration of pointer assignments

Here, the pointer variable p2 contains the address of the pointer variable p1, which points to the location 

that contains the desired value. This is known as  multiple indirections.

A variable that is a pointer to a pointer must be declared using additional indirection operator symbols in 

front of the name. Example:

int **p2;

6.7 CHAIN OF  POINTERS

p2 p1 variable

address 2 address 1 value



Pointers 6.9 

This declaration tells the compiler that p2 is a pointer to a pointer of int type. Remember, the pointer p2 

is not a pointer to an integer, but rather a pointer to an integer pointer.

We can access the target value indirectly pointed to by pointer to a pointer by applying the indirection 

operator twice. Consider the following code:

main ( )
{
 int x, *p1, **p2;
 x = 100;
 p1 = &x;  /* address of x */
 p2 = &p1  /* address of p1 */
 printf (“%d”, **p2);
}

This code will display the value 100. Here, p1 is declared as a pointer to an integer and p2 as a pointer to 

a pointer to an integer.

Like other variables, pointer variables can be used in expressions. For example, if p1 and p2 are properly 

declared and initialized pointers, then the following statements are valid.

y = *p1 * *p2; same as (*p1) * (*p2)
sum = sum + *p1;
z = 5* – *p2/ *p1; same as (5 * (– (*p2)))/(*p1)
*p2 = *p2 + 10;

Note that there is a blank space between / and * in the item3 above. The following is wrong.

z = 5* – *p2 /*p1;

The symbol /* is considered as the beginning of a comment and therefore the statement fails.

C allows us to add integers to or subtract integers from pointers, as well as to subtract one pointer from 

another. p1 + 4, p2–2 and p1 – p2 are all allowed. If p1 and p2 are both pointers to the same array, then 

p2 – p1 gives the number of elements between p1 and p2.

We may also use short-hand operators with the pointers.

p1++;
—p2;
sum += *p2;

In addition to arithmetic operations discussed above, pointers can also be compared using the relational 

operators. The expressions such as p1 > p2, p1 = = p2, and p1 != p2 are allowed. However, any comparison 

of pointers that refer to separate and unrelated variables makes no sense. Comparisons can be used meaning-

fully in handling arrays and strings.

We may not use pointers in division or multiplication. For example, expressions such as

p1 / p2 or p1 * p2 or p1 / 3

are not allowed. Similarly, two pointers cannot be added. That is, p1 + p2 is illegal.

EXAMPLE 6.3 Write a program to illustrate the use of pointers in arithmetic operations.

The program in Fig. 6.7 shows how the pointer variables can be directly used in expressions. It also illustrates 

the order of evaluation of expressions. For example, the expression

4* – *p2 / *p1 + 10

6.8 POINTER EXPRESSIONS



6.10 Computer Programming

is evaluated as follows:

((4 * (–(*p2))) / (*p1)) + 10

When *p1 = 12 and *p2 = 4, this expression evaluates to 9. Remember, since all the variables are of type 

int, the entire evaluation is carried out using the integer arithmetic.

Program 
    main()                                                           
   {
         int  a, b, *p1, *p2, x, y, z;                                
         a  = 12;                                                     
         b  =  4;                                                     
         p1 = &a;                                                     
         p2 = &b;                                                     
        x  =  *p1 * *p2 – 6;                                         
         y  =  4*  – *p2 / *p1 + 10;                                  
         printf(“Address of a = %u\n”, p1);                           
        printf(“Address of b = %u\n”, p2);                           
         printf(“\n”);                                                
         printf(“a = %d, b = %d\n”, a, b);                            
         printf(“x = %d, y = %d\n”, x, y);                            
         *p2  = *p2 + 3;                                              
         *p1  = *p2 – 5;                                              
         z    = *p1 * *p2 – 6;                                        
         printf(“\na = %d, b = %d,”, a, b);
         printf(“ z = %d\n”, z);                                      
    }                                                                
                                                                    
Output                                                           
     Address of a = 4020                                              
     Address of b = 4016                                              
     a = 12, b = 4                                                    
    x = 42, y = 9                                                    
     a = 2, b = 7, z = 8

Fig. 6.7 Evaluation of pointer expressions

We have seen that the pointers can be incremented like

p1 = p2 + 2;
p1 = p1 + 1;

and so on. Remember, however, an expression like

p1++;

will cause the pointer p1 to point to the next value of its type. For example, if  p1 is an integer pointer with 

an initial value, say 2800, then after the operation p1 = p1 + 1, the value of p1 will be 2802, and not 2801. 

That is, when we increment a pointer, its value is increased by the ‘length’ of the data type that it points to. 

This length called the scale factor.

6.9 POINTER INCREMENTS AND  SCALE FACTOR



Pointers 6.11 

For an IBM PC, the length of various data types are as follows:

characters 1 byte

integers 2 bytes

fl oats 4 bytes

long integers 4 bytes

doubles 8 bytes

The number of bytes used to store various data types depends on the system and can be found by making 

use of the sizeof operator. For example, if x is a variable, then sizeof(x) returns the number of bytes needed 

for the variable. (Systems like Pentium use 4 bytes for storing integers and 2 bytes for short integers.)

The following rules apply when performing operations on pointer variables.

 1. A pointer variable can be assigned the address of another variable.

 2. A pointer variable can be assigned the values of another pointer variable.

 3. A pointer variable can be initialized with NULL or zero value.

 4. A pointer variable can be pre-fi xed or post-fi xed with increment or decrement operators.

 5. An integer value may be added or subtracted from a pointer variable.

 6. When two pointers point to the same array, one pointer variable can be subtracted from another.

 7.  When two pointers point to the objects of the same data types, they can be compared using relational operators.

 8. A pointer variable cannot be multiplied by a constant.

 9. Two pointer variables cannot be added.

10. A value cannot be assigned to an arbitrary address (i.e  &x = 10; is illegal).

Rules of   Pointer Operations

When an array is declared, the compiler allocates a base address and suffi cient amount of storage to contain 

all the elements of the array in contiguous memory locations. The base address is the location of the fi rst 

 element (index 0) of the array. The compiler also defi nes the array name as a constant pointer to the fi rst 

 element. Suppose we declare an array x as follows:

int x[5] = {1, 2, 3, 4, 5};

Suppose the base address of x is 1000 and assuming that each integer requires two bytes, the fi ve elements 

will be stored as follows:

The name x is defi ned as a constant pointer pointing to the fi rst element, x[0] and therefore the value of x 

is 1000, the location where x[0] is stored. That is,

x = &x[0] = 1000

If we declare p as an integer pointer, then we can make the pointer p to point to the array x by the follow-

ing assignment:

p = x;

6.10 POINTERS AND  ARRAYS



6.12 Computer Programming

This is equivalent to

p = &x[0];

Now, we can access every value of  x using p++ to move from one element to another. The relationship 

between p and x is shown as:

p = &x[0] (= 1000)

p+1 = &x[1] (= 1002)

p+2 = &x[2] (= 1004)

p+3 = &x[3] (= 1006)

p+4 = &x[4] (= 1008)

You may notice that the address of an element is calculated using its index and the scale factor of the data 

type. For instance,

address of x[3] = base address + (3 x scale factor of int)

= 1000 + (3 x 2) = 1006

When handling arrays, instead of using array indexing, we can use pointers to access array elements. Note 

that *(p+3) gives the value of x[3]. The pointer accessing method is much faster than array indexing.

Example 6.4 illustrates the use of pointer accessing method.

EXAMPLE 6.4 Write a program using pointers to compute the sum of all elements stored in an array.

The program shown in Fig. 6.8 illustrates how a pointer can be used to traverse an array element. Since incre-

menting an array pointer causes it to point to the next element, we need only to add one to p each time we go 

through the loop.

Program                       
    main()                                                           
   {
         int *p, sum, i;                                              
         int x[5] = {5,9,6,3,7};                               
         i  = 0;                                                      
         p  = x;    /* initializing with base address of x */                                                      
         printf(“Element   Value   Address\n\n”);                  
         while(i < 5)                                                 
         {
             printf(“ x[%d] %d %u\n”, i, *p, p);        
             sum = sum + *p;   /* accessing array element  */                                         
             i++, p++;        /* incrementing pointer     */                                          
         }                                                            
         printf(“\n  Sum    =  %d\n”, sum);                           
         printf(“\n  &x[0]  =  %u\n”, &x[0]);                         
         printf(“\n  p      =  %u\n”, p);                             
    }                                                                
                                                                    
Output                                                           
  Element    Value     Address                                     
      x[0]         5         166                                       
      x[1]         9         168                                       
      x[2]         6         170                                       

(Contd.)



Pointers 6.13 

It is possible to avoid the loop control variable i as shown:

.....
p = x;
while(p <= &x[4])
{
sum += *p;
p++;
}
.....

Here, we compare the pointer p with the address of the last element to determine when the array has been 

traversed.

Pointers can be used to manipulate two-dimensional arrays as well. We know that in a one-dimensional 

array x, the expression

*(x+i) or *(p+i)

represents the element x[i]. Similarly, an element in a two-dimensional array can be represented by the 

pointer expression as follows:

*(*(a+i)+j) or *(*(p+i)+j)

1

1

0

0

p + 4

Rows

2

Columns

2

3

3

4

4

5

5

6

4,0 4,3

p

p + 1

p + 4

p + 6

*(p + 4) + 3*(p + 4)

p pointer to first row

pointer to ith row

pointer to first element in the ith row

pointer to jth element in the ith row

value stored in the cell (i,j)
(ith row and jth column)

p + i

*(p + i)

*(p + i) + j

*(*(p + i) + j)

Fig. 6.9 Pointers to two-dimensional arrays

Figure 6.9 illustrates how this expression represents the element a[i][j]. The base address of the array a is 

&a[0][0] and starting at this address, the compiler allocates contiguous space for all the elements row-wise. 

      x[3]         3         172                                       
      x[4]         7         174                                       
       Sum    =  55                                                   
       &x[0]  =  166                                                  
       p      =  176

Fig. 6.8 Accessing one-dimensional array elements using the pointer



6.14 Computer Programming

That is, the fi rst element of the second row is placed immediately after the last element of the fi rst row, and 

so on. Suppose we declare an array a as follows:

int a[3][4] = { {15,27,11,35},
 {22,19,31,17},
 {31,23,14,36}
   };

The elements of a will be stored as:

If we declare p as an int pointer with the initial address of &a[0][0], then

a[i][j] is equivalent to *(p+4 × i+j)

You may notice that, if we increment i by 1, the p is incremented by 4, the size of each row. Then the 

 element a[2][3] is given by *(p+2 × 4+3) = *(p+11).

This is the reason why, when a two-dimensional array is declared, we must specify the size of each row so 

that the compiler can determine the correct storage mapping.

Strings are treated like character arrays and therefore, they are declared and initialized as follows:

char str [5] = “good”;

The compiler automatically inserts the null character ‘\0’ at the end of the string. C supports an alternative 

method to create strings using pointer variables of type char. Example:

char *str = “good”;

This creates a string for the literal and then stores its address in the pointer variable str.

The pointer str now points to the fi rst character of the string “good” as:

We can also use the run-time assignment for giving values to a string 

pointer. Example

char * string1;
string1 = “good”;

Note that the assignment

string1 = “good”;

is not a string copy, because the variable string1 is a pointer, not a string.

C does not support copying one string to another through the assignment operation.)

We can print the content of the string string1 using either printf or puts functions as follows:

printf(“%s”, string1);
puts (string1);

Remember, although string1 is a pointer to the string, it is also the name of the string. Therefore, we do 

not need to use indirection operator * here.

Like in one-dimensional arrays, we can use a pointer to access the individual characters in a string. This 

is illustrated by Example 6.5.

6.11 POINTERS AND  CHARACTER  STRINGS



Pointers 6.15 

EXAMPLE 6.5 Write a program using pointers to determine the length of a character string.

A program to count the length of a string is shown in Fig. 6.10. The statement

char *cptr = name;

declares cptr as a pointer to a character and assigns the address of the fi rst character of  name as the initial 

value. Since a string is always terminated by the null character, the statement

while(*cptr != ‘\0’)

is true until the end of the string is reached.

When the while loop is terminated, the pointer cptr holds the address of the 

null character. Therefore, the statement

length = cptr – name;

gives the length of the string name.

The output also shows the address location of each character. Note that each 

character occupies one memory cell (byte).

Program
    main()                                                          
   {                                                                
         char  *name;                                                 
         int   length;                                                
         char  *cptr = name;                                          
         name  = “DELHI”;                               
         printf (“%s\n”, name);              
         while(*cptr != ‘\0’)                                         
         {                                                              
           printf(“%c is stored at address %u\n”, *cptr, cptr);     
              cptr++;                                                  
         }                                                            
         length = cptr - name;                                        
        printf(“\nLength of the string = %d\n”, length);             
    }                                                              
                                                                    
Output                                                           
    DELHI                         
    D is stored at address 54                                        
   E is stored at address 55                                        
  L is stored at address 56                                        
 H is stored at address 57                                       
 I is stored at address 58                                        
    Length of the string = 5

Fig. 6.10 String handling by pointers

In C, a constant character string always represents a pointer to that string. And therefore the following 

statements are valid:
char *name;
name = “Delhi”;

These statements will declare name as a pointer to character and assign to name the constant character 

string “Delhi”. You might remember that this type of assignment does not apply to character arrays. The state-

ments like

D

name
(5 4)

cptr
(5 9)

E L H I 0\



6.16 Computer Programming

char name[20];
name = “Delhi”;

do not work.

One important use of pointers is in handling of a table of strings. Consider the following array of strings:

char name [3][25];

This says that the name is a table containing three names, each with a maximum length of 25 characters 

(including null character). The total storage requirements for the name table are 75 bytes.

We know that rarely the individual strings will be of equal lengths. Therefore, instead of making each row 

a fi xed number of characters, we can make it a pointer to a string of varying length. For example,

char *name[3] = {
        “New Zealand”,
        “Australia”,
        “India”
       };

declares name to be an array of three pointers to characters, each pointer 

pointing to a particular name as:

This declaration allocates only 28 bytes, suffi cient to hold all the  characters 

as shown

The following statement would print out all the three names:

for(i = 0; i <= 2; i++)
 printf(“%s\n”, name[i]);

To access the jth character in the ith name, we may write as

*(name[i]+j)

The character arrays with the rows of varying length are called ‘ragged arrays’ and are better handled by 

pointers.

Remember the difference between the notations *p[3] and (*p)[3]. Since * has a lower precedence 

than [ ], *p[3] declares p as an array of 3 pointers while (*p)[3] declares p as a pointer to an array of three 

elements.

6.12   ARRAY OF POINTERS

name [0 ]

name [1 ]

name [ 2]

New Zealand

Australia

India



Pointers 6.17

We have seen earlier that when an array is passed to a function as an argument, only the address of the fi rst 

element of the array is passed, but not the actual values of the array elements. If x is an array, when we call 

sort(x), the address of x[0] is passed to the function sort. The function uses this address for manipulating the 

array elements. Similarly, we can pass the address of a variable as an argument to a function in the normal 

fashion. We used this method when discussing functions that return multiple values.

When we pass addresses to a function, the parameters receiving the addresses should be pointers. The 

process of calling a function using pointers to pass the addresses of variables is known as ‘call by reference’. 

(You know, the process of passing the actual value of variables is known as “call by value”.) The function 

which is called by ‘reference’ can change the value of the variable used in the call.

Consider the following code:

main()
{
  int x;
  x = 20;
  change(&x);    /* call by reference or address */
  printf(“%d\n”,x);
} 
change(int *p)
{
  *p = *p + 10;
}

When the function change( ) is called, the address of the variable x, not its value, is passed into the 

 function change(). Inside change( ), the variable p is declared as a pointer and therefore p is the address of 

the variable x. The statement,
*p = *p + 10;

means ‘add 10 to the value stored at the address p’. Since p represents the address of x, the value of x is 

changed from 20 to 30. Therefore, the output of the program will be 30, not 20.

Thus, call by reference provides a mechanism by which the function can change the stored values in the 

calling function. Note that this mechanism is also known as “call by address” or “pass by pointers”

NOTE: C99 adds a new qualifi er restrict to the pointers passed as function parameters.

EXAMPLE 6.6 Write a function using pointers to exchange the values stored in two locations in the 

memory.

The program in Fig. 6.11 shows how the contents of two locations can be exchanged using their address loca-

tions. The function exchange() receives the addresses of the variables x and y and exchanges their contents.

6.13 POINTERS AS  FUNCTION  ARGUMENTS

Program
   void exchange (int *, int *);     /* prototype */
   main()                                                           
   {                                                                
       int  x, y;                                                   

(Contd.)



6.18 Computer Programming

You may note the following points:

1. The function parameters are declared as pointers.

2. The dereferenced pointers are used in the function body.

3. When the function is called, the addresses are passed as actual arguments.

The use of pointers to access array elements is very common in C. We have used a pointer to traverse array 

elements in Example 6.4. We can also use this technique in designing user-defi ned functions discussed in 

Chapter 12. Let us consider the problem sorting an array of integers discussed in Example 5.6.

The function sort may be written using pointers (instead of array indexing) as shown:

void sort (int m, int *x)
{ int i j, temp;
 for (i=1; i<= m–1; i++)
  for (j=1; j<= m–1; j++)
  if (*(x+j–1) >= *(x+j))
  {
   temp = *(x+j– 1);
   *(x+j–1) = *(x+j);
   *(x+j) = temp;
   }
}

Note that we have used the pointer x (instead of array x[ ]) to receive the address of array passed and 

therefore the pointer x can be used to access the array elements (as pointed out in Section 6.10). This function 

can be used to sort an array of integers as follows:

. . . . .

int score[4] = {45, 90, 71, 83};

. . . . .

sort(4, score); /* Function call */

. . . . .

The calling function must use the following prototype declaration.

void sort (int, int *);

Fig. 6.11 Passing of pointers as function parameters

       x = 100;                                                     
       y = 200;                                                     
       printf(“Before exchange  : x = %d   y = %d\n\n”, x, y);      
       exchange(&x,&y);      /* call */                                        
       printf(“After exchange   : x = %d   y = %d\n\n”, x, y);      
   }                                                                
   exchange (int *a, int *b)
   {                                                                
       int t;                                                       
       t = *a;    /* Assign the value at address a to t */          
       *a = *b;   /* put b into a */                                
       *b = t;    /* put t into b */                                
   }                                                                
                                                                    
Output
                                                                    
   Before exchange  : x = 100   y = 200                             
   After exchange   : x = 200   y = 100  



Pointers 6.19 

This tells the compiler that the formal argument that receives the array is a pointer, not array variable.

Pointer parameters are commonly employed in string functions. Consider the function copy which copies 

one string to another.

copy(char *s1, char *s2)

{ 

 while( (*s1++ = *s2++) != ‘\0’)

 ;

}

This copies the contents of s2 into the string s1. Parameters s1 and s2 are the pointers to character strings, 

whose initial values are passed from the calling function. For example, the calling statement

copy(name1, name2);

will assign the address of the fi rst element of name1 to s1 and the address of the fi rst element of name2 

to s2.

Note that the value of *s2++ is the character that s2 pointed to before s2 was incremented. Due to the 

postfi x ++, s2 is incremented only after the current value has been fetched. Similarly, s1 is incremented only 

after the assignment has been completed.

Each character, after it has been copied, is compared with ‘\0’ and therefore copying is terminated as soon 

as the ‘\0’ is copied.

We have seen so far that a function can return a single value by its name or return multiple values through 

pointer parameters. Since pointers are a data type in C, we can also force a function to return a pointer to the 

calling function. Consider the following code:

int *larger (int *, int *);  /* prototype */

main ( )

{

  int a = 10;

  int b = 20;

  int *p;

  p = larger(&a, &b);  /Function call */

  printf (“%d”, *p);

}

int *larger (int *x, int *y)

{

  if (*x>*y)

    return (x);   / *address of a */

  else

    return (y);   /* address of b */

}

The function larger receives the addresses of the variables a and b, decides which one is larger using the 

pointers x and y and then returns the address of its location. The returned value is then assigned to the pointer 

variable  p  in the calling function. In this case, the address of  b is returned and assigned to p and therefore 

the output will be the value of b, namely, 20.

Note that the address returned must be the address of a variable in the calling function. It is an error to 

return a pointer to a local variable in the called function.

6.14 FUNCTIONS RETURNING POINTERS



6.20 Computer Programming

A function, like a variable, has a type and an address location in the memory. It is therefore, possible to 

declare a pointer to a function, which can then be used as an argument in another function. A pointer to a 

function is declared as follows:

type (*fptr) ();

This tells the compiler that fptr is a pointer to a function, which returns type value. The parentheses around 

*fptr are necessary. Remember that a statement like

type *gptr();

would declare gptr as a function returning a pointer to type.

We can make a function pointer to point to a specifi c function by simply assigning the name of the function 

to the pointer. For example, the statements

double mul(int, int);

double (*p1)();

p1 = mul;

declare p1 as a pointer to a function and mul as a function and then make p1 to point to the function mul. To 

call the function mul, we may now use the pointer p1 with the list of parameters. That is,

(*p1)(x,y) /* Function call */

is equivalent to

mul(x,y)

Note the parentheses around *p1.

EXAMPLE 6.7 Write a program that uses a function pointer as a function argument.

A program to print the function values over a given range of values is shown in Fig. 6.12. The printing is done 

by the function table by evaluating the function passed to it by the main.

With table, we declare the parameter f as a pointer to a function as follows:

double (*f)();

The value returned by the function is of type double. When table is called in the statement

table (y, 0.0, 2, 0.5);

we pass a pointer to the function y as the fi rst parameter of table. Note that y is not followed by a parameter 

list.

During the execution of table, the statement

value = (*f)(a);

calls the function y which is pointed to by f, passing it the parameter a. Thus the function y is evaluated over 

the range 0.0 to 2.0 at the intervals of 0.5.

Similarly, the call

table (cos, 0.0, PI, 0.5);

passes a pointer to cos as its fi rst parameter and therefore, the function table evaluates the value of cos over 

the range 0.0 to PI at the intervals of 0.5.

6.15 POINTERS TO FUNCTIONS



Pointers 6.21 

Program
   #include  <math.h>                                               
   #define  PI  3.1415926    
   double y(double);
   double cos(double);
   double table (double(*f)(), double, double, double);

   main()                                                           
   {   printf(“Table of y(x) = 2*x*x–x+1\n\n”);                     
       table(y, 0.0, 2.0, 0.5);                                     
       printf(“\nTable of cos(x)\n\n”);                             
       table(cos, 0.0, PI, 0.5);                                    
   }                                                                
   double table(double(*f)(),double min, double max, double step)
   {   double a, value;                                             
       for(a = min; a <= max; a += step)                            
       {                                                            
          value = (*f)(a);                                          
          printf(“%5.2f  %10.4f\n”, a, value);                      
       }                                                            
   }                                                                
   double y(double x)                                                   
   {
      return(2*x*x-x+1);                                           
   }    
 
Output  
    Table of y(x) = 2*x*x-x+1                                        
      0.00      1.0000                                                
      0.50      1.0000                                                
      1.00      2.0000                                                
      1.50      4.0000                                                
      2.00      7.0000                                                
    Table of cos(x)                                                  
      0.00      1.0000                                                
      0.50      0.8776                                                
      1.00      0.5403                                                
      1.50      0.0707                                                
      2.00     -0.4161                                                
      2.50     -0.8011                                                
      3.00     -0.9900

Fig. 6.12 Use of pointers to functions

A variable declared as a pointer is not just a pointer type variable. It is also a pointer to a specifi c fundamental data 

type, such as a character. A pointer therefore always has a type associated with it. We cannot assign a pointer of one 

type to a pointer of another type, although both of them have memory addresses as their values. This is known as incom-

patibility of pointers.

All the pointer variables store memory addresses, which are compatible, but what is not compatible is the underlying 

data type to which they point to. We cannot use the assignment operator with the pointers of different types. We can

Compatibility and Casting

(Contd.)



6.22 Computer Programming

however make explicit assignment between incompatible pointer types by using cast operator, as we do with the 

 fundamental types. Example:

int x;

char *p;

p = (char *) & x;

In such cases, we must ensure that all operations that use the pointer p must apply casting properly.

We have an exception. The exception is the void pointer (void *). The void pointer is a generic pointer that can 

 represent any pointer type. All pointer types can be assigned to a void pointer and a void pointer can be assigned to any 

pointer without casting. A void pointer is created as follows:

void *vp;

Remember that since a void pointer has no object type, it cannot be de-referenced.

We know that the name of an array stands for the address of its zeroth element. The same thing is true of 

the names of arrays of structure variables. Suppose product is an array variable of struct type. The name 

product represents the address of its zeroth element. Consider the following declaration:

struct inventory

{

 char  name[30];

 int  number;

 float  price;

} product[2], *ptr;

This statement declares product as an array of two elements, each of the type struct inventory and ptr 

as a pointer to data objects of the type struct inventory. The assignment

ptr = product;

would assign the address of the zeroth element of product to ptr. That is, the pointer ptr will now point to 

product[0]. Its members can be accessed using the following notation.

ptr –> name

ptr –> number

ptr –> price

The symbol –> is called the arrow operator (also known as member selection operator) and is made up of 

a minus sign and a greater than sign. Note that ptr–> is simply another way of writing product[0].

When the pointer ptr is incremented by one, it is made to point to the next record, i.e., product[1]. The 

following for statement will print the values of members of all the elements of product array.

for(ptr = product; ptr < product+2; ptr++)

printf (“%s %d %f\n”, ptr–>name, ptr–>number, ptr–>price);

We could also use the notation

(*ptr).number

to access the member number. The parentheses around *ptr are necessary because the member operator ‘.’ 

has a higher precedence than the operator *.

6.16 POINTERS AND  STRUCTURES



Pointers 6.23 

EXAMPLE 6.8 Write a program to illustrate the use of structure pointers.

A program to illustrate the use of a structure pointer to manipulate the elements of an array of structures is 

shown in Fig. 6.13. The program highlights all the features discussed above. Note that the pointer ptr (of type 

struct invent) is also used as the loop control index in for loops.

Program
   struct invent                                                    
   {                                                                
       char  *name[20];                                             
       int   number;                                                
       float price;                                                 
   };                                                               
   main()                                                           
   {                                                                
      struct invent product[3], *ptr;                              
      printf(“INPUT\n\n”);                                         
      for(ptr = product; ptr < product+3; ptr++)                   
        scanf(“%s %d %f”, ptr–>name, &ptr–>number, &ptr–>price);  
      printf(“\nOUTPUT\n\n”);                                      
       ptr = product;                                               
       while(ptr < product + 3)                                     
       {
           printf(“%–20s %5d %10.2f\n”,                             
                    ptr–>name,                                      
                    ptr–>number,                                    
                    ptr–>price);                                    
           ptr++;                                                   
       }                                                            
   }                                                                
                                                                    
Output                                                           
                                                                    
   INPUT   
   Washing_machine   5    7500                                           
   Electric_iron    12     350                                             
   Two_in_one        7    1250                                                
                                                                    
   OUTPUT                                                           
   Washing machine   5   7500.00                            
   Electric_iron     12  350.00                            
   Two_in_one    7   1250.00                           

Fig. 6.13 Pointer to structure variables

While using structure pointers, we should take care of the precedence of operators.

The operators ‘–>’ and ‘.’, and () and [] enjoy the highest priority among the operators. They bind very 

tightly with their operands. For example, given the defi nition

struct
{
  int count;
  float *p;  /* pointer inside the struct */
}  ptr;    /* struct type pointer */



6.24 Computer Programming

then the statement

++ptr–>count;

increments count, not ptr. However,

(++ptr)–>count;

increments  ptr fi rst, and then links count. The statement

ptr++ –> count;

is legal and increments ptr after accessing count.

The following statements also behave in the similar fashion.

 *ptr–>p Fetches whatever p points to.

 *ptr–>p++ Increments p after accessing whatever it points to.

 (*ptr–>p)++ Increments whatever p points to.

 *ptr++–>p Increments ptr after accessing whatever it points to.

In the previous chapter, we discussed about passing of a structure as an argument to a function. We also 

saw an example where a function receives a copy of an entire structure and returns it after working on it. 

As we mentioned earlier, this method is ineffi cient in terms of both, the execution speed and memory. We can 

overcome this drawback by passing a pointer to the structure and then using this pointer to work on the 

 structure members. Consider the following function:

print_invent(struct invent *item)

 {

   printf(“Name: %s\n”, item->name);

   printf(“Price: %f\n”, item->price);

 }

This function can be called by

print_invent(&product);

The formal argument item receives the address of the structure product and therefore it must be declared 

as a pointer of type struct invent, which represents the structure of product.

Pointer to Pointer

Pointer to Pointer Stores the address of the Pointer Variable. Pointer Stores the address of the Variable. 

Double (**)  is used to denote the double Pointer.  The ANSI C standard supports 12 levels of indirection. But 

two levels of indirection are common. The number of indirection operators required to completely deref-

erence a pointer is equal to the number of * used while declaring it.

3000

4000 5000

45

3000

num ptr ptr2ptr

4000

#include<stdio.h>

int main()



Pointers 6.25 

{
int num = 45 , *ptr , **ptr2ptr ;
ptr     = &num;
ptr2ptr = &ptr;

printf(“%d”,**ptr2ptr);

return(0);
}
Output is 45

Most often we face situations in programming where the data is dynamic in nature. That is, the number of 

data items keep changing during execution of the program. For example, consider a program for processing 

the list of customers of a corporation. The list grows when names are added and shrinks when names are 

deleted. When list grows we need to allocate more memory space to the list to accommodate additional data 

items. Such situations can be handled more easily and effectively by using what is known as dynamic data 

structures in conjunction with dynamic memory management techniques.

Dynamic data structures provide fl exibility in adding, deleting or rearranging data items at run time. 

Dynamic memory management techniques permit us to allocate additional memory space or to release 

unwanted space at run time, thus, optimizing the use of storage space. This chapter discusses the concept of 

linked lists, one of the basic types of dynamic data structures. Before we take up linked lists, we shall briefl y 

introduce the dynamic storage management functions that are available in C. These functions would be 

extensively used in processing linked lists. 

C language requires the number of elements in an array to be specifi ed at compile time. But we may not be 

able to do so always. Our initial judgement of size, if it is wrong, may cause failure of the program or wastage 

of memory space. 

Many languages permit a programmer to specify an array’s size at run time. Such languages have the 

 ability to calculate and assign, during execution, the memory space required by the variables in a program. 

The process of allocating memory at run time is known as dynamic memory allocation. Although C does not 

inherently have this facility, there are four library routines known 

as “memory management functions” that can be used for allocat-

ing and freeing memory during program execution. They are 

listed in Table 6.1. These functions help us build complex appli-

cation programs that use the available memory intelligently. 

Memory Allocation Process

Before we discuss these functions, let us look at the memory allo-

cation process associated with a C program. Figure 6.14 shows 

the conceptual view of storage of a C program in memory. 

6.17 INTRODUCTION

6.18 DYNAMIC MEMORY ALLOCATION

Fig. 6.14 Storage of a C program



6.26 Computer Programming

Table 6.1 Memory Allocation Functions

Function Task

malloc Allocates request size of bytes and returns a pointer to the fi rst byte of the allocated space. 

calloc Allocates space for an array of elements, initializes them to zero and then returns a pointer to the 

memory. 

free Frees previously allocated space. 

realloc Modifi es the size of previously allocated space.

The program instructions and global and static variables are stored in a region known as permanent  storage 

area and the local variables are stored in another area called stack. The memory space that is located between 

these two regions is available for dynamic allocation during execution of the program. This free memory 

region is called the heap. The size of the heap keeps changing when program is executed due to creation and 

death of variables that are local to functions and blocks. Therefore, it is possible to encounter memory “over-

fl ow” during dynamic allocation process. In such situations, the memory allocation functions mentioned 

above return a NULL pointer (when they fail to locate enough memory requested).

A block of memory may be allocated using the function malloc. The malloc function reserves a block of 

memory of specifi ed size and returns a pointer of type void. This means that we can assign it to any type of 

pointer. It takes the following form:

ptr = (cast-type *) malloc(byte-size);

ptr is a pointer of type cast-type. The malloc returns a pointer (of cast-type) to an area of memory with size 

byte-size.

Example:

x = (int *) malloc (100 *sizeof(int));

On successful execution of this statement, a memory space equivalent to “100 times the size of an int” 

bytes is reserved and the address of the fi rst byte of the memory allocated is assigned to the pointer x of type 

of int.

Similarly, the statement

cptr = (char*) malloc(10);

allocates 10 bytes of space for the pointer cptr of type char. This is illustrated as:

Note that the storage space allocated dynamically has no name and therefore its contents can be accessed 

only through a pointer.

6.19 ALLOCATING A BLOCK OF MEMORY: MALLOC



Pointers 6.27 

We may also use malloc to allocate space for complex data types such as structures.

Example:

st_var = (struct store *)malloc(sizeof(struct store));

where, st_var is a pointer of type struct store

Remember, the malloc allocates a block of contiguous bytes. The allocation can fail if the space in the 

heap is not suffi cient to satisfy the request. If it fails, it returns a NULL. We should therefore check whether 

the allocation is successful before using the memory pointer. This is illustrated in the program in Fig. 6.14. 

EXAMPLE 6.9 Write a program that uses a table of integers whose size will be specifi ed interactively 

at run time.

The program is given in Fig. 6.14. It tests for availability of memory space of required size. If it is 

 available, then the required space is allocated and the address of the fi rst byte of the space allocated is 

 displayed. The program also illustrates the use of pointer variable for storing and accessing the table values.

Program

#include <stdio.h> 
#include <stdlib.h> 
#define NULL 0 

main() 
{
 int *p, *table; 
 int size; 
 printf(“\nWhat is the size of table?”); 
 scanf(“%d”,size); 
 printf(“\n”) 
  /*------------Memory allocation -------------- */ 
 if((table = (int*)malloc(size *sizeof(int))) == NULL) 
  { 
   printf(“No space available \n”); 
   exit(1); 
  } 
 printf(“\n Address of the first byte is %u\n”, table);
 /* Reading table values*/ 
 printf(“\nInput table values\n”); 

 for (p=table; p<table + size; p++) 
  scanf(“%d”,p); 
 /* Printing table values in reverse order*/ 
 for (p = table + size -1; p >= table; p --) 
  printf(“%d is stored at address %u \n”,*p,p); 
} 

Output

What is the size of the table? 5
Address of the first byte is 2262
Input table values

(Contd.)



6.28 Computer Programming

calloc is another memory allocation function that is normally used for requesting memory space at run time 

for storing derived data types such as arrays and structures. While malloc allocates a single block of storage 

space, calloc allocates multiple blocks of storage, each of the same size, and then sets all bytes to zero. The 

general form of calloc is:

ptr = (cast-type *) calloc (n. elem-size);

The above statement allocates contiguous space for n blocks, each of size elem-size bytes. All bytes are 

initialized to zero and a pointer to the fi rst byte of the allocated region is returned. If there is not enough space, 

a NULL pointer is returned.

The following segment of a program allocates space for a structure variable:

. . . . 

. . . . 
struct student 
{ 
 char name[25]; 
 float age; 
 long int id_num; 
}; 
typedef struct student record; 
record *st ptr; 
int class_size = 30; 

st_ptr=(record *)calloc(class_size, sizeof(record));
. . . .
. . . .

record is of type struct student having three members: name, age and id_num. The calloc allocates mem-

ory to hold data for 30 such records. We must be sure that the requested memory has been allocated success-

fully before using the st-ptr. This may be done as follows:

if(st_ptr == NULL) 
{ 
 printf(“Available memory not sufficient”);
 exit(l);
}

Compile-time storage of a variable is allocated and released by the system in accordance with its storage 

class. With the dynamic run-time allocation, it is our responsibility to release the space when it is not required. 

The release of storage space becomes important when the storage is limited.

6.20 ALLOCATING MULTIPLE BLOCKS OF MEMORY: CALLOC

6.21 RELEASING THE USED SPACE: FREE

11 12 13 14 15 15
15 is stored at address 2270
14 is stored at address 2268
13 is stored at address 2266
12 is stored at address 2264
11 is stored at address 2262

Fig. 6.15 Memory allocation with malloc



Pointers 6.29 

When we no longer need the data we stored in a block of memory, and we do not intend to use that block 

for storing any other information, we may release that block of memory for future use, using the free 

function:

free (ptr);

ptr is a pointer to a memory block, which has already been created by malloc or calloc. Use of an invalid 

pointer in the call may create problems and cause system crash. We should remember two things here: 

1. It is not the pointer that is being released but rather what it points to. 

2. To release an array of memory that was allocated by calloc we need only to release the pointer once. 

It is an error to attempt to release elements individually.

What is a command line argument? It is a parameter supplied to a program when the program is invoked. This 

parameter may represent a fi lename the program should process. For example, if we want to execute a 

 program to copy the contents of a fi le named X_FILE to another one named Y_FILE, then we may use a 

command line like

C > PROGRAM X_FILE Y_FILE

where PROGRAM is the fi lename where the executable code of the program is stored. This eliminates the 

need for the program to request the user to enter the fi lenames during execution. How do these parameters get 

into the program?

We know that every C program should have one main function and that it marks the beginning of the 

program. But what we have not mentioned so far is that it can also take arguments like other functions. In fact 

main can take two arguments called argc and argv and the information contained in the command line is 

passed on to the program through these arguments, when main is called up by the system.

The variable  argc is an argument counter that counts the number of arguments on the command line. The 

 argv is an argument vector and represents an array of character pointers that point to the command line argu-

ments. The size of this array will be equal to the value of argc. For instance, for the command line given 

above, argc is three and argv is an array of three pointers to strings as shown below:

argv[0] –> PROGRAM

argv[1] –> X_FILE

argv[2] –> Y_FILE

In order to access the command line arguments, we must declare the main function and its parameters as 

follows:
 main(int arge, char *argv[])

 {

   .....

   .....

 }

The fi rst parameter in the command line is always the program name and therefore argv[0] always 

 represents the program name.

EXAMPLE 6.10 Write a program that will receive a fi lename and a line of text as command line 

arguments and write the text to the fi le.

6.22 COMMAND LINE ARGUMENTS



6.30 Computer Programming

Figure 6.16 shows the use of command line arguments. The command line is

F14_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG

Each word in the command line is an argument to the main and therefore the total number of arguments 

is 9.

The argument vector argv[1] points to the string TEXT and therefore the statement

fp = fopen(argv[1], “w”);

opens a fi le with the name TEXT. The for loop that follows immediately writes the remaining 7 arguments to 

the fi le TEXT.

Program
   #include  <stdio.h>                                              
                                                                    
   main(int arge, char *argv[])                                                 
   {                                                                
       FILE   *fp;                                                  
       int  i;                                                      
       char word[15];                                               
                                                                    
       fp = fopen(argv[1], “w”); /* open file with name argv[1] */  
       printf(“\nNo. of arguments in Command line = %d\n\n”,argc); 
       for(i = 2; i < argc; i++)                                    
          fprintf(fp,”%s “, argv[i]); /* write to file argv[1]  */  
       fclose(fp);                                                  
                                                                    
   /*  Writing content of the file to screen                    */  
                                                                    
       printf(“Contents of %s file\n\n”, argv[1]);                  
       fp = fopen(argv[1], “r”);                                    
       for(i = 2; i < argc; i++)                                    
       {
          fscanf(fp,”%s”, word);                                    
          printf(“%s “, word);                                      
       } 
                                                           
       fclose(fp);                                                  
       printf(“\n\n”);                                              
                                                                    
   /*  Writing the arguments from memory */  
                                                                    
       for(i = 0; i < argc; i++)                                    
          printf(“%*s \n”, i*5,argv[i]);                            
   }                                                                
                                                                    
Output                                                           
                                                                    
   C>F14_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGG    
                                                                    
   No. of arguments in Command line = 9                             

   Contents of TEXT file                                            
                                                                    

(Contd.)



Pointers 6.31 

Only an address of a variable can be stored in • 

a pointer variable.

Do not store the address of a variable of one • 

type into a pointer variable of another type.

The value of a variable cannot be assigned to • 

a pointer variable.

A pointer variable contains garbage until it is • 

initialized. Therefore we must not use a 

pointer variable before it is assigned, the 

address of a variable.

Remember that the defi nition for a pointer • 

variable allocates memory only for the pointer 

variable, not for the variable to which it is 

pointing.

If we want a called function to change the • 

value of a variable in the calling function, we 

must pass the address of that variable to the 

called function.

When we pass a parameter by address, the • 

corresponding formal parameter must be a 

pointer variable.

It is an error to assign a numeric constant to a • 

pointer variable.

It is an error to assign the address of a variable • 

to a variable of any basic data types.

It is an error to assign a pointer of one type to • 

a pointer of another type without a cast (with 

an exception of void pointer).

A proper understanding of a precedence and • 

associativity rules is very important in pointer 

applications. For example, expressions like 

*p++, *p[ ], ( *p)[ ], (p).member should be 

carefully used.

When an array is passed as an argument to a • 

function, a pointer is actually passed. In the 

header function, we must declare such arrays 

with proper size, except the fi rst, which is 

optional.

A very common error is to use (or not to use) • 

the address operator (&) and the indirection 

operator (*) in certain places. Be careful. The 

compiler may not warn such mistakes.

Pointers should be used very carefully as they • 

involve direct memory access. 

A pointer-to-a-pointer reference should be • 

used carefully as it involves usage of two 

indirection operators which could be 

confusing. 

A pointer variable can be assigned value of • 

another pointer variable.  

A pointer variable can be initialized with a • 

NULL value. 

You can defi ne a pointer to a function that • 

can be used as an argument in another 

function. 

Use the • sizeof operator to determine the size 

of a linked list. 

When using memory allocation functions • 

malloc and calloc, test for a NULL pointer 

return value. Print appropriate message if the 

memory allocation fails.

Never call memory allocation functions with • 

a zero size.

Release the dynamically allocated memory • 

when it is no longer required to avoid any 

possible “memory leak”. 

Just Remember

Fig. 6.16 Use of command line arguments

   AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG                 
                                                                    
   C:\C\F12_7.EXE                                                   
    TEXT                                                            
       AAAAAA                                                       
            BBBBBB                                                  
                 CCCCCC                                             
                      DDDDDD                                        
                           EEEEEE                                   
                                FFFFFF                              
                                     GGGGGG



6.32 Computer Programming

Using a pointer after its memory has been • 

released is an error. 

It is an error to assign the return value from • 

malloc or calloc to anything other than a 

pointer. 

It is a logic error to set a pointer to NULL • 

before the node has been released. The node 

is irretrievably lost. 

It is an error to declare a self-referential • 

structure without a structure tag. 

It is an error to release individually the • 

elements of an array created with calloc. 

It is a logic error to fail to set the link fi led in • 

the last node to null.

Multiple Choice Questions

 1. Pointer is an example of which of the following 

type?

(a) Derived type

(b) Fundamental type

(c) User-defi ned type

(d) None of the above

 2. An integer pointer:

(a) Points to an another integer value

(b) Points to the address of another integer 

value.

(c) Points to itself

(d) None of the above

 3. In the expression *ptr=&a, what does & signify

(a) Address of a (b) Address of ptr

(c) Value of a (d) None of the above

 4. Which of the following expressions in C 

is used for accessing the address of a 

variable var?

(a) &var (b) *var

(c) &(*var) (d) *(&var)

 5. Which of the following is a syntactically 

correct pointer declaration?

(a) fl oat *x;

(b) fl oat* x;

(c) fl oat * x;

(d) All of the above are correct

 6. Which of the following expressions will give 

the value stored in variable x?

(a) x (b) *x

(c) *&x (d) &x

 7. If a1=&x and a2 =&a1, what will be the output 

generated by the expression **a2?

(a) Address of a2

(b) Address of a1

(c) Value of x

(d) Address of x                   

 8. If a1 =2 and a2 =&a1 then what does a2++ depict 

(consider the address value of a1 to be 3802)

(a) 3 (b) 3803

(c) 3804 (d) 3802

 9. What will be the expression for obtaining the 

address of the ith element of an array A?

(a) A[i] (b) &A[i]

(c) *A[i] (d) A[&i]

 10. What is the size of an integer & fl oat pointer?

(a) 2 & 4 (b) 4 & 4

(c) 2 & 2 (d) 1 &1

 11. Linked list uses  type of memory allocation

(a) static (b) random

(c) dynamic (d) compile time

 12. The number of extra pointers required to 

reverse a singly linked list is 

(a) 1 (b) 2

(c) 3 (d) 4

 13. The number of extra pointers required to 

reverse a double linked list is  

(a) 1 (b) 2

(c) 3 (d) 4

 14. The functions used for memory allocation are 

(a) malloc (b) calloc

(c) a and b (d) none of the above

 15. Linked lists use ______ type of structures.

(a) nested  (b) self-referential 

(c) simple  (d) unions

 16. ______ cannot be used to represent linked lists.

(a) arrays (b) structures



Pointers 6.33 

(c) unions (d) all the above

 17. calloc(m,n) is equivalent to 

(a) malloc(m*n,0)

(b) memset(0,m*n)

(c) ptr=malloc(m*n)

(d) malloc(m/n)

Case Study

1. Processing of Examination Marks

Marks obtained by a batch of students in the Annual Examination are tabulated as follows:

 Student name Marks obtained

 S. Laxmi 45 67 38 55

 V.S. Rao 77 89 56 69

 -  - - - -

It is required to compute the total marks obtained by each student and print the rank list based on the total 

marks.

The program in Fig. 6.15 stores the student names in the array name and the marks in the array marks. 

After computing the total marks obtained by all the students, the program prepares and prints the rank list. 

The declaration

int marks[STUDENTS][SUBJECTS+1];

defi nes marks as a pointer to the array’s fi rst row. We use rowptr as the pointer to the row of marks. The 

rowptr is initialized as follows:

int (*rowptr)[SUBJECTS+1] = array;

Note that array is the formal argument whose values are replaced by the values of the actual argument 

marks. The parentheses around *rowptr makes the rowptr as a pointer to an array of SUBJECTS+1 

 integers. Remember, the statement

int *rowptr[SUBJECTS+1];

would declare rowptr as an array of SUBJECTS+1 elements.

When we increment the rowptr (by rowptr+1), the incrementing is done in units of the size of each row 

of array, making rowptr point to the next row. Since rowptr points to a particular row, (*rowptr)[x] points 

to the xth element in the row.

Program
  #define  STUDENTS  5                                             
  #define  SUBJECTS  4                                             
  #include <string.h>                                              
                                                                    
  main()                                                           
  {                                                                
    char name[STUDENTS][20];                                     
    int  marks[STUDENTS][SUBJECTS+1];                    
                                                                    
    printf(“Input students names & their marks in four subjects\n”);
    get_list(name, marks, STUDENTS, SUBJECTS);                   

(Contd.)



6.34 Computer Programming

(Contd.)

    get_sum(marks, STUDENTS, SUBJECTS+1);                        
    printf(“\n”);                                                
    print_list(name,marks,STUDENTS,SUBJECTS+1);                  
    get_rank_list(name, marks, STUDENTS, SUBJECTS+1);            
    printf(“\nRanked List\n\n”);                                 
    print_list(name,marks,STUDENTS,SUBJECTS+1);  
   }                                                                
 /*   Input student name and marks        */                      
   get_list(char *string[ ],                                   
            int array [ ] [SUBJECTS +1], int m, int n)                                       
   {
       int   i, j, (*rowptr)[SUBJECTS+1] = array;                   
       for(i = 0; i < m; i++)                                       
       {                                                            
          scanf(“%s”, string[i]);                                   
          for(j = 0; j < SUBJECTS; j++)                             
             scanf(“%d”, &(*(rowptr + i))[j]);                      
       }                                                            
   }
   /*    Compute total marks obtained by each student   */          
   get_sum(int array [ ] [SUBJECTS +1], int m, int n)             
   {                                                                
       int   i, j, (*rowptr)[SUBJECTS+1] = array;                   
       for(i = 0; i < m; i++)                                       
       {
          (*(rowptr + i))[n-1] = 0;                                 
          for(j =0; j < n-1; j++)                                   
             (*(rowptr + i))[n-1] += (*(rowptr + i))[j];            
       }                                                            
   }                                                                
                                                                    
   /*    Prepare rank list based on total marks      */             
                                                                    
   get_rank_list(char *string [ ],                                  
                 int array [ ] [SUBJECTS + 1]                      
                 int m,                                           
                 int n)                                    
   {                                                                
     int i, j, k, (*rowptr)[SUBJECTS+1] = array;                  
     char *temp;                                                  
                                                                    
     for(i = 1; i <= m–1; i++)                                    
        for(j = 1; j <= m–i; j++)                                 
           if( (*(rowptr + j–1))[n–1] < (*(rowptr + j))[n–1])     
           {                                                      
            swap_string(string[j-1], string[j]);                 
                                                                    
            for(k = 0; k < n; k++)                               
            swap_int(&(*(rowptr + j–1))[k],&(*(rowptr+j))[k]); 
             }
   }                                                                
   /*      Print out the ranked list            */                  



Pointers 6.35 

(Contd.)

   print_list(char *string[ ],                                   
              int array [] [SUBJECTS + 1],                       
              int m,                                               
              int n)                                       
   {                                                                
       int  i, j, (*rowptr)[SUBJECTS+1] = array;                    
       for(i = 0; i < m; i++)                                       
       {                                                            
          printf(“%–20s”, string[i]);                               
          for(j = 0; j < n; j++)                                    
             printf(“%5d”, (*(rowptr + i))[j]);                     
             printf(“\n”);                                          
       }                                                            
   }                                                                
   /*     Exchange of integer values              */                
   swap_int(int *p, int *q)                                 
   {                                                                
       int  temp;                                                   
       temp = *p;                                                   
       *p   = *q;                                                   
       *q   = temp;                                                 
   }    

   /*     Exchange of strings         */                            
   swap_string(char s1[ ], char s2[ ])                     
   {                                                                
       char  swaparea[256];                                         
       int   i;                                                     
       for(i = 0; i < 256; i++)                                     
          swaparea[i] = ‘\0’;                                       
       i = 0;                                                       
       while(s1[i] != ‘\0’ && i < 256)                              
       {                                                            
          swaparea[i] = s1[i];                                      
          i++;                                                      

       }                                                            

       i = 0;                                                       

       while(s2[i] != ‘\0’ && i < 256)                              

       {                                                            

          s1[i] = s2[i];                                            

          s1[++i] = ‘\0’;                                           

       }                                                            

       i = 0;                                                       

       while(swaparea[i] != ‘\0’)                                   

       {                                                            

          s2[i] = swaparea[i];                                      

          s2[++i] = ‘\0’;                                           

       }                                                            

   }                                                                

                                                                    



6.36 Computer Programming

2. Inventory Updating

The price and quantity of items stocked in a store changes every day. They may either increase or decrease. 

The program in Fig. 6.17 reads the incremental values of price and quantity and computes the total value of 

the items in stock.

The program illustrates the use of structure pointers as function parameters.  &item, the address of the 

structure item, is passed to the functions update() and mul(). The formal arguments product and stock, 

which receive the value of &item, are declared as pointers of type struct stores.

Program

   struct stores                                                    

   {                                                                

        char  name[20];                                             

        float price;                                                

        int   quantity;                                             

   };                                                               

   main()                                                           

   {                                                                

        void update(struct stores *, float, int);                                              

        float         p_increment, value;                    

        int           q_increment;                                  

                                                                    

(Contd.)

Output                                                           

                                                                    

   Input students names & their marks in four subjects              

   S.Laxmi 45 67 38 55                                              

   V.S.Rao 77 89 56 69                                              

   A.Gupta 66 78 98 45                                              

   S.Mani 86 72 0 25                                                

   R.Daniel 44 55 66 77                                             

   S.Laxmi                45   67   38   55  205                    

   V.S.Rao                77   89   56   69  291                    

   A.Gupta                66   78   98   45  287                    

   S.Mani                 86   72    0   25  183                    

   R.Daniel               44   55   66   77  242                    

                                                                    

   Ranked List                                                      

   V.S.Rao                77   89   56   69  291                    

   A.Gupta                66   78   98   45  287                    

   R.Daniel               44   55   66   77  242                    

   S.Laxmi                45   67   38   55  205                    

   S.Mani                 86   72    0   25  183

Fig. 6.17 Preparation of the rank list of a class of students



Pointers 6.37 

        struct stores item = {“XYZ”, 25.75, 12};             

        struct stores *ptr = &item;                                 

                                                                    

        printf(“\nInput increment values:”);                        

        printf(“ price increment and quantity increment\n”);        

        scanf(“%f %d”, &p_increment, &q_increment);                 

                                                                    

   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - */      

        update(&item, p_increment, q_increment);                    

   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - */      

        printf(“Updated values of item\n\n”);                       

        printf(“Name      : %s\n”,ptr–>name);                       

        printf(“Price     : %f\n”,ptr–>price);                      

        printf(“Quantity  : %d\n”,ptr–>quantity);                   

                                                                    

   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - */      

        value  = mul(&item);                                        

   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - */      

        printf(“\nValue of the item  =  %f\n”, value);              

   }

   void update(struct stores *product, float p, int q)                                       

   {                                                                

        product–>price += p;                                        

        product–>quantity += q;                                     

   }                                                                

   float mul(struct stores *stock)                    

   {                                                                

        return(stock–>price * stock–>quantity);                     

   }                                                                

                                                                    

Output                                                           

   Input increment values: price increment and quantity increment   

   10 12                                                            

   Updated values of item                                           

                                                                    

   Name      : XYZ                                                  

   Price     : 35.750000                                            

   Quantity  : 24                                                   

                                                                    

   Value of the item  =  858.000000                                

Fig. 6.18 Use of structure pointers as function parameters



6.38 Computer Programming

Review Questions

 6.1 State whether the following statements are 

true or false.

 (a) Pointer constants are the addresses of 

memory locations.

 (b) Pointer variables are declared using the 

address operator.

 (c) The underlying type of a pointer variable 

is void.

 (d) Pointers to pointers is a term used to 

describe pointers whose contents are the 

address of another pointer.

 (e) It is possible to cast a pointer to fl oat as a 

pointer to integer.

 (f) An integer can be added to a pointer.

 (g) A pointer can never be subtracted from 

another pointer.

 (h) When an array is passed as an argument 

to a function, a pointer is passed.

 (i) Pointers cannot be used as formal param-

eters in headers to function defi nitions.

 (j) Value of a local variable in a function can 

be changed by another function.

 6.2 Fill in the blanks in the following statements:

 (a) A pointer variable contains as its value 

the __________ of another variable.

 (b) The __________ operator is used with 

a pointer to de-reference the address 

contained in the pointer.

 (c) The __________ operator returns the 

value of the variable to which its operand 

points.

 (d) The only integer that can be assigned to a 

pointer variable is __________.

 (e) The pointer that is declared as 

__________ cannot be de-referenced.

 6.3 What is a pointer?

 6.4 How is a pointer initialized?

 6.5 Explain the effects of the following 

statements:

 (a) int a, *b = &a;

 (b) int p, *p;

 (c) char *s;

 (d) a = (fl oat *) &x);

 (e) double(*f)();

 6.6 If m and n have been declared as integers 

and p1 and p2 as pointers to integers, then state 

errors, if any, in the following statements.

 (a) p1 = &m;

 (b) p2 = n;

 (c) *p1 = &n;

 (d) p2 = &*&m;

 (e) m = p2–p1;

 (f) p1 = &p2;

 (g) m = *p1 + *p2++;

 6.7 Distinguish between (*m)[5] and *m[5].

 6.8 Find the error, if any, in each of the following 

statements:

 (a) int x = 10;

 (b) int *y = 10;

 (c) int a, *b = &a;

 (d) int m;

  int **x = &m;

 6.9 Given the following declarations:

  int x = 10, y = 10;

  int *p1 = &x, *p2 = &y;

  What is the value of each of the following 

expressions?

 (a) (*p1) ++

 (b) –– (*p2)

 (c) *p1 + (*p2) ––

 (d) + + (*p2) – *p1

 6.10 Describe typical applications of pointers in 

developing programs.

 6.11 What are the arithmetic operators that are 

permitted on pointers?

 6.12 What is printed by the following program?

  int m = 100’;

  int * p1 = &m;

  int **p2 = &p1;

  printf(“%d”, **p2);

 6.13 What is wrong with the following code?

  int **p1, *p2;

  p2 = &p1;

 6.14 Assuming name as an array of 15 character 

length, what is the difference between the 

following two expressions?

 (a) name + 10; and

 (b) *(name + 10).



Pointers 6.39 

 6.15 What is the output of the following segment?

  int m[2];

  *(m+1) = 100;

  *m = *(m+1);

  printf(“%d”, m [0]);

6.16 What is the output of the following code?

  int m [2];

  int *p = m;

  m [0] = 100 ;

  m [1] = 200 ;

  printf(“%d %d”, ++*p, *p);

6.17 What is the output of the following program?
 int f(char *p);
 main ( )
 {
    char str[ ] = “ANSI”;
    printf(“%d”, f(str) );
 }
 int f(char *p)
 {
    char *q = p;
    while (*++p)
        ;
    return (p-q);
 }

6.18 Given below are two different defi nitions of 

the function search( )

 (a) void search (int* m[ ], int x)

  {

  }

 (b) void search (int ** m, int x)

  {

  }

  Are they equivalent? Explain.

 6.19 Do the declarations
 char s [ 5 ] ;

 char *s;

 represent the same? Explain.

 6.20 Which one of the following is the correct way 

of declaring a pointer to a function? Why?

 (a) int ( *p) (void) ;

 (b) int *p (void);

 6.21 State whether the following statements are 

true or false. 

 (a) Dynamically allocated memory can only 

be accessed using pointers. 

 (b) calloc is used to change the memory 

allocation previously allocated with 

malloc 

 (c) Only one call to free is necessary to release 

an entire array allocated with calloc 

 (d) Memory should be freed when it is no 

longer required. 

 (e) To ensure that it is released, allocated 

memory should be freed before the 

program ends. 

 (f) The link fi eld in a linked list always 

points to successor. 

 (g) The fi rst step in a adding a node to a 

linked list is to allocate memory for the 

next node. 

 6.22 Fill in the blanks in the following statements. 

 (a) Function ________ is used to 

dynamically allocate memory to arrays. 

 (b) A ________ is an ordered collection of 

data in which each element contains the 

location of the next element. 

 (c) Data structures which contain a member 

fi eld that points to the same structure type 

are called ________ structures. 

 (d) A ________ identifi es the last logical 

node in a linked list. 

 (e) Stacks are referred to as ________

 6.23 What is a linked list? How is it represented? 

 6.24 What is dynamic memory allocation? How 

does it help in building complex programs? 

 6.25 What is the principal difference between the 

functions malloc and calloc 

 6.26 Find errors, if any, in the following memory 

management statements:

 (a) *ptr = (int *)malloc(m, sizeof(int)); 

 (b) table = (float *)calloc(100); 

 (c) node = free(ptr); 

6.27 Why a linked list is called a dynamic data 

structure? What are the advantages of using 

linked lists over arrays? 

6.28 Describe different types of linked lists. 

6.29 Identify errors, if any, in the following 

structure defi nition statements: 
 struct 

 { 



6.40 Computer Programming

   char name[30] 

   struct *next; 

 };

 typedef struct node;

6.30 The following code is defi ned in a header fi le 

list.h 
 typedef struct 

 { 

   char name[15]; 

   int age; 

   float weight; 

 }DATA; 

 struct linked_list 

 { 

   DATA person; 

   Struct linked_list *next; 

 };

 typedef struct linked_list NODE; 

 typedef NODE *NDPTR;

  Explain how could we use this header fi le for 

writing programs. 

6.31 What does the following code achieve?
 int * p ; 

 p = malloc (sizeof (int) ) ; 

 6.32 What does the following code do? 
 float *p; 

 p = calloc (10,sizeof(float) ) ; 

 6.33 What is the output of the following code? 
 int i, *ip ; 

 ip = calloc ( 4, sizeof(int) ); 

 for (i = 0 ; i < 4 ; i++) 

      * ip++ = i * i; 

 for (i = 0 ; i < 4 ; i++) 

      printf(“%d\n”, *-ip ); 

6.34 What is printed by the following code? 
 int *p; 

  p = malloc (sizeof (int) ); 

 *p = 100 ; 

  p = malloc (sizeof (int) ); 

 *p = 111;

  printf(“%d”, *p);

 6.35 What is the output of the following segment? 
 struct node 

 { 

    int m ; 

    struct node *next; 

 } x, y, z, *p; 

   x.m = 10 ; 

   y.m = 20 ; 

   z.m = 30 ;

   x.next = &y; 

   y.next = &z; 

   z.next = NULL; 

   p = x.next; 

   while (p != NULL) 

 { 

    printf(“%d\n”, p -> m); 

    p = p -> next;

 }

Programming Exercises

 6.1 Write a program using pointers to read in 

an array of integers and print its elements in 

reverse order.

 6.2 We know that the roots of a quadratic 

equation of the form

ax2 + bx + c = 0

  are given by the following equations:

x
b square-root (b 4ac)

a

x
b square-root (b 4ac)

a

1

2

2

2

2

2

=

−b

=

−b

  Write a function to calculate the roots. The 

function must use two pointer parameters, one 

to receive the coeffi cients a, b, and c, and the 

other to send the roots to the calling function.

 6.3 Write a function that receives a sorted array of 

integers and an integer value, and inserts the 

value in its correct place.

 6.4 Write a function using pointers to add two 

matrices and to return the resultant matrix to 

the calling function.

 6.5 Using pointers, write a function that receives 

a character string and a character as argument 

and deletes all occurrences of this character 

in the string. The function should return the 

corrected string with no holes.

 6.6 Write a function day_name that receives 

a number n and returns a pointer to a 



Pointers 6.41 

character string containing the name of the 

corresponding day. The day names should be 

kept in a  static table of character strings local 

to the function.

 6.7 Write a program to read in an array of 

names and to sort them in alphabetical 

order. Use  sort function that receives pointers 

to the functions strcmp and swap.sort in turn 

should call these functions via the pointers.

 6.8 Given an array of sorted list of integer 

numbers, write a function to search for a 

particular item, using the method of binary 

search. And also show how this function 

may be used in a program. Use pointers and 

pointer arithmetic.

  (Hint: In binary search, the target value is 

compared with the array’s middle element. 

Since the table is sorted, if the required value 

is smaller, we know that all values greater 

than the middle element can be ignored. 

That is, in one attempt, we eliminate one half 

the list. This search can be applied recursively 

till the target value is found.)

 6.9 Write a function (using a pointer parameter) 

that reverses the elements of a given array.

 6.10 Write a function (using pointer parameters) 

that compares two integer arrays to see 

whether they are identical. The function 

returns 1 if they are identical, 0 otherwise.

 6.11 Write a menu driven program to create a 

linked list of a class of students and perform 

the following operations: 

 (a) Write out the contents of the list. 

 (b) Edit the details of a specifi ed student. 

 (c) Count the number of students above a 

specifi ed age and weight. 

  Make use of the header fi le defi ned in Review 

Question 6.30. 

6.12 Write recursive and non-recursive functions 

for reversing the elements in a linear list. 

Compare the relative effi ciencies of them. 

6.13 Write an interactive program to create linear 

linked lists of customer names and their tele-

phone numbers. The program should be menu 

driven and include features for adding a new 

customer and deleting an existing customer. 

6.14 Modify the above program so that the list is 

always maintained in the alphabetical order of 

customer names. 

6.15 Develop a program to combine two sorted 

lists to produce a third sorted lists which 

contains one occurrence of each of the 

elements in the original lists. 

6.16 Write a program to create a circular linked 

list so that the input order of data items 

maintained. Add function to carry out the 

following operations on circular linked list.

 (a) Count the number of nodes 

 (b) Write out contents 

 (c) Locate and write the contents of a given 

node 

6.17 Write a program to construct an ordered 

doubly linked list and write out the contents 

of a specifi ed node. 

6.18 Write a function that would traverse a linear 

singly linked list in reverse and write out the 

contents in reverse order. 

6.19 Given two ordered singly linked lists, write 

a function that will merge them into a third 

ordered list. 

6.20 Write a function that takes a pointer to the 

fi rst node in a linked list as a parameter and 

returns a pointer to the last node. NULL 

should be returned if the list is empty. 

6.21 Write a function that counts and returns the 

total number of nodes in a linked list. 

6.22 Write a function that takes a specifi ed node of 

a linked list and makes it as its last node. 

6.23 Write a function that computers and returns 

the length of a circular list. 

6.24 Write functions to implement the following 

tasks for a doubly linked list. 

 (a) To insert a node. 

 (b) To delete a node. 

 (c) To fi nd a specifi ed node.



6.42 Computer Programming

Key Terms

Pointer:•  It is a derived data type that contains 

memory address as its value.

Memory:•  It is a sequential collection of 

storage cells.

Pointer variables: • These variables hold 

memory addresses and are stored in the 

memory.

Call by reference:•  It is the process of calling 

a function using pointers to pass the address 

of the variables.

Call by value: • It is the process of passing the 

actual value of variables.

Command line argument• : It is a parameter 

supplied to a program when the program is 

invoked.



 7 Structure and Union Types

U N I T

We have seen that arrays can be used to represent a group of data items that belong to the same type, such as 

int or fl oat. However, we cannot use an array if we want to represent a collection of data items of different 

types using a single name. Fortunately, C supports a constructed data type known as structures, a mechanism 

for packing data of different types. A structure is a convenient tool for handling a group of logically related 

data items. For example, it can be used to represent a set of attributes, such as student_name, roll_number and 

marks. The concept of a structure is analogous to that of a ‘record’ in many other languages. More examples 

of such structures are:

 time : seconds, minutes, hours

 date : day, month, year

 book : author, title, price, year

 city : name, country, population

 address : name, door-number, street, city

 inventory : item, stock, value

 customer : name, telephone, city, category

Structures help to organize complex data in a more meaningful way. It is a powerful concept that we may 

often need to use in our program design. This chapter is devoted to the study of structures and their applica-

tions in program development. Another related concept known as unions is also discussed.

Unlike arrays, structures must be defi ned fi rst for their format that may be used later to declare structure 

variables. Let us use an example to illustrate the process of structure defi nition and the creation of structure 

variables. Consider a book database consisting of book name, author, number of pages, and price. We can 

defi ne a structure to hold this information as follows:

 struct book_bank

 {

  char  title[20];

  char  author[15];

  int  pages;

  float  price;

 };

7.1 INTRODUCTION

7.2 DEFINING A  STRUCTURE



7.2 Computer Programming

The keyword struct declares a structure to hold the details of 

four data fi elds, namely title, author, pages, and price. These 

fi elds are called structure elements or members. Each member 

may belong to a different type of data. book_bank is the name of 

the structure and is called the structure tag. The tag name may be 

used subsequently to declare variables that have the tag’s 

structure.

Note that the above defi nition has not declared any variables. It 

simply describes a format called template to represent  information 

as shown below:

The general format of a structure defi nition is as follows:

  struct  tag_name

 {

  data_type   member1;

  data_type   member2;

   ––––   ––––

   ––––   ––––

 };

In defi ning a structure you may note the following syntax:

1. The template is terminated with a semicolon.

2. While the entire defi nition is considered as a statement, each member is declared independently for 

its name and type in a separate statement inside the template.

3. The tag name such as book_bank can be used to declare structure variables of its type, later in the 

program.

Both the arrays and structures are classifi ed as structured data types as they provide a mechanism that enable us to 

access and manipulate data in a relatively easy manner. But they differ in a number of ways.

1. An array is a collection of related data elements of same type. Structure can have elements of different types.

2. An array is derived data type whereas a structure is a programmer-defi ned one.

3. Any array behaves like a built-in data type. All we have to do is to declare an array variable and use it. But in the 

case of a structure, fi rst we have to design and declare a data structure before the variables of that type are 

declared and used.

  Arrays vs Structures

After defi ning a structure format we can declare variables of that type. A structure variable declaration is 

similar to the declaration of variables of any other data types. It includes the following elements:

1. The keyword struct.

2. The structure tag name.

3. List of variable names separated by commas.

4. A terminating semicolon.

For example, the statement

struct book_bank, book1, book2, book3;

declares book1, book2, and book3 as variables of type struct book_bank.

7.3 DECLARING STRUCTURE VARIABLES

array of 20 characterstitle

author

pages

price

array of 15 characters

integer

float



Structure and Union Types 7.3 

Each one of these variables has four members as specifi ed by the template. The complete declaration 

might look like this:

 struct book_bank

 {
  char  title[20];
  char  author[15];
  int  pages;
  float  price;
 };
 struct book_bank book1, book2, book3;

Remember that the members of a structure themselves are not variables. They do not occupy any memory 

until they are associated with the structure variables such as book1. When the compiler comes across a 

 declaration statement, it reserves memory space for the structure variables. It is also allowed to combine both 

the structure defi nition and variables declaration in one statement.

The declaration

 struct book_bank
 {
  char title[20];
  char author[15];
  int pages;
  flat price;
 } book1, book2, book3;

is valid. The use of tag name is optional here. For example:

 struct
 { ........
  ........
  ........
 } book1, book2, book3;

declares book1, book2, and book3 as structure variables representing three books, but does not include a tag 

name. However, this approach is not recommended for two reasons.

1. Without a tag name, we cannot use it for future declarations:

2. Normally, structure defi nitions appear at the beginning of the program fi le, before any variables or 

functions are defi ned. They may also appear before the main, along with macro defi nitions, such as 

#defi ne. In such cases, the defi nition is global and can be used by other functions as well.

We can use the keyword typedef to defi ne a structure as follows:

 typedef struct
 { . . . . . 
   type member1;
   type member2;
   . . . . . 
   . . . . .
 } type_name;

The type_name represents structure defi nition associated with it and therefore can be used to declare structure  variables 

as shown below:

type_name variable1, variable2, . . . . . . ;

Remember that (1) the name type_name is the type defi nition name, not a variable and (2) we cannot defi ne a variable 

with typedef declaration.

  Type-Defi ned Structures



7.4 Computer Programming

We can access and assign values to the members of a structure in a number of ways. As mentioned earlier, the 

members themselves are not variables. They should be linked to the structure variables in order to make them 

meaningful members. For example, the word title, has no meaning whereas the phrase ‘title of book3’ has a 

meaning. The link between a member and a variable is established using the member operator ‘.’ which is 

also known as ‘dot operator’ or ‘period operator’. For example,

book1.price

is the variable representing the price of book1 and can be treated like any other ordinary variable. Here is 

how we would assign values to the members of book1:

strcpy(book1.title, “BASIC”);
strcpy(book1.author, “Balagurusamy”);
book1.pages = 250;
book1.price = 120.50;

We can also use scanf to give the values through the keyboard.

scanf(“%s\n”, book1.title);
scanf(“%d\n”, &book1.pages);

are valid input statements.

EXAMPLE 7.1 Defi ne a structure type, struct personal that would contain person name, date of 

joining and salary. Using this structure, write a program to read this information for 

one person from the keyboard and print the same on the screen.

Structure defi nition along with the program is shown in Fig. 7.1. The scanf and printf functions illustrate 

how the member operator ‘.’ is used to link the structure members to the structure variables. The variable 

name with a period and the member name is used like an ordinary variable.

7.4 ACCESSING STRUCTURE MEMBERS

Program  
    struct  personal                                                 
   {
         char  name[20];                                              
         int   day;                                                   
         char  month[10];                                             
         int   year;                                                  
         float salary;                                                
    };                                                               
   main()                                                           
    {
          struct personal person;                                      
        printf(“Input Values\n”);                                    
         scanf(“%s %d %s %d %f”,                                      
                      person.name,                                       
                     &person.day,                                        
                      person.month,                                      
                     &person.year,                                       
                     &person.salary);

(Contd.)



Structure and Union Types 7.5 

Like any other data type, a structure variable can be initialized at compile time.

main()
 {
  struct
  {
   int weight;
   float height;
  }
  student = {60, 180.75};
  .....
  .....
 }

This assigns the value 60 to student. weight and 180.75 to student. height. There is a one-to-one corre-

spondence between the members and their initializing values.

A lot of variation is possible in initializing a structure. The following statements initialize two structure 

variables. Here, it is essential to use a tag name.

main()
{
 struct st_record
 {
  int weight;
  float height;
 };
 struct st_record student1 = { 60, 180.75 };
 struct st_record student2 = { 53, 170.60 };
 .....
 .....
}

Another method is to initialize a structure variable outside the function as shown below:

struct st_record
{
 int weight;
 float height;
} student1 = {60, 180.75};

7.5 STRUCTURE INITIALIZATION

      printf(“%s %d %s %d %f\n”,                                   
                      person.name,                                       
                      person.day,                                        
                     person.month,                                      
                      person.year,                                       
                      person.salary);                                    
    }  
                                                               
Output                                                           
 Input Values                                                     
    M.L.Goel 10 January 1945 4500                                    
    M.L.Goel 10 January 1945 4500.00

Fig. 7.1 Defi ning and accessing structure members



7.6 Computer Programming

main()
{
 struct st_record student2 = {53, 170.60};
 .....
 .....
}

C language does not permit the initialization of individual structure members within the template. The 

initialization must be done only in the declaration of the actual variables.

Note that the compile-time initialization of a structure variable must have the following elements:

1. The keyword struct.

2. The structure tag name.

3. The name of the variable to be declared.

4. The assignment operator =.

5. A set of values for the members of the structure variable, separated by commas and enclosed in 

braces.

6. A terminating semicolon.

There are a few rules to keep in mind while initializing structure variables at compile-time.

1. We cannot initialize individual members inside the structure template.

2. The order of values enclosed in braces must match the order of members in the structure defi nition.

3. It is permitted to have a partial initialization.  We can initialize only the fi rst few members and leave the remaining 

blank. The uninitialized members should be only at the end of the list.

4. The uninitialized members will be assigned default values as follows:

  • Zero for integer and fl oating point numbers.

  • ‘\0’ for characters and strings.

Rules for Initializing Structures

Two variables of the same structure type can be copied the same way as ordinary variables. If person1 and 

person2 belong to the same structure, then the following statements are valid:

person1 = person2;

person2 = person1;

However, the statements such as

person1 == person2

person1 != person2

are not permitted. C does not permit any logical operations on structure variables. In case, we need to  compare 

them, we may do so by comparing members individually.

EXAMPLE 7.2 Write a program to illustrate the comparison of structure variables.

The program shown in Fig. 7.2 illustrates how a structure variable can be copied into another of the same 

type. It also performs member-wise comparison to decide whether two structure variables are identical.

7.6 COPYING AND COMPARING  STRUCTURE VARIABLES



Structure and Union Types 7.7 

program
   struct class                                                     
    {
         int  number;                                                 
         char name[20];                                               
         float marks;                                                 
    };                                                               
                                                                    
    main()                                                           
    {
          int  x;                                                      
          struct class student1 = {111,”Rao”,72.50};            
         struct class student2 = {222,”Reddy”, 67.00};         
          struct class student3;                                       
                                                                    
          student3 = student2;                                         
                                                                    
          x = ((student3.number ==  student2.number) &&                
              (student3.marks  ==  student2.marks)) ? 1 : 0;          
                                                                    
         if(x == 1)                                                   
        {
           printf(“\nstudent2 and student3 are same\n\n”);          
             printf(“%d %s %f\n”, student3.number,                    
                           student3.name,                      
                           student3.marks);                    
         }                                                            
         else                                                         
      printf(“\nstudent2 and student3 are different\n\n”);     
                                                                    
   }                                                                
                                                                    
Output                                                           
        student2 and student3 are same                                   
                                                                    
    222 Reddy 67.000000                                              

Fig. 7.2 Comparing and copying structure variables

Computer stores structures using the concept of “word boundary”. The 

size of a word boundary is machine dependent. In a computer with two 

bytes word boundary, the members of a structure are stored left_

aligned on the word boundary, as shown below. A character data takes 

one byte and an integer takes two bytes. One byte between them is left 

 unoccupied. This unoccupied byte is known as the slack byte.

When we declare structure variables, each one of them may 

 contain slack bytes and the values stored in such slack bytes are 

undefi ned. Due to this, even if the members of two variables are equal, their structures do not necessarily compare 

equal. C, therefore, does not permit comparison of structures. However, we can design our own function that could 

 compare individual members to decide whether the structures are equal or not.

Word Boundaries and Slack Bytes

0 1 2 3

char

slack byte

int



7.8 Computer Programming

As pointed out earlier, the individual members are identifi ed using the member operator, the dot. A member 

with the dot operator along with its structure variable can be treated like any other variable name and  therefore 

can be manipulated using expressions and operators. Consider the program in Fig. 7.2. We can perform the 

following operations:

 if (student1.number == 111)
  student1.marks += 10.00;
 float sum = student1.marks + student2.marks;
 student2.marks * = 0.5;

We can also apply increment and decrement operators to numeric type members. For example, the 

 following statements are valid:

 student1.number ++;
 ++ student1.number;

The precedence of the member operator is higher than all arithmetic and relational operators and therefore 

no parentheses are required.

We have used the dot operator to access the members of structure variables. In fact, there are two other ways. Consider 

the following structure:

typedef struct
{
     int x;
     int y;
} VECTOR;
VECTOR v, *ptr;
ptr = & n;

The identifi er ptr is known as pointer that has been assigned the address of the structure variable n. Now, the mem-

bers can be accessed in three ways:

• using dot notation : n.x

• using indirection notation : (*ptr).x

• using selection notation : ptr –> x

The second and third methods will be considered in Chapter 14.

Three Ways to Access Members

We use structures to describe the format of a number of related variables. For example, in analyzing the 

marks obtained by a class of students, we may use a template to describe student name and marks obtained 

in various subjects and then declare all the students as structure variables. In such cases, we may declare an 

array of structures, each element of the array representing a structure variable. For example:

struct class student[100];

defi nes an array called student, that consists of 100 elements. Each element is defi ned to be of the type struct 

class. Consider the following declaration:

    struct marks
    {
     int subject1;

7.7 OPERATIONS ON INDIVIDUAL MEMBERS

7.8  ARRAYS OF STRUCTURES



Structure and Union Types 7.9 

     int subject2;

     int subject3;

    };

    main()

    {

     struct marks student[3] =

      {{45,68,81}, {75,53,69}, {57,36,71}};

This declares the student as an array of three elements student[0], student[1], and student[2] and 

 initializes their members as follows:

   student[0].subject1 = 45;

   student[0].subject2 = 65;

    ....

    ....

   student[2].subject3 = 71;

Note that the array is declared just as it would have been with any other array. Since student is an array, we 

use the usual array-accessing methods to access individual elements and then the member operator to access 

members. Remember, each element of student array is a structure variable with three members.

An array of structures is stored inside the memory in the same way as a multi-dimensional array. The array 

student actually looks as shown in Fig. 7.3.

45student [0].subject 1

.subject 2

.subject 3

student [1].subject 1

.subject 2

.subject 3

student [2].subject 1

.subject 2

.subject 3

68

81

75

53

69

57

36

71

Fig. 7.3 The array student inside memory

EXAMPLE 7.3 For the student array discussed above, write a program to calculate the subject-wise 

and student-wise totals and store them as a part of the structure.

The program is shown in Fig. 7.4. We have declared a four-member structure, the fourth one for keeping the 

student-totals. We have also declared an array total to keep the subject-totals and the grand-total. The grand-

total is given by total.total. Note that a member name can be any valid C name and can be the same as an 

existing structure variable name. The linked name total.total represents the total member of the structure 

variable total.



7.10 Computer Programming

Program  
  struct marks                                                     

     {

         int  sub1;                                                   

         int  sub2;                                                   

         int  sub3;                                                   

         int  total;                                                  

     };

     main()                                                           

     {

         int  i;                                                      

         struct marks student[3] =  {{45,67,81,0},             

                                      {75,53,69,0},             

                                      {57,36,71,0}};            

         struct marks total;                                   

         for(i = 0; i <= 2; i++)                                      

         {                                                            

             student[i].total = student[i].sub1 +                     

                              student[i].sub2 +                     

                              student[i].sub3;                      

                total.sub1 = total.sub1 + student[i].sub1;               

               total.sub2 = total.sub2 + student[i].sub2;               

                total.sub3 = total.sub3 + student[i].sub3;               

               total.total = total.total + student[i].total;            

         }                                                            

         printf(“ STUDENT          TOTAL\n\n”);                       

         for(i = 0; i <= 2; i++)                                      

           printf(“Student[%d]      %d\n”, i+1,student[i].total); 

         printf(“\n SUBJECT          TOTAL\n\n”);                     

         printf(“%s       %d\n%s       %d\n%s       %d\n”,            

                “Subject 1   “, total.sub1,                           

                “Subject 2   “, total.sub2,                           

                “Subject 3   “, total.sub3);                          

                                                                    

       printf(“\nGrand Total = %d\n”, total.total);                 

    }                                                                

Output                                                           
                                                                    

        STUDENT           TOTAL                                          

        Student[1]         193                                           

        Student[2]         197                                           

        Student[3]         164                                           

                                                                    

        SUBJECT           TOTAL                                          

        Subject 1          177                                           

        Subject 2          156                                           

        Subject 3          221                                           

                                                                    

        Grand Total  = 554                                               

Fig. 7.4 Arrays of structures: Illustration of subscripted structure variables



Structure and Union Types 7.11 

C permits the use of arrays as structure members. We have already used arrays of characters inside a  structure. 

Similarly, we can use single-dimensional or multi-dimensional arrays of type int or fl oat. For example, the 

following structure declaration is valid:

     struct marks
    {
      int number;
      float subject[3];
    } student[2];

Here, the member subject contains three elements, subject[0], subject[1] and subject[2]. These elements 

can be accessed using appropriate subscripts. For example, the name

student[1].subject[2];

would refer to the marks obtained in the third subject by the second student.

EXAMPLE 7.4 Rewrite the program of Example 7.3 using an array member to represent the three 

subjects.

The modifi ed program is shown in Fig. 7.5. You may notice that the use of array name for subjects has simpli-

fi ed in code.

7.9 ARRAYS WITHIN STRUCTURES

Program
   main()                                                           

   {                                                                

       struct  marks                                                

       {                                                            

           int  sub[3];                                             

           int  total;                                              

       };                                                           

       struct marks student[3] =                             

       {45,67,81,0,75,53,69,0,57,36,71,0};                   

       struct marks total;                                   

       int  i,j;                                                    

                                                                    

       for(i = 0; i <= 2; i++)                                      

       {                                                            

          for(j = 0; j <= 2; j++)                                   

          {                                                         

             student[i].total += student[i].sub[j];                 

             total.sub[j] += student[i].sub[j];                     

          }                                                         

          total.total += student[i].total;                          

       }                                                            

       printf(“STUDENT         TOTAL\n\n”);                         

       for(i = 0; i <= 2; i++)                                      

(Contd.)



7.12 Computer Programming

Structures within a structure means nesting of structures. Nesting of structures is permitted in C. Let us con-

sider the following structure defi ned to store information about the salary of employees.

   struct salary
   {
    char name;
    char department;
    int basic_pay;
    int dearness_allowance;
    int house_rent_allowance;
    int city_allowance;
   }
   employee;

This structure defi nes name, department, basic pay and three kinds of allowances. We can group all the 

items related to allowance together and declare them under a substructure as shown below:

     struct salary
     {

      char name;
      char department;
      struct
      {
       int dearness;
       int house_rent;
       int city;
      }

7.10 STRUCTURES WITHIN STRUCTURES

          printf(“Student[%d]      %d\n”, i+1, student[i].total);  

                                                                    

       printf(“\nSUBJECT         TOTAL\n\n”);                       

       for(j = 0; j <= 2; j++)                                      

          printf(“Subject-%d        %d\n”, j+1, total.sub[j]);      

                                                                    

       printf(“\nGrand Total  =   %d\n”, total.total);              

                                                                    

   }                                                                

Output                                                           
                                                                    

   STUDENT         TOTAL                                            

   Student[1]       193                                             

   Student[2]       197                                             

   Student[3]       164

     

   STUDENT         TOTAL                                            

   Student-1        177                                             

   Student-2        156                                             

   Student-3        221

   Grand Total  =   554                                                

Fig. 7.5 Use of subscripted members arrays in structures



Structure and Union Types 7.13 

      allowance;
     }
     employee;

The salary structure contains a member named allowance, which itself is a structure with three members. 

The members contained in the inner structure namely dearness, house_rent, and city can be referred to as:

   employee.allowance.dearness

   employee.allowance.house_rent

   employee.allowance.city

An inner-most member in a nested structure can be accessed by chaining all the concerned structure 

 variables (from outer-most to inner-most) with the member using dot operator. The following are invalid:

   employee.allowance (actual member is missing)

   employee.house_rent (inner structure variable is missing)

An inner structure can have more than one variable. The following form of declaration is legal:

    struct salary
    {
     .....
     struct
     {
      int dearness;
      .....
     }
     allowance,
     arrears;
    }
    employee[100];

The inner structure has two variables, allowance and arrears. This implies that both of them have the 

same structure template. Note the comma after the name allowance. A base member can be accessed as 

follows:

   employee[1].allowance.dearness

   employee[1].arrears.dearness

We can also use tag names to defi ne inner structures. Example:

   struct pay
    {
     int dearness;
     int house_rent;
     int city;
    };
    struct salary
    {
     char name;
     char department;
     struct pay allowance;
     struct pay arrears;
    };
    struct salary employee[100];

pay template is defi ned outside the salary template and is used to defi ne the structure of allowance and 

arrears inside the salary structure.

It is also permissible to nest more than one type of structures.



7.14 Computer Programming

  struct personal_record
  {
   struct name_part name;
   struct addr_part address;
   struct date date_of_birth;
   .....
   .....
  };
  struct personal_record person1;

The fi rst member of this structure is name, which is of the type struct name_part. Similarly, other mem-

bers have their structure types.

NOTE: C permits nesting up to 15 levels. However, C99 allows 63 levels of nesting.

We know that the main philosophy of C language is the use of functions. And therefore, it is natural that C 

supports the passing of structure values as arguments to functions. There are three methods by which the 

values of a structure can be transferred from one function to another.

1. The fi rst method is to pass each member of the structure as an actual argument of the function call. 

The actual arguments are then treated independently like ordinary variables. This is the most 

 elementary method and becomes unmanageable and ineffi cient when the structure size is large.

2. The second method involves passing of a copy of the entire structure to the called function. Since the 

function is working on a copy of the structure, any changes to structure members within the function 

are not refl ected in the original structure (in the calling function). It is, therefore, necessary for the 

function to return the entire structure back to the calling function. All compilers may not support this 

method of passing the entire structure as a parameter.

3. The third approach employs a concept called pointers to pass the structure as an argument. In this 

case, the address location of the structure is passed to the called function. The function can access 

indirectly the entire structure and work on it. This is similar to the way arrays are passed to function. 

This method is more effi cient as compared to the second one.

In this section, we discuss in detail the second method, while the third approach using pointers is discussed 

in the next chapter, where pointers are dealt in detail.

The general format of sending a copy of a structure to the called function is:

function_name (structure_variable_name);

The called function takes the following form:

data_type function_name(struct_type st_name)
{
 ......
 ......
 return(expression);
}

The following points are important to note:

1. The called function must be declared for its type, appropriate to the data type it is expected to return. 

For example, if it is returning a copy of the entire structure, then it must be declared as struct with an 

appropriate tag name.

7.11 STRUCTURES AND FUNCTIONS



Structure and Union Types 7.15 

2. The structure variable used as the actual argument and the corresponding formal argument in the 

called function must be of the same struct type.

3. The return statement is necessary only when the function is returning some data back to the calling 

function. The expression may be any simple variable or structure variable or an expression using 

simple variables.

4. When a function returns a structure, it must be assigned to a structure of identical type in the calling 

function.

5. The called functions must be declared in the calling function appropriately.

EXAMPLE 7.5 Write a simple program to illustrate the method of sending an entire structure as a 

parameter to a function.

A program to update an item is shown in Fig. 7.6. The function update receives a copy of the structure 

 variable item as one of its parameters. Note that both the function update and the formal parameter product 

are declared as type struct stores. It is done so because the function uses the parameter product to receive 

the structure variable item and also to return the updated values of item.

The function mul is of type fl oat because it returns the product of price and quantity. However, the 

parameter stock, which receives the structure variable item is declared as type struct stores.

The entire structure returned by update can be copied into a structure of identical type. The statement

item = update(item,p_increment,q_increment);

replaces the old values of item by the new ones.

Program  
 /*        Passing a copy of the entire structure        */    
   struct stores                                                    
   {                                                                
       char  name[20];                                              
       float price;                                                 
       int   quantity;                                              
   };                                                               
   struct stores update (struct stores product, float p, int q);
   float mul (struct stores stock);
   main()                                                           
   {                                                                
       float    p_increment, value;                     
       int      q_increment;                                   
                                                                    
       struct stores item = {“XYZ”, 25.75, 12};              
                                                                    
       printf(“\nInput increment values:”);                         
       printf(“   price increment and quantity increment\n”);       
       scanf(“%f %d”, &p_increment, &q_increment);                  
                                                                    
   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - */    
       item  = update(item, p_increment, q_increment);              
   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - */    
       printf(“Updated values of item\n\n”);                        

(Contd.)



7.16 Computer Programming

You may notice that the template of stores is defi ned before main(). This has made the data type  struct 

stores as  global and has enabled the functions update and mul to make use of this defi nition.

Self Referential Structure

Self referential structure is a Structure that has a pointer to itself. Pointer stores the address of the Structure 

of same type.

struct struct_name

{

 datatype datatypename;

 struct_name * pointer_name;

}

Self-Referential Structure allow to create data structures that contains references to data of the same type 

as themselves.

struct node {

int value;

struct node *next;

};

5 8 3

node A node B node C

       printf(“Name      : %s\n”,item.name);                        
       printf(“Price     : %f\n”,item.price);                       
       printf(“Quantity  : %d\n”,item.quantity);                    
   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - */    
       value  = mul(item);                                          
   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - */    
       printf(“\nValue of the item  =  %f\n”, value);               
   }                                                                
   struct stores update(struct stores product, float p, int q)    
   {
       product.price += p;                                         
       product.quantity += q;                                       
       return(product);                                             
   }                                                                
   float mul(struct stores stock)                                             
   {                                                                
       return(stock.price * stock.quantity);                        
   }
                                                                                                                                   
Output                                                           
Input increment values:   price increment and quantity increment 
10 12                                                            
Updated values of item                                           
Name      : XYZ                                                  
Price     : 35.750000                                            
Quantity  : 24                                                   
Value of the item  =  858.000000                                 

Fig. 7.6 Using structure as a function parameter



Structure and Union Types 7.17 

Unions are a concept borrowed from structures and therefore follow the same syntax as structures. However, 

there is major distinction between them in terms of storage. In structures, each member has its own storage 

location, whereas all the members of a union use the same location. This implies that, although a union may 

contain many members of different types, it can handle only one member at a time. Like structures, a union 

can be declared using the keyword union as follows:

     union item
     {
      int m;
      float x;
      char c;
     } code;

This declares a variable code of type union item. The union contains three members, each with a different 

data type. However, we can use only one of them at a time. This is due to the fact that only one location is 

allocated for a union variable, irrespective of its size.

The compiler allocates a piece of storage that is large enough to hold the largest variable type in the 

union. In the declaration above, the member x requires 4 bytes which is the largest among the members. 

Figure 7.7 shows how all the three variables share the same address. This 

assumes that a fl oat variable requires 4 bytes of storage.

To access a union member, we can use the same syntax that we use for 

structure members. That is,

   code.m

   code.x

   code.c

are all valid member variables. During accessing, we should make sure 

that we are accessing the member whose value is currently stored. For 

example, the statements such as

     code.m = 379;

     code.x = 7859.36;

     printf(“%d”, code.m);

would produce erroneous output (which is machine dependent).

In effect, a union creates a storage location that can be used by any one of its members at a time. When a 

different member is assigned a new value, the new value supersedes the previous member’s value.

Unions may be used in all places where a structure is allowed. The notation for accessing a union member 

which is nested inside a structure remains the same as for the nested structures.

Unions may be initialized when the variable is declared. But, unlike structures, it can be initialized only 

with a value of the same type as the fi rst union member. For example, with the preceding, the declaration

union item abc = {100};

is valid but the declaration

union item abc = {10.75};

is invalid. This is because the type of the fi rst member is int. Other members can be initialized by either 

assigning values or reading from the keyboard.

7.12 UNIONS

Fig. 7.7 Sharing of a storage locating 

by union members



7.18 Computer Programming

We normally use structures, unions, and arrays to create variables of large sizes. The actual size of these 

variables in terms of bytes may change from machine to machine. We may use the unary operator sizeof to 

tell us the size of a structure (or any variable). The expression

sizeof(struct x)

will evaluate the number of bytes required to hold all the members of the structure x. If y is a simple structure 

variable of type struct x, then the expression

sizeof(y)

would also give the same answer. However, if y is an array variable of type struct x, then

sizeof(y)

would give the total number of bytes the array y requires.

This kind of information would be useful to determine the number of records in a database. For example, 

the expression

sizeof(y)/sizeof(x)

would give the number of elements in the array y.

So far, we have been using integer fi elds of size 16 bits to store data. There are occasions where data items 

require much less than 16 bits space. In such cases, we waste memory space. Fortunately, C permits us to use 

small bit fi elds to hold data items and thereby to pack several data items in a word of memory. Bit fi elds allow 

direct manipulation of string of a string of preselected bits as if it represented an integral quantity.

A  bit fi eld is a set of adjacent bits whose size can be from 1 to 16 bits in length. A word can therefore be 

divided into a number of bit fi elds. The name and size of bit fi elds are defi ned using a structure. The general 

form of bit fi eld defi nition is:

struct tag-name

{

 data-type name1: bit–length;

 data-type name2: bit–length;

 . . . . . .

 . . . . . .

 data-type nameN: bit-length;

}

The data-type is either int or unsigned int or signed int and the bit-length is the number of bits used for 

the specifi ed name. Remember that a signed bit fi eld should have at least 2 bits (one bit for sign). Note that 

the fi eld name is followed by a colon. The bit-length is decided by the range of value to be stored. The largest 

value that can be stored is 2n–1, where n is bit-length.

The internal representation of bit fi elds is machine dependent. That is, it depends on the size of int and the 

ordering of bits. Some machines store bits from left to right and others from right to left. The sketch below 

illustrates the layout of bit fi elds, assuming a 16-bit word that is ordered from right to left.

7.13 SIZE OF STRUCTURES

7.14 BIT FIELDS



Structure and Union Types 7.19 

15 14

name N name 2 name 1

13 12 11 10 9 8 7 6 5 4 3 2 1 0

There are several specifi c points to observe:

1. The fi rst fi eld always starts with the fi rst bit of the word.

2. A bit fi eld cannot overlap integer boundaries. That is, the sum of lengths of all the fi elds in a structure 

should not be more than the size of a word. In case, it is more, the overlapping fi eld is automatically 

forced to the beginning of the next word.

3. There can be unnamed fi elds declared with size. Example:

     Unsigned : bit-length

  Such fi elds provide padding within the word.

4. There can be unused bits in a word.

5. We cannot take the address of a bit fi eld variable. This means we cannot use scanf to read values into 

bit fi elds. We can neither use pointer to access the bit fi elds.

6. Bit fi elds cannot be arrayed.

7. Bit fi elds should be assigned values that are within the range of their size. If we try to assign larger 

values, behavior would be unpredicted.

Suppose, we want to store and use personal information of employees in compressed form, this can be 

done as follows:

 struct personal

 {

 unsigned sex   :  1

 unsigned age   :  7

 unsigned m_status :  1

 unsigned children  :  3

 unsigned    :  4

 } emp;

This defi nes a variable name emp with four bit fi elds. The range of values each fi eld could have is follows:

Bit fi eld Bit length Range of value

Sex 1 0 or 1

Age 7 0 or 127 (27 – 1)

m_status 1 0 or 1

children 3 0 to 7 (23–1)

Once bit fi elds are defi ned, they can be referenced just as any other structure-type data item would be refer-

enced. The following assignment statements are valid.

emp.sex = 1;
emp.age = 50;

Remember, we cannot use scanf to read values into a bit fi eld. We may have to read into a temporary variable 

and then assign its value to the bit fi eld. For example:

scanf(%d %d”, &AGE,&CHILDREN);



7.20 Computer Programming

emp.age = AGE;
emp.children = CHILDREN;

One restriction in accessing bit fi elds is that a pointer cannot be used. However, they can be used in normal 

expressions like any other variable. For example:

sum = sum + emp.age;
if(emp.m_status). . . . .;
printf(“%d\n”, emp.age);

are valid statements.

It is possible to combine normal structure elements with bit fi eld elements. For example:

struct personal
{
   char    name[20];  /* normal variable */
   struct addr address;  /* structure variable */
   unsigned  sex : 1;
   unsigned  age : 7;
   . . . . .
   . . . . .
} 
emp[100];

This declares emp as a 100 element array of type struct personal. This combines normal variable name and 

structure type variable address with bit fi elds.

Bit fi elds are packed into words as they appear in the defi nition. Consider the following defi nition.

 struct pack
 {
    unsigned a:2;
    int count;
    unsigned b : 3;
 };

Here, the bit fi eld a will be in one word, the variable count will be in the second word and the bit fi eld b 

will be in the third word. The fi elds a and b would not get packed into the same word.

C supports a feature known as “type defi nition” that allows users to defi ne an identifi er that would represent 

an existing data type. The user-defi ned data type identifi er can later be used to declare variables. It takes the 

general form:

typedef type identifier;

Where type refers to an existing data type and “identifi er” refers to the “new” name given to the data type. 

The existing data type may belong to any class of type, including the user-defi ned ones. Remember that the 

new type is ‘new’ only in name, but not the data type. typedef cannot create a new type. Some examples of 

type defi nition are:

typedef int units;
typedef float marks;

7.15 TYPEDEF



Structure and Union Types 7.21 

enum is a user-defi ned enumerated data type supported by ANSI C.

It is defi ned as follows:

enum identifier {value1, value2, ... valuen};

The “identifi er” is a user-defi ned enumerated data type which can be used to declare variables that can have 

one of the values enclosed within the braces (known as enumeration constants). After this defi nition, we can 

declare variables to be of this ‘new’ type as below:

enum identifier v1, v2, ... vn;

The enumerated variables v1, v2, ... vn can only have one of the values value1, value2, ... valuen. The

assignments of the following types are valid:

v1 = value3;
v5 = value1;

An example:

enum day {Monday,Tuesday, ... Sunday};
enum day week_st, week_end;
week_st = Monday;
week_end = Friday;
if(week_st == Tuesday)
week_end = Saturday;

The compiler automatically assigns integer digits beginning with 0 to all the enumeration constants. 

Thatis, the enumeration constant value1 is assigned 0, value2 is assigned 1, and so on. However, the  automatic 

assignments can be overridden by assigning values explicitly to the enumeration constants. For example:

enum day {Monday = 1, Tuesday, ... Sunday};

Here, the constant Monday is assigned the value of 1. The remaining constants are assigned values that

increase successively by 1.

The defi nition and declaration of enumerated variables can be combined in one statement. Example:

enum day {Monday, ... Sunday} week_st, week_end;

Just Remember

7.16 ENUM

Remember to place a semicolon at the end of • 

defi nition of structures and unions.

We can declare a structure variable at the time • 

of defi nition of a structure by placing it after 

the closing brace but before the semicolon.

Do not place the structure tag name after the • 

closing brace in the defi nition. That will be 

treated as a structure variable. The tag name 

must be placed before the opening brace but 

after the keyword struct.

When we use • typedef defi nition, the 

type_name comes after the closing brace but 

before the semicolon.

We cannot declare a variable at the time of • 

creating a typedef defi nition. We must use 

the type_name to declare a variable in an 

independent statement.

It is an error to use a structure variable as a • 

member of its own struct type structure.

Assigning a structure of one type to a structure • 

of another type is an error.

Declaring a variable using the tag name only • 

(without the keyword struct) is an error.

It is an error to compare two structure • 

variables. 



7.22 Computer Programming

It is illegal to refer to a structure member • 

using only the member name.

When structures are nested, a member must • 

be qualifi ed with all levels of structures 

nesting it.

When accessing a member with a pointer and • 

dot notation, parentheses are required around 

the pointer, like (*ptr).number.

The selection operator ( –> ) is a single token. • 

Any space between the symbols – and > is an 

error.

When using • scanf for reading values for 

members, we must use address operator & 

with non-string members.

Forgetting to include the array subscript when • 

referring to individual structures of an array 

of structures is an error.

A union can store only one of its members at • 

a time. We must exercise care in accessing the 

correct member. Accessing a wrong data is a 

logic error.

It is an error to initialize a union with data • 

that does not match the type of the fi rst 

member.

Always provide a structure tag name when • 

creating a structure. It is convenient to use tag 

name to declare new structure variables later 

in the program.

Use short and meaningful structure tag names.• 

Avoid using same names for members of • 

different structures (although it is not illegal).

Passing structures to functions by pointers is • 

more effi cient than passing by value. (Passing 

by pointers are discussed in Chapter 12.)

We cannot take the address of a bit fi eld. • 

Therefore, we cannot use scanf to read values 

in bit fi elds. We can neither use pointer to 

access the bit fi elds.

Bit fi elds cannot be arrayed.• 

Structures and unions give the programmer • 

the liberty of creating user-defi ned complex 

data types. 

The size of a structure variable can be • 

computed by adding the storage space of each 

of its member variables. 

The initialization of a structure variable can • 

also be done at the time of its declaration by 

using the assignment operator ‘=’ and placing 

the initial values inside braces, separated by 

commas. 

The uninitialized structure members are • 

assigned the value zero for integer and fl oat 

and ‘\0’ for characters and strings. 

Nesting of structures is possible by declaring • 

a structure inside another structure.

Multiple Choice Questions

 1. A structure stores which of the following?

(a) Multiple values of the same type

(b) Multiple values of different types

(c) Multiple values of the same user-defi ned 

type

(d) None of the above

 2. Which of the following is the correct syntax for 

declaring a structure?

(a) struct

 (

 Datatype 1 

 Datatype 2

 );

(b) struct

 {

 Datatype 1 

 Datatype 2

 }

(c) struct

 {

 Datatype 1 

 Datatype 2

 };

(d) struct;

 {

 Datatype 1

 Datatype 2

 }



Structure and Union Types 7.23 

 3. Which of the following is the incorrect way of 

declaring structure type variables?

(a) struct book

 {

 Datatypes

 }book1, book2;

(b) struct book

 {

 Datatypes

 };

 Struct book book1, book2;

(c) struct book1, book2

 {

 Datatype

 };

(d) All of the above are correct

 4. Which of the following is the correct way 

of assigning a value to the ‘name’ fi eld of a 

structure ‘book’?

(a) book.name (b) book->name

(c) book(name) (d) None of the above

 5. The uninitialized integer data type of 

a structure contains which of the following 

default values?

(a) garbage (b) zero

(c) one (d) None of the above

 6. The uninitialized character data type of a 

structure contains which of the following 

default values?

(a) garbage (b) zero

(c) ‘\0’ (d) None of the above

 7. Which of the following expressions are 

correct for accessing the ‘num’ variable 

value of the ith element of a structure array 

‘student’?

(a) student[i].num (b) student.num[i]

(c) student[i]->num (d) None of the above

 8. C allows nesting of structures till which level?

(a) 13 (b) 14

(c) 15 (d) 16

 9. In the following union declaration, what will be 

the size of a union variable?

union item

{

int a;

fl oat b;

char c;

}item 1;

(a) 1 (b) 2

(c) 4 (d) 8

 10. Which of the following is the correct way of 

representing the selection statement?

(a) ->

(b) ‘

(c) - >

(d) All of the above are correct

 11. Which of the following is the correct way of 

declaring a variable of bit size 1?

(a) unsigned b:1;

(b) unsigned b(1);

(c) unsigned b->sizeof(1)

(d) None of the above

Case Study

Book Shop Inventory

A book shop uses a personal computer to maintain the inventory of books that are being sold at the shop. The 

list includes details such as author, title, price, publisher, stock position, etc. Whenever a customer wants a 

book, the shopkeeper inputs the title and author of the book and the system replies whether it is in the list or 

not. If it is not, an appropriate message is displayed. If book is in the list, then the system displays the book 

details and asks for number of copies. If the requested copies are available, the total cost of the books is 

 displayed; otherwise the message “Required copies not in stock” is displayed.

A program to accomplish this is shown in Fig. 7.8. The program uses a template to defi ne the structure of 

the book. Note that the date of publication, a member of record structure, is also defi ned as a structure.



7.24 Computer Programming

Programs         
   #include   <stdio.h>                                             
   #include   <string.h>                                           
   struct  record                                                   
   {                                                                
       char    author[20];                                          
       char    title[30];                                           
       float   price;                                               
       struct
                                                       
       {                                                            
           char   month[10];                                        
           int    year;                                             
       }                                                            
       date;                                                        
       char   publisher[10];                                        
       int    quantity;                                             
    };
     int look_up(struct record table[],char s1[],char s2[],int m);
     void get (char string [ ] );                                                                    
     main()                                                           
    {                                                                
          char title[30], author[20];                                  
          int  index, no_of_records; 
          char response[10], quantity[10];                             
          struct record book[] =  {                             
          {“Ritche”,”C Language”,45.00,”May”,1977,”PHI”,10},           
          {“Kochan”,”Programming in C”,75.50,”July”,1983,”Hayden”,5}, 
          {“Balagurusamy”,”BASIC”,30.00,”January”,1984,”TMH”,0},       
          {“Balagurusamy”,”COBOL”,60.00,”December”,1988,”Macmillan”,25}
                                      };                            
                                                                    
     no_of_records = sizeof(book)/ sizeof(struct record);        
      do                                                           
      {                                                            
        printf(“Enter title and author name as per the list\n”);  
        printf(“\nTitle:    “);                                   
        get(title);                                               
        printf(“Author:   “);                                     
        get(author);                                              
        index = look_up(book, title, author, no_of_records);      
        if(index != -1)     /*  Book found  */                    
        {                                                         
            printf(“\n%s %s %.2f %s %d %s\n\n”,                   
                     book[index].author,                          
                     book[index].title,                           
                     book[index].price,                           
                     book[index].date.month,                      
                     book[index].date.year,                       
                     book[index].publisher);                      
                                                                    
            printf(“Enter number of copies:”);                    

(Contd.)



Structure and Union Types 7.25 

            get(quantity);                                        
            if(atoi(quantity) < book[index].quantity)             
              printf(“Cost of %d copies = %.2f\n”,atoi(quantity),
                  book[index].price * atoi(quantity));         
            else                                                  
              printf(“\nRequired copies not in stock\n\n”);      
          }                                                         
          else                                                     
              printf(“\nBook not in list\n\n”);                     
          printf(“\nDo you want any other book? (YES / NO):”);      
          get(response);                                            
       }                                                            
       while(response[0] == ‘Y’ || response[0] == ‘y’);             
       printf(“\n\nThank you.  Good bye!\n”);                       
   }                                                                
   void get(char string [] )
   {                                                                
      char  c;                                                      
      int  i = 0;                                                  
      do                                                            
      {                                                             
         c = getchar();                                             
         string[i++] = c;                                           
      } 
      while(c != ‘\n’);                                             
      string[i-1] = ‘\0’;                                           
   }                                                                
 
  int look_up(struct record table[],char s1[],char s2[],int m)                                    
   {                                                                
      int  i;                                                       
      for(i = 0; i < m;  i++)                                       
         if(strcmp(s1, table[i].title) == 0  &&                     
            strcmp(s2, table[i].author) == 0)                       
            return(i);           /* book found       */             
      return(-1);                /* book not found   */             
   }                                                                
                                                                    
Output                                                          
                                                                    
   Enter title and author name as per the list                      
   Title:    BASIC                                                  
   Author:   Balagurusamy                                           
   Balagurusamy BASIC 30.00 January 1984 TMH
   Enter number of copies:5                                         
   Required copies not in stock                                     
   Do you want any other book? (YES / NO):y                         
   Enter title and author name as per the list                      
   Title:    COBOL                                                  
   Author:   Balagurusamy                                           
   Balagurusamy COBOL 60.00 December 1988 Macmillan                 
   Enter number of copies:7                                         

(Contd.)



7.26 Computer Programming

When the title and author of a book are specifi ed, the program searches for the book in the list using the 

function

look_up(table, s1, s2, m)

The parameter table which receives the structure variable book is declared as type struct record. The 

parameters s1 and s2 receive the string values of title and author while m receives the total number of books 

in the list. Total number of books is given by the expression

sizeof(book)/sizeof(struct record)

The search ends when the book is found in the list and the function returns the serial number of the book. 

The function returns –1 when the book is not found. Remember that the serial number of the fi rst book in the 

list is zero. The program terminates when we respond “NO” to the question

Do you want any other book?

Note that we use the function

get(string)

to get title, author, etc. from the terminal. This enables us to input strings with spaces such as “C Language”. 

We cannot use scanf to read this string since it contains two words.

Since we are reading the quantity as a string using the get(string) function, we have to convert it to an 

integer before using it in any expressions. This is done using the atoi() function.

Review Questions

   Cost of 7 copies = 420.00                                        
                                                                    
   Do you want any other book? (YES / NO):y                         
   Enter title and author name as per the list                      
   Title:    C Programming                                          
   Author:   Ritche                                                 
                                                                    
   Book not in list                                                 
   Do you want any other book? (YES / NO):n                         
                                                                    
                                                                    
   Thank you.  Good bye!

Fig. 7.8 Program of bookshop inventory

 7.1 State whether the following statements are 

true or false.

 (a) A struct type in C is a built-in data type.

 (b) The tag name of a structure is optional.

 (c) Structures may contain members of only 

one data type.

 (d) A structure variable is used to declare a 

data type containing multiple fi elds.

 (e) It is legal to copy a content of a structure 

variable to another structure variable of 

the same type.

 (f) Structures are always passed to functions 

by printers.

 (g) Pointers can be used to access the 

members of structure variables.



Structure and Union Types 7.27 

 (h) We can perform mathematical operations 

on structure variables that contain only 

numeric type members.

 (i) The keyword typedef is used to defi ne a 

new data type.

 (j) In accessing a member of a structure 

using a pointer p, the following two are 

equivalent:

  (*p).member_name and p –> member_

name

 (k) A union may be initialized in the same 

way a structure is initialized.

 (l) A union can have another union as one of 

the members.

 (m) A structure cannot have a union as one of 

its members.

 (n) An array cannot be used as a member of a 

structure.

 (o) A member in a structure can itself be a 

structure.

 7.2 Fill in the blanks in the following statements:

 (a) The _________ can be used to create a 

synonym for a previously defi ned data 

type.

 (b) A _________ is a collection of data items 

under one name in which the items share 

the same storage.

 (c) The name of a structure is referred to as 

_________.

 (d) The selection operator –> requires the use 

of a _________ to access the members of 

a structure.

 (e) The variables declared in a structure 

defi nition are called its _________.

 7.3 A structure tag name abc is used to declare 

and initialize the structure variables of type 

struct abc in the following statements. Which 

of them are incorrect? Why? Assume that the 

structure abc has three members, int, fl oat 

and char in that order.

 (a) struct a,b,c;

 (b) struct abc a,b,c

 (c) abc x,y,z;

 (d) struct abc a[ ];

 (e) struct abc a = { };

 (f) struct abc = b, { 1+2, 3.0, “xyz”}

 (g) struct abc c = {4,5,6};

 (h) struct abc a = 4, 5.0, “xyz”;

 7.4 Given the declaration struct abc a,b,c; which 

of the following statements are legal?

 (a) scanf (“%d, &a);

 (b) printf (“%d”, b);

 (c) a = b;

 (d) a = b + c;

 (e) if (a>b)

  . . . . .

 7.5 Given the declaration 

  struct item_bank
  {

     int number;

     double cost;

  };

  which of the following are correct statements 

for declaring one dimensional array of 

structures of type struct item_bank?

 (a) int item_bank items[10];

 (b) struct items[10] item_bank;

 (c) struct item_bank items (10);

 (d) struct item_bank items [10];

 (e) struct items item_bank [10];

 7.6 Given the following declaration
  typedef struct abc

  {

     char x;

     int y;

     float z[10];

  } ABC;

  State which of the following declarations are 

invalid? Why?

 (a) struct abc ν 1;

 (b) struct abc ν 2[10];

 (c) struct ABC ν 3;

 (d) ABC a,b,c;

 (e) ABC a[10];

 7.7 How does a structure differ from an array?

 7.8 Explain the meaning and purpose of the 

following:

 (a) Template

 (b) struct keyword

 (c) typedef keyword

 (d) sizeof operator

 (e) Tag name



7.28 Computer Programming

Programming Exercises

 7.9 Explain what is wrong in the following 

structure declaration:
  struct

  {

     int number;

     float price;

  }

  main( )

  {

     . . . . .

     . . . . .

  }

 7.10 When do we use the following?

 (a) Unions

 (b) Bit fi elds

 (c) The sizeof operator

 7.11 What is meant by the following terms?

 (a) Nested structures

 (b) Array of structures

  Give a typical example of use of each of 

them.

 7.12 Given the structure defi nitions and 

declarations
   struct abc

  {

     int a;

     float b;

  };

  struct xyz

  {

     int x;

     float y;

  };

  abc a1, a2;

  xyz x1, x2;

  fi nd errors, if any, in the following statements:

 (a) a1 = x1;

 (b) abc.a1 = 10.75;

 (c) int m = a + x;

 (d) int n = x1.x + 10;

 (e) a1 = a2;

 (f) if (a.a1 > x.x1) . . .

 (g) if (a1.a < x1.x) . . .

 (h) if (x1 != x2) . . .

 7.13 Describe with examples, the different ways of 

assigning values to structure members.

 7.14 State the rules for initializing structures.

 7.15 What is a ‘slack byte’? How does it affect the 

implementa tion of structures?

 7.16 Describe three different approaches that 

can be used to pass structures as function 

arguments.

 7.17 What are the important points to be 

considered when imple menting bit-fi elds in 

structures?

 7.18 Defi ne a structure called complex consisting 

of two fl oating-point numbers x and y and 

declare a variable p of type complex. Assign 

initial values 0.0 and 1.1 to the members.

 7.19 What is the error in the following program?
  typedef struct product

  {

     char name [ 10 ];

     float price ;

  } PRODUCT products [ 10 ];

 7.20 What will be the output of the following 

program?
 main ( )

 {

   union x

   {

    int a;

    float b;

    double c ;

   };

   printf(“%d\n”, sizeof(x));

    a.x = 10;

   printf(“%d%f%f\n”, a.x, b.x, c.x);

    c.x = 1.23;

   printf(“%d%f%f\n”, a.x, b.x, c.x);

 }

 7.1 Defi ne a structure data type called time_

struct containing three members integer hour, 

integer minute and integer second. Develop 

a program that would assign values to the 

individual members and display the time in 

the following form:

16:40:51



Structure and Union Types 7.29 

 7.2 Modify the above program such that a 

function is used to input values to the 

members and another function to display the 

time.

 7.3 Design a function update that would accept 

the data structure designed in Exercise 7.1 and 

increments time by one second and returns 

the new time. (If the increment results in 60 

seconds, then the second member is set to 

zero and the minute member is incremented 

by one. Then, if the result is 60 minutes, the 

minute member is set to zero and the hour 

member is incremented by one. Finally when 

the hour becomes 24, it is set to zero.)

 7.4 Defi ne a structure data type named date 

containing three integer members day, month 

and year. Develop an interactive modular 

program to perform the following tasks;

To read data into structure members by a • 

function

To validate the date entered by another • 

function

To print the date in the format• 

April 29, 2002

  by a third function.

  The input data should be three integers like 

29, 4, and 2002 corresponding to day, month 

and year. Examples of invalid data:

  31, 4, 2002 – April has only 30 days

  29, 2, 2002 – 2002 is not a leap year

 7.5 Design a function update that accepts 

the date structure designed in Exercise 7.4 

to increment the date by one day and return 

the new date. The following rules are 

applicable:

If the date is the last day in a month, month • 

should be incremented

If it is the last day in December, the year • 

should be incremented

There are 29 days in February of a leap • 

year

 7.6 Modify the input function used in Exercise 

7.4 such that it reads a value that represents 

the date in the form of a long integer, like 

19450815 for the date 15-8-1945 (August 

15, 1945) and assigns suitable values to the 

members day, month and year.

  Use suitable algorithm to convert the long 

integer 19450815 into year, month and day.

 7.7 Add a function called nextdate to the 

program designed in Exercise 7.4 to perform 

the following task;

Accepts two arguments, one of the structure • 

data containing the present date and the 

second an integer that represents the 

number of days to be added to the present 

date.

Adds the days to the present date and • 

returns the structure containing the next 

date correctly.

  Note that the next date may be in the next 

month or even the next year.

 7.8 Use the date structure defi ned in Exercise 

7.4 to store two dates. Develop a function 

that will take these two dates as input and 

compares them.

It returns 1, if the•  date1 is earlier than 

date2

It returns 0, if • date1 is later date

 7.9 Defi ne a structure to represent a vector (a 

series of integer values) and write a modular 

program to perform the following tasks:

To create a vector• 

To modify the value of a given element• 

To multiply by a scalar value• 

To display the vector in the form (10, 20, • 

30, . . . . . ..)

 7.10 Add a function to the program of Exercise 7.9 

that accepts two vectors as input parameters 

and return the addition of two vectors.

 7.11 Create two structures named metric and 

British which store the values of distances. 

The metric structure stores the values in 

meters and centimeters and the British 

structure stores the values in feet and inches. 

Write a program that reads values for the 

structure variables and adds values contained 

in one variable of metric to the contents of 

another variable of British. The program 

should display the result in the format of 



7.30 Computer Programming

Key Terms

feet and inches or metres and centimetres as 

required.

 7.12 Defi ne a structure named census with the 

following three members:

A character array city [ ] to store names• 

A long integer to store population of the • 

city

A fl oat member to store the literacy level• 

  Write a program to do the following:

To read details for 5 cities randomly using • 

an array variable

To sort the list alphabetically• 

To sort the list based on literacy level• 

To sort the list based on population• 

To display sorted lists• 

 7.13 Defi ne a structure that can describe a hotel. It 

should have members that include the name, 

address, grade, average room charge, and 

number of rooms.

  Write functions to perform the following 

operations:

To print out hotels of a given grade in order • 

of charges

To print out hotels with room charges less • 

than a given value

 7.14 Defi ne a structure called cricket that will 

describe the following information:

  player name

  team name

  batting average

  Using cricket, declare an array player with 

50 elements and write a program to read the 

information about all the 50 players and print 

a team-wise list containing names of players 

with their batting average.

7.15 Design a structure student_record to contain 

name, date of birth and total marks obtained. 

Use the date structure designed in Exercise 

7.4 to represent the date of birth.

  Develop a program to read data for 10 

students in a class and list them rank-wise.

Array:•  It is a collection of related data 

elements of same type.

Structure:•  It is a collection of related data 

elements of different types.

Dot operator:•  It is a member operator used 

to identify the individual members in a 

structure.

Union:•  It is a collection of many members of 

different types.

Bit fi eld: • It is a set of adjacent bits that holds 

data items and packs several data items in a 

word of memory.



 8 File Handling

U N I T

Until now we have been using the functions such as scanf and printf to read and write data. These are 

 console oriented I/O functions, which always use the terminal (keyboard and screen) as the target place. This 

works fi ne as long as the data is small. However, many real-life problems involve large volumes of data and 

in such situations, the console oriented  I/O  operations pose two major problems.

1. It becomes cumbersome and time consuming to handle large volumes of data through terminals.

2. The entire data is lost when either the program is terminated or the computer is turned off.

It is therefore necessary to have a more fl exible approach where data can be stored on the disks and read 

whenever necessary, without destroying the data. This method employs the concept of fi les to store data. A 

fi le is a place on the disk where a group of related data is stored. Like most other languages, C supports a 

number of functions that have the ability to perform basic fi le operations, which include:

naming a fi le,• 

opening a fi le,• 

reading data from a fi le,• 

writing data to a fi le, and• 

closing a fi le.• 

There are two distinct ways to perform fi le operations in C. The fi rst one is known as the low-level I/O and 

uses UNIX system calls. The second method is referred to as the high-level I/O operation and uses functions 

in C’s standard I/O library. We shall discuss in this chapter, the important fi le handling functions that are 

available in the C library. They are listed in Table 8.1.

Table 8.1 High Level  I/O Functions

Function name Operation

fopen() * Creates a new fi le for use.

* Opens an existing fi le for use.

fclose() * Closes a fi le which has been opened for use.

getc() * Reads a character from a fi le.

putc() * Writes a character to a fi le.

fprintf() * Writes a set of data values to a fi le.

fscanf() * Reads a set of data values from a fi le.

getw() * Reads an integer from a fi le.

putw() * Writes an integer to a fi le.

(Contd.)

8.1 INTRODUCTION



8.2 Computer Programming

fseek() * Sets the position to a desired point in the fi le.

ftell() * Gives the current position in the fi le (in terms of bytes from the start).

rewind() * Sets the position to the beginning of the fi le.

There are many other functions. Not all of them are supported by all compilers. You should check your C 

library before using a particular I/O function.

As already explained, fi les are used for the storage and retrieval of data by a C program. Depending upon the 

format in which data is stored, fi les are primarily categorized into two types: 

Text fi le:•  As the name suggests, a text fi le stores textual information like alphabets, numbers, special 

symbols, etc. In actuality, the ASCII code of textual characters is stored in the text fi les. But, since data 

is stored in a storage device in the binary format, the text fi le contents are fi rst converted in the binary 

form before actually being stored in the storage device. In other words, we can say that the text fi les 

store the ASCII encrypted information. A text fi le can store different character sets such as:

Upper case English alphabets (A to Z)• 

Lowercase English alphabets (a to z)• 

Numeric characters (like 1, 3, 5, etc.)• 

Punctuation characters (like :, ; ,”,’, ?, etc.)• 

Special characters (like $, %, etc.)• 

Some of the examples of text fi les include C source code fi les and fi les with .txt extension. C language 

supports various operations for manipulating data stored in a text fi le. Some of these operations 

include  creating a new fi le, opening an existing fi le, reading a fi le, writing into the fi le, etc. These 

operations are performed with the help of inbuilt functions of C, explained later in the chapter. 

Binary fi le:•  As the name suggests, a binary fi le stores the information in the binary form, i.e., in the 

same format as it is stored in the memory. Thus, the use of binary fi le eliminates the need of data 

conversion from text to binary format for storage purpose. However, one of the main drawbacks of 

binary fi le is that the data stored in a binary fi le is not in human understandable form. Any fi le which 

stores the data in the form of bytes, i.e., 8-bit representation is known as binary fi le. Every executable 

fi le generated by the C compiler is a binary fi le. Apart from .exe fi les, examples of binary fi les include 

video stream fi les, image fi les, etc. C language supports binary fi le operations such as read, write and 

append with the help of various inbuilt functions.

If we want to store data in a fi le in the secondary memory, we must specify certain things about the fi le, to the 

operating system. They include:

1. Filename.

2. Data structure.

3. Purpose.

Filename is a string of characters that make up a valid fi lename for the operating system. It may contain two 

parts, a primary name and an optional period with the extension. Examples:

  Input.data

  store

8.2 TYPES OF FILES

8.3 DEFINING AND OPENING A FILE



File Handling 8.3 

  PROG.C

  Student.c

  Text.out

Data structure of a fi le is defi ned as  FILE in the library of standard I/O function defi nitions. Therefore, all 

fi les should be declared as type FILE before they are used. FILE is a defi ned data type.

When we open a fi le, we must specify what we want to do with the fi le. For example, we may write data 

to the fi le or read the already existing data.

Following is the general format for declaring and opening a fi le:

FILE *fp;

fp =   fopen(”filename”, “mode”);

The fi rst statement declares the variable fp as a “pointer to the data type FILE”. As stated earlier, FILE 

is a structure that is defi ned in the I/O library. The second statement opens the fi le named fi lename and assigns 

an identifi er to the FILE type pointer fp. This pointer, which contains all the information about the fi le is 

subsequently used as a communication link between the system and the program.

The second statement also specifi es the purpose of opening this fi le. The mode does this job. Mode can be 

one of the following:

r open the fi le for reading only.

w open the fi le for writing only.

a open the fi le for appending (or adding) data to it.

Note that both the fi lename and mode are specifi ed as strings. They should be enclosed in double quotation 

marks.

When trying to open a fi le, one of the following things may happen:

1. When the mode is ‘writing’, a fi le with the specifi ed name is created if the fi le does not exist. The 

contents are deleted, if the fi le already exists.

2. When the purpose is ‘appending’, the fi le is opened with the current contents safe. A fi le with the 

specifi ed name is created if the fi le does not exist.

3. If the purpose is ‘reading’, and if it exists, then the fi le is opened with the current contents safe other-

wise an error occurs.

Consider the following statements:

FILE *p1, *p2;

p1 = fopen(“data”, “r”);

p2 = fopen(“results”, “w”);

The fi le data is opened for reading and results is opened for writing. In case, the results fi le already exists, 

its contents are deleted and the fi le is opened as a new fi le. If data fi le does not exist, an error will occur.

Many recent compilers include additional modes of operation. They include:

r+ The existing fi le is opened to the beginning for both reading and writing.

w+ Same as w except both for reading and writing.

a+ Same as a except both for reading and writing.

We can open and use a number of fi les at a time. This number however depends on the system we use.

A fi le must be closed as soon as all operations on it have been completed. This ensures that all outstanding 

information associated with the fi le is fl ushed out from the buffers and all links to the fi le are broken. It also 

8.4 CLOSING A FILE



8.4 Computer Programming

prevents any accidental misuse of the fi le. In case, there is a limit to the number of fi les that can be kept open 

simultaneously, closing of unwanted fi les might help open the required fi les. Another instance where we have 

to close a fi le is when we want to reopen the same fi le in a different mode. The I/O library supports a function 

to do this for us. It takes the following form:

  fclose(file_pointer);

This would close the fi le associated with the FILE pointer fi le_pointer. Look at the following segment of 

a program.

.....

.....

FILE *p1, *p2;

p1 = fopen(“INPUT”, “w”);

p2 = fopen(“OUTPUT”, “r”);

.....

.....

fclose(p1);

fclose(p2);

.....

This program opens two fi les and closes them after all operations on them are completed. Once a fi le is 

closed, its fi le pointer can be reused for another fi le.

As a matter of fact all fi les are closed automatically whenever a program terminates. However, closing a 

fi le as soon as you are done with it is a good programming habit.

Once a fi le is opened, reading out of or writing to it is accomplished using the standard I/O routines that are 

listed in Table 8.1.

8.5.1 The   getc and   putc Functions

The simplest fi le I/O functions are getc and putc. These are analogous to getchar and putchar functions and 

handle one character at a time. Assume that a fi le is opened with mode w and fi le pointer fp1. Then, the 

statement

putc(c, fp1);

writes the character contained in the character variable c to the fi le associated with FILE pointer fp1. 

Similarly, getc is used to read a character from a fi le that has been opened in read mode. For example, the 

statement

c = getc(fp2);

would read a character from the fi le whose fi le pointer is fp2.

The fi le pointer moves by one character position for every operation of getc or putc. The getc will return 

an end-of-fi le marker EOF, when end of the fi le has been reached. Therefore, the reading should be termi-

nated when EOF is encountered.

EXAMPLE 8.1 Write a program to read data from the keyboard, write it to a fi le called INPUT, again 

read the same data from the INPUT fi le, and display it on the screen.

8.5 INPUT/OUTPUT OPERATIONS ON FILES



File Handling 8.5 

A program and the related input and output data are shown in Fig. 8.1. We enter the input data via the 

 keyboard and the program writes it, character by character, to the fi le INPUT. The end of the data is indicated 

by entering an EOF character, which is control-Z in the reference system. (This may be control-D in other 

systems.) The fi le INPUT is closed at this signal.

Program           

   #include  <stdio.h>                                              
                                                                    
   main()                                                           
   { 
       FILE *f1;                                                    
       char c;                                                      
       printf(“Data Input\n\n”);
       /* Open the file INPUT */                                     
       f1 = fopen(“INPUT”, “w”);
    
       /* Get a character from keyboard   */                                                                   
       while((c=getchar()) != EOF) 

           /* Write a character to INPUT  */  
           putc(c,f1);     
       /* Close the file INPUT   */                                                                
       fclose(f1);                 
       printf(“\nData Output\n\n”); 
       /* Reopen the file INPUT    */                             
       f1 = fopen(“INPUT”,”r”);    

      /* Read a character from INPUT*/                                                                  
       while((c=getc(f1)) != EOF) 

           /* Display a character on screen */  
           printf(“%c”,c);     

       /* Close the file INPUT       */  
       fclose(f1);                
   }                                                                
                                                                 
Output                                                           

                                                                    
   Data Input                                                       
   This is a program to test the file handling                      
   features on this system^Z                                        
                                                                    
   Data Output                                                      
   This is a program to test the file handling                      
   features on this system                                          

Fig. 8.1 Character oriented read/write operations on a fi le

The fi le INPUT is again reopened for reading. The program then reads its content character by character, 

and displays it on the screen. Reading is terminated when getc encounters the end-of-fi le mark EOF.

Testing for the end-of-fi le condition is important. Any attempt to read past the end of fi le might either 

cause the program to terminate with an error or result in an infi nite loop situation.



8.6 Computer Programming

8.5.2 The   getw and   putw Functions

The getw and putw are integer-oriented functions. They are similar to the getc and putc functions and are 

used to read and write integer values. These functions would be useful when we deal with only integer data. 

The general forms of getw and putw are:

putw(integer, fp);

getw(fp);

Example 8.2 illustrates the use of putw and getw functions.

EXAMPLE 8.2 A fi le named DATA contains a series of integer numbers. Code a program to read these 

numbers and then write all ‘odd’ numbers to a fi le to be called ODD and all ‘even’ 

numbers to a fi le to be called EVEN.

The program is shown in Fig. 8.2. It uses three fi les simultaneously and therefore, we need to defi ne three-fi le 

pointers f1, f2 and f3.

First, the fi le DATA containing integer values is created. The integer values are read from the terminal and 

are written to the fi le DATA with the help of the statement

 putw(number, f1);

Notice that when we type –1, the reading is terminated and the fi le is closed. The next step is to open all 

the three fi les, DATA for reading, ODD and EVEN for writing. The contents of DATA fi le are read, integer 

by integer, by the function getw(f1) and written to ODD or EVEN fi le after an appropriate test. Note that the 

statement

(number = getw(f1)) != EOF

reads a value, assigns the same to number, and then tests for the end-of-fi le mark.

Finally, the program displays the contents of ODD and EVEN fi les. It is important to note that the fi les 

ODD and EVEN opened for writing are closed before they are reopened for reading.

Program          

   #include  <stdio.h>                                               
   main()                                                            
   {                                                                 
       FILE  *f1, *f2, *f3;                                          
       int   number, i;                                              
                                                                     
       printf(“Contents of DATA file\n\n”);                          
       f1 = fopen(“DATA”, “w”);      /* Create DATA file    */       
       for(i = 1; i <= 30; i++)                                      
       {
          scanf(“%d”, &number);                                      
          if(number == -1) break;                                    
          putw(number,f1);                                           
       }                                                             
       fclose(f1);                                                   
                                                                     
       f1 = fopen(“DATA”, “r”);                                      
       f2 = fopen(“ODD”, “w”);                                       

(Contd.)



File Handling 8.7 

8.5.3 The   fprintf and   fscanf Functions

So far, we have seen functions, that can handle only one character or integer at a time. Most compilers  support 

two other functions, namely fprintf and fscanf, that can handle a group of mixed data simultaneously.

The functions fprintf and fscanf perform I/O operations that are identical to the familar printf and scanf 

functions, except of course that they work on fi les. The fi rst argument of these functions is a fi le pointer which 

specifi es the fi le to be used. The general form of fprintf is

fprintf(fp, “control string”, list);

where fp is a fi le pointer associated with a fi le that has been opened for writing. The control string contains 

output specifi cations for the items in the list. The list may include variables, constants and strings. Example:

fprintf(f1, “%s %d %f”, name, age, 7.5);

       f3 = fopen(“EVEN”, “w”);       
                               
       /* Read from DATA file */                                                                 
       while((number = getw(f1)) != EOF) 
       {
           if(number %2 == 0)                                        
             putw(number, f3);   /*  Write to EVEN file  */   
           else                                                      
             putw(number, f2);   /*  Write to ODD file   */   
       }                                                             
       fclose(f1);                                                   
       fclose(f2);                                                   
       fclose(f3);                                                   
                                                                     
       f2 = fopen(“ODD”,”r”);                                        
       f3 = fopen(“EVEN”, “r”);                                      
       printf(“\n\nContents of ODD file\n\n”);                       
       while((number = getw(f2)) != EOF)                             
          printf(“%4d”, number);                                     
       printf(“\n\nContents of EVEN file\n\n”);                      
       while((number = getw(f3)) != EOF)                             
          printf(“%4d”, number);                                     
                                                                     
       fclose(f2);                                                   
       fclose(f3);                                                   
                                                                     
   }                                                                 
                                                                     
   Output                                                            

                                                                     
   Contents of DATA file                                             
   111 222 333 444 555 666 777 888 999 000 121 232 343 454 565 –1    
                                                                     
   Contents of ODD file                                              
   111 333 555 777 999 121 343 565                                  
                                                                     
   Contents of EVEN file                                             
   222 444 666 888   0 232 454                                      

Fig. 8.2 Operations on integer data



8.8 Computer Programming

Here, name is an array variable of type char and age is an int variable.

The general format of fscanf is

fprintf(fp, “control string”, list);

This statement would cause the reading of the items in the list from the fi le specifi ed by fp, according to 

the specifi cations contained in the control string. Example:

fscanf(f2, “%s %d”, item, &quantity);

Like scanf, fscanf also returns the number of items that are successfully read. When the end of fi le is 

reached, it returns the value EOF.

EXAMPLE 8.3 Write a program to open a fi le named INVENTORY and store in it the following 

data:

 Item name Number Price Quantity

 AAA-1 111 17.50 115

 BBB-2 125 36.00 75

 C-3 247 31.75 104

 Extend the program to read this data from the fi le INVENTORY and display the 

inventory table with the value of each item.

The program is given in Fig. 8.3. The fi lename INVENTORY is supplied through the keyboard. Data is read 

using the function fscanf from the fi le stdin, which refers to the terminal and it is then written to the fi le that 

is being pointed to by the fi le pointer fp. Remember that the fi le pointer fp points to the fi le INVENTORY.

After closing the fi le INVENTORY, it is again reopened for reading. The data from the fi le, along with the 

item values are written to the fi le stdout, which refers to the screen. While reading from a fi le, care should be 

taken to use the same format specifi cations with which the contents have been written to the fi le.…é

Program

   #include  <stdio.h>                                              
                                                                    
   main()                                                           
   {
       FILE  *fp;                                                   
       int    number, quantity, i;                                  
       float  price, value;                                         
       char   item[10], filename[10];                               
                                                                    
       printf(“Input file name\n”);                                 
       scanf(“%s”, filename);                                       
       fp = fopen(filename, “w”);                                   
       printf(“Input inventory data\n\n”);                          
       printf(“Item name  Number   Price   Quantity\n”);            
       for(i = 1; i <= 3; i++)                                      
       {
          fscanf(stdin, “%s %d %f %d”,                              
                        item, &number, &price, &quantity);          
          fprintf(fp, “%s %d %.2f %d”,                              
                        item, number, price, quantity);             
       }                                                            

(Contd.)



File Handling 8.9 

It is possible that an error may occur during I/O operations on a fi le. Typical error situations include:

1. Trying to read beyond the end-of-fi le mark.

2. Device overfl ow.

3. Trying to use a fi le that has not been opened.

4. Trying to perform an operation on a fi le, when the fi le is opened for another type of operation.

5. Opening a fi le with an invalid fi lename.

6. Attempting to write to a write-protected fi le.

If we fail to check such read and write errors, a program may behave abnormally when an error occurs. An 

unchecked error may result in a premature termination of the program or incorrect output. Fortunately, we 

have two status-inquiry library functions;  feof and  ferror that can help us detect I/O errors in the fi les.

The feof function can be used to test for an end of fi le condition. It takes a FILE pointer as its only 

 argument and returns a nonzero integer value if all of the data from the specifi ed fi le has been read, and 

returns zero otherwise. If fp is a pointer to fi le that has just been opened for reading, then the statement

 if(feof(fp))

  printf(“End of data.\n”);

would display the message “End of data.” on reaching the end of fi le condition.

8.6 ERROR HANDLING DURING  I/O OPERATIONS

       fclose(fp);                                                  
       fprintf(stdout, “\n\n”);                                     
                                                                    
       fp = fopen(filename, “r”);
       printf(“Item name  Number   Price   Quantity    Value\n”);   
       for(i = 1; i <= 3; i++)                                      
       {
          fscanf(fp, “%s %d %f d”,item,&number,&price,&quantity);  
          value = price * quantity;                                 
          fprintf(stdout, “%-8s %7d %8.2f %8d %11.2f\n”,            
                         item, number, price, quantity, value);     
       }                                                            
       fclose(fp);                                                  
   }                                                                
Output                                                           

                                                                    
   Input file name                                                  
   INVENTORY                                                        
   Input inventory data                                             
                                                                    
   Item name  Number   Price   Quantity                             
   AAA-1  111  17.50  115                                           
   BBB-2  125  36.00  75                                            
   C-3    247  31.75  104                                           
                                                                    
   Item name  Number   Price   Quantity    Value                    
   AAA-1        111    17.50      115     2012.50                   
   BBB-2        125    36.00       75     2700.00                   
   C-3          247    31.75      104     3302.00

Fig. 8.3 Operations on mixed data types



8.10 Computer Programming

The ferror function reports the status of the fi le indicated. It also takes a FILE pointer as its argument and 

returns a nonzero integer if an error has been detected up to that point, during processing. It returns zero 

otherwise. The statement

 if( ferror(fp) != 0)

  printf(“An error has occurred.\n”);

would print the error message, if the reading is not successful.

We know that whenever a fi le is opened using fopen function, a fi le pointer is returned. If the fi le cannot 

be opened for some reason, then the function returns a NULL pointer. This facility can be used to test whether 

a fi le has been opened or not. Example:

 if(fp == NULL)

  printf(“File could not be opened.\n”);

EXAMPLE 8.4 Write a program to illustrate error handling in fi le operations.

The program shown in Fig. 8.4 illustrates the use of the NULL pointer test and feof function. When we input 

fi lename as TETS, the function call

fopen(“TETS”, “r”);

returns a NULL pointer because the fi le TETS does not exist and therefore the message “Cannot open the 

fi le” is printed out.

Similarly, the call feof(fp2) returns a non-zero integer when the entire data has been read, and hence the 

program prints the message “Ran out of data” and terminates further reading.

Program

    #include  <stdio.h>                                             
                                                                    
    main()                                                          
    {                                                               
       char  *filename;                                            
        FILE  *fp1, *fp2;                                           
        int   i, number;                                            
                                                                    
        fp1 = fopen(“TEST”, “w”);                                   
        for(i = 10; i <= 100; i += 10)                              
           putw(i, fp1);                                            
                                                                    
        fclose(fp1);                                                
                                                                    
        printf(“\nInput filename\n”);                               
                                                                    
    open_file:                                                      
        scanf(“%s”, filename);                                      
                                                                    
        if((fp2 = fopen(filename,”r”)) == NULL)                     
        {                                                           
           printf(“Cannot open the file.\n”);                       
           printf(“Type filename again.\n\n”);                      

(Contd.)



File Handling 8.11 

So far we have discussed fi le functions that are useful for reading and writing data sequentially. There are 

occasions, however, when we are interested in accessing only a particular part of a fi le and not in reading the 

other parts. This can be achieved with the help of the functions fseek, ftell, and rewind available in the I/O 

library.

ftell takes a fi le pointer and return a number of type long, that corresponds to the current position. This 

function is useful in saving the current position of a fi le, which can be used later in the program. It takes the 

following form:

n =   ftell(fp);

8.7 RANDOM ACCESS TO FILES

           goto open_file;                                          
        }                                                           
        else                                                        
                                                                    
        for(i = 1; i <= 20; i++)                                    
        {  number = getw(fp2);                                      
           if(feof(fp2))                                            
           {                                                        
              printf(“\nRan out of data.\n”);                       
              break;                                                
           }                                                        
           else                                                     
              printf(“%d\n”, number);                               
        }                                                           
                                                                    
        fclose(fp2);                                                
    }                                                               

Output                                                           

                                                                    
   Input filename                                                   
   TETS                                                             
   Cannot open the file.                                            
   Type filename again.                                             
                                                                    
   TEST                                                             
   10                                                               
   20                                                               
   30                                                               
   40                                                               
   50                                                               
   60                                                               
   70                                                               
   80                                                               
   90                                                               
   100                                                            

   Ran out of data.                                                 

Fig. 8.4 Illustration of error handling in fi le operations



8.12 Computer Programming

n would give the relative offset (in bytes) of the current position. This means that n bytes have already been 

read (or written).

rewind takes a fi le pointer and resets the position to the start of the fi le. For example, the statement

rewind(fp);

n = ftell(fp);

would assign 0 to n because the fi le position has been set to the start of the fi le by rewind. Remember, the 

fi rst byte in the fi le is numbered as 0, second as 1, and so on. This function helps us in reading a fi le more than 

once, without having to close and open the fi le. Remember that whenever a fi le is opened for reading or 

 writing, a rewind is done implicitly.

fseek function is used to move the fi le position to a desired location within the fi le. It takes the following 

form:

  fseek(file_ptr, offset, position);

fi le_ptr is a pointer to the fi le concerned, offset is a number or variable of type long, and position is an integer 

number. The offset specifi es the number of positions (bytes) to be moved from the location specifi ed by 

 position. The position can take one of the following three values:

 Value Meaning

 0 Beginning of fi le

 1 Current position

 2 End of fi le

The offset may be positive, meaning move forwards, or negative, meaning move backwards.

Examples in Table 8.2 illustrate the operations of the fseek function:

Table 8.2 Operations of fseek Function

Statement Meaning

fseek(fp,0L,0); Go to the beginning. 

(Similar to rewind)

fseek(fp,0L,1); Stay at the current position.

(Rarely used)

fseek(fp,0L,2); Go to the end of the fi le, past the last character of the fi le.

fseek(fp,m,0); Move to (m+1)th byte in the fi le.

fseek(fp,m,1); Go forward by m bytes.

fseek(fp,-m,1); Go backward by m bytes from the current position.

fseek(fp,-m,2); Go backward by m bytes from the end. (Positions the fi le to the mth character from the end.)

When the operation is successful, fseek returns a zero. If we attempt to move the fi le pointer beyond the 

fi le boundaries, an error occurs and fseek returns –1 (minus one). It is good practice to check whether an error 

has occurred or not, before proceeding further.

EXAMPLE 8.5 Write a program that uses the functions ftell and fseek.

Position ––––>   0 1 2 . . . 25

Character stored ––––> A B C . . . Z



File Handling 8.13 

We are reading the fi le twice. First, we are reading the content of every fi fth position and printing its value 

along with its position on the screen. The second time, we are reading the contents of the fi le from the end 

and printing the same on the screen.

During the fi rst reading, the fi le pointer crosses the end-of-fi le mark when the parameter n of fseek(fp,n,0) 

becomes 30. Therefore, after printing the content of position 30, the loop is terminated.

For reading the fi le from the end, we use the statement

fseek(fp,–1L,2);

to position the fi le pointer to the last character. Since every read causes the position to move forward by one 

position, we have to move it back by two positions to read the next character. This is achieved by the 

function
fseek(fp, –2L, 1);

in the while statement. This statement also tests whether the fi le pointer has crossed the fi le boundary or not. 

The loop is terminated as soon as it crosses it.

Program  

   #include <stdio.h>                                             
   main()                                                           
   {                                                                
       FILE  *fp;                                                   
       long  n;                                                     
       char c;                                                      
       fp = fopen(“RANDOM”, “w”);                                   
       while((c = getchar()) != EOF)                                
           putc(c,fp);                                              
                                                                    
       printf(“No. of characters entered = %ld\n”, ftell(fp));      
       fclose(fp);                                                  
       fp = fopen(“RANDOM”,”r”);                                    
       n = 0L;                                                      
                                                                    
       while(feof(fp) == 0)                                         
       {                                                            
           fseek(fp, n, 0);  /*  Position to (n+1)th character */   
           printf(“Position of %c is %ld\n”, getc(fp),ftell(fp));  
           n = n+5L;                                                
       }                                                            
       putchar(‘\n’);                                               
                                                                    
       fseek(fp,–1L,2);     /*  Position to the last character */   
         do                                                           
         {                                                          
             putchar(getc(fp));                                     
         }                                                          
         while(!fseek(fp,–2L,1));                                     
         fclose(fp);                                                  
   }                                                                
Output                                                           

                                                                    
   ABCDEFGHIJKLMNOPQRSTUVWXYZ^Z                                     
   No. of characters entered = 26                                   

(Contd.)



8.14 Computer Programming

EXAMPLE 8.6 Write a program to append additional items to the fi le INVENTORY created in 

Example 8.3 and print the total contents of the fi le.

The program is shown in Fig. 8.6. It uses a structure defi nition to describe each item and a function append() 

to add an item to the fi le.

On execution, the program requests for the fi lename to which data is to be appended. After appending the 

items, the position of the last character in the fi le is assigned to n and then the fi le is closed.

The fi le is reopened for reading and its contents are displayed. Note that reading and displaying are done 

under the control of a while loop. The loop tests the current fi le position against n and is terminated when 

they become equal.

   Position of A is 0                                               
   Position of F is 5                                               
   Position of K is 10                                              
   Position of P is 15                                              
   Position of U is 20                                              
   Position of Z is 25                                              
   Position of   is 30                                              
                                                                    
 ZYXWVUTSRQPONMLKJIHGFEDCBA                                       

Fig. 8.5 Illustration of fseek and ftell functions

Program

   #include  <stdio.h>                                              
                                                                    
   struct invent_record                                             
   {
       char   name[10];                                             
       int    number;                                               
       float  price;                                                
       int    quantity;                                             
   };                                                               
   main()                                                           
   {
       struct invent_record item;                                   
       char  filename[10];                                          
       int   response;                                              
       FILE  *fp;                                                   
       long  n;                                                     
       void append (struct invent_record *x, file *y);                                                             
       printf(“Type filename:”);                                    
       scanf(“%s”, filename);                                       
                                                                    
       fp = fopen(filename, “a+”);                                  
       do                                                           
       {
          append(&item, fp);                                        
          printf(“\nItem %s appended.\n”,item.name);                
          printf(“\nDo you want to add another item\                
     (1 for YES /0 for NO)?”);                                        

(Contd.)



File Handling 8.15 

          scanf(“%d”, &response);                                   
       }  while (response == 1);                                    
                                                                    
       n = ftell(fp);      /* Position of last character  */        
       fclose(fp);                                                  
                                                                    
       fp = fopen(filename, “r”);                                   
       
       while(ftell(fp) < n)                                         
       {                                                            
          fscanf(fp,”%s %d %f %d”,                                  
          item.name, &item.number, &item.price, &item.quantity); 
          fprintf(stdout,”%-8s %7d %8.2f %8d\n”,                    
          item.name, item.number, item.price, item.quantity);    
       }                                                            
       fclose(fp);                                                  
   }                                                                
   void append(struct invent_record *product, File *ptr)
   {                                                                
       printf(“Item name:”);                                        
       scanf(“%s”, product–>name);                                  
       printf(“Item number:”);                                      
       scanf(“%d”, &product–>number);                               
       printf(“Item price:”);                                       
       scanf(“%f”, &product–>price);                                
       printf(“Quantity:”);                                         
       scanf(“%d”, &product–>quantity);                             
       fprintf(ptr, “%s %d %.2f %d”,                                
                     product–>name,                                 
                     product–>number,                               
                     product–>price,                                
                     product–>quantity);                            
   }                                                                
                                                                    
Output                                                           

   Type filename:INVENTORY                                          
   Item name:XXX                                                    
   Item number:444                                                  
   Item price:40.50                                                 
   Quantity:34                                                      
   Item XXX appended.                                               
   Do you want to add another item(1 for YES /0 for NO)?1           
   Item name:YYY                                                    
   Item number:555                                                  
   Item price:50.50                                                 
   Quantity:45                                                      
   Item YYY appended.                                               
   Do you want to add another item(1 for YES /0 for NO)?0           
   AAA-1        111    17.50      115                               
   BBB-2        125    36.00       75                               
   C-3          247    31.75      104                               
   XXX          444    40.50       34                               
   YYY          555    50.50       45                               

Fig. 8.6 Adding items to an existing fi le



8.16 Computer Programming

Just Remember

Do not try to use a fi le before opening it.• 

Remember, when an existing fi le is open • 

using ‘w’ mode, the contents of fi le are 

deleted.

When a fi le is used for both reading and • 

writing, we must open it in ‘w+’ mode.

EOF is integer type with a value –1.  Therefore, • 

we must use an integer variable to test EOF.

It is an error to omit the fi le pointer when • 

using a fi le function.

It is an error to open a fi le for reading when it • 

does not exist.

It is an error to try to read from a fi le that is in • 

write mode and vice versa.

It is an error to attempt to place the fi le marker • 

before the fi rst byte of a fi le.

It is an error to access a fi le with its name • 

rather than its fi le pointer.

It is a good practice to close all fi les before • 

terminating a program.

Use getw and putw for reading and writing an • 

integer to a fi le.

You must choose an appropriate fi le access • 

mode depending upon the type of fi le 

operation that you want to perform. 

It is always advisable to implement an error-• 

handling mechanism through the use of ferror 

function. 

Use the fseek function to move to any desired • 

location in a fi le.

Multiple Choice Questions

 1. Which of the following tasks are not performed 

by the fopen function?

(a) Creating a new fi le which does not already 

exist 

(b) Opening an existing fi le

(c) Deleting the existing fi le and creating a 

new one with the same name

(d) Opening an existing fi le in append mode

 2. Which of the following is true for getc 

function?

(a) Read a string from the fi le

(b) Read a character from the fi le

(c) Read a character from the console

(d) Read a string from the console

 3. Which of the following tasks are performed by 

the rewind function?

(a) Set the fi le pointer to the end of the fi le

(b) Set the fi le pointer to the beginning of the 

fi le

(c) Set the fi le pointer to any desired position 

in the fi le

(d) Erase all the fi le contents and place the fi le 

pointer at the beginning

 4. Which of the following are not i/o functions 

in C?

(a) fscanf (b) fseek

(c) ftel (d) forward

 5. What is the functionality of a+ fi le access 

mode?

(a) Open the fi le for appending data to it

(b) Open the fi le in read-write mode for 

 appending data to it

(c) Append the contents of one fi le into 

 another

(d) None of the above

 6. Which of the following is true for putc?

(a) Put one character at a time into the fi le

(b) Put one string at a time into the fi le

(c) Put one character at a time into the 

console

(d) Put one string at a time into the console

 7. Which of the following functions 

is used to read an integer value from 

a fi le?

(a) getw (b) getc

(c) gets (d) geti



File Handling 8.17 

 8. Which of the following fi le-handling functions 

is analogous to the standard i/o function printf?

(a) fprint (b) fprintf

(c) fprints (d) fprintline

 9. What will the function call fseek(fp,m,0) do?

(a) Move to the mth byte in the fi le

(b) Move to the (m-1)th byte in the fi le

(c) Move to the (m+1)th byte in the fi le

(d) Move to a location which is m positions 

ahead of the current fi le pointer position

 10. Command line functions are:

(a) Passed at run time

(b) Passed at compile time

(c) Passed to the main function during prepro-

cessing of the program

(d) Passed during dynamic memory allocation

 11. End of fi le is represented by which of the 

following?

(a) eof (b) EOF

(c) ‘/0’ (d) Any garbage value

 12. What is the type and value of EOF?

(a) int, 0 (b) int, 1

(c) int, -1 (d) char, 1

 13. Which of the following is a commonly used 

function for error-handling?

(a) ferr (b) ferror

(c) feof (d) None of the above

 14. Which of the following is not a fi le access 

mode?

(a) r+ (b) w+

(c) a- (d) a+

 15. In C, fi les can be manipulated in which of the 

following modes?

(a) text (b) int

(c) binary (d) All of the above

Review Questions

 8.1 State whether the following statements are 

true or false.

 (a) A fi le must be opened before it can be 

used.

 (b) All fi les must be explicitly closed.

 (c) Files are always referred to by name in C 

programs.

 (d) Using fseek to position a fi le beyond the 

end of the fi le is an error.

 (e) Function fseek may be used to seek from 

the beginning of the fi le only.

 8.2 Fill in the blanks in the following statements.

 (a) The mode _______ is used for opening a 

fi le for updating.

 (b) The function _______ may be used to 

position a fi le at the beginning.

 (c) The function _______ gives the current 

position in the fi le.

 (d) The function _______ is used to write 

data to randomly accessed fi le.

 8.3 Describe the use and limitations of the 

functions getc and putc.

 8.4 What is the signifi cance of EOF?

 8.5 When a program is terminated, all the fi les 

used by it are automatically closed. Why is it 

then necessary to close a fi le during execution 

of the program?

 8.6 Distinguish between the following functions:

 (a) getc and getchar (b) printf and fprintf

 (c) feof and ferror

 8.7 How does an append mode differ from a write 

mode?

 8.8 What are the common uses of rewind and 

ftell functions?

 8.9 Explain the general format of fseek 

function?

 8.10 What is the difference between the statements 

rewind(fp); and fseek(fp,0L,0);?

 8.11 Find error, if any, in the following 

statements:
FILE fptr;

fptr = fopen (“data”, “a+”);

 8.12 What does the following statement mean?
FILE(*p) (void)

 8.13 What does the following statement do?
While ( (c = getchar( ) != EOF )

putc(c, fl);



8.18 Computer Programming

 8.14 What does the following statement do?
While ( (m = getw(fl) ) != EOF)

printf(“%5d”, m);

 8.15 What does the following segment do?
. . . .

for (i = 1; i <= 5; i++ )

{

  fscanf(stdin, “%s”, name);

  fprintf(fp, “%s”, name);

}

. . . .

8.16 What is the purpose of the following 

functions?

 (a) feof () (b) ferror ( )

8.17 Give examples of using feof and ferror in a 

program.

8.18 Can we read from a fi le and write to the same 

fi le without resetting the fi le pointer? If not, 

why?

8.19 When do we use the following functions ?

 (a) free ( ) (b) rewind ( )

8.20 Describe an algorithm that will append 

the contents of one fi le to the end of 

another fi le.

Programming Exercises

 8.1 Write a program to copy the contents of one 

fi le into another.

 8.2 Two fi les DATA1 and DATA2 contain 

sorted lists of integers. Write a program to 

produce a third fi le DATA which holds a 

single sorted, merged list of these two lists. 

Use command line arguments to specify the 

fi le names.

 8.3 Write a program that compares two fi les 

and returns 0 if they are equal and 1 is they 

are not.

 8.4 Write a program that appends one fi le at the 

end of another.

 8.5 Write a program that reads a fi le containing 

integers and appends at its end the sum of all 

the integers.

 8.6 Write a program that prompts the user for 

two fi les, one containing a line of text known 

as source fi le and other, an empty fi le known 

as target fi le and then copies the contents of 

source fi le into target fi le.

  Modify the program so that a specifi ed 

character is deleted from the source fi le as it is 

copied to the target fi le.

 8.7 Write a program that requests for a fi le 

name and an inte ger, known as offset 

value. The program then reads the fi le 

starting from the location specifi ed by the 

offset value and prints the contents on the 

screen.

  Note: If the offset value is a positive integer, 

then printing skips that many lines. If it is 

a negative number, it prints that many lines 

from the end of the fi le. An appropriate error 

message should be printed, if anything goes 

wrong.

 8.8 Write a program to create a sequential fi le 

that could store details about fi ve products. 

Details include product code, cost and number 

of items available and are provided through 

keyboard.

 8.9 Write a program to read the fi le created in 

Exercise 14.8 and compute and print the total 

value of all the fi ve products.

 8.10 Rewrite the program developed in Exercise 

14.8 to store the details in a random access 

fi le and print the details of alter nate products 

from the fi le. Modify the program so that it 

can output the details of a product when its 

code is specifi ed inter actively.



File Handling 8.19 

Key Terms

Filename• : It is a string of characters that 

make up a valid fi lename for the operating 

system.

ftell• : It is a function, which takes a fi le 

pointer and returns a number of type long that 

corresponds to the current position.

rewind• : It is a function, which takes a fi le 

pointer and resets the position to the start of 

the fi le.

fseek• : It is a function used to move the fi le 

position to a desired location within the fi le.





EXAMPLE A.1 Write a program for demonstrating the use of symbolic constants.

Program

/*Program for demonstrating use of Symbolic Constants*/
#include <stdio.h>
#include <conio.h>
#define CP 50 /*Defining Symbolic Constant for Cost Price*/

void main( )
{
 int SP, profit;
 clrscr();

 printf(“Enter the SELLING PRICE “);
 scanf(“%d”, &SP);

 profit=SP-CP; /*Using Symbolic Constant CP in an expression*/
 printf(“\nThe profit earned is %d”, profit);

 getch();
}

Output

Enter the SELLING PRICE 65

The profit earned is 15

EXAMPLE A.2 Write a program that reads a date in the dd\mm\yyyy format and determines whether 

the entered date is correct or not.

Program

/*Program for demonstrating the use of scanf function*/
#include <stdio.h>
#include <conio.h>

(Contd.)

Appendix A



A.2 Computer Programming 

EXAMPLE A.3 Write a program to determine whether an input number is even or odd.

Program

/*Program for demonstrating use of Modulo Division Operator %*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int num;
 clrscr();

 printf(“\nEnter a number: “);
 scanf(“%d”,&num);/*Reading an Integer*/

 if(num%2==0)/*Using % operator to compute the remainder value*/
  printf(“\n%d is an even number”,num);
 else
  printf(“\n%d is an odd number”,num);

 getch();
}

Output

Enter a number: 55

55 is an odd number

void main()
{
 int dd,mm,yyyy;
 clrscr();

 printf(“Enter the date in dd mm yyyy format “);
 scanf(“%d %d %d”,&dd,&mm,&yyyy); /*Reading the date values*/

 /*Checking whether day, month, and year is correct */
 if(dd<1 || dd>31 || mm<1 || mm>12 || yyyy<0 || (mm==2 && dd>29))
  printf(“NO”);
 else
  printf(“YES”);

 getch();
}

Output

Enter the date in dd mm yyyy format 22        09      2001
YES



Appendix A A.3 

EXAMPLE A.4 Write a program to convert degrees value into radians.

Program

/*Program for demonstrating real arithmetic*/
#include <stdio.h>
#include <conio.h>

void main( )
{
 float deg, radian;
 clrscr();

 printf(“Enter the degrees value “);
 scanf(“%f”, &deg);

 radian=(deg*3.14)/180.00; /*Using a formula for converting degrees to radians*/
 printf(“\nThe equivalent value in radians is %.2f”, radian);

 getch();
}

Output

Enter the degrees value 120

The equivalent value in radians is 2.09

EXAMPLE A.5 Write a program for calculating speed.

Program

/*Program for demonstrating mixed-mode arithmetic*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int d;
 float t;
 clrscr();
 /*Reading the values of distance and time*/
 printf(“\nEnter the distance travelled in Kms: “);
 scanf(“%d”, &d);
 printf(“\nEnter the travel time in hours: “);
 scanf(“%f”, &t);

 printf(“\nSpeed = %.2f Km/h”, d/t);/*Mixed-mode arithmetic expression*/
 getch();
}

(Contd.)



A.4 Computer Programming 

EXAMPLE A.6 Write a program for evaluating the logical expression (10/2-4)&&(7%3)||(0/10).

Program

/*Program for demonstrating the use of logical operators*/
#include <stdio.h>
#include <conio.h>

void main()
{
 clrscr();

 if((10/2-4)&&(7%3)||(0/10))/*Evaluating a logical expression*/
  printf(“True”);
 else
  printf(“False”);

  getch();
}

Output

True

EXAMPLE A.7 Write a program to demonstrate the use of increment operator.

Output

Enter the distance travelled in Kms: 380

Enter the travel time in hours: 5.5

Speed = 69.09 Km/h

Program

/*Program for demonstrating the use of increment operator*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int a=10;
 clrscr();

 /*Using Increment Operator*/
 printf(“a = %d”,a);
 printf(“\n++a = %d”,++a);
 printf(“\na = %d”,a);

(Contd.)



Appendix A A.5 

EXAMPLE A.8 Write a program to perform bitwise AND and OR operations.

Program

/*Program for demonstrating the use of bitwise operators*/
#include <stdio.h>
#include <conio.h>

void main()
{
 char a=’A’,b=’B’;
 clrscr();

 printf(“a & b = %c”,a&b);/*Using bitwise & operator*/
 printf(“\na | b = %c”,a|b);/*Using bitwise | operator*/

 getch();
}

Output

a & b = @
a | b = C

EXAMPLE A.9 Write a program to demonstrate the use of sizeof operator.

 printf(“\na++ = %d”,a++);
 printf(“\na = %d”,a);

 getch();
}

Output

a = 10
++a = 11
a = 11
a++ = 11
a = 12

Program

/*Program for demonstrating the use of sizeof operator*/
#include <stdio.h>
#include <conio.h>

void main()
{
 char a;
 int b;

(Contd.)



A.6 Computer Programming 

EXAMPLE A.10 Write a program to solve the equation x = a-b/3+c*2-1.

Program

/*Program for demonstrating operator precedence in expression evaluation*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int a=9,b=12,c=3;
 int x;
 clrscr();

 x=a-b/3+c*2-1;/*Expression evaluation*/
 printf(“Value of x = %d”,x);/*Printing the resultant value x*/

 getch();
}

Output

Value of x = 10

EXAMPLE A.11 Write a program to evaluate the expression A/B*C+D/A.

 long c;
 float d;
 clrscr();

 /*Using the sizeof operator to compute the size of different datatypes*/
 printf(“Size of char a = %u”,sizeof(a));
 printf(“\nSize of int b = %u”,sizeof(b));
 printf(“\nSize of long c = %u”,sizeof(c));
 printf(“\nSize of float d = %u”,sizeof(d));
 getch();
}

Output

Size of char a = 1
Size of int b = 2
Size of long c = 4
Size of float d = 4

Program

/*Program for demonstrating operator precedence in expression evaluation*/
#include <stdio.h>
#include <conio.h>

(Contd.)



Appendix A A.7 

EXAMPLE A.12 Write a program to compute logarithmic values.

Program

/*Program for demonstrating the use of built-in functions of C*/
#include <stdio.h>
#include <conio.h>
#include <math.h>

void main()
{
 int x;
 float l1,l2;
 clrscr();
 printf(“Enter the value of x: “);
 scanf(“%d”,&x);/*Reading x*/

 l1=log(x);/*Computing natural log*/
 l2=log10(x); /*Computing log to the base 10*/
 printf(“log(x) = %.2f\nlog10(x) = %.2f”,l1,l2);/*Printing the resultant values*/

 getch();
}

Output

Enter the value of x: 10
log(x) = 2.30
log10(x) = 1.00

void main()
{
 int A,B,C,D;
 int RESULT;
 clrscr();
 printf(“Enter the value of A, B, C and D: “);
 scanf(“%d %d %d %d”,&A, &B, &C, &D);/*Reading operand values*/

 RESULT= A - B * C + D * A; /*Expression evaluation*/
 printf(“RESULT = %d”,RESULT);/*Printing the resultant value*/

 getch();
}

Output

Enter the value of A, B, C and D: 22
5
65
9
RESULT = -105



A.8 Computer Programming 

EXAMPLE A.13 Write a program to compute xy.

Program

/*Program for demonstrating the use of built-in function pow(x,y)*/
#include <stdio.h>
#include <conio.h>
#include <math.h>

void main()
{
 int x,y;
 long z;
 clrscr();

 printf(“Enter the value of x: “);
 scanf(“%d”,&x);/*Reading the value of x*/
 printf(“Enter the value of y: “);
 scanf(“%d”,&y);/*Reading the value of y*/

 z=pow(x,y);/*Calling the built-in function pow()*/

 printf(“%d to the power of %d is equal to %ld”, x, y, z);

 getch();
}

Output

Enter the value of x: 2
Enter the value of y: 16
2 to the power of 16 is equal to 65536

EXAMPLE A.14 Write a program for calculating sum of all the numbers between 3 and 20 excluding 

the multiples of 3.

Program

/*Program to demonstrate the use IF Statement*/
#include<stdio.h>
#include<conio.h>

void main()
{
 int i,sum=0;
 clrscr();

 for (i=3;i<20;i++)/*Specifying the looping condition*/
 {
  if(i%3==0)/*Identifying multiples of 3*/
   continue;

(Contd.)



Appendix A A.9 

EXAMPLE A.15 Write a program to determine whether or not a given year is a leap year.

Program

/*Program to demonstrate the use IF.....ELSE Statement*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int year;
 clrscr();

 printf(“\nEnter the year value: “);
 scanf(“%d”,&year);/*Reading the year value*/

 if(year%4==0)/*Determining whether year is a multiple of 4*/
  printf(“\n\n%d is a leap year”,year);
 else
  printf(“\n%d is not a leap year”,year);

 getch();
}

Output

Enter the year value: 2005

2005 is not a leap year

EXAMPLE A.16 Write a program to determine whether a given value is positive or negative.

  sum=sum+i;
 }

 printf(“\nSum of numbers between 3 to 20 excluding multiples of 3 = %d”, sum);

 getch();
}

Output

Sum of numbers between 3 to 20 excluding multiples of 3 = 124

Program

/*Program for demonstrating the use of IF....ELSE Statement*/
#include <stdio.h>
#include <conio.h>

(Contd.)



A.10 Computer Programming 

EXAMPLE A.17 Write a program to determine the frequency of occurrence of individual digits in a 

number.

void main()
{
 int num;
 clrscr();

 printf(“\nEnter a number: “);
 scanf(“%d”,&num);/*Reading a number*/

 if(num>0)/*Checking positive values*/
  printf(“\n%d is a positive number”, num);
 else
  printf(“\n%d is a negative number”, num);

 getch();
}

Output

Enter a number: 12

12 is a positive number

Program

/*Program for demonstrating the use of Switch Statement*/
#include <stdio.h>
#include <conio.h>

void main()
{
  long int num1,num2;
  int temp,d1=0,d2=0,d3=0,d4=0,d5=0,d6=0,d7=0,d8=0,d9=0,d0=0;
  clrscr();

  printf(“\nEnter the number:”);
  scanf(“%ld”,&num1);

  num2=num1;
  while(num1!=0)
  {
    temp=num1%10;
    switch(temp) /*Using the switch-case decision making construct*/
    {
      case 0:
    d0++; /*Counting number of Zeros*/
    break;
      case 1:
    d1++; /*Counting number of Ones*/
    break;

(Contd.)



Appendix A A.11 

      case 2:
    d2++; /*Counting number of Twos*/
    break;
      case 3:
    d3++; /*Counting number of Threes*/
    break;
      case 4:
    d4++; /*Counting number of Fours*/
    break;
      case 5:
    d5++; /*Counting number of Fives*/
    break;
      case 6:
    d6++; /*Counting number of Sixes*/
    break;
      case 7:
    d7++; /*Counting number of Sevens*/
    break;
      case 8:
    d8++; /*Counting number of Eights*/
    break;
      case 9:
    d9++; /*Counting number of Nines*/
    break;
    }
    num1=num1/10;
  }
  /*Displaying the frequency of individual digits in a number*/
  printf(“\nThe no of 0s in %ld are %d“,num2,d0);
  printf(“\nThe no of 1s in %ld are %d“,num2,d1);
  printf(“\nThe no of 2s in %ld are %d“,num2,d2);
  printf(“\nThe no of 3s in %ld are %d“,num2,d3);
  printf(“\nThe no of 4s in %ld are %d“,num2,d4);
  printf(“\nThe no of 5s in %ld are %d“,num2,d5);
  printf(“\nThe no of 6s in %ld are %d“,num2,d6);
  printf(“\nThe no of 7s in %ld are %d“,num2,d7);
  printf(“\nThe no of 8s in %ld are %d“,num2,d8);
  printf(“\nThe no of 9s in %ld are %d“,num2,d9);

  getch();
}

Output

Enter the number:889653442

The no of 0s in 889653442 are 0
The no of 1s in 889653442 are 0
The no of 2s in 889653442 are 1
The no of 3s in 889653442 are 1
The no of 4s in 889653442 are 2
The no of 5s in 889653442 are 1
The no of 6s in 889653442 are 1
The no of 7s in 889653442 are 0
The no of 8s in 889653442 are 2
The no of 9s in 889653442 are 1



A.12 Computer Programming 

EXAMPLE A.18 Write a program to implement a simple arithmetic calculator.

Program

/*Program for demonstrating the use of Switch statement*/

#include <stdio.h>

#include <conio.h>

void main()

{

 int choice;

 float num1, num2;

 clrscr();

 printf(“**********Simple Calc***********”);/*Displaying CalC options*/

 printf(“\n\nChoose a type of operation from the following: “);

 printf(“\n\t1.   Addition”);

 printf(“\n\t2.   Subtraction“);

 printf(“\n\t3.   Multiplication“);

 printf(“\n\t4.   Division\n”);

 scanf(“%d“, &choice);/*Reading user‘s choice*/

 printf(“\n\nEnter the two operands: “);

 scanf(“%f %f“, &num1, & num2);/*Reading operands*/

 /*Using the Switch statement to choose the operation statement*/

 switch (choice)

 {

 case 1:

  printf(“\n%.2f + %.2f = %.2lf“, num1, num2, num1+num2);

  break;

 case 2:

  printf(“\n%.2f - %.2f = %.2lf“, num1, num2, num1-num2);

  break;

 case 3:

  printf(“\n%.2f * %.2f = %.2lf”, num1, num2, num1*num2);

  break;

 case 4:

  printf(“\n%.2f / %.2f = %.2lf”, num1, num2, num1/num2);

  break;

 default:

  printf(“\nIncorrect Choice!“);

 }

 getch();

}

(Contd.)



Appendix A A.13 

EXAMPLE A.19 Write a program to calculate the sum of digits of an integer.

Program

/*Program for demonstrating the use of while statement*/

#include <stdio.h>

#include <conio.h>

void main()

{

 long num, temp;

 int sum=0;

 clrscr();

 printf(“\nEnter an integer value: “);

 scanf(“%ld”,&num);/*Reading a long integer*/

 temp=num;

 /*Calculating sum of digits*/

 while(temp!=0)

 {

 sum = sum+temp%10;

 temp=temp/10;

 }

 printf(“\n\nThe sum of digits of %ld is %d”,num,sum);/*Displaying result*/

 getch();

}

Output

Enter an integer value: 56988

The sum of digits of 56988 is 36

Output

**********Simple Calc***********

Choose a type of operation from the following:
        1.   Addition
        2.   Subtraction
        3.   Multiplication
        4.   Division
3

Enter the two operands: 66
6

66.00 * 6.00 = 396.00



A.14 Computer Programming 

EXAMPLE A.20 Write a program to determine whether or not a given number is an Armstrong.

Program

/*Program for demonstrating the use of while statement*/

#include <stdio.h>

#include <conio.h>

#include <math.h>

void main()

{

 int num, temp, sum=0, i;

 clrscr();

 printf(“\nEnter a number: “);

 scanf(“%d”, &num);/*Reading num*/

 temp=num;

 while(temp>0)/*Computing Armstrong value*/

 {

  i=temp%10;

  sum=sum+i*i*i;

  temp=temp/10;

 }

 if(sum==num)/*Checking whether num is Armstrong or not*/

  printf(“\n%d is an Armstrong number”,num);

 else

 printf(“\n%d is not an Armstrong number”,num);

 getch();

}

Output

Enter a number: 371

371 is an Armstrong number

EXAMPLE A.21 Write a program to determine the Greatest Common Divisor (GCD) of two numbers.

Program

/*Program for demonstrating the use of while statement*/
#include <stdio.h>
#include <conio.h>
#include <math.h>

int GCD(int m, int n);/*Declaring the GCD procedure for computing GCD value*/

(Contd.)



Appendix A A.15 

EXAMPLE A.22 Write a program to display the Pascal’s triangle.

void main()
{
  int num1,num2;
  clrscr();

  printf(“Enter the two numbers whose GCD is to be found: “);
  scanf(“%d %d”,&num1,&num2);/*Reading the two input numbers*/

  printf(“\nGCD of %d and %d is %d\n”,num1,num2,GCD(num1,num2));/*Calling the GCD procedure*/
  getch();
}

/*Defining the GCD procedure for computing the GCD value for two integer values*/
int GCD(int a, int b)
{
 if(b>a)
 return GCD(b,a);
 if(b==0)
  return a;
 else
     return GCD(b,a%b);
}

Output

Enter the two numbers whose GCD is to be found: 18
24

GCD of 18 and 24 is 6

Program

/*Program for demonstrating the use of while statement*/

#include <stdio.h>

#include <conio.h>

void main()

{

 int b,row,x,y,z;

 clrscr();

 b=1;

 y=0;

 printf(“Enter the number of rows for the Pascal’s triangle:”);

 scanf(“%d”,&row);

 printf(“\n******Pascal’s Triangle******\n”);

(Contd.)



A.16 Computer Programming 

EXAMPLE A.23 Write a program to fi nd the sum of the following series up to 50 terms: 

−13 + 33 − 53 + 73 − 93 + 113 − ….

 while(y<row)

 {

  for(x=40-3*y;x>0;--x)

   printf(“ “);

  for(z=0;z<=y;++z)

  {

    if((z==0)||(y==0))

      b=1;

    else

      b=(b*(y-z+1))/z;

      printf(“%6d”,b);

  }

 printf(“\n”);

 ++y;

 }

 getch();

}

Output

Enter the number of rows for the Pascal’s triangle:5

******Pascal’s Triangle******

                                             1

                                          1     1

                                       1     2     1

                                    1     3     3     1

                                 1     4     6     4     1

Program

/*Program for demonstrating the use of while statement*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int b,row,x,y,z;
 clrscr();
 b=1;
 y=0;

 printf(“Enter the number of rows for the Pascal’s triangle:”);
 scanf(“%d”,&row);

(Contd.)



Appendix A A.17 

EXAMPLE A.24 Write a program to calculate the sum of N terms of the following series:

12 + 22 + 32 + 42 + ….. n2

 printf(“\n******Pascal’s Triangle******\n”);

 while(y<row)
 {
  for(x=40-3*y;x>0;--x)
   printf(“ “);

  for(z=0;z<=y;++z)
  {
    if((z==0)||(y==0))
      b=1;
    else
      b=(b*(y-z+1))/z;
      printf(“%6d”,b);
  }
 printf(“\n”);
 ++y;
 }

 getch();
}

Output

Sum of series = 499850

Program

/*Program to demonstrate the use of for statement*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int i,n;
 long sum=0;
 clrscr();

 printf(“Enter the value of n = “);
 scanf(“%d”,&n);/*Reading number of terms in the series, n*/

 for(i=1;i<=n;i++)/*Calculating the sum of the series*/
  sum=sum+i*i;

 printf(“Sum of series = %ld”,sum);

 getch();
}

(Contd.)



A.18 Computer Programming 

EXAMPLE A.25 Write a program to fi nd the sum of the following series: 

1 + x + x2 + x3 + …….. + xn.

Program

/*Program for demonstrating the use of for statement*/

#include <stdio.h>

#include <conio.h>

#include <math.h>

void main()

{

 long sum;

 int n,x,i;

 clrscr();

 printf(“Enter the values of x and n:”);

 scanf(“%d %d”,&x,&n);/*Reading values of x and n*/

 if(n<=0 || x<=0)/*Identifying incorrect values*/

 {

  printf(“The values must be positive integers. Please try again\n”);

  getch();

 }

else

{

  sum=1;

  for(i=1;i<=n;i++)

  {

    sum=sum+pow(x,i);/*Calculating the sum of the series*/

  }

  printf(“Sum of series=%ld\n”,sum);

}

getch();

}

Output

Enter the values of x and n:2

6

Sum of series=127

Output

Enter the value of n = 5
Sum of series = 55



Appendix A A.19 

EXAMPLE A.26 Write a program to fi nd the sum of the following series: 

1 + 2 + 22 + 23 + …….. + 2n.

Program

/*Program for demonstrating the use of for statement*/
#include <stdio.h>
#include <conio.h>
#include <math.h>

void main()
{

 long sum;
 int n,i;
 clrscr();

 printf(“Enter the value of n: “);
 scanf(“%d”,&n);/*Reading value of n*/

 sum=1;
 for(i=1;i<=n;i++)
 {
   sum=sum+pow(2,i);/*Calculating the sum of the series*/
 }
 printf(“Sum of series = %ld\n”,sum);

getch();
}

Output

Enter the value of n: 5
Sum of series = 63

EXAMPLE A.27 Write a program to solve the following series:

1 + 1/2 + 1/3 + 1/4 + … + 1/n.

Program

/*Program for demonstrating the use of for statement*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int n;
 float i;
 double sum;
 clrscr();

(Contd.)



A.20 Computer Programming 

EXAMPLE A.28 Write a program to determine whether a given number is prime or not.

Program

/*Program for demonstrating the use of for statement*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int num,i;
 clrscr();

 printf(“\nEnter a number: “);
 scanf(“%d”,&num);/*Reading a number*/

 for(i=2;i<num;i++)
  if(num%i==0)/*Checking if num is divisible by another number*/
  {
   printf(“\n%d is not a prime number”,num);
   break;
  }
  else
   ;

 if(i==num)
 printf(“\n%d is a prime number”,num);

 getch();
}

Output

Enter a number: 79

79 is a prime number

 printf(“Enter the value of n: “);
 scanf(“%d”,&n);/*Reading the value of n*/

 sum = 1.0;
 for(i=2.0;i<=n;i++)/*Calculating the sum of the series*/
  sum = sum + 1.0/i;
 printf(“\nThe sum of the series 1 + 1/2 + 1/3 +....+1/n = %.8lf”,sum);

 getch();
}

Output

Enter the value of n: 8

The sum of the series 1 + 1/2 + 1/3 +....+1/n = 2.71785714



Appendix A A.21 

EXAMPLE A.29 Write a program for printing the Fibonacci series.

Program

/*Program for demonstrating the use of for statement*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int num1=0, num2=1,len,i,fab;
 clrscr();

 printf(”\n\nEnter Length of the Fibonacci Series: ”);
 scanf(”%d”,&len);/*Reading series length*/

 printf(”\n<----FIBONACCI SERIES---->”);
 printf(”\n%d  %d”,num1,num2);/*Printing initial values of the series*/

 /*Printing the Fibonacci series*/
 for(i = 1; i <= len-2; i++)
 {
 fab=num1 + num2;
 printf(“  %d”,fab);
 num1=num2;
 num2=fab;
}

getch();
}

Output

Enter Length of the Fibonacci Series: 6

<----FIBONACCI SERIES---->
0  1  1  2  3  5

EXAMPLE A.30 Write a program to calculate the sum of the following series: 

14 + 34 + 54……up to 100 terms.

Program

/*Program for demonstrating the use of for statement*/
#include<stdio.h>
#include<conio.h>
#include<math.h>

void main()
{
 int i;

(Contd.)



A.22 Computer Programming 

EXAMPLE A.31 Write a program for displaying a pyramid of the following form:

                 0

              1  0  1

           2  1  0  1  2

        3  2  1  0  1  2  3

     4  3  2  1  0  1  2  3  4

  5  4  3  2  1  0  1  2  3  4  5

 long sum=0;
 clrscr();
 for(i=1;i<=100;i=i+2)
  sum=sum+pow(i,4);/*Calculating the sum of the series*/

printf(“\nSum of the series up to first 100 terms is equal to %ld”,sum);
getch();
}

Output

Sum of the series up to first 100 terms is equal to 999666690

Program

/*Program for demonstrating nesting of for statements*/

#include <stdio.h>

#include <conio.h>

void main()

{

 int num,i,y,x=40;

 clrscr();

 printf(”\nEnter a number for \ngenerating the pyramid:\n”);

 scanf(”%d”,&num);

 /*Displaying the pyramid*/

 for(y=0;y<=num;y++)

 {

  gotoxy(x,y+1);

  for(i=0-y;i<=y;i++)

   printf(”%3d”,abs(i));

  x=x-3;

 }

 getch();

}

(Contd.)



Appendix A A.23 

EXAMPLE A.32 Write a program to calculate the sum of odd numbers between 1 and 50.

Program

/*Program to demonstrate the use For Statement*/

#include<stdio.h>

#include<conio.h>

void main()

{

 int i,sum=0;

 clrscr();

 for (i=1;i<50;i++)/*Specifying the looping condition*/

 {

  if(i%2==0)/*Identifying even numbers*/

   continue;

  sum=sum+i;/*Calculating the sum of odd numbers*/

 }

 printf(“\nSum of odd numbers between 1 to 50 is = %d”, sum);

 getch();

}

Output

Sum of odd numbers between 1 to 50 is = 625

EXAMPLE A.33 Write a simple program to implement a one-dimensional array and print its index and 

corresponding values.

Output

                                         0

Enter a number for                    1  0  1

generating the pyramid:            2  1  0  1  2

6                               3  2  1  0  1  2  3

                             4  3  2  1  0  1  2  3  4

                          5  4  3  2  1  0  1  2  3  4  5

                       6  5  4  3  2  1  0  1  2  3  4  5  6

Program

/*Program for demonstrating implementation of a simple array*/
#include <stdio.h>
#include <conio.h>

(Contd.)



A.24 Computer Programming 

EXAMPLE A.34 Write a program to generate Fibonacci series using arrays.

void main( )
{
 int i;
 int arr[5];/*Declaring an array of five elements*/
 clrscr();

 printf(“Enter the array values:\n”);
 for(i=0;i<5;i++)
  scanf(“%d”, &arr[i]);/*Reading values to be stored in the array*/

 printf(“\nArray arr[5] contains the following values:\n”);
 for(i=0;i<5;i++)
  printf(“arr[%d] = %d\n”, i,arr[i]);/*Printing array values*/

 getch();
}

Output

Enter the array values:
10
20
30
40
50

Array arr[5] contains the following values:
arr[0] = 10
arr[1] = 20
arr[2] = 30
arr[3] = 40
arr[4] = 50

Program

/*Program for demonstrating the use arrays for generating Fibonacci series*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int arr[50],len,i;
 clrscr();

 printf(”\n\nEnter length of the Fibonacci series: ”);
 scanf(”%d”,&len);/*Reading series length*/

 arr[0]=0;/*Initializing 1st element of Fibonacci series*/
 arr[1]=1;/*Initializing 2nd element of Fibonacci series*/

(Contd.)



Appendix A A.25 

EXAMPLE A.35 Write a program to perform linear search on a one-dimensional array.

 /*Storing the Fibonacci series values in array arr[]*/
 for(i=2;i<len;i++)
  arr[i]=arr[i-1]+arr[i-2];

 /*Printing the Fibonacci series*/
 printf(“\n<----FIBONACCI SERIES---->\n”);
 for(i=0;i<len;i++)
  printf(“%d “ ,arr[i]);

getch();
}

Output

Enter length of the Fibonacci series: 8

<----FIBONACCI SERIES---->
0 1 1 2 3 5 8 13

Program

/*Program for demonstrating linear search using a simple array*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int arr[10],i,j,element;
 int flag=0;
 clrscr();

 printf(”Enter the 10 elements of the array:\n”);
 for(i=0;i<10;i++)
  scanf(”%d”,&arr[i]);/*Reading array values*/

 printf(”\n\nEnter the element that you want to search: ”);
 scanf(”%d”,&element);/*Reading the element to be searched*/

 for(j=0;j<10;j++)
  if( arr[j] == element) /*Checking whether the search was successful*/
  {
   printf(”\nThe element %d is present at %d position in the list\n”,element,j+1);
   flag=1;
   break;
  }
  if(flag==0)/*Checking whether the search was unsuccessful*/
   printf(”\nThe element is %d is not present in the list\n”,element);

getch();
}

(Contd.)



A.26 Computer Programming 

EXAMPLE A.36 Write a simple program to read integer elements into an array and compute their sum.

Output

Enter the 10 elements of the array:
22
55
1
2
66
69
54
78
8
36

Enter the element that you want to search: 54

The element 54 is present at 7 position in the list

Program

/*Program for demonstrating implementation of a simple array*/
#include <stdio.h>
#include <conio.h>

void main( )
{
 int i,sum;
 int arr[5];/*Declaring an array of five elements*/
 clrscr();

 printf(“Enter the array values:\n”);
 for(i=0;i<5;i++)
  scanf(“%d”, &arr[i]);/*Reading values to be stored in the array*/

 printf(“\nArray arr[5] contains the following elements:\n”);
 for(i=0;i<5;i++)
  printf(“arr[%d] = %d\n”, i,arr[i]);/*Printing array values*/

 sum=0;
 for(i=0;i<5;i++)
  sum=sum+arr[i];/*Computing sum of elements stored in the array*/
 
 printf(“\nSum of array elements = %d”,sum); /*Displaying the result*/

 getch();
}

(Contd.)



Appendix A A.27 

EXAMPLE A.37 Write a C program to read in 10 integer numbers and print their average, minimum 

and maximum numbers.

Output

Enter the array values:
1
2
3
4
5

Array arr[5] contains the following elements:
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5

Sum of array elements = 15

Program

/*Program for demonstrating the use of a simple one-dimensional array*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int a[10], min, max, sum, i;
 float ave;
 clrscr();

 printf(”Enter 10 integer elements: ”);
 for(i=0;i<=9;i++)
  scanf(”%d”,&a[i]); /*Reading the input integer elements in an array*/

 min=a[0];
 max=a[0];
 sum=0;

 for(i=0;i<=9;i++)
  sum=sum+a[i];

 ave=1.0*sum/10; /*Calculating the average*/

 /*Finding minimum and maximum numbers*/
 for(i=0;i<=8;i++)
 {
  if(a[i+1]>max)

(Contd.)



A.28 Computer Programming 

EXAMPLE A.38 Write a program to read and display a simple 3 × 3 matrix.

   max=a[i+1];
  if(a[i+1]<min)
   min=a[i+1];
 }
 /*Displaying the results*/
 printf(”\nMinimum = %d, Maximum = %d, Average = %.2f”,min,max,ave);
 getch();
}

Output

Enter 10 integer elements: 1
2
3
4
5
6
7
8
9
10

Minimum = 1, Maximum = 10, Average = 5.50

Program

/*Program for realizing a 3 X 3 matrix using 2-D arrays*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int i,j,a[3][3];
 clrscr();

 /*Reading matrix elements*/
 printf(“Enter the elements of the 3 X 3 matrix:\n”);
 for(i=0;i<3;i++)
  for(j=0;j<3;j++)
  {
   printf(“a[%d][%d] = “,i,j);
   scanf(“%d”,&a[i][j]);
  }

 /*Printing matrix elements*/
 printf(“The various elements contained in the 3 X 3 matrix are:\n”);
 for(i=0;i<3;i++)
 {
  printf(“\n\t\t    “);

(Contd.)



Appendix A A.29 

EXAMPLE A.39 Write a program to add two 3 × 3 matrices.

  for(j=0;j<3;j++)
   printf(“%d\t“,a[i][j]);
 }

 getch();
}

Output

Enter the elements of the 3 X 3 matrix:
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3
a[1][0] = 4
a[1][1] = 5
a[1][2] = 6
a[2][0] = 7
a[2][1] = 8
a[2][2] = 9
The various elements contained in the 3 X 3 matrix are:

                    1   2       3
                    4   5       6
                    7   8       9

Program

/*Program for adding two 3 X 3 matrices using 2-D arrays*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int i,j,a[3][3],b[3][3],c[3][3];
 clrscr();

 printf(“Enter the first 3 X 3 matrix:\n”);
 for(i=0;i<3;i++)
 {
  for(j=0;j<3;j++)
  {
   printf(“a[%d][%d] = “,i,j);
   scanf(“%d”,&a[i][j]);/*Reading the elements of 1st matrix*/
  }
 }

 printf(“Enter the second 3 X 3 matrix:\n”);
 for(i=0;i<3;i++)
 {

(Contd.)



A.30 Computer Programming 

  for(j=0;j<3;j++)
  {
   printf(“b[%d][%d] = “,i,j);
   scanf(”%d”,&b[i][j]);/*Reading the elements of 2nd matrix*/
  }
 }

 printf(”\nThe entered matrices are: \n”);
 for(i=0;i<3;i++)
 {
  printf(”\n”);
  for(j=0;j<3;j++)
   printf(”%d\t”,a[i][j]);/*Displaying the elements of 1st matrix*/
  printf(“\t\t”);
  for(j=0;j<3;j++)
   printf(“%d\t“,b[i][j]);/*Displaying the elements of 2nd matrix*/
 }

 for(i=0;i<3;i++)
  for(j=0;j<3;j++)
   c[i][j] =a[i][j]+b[i][j];/*Computing the sum of two matrices*/

 printf(“\n\nThe sum of the two matrices is shown below: \n“);
 for(i=0;i<3;i++)
 {
  printf(“\n\t\t    “);
  for(j=0;j<3;j++)
   printf(“%d\t“,c[i][j]);/*Displaying the result*/
 }

 getch();
}

Output

Enter the first 3 X 3 matrix:
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3
a[1][0] = 4
a[1][1] = 5
a[1][2] = 6
a[2][0] = 7
a[2][1] = 8
a[2][2] = 9
Enter the second 3 X 3 matrix:
b[0][0] = 9
b[0][1] = 8
b[0][2] = 7
b[1][0] = 6
b[1][1] = 5
b[1][2] = 4
b[2][0] = 3
b[2][1] = 2
b[2][2] = 1

(Contd.)



Appendix A A.31 

EXAMPLE A.40 Write a program to subtract two 3 × 3 matrices.

The code for subtracting two 3 × 3 matrices is same as Example 7 with only the following difference:

Program

.

.

for(i=0;i<3;i++)

  for(j=0;j<3;j++)

   c[i][j]=a[i][j]-b[i][j];/*Subtracting the two matrices*/

.

.

Here, we are performing the subtraction operation instead of addition.

The entered matrices are:

1       2       3                       9       8       7
4       5       6                       6       5       4
7       8       9                       3       2       1

The sum of the two matrices is shown below:

                    10  10      10
                    10  10      10
                    10  10      10

Output

Enter the first 3 X 3 matrix:

a[0][0] = 10

a[0][1] = 20

a[0][2] = 30

a[1][0] = 40

a[1][1] = 50

a[1][2] = 60

a[2][0] = 70

a[2][1] = 80

a[2][2] = 90

Enter the second 3 X 3 matrix:

b[0][0] = 5

b[0][1] = 10

b[0][2] = 15

b[1][0] = 20

b[1][1] = 25

b[1][2] = 30

b[2][0] = 35

b[2][1] = 40

b[2][2] = 45

(Contd.)



A.32 Computer Programming 

EXAMPLE A.41 Write a program to multiply two 3 × 3 matrices.

The entered matrices are:

10      20      30                      5       10      15

40      50      60                      20      25      30

70      80      90                      35      40      45

The result of subtraction is shown below:

                    5   10      15

                    20  25      30

                    35  40      45

Program

/*Program for multiplying two 3 X 3 matrices using 2-D arrays*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int i,j,k,a[3][3],b[3][3],c[3][3];
 clrscr();
 printf(“Enter the first 3 X 3 matrix:\n”);
 for(i=0;i<3;i++)
 {
  for(j=0;j<3;j++)
  {
   printf(“a[%d][%d] = “,i,j);
   scanf(“%d”,&a[i][j]);/*Reading the elements of the 1st matrix*/
  }
 }

 printf(“Enter the second 3 X 3 matrix:\n”);
 for(i=0;i<3;i++)
 {
  for(j=0;j<3;j++)
  {
   printf(“b[%d][%d] = “,i,j);
   scanf(”%d”,&b[i][j]);/*Reading the elements of the 2nd matrix*/
  }
 }
 printf(”\nThe entered matrices are: \n”);

 for(i=0;i<3;i++)
 {
  printf(”\n”);
  for(j=0;j<3;j++)

(Contd.)



Appendix A A.33 

  {
   printf(”%d\t”,a[i][j]);/*Displaying the elements of the 1st matrix*/
  }
  printf(“\t\t”);
  for(j=0;j<3;j++)
  {
   printf(“%d\t“,b[i][j]);/*Displaying the elements of the 2nd matrix*/
  }
 }
 /*Multiplying the two matrices*/
 for(i=0;i<3;i++)
  for(j=0;j<3;j++)
  {
   c[i][j]=0;
   for(k=0;k<3;k++)
    c[i][j]=c[i][j]+a[i][k]*b[k][j];
  }
 printf(”\n\nThe product of the two matrices is shown below: \n”);

 for(i=0;i<3;i++)
 {
  printf(“\n\t\t    “);
  for(j=0;j<3;j++)
  {
   printf(“%d\t“,c[i][j]); /*Displaying the result*/
  }
 }

getch();
}

Output

Enter the first 3 X 3 matrix:
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3
a[1][0] = 4
a[1][1] = 5
a[1][2] = 6
a[2][0] = 7
a[2][1] = 8
a[2][2] = 9
Enter the second 3 X 3 matrix:
b[0][0] = 9
b[0][1] = 8
b[0][2] = 7
b[1][0] = 6
b[1][1] = 5
b[1][2] = 4
b[2][0] = 3
b[2][1] = 2
b[2][2] = 1

(Contd.)



A.34 Computer Programming 

EXAMPLE A.42 Write a program to generate the transpose of a 3 × 3 matrix.

The entered matrices are:

1       2       3                       9       8       7
4       5       6                       6       5       4
7       8       9                       3       2       1

The product of the two matrices is shown below:

                    30  24      18
                    84  69      54
                    138 114     90

Program

/*Program for generating the transpose of a 3X3 matrix using 2-D arrays*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int i,j,a[3][3],b[3][3];
 clrscr();
 printf(“Enter a 3 X 3 matrix:\n”);
 for(i=0;i<3;i++)
 {
  for(j=0;j<3;j++)
  {
   printf(“a[%d][%d] = “,i,j);
   scanf(“%d”,&a[i][j]); /*Reading the elements of the 3X3 matrix*/
  }
 }

 printf(“\nThe entered matrix is: \n”);
 for(i=0;i<3;i++)
 {
  printf(“\n”);
  for(j=0;j<3;j++)
  {
   printf(“%d\t”,a[i][j]); /*Displaying the matrix*/
  }
 }

 for(i=0;i<3;i++)
 {
  for(j=0;j<3;j++)
   b[i][j]=a[j][i]; /*Computing matrix transpose*/
 }

(Contd.)



Appendix A A.35 

EXAMPLE A.43 Write a simple program to demonstrate the use of functions in C.

 printf(“\n\nThe transpose of the matrix is: \n”);

 for(i=0;i<3;i++)
 {
  printf(“\n”);
  for(j=0;j<3;j++)
  {
   printf(“%d\t”,b[i][j]); /*Displaying the resultant transposed matrix*/
  }
 }

 getch();
}

Output

Enter a 3 X 3 matrix:
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3
a[1][0] = 4
a[1][1] = 5
a[1][2] = 6
a[2][0] = 7
a[2][1] = 8
a[2][2] = 9

The entered matrix is:

1       2       3
4       5       6
7       8       9

The transpose of the matrix is:

1       4       7
2       5       8
3       6       9

Program

/*Program for demonstrating use of functions*/
#include <stdio.h>
#include <conio.h>

/*Declaring function prototypes*/
void Func_A(void);

(Contd.)



A.36 Computer Programming 

EXAMPLE A.44 Write a program to compute the area of a rectangle.

void Func_B(void);

void Func_C(void);

void main( )

{

 clrscr();

 printf(“In main function; Calling Func_A()..\n”);

 Func_A();/*Calling Function A*/

 printf(“Back in main()..\n”);

 getch();

}

void Func_A(void)

{

 printf(“Inside Func_A(); Calling Func_B()..\n”);

 Func_B();/*Function A calls Function B*/

 printf(“Back in Func_A()..\n”);

}

void Func_B(void)

{

 printf(“Inside Func_B(); Calling Func_C()..\n”);

 Func_C(); /*Function B in turn calls Function C*/

 printf(“Back in Func_B()..\n”);

}

void Func_C(void)

{

 printf(“Inside Func_C()..\n”); /*print statement inside Function C*/

}

Output

In main function; Calling Func_A()..

Inside Func_A(); Calling Func_B()..

Inside Func_B(); Calling Func_C()..

Inside Func_C()..

Back in Func_B()..

Back in Func_A()..

Back in main()..

Program

/*No arguments and no return values*/
#include <stdio.h>
#include <conio.h>

(Contd.)



Appendix A A.37 

EXAMPLE A.45 Write a program to compute the area of a triangle.

void main()
{
 void area(void); /*Declaring the function prototype for computing area of a rectangle*/
 clrscr();

 area();/*Calling the area function*/
 getch();
}

void area()
{
 float length, breadth;
 
 printf(“Enter the length and breadth of the rectangle:\n”);
 scanf(“%f %f”,&length,&breadth) ;/*Reading the length and breadth values of the rectangle*/

 /*Computing and displaying the area of the rectangle*/
 printf(“The area of the rectangle with length %.2f and breadth %.2f is = %.2f”, length,breadth,

    (length*breadth));
}

Output

Enter the length and breadth of the rectangle:
5
10
The area of the rectangle with length 5.00 and breadth 10.00 is = 50.00

Program

/*Arguments but no return values*/

#include <stdio.h>

#include <conio.h>

void main()

{

 float base,height;

 void area(float,float); /*Declaring the function prototype for computing area of a triangle*/

 clrscr();

 printf(“Enter base and height of the triangle:\n”);

 scanf(“%f %f”,&base,&height) ;/*Reading the base and height values*/

 area(base,height); /*Calling the function by passing base and height as parameters*/

 getch();

}

(Contd.)



A.38 Computer Programming 

EXAMPLE A.46 Write a program that uses functions to determine whether a given number is Armstrong 

or not.

void area(float b,float h)

{

 printf(“The area of the triangle with base %.2f and height %.2f is = %.2f”, b,h,(0.5*b*h));/*Displaying 
the area of the triangle*/

}

Output

Enter base and height of the triangle:
5
8
The area of the triangle with base 5.00 and height 8.00 is = 20.00

Program

/*Arguments but no return values*/

#include <stdio.h>

#include <conio.h>

#include <math.h>

void main()

{

 int num;

 void arm(int);/*Declaring prototype for the function that computes Armstrong value*/

 clrscr();

 printf(“\nEnter a number: “);

 scanf(“%d”, &num);/*Reading input integer value*/

 arm(num); /*Calling the function that assess whether num is Armstrong or not*/

 getch();

}

void arm(int n)

{

 int temp, sum=0, i;

 temp=n;

 while(temp>0)/*Computing Armstrong value*/

 {

  i=temp%10;

  sum=sum+i*i*i;

(Contd.)



Appendix A A.39 

EXAMPLE A.47 Write a program that prints the ASCII value corresponding to a given character.

Program

/*Arguments but no return values*/

#include <stdio.h>

#include <conio.h>

void main()

{

 char ch;

 void ASCII(char); /*Declaring the function prototype for determining ASCII value*/

 clrscr();

 printf(“Enter any character:\n”);

 scanf(“%c”,&ch) ;/*Reading input character value*/

 ASCII(ch); /*Calling the ASCII function by passing ch as the parameter*/

 getch();

}

void ASCII(char c)

{

 printf(“The ASCII value of %c is %d”,c,c);/*Displaying the ASCII value*/

}

Output

Enter any character:

V

The ASCII value of V is 86

  temp=temp/10;

 }

 if(sum==n)/*Checking whether num is Armstrong or not*/

  printf(”\n%d is an Armstrong number”,n);

 else

 printf(”\n%d is not an Armstrong number”,n);

}

Output

Enter a number: 371

371 is an Armstrong number



A.40 Computer Programming 

EXAMPLE A.48 Write a program to implement a simple arithmetic calculator using functions.

Program

/*Arguments with return values*/
#include <stdio.h>
#include <conio.h>

/*Declaring function prototypes for common arithmetic operations*/
float add(float,float);
float sub(float,float);
float mul(float,float);
float div(float,float);

void main()
{
 int choice;
 float num1, num2;
 clrscr();
 printf(“**********Simple Calc***********”);/*Displaying CalC options*/
 printf(“\n\nChoose a type of operation from the following: “);
 printf(“\n\t1.   Addition”);
 printf(“\n\t2.   Subtraction“);
 printf(“\n\t3.   Multiplication“);
 printf(“\n\t4.   Division\n”);
 scanf(“%d“, &choice);/*Reading user‘s choice*/
 printf(“\n\nEnter the two operands: “);
 scanf(“%f %f“, &num1, & num2);/*Reading operands*/

 /*Using the Switch statement to choose the right operation*/
 switch (choice)
 {
 case 1:
  printf(“\n%.2f + %.2f = %.2lf“, num1, num2, add(num1,num2)); /*Calling the add function*/
  break;

 case 2:
  printf(“\n%.2f - %.2f = %.2lf“, num1, num2, sub(num1,num2)); /*Calling the sub function*/
  break;

 case 3:
  printf(“\n%.2f * %.2f = %.2lf“, num1, num2, mul(num1,num2)); /*Calling the mul function*/
  break;

 case 4:
  printf(“\n%.2f / %.2f = %.2lf“, num1, num2, div(num1,num2)); /*Calling the div function*/
  break;

 default:
  printf(“\nIncorrect Choice!“);
 }

(Contd.)



Appendix A A.41 

EXAMPLE A.49 Write a program that uses recursion to generate the Fibonacci series.

 getch();

}

/*Writing function definitions*/

float add(float x,float y)

{

 return(x+y);

}

float sub(float x,float y)

{

 return(x-y);

}

float mul(float x,float y)

{

 return(x*y);

}

float div(float x,float y)

{

 return(x/y);

}

Output

**********Simple Calc***********

Choose a type of operation from the following:

        1.   Addition

        2.   Subtraction

        3.   Multiplication

        4.   Division

3

Enter the two operands: 5

8

5.00 * 8.00 = 40.00

Program

/*Program demonstrating the use of recursion to generate the Fibonacci series*/
#include<stdio.h>
#include<conio.h>

(Contd.)



A.42 Computer Programming 

EXAMPLE A.50 Write a program that uses functions to compute the product of two given matrices.

void main()
{
 int x=0,y=1,n;
 void fib(int,int,int);/*Function prototype*/
 clrscr();

 printf(“Enter the number of terms in Fibonacci series: “);
 scanf(“%d”,&n); /*Reading number of terms in the series*/

 printf(“\nThe Fibonacci series is:”);
 printf(“\n\n%d\t%d”,x,y); /*Printing 1st two terms of the series*/

 fib(x,y,n-2); /*Function Call*/
 printf(“ “);

 getch();
}

void fib(int a,int b,int n)
{
 int c;
 if(n==0)
  return;
 n--;
 c=a+b;
 printf(“\t%d”,c);
 fib(b,c,n);/*recursive function call*/
}

Output

Enter the number of terms in Fibonacci series: 8

The Fibonacci series is:

0       1       1       2       3       5       8       13

Program

/*Program for multiplying two 3 X 3 matrices using functions*/

#include <stdio.h>

#include <conio.h>

void main()

{

 int i,j,k,a[3][3],b[3][3];

 void multiply (int [][3], int[][3]); /*Declaring the function prototype for matrix multiplication*/

(Contd.)



Appendix A A.43 

 clrscr();

 printf(“Enter the first 3 X 3 matrix:\n”);

 for(i=0;i<3;i++)

 {

  for(j=0;j<3;j++)

  {

   printf(“a[%d][%d] = “,i,j);

   scanf(“%d”,&a[i][j]);/*Reading the elements of the 1st matrix*/

  }

 }

 printf(“Enter the second 3 X 3 matrix:\n”);

 for(i=0;i<3;i++)

 {

  for(j=0;j<3;j++)

  {

   printf(“b[%d][%d] = “,i,j);

   scanf(”%d”,&b[i][j]);/*Reading the elements of the 2nd matrix*/

  }

 }

 printf(”\nThe entered matrices are: \n”);

 for(i=0;i<3;i++)

 {

  printf(”\n”);

  for(j=0;j<3;j++)

  {

   printf(”%d\t”,a[i][j]);/*Displaying the elements of the 1st matrix*/

  }

  printf(“\t\t”);

  for(j=0;j<3;j++)

  {

   printf(“%d\t“,b[i][j]);/*Displaying the elements of the 2nd matrix*/

  }

 }

 multiply(a,b); /*Calling the multiply function to compute the product of a and b*/

 getch();

}

void multiply(int x[][3],int y[][3])

{

 int c[3][3],i,j,k;

/*Multiplying the two matrices*/

 for(i=0;i<3;i++)

(Contd.)



A.44 Computer Programming 

  for(j=0;j<3;j++)

  {

   c[i][j]=0;

   for(k=0;k<3;k++)

    c[i][j]=c[i][j]+x[i][k]*y[k][j];
  }
 printf(”\n\nThe product of the two matrices is shown below: \n”);

 for(i=0;i<3;i++)

 {

  printf(“\n\t\t    “);

  for(j=0;j<3;j++)

  {

   printf(“%d\t“,c[i][j]); /*Displaying the result*/

  }

 }

}

Output

Enter the first 3 X 3 matrix:

a[0][0] = 1

a[0][1] = 2

a[0][2] = 3

a[1][0] = 4

a[1][1] = 5

a[1][2] = 6

a[2][0] = 7

a[2][1] = 8

a[2][2] = 9

Enter the second 3 X 3 matrix:

b[0][0] = 10

b[0][1] = 10

b[0][2] = 10

b[1][0] = 20

b[1][1] = 20

b[1][2] = 20

b[2][0] = 30

b[2][1] = 30

b[2][2] = 30

The entered matrices are:

1       2       3                       10      10      10

4       5       6                       20      20      20

7       8       9                       30      30      30

The product of the two matrices is shown below:

                    140 140     140

                    320 320     320

                    500 500     500



Appendix A A.45 

EXAMPLE A.51 Write a program to generate the one’s complement of a given binary number.

Program

/*Program for demonstrating the passing of a string as a parameter to a function*/

#include <stdio.h>

#include <conio.h>

char b[16]; /*array for storing the result of one’s complement*/

void main()

{

 char a[16];

 int i;

 void ones(char[]); /*Declaring the function prototype for generating one’s complement*/

 clrscr();

 printf(“Enter a binary number: “);

 gets(a);/*Reading the input binary number*/

 ones(a); /*Calling the function by passing input binary string a*/

 printf(“\nThe 1’s compliment of %s is %s”, a,b); /*Displaying the result*/

 getch();

}

void ones(char str[])

{

 int i;

 char C[16];

 for(i=0;str[i]!=’\0’; i++)

 {

  if (str[i]!=’0’ && str[i]!=’1’)

  {

   printf(”\nIncorrect binary number format...the program will quit”);

   getch();

   exit(0);

  }

   /*Changing the binary digits from 0 to 1 and vice versa*/

   if (str[i]==’0’)

    b[i]=’1’;

   else

    b[i]=’0’;

 }

 b[i]=’\0’;

}

Output

Enter a binary number: 11001001

The 1’s compliment of 11001001 is 00110110



A.46 Computer Programming 

EXAMPLE A.52 Write a program to compute the two’s compliment.

Program

/*Program for demonstrating the use of global variables*/
#include <stdio.h>
#include <conio.h>
#include <string.h>

char a[16]; /*Declaring a character array as a global variable*/

void main()
{
 void twos(void); /*Declaring the function prototype for computing two’s compliment*/
 clrscr();
 printf(“Enter a binary number: “);
 gets(a);/*Reading a binary string*/

 twos(); /*Calling the function*/

 printf(“\n2’s compliment = %s”,a); /*Printing the result stored in a by the twos function*/
 getch();
}

void twos(void)
{
 int i,j,k,len;
 len=strlen(a);
 for(k=0;a[k]!=’\0’; k++)
 {
  if (a[k]!=’0’ && a[k]!=’1’)
  {
   printf(“\nIncorrect binary number format...the program will quit”);
   getch();
   exit(0);
  }
 }
 /*Computing the two’s compliment*/
 for(i=len-1;a[i]!=’1’; i--)
  ;
 for(j=i-1;j>=0;j--)
 {
  if(a[j]==’1’)
   a[j]=’0’;
  else
   a[j]=’1’;
 }
}

Output

Enter a binary number: 10100011

2’s compliment = 01011101



Appendix A A.47 

EXAMPLE A.53 Write a program to compute xy.

Program

/*Program for demonstrating the use of built-in function pow()*/
#include <stdio.h>
#include <conio.h>
#include <math.h>

void main()
{
 int x,y;
 long result;
 clrscr();

 printf(“\nEnter the values of x and y:\n”);
 scanf(“%d %d”,&x,&y);

 result=pow(x,y); /*Calling the built-in function pow()*/
 printf(“\n%d raised to the power of %d = %ld”,x, y, result);/*Displaying the result*/

 getch();
}

Output

Enter the values of x and y:
2
6

2 raised to the power of 6 = 64

EXAMPLE A.54 Write a program to compute the square root of an integer.

Program

/*Program for demonstrating the use of built-in function pow()*/
#include <stdio.h>
#include <conio.h>
#include <math.h>

void main()
{
 float x;
 double result;
 clrscr();

 printf(“\nEnter the value of x:\n”);
 scanf(“%f”,&x); /*Reading the input value x*/

 result=sqrt(x); /*Calling the built-in function sqrt()*/

(Contd.)



A.48 Computer Programming 

EXAMPLE A.55 Write a program that generates random numbers.

Program

/*Program for demonstrating the use of built-in function rand()*/
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <time.h>

void main()
{
 clrscr();

 srand(time(NULL)); /*Specifying time value as an input to random number generator*/
 printf(“The system generated random number is: %d”, rand()); /*Calling the rand() function to generate 

the random number*/

 getch();
}

Output

The system generated random number is: 18081

EXAMPLE A.56 Write a program to draw a circle.

 printf(“\nThe square root of %.2f is = %.2lf”,x, result);/*Displaying the result*/

 getch();
}

Output

Enter the value of x:
50

The square root of 50.00 is = 7.07

Program

/*Program for demonstrating the use of built-in Graphics functions of C*/
#include<stdio.h>
#include<conio.h>
#include<graphics.h>

void main()
{
 int gd = DETECT, gm;

(Contd.)



Appendix A A.49 

EXAMPLE A.57 Write a program to draw a rectangle.

Program

/*Program for demonstrating the use of built-in graphics functions of C*/

#include<conio.h>

#include<graphics.h>

#include<stdio.h>

void main()

{

 int gd = DETECT, gm;

 initgraph(&gd, &gm, “..\\bgi”); /*Initializing the graphics system*/

 rectangle(320, 225, 50,100); /*Calling the built-in function rectangle()*/

 getch();

 closegraph(); /*Shutting the graphics system*/

}

Output

 initgraph(&gd, &gm, “..\\bgi”); /*Initializing the graphics system*/

 circle(320, 225, 50); /*Calling the built in function circle()*/ 
 getch();
 closegraph(); /*Shutting the graphics system*/
}

Output



A.50 Computer Programming 

EXAMPLE A.58 Write a program to create a 3D bar.

Program

/*Program for demonstrating the use of built-in graphics functions of C*/
#include<conio.h>
#include<graphics.h>
#include<stdio.h>

void main()
{
 int gd = DETECT, gm;
 initgraph(&gd, &gm, “..\\bgi”); /*Initializing the graphics system*/

 bar3d(150, 50, 250,150, 10, 1); /*Calling the built-in graphics function bar3d()*/
 getch();
 closegraph(); /*Shutting the graphics system*/
}

Output

EXAMPLE A.59 Write a program to create a shape and fi ll it with color.

Program

/*Program for demonstrating the use of built-in graphics functions of C*/
#include<conio.h>
#include<graphics.h>
#include<stdio.h>

void main()
{
 int gd = DETECT, gm;
 initgraph(&gd, &gm, “..\\bgi”); /*Initializing the graphics system*/

 setfillstyle(SOLID_FILL,RED); /*Setting the fill pattern and color*/

(Contd.)



Appendix A A.51 

EXAMPLE A.60 Write a program to print the marks obtained by two students using structures.

Program

/*Program for demonstrating structure member initialization*/
#include <stdio.h>
#include <conio.h>

void main ()
{
 struct student/*Declaring the student structure*/
 {
  int marks1, marks2, marks3;
 };

 struct student std1 = {55,66,80};/*Initializing marks for student 1*/
 struct student std2 = {60,85,78};/*Initializing marks for student 2*/
 clrscr();

 /*Displaying marks for student 1*/
 printf(“Marks obtained by 1st student: %d, %d and %d”,std1.marks1, std1.marks2, std1.marks3);

 /*Displaying marks for student 2*/
 printf(“\nMarks obtained by 2nd student: %d, %d and %d”,std2.marks1, std2.marks2, std2.marks3);

 getch();
}

Output

Marks obtained by 1st student: 55, 66 and 80
Marks obtained by 2nd student: 60, 85 and 78

 bar3d(150, 50, 250,150, 10, 1); /*Calling the built-in function bar3d()*/
 getch();
 closegraph(); /*Shutting the graphics system*/
}

Output



A.52 Computer Programming 

EXAMPLE A.61 Write a program that uses a simple structure for storing different students’ details.

Program

/*Program for creating a simple student structure*/
#include <stdio.h>
#include <conio.h>

void main ()
{
 int num, i=0;
 struct student/*Declaring the student structure*/
 {
  char name[30];
  int rollno;
  int t_marks;
 };
 struct student std[10];
 clrscr();

 /*Reading the number of students for which details are to be entered*/
 printf(“Enter the number of students: “);
 scanf(“%d”,&num);

 /*Reading the student details*/
 for(i=0;i<num;i++)
 {
  printf(“\nEnter the details for %d student”,i+1);
  printf(“\n\n Name “);
  scanf(“%s”,std[i].name);
  printf(“\n Roll No. “);
  scanf(“%d”,&std[i].rollno);
  printf(“\n Total Marks “);
  scanf(“%d”,&std[i].t_marks);
 }

 /*Displaying the student details*/
 printf(“\n Press any key to display the student details!”);
 getch();

 for(i=0;i<num;i++)
  printf(“\nstudent %d \n Name %s \n Roll No. %d \n Total Marks %d\n”,i+1,std[i].name, std[i].rollno, 

std[i].t_marks);

 getch();
}

Output

Enter the number of students: 2

Enter the details for 1 student

 Name Ajay

(Contd.)



Appendix A A.53 

EXAMPLE A.62 Write a simple program to demonstrate the process of defi ning a structure variable 

and assigning values to its members.

 Roll No. 2

 Total Marks 343

Enter the details for 2 student

 Name Arun

 Roll No. 6

 Total Marks 325

 Press any key to display the student details!
student 1
 Name Ajay
 Roll No. 2
 Total Marks 343

student 2
 Name Arun
 Roll No. 6
 Total Marks 325

Program

/*Program to demonstrate how to define a structure and assign values to its members*/
#include <stdio.h>
#include <conio.h>

void main()
{
 struct personal/*Defining a structure*/
 {
  char name[20];
  int day;
  char month[10];
  int year;
  float salary;
 };

 struct personal person;/*Declaring a structure variable*/
 clrscr();

 /*Reading values for structure members*/
 printf(“Enter the Values (name, day, month, year, salary): \n”);
 scanf(“%s %d %s %d %f”,person.name,&person.day,person.month,&person.year,&person.salary);

(Contd.)



A.54 Computer Programming 

EXAMPLE A.63 Write a program to realize the concept of complex numbers using structures and also 

print the sum of two complex number variables.

 /*Displaying the values*/
 printf(“%s %d %s %d, %.2f\n”,person.name,person.day,person.month,person.year,person.salary);

 getch();
}

Output

Enter the Values (name, day, month, year, salary):
Arun
22
9
1971
12000
Arun 22 9 1971, 12000.00 X

Program

/*Program for realizing complex numbers using structures*/
#include <stdio.h>
#include <conio.h>
#include <math.h>

void main()
{
 struct complex/*Declaring the complex number datatype using structure*/
 {
  double real;/*Real part*/
  double img;/*Imaginary part*/
 };
 struct complex c1, c2, c3;
 clrscr();
 /*Reading the 1st complex number*/
 printf(“\n Enter two Complex Numbers  (x+iy):\n\n Real Part of First Number: “);
 scanf(“%lf”,&c1.real);
 printf(“\n Imaginary Part of First Number: “);
 scanf(“%lf”,&c1.img);

 /*Reading the 2nd complex number*/
 printf(“\n Real Part of Second Number: “);
 scanf(“%lf”,&c2.real);
 printf(“\n Imaginary Part of Second Number: “);
 scanf(“%lf”,&c2.img);

 /*Performing complex number addition*/
 c3.real=c1.real+c2.real;
 c3.img=c1.img+c2.img;

(Contd.)



Appendix A A.55 

EXAMPLE A.64 Write a program to read the marks obtained by a student in three subjects and compute 

its sum and average.

 printf(“\n\n%.2lf+(%.2lf)i + %.2lf+(%.2lf)i = %.2lf+(%.2lf)i“, c1.real, c1.img, c2.real, c2.img, 
    c3.real, c3.img);

 getch();
}

Output

Enter two Complex Numbers  (x+iy):

 Real Part of First Number: 1

 Imaginary Part of First Number: 2

 Real Part of Second Number: 3

 Imaginary Part of Second Number: 4

1.00+(2.00)i + 3.00+(4.00)i = 4.00+(6.00)i

Program

/*Program for demonstrating operations on individual structure members*/

#include <stdio.h>

#include <conio.h>

void main ()

{

 struct student/*Declaring the student structure*/

 {

  int marks1, marks2, marks3,sum;

  float ave;

 };

 struct student std1;

 clrscr();

 /*Reading marks for the student*/

 printf(“Enter the marks obtained by the student in three subjects: “);

 scanf(“%d %d %d”,&std1.marks1, &std1.marks2, &std1.marks3);

 std1.sum = std1.marks1 + std1.marks2 + std1.marks3;

 std1.ave = (std1.marks1 + std1.marks2 + std1.marks3)/3;

 /*Displaying sum and average*/

 printf(“Sum = %d\nAverage = %.2f”,std1.sum, std1.ave);

(Contd.)



A.56 Computer Programming 

EXAMPLE A.65 Implement the problem in Example 1 using pointer notation.

Program

/*Program for demonstrating structure member initialization using pointers*/

#include <stdio.h>

#include <conio.h>

void main ()

{

 struct student/*Declaring the student structure*/

 {

  int marks1, marks2, marks3;

 }s1,s2;

 struct student *std1, *std2;/*Declaring pointer to structure*/

 clrscr();

 std1=&s1;

 std2=&s2;

 /*Assigning values to structure members using pointer notation*/

 std1->marks1=55;

 std1->marks2=66;

 std1->marks3=80;

 std2->marks1=60;

 std2->marks2=85;

 std2->marks3=78;

  /*Displaying marks for student 1*/

 printf(“Marks obtained by 1st student: %d, %d and %d”,std1->marks1, std1->marks2, std1->marks3);

 /*Displaying marks for student 2*/

 printf(“\nMarks obtained by 2nd student: %d, %d and %d”,std2->marks1, std2->marks2, std2->marks3);

 getch();

}

Output

Marks obtained by 1st student: 55, 66 and 80

Marks obtained by 2nd student: 60, 85 and 78

 getch();

}

Output

Enter the marks obtained by the student in three subjects: 55

65

89

Sum = 209

Average = 69.00



Appendix A A.57 

EXAMPLE A.66 Implement the problem in Example 5 using pointer notation.

Program

/*Program for demonstrating operations on individual structure members using pointer notation*/
#include <stdio.h>
#include <conio.h>

void main ()
{
 struct student/*Declaring the student structure*/
 {
  int marks1, marks2, marks3,sum;
  float ave;
 }s1;
 struct student *std1;/*Declaring pointer to structure*/
 clrscr();
 std1=&s1;

 /*Reading marks for the student*/
 printf(“Enter the marks obtained by the student in three subjects: “);
 scanf(“%d %d %d”,&s1.marks1, &s1.marks2, &s1.marks3);

 /*Performing arithmetic operations on structure members*/
 std1->sum = std1->marks1 + std1->marks2 + std1->marks3;
 std1->ave = (std1->marks1 + std1->marks2 + std1->marks3)/3;

 /*Displaying sum and average*/
 printf(“Sum = %d\nAverage = %.2f”,std1->sum, std1->ave);

 getch();
}

Output

Enter the marks obtained by the student in three subjects: 69
89
55
Sum = 213
Average = 71.00

EXAMPLE A.67 Implement the following student information fi elds using structures:

 Roll No

 Name (First, Middle, Last)

 DOB (Day, Month, Year)

 Course (Elective1, Elective2)

Program

/*Program for demonstrating nesting of structures*/
#include <stdio.h>

(Contd.)



A.58 Computer Programming 

#include <conio.h>

void main ()
{
 struct student/*Declaring the nested structure*/
 {
  int roll_no;
  struct name
  {
   char First[20];
   char Middle[20];
   char Last[20];
  }st_name;
  struct dob
  {
   int day;
   int month;
   int year;
  }st_dob;
  struct course
  {
   char elective1[20];
   char elective2[20];
  }st_course;
 };
 struct student std1;
 clrscr();

 /*Initializing structure variable std1*/
 std1.roll_no=21;
 strcpy(std1.st_name.First,”Tulsi”);
 strcpy(std1.st_name.Middle,”K”);
 strcpy(std1.st_name.Last,”Shanta”);
 std1.st_dob.day=2;
 std1.st_dob.month=2;
 std1.st_dob.year=1981;
 strcpy(std1.st_course.elective1,”Mechanics”);
 strcpy(std1.st_course.elective2,”Animation”);

 /*Printing the values of std1*/
printf(“\nRoll No.: %d”,std1.roll_no);
printf(“\nName: %s %s %s”,std1.st_name.First,std1.st_name.Middle,std1.st_name.Last);
printf(“\nDate of Birth (DD MM YYYY): %d %d %d”,std1.st_dob.day,std1.st_dob.month,std1.st_dob.year);
printf(“\nCourse ELectives: %s & %s”,std1.st_course.elective1,std1.st_course.elective2);

 getch();
}

Output

Roll No.: 21
Name: Tulsi K Shanta
Date of Birth (DD MM YYYY): 2 2 1981
Course ELectives: Mechanics & Animation



Appendix A A.59 

EXAMPLE A.68 Implement the following employee information fi elds using structures:

 Employee ID

 Name (First, Middle, Last)

 DOJ, 

 Gross Salary (HRA, BASIC, Special Allowance).

Program

/*Program for demonstrating nesting of structures*/
#include <stdio.h>
#include <conio.h>

void main ()
{
 struct employee/*Declaring the nested structure*/
 {
  int emp_id;
  struct name
  {
   char First[20];
   char Middle[20];
   char Last[20];
  }emp_name;
  char doj[20];
  struct G_Sal
  {
   float basic;
   float hra;
   float spl_allow;
  }emp_sal;
 };
 struct employee emp1;
 clrscr();

 /*Initializing structure variable emp1*/
 emp1.emp_id=37;
 strcpy(emp1.emp_name.First,”N”);
 strcpy(emp1.emp_name.Middle,”Siva”);
 strcpy(emp1.emp_name.Last,”Kumar”);
 strcpy(emp1.doj,”22/10/2004”);
 emp1.emp_sal.basic=17432.00;
 emp1.emp_sal.hra=10032.00;
 emp1.emp_sal.spl_allow=5000.00;

 /*Printing the values of emp1*/
printf(“\nEmp ID: %d”,emp1.emp_id);
printf(“\nName: %s %s %s”,emp1.emp_name.First,emp1.emp_name.Middle,emp1.emp_name.Last);
printf(“\nDate of Joining (DD MM YYYY): %s”,emp1.doj);
printf(“\nGross Salary: %.2f”,emp1.emp_sal.basic+emp1.emp_sal.hra+emp1.emp_sal.spl_allow);

 getch();
} 

(Contd.)



A.60 Computer Programming 

EXAMPLE A.69 Write a simple program to demonstrate the use of unions.

Program

/*Program for demonstrating the use of unions*/

#include <stdio.h>

#include <conio.h>

void main ()

{

 union student/*Declaring union*/

 {

  int roll_no;

  char result;

 }st1,st2;

clrscr();

 /*Initializing union variables*/

 st1.roll_no=20;

 st2.result=’P’;

 /*Accessing and printing the values correctly*/

 printf(“\nRoll NO: %d”,st1.roll_no);

 printf(“\nResult: %c”,st2.result);

 printf(“\n\n”);

 /*Accessing and printing the values incorrectly*/

 printf(“\nRoll NO: %d”,st2.roll_no);

 printf(“\nResult: %c”,st1.result);

 getch();

}

Output

Roll NO: 20

Result: P

Roll NO: 12880

Result: ¶

Output

Emp ID: 37
Name: N Siva Kumar
Date of Joining (DD MM YYYY): 22/10/2004
Gross Salary: 32464.00



Appendix A A.61 

EXAMPLE A.70 Write a program to display the size of a structure variable.

Program

/*Program for demonstrating the use of sizeof operator with structures*/
#include <stdio.h>
#include <conio.h>

void main ()
{
 struct s/*Declaring a structure*/
 {
  int a;
  char b;
  float c;
  long d;
 }s1;
 clrscr();

 /*Printing the size of structure variable s1*/
 printf(“\nSize of (s1) = %d”,sizeof(s1));

 getch();
}

Output

Size of (s1) = 11

EXAMPLE A.71 Write a program that uses the sizeof operator to differentiate between structures and 

unions.

Program

/*Program for differentiating between structure and union*/
#include <stdio.h>
#include <conio.h>

void main ()
{
 struct s/*Declaring a structure*/
 {
  int a;
  char b;
  float c;
  long d;
 }s1;

 union u/*Declaring a union*/
 {
  int a;

(Contd.)



A.62 Computer Programming 

EXAMPLE A.72 Write a simple program to open and close a fi le; or print an error message in case of 

unsuccessful operation.

  char b;
  float c;
  long d;
 }u1;
 clrscr();

 /*Printing the sizes of structure and union variables*/
 printf(“\nSize of (s1) = %d”,sizeof(s1));
 printf(“\nSize of (u1) = %d”,sizeof(u1));

 getch();
}

Output

Size of (s1) = 11
Size of (u1) = 4

Program

/*Program for opening and closing a file*/
/*Source.txt file is placed at ../bin/ location*/
#include <stdio.h>
#include <conio.h>

void main()
{
 FILE *fs;/*Declaring file access pointer*/
 char ch;
 clrscr();

 fs = fopen(“Source.txt”,”r”);/*Opening a file*/
 if(fs==NULL)
 {
 printf(“Source file cannot be opened.”);/*Displaying error message incase of unsuccessful opening of 

the file*/
 getch();
 exit(0);
 }
 else
 printf(“\nFile Source.txt successfully opened”);

 fclose(fs);/*Closing the file*/
 printf(“\nFile Source.txt successfully closed”);

 printf(“\nPrint any key to end the program execution”);
 getch();

}

(Contd.)



Appendix A A.63 

EXAMPLE A.73 Write a program to copy the contents of one fi le into another.

Program

/*Program for copying contents of one file into another*/
/*Source.txt file is placed at ../bin/ location*/
#include <stdio.h>
#include <conio.h>

void main()
{
 FILE *fs,*ft;/*Declaring file access pointers*/
 char ch;
 clrscr();

 fs = fopen(“Source.txt”,”r”);/*Opening the source file in read mode*/
 if(fs==NULL)
 {
 printf(“Source file cannot be opened.”);
 exit(0);
 }
 ft = fopen(“Destination.txt”,”w”);/*Opening the target file in write mode*/
 if (ft==NULL)
 {
 printf(“Target file cannot be opened.”);
 fclose(fs);
 exit(0);
 }
 while(1)
 {
  ch=fgetc(fs);/*Reading contents of Source.txt character by character*/
  if (ch==EOF)
  break;
  else
  fputc(ch,ft);/*Copying Source.txt file contents into Destination.txt one character at a time*/
  }
  /*Closing the files*/
  fclose(fs);
  fclose(ft);
  printf(“\nFile copy operation performed successfully”);
  printf(“\nYou can confirm the same by checking the Destination.txt file”);
  getch();
}

Output

File copy operation performed successfully
You can confirm the same by checking the Destination.txt file

Output

File Source.txt successfully opened
File Source.txt successfully closed
Print any key to end the program execution



A.64 Computer Programming 

EXAMPLE A.74 Write a program to count the number of characters in a fi le.

Program

/*Program for counting the number of characters present in a file*/
/*Source.txt file is placed at ../bin/ location*/
#include <stdio.h>
#include <conio.h>

void main()
{
 FILE *fs;/*Declaring the file access pointer*/
 char ch;
 long count=0;/*Declaring the count variable*/
 clrscr();

 fs = fopen(“Source.txt”,”r”);/*Opening the source file*/
 if(fs==NULL)
 {
 printf(“Source file cannot be opened.”);
 exit(0);
 }

 while(1)
 {
  ch=fgetc(fs);
  if (ch==EOF)
  break;
  else
  count=count+1;/*Counting the number of characters present in the source file*/
 }

  fclose(fs);
  printf(“\nThe number of characters in %s is %ld”,”Source.txt”,count);
  getch();
}

Output

The number of characters in Source.txt is 41

EXAMPLE A.75 Write a program to read the contents of one fi le and write them in reverse order in 

another fi le.

Program

/*Program for reading file contents and printing its reverse*/
/*Source.txt file is placed at ../bin/ location*/
#include <stdio.h>
#include <conio.h>

(Contd.)



Appendix A A.65 

void main()

{

 FILE *fs,*ft;/*Declaring file access pointers*/

 char str[100];

 int i;

 clrscr();

 fs = fopen(”Source.txt”,”r”);/*Opening the source file in read mode*/

 if(fs==NULL)

 {

 printf(”Source file cannot be opened.”);

 exit(0);

 }

 ft = fopen(”Target.txt”,”w”);/*Opening the target file in write mode*/

 if (ft==NULL)

 {

 printf(”Target file cannot be opened.”);

 fclose(fs);

 exit(0);

 }

 

 i=0;

 while(1)

 {

  str[i]=fgetc(fs);/*Reading contents of Source.txt character by character*/

  if (str[i]==EOF)

  break;

  else

  i=i+1;

 }

 for(i=strlen(str)-2;i>=0;i--)

  fputc(str[i],ft);/*Writing the reverse of file contents*/

 /*Closing the files*/

  fclose(fs);

  fclose(ft);

  printf(”\nContents of Source.txt successfully printed in reverse order in Target.txt”);

  printf(”\nYou can confirm the same by checking the Target.txt file”);

  getch();

}

Output

Contents of Source.txt successfully printed in reverse order in Target.txt

You can confirm the same by checking the Target.txt file



A.66 Computer Programming 

EXAMPLE A.76 Write a program to read a list of integers from one fi le and copy the same in reverse 

order in another fi le.

Program

/*Program for demonstrating the use of getw and putw*/
#include <stdio.h>
#include <conio.h>
/*
This program uses source file named S1, which contains the following elements:
1
2
3
4
5
*/

void main()
{
 FILE *fs,*ft,*fp;/*Declaring file access pointers*/
 int i,j,arr[10],num;
 clrscr();

 fs = fopen(”S1”,”r”);/*Opening the source file in read mode*/
 if (fs==NULL)
 {
  printf(”Source file cannot be opened.”);
  exit(0);
 }

 ft = fopen(”S2”,”w”);/*Opening the destination file in write mode*/
 if (ft==NULL)
 {
  printf(”Target file cannot be opened.”);
  fclose(fs);
  exit(0);
 }

 i=0;

 while((arr[i]=getw(fs))!=EOF)/*Reading integers from source file and storing them in array arr[]*/
  i=i+1;
 fclose(fs);

 for(j=i-1;j>=0;j--)
  putw(arr[j],ft);/*Copying the source integer list into target file in reverse order*/
 fclose(ft);

 /*Verifying the contents of the target file*/
 fp = fopen(”T2”,”r”);
 if (fp==NULL)
 {
  printf(”Target file cannot be opened.”);

(Contd.)



Appendix A A.67 

EXAMPLE A.77 Write a program for reading integers from a fi le and writing square of those integers 

into another fi le.

  exit(0);
 }
 printf(”Contents of the newly written file are:\n”);
 while((num=getw(fp))!=EOF)
  printf(”%d\n”,num);
 fclose(fp);

 getch();
}

Output

Contents of the newly written file are:
5
4
3
2
1

Program

/*Program for demonstrating the use of fprintf and fscanf*/
/*Source.txt file is placed at ../bin/ location; assuming that it contains 10 integer values*/
#include<stdio.h>
#include<stdlib.h>
#include<conio.h>

void main()
{
 FILE *fs,*ft;/*Declaring file access pointers*/
 int c;
 clrscr();

 fs=fopen(“Source.txt”,”r”);/*Opening the source file*/
 if(fs==NULL)
 {
  printf(“Cannot open source file”);
  exit(1);
 }

 ft=fopen(“Target.txt”,”w”);/*Opening the target file*/
 if(ft==NULL)
 {
  printf(“Cannot open target file”);
  fclose(fs);
  exit(0);
 }
 for(;fscanf(fs,”%d”,&c)!=EOF;)/*Using fscanf for reading integers from file*/

(Contd.)



A.68 Computer Programming 

EXAMPLE A.78 Write a program that reads list of integers from two different fi les and merges and 

stores them in a single fi le.

  fprintf(ft,” %d “,(c*c));/*Using fprintf for writing integers to a file*/

 printf(“The square of the 10 integers contained in source file have been computed and copied to the 
target file. You can open the Target.txt file for validation”);

 fclose(fs);
 fclose(ft);

getch();
}

Output

The square of the 10 integers contained in source file have been computed and copied to the target file. 
You can open the Target.txt file for validation

Program

/*Program for demonstrating the use of fseek*/
/*Source1.txt and Source2.txt files containing integer lists are placed at ../bin/ location*/
#include<stdio.h>
#include<conio.h>

void main()
{
 FILE *fs,*ft;/*Declaring file access pointers*/
 int c;
 clrscr();

 fs=fopen(“Source1.txt”,”r”);/*Opening the 1st source file*/
 if(fs==NULL)
 {
  printf(“Cannot open source file”);
  exit(1);
 }

 ft=fopen(“Target.txt”,”w”);/*Opening the target file*/
 if(ft==NULL)
 {
  printf(“Cannot open target file”);
  fclose(fs);
  exit(0);
 }

 for(;fscanf(fs,”%d”,&c)!=EOF;)/*Using fscanf for reading integers from file*/
  fprintf(ft,” %d “,(c));/*Using fprintf for writing integers to a file*/

 /*Closing the file streams*/
 fclose(fs);

(Contd.)



Appendix A A.69 

EXAMPLE A.79 Write a program to open a fi le using command line arguments and display its contents.

 fclose(ft);

 fs=fopen(“Source2.txt”,”r”);/*Opening the 2nd source file*/
 if(fs==NULL)
 {
  printf(“Cannot open source file”);
  exit(1);
 }

 ft=fopen(“Target.txt”,”r+”);/*Opening the target file again*/
 if(ft==NULL)
 {
 printf(“Cannot open target file”);
 fclose(fs);
 exit(0);
 }

 fseek(ft,0L,2);/*Using fseek to move to the end of the file*/

 for(;fscanf(fs,”%d”,&c)!=EOF;)/*Reading integers from file*/
  fprintf(ft,” %d “,(c));/*Writing integers to the file*/

 /*Closing the file streams*/
 fclose(fs);
 fclose(ft);
 printf(“Files merged successfully; you can check the output by opening Target.txt file”);

 getch();
}

Output

Files merged successfully; you can check the output by opening Target.txt file

Program

/* Program for demonstrating the use of command line arguments*/
/*Program file name: fileopen.c*/
/*Assuming source file Source.txt is placed inside the ../bin/ location*/
#include <stdio.h>
#include <conio.h>

void main(int argc, char *argv[])
{
  char ch;
  FILE *fp;

  if(argc!=2)/*Checking the number of arguments given at command line*/

(Contd.)



A.70 Computer Programming 

  {
  puts(“Improper number of arguments.”);
  exit(0);
  }

  fp = fopen(argv[1],”r”); /*Opening the file in read mode*/
  if(fp == NULL)
  {
  puts(“File cannot be opened.”);
  exit(0);
  }

 printf(“Contents of file are:\n”);
 while(1)
 {
  ch=fgetc(fp);/*Reading contents of Source.txt character by character*/
  if (ch==EOF)
  break;
  else
  printf(“%c”,ch); /*Displaying the file contents*/
  }

fclose(fp);/*Closing the source file*/
getch();
}

Output

D:\TC\BIN>fileopen
Improper number of arguments.

D:\TC\BIN>fileopen Source.txt
Contents of file are:
Hey! We are inside the Source.txt file...



Appendix B

B.1 MATRIX OPERATIONS

A matrix can be logically represented with the help of multi-dimensional arrays. For example, A[2][2] repre-

sents a 2X2 matrix, as shown in Figure B.1:

A[0][0] A[0][1]

A[1][0] A[1][1]

Fig. B.1. A 2X2 Matrix

Several matrix operations can be performed with the help of multi-dimensional arrays. The following 

examples depict some of these operations.

EXAMPLE B.1 Write a program to read and display a simple 3 X 3 matrix.

Program

/*Program for realizing a 3 X 3 matrix using 2-D arrays*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int i,j,a[3][3];
 clrscr();

 /*Reading matrix elements*/
 printf(“Enter the elements of the 3 X 3 matrix:\n”);
 for(i=0;i<3;i++)
  for(j=0;j<3;j++)
  {
   printf(”a[%d][%d] = ”,i,j);
   scanf(“%d”,&a[i][j]);
  }

 /*Printing matrix elements*/
 printf(“The various elements contained in the 3 X 3 matrix are:\n”);

(Contd.)



B.2 Computer Programming

 for(i=0;i<3;i++)
 {
  printf(“\n\t\t    “);
  for(j=0;j<3;j++)
   printf(“%d\t“,a[i][j]);
 }

 getch();
}

Output

Enter the elements of the 3 X 3 matrix:
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3
a[1][0] = 4
a[1][1] = 5
a[1][2] = 6
a[2][0] = 7
a[2][1] = 8
a[2][2] = 9
The various elements contained in the 3 X 3 matrix are:

                    1   2       3
                    4   5       6
                    7   8       9

EXAMPLE B.2 Write a program to add two 3 X 3 matrices.

Program

/*Program for adding two 3 X 3 matrices using 2-D arrays*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int i,j,a[3][3],b[3][3],c[3][3];
 clrscr();

 printf(“Enter the first 3 X 3 matrix:\n”);
 for(i=0;i<3;i++)
 {
  for(j=0;j<3;j++)
  {
   printf(”a[%d][%d] = ”,i,j);
   scanf(“%d”,&a[i][j]);/*Reading the elements of 1st matrix*/
  }
 }

(Contd.)



Appendix B B.3 

 printf(“Enter the second 3 X 3 matrix:\n”);
 for(i=0;i<3;i++)
 {
  for(j=0;j<3;j++)
  {
   printf(”b[%d][%d] = ”,i,j);
   scanf(”%d”,&b[i][j]);/*Reading the elements of 2nd matrix*/
  }
 }

 printf(”\nThe entered matrices are: \n”);
 for(i=0;i<3;i++)
 {
  printf(“\n”);
  for(j=0;j<3;j++)
   printf(”%d\t”,a[i][j]);/*Displaying the elements of 1st matrix*/
  printf(“\t\t”);
  for(j=0;j<3;j++)
   printf(„%d\t“,b[i][j]);/*Displaying the elements of 2nd matrix*/
 }

 for(i=0;i<3;i++)
  for(j=0;j<3;j++)
   c[i][j] =a[i][j]+b[i][j];/*Computing the sum of two matrices*/

 printf(”\n\nThe sum of the two matrices is shown below: \n”);
 for(i=0;i<3;i++)
 {
  printf(“\n\t\t    “);
  for(j=0;j<3;j++)
   printf(“%d\t“,c[i][j]);/*Displaying the result*/
 }

 getch();
}

Output

Enter the first 3 X 3 matrix:
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3
a[1][0] = 4
a[1][1] = 5
a[1][2] = 6
a[2][0] = 7
a[2][1] = 8
a[2][2] = 9
Enter the second 3 X 3 matrix:
b[0][0] = 9
b[0][1] = 8
b[0][2] = 7
b[1][0] = 6
b[1][1] = 5

(Contd.)



B.4 Computer Programming

EXAMPLE B.3 Write a program to multiply two 3 X 3 matrices.

Program

/*Program for multiplying two 3 X 3 matrices using 2-D arrays*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int i,j,k,a[3][3],b[3][3],c[3][3];
 clrscr();
 printf(“Enter the first 3 X 3 matrix:\n”);
 for(i=0;i<3;i++)
 {
  for(j=0;j<3;j++)
  {
   printf(”a[%d][%d] = ”,i,j);
   scanf(“%d”,&a[i][j]);/*Reading the elements of the 1st matrix*/
  }
 }

 printf(“Enter the second 3 X 3 matrix:\n”);
 for(i=0;i<3;i++)
 {
  for(j=0;j<3;j++)
  {
   printf(”b[%d][%d] = ”,i,j);
   scanf(”%d”,&b[i][j]);/*Reading the elements of the 2nd matrix*/
  }
 }
 printf(”\nThe entered matrices are: \n”);

 for(i=0;i<3;i++)
 {

(Contd.)

b[1][2] = 4
b[2][0] = 3
b[2][1] = 2
b[2][2] = 1

The entered matrices are:

1       2       3                       9       8       7
4       5       6                       6       5       4
7       8       9                       3       2       1

The sum of the two matrices is shown below:

                    10  10      10
                    10  10      10
                    10  10      10



Appendix B B.5 

  printf(“\n”);
  for(j=0;j<3;j++)
  {
   printf(”%d\t”,a[i][j]);/*Displaying the elements of the 1st matrix*/
  }
  printf(“\t\t”);
  for(j=0;j<3;j++)
  {
   printf(”%d\t“,b[i][j]);/*Displaying the elements of the 2nd matrix*/
  }
 }
 /*Multiplying the two matrices*/
 for(i=0;i<3;i++)
  for(j=0;j<3;j++)
  {
   c[i][j]=0;
   for(k=0;k<3;k++)
    c[i][j]=c[i][j]+a[i][k]*b[k][j];
  }
 printf(”\n\nThe product of the two matrices is shown below: \n”);

 for(i=0;i<3;i++)
 {
  printf(“\n\t\t    “);
  for(j=0;j<3;j++)
  {
   printf(”%d\t“,c[i][j]); /*Displaying the result*/
  }
 }

getch();
}

Output

Enter the first 3 X 3 matrix:
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3
a[1][0] = 4
a[1][1] = 5
a[1][2] = 6
a[2][0] = 7
a[2][1] = 8
a[2][2] = 9
Enter the second 3 X 3 matrix:
b[0][0] = 9
b[0][1] = 8
b[0][2] = 7
b[1][0] = 6
b[1][1] = 5
b[1][2] = 4
b[2][0] = 3

b[2][1] = 2
b[2][2] = 1

(Contd.)



B.6 Computer Programming

The entered matrices are:

1       2       3                       9       8       7
4       5       6                       6       5       4
7       8       9                       3       2       1

The product of the two matrices is shown below:

                    30  24      18
                    84  69      54
                    138 114     90

EXAMPLE B.4 Write a program to generate the transpose of a 3X3 matrix.

Program

/*Program for generating the transpose of a 3X3 matrix using 2-D arrays*/
#include <stdio.h>
#include <conio.h>

void main()
{
 int i,j,a[3][3],b[3][3];
 clrscr();
 printf(“Enter a 3 X 3 matrix:\n”);
 for(i=0;i<3;i++)
 {
  for(j=0;j<3;j++)
  {
   printf(”a[%d][%d] = ”,i,j);
   scanf(“%d”,&a[i][j]); /*Reading the elements of the 3X3 matrix*/
  }
 }

 printf(“\nThe entered matrix is: \n”);
 for(i=0;i<3;i++)
 {
  printf(“\n”);
  for(j=0;j<3;j++)
  {
   printf(”%d\t”,a[i][j]); /*Displaying the matrix*/
  }
 }

 for(i=0;i<3;i++)
 {
  for(j=0;j<3;j++)
   b[i][j]=a[j][i]; /*Computing matrix transpose*/
 }
 printf(”\n\nThe transpose of the matrix is: \n”);

(Contd.)



Appendix B B.7 

for(i=0;i<3;i++)
 {
 printf(“\n”);
  for(j=0;j<3;j++)
  {
   printf(”%d\t”,b[i][j]); /*Displaying the resultant transposed matrix*/
  }
 }

 getch();
}

Output

Enter a 3 X 3 matrix:
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3
a[1][0] = 4
a[1][1] = 5
a[1][2] = 6
a[2][0] = 7
a[2][1] = 8
a[2][2] = 9

The entered matrix is:

1       2       3
4       5       6
7       8       9

The transpose of the matrix is:

1       4       7
2       5       8
3       6       9

EXAMPLE B.5 Write a program to check whether the given matrix is symmetrical or not.

Program

/*Program for checking whether a given matrix is symmetrical or not*/
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

void main()
{
 int i,j,a[3][3];

 printf(“Enter a 3 X 3 matrix:\n”);

(Contd.)



B.8 Computer Programming

 for(i=0;i<3;i++)
 {
  for(j=0;j<3;j++)
  {
   printf(“a[%d][%d] = “,i,j);
   scanf(“%d”,&a[i][j]); /*Reading the elements of the 3X3 matrix*/
  }
 }

 printf(“\nThe entered matrix is: \n”);
 for(i=0;i<3;i++)
 {
  printf(“\n”);
  for(j=0;j<3;j++)
  {
   printf(”%d\t”,a[i][j]); /*Displaying the matrix*/
  }
 }

 for(i=0;i<3;i++)
  for(j=0;j<3;j++)
   if(a[i][j]!=a[j][i])
   {
    printf(”\nThe matrix is non-symmetrical”);
 getch();
 exit(0);
   }
 
 printf(”\nThe matrix is symmetrical”);

 getch();
}

Output

Enter a 3 X 3 matrix:
a[0][0] = 1
a[0][1] = 2
a[0][2] = 3
a[1][0] = 2
a[1][1] = 4
a[1][2] = 5
a[2][0] = 3
a[2][1] = 5
a[2][2] = 6

The entered matrix is:

1       2       3
2       4       5
3       5       6
The matrix is symmetrical



Appendix B B.9 

B.2 RECURSION

B.3 SELF-REFERENTIAL STRUCTURE

A self-referential structure is a structure that contains member pointers pointing to itself. That means, it 

declares one or more of its members as pointers to itself. Such types of structures are commonly used during 

linked implementation of data structures. For example, consider the following structure declaration repre-

senting a queue node:

struct queue
{
int info;
struct queue *next;
};

In the above declaration, next is a pointer to the same structure of which it is a part of. Logically, next is being 

used here to point to the next node in the queue. 

EXAMPLE B.6 Write a program for generating the Fibonacci series using recursion.

Program

/*Program for recursively generating Fibonacci series*/
#include <stdio.h>
#include <conio.h>

int fib(int);
void main()
{
int i;
int len=20;
printf(“\t\t<----FIBONACCI SERIES---->\n”);

for(i=0;i<=len-1;i++)
 printf(“  %d”,fib(i));

getch();
}

int fib(int n)
{
 if(n<=1)
  return(n);
 else
  return(fib(n-1)+fib(n-2)); /*Recursive Function call*/
}

Output

                <----FIBONACCI SERIES---->
  0  1  1  2  3  5  8  13  21  34  55  89  144  233  377  610  987  1597  2584 4181





Code No: R10105/R10

IB.Tech I Semester Regular Examinations, January 2012

C Programming

(Common to All Branches)

Time: 3 hours Max Marks: 75

Answer any Five Questions

All Questions Carry Equal Marks

1. a) What is an algorithm? Write an algorithm to arrange three integer elements in ascending 

order.

 b) What are the programming development steps? Explain. 8m + 7m

 (a) Algorithm:

  Refer Section 1.8 & 1.9

  Algorithm to arrange three integer elements in ascending order:

  Step 1: Start

  Step 2 :  Accept three numbers from user (a, b, c)

  Step 3 : If a < b then goto step 4 else goto step 8

  Step 4 : if a < c  then goto step 5 else goto step 7

  Step 5 : If b < c  then goto step 9 else goto step 6

  Step 6 : Interchange  b and c and goto step 9

  Step 7 : Interchange a and c and goto step 3

  Step 8 : Interchange a and b and goto step 3

  Step 9 : Display “ Ascending order”

  Step 10 : Display  a, b, c

  Step 11 : Stop

 (b) Refer Section 1.22

Solved Question Paper
(JANUARY 2012) SET-1



SQP-1.2 Computer Programming

2. a) Write briefl y about the C Tokens with suitable examples

 b) Write a program to fi nd the largest of three numbers using conditional operator    7m + 8m

 a) Refer section 1.27, 1.28 and 1.29

 b)

  # include <stdio.h>

  # include <conio.h>

  void main()

  {

   int a, b, c, big ;

   clrscr() ;

   printf("Enter three numbers : ") ;

   scanf("%d %d %d", &a, &b, &c) ;

   big = (a > b) ? (a > c ? a : c) : (b > c ? b : c) ;

   printf("\nThe biggest number is : %d", big) ;

   getch() ;

  }

3 a) Write briefl y about bit-wise operators with suitable examples.

 b) Write a program to award the grade to the students, based on average marks  ( Use switch 

statement) 8m + 7m

 a) Refer Section 1.51

 b) Refer Page SQP 2.9, question 6(b)

4.  What are different types of iterative statements? Explain each with suitable examples.       

15m

  Refer Section 3.12, 3.13 and 3.14

5. a) What is an array? Describe array declaration, initialization, and accessing array elements.

 b) Write a program to implement matrix multiplication using two dimensional arrays

  7m + 8m

 a) Refer Section 4.1, 4.2, 4.3 and 4.4

 b) Refer Appendix A , Example A.41

6. a) What are the different types of storage classes? Explain each with suitable examples.

 b) Write a program to generate Fibonacci series using recursive function  7m + 8m

 a) Refer Section 5.19

 b) Refer Appendix B, Example B.6

 



Solved Question Paper Set-1 SQP-1.3 

7. a) What is a pointer? Describe call by value and call by address with suitable examples.

 b) Write a program to arrange a set of strings in ascending order using pointers.     7m + 8m

 a) Refer Section 6.1, 5.7 and 6.13

 b)

 #include<stdio.h>

 #include<string.h>

 void main()

 {

  char s[5][20],t[20];

  int i,j;

 clrscr();

 printf("Enter any fi ve strings : \n");

 for(i=0;i<5;i++)

     scanf("%s",s[i]);

       

 for(i=1;i<5;i++)

      for(j=1;j<5;j++)

          if(strcmp(*(s+j-1),*(s+j))>0)

             {

             strcpy(t,*(s+j-1));

             strcpy(*(s+j-1),*(s+j));

             strcpy(*(s+j),t);

             }

  printf("Strings in order are : ");

 for(i=0;i<5;i++)

     printf("\n%s",s[i]);

 getch();

 }

8. a) List he differences between structures and union. Describe structure declaration, 

initialization, and accessing elements.

 b) Write briefl y about self referential structures and dynamic memory management functions.

7m + 8m

 a) Differences between structures & Unions : Refer Section SQP 2.8

  Structure declaration, initialization, and accessing elements : Refer Section 7.3, 7.4 and 7.5

 b) Self referential structures:  Refer Appendix B, B.3

  dynamic memory management functions: Refer Section: 6.18 , 6.19 and 6.20





Code No: R10105/R10

IB.Tech I Semester Regular Examinations, January 2012

C Programming

(Common to All Branches)

Time: 3 hours Max Marks: 75

Answer any Five Questions

All Questions Carry Equal Marks

1. a)  What are the computer languages? Explain and draw the fl ow chart for fi nding the smallest 

of  Three numbers

 b) What are the different types of operators in C programming language? Give an example on 

each operator. 7m + 8m

 a) Computer Languages :  Refer Section :1.2

  Flowchart:

Solved Question Paper
(JANUARY 2012) SET-2

Print b
smallest

Yes

No

Yes
No

No

start

stop

Read a, b,c

Print a

Print c

If a > b

If b > c

If a > c

Yes



SQP-2.2 Computer Programming

 b) Refer Section 1.44 to 1.52

2. a) Write briefl y about two-way and multi-way selection statements.

 b) Write a program to print the given any integer number in words using switch and while 

statements. 7m + 8m

 a) Refer Section 2.1 to 2.8

 b) Refer Section SQP 4.3 Question 2(b)

3. a) What are the advantages of for loop? List the differences between for loop and do while 

loop. Give an  example on break and continue statements.

 b) Write a program to print the given format

 *

      *               *

     *                 *                 *

7m + 8m

 a) Refer Section 3.11 and 3.15

 b)

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int bin,p,q,r,x;

 clrscr();

 bin=1;

   q=0;

 printf("Rows you want to input:");

 scanf("%d",&r);

 printf("\nPascal's Triangle using * s:\n");

 while(q<r)

 {

 for(p=40-3*q;p>0;--p)

 printf(" ");

 for(x=0;x<=q;++x)

         printf("   *   ");

 printf("\n");

 ++q;

 }

 getch();

 }

4. a) Explain the detail about 1-Dimensional and 2-Dimensional array declaration, accessing 

elements, initialization with suitable examples.

 b) Write a program to arrange characters of any given string in ascending order.     8m + 7m 



Solved Question Paper Set-2 SQP-2.3 

 Answer:

 a) Refer Section 4.2, 4.3 , 4.4, 4.5 & 4.6

 b)

 #include<stdio.h> 

 #include<conio.h> 

 #include<string.h> 

 void main() 

 { 

 int i,j,d; 

 char ch[20],temp; 

 clrscr(); 

 printf("\nEnter the length of the string:"); 

 scanf("%d",&d); 

 printf("\nEnter the characters:"); 

 for(i=0;i<d;i++) 

     ch[i]=getchar(); 

 printf("\nThe characters are:"); 

 for(i=0;i<d;i++) 

           printf("\n%c",ch[i]); 

 for(i=0;i<d;i++) 

 for(j=i+1;j<d;j++) 

 if(ch[i]>ch[j]) 

 { 

       temp=ch[i]; 

       ch[i]=ch[j]; 

       ch[i]=temp; 

 } 

 getch(); 

 }

5. a) Write briefl y about the user defi ned functions and standard library functions. Give an 

example on parameter passing and static storage class.

 b) Write a program to implement towers of Hanoi using recursive function. 8m + 7m

 a) Refer Section 5.2, 5.45.18,5.7 and 5.19

 b) Refer Section 5.21

6. a) What is dangling pointer? Give an example on pointers to pointer and passing by address.

 b) Explain about dynamic memory allocation function and use of command line arguments.  

7m + 8m

 a)  If any pointer is pointing the memory address of any variable but after some variable has deleted 

from that memory location while pointer is still pointing such memory location. Such pointer is 

known as dangling pointer and this problem is known as dangling pointer problem.

  Dangling pointers arise when an object is deleted or deallocated, without modifying the value of 

the pointer, so that the pointer still points to the memory location of the deallocated memory



SQP-2.4 Computer Programming

  Example for pointer to pointer:

  int **p;

  int *q;

  p = (int **)malloc(sizeof(int *));

  *p = (int *)malloc(sizeof(int));

  **p = 12;

  q = *p;

  printf("%d\n", *q);

  free(q);

  free(p);

  Example for passing by address:

 #include <stdio.h>

 void f(int *j) 

 {

   (*j)++;

 }

 int main()

 {

   int i = 20;

   int *p = &i;

   f(p);

   printf("i = %d\n", i);

   return 0;

 }

 b) Refer Section 6.18 and 6.22

7.  Write short notes on 

 a) structures and  Functions, Bit- fi elds

 b) Structure and Union

 c) Extern, auto and register storage classes   5m + 5m + 5m

 a) Refer Section 7.11 & 7.14

 b) Refer Page no SQP 2.8

 c) Refer Section 5.19

8. a) Describe in detail about fi le handling functions in C Programming language.

 b)  Write a program to copy the one fi le data into another fi le. 8m + 7m

 a) Refer Section 8.3 to 8.7

 b) Refer Appendix A, Example A.73



Code No: R10105/R10

IB.Tech I Semester Regular Examinations, January 2012

C Programming

(Common to All Branches)

Time: 3 hours Max Marks: 75

Answer any Five Questions

All Questions Carry Equal Marks

1. a) What is a pseudo code? Draw the fl ow chart for fi nding factorial of a number.

 b) List the differences between interpreter and compiler. Discuss different computer languages.

   7m + 8m

 a) Pseudo code: Refer Section 1.11

Solved Question Paper
(JANUARY 2012) SET-3

Read N

Start

End

M = 1

F = 1

F = F*M

M = M+1 Is M = N?

Yes

No

Print F



SQP-3.2 Computer Programming

 b) Refer Section 1.5.2 and 1.3

2. a) Write a program to fi nd the roots of a quadratic equation.

 b) Write a program to fi nd the reverse of a given integer using while. 7m + 8m

 a) Refer Section 1.12 , Figure 1.52

 b)

 int main()

 {

     int num,r,reverse=0;

     printf("Enter any number: ");

     scanf("%d",&num);

     while(num)

     {

                        r=num%10;

          reverse=reverse*10+r;

          num=num/10;

                   }

     printf("Reversed of number: %d",reverse);

     return 0;

 }

3. a) Explain different selection statements with their syntax

 b) Write a program using do-while loop for the following format.

1

2              2

3             3               3

4               4                4               4 

7m + 8m

 a) Refer Section 2.2, 2.7 and 2.8

  #include<conio.h>

 long calc( int );

 int main()

 {

  int i,j,row;

  printf("Enter no. of rows in pascal triangle : ");

  scanf("%d", &row);

  for(i=0; i<row; i++)

(Contd.)



Solved Question Paper Set-3 SQP-3.3 

  {

    for(j=0; j<=(row-i-1); j++)

      printf(" ");

    for(j=0; j<=i; j++)

            printf("%ld ",i);   

    printf("\n");

  }

   return 0;

 }

 long calc( int num)

 {

  int x;

  long res=1;

   for(x=1; x<=num; x++)

 res=res*x;

 getch();

   return (res);

 }

4. a) What is an array? Explain compile time and runtime initialization with suitable examples.

 b) Write a program for fi nding trace of a matrix using 2-dimensional arrays 7m + 8m

 a) Refer Section 4.1, 4.4 and 4.6

 b) Program:

 #include<stdio.h>

 main()

 {

 int a[10][10],i,j,sum=0;

 printf("enter the values of m,n");

 scanf("%d%d",&m,&n);

 printf("enter the elements of matrix a");

 for(i=0;i<m;i++)

    for(j=0;j<n;j++)

         scanf("%d",&a[i][j]);

 for(i=0;i<m;i++)

    for(j=0;j<n;j++)

       if(i==j)

           sum=sum+a[i][j];

 printf("trace of a matrix=%d",sum);

 }

 



SQP-3.4 Computer Programming

5. a) What is a recursion? Write a program to search an element in an array using recursive 

function.

 b) Defi ne function. Explain functions with return type and non-return type with suitable 

examples. 7m + 8m

 a) Recursion:  Refer Section 5.16

 b) Program:

 #include <stdio.h>

 #defi ne SIZE 100

   int linearSearch( const int [], int, int );

   int main()

 {   

    int a[ SIZE ], x, searchKey, element;

      for ( x = 0; x <= SIZE - 1; x++ ) 

       scanf(“%d”,&a[i]);

       printf( "Enter integer search key:\n" );

    scanf( "%d", &searchKey );

    element = linearSearch( a, searchKey, SIZE );

      if ( element != -1 )

       printf( "Found value in element %d\n", element );

    else

       printf( "Value not found\n" );

      return 0;

 }

 int linearSearch( const int array[], int key, int size )

 {

     int ret =-1;

     if (array[0]== key)

         ret=key;

     else

         if(size>0)

             ret = linearSearch(&array[1],key,size-1);

       return ret;

 }

 b) Refer sections 5.1, 5.10, 5.11, 5.12, 5.13, 5.14

6. a) What are command line arguments? Write a program to count the number of strings on 

the command line.



Solved Question Paper Set-3 SQP-3.5 

 b) What is a pointer? Discuss call by value and call by reference with suitable examples. 

   7m + 8m

 a) Refer Section 6.22

 int main ( int argc, char *argv[] )

  The integer, argc is the argument count. It is the number of arguments passed into the program  

from the command line, including the name of the program

  Call by value: In call by value method, the called function creates a new set of variables and 

copies the values of arguments into them.

  Example: 

 void swap(int x, int y)

 { 

   int temp;

   temp = x;

   x = y;

   y = temp;

   printf("Swapped values are a = %d and b = %d", x, y);

 }

 void main()

 {

   int a = 7, b = 4;

   swap(a, b);

   printf("Original values are a = %d and b = %d", a, b);

   printf("The values after swap are a = %d and b = %d", a, b);

 }

  Call by reference: In call by reference method, instead of passing a value to the function being 

called a reference/pointer to the original variable is passed.

  Example: 

  void swap(int *x, int *y)

  {

    int temp;

    temp = *x;

    *x = *y;

    *y = temp;

    printf("Swapped values are a = %d and b = %d", *x, *y);

  }

(Contd.)



SQP-3.6 Computer Programming

  void main()

  {

    int a = 7, b = 4;

    swap(&a, &b);

    printf("Original values are a = %d and b = %d",a,b);

    printf("The values after swap are a = %d and b = %d",a,b);

  }

7. a) What is nested structure? Write a program to print the details of employees of an 

organization like (Name, DateOfJoin, Salary) using nested structures.

 b) Give the differences between structures and unions. Write a program using union. 

    8m + 7m

 a) Refer Section 7.10

 b) Program: 

 #include<stdio.h>

 #include<string.h>

 struct date

 {

 int day;

 int month;

 int year;

 };

 struct company

 {

 char name[20];

 int employee_id;

 int age;

 struct date dob;

 };

 int main()

 {

 company employee;

 printf(“\n Enter details of employee”);

 printf(“Enter employee Name   :");

 scanf(“%s”,employee.name);

 printf(“Enter employee ID   :")

(Contd.)

(Contd.)



Solved Question Paper Set-3 SQP-3.7 

 scanf(“%d”, &employee. employee_id);

 printf(“Enter employee Age  :");

 scanf(“ %d”, &employee. Age);

 printf(“Date of Birth:”);

 printf(“Enter  Day:");

 scanf(“%d”, &employee. dob.day);

 printf(“Enter  Month:");

 scanf(“%d”, &employee. dob.month);

 printf(“Enter  Year:");

 scanf(“%d”, &employee. dob.year);

 printf(“ Employee details are;

 printf(“%s %d %d %d %d %d”,employee.name,employee.employee_id, employee.Age, 

                   employee.dob.day,employee.dob.month,employee. dob.year);

  

 }

 b) Refer Page No SQP 2.8

  Program using Union: Refer Appendix Example A.69

8. a) What is a fi le? How do you declare a fi le? Explain different modes of operation on fi ls with  

examples.

 b) Write a program to merge the content of two fi les into a third fi le.   8m + 7m

 a) Refer Section 8.2 and 2.3

 b) Refer Appendix A Example A.78





Code No: R10105/R10

IB.Tech I Semester Regular Examinations, January 2012

C Programming

(Common to All Branches)

Time: 3 hours Max Marks: 75

Answer any Five Questions

All Questions Carry Equal Marks

1. a) Write an algorithm to draw the fl owchart for fi nding the area of a circle.

 b) Explain the different steps involved in creating and running programs with a neat fl owchart.

   7m + 8m

 a) Refer page 1.43, Example 1.18

 b) Refer Section 1.22

2. a) What are identifi ers, variable and constants? Mention the rules to construct an identifi er. 

Give some examples.

 b) Explain the structure of a C program with an example to each step. 8m + 7m

 a) Refer Section 1.28 to 1.30

 b) Refer Section 1.20

3. a) write a program to fi nd the largest number in an array of elements.

 b) Explain different string manipulation functions with examples.  7m + 8m

 a) Refer Page A.27, Example A.37

 b) Refer Section 3.8

Solved Question Paper
(JANUARY 2012) SET-4



SQP-4.2 Computer Programming

4. a) What is an array? What are its advantages? Explain declaration, initialization, accessing  

elements in an array.

 b) Write a program to display a string in the following format  8m + 7m

   J

   JN

   JNT

   JNTU

   JNT

   JN

   J

 a) Refer Section 4.1 to 4.4

 b)

 #include<stdio.h>

 #include<string.h>

 main()

 { int c,l,d;

 char string1[]=”JNTU”;

 printf(“\n\n”);

 l=strlen(string1);

 for( c=0;c<=l;c++)

   {    d= c+ 1;

         printf(“%.*s\n”,d,string1);

    }

 for( c=l;c>=0;c--)

   {    d= c+ 1;

         printf(“%.*s\n”,d,string1);

    }

 }

5. a) What are different storage classes? Explain with suitable examples?

 b) Write a program for fi nding GCD of two numbers using recursive functions. 7m +8m

 a) Refer Section 5.19

 b) 

 #include "stdio.h"

 gcd(int n,int m)

  { 

   if(m<=n && n%m == 0)

      return m;

(Contd.)



Solved Question Paper Set-4 SQP-4.3 

    if(n < m)

      return gcd(m,n);

    else

      return gcd(m,n%m);

   }

 main()

  { 

    int n,m,divisor;

    printf("Enter the two numbers : ");

    scanf("%d%d",&n,&m);

    divisor=gcd(n,m);

    printf("The Greatest Common factor of %d and %d is %d",n,m,divisor);

    return 0;

  }

6. a) What is a void pointer? Explain array of pointers with an example.

  b) What is the difference between character pointer and integer pointer? Write a program 

using pointer to pointer with functions. 7m + 8m

 a) Void pointers are pointers pointing to some data of no specifi c type. A void pointer is defi ned like 

a pointer of any other type, except that void* is used for the type:

void *pt;

  We can’t directly dereference a void pointer;  we must cast it to a pointer with a specifi c type fi rst, 

for instance, to a pointer of type int*:

*(int*)pt;

  Thus to assign a value to a void pointer, consider the following examples:

   *(int*)pt=42;

   *(fl oat*)pt=3.14; 

  The use of void pointers is mainly allowing for generic types

  Array of Pointers: Refer Section 6.12

 b) Integer pointer is a pointer variable which contains a address of an integer value and character 

pointer, contains address of a character type value.

  Program:

 #include<stdio.h> 

 int main(void)

 {

     char **ptr = NULL; 

(Contd.)

(Contd.)



SQP-4.4 Computer Programming

     char *p = NULL; 

     char c = 'd'; 

     p = &c;

     ptr = &p; 

     printf("\n c = [%c]\n",c);

     printf("\n *p = [%c]\n",*p);

     printf("\n **ptr = [%c]\n",**ptr); 

     return 0;

 }

7.   Write short notes on 

 a) pointer to structures

 b) differences between structures and union

 c) bitfi elds 5m + 5m + 5m

 a) Refer Section 6.16

 b) Refer SQP 2.8

 c) Refer Section 7.14

8. a) Write a program to reverse the fi rst n characters in a fi le.

 b) What is a text fi le, binary fi le? Explain formatted I/O in fi les. 7m + 8m

 a) Program:

 #include <stdio.h>

 #include <conio.h>

 #include <string.h>

 #include <process.h>

 void main(int argc, char *argv[])

 {

 char a[15], s[20], n;

 int k, i, len, j=0;

 FILE *fp;

 if(argc!=3)

 {

      puts(“Improper number of arguments.”);

      exit(0);

 }

 fp = fopen(argv[1],”r”);

 if(fp == NULL)

(Contd.)

(Contd.)



Solved Question Paper Set-4 SQP-4.5 

 {

       puts(“File cannot be opened.”);

       exit(0);

 }

 k=*argv[2]-48;

 n = fread(a,1,k,fp);

 a[n]=”;

 len=strlen(a);

 for(i=len-1;i>=0;i–)

 {

        s[j]=a[i];

         printf(“%c”,s[j]);

         j=j+1;

 }

 s[j+1]=”;

 getch();

 }

 b) Refer Section 8.2 and 8.5.3

(Contd.)




	Title
	Contents
	1 Introduction to Computers, Problem Solving and Basic of C
	2 Selection and Decision Making
	3 Arrays
	4 Strings and Iteration
	5 Functions—Modular Programming
	6 Pointers
	7 Structure and Union Types
	8 File Handling
	Appendix A
	Appendix B
	Solved Question Paper

