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Preface
 

The main objective of this book is to explore the basic concepts of  Circuit Theory in a simple and 

easy-to-understand manner.

This text on Circuit Theory has been crafted and designed to meet students’ requirements. 

Considering the highly mathematical nature of this subject, more emphasis has been given on 

the problem-solving methodology. Considerable effort has been made to elucidate mathematical 

derivations in a step-by-step manner. Exercise problems with varied difficulty levels are given in 

the text to help students get an intuitive grasp on the subject.

This book, with its lucid writing style and germane pedagogical features, will prove to be a master 

text for engineering students and practitioners.

Salient Features 

The salient features of this book are:

 - Proof of important concepts and theorems are clearly highlighted by shaded boxes

 - Wherever required, problems are solved in multiple methods

 - Additional explanations for solutions and proofs are provided in separate boxes

 - Different types of fonts are used for text, proof and solved problems for better clarity

 - Keywords are highlighted by bold and italic fonts

 - Easy, concise and accurate study material

 - Extremely precise edition where concepts are reinforced by pedagogy

 - Demonstration of multiple techniques in problem solving-additional explanations and  

    proofs highlighted

 - Ample figures and examples to enhance students’ understanding

 - Practice through MCQ’s

 - Rich Pedagogy:

 . Solved Numerical Examples: 249

 . Short-answer Questions: 219

 . Figures: 1549

 . Practice Problems: 135

 . Review Questions (T/F): 109

 . MCQs: 145

 . Fill in the blanks: 109
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Organization

This text is designed for an undergraduate course in Circuit Theory for engineering students. 

The book is organized into five chapters. The fundamental concepts, steady state analysis and 

transient state analysis are presented in a very easy and elaborative manner. Throughout the 

book, carefully chosen examples are presented so that the reader will have a clear understanding 

of the concepts discussed.

Chapter 1 starts with explanation of fundamental quantities involved in circuit theory, 

standard symbols and units used in circuit theory. The basic concepts of circuits are also 

presented in this chapter. The mesh and node analysis of circuits are discussed with special 

attention to dependent sources.

The concepts of series, parallel and star-delta network reduction are discussed in  

Chapter 2. The analysis of circuits using theorems are also presented in this Chapter. 

The transient analysis of circuits are explained in Chapter 3 through Laplace transform.   

The analysis of single and three-phase circuits and measurement of power in three-phase 

circuits are presented in Chapter 4.

The concepts of resonance are discussed in detail in Chapter 5. The analysis of coupled 

circuits are also discussed.

The Laplace transform has been widely used in the analysis of Electric Circuits. Hence, 

an appendix on Laplace transform is included in this book. All the calculations in this book are 

performed using calculator in complex mode. An appendix is also included to help the readers 

to practice calculations in complex mode of calculator.

Since circuit theory is introduced as a course in the first year of engineering curriculum in 

most of the universities, this subject is considered tough by students entering into engineering 

courses. Hence, the author has taken special care in presenting the concepts in simple manner 

supported by carefully chosen solved problems. 

Online Learning Center

The OLC of the book can be accessed at http://www.mhhe.com/nagoorkani/ct/au

The author hopes that that the teaching and student community will welcome the book. The readers 

can feel free to convey their criticism and suggestions to kani@vsnl.com for further improvement 

of the book.

A. Nagoor Kani

Publisher’s Note

McGraw Hill Education (India) invites suggestions and comments from you, all of which can be 

sent to info.india@mheducation.com (kindly mention the title and author name in the subject line).

Piracy-related issues may also be reported.
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BASIC CIRCUIT ANALYSIS

1.1    Introduction to Circuits and Networks

1.1.1   Basic Phenomena

The energy associated with flow of electrons is called electrical energy. The flow of electrons 

is called current. The current can flow from one point to another point of an element only if there 

is a potential difference between these two points. The potential difference is called voltage.

When electric current is passed through a device or element, three phenomena have been 

observed. The three phenomena are,

(i) opposition to flow of current,

(ii) opposition to change in current or flux, and

(iii) opposition to change in voltage or charge.

The various effects of current like heating, arcing, induction, charging, etc., are due to the 

above phenomena. Therefore, three fundamental elements have been proposed which exhibit only 

one of the above phenomena when considered as an ideal element (of course, there is no ideal 

element in nature). These elements are resistor, inductor and capacitor.

1.1.2   Ideal Elements

The ideal resistor offers opposition only to the flow of current. The property of opposition 

to the flow of current is called resistance and it is denoted by R.

The ideal inductor offers opposition only to change in current (or flux). The property of 

opposition to change in current is called inductance and it is denoted by L.

The ideal capacitor offers opposition only to change in voltage (or charge). The property 

of opposition to change in voltage is called capacitance and it is denoted by C.

1.1.3   Electric Circuits

The behaviour of a device to electric current can be best understood if it is modelled using 

the fundamental elements R, L and C. For example, an incandescent lamp and a water heater can 

be modelled as ideal resistance. Transformers and motors can be modelled using resistance and 

inductance.

Practically, an electric circuit is a model of a device operated by electrical energy. The 

various concepts and methods used for analysing a circuit is called circuit theory. A typical circuit 

consists of sources of electrical energy and ideal elements R, L and C. The practical energy sources 

are batteries, generators (or alternators), rectifiers, transistors, op-amps, etc. The various elements 

of electric circuits are shown in Figs 1.1 and 1.2.

Chapter 1
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DC (Direct Current) Sources

Parameters or Loads

Elements of Electric Circuits

DC Voltage Sources

Independent DC Voltage Source,
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Voltage Controlled DC Voltage Source,

Current Controlled DC Voltage Source,

DC Current Sources

Independent DC Current Source,

Dependent DC Current Source

Voltage Controlled DC Current Source,

Current Controlled DC Current Source,

AC (Alternating Current) Sources
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+ -

E E o= Ðq V

~

+ -

mVx

R I VM x x=

G V IM x x=

A II x

Fig. 1.1 : Elements of electric circuits - Energy source.
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Energy Sources

Fundamental Parameters

Parameters or Loads

Elements of Electric Circuits
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Capacitive Reactance,

Impedance,

Inverse Parameters

Conductance,

Susceptance,

Inductive Susceptance,

Capacitive Susceptance,

Admittance,
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Fig. 1.2 : Elements of electric circuits - Parameters or loads.
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Elements which generate or amplify energy are called active elements. Therefore, energy 

sources are active elements. Elements which dissipate or store energy are called passive elements. 

Resistance dissipates energy in the form of heat, inductance stores energy in a magnetic field, and 

capacitance stores energy in an electric field. Therefore, resistance, inductance and capacitance 

are passive elements. If there is no active element in a circuit then the circuit is called a passive 

circuit or network.

Sources can be classified into independent and dependent sources. Batteries, generators 

and rectifiers are independent sources, which can directly generate electrical energy. Transistors 

and op-amps are dependent sources whose output energy depends on another independent source.

Practically, the sources of electrical energy used to supply electrical energy to various devices 

like lamps, fans, motors, etc., are called loads. The rate at which electrical energy is supplied is 

called power. Power in turn is the product of voltage and current.

Circuit analysis relies on the concept of law of conservation of energy, which states that 

energy can neither be created nor destroyed, but can be converted from one form to other. Therefore, 

the total energy/power in a circuit is zero.

1.1.4   Units

SI units are followed in this book. The SI units and their symbols for various quantities 

encountered in circuit theory are presented in Table 1.1. In engineering applications, large values are 

expressed with decimal multiples and small values are expressed with submultiples. The commonly 

used multiples and submultiples are listed in Table 1.2.

Table 1.1 : Units and Symbols

Quantity  Symbol Unit Unit  Equivalent  Equivalent

   for quantity  symbol unit unit symbol

Charge  q, Q Coulomb C            -       -

Current  i, I Ampere  A Coulomb/second C/s

Flux linkages ψ Weber-turn Wb            -       -

Magnetic flux φ Weber Wb            -       -

Energy  w, W Joule J Newton-meter N-m

Voltage  v, V Volt V Joule/Coulomb J/C

Power  p, P Watt W Joule/second J/s

Capacitance C Farad F Coulomb/Volt C/V

Inductance L, M Henry H  Weber/Ampere Wb/A

Resistance R Ohm Ω Volt/Ampere V/A 

Conductance G Siemens S Ampere/Volt A/V or  M   

      or mho
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Table 1.1:  Continued...

Table 1.2 : Multiple and Submultiple used for Units

1.1.5   Definitions of Various Terms

The definitions of various terms that are associated with electrical energy like energy, power, 

current, voltage, etc., are presented in this section.

Energy :  Energy is defined as the capacity to do work. It can also be defined as stored work. 

 Energy may exist in many forms, such as electrical, mechanical, thermal, light,  

 chemical, etc. It is measured in joules, which is denoted by J (or the unit of energy 

 is joules).

   In electrical engineering, one joule is defined as the energy required to transfer a power of  

 one watt in one second to a load (or Energy = Power ́  Time). Therefore, 1 J  =  1 W-s.

   In mechanical engineering, one joule is the energy required to move a mass of 1 kg 

 through a distance of 1 m with a uniform acceleration of 1 m/s2.

Quantity Symbol Unit Unit  Equivalent  Equivalent

   for quantity  symbol unit unit symbol

Time  t Second s            -       -

Frequency f Hertz Hz cycles/second       -

Angular frequency ω Radians/second rad/s            -       -  

Magnetic flux - Tesla T Weber/ meter  Wb/m2

density                
square

Temperature - Kelvin 
o K            -       -

 Multiplying Prefix Symbol Multiplying Prefix Symbol

 factor   factor

 10
12

 tera T 10
−1

 deci d

 10
9
 giga G 10

−2
 centi c

 10
6
 mega M 10

−3
 milli m

 10
3
 kilo k 10

−6
 micro µ

 10
2
 hecto h 10

−9
 nano n

 10
1 deca da 10

−12
 pico p

    10
−15 femto f

    10
−18

 atto a
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                         1 1, J N m kg
s

m mTherefore 1
2

- - -= =

   In thermal engineering, one joule is equal to a heat of 4.1855 (or 4.186) calories, and one  

 calorie is the heat energy required to raise the temperature of 1 gram of water by 1
o 

C.

    Therefore, 1 J   =   4.1855 calories

Power :  Power is the rate at which work is done (or it is the rate of energy transfer). The unit of 

 power is watt and denoted by W. If energy is transferred at the rate of one joule per 

 second then one watt of power is generated.

   An average value of power can be expressed as,

Time

Energy
, P

t
WPower = =       .....(1.1)

A time varying power can be expressed as,

Instantaneous power,
dt
d

p
w=       .....(1.2)

dt
d

d
d

dt

d
p w

q
w q

v iAlso, #= = =    .....(1.3)

  Hence, power is also given by the product of voltage and current.

Charge :  Charge is the characteristic property of elementary particles of  matter. The 

elementary particles are electrons, protons and neutrons. There are basically two 

types of charges in nature: positive charge and negative charge. The charge of an 

electron is called negative charge. The charge of a proton is called positive charge. 

Normally, a particle is neutral because it has equal number of electrons and protons. 

The particle is called charged, if some electrons are either added or removed from it. 

If electrons are added then the particle is called negatively charged. If electrons are 

removed then the particle is called positively charged.The unit used for measurement 

of charge is coulomb. One coulomb is defined as the charge which when placed 

in vacuum from an equal and similar charge at a distance of one metre repels it 

with a force of 9 × 10
9

 N. The charge of an electron is 1.602 × 10
−19

 C. Hence, 

1/(1.602 × 10
−19) = 6.24 × 10

18
 electrons make up a charge of one coulomb.

Current :  Current is defined as the rate of flow of electrons. It is measured in amperes. One 

ampere is the current flowing through a point if a charge of one coulomb crosses 

that point in one second. In SI units, one ampere is defined as that constant current in 

two infinite parallel conductors of negligible circular cross-section, one metre apart 

in vacuum, which produces a force between the conductors of 2 × 10−7 newton per 

metre length.

   A steady current can be expressed as,

arge
I

Ch

t
Q

Time
Current, ==       .....(1.4)

 A time varying current can be expressed as,

Instantaneous
dt

d
i

q
current, =      .....(1.5)



Chapter 1 - Basic Circuit Analysis                                                  1. 7

where, Q = Charge flowing at a constant rate

             t = Time

            dq = Change in charge in a time of dt

             dt = Time required to produce a change in charge dq.

Voltage :  Every charge will have potential energy. The difference in potential energy 

 between the charges is called potential difference. In electrical terminology, the 

 potential difference is called voltage. Potential difference indicates the amount of 

 work done to move a charge from one place to another. Voltage is expressed in volt.  

 One volt is the potential difference between two points, when one joule of energy 

 is utilised in transfering one coulomb of charge from one point to the other.

   A steady voltage can be expressed as,

V
Energy

Q
W

Charge
Voltage, = =      .....(1.6)

  A time varying voltage can be expressed as,

Instantaneous
d
d

v
q

wvoltage, =      .....(1.7)

1
/

/
V

C

J

C s

J s

A

W

1
1

1
1

1
1Also, = = =     .....(1.8)

, V
Current
Power

I
PVoltage` = =     .....(1.9)

 One volt is also defined as the difference in electric potential between two points 

along a conductor carrying a constant current of one ampere when the power 

dissipated between the two points is one watt.

1.1.6   Symbols used for Average, RMS and Maximum Values 

The quantities like voltage, current, power and energy may be constant or varying with 

respect to time. For a time varying quantity we can define the value of the quantity as instantaneous, 

average, rms and maximum value. The symbols used for these values are listed in Table 1.3.

Table 1.3 : Symbols of  DC and AC Variables

 

   

 Current I i I
ave

 I
m
 or I

p
 I I  

 Voltage V v V
ave 

 V
m
 or V

p
 V V 

 Power P p P P
m 

- S 

 Energy W w W
 

 W
m
  - -

 Instantaneous Average Maximum RMS Phasors

 value value value value      or  

     Vectors

   AC or Time varying

 Quantity DC
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1.1.7   Steady State Analysis and Transient Analysis

Circuit analysis can be classified into steady state analysis and transient analysis. The analysis 

of circuits during switching conditions is called transient analysis. During switching conditions, 

the current and voltage change from one value to the other. In purely resistive circuits this may not 

be a problem because the resistance will allow sudden change in voltage and current.

But in inductive circuits the current cannot change instantaneously and in capacitive circuits 

the voltage cannot change instantaneously. Hence, when the circuit is switched from one state 

to the other, the voltage and current cannot attain a steady value instantaneously in inductive or 

capacitive circuits. Therefore, during switching conditions there will be a small period during which 

the current and voltage will change from an initial value to a final steady value. The time from the 

instant of switching to the attainment of steady value is called transient period. Physically, the 

transient can be realised in switching of tubelights, fans, motors, etc.

In certain circuits the transient period is negligible and we may be interested only in steady 

value of the response. Therefore, steady state analysis is sufficient. The analysis of circuits under 

steady state (i.e., by neglecting the transient period) is called steady state analysis. Steady state 

analysis of circuits is discussed in this book in all chapters except Chapter 3.

In certain circuits the transient period is critical and we may require the response of the circuit 

during the transient period. Some practical examples where transient analysis is vital are starters, 

circuit breakers, relays, etc. Transient analysis of circuits is discussed in Chapter 3. 

1.1.8   Assumptions in Circuit Theory

In circuit analysis the elements of the circuit are assumed to be linear, bilateral and lumped 

elements.

In linear elements the voltage-current characteristics are linear and the circuit consisting of 

linear elements is called linear circuit or network. The resistor, inductor and capacitor are linear 

elements. Some elements exhibit non-linear characteristics. For example, diodes and transistors 

have non-linear voltage-current characteristics, capacitance of a varactor diode is non-linear 

and inductance of an inductor with hystereris is non-linear. For analysis purpose, the non-linear 

characteristics can be linearised over a certain range of operation.

In a bilateral element, the relationship between voltage and current will be the same for 

two possible directions of current through the element. On the other hand, a unilateral element 

will have different voltage-current characteristics for the two possible directions of current through 

the element. The diode is an example of a unilateral element.

In practical devices like transmission lines, windings of motors, coils, etc., the parameters 

(R, L and C) are distributed in nature. But for analysis purpose we assume that the parameters 

are lumped (i.e., concentrated at one place). This approximation is valid only for low frequency 

operations and it is not valid in the microwave frequency range. All analysis in this book is based 

on the assumption that the elements are linear, bilateral and lumped elements.
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1.2    Basic Concepts of Circuits and Networks

1.2.1   Basic Elements of Circuits

Circuits and Networks

An electric circuit consists of Resistors (R), Inductors (L), Capacitors (C), voltage sources 

and/or current sources connected in a particular combination. When the sources are removed from 

a circuit, it is called a network.

DC Circuits

The networks excited by dc sources are called dc circuits. In a dc source, the voltage and 

current do not change with time. Hence, the property of capacitance and inductance will not arise 

in steady state analysis of dc circuits.This chapter deals with steady state analysis of dc circuits. 

Therefore, in this chapter only resistive circuits are discussed.

Active and Passive Elements

The elements of a circuit can be classified into active elements and passive elements. The 

elements which can deliver energy are called active elements. The elements which consume energy 

either by absorbing or storing are called passive elements.

The active elements are voltage and current sources. The sources can be of different nature. 

The sources in which the current/voltage does not change with time are called direct current 

sources or in short dc sources. (But in dc sources, the current/voltage changes with load). The 

sources in which the current/voltage sinusoidally varies with time are called sinusoidal sources 

or alternating current sources or in short ac sources.

The passive elements of a circuit are resistors, inductors and capacitors, which exhibit the 

property of resistance, inductance and capacitance, respectively under ideal conditions. Resistance, 

inductance and capacitance are called fundamental parameters of a circuit. Practically, these 

parameters will be distributed in nature. For example, the resistance of a transmission line will exist 

throughout its length.  But for circuit analysis, the parameters are considered as lumped.

The resistor absorbs energy (and the absorbed energy is converted into heat). The inductor 

and the capacitor store energy. When the power supply in the circuit is switched ON, the inductor 

and the capacitor store energy, and when the supply is switched OFF, the stored energy leaks away 

in the leakage path. (Hence, inductors and capacitors cannot be used as storage devices). 

R
2

L C L R
2 C

Fig. a : Circuit. Fig. b : Network.

Fig. 1.3 : Example of circuit and network.

+

E

R
1

E

R
1
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Independent and Dependent Sources

Sources can be classified into independent and dependent sources. The electrical energy 

supplied by an independent source does not depend on another electrical source. Independent 

sources convert energy in some form into electrical energy. For example, a generator converts  

mechanical energy into electrical energy, a battery converts chemical energy into electrical energy, 

a solar cell converts light energy into electrical energy, a thermocouple converts heat energy into 

electrical energy, etc.

The electrical energy supplied by a dependent source depends on another source of electrical 

energy. For example, the output signal (energy) of a transistor or op-amp depends on the input 

signal (energy), where the input signal is another source of electrical energy.

In the circuit sense, the voltage/current of an independent source does not depend on voltage/

current in any part of the circuit. But the voltage/current of a dependent source depends on the 

voltage/current in some part of the same circuit.

1.2.2   Nodes, Branches and Closed Path

A typical circuit consists of lumped parameters, such as resistance, inductance, capacitance and 

sources of electrical energy like voltage and current sources connected through resistance-less wires.

In a circuit, the meeting point of two or more elements is called a node. If more than two 

elements meet at a node then it is called the principal node.

The path between any two nodes is called a branch. A branch may have one or more elements 

connected in series.

A closed path is a path which starts at a node and travels through some part of the circuit 

and arrives at the same node without crossing a node more than once.

The nodes, branches and closed paths of a typical circuit are shown in Fig. 1.5. The nodes 

of the circuit are the meeting points of the elements denoted as A, B, C, D, E and F. The nodes A, 

B, C and D are principal nodes because these nodes are meeting points of more than two elements.

E E I
s E E= Ðq I I

s s
= Ðq

Fig. a : DC voltage
source.

Fig. b : current
source.

DC Fig. c : A voltage
source.

C Fig. d : AC current
source.

+

-

~

+

-

~

+
-

V
s

V =RI or A V
s v I

s I
=GV or A I

L C

Fig. e : Dependent
voltage source.

Fig. f : Dependent
current source.

Fig. g :
Resistance.

Fig. h :
Inductance.

Fig. i :
Capacitance.

Fig. 1.4 : Symbols of active and passive elements of circuits.

+

-
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Fig. b : Branches of the circuit in Fig. a.
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Fig. a : Typical circuit.
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Fig. d : Closed paths of the circuit in Fig. a.
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1.2.3    Series, Parallel, Star and Delta Connections

The various types of connections that we may encounter in electric circuits are series, 

parallel, star and delta connections.  

Series Connection

If two or more elements are connected such that the current through them is the same then 

the connection is called a series connection. In a circuit if the current in a path is the same then 

the elements in that path are said to be in series. 

Parallel Connection

If two or more elements are connected such that the voltage across them is the same then 

the connection is called a parallel connection. In a circuit if the voltage across two or more paths 

is the same then, they are said to be in parallel. 

Fig. 1.6 : Examples of series connected elements.

L
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Fig. b : Inductances
in series.

R
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Fig. a : Resistances in
series.
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Fig. c : Capacitances
in series.

R LI

Fig. e : Resistance and
inductance in series.

R CI

Fig. f : Resistance and
capacitance in series.

R L CI

Fig. g : Resistance,
inductance and

capacitance in series.
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V
1 V

2
V
3 I

Fig. d : Voltage
sources in series.

Fig. b : Series paths in the circuit of Fig. a.

Fig. 1.7 : A typical circuit and its series paths.
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Fig. a : A typical circuit.
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Fig. 1.8 : Examples of parallel connected elements.

Fig. e : R and C in parallel. Fig. f : R, L and C in parallel. Fig. g : Current sources in parallel.
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Fig. 1.9 : Simple circuits with parallel branches.

Fig. a : The voltage source, series
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Star-Delta Connection

If three elements are connected 

to meet at a node then the three 

elements are said to be in a star 

connection. If three elements with 

a node in between any two elements 

are connected to form a closed path 

then they are said to be in a delta 

connection. The star connection 

is also called T-connection and 

delta connection is also called 

P-connection.
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Fig. a : Star connection.

Fig. 1.12 : Basic star and delta connections.
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Fig. 1.13 : A typical circuit and its star and delta connections.
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1.2.4    Open Circuit and Short Circuit

In a circuit if there is an open path or path of infinite resistance between two nodes then 

that path is called an open circuit (OC). Since current can flow only in closed paths, the current 

in the open circuit will be zero.

 

While applying KVL to closed paths the open circuit can be included as an element of 

infinite resistance in the path because a voltage exists across the two open nodes of a circuit.

In a circuit if there is a closed path of zero resistance between two nodes then it is called 

short circuit (SC). Since the resistance of the short circuit is zero, the voltage across the short 

circuit is zero.

In a circuit if there are elements parallel to a short circuit then they will not carry any 

current because the current will prefer the path of least resistance (or opposition) and so the entire 

current will flow through the short circuit. Hence, the elements parallel to a short-circuit need not 

be considered for analysis as shown in the example circuit of Fig. 1.16.

Circuit

N
1

B

A

OC

2� 5�

4�

1� 3 �

A

B

OC10V

20V

1�

A

B

OC

Fig. 1.14 : Examples of open circuit (OC).
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1.2.5   Sign Conventions

Every element of a circuit will have two terminals. When a circuit is excited (i.e., power 

supply is switched ON) a voltage is developed across the two terminals of the element such that 

one end is positive and the other end is negative, and a current flows through the element. When 

an element delivers energy, the current leaves the element from the positive terminal and when an 

element absorbs energy, the current enters at the positive terminal.

In a circuit,  normally the sources deliver energy and the passive elements−resistance, 

inductance and capacitance absorb energy. Therefore, in a voltage/current source, when it delivers 

energy, the current leaves from the positive terminal. In the parameters R, L and C, the current  

enters at the positive terminal when they absorb energy. 

A chargeable battery is the best example 

for understanding the concept of energy delivery 

and absorption by sources. When the battery 

is connected to a load, it delivers energy. When 

the battery is charged, it absorbs energy. When a 

source absorbs energy, the current enters the source 

at the positive terminal, as shown in Fig. 1.18.

The resistance always absorbs energy but 

the inductance and capacitance can deliver the stored energy temporarily. The inductance and 

capacitance store energy when the supply is switched ON and when the supply is switched OFF 

the stored energy is discharged in the available paths or leakage paths. When the inductance and 

capacitance discharge energy, the current leaves from the positive terminal as shown in Fig. 1.19.

Fig. 1.17 : Sign conventions for sources when it delivers energy
and parameters when they absorb energy.

I R L C

Fig. a :Voltage
source

delivering energy.

Fig. b : Current
source

delivering energy.

Fig. c :
Resistance

absorbing energy.

Fig. d : Inductance
absorbing
energy.

Fig. e : Capacitance
absorbing energy.
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Fig. 1.18 : Sign conventions for sources when
they absorb energy.
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Fig. a : Inductance discharging energy. Fig. b : Capacitance discharging energy.
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Fig. 1.19 : Sign conventions for inductance and capacitance parameters when they discharge energy.
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Fig. a : Inductance discharging energy. Fig. b : Capacitance discharging energy.
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Fig. 1.19 : Sign conventions for inductance and capacitance parameters when they discharge energy.
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1.2.6   Voltage and Current Sources

Voltage and current are two quantities that decide the energy supplied by the sources of 

electrical energy. Usually, the sources are operated by maintaining one of the two quantities as 

constant and by allowing the other quantity to vary depending on the load.

When voltage is maintained constant and current is allowed to vary then the source is called 

a voltage source. When current is maintained constant and voltage is allowed to vary then the 

source is called a current source.

1.2.7   Ideal and Practical Sources

In ideal conditions the voltage across an ideal voltage source should be constant for 

whatever current is delivered by the source. Similarly, the ideal current source should deliver a 

constant current for whatever voltage across its terminals.

In reality, ideal conditions never exist (but for analysis purpose, the sources can be considered 

ideal). In practical voltage source, the voltage across the source decreases with increasing load 

current and the reduction in voltage is due to its internal resistance. In a practical current source, 

the current delivered by the source decreases with increasing load voltage and the reduction in 

current is due to its internal resistance. 

Let,  E
s
 =  Voltage across ideal source (or internal voltage of the source)

        I
s
  =  Current delivered by ideal source (or current generated by the source)

        V   =  Voltage across the terminals of the source

        I    =  Current delivered through the terminals of the source

        R
s
 =  Source resistance (or internal resistance).            

Fig. a : Characteristics of practical
voltage source.
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I
s

V

Fig. b : Characteristics of practical
current source.

Fig. 1.21 : Characteristics of practical sources.
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Fig. a : Characteristics of an ideal voltage source. Fig. b : Characteristics of an ideal current source.

Fig. 1.20 : Characteristics of ideal sources.
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A practical voltage source can be 

considered as a series combination of an ideal 

voltage source and a source resistance, R
s
. The 

reduction in voltage across the terminals with 

increasing load current is due to the voltage drop 

in the source resistance. When the value of source 

resistance is zero the ideal condition is achieved in 

voltage sources. Hence, “the source resistance for 

an ideal voltage source is zero”.

A practical current source can be 

considered as a parallel combination of an ideal 

current source and a source resistance, R
s
. The 

reduction in current delivered by the source is 

due to the current drawn by the parallel source 

resistance. When the value of source resistance is 

infinite the ideal condition is achieved in current 

sources. Hence, “the source resistance for an ideal 

current source is infinite”.  

1.2.8   DC Source Transformation

A practical voltage source can be converted into an equivalent practical current source and  

vice-versa, with the same terminal behaviour. In these conversions the current and voltage at the 

terminal of the equivalent source will be the same as that of the original source, so that the power 

delivered to a load connected at the terminals of original and equivalent source is the same.

A voltage source with series resistance can be converted into an equivalent current source 

with parallel resistance as shown in Fig. 1.24. Similarly, a current source with parallel resistance 

can be converted into an equivalent voltage source with series resistance as shown in Fig. 1.25. 

The proof for source conversions are presented in Chapter 2.
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Fig. 1.22 : A practical dc voltage source.
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1.2.9    Power and Energy 

Power is the rate at which work is done or it is the rate of energy transfer.

Let, w  =  Instantaneous value of energy

        q  =  Instantaneous value of charge.

dt
d

d
d

dt

d

d
d

dt

d

p w
q
w q

q
w q

Now, Instantaneous power, #= =

andv iWe know that, = =

p v i` =

 Therefore, power is the product of voltage and current. In circuits excited by dc sources,

the voltage and current are constant and so the power is constant. This constant power is called 

average power or power and it is denoted by P.

\  In dc circuits,

    Power, P  =  VI

Power is the rate of work done and Energy is the total work done. Hence, energy is given 

by the product of power and time. When time is expressed in second, the unit of energy is watt-

second and when the time is expressed in hours, the unit of energy is watt-hour.

\  Energy, E  =  P t  in  W-s  or  W-h

The larger unit of electrical energy is kWh and commercially one kWh of electrical energy 

is called one unit.

E P t in kWh
1000 3600

Energy,`
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Fig. a : Current source. Fig. b : Equivalent voltage source of the
current source in Fig. a.

Fig. 1.25 : Conversion of current source to voltage source.
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1.3    Network Terminology

Topology is a branch of science which deals with the study of geometrical properties and 

special relations unaffected by continuous change of shape or size of figures. The concept of to-

pology was first applied to networks by Kirchoff to study the relationship between the nodes and 

branches in a network.

A circuit or network can be drawn in different shapes and sizes by maintaining the 

relationship between the nodes and branches as shown in Fig. 1.26.

Therefore, “the network topology is the study of the properties of the network which are 

unaffected when we stretch, twist or distort the size and shape of the network”. A network consists 

of interconnections of various elements. The physical arrangement of the elements and the length 

of wires used for connecting the elements may give rise to different types of layout for the circuits. 

As long as the relationship between the nodes and branches are maintained, the circuit response 

will be the same.

1.3.1   Graph of a Network

The topological properties of networks are described by a graph. The graph of a network 

consists of nodes and branches of the network. In a network the branches have elements but in 

a graph the branches are drawn by lines. When arrows are placed on the branches of a graph it 

is called an oriented graph. The arrow indicates the direction of branch current and polarity of 

branch voltage. 

A sequence of branches traversed while going from one node to another node is called a 

path.  A graph is said to be a connected graph if there exists at least one path from each node of 

a graph to every other node of the graph.

Fig. 1.26 : Different shapes of a circuit.
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Fig. 1.27 : A typical network and its graph and oriented graph.
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Fig. c : Various shapes of graphs for the circuit of Fig. a.

Fig. 1.28 : A typical circuit and its different graphs.

Fig. a : Typical circuit.
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Fig. b : The circuit of Fig. a after replacing
sources by their internal impedance.

To draw the graph of a circuit first redraw the circuit by replacing the sources by their 
internal impedances. The ideal voltage sources are replaced by short circuits and ideal current 
sources are replaced by open circuits. Now, the circuit becomes a network consisting of R, L 
and C elements only. Then represent the nodes of the network as small circles and the elements 
connected between the nodes as lines. The series connected elements are considered as a single 
branch. While drawing the graph of a network, the number of nodes and branches and the 
relationship between them has to be maintained. But the size and shape of graph and curvature of 

lines in the graph are not important. 

A typical circuit and its different graphs are shown in Fig. 1.28. In the graph, the nodes are 

represented by small circles and denoted by numerals 1, 2, 3 and 4. In the graph, the elements 

connected between the nodes are represented by lines. These lines are called branches and denoted 

by lower case letters a, b, c, d, e and f. This convention of denoting nodes by numerals and 

branches by lower case letters has been followed in this book.

1.3.2   Trees, Link, Twig and Cotree

When some of the branches in an original graph are removed, the resultant graph is called 

a subgraph. The tree is a subgraph which is obtained by removing some branches such that the 

subgraph includes all the nodes of the original graph, but does not have any closed paths. For 

a given graph, there may be more than one possible tree. Hence, a tree can be defined as any 

connected open set of branches which includes all nodes of a given graph. A tree of a graph with 

N nodes has the following properties:

l  The tree contains all the nodes of the graph.

l The tree contains N − 1 branches.

l The tree does not have a closed path.

The branches removed to form a tree are called links or chords. By removing a link from 

a graph, one closed path can be eliminated. Alternatively, on adding a link to a tree one closed 
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path is created. Hence, by adding the links one by one to a tree all closed paths can be created. 

Therefore, the number of closed paths in a graph is equal to the number of links.

The cotree is the complement of a tree. Hence, every tree has a cotree. 

The links connected to the nodes of a graph form a cotree. The branches of a 

tree are called twigs and the branches of a cotree are called links. A typical 

graph is shown in Fig. 1.29, and some possible trees of the graph and the cotree 

of each tree are shown in Table 1.4.

For most of the trees the cotree will also be in the form of a tree. But 

for some possible tree, the cotree may have closed paths and cotree may not be 

connected (i.e., all the nodes are not connected in a cotree).

A definite relationship exists between the number of nodes and branches in a tree. Any 

tree of the graph with B branches and N nodes will consist of N − 1 branches and the remaining 

branches are links.

Therefore, for a graph with B branches and N nodes, the number of links or chords is given by,

Link, L  =  B - (N - 1)  =  B - N + 1

Table 1.4 : The Trees and Cotrees of the Graph in Fig. 1.29

 Tree            Cotree  Tree         Cotree

2
3

4

b
ca

d e

f

Fig. 1.29 : Graph.

1
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1.3.3   Network Variables

When a network is excited by connecting a source, every branch will have a current 

flowing through it and so a voltage will exist across the terminals of the branch. Hence, a graph 

(or network) with B branches will have B number of branch currents and B number of branch 

voltages. These branch currents and voltages are called network variables. The branch currents 

are called current variables and branch voltages are called voltage variables of the network. 

An arrow is placed on the branch to indicate the direction of the branch current and polarity 

of  the branch voltage. The arrow placed on the branch is called reference or orientation. In a 

branch, a single reference is used to represent both the directions of branch current and polarity 

of branch voltage.

The current-voltage relation of a branch is obtained by Ohm’s law, by treating the branch 

as load. Hence, the set of references for the branches of a graph are called load set reference.

The conventional direction of branch current and polarity of branch voltage are shown in 

Fig. 1.30. In a network, branch current directions can be assumed arbitrarily and the polarity of  

branch voltages can be fixed as per Ohm’s law, by treating the branches as loads. Alternatively, 

the polarity of branch voltages can be assumed arbitrarily and the direction of branch current can 

be fixed as per Ohm’s law, by treating the branch as load.

1.3.4   Solution of Network Variables

In a network or a circuit we may be interested in the voltage and current in the various 

branches which is normally referred to as response. In a network if all the branch currents are 

known then the voltages can be obtained by Ohm’s law. Alternatively, if the branch voltages are 

known then the currents can be obtained by Ohm’s law.

Hence, in order to determine the response on current basis first we have to solve B number 

of branch currents and to determine the response on voltage basis first we have to solve B number 

of branch voltages.

 For a unique solution of B number of variables, we have to form B number of equations 

involving the B variables and solve them. But in practice it can be shown that all the branch 

currents are not independent and so the independent current variables which are less than B, are 

sufficient to solve the currents. Similarly, all the branch voltages are not independent and so the 

independent voltage variables which are less than B, are sufficient to solve the voltages.

+

-

Vbr

Ibr

+

-

Vbr

Ibr

V = Branch voltage ; I = Branch currentbr br

Fig. 1.30 : Orientation (or reference) of a branch.

ÞÞ
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Independent Current Variables

In a network it can be proved that the branch currents of the links are independent current 

variables. When the links are removed in a network, all the closed paths are destroyed and so 

no current can flow in the network. The removal of a link is equal to making link current as zero. 

Therefore, when the link current are made zero, all the currents in the network become zero.

Hence, we can say that the branch currents depend on link currents. Therefore, “the link 

currents are independent and branch currents are dependent”. In a network with N nodes and B 

branches we have B – N + 1 links. Therefore, in a network there will be B current variables in 

which B − N + 1 are independent current variables and the remaining N − 1 [i.e., B − (B − N + 1)  

=  N − 1] currents are dependent current variables.

In order to determine the response of a network on current basis, it is sufficient if we form  

B – N + 1 equations involving independent current variables and solve them for a unique solution. 

Thereafter, the dependent current variables can be solved  using the independent current variables.

Independent Voltage Variables

In a network it can be proved that the branch voltages of the twigs (or tree branches) are 

independent voltage variables. In a graph when all the twigs are short circuited, then all the 

nodes will be short circuited as well. Eventually, the voltages of the nodes become zero. Also 

the short circuiting of nodes will lead to short-circuiting of all the branches and so all the branch 

voltages will become zero.

Hence, we can say that, the branch voltages depend on twig voltages. Therefore, “the twig 

voltages are independent and branch voltages are dependent”. In a network with N nodes and 

B branches we have N − 1 twigs. Therefore, in a network we have B voltage variables in which 

N − 1 are independent voltage variables and the remaining B − (N − 1) voltages are dependent 

voltage variables.

In order to determine the response of a network on voltage basis it is sufficient if we form  

N − 1 equations involving independent voltage variables and solve them for a unique solution. 

Thereafter, the dependent voltage variable can be solved using independent voltage variables.

1.4 Ohm’s and Kirchhoff’s Laws

The three fundamental laws that govern the electric circuit are Ohm’s law, Kirchhoff’s 

Current Law (KCL) and Kirchhoff’s Voltage Law (KVL).

1.4.1   Ohm’s Law

Ohm’s law states that the potential difference (or voltage) across any two ends of a conductor is directly 

proportional to the current flowing between the two ends provided the temperature of the conductor remains constant. 

The constant of proportionality is the resistance R of the conductor.

\ V  a  I    ⇒    V  =  I R      ..... (1.10)

From equation (1.10), we can say that when a current I flows through a resistance R, then the  

voltage V, across the resistance is given by the product of current and resistance.
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1.4.2   Kirchhoff’s Current Law (KCL)

Kirchhoff’s Current Law states that the algebraic sum of currents at a node is zero. 

∑ I = 0

Hence, we can say that current cannot stay at a point. While 

applying Kirchhoff’s Current Law (KCL) to a node we have to 

assign polarity or sign (i.e., + or −) for the current entering and 

leaving that node. Let us assume that the currents entering the node 

are negative and currents leaving the node are positive.

With reference to Fig. 1.31, we can say that currents I
1
 and I

2
 

are entering the node and the currents I
3
 and I

4
 are leaving the node.

Therefore, by Kirchhoff’s Current Law we can write,

−I
1
  −  I

2
  +  I

3
  +  I

4
  =  0

∴  I
1
  +  I

2
  =  I

3
  +  I

4
        ..... (1.11)

From equation (1.11), we can say that, “the sum of currents entering a node is equal to the sum 

of currents leaving that node”. This concept is easier to apply while solving problems using KCL.

1.4.3   Kirchhoff’s Voltage Law (KVL)

Kirchhoff’s Voltage Law states that the algebraic sum of voltages in a closed path is zero.

∑ V = 0

A closed path may have voltage rises and voltage falls 

when it is traversed or traced in a particular direction.While 

applying KVL to a closed path we have to assign polarity 

or sign (i.e., + or -) to voltage fall and rise. Let us assume 

voltage rise as positive and voltage fall as negative.

Consider the circuit shown in Fig. 1.32. Let us trace 

the circuit in the direction of current I. In the closed path 

ABCDEFGA, the voltage rise are E
1
 and E

2
 and voltage fall 

are IR
1
, IR

2
, IR

3
, IR

4
 and IR

5
. 

Therefore, by KVL we can write,

E
1
  +  E

2
  -  IR

1
  -  IR

2
  -  IR

3
  -  IR

4
  -  IR

5
  =  0 

∴  E
1
  +  E

2
  =  IR

1
  +  IR

2
  +  IR

3
  +  IR

4
  +  IR

5
   ..... (1.12)

From equation (1.12) we can say that, “the sum of voltage rise in a closed path is equal to 

the sum of voltage fall in that closed path”. This concept is easier to apply while solving problems 

using KVL.

R
1

R
2

R
3

R
4

I
2

I
1 I

3

I
4

Node

Fig. 1.31 : Currents in a node.
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+
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Fig. 1.32 : A circuit with single
closed path.

(AU Dec’15, 2 Marks)
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1.5    Resistive Elements

The devices that can be operated by electrical energy can be modelled by fundamental 

parameters R, L and C. In certain devices L and C are negligible and such devices can be 

modelled by pure resistance and so can be called resistive elements. Examples of such devices are 

incandescent lamp, water heater, ironbox and copper and aluminium wires.

1.5.1    Resistance

Resistance is the property of an element (or matter) which opposes the flow of current 

(or electrons). The current carrying element is called a conductor. The resistance of a conductor 

(in the direction of current flow) is directly proportional to its length l and inversely proportional 

to the area of cross-section a.

Resistance, R
a

l
` α

The proportionality constant is the resistivity, r of the material of the conductor.

           R
a

l
`

ρ
=   

The unit of resistivity is ohm-metre(Ω-m). The resistivity of a material at a given temperature 

is constant. For example, the resistivity of copper is 1.72 ´ 10–8 W-m and that of aluminium is 

2.69 ´ 10−8 Ω-m at 20o C.

The resistance of a conductor is distributed  

throughout the length of the conductor. But for analysis 

purpose the resistance is assumed to be concentrated 

at one place, which is called lumped resistance. For 

connecting the lumped resistance to the other part of the 

circuit, resistance-less wires are connected to its ends 

as shown in Fig. 1.33. (Normally, the term resistance in 

circuit theory refers only to lumped resistance).

1.5.2    Resistance Connected to DC Source

Consider a resistance R connected to dc source of voltage V 

volts as shown in Fig. 1.34. Since the resistance is connected across (or 

parallel to) the source, the voltage across the resistance is also V volts.

By Ohm’s law, the current through the resistance is given by, 

R

V
I =    ⇒   V = IR               ..... (1.13)

Power in the resistance,  P = VI                         ..... (1.14)

(AU May’15, 2 Marks)

Lumped resistance

resistance-less wire

Fig. 1.33 : A lumped resistance with
resistance-less wires connected to its ends.

R

V

+

E

V R

I

Fig. 1.34 : Resistance

connected to a dc source.

+
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Using equation (1.13), equation (1.14) can also be written as,

P V V
R

V

R

V
I

2

#= = =   and P  =  VI  =  IR  ´  I  =  I2 R

 , P VI or P
R
V

or P I RPower
2

2
` = = =

1.5.3   Resistance in Series 

Consider a circuit with 

series combination of two 

resistances R
1
 and R

2
 connected 

to a dc source of voltage V as 

shown in Fig.1.35(a). Let the 

current through the circuit be I. 

It can be proved that the 

series-connected resistances R
1
 and R

2
 can be replaced by an equivalent resistance R

eq
 given by 

the sum of individual resistances R
1
 and R

2
 as shown in Fig. 1.35(b). The proof for resistance in 

series is presented in Chapter 2. 

Voltage Division in Series Connected Resistances

Equations (1.15) and (1.16) given below, can be used 

to determine the voltages across series connected resistances  

shown in Fig. 1.36 in terms of total voltage across the series 

combination and the values of individual resistances. Hence, 

these equations are called voltage division rule. The proof for 

voltage division rule is presented in Chapter 2.

V V
R R

R
1

1 2

1
#=

+

   .....(1.15)

V V
R R

R
2

1 2

2
#=

+
  .....(1.16)

The following equation will be helpful to remember the voltage division rule.

In two series connected resistances,

Voltage across one of the resistance
Sum of the inidvidual resistances

Total voltage across

series combination

Value of the

resistance
#

=

+ E

I

V

Req = R + R1 2

+

++

E

E E

R1 R2

IR1 IR2

V

I

Fig. a : Resistances in series. Fig. b : Equivalent circuit of Fig. a.
Fig. 1.35 : Resistances in series.

V

I

Fig. 1.36 : Resistances in series.
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1.5.4    Resistance in Parallel

Consider a circuit with two resistances in parallel  

and connected to a dc source of voltage V as shown in 

Fig. 1.37(a). Let I be the current supplied by the source and 

I
1
 and I

2
 be the current through R

1
 and R

2
, respectively. Since 

the resistances are parallel to the source, the voltage across 

them will be the same.

It can be proved that the inverse of the equivalent 

resistance of parallel-connected resistances is equal to the 

sum of the inverse of individual resistances. The proof for 

resistance in parallel is presented in Chapter 2. 

Current Division in Parallel Connected Resistances

Equations (1.17) and (1.18) given below, can be used to 

determine the currents in parallel connected resistances shown in  

Fig. 1.38 in terms of total current drawn by the parallel 

combination and the values of individual resistances. 

Hence, these equations are called current division rule. 

The proof for current division rule is presented in Chapter 2.

I I
R R

R
1

1 2

2
#=

+

      .....(1.17)

I I
R R

R
2

1 2

1
#=

+
    .....(1.18)

The following equation will be helpful to remember the current division rule.

In two parallel connected resistances,

   Current through one of the
Sum of the inidvidual

Total current drawn by

parallel combination

Value of the

other
resistance

resistances
resistance

#

=

1.5.5    Analysis of Resistors in Series-Parallel Circuits

A typical circuit consists of a series-parallel connection of passive elements like resistance, 

inductance and capacitance and excited by voltage/current sources. The sources circulate current 

through all the elements of the circuit. Due to current flow, a voltage exists across each element 

of the circuit.

Basically, circuit analysis involves the solution of currents and voltages in various elements 

of a circuit. The currents and voltages can be solved using the three fundamental laws: Ohm’s law, 

Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage Law (KVL).

+
E

++

E

E

R
1 R

2

I
1

I
2

V

I

Fig. a : Resistances in parallel.

VV

Fig. b : Equivalent circuit of Fig. a.

Fig. 1.37 : Resistances in parallel.
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Fig. 1.38 : Resistances
in parallel.
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Now, the questions are: What will be the direction of current and polarity of voltage of an 

element in a circuit and how to find them ?

In practical cases we may come across circuits with single source or circuits with multiple 

sources. In circuits excited by a single source, with some experience it is possible to predict the 

direction of current because the current will leave from the positive end of the source and flow 

through available paths and then return to the negative end of the source.

But in circuits with multiple sources it will be difficult to find the direction of current 

through various elements. A common procedure to determine the current and voltage in various 

elements of a circuit is presented in the following section.

Procedure for Analysis of Circuits Using Fundamental Laws

1. Mark the nodes of the given circuit as A, B, C, D, etc. We can mark all the nodes  

  including the meeting point of two elements.

2. Determine the number of branches in the given circuit. Attach a current to each branch  

  of  the circuit and arbitarily assume a direction for each branch current. Let, the branch  

  currents be I
a
, I

b
, I

c
, I

d
, etc.

3. Write Kirchhoff’s Current Law (KCL) equations at each principal node of the circuit. 

  (Remember that a principal node is the meeting point of three or more elements.)

 The KCL equation is obtained by equating the sum of currents leaving the node to the sum of  

  currents entering the node. Therefore, by KCL,

  Sum of currents entering the node  =  Sum of currents leaving the node.

4. Any circuit will have some independent currents and the remaining currents will  

  depend on the independent currents. Hence, using the KCL equations, try to minimise  

  the number of unknown currents by expressing some branch currents in terms of other  

  branch currents. (The ultimate aim is to choose some independent currents and to  

  express other currents in terms of independent currents.)

5. Let, the number of independent currents in the given circuit be M. Now we have to  

  identify or choose M number of closed paths in the given circuit. For each closed path  

  write a Kirchhoff’s Voltage Law (KVL) equation.

 The KVL equation is formed by equating the sum of voltage fall in the closed path to  

  the sum of  voltage rise in that closed path. Therefore, by KVL,

Sum of voltage fall in a closed path = Sum of voltage rise in a closed path.
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6. The M number of KVL equations can be solved by any technique to find a unique  

  solution for M independent branch currents.

7. From the knowledge of independent branch currents, determine the dependent branch  

  currents.

8. Once the branch currents are known it is easy to find the voltage across the elements  

  by Ohm’s law. The voltage across an element is given by the product of resistance  

  and current, i.e., by Ohm’s law,

  Voltage  =  Resistance  ´  Current

9. If we are interested in calculating the power of an element then the power can be  

  calculated from the knowledge of voltage and current in the element. 

 In purely resistive circuits excited by dc sources,

  Power  =  (Current)2  ´  Resistance

  or Power
Voltage

or Power Voltage Current
Resistance

2

#= =
^ h

  

Some Important Basic Concepts

1. When a source delivers energy, the current will leave from the positive end of the  

  source and return to the negative end.

2. In series connected elements, the same current will flow.

3. In parallel connected elements, the voltage across them will be the same.

4. When a current flows through a resistance, the polarity of voltage  

  across the resistance will be such that the current entering point is  

  positive and the leaving point is negative as shown in Fig. 1.39.

5. If the total voltage across two resistances R
1
 and R

2
 in series is V volts  

  and V
1
 and V

2
 are the voltage across R

1
 and R

2
, respectively then,

   
V V

R R

R
and V V

R R

R
1

1 2

1
2

1 2

2
# #=

+
=

+   

6. If the total current through two resistances R
1
 and R

2
 in parallel is I amperes and I

1
 and 

  I
2
 are the current through R

1
 and R

2
, respectively then,

    I I
R R

R
and I I

R R

R
1

1 2

2
2

1 2

1
# #=

+
=

+

E

+

V R

Fig. 1.39.

I
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1.5.6    Single Loop Circuit

A single loop circuit is one which has only one closed path. 

In a single loop circuit all the elements are connected in series and 

so current through all the elements will be the same.  A single loop 

circuit can be analysed using Kirchhoff’s Voltage Law (KVL) 

and Ohm’s law.

A single loop circuit is shown in Fig. 1.40. Let, I be the 

current through the circuit. By Ohm’s law, the voltage across a 

resistance is given by the product of resistance and current through 

the resistance. 

Now, using KVL we can write,

IR
1
  +  IR

2
  +  E

2
  +  IR

3
  +  IR

4
  =  E

1
    ⇒    I(R

1
  +  R

2
  +  R

3
  +  R

4
)  =  E

1
  -  E

2

I
R R R R

E E

1 2 3 4

1 2
` =

+ + +

−

From the above equation, the current through the single loop circuit of Fig. 1.40, can be 

estimated.  From the knowledge of current and resistance, the voltage across various elements can 

be estimated.  From the knowledge of voltage and current, the power can be estimated.

1.5.7    Single Node Pair Circuit

A single node pair circuit is one which has only one 

independent node and a reference node. In a single node 

pair circuit all the elements are connected in parallel and so 

voltage across all the elements will be the same. A single 

node pair circuit can be analysed using Kirchhoff’s Current 

Law (KCL) and Ohm’s law.

A single node pair circuit is shown in Fig. 1.41. Let, V 

be the voltage of the independent node (node-1) with respect 

to the reference node.The voltage of the reference node is 

always zero. By Ohm’s law, the current through the resistance is given by the ratio of voltage and 

resistance. 

Now, using KCL we can write,

R

V

R

V

R

V
I

R

V
I

1 2 3

2

4

1+ + + + =   ⇒  V
R R R R

I I
1 1 1 1

1 2 3 4

1 2+ + + = −c m

R R R R

V
I I

1 1 1 1

1 2 3 4

1 2
`

+ + +

=
−

From the above equation the voltage of the independent node (node-1) can be estimated. 

This voltage is the voltage across all the elements in the single node pair circuit. From the 

knowledge of voltage and resistance, the current through various resistances can be estimated. 

From the knowledge of voltage and current, the power in various elements can be estimated.

Fig. 1.40 : Single loop circuit.
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10�

Fig. 1.

8.4A VL

+

E

200�

VL

200

VL

10

Current generator

VL

EXAMPLE 1.1

A 9 V Battery with internal resistance of 2 Ω is connected to a 16 Ω 

resistive load. Calculate a) power delivered to load, b) power loss in the battery 

and c) efficiency of the battery.

SOLUTION

The battery connected to resistive load can be represented by the circuit 

shown in Fig. 1.

Let, I  =  Current delivered by the battery.

Now, by Ohm’s law,

0.5 AI
2 16

9
=

+
=

Power delivered to load, P
L
  =  I2  ´  16

              =  0.52  ´  16  =  4 W 

Power loss in the battery, P
LB

  =  I2  ´  2

                  =  0.52  ´  2  =  0.5 W

% , 100Efficiency of battery
Loadpower Power loss

Loadpower
B #η =

+

                                          100
.

100 88.9%
P P

P

4 0 5

4

L LB

L
# #=

+
=

+
=   

EXAMPLE 1.2

An 8.4 A current generator with internal resistance of 200 Ω is connected to a 10 Ω resistive load. 

Calculate a) power delivered to load, b) power loss in the current generator and c) efficiency of the current 

generator. 

SOLUTION

The current generator connected to resistive load can be represented by the circuit shown in Fig. 1.

Let, V
L
  =  Voltage across the load.

Now, by Kirchhoff’s current law,

8.4
V V

200 10

L L
+ =   ⇒  8.4V

200

1

10

1
L + =c m   ⇒  0.105 8.4VL =

.

.
80VV

0 105

8 4
L` = =

,Power delivered to load P
V

10
L
2

L =

                                           640W
10

80
2

= =

, 32Power loss in current generator P
V

W
200 200

80
LCG

L
2 2

= = =

I

16�

Fig. 1.
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EXAMPLE 1.3

Two batteries A and B with internal emf E
A
 and E

B
 and with 

internal resistance R
A
 and R

B
 are properly connected in parallel to 

supply a current of 160 A to a load resistance R
L
. Given that, E

A
 = 

120 V, R
A 

= 0.15 Ω, R
B
 = 0.1 Ω and I

B
 = 60 A. Calculate a) E

B
 and 

b) load power.

SOLUTION

Let,  E
A
, E

B
  = Internal (or generated) voltage of sources

 V
A
, V

B 
 = Terminal voltage of sources

 I
A
,  I

B
  = Current supplied by the sources

  I
L
   = Load current

  V
L
  = Voltage across the load.

The sources are connected parallel to the load as shown in Fig. 1. 

In Fig. 2, the sources are represented as ideal sources with source resistance connected in series 

with ideal source.

By KCL, we can write,   

     I
L
 = I

A
  +  I

B

∴  I
A
 = I

L
  −  I

B
 

          = 160  −  60  =  100 A 

By KVL, we can write,   

     E
A
 = R

A
I
A
  +  V

A

∴  V
A
 = E

A
  −  R

A
I
A
   

 = 120  −  0.15  ´  100

 = 105 V

Since the sources and load are in parallel,

V
A
  =  V

B
  =  V

L
  =  105 V

By KVL, we can write, E
B
  =  R

B 
I
B
  +  V

B

                                   =  0.1  ´  60  +  105  = 111 V
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Load power, P
L
  =  V

L 
I
L
  =  105  ´  160  =  16800 W

                        16.8kW kW
1000

16800= =

Also load resistance,R
I

V

160
105 0.65625

L
L

L

Ω

=

= =

RESULT

E
B
  =  111 V,      P

L
  =  16.8 kW,      R

L
  =  0.65625 Ω

EXAMPLE 1.4

Determine the magnitude and direction of the current in the 2 V  battery in 

the circuit shown in Fig. 1.

SOLUTION

Let us assume three branch currents I
a
, I

b
 and I

c
 as shown in Fig. 2. The 

currents are assumed such that they leave from the positive terminal of the sources. 

The nodes in the circuit are denoted as A, B, C, D and E.

By KCL at node-A we get,

Current leaving node-A : I
a

Currents entering node-A : I
b
, I

c
 

∴ I
a
  =  I

b
 + I

c
                      ..... (1)

With reference to Fig. 2, in the closed path ACBDA we get,

Voltage fall : 2I
a
, 3I

b
 

Voltage rise : 4 V,  2 V

∴ 2I
a
  +  3I

b
  =  4  +  2

Put, I
a
  =  I

b
  +  I

c
 

∴  2(I
b
  +  I

c
)  +  3I

b
  =  6       ⇒     5I

b
  +  2I

c
  =  6      ..... (2)

With reference to Fig. 2, in the closed path ADBEA we get,

Voltage fall : 2 V, 1.5I
c
 

Voltage rise : 3I
b
, 3 V

∴     2  +  1.5I
c
  =  3I

b
  +  3

    −3I
b
  +  1.5I

c
  =  3  −  2

    −3I
b
  +  1.5I

c
  =  1       ..... (3)

+ E
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Fig. 1.
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(AU Dec’15, 8 Marks)
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Equation (2) ´ 1.5       ⇒      7.5I
b
  +   3I

c
  =     9

Equation (3) ´ (-2)     ⇒        6I
b
  -  3I

c
  =  -2

  On adding,         13.5I
b
            =     7

                                          I
13.5

7
0.5185 Ab` = =

Therefore, the current supplied by the 2 V  battery is 0.5185 A in the direction B to A (Refer Fig. 2.).

The currents supplied by other sources can be estimated as shown below:

From equation (3), I
1.5

1 3I

1.5
1 3 0.5185 1.7037

From equation (1), I I I 0.5185 1.7037 2.222

A

A

c
b

a b c

#
=

+
=

+
=

= + = + =
 

EXAMPLE 1.5

 In the circuit shown in Fig. 1, the current in 5 Ω resistor is 5 A. 

Calculate the power consumed by the 5 Ω resistor. Also determine the 

current through 10 Ω resistance and the supply voltage E.

SOLUTION

Power consumed by 5 Ω resistor  =  (Current)2  ´  Resistance

                       =  52  ´  5  =  125 W

The resistances 20 Ω and 30 Ω in parallel in Fig. 1, can be 

replaced by a single equivalent resistance as shown in Fig. 2. [Refer Chapter 2 for calculating equivalent 

resistance].

Let,   I
s
 = Current supplied by source

 I
1
 = Current through 10 Ω

 I
2
  =  Current through 12 Ω

 V
1
  =  Voltage across 5 Ω

 V
2
 = Voltage across 10 Ω and 12 Ω in parallel.

In Fig. 2, the current I
s
 divides into I

1
 and I

2
 and flows through parallel resistances 10 Ω and 12 Ω. The 

currents I
1
 and I

2
 can be calculated by current division rule.

By current division rule,

5 2.7273I A
10 12

12

10 12

12
I1 s # #=

+
=

+
=

By Ohm’s law,

V
1
  =  5  ´  5  =  25 V

V
2
  =  10  ´  I

1
  =  10  ´  2.7273  =  27.273 V

By KVL,  we can write,

E  =  V
1
  +  V

2
  =  25  +  27.273  =  52.273 V

E

5A

Fig. 1.

5�

10�

20�

30�

+ E

E Fig. 2.

5W

+ -

+ -

+ -

+ -

V
1

I
1

I
2

10W

V
2

V
2

I
s

20 30

20 30
12

´

+
= W

I = 5
s

A
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RESULT

Power consumed by 5 Ω resistor  =  125 W

Current through 10 Ω resistor  =  2.7273 A

Supply voltage, E  =  52.273 V

EXAMPLE 1.6

In the circuit shown in Fig. 1, the voltage across 8 Ω resistor is 20 V.  What 

is the current through 12 Ω resistor?. Also calculate the supply voltage.

SOLUTION

Let, I
s
 be the current supplied by the source. The I

s
 divides into I

1
 and I

2
 

and flows through parallel connected 18 Ω and 12 Ω resistances as shown in Fig. 2.

The current supplied by the source flows through 8 Ω resistance. Since 

the voltage across 8 Ω is known, the current I
s
 can be calculated by Ohm’s law.

By Ohm’s law,

I
8

20
2.5 As = =

By current division rule,

I I
18 12

18

18 12

18

2 s
#=

+

+
2.5 1.5 A#= =

Let,     V
1 

 =  Voltage across 8 Ω resistance.

           V
2 

 =  Voltage across parallel combination of 18 Ω and 12 Ω.

Given that, V
1
  =  20 V

By Ohm’s law, V
2 

 =  12  ´  I
2
  =  12  ´  1.5  =  18 V

With reference to Fig. 2, by KVL we can write,

E  =  V
1
  +  V

2 
 =  20  +  18  =  38 V

RESULT

Current through 12 Ω resistor  =  1.5 A

Supply voltage, E  =  38 V

EXAMPLE 1.7

In the circuit of Fig. 1, show that the power supplied by the 

current source is double of that supplied by the voltage source when 

R  =  (10/3) Ω.

SOLUTION

Since the voltage source, current source and R are in parallel, 

the voltage across them will be the same, as shown in Fig. 2.

+ E

E 18� 12�

20V

8�

Fig. 1.

+
E

+

E

E 18� 12�

V = 20
1

V

8�I
s

I
1

I
2

+

V
2

+

E

V
2

E

Fig. 2.

+
E

+

E

10V R 2A

Fig. 1.
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1�2�

2�30A 20A

A B

C 10A

+ E

+

E +

E

I
a

I
c

2I
a

I
b

I
b

2I
c

Fig. 2.

Let,   I
1
 = Current supplied by voltage source

 I
2
  = Current supplied by current source

 I   =  Current through R.

By Ohm’s law,

/
3I

Voltage across
A

10 3
10

Resistance

resistance
= = =      

By KCL, we can write,   I  =  I
1
  +  I

2
 

Given that, I
2
  =  2 A

∴  I
1
  =  I  −  I

2
  =  3  −  2  =  1 A

Now,  Power supplied by 10 V source  =  10  ´  I
1
  =  10  ´  1  =  10 W

          Power supplied by 2 A source    =  10  ´  I
2
  =  10  ´  2  =  20 W

From the above results it is clear that the power supplied by the current source is 20 W, which is double 

the power supplied by the voltage source.

EXAMPLE 1.8

Find the power dissipated in each resistor in the circuit of Fig. 1.

SOLUTION

The power dissipated in the resistors can be calculated from the 

knowledge of current through the resistors. Let us denote the current 

through the resistors as I
a
, I

b
 and I

c
 as shown in Fig. 2.

In the closed path ACBA using KVL, we can write,

2 2I I Ia b c+ =    ⇒    I
I

I
2

a
b

c+ =

       ∴  I
c
  =  I

a
  +  0.5I

b
                  ..... (1)

At node-A, by KCL, we get,

I
a
  +  I

c
  =  30                                   ..... (2)

On substituting for I
c
 from equation (1) in equation (2), we get,

I
a
  +  I

a
  +  0.5I

b
  =  30        ⇒        2I

a
  +  0.5I

b
  =  30            

 ..... (3)

At node-C, by KCL, we get,

I
b
  +  10  =  I

a
   ⇒           I

a
  −  I

b
       =  10     ..... (4)

Equation (3) ´ 1    ⇒         2I
a
  +  0.5I

b
  =  30

Equation (4) ´ 0.5    ⇒      0.5I
a
  −  0.5I

b
   =    5

  On adding           2.5I
a
               =  35

                                          
.

14I A
2 5

35
a` = =  

+

E

10V R 10V

I = 2
2

A

10V

I
1

I

+

E

Fig. 2.

+
E

2A

1�2�

2�30A 20A

A B

C 10A

Fig. 1.
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From equation (4) we get,   I
b
  =  I

a
  −  10  =  14  −  10  =  4 A

From equation (1) we get,   I
c
  =  I

a
  +  0.5I

b
  =  14  +  0.5  ´  4  =  16 A

,We know Power consumedby a Currentresistor Resistance2
#= ^ h

Power consumedby resistor betweennodes A andC I W2 2 14 2 3922
a
2
# #Ω = = =

2 2 16 2 512Power consumed by resistor between nodes A and B I Wc
2 2
# #Ω = = =

Power consumedby resistor betweennodesB andC I W1 1 4 1 16b
2 2
# #Ω = = =

EXAMPLE 1.9

In the circuit shown in Fig. 1, find a)  the total current drawn from 

the battery, b) voltage across 2 W resistor and c) current passing through 

the 5 W resistor. 

SOLUTION

Let, I
T
 be the total current supplied by the source. This current 

flows through 1 W and 2 W in series and then it divides into I
1
 and I

2
 and 

flows through parallel combination of 7 W and 5 W as shown in Fig. 2.

The parallel combination of 7 W and 5 W can be reduced to a single 

equivalent resistance as shown in Fig. 3. (Refer Chapter 2 for calculating 

equivalent resistance.)

By Ohm’s law, we can write,

.
1.6901I A

1 2 2 9167

10
T =

+ +
=

∴  Voltage across 2 Ω resistor  =  I
T
  ´  2 = 1.6901  ´  2

                =  3.3802 V

By current division rule,

,Current through resistor I I5
5 7
7

5 7
7

2 T #Ω =
+

+
. . A1 6901 0 9859#= =  

RESULT

a) Total current supplied by the source, I
T
  =  1.6901 A

b) Voltage across 2 Ω resistor  =  3.3802 V

c) Current through 5 Ω resistor  =  0.9859 A

+

E

10V

Fig. 1.

1�

2�

7� 5�

I
T

I
T I

1
I
2

+

E

10V

Fig. 2.

1�

2�

7� 5�

+

-

10V

1W

2W

I
T

I
T

Fig. 3.

5 7

5 7

2.9167

´

+

= W
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EXAMPLE 1.10

Calculate the current in all the elements of the circuit shown in Fig. 1.

SOLUTION

Since the circuit has only one source. The direction of current through the 

elements can be found as shown in Fig. 2.

By applying KCL at node-A we get,

Currents leaving node-A : I
b
, I

c
 

Current entering node-A : I
a
 

\   I
b  

+  I
c  

=  I
a
 

        \  I
c   

=  I
a  

- 
 
I
b
    ..... (1)

From equations (1) we can say that current I
c
 can be expressed in 

terms of I
a 

and
 
I
b
. Hence, the circuit has only two independent currents, I

a 
and

 

I
b 

and they can be solved by writing two KVL equations in the closed paths  

ABCA and ADCA.

With reference to Fig. 3, in the closed path ADCA we get,

Voltage fall : 2I
b
, 3I

b
, 4I

a
 

Voltage rise : 10 V

\  2I
b
  +  3I

b
  +  4I

a
  =  10

          4I
a
  +  5I

b
  =  10                               ..... (2)

With reference to Fig. 4, in the closed path ABCA we get,

Voltage fall : 6(I
a
  -  I

b
), 8(I

a
  -  I

b
), 4I

a
 

Voltage rise : 10 V

\ 6(I
a
  -  I

b
)  +  8(I

a
  -  I

b
)  +  4I

a 
= 10

                        14(I
a
  -  I

b
)  +  4I

a 
= 10

                       14I
a
  -  14I

b
  +  4I

a 
= 10

                                  18I
a
  -  14I

b
 = 10            ..... (3)

A

B

C

D

I
b

I
a

I
c

Fig. 2.

10V

2� 6�

4�

3� 8�

+
E

Fig. 3.
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E

+

E

+

E

2I
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3I
b

4I
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I
b
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C

+
E

Fig. 1.

10V

2� 6�

4�

3�
8�

+
E

+

E

+

E

+

E

8(I I )a bE

4Ia

Ia

B

C

A

10V

6(I I )a bE

I = I Ic a bE

Fig. 4.

+
E



1. 40                                     Circuit Theory

Equation (2) ´ 14       ⇒       56I
a
  +  70I

b 
= 140

Equation (3) ´ 5         ⇒       90I
a
  -  70I

b 
=   50

                      On adding      146I
a
           = 190

                                                           1.3014I
146

190 Aa` = =

( ), ,

. .

From equation we get I
I

A

2
5

10 4

5
10 4 1 3014 0 9589

b
a

#

=

−

=

−

=

From equation (1), we get,   I
c
  =  I

a
  -  I

b
  =  1.3014  –  0.9589  =  0.3425 A

RESULT

The current through the elements (i.e., branch currents) are,

  I
a
  =  1.3014 A            ; I

b
  =  0.9589 A             ; I

c
  =  0.3425 A

EXAMPLE 1.11

Determine the current in all the resistors of the circuit shown in Fig 1.

SOLUTION

Let, voltage at node-A be V
A

Now, by Ohm’s law,

; ;I
V

I
V

I
V

2 1 5
A A A

1 2 3
= = =

By KCL, at node-A,

50 50 0.5 0.2 50I I I
V V V

V V V
2 1 5

A A A
A A A

1 2 3
&&+ + = + + = + + =

1.7 50
.

29.4118V V V
1 7

50
A A&` = = =

.
.

.

.

I
V

V

V

A
2 2

29 4118
14 7059

1 1

29 4118

5 5

29 4118

A

A

A

1

2

3

` = = =

.I A29 4118= = =

.I A5 8823= = =

RESULT

The current in the resistors are,

  I
1
  =  14.7059  A            ; I

2
  =  29.4118  A             ; I

3
  =  5.8823  A

50A 2� 1� 5 �

Fig. 1.

A

B

I
3

I
2

I
1

(AU June’14, 8 Marks)
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1.6 Mesh Current Method of Analysis for DC and AC Circuits

Mesh analysis is a useful technique to solve the currents in various elements of a circuit. 

Mesh analysis is preferred, if the circuit is excited by voltage sources, and the current through various 

elements is unknown. Mesh analysis can also be extended to circuits excited by both voltage and 

current sources and to circuits excited by both independent and dependent sources. 

In a circuit, each branch will have a current through it. Hence, the number of currents in a 

circuit is equal to the number of branches. In a circuit some of the currents will be independent and 

the remaining currents depend on independent currents. The number of independent currents in a 

circuit is given by number of links in the graph of the circuit. (Refer Section 1.3.2.)

In mesh analysis, independent currents are solved by writing Kirchhoff’s Voltage  

Law (KVL) equations for various meshes in a circuit. If the graph of a circuit has B branches and 

N nodes then the number of links, L is given by L = B − N + 1. Hence, L number of meshes are 

chosen in a given circuit. “Mesh is defined as a closed path which does not contain any other 

loops within it”. Let us denote the number of meshes by m. In a circuit the number of meshes, m 

is equal to links, L. 

For each mesh, an independent current is assigned called mesh current and for each mesh, 

an equation is formed  using Kirchhoff’s Voltage Law. The equation is formed by equating the sum 

of voltage rise to sum of voltage drop in a mesh. These m number of mesh equations are arranged 

in a matrix form and mesh currents are solved by Cramer’s rule. A simple procedure to form mesh 

basis matrix equation directly from circuit by inspection without forming KVL equations is also 

discussed in this chapter.

Mesh analysis is applicable to planar circuits. “A circuit is said to be a planar circuit if it 

can be drawn on a plane surface without crossovers”.

1.6.1   Mesh Analysis of Resistive Circuits Excited by DC Sources

 A circuit with B branches will have B number of currents and in this some currents are 

independent and the remaining currents depend on independent currents. The number of independent 

currents m is given by m = B − N + 1, where N is the number of nodes.

In order to solve the independent currents of a circuit we have to choose m meshes (or 

closed paths) in the circuit. For each mesh we have to attach a current called mesh current. The 

mesh currents are the independent currents of the circuit. Let, I
1
, I

2
, I

3
, ......,I

m
 be mesh currents.

 For each mesh, a KVL equation is formed by equating the sum of voltage rise to sum of 

voltage fall in the mesh. Since there are m meshes we can form m equations.

In resistive circuits excited by dc sources, the voltages and currents are real (i.e., they are not 

complex). For resistive circuits, the m number of equations can be arranged in the matrix form as  

shown in equation (1.19), which is called mesh basis matrix equation. The formation of mesh 

basis matrix equation from the KVL equations is explained in some of the solved problems ahead.
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The mesh basis matrix equation (1.19), can be written in a simplified form as shown in 

equation (1.20).

Note : The bold faced letters represent matrices.

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

I

I

I

I

E

E

E

Em m m

m

m

m

mm m mm

11

21

31

1

12

22

32

2

13

23

33

3

1

2

3

1

2

3

11

22

33

h h h

g

g

g

k

h h h

=

R

T

S
S
S
S
S
S

R

T

S
S
S
S
S
S

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

V

X

W
W
W
W
W
W

V

X

W
W
W
W
W
W
          ..... (1.19)

R I = E     ..... (1.20)

where,  R = Resistance matrix of order m × m

 I  = Mesh current matrix of order m × 1

 E = Source voltage matrix of order m × 1

 m  =  Number of meshes.

In equation (1.19), the elements of resistance matrix and source voltage matrix can be 

determined from the given circuit. Hence, the unknowns are mesh currents, which have to be 

solved by any standard technique. 

Alternatively, equation (1.19) can be formed directly from the circuit by inspection without 

writing KVL equations. A procedure to form mesh basis matrix equation by inspection is given 

below:

Procedure to Form Mesh Basis Matrix Equation by Inspection

Consider the  mesh basis matrix equation shown below for a circuit with three meshes.

 Let, I
1
, I

2
, I

3 
be the mesh currents.

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H    ..... (1.21)

The elements of  equation (1.21) for circuits with independent sources are,  

  R
11

 = Sum of resistances in mesh-1

  R
22

 = Sum of resistances in mesh-2

  R
33

 = Sum of resistances in mesh-3

  R
12

 = R
21

 = Sum of resistances common between  mesh-1 and mesh-2

  R
13

 = R
31

 = Sum of resistances common between  mesh-1 and mesh-3

  R
23

 = R
32

 = Sum of resistances common between  mesh-2 and mesh-3

  E
11

 = Sum of voltage sources in mesh-1

↓ ↓ ↓
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  E
22

 = Sum of voltage sources in mesh-2

  E
33

 = Sum of voltage sources in mesh-3.

The resistances  R
11

, 
 
R

22
,  R

33  
are called self-resistance of mesh-1, mesh-2, mesh-3, respectively. 

The resistances  R
12

, 
 
R

13
,  R

21
, R

23
, 

 
R

31
,  R

32
 
 
are called mutual-resistance between meshes.

The formation of the elements of resistance matrix and source voltage matrix are explained 

below:

         i) The self-resistance  R jj is given by the sum of all the resistances in the jth mesh. The 

self-resistances will be always positive. 

 ii) The mutual-resistance R jk is given by the sum of all the resistances common between 

mesh-j and mesh-k. 

   The common resistance R jk  is positive if the mesh currents Ij
 and I

k
 flow in the same 

direction through the common resistance as shown in Fig. 1.42 and it is negative if the 

mesh currents I
j
 and I

k
 flow in the opposite direction through the common resistance 

as shown in Fig. 1.43. 

   In a circuit with only independent sources (reciprocal circuit), R
jk
 = R

kj
.

 iii) The source voltage matrix element Ejj is given by the sum of all the voltage sources 

in the j th mesh. A source voltage is positive if it is a rise in voltage in the direction of 

mesh current as shown in Fig. 1.44. A source voltage is negative if it is a fall or drop 

in voltage in the direction of mesh current as shown in Fig. 1.45.

Note :  In a circuit with both independent and dependent sources (non-reciprocal circuit) R
jk
 !  R

kj

Solution of Mesh Currents

In the mesh basis matrix equation [i.e., equation (1.19)], the unknowns are mesh currents  

I
1
, I

2
, I

3
 ... I

m
. The mesh currents can be obtained by premultiplying equation (1.19), by the inverse 

of resistance matrix.

Consider equation (1.20), 

R I = E

mesh-k

Ij Ik

Fig. 1.42 : Example for positive R .jk

mesh-j

Rjk

mesh-j mesh-k

Ij Ik

Fig. 1.43 : Example for negative R .jk

Rjk

mesh-j

Fig. 1.44 : Example for
positive source voltage.

Ij

+
E

Fig. 1.45 : Example for
negative source voltage.

mesh-j

Ij

+
E
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On premultiplying both sides by R −1, we get,

R−1 R I  =  R−1 E

           U I  =  R−1 E     R−1 R = U = Unit matrix

            ∴  I   =  R−1 E      ..... (1.22)   UI = I

Equation (1.22) will be the solution for mesh currents. Equation (1.22) can be solved by 

Cramer’s rule, by which the kth  mesh current I
k
 is given by equation (1.23).

......I E E E E E
1

m

mm

j

11 22 33

1

k
k k k mk

jk jj
1 2 3

∆

∆

∆

∆

∆

∆

∆

∆

∆
∆= + + + + =

=

/
   

     ..... (1.23)

 where,

 D
jk 

= Cofactor of R
jk

 E
jj
 = Sum of voltage sources in mesh-j

 D = Determinant of resistance matrix.

Proof for Cramer’s Rule

Consider equation (1.22), for a circuit with three meshes.

I R E
1= -     ⇒

I

I

I

R

R

R

R

R

R

R

R

R

E

E

E

2

1
1

3

11

21

31

12

22

32

13

23

33

11

22

33

=

-

> > >H H H    ..... (1.24)

 We know that,

         of

of

of

Transpose of
R

R

R

R

R R

Determinant

Adjoint

Determinant
cof
T

1 cof

∆
= = =

-
 

where, ∆    = Determinant of R

                R
cof

 = Cofactor matrix (matrix formed by cofactor of elements of R matrix).

  Let,   ∆
11  

= Cofactor of R
11

     ∆
12  

= Cofactor of R
12

and in general, ∆
jk
 = Cofactor of R

jk

R R
Transpose T

cofcof

11

21

31

12

22

32

13

23

33

11

12

13

21

22

23

31

32

33

`

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

= => >H H

R

R 11 cof
T 11

12

13

21

22

23

31

32

33

`
∆ ∆

∆
∆
∆

∆
∆
∆

∆
∆
∆

= =
- > H      ..... (1.25)

On substituting for R–1 from equation (1.25) in equation (1.24), we get,

I

I

I

E

E

E

1
2

1

3

11

12

13

21

22

23

31

32

33

11

22

33

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

=> > >H H H   

On multiplying the matrices on the right-hand side of the above equation and equating to the terms on the 
left-hand side we get,

I E E E11 22 331
11 21 31

∆

∆

∆

∆

∆

∆
= + +
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I E E E11 22 332
12 22 32

∆

∆

∆

∆

∆

∆
= + +

I E E E11 22 333
13 23 33

∆

∆

∆

∆

∆

∆
= + +

        
   

The above equations can be used to form a general equation for mesh current. In general, the k th mesh current 
of a circuit with m meshes is given by,

......I E E E E E
1

m

mm

j

11 22 33

1

k
k k k mk

jk jj
1 2 3

∆

∆

∆

∆

∆

∆

∆

∆

∆
∆= + + + + =

=

/     

 

Short-cut Procedure for Cramer’s Rule

A short-cut procedure exists for Cramer’s rule which is shown below:

Let us consider a circuit with three mesh. The mesh basis matrix equation for a three mesh 

circuit is, 

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

3

12

22

32

13

23

331

1

2

3

11

22

33

=> > >H H H
Let us define three determinants as shown below:

; ;

E

E

E

R

R

R

R

R

R

R

R

R

E

E

E

R

R

R

R

R

R

R

R

R

E

E

E

13 11

21

31

13

23

33

1

3

23 2

11

22

11

22

3

12

22

32 33

11

22

33

3

11

21

31

12

22

32 33

∆ ∆ ∆= = =

Here, ∆
1 

= Determinant of resistance matrix after replacing the first column of resistance 

   matrix by source voltage column matrix.

 ∆
2  

= Determinant of resistance matrix after replacing the second column of resistance 

   matrix by source voltage column matrix. 

 ∆
3 
= Determinant of resistance matrix after replacing the third column of resistance 

   matrix by source voltage column matrix.

   Let, ∆ = Determinant of resistance matrix

R

R

R

R

R

R

R

R

R

11

31

12

22

32

13

23

33

21∆ =

Now mesh currents I
1
, I

2
 and I

3
 are given by,

; ;I I I1
1

2
2

3
3

∆

∆

∆

∆

∆

∆
= = =

Cross-Check

The equation for mesh currents obtained by short-cut procedure is the same as equation (1.23), and verified as 

shown below:

I

E

E

E

R

R

R

R

R

R

11

11

22

33

12

22

32

13

23

33

1
∆

∆

∆
= =

                E E E
1

11 11 22 21 33 31
∆

∆ ∆ ∆= + +6 @    E E E
11

11
21

22
31

33
∆

∆

∆

∆

∆

∆
= + +

Expanding along first column
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I

R

R

R

E

E

E

R

R

R

12

11

21

31

11

22

33

13

23

33

2
∆

∆

∆
= =

                 E E E
1

11 12 22 22 33 32
∆

∆ ∆ ∆= + +6 @ E E E
12

11
22

22
32

33
∆

∆

∆

∆

∆

∆
= + +

I

R

R

R

R

R

R

E

E

E

1
11

22
3

11

21

31

12

22

32 33

3
∆

∆

∆
= =

                E E E
1

11 13 22 23 33 33
∆

∆ ∆ ∆= + +6 @  E E E
13

11
23

22
33

33
∆

∆

∆

∆

∆

∆
= + +

Various Steps to Obtain the Solution of Mesh Currents and Branch Currents in a Circuit

Step 1 : Draw the graph of the circuit.

Step 2 : Determine the branches B and nodes N. The number of mesh currents m is given by

  m = B − N + 1.

Step 3 : Select m number of meshes of the circuit and attach a mesh current to each mesh.

Step 4 : In the given circuit choose arbitrary direction for branch and mesh currents. Let us 

  denote mesh currents by I
1
, I

2
, I

3
,....., and branch currents by I

a
, I

b
, I

c
, I

d
, I

e
,...... Write the 

  relationship between mesh and branch currents. 

  Preferably, the directions of mesh currents are chosen in the same orientation. For  

  example, the direction of all the mesh currents can be chosen clockwise (alternatively,  

  the direction of all the mesh currents can be chosen anticlockwise). When all the mesh  

  currents are chosen in the same orientation, all the mutual-resistances (R
jk
) will be negative.

Step 5 : Form the mesh basis matrix equation by inspection and solve the mesh currents using 

  Cramer’s rule. For a circuit with three meshes, the mesh basis matrix equation and solution  

  of mesh currents using Cramer’s rule are given below:

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

3

12

22

32

13

23

331

1

2

3

11

22

33

=> > >H H H

 

I

E

E

E

R

R

R

R

R

R

1
13

1

3

23

11

22

3

12

22

32 33

1
∆

∆

∆
= =

I

R

R

R

E

E

E

R

R

R

1
11

21

31

13

23

33

2
2

11

22

33

∆

∆

∆
= =

 

I

R

R

R

R

R

R

E

E

E

1
3

3

11

22

11

21

31

12

22

32 33

∆

∆

∆
= =

Expanding along second column

Expanding along third column
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Step 6 : Solve the branch currents using the relationship between branch and mesh currents.

Note : 1. After solving the branch currents if any of the current is found to be negative, 

   then the actual direction is opposite to that of the assumed direction. If  

    interested we can draw the circuit by indicating the actual direction of current. 

  2. If the directions of the current are already given in the circuit, then we have to solve 

    for the given direction of the current. 

EXAMPLE 1.12

Solve the currents in various branches of the circuit shown in Fig. 1, by 

mesh analysis.

SOLUTION

The graph of the given circuit is shown in Fig. 2. It has six branches and four 

nodes. Hence, the number of meshes m in the circuit is, m = B − N + 1 = 6 − 4 + 1 = 3. 

The circuit has six currents (corresponding to six branches) and in this three 

currents are independent (corresponding to three meshes). 

Let us assume three mesh currents I
1
, I

2
 and I

3
 as shown in Fig. 2. The 

directions of the current are chosen arbitrarily. The circuit with chosen mesh currents is shown in Fig. 3.

Method I :  Formation of mesh basis equation by applying KVL

In this method, the mesh equations are formed using Kirchhoff’s Voltage Law. The mesh equation for 

a mesh is formed by equating the sum of voltage fall to the sum of voltage rise. The voltage rise and fall are 

determined by tracing the circuit in the direction of the mesh current.

With reference to Fig. 4, the mesh equation for mesh-1 is formed as shown 

below :

Voltage fall  :   5 I
1
, 3I

1
, 4I

1
  

Voltage rise :   50, 3 I
2
, 4I

3
 

∴    5 I
1
 + 3 I

1
 + 4 I

1
 = 50 + 3 I

2
 + 4 I

3
 

     12 I
1
 − 3 I

2
 − 4 I

3
 = 50          ..... (1)

With reference to Fig. 5, the mesh equation for mesh-2 is formed as shown 

below :

Voltage fall :     3 I
2
, 2 I

2
, 6 I

2
 , 20

Voltage rise  :     3 I
1
 

∴  3 I
2 

+ 2 I
2  

+ 6 I
2  

+ 20 = 3 I
1
  

                  −3 I
1 

+ 11 I
2
 = −20     ..... (2)

Fig. 2.

I
1 I

2

I
3

a b

c d

f

e

5� 2�

6�3�

4� 20V

+E

50V

+

E

8�

Fig. 3.
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I
3
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6�
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4� 20V
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50V
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+
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Fig. 5.

E

E

E



1. 48                                     Circuit Theory

With reference to Fig. 6, the mesh equation for mesh-3 is formed as shown below :

Voltage fall :     4 I
3
, 8 I

3
 

Voltage rise :     20, 4 I
1
 

 ∴ 4 I
3  

+  8 I
3
   = 20 + 4 I

1
  

    −4 I
1 

+ 12 I
3
 = 20                                 ..... (3)             

Equations (1), (2) and (3) are the mesh equations of the circuit shown in Fig. 3. The mesh equations 

are summarised here for convenience.

     12 I
1  

− 3 I
2  

− 4 I
3
 =    50

           −3I
1  

+ 11 I
2
 = − 20

           −4 I
1  

+ 12 I
3
 =   20 

The mesh equations can be arranged in the matrix form as shown below and then solved by Cramer’s rule.

I

I

I

12

3

4

3

11

0

4

0

12

50

20

20

1

2

3

−

−

− −

= −> > >H H H
  ..... (4)

Method II :  Formation of mesh basis matrix equation by inspection

In this method, the mesh basis matrix equation is formed directly from the circuit shown in Fig. 3 by 

inspection. The circuit has three meshes. The general form of mesh basis matrix equation for three mesh 

circuit is shown in equation (5).

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
           ..... (5)

The elements of resistance matrix and source voltage matrix are formed as shown below:

R
11 

= 5 + 3 + 4 = 12  R
12  

= R
21 

= −3  E
11 

=   50

R
22 

= 3 + 2 + 6 = 11  R
13 

= R
31 

= −4  E
22 

= −20

R
33 

= 4 + 8 = 12        R
23 

= R
32

 =   0  E
33 

=   20

On substituting the above terms in equation (5), we get equation (6) and the solution of equation (6) 

will give the mesh currents.

I

I

I

12

3

4

3

11

0

4

0

12

50

20

20

1

2

3

−

−

− −

= −> > >H H H
         ..... (6)

Solution of mesh currents

It is observed that the mesh basis matrix equation obtained in method I and II are the same. In  

equation (6), the unknown are I
1
, I

2
 and I

3
. In order to solve I

1
, I

2
 and I

3
, let us define four determinants ∆, ∆

1
, 

∆
2
 and ∆

3
 as shown below: 

; ; ;

12

3

4

3

11

0

4

0

12

50

20

20

3

11

0

4

0

12

12

3

4

50

20

20

4

0

12

12

3

4

3

11

0

50

20

20

1 2 3∆ ∆ ∆ ∆= −

−

− −

= −

− −

= −

−

−

−

= −

−

−

−

+E

20V+E

I
1 I

2

I
3

+E

8I
3

4I
3

E+

Fig. 6.

4I
1
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The determinants are evaluated by expanding along first row and the mesh currents are solved by 

Cramer’s rule.

12 ( 3) ( 4) ( )

12

3

4

3

11

0

4

0

12

11 12 0 3 12 0 0 4 11# # # # # #∆ = −

−

− −

= − − − − − + − − −6 6 6@ @ @

          =   1584 − 108 − 176 = 1300

50 ( 3) ( 4)

50

20

20

3

11

0

4

0

12

11 12 0 20 12 0 0 20 111 # # # # # #∆ = −

− −

= − − − − − + − −6 6 6@ @ @

           =  6600 − 720 + 880 = 6760

12 50

12

3

4

50

20

20

4

0

12

20 12 0 3 12 02 # # # #∆ = −

−

−

−

= − − − − −6 6@ @

                                           ( 4) ( ) ( )3 20 4 20# # #+ − − − − −6 @

                       =  −2880 + 1800  +  560  =  − 520

12 50 ( )

12

3

4

3

11

0

50

20

20

11 20 0 3 3 20 4 20 0 4 113 # # # # # # #∆ = −

−

−

− = − − − − − − − + − −^ ^ ^h h h6 6 6@ @ @

                           =   2640 − 420 + 2200 = 4420

I
1
 = 

1300

67601

∆

∆
=  = 5.2 A

I
2
 = 

1300

5202

∆

∆
=

−
 = −0.4 A

I
3
 = 

1300

44203

∆

∆
=  = 3.4 A

Here, the mesh current I
2
 is negative. Hence, the actual direction of 

I
2
 is opposite to that of assumed direction. Since there are six branches in the 

given circuit, we can assume six currents I
a
, I

b
, I

c
, I

d
, I

e
 and I

f  
as shown in Fig. 7.

The direction of branch currents are chosen such that they are all positive. 

The relation between mesh and branch currents can be obtained from  

Fig. 7 and the branch currents are evaluated as shown below: 

          I
a 

= I
1 

= 5.2 A

I
b 

= I
1 

– I
2 

= 5.2
 
– (–0.4)

 
= 5.6 A

I
c 
= I

1
 – I

3 
= 5.2 – 3.4

 
= 1.8 A

I
d 

= –I
2 

= – (–0.4) = 0.4 A

I
e 

= I
3 

– I
2 

= 3.4
  
–(–0.4) = 3.8 A

I
f 
= I

3 
= 3.4 A

6�

3�

4� 20V

50V

8�

Fig. 7.
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a
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E

I
1

I
3

5
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E
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+

E

E
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+
E

I
2
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2

I
3

I
2

+

+

E

E

I
1
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EXAMPLE 1.13

Determine the currents in various elements of the bridge circuit shown in 

Fig. 1, using mesh analysis.

SOLUTION

 The graph of the given circuit is shown in Fig. 2. 

 It has 6 branches and 4 nodes. 

 Hence, the number of meshes m in the circuit is, 

 m = B – N + 1 = 6 – 4 + 1 = 3. 

 The circuit has 6 currents (corresponding to six branches) and in this 3 currents  

 are independent (corresponding to three meshes). 

 Let us assume three mesh currents as shown in Fig. 2. The direction of the current are chosen arbitrarily. 

The circuit with chosen mesh currents is shown in Fig. 3.

Method I :  Formation of mesh basis equation by applying KVL

In this method, the mesh equations are formed using Kirchhoff’s Voltage Law. 

The mesh equation for a mesh is formed by equating the sum of voltage fall 

to the sum of voltage rise. 

The voltage rise and fall are determined by tracing the circuit in the direction 

of the mesh current.

With reference to Fig. 4, the mesh equation for mesh-1 is formed as shown below:

Voltage fall  :   I
1
, I

1
, I

1
 

Voltage rise :   I
2
, I

3
 , 5 

        ∴  I
1
 + I

1
 + I

1 
= I

2 
+ I

3 
+ 5

3I
1 

− I
2 

− I
3 

= 5    .....(1)

With reference to Fig. 5, the mesh equation for mesh-2 is formed as shown below:

Voltage fall  :   I
2
, I

2
, I

2
 

Voltage rise :   I
1
, I

3
 , 5 

        ∴  I
2
 + I

2
 + I

2 
  = I

1 
+ I

3 
+ 5

 −I
1 

+ 3I
2 

− I
3 

= 5    ..... (2)

I
3I

2

I
c

I
b I

d
I
f

I
a

I
1

Fig. 2.

I
e

I
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I
2

I
1 5V

+

E

+

Fig. 4.
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With reference to Fig. 6, the mesh equation for mesh-3 is formed as shown below:

Voltage fall  :     I
3
, I

3
, I

3
 

Voltage rise :   I
1
, I

2
 , 10 

        ∴  I
3
 + I

3
 + I

3 
 = I

1 
+ I

2 
+ 10  

           −I
1 

− I
2 

+ 3I
3 

= 10      ..... (3)     

Equations (1), (2) and (3) are the mesh equations of the circuit shown in Fig. 3. The mesh equations 

are summarised here for convenience.

3I
1 

− I
2 

− I
3 

  = 5

−I
1 

+ 3I
2 

− I
3 

= 5

−I
1 

− I
2 

+ 3I
3 

= 10 

The mesh equations can be arranged in the matrix form as shown below and then solved by Cramer’s rule.

I

I

I

3

1

1

1

3

1

1

1

3

5

5

10

1

2

3

−

−

−

−

−

− => > >H H H       

..... (4)

Method II :  Formation of mesh basis equation by inspection

In this method, the mesh basis matrix equation is formed directly from the circuit shown in Fig.3 by 

inspection. The circuit has three meshes. The general form of mesh basis matrix equation for three mesh 

circuit is shown in equation (5).

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
 

..... (5)

The elements of the resistance matrix and source voltage matrix are formed as shown below:

R
11 

= 1 + 1 + 1 = 3  R
12

 = R
21

 = −1  E
11

 =   5

R
22 

= 1 + 1 + 1 = 3  R
13

 = R
31

 = −1  E
22

 =   5

R
33 

= 1 + 1 + 1 = 3        R
23

 = R
32 

 = −1  E
33

 = 10

On substituting the above terms in equation (5), we get,

I

I

I

3

1

1

1

3

1

1

1

3

5

5

10

1

2

3

−

−

−

−

−

− => > >H H H
       ..... (6)

Solution of mesh currents

It is observed that the mesh basis matrix equation obtained in method I and II are the same. In equation 

(6) the unknowns are I
1
, I

2
 and I

3
. In order to solve I

1
, I

2
 and I

3
, let us define four determinants ∆, ∆

1
, ∆

2
 

and ∆
3
 as shown below: 

; ; ;

3

1

1

1

3

1

1

1

3

5

5

10

1

3

1

1

1

3

3

1

1

5

5

10

1

1

3

3

1

1

1

3

1

5

5

10

1 2 3∆ ∆ ∆ ∆= −

−

−

−

−

− =

−

−

−

− = −

−

−

− = −

−

−

−

The determinants are evaluated by expanding along first row and the mesh currents are solved by 

Cramer’s rule.

Fig. 6.
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( ) ( ) ( ) ( )

( )

3

1

1

1

3

1

1

1

3

3 3 3 1 1 1 1 3 1 1

1 1 1 1 3

# # # # # #

# # #

∆ = −

−

−

−

−

− = − − − − − − − − −

+ − − − − −

^

^ ^

h

h h

6 6

6

@ @

@

                  =  24 − 4 − 4 = 16

5 ( ) ( ) ( 1) ( ) ( 1)

5

5

10

1

3

1

1

1

3

3 3 1 1 5 3 10 1 5 1 10 31 # # # # # # # # #∆ =

−

−

−

− = − − − − − − − + − − −^ h6 6 6@ @ @

    =  40 + 25 + 35 = 100

3 ( ) 5 ( ) ( ) ( 1)

3

1

1

5

5

10

1

1

3

5 3 10 1 1 3 1 1 1 10 1 52 # # # # # # # # #∆ = −

−

−

− = − − − − − − − + − − − −^ h6 6 6@ @ @

    = 75 + 20 + 5 = 100

3 ( ) ( 1) ( ) 5 ( ) ( )

3

1

1

1

3

1

5

5

10

3 10 1 5 1 10 1 5 1 1 1 33 # # # # # # # # #∆ = −

−

−

−

= − − − − − − − + − − − −6 6 6@ @ @

                  = 105 − 5 + 20 = 120

.I A
16

100
6 251

1

∆

∆
= = =

.I A
16

100
6 252

2

∆

∆
= = =

.I A
16

120
7 53

3

∆

∆
= = =

The relation between mesh and branch currents can be obtained from Fig. 3 and branch currents are 

evaluated as shown below:

I
a 

= I
1 

= 6.25 A

I
b 

= I
2 

= 6.25 A

I
c 
= I

1 
− I

2 
= 6.25 − 6.25

 
= 0

I
d 

= I
3 

= 7.5 A

I
e 

= I
1 

− I
3 

= 6.25
 
− 7.5

 
= −1.25 A

I
f 
= I

2 
− I

3 
= 6.25

 
− 7.5

 
= −1.25 A

EXAMPLE 1.14

In the circuit shown in Fig.1, find (a) mesh currents in the circuit, (b) current 

supplied by the battery and (c) potential difference between terminals B and D.

SOLUTION

Since the given circuit has only one source, it is possible to predict the exact 

directions of the current.

The current will start from the positive end of the supply and when it enters 

node-A, it will divide into two parts. These two currents will again meet at node-C 

and enter the negative end of the supply through 4 Ω resistor.

(AU Dec’14, 16 Marks)

6�2�

10V

4�

8�3�

C

A

B D

+

E

Fig. 1.
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The circuit has three branch currents and in this two are independent. Hence, 

we can take two mesh currents.

 The actual directions of mesh and branch currents are shown in Fig. 2. 

Using the circuit shown in Fig. 2, the mesh basis matrix equation is formed as shown 

below:

R

R

R

R

I

I

E

E

11

21

12

22

1

2 22

11== = =G G G           ..... (1)

The elements of the resistance matrix and source voltage matrix are formed 

as shown below:

R
11

 = 2 + 4 + 3 = 9       R
12

 = R
21

 = 4  E
11

 = 10

R
22

 = 4 + 6 + 8 = 18    E
22

 = 10

On substituting the above terms in equation (1), we get,

  
I

I

9

4

4

18

10

10

1

2

== = =G G G                     ..... (2)

In equation (2), the unknowns are I
1
 and I

2
. In order to solve I

1
 and I

2
, let us define three determinants 

∆, ∆
1
 and ∆

2
 as shown below: 

; ;
9

4

4

18

10

10

4

18

9

4

10

10
1 2∆ ∆ ∆= = =

The determinants are evaluated by expanding along first row and the mesh currents are solved by 

Cramer’s rule.

9 18 4 4 146
9

4

4

18
# #∆ = = − =

10 18 10 4 140
10

10

4

18
1 # #∆ = = − =

9 10 4 10 50
9

4

10

10
2 # #∆ = = − =

0.9589I A
146

1401

1 ∆

∆
= = =

0.3425I A
146

502

2 ∆

∆
= = =

b)  To find the battery current

 With reference to Fig. 2, the battery current is given by, I
a
 = I

1
 + I

2

∴  Battery current, I
a
 = I

1
 + I

2
 = 0.9589 + 0.3425 = 1.3014 A

c)  To find potential difference between the termianals ‘’B’’ and ‘’D’’

The given circuit is redrawn as shown in Fig. 3. With reference to Fig. 3, 

using KVL , we can write,

 V
BD

 + 8I
2
 = 3I

1                      
⇒

         
V

BD
 = 3I

1  
− 8I

2
 

∴
  
V

BD
 = 3 × 0.9589 − 8 × 0.3425  =  0.1367 V

8�

2�

3�

6�

A

B

I
1

I
2

+

E
10V
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+

+

E

E
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1 8
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I
B

V
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+ E

Fig. 3.
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Fig. 1.

EXAMPLE 1.15

Use branch currents in the network shown in Fig. 1 

to find the current supplied by the 60 V source. Solve the 

circuit by the mesh current method.  

SOLUTION

The direction of the mesh currents are chosen to 

match the given branch currents as shown in Fig. 2. With 

reference to Fig.2, the mesh basis matrix equation is formed 

as shown below:

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
         

..... (1)

Now, I
4
 = I

1
 − I

2
 − I

3

The elements of the resistance matrix and source voltage matrix are formed as shown below:

R
11

 =  7 + 12  = 19  R
12

 = R
21

 = – 12  E
11

 = 60 

R
22

 = 12 + 12 = 24  R
13

 = R
31

 =  −12  E
22

 = 0

R
33

 =  6  + 12 = 18  R
23

 = R
32

 =  +12  E
33

 = 0

On substituting the above terms in equation (1), we get,

  

I

I

I

19 12 12

12 24 12

12 12 18

60

0

0

1

2

3

− −

−

−

=

R

T

S
S
S
SS

R

T

S
S
S
SS

R

T

S
S
S
SS

V

X

W
W
W
WW

V

X

W
W
W
WW

V

X

W
W
W
WW

 

         
 ..... (2)

In equation (2), the unknowns are I
1
, I

2
 and I

3
. In order to solve I

1
, I

2
 and I

3
, let us define four determinants

∆, ∆
1
, ∆

2
 and ∆

3
 as shown below: 

; ; ;

19

12

12

12

24

12

12

12

18

60

0

0

12

24

12

12

12

18

19

12

12

60

0

0

12

12

18

19

12

12

12

24

12

60

0

0

1 2 3∆ ∆ ∆ ∆= −

−

− −

=

− −

= −

−

−

= −

−

−

The determinants are evaluated by expanding along first row and the mesh currents are solved by 

Cramer’s rule.

19 12 12

12 24 12

12 12 18

19 24 18 12 12 12 18 12 12

12 12 12 12 24

2
3 # # # # #

# # #

=

− −

−

−

= − − − − − −

+ − − − −

_ _

_ _

i i

i i

7 7

7

A A

A

5472 864 1728 2880= − − =

60 17280

60 12 12

0 24 12

0 12 18

24 18 12
2

1
3 # #=

− −

= − =7 A

12�
+
E

7�

6�60 V 12�

I
1

I
2

I
3

I
4

Fig. 2.

(AU May’15, 8 Marks)



Chapter 1 - Basic Circuit Analysis                                                  1. 55

60 4320

19 60 12

12 0 12

12 0 18

12 18 12 1223 # # #=

−

−

−

= − − − − =_ i7 A

60 8640

19 12 60

12 24 0

12 12 0

12 12 12 2433 # # #=

−

−

−

= − − − =_ i7 A

6I A
2880

17280
1

1

3

3= = =

1.5I A
2880

4320
2

2

3

3= = =

3I A
2880

8640
3

3

3

3= = =

6 1.5 3 1.5I I I I A4 1 32
= − − = − − =

Current supplied by 60 V source = I
1
 = 6 A

EXAMPLE 1.16

Solve the mesh currents shown in Fig. 1.

SOLUTION

The mesh currents and their direction are given in the problem 

and so we need not assume the currents. Using the circuit shown in Fig. 1,  

the mesh basis matrix equation is formed as shown below:

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
           ..... (1)

The elements of resistance matrix and source voltage matrix are formed as shown below:

  R
11

 = 2 + 4 = 6  R
12

 = R
21

 = −4  E
11

 =   25

  R
22

 = 4 + 6 + 5 = 15  R
13

 = R
31

 =   0  E
22

 =     0

  R
33

 = 5 + 2 = 7         R
23

 = R
32

 = −5  E
33

 = −10

On substituting the above terms in equation (1), we get,

  

I

I

I

6

4

0

4

15

5

0

5

7

25

0

10

1

2

3

−

−

−

− =

−

> > >H H H
         ..... (2)

In equation (2), the unknowns are I
1
, I

2
 and I

3
. In order to solve I

1
, I

2
 and I

3
, let us define four determinants

∆, ∆
1
, ∆

2
 and ∆

3
 as shown below:  

; ; ;

6

4

0

4

15

5

0

5

7

25

0

10

4

15

5

0

5

7

6

4

0

25

0

10

0

5

7

6

4

0

4

15

5

25

0

10

1 2 3∆ ∆ ∆ ∆= −

−

−

− =

−

−

−

− = −

−

− = −

−

− −

The determinants are evaluated by expanding along first row and the mesh currents are solved by 

Cramer’s rule.

2� 6� 2�

I
1 I

2 I
3

4� 5�25V

+

E E

+

10V

Fig. 1.



1. 56                                     Circuit Theory

( ) ( ) ( )

6

4

0

4

15

5

0

5

7

6 15 7 5 5 4 4 7 0 0# # # # #∆ = −

−

−

− = − − − − − − − +6 6@ @

           = 480 − 112 = 368

( ) ( ) ( ) ( ) ( )

25

0

10

4

15

5

0

5

7

25 15 7 5 5 4 0 10 5 01 # # # # #∆ =

−

−

−

− = − − − − − − − − +6 6@ @

              =  2000 − 200 = 1800

( ) ( )

6

4

0

25

0

10

0

5

7

6 0 10 5 25 4 7 0 02 # # # #∆ = −

−

− = − − − − − − +6 6@ @

               =  −300 + 700 = 400

  ( ) ( ) ( ) ( )

6

4

0

4

15

5

25

0

10

6 15 10 0 4 4 10 0 25 4 5 03 # # # # # #∆ = −

−

− −

= − − − − − − − + − − −6 6 6@ @ @

               =  −900 + 160 + 500 = −240

.I A
368

1800
4 8913

1

1 ∆

∆
= = =

.I A
368

400
1 0870

2

2 ∆

∆
= = =

.I A
368

240
0 6522

3

3 ∆

∆
= =

−
= −

EXAMPLE 1.17

In the circuit shown in Fig. 1, find I
L
 by mesh analysis.

SOLUTION

Let us choose mesh currents as shown in Fig. 2, the mesh basis matrix equation 

is formed as shown below:

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
           ..... (1)

The elements of resistance matrix and source voltage matrix are formed as 

shown below:

  R
11

 = 3 + 3 + 3 = 9  R
12

 = R
21

 = −3        E
11

 =   4

  R
22

 = 3 + 5 + 1 = 9  R
13

 = R
31

 = −3        E
22

 =   8

  R
33

 = 5 + 3  + 1 = 9         R
23

 = R
32

 = −5        E
33

 = −6

On substituting the above terms in equation (1), we get,

  
I

I

I

9

3

3

3

9

5

3

5

9

4

8

6

1

2

3

−

−

−

−

−

− =

−

> > >H H H         ..... (2)

8V

4V

1 �

1 �

3 � 3 �

3 �

5 �

I
L

Fig. 1.

+E

+

E

+
E 6V

8V

4V

1 �

1 �

3 � 3 �

3 �

5 �

I
L

Fig. 2.

+E

+

E

+
E 6V

I
2

I
1

I
3
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Here, I
L
 = I

2 
− I

3
. 

In order to solve the mesh currents I
2
 and I

3
, let us define three determinants ∆, ∆

2
 and ∆

3
 as shown below:  

; ;

9

3

3

3

9

5

3

5

9

9

3

3

4

8

6

3

5

9

9

3

3

3

9

5

4

8

6

2 3∆ ∆ ∆= −

−

−

−

−

− = −

− −

−

− = −

−

−

− −

The determinants are evaluated by expanding along first row and the mesh currents are solved by 

Cramer’s rule.

9 9 ( 5) ( 3) ( ) ( )

( 3) ( ) ( )

9

3

3

3

9

5

3

5

9

3 9 3 5

3 5 3 9

2 2
# # # #

# # #

∆ = −

−

−

−

−

− = − − − − − − − −

+ − − − − −

6 6

6

@ @

@

           = 504 − 126 − 126 = 252

( ) ( ) ( ) ( )

( ) ( ) ( )

9

3

3

4

8

6

3

5

9

9 8 9 6 5 4 3 9 3 5

3 3 6 3 8

2 # # # # # #

# # #

∆ = −

− −

−

− = − − − − − − − −

+ − − − − −

6 6

6

@ @

@

            =  378 + 168 − 126 = 420

( ) ( ) ] ( ) ( ) ( )

( ) ( )

9

3

3

3

9

5

4

8

6

9 9 6 5 8 3 3 6 3 8

4 3 5 3 9

3 # # # # # #

# # #

∆ = −

−

−

− −

= − − − − − − − − −

+ − − − −

6 6

6

@ @

@

            =  −126 + 126 + 168 = 168

I I I A
252

420 168
1

L 2 3

3 2 32

T

T

T

T

T

T T
= − = − =

−

=

−

=

EXAMPLE 1.18

In the circuit shown in Fig. 1, find E such that I
2
 = 0.

SOLUTION

In mesh analysis, when the solution of mesh current is obtained by 

Cramer’s rule, the mesh current I
2
 is given by,

I
2

2 ∆

∆
=

       

..... (1)

In equation (1), if I
2
 = 0, then ∆

2
 = 0. Therefore, in order to find the value of E, we can form the mesh 

basis matrix equation. Then form the determinant ∆
2
 and equate the determinant to zero.

Using Fig. 1, the mesh basis matrix equation is formed by inspection as shown below:

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H   ..... (2)

2� 3�

8.4V4�

2�

E

1�

Fig. 1.

I
1 I

2

I
3

5�

+
E

+
E
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The elements of resistance matrix and source voltage matrix are formed as shown below:

  R
11

 = 2 + 4 + 2 =   8  R
12

 = R
21

 = −4  E
11

 =   E 

  R
22

 = 4 + 3 + 5 = 12  R
13

 = R
31

 = −2  E
22

 = −8.4

  R
33

 = 2 + 5 + 1 =   8  R
23

 = R
32

 = −5  E
33

 =   0

On substituting the above terms in equation (2), we get,

  

.

I

I

I

E8

4

2

4

12

5

2

5

8

8 4

0

1

2

3

−

−

−

−

−

− = −> > >H H H
        ..... (3)

In equation (3) by Cramer’s rule, the unknown current I
2
 is given by,

, .I where

E8

4

2

8 4

0

2

5

8

2
22 ∆

∆
∆= = −

−

−

−

−
   

On expanding ∆
2
, we get,

. . ( ) ( ) ( ) ( ) ( . )

E

E

8

4

2

8 4

0

2

5

8

8 8 4 8 0 4 8 2 5 2 0 2 8 42 # # # # # # #∆ = −

−

−

−

− = − − − − − − − + − − − −6 6 6@ @ @

               = −537.6 + 42E + 33.6 = −504 + 42E

 On equating ∆
2
 = 0, we get,

  −504 + 42E = 0

   ∴  42 E = 504

                12E V
42

504= =  

EXAMPLE 1.19

Solve the current in 12 Ω resistor by mesh analysis.

SOLUTION

The mesh currents and their directions are given in the problem and 

so we need not assume the currents. Using the circuit shown in Fig. 1 the 

mesh basis matrix equation is formed as shown below:

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H             ..... (1)

The elements of resistance matrix and source voltage matrix are formed as shown below:

R
11

 = 12 + 4 + 5 = 21  R
12

 = R
21

 = −4  E
11

 = 0 

R
22

 = 4 + 7 = 11  R
13

 = R
31

 = −5  E
22

 = 40 − 10 =   30 V

R
33

 = 7 + 5 = 12  R
23

 = R
32

 = −7  E
33

 = 10 − 60 = −50 V

On substituting the above terms in equation (1), we get,

I

I

I

21

4

5

4

11

7

5

7

12

0

30

50

1

2

3

−

−

−

−

−

− =

−

> > >H H H
        

  ..... (2)

60V

7�

4�

Fig. 1.

I
2

I
1

I
3

5�

+
E

+
E

+
E

12�

40V

10V
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The current through 12Ω resistance is I
1 
. To solve the current I

1
 by Cramer’s rule let us define the 

determinants ∆ and ∆
1
 as shown below: 

 

;

21

4

5

4

11

7

5

7

12

0

30

50

4

11

7

5

7

12

1∆ ∆= −

−

−

−

−

− =

−

−

−

−

−

The determinants are evaluated by expanding along first row and the mesh current I
1
 is solved by 

Cramer’s rule.

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

21

4

5

4

11

7

5

7

12

21 11 12 7 7 4 4 12 5 7

5 4 7 5 11

# # # # # #

# # #

∆ = −

−

−

−

−

− = − − − − − − − − −

+ − − − − −

6 6

6

@ @

@

          = 1743 − 332 − 415 = 996

0 ( 4) ( ) ( ) ( 5) ( ) ( )

0

30

50

4

11

7

5

7

12

30 12 50 7 30 7 50 111 # # # # # #∆ =

−

−

−

−

− = − − − − − + − − − −6 6@ @

           = 40 − 1700 = −1660

1.6667I A
996

1660
1

1

∆

∆
= =

−
= −

EXAMPLE 1.20

Solve the mesh currents in the circuit shown in Fig. 1.

SOLUTION

With reference to Fig.1, the mesh basis matrix equation is 

formed as shown below:

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
                    

..... (1)

Note : Here, the directions of the mesh currents are given in the problem itself .

The elements of the resistance matrix and source voltage matrix are formed as shown below:

R
11

 = 4 + 8 + 4 = 16  R
12

 = R
21

 = – 4  E
11

 = 10 − 5 = 5 

R
22

 = 4 + 2 + 1 = 7  R
13

 = R
31

 =   0  E
22

 = 5 − 8 = −3

R
33

 = 1 + 10 + 3 = 14  R
23

 = R
32

 =   1  E
33

 = 20 − 8 = 12

On substituting the above terms in equation (1), we get,

  

I

I

I

16

4

0

4

7

1

0

1

14

5

3

12

1

2

3

−

−

= −> > >H H H
          

 ..... (2)

In equation (2), the unknowns are I
1
, I

2
 and I

3
. In order to solve I

1
, I

2
 and I

3
, let us define four determinants

∆, ∆
1
, ∆

2
 and ∆

3
 as shown below: 

; ; ;

16

4

0

4

7

1

0

1

14

5

3

12

4

7

1

0

1

14

16

4

0

5

3

12

0

1

14

16

4

0

4

7

1

5

3

12

1 2 3∆ ∆ ∆ ∆= −

−

= −

−

= − − = −

−

−

8� 2� 10�

I
1 I

2
I
3

4� 1�

Fig. 1.
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E

+
E
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The determinants are evaluated by expanding along first row and the mesh currents are solved by 

Cramer’s rule.

16 ( 4) 0

16

4

0

4

7

1

0

1

14

7 14 1 1 4 14 0# # # # #∆ = −

−

= − − − − − +6 6@ @

         =  1552 – 224  =  1328

5 ( 4) 0

5

3

12

4

7

1

0

1

14

7 14 1 1 3 14 12 11 # # # # # #∆ = −

−

= − − − − − +6 6@ @
          

                              =  485 – 216  =  269

16 5 0

16

4

0

5

3

12

0

1

14

3 14 12 1 4 14 02 # # # # #∆ = − − = − − − − − +6 6@ @

                               =  –864 + 280  =  – 584

16 ( ) ( 4) 5

16

4

0

4

7

1

5

3

12

7 12 1 3 4 12 0 4 1 03 # # # # # # #∆ = −

−

− = − − − − − − + − −6 6 6@ @ @

                               = 1392 – 192  –20  =  1180

0.2026I A
1328

269
1

1

∆

∆
= = =

0.4398I A
1328

584
2

2

∆

∆
= =

−
= −

0.8886I A
1328

1180
3

3

∆

∆
= = =

EXAMPLE 1.21

Determine the power dissipation in the 4 Ω resistor of the 

circuit shownin Fig. 1.

SOLUTION

The graph of the given circuit is shown in Fig. 2. It has five 
branches and three nodes. Hence, the number of meshes m in the 

circuit is, m = B − N + 1 = 5 − 3 + 1 = 3.

The circuit has five currents (corresponding to five branches) and in this three currents are independent 
(corresponding to three meshes). Let us assume three mesh currents I

1
, I

2
 and I

3
 as shown in Fig. 2.

The direction of the currents are chosen arbitrarily. The circuit with chosen mesh currents is shown in Fig. 3. 

Now, the current through 4 Ω resistor is (I
2
− I

3
) in the direction shown in Fig. 3.

4 4Power dissipated in resistor I I 2
2 3` #Ω = −

5� 2� 6�

3� 4� 10V50V

+

E

+

E

Fig. 1.

I
2

I
3I

1

b

a c

e
d

Fig. 2.

5� 2� 6�

3� 4� 10V50V

+

E

+

E

Fig. 3.

I
1 I

2 I
3

I
2
E I

3
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Using the circuit shown in Fig. 3, the mesh basis matrix equation is formed as shown below :

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
             .....(1)

The elements of resistance matrix and source voltage matrix are formed as shown below :

R
11

 = 5 + 3 = 8  R
12

 = R
21

 = −3  E
11

 =   50

R
22

 = 3 + 2 + 4 = 9  R
13

 = R
31

 =   0  E
22

 =    0

R
33

 = 4 + 6 = 10  R
23

 = R
32

 = −4  E
33

 = −10

On substituting the above terms in equation (1), we get,

  

I

I

I

8

3

0

3

9

4

0

4

10

50

0

10

1

2

3

−

−

−

− =

−

> > >H H H
        ..... (2)

Here, we have to solve the mesh currents I
2
 and I

3
. In order to solve I

2
 and I

3
, let us define three 

determinants ∆, ∆
2
 and ∆

3
 as shown below: 

; ;

8

3

0

3

9

4

0

4

10

8

3

0

50

0

10

0

4

10

8

3

0

3

9

4

50

0

10

2 3∆ ∆ ∆= −

−

−

− = −

−

− = −

−

− −

The determinants are evaluated by expanding along first row and then the currents I
2
 and I

3 
are solved 

by Cramer’s rule.

8 ( ) ( ) ( 3) 0

8

3

0

3

9

4

0

4

10

9 10 4 4 3 10 0# # # # #∆ = −

−

−

− = − − − − − − − +6 6@ @

            =  592 − 90 = 502

8 ( ) ( ) 50 0

8

3

0

50

0

10

0

4

10

0 10 4 3 10 02 # # # #∆ = −

−

− = − − − − − − +6 6@ @  

                                   =  −320 + 1500 = 1180

  8 ( ) ( 3) ( ) 50 ( )

8

3

0

3

9

4

50

0

10

9 10 0 3 10 0 3 4 03 # # # # # #∆ = −

−

− −

= − − − − − − − + − − −6 6 6@ @ @

                                   =  −720 + 90 + 600 = −30

.I A
502

1180
2 35062

2

∆

∆
= = =

0.059I A
502

30
83

3

∆

∆
= =

−
= −

4 4 . ( . ) 4Power dissipated in resistor I I 2 3506 0 05982 2
2 3` # #Ω = − = − −

                                                          . 4 2.410 4 23.2 W2 4104 4 401
2 2
# #= = =
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EXAMPLE 1.22

Determine the voltage E which causes the current I
1
 to be zero for the 

circuit shown in Fig. 1.

SOLUTION

In mesh analysis, when the solution of mesh currents is obtained by 

Cramer’s rule, the mesh current I
1
 is given by,

I
1

1 ∆

∆
=      ..... (1)

In equation (1), if  I
1
 = 0, then ∆

1
 = 0. In order to find the value of E, we can form the mesh basis matrix 

equation. Then form the determinant ∆
1
 and equate the determinant to zero.

Using the circuit shown in Fig. 1, the mesh basis matrix equation is formed by inspection. 

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
        ..... (2)

The elements of resistance matrix and source voltage matrix are formed as shown below:

R
11

 = 6 + 2 + 5 = 13  R
12

 = R
21

 = −2  E
11

 = 20 − E

R
22

 = 2 + 6 + 1 =   9  R
13

 = R
31

 = −5  E
22

 = 0

R
33

 = 5 + 1 + 4 = 10  R
23

 = R
32

 = −1  E
33

 = E

On substituting the above terms in equation (2), we get,

I

I

I

E

E

13

2

5

2

9

1

5

1

10

20

0

1

2

3

−

−

−

−

−

− =

−> > >H H H
 

,Now

E

E

20

0

2

9

1

5

1

10

1∆ =

− −

−

−

−

          ..... (3)

On expanding ∆
1
 along column-1, we get,

(20 ) ( ) ( ) 0 ( ) ( )E E9 10 1 1 2 1 9 51 # # # # # #∆ = − − − − − + − − − −6 6@ @

      = (20 − E) × 89 + 47 E = 1780 − 89 E + 47 E = 1780 − 42 E

On equating ∆
1
 to zero, we get,

          0 = 1780 − 42 E

42 1780E` =     ⇒     42.381E V
42

1780= =

EXAMPLE 1.23

For the circuit shown in Fig. 1, find (a) the power delivered to 4 Ω resistor 

using mesh analysis and (b) to what voltage should the 80 V battery be changed 

so that no power is delivered to the 4 Ω resistor?

+
E

+
E

+
E

10� 5� 4�

60V 40V 80V

Fig. 1.

20V
+
E

I
2

I
3

I
1

6�

2�

4�

6�

5�

1�

+
EE

Fig. 1.
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SOLUTION

Let us assume two mesh currents I
1
 and I

2
 as shown in Fig. 2. The direction 

of the currents are chosen as clockwise. Now, the current through 4 Ω resistor is I
2
.

Power delivered to resistor I4 4
2

2` #Ω =

a)  To find the power delivered to 4 Ω resistor 

Using the circuit shown in Fig. 2, the mesh basis matrix equation is formed as shown below:

R

R

R

R

I

I

E

E

11

21

12

22

1

2 22

11== = =G G G                  ..... (1)

The elements of resistance matrix and source voltage matrix are formed as shown below:

 R
11

 = 10 + 5 = 15  R
12

 = R
21

 = −5  E
11

 = 60 − 40 =   20

 R
22

 = 5 + 4 = 9      E
22

 = 40 − 80 = −40

On substituting the above terms in equation (1), we get,

  
I

I

15

5

5

9

20

40

1

2−

−

=

−

= = =G G G   

Let us solve I
2
 by Cramer’s rule.

,Now I2
2

∆

∆
=

, 15 9 ( 5) ( 5) 110where
15

5

5

9
# #∆ =

−

−
= − − − =

             15 ( 40) ( 5) 20 500
15

5

20

40
2 # #∆ =

− −
= − − − = −

.I A
110

500
4 54552

2
`

∆

∆
= =

−
= −

.

. .

Power delivered to resistor I

W

4 4 4 5455 4

4 5455 4 82 6463

2
2

2

2

` # #

#

Ω = = −

= =

b)   To find the change in voltage in 80 V source such that power delivered to 4 Ω resistor is zero

Let us take the new value of 80 V source as E. 

Now in equation (1), E
22

 is given by,  E
22

 = 40 − E. Equation (1) for case (b) is given below:

I

I E

15

5

5

9

20

40

1

2−

−

=

−

= = =G G G
         

 ..... (2)

In equation (2), by Cramer’s rule, I
2
 is given by I

2
 = ∆

2 
/ ∆. If power delivered to 4 Ω is zero, then I

2
 

should be zero. For I
2
 to be zero, the determinant ∆

2
 should be zero.

, 15 (40 ) ( 5) 20Now
E

E
15

5

20

402 # #∆ =
− −

= − − −

                              =  600 – 15E + 100  =  700 – 15E

On equating ∆
2
 to zero, we get,

0 = 700 − 15E 

Fig. 2.

I
1

I
2

+
E

+
E

+
E

10� 5� 4�

60V 40V 80V

I
2
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  15E = 700

      46.6667E V
15

700= =

∴ The value of 80 V should be reduced to 46.6667 V to make the power delivered to 4 Ω resistor as zero.

EXAMPLE 1.24

In the circuit shown in Fig. 1, find the current I by mesh method and the 

power supplied by each battery to the 1.25 Ω  resistor.

SOLUTION

Let us assume two mesh currents as shown in Fig. 2. Now the current I 

is given by the sum of I
1
 and I

2
.

Using the circuit shown in Fig. 1, the mesh basis matrix equation is 

formed as shown below:

R

R

R

R

I

I

E

E

11

21

12

22

1

2 22

11== = =G G G     .....(1)

The elements of resistance matrix and source voltage matrix are formed as shown below:

R
11

 = 5 + 1.25 = 6.25  R
12

 = R
21

 = 1.25  E
11

 = 10

R
22

 = 15 + 1.25 = 16.25    E
22

 = 20

On substituting the above terms in equation (1), we get,

  
.

.

.

.

I

I

6 25

1 25

1 25

16 25

10

20

1

2

== = =G G G                                  ..... (2)

In equation (2), the unknowns are I
1
 and I

2
. In order to solve I

1
 and I

2
, let us define three determinants 

∆, ∆
1
 and ∆

2
 as shown below and the mesh currents are solved by Cramer’s rule.

.

.

.

.
6.25 16.25 1.25 1.25 100

6 25

1 25

1 25

16 25
# #∆ = = − =

.

.
10 16.25 20 1.25 137.5

10

20

1 25

16 25
1 # #∆ = = − =

.

.
6.25 20 1.25 10 112.5

6 25

1 25

10

20
2 # #∆ = = − =

.
1.375I A

100

137 5
1

1

∆

∆
= = =

.
1.125I A

100

112 5
2

2

∆

∆
= = =

∴   I = I
1
 + I

2
 = 1.375 + 1.125 = 2.5 A

Let  P
10

 and P
20

 be the power delivered by 10 V and 20 V sources.

Now, P
10

 = 10 × I
1
 = 10 × 1.375 = 13.75 W

         P
20

 = 20 × I
2
 = 20 × 1.125 = 22.5 W

Fig. 2.

I
2

I
1

10V

5� 15�

1.25�

+

E E

+

20V

I

10V

5� 15�

1.25�

+

E E

+

20V

I

Fig. 1.
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Fig. 5.
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Let P
5
 and P

15
 be the power consumed by 5 Ω and 15 Ω resistances, respectively.

Now, P
5
 = I

1
2 × 5 = 1.375

2
 × 5 = 9.4531 W

       P
15

 = I
2
2 × 15 = 1.125

2
 × 15 = 18.9844 W

Let P
L10

 and P
L20

 be the power delivered to load (i.e., to 1.25 Ω resistor) by the 10 V and 20 V sources, 

respectively.

Now, P
L10

 = P
10

 − P
5
 = 13.75 − 9.4531 = 4.2969 W

        P
L20

 = P
20

 − P
15

 = 22.5 − 18.9844 = 3.5156 W

Cross-Check

Power consumed by 1.25 Ω resistance, P
L
 = I

2
 × 1.25 = 2.5

2
 × 1.25 = 7.8125 W

Also, P
L
 = P

L10
 + P

L20
 = 4.2969 + 3.5156 = 7.8125 W

EXAMPLE 1.25

In the circuit shown in Fig. 1, find voltage across 5 Ω resistor 

using source transformation technique and verify the results using 

mesh analysis.

SOLUTION

Method 1: Source Transformation Technique

Let, V
L
 = Voltage across 5Ω resistor.

The voltage sources in Fig. 2 are converted to current sources as shown in Fig. 3.

The parallel current sources in Fig. 4 are 

converted to a single equivalent current source in Fig. 5. 

Similarly the parallel resistances in Fig. 4 are converted 

to a single equivalent resistance in Fig. 5.

The current sources in Fig. 5 are converted to 

voltage sources as shown in Fig. 6.

Fig. 1.
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Fig. 8.

3� 5� 7�

+

E

25 V

+ E
57 V

4�
+

E
42 V

+

E
70 V

6�

+

E

4V
I
2I

1
I
3

+ E
V
L

The circuit of Fig. 6 is redrawn as shown in Fig. 7.

With reference to Fig. 7 by voltage division rule, we can write,

V
91

7240

5
91

450

5
L

#= −

+

    
91

7240

91

5 91 450

5
#

#
= −

+

   40V
5 91 450

7240 5

#

#
= −

+
= −

Method 2: Mesh Analysis

Let, V
L
 = Voltage across 5Ω resistor.

Let us choose mesh currents as shown in Fig. 8.

Now, V
L
 = 5I

2

For the circuit of Fig. 8, the mesh basis matrix equation is 

formed as shown below:

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
           ..... (1)

The elements of resistance matrix and source voltage matrix are formed as shown below:

  R
11

 = 3 + 4 = 7  R
12

 = R
21

 = −4  E
11

 =   42 + 25 = 67

  R
22

 = 4 + 5 + 6 = 15  R
13

 = R
31

 =   0  E
22

 = −25 − 57 − 70 = −152

  R
33

 = 6 + 7 = 13         R
23

 = R
32

 = −6  E
33

 =   70 + 4 = 74

On substituting the above terms in equation (1), we get,

  
I

I

I

7

4

0

4

15

6

0

6

13

67

152

74

1

2

3

−

−

−

− = −> > >H H H         ..... (2)

In order to solve I
2
 by Cramer’s rule, let us define two determinant ∆ and ∆

2
 as shown below:  

;

7

4

0

4

15

6

0

6

13

7

4

0

67

152

74

0

6

13

2∆ ∆= −

−

−

− = − − −

The determinants are evaluated by expanding along first row and the mesh current I
2
 is solved by 

Cramer’s rule.

( ) ( 4) 0

7

4

0

4

15

6

0

6

13

7 15 13 6 4 13 02
# # # #∆ = −

−

−

− = − − − − − − +6 6@ @  = 1113 − 208 = 905

( ) 0

7

4

0

67

152

74

0

6

13

7 152 13 74 6 67 4 13 02 # # # # #∆ = − − − = − − − − − − +6 6@ @ = −10724 + 3484 = −7240

8I
905

7240
2

2
`

T

T
= =

−

= −

V 5I 5 ( 8) 40VL 2` #= = − = −

Fig. 7.
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1.6.2   Mesh Analysis of Circuits Excited by Both Voltage and Current Sources

The mesh analysis can be extended to circuits excited by both voltage and current sources. In 

such circuits if each current source has a parallel impedance then it can be converted into an equivalent 

voltage source with series impedance. After conversion, the circuit will have only voltage sources and 

so the procedure for obtaining mesh basis matrix equation by inspection and its solution discussed in  

Sections 1.6.1 and 1.6.4 can be directly applied to these circuits.

In certain circuits excited by both voltage and current sources, the current source may not 

have a parallel resistance. In this situation the current source cannot be converted into a voltage 

source. In this case the value of each current source is related to mesh currents and one of the mesh 

currents can be expressed in terms of the source current and other mesh currents. The remaining 

mesh currents can be solved by writing Kirchhoff’s Voltage Law (KVL) equations.

Alternatively, the mesh basis matrix equation can be formed directly by inspection, by 

taking the voltage of the current sources as unknown and relating the value of each current source 

to mesh currents. Here for each current source one mesh current is eliminated by expressing the 

mesh current in terms of the source current and other mesh currents. While forming the mesh basis 

matrix equation, the voltage of current sources should be entered in the source matrix.

Now in the matrix equation some mesh currents will be eliminated and an equal number of 

unknown source voltages will be introduced. Thus, the number of unknowns will remain the same 

as the number of meshes m. On multiplying the mesh basis matrix equation, we get m equations 

which can be solved to give a unique solution for unknown currents.

1.6.3   Supermesh Analysis

In circuits excited by both voltage and current sources, if a current source lies common to 

two meshes then the common current source can be removed for analysis purpose and the resultant 

two meshes can be considered as one single mesh called supermesh. In order to solve the two mesh 

currents of a supermesh, two equations are required. One of the equations is the KVL equation 

of the supermesh and the other equation is obtained by equating the source current to the sum or 

difference of the mesh currents (depending on the direction of the mesh currents). An example of 

formation of supermesh is shown in Fig. 1.46. Also, Example 1.27 is solved using the supermesh 

analysis technique.

2W

I2

10V

Fig. a : Two mesh circuit with mesh
currents in same orientation.
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+ - + -
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+
-

+

-
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+ - + -

2I1 5I2

+- 6I1

6W
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Supermesh equations

2I + 5I + 3I + 6I = 10

I I = 4

1 2 2 1

1 2-

Fig. b : Supermesh of circuit shown
in Fig. a and its equations.

Þ



1. 68                                     Circuit Theory

   

EXAMPLE 1.26

Find the voltage between A and B of the circuit shown in 

Fig. 1, using mesh analysis.

SOLUTION

The graph of the given circuit is shown in Fig. 2. It has five branches and three nodes. Hence, the number 

of meshes m in the circuit is m = B − N + 1 = 5 − 3 + 1 = 3. 

The circuit has five currents (corresponding to five branches) and in this three currents are independent 

(corresponding to three meshes). Let us assume three mesh currents as shown in Figs 2 and 3.

The directions of mesh currents are chosen arbitrarily. Here, one of the mesh has 10 A current source 

which cannot be converted to a voltage source because the source does not have parallel impedance. Hence, 

we can take this current as a known mesh current, but the voltage across the source E
1
 is unknown. Therefore, 

the number of unknowns remain as three (i.e., unknowns are E
1
, I

2
 and I

3
) and so we can write three mesh 

equations using KVL (corresponding to three meshes) and a unique solution is obtained by solving the three 

equations. The mesh equations can be obtained by two methods.

Note  :  In solutions of simultaneous equations a unique solution can be obtained only if the number 

of unknowns are equal to the number of equations.

Method I :  Formation of mesh equations by applying KVL

In this method the mesh equations are formed using Kirchhoff’s Voltage Law. The mesh  equation for 

a mesh is formed by equating the sum of voltage fall to the sum of voltage rise. The voltage rise and fall are 

determined by tracing the circuit in the direction of the mesh current.
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Fig. 1.
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Fig. 1.46 : Examples of formation of supermesh.
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With reference to Fig. 4, the mesh equation for mesh-2 is formed as shown below:

Voltage fall  :  4 I
2
, 5I

2
, I

2
 

Voltage rise :  4I
1
, I

3
, 10 V

∴ 4 I
2
 + 5I

2
 + I

2
 = 4I

1
 + I

3
 + 10 

 −4I
1
 + 10I

2
 − I

3
 = 10        I

1 
= 10A                 

4 10 10 10I I2 3#− + − =     ⇒  10I
2 
− I

3
 = 50  ..... (1)

With reference to Fig. 5, the mesh equation for mesh-3 is formed as shown below:

Voltage fall  :  I
3
, 4I

3
, 10 V

Voltage rise :  I
2
, 20 V

∴ I
3
 + 4I

3
 + 10  = I

2
 + 20   ⇒   − I

2
 + 5I

3
 = 10 ..... (2)

 Mesh equations (1) and (2) are sufficient for solving I
2
 and I

3
.

Method II :  Formation of mesh equations by inspection

In this method the mesh basis matrix equations is formed by inspection using the circuit shown in Fig. 3.

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
    

 ..... (3)

R
11

 = 4 + 4 = 8           R
12

 = R
21

 = − 4        E
11

 = E
1  

      I
1
 = 10

R
22

 = 4 + 5 + 1 = 10           R
13

 = R
31

 =   0        E
22

 = 10

R
33

 = 1 + 4 = 5           R
23

 = R
32

 = − 1        E
33

 = − 10 + 20 = 10

On substituting the above terms in equation (3), we get,

I

I

E8

4

0

4

10

1

0

1

5

10

10

10

2

3

1

−

−

−

− => > >H H H          
..... (4)

On multiplying the matrices on left-hand side of equation (4), and equating to terms on right-hand side, 

we get the following equations:

From row - 2,      −40 + 10I
2
 −  I

3
  = 10  ⇒      10I

2
 − I

3
  = 50                ..... (5)

From row - 3,                  −I
2
 + 5I

3
 = 10                                      

..... (6)

Solution of mesh currents

It is observed that the mesh equations obtained by both the methods are the same. 

From equation (5), we get,    

  I
3 

= 10I
2
  – 50                 ..... (7)
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Fig. 4.
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On substituting for I
3
 from equation (7) in equation (6), we get,

– I
2
  +  5(10 I

2
  –  50)  =  10     ⇒     49I

2
 −  250

  
= 10

              5.3061I A
49

260
2` = =

                      I
3
 = 10I

2
 − 50 = 10 × 5.3061 − 50 = 3.061 A

To find voltage across A and B

Let us denote the meeting point of 4 Ω and 5 Ω as node-C and the meeting point of 1 Ω and 10 V source 

as node-D as shown in Fig. 6.

There are two shortest path to find the voltage across A and B. They are closed path ABCA and ABDA. 

Let voltage across A and B be denoted as V
AB

.

With reference to Fig. 6, in path-ABCA by KVL we can write,

V
AB

 + 4I
2
 + 5I

2
 = 4I

1
 

       ∴  V
AB

 = 4I
1
 − 9I

2
 = 4 × 10 − 9 × 5.3061 = −7.7549 V

In path-ABDA by KVL we can write,

V
AB

 + 10 + I
3
 = I

2
 

     ∴ V
AB

 = I
2
 − I

3
 − 10 = 5.3061 − 3.061 − 10 = −7.7549 V

EXAMPLE 1.27

In the circuit shown in Fig. 1, find the current supplied by 

the voltage source and the voltage across the current source by 

mesh analysis.

SOLUTION

Let us assume three mesh currents as shown in Fig. 2. 

The current delivered by the voltage source is I
1
. Let the 

voltage across the current source be E with current leaving 

point as positive. Also, the voltage across various elements of the circuit are shown in Fig. 2.

With reference to Fig. 2, the relation between mesh currents I
2
 and I

3 
 is

I
3
  –  I

2 
 =  10      ⇒ I

3
 = 10

  
+ I

2  
  ..... (1)

Let us combine mesh-2 and mesh-3 and form a supermesh as shown in Fig. 3. The KVL equation for 

the supermesh is formed as shown ahead.

I
3

E

+

E

+

+

E

10V

I
2

I
1

5I
2

4I
1 4I

2

I
2

+

E

Fig. 6.
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+
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+

_
4I34I24I1

Mesh-1

Supermesh



Chapter 1 - Basic Circuit Analysis                                                  1. 71

4I
2
 + 5I

2
 + 3 I

3 
 + 4 I

3
 = 4 I

1
     ⇒    4 I

1
 = 9I

2
+ 7I

3

∴  4I
1
 = 9I

2
+ 7(10  +  I

2
)          Using equation (1)

∴  4I
1
 = 16I

2
 + 70         ⇒    16I

2
 = 4I

1
 – 70

I I
16

4

16

70
2 1` = −      ⇒    0.25 4.375I I2 1= −     ..... (2)

The KVL equation for the mesh-1 is formed as shown below:

2I
1
 + 4I

1  
=   10 + 4I

2

   ∴   6I
1
 = 10 + 4(0.25I

1
 – 4.375)              Using equation (2)

  6 10 17.5I I11` = + −     ⇒     5 7.5I1 = −     ⇒    .
1.5I A

5

7 5
1 =

−

−

       ∴  I
2
 = 0.25I

1
 – 4.375

               = 0.25(– 1. 5) – 4.375  =  –4.75 A

       ∴  I
3
 = 10 + I

2
 = 10 – 4.75 = 5.25 A

With reference to Fig. 2 by KVL,

E = 3I
3
 + 4I

3
 = 7I

3
 = 7 × 5.25 = 36.75 V

∴ Current supplied by the voltage source, I
1
 = –1.5 A

    Voltage across the current source,   E = 36.75 V

EXAMPLE 1.28

Find out the current in each branch of the circuit shown in Fig 1.

SOLUTION

Let us assume the four branch currents are  I
a
, I

b
, I

c
 and I

d
 as shown 

in Fig. 2. The current source of Fig.2 can be represented by an equivalent 

voltage source of value 50 V with a source resistance of 10 Ω in series as 

shown in Fig. 3. Let us assume two mesh currents I
1
 and I

2
 as shown in Fig. 3.

Using the circuit shown in Fig. 3, the mesh basis matrix equation is formed as shown below :

R

R

R

R

I

I

E

E

11

21

12

22

1

2 22

11== = =G G G            ..... (1)

The elements of the resistance matrix and source voltage matrix are formed as shown below:

R
11

 = 10 + 3 + 5 = 18       R
12

 = R
21

 = − 5  E
11

 = 50

R
22

 = 5 +1 = 6    E
22

 = − 10

(AU June’14, 8 Marks)

Fig. 1.
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10W

1W

10 V

+

-

3W

5WI
1 I

25 10

50

´

= V

+

-

Þ



1. 72                                     Circuit Theory

On substituting the above terms in equation (1), we get,

I

I

18 5

5 6

50

10

1

2

−

−

=

−

> > >H H H  .....(2)

In equation (2), the unknowns are I
1
 and I

2
. In order to solve I

1
 and I

2
, let us define three determinants 

∆, ∆
1
 and ∆

2
 as shown below: 

; ;
18

5

5

6

50

10

5

6

18

5

50

10
1 2∆ ∆ ∆=

−

−
=

−

−
=

− −

The determinants are evaluated as shown below and the mesh currents are solved by Cramer’s rule.

108 25 83
18 5

5 6

18 6 5
2

3 #=

−

−

= − − = − =_ i

50 6 300 50 250
50 5

10 6

10 513 # #=

−

−

= − − − = − =_ i

180 250 70
18 50

5 10

18 10 5 5023 # #=

− −

= − − − = − + =_ _i i

3.012I A
83

250
1

1

3

3
= = =

0.8434I A
83

70
2

2

3

3
= = =

The branch currents are,

I
a
  =  I

1
  =  3.012  A

I
b
  =  5 - I

a
  = 5 − 3.012 A  =  1.988 A

I
c
  =  I

2
  =  0.8434 A

I
d
  = I

1
 − I

2
  =  3.012 − 0.8434  =  2.1686 A

EXAMPLE 1.29

 Determine the current in each mesh of the circuit shown in Fig. 1. 

SOLUTION

Let, voltage across 10 A curret source be V
S
 and I

1
 , I

2
 and I

3
 

be mesh currets as shown in Fig. 2. Here I
1
  = 10 A.

Using the circuit shown in Fig. 2, the mesh basis matrix equation 

is formed as shown below:

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
       ..... (1)

The elements of resistance matrix and source voltage matrix 

are formed as shown below:

  R
11

 = 3   R
12

 = R
21

 = −3  E
11

 =   V
S

  R
22

 = 3 + 2 = 15  R
13

 = R
31

 =   0  E
22

 = −10 I
1
 = 10 A

  R
33

 = 2 + 1 = 7         R
23

 = R
32

 = −2  E
33

 =   10

(AU June’14, 8 Marks)
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On substituting the above terms in equation (1), we get,

I

I

V3 3 0

3 5 2

0 2 3

10

10

10

s

2

3

−

− −

−

= −

R

T

S
S
S
S

R

T

S
S
S
S

R

T

S
S
SS

V

X

W
W
W
W

V

X

W
W
W
W

V

X

W
W
WW
   .....(2)

From row-2, we get,

−30 + 5I
2
 − 2I

3
  =  −10

∴  5I
2
 −  2I

3
  =  20                                                                                                                  .....(1)

From row-3, we get,

− 2I
2
  +  3I

3
  =  10                                                                                                                .....(2)

Equation (1) × 3      ⇒     15I
2
  −  6I

3
  =  60

Equation (2) × 2      ⇒    − 4I
2
  +  6I

3
  =  20

                              Add     11I
2
            =  80

7.2727I A
11

80
2

` = =

(2), . 8.1818From equation I
I

A
3

10 2
3

10 2 7 27272
3

#
=

+
=

+
=

The mesh currents I
1
 , I

2
, and I

3
 are given by,

I
1
  =  10 A

I
2
  =  7.2727 A

I
3
  =  8.1818 A  

1.6.4   Mesh Analysis of Circuits Excited by AC Sources

(Mesh Analysis of Reactive Circuits)

The reactive circuits consist of resistances, inductive and capacitive reactances. Therefore, 

the voltage and current of reactive circuits are complex (i.e., they have both real and imaginary 

components). In general, the elements of these circuits are referred to as impedances.

The general mesh basis matrix equation for reactive circuit is

Z I = E       ..... (1.26)

where, Z = Impedance matrix of order m × m

 I = Mesh current matrix of order m  × 1

 E = Source voltage matrix of order m  × 1

 m = Number of meshes

Equation (1.26) can be expanded as shown in equation (1.27).

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

I

I

I

I

E

E

E

E

11

21

31

m1

12

22

32

m2

13

23

33

m3

1m

2m

3m

mm

1

2

3

m

11

22

33

mm

h h h

g

g

g

g

h h h

=

R

T

S
S
S
S
S
SS

R

T

S
S
S
S
S
SS

R

T

S
S
S
S
S
SS

V

X

W
W
W
W
W
WW

V

X

W
W
W
W
W
WW

V

X

W
W
W
W
W
WW
  

..... (1.27) 
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Note : The over bar is used to denote complex quantities.

The formation of mesh basis matrix equation and the solution of mesh and branch currents are 

similar to that of resistive circuits except that the solution of currents involves complex arithmetic.

Therefore, the k
th
 mesh current of a reactive circuit with m meshes is given by, 

I E
1

j

m

1

k jk jj
∆

∆=

=

/                     ..... (1.28)

where, ∆
jk

 = Cofactor of  Z jk .

     E jj  = Sum of voltage sources in j
th

 mesh.            

             ∆   = Determinant of impedance matrix.

Note : Refer equation (1.23).

Instead of using above equation for solution of mesh currents, a short-cut for Cramer’s rule 

can be followed. 

Consider the mesh basis matrix equation for three mesh circuit consisting of reactive elements.

Z

Z

Z

Z

Z

Z

Z

Z

Z

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

3

11

22

33

2 => > >H H H
Let us define the four determinants as 

Z

Z

Z

Z

Z

Z

Z

Z

Z

;

Z

Z

Z

Z

Z

Z

;

Z

Z

Z

Z

Z

Z

;

Z

Z

Z

Z

Z

Z

E

E

E

E

E

E

E

E

E

11

21

31

12

22

32

13

23

33

1

11

22

33

12

22

32

13

23

33

11

21

31

11

22

33

13

23

33

11

21

31

12

22

32

11

22

33

2 3∆ ∆ ∆ ∆= = = =

Here,  ∆ = Determinant of impedance matrix

  ∆
1 

=  Determinant of impedance matrix after replacing the first column of impedance

    matrix by source voltage column matrix

          ∆
2 

=  Determinant of impedance matrix after replacing the second column of impedance 

    matrix by source voltage column matrix 

         ∆
3 

=  Determinant of impedance matrix after replacing the third column of impedance 

    matrix by source voltage column matrix.

Now mesh currents ,I I and I1 2 3  are given by,

I1 1

∆

∆
=

I2 2

∆

∆
=

I3 3

∆

∆
=
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EXAMPLE 1.30

In the circuit shown in Fig. 1, find I2  and voltage drop across 

1 Ω resistor.

SOLUTION

With reference to Fig. 1, the mesh basis matrix equation is 

formed by inspection.

Z

Z

Z

Z

I

I

E

E

11

21

12

22 2

11

22

1 == = =G G G
        

 ..... (1)

Z11  = 1 + j2 − j8 + 4 = 5 − j6             E11  = 8∠20
o
 + 10∠0

o
 = 7.5175 + j2.7362 + 10 

Z Z12 21=  = − (−j8 + 4) = − 4 + j8                                            = 17.5175 + j2.7362           

Z22  = 4 − j8 + j6 = 4 − j2             E22  = −10∠0
o
 = −10

On substituting the above terms in equation (1), we get,

  
. .j

j

j

j

j5 6

4 8

4 8

4 2

17 5175 2 7362

10

I

I

1

2

−

− +

− +

−

=
+

−
= = =G G G        ..... (2)

To solve the unknowns (i.e., mesh currents) of equation (2) by Cramer’s rule, we can define three 

determinants ∆, ∆
1
 and ∆

2
 as shown below: 

;
. .j

j

j

j

j j

j

5 6

4 8

4 8

4 2

17 5175 2 7362

10

4 8

4 2
1∆ ∆=

−

− +

− +

−
=

+

−

− +

−

. .j

j

j5 6

4 8

17 5175 2 7362

10
2∆ =

−

− +

+

−

The determinants are evaluated by expanding along first row and the mesh currents are solved by 

Cramer’s rule.

(5 6) (4 2) ( 4 8)
j

j

j

j
j j j

5 6

4 8

4 8

4 2
2

#∆ =
−

− +

− +

−
= − − − − +

                                      =  56 + j30

. .
[(17.5175 2.7362) (4 2)] [( 10) ( 4 8)]

j j

j
j j j

17 5175 2 7362

10

4 8

4 2
1 # #∆ =

+

−

− +

−
= + − − − − +

          =  35.5424 + j55.9098

. .
(5 6) ( 10) ( 4 8) (17.5175 2.7362)

j

j

j
j j j

5 6

4 8

17 5175 2 7362

10
2 # #∆ =

−

− +

+

−
= − − − − + +

            =  41.9596 − j69.1952

I
35.5424 .

. . . .
j

j
j A

56 30

55 9098
0 9087 0 5116 1 0428 29 4o

1
1

= = +
∆

∆

+

+
= + =  

I
j

41.9596 j69.1952
0. 1. 1.2 .j A

56 30
0679 272 738 86 9o

2
2

= = +
−

∆

∆

+
= − = −  

Let, V1  = Voltage drop across 1Ω resistor.

Now, V1  = I1  × 1 = I1  = . . V1 0428 29 4
o

+

(AU Dec’16, 12 Marks)
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+

-
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EXAMPLE 1.31

Solve the currents in various branches of the circuit shown in 

Fig. 1, using mesh analysis.

SOLUTION

The graph of the given circuit is shown in Fig. 2. It has five branches and three 

nodes. Hence, the number of meshes m in the circuit is m = B − N + 1 = 5 − 3 + 1 = 3. 

The circuit has five currents (corresponding to five branches) and in this 

three currents are independent (corresponding to three meshes).

 Let us assume the mesh currents I , I and I1 2 3  and the branch currents 

, , ,I I I I and Iea b c d  as shown in Figs 2 and 3. 

The directions of the currents are chosen arbitrarily. With reference 

to Fig. 3, the mesh basis matrix equation is formed as shown below:

Z

Z

Z

Z

Z

Z

Z

Z

Z

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

2

3

11

22

33

1

=> > >H H H
               

..... (1)

 Z11  = 5 + j5 + 2 = 7 + j5            Z Z 212 21= = −          E11  = 100∠0
o
 = 100 

 Z22  = 2 + 4 − j2 = 6 − j2 Z Z 013 31= =  E 022 =  

 Z33  = −j2 + 4 + 2 = 6 − j2 ( )Z Z j j2 223 32= = − − =  0E33 =

On substituting the above terms in equation (1), we get,

 

j

j

j

j

j

7 5

2

0

2

6 2

2

0

2

6 2

100

0

0

I

I

I

2

3

1+

−

−

−

−

=> > >H H H
         ..... (2)

In equation (2), the unknowns are ,I I and I1 2 3 . In order to solve ,I I and I1 2 3  by Cramer’s rule, let us 

define four determinants ∆, ∆
1
, ∆

2
 and ∆

3
 as shown below:   

;

j

j

j

j

j

j

j

j

j

7 5

2

0

2

6 2

2

0

2

6 2

100

0

0

2

6 2

2

0

2

6 2
1∆ ∆=

+

−

−

−

−

=

−

−

−

;

j

j

j

j

j

j

7 5

2

0

100

0

0

0

2

6 2

7 5

2

0

2

6 2

2

100

0

0
2 3∆ ∆=

+

−

−

=

+

−

−

−

The determinants are evaluated by expanding along first row and the mesh currents are solved by 

Cramer’s rule.

  

( ) ( ) ( )

( ) ( )

j

j

j

j

j

j j j j j

j

7 5

2

0

2

6 2

2

0

2

6 2

7 5 6 2 6 2 2 2

2 2 6 2 0 0

# # #

# #

∆ =

+

−

−

−

−

= + − − −

− − − − − +

6

6

@

@
          

   
                                   

=  (7 + j5) × [36 − j24] + 2 × [−12 + j4]  =  348 + j20 

Note  :  All calculations are performed using the calculator in complex mode. 

I
b b

a c

e

d

Fig. 2.

Ia Ic I
d

Ie

I
1

I
2

I
3

5W 4W 4W

2W - Wj2100 0
o
VÐ

+

-

Fig. 1.

2W

j5W

~

I2 I3

5W 4W 4W

2W - Wj2100 0
o
VÐ

+

-

Fig. 3.

2W

j5W

I1

Ia

Ib Ie

IdIc

~
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( ) ( ) ( )

( )

j

j

j

j

j j

j j

100

0

0

2

6 2

2

0

2

6 2

100 6 2 2 2 0 0 0

100 36 24 3600 2400

2 2
1 # #

#

∆ =

−

−

−

= − − − − − +

= − = −

6 6@ @

( ) ( )

j

j

j

j j

j j

7 5

2

0

100

0

0

0

2

6 2

7 5 0 0 100 2 6 2 0 0

100 12 4 1200 400

2 # # #

#

∆ =

+

−

−

= + − − − − − +

= − − + = −

6 6

6

@ @

@

( ) ( )

( )

j

j

j

j j

j j

7 5

2

0

2

6 2

2

100

0

0

7 5 0 0 2 0 0 100 2 2 0

100 4 400

3 # # # #

#

∆ =

+

−

−

− = + − − − − + − −

= − = −

6 6 6@ @ @

I
3600 j2400

9.9157 7.4664 12.412 37
j

j A
348 20

o
1

1
= =

-
+

∆

∆

+
= − = −

I
1200 j400

. . . .7
j

j A
348 20

3 3711 1 3432 3 629 21 o
2

2
= =

-
+

∆

∆

+
= − = −

I
j400

0.0658 1.1456 1.14 93.3
j

j A
348 20

73
o3

= = +
−

∆

∆

+
= − − = −

With reference to Fig. 3, the following relations between mesh and branch currents are obtained.  

Now the branch currents are evaluated using the mesh currents , .I I and I1 2 3   

12.412 37I I Ao

1a += = −

. .7I I A3 629 21
o

2b += = −

. . ( . . )

. . . .

I I I j j

j A

9 9157 7 4664 3 3711 1 3432

6 5446 6 1232 8 962 43 1o

1 2c

+

= − = − − −

= − = −

. . ( . . )

. . . .

I I I j j

j A

3 3711 1 3432 0 0658 1 1456

3 4369 0 1976 3 443 3 3o

2 3d

+

= − = − − − −

= − = −

1.14 93.3I I A7
o

3e += = −

EXAMPLE 1.32

In the circuit shown in Fig. 1, find the mesh currents.

SOLUTION

With reference to Fig. 1, the mesh basis matrix 

equation is formed by inspection as shown below:

Z

Z

Z

Z

Z

Z

Z

Z

Z

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

2

3

11

22

33

1

=> > >H H H
        

 ..... (1)

Z11  = 5 + j2  2Z Z j12 21= = −  E11  = 100∠0
o
 = 100 

Z22  = j2 + 4 − j12 4 − j10 Z Z 013 31= =  E22  = 0

Z33  = −j12 + 2 = 2 − j12 ( 12) 12Z Z j j23 32= = − − =   E33  = −(50∠90
o
) = −j50

5W 4W 2W

j2W

+

-

Fig. 1.

~
100 0

o
VÐ

+

-

~

50 90
o
VÐ- Wj12

I1 I2 I3
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On substituting the above terms in equation (1), we get,

  

j

j

j

j

j

j

j j

5 2

2

0

2

4 10

12

0

12

2 12

100

0

50

I

I

I

1

2

3

+

−

−

−

−

=

−

> > >H H H
        ..... (2)

To solve the unknowns (i.e., mesh currents) of equation (2) by Cramer’s rule, we can define four 

determinants ∆, ∆
1
, ∆

2
 and ∆

3
 as shown below: 

;

j

j

j

j

j

j

j j

j

j

j

j

j

5 2

2

0

2

4 10

12

0

12

2 12

100

0

50

2

4 10

12

0

12

2 12
1∆ ∆=

+

−

−

−

−

=

−

−

−

−

;

j

j

j

j

j

j

j

j

j

j j

5 2

2

0

100

0

50

0

12

2 12

5 2

2

0

2

4 10

12

100

0

50
32∆ ∆=

+

−

− −

=

+

−

−

−

−

The determinants are evaluated by expanding along first row and the mesh currents are solved by 

Cramer’s rule.

( ) [( ) ( ) ] ( ) ( )

j

j

j

j

j

j

j

j j j j j j j j

5 2

2

0

2

4 10

12

0

12

2 12

5 2 4 10 2 12 12 12 2 2 2 12 0 0# # # # #∆ =

+

−

−

−

−

= + − − − − − − − − +6 @

=  296 – j276 + 8 − j48 

               =  304 − j324

[( ) ( ) ( ) ] ( ) ( )

j

j

j

j

j

j

j j j j j j

100

0

50

2

4 10

12

0

12

2 12

100 4 10 2 12 12 2 0 50 12 01
2

# # # #∆ =

−

−

−

−

= − − − − − − − +6 @

=  3200 – j6800 − j1200 = 3200 − j8000

( ) [ ( ) ] [ ( ) ]

j

j

j

j

j

j j j j j

j j

5 2

2

0

100

0

50

0

12

2 12

5 2 0 50 12 100 2 2 12 0 0

3000 1200 2400 400

2 # # # #∆ =

+

−

− −

= + − − − − − − +

= − − + +

=  −600 − j800

( ) [( ) ( )] ] ( ) [ ( ) ]

j

j

j

j

j j

j j j j j j

j j

5 2

2

0

2

4 10

12

100

0

50

5 2 4 10 50 0 2 2 50 0

100 2 12 0

3 # # # #

# #

∆ =

+

−

−

−

−

= + − − − − − − − −

+ − −6 @
                         = –2100 – j2000 – j200 + 2400

                          =  300 − j2200

I
3200 j8000

j304 324
1

1
= =

∆

∆

−

−
 = 18.0595 − j7.0682 = 19.393∠−21.4

o 
A

I
600 j800

j304 324
2

2
= =

−

∆

∆

−

−
 = 0.3891 − j2.2169 = 2.251∠−80

o 
A

I
300 j2200

j304 324
3

3
= =

−

∆

∆

−
 = 4.0731 − j2.8958 = 4.998∠−35.4

o
 A
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Fig. 2.

+
-

5W

10W

j8W

- Wj6

- Wj4

Io

I1

I2

I3

E2
+-

2 0
o
AÐ

50 0
o
VÐ

EXAMPLE 1.33

In the circuit shown in Fig. 1, find Io  using mesh analysis.

SOLUTION

Let us assume three mesh currents ,I I and I1 2 3  as shown in Fig. 2. 

With reference to Fig. 2, the mesh basis matrix equation is formed by inspection 

as shown below:

Z

Z

Z

Z

Z

Z

Z

Z

Z

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

2

3

11

22

33

1

=> > >H H H
      

..... (1)

Z11  = 10 − j4 + 5 = 15 − j4    ( 4) 4Z Z j j12 21= = − − =    E11= 50∠0o = 50

Z22  = j8 − j4 = j4             Z Z 513 31= = −                    E E22 2= −

Z33  = 5 − j6              Z Z 023 32= =                     E E33 2=

Here, 2 0 2 2 0 2I and I
o o

2 3+ += − = − = =

On substituting the above terms in equation (1), we get,

2

j

j

j

j

j

E

E

15 4

4

5

4

4

0

5

0

5 6 2

50I1

2

2

−

−

−

−

−

= −> > >H H H .....(2)

From row-1 we get

(15 − j4)I1+ j4(−2) − 5(2) = 50

(15 − j4)I1  = 50 + 10 + j8

∴ 3.6017 1.4938 3.8992 22.5I
j

j
j A

15 4

60 8 o
1 +=

−

+
= + =

3.8992 22.5I Ao

0
+=

EXAMPLE 1.34

In the circuit shown in Fig. 1, find E2  such that the current in 

(1 + j1) Ω branch is zero.

SOLUTION

Let us assume three mesh currents ,I I and I1 2 3  as shown in 

Fig. 2. With reference to Fig. 2, the mesh basis matrix equation is formed 

by inspection as shown below:

Fig. 1.

+
-

2 0
o
AÐ

50 0
o
VÐ

5W

10W

j8W

- Wj6

- Wj4

Io

3W 1W 6W

j4W

Fig. 1.

~
30 0

o
VÐ

+

-

~

2W

j1W

E2

+

-

3W 1W 6W

j4W

+

-

Fig. 2.

~

30 0
o
VÐ

+

-

~
2W

j1W

I1 I2 I3

E2

(AU May’17, 8 Marks)
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Z

Z

Z

Z

Z

Z

Z

Z

Z

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

2

3

11

22

33

1

=> > >H H H
      

..... (1)

Z11  = 3 + j4      Z Z j412 21= = −   E11  = 30∠0
o
 = 30 

Z22  = j4 + 1 + j1 + 2 = 3 + j5  Z Z 013 31= =                    E 022 =

Z33  = 2 + 6 = 8   Z Z 223 32= =                 E E33 2=

On substituting the above terms in equation (1), we get,

j

j

j

j

E

3 4

4

0

4

3 5

2

0

2

8

30

0

I

I

I

2

3 2

1+

−

−

+ => > >H H H
   

..... (2)

It is given that the current through (1 + j1) Ω impedance is zero and so the mesh current I2  is zero. 

When the mesh currents are solved by Cramer’s rule, I2  is given by ∆
2
 / ∆. For I2  to be zero, the determinant 

∆
2
 should be zero. Therefore, the value of E2  can be obtained by equating ∆

2
 to zero.

( )

( )

j

j

E

j E j

E j j

3 4

4

0

30

0

0

2

8

3 4 0 2 30 4 8 0 0

6 8 960

2

2

2

2

# # # #∆ =

+

− = + − − − − +

= − + +

6 6@ @

Put ∆
2
 = 0, ∴ 0 = −E2 ( 6 + j8 ) + j960   

                           E2 (6 + j8) = j960

  76.8 57.6 96 36.E
j

j
j V

6 8

960
9o

2` +=
+

= + =

The value of voltage source, E2  = 96∠36.9
o 
V

1.6.5    Mesh Analysis of Circuits Excited by Independent and Dependent Sources

Mesh analysis can be extended to circuits excited by both dependent and independent 

sources. When a circuit has a dependent source, the dependent variable should be related to mesh 

currents and then the dependent source should be treated as a source while forming the mesh basis 

matrix equation.

If a dependent source depends on a voltage Vx in some part of a circuit then the voltage Vx  

should be expressed in terms of mesh currents. If a dependent source depends on a current Ix in 

some part of a circuit then the current Ix should be expressed in terms of mesh currents.

Circuits with Dependent Voltage Source

When a circuit has a dependent voltage source then express the value of the source in terms 

of mesh currents. While forming the mesh basis matrix equation, enter the value of the dependent 

source at the appropriate location in the source matrix on the right-hand side.



Chapter 1 - Basic Circuit Analysis                                                  1. 81

Now, some of the terms in the source matrix on the right-hand side will be a function of 

mesh currents and so they can be transferred to the left-hand side with the opposite sign. Then the 

mesh basis matrix equation can be solved using Cramer’s rule. This procedure is explained below 

with an example.

Consider a circuit with three meshes and a dependent voltage source in mesh-2. Let the 

mesh basis matrix equation without considering the dependent voltage source be as shown in 

equation (1.29).

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
         ..... (1.29)

Let the value of the dependent source in mesh-2, when expressed in terms of the mesh 

currents, be 2I
1
 − 2I

3
. Let the voltage of the dependent source be such that it is a rise in voltage in 

the direction of mesh current I
2
. Hence, the value of the dependent source 2I

1
 − 2I

3
 is added as a 

positive quantity to the element in the second row of the source matrix as shown in equation (1.30).

R

R

R

R

R

R

R

R

R

I

I

I

E

E I I

E

2 2

11

21

31

12

22

32

13

23

33

1

2

3

11

22 1 3

33

= + −> > >H H H
         ..... (1.30)

From row-2 of equation (1.30), we get,

       R
21

I
1
 + R

22
I

2 
+ R

23
I

3
  =  E

22
 + 2I

1
 − 2I

3
 

       R
21

I
1
 − 2I

1
 + R

22
I

2
 + R

23
I

3
 + 2I

3 
 =  E

22
 

  ∴ (R
21

 − 2)I
1
 + R

22
I

2
 + (R

23
 + 2)I

3 
 =  E

22
     ..... (1.31)

Using equation (1.31), equation (1.30) can be written as shown in equation (1.32).

 

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

2 2

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

− + => > >H H H
        

..... (1.32)

In equation (1.30), the terms 2 I
1
 and −2I

3
 on the right-hand side are functions of mesh 

currents I
1
 and I

3
, respectively. In equation (1.32), these two terms are transferred to the left-hand 

side with the opposite sign. Now equation (1.32) can be solved by Cramer’s rule.

Circuits with Dependent Current Source

When a circuit has a dependent current source then express the value of the source in terms 

of mesh currents. If the dependent current source has parallel impedance then it can be converted 

into a dependent voltage source with series impedance and the analysis can be proceeded as 

explained in Section 1.6.5.
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If the dependent current source does not have parallel impedance then it cannot be converted 

into a voltage source. In this case the value of the current source is related to mesh currents. Then 

for each current source one mesh current is eliminated by expressing the mesh current in terms 

of the source current and other mesh currents. The mesh basis matrix equation can be formed by 

inspection, by taking voltage across the dependent current source as unknown. While forming the 

mesh basis matrix equation, the voltage of current sources should be entered in the source matrix.

Now in the matrix equation some mesh currents will be eliminated and an equal number of 

unknown source voltages will be introduced. Thus, the number of unknowns will remain the same 

as the number of meshes m. On multiplying the mesh basis matrix equation we get m number of 

equations which can be solved to give a unique solution for unknowns and hence mesh currents.

EXAMPLE 1.35

Solve the mesh currents of the circuit shown in Fig. 1.

SOLUTION

The given circuit has three meshes. The general form of mesh 

basis matrix equation for three-mesh circuit is shown in equation (1).

              

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
        

.....(1)

With reference to Fig. 1, the elements of resistance matrix and source voltage matrix are formed as 

shown below:

R
11

 = 2 + 2 = 4  R
12

 = R
21

 = −2  E
11

 = 10

R
22

 = 2 + 1 + 3 = 6  R
13

 = R
31

 =   0  E
22

 = −2V
x

R
33

 = 3 + 2 + 1 = 6  R
23

 = R
32

 = −3  E
33

 = 0

On substituting the above terms in equation (1), we get,

I

I

I

V

4

2

0

2

6

3

0

3

6

10

2

0

1

2

3

x−

−

−

− = −> > >H H H
      

..... (2)

The value of dependent voltage source “−2V
x
” should be expressed in terms of mesh currents.

With reference to Fig. 1 we can write,

            V
x
 = 3(I

2
 − I

3
)

 ∴  −2V
x
 = −2 × 3(I

2
 − I

3
) = − 6I

2
 + 6I

3
        ..... (3)

Using equation (3), equation (2) can be written as shown in equation (4).

  

I

I

I

I I

4

2

0

2

6

3

0

3

6

10

6 6

0

1

2

3

2 3−

−

−

− = − +> > >H H H
         

..... (4)

2� 1�

+

E

Fig. 1.

10V 2� 3�

I
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I
2

I
3

+

E

2V
X

V
X

+
E

1�

2�
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In equation (4), the terms on the right-hand side which are a function of mesh currents are transferred 

to the left-hand side with the opposite sign as shown in equation (5).

I

I

I

4

2

0

2

6 6

3

0

3 6

6

10

0

0

1

2

3

−

−

+

−

− − => > >H H H
           

 ..... (5)

I

I

I

4

2

0

2

12

3

0

9

6

10

0

0

1

2

3

−

−

−

− => > >H H H  ..... (6)

In equation (6), the unknowns are I
1
, I

2
 and I

3
. In order to solve I

1
, I

2
 and I

3
, let us define the four determinants

∆, ∆1, ∆2 and ∆
3
 as shown below: 

; ; ;

4

2

0

2

12

3

0

9

6

10

0

0

2

12

3

0

9

6

4

2

0

10

0

0

0

9

6

4

2

0

2

12

3

10

0

0

1 2 3∆ ∆ ∆ ∆= −

−

−

− =

−

−

− = − − = −

−

−

The determinants are evaluated by expanding along first row and the mesh currents are solved by 

Cramer’s rule.

( ) ( ) ( )

4

2

0

2

12

3

0

9

6

4 12 6 3 9 2 2 6 0 0

180 24 156

# # # # #∆ = −

−

−

− = − − − − − − − +

= − =

6 6@ @

10 ( ) ( ) ( 2) 0 450

10

0

0

2

12

3

0

9

6

12 6 3 9 0 01 # # # #∆ =

−

−

− = − − − − − − + =6 6@ @

4 10 0 120

4

2

0

10

0

0

0

9

6

0 0 2 6 02 # # #∆ = − − = − − − − + =6 6@ @

4 ( 2) 10 ( ) 60

4

2

0

2

12

3

10

0

0

0 0 0 0 2 3 03 # # # #∆ = −

−

−

= − − − − + − − − =6 6 6@ @ @

2.8846I A
156

450
1

1
= =

∆

∆
=

0.7692I A
156

120
2

2
= =

∆

∆
=

0.3846I A
156

60
3

3
= =

∆

∆
=

EXAMPLE 1.36

Determine the current I
L
 in the circuit shown in Fig. 1, using mesh analysis.

SOLUTION

The graph of the given circuit is shown in Fig. 2. It has six branches and four 

nodes. Hence, the number of meshes m in the circuit is, m = B − N + 1 = 6 − 4 + 1 = 3.

Let us assume three mesh currents I
1
, I

2
 and I

3
 as shown in Fig. 3. 

Now, the current, I
L
 = I

1
 − I

2
  

4V
x

+E

+
E

3�

6V

+
E

+ E

3� 3�

I
L

1�
1�

8V

Fig. 1.

5�

V
x
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I
3

4V
x

+E

+
E

3�

6V

+
E

+ E

3� 3�

I
L

1�
1�

8V

Fig. 3.

5�

I
2

I
1

V
x

Fig. 2.
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I
2I

1

1
2

3

4

I
3

The general mesh basis matrix equation for three mesh circuit is shown in equation (1).

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
         ..... (1)

With reference to Fig. 3, the elements of resistance matrix and source voltage matrix are formed as 

shown below :

R
11

 = 1 + 3 + 5 = 9  R
12

 = R
21

 = −5  E
11

 = 8

R
22

 = 5 + 3 + 1 = 9  R
13

 = R
31

 = −3  E
22

 = −6

R
33

 = 3 + 3 + 3 = 9  R
23

 = R
32

 = −3  E
33

 = 4V
x
  

On substituting the above terms in equation (1), we get,             

I

I

I V

9

5

3

5

9

3

3

3

9

8

6

4

1

2

3 x

−

−

−

−

−

− = −> > >H H H
   ..... (2)

Let us express the value of dependent sources in terms of mesh currents. With reference to Fig. 3, 

we can write,

  V
x
 = 3(I

1
 − I

3
)

∴  4V
x
 = 4 × 3(I

1
 − I

3
) = 12I

1
 − 12I

3
     ..... (3)

On substituting for 4V
x
 from equation (3), in equation (2) we get,

I

I

I I I

9

5

3

5

9

3

3

3

9

8

6

12 12

1

2

3 1 3

−

−

−

−

−

− = −

−

> > >H H H
           ..... (4)

In equation (4), the terms on the right-hand side which are a function of mesh currents are transferred 

to the left-hand side with the opposite sign as shown in equation (5).

I

I

I

9

5

3 12

5

9

3

3

3

9 12

8

6

0

1

2

3

−

− −

−

−

−

−

+

= −> > >H H H
 .....(5)

I

I

I

9

5

15

5

9

3

3

3

21

8

6

0

1

2

3

−

−

−

−

−

− = −> > >H H H
    .....(6)
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In equation (6), the unknowns are I
1
, I

2
 and I

3
. In order to solve I

1
 and I

2
 let us define three determinants 

∆, ∆
1
 and ∆

2
 as 

; ;

9

5

15

5

9

3

3

3

21

8

6

0

5

9

3

3

3

21

9

5

15

8

6

0

3

3

21

1 2∆ ∆ ∆= −

−

−

−

−

− = −

−

−

−

− = −

−

−

−

−

The determinants are evaluated by expanding along the first row and the mesh currents are solved 

by Cramer’s rule.

( ) ( ) ( ) ( )

( ) ( ) ( )

9

5

15

5

9

3

3

3

21

9 9 21 3 5 5 21 15 3

3 5 3 15 9

2
# # # # #

# # #

∆ = −

−

−

−

−

− = − − − − − − − −

+ − − − − −

6 6

6

@ @

@

             = 1620 − 750 − 450 =  420

8 ( ) ( 5) ( 3) ( )

8

6

0

5

9

3

3

3

21

9 21 3 6 21 0 6 3 02
1 # # # # # #∆ = −

−

−

−

− = − − − − − − + − − − −6 6 6@ @ @

                                = 1440 − 630 − 54 = 756

9 8 ( ) ( )

( 3) ( ) ( )

9

5

15

8

6

0

3

3

21

6 21 0 5 21 15 3

0 15 6

2 # # # # #

# #

∆ = −

−

−

−

− = − − − − − − −

+ − − − −

6 6

6

@ @

@

                           =  −1134 + 1200 + 270 = 336

             

1I I I A
420

756 336
L 1 2

1 2 1 2
= =`

∆

∆

∆

∆

∆

∆ ∆
− = − =

− −
=

EXAMPLE 1.37

Determine the current I
o
 in the circuit shown in Fig. 1, using 

mesh analysis.

SOLUTION

The given circuit has two meshes. The general form of mesh 

basis matrix equation for two-mesh circuit is shown in equation (1).

              

R

R

R

R

I

I

E

E

11

21

12

22

1

2

11

22

== = =G G G
       

.....(1)

With reference to Fig. 1, the elements of resistance matrix and source voltage matrix are formed as 

shown below:

R
11

 = 6 + 2 + 4 = 12  E
11

 = −12

R
12

 = R
21

 = −4   E
22

 = 3V
x
 + 12

R
22

 = 4 + 8 + 4 = 16

On substituting the above terms in equation (1), we get,

I

I V

12

4

4

16

12

3 12

1

2 x−

−
=

−

+
= = =G G G      

..... (2)

2� 8�

Vx
+ _

6�

+
E V = 12s V
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Fig. 1.

+

E
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3Vx

I1
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Io

(AU Dec’16, 8 Marks)
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The value of dependent voltage source 3V
x
 should be expressed in terms of mesh currents.

With reference to Fig. 1 we can write,

            V
x
 = 2I

1

 ∴  3V
x
 = 3 × 2I

1
 =  6I

1
         ..... (3)

Using equation (3), equation (2) can be written as shown in equation (4).

  
I

I I

12

4

4

16

12

6 12

1

2 1−

−
=

−

+
= = =G G G         

..... (4)

In equation (4), the terms on the right-hand side which are a function of mesh currents are transferred 

to the left-hand side with the opposite sign as shown in equation (5).

I

I

12

4 6

4

16

12

12

1

2− −

−

=

−= = =G G G           
 ..... (5)

I

I

12

10

4

16

12

12

1

2−

−

=

−= = =G G G ..... (6)

To determine current I
o

From Fig. 1, we get,   I
o
 = I

2

In order to solve I
2,

 let us define the two determinants ∆ and ∆2 as shown below: 

;
12

10

4

16

12

10

12

12
2∆ ∆=

−

−
=

−

−

The determinants are evaluated by expanding along the first row and the mesh currents are solved 

by Cramer’s rule.

12 16 ( 4) ( 10) 152
12

10

4

16
# #∆ =

−

−
= − − − =

12 ( 12) ( 10) 24
12

10

12

12
2

2 #∆ =
−

−
= − − − =

0.I A
152

24
15792

2
= =

∆

∆
=

∴  I
o
 = I

2
 = 0.1579 A

EXAMPLE 1.38

In the circuit of Fig. 1, determine  the power delivered  

to the 4 Ω resistor using mesh analysis.

SOLUTION

The graph of the given circuit is shown in Fig. 2. It has six branches 

and four nodes. Hence, the number of meshes m in the circuit is, 

m = B − N + 1 = 6 − 4 + 1 = 3. 

Let us assume three mesh currents I
1
, I

2
 and I

3
 as shown in Fig. 3. Now the current through 4 Ω resistor 

is I
3
.

1�

Iy

+

E

2Vx
3Iy

2�

Vx

+

_

2�
+
E
12V 4�

Fig. 1.
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∴  Power delivered to the 4 Ω resistor =  I 4
2

3 #

The general mesh basis matrix equation for three mesh circuit is shown in equation (1).

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
         ..... (1)

Let the voltage across dependent current source be E
2
 as shown in Fig. 3.  With reference to Fig. 3, 

the elements of resistance matrix and source voltage matrix are formed as shown below: 

R
11

 = 1 + 2 = 3  R
12

 = R
21

 =   0  E
11

 = 12 − 3I
y

R
22

 = 2   R
13

 = R
31

 = −2  E
22

 = 3I
y
 − E

2

R
33

 = 2 + 2 + 4 = 8  R
23

 = R
32

 = −2  E
33

 = 0

On substituting the above terms in equation (1), we get,

I

I

I

I

I E

3

0

2

0

2

2

2

2

8

12 3

3

0

1

2

3

y

y 2

− −

−

− =

−

−> > >H H H
           

..... (2)

Let us express the value of dependent sources in terms of mesh currents. With reference to Fig. 3, 

we can write,

 Iy = I
1
                ⇒    3I

y
 = 3I

1
      ..... (3)

V
x
 = 2(I

1
 − I

3
)     ⇒    2V

x
 = 2 × 2(I

1
 − I

3
) = 4I

1
 − 4I

3
     

In mesh-2,  I
2
 = −2V

x
 

∴    I
2
 = −(4I

1
 − 4I

3
) = −4I

1
 + 4I

3
    ..... (4)

Using equations (3) and (4), equation (2) can be written as shown in equation (5).

I

I I

I

I

I E

3

0

2

0

2

2

2

2

8

4 4

12 3

3

0

1

1 3

3

1

1 2

− −

−

− − + =

−

−> > >H H H
        ..... (5)

From row-3 of equation (5), we get,

    −2I
1
 − 2(−4I

1
 + 4I

3
) + 8I

3
 = 0 

∴   6I
1
 = 0     ⇒     I

1
 = 0

I
2

I
3I

1

ba

c

d

Fig. 2.

e f

2V = 2 2(I )x 1 - I3´

2W

I3

4W

1W

+

-

Vx

+

_

2W
I1

+
- 12V

I = Iy 1

3I = 3Iy 1

+

I2

_

Fig. 3.

E2
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From row-1 of equation (5), we get,

     3I
1
 − 2I

3
 = 12 − 3I

1
 

     ∴    −2I
3
 = 12       Put, I

1
 = 0

      
6I A

2

12
3` =

−

= −

Power delivered to the 4 Ω resistor = I 2
3  × 4 = 6

2−  × 4 = 6
2
 × 4 = 144 W

EXAMPLE 1.39

Determine the voltage V
L
 in the circuit shown in Fig. 1, using 

mesh analysis.

SOLUTION

The graph of the given circuit is shown in Fig. 2. It has five branches 

and three nodes. Hence, the number of meshes m in the circuit is, 

m = B − N + 1 = 5 − 3 + 1 = 3. Let us assume three mesh currents I
1
, I

2
 and I

3
 as shown in Fig. 3.

Now, the voltage, V
L
 = 2 I

2
 

The general mesh basis matrix equation for three mesh circuit is shown in equation (1).

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
                                         ..... (1)

Let the voltage across dependent source be E
2
 as shown in Fig. 3.

With reference to Fig. 3, the elements of resistance matrix and source voltage matrix are formed as 

shown below: 

R
11

 = 2 + 1 = 3  R
12

 = R
21

 = –1  E
11

 = 5

R
22

 = 1 + 2 = 3  R
13

 = R
31

 =   0  E
22

 = E
2

R
33

 = 2 + 1 = 3  R
23

 = R
32

 =   0  E
33

 = –E
2 

On substituting the above terms in equation (1), we get,

I

I

I

E

E

3

1

0

1

3

0

0

0

3

51

2

3

2

2

−

−

=

−

> > >H H H
           ..... (2)

With reference to Fig. 3, we can write,

            I
x
 = I

1
       ⇒      3 I

x
 = 3 I

1
 

Also,       3 I
x
 = I

2
 − I

3
      ⇒     3 I

1
 = I

2
 − I

3
     ⇒     I

3
 = −3 I

1
 + I

2
    ..... (3)

2�

Fig. 1.

5V 1� 1�

I
x

2� 2�

+ E

V
L

+
E 3I

x

I
2

I
3I

1

b

a
c

e

d

Fig. 2.

I
1

I
2

2�

Fig. 3.

5V 1� 1�

I
x

2� 2�

+ E
V
L

+
E

3I
x

E
2

I
3

+

E
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On substituting for I
3
 from equation (3) in equation (2), we get,

  

I

I

I I

E

E

3

1

0

1

3

0

0

0

3 3

51

2

1 2

2

2

−

−

− +

=

−

> > >H H H
         ..... (4)

From row-2 of equation (4), we get,

  −I
1
 + 3 I

2
 = E

2
        ..... (5)

From row-3 of equation (4), we get,

  3 (−3I
1
 + I

2
) = −E

2
      ⇒      −9 I

1
 + 3 I

2
 = −E

2
    ..... (6)

On adding equations (5) and (6), we get,

    ∴    −10I
1
 + 6 I

2
 = 0      ⇒      I I

10

6
1 2=      ..... (7)

From row-1 of equation (4), we get,

3I
1
 – I

2
 = 5   

3 5I I
10

6
2 2# − =      Using equation (7)

∴   0.8 I
2
 = 5      ⇒      I

2
 = 

.0 8

5  =  6.25 A

  ∴    V
L
 = 2 I

2
 = 2 × 6.25 = 12.5 V

EXAMPLE 1.40

Determine the voltage V
x
 and current I

x
 as shown in Fig. 1, using 

mesh analysis.

SOLUTION

The graph of the given circuit is shown in Fig. 2. It has six branches 

and four nodes. Hence, the number of meshes m in the circuit is 

m = B − N + 1 = 6 − 4 + 1 = 3. Let us assume three mesh currents I
1
, I

2
 

and I
3
 as shown in Fig. 3.

The general mesh basis matrix equation for three mesh circuit is shown in equation (1).

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
                                         ..... (1)

Let the voltage across indepent current source be E
2
 and voltage across dependent current source be E

3
.

50V

Fig. 1.

10�

+
E

+

E

5�3A
V
X

4

V
X

+

E

2�

I
x

4I
x

I
2

I
3

I
1

b

a

c
e

d

Fig. 2.

f

50V

Fig. 3.

10�

+
E

+

E
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3A

V
X
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X

+

E
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I
x

4I
x

I
2

I
3

+

E

E
2 E

3

+

E
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With reference to Fig. 3, the elements of resistance matrix and source voltage matrix are formed as 

shown below: 

R
11

 = 10 + 2 = 12  R
12

 = R
21

 =    0  E
11

 = 50 − E
2 

R
22

 = 0   R
13

 = R
31

 =  −2  E
22

 = E E
2 3

−

R
33

 = 5 + 2 = 7  R
23

 = R
32

 =    0  E
33

 = 4IE
3 x

−

On substituting the above terms in equation (1), we get,

4

I

I

I

E

E E

E I

12

0

2

0

0

0

2

0

7

50

x

1

2

3

2

2

3

3
−

−

=

−

−

−

R

T

S
S
S
S

> >
V

X

W
W
W
W

H H            ..... (2)

With reference to Fig. 3, we can write the following equations:

I
2 
− I

1
 = 3        ⇒    I

2
 = 3 + I

1                       
.....(3)                       

V
x
 = 2(I

1
− I

3
)   ⇒    V

x 
= 2I

1
 − 2I

3
         .....(4)

I I
V

43 2

x
− =       ⇒   I I

I I

4

2 2

3 2

1 3
− =

−

∴  I
3
 − I

2
 = 0.5I

1
 − 0.5I

3
     ⇒   1.5I

3
 = 0.5I

1
 + I

2
     ⇒    

.

.

.
0.3333I 0.6667II I

I

1 5

0 5

1 53 1

2

1 2
= + = +          .....(5)

     I
x
 = I

1
      ⇒    ∴ 4I

x
 = 4I

1                                   
.....(6)

On substituting equations (3), (5) and (6) in equation (2) we get,

. . I

I

I

I I

E

E E

E

12

0

2

0

0

0

2

0

7

3

0 3333 0 6667

50

4

1

1

1 2

2

2 3

3 1
−

−

+

+

=

−

−

−

R

T

S
S
S
S

R

T

S
S
S
S

>
V

X

W
W
W
W

V

X

W
W
W
W

H  ..... (7)

From row-1 of equation (7), we get,

12 2(0.3333 0.6667 ) 50I I I E1 1 2 2− + = −   ..... (8)

From row-2 of equation (7), we get,

0 = E
2 
− E

3
 ..... (9)

From row-3 of equation (7), we get,

−2I
1
 + 7(0.3333I

1
 + 0.6667I

2
) = E

3 
− 4I

1
 ..... (10)

On adding equation (8), (9) and (10) we get,

10I
1
 + 5(0.3333I

1
 + 0.6667I

2
) = 50 − 4I

1

10I
1
 + 4I

1
 + 1.6665I

1
 + 3.3335I

2
 = 50

15.6665I
1
 + 3.3335 (3 + I

1
) = 50

19I
1
 = 50 - 10.0005

∴  I
19

50 10
1
=

−   = 2.1053 A

∴  I
2
 = 3 + I

1
 = 3 + 2.1053 = 5.1053 A

Using equation (4)

Using equation (3)
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I
3
 = 0.3333I

1
 + 0.6667I

2
 = 0.3333 × 2.1053 + 0.6667 × 5.1053

       
  
= 4.1054 A

∴ I
x
 = I

1
 = 2.1053 A     

     V
x
 = 2I

1
 − 2I

3
 = 2 × 2.1053 − 2 × 4.1054  = −4.0002 V = − 4 V   

Alternate method

With reference to Fig. 4, by KCL at node E, we get,

V
V

2 3
4x

x
= − +d n

V
x
 = − 6 − 0.5V

x

1.5V
x
 = − 6

.
4V V

1 5

6
x

` =

−

= −

With reference to Fig. 5, by KVL in the closed path ABCDA we get,

10 5 3 4 50I I
V

I
4x x

x

x
+ + + + =d n

10 5 15 4 50I I
V

I5
4x x

x

x
+ + + + =

19
( )

50 15I
4

5 4
x

#
+

−
= −

19 50 15 5I
x

` = − +

2.1053I A
19

40
x

` = =

1.7   Node Voltage Method of Analysis for DC and AC Circuits

Node analysis is a useful technique to solve the voltage across various elements of a circuit. 

Node analysis is preferred when the circuit is excited by current sources and the voltage across 

various elements are unknown. Node analysis can also be extended to circuits excited by both 

voltage and current sources and to circuits excited by both independent and dependent sources.

In a circuit each branch will have a voltage across it. Hence, the number of voltages in the 

circuit are equal to the number of branches. In a circuit some of the voltages will be independent and 

the remaining voltages depend on the independent voltages. The number of independent voltages in a 

circuit can be determined from the graph of the circuit. It is given by the branches of the tree (or twigs) 

of the graph. The voltages of the tree branches are same as the node voltages. (Refer Section 1.3.4.)

In nodal analysis, the independent voltages are solved by writing Kirchhoff’s Current 

Law (KCL) equations for various nodes in the circuit. A tree of the graph with N nodes will have 

N – 1 branches or twigs. Hence, the number of independent voltages n = N − 1. The nodes of the 

circuit are same as nodes of the graph and so a circuit will also have N number of nodes. “A node 

is meeting point of two or more elements. When more than two elements meet at a point then the 

50V

Fig. 4.
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node is called principal node”. The voltage of a node can be expressed only with reference to 

another node. Hence, one of the nodes is chosen as the reference node and the node voltages are 

expressed with respect to the reference node.

For each node except the reference node, a voltage is assigned called node voltage. The 

voltage of the reference node is always zero. Using KCL, an equation is formed for each node 

by equating the sum of currents leaving the node to the sum of currents entering the node. These 

equations are arranged in the form of a matrix and node voltages are solved by Cramer’s rule. 

A simple procedure to form a node basis matrix equation directly from the circuit by inspection 

without forming KCL equation is also discussed in Chapter 1, Section 1.7.1.

1.7.1   Node Analysis of Resistive Circuits Excited by DC Sources

A circuit with N nodes and B branches will have N − 1 independent voltages and 

B – (N – 1) dependent voltages which depend on independent voltages. Let us denote the number 

of independent voltages by n, where, n = N − 1.

In order to solve the independent voltages of a circuit we have to identify the N nodes of the  

circuit and choose one of the node as the reference node. For each node, except the reference, we  

have to attach a voltage called node voltage. The node voltages are the independent voltages of the  

circuit. Let V
1
, V

2
, V

3
, ....., V

n
 be the node voltages.

For each node except the reference node, a KCL equation is formed by equating the sum of 

currents leaving the node to the sum of currents entering the node. Since there are n independent 

nodes, we can form n equations.

In resistive circuits excited by dc sources, the voltages and currents are real (i.e., they are 

not complex). For resistive circuits, the n equations can be arranged in a matrix form as shown in  

equation (1.33), which is called the node basis matrix equation. The formation of the node basis 

matrix equation from KCL equations is explained in some of the solved problems.

The node basis matrix equation (1.33), can be written as shown in equation (1.34).

Note : The bold faced letter represent matrices.

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

V

V

V

V

I

I

I

I1

11

21

31

n n

12

22

32

2 n

n

n

n

nn n nn

13

23

33

3

1

2

3

1

2

3

11

22

33

h h h

g

g

g

g

h h h

=

R

T

S
S
S
S
S
S

R

T

S
S
S
S
S
S

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

V

X

W
W
W
W
W
W

V

X

W
W
W
W
W
W                                         

     ..... (1.33)

                  G V = I ..... (1.34)

where, G = Conductance matrix of order n × n

                                  V = Node voltage matrix of order n × 1

                       I  = Source current matrix of order n × 1

                       n  =  Number of nodes except reference node.

↓ ↓ ↓
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In equation (1.33), the elements of conductance matrix and source current matrix can be 

determined from the given circuit. Hence, the unknowns are node voltages, which has to be solved 

by any standard technique. 

Alternatively, equation (1.33) can be formed directly from the circuit by inspection without 

writing KCL equations. A procedure to form node basis matrix equation by inspection is given  

below:

Procedure to Form Node Basis Matrix Equation by Inspection

Consider the node basis matrix equation shown below for a circuit with three nodes excluding 

the reference node.

Let V
1
, V

2
, V

3
 be the node voltages.

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

2

11

21

31

12

22

32

13

23

33

1

3

11

22

33

=> > >H H H
                                                                

..... (1.35)

The elements of equation (1.35) for circuits with independent sources are

G
11

 = Sum of conductances connected to node-1

G
22

 = Sum of conductances connected to node-2

G
33

 = Sum of conductances connected to node-3

G
12

 = G
21

 = Sum of conductances connected between node-1 and node-2

G
13

 = G
31

 = Sum of conductances connected between node-1 and node-3

G
23

 = G
32

 = Sum of conductances connected between node-2 and node-3

I
11

 = Sum of current sources connected to node-1

I
22

 = Sum of current sources connected to node-2

I
33

 = Sum of current sources connected to node-3

The conductances  G
11

, G
22

, G
33  

are called self-conductance of node-1, node-2 and node-3, 

respectively. 

The conductances G
12

, G
13

, G
21

, G
23

, G
31

, G
32

 are called mutual-conductance between nodes.

The formation of the elements of conductance matrix and source current matrix are explained 

below: 

 i) The self-conductance G jj is given by the sum of all the conductances connected to the

jth node. The self-conductances will always be positive.
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 ii) The mutual-conductance G jk is given by negative of sum of all the conductances connected 

between node-j and node-k.

       In a circuit with only independent sources (Reciprocal network), G
jk 

 =  G
kj
.

 iii) The source current matrix element I jj is given by the sum of all the current sources connected 

to the jth node. A current source is positive if it drives current towards a node as shown 

in Fig. 1.47, and it is negative if it drives current away from the node as shown in Fig. 1.48. 

Note :  In a circuit with both independent and dependent sources (non-reciprocal circuit) G
jk
 !  G

kj

Solution of Node Voltages

In the node basis matrix equation [i.e., equation (1.33)] the unknowns are node voltages  

V
1
,V

2
,V

3
 ... V

n
. The node voltages can be obtained by premultiplying equation (1.33), by the inverse 

of conductance matrix.

Consider equation (1.34),

G V = I

On premultiplying both sides by G
−1

, we get,

G
−1 

G V  =  G
−1 

I

      U V  =  G−1 
I    G

−1
G = U = Unit matrix

    \  V  =  G
−1 

I                            .....(1.36)   U V = V

Equation (1.36), will be the solution for node voltages. Equation (1.36), can be solved by 

Cramer’s rule, by which the kth  node voltage V
k 
 is given by equation (1.37).

......V I I I I I
1

k nn

j

n

11 22 33

1

nk k k k
jk jj

1 2 3

∆

∆

∆

∆

∆

∆

∆

∆

∆
∆= + + + + =

=
l

l

l

l

l

l

l

l

l
l/    ..... (1.37)

where, ∆′
jk
 = Cofactor of G

jk

 I
jj
 = Sum of current sources connected to node-j 

 ∆′= Determinant of conductance matrix

Vj

Reference node

Fig. 1.47 : Example for
positive current source.

Fig. 1.48 : Example for
negative current source.

Vj

Reference node

Ij Ij
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Proof for Cramer’s Rule

Consider equation (1.36), for a circuit with three nodes excluding reference node.

V = G
–1

 I    ⇒    
V

V

V

G

G

G

G

G

G

G

G

G

I

I

I

2

1
1

3

11

21

31

12

22

32

13

23

33

11

22

33

=

-

> > >H H H      .....(1.38)

 We know that,

G
G

G

G

G G

of

of

of

Transpose of

Determinant

Adjoint

Determinant
1 cof

T
cof

∆
= = =

-

l  

where, ∆’ = Determinant of G.

    G
cof

 = Cofactor matrix (matrix formed by cofactor of elements of G matrix).

Let,   ∆’
11  

= Cofactor of G
11

       ∆’
12  

= Cofactor of G
12

and in general, ∆’
jk
 = Cofactor of G

jk

G G
Transpose

cof
T

cof

11

21

31

12

22

32

13

23

33

11

12

13

21

22

23

31

32

33

`

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

= =

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

> >H H 

G
G 1cof

T
1

11

12

13

21

22

23

31

32

33

`
∆ ∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

= =
-

l l

l

l

l

l

l

l

l

l

l

> H   .....(1.39)

On substituting for G–1 from equation (1.39) in equation (1.38), we get,

V

V

V

I

I

I

1
2

1

3

11

12

13

21

22

23

31

32

33

11

22

33

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

=
l

l

l

l

l

l

l

l

l

l

> > >H H H
On multiplying the matrices on the right-hand side of the above equation and equating to the terms on the 

left-hand side we get,

V I I I22 331
11

11
21 31

∆

∆

∆

∆

∆

∆
= + +

l

l

l

l

l

l

V I I I22 332
12

11
22 32

∆

∆

∆

∆

∆

∆
= + +

l

l

l

l

l

l

V I I I22 333
13

11
23 33

∆

∆

∆

∆

∆

∆
= + +

l

l

l

l

l

l

The above equations can be used to form a general equation for node voltage. In general, the k th node voltage 
of a circuit with n nodes excluding reference is given by,

......V I I I I I1
22 33 nn

j 1

n

k
1k

11
2k 3k nk

jk jj
∆

∆

∆

∆

∆

∆

∆

∆

∆
∆= + + + + =

=
l

l

l

l

l

l

l

l

l
l/     
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Short-cut Procedure for Cramer’s Rule

A short-cut procedure for Cramer’s rule is explained below:

Let us consider a circuit with three nodes excluding reference. The node basis matrix equation 

for this case is,

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

2

11

21

31

12

22

32

13

23

33

1

3

11

22

33

=> > >H H H
Let us define three determinants as shown below:

I

I

I

G

G

G

G

G

G

1 22

33

12

22

32

13

23

33

11

∆ =l

G

G

G

I

I

I

G

G

G

2

11

21

31

11

22

33

13

23

33

∆ =l

G

G

G

G

G

G

I

I

I

3

11

21

31

12

22

32

11

22

33

∆ =l

Here,

1∆l  = Determinant of conductance matrix after replacing the first column of conductance  

   matrix by source current column matrix

2∆l  =  Determinant of conductance matrix after replacing the second column of conductance 

   matrix by source current column matrix

3∆l  =  Determinant of conductance matrix after replacing the third column of conductance 

   matrix by source current column matrix.

Let, ∆l = Determinant of conductance matrix

 

G

G

G

G

G

G

G

G

G

11

21

31

12

22

32

13

23

33

∆ =l

Now, node voltages V
1
, V

2
 and V

3
 are given by,

V 1
1

∆

∆
=

l

l

V 2
2

∆

∆
=

l

l

V 3
3

∆

∆
=

l

l
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Cross-Check

The equation for node voltages obtained by short-cut procedure is the same as equation (1.37), and verified as 

shown below:

V

I

I

I

G

G

G

G

G

G

1
13

3

1
23

11

22

3

12

22

32 33

1
∆

∆

∆
= =

l

l

l

                  
I I I

1
11 11 22 21 33 31

∆
∆ ∆ ∆= + +

l
l l l6 @

                  
I I I

11
11

21
22

31
33

∆

∆

∆

∆

∆

∆
= + +

l

l

l

l

l

l

V

G

G

I

I

I

G

G

G

1
11

21

13

23

33G

2

31

11

22

33

2
∆

∆

∆
= =

l

l

l

                  
I I I

1
11 12 22 22 33 32

∆
∆ ∆ ∆= + +

l
l l l6 @

                  
I I I

12
11

22
22

32
33

∆

∆

∆

∆

∆

∆
= + +

l

l

l

l

l

V

G

G

G

G

G

G

I

I

I

1
11

22
3

11

21

31

12

22

32 33

3
∆

∆

∆
= =

l

l

l

                 

I I I
1

11 13 22 23 33 33
∆

∆ ∆ ∆= + +
l

l l l6 @

                 I I I
13

11
23

22
33

33
∆

∆

∆

∆

∆

∆
= + +

l

l

l

l

l

l

Various Steps to Obtain the Solution of Node Voltages and Branch Voltages in a Circuit

Step 1 : Draw the graph of the circuit.

 Step 2 : Determine  the  branches  B and nodes  N.  The number  of  node  voltages  n  is given  by 

   n = N – 1.

 Step 3 : Choose one of the nodes as reference. Let us denote the reference node as 0 (zero) 

   and other nodes as 1, 2, 3, ....., n.

Step 4 : Let us denote the node voltages as V
1
, V

2
, V

3
,....., and the branch voltages as

   V
a
,V

b
, V

c
, V

d
, V

e
,...... Write the relationship between node and branch voltages. 

Step 5 : Form the node basis matrix equation by inspection and solve the node voltages using 

   Cramer’s rule. For a circuit with three nodes excluding the reference, the node basis 

   matrix equation and solution of node voltages using Cramer’s rule are given below:

      

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

2

11

21

31

12

22

32

13

23

33

1

3

11

22

33

=> > >H H H

Expanding along first column

Expanding along second column

Expanding along third column
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0

2A

2A

V
2

V2

2

V V2 1

1

E

V
1

Fig. 3.

      

V

I

I

I

G

G

G

G

G

G

1
13

231
1

11

22

33

12

22

32 33

∆

∆

∆
= =

l

l

l

     

V

G

G

G

I

I

I

G

G

G

1
11

21

31

13

23

33

2
2

11

22

33

∆

∆

∆
= =

l

l

l

    

V

G

G

G

G

G

G

I

I

I

13

11

22

11

21

31

12

22

32 33

3
∆

∆

∆
= =

l

l

l

Step 6 : Solve the branch voltages using the relationship between branch and node voltages.

Note :  After solving the node voltages if any of the voltage is found to be negative then 

that node has a potential lesser than the reference node.

EXAMPLE 1.41

Write and solve the node voltage equations for the circuit shown 

in Fig. 1.

SOLUTION

With reference to Fig. 2, the node equation for node-1 is formed 

as shown below:

Currents leaving node-1  :  ,
V V V
1 1

1 2 1−    

Current entering node-1   :   2 A

V V V

1 1
2

1 2 1
`

−
+ =

     V
1
 − V

2
 + V

1
 = 2

            2V
1
 − V

2
 = 2    ..... (1)

With reference to Fig. 3, the node equation for node-2 is formed as shown below:

Currents leaving node-2  :  , , 2
V V V A
1 2

2 1 2−

Current entering node-2   :    Nil

 2 0
V V V

1 2

2 1 2
`

−
+ + =

      V
2
 − V

1
 + 0.5V

2
 = −2

            −V
1
 + 1.5V

2
 = −2                   ..... (2)

Equations (1) and (2) are the node equations of the circuit, which are summarised below for convenience.

2V
1
 − V

2
 = 2 ..... (1)

−V
1
 + 1.5V

2
 = −2 ..... (2)

Equation (1) × 1 ⇒   2V
1
 −   V

2
 =   2

Equation (2) ×  2 ⇒ − 2V
1
 + 3V

2
 = − 4

  On adding              2V
2
 = − 2

1�

1� 2� 2A

Fig. 1.

2A

V
1

V
2

0

V
1

V V1 2

1

E

V1

1

V
2

0

2A

2A

Fig. 2. Reference

node
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4�

2�

Fig. 2.

5A

V
1

V
2

V V1 2

4

E

V1

2

0 Reference node

1V V
2

2
2` = − = −

From equation (2), we get,

V
1
  = 1.5V

2
 + 2

      = 1.5 × (−1) + 2 = 0.5 V

The node voltages are, 

V
1
 = 0.5 V 

V
2
 = −1 V

EXAMPLE 1.42

Write and solve the node voltage equations for the circuit shown in Fig. 1.

SOLUTION

With reference to Fig. 2, the node equation for node-1 is formed as 

shown below:

Currents leaving node-1  :  ,
V V V
4 2

1 2 1−    

Current entering node-1   :   5 A

V V V

4 2
5

1 2 1
`

−
+ =

        0.25V
1
 − 0.25V

2
 + 0.5V

1
 = 5

      0.75V
1
 − 0.25V

2
 = 5        .....(1)

With reference to Fig. 3, the node equation for node-2 is formed as 

shown below:

Currents leaving node-2  :  , ,
V V V A
4 6

52 1 2−

Current entering node-2   :    10 A

 0
V V V

4 6
5 1

2 1 2
`

−
+ + =

     0.25V
2
 − 0.25V

1
 + 0.1667V

2
 = 10 − 5

   − 0.25V
1 
+ 0.416V

2
 = 5 .....(2)

Equations (1) and (2) are the node equations of the circuit, which are summarised below for convenience.

   0.75V
1
 −  0.25V

2
   = 5 ..... (1)

− 0.25V
1 
+ 0.416V

2
 = 5      ..... (2)

Equation (1) × 1  ⇒      0.75V
1
 −  0.25V

2
   = 5 

Equation (2) × 3  ⇒ − 0.75V
1 
+ 1.25V

2
   = 15 

On adding                                       V
2
  = 20

4�

6� 10A

Fig. 3.

5A

V
1

V
2

V V2 1

4

E

V2

6

10A

5A

0 Reference node

4�

2� 6� 10A

Fig. 1.

5A

V
1

V
2

(AU Dec’16, 8 Marks)
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  ∴  V
2
 = 20 V

From equation (1), we get,

V
1
  = 

.

. V

0 75

5 0 25
2

+

      = 
.

.
13.33 V

0 75

5 0 25 20
33

#+
=

EXAMPLE 1.43

Determine the voltages across various elements of the circuit 

shown in Fig. 1, using the node method.

SOLUTION

The graph of the given circuit is shown in Fig. 2. It has seven 

branches and four nodes. 

Let us choose one of the node as reference as shown in Fig. 2. 

Let the voltages of other three nodes be V
1
,V

2
 and V

3
. 

The reference node is denoted by 0 to indicate that its voltage is zero volt. The circuit with chosen 

node voltages is shown in Fig. 3.

Method I : Formation of node basis matrix equation by applying KCL

In this method, the node equations are formed using Kirchhoff’s Current Law. The node equation for 

a node is formed by equating the sum of currents leaving that node to the sum of currents entering that node.

While writing the node equation for a node it is assumed that all the resistances connected to that node 

will draw current from that node. Hence, the current in the resistances will always leave the node.

With reference to Fig. 4, the node equation for node-1 is formed as shown below:

Currents leaving node-1   :  
/
,

/
, 2

V V V A
1 2 1 2

1 21 −

Current entering node-1   :    Nil

/ /
2 0

V V V

1 2 1 2

1 21
` +

−
+ =

 2V
1
 + 2V

1
 − 2V

2
 + 2 = 0

          4V
1
 − 2V

2
 = −2                          ..... (1)

Fig. 1.

1

2
�

1

4
�

1

3
�

1

4
�9A

2A

1

2
�

V2

V1 V3

Fig. 3.

0

1

2
�

1

3
�

1

4
�9A

2A

1

4
�

Reference node

1

2
�

a b c d

e
f

g

V1
V2

V3

Fig. 2.

Reference node0

Fig. 4.0

2A

V
3

V
1

V
2

V V1 2

1 2

E

/

2A

V
1

1 2/
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With reference to Fig. 5, the node equation for node-2 is formed as shown below:

Currents leaving node-2  :   
/

,
/

,
/

V V V V V
1 2 1 4 1 3

2 3 22 1− −

Current entering node-2  :    9 A

/ / /

V V V V V

1 2 1 4 1 3
9

2 3 22 1
`

−
+

−
+ =

2V
2
 − 2V

1
 + 4V

2
 −  4V

3
 + 3V

2
 = 9

                 − 2V
1
 + 9V

2
 −  4V

3
 = 9  ..... (2)

With reference to Fig. 6, the node equation for node-3 is formed as shown below:

Currents leaving node-3  :   
/

,
/

V V V
1 4 1 4

33 2−

Current entering node-3  :   2 A

/ /
2

V V V

1 4 1 4

33 2
`

−
+ =

4V
3
 − 4V

2
 + 4V

3
 = 2

        −4V
2
 + 8V

3
 = 2                           ..... (3)

Equations (1), (2) and (3) are node equations of the circuit shown in Fig. 3. The node equations are 

summarised below for convenience.

4V
1
 − 2V

2
 = −2

−2V
1
 + 9V

2
 − 4V

3
 = 9

−4V
2
 + 8V

3
 = 2

The node equations can be arranged in a matrix form as shown below and then solved by Cramer’s rule.

V

V

V

4

2

0

2

9

4

0

4

8

2

9

2

1

2

3

−

−

−

− =

−> > >H H H
                                                                                  ..... (4)

Method II : Formation of node basis matrix equation by inspection

In this method, the node basis matrix equation is formed by inspection using the circuit shown in  

Fig. 3. The general node basis matrix equation for a circuit with three nodes excluding the reference is shown 

in equation (5).

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
                                                                                                            ..... (5)

The elements of conductance matrix and source current matrix are formed as shown below:

G
11

  =  2 + 2  =  4  G
12

  =  G
21

  =  –2  I
11

  =  –2

G
22

  =  2 + 3 + 4  =  9  G
13

  =  G
31

  =   0  I
22

  =   9

G
33

  =  4 + 4  =  8  G
23

  =  G
32

  =  – 4  I
33

  =  2

Fig. 5.

9A

V
2

V
3

V
1

0 0

9A

V V2 1

1 2

E

/

V V2 3

1 4

E

/

V2

1 3/

0

V
1 V

2 V
3

2A
2A

V V3 2

1 4

E

/
V3

1 4/

Fig. 6.
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On substituting the above terms in equation (5), we get,

  

V

V

V

4

2

0

2

9

4

0

4

8

2

9

2

1

2

3

−

−

−

− =

−> > >H H H
                                                                    ..... (6)

Solution of node voltages

It is observed that the node basis matrix equations obtained in methods-I and II are the same. In  

equation (6) the unknowns are V
1
, V

2
 and V

3
. In order to solve V

1
, V

2
 and V

3
, let us define four determinants 

, and,1 2 3∆ ∆ ∆ ∆l l l l  as shown below: 

; ; ;

4

2

0

2

9

4

0

4

8

2

9

2

2

9

4

0

4

8

4

2

0

2

9

2

0

4

8

4

2

0

2

9

4

2

9

2

1 2 3∆ ∆ ∆ ∆= −

−

−

− =

− −

−

− = −

−

− = −

−

−

−

l l l l

The  determinants  are  evaluated  by  expanding  along  first  row  and  the  node  voltages  are  solved  

by  Cramer’s   rule.

( ) ( )
4

2

0

2

9

4

0

4

8

4 9 8 4 2 2 8 0 0

224 32 192

2
# # # #

∆ = −

−

−

−
= − − − − − − +

= − =
l

6 6@ @

( ) ( ) ( )
2

9

2

2

9

4

0

4

8

2 9 8 4 2 9 8 2 4 0

112 160 48

2

1
# # # # #

∆ =

− −

−

−
= − − − − − − − +

= − + =
l

6 6@ @

( ) ( )
4

2

0

2

9

2

0

4

8

4 9 8 2 4 2 2 8 0 0

320 32 288
2

# # # # #
∆ = −

−

−
= − − − − − − +

= − =
l

6 6@ @

( ) ( ) ( ) ( )
4

2

0

2

9

4

2

9

2

4 9 2 4 9 2 2 2 0 2 2 4 0

216 8 16 192
3

# # # # # # #
∆ = −

−

−

−
= − − − − − − + − − − −

= − − =
l

6 6 6@ @ @

0.V V
192

48
251

1

∆

∆
= = =

l

l

1.5V V
192

288
2

2

∆

∆
= = =

l

l

1V V
192

192
3

3

∆

∆
= = =

l

l

To solve branch voltages

The given circuit has seven branches. Let us denote the branch voltages as  Va
, Vb

, Vc
, Vd

, Ve
, Vf  and V

g
 

as shown in Fig. 7. The sign of branch voltages are chosen such that they are all positive. The  

relation between the branch and node voltages are obtained using the circuit shown in Fig. 7 and the branch 

voltages are solved as shown below:

V
a
 = V

1
 = 0.25 V

V
b
 = V

2
 = 1.5 V

V
c
 = V

2
 = 1.5 V

V
d
 = V

3
 = 1 V

Fig. 7.

2A

V2
V3V1

Vg
+_

_ + + _Ve
Vf

Vb Vc
Vd

_

+ +

__

+

9A

Va
_

+
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V
e
 = V

2
 − V

1
 = 1.5 − 0.25 = 1.25 V

V
f
  = V

2
 − V

3
 = 1.5 − 1 = 0.5 V

V
g
 = V

3
 − V

1
 = 1 − 0.25 = 0.75 V

 Note :  The branch voltages are voltages across various elements in the circuit.

EXAMPLE 1.44

In the network shown in Fig. 1, find the current through the 2 Ω resistor, 

using the node method.

SOLUTION

The given circuit is redrawn as shown in Fig. 2. The graph of the circuit is 

shown in Fig. 3. It has seven branches and four nodes. Let us choose one of the 

nodes as reference as shown in Fig. 3. Let the voltages of other three nodes be 

V
1
, V

2
 and V

3
. The reference node is denoted by 0.

In the 2 Ω resistor, the current will flow from node-1 to node-2 if V
1 

> V
2
, and when V

2
 > V

1
, the current 

will flow from node-2 to node-1. Let the current through 2 Ω resistance be I
x
.

If  V
1 

> V
2
 ,   then I

x
 = .

V V

2

1 2−

If  V
2
 > V

1
,    then I

x
 = .

V V

2

2 1−

In both the cases it is enough if we solve the node voltages V
1
 and V

2
. 

The node basis matrix equation is formed by inspection using the circuit shown in Fig. 2. The general 

node basis matrix equation for a circuit with three nodes excluding the reference is shown in equation (1).

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H                                                                                                        ..... (1)

The elements of conductance matrix and source current matrix are formed as shown below :

.G
4

1

1

1

2

1
1 7511 = + + =

   
0.5G G I

2

1
512 21 11

= = − = − =

1.G
2

1

4

1

1

1
7522 = + + =

    
G G

1

1
113 31= = − = −

  
I 0
22

=

1.G
4

1

1

1

4

1
533 = + + =     .G G

4

1
0 2523 32= = − = −

 I 0
33

=

2�

5A 4�

1�

4�

4�

1�

Fig. 1.

2�

5A 4�
1�

4�

4�

1�

Fig. 2.

V1 V2

V3
0Reference

node

Fig. 3.

V1 V2

V3
0

a b c d

f

g

e

Reference
node
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On substituting the above terms in equation (1), we get,

.

.

.

.

.

.

.

V

V

V

1 75

0 5

1

0 5

1 75

0 25

1

0 25

1 5

5

0

0

1

2

3

−

−

−

−

−

− => > >H H H
In order to solve the node voltages V

1
 and V

2
,
  
let us define three determinants ∆’, ∆’

1
 and ∆’

2
 as shown 

below: 

.

.

.

.

.

.

.

;

.

.

.

.

.

;

.

. .

.

1 75

0 5

1

0 5

1 75

0 25

1

0 25

1 5

5

0

0

0 5

1 75

0 25

1

0 25

1 5

1 75

0 5

1

5

0

0

1

0 25

1 5

1 2∆ ∆ ∆= −

−

−

−

−

− =

−

−

−

− = −

−

−

−l l l

The determinants are evaluated by expanding along the first row and the node voltages are solved 

by Cramer’s rule.

.

.

.

.

.

.

.

. . . ( . ) ( . ) . . ( ) ( . )

. ( . ) ( ) .

1 75

0 5

1

0 5

1 75

0 25

1

0 25

1 5

1 75 1 75 1 5 0 25 0 5 0 5 1 5 1 0 25

0 5 0 25 1 1 75

2
# # # # #

# #

∆ = −

−

−

−

−

−
= − − − − − − − −

− − − −( )1 #+ −

l
6 6

6

@ @

@

        =  4.4844 − 0.5 − 1.875 = 2.1094

.

.

.

.

.

. . ( . )
5

0

0

0 5

1 75

0 25

1

0 25

1 5

5 1 75 1 5 0 25 0 02

1

# #
∆ =

−

−

−

−
= − − − +

12.8125=

l
6 @

.

. .

.

. . ( ) ( . )1 75

0 5

1

5

0

0

1

0 25

1 5

0 5 0 5 1 5 1 0 25 0
2

# # #
∆ = −

−

−

−

= − − − − − +

5=

l
6 @

.

.
.V V

2 1094

12 8125
6 0741

1
`

∆

∆
= = =

l

l

     
.

.V V
2 1094

5
2 37032

2

∆

∆
= = =

l

l

 
. .

1.8519I
V V

A
2 2

6 074 2 3703
x

1 2
` =

−

=

−

=

Since V
1 

> V
2
, the direction of current I

x
 is from node-1 to node-2.

EXAMPLE 1.45

 In the circuit shown in Fig. 1, find the potential difference between A and D.

SOLUTION

The given circuit has four nodes. Let us choose the node-D as reference 

node and so the voltage of node-D is zero volt. All other node voltages are 

expressed with respect to reference node. Let the voltages of node A, B and C be 

V
1
, V

2
 and V

3
, respectively. Now the voltage between A and D is V

1
.

5A

2� 3�

4� 5�

Fig. 1.

2�

4A 3A

A

B

C

D
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The node basis matrix equation is formed by inspection using the circuit 

shown in Fig. 2. The general node basis matrix equation for a circuit with three 

nodes excluding the reference is shown in equation (1).

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
                                 ..... (1)

The elements of conductance matrix and source current matrix are formed 

as shown below:

.G
2

1

4

1
0 7511 = + =

   
0.5G G

2

1
12 21= = − = −  

5 4 1I
11

= − =

.G
2

1

2

1

3

1
1 3322 = + + =

    
G G 013 31= =

   
1I 4 3

22
= − =

 

.G
3

1

5

1
0 5333 = + =     0.G G

3

1
3323 32= = − = −  I 3 5 2

33
= − = −

On substituting the above terms in equation (1), we get,

.

.

.

.

.

.

.

V

V

V

0 75

0 5

0

0 5

1 33

0 33

0

0 33

0 53

1

1

2

1

2

3

−

−

−

− =

−

> > >H H H
                          ..... (2)

In order to solve the node voltage V
1
,

 
let us define two determinants D’ and D’

1
 as shown below: 

.

.

.

.

.

.

.

;

.

.

.

.

.

0 75

0 5

0

0 5

1 33

0 33

0

0 33

0 53

1

1

2

0 5

1 33

0 33

0

0 33

0 53

1∆ ∆= −

−

−

− =

−

−

−

−l l

The determinants are evaluated by expanding along the first row and the node voltage V
1
 is solved 

by Cramer’s rule.

.

.

.

.

.

.

.

. . . ( . ) ( . ) . .

. . .

0 75

0 5

0

0 5

1 33

0 33

0

0 33

0 53

0 75 1 33 0 53 0 33 0 5 0 5 0 53 0 0

0 447 0 1325 0 3145

2
# # # #

∆ = −

−

−

−
= − − − − − − +

= − =
l

6 6@ @

.

.

.

.

.

. . ( . ) ( . ) . ( ) ( . )

. . .

1

1

2

0 5

1 33

0 33

0

0 33

0 53

1 1 33 0 53 0 33 0 5 1 0 53 2 0 33 0

0 596 0 065 0 531

2

1
# # # # #

∆ =

−

−

−

−
= − − − − − − − +

= − =
l

6 6@ @

.

.
1.6884V V

0 3145

0 531
1

1
`

∆

∆
= = =

l

l

Voltage between node A and D = V
AD

 = V
1
 = 1.6884 V

EXAMPLE 1.46

In the circuit shown in Fig. 1, determine the power supplied by the current 

sources.

SOLUTION

The given circuit has four nodes. Let us choose one of the node voltage as 

reference node, which is indicated by 0. Let the voltages of the other three nodes 

be V
1
, V

2
 and V

3
 as shown in Fig. 2.

V
3

V
2

V
1

5A

2� 3�

4� 5�

Fig. 2.

2�

4A 3A

0

Reference

node

2�

8A

Fig. 1.

10A

2�

2�

4�
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The power supplied by 8 A source  in watts = V
1
 × 8

The power supplied by 10 A source in watts = (V
2
−V

3
) × 10

The node basis matrix equation is formed by inspection using the circuit 

shown in Fig. 2. The general node basis matrix equation for a circuit with three nodes 

excluding the reference is shown in equation (1).

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H                   ..... (1)

The elements of conductance matrix and source current matrix are formed as shown below:

G
2

1

2

1
111 = + =

    
0.5G G

2

1
12 21= = − = −

  I 8
11

=

.G
2

1

4

1
0 7522 = + =  0.G G

2

1
513 31= = − = −   I

22
  =  10 

G
2

1

2

1
133 = + =      0G G23 32= =    I 10

33
= −

On substituting the above terms in equation (1), we get,

.

.

.

.

. V

V

V

1

0 5

0 5

0 5

0 75

0

0 5

0

1

8

10

10

1

2

3

−

−

− −

=

−

> > >H H H ..... (2)

In equation (2), the unknowns are V
1
, V

2
 and V

3
. In order to solve V

1
, V

2
 and V

3
, let us define four 

determinants, , and,1 2 3∆ ∆ ∆ ∆l l l l  as shown below: 

.

.

.

.

.

;

.

.

.1

0 5

0 5

0 5

0 75

0

0 5

0

1

8

10

10

0 5

0 75

0

0 5

0

1

1∆ ∆= −

−

− −

=

−

− −

l l

.

.

.

; .

.

.

.

1

0 5

0 5

8

10

10

0 5

0

1

1

0 5

0 5

0 5

0 75

0

8

10

10

2 3∆ ∆= −

− −

−

= −

−

−

−

l l

The determinants are evaluated by expanding along the first row and the node voltages are solved 

by Cramer’s rule.

.

.

.

.

.

1 . ( 0.5) . ( 0.5) ( . ) .

1

0 5

0 5

0 5

0 75

0

0 5

0

1

0 75 1 0 0 5 1 0 0 0 5 0 75# # # # # #∆ = −

−

− −

= − − − − − + − − −l 6 6 6@ @ @

                                        =  0.75 − 0.25 − 0.1875 = 0.3125

.

.

.

8 . ( 0.5) ( 0.5) ( ) .

8

10

10

0 5

0 75

0

0 5

0

1

0 75 1 0 10 1 0 0 10 0 751 # # # # # #∆ =

−

− −

= − − − − + − − −l 6 6 6@ @ @

=  6 + 5 − 3.75 = 7.25

.

.

.

1 8 . . ( ) ( . )

1

0 5

0 5

8

10

10

0 5

0

1

10 1 0 0 5 1 0 0 5 10 0 5 102 # # # # # #
∆ = −

− −

−

= − − − −
− − − −( 0.5) #+ −

l 6 6 6@ @ @

                                      =  10 + 4 − 5 = 9

V
1

0

V
2

V
3

2�

8A

Fig. 2.

10A

2�

2�

4�

Reference node



Chapter 1 - Basic Circuit Analysis                                                  1. 107

.

.

.

.
1 . ( ) ( 0.5) . ( ) ( . )

( . ) .

1

0 5

0 5

0 5

0 75

0

8

10

10

0 75 10 0 0 5 10 0 5 10

0 0 5 0 753

# # # # #

#
∆ = −

−

−

−

=

− − − − − − − −

− −8 #+
l

6 6

6

@ @

@

                                      =  −7.5 + 5 + 3 = 0.5

.

.
.V V

0 3125

7 25
23 21

1

∆

∆
= = =

l

l

.
.V V

0 3125

9
28 82

2

∆

∆
= = =

l

l

.

.
.V V

0 3125

0 5
1 63

3

∆

∆
= = =

l

l

Power supplied by 8 A current source = V
1
 × 8 = 23.2 ×  8 = 185.6 W

Power supplied by 10 A current source = (V
2
 − V

3
) × 10 = (28.8 −  1.6) × 10 = 272 W

EXAMPLE 1.47

Find the power in the 4 Ω resistor of the circuit shown in Fig. 1, using 

the node method.

SOLUTION

To estimate the power in the 4 Ω resistor, first we have to determine the 

voltage across 4 Ω resistor. The given circuit has four nodes. Let us choose 

one of the node as reference node and it is indicated by 0. Let the voltages 

of other three nodes be V
1
, V

2
 and V

3
 as shown in Fig. 2. Now the voltage 

across 4 Ω resistor is V
2
 volts.

∴ Power in the 4 Ω resistor in watts = 
V

4

2

2 .

The node basis matrix equation is formed by inspection using the 

circuit shown in Fig. 2. The general node basis matrix equation for a circuit 

with three nodes excluding the reference is shown in equation (1).

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
                                   

.....(1)                                                                                                     

The elements of conductance matrix and source current matrix are formed as shown below:

G
1

1

1

1
211 = + =     G G

1

1
112 21= = − = −   I

11
  =  10

.G
1

1

1

1

4

1
2 2522 = + + =  G G

1

1
113 31= = − = −   I

22
  =   0 

G
1

1

1

1
233 = + =      1G G

1

1
23 32= = − = −   I

33
  =   20

1�

1�1�

4�10A 20A

Fig. 1.

0

V
3

V
2

V
1

1�

1�1�

4�10A 20A

Fig. 2.

Reference node
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On substituting the above terms in equation (1), we get,

.

V

V

V

2

1

1

1

2 25

1

1

1

2

10

0

20

1

2

3

−

−

−

−

−

− => > >H H H
                                                                                                    ..... (2)

In order to solve the node voltage V
2 

, let us define two determinants D’ and D’

2
 as shown below: 

. ;

2

1

1

1

2 25

1

1

1

2

2

1

1

10

0

20

1

1

2

2∆ ∆= −

−

−

−

−

− = −

−

−

−l l

The determinants are evaluated by expanding along the first row and the node voltage V
2
 is solved 

by Cramer’s rule.

. 2 . ( ) ( 1) ( ) ( ) ( ) .

2

1

1

1

2 25

1

1

1

2

2 25 2 1 1 2 1 1 1 2 25
2 2

2# # # #
#

∆ = −

−

−

−

−

− = − − − − − − −
− − −( 1) #+ −

l 6 6 6@ @ @

7 3 3.25 0.75= − − =

2 ( ) 10 ( )

2

1

1

10

0

20

1

1

2

0 20 1 1 2 1 1 1 20 02
2 # # # # # #∆ = −

−

−

− = − − − − − − + − − −l ^ h6 6 6@ @ @

           40 30 20 90= + + =

.
V V

0 75

90
1202

2
`

∆

∆
= = =

l

l

Power in the 4Ω resistor = 3600
V

W
4 4

120
2

2
2

= =

EXAMPLE 1.48

In the circuit shown in Fig. 1, write mesh equations by 

inspection and solve V
x
 and I

x
. Verify the result by node analysis.

SOLUTION

Method 1: Mesh Analysis

The mesh currents and their direction are given in Fig 2. The 

circuit has three meshes. The general form of mesh basis matrix 

equation for three mesh circuit is shown in equation (1).

R

R

R

R

R

R

R

R

R

I

I

I

E

E

E

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
 

..... (1)

The elements of the resistance matrix and source voltage matrix are formed as shown below:

R
11 

= 8 + 4 = 12  R
12

 = R
21

 = −4  E
11

 =   100

R
22 

= 4 + 10 + 10 = 24  R
13

 = R
31

 =   0  E
22

 =   0

R
33 

= 10 + 4 = 14        R
23

 = R
32 

 = −10  E
33

 = −40

8� 10�
+

E

Fig. 1.

100V 4� 10�

+

E

40V

4�

+ E

I
x

V
x

8� 10�
+

E

Fig. 2.

100V 4� 10�

+

E

40V

4�

I
2

I
1

I
3

+ E

I
x

V
x

(AU May’17, 6 Marks)
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On substituting the above terms in equation (2), we get mesh equation,

I

I

I

12

4

0

4

24

10

0

10

14

100

0

40

1

2

3

−

−

−

− =

−

> > >H H H   .....(2)

Here, I
x
 = I

2
 and V

x
 = 10I

2

In order to solve I
2
, two determinants ∆ and ∆

2
 are defined as shown below and evaluated by expanding 

along the first row and I
2
 is solved by Cramer’s rule.

12 [24 14 ( 10) ] ( 4) 0

12

4

0

4

24

10

0

10

14

4 14 02
# # # #∆ = −

−

−

− = − − − − − − +6 @  =  2608

12 [ ( 0) ( )] 0

12

4

0

100

0

40

0

10

14

0 4 10 100 4 14 02 # # #∆ = −

−

− = − − − − − − +6 @  =  800

I 0.30675I A
2608

800
x 2

2
`

T

T
= = = =

   V
x
 = 10I

x
 = 10 × 0.30675 = 3.0675 V

Method 2: Node Analysis

Let us convert the voltage sources in Fig. 1 into current sources as shown below and the circuit is 

redrawn with current sources in Fig. 7.

 The node basis matrix equation is formed by inspection  

using the circuit shown in Fig. 7. The general node basis matrix 

equation for a circuit with two nodes excluding the reference is shown 

in equation (3).

G

G

G

G

V

V

I

I

11

21

12

22

1

2

11

22

== = =G G G                                           ..... (3)

The elements of conductance matrix and source current matrix are formed as shown below:

G
11

  =  0.475
8

1

4

1

10

1
+ + =                 I

11
  =  12.5

G
12

  =  G
21

  =  .
10

1
0 1− = −                  I

22
  =   10

G
22

  =  .
10

1

10

1

4

1
0 45+ + =   

On substituting the above terms in equation (3), we get the node equation,

  
.

.

.

.

.V

V

0 475

0 1

0 1

0 45

12 5

10

1

2−

−

== = =G G G   ..... (4)

8W

+

-

100V 8W

1
2
.5
A

=Þ

Fig. 4.Fig. 3.

1
0
0

8

Fig.5.

+

-

40V

4W

4W

Fig. 6.

Þ

=
 1

0
A

4
0

4

8�

10�

Fig. 7.

4� 10� 4�

I
=

 1
2
.5

s
1

A

I
=

 1
0

s
2

A

V
2

V
1

Reference node0

+ E

I
x

V
x
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In order to solve the node voltages V
1
 and V

2
, let us define three determinants , and 2,1∆ ∆ ∆l l l  as 

shown below and evaluated by expanding along first row and node voltages are solved by Cramer’s rule.

.

.

.

.
0.475 0.45 ( 0.1) 0.20375

0 475

0 1

0 1

0 45
2

#∆ =
−

−
= − − =l

. .

.
12.5 0.45 10 ( 0.1) 6.625

12 5

10

0 1

0 45
1 # #∆ =

−
= − − =l

.

.

.
0.475 10 ( 0.1) 12.5 6

0 475

0 1

12 5

10
2 # #∆ =

−
= − − =l

V
.

.
3.0675V V V

0 20375

6 625 61 2 1 2
' '

'

' '

x 1 2
`

3

3

3

3

3

3 3
= − = − =

−

=

−

=

     
10

V .
0.30675I A

10

3 0675
x

x= = =

1.7.2   Node Analysis of Circuits Excited by Both Voltage and Current Sources

Node analysis can be extended to circuits excited by both voltage and current sources.  

In such circuits if each voltage source has a series impedance then they can be converted into  

an equivalent current source with parallel impedance. After conversion, the circuit will have  

only current sources and so the procedure for obtaining node basis matrix equation by  

inspection and its solution discussed in Sections 1.7.1 and 1.7.4 can be directly applied to these 

circuits.

In circuits excited by both voltage and current sources, the voltage source may not have 

series resistance. In this situation the voltage source cannot be converted into a current source. In 

this case, the value of each voltage source is related to node voltages and for each voltage source 

one of the node voltages can be expressed in terms of source voltage and other node voltages. The 

remaining node voltages can be solved by writing Kirchhoff’s Current Law equations.

Alternatively, the node basis matrix equation can be formed directly by inspection by  

taking the current delivered by the voltage sources as unknown and relating the value of each  

voltage source to node voltages. Here for each voltage source one node voltage is eliminated by 

expressing the node voltage in terms of the source voltage and other node voltages. While forming 

the node basis matrix equation, the current of the voltage sources should be entered in the source 

matrix.

Now in the matrix equation some node voltages will be eliminated and an equal  

number of unknown source currents will be introduced. Thus, the number of unknowns will  

remain the same as n where n is number of nodes in the circuit except the reference node. On 

multiplying the node basis matrix equation we get n equations which can be solved to give a unique 

solution for unknowns.
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1.7.3   Supernode Analysis

In circuits excited by both voltage and current sources, if a voltage source is connected 

between  two nodes then the voltage source can be short-circuited for analysis purpose and the 

shorted two nodes can be considered as one single node called supernode. In order to solve the two 

node voltages of a supernode, two equations are required. One of the equations is the KCL equation 

of the supernode and the other equation is obtained by equating the source voltage to the difference of 

the node voltages. An example of formation of a supernode is shown in Fig. 1.49.  Also, Example 1.57  

is solved using supernode analysis technique.

EXAMPLE 1.49

In the circuit shown in Fig. 1, find the voltage across the 40 Ω resistor and the power supplied by 5 A 

source, using node analysis.

SOLUTION

The given circuit has four nodes. In this one of the nodes is chosen 

as reference. Let the voltages of the other three nodes be V
1
, V

2
 and V

3
 

as shown in Fig. 2. Here, the voltage sources do not have a resistance in 

series and so they cannot be converted into a current source. Let I
s1

 and 

Is2 be the currents supplied by 100 V and  60 V sources, respectively. 

With reference to Fig. 2, we can write,

V
1
 − V

3
 = 100 V   and   V

2
 − V

1
 = 60 V

From the above equations we can say that node voltages V
2
 and 

V
3
 can be expressed in terms of V

1
. Now the number of unknowns in the 

circuit are three and they are V
1
, I

s1
 and I

s2
. Therefore, we can write three 

node equations using KCL (corresponding to three nodes) and a unique 

solution for unknowns can be obtained by solving the three equations.

+ E

+E

5A

60V 4A

100V

25� 20� 40�

Fig. 1.

+ E

+E

5A

60V 4A

100V

25� 20� 40�

Fig. 2.

I
s1

I
s2

0

V
1 V

2
V

3

+

E

Reference node

V
1

Fig. b : Supernode of the circuit shown
in Fig. a and its equations.

V2

4
V2

5

V2

3
5W2W

V1

2
10A 3W

Reference node0

Supernode

Fig. a : Circuit with two independent nodes.

V1 + -

V2

4
V2

5

V2

3
5W

V2
5V

2W
V1

2
10A 3W

Reference node0

4W 4W

V V V V

V

1 2 2 2

1 2

2 4 5 3
10

5

+ + + =

- =V

Fig. 1.49 : Example of formation of a supernode.
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The node basis matrix equation is formed by inspection using the circuit shown in Fig. 2.

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
                                                          .....(1)

.

.

.

G G G I I I

G G G I I

G G G I I

25

1
0 04 0 5

20

1
0 05 0 4

40

1
0 025 0 4

11 12 21 11 s1 s2

22 13 31 22 s2

33 23 32 33 s1

= = = = = + −

= = = = = +

= = = = = − −   

On substituting the above terms in equation (1), we get,

.

.

.

V

V

V

I I

I

I

0 04

0

0

0

0 05

0

0

0

0 025

5

4

4

1

2

3

s1 s2

s2

s1

=

+ −

+

− −

> > >H H H
                                                                                      

.....(2)

With reference to Fig. 2, the following relations can be obtained between node voltages:

V
2
 − V

1
 = 60      V

1
 − V

3
 = 100 

  ∴   V
2
 = 60 + V

1
        ..... (3)     ∴   V

3
 = V

1
 − 100                            

..... (4)

Using equations (3) and (4), equation (2) can be written as shown in equation (5).

.

.

.

V

V

V

I I

I

I

0 04

0

0

0

0 05

0

0

0

0 025

60

100

5

4

4

1

1

1

s1 s2

s2

s1

+

−

=

+ −

+

− −

> > >H H H
                                                                            .....(5)

On multiplying the matrices on the left-hand side of equation (5) and equating to the terms on the  

right-hand side we get the following three equations:

 0.04V
1
 = 5 + I

s1
 − I

s2
                   .....(6)

 0.05(60 + V
1
) = 4 + I

s2
                 .....(7)

 0.025(V
1
 − 100) = − 4 − I

s1
                                    .....(8)

On adding the above three equations, we get,

 0.04V
1
 + 0.05(60 + V

1
) + 0.025(V

1
 − 100) = 5

 0.04V
1
 + 3 + 0.05V

1
 + 0.025V

1
 − 2.5 = 5

 0.115V
1
 + 0.5 = 5

    
.

.
39.1V V

0 115

5 0 5
31 =

−

=

∴  V
1
 = 39.13 V
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40�V
40

Fig. 3.

+

E
V
3

From equation (3),   V
2
 = 60 + V

1
 = 60 + 39.13 = 99.13 V

From equation (4),    V
3
 = V

1
 − 100 = 39.13 −100 = − 60.87 V

With reference to Fig. 2, the voltage across the 40 Ω resistor is V
3
.

∴  Voltage across the 40 Ω resistor = V
3
 = −60.87 V

The negative voltage across the 40 Ω resistor indicates that the current through the 40 Ω is flowing 

towards the node. (Remember that while forming node equations it is assumed that the currents through 

resistances are leaving the node.)

If we are interested in positive voltage across the 40 Ω resistor then the polarity of voltage across the 

40 Ω resistor is assumed as shown in Fig. 3.

Now, V
40

 = −V
3
 = −(−60.87)

             = 60.87 V

With reference to Fig. 2, we can say that the voltage across 5 A current source is V
1
.

∴ Power supplied by 5 A source = V
1
 × 5 = 39.13 × 5 = 195.65 W

EXAMPLE 1.50

In the circuit shown in Fig. 1, find the value of E using node analysis 

which will make the voltage across 10 Ω resistance as zero.

SOLUTION

The given circuit has five nodes. In this one of the nodes is chosen 

as reference. Let the voltages of other four nodes be V
1
, V

2
, V

3
 and V

4
 as 

shown in Fig. 2. Here, the voltage sources do not have series resistances 

and so they cannot be converted into a current source. Let us treat the 

currents supplied by the voltage sources as unknown quantities, and the 

values of voltage sources can be related to node voltages. Let I
s1

, I
s4

 

and I
s3

 be the currents supplied by the 20 V,  5 V  and E volt sources, 

respectively.

The node basis matrix equation of the given circuit is formed by 

inspection using the circuit shown in Fig. 2.

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

V

V

V

V

I

I

I

I

11

21

31

41

12

22

32

42

13

23

33

43

14

24

34

44

1

2

3

4

11

22

33

44

=

R

T

S
S
S
S
S

R

T

S
S
S
S
S

R

T

S
S
S
S
S

V

X

W
W
W
W
W

V

X

W
W
W
W
W

V

X

W
W
W
W
W

           .....(1)

2

A

+

E
+

E

2� 3�

10�20V E

2
A

5V

Fig. 1.
+

E

V
1 V

3

V
4

I
s4

I
s1

I
s3

Fig. 2.

0 Reference node

2
A

+

E

+

E

2� 3�

10�20V E

2
A

5V

+

E

V
2
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G

G

G

G

2

1

2

1

10

1

3

1

30

15 3 10

30

28

15

14

3

1

0

11

22

33

44

=

= + +

=
+ +

= =

=

=        

G G

G G

G G

G G

G G

G G

2

1

0

0

3

1

0

0

12 21

13 31

14 41

23 32

24 42

34 43

= = −

= =

= =

= = −

= =

= =         

I I

I I

I I

I I

I

2

2

2 2

11 s1

22 s4

33 s3

44 s4

s4

= −

= −

= − +

= + −

=

        

20

0 ( )

5

5

V

V given

V V

V

V E

1

2

4 2

4

3

`

=

=

− =

=

= −

  

On substituting the above terms in equation (1), we get,

I

2

1

2

1

0

0

2

1

15

14

3

1

0

0

3

1

3

1

0

0

0

0

0

2

E

I

I

s1

s4

s3

s4

−

−

−

−

−

=

−

−

5

2I

20

− +

0

R

T

S
S
S
S
S
S
SS

R

T

S
S
S
S
S
S
SS

R

T

S
S
S
S
S
S
SS

V

X

W
W
W
W
W
W
WW

V

X

W
W
W
W
W
W
WW

V

X

W
W
W
W
W
W
WW                                                                                              

.....(2)

From row-4 of equation (2), we get, I
s4

 = 0 ..... (3)

From row-2 of equation (2), we get,

( ) ( )E I
2
1 20

15
14 0

3
1 0 5 s4# # # #− + + − − + = −c c cm m m

           

E
I10 0

3
0 s4− + + + = −

                                                                  E
I

3
10s4` = − +     .....(4)                                              

From equation (3), we know that, I
s4

 = 0,

0 10

10 3 30

E

E V

3
`

#

= +

= =

EXAMPLE 1.51

In the circuit shown in Fig. 1, determine the current delivered by 24 V 

source using node analysis.

SOLUTION

The given circuit has only two principal nodes. Let us choose one  

of the principal nodes as reference and the voltage of the other principal  

node as V
1
, as shown in Fig. 2. Let us take the voltage at the meeting point of 

5 Ω and 24 V  source as V
2
 and the voltage at the meeting point of 10 Ω 

and 36 V  as V
3
. With reference to Fig. 2, we can say that,

 V
2
 = 24 V    and   V

3
 = 36 V

2A 20�

+

E

+

E

10�

36V24V

5�

Fig. 1.

V
1

2A 20�

+

E

+

E

10�

36V24V

5�

Fig. 2.

I
s1

V
2 V

3

Reference node0
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With reference to Fig. 3, the node equation for node-1 can be written as shown below:

Currents leaving node-1   :  , ,
V V V V V

5 10 20
1 2 1 3 1− −

Current entering node-1   :   2 A 

2
V V V V V

5 10 20

1 2 1 3 1
`

−
+

−
+ =

2
V V V V V

5 5 10 10 20

1 2 1 3 1
− + − + =

V
V V

5

1

10

1

20

1
2

5 10
1

2 3
` + + = + +c m

Put,    V
2 

 = 24   and  V
3 

 = 36

2V
5

1

10

1

20

1

5

24

10

36
1` + + = + +c m

        (0.2 + 0.1 + 0.05)V
1
 = 2 + 4.8 + 3.6

                             0.35V
1
 = 10.4

.

.
29.7143V V

0 35

10 4
1` = =

Let, I
s1

 be the current delivered by 24 V source as shown in Fig. 2.

.
1.1429I

V V
A

5 5

24 29 7143
s1

2 1
=

−

=

−

= −

Since the current delivered by 24 V source is negative, we can say that it absorbs power instead of 

delivering power.

EXAMPLE 1.52

In the circuit shown in Fig. 1, solve the voltages across various  

elements using node method and determine the power in each element of the 

circuit.

SOLUTION

The given circuit has five nodes and in this only two nodes are principal nodes. Let us choose one of 

the nodes as the reference node, which is indicated by 0. The voltage of the reference node is zero volt. Let us 

choose three other nodes and assign node voltages V
1
, V

2
 and V

3
 as shown in Fig. 2. Let the current delivered 

by 2 V and 6 V sources be I
s1

 and I
s2

, respectively. With reference to Fig. 2, the following relation can be 

obtained for node voltages: 

     V
1
 = 2 V     ;        V

2
 − V

1
 = 6 V

∴  V
2
 = 6 + V

1
 = 6 + 2 = 8 V

In the circuit shown in Fig. 2, the voltage V
1
 and V

2
 are known 

quantities, but the currents I
s1

 and I
s2

 are unknown quantities. Hence, the 

total number of unknowns are three (i.e., V
3
, I

s1 
and I

s2
) and so three node 

equations can be formed and they can be solved to give a unique solution.

V
1

V
2

V
3

0 0

2A

2A
V V1 2

5

E V V1 3

10

E

V1

20

Fig. 3.

Fig. 1.

+

E

2�

6V

1�

+

E

2A

2V

2�

1�

2A

I
s2

I
s1+

E

2�

Fig. 2.

+

E

2� V
3

0

V
1

6V

V
2

2V

Reference node
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Using Fig. 2, the node basis matrix equation is formed by inspection as shown below:

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
                                                                                                           .....(1)

G

G

G

0

1 2

1

3

1

1 2

1

2

1

3

1

2

1

6

5

11

22

33

=

=
+

=

=
+

+ = + =     

0

0

G G

G G

G G
1 2

1

3

1

12 21

13 31

23 32

= =

= =

= =
+

−
=−

    
2

I I I

I I

I

211 s1 s2

22 s2

33

= + −

=

= −

    

V

V V

V V

2

6

6 6 2 8

1

2 1

2 1`

=

− =

= + = + =

                                                                    

On substituting the above terms in equation (1), we get,

I

0

0

0

0

3

1

3

1

0

3

1

6

5
3

s1 s2

s2

−

− 8

I I2 2+ −

V

=

2−

R

T

S
S
S
S
S

R

T

S
S
S
S
S

R

T

S
S
S
S
S

V

X

W
W
W
W
W

V

X

W
W
W
W
W

V

X

W
W
W
W
W
    

..... (2)

The node equations are obtained by multiplying the matrices on the left-hand side and equating to the  

terms on right-hand side.

From row-1 we get,      0 = I
s1

 + 2 − I
s2 

    ⇒     I
s1

 =  −2 + I
s2 

..... (3)

From row-2 we get,    V I
3

8

3

1
3 s2− =      ⇒     I V

3

8
s2

3
=

−                                                          .....(4)

From row-3 we get,   V
3

8

6

5
23− + = −                                                                .....(5)

From equation (5), we can write,

0.8V V
5

6
2

3

8

5

6

3

6 8

15

12
3 #= − + =

− +
= =c cm m

On substituting, V
3
 = 0.8 in equation (4), we get,

.
2.4I

V
A

3

8

3

8 0 8
s2

3
=

−

=

−

=

On substituting, I
s2

 = 2.4 A in equation (3), we get,

I
s1

 = −2 + I
s2

 = −2 + 2.4 = 0.4 A

In Fig. 2 it can be observed that the current through series combination 

of 1 Ω and 2  Ω is I
s2

 and the current through the 2  Ω resistance in series with 

2 V  source is I
s1

. Now, the voltage across the resistances are given by the 

product of current and resistance.

Let the voltage across the resistances be V
a
, V

b
 and V

c
 and the 

voltage across 2 A source be E
2
 as shown in Fig. 3.

Now,    V
a
 = 1  ×  I

s2
  = 1 × 2.4  = 2.4 V

         V
b
 = 2  ×  I

s2
  = 2 ×  2.4 = 4.8 V

            V
c
 = 2  ×  I

s1
  = 2 × 0.4  = 0.8 V

             E
2
 = V

1
 − V

3
   = 2 − 0.8  = 1.2 V

Is1+

E

2�

Fig. 3.

1�

+

E

2A

2V

2�

V3

0

V1

6VIs2

V2

Va

+

_ +

�
Vc

+ _Vb

_

+

E2

Reference node
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Estimation of power in each element

In dc circuits, the power in an element is given by the product of voltage and current in that element. 

The resistances always absorb power. The sources can either deliver power or absorb power. In a source if 

the current leaves at the positive end of the source then it delivers power.

Power consumed by the 1 Ω resistor = V
a
 × I

s2
 = 2.4 × 2.4 = 5.76 W

Power consumed by the 2 Ω resistor  = V
b
 × I

s2
 = 4.8 × 2.4 = 11.52 W

Power consumedby the resistor

in series with sourceV

2

2

Ω 1 = V
c
 × I

s1
 = 0.8 × 0.4 = 0.32 W

Power delivered by 6 V source     =  6 × I
s2

  =  6 × 2.4   =  14.4 W

Power delivered by 2 V source      =  2 × I
s1

  =  2 × 0.4   =  0.8 W

Power delivered by 2 A source     =  E
2
 × 2   =  1.2 × 2   =  2.4 W

Note :  It is observed that the sum of power delivered (14.4 + 0.8 + 2.4 = 17.6 W) is equal to the 

sum of power consumed (5.76 + 11.52 + 0.32 = 17.6 W).

EXAMPLE 1.53

Use nodal analysis to determine the values of voltages at various 

nodes in the circuit shown in Fig. 1.

SOLUTION

The given circuit has four nodes. In this one of the node is chosen as 

reference node and it is indicated by 0. The voltage of the reference node is 

zero. Let the voltages of the other three nodes be V
1
, V

2
 and V

3
 with respect 

to the reference node, as shown in Fig.  2. The voltage source in the circuit 

does not have series resistance and so it cannot be converted into a current 

source. Let I
s3

 be the current supplied by the 2 V source. With reference to 

Fig. 2, we can write, 

V
3
 − V

1
 = 2 V      ⇒      V

3
 = 2 + V

1

From the above equation we can say that the node voltage V
3
 can be 

expressed in terms of V
1
. Now, the number of unknowns in the circuit are three 

and they are V
1
, V

2
 and I

s3
. Therefore, we can write three node equations using KCL (corresponding to three 

nodes) and a unique solution for unknowns can be obtained by solving the three equations.

The node basis matrix equation for the circuit shown in Fig. 2 is obtained by inspection as shown below:

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
                                                                                                            

.....(1)

G

G

G

G G

G G

G G

I I

I

I I

V V

V V

3 2 5

3 2 5

2 4 6

3

0

2

1

2

2

11

22

33

12 21

13 31

23 32

11 s3

22

33 s3

3 1

3 1`

= + =

= + =

= + =

= = −

= =

= = −

= −

=

=

− =

= +

2V

+E

1A

Fig. 1.

2
�

3
�

2
�

4
�

2V
+E

1A

Fig. 2.

2
�

3
�

2
�

4
�

I
s3

V
2

V
1

V
3

0
Reference node
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On substituting the above terms in equation (1), we get,

V

V

V

I

I

5

3

0

3

5

2

0

2

6 2

1

1

2

1

s3

s3

−

−

−

−

+

=

−> > >H H H
                                                                                                        

.....(2)

The node equations of the circuit are obtained by multiplying the matrices on the left-hand side of 

equation (2) and equating to the terms on the right-hand side.

From row-1, we get,

5V
1
 − 3V

2
 = − I

s3 
..... (3)

From row-2, we get, 

− 3V
1
 + 5V

2
 − 2 × (2 + V

1
) = 1  ⇒   − 3V

1
 + 5V

2
 − 4 −  2V

1
 = 1   ⇒   − 5V

1
 + 5V

2
 = 5     ..... (4)

From row-3, we get,  

− 2V
2
 + 6 × (2 + V

1
) = I

s3
    ⇒    

 
−2V

2
 + 12 + 6V

1
 = I

s3
    ⇒    6V

1
 −  2V

2
 = I

s3
 −  12      ..... (5)

On adding equations (3), (4) and (5), we get,

5V
1
 − 3V

2
 − 5V

1
 + 5V

2
 + 6V

1
 − 2V

2
 = − I

s3
 + 5 + I

s3
 − 12     ⇒    6V

1
 = −7

.V V
6

7
1 16671` =

−

= −

From equation (4), we get,   ( . )
.V

V
V

5
5 5

5

5 5 1 1667
0 16672

1 #
=

+
=

+ −
= −

With reference to Fig. 2, we can write, 

V
3
 − V

1
 = 2

 ∴    V
3
 = 2 + V

1
 = 2 + ( −1.1667) = 0.8333 V

The node voltages are,

V
1
 = −1.1667 V ;       V

2
 = −0.1667 V     and      V

3
 = 0.8333 V

EXAMPLE 1.54 

Use nodal analysis to determine the values of voltages at 

various nodes in the circuit shown in Fig. 1.

SOLUTION

The given circuit has five nodes. In this one of the nodes  

is chosen as the reference. Let the voltages of the other four nodes  

be V
1
, V

2
, V

3
 and V

4
 as shown in Fig. 2. Here, V

4
 = 10 V. Let us 

convert the 10 V voltage source in series with 10 Ω resistance 

into equivalent current source as shown in Fig. 3.

(AU June’14, 8 Marks)

5AS�

10�

10 V

+

E

3�

1� 6�

3�

2�

Fig. 1.

Þ5A5W

10W

10 V

+

-

3W

1W 6W

3W

2W

V
1 V

2

V
3

V
4

Fig. 2.

0
Reference node

5A5W

3W

1W 6W

3W

2WV
1 V

2 V
3

10

10
1= A 10W

Fig. 3.

0
Reference node
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The node basis matrix equation is formed by inspection using the circuit shown in Fig. 3.

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
                   .....(1)

With reference to Fig. 3, the elements of conductance matrix and source current matrix are obtained 

as shown below : 

0.9967 0.6667 1G I
10

1

5

1

3

1

3

1

3

1

3

1
11 12 21 11= + + + = + = − =G G= = −c m

I =1.1667 0 5G G G
3

1

3

1

2

1
22 13 31 22= + + = = =

I =0.5G G= = − = −1.6667 0G
2

1

1

1

6

1

2

1
33 23 32 33= + + =

On substituting the above terms in equation (1), we get,

. .

. . .

. .

V

V

V

0 9667 0 6667 0

0 6667 1 1667 0 5

0 0 5 1 6667

1

5

0

1

2

3

−

− −

−

=

R

T

S
S
S
S

R

T

S
S
S
S

R

T

S
S
S
S

V

X

W
W
W
W

V

X

W
W
W
W

V

X

W
W
W
W

To solve the node voltages V
1
, V

2
 and V

3
, let us define four determinants , and 3,1 2∆ ∆ ∆ ∆l l l l  as 

shown below: 

.

.

.

.

.

.

.

.

.

.

.

.

0 9667

0 6667

0

0 6667

1 1667

0 5

0

0 5

1 1667

1

5

0

0 6667

1 1667

0 5

0

0 5

1 1667

1∆ ∆= −

−

−

− =

−

−

−l l

.

. .

.

.

.

.

.

.

0 9667

0 6667

0

1

5

0

0

0 5

1 1667

0 9667

0 6667

0

0 6667

1 1667

0 5

1

5

0

2 3∆ ∆= − − = −

−

−

l l

The determinants are evaluated by expanding along the first row and node voltages are solved by  

Cramer’s rule.

. .

. . .

. .

0.9667 . . .

0.6667 . .

.

0 9667 0 6667 0

0 6667 1 1667 0 5

0 0 5 1 6667

1 1667 1 6667 0 5

0 6667 1 6667 0

0 8972

2
# #

# #

∆ =

−

− −

−

= − − +

− −

=

l ^ h6

6

@

@

.

. .

. .

1 . . . 0.6667 .

.

1 0 6667 0

5 1 1667 0 5

0 0 5 1 6667

1 1667 1 6667 0 5 5 1 6667 0

7 2505

2

1
# # # #∆ =

−

−

−

= − − + −

=

l _ i9 7C A

.

. .

.

. . . .

.

0 9667 1 0

0 6667 5 0 5

0 0 1 6667

0 9667 5 1 6667 0 1 0 6667 1 6667 0

9 1672

2
# # # #∆ = − − = − − − −

=

l 6 6@ @

. .

. .

.

. . . . .

.

0 9667 0 6667 1

0 6667 1 1667 5

0 0 5 0

0 9667 0 0 5 5 0 6667 0 0 1 0 6667 0 5 0

2 7501

3
# # # # #∆ =

−

−

−

= + + − + −

=

l 6 6 6@ @ @
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.

.
8.0813V V

0 8972

7 2505
'
1

1 3

3= = =

.

.
10.2176V V

0 8972

9 16722
'

'2
3

3= = =

.

.
3.0652V V

0 8972

2 7501
'
3

'3
3

3= = =

The node voltages are,

V
1
  =  8.0813 V ;        V

2
  =  10.2176 V ;        V

3
  =  3.0652 V    and     V

4
  =  10 V      

EXAMPLE 1.55

Determine the node voltages and the currents 

across all the resistors of the circuit shown in Fig. 1, 

using node method.

SOLUTION

Solution of node voltages

The given circuit has four nodes.In this one of 

the nodes is chosen as the reference node, which is 

indicated by 0. The voltage of the reference node is 

zero volt. Let us choose three other nodes and assign 

node voltages V
1
, V

2
 and V

3
 as shown in Fig. 2. Let the 

current delivered by 20 V source be I
s
. 

With reference to Fig. 2, we get, 

V
3
 = 20 V

From the above equation we can say that the node voltage V
3
 is a known quantity. Now, the number 

of unknowns in the circuit are three and they are V
1
, V

2
 and I

s
. Therefore, we can write three node equations 

using KCL (corresponding to three nodes) and a unique solution for unknowns can be obtained by solving the 

three equations.

The node basis matrix equation for the circuit shown in Fig. 2 is obtained by inspection as shown below:

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H                .....(1)

.

.

.

.

10

G

G

G

G G

G G

G G

V V

4

1

10

1
0 35

10

1

2

1

1

1
1 6

1

1

10

1
1 1

10

1
0 1

0

1

1
1

11

22

33

12 21

13 31

23 32

3

= + =

= + + =

= + =

= = − = −

= =

= = − = −

=

On substituting the above terms in equation (1), we get,

.

.

.

.

.

V

V

I

0 35

0 1

0

0 1

1 6

1

0

1

1 1 20

25

20

1

2

s

−

−

−

− =

R

T

S
S
S
S

> >
V

X

W
W
W
W

H H       
.....(2)

(AU Dec’14, 12 Marks)
10� 1�

4�
2�25A 10�20A

Fig. 1.

+

E
20V

V
1

V
2

V
3

Reference node
0

I
s

10� 1�

4�
2�25A 10�20A

Fig. 2.

+

E
20V
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The node equations of the circuit are obtained by multiplying the matrices on the left-hand side of 

equation (2) and equating to the terms on the right-hand side.

From row-1, we get,

    0.35V
1
 − 0.1 V

2
 = 25  .....(3)

From row-2, we get,

− 0.1V
1
   + 1.6 V

2
 − 20 = 20             ⇒     − 0.1 V

1
  + 1.6 V

2
 = 40  .....(4)

On multiplying equation (3) by 16, we get,

   5.6 V
1
 − 1.6 V

2
  =  400     .....(5)

On adding equations (4) and (5), we get,

− 0.1 V
1
 + 1.6 V

2 
 + 5.6 V

1
 − 1.6 V

2 
= 40 + 400        ⇒     5.5 V

1
 = 440

.
80V V

5 5

440
1

` = =

From equation (2), we get, 
.

40 0.1

.

.
30V

V
V

1 6 1 6

40 0 1 80
2

1 #
=

+

=
+

=

The node voltages are,

V
1
 = 80 V     ;    V

2
 = 30 V    and    V

3
 = 20 V

To solve branch voltages and currents

The given circuit has five resistance branches. Let us denote the resistance branch voltages as  Va
, Vb

, 

Vc
, Vd and V

e
 and resistance branch currents as Ia, Ib, Ic, Id and I

e
,

 
as shown in Fig. 3. The signs of branch 

voltages and currents are chosen such that they are all positive. The branch voltages and currents are solved 

as shown below:

         V
a
 
 
= V

1
 = 80 V

  V
b
 = V

1
− V

2
 = 80 − 30 = 50 V

  V
c
 = V

2
 = 30 V

  V
d
 = V

2
 − V

3
 = 30 − 20 = 10 V

  V
e
 
 
= V

3
 = 20 V

20I
V

A
4 4

80a

a
= = =

5I
V

A
10 10

50b

b
= = =

15I
V

A
2 2

30c

c
= = =

10I
V

A
1 1

10d

d
= = =

2I
V

A
10 10

20e

e
= = =

10� 1�

25A

V
1

I
b I

dV
2

I
a

+

E

+

E

+

E

V
a

+ E
V
b I

c

+ E

I
e

V
eV

c

V
d

Fig. 3.

4� 2� 10�20A +

E

V
3

20V
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4�

2
�

10�

5
�

2
�

V
2

V
1

25

5
5a A

50

2
25a A

Fig. 2.

Reference node
0

EXAMPLE 1.56

Use nodal analysis to solve the circuit shown in Fig.1.

SOLUTION

Let the node voltages be V
1
 and V

2
. Let us convert the 

25 V voltage source in series with 5 Ω resistance into an equivalent 

current source as shown in Fig. 2.Similarly convert the 50 V voltage source 

in series with 2 Ω resistance into an equivalent current source as shown 

in Fig. 2.The node basis matrix equation of the given circuit is formed by 

inspection using the circuit as shown in Fig. 2.

G

G

G

G

V

V

I

I

1

2

11

22

11

21

12

22

== = =G G G                  .....(1)

With reference to Fig. 2, the elements of conductance matrix 

and source current matrix are obtained as shown below : 

0.8 0.1 5G I
2

1

5

1

10

1

10

1
11 12 21 11= + + = = − =G G= = −

I =0.85 25G
10

1

4

1

2

1
22 22= + + = −

On substituting the above terms in equation (1), we get,

. .

. .

V

V

0 8 0 1

0 1 0 85

5

25

1

2

−

−

=

−

R

T

S
S
S
S

R

T

S
S
S
S

R

T

S
S
S
S

V

X

W
W
W
W

V

X

W
W
W
W

V

X

W
W
W
W

In order to solve the node voltages V
1
 and V

2
,
  
let us define three determinants ∆’, ∆’

1
 and ∆’

2
 as shown below: 

.

.

.

.
;

.

.
;

.

.

0 8

0 1

0 1

0 85

5

25

0 1

0 85

0 8

0 1

5

25
1 2∆ ∆ ∆=

−

−
=

−

−
=

− −
l l l

The determinants are evaluated by expanding along the first row and the node voltages are solved 

by Cramer’s rule.

. .

. .

0.8 0.85 . 0.67
0 8 0 1

0 1 0 85

0 1
2

#∆ =
−

−

= − − =l ^ h

.

.

5 0.85 . 1.75
5 0 1

25 0 85

25 0 1
1

# #∆ =
−

−

= − − − =l _ _i i

.

.

0.8 . 5 19.5
0 8 5

0 1 25

25 0 1
2

# #∆ =

− −

= − − − = −l _ _i i

.

.
2.6119V V

0 67

1 75
1

1

∆

∆
= = =

l

.

.
29.1045V V

0 67

19 5
2

2

∆

∆
= =

−
= −

l

25V

+ E

4�

2�

10�

5�

+
E2�

50V

1 2

Fig. 1.
Reference node

0

(AU May’15, 16 Marks)
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EXAMPLE 1.57

Determine the node voltages and, hence, the power supplied by a  

5 A source into the circuit shown in Fig. 1, using supernode analysis 

technique.

SOLUTION

Let us choose the reference node 0 and three node voltages V
1
, 

V
2
 and V

3 
 as shown in Fig. 2. Now, the voltage across 5 A source is V

1
 

and the power delivered by 5 A source is V
1
 ´ 5 watts

With reference to Fig. 2, the relation between node voltages V
2
 and V

3
 is,

V
2
 − V

3
 = 6        ⇒        V

3
 = V

2
  – 6                         .....(1)

Let us short-circuit node-2 and node-3 to form a supernode as 

shown in Fig. 3.

The KCL equation of the supernode is formed as shown below:

V V V V V V

5 1 2 4
0

2 1 3 1 2 3−
+

−
+ + =

0.2V
2
 − 0.2V

1
 +  V

3
 − V

1
 + 0.5V

2  
+ 0.25V

3   
=  0

                            – 1.2V
1
 + 0.7V

2
 + 1.25V

3
  =  0

                   – 1.2V
1
 + 0.7V

2
 + 1.25 (V

2
 – 6) =  0

                               – 1.2V
1
 + 1.95V

2
 – 7.5  = 

  
0

.

. .

.

.

.

.
3.8462 0.6154V

V
V V

1 95

7 5 1 2

1 95

7 5

1 95

1 2
2

1
1 1` =

+
= + = +   .....(2)

With reference to Fig. 4, the KCL equation of node-1 is formed as shown below:

5
V V V V

5 1

1 2 1 3−
+

−
=

            0.2V
1
 − 0.2V

2
 +  V

1
 – V

3  
= 5

             1.2V
1
 – 0.2V

2
 – (V

2
 – 6) = 5

                            1.2V
1
 – 1.2V

2
  = 5 – 6

5�

Fig. 1.

+ E

1�

4�2�

5A

6V

5�

Fig. 2.

+ E

1�

4�2�

5A

6V

Is2

Reference

node

V1

V3V2

0

+

_
V1

Using equation (1)

Using equation (1)

5�

Fig. 4.

1�

5A

V
1

V V1 2

5

E V V1 3

1

E

V
2

V
3

Fig. 3 : Formation of a supernode.

2W

V V2 1

5

-

V V3 1

1

-

+ -

V2

2

V3

4
6V

V1 V1

0 0

4W

5W 1W

V3V2

2W

V V2 1

5

-

V V3 1

1

-

V2

2

V3

4

V1 V1

0 0

4W

5W 1W

Supernode

Þ
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1.2V
1
 – 1.2(3.8462 + 0.6154V

1
) = –1

        1.2V
1
 – 4.6154 – 0.7385V

1
 = –1

                                    0.4615V
1
 = 3.6154

.

.
7.834V V

0 4615

3 6154
1` = =

From equation (2),   V
2
 = 3.8462 + 0.6154 V

1 
= 3.8462 + 0.6154 × 7.834 = 8.6672 V

From equation (3),   V
3
 =  V

2
 – 6 = 8.6672 – 6 = 2.6672 V

Power supplied by 5 A source = V
1
 × 5 = 7.834 × 5 = 39.17 W

1.7.4   Node Analysis of Circuits Excited by AC Sources

(Nodal Analysis of Reactive Circuits)

Reactive circuits consist of resistances and inductive and capacitive reactances. Therefore, 

the voltages and currents of reactive circuits are complex (i.e., they have both real and imaginary 

components). In general, the elements of a circuit are referred to as impedances. In node analysis, 

the admittance (which is the inverse of impedance) is more convenient.

The general node basis matrix equation for reactive circuit is,

Y V = I       ..... (1.40)

where, Y = Admittance matrix of order n × n

 V = Node voltage matrix of order n × 1

 I = Source current matrix of order n × 1

 n = Number of nodes except the reference node.

Equation (1.40) can be expanded as shown in equation (1.41).

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

V

V

V

V

I

I

I

I

11

21

31

n1

12

22

32

n2

13

23

33

n3

1n

2n

3n

nn

1

2

3

n

11

22

33

nn

h h h

g

g

g

g

h h h

=

R

T

S
S
S
S
S
SS

R

T

S
S
S
S
S
SS

R

T

S
S
S
S
S
SS

V

X

W
W
W
W
W
WW

V

X

W
W
W
W
W
WW

V

X

W
W
W
W
W
WW
                                             ..... (1.41) 

Note :  The over bar is used to denote complex quantities. 

The formation of node basis matrix equation and the solution of node and branch voltages are 

similar to that of resistive circuits except that the solution of voltages involves complex arithmetic.

Therefore, the k
th

 node voltage of a reactive circuit with n nodes excluding reference is given by, 

V I1

j

n

jj

1

jkk
∆

∆=

=
l

l/
                                                                                             ..... (1.42)

where,  jk∆l  =  Cofactor of Yjk

 I jj    =  Sum of current sources connected to j th node

 ∆l   =  Determinant of admittance matrix.

Using equation (2)

Note : Refer equation (1.38)
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Instead of using equation (1.42) for solution of node voltages, the short-cut procedure for 

Cramer’s rule can be followed. 

Consider the node basis matrix equation for a circuit with three nodes except the reference node.

Y

Y

Y

Y

Y

Y

Y

Y

Y

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
 Let us define four determinants as shown below:

;

Y

Y

Y

Y

Y

Y

Y

Y

Y

I

I

I

Y

Y

Y

Y

Y

Y

11

21

31

12

22

32

13

23

33

1

11

22

33

12

22

32

13

23

33

∆ ∆= =l l

;

Y

Y

Y

I

I

I

Y

Y

Y

Y

Y

Y

Y

Y

Y

I

I

I

2

11

21

31

11

22

33

13

23

33

3

11

21

31

12

22

32

11

22

33

∆ ∆= =l l

Here,   ∆’  =  Determinant of admittance matrix

 ∆’
1
 = Determinant of admittance matrix after replacing the first column of admittance 

   matrix by source current column matrix

∆’
2
 = Determinant of admittance matrix after replacing the second column of 

   admittance matrix by source current column matrix

∆’
3
  = Determinant of admittance matrix after replacing the third column of admittance 

   matrix by source current column matrix.

Now, node voltages ,V V and V1 2 3  are given by,

V1
1

∆

∆
=

l

l

V2
2

∆

∆
=

l

l

V3
3

∆

∆
=

l

l

EXAMPLE 1.58

Determine the power consumed by the 10 Ω resistor in the circuit 

shown in Fig. 1, using nodal analysis.

SOLUTION

Let us convert the 100∠0o
 V  voltage source in series with 

3 + j4 Ω impedance into a current source IS  in parallel with 3 + j4 Ω 

impedance.

10W

1
0

4
5

o
A

Ð

1
0
0

0
o
V

Ð

3 + j4W

3W

4 j3- W

Fig. 1.

~ ~
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12 16 20 53.13I
j j

j A A
3 4
100 0

3 4
100o

o
S

+
+=

+
=

+
= − = −

The modified circuit is shown in Fig. 2. The circuit of Fig. 2 has three nodes. Let us choose one of the 

nodes as the reference node, which is denoted as 0. The voltage of 

the reference node is zero. Let the voltages of the other two nodes 

be V and V1 2  with respect to the reference node, as shown in Fig. 2.

The node basis matrix equation of the circuit of Fig. 2 is formed 

by inspection as shown below:

Y

Y

Y

Y

V

V

I

I

11

21

12

22

1

2

11

22

== = =G G G            ..... (1)

0.38 0.04Y
j j

j
3 4
1

4 3
1

10
1

11 =
+

+
−

+ = −

0.493 0.12Y
j

j
4 3

1
3
1

22 =
−

+ = +

0.16 0.12Y Y
j

j
4 3
1

12 21= = −

−

= − −c m

. ( . ) ( . )cos sinI j j20 53 13 20 53 13 20 53 13 12 16o
11 += − = − + − = −

(10 45 10 45 ) 7.071 7.071cos sinI j j10 45o o o
22 += − = − + = − −6 @

Note :  All calculations are performed using the calculator in complex mode. 

On substituting the above terms in equation (1), we get,

. .

. .

. .

. . . .

j

j

j

j

V

V

j

j

0 38 0 04

0 16 0 12

0 16 0 12

0 493 0 12

12 16

7 071 7 071
1

2

−

− −

− −

+

=
−

− −
= = =G G G                                                       ..... (2)

To determine the power consumed by the 10 Ω resistance, it is sufficient if we calculate V1  in equation (2).

In order to solve ,V1  let us define two determinants and 1∆ ∆l l  as shown below: 

. .

. .

. .

. .
;

. .

. .

. .

j

j

j

j

j

j

j

j

0 38 0 04

0 16 0 12

0 16 0 12

0 493 0 12

12 16

7 071 7 071

0 16 0 12

0 493 0 12
1∆ ∆=

−

− −

− −

+
=

−

− −

− −

+
l l

Now, the voltage V1  is given by, .V1
1

∆

∆
=

l

l

. .

. .

. .

. .
( . . ) ( . . ) [ 0.16 0.12]

j

j

j

j
j j j

0 38 0 04

0 16 0 12

0 16 0 12

0 493 0 12
0 38 0 04 0 493 0 12 2

#∆ =
−

− −

− −

+
= − + − − −l 6 @

            =  0.1809 − j0.0125

3 + j4W

1
0
0

0
o
V

Ð

~

+

_

Þ 3 + j4W
~Is

o
= Ð -20 5313. A

10W

1
0

4
5

o
A

Ð~
~

3
 +

 j
4
W

3W

4 j3- W

Fig. 2.

V1 V2

I
=

 2
0

5
3
.1

3
s

o
A

Ð
-

0 Reference node
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. .

. .

. .

( ) ( . . )

( . . ) ( . . )

j

j

j

j

j j

j j

12 16

7 071 7 071

0 16 0 12

0 493 0 12

12 16 0 493 0 12

7 071 7 071 0 16 0 12
1

#

#

∆ =
−

− −

− −

+

= − +

− − − −−

l
6

6

@

@

                          =  7.5532 − j8.4279

. .

. .
44.759 43.496 62.412 44.2V

j

j
j V

0 1809 0 0125

7 5532 8 4279 o
1

1
` +

∆

∆
= =

−

−
= − = −

l

l

Power consumed by the 10 Ω resistor .
389.5

V
W

10 10

62 412
2 2

1= = =

EXAMPLE 1.59

Find the voltages across various elements in the circuit shown in 

Fig. 1, using node method.

SOLUTION

The graph of the given circuit is shown in Fig. 2. It has six branches 

and three nodes. Hence, the circuit will have six voltages corresponding to 

six branches. The branch voltages depend on the node voltages. In node 

analysis, the voltage of one of the nodes is chosen as the reference and it is equal to zero volt. In the circuit 

of Fig. 3, the reference node is denoted as 0. The voltages of the other two nodes are denoted as V1and .V2  

The node basis matrix equation of the circuit shown in Fig. 3 is obtained by inspection as shown below:

Y

Y

Y

Y

V

V

I

I

11

21

12

22

1

2

11

22

== = =G G G                                                                                                             ..... (1)

. .Y
j j

j
3
1

3
1

5
1 0 333 0 13311 = + +
−

= −

 
I j5 90 5o
11 += =

0. 0.133Y
j j

j
3
1

5
1

6
1 16722 = +

−
+ = −

 
0I 10 10
o

22 += =
  

0.133Y Y
j j

j
3
1

5
1

12 21= = − +
−

=c m    

On substituting the above terms in equation (1), we get, 

. .

.

.

. .

j

j

j

j

V

V

j0 333 0 133

0 133

0 133

0 167 0 133

5

10
1

2

−

−

== = =G G G                                                  .....(2)

3W

1
0

0
o
A

Ð~~

5
9
0

o
A

Ð

j3W

- Wj5

Fig. 1.

6W

a b c d

e

f

Fig. 2.

0
Reference node

1
0

0
o
A

Ð~~

5
9
0

o
A

Ð

j3W

- Wj5

Fig. 3.

V1 V2

3W 6W

0 Reference node
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To solve the node voltages by Cramer’s rule, let us define three determinants , and1 2∆ ∆ ∆l l l  as 

shown below:

. .

.

.

. .
;

.

. .
;

. .

.

j

j

j

j

j j

j

j

j

j0 333 0 133

0 133

0 133

0 167 0 133

5

10

0 133

0 167 0 133

0 333 0 133

0 133

5

10
1 2∆ ∆ ∆=

−

−
=

−
=

−
l l l

 , , .Now the node voltages are givenby V and V1
1

2
2

∆

∆

∆

∆
= =

l l

. .

.

.

. .
( . . ) ( . . ) [ 0.133]

j

j

j

j
j j j

0 333 0 133

0 133

0 133

0 167 0 133
0 333 0 133 0 167 0 133 2

#∆ =
−

−
= − − −l 6 @

  

                                           = 0.0556  − j0.0665 

.

. .
( . . ) .

j j

j
j j j

5

10

0 133

0 167 0 133
5 0 167 0 133 10 0 1331 # #∆ =

−
= − −l 6 6@ @

           = 0.665 − j0.495

. .

.
( . . ) .

j

j

j
j j j

0 333 0 133

0 133

5

10
0 333 0 133 10 0 133 52 # #∆ =

−
= − −l 6 6@ @

                             = 3.995 − j1.33

. .

. .
9.302 2.2227 9.564 13.4V

j

j
j V

0 0556 0 0665

0 665 0 495 o
1

1
` +

∆

∆
= =

−

−
= + =

l

l

     . .

. .
41.3339 25.5163 48.575 3 .7V

j

j
j V

0 0556 0 0665

3 995 1 33
12

o2
+

∆

∆
= =

−

−
= + =

l

l

    

To find branch voltages

The branch voltages are denoted by , , , ,V V V V V and Va b c d e f ,

as shown in Fig. 4. The polarites of branch voltages are chosen arbitrarily. 

The branch voltages depend on the node voltages. The relation between 

branch and node voltages are obtained with reference to Fig. 4 as shown 

below:

9.564 13.4V V V Voa b 1 += = =

. 3 .V V V V48 575 1 7
o

c d 2 += = =

V V V Ve f 2 1= = −

               = (41.3339 + j25.5163) − (9.302 + j2.2227)

                = 32.0319 + j23.2936 = 39.606∠36
o

 V

1.7.5    Node Analysis of Circuits Excited by Independent and Dependent Sources

Node analysis can be extended to circuits excited by both dependent and independent 

sources. When a circuit has a dependent source, the dependent variable should be related to node 

voltages and then the dependent source should be treated as a source while forming the node basis 

matrix equation.

If a dependent source depends on a voltage V
x
 in some part of a circuit then the voltage V

x
 

should be expressed in terms of node voltages. If a dependent source depends on a current I in 

some part of a circuit then the current I
x
 should be expressed in terms of node voltages.

3W

1
0

0
o
A

Ð

~~

5
9
0

o
A

Ð

j3W

- Wj5

Fig. 4.

6W

V1 V2

+-

- +

+

-

+

- -

+ +

-

Va Vb Vc Vd

0

Ve

Vf

Reference node
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Circuits with Dependent Current Source

When a circuit has a dependent current source then express the value of the source in terms 

of node voltages. While forming the node basis matrix equation, enter the value of the dependent 

source at the appropriate location in the source matrix on the right-hand side.

Now some of the terms in the source matrix on the right-hand side will be a function of 

node voltages and so they can be transferred to the left-hand side with the opposite sign. Then the 

node basis matrix equation can be solved by Cramer’s rule. This procedure is explained here with 

an example.

Consider a circuit with three nodes excluding the reference node and with a dependent 

current source between node-2 and the reference node. Let the node basis matrix equation without 

considering the dependent current source be as shown in equation (1.43).

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
                                                 

.....(1.43)

Let the value of the dependent current source when expressed in terms of node voltages be 

3V
1
 − 3V

3
. Let the dependent current source drive the current towards node-2. Hence, the value 

of the dependent source 3V
1
 − 3V

3
 is added as a positive quantity to the element in the second row 

of the source matrix as shown in equation (1.44).

V V3 3

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

1

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

3= + −> > >H H H
                         

.....(1.44)

From row-2 of equation (1.44), we get,

      G
21

V
1
 + G

22
V

2
 + G

23
V

3
 = I

22
 + 3V

1
 − 3V

3
 

      G
21

V
1
 − 3V

1
 + G

22
V

2
 + G

23
V

3
 + 3V

3
 = I

22

∴  (G
21

 − 3)V
1
 + G

22
V

2
 + (G

23
 + 3)V

3
 = I

22
      ..... (1.45)

Using equation (1.45), equation (1.44) can be written as shown in equation (1.46).

3 3

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

− + => > >H H H                               ..... (1.46)

In equation (1.44), the terms 3V
1
 and –3V

3
 on the right-hand side are a function of node 

voltages V
1
 and V

3
, respectively. In equation (1.46) these two terms are transferred to the left-hand 

side with the opposite sign. Now equation (1.46) can be solved by Cramer’s rule.
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Circuits with Dependent Voltage Source

When a circuit has a dependent voltage source then express the value of the source in  

terms of node voltages. If the dependent voltage source has a series impedance then it can be 

converted into a dependent current source with parallel impedance and the analysis can be proceeded .

If the dependent voltage source does not have series impedance then it cannot be converted 

into a current source. In this case the value of the voltage source is related to the node voltages. 

Then for each voltage source one node voltage is eliminated by expressing the node voltage in 

terms of the source voltage and other node voltages. The node basis matrix equation can be formed 

by inspection by taking the current delivered by the dependent voltage source as unknown. While 

forming the node basis matrix equation, the current of the voltage sources should be entered in 

the source matrix.

Now in the matrix equation some node voltages will be eliminated and an equal number of 

unknown source currents will be introduced. Thus, the number of unknowns will remain the same 

as n, where n is the number of nodes in the circuit except the reference node. On multiplying the 

node basis matrix equation, we get n number of equations which can be solved to give a unique 

solution for unknowns and hence the node voltage.

EXAMPLE 1.60

Determine the node voltages of the circuit shown in Fig. 1.

SOLUTION

The given circuit has three nodes excluding the reference. The 

general node basis matrix equation of a circuit with three nodes excluding 

the reference is shown in equation (1).

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
                   .....(1)

With reference to Fig. 1, the elements of conductance matrix and source current matrix are obtained 

as shown below : 

0.6 0.1 4G I
2

1

10

1

10

1
11 12 21 11= + = = − =G G= = −

3I I= −0.35 0G G G
10

1

4

1
x22 13 31 22= + = = =

3I I=0.25G G= = − = −0.45G
4

1

5

1

4

1
33 23 32 33 x

= + =

On substituting the above terms in equation (1), we get,

.

.

.

.

.

.

. 3

V

V

V

I

I

0 6

0 1

0

0 1

0 35

0 25

0

0 25

0 45

4

3

1

2

3

x

x

−

−

−

− = −> > >H H H
                                                              ..... (2)

10� 4�

2�
5�

4A

V
1

V
2

V
3

I
x

3I
x

0

Fig. 1.
Reference node
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Let us express the value of dependent current source in terms of node voltages. With reference to  

Fig. 1, we can write,
   

     

; 3 3 0.6I
V

I
V

V
5 5

x
3

x
3

3` #= = =
  

   .....(3)

On substituting for 3I
x
 from equation (3) in equation (2), we get,

.

.

.

.

.

.

.

.

.

V

V

V

V

V

0 6

0 1

0

0 1

0 35

0 25

0

0 25

0 45

4

0 6

0 6

1

2

3

3

3

−

−

−

− = −> > >H H H
    .....(4)

The terms − 0.6V
3
 and +0.6V

3
 in the source matrix on the right-hand side of equation (4) can be 

transferred to the left-hand side with the opposite sign as shown in equation (5).

.

.

.

.

.

. .

. .

V

V

V

0 6

0 1

0

0 1

0 35

0 25

0

0 25 0 6

0 45 0 6

4

0

0

1

2

3

−

−

−

− +

−

=> > >H H H                                                        ..... (5)

.

.

.

.

.

.

.

V

V

V

0 6

0 1

0

0 1

0 35

0 25

0

0 35

0 15

4

0

0

1

2

3

−

−

− −

=> > >H H H                                    
..... (6)

To solve the node voltages V
1
, V

2
 and V

3
, let us define four determinants , and 3,1 2∆ ∆ ∆ ∆l l l l  as 

shown below: 

.

.

.

.

.

.

.

.

.

.

.

.

0 6

0 1

0

0 1

0 35

0 25

0

0 35

0 15

4

0

0

0 1

0 35

0 25

0

0 35

0 15

1∆ ∆= −

−

− −

=

−

− −

l l

.

. .

.

.

.

.

.

.

0 6

0 1

0

4

0

0

0

0 35

0 15

0 6

0 1

0

0 1

0 35

0 25

4

0

0

2 3∆ ∆= −

−

= −

−

−

l l

The determinants are evaluated by expanding along the first row and node voltages are solved by  

Cramer’s rule.

.

.

.

.

.

.

.

0.6 . ( . ) ( . ) .

( 0.1) . ( . ) 0

0 6

0 1

0

0 1

0 35

0 25

0

0 35

0 15

0 35 0 15 0 25 0 35

0 1 0 15 0

# # #

# #

∆ = −

−

− −

= − − −

− − − − − +

. . .0 021 0 0015 0 0225= + =

l 6

6

@

@

.

.

.

.

.

4 . ( . ) ( . ) . 0 0 0.14

4

0

0

0 1

0 35

0 25

0

0 35

0 15

0 35 0 15 0 25 0 351 # # #∆ =

−

− −

= − − − − + =l 6 @

.

. .

.

4 . ( . ) 0 0.06

0 6

0 1

0

4

0

0

0

0 35

0 15

0 0 1 0 15 02 # #∆ = −

−

= − − − − + = −l 6 @

.

.

.

.

.

0 4 . ( . ) 0.1

0 6

0 1

0

0 1

0 35

0 25

4

0

0

0 0 1 0 25 03 # #∆ = −

−

−

= − + − − − =l 6 @
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Now, the node voltages are,

.

.
6.2222V V

0 0225

0 14
1

1

∆

∆
= = =

l

l

.

.
.V V

0 0225

0 06
2 66672

2

∆

∆
= =

−
= −

l

l

.

.
.V V

0 0225

0 1
4 44443

3

∆

∆
= = =

l

l

EXAMPLE 1.61

Determine the power delivered to the 10 Ω resistor in the circuit 

shown in Fig. 1.

SOLUTION

The given circuit has four nodes. Let us choose one of the 

nodes as reference. Let the voltage of the other three nodes be V
1
, 

V
2
 and V

3
 as shown in Fig. 1. Let I

s2
 be the current delivered by the 

dependent voltage source.

Now, power delivered to 10 Ω resistor = V
10

3
2

The general node basis matrix equation of a circuit with three 

nodes excluding the reference is given by equation (1).

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H                    .....(1)

With reference to Fig. 1, the elements of conductance matrix 

and source current matrix can be formed as shown below:

10I = −.

.

.

.

. 10 0.3

G

G

G

G G

G G

G G

I I

I V

2

1

5

1
0 7

5

1

4

1
0 45

4

1

10

1
0 35

5

1
0 2

0

4

1
0 25

11

22

33

12 21

13 31

23 32

11

22 s2

33 x

= + =

= + =

= + =

= = − = −

= =

= = − = −

=

= +

On substituting the above terms in equation (1), we get,

.

.

.

.

.

.

. .

V

V

V

I

V

0 7

0 2

0

0 2

0 45

0 25

0

0 25

0 35

10

10 0 3

1

2

3

s2

x

−

−

−

− =

−

+

> > >H H H                                                                  ..... (2)

Let us express the value of dependent sources in terms of node voltages. With reference to Fig. 2, we 

can write,

V
x
 = −V

1
      ⇒      0.3V

x
 = −0.3V

1                                        
..... (3)

0.5I
V

V
2

1
1x = − = −         

..... (4)

5� 4�

+

_

2� Vx Ix
+

E
0.3Vx 10�

Ix

10A

Fig. 1.

+

E

V2 V3

Is2

0 Reference node

5� 4�

+

_

2� Vx Ix
+

E
0.3Vx 10�

Ix

10A

Fig. 2.

+

E

V1
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Also, with reference to Fig. 2, we get,

V
2
 = I

x
           ..... (5)

From equations (4) and (5), we can write,

V
2
 = −0.5V

1
      ..... (6)

Using equations (3) and (6), equation (2) can be written as shown in equation (7).

.

.

.

.

.

.

.

.

.

V

V

V

I

V

0 7

0 2

0

0 2

0 45

0 25

0

0 25

0 35

0 5

10

10 0 3

1

1

3

s2

1

−

−

−

− − =

−

−

> > >H H H                                                                       
 
..... (7)

From row-1 of equation (5), we get,

0.7V
1
 − 0.2 × (−0.5V

1
) = −10       ⇒       0.8V

1
 = −10      ⇒       

.
12.5V V

0 8

10
1 =

−

= −

From row-3 of equation (5), we get,

−0.25 × (−0.5V
1
) + 0.35V

3
 = 10 − 0.3V

1

        0.125V
1
 + 0.35V

3
 = 10 − 0.3V

1
 

           0.35V
3
 = 10 − 0.3V

1
 − 0.125V

1

          
.
.

.

. ( . )
.V V V

0 35
10 0 425

0 35

10 0 425 12 5
43 751

3`
#

=

−

=

− −

=

10
( . )

191.40625Power delivered to resistor
V

W
10 10

43 75 2
3
2

` Ω = = =

EXAMPLE 1.62

Determine the voltage V
x
 in the circuit shown in 

Fig. 1, using node analysis.

SOLUTION

The given circuit has four nodes. Let us choose one of the 

nodes as reference. Let voltages of the other nodes with respect to the 

reference be V
1
, V

2
 and V

3
 as shown in Fig. 2. Let Is2 be the current 

delivered by the dependent voltage source. Now, the voltage V
x
 = V

1
.

The general node basis matrix equation of a circuit with three 

nodes excluding the reference is given by equation (1).

G

G

G

G

G

G

G

G

G

V

V

V

I

I

I

11

21

31

12

22

32

13

23

33

1

2

3

11

22

33

=> > >H H H
            

.....(1)

(AU Dec’15, 16 Marks)

+
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+

_

Vx 4�
2A
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5Vx

Fig. 1.
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V2
V301�

4A

+

_

Vx 4� 2A

1�

2� 2�

5Vx

Fig. 2.
Is2

Reference node
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With reference to Fig. 2, the elements of conductance matrix and source current matrix can be formed 

as shown below :

1.25 0.5 4 2 6

1.5 0.5 4

1.5 0 2

G G G I

G G G I I

G G G I I

2

1

4

1

2

1

2

1

2

1

1

1

2

1

2

1

1

1

11 12 21 11

22 13 31 22 s2

33 23 32 33 s2

= + + = = = − = − = + =

= + = = = − = − = −

= + = = = = − −

On substituting the above terms in equation (1), we get,

.

.

.

.

.

.

.

V

V

V

I

I

1 25

0 5

0 5

0 5

1 5

0

0 5

0

1 5

6

4

2

1

2

3

s2

s2

−

−

− −

= −

− −

> > >H H H
                                                                

..... (2)

With reference to Fig. 2, we can write,

V
x
 = V

1   
      ..... (3)

  V
2
 − V

3
 = 5V

x     
   ..... (4)

From equation (4), we get,

     V
2
 = 5V

x
 + V

3
 

∴   V
2
 = 5V

1
 + V

3
                                                                                 ..... (5)

On substituting for V
2
 from equation (5) in equation (2), we get,

.

.

.

.

.

.

.

V

V V

V

I

I

1 25

0 5

0 5

0 5

1 5

0

0 5

0

1 5

5

6

4

2

1

1 3

3

s2

s2

−

−

− −

+ = −

− −

> > >H H H
                                                               

..... (6)

From row-1 of equation (6), we get, 

1.25V
1
 − 0.5(5V

1
 + V

3
) − 0.5V

3
 = 6

∴   −1.25V
1
 − V

3
 = 6      ⇒       V

3
 = −1.25V

1
 – 6   ..... (7)

From row-2 of equation (6), we get,

−0.5V
1
 + 1.5(5V

1
 + V

3
) = I

s2
 − 4

  7V
1
 + 1.5V

3
 = I

s2
 − 4 ..... (8)

From row-3 of equation (6), we get,

−0.5V
1
 + 1.5V

3
 = −I

s2
 − 2         ..... (9)

On adding equations (8) and (9), we get,

7V
1
 + 1.5V

3
 − 0.5V

1
 + 1.5V

3
 = I

s2
 − 4 − I

s2
 − 2

6.5V
1
 + 3V

3
 = −6   

6.5V
1
 + 3(− 1.25V

1
 – 6) = –6 

2.75 18 6V1` − = −     ⇒     
.

4.3636V V
2 75

6 18
1 =

− +
=

Since, V
x
 = V

1
,   V

x
 = 4.3636 V  

Using equation (3)

Using equation (7)
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1.8    Summary of Important Concepts

1. An electric circuit consists of parameters - R, L and C and sources connected in a particular  

  combination.

2. A circuit without sources is called a network.

3. The sources in which the current/voltage does not change with time are called direct  

  current sources.

4. The networks excited by dc sources are called dc circuits.

5. The elements which can deliver energy are called active elements.

6. The elements which consume energy either by absorbing or storing are called passive  

  elements.

7. Resistance, inductance and capacitance are called fundamental parameters.

8. The voltage/current of an independent source does not depend on voltage/current in any  

  part of the circuit.

9. The voltage/current of a dependent source depends on the voltage/current in some part of  

  the same circuit.

10. A node is the meeting point of two or more elements.

11. The principal node is the meeting point of more than two elements.

12. The path between any two nodes is called a branch.

13. A path that starts and ends at a same node after travelling through some part of a circuit is  

  called a closed path.

14. The connection of two or more elements in which the same current flows is called series  

  connection.

15. The connection of two or more elements such that same voltage exists across them is called  

  parallel connection.

16. When three elements meet at a node, then they are said to be in star or T-connection.

17. When three elements are connected to form a closed path with a node in between any two  

  elements then they are said to be in delta or P-connection.

18. An open path or path of infinite resistance between two nodes is called an open circuit.

19. A closed path of zero resistance between two nodes is called a short circuit.

20. When current leaves an element from the positive terminal, it delivers energy.

21. When current enters an element at the positive terminal, it absorbs energy.

22. Network topology is the study of properties of a network which are unaffected when we  

  stretch, twist or distort the size and shape of the network.

23. A graph describes the topological properties of a network and consists of nodes and  

  branches of a network.

24. When arrows are placed on the branches of a graph, it is called an oriented graph.
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25. A tree is a subgraph obtained by removing some branches of a graph such that all nodes of  

  the graph are included without a closed path.

26. A tree has N nodes and N – 1 branches.

27. The branches removed to form a tree are called links or chords and the branches of a tree  

  are called twigs.

28. In a graph with B branches and N nodes, the number of links is, L  =  B – N + 1.

29. The cotree is the complement of a tree and it is obtained by connecting the links to the  

  nodes of a graph.

30. The branch currents and voltages are called network variables.

31. The arrow placed on a branch is called reference or orientation.

32. In a branch, a single orientation is used to represent current and voltage direction.

33. When reference is placed on a branch by treating it as load then the reference is called load  

  set reference.

34. In a graph, link currents are independent current variables and twig currents are  

  dependent current variables.

35. In a graph, twig voltages are independent voltage variables and link voltages are  

  dependent voltage variables.

36. A single-loop circuit is one which has only one closed path.

37. A single node pair circuit is one which has only one independent node and a reference node.

38. Ohm’s law states that voltage across a conductor is directly proportional to the current  

  through it.

39. Kirchhoff’s Current Law (KCL) states that the algebraic sum of currents in a node is zero. 

  By KCL, the sum of currents entering a node = Sum of currents leaving a node.

40. Kirchhoff’s Voltage Law (KVL) states that the algebraic sum of voltages in a closed path 

  is zero. By KVL, the sum of voltage raise in a closed path = Sum of voltage fall in a  

  closed path.

41. In a source, when voltage is constant and current varies with load then it is called a voltage  

  source.

42. In a source, when current is constant and voltage varies with load then it is called a  

  current source.

43. In an ideal voltage source the source resistance is zero.

44. In an ideal current source the source resistance is infinite.

45. A voltage source with internal resistance R
s
 can be represented by an ideal voltage source 

  in series with an external resistance of value R
s
.

46. A current source with internal resistance R
s
 can be represented by an ideal current source in 

  parallel with an external resistance of value R
s
.
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47. A voltage source E in series with resistance R
s
 can be converted into an equivalent current 

  source I
s
 (I

s
  =  E/R

s
) parallel with resistance R

s
.

48. A current source I
s
 in parallel with resistance R

s
 can be converted into an equivalent voltage 

  source E (E  =  I
s
 R

s
) in series with resistance R

s
.

49 When a source voltage depends on a voltage in some part of the same circuit then the  

  source is called Voltage Controlled Voltage Source (VCVS).

50. When a source voltage depends on a current in some part of the same circuit then the  

  source is called Current Controlled Voltage Source (CCVS).

51. When a source current depends on a voltage in some part of a same circuit then the  

  source is called Voltage Controlled Current Source (VCCS).

52. When a source current depends on a current in some part of a same circuit then the  

  source is called Current Controlled Current Source (CCCS).

53. Power is the rate of work done and energy is the total work done.

54 Commercially, one kilowatt-hour of electrical energy is called one unit.

55. Resistance is the property of an element by which it opposes the flow of current.

56. The voltage-current relation in a resistance is governed by Ohm’s law. If V and I are  

  voltage and current in a resistance is R then, V  =  IR.

57. Current division rule: If I is the total current through two parallel connected resistances R
1
 

  and R
2
 then the currents I

1
 and I

2
 flowing through R

1
 and R

2
 are,

  I I
R R

R
and I I

R R

R
1

1 2

2
2

1 2

1
# #=

+
=

+

58. Voltage division rule: If V is the total voltage across two series connected resistances R
1
 

  and R
2
 then the voltages V

1
 and V

2
 across R

1
 and R

2
 are,

  V V
R R

R
and V V

R R

R
1

1 2

1
2

1 2

2
# #=

+
=

+

59. Mesh is defined as a closed path which does not contain any other loops within it.

60. Mesh analysis is used to solve independent current variables of a circuit.

61. The number of current variables in a circuit is equal to the number of branches.

62. The number of independent currents in a circuit is given by the number of links in the  

  graph of a circuit.

63. The number of links L in a circuit with B branches and N nodes is given by, L =  B – N + 1.

64. In mesh analysis, the independent currents are solved by writing KVL equations for various 

  meshes of a circuit.
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65. The mesh basis matrix equation for a resistive circuit is,
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66. The mesh currents are solved by Cramer’s rule.

67. The kth mesh current I
k
 by Cramer’s rule is,

  
I E

1

j

m

1

k jk jj
∆

∆=

=

/

     where,  m  =  Number of meshes in the circuit. 

 D
jk 

= Cofactor of R
jk
.

 E
jj
 = Sum of voltage sources in mesh-j.

 D = Determinant of resistance matrix.

68. For a circuit with three meshes, the mesh currents by Cramer’s rule are,
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69. The mesh currents for a circuit with three meshes using the short-cut procedure for Cramer’s 

  rule are,
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70. When a current source lies common to two meshes then the common current source can be  

  removed for analysis purpose and the resultant two meshes can be considered as one   

  single mesh called supermesh.

71. Node analysis is used to solve the independent voltage variables of a circuit.

72. The number of voltage variables in a circuit is equal to the number of branches.

73. The number of independent voltages in a circuit is given by the number of twigs (or tree  

  branches) in the graph of a cirucit.

74 The number of twigs (or tree branches) n in a circuit with N nodes is given by, n = N – 1.

75. In node analysis, the independent voltages are solved by writing KCL equations for  

  the various nodes of a circuit.

76. In  node analysis, one of the nodes is chosen as the reference node and its voltage is  

  considered as zero and all other node voltages are solved with respect to the reference node.
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77. The node basis matrix equation for a resistive circuit is,
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78. The node voltages are solved by Cramer’s rule.

79. The kth node voltage V
k
 by Cramer’s rule is,

 

V I1

j 1

n

k jk jj
∆

∆=

=
l

l/

where, n = Number of independent nodes in a circuit

 jk∆l  = Cofactor of G
jk

 I
jj
 = Sum of current sources connected to node-j

 ∆l = Determinant of conductance matrix.

80. For circuit with three nodes excluding the reference node, the node voltages by  

  Cramer’s rule are,
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81. The node voltages of a circuit with three nodes excluding the reference node using the  

  short-cut procedure for Cramer’s rule are,
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82. When a voltage source is connected between two nodes it can be short-circuited for  

 analysis purpose and the short-circuited two nodes can be considered as one single node  

 called supernode.
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1.9    Short-answer Questions

Q1.1 What is the difference between a circuit and a network?

A network will not have any independent sources whereas a circuit will have independent 

sources. When independent sources are connected to a network it becomes a circuit.

Q1.2 Define active and passive elements. 

The elements which can deliver energy are called active elements. The elements which 

consume energy either by absorbing or storing are called passive elements.

Q1.3 List the active and passive elements of an electric circuit.

The active elements of electric circuits are voltage source and current source. (Both 

independent and dependent source.) The passive elements of electric circuits are resistor, 

inductor and capacitor.

Q1.4 Define the dependent source of a circuit.

If the electrical energy supplied by a source depends on the voltage or current in some other 

part of the same circuit then it is called a dependent source.

Q1.5 What is node and principal node?

In a circuit the meeting point of two or more elements is called a node. If more than two 

elements meet at a node then the meeting point is called the principal node.

Q1.6 Define the branch of a circuit.

  The path between any two nodes in a circuit is called a branch.

Q1.7 Define series and parallel connection.

If two or more elements are connected such that the current through them is the same then 

the connection is called a series connection.

If two or more elements are connected such that the voltage across them is the same then 

the connection is called a parallel connection.

Q1.8 What is meant by open circuit and short circuit?

A path of infinite resistance between any two nodes is called an open circuit. The current 

through an open circuit is zero.

A path of zero resistance between any two nodes is called a short circuit. The voltage across 

a short circuit is zero.

Q1.9 Define Ohm’s law.

Ohm’s law states that the potential difference (or voltage) across any two ends of a conductor 

is directly proportional to the current flowing between the two ends provided the temperature 

of the conductor remains constant.

Q1.10  What are the limitations of Ohm’s law?

(i)   Ohm’s law cannot be applied for non-linear elements.

(ii)   Ohm’s law cannot be applied to a unilateral network which has diodes and transistors.

Q1.11 Define Kirchhoff’s laws.

  1. Kirchhoff’s current law states that the algebraic sum of currents in a node is zero.

  2. Kirchhoff’s voltage law states that the algebraic sum of voltages in a closed path is zero.

(AU Dec’16, 2 Marks)
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Q1.12 Draw the characteristics of an ideal and a practical voltage source.

Q1.13 Draw the characteristics of an ideal and a practical current source.

Q1.14 A 10 A current source has a source resistance of 100  Ω. What will be the equivalent voltage 

  source?

  Solution

  The current source can be converted into an equivalent voltage source as shown in Fig. Q1.14.1 

  below:

Q1.15 Convert the voltage source shown in Fig. Q1.15.1 into current source.

  Solution

  Given that, E  =  20 V, R
s
  =  5 Ω

  , 4Now I
R
E A

5
20

s
s

= = =

  The voltage source of Fig. Q1.15.1 can be represented by an equivalent current source of 

  value 4 A with a source resistance of 5 Ω in parallel, as shown in Fig. Q1.15.2.

Q1.16 A 2 kW, 220 V water heater is used to heat a water tank for 45 minutes. What will be the  

  number of  units of energy consumed?

  Solution

  Energy consumed Power Time#=

2 1.5 1.5HourskW kWh units
60

45
#= = =

10A 100W

100W

10 100

= 1000V

´

A

B

A

Fig. Q1.14.1 : Current source to voltage source conversion.
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Fig. Q1.12.1 : Characteristic of
an ideal voltage source.

Fig. Q1.12.2 : Characteristic of
a practical voltage source.

I
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V

Fig. Q1.13.1 : Characteristic of
an ideal current source.

Fig. Q1.13.2 : Characteristic of
a practical current source.
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Q1.17  An electrical appliance consumes 1.2 kWh in 30 minutes at 120 V. What is the current  

    drawn by the appliance?

Solution

Energy consumed in 30 minutes = 1.2 kWh

Energy consumed in 1 hour (60 minutes) = 1.2 2.4 kWh
30

60
# =

∴ Power rating of the device, P = 2.4 kW  =  2400 W

∴ Current,  20I
V

P A
120

2400= = =

Q1.18 What is a graph?

  A graph is a topological description of a network and consists of nodes and branches.

Q1.19 Define tree, link and cotree.

  Tree:

 A tree is a subgraph and can be defined as a connected open set of branches which 

includes all nodes of a given graph.

  Link:

   The branches removed from the graph of a network to form a tree are called links.

  Cotree:

   The cotree is the complement of a tree.

Q1.20 What are network variables?

  Branch currents and voltages are called network variables. Branch currents are 

  called current variables and branch voltages are called voltage variables.

Q1.21 Determine the value of current I in the circuit shown in  

  Fig. Q1.21.

  Solution

  The voltage at node-A = 8 V

  Current through I A2
2

8 2 3resistance, 2Ω =
−

=

  , 2By KCL l I2+ =    ⇒ 2 1I I A3 22= − = − =

Q1.22 Obtain the current in each branch of the  

  network shown in Fig. Q1.22.1. using  

  Kirchhoff’s Current Law.

Solution

Let V
A 

be the voltage at node-A.

(AU Dec’14, 2 Marks)
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By, KCL at node-A we get,
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Q1.23 Find the voltage across AB in the circuit shown  

  in Fig. Q1.23.1.

  Solution

  With reference to Fig. Q1.23.2, by voltage 

  division rule, 

  ,Voltage across resistor V V4
4 3
7 4 42
#

Ω =
+

=

  
,Voltage across resistor V V8 10

8 2
8 83 #Ω =
+

=

  On tracing from A to B, as shown in Fig. Q1.23.2.

        V
AB

  =  V
2
  +  5  +  V

3
  =  4  +  5  +  8  =  17 V

Q1.24 Determine the currents I
1
, I

2
, I

3
 and I

4
  in the 

  circuit shown in Fig. Q1.24.

  Solution

  By KCL at node-A,

   I
1
  +  2  +  5  =  0    ⇒    I

1
  =  −7 A

  At node-B, 

   I
2
  =  2  +  4  =  6 A

  At node-C,

   4  +  I
4
  +  1  =  0    ⇒     I

4
  =  −5 A

  At node-D,

    I
3
  =  5  +  1  =  6 A

(AU June’16 & May’17, 8 Marks)

20 V
10� 8 V

+
E

5� 2 �

+
E

V = 20
1

V

I
V

A

1

20

5
a

E

I
V

A

2

8

2
a

E

I
VA

3 10
a

V
A V = 8

2
V

1 2

Fig. Q1.22.2.

A

8� 2�4�

3�

7V 5

V

10V
A

B

Fig. Q1.23.1.

+ E

+
E

+
E

+ E

+

E

+

E +

E

V
4V

3
V

2

V
1

8� 2�4�

3�

7V 5

V

10V
A

B

Fig. Q1.23.2.

+ E

+
E

+
E

I
2

I
1

I
2

I
1

I
3 I

4

5A

A B

CD

2A

1A

4A

Fig. Q1.24.



1. 144                                     Circuit Theory

Q1.25 Find the current I and voltage across 30 W 

  resistor in the circuit shown in Fig. Q1.25.1.

  Solution

  The given circuit is redrawn as shown in 

  Fig. Q1.25.2.

  

  Now, by KVL,

   40  +  8 I  +  2 I  +  30 I  =  100

             8 I  +  2 I  +  30 I  =  100 − 40

   40 I = 60   ⇒    .I A
40

60
1 5= =

Voltage across 30 Ω resistor  =  30 I  =  30  ´  1.5  =  45 V

Q1.26 Determine the current through each resistor in the circuit  

  shown in Fig. Q1.26.

Solution

Since three equal resistances are connected in parallel, the 

current will divide equally in three parallel paths.

4I I I A
3

12
1 2 3

` = = = =

4 4 4 16V I V
s 1

` # #= = =

Q1.27 What will be the length of a copper rod having a cross-section of 1 cm2 and a resistance of 1W ?

  Take resistivity of copper as 2 ´ 10−8 W-m.

  Solution

 , , ,Given that R a cm m m1 1 1 10 2 104 82 2
# #ρΩ Ω −= = = =- -

  

  
,We know that R

a

l
Resistance,

ρ
=

 

,

5000 5

Length Ra
l

m km
2 10

1 1 10
8

4

`

#

# #

ρ
=

= = =
-

-

Q1.28 What is a single loop circuit?

  A single loop circuit is one which has only one closed path. 

Q1.29 Define single node pair circuit.

  A single node pair circuit is one which has only one independent node and a reference node.

(AU June’14, 8 Marks)
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Q1.30 Distinguish between mesh and loop of a circuit.

  Loop: A loop is any closed path in a circuit in which no node is encountered more than once. A 

             loop may contain other paths inside it.

  Mesh : A mesh is a closed path which does not contain any other loops within it.

  Consider the circuit shown in Fig. Q1.30.

  The closed path ABCDA is a loop. It has two more closed  

  paths ABDA and BCDB inside it.

  The closed paths ABDA and BCDB are meshes which have no  

  other closed paths inside them.

Q1.31 What is mesh analysis?

  Mesh analysis is a useful technique to solve independent current variables of a circuit.

Q1.32 When is mesh analysis preferred to solve the currents?

  Mesh analysis is preferred to solve current variables when a circuit is excited by 

  only voltage sources. Applying mesh analysis is straightforward and easier in circuits excited  

  by only voltage sources. However, mesh analysis can also be extended to circuits excited by  

  both voltage and current sources.

Q1.33 How is mesh analysis performed?

  In a circuit with B branches and N nodes the number of independent currents is given by, 

  m  =  B – N + 1. Hence, m number of meshes are selected in the given circuit and one mesh  

  current is attached to each mesh.

  For each mesh a KVL equation is formed and then the m number of mesh equations are  

  solved by Cramer’s rule to get a unique solution for mesh currents.

Q1.34  How are mesh currents solved using the mesh basis matrix equation?

   Consider the mesh basis matrix equation, 

R I = E

  On premultiplying the above equation both sides by R −1 we get,

R−1 R I  =  R−1 E

      U I  =  R−1 E       R−1 R = U = Unit matrix

    ∴  I   =  R−1 E        UI = I   

  The above equation will be the solution for mesh currents and the kth  mesh current is,

......I E E E E E1
11 22 33 mm

m

j 1

k
1k 2k 3k mk

jk jj
∆

∆

∆

∆

∆

∆

∆

∆

∆
∆= + + + + =

=

/

  The above equation for mesh currents is also called Cramer’s rule. 

Fig. Q1.30.
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Q1.35  What is supermesh?

  When a current source lies common to two meshes then the common current source can be  

   removed for analysis purpose and the resultant two meshes can be considered as one single  

   mesh called a supermesh.

Q1.36  What is the value of E in the circuit shown in Fig. Q1.36 if the value of I
2
 is zero?

 Solution

 The mesh basis matrix equation by inspection is,

4

2

2

5

I

I

10

E

1

2

=
−

−= = =G G G
 Here, I .2

2

∆

∆
=   Therefore, for I

2
  =  0  ,   ∆

2
  =  0

 
Now,

4

2

10

E
4E 202 = = +∆

−

4E 20 0` + =      ⇒    4E 20= −      ⇒     VE
4

20
5= =

− −

Q1.37  Find the value of E
1
 and E

2
 in the circuit shown in Fig. Q1.37.

 Solution

 The mesh basis matrix equation by inspection is,

5

4

4

9

I

I

E E

E

1

2

1 2

2−

−

=

−> > >H H H
 On substituting for I

1
  =  3 A and I

2
  =  1 A in the above equation we get,

E E

E

5

4

4

9

3

1

1 2

2−

−

=

−> > >H H H
 From row-2 we get,

–4 ´ 3 + 9 ´ 1 = E
2
    ⇒    E

2
 = –3 V

 From row-1 we get,

5 ´ 3 – 4 ´ 1 = E
1
 – E

2
    ⇒   11  =  E

1
 – E

2
    

∴    E
1
  =  11 + E

2
  =  11 – 3  =  8 V

Q1.38  Find the value of I
2
 and E

2
 in the circuit shown in Fig. Q1.38.

 Solution

 The mesh basis matrix equation by inspection is,

7

5

5

9

I

I

9

E

1

2 2

=
−

−
−

> > >H H H    ⇒    
7

5

5

9

2

I

9

E2 2

=
-−

−> > >H H H
 From row-1 we get,

27 2 5I 9# =−     ⇒    5I 14 92 = −     ⇒    I
5

14 9
1A2 = =

−

Fig. Q1.36.
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 From row-2 we get,

–5 ´ 2 + 9I
2
  =  −E

2
    ⇒    −E

2
  =  –10 + 9 ´ 1 = –1 V     ⇒    E

2
 = 1V

Q1.39  In the circuit shown in Fig Q1.39, find the power delivered to 1Ω resistor.

 Solution

 The mesh basis matrix equation is,

2 4

4

4

4 1

I

I

16 5

5 10

1

2

+

−

−

+

=
−

−
> > >H H H    ⇒    

6

4

4

5

I

I

11

5

1

2−

−

=

−

> > >H H H

 

Now,
6

4

11

5
6 5 4 11 142 # #∆ =

− −
= − − − =a ak k

6

4

4

5
6 5 4 14

2

#∆ =
−

−
= − − =a k

 
I

14

14
12

2

∆

∆
= = =

 Power delivered to 1 Ω resistor  =  I2
2  ´ 1  =  1 ´ 1  =  1 W

Q1.40  Find the current I in the circuit shown in Fig. Q1.40.

 Solution

 The mesh basis matrix equation is,

 

4

2

2

6

I

I

10

0

1

2−

−

=> > >H H H

 

, 4 6 20Now
4

2

2

6
2
2

#∆ =
−

−
= − − =a k

 

10

0

2

6
10 6 0 601 #∆ =

−
= − =

 

0 0
4

2

10

0
2 10 22 #∆ =

−
= − − =a k

 

I I I A
20

60 20
21 2

1 2 1 2

∆

∆

∆

∆

∆

∆ ∆
= − = − =

−
=

−
=

Q1.41 What is node analysis?

  Node analysis is a useful technique to solve independent voltage variables of a circuit.

Q1.42 When is node analysis preferred to solve voltages?

  Node analysis is preferred to solve voltage variables when a circuit is excited by only 

  current sources. Applying node analysis is straightforward and easier in circuits excited by  

  only current sources. However, node analysis can also be extended to circuits excited by both  

  voltage and current sources.

Fig. Q1.39.
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Fig. Q1.47.

I
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I
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V V = 2
2
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�
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�
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1

0
Reference node

Q1.43 How is node analysis performed?

  In a circuit with N nodes, one of the nodes is chosen as the reference node and its voltage 

  is considered as zero. The voltages of remaining N
 
–

 
1 nodes are independent voltages 

  of the circuit with respect to the reference node. For each node (except the reference node)  

  a KCL equation is formed and then the n (where, n = N – 1) number of node equations are  

  solved by Cramer’s rule to get a unique solution for node voltages.

Q1.44  How are node voltages solved using the node basis matrix equation?

   Consider the node basis matrix equation, 

G V = I

  On premultiplying the above equation both sides by G−1 we get,

G−1 G V = G−1 I

     U V  = G−1 I     G−1 G = U = Unit matrix

   ∴  V   = G−1 I      UV = V    

  The above equation will be the solution for node voltages and the kth node voltage is,

......V I I I I I1
11 22 33 nn

n

j 1
k

1k 2k 3k nk
jk jj

∆

∆

∆

∆

∆

∆

∆

∆

∆
∆= + + + + =

=
l

l

l

l

l

l

l

l

l
l/

  The above equation for node voltages is also called Cramer’s rule.

Q1.45  What is supernode?

   When a voltage source is connected between two nodes it can be short-circuited for 

   analysis purpose and the short-circuited two nodes can be considered as one single node  

   called a supernode.

Q1.46 What is the value of I
s2

 in the circuit shown in Fig. Q1.46 if the value of V
2
 is zero?

   Solution

   The node basis matrix equation by inspection is,

V

V I

5

2

2

5

41

2 s2−

−

=

−

= = =G G G

   , . , 0, 0Now V Therefore for V2
2

2 2
∆

∆
∆= = =

l
l

, 5 8Here
I

I
5

2

4
2

s2
s2∆ =

− −
= − +l

5 8 0Is2` − + =    ⇒   5 8Is2 =    ⇒   1.6I A
5

8
s2 = =

Q1.47 Find the value of I
s1

 and I
s2

 
 
in the circuit shown in Fig. Q1.47.

   Solution

   The node basis matrix equation by inspection is,

V

V

I I

I

5

3

3

6

1

2

s1 s2
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−= = =G G G
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Fig. Q1.46.
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   On substituting for V
1
 = 3 V and V

2
 = 2 V in the above 

   equation we get,

I I

I

5

3

3

6

3

2

s1 s2

s2−

−

=

−= = =G G G
   From row-2 we get,

     –3 ´ 3 + 6 ´ 2 = I
s2

  ⇒   I
s2

 = 3 A

   From row-1 we get,

     5 ´ 3 – 3 ´ 2 = I
s1

 – I
s2

  ⇒   I
s1

 = 9 + I
s2

 = 9 + 3 = 12 A    

Q1.48 Find the value of V
2
 and I

s2
 
 
in the circuit shown in Fig. Q1.48.

   Solution

   The node basis matrix equation by inspection is,

 
V

V I

5

4

4

6

41

2 s2−

−

== = =G G G    ⇒    
V I

5

4

4

6

4 4

2 s2−

−

== = =G G G
   From row-1 we get,

5 4 4 4V2# − =    ⇒    4 16V2 =    ⇒   4V V
4

16
2 = =

   From row-2 we get,

– 4 ´ 4 + 6V
2
 = I

s2
  ⇒    I

s2
 = –16 + 6 ´ 4 = 8 A

Q1.49 In the circuit shown in Fig. Q1.49, find the power delivered to 2M conductance.

   Solution

   The node basis matrix equation by inspection is,

V

V

1 3

3

3

3 1 2

4 2

2 1

1

2

+

−

−

+ +

=
−

+
= = =G G G ⇒  

V

V

4

3

3

6

2

3

1

2−

−

== = =G G G
4

3

3

6
4 6 3 15

2
#∆ =

−

−
= − − =l ^ h

4 1
4

3

2

3
3 3 2 82 # #∆ =

−
= − − =l ^ h

1.2V V
15

18
2

2
`

∆

∆
= = =

l

l

   Power delivered to 2M  conductance = V
2
2 ´ 2 = 1.22 ´ 2 = 2.88 W

Q1.50 Find the voltage V
x
 in the circuit shown in Fig. Q1.50.

   Solution

   The node basis matrix equation is,
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5
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5

5

10
7 10 5 4
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−
= − − =l ^ h

9

0
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90 0 901∆ =

−
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1.10    Exercises

I.   Fill in the Blanks with Appropriate Words 

1. The elements which consume energy either by absorbing/storing are called _________ elements.

2. The sources in which the current/voltage does not change with time are called  _________.

3. The electrical energy supplied by  _________source depends on another source of electrical energy.

4. The path between any two nodes is called  _________.

5. In an electric circuit when elements are  _________connected, the current will be the same.

6. In an electric circuit a path of infinite resistance is called  _________.

7. In an electric circuit a path of zero resistance is called  _________.

8. In an electric circuit the algebraic sum of  _________ in a node  is zero.

9. In an electric circuit the algebraic sum of  _________ in a closed path is zero.   

10. In an ideal  _________ source the terminal voltage remains constant.

11. The  _________ is given by the product of power and time.

12. Mesh analysis is used to solve ________ variables of a circuit.

13. A circuit with B branches and N nodes will have ________ independent currents.

14. In the mesh basis matrix equation, mesh currents are solved by ________.

15. The mesh equations are ________ equations of a circuit.

16. The solution of the mesh basis matrix equation RI  =  E will be in the form ________.   

17. Node analysis is used to solve ________ variables of a circuit.

18. A circuit with N nodes will have ________ independent voltages.

19. In node basis matrix equation, node voltages are solved by ________.

20. The node equations are ________ equations of a circuit.

21. The solution of the node basis matrix equation GV  =  I will be in the form ________.
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ANSWERS

 1. passive 6. open circuit 11. energy 16. I  =  R–1E         21. V  =  G-1I

 2. dc sources  7. short circuit  12. Current 17. Voltage 

 3. dependent  8. currents  13. B – N + 1  18. N – 1 

 4. branch  9. voltages  14.Cramer’s rule  19. Cramer’s rule

 5. series           10. voltage  15.KVL  20. KCL

II.   State Whether the Following Statements are True or False

1. The elements of electric circuits which can deliver energy are called active elements. 

2. Inductance and capacitance absorb energy. 

3. The electrical energy supplied by an independent source depends on another electrical source.

4. In an electric circuit the meeting point of two or more elements is called the principal node.

5. In parallel connected elements the voltage will be the same.

6. In an electric circuit, a voltage exists across open terminals.

7. In an electric circuit, a current flows through short-circuited terminals.

8. In an electric circuit, when an element delivers energy the current will leave from the negative terminal.

9. In an electric circuit, when an element absorbs energy the current will enter at the negative terminal.

10. An ideal voltage source can be converted into an ideal current source.

11. In an ideal current source the terminal voltage remains constant.

12. Power is rate of work done and energy is the total work done.

13. Mesh analysis can be used to solve voltage variables from the knowledge of current variables.

14. Mesh analysis can be applied only to circuits excited by voltage sources.

15. Mesh currents are independent current variables of a circuit.

16. Mesh analysis is applicable to non-planar circuits.

17. Mesh equations are formed using KCL.

18. Node analysis can be used to solve current variables from the knowledge of voltage variables.

19. Node analysis can be applied only to circuits excited by current sources.

20. Node voltages are independent voltage variables of a circuit.

21. For node analysis, any node can be chosen as the reference node.

22. Node equations are formed using KVL.

ANSWERS

 1. True 6. True 11. False 16. False 21. True 

 2. False 7. True 12. True 17. False 22. False

 3. False 8. False 13. True  18. True

 4. True 9. False 14. False  19. False

 5. True             10. False 15. True 20. True
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III.  Choose the Right Answer for the Following Questions

1. The voltage V
AB

 across the open circuit in the circuit shown in Fig. 1 is,

a)  2 V 

b)  4 V 

c)  8 V

d) 6 V

2. The current Isc through the short circuit in the

 circuit shown in Fig. 2 is,

 a) 4 A 

 b)  3 A 

 c)  2 A

 d)  1 A

3. The voltage V
L
 in the circuit shown in Fig. 3 is,

 a) 4 V 

 b)  8 V

 c)  12 V

 d)  20 V

4. The current I
s
 delivered by the voltage source in the circuit shown 

 in Fig. 4 is,

 a) 6 A 

 b)  5 A 

 c)  4 A 

 d)  2 A

5. The node voltage V
A
 in the circuit shown in Fig. 5 is,

 a)  8 V 

 b) 6 V 

 c)  10 V 

 d)  2 V

6. The values of voltage sources E
1
 and E

2
 in the circuit shown in 

 Fig. 6 are,

 a) 11 V, 16 V 

 b) 16 V, 11 V 

 c) 5 V, 7 V 

 d) 7 V, 5 V
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3�

+

E

5V

+

E

25V

5�

+

E

6V

1.2�

+

E

15V

3�

10A

2�

10A 2� 5A 2� 2A 10�

7. The currents I
1
 and I

2
 in the circuit shown in Fig. 7 are,

 a) 7, 5 

 b) 3, 7 

 c) –5, –3 

 d) –7, –5

8. The equivalent current source for the voltage source in  the circuit shown in Fig. 8 is,

 a)                                     b)              c)             d)

9. The equivalent voltage source for the current source in the circuit shown in Fig. 9 is,

 a)                         b)                      c)                  d)

 

 

 

10. The equivalent current source for the dependent voltage source in the circuit shown in Fig. 10  

 with respect to terminals A -B is,

Fig. 8.
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      a)                              b)             c)               d)  Not possible

11. The equivalent voltage source for the dependent current  

 source in the circuit shown in Fig. 11 with respect to terminals A-B is,

 a)   

 b)   

 c)   

 d) Not possible

12.   In Fig. 12, the currents I
1
, I

2
 and I

3 
, respectively are,

 a) 1.5 A, 1.5 A, 2 A  

 b) 1 A, 1 A, 3 A  

 c) 1 A, 2 A, 3 A  

 d) 2 A, 2 A, 1 A

13. In Fig. 13, the voltage V
1
, V

2
 and V

3
 , respectively are,

 a) 4 V, 6 V, 10 V  

 b) 3.5 V, 6.5 V, 10 V  

 c) 2.5 V, 5 V, 12.5 V  

 d) 2 V, 6 V, 12 V

14. Mesh analysis is based on,

 a)   KCL b) KVL c) Ohm’s law d) None of the above

15. If a planar circuit has six branches and four nodes then the number of meshes are,

 a) 6 b) 5 c) 4 d) 3

16. In a circuit with m meshes, the kth mesh current by Cramer’s rule is given by,
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17. In mesh analysis, when all the mesh currents are chosen in the same orientation then the  

 mutual-resistances are,

 a) always negative   b)    always positive 

 c) positive or negative  d)    always zero

18. The mesh currents I
1
, I

2
 and I

3
 in the circuit shown in Fig. 18 respectively are,

 a) 2 A, 4 A, 6 A   

 b) 2 A, 10 A, 6 A 

 c) 2 A, 6 A, 0

 d) 2 A, 6 A, 4 A

19. In the circuit shown in Fig. 19, the currents I
1
 and I

2
 respectively are,

 a) 1 A, –1 A   

 b) 2 A, 2 A 

 c) 2 A, 0

 d) 1 A, 0

20. In the circuit shown in Fig. 20, the values of E
1
 and I

1
 respectively are,

 a) 6 V, 3 A

 b) 4 V, 2 A 

 c) 7 V, 1 A

 d) 5 V, 3 A

21. In the circuit shown in Fig. 21, what is the value of E
1
 for the

 current I
1 
to be zero?

 a) 20 V

 b) 10 V 

 c) 5 V

 d) 0

22. In the circuit shown in Fig. 22, what is the value of E
1 
  if the power 

 delivered to 1Ω resistor is 1 W?

 a) 10 V

 b) 9 V 

 c) 11 V

 d) 7 V
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Fig. 29.
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23. In the circuit shown in Fig. 23, the values of I
1
 and I

2
 respectively are,

 a) 2 A, 1 A

 b) 3 A, 2 A 

 c) 4 A, 1 A

 d) 2 A, 5 A

24. Node analysis is based on,

 a) KCL b) KVL c) Ohm’s law d) none of the above

25. If a circuit has eight branches and five nodes then the number of independent voltages are,

 a) 7 b) 6 c) 5 d) 4

26. In a circuit with n independent voltages, the kth node voltage by Cramer’s rule is given by,
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27. In node basis matrix equation, the mutual conductances are, 

 a) always positive   b) always negative 

 c) positive or negative  d) always zero

28. The node voltages V
1
, V

2
 and V

3
 in the circuit shown in Fig. 28 respectively are,

 a) 6 V, 4 V, – 2 V 

 b) 10 V, 4 V, 2 V 

 c) 6 V, 2 V, –2 V

 d) 10 V, 2 V, 2 V

29. In the circuit shown in Fig. 29, the voltages V
1
 and V

2
 respectively are,

 a) 4 V,  2 V   

 b) 3 V,  1 V 

 c) 3 V,  3 V

 d) 2 V,  2 V

Fig. 28.
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Fig. 30.

30. The node voltages V
1
, V

2
 and V

3
 in the circuit shown in Fig. 30 are,

 a) 1.5 V,  2 V,  1.67 V

 b) 24 V,  8 V,  15 V 

 c) 2 V,  2 V,  2 V

 d) 10 V,  6 V,  8 V

31. If the node voltage V
2
 is zero then the value of I

s2
 in the cirucit shown in Fig. 31 is,

 a) –4 A

 b) 4 A 

 c) –2 A

 d) 2 A

32. In the circuit shown in Fig. 32,  the power P
1
 and P

2
  delivered 

 by the current sources are,

 a) P
1
 = 4 W,  P

2
 = 4 W

 b) P
1
 = 8 W,  P

2
 = 4 W 

 c) P
1
 = 6 W,  P

2
 = 2 W

 d) P
1
 = 8 W,  P

2
 = 0

33. In the circuit shown in Fig. 33, what is the value of I
s1

  if the power 

 delivered to 1 W resistor is 25 W?

 a) 35 A

 b) 17.5 A

 c) 8.75 A

 d) 4.375 A

34. The number of links and twigs in the graph shown in Fig. 34 respectively are,

a) 5, 6  

b) 5, 5  

c) 6, 5  

d) 11, 5

Fig. 31.
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1 2

3 4 5

1 2

3 4 5

1 2
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4
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1 2
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35. For the graph shown in Fig. 35, which of the following is not a proper tree?

a)          b)                c)         d) 

ANSWERS

1. c 8. c 15. d 22. c 29. c

2. b 9. d 16. c  23. a  30. b

3. d 10. b 17. a  24. a  31. a

4. a 11. c 18. c 25. d  32. d

5. c 12. d 19. a  26. c  33. b

6. b  13. c  20. d  27. b 34. a

7. d  14. b  21. c  28. b  35. c

IV.   Unsolved Problems

E1.1 Find the node voltages in the circuit shown in Fig. E1.1.

E1.2 Find the branch currents I
1
, I

2
 and I

3
 in the circuit shown in Fig. E1.2.

E1.3 Find the value of the source voltage V
s
 in the circuit shown in Fig. E1.3.

E1.4 A 20 V source with internal resistance 0.2 Ω is connected in series with a 30 V source with 

  internal resistance 0.3 Ω to deliver a load current of 10 A to resistive load. Calculate a) load power 

  P
L
 and b) Power delivered by each source to load.
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R
1

Fig. E1.1.
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3�

V
s

5�

+
E

1�

1 2

3

4

5

Fig. 35.
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E1.5 Two current sources with internal resistance 50 Ω and 100 Ω, respectively, are connected in 

  parallel to supply a 4.8 kW load at 200 V. If the generated source current of the source with 50 Ω 

  internal resistance is 12 A, what is the generated source current of the other source?

E1.6 What is the value of the emf E of the battery in the circuit shown in Fig. E1.6? Also say whether the 

  battery is charging or discharging.

E1.7 What is the value of source voltage E in the circuit shown in Fig E1.7.

E1.8 What is the value of load voltage V
L
 in the circuit shown in Fig. E1.8? Also calculate the power 

  delivered by the current source.

E1.9 Determine the current I delivered by the voltage source in the circuit shown in Fig. E1.9. Also  

  calculate the power delivered by the voltage source. 

E1.10 Determine the voltages V
1
 and V

2
 in the circuit shown in Fig. E1.10.

E1.11 Determine the mesh currents shown in the circuit of Fig. E1.11.

E1.12 Determine the current through various branches of the circuit in Fig. E1.12 by mesh analysis. 

Take resistance of ammeter as 0.2 Ω.

E1.13 In the circuit shown in Fig. E1.13,  find the value of E by mesh analysis such that the current 

through the 5 Ω resistor is zero.

V
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Fig. E1.10.
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E1.14 By mesh analysis, determine the power delivered to 2 Ω and 1 Ω resistor in the circuit of Fig. E1.14.

E1.15 In the circuit shown in Fig. E1.15, determine the voltage V
L
 by mesh analysis.

E1.16 Determine the mesh currents shown in the circuit of Fig. E1.16.

E1.17 Determine the current I L  in the circuit shown in Fig. E1.17 by mesh analysis.

E1.18 Determine the active and reactive power delivered to the 2 + j4 Ω impedance in the circuit of 

Fig. E1.18.

E1.19 Determine the power delivered to the 8 Ω resistor in the circuit of Fig. E1.19 using mesh analysis.

E1.20 In the circuit shown in Fig. E1.20, form two supermeshes and determine the current I
L
.

5�5A

Fig. E1.19.
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Fig. E1.20.
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E1.21 Determine the power delivered by each source to the 2 Ω resistor in the circuit of Fig. E1.21 by 

mesh analysis.

E1.22 Solve the mesh currents shown in the circuit of Fig. E1.22.

E1.23 Determine the voltage across the 6 Ω resistor in the circuit of Fig. E1.23 by mesh analysis.

E1.24 In the circuit of Fig. E1.24 determine the current through the 10 Ω resistor by mesh analysis.

E1.25 Determine the power delivered by the dependent voltage source in the circuit of Fig. E1.25 by mesh 

analysis.

E1.26 Find the voltage across the 4 Ω resistor in the circuit shown in Fig. E1.26 by mesh analysis.

E1.27 Determine the branch voltages in the circuit shown in Fig. E1.27 by node method.

E1.28 Determine the node voltages in the circuit shown in Fig. E1.28.
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E1.29 Determine the current I
L
 in the circuit of Fig. E1.29 by node method.

E1.30 Determine the power supplied/absorbed by the current sources in the circuit shown in Fig. E1.30.

E1.31 Determine the power absorbed by the 10 Ω resistor in the circuit of Fig. E1.31.

E1.32 Determine the node voltages V and V 21  in the circuit shown in Fig. E1.32.

E1.33 Determine the node voltages in the circuit shown in Fig. E1.33.

E1.34 In the circuit shown in Fig. E1.34, determine the active and reactive power in the impedance  

1 + j2 Ω by node method.

E1.35 In the circuit shown in Fig. E1.35, calculate the current I L  by node method.

E1.36 Determine the voltages across the resistors in the circuit shown in Fig. E1.36, by node analysis.
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E1.37 Determine the power delivered/absorbed by the sources in the circuit shown in Fig E1.37 by  

node analysis.

E1.38 Determine the currents I
1
, I

2
, I

3
 and I

4
 in the circuit shown in Fig. E1.38 by node analysis.

E1.39 Calculate the voltage V
x
 and, hence, estimate the power delivered or absorbed by the dependent 

source in the circuit shown in Fig. E1.39. 

E1.40 Calculate the power delivered to the 5 Ω resistor in the circuit shown in Fig. E1.40 by 

node analysis.

E1.41 Calculate the current through the 5 Ω resistance in the circuit shown in Fig. E1.41 

by node analysis.v 

ANSWERS

E1.1 V
1
  =  21 V,  V

2
  =  9 V,  V

3
  =  3 V

E1.2 I
1
  =  12 A,  I

2
  =  7 A,  I

3
  =  5 A  

E1.3 V
s
  =  37 V   E1.4 P

L
  =  450 W,  P

D20
  =  180 W,  P

D30
  =  270 W

E1.5 I
s2  

=  18 A    E1.6 E  =  2 V,   Charging

E1.7 E  =  7 V            E1.8 V
L
  =  6 V,  P

s
 = 610 W

E1.9 I  =  2 A,  P
s
 = 18 W  E1.10 V

1
  =  4 V,   V

2  
= 3 V

E1.11 I
1
 = −1.3043 A    ;    I

2
 = 0.9938 A    ;    I

3
 = 0.6366 A

E1.12 I
a
 = 1.8037 A      ;    I

b
 = 0.9907 A    ;    I

c
 = 0.813 A     ;    I

d
 = 0.5141 A   ;

 I
e
 = 0.4766 A      ;    I

f
 = 1.3271 A

E1.13 E = 12 V   E1.14 P
2Ω

 = 0.0987 W    ;    P
1Ω

 = 1.1857 W

E1.15 V
L
 = –6.25 V

+
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E1.16 I1  =  16.1971∠31
o

 A    ;   I2   =  8.7841∠71.6
o

 A    ;   I3   =  11.4531∠−104
o

 A

E1.17 IL  =  0.6114∠62.7
o

 A  E1.18 P  =  108.9 W    ;    Q  =  217.8 VAR

E1.19 P  =  16.0201 W

E1.20 I
L
  =  1.0952 A

E1.21 4.125 ; 11P PW W
10
2

2
2

V A

= =X X

E1.22 I
1
  =  2 A     ;    I

2
  =  0    ;    I

3
  =  1.1429 A                    E1.23     V

AB
 =  6.7056 V

E1.24 I
AB

  =  0.375 A (current flowing from A to B)                 E1.25 P  =  2.6315 W (delivered)

E1.26 V
4
 = 12 V

E1.27 V
a
 = 37.8947 V    ;    V

b
 = 30.8772 V    ;    V

c
 = 31.4035 V

 V
d
 = − 0.5263 V   ;    V

e
 = 7.0175 V      ;    V

f
 = 6.4912 V

E1.28 V
1
 = − 3.3333 V   ;    V

2
 = 0                  ;    V

3
 = 3.3333 V 

E1.29 I
L
 = − 6.199 A 

E1.30 P
5A

 = 30 W (Delivered) ;    P
2A

 = − 2 W (Absorbed) ;    P
3A

 = 15 W (Delivered)

E1.31 P
10Ω

 = 40 W

E1.32 V1  = 7.8125∠53.1
o

 V    ;   V2  = 13.9754∠−153.4
o

 V 

E1.33 V1  = 1.5132∠15.8
o

 V    ;   V2  = 1.1186∠−34.2
o

 V     ;  V3  = 0.2925∠106.6
o

 V  

E1.34 P = 45.5555 W              ;   Q = 91.111 VAR

E1.35 IL  = 3.0403∠33
o 

 A

E1.36 V
a
 = − 1.9512 V    ;    V

b
 = 8.0488 V       ;    V

c
 = 11.9512 V    ; V

d
 = − 1.9512 V     ;    V

e
 = 3.0488 V 

E1.37 P
4A

 = 80.5624 W (Delivered) ;    P
1A

 = –1.8748 W (Absorbed) ;    P
15V

 = 10.0485 W (Delivered)

E1.38 I
1
 = 5 A    ;    I

2
 = − 2.8572 A    ;    I

3
 = 0  ;    I

4
 = 2.1429 A

E1.39 P4Vx  
= − 9.1428 W  (Power absorbed)

E1.40 P
5Ω

 = 26.792 W

E1.41 I
L
 = 3.1111 A    
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NETWORK REDUCTION AND THEOREMS 

FOR AC AND DC CIRCUITS

2.1    Network Reduction

A typical network involves series, parallel, star and delta-connections of  parameters like 

resistances, inductances and capacitances. Sometimes it may require to find the single equivalent 

value of the series/parallel/star-delta-connected parameters of the network. In such a case, the 

parameters of the network have to be reduced step by step, starting from a dead end. Basically, the 

network reduction will be attempted with respect to two terminals, and in any network reduction 

technique, the ratio of voltage and current should be the same even after reducing the network.

Reducing the series/parallel/star-delta-connected parameters to a single equivalent parameter, 

conversion of star-connected parameters to equivalent delta parameters and vice versa are explained 

in this chapter.

The network also involves series/parallel connection of sources for higher voltage/current 

requirement. The series and parallel connections of voltage sources and current sources and their 

reduction into a single equivalent are also discussed in this chapter.

2.1.1     Resistances in Series and Parallel

Equivalent of Series-connected Resistances 

Consider a circuit with 

series combination of two 

resistances R
1
 and R

2
 connected 

to a dc source of voltage V as 

shown in Fig. 2.1(a). Let the 

current through the circuit be I. 

Now the voltage across R
1
 and 

R
2
 are IR

1
 and IR

2
, respectively.

By Kirchhoff’s Voltage Law (KVL), we can write,

V = IR
1
 + IR

2
 

    = I (R
1
 + R

2
)

Let,     V = IR
eq

         ..... (2.1)

  where,  R
eq 

 = R
1
 + R

2

From equation (2.1), we can say that the series-connected resistances R
1
 and R

2
 can be 

replaced with an equivalent resistance R
eq

 given by the sum of individual resistances R
1
 and R

2
.

Chapter 2

+ E

I

V

Req = R + R1 2

+

++

E

E E

R1 R2

IR1 IR2

V

I

Fig. a : Resistances in series. Fig. b : Equivalent circuit of Fig. a.
Fig. 2.1 : Resistances in series.

(AU May’15, 2 Marks)



2. 2 Circuit Theory

This concept can be extended to any number of resistances in series. Therefore, we can say 

that the resistances in series can be replaced with an equivalent resistance whose value is given by 

the sum of individual resistances. 

“When n number of identical resistances of value R are connected in series, the equivalent 

resistance R
eq

 = nR”.

Equivalent of Parallel-connected Resistances

Consider a circuit in which two resistances in parallel are connected to a dc source of voltage 

V as shown in Fig. 2.3(a). Let I be the current supplied by the source and I
1
 and I

2
 be the currents 

through R
1
 and R

2
, respectively. Since the resistances are parallel to the source, the voltage across 

them will be the same.

By Ohm’s law, we can write,

I
R

V
1

1

=   ..... (2.2)

I
R

V
2

2

=      ..... (2.3)

By Kirchhoff’s Current Law (KCL), we can write,

I = I
1 
+ I

2
  

  R

V

R

V

1 2

= +

    

  
V

R R

1 1

1 2

= +c m

V I

R R

1 1

1

1 2

` =

+

R1

R2

R =eq R + R1 2

Fig. 2.2 : Resistances in series and their equivalents.
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Fig. a : Resistances in parallel.

VV

Fig. b : Equivalent circuit of Fig. a.

Fig. 2.3 : Resistances in parallel.
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Let,    V = IR
eq

                 ..... (2.4)

, R

R R
R R

R R
where

1 1
1

1 2

eq
1 2

1 2
=

+

=
+

                                                             
..... (2.5)

,Also
R R R
1 1 1

1 2eq

= +
                                                                                                 ..... (2.6)

From equation (2.4), we can say that the parallel-connected resistances R
1
 and R

2
 can be 

replaced with an equivalent resistance given by equation (2.5). From equation (2.6), we can say 

that the inverse of the equivalent resistance of parallel-connected resistances is equal to the sum 

of the inverse of individual resistances.

This concept can be extended to any number of resistances in parallel. Therefore, we can 

say that the resistances in parallel can be replaced with an equivalent resistance whose value is 

given by the inverse of sum of the inverse of individual resistances. 

“When n number of identical resistances of value R are connected in parallel, the equivalent 

resistance R
eq

 = R/n”.

2.1.2    Voltage Sources in Series and Parallel 

 A voltage source is designed to deliver energy at a constant voltage called rated voltage. 

The current delivered by the voltage source depends on the load and the current is limited by the 

power rating of  the source. When the voltage requirement of  a load is higher, the voltage sources 

are connected in series. When the current requirement of a load is higher, the voltage sources are 

connected in parallel.

R1

R2

Fig. 2.4 : Resistances in parallel and their equivalents.
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2. 4 Circuit Theory

Series Connection of Voltage Sources

 In series connection, voltage sources of different voltage ratings may be connected in series. 

However in series connection, the current delivered by the voltage sources is the same.

Case  i : Series connection of ideal voltage sources

 The series connection of ideal voltage sources is shown in Fig. 2.5(a). By applying KVL to  

series-connected sources of Fig. 2.5(a) it is possible to determine the single equivalent source as  

shown in Fig. 2.5(b).

Case ii : Series connection of voltage sources with internal resistance

 The series-connected voltage sources with internal resistance shown in Fig. 2.6(a) can be 

represented as ideal sources with a series resistance  as shown in Fig. 2.6(b).  The series-connected 

resistance of Fig. 2.6(c) can be represented by an equivalent resistance as shown in Fig. 2.6(d). 

The series-connected voltage sources of Fig. 2.6(c) can be represented by an equivalent source  

as shown in Fig. 2.6(d).

Parallel Connection of Voltage Sources

 Practically, voltage sources of an identical voltage rating should be connected in parallel, 

but the current delivered by the parallel-connected sources may be different. If voltage sources 

with different voltage ratings are connected in parallel then current will circulate within the sources 

which produce excess heat and this in-turn may damage the source.

+ +++ --- -A B
E1 E2 E3 En

A B+ -

Eeq = E + E + E +.....+ E1 2 3 n

Fig. a : Series connection. Fig. b : Equivalent voltage source.

Fig. 2.5 : Series connection of ideal voltage sources.

I I

Eeq

Þ

Fig. a : Series connection.

+ +++ - -- -A B
E1, R1 E2, R2 E3, R3 En, Rn

ß

Fig. b.

+ +++ - -- -A B
E1 R2 E3 EnE2 R3 RnR1

Fig. d : Equivalent source.

Fig. 2.6 : Series connection of voltage sources with internal resistance.

A B+ -
Eeq

Fig. c.

+ +++ - ---A B
E1

R2 E3 EnE2
R3 Rn

R1 Req

E = E + E + E + ..... + E

R = R + R + R + ..... + R

eq 1 2 3 n

eq 1 2 3 n

ß
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Case i : Parallel connection of ideal voltage sources

 

 The parallel-connected ideal voltage sources with the same voltage rating, as shown in Fig. 2.7(a),

can be converted into a single equivalent source using KCL, as shown in Fig. 2.7(b).

Note  :  The parallel connection of ideal voltage sources with different voltage rating is illegal.

Case ii : Parallel connection of voltage sources with internal resistance

The parallel-connected voltage sources with internal resistance shown in Fig. 2.8(a) can be 

represented as ideal sources with a series resistance as shown in Fig. 2.8(b).

 Using source transformation technique, the voltage sources can be converted into current  

sources as shown in Fig. 2.8(c). Now, the parallel-connected current sources can be combined 
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as an equivalent single current source as shown in Fig. 2.8(d). Finally, again using source  

transformation technique, the current source of Fig. 2.8(d) can be converted into an equivalent 

voltage source as shown in Fig. 2.8(e).

Note  : The conversion of parallel-connected voltage sources into a single equivalent 

voltage source can also be obtained by Millman’s Theorem. 

2.1.3    Current Sources in Series and Parallel

 A current source is designed to deliver energy at a constant current called rated current.

The voltage across the current source depends on the load and the voltage is limited by the power 

rating of the source. When the voltage requirement of a load is higher, the current sources are 

connected in series. When the current requirement of a load is higher, the current sources are 

connected in parallel.

Series Connection of Current Sources

 Practically, current sources of an identical current rating should be connected in series, but 

the voltage across the series-connected sources may be different. If current sources with different 

current ratings are connected in series then sources with lesser current ratings are forced to carry 

higher currents which produce excess heat and this in-turn may damage the source.

Case i  :  Series connection of ideal current sources

 The series-connected ideal current sources with an identical current rating, as shown in  

Fig. 2.9(a), can be converted into a single equivalent source using KVL, as shown in Fig. 2.9(b).

Note  :  The series connection of ideal current sources with different current rating is illegal.

Case ii :  Series connection of current sources with internal resistance

 The series-connected current sources with internal resistance shown in Fig. 2.10(a) can be 

represented as ideal sources with a parallel resistance as shown in Fig. 2.10(b).

 Using source transformation technique, the current sources can be converted into voltage 

sources as shown in Fig. 2.10(c).  Now, the series-connected voltage sources can be combined 

+ +++ --- - A
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E3 En

AB + -

Eeq = E + E + E +.....+ E1 2 3 n

Fig. a : Series connection. Fig. b : Equivalent current source.

Fig. 2.9 : Series connection of ideal current sources.
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as an equivalent single voltage source as shown in Fig. 2.10(d). Finally, again using source  

transformation technique, the voltage source of Fig. 2.10(d) can be converted into an equivalent 

current source as shown in Fig. 2.10(e).

Parallel Connection of Current Sources

 In parallel connection, current sources with different current ratings may be connected in 

parallel. However in parallel connection, the voltage across the sources is the same.

Case i :  Parallel connection of ideal current source

 The parallel-connected ideal current sources shown in Fig. 2.11(a) can be converted into a 

single equivalent source using KCL, as shown in Fig. 2.11(b).
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2. 8 Circuit Theory

Case ii :  Parallel connection of current sources with internal resistance

 The parallel-connected current sources with internal resistance shown in Fig. 2.12(a) can 

be represented as ideal sources with a parallel-resistance as shown in Fig. 2.12(b). 

  The parallel-connected resistances of Fig. 2.12(c) can be represented by an equivalent 

resistance as shown in Fig. 2.12(d). The parallel-connected current sources of Fig. 2.12(c) can be 

represented by an equivalent current source as shown in Fig. 2.12(d).

2.1.4    Inductances in Series and Parallel

Equivalent of Series-connected Inductances 

Consider a circuit with series combination of two inductances L
1
 and L

2
 connected to an ac 

source of voltage v as shown in Fig. 2.13(a). Let the current through the circuit be i and  voltages 

across L
1
 and L

2
 be v

1
 and v

2
, respectively.
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Fig. 2.12 : Parallel connection of current sources with internal resistance.
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Fig. a : Inductance in series. Fig. b : Equivalent circuit of Fig. a.
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By Faraday’s Law, we can write,

L
dt

d
and L

dt

di i
1 1 2 2ν ν= =

                                                                                         ..... (2.7)

In Fig. 2.13(a), using Kirchhoff’s Voltage Law, we can write,

v  = v
1
 + v

2
  

  L
dt

d
L

dt

di i
1 2= +            Using equation (2.7)

  
L L

dt

di
1 2= +` j

,Let L
dt
di

eqν =

  where,  L
eq

 = L
1
 + L

2      
..... (2.8)

From equation (2.8), we can say that the series-connected inductances L
1
and L

2 
can be 

replaced with an equivalent inductance L
eq

 given by the sum of individual inductances L
1
 and L

2
.

This concept can be extended to any number of inductances in series. Therefore, we can say 

that inductances in series can be replaced with an equivalent inductance whose value is given by 

the sum of individual inductances. 

“When n number of identical inductances of value L are connected in series, the equivalent

 inductance L
eq

 = nL”. 

L1

L2

L =eq L + L1 2

Fig. 2.14 : Inductances in series and their equivalents.
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Equivalent of Parallel-connected Inductances

Consider a circuit with two inductances in parallel and connected to an ac source of voltage v 

as shown in Fig. 2.15(a). Let i be the current supplied by the source and i
1
 and i

2
 be the currents 

through L
1
 and L

2
,
  
respectively. Since the inductances are parallel to the source, the voltage 

across them will be the same.

We know that,

L
dt and

L
dti i1 1

1

1

2

2

ν ν= =# #                                                                 .....(2.9)

By Kirchhoff’s Current Law, we can write,

i = i
1
 + i

2
  

L
dt

L
dt

1 1

1 2

ν ν= +# #             Using equation (2.9)

L L
dt

1 1

1 2

ν= +e o #
                                                         

On differentiating the above equation, we get,

dt

d

L L

i 1 1

1 2

ν= +e o    ⇒    

L L

dt

di
1 1

1

1 2

ν =

+

,Let L
dt
di

eqν =

                                                                                    .....(2.10)

,where L

L L
L L

L L

1 1
1

eq

1 2

1 2

1 2
=

+

=
+

                                                                 

 .....(2.11)

,Also
L L L
1 1 1

eq 1 2

= +

                                                                                                                
.....(2.12)

From equation (2.10), we can say that the parallel-connected inductances L
1
 and L

2
 can be 

replaced with an equivalent inductance given by equation (2.11). From equation (2.12), we can 

say that the inverse of the equivalent inductance of parallel-connected inductances is equal to the 

sum of the inverse of individual inductances.

L

L L

L L

L L
eq a
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1 1
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ii
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Fig. a : Inductance in parallel. Fig. b : Equivalent circuit of Fig. a.

Fig. 2.15 : Inductance in parallel.
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This concept can be extended to any number of inductances in parallel. Therefore, we can 

say that inductances in parallel can be replaced with an equivalent inductance whose value is given 

by the inverse of sum of the inverse of individual inductances. 

“When n number of identical inductances of value L are connected in parallel, the equivalent 

inductance ".L
n

L
eq =

2.1.5    Capacitances in Series and Parallel

Equivalent of Series-connected Capacitances 

Consider a circuit with series combination of two capacitances C
1
 and C

2
 connected to an ac 

source of voltage, v as shown in Fig. 2.17(a). Let the current through the circuit be i and voltages across 

C
1
 and C

2
 be v

1
 and v

2
, respectively.

 We know that, 

C
dt and

C
dti i1 1

1

1

2

2

ν ν= =# #                                                                  .....(2.13)

With reference to Fig. 2.17(a) using Kirchhoff’s Voltage Law, we can write,

 v = v
1
 + v

2
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L2

Fig. 2.16 : Inductances in parallel and their equivalents.
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Fig. 2.17 : Capacitances in series.
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v
C

dt
C

dti i1 1

1 2

= +# #                Using equation (2.13)

   
C C

dti1 1

1 2

= +e o #

,Let
C

dti1

eq

ν = #
       .....(2.14)

,where C

C C
C C

C C

1 1
1

eq

1 2

1 2

1 2
=

+

=
+

                                                               
.....(2.15)

,Also
C C C
1 1 1

eq 1 2

= +

      
.....(2.16)

From equation (2.14), we can say that the series-connected capacitances C
1
 and C

2
 can be 

replaced with an equivalent capacitance given by equation (2.15). From equation (2.16), we can 

say that the inverse of the equivalent capacitance of series-connected capacitances is equal to the 

sum of the inverse of individual capacitances.

This concept can be extended to any number of capacitances in series. Therefore, we can 

say that capacitances in series can be replaced with an equivalent capacitance whose value is given 

by the inverse of sum of the inverse of individual capacitances. 

“When n number of identical capacitances of value C are connected in series, the equivalent 

capacitance, C
eq

 = C/n”.

Equivalent of Parallel-connected Capacitances

Consider a circuit in which two capacitances in parallel are connected to an ac source of 

voltage, v as shown in Fig. 2.19(a).  Let i be the current supplied by the source and i
1
 and i

2
 be 

the currents through C
1
 and C

2
, respectively. Since the capacitances are parallel to the source, the 

voltage across them will be the same.

C1

C2

Ceq

Fig. 2.18 : Capacitances in series and their equivalents.
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We know that,

C
dt

d
and C

dt

di i1 1 2 2
ν ν

= =                                                                             .....(2.17)

By Kirchhoff’s Current Law, we can write,

i = i
1
 + i

2
 

  C
dt

d
C

dt

d
1 2

ν ν
= +

  
C C

dt

d
1 2

ν
= +` j

,Let C
dt
di eq

ν
=

                                                                                                                                                                     

.....(2.18)

 where,   C
eq

 = C
1
 + C

2
 

From equation (2.18), we can say that the parallel-connected capacitances C
1
 and C

2
 can be 

replaced with an equivalent capacitance C
eq

  given by the sum of individual capacitances C
1
 and C

2
.

This concept can be extended to any number of capacitances in parallel. Therefore, we can 

say that capacitances in parallel can be replaced with an equivalent capacitance whose value is 

given by the sum of individual capacitances. 

“When n number of identical capacitances of value C are connected in parallel, the equivalent 

capacitance C
eq

 = nC”.

Using equation (2.17)

C1

C2

Fig. 2.20 : Capacitances in parallel and their equivalents.
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Fig. 2.19 : Capacitances in parallel.
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2.1.6    Impedances in Series and Parallel

Equivalent of Series-connected Impedances 

Consider a circuit with series combination of two impedances Z and Z1 2  connected to an ac 

source of voltage V volts rms value as shown in Fig. 2.21(a). Let the current through the elements be I . 

Now, by Ohm’s law the voltage across Z and Z are I Z and I Z1 2 1 2 , respectively.

By Kirchhoff’s Voltage Law, we can write, 

V I Z I Z1 2= +

     I Z Z1 2= +` j

,Let V I Zeq=         .....(2.19)

 ,where Z Z Zeq 1 2= +     

From equation (2.19), we can say that the series-connected impedances Z and Z1 2  can be 

replaced with an equivalent impedance Zeq   given by the sum of individual impedances .Z and Z1 2  

This concept can be extended to any number of impedances in series. Therefore, we can say 

that impedances in series can be replaced with an equivalent impedance whose value is given by 

the sum of individual impedances. 

“When n number of identical impedances of value Z  are connected in series, the equivalent 

impedance, ".Z nZeq =

+

++

+E

E

E

E

Fig. a : Impedances in series. Fig. b : Equivalent circuit of Fig. a.

Fig. 2.21 : Impedances in series and their equivalent.
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Equivalent of Parallel-connected Impedances

Consider a circuit in which two impedances in parallel are 

 connected to an ac source of V volts rms value as shown in 

Fig. 2.23(a). Let I  be the current supplied by the source and 

I and I1 2  be the currents through Z and Z1 2 , respectively. Since 

the impedances are parallel to the source, the voltage across them 

will be the same as that of the source voltage.

By Ohm’s law, we can write,

I
Z

V
and I

Z

V
1

1

2

2

= =
          .....(2.20)

By Kirchhoff’s Current Law, we can write,

I I I1 2= +               

    
Z

V

Z

V

1 2

= +      Using equation (2.20)

    
V

Z Z

1 1

1 2

= +e o

V I

Z Z

1 1

1

1 2

` =

+
f p

,Let V I Zeq=
                      .....(2.21)

,where Z

Z Z
Z Z

Z Z
1 1

1
eq

1 2

1 2

1 2
=

+

=

+       

..... (2.22)

,Also
Z Z Z

1 1 1

eq 1 2

= +                                          
.....(2.23)

From equation (2.21), we can say that the parallel impedances Z and Z1 2  can be replaced 

with an equivalent impedance given by equation (2.22). From equation (2.23), we can say that the 

inverse of the equivalent impedance of parallel-connected impedances is equal to the sum of the 

inverse of individual impedances.

This concept can be extended to any number of impedances in parallel. Therefore, we can 

say that impedances in parallel can be replaced with an equivalent impedance whose value is given 

by the inverse of sum of the inverse of individual impedances. 

Fig. a : Impedances in parallel.
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Fig. b : Equivalent circuit of Fig. a.

Fig. 2.23 : Impedances in parallel
and their equivalent.
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“When n number of identical impedances of value Z  are connected in parallel, the equivalent 

impedance / .Z Z n"eq =

2.1.7    Reactances in Series and Parallel

The reactances in series and parallel combinations can be combined to give an equivalent 

reactance similar to that of impedance. In fact, the reactances are impedances with imaginary part alone.  

The equivalent reactances of series and parallel combinations of reactances are diagrammatically 

illustrated in Fig. 2.25.

Fig. 2.24 : Impedances in parallel and their equivalents.
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2.1.8    Conductances in Series and Parallel

Equivalent of Series-connected Conductances 

Consider a circuit with series combination of two 

conductances G
1
 and G

2
 connected to a dc source of voltage V volts 

as shown in Fig. 2.26(a). Let I be the current through the conductances 

and V
1
 and V

2
 be the voltages across G

1  
and G

2
, respectively.

From Fig. 2.26, we can write,

V
G

I
and V

G

I
1

1

2

2

= =    ..... (2.24)

By Kirchhoff’s Voltage Law, we can write,

V = V
1 
+ V

2 
                              

    G

I

G

I

1 2

= +                Using equation (2.24)

    
I

G G

1 1

1 2

= +e o

I V

G G

1 1

1

1 2

` =

+
f p

Let,    I = VG
eq

                                                                                                              ..... (2.25)

,where G

G G
G G

G G

1 1
1

eq

1 2

1 2

1 2
=

+

=
+

                                                          

..... (2.26)

,Also
G G G
1 1 1

eq 1 2

= +                                                                                    
.....(2.27)

From equation (2.25), we can say that the series-connected conductances G
1 

and G
2 

can 

be replaced with an equivalent conductance given by equation (2.26). From equation (2.27), we 

can say that the inverse of the equivalent conductance of series-connected conductances is equal 

to sum of the inverse of individual conductances. 

This concept can be extended to any number of conductances in series. Therefore, we can 

say that conductances in series can be replaced with an equivalent conductance whose value is 

given by the inverse of sum of the inverse of individual conductances. 

“When n number of identical conductances of value G are connected in series, the equivalent 

conductance G
eq

 = G/n”.
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Fig. a : Conductances in series.

+ E

+ E

Geq

V

V

I

Fig. b : Equivalent circuit of Fig. a.

+ E
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G G

G G

G G
eq a

C

a

C

1

1 1

1 2

1 2

1 2

Fig. 2.26 : Conductances in series
and their equivalent.



2. 18 Circuit Theory

Equivalent of Parallel-connected Conductances

Consider a circuit with two conductances in parallel and connected to a source of voltage 

V volts as shown in Fig. 2.28(a). Let I be the current supplied by the source and I
1
 and I

2
 be the 

current through G
1
 and G

2
, respectively. Since the conductances are parallel to the source, the 

voltage across them will be the same as that of the source. 

From Fig. 2.28, we can write,

I
1
 = VG

1
     and     I

2
 = VG

2
    ..... (2.28)

By Kirchhoff’s Current Law, we can write,

I = I
1
 + I

2
      

  = VG
1
 + VG

2   
                            Using equation (2.28)

  = V(G
1
 + G

2
)

Let,    I = VG
eq

     ..... (2.29)

 where,  G
eq

 = G
1
 + G

2

From equation (2.29), we can say that the parallel-connected conductances G
1 
and G

2 
can

be replaced with an equivalent conductance G
eq 

given by the sum of individual conductances 

G
1
 and G

2
.

Fig. 2.27 : Conductances in series and their equivalents.
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G G
eq =

+

=

+

1

1 1

1 2
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1 2

G

G G G

eq =

+ +

1

1 1 1

1 2 3

G

G G G G

eq

n

=

+ + + +

1

1 1 1 1

1 2 3

...

Þ

Þ

Þ

+
E
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E E

G1 G2

I1 I2

V

I

Fig. a : Conductances in parallel.

VV

Fig. b : Equivalent circuit of Fig. a.

+
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Geq = G + G1 2
V
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Fig. 2.28 : Conductances in parallel and their equivalent.
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+

++

E

E

E

Fig. a : Admittances in series.

~

V
1

Y
1

V

V
2

Y
2

I

This concept can be extended to any number of conductances in parallel. Therefore, we can 

say that conductances in parallel can be replaced with an equivalent conductance whose value is 

given by the sum of individual conductances. 

“When n number of identical conductance of value G are connected in parallel, the equivalent 

conductance G
eq

 = nG”.

2.1.9    Admittances in Series and Parallel

Equivalent of Series-connected Admittances 

Consider a circuit with series combination of two admittances Y and Y1 2  connected to an ac 

source of voltage V volts rms value as shown in Fig. 2.30(a). Let I  be the current through the 

admittances and V and V1 2  be the voltages across Y and Y1 2 , respectively. 

From Fig. 2.30, we can write,

V
Y

I
and V

Y

I
1

1

2

2

= =
                 

.....(2.30)

By Kirchhoff’s Voltage Law, we can write,

V V V1 2= +                                        

      
Y

I

Y

I

1 2

= +            Using equation (2.30)

     
I

Y Y

1 1

1 2

= +e o

I V

Y Y

1 1

1

1 2

` =

+
f p

        

G1

Fig. 2.29 : Conductances in parallel and their equivalents.
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G =eq G + G1 2
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G =eq G + G + G +....+ G1 2 3 n

Þ

Þ

Þ

Fig. 2.30 : Admittances in series
and their equivalent.
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Fig. b : Equivalent circuit of Fig. a.
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, I V YLet eq=                                               
.....(2.31)

, Y

Y Y
Y Y

Y Ywhere
1 1

1
eq

1 2

1 2

1 2
=

+

=

+

              
   ..... (2.32)

,Also
Y Y Y

1 1 1

eq 1 2

= +                                                       ..... (2.33)

From equation (2.31), we can say that the series-connected admittances Y and Y1 2
 
can 

be replaced with an equivalent admittance given by equation (2.32). From equation (2.33), we can 

say that the inverse of the equivalent admittance of series-connected admittances is equal to the 

sum of the inverse of individual admittances.

This concept can be extended to any number of admittances in series. Therefore, we can 

say that admittances in series can be replaced with an equivalent admittance whose value is given 

by the inverse of sum of the inverse of individual admittances. 

“When n number of identical admittances of value Y  are connected in series, the equivalent 

admittance /Y Y neq = ”. 

Equivalent of Parallel-connected Admittances 

Consider a circuit with two admittances in parallel and connected to an ac source of voltage 

V volts rms value as shown in Fig. 2.32(a). Let I  be the current supplied by the source and I and I1 2  

be the currents through Y and Y1 2 , respectively. Since the admittances are parallel to the source, 

the voltage across them will be the same as that of the source. 

Fig. 2.31 : Series combination of admittances and their equivalents.

A AB B
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eq =
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Y Y

Y Y
eq =

+

=

+

1

1 1

1 2

1 2

1 2

Þ

Þ

Yn

A B BA

YeqY3Y1 Y2

Y

Y Y Y Y

eq

n

=
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1

1 1 1 1

1 2 3

...
Þ

I

Fig. a : Admittances in parallel.

Fig. 2.32 : Admittances in parallel and their equivalent.
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Fig. b : Equivalent circuit of Fig. a.
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From Fig. 2.32, we can write,

I V Y and I V Y1 1 2 2= =                                                                      .....(2.34)

By Kirchhoff’s Current Law, we can write,

I I I1 2= +                                                                                              

    V Y V Y1 2= +

    V Y Y1 2= +` j

,Let I V Yeq=                     ..... (2.35)

  , Y Y Ywhere eq 1 2= +

From equation (2.35), we can say that the parallel-connected admittances Y and Y1 2  can be 

replaced with an equivalent admittance Yeq  given by the sum of individual admittances .Y and Y1 2

This concept can be extended to any number of admittances in parallel. Therefore, we can 

say that admittances in parallel can be replaced with an equivalent admittance whose value is given 

by the sum of individual admittances. 

Using equation (2.34)

Fig. 2.33 : Admittances in parallel and their equivalents.
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B
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B

Y2Y1 Y Y Yeq = +1 2
Þ
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B B

Y3Y1 Y2 Y Y Y Yeq = + +1 2 3Þ
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B B

A

YnY1 Y2 Y3 Y Y Y Y Yeq n= + + + +1 2 3 ...Þ
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2.1.10    Susceptances in Series and Parallel

The susceptances in series and parallel combination can be combined to give an equivalent 

susceptance similar to that of admittance. In fact, the susceptances are admittances with imaginary 

part alone. The equivalent susceptances of series and parallel combinations of susceptances are 

diagrammatically illustrated in Fig. 2.34.

2.1.11    Generalised Concept of Reducing Series/Parallel-connected Parameters

In order to generalise the concept of reducing the series/parallel-connected parameters, they 

can be classified into two groups.

Let the parameters Resistance (R), Inductance (L), Reactance (X) and Impedance (Z) be 

group-1 parameters. Let the parameters Conductance (G), Capacitance (C), Susceptance (B) and 

Admittance (Y) be group-2 parameters.

The equivalent of series-connected group-1 parameters will be given by the sum of individual 

parameters. The equivalent of parallel-connected group-1 parameters will be given by the inverse of 

the sum of individual inverses. The equivalent of series and parallel-connected group-1 parameters 

are summarised in Table 2.1.

The equivalent of series-connected group-2 parameters will be given by the inverse of the 

sum of individual parameters. The equivalent of parallel-connected group-2 parameters will be 

given by the sum of individual parameters. The equivalent of series and parallel-connected group-2 

parameters are summarised in Table 2.2.
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Fig. 2.34 : Series and parallel combinations of susceptances and their equivalents.
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2.2    Voltage and Current Division

2.2.1    Voltage Division in Series-connected Resistances

Consider two resistances R
1
 and R

2
 in series which are 

connected to a dc source of V volts as shown in Fig. 2.35. Let I be 

the current supplied by the source and V
1
 and V

2
 be the voltages 

across R
1
 and R

2
, respectively. Since the resistances are in series, 

the current through them will be I amperes.

Equations (2.36) and (2.37) given below can be used to 

determine  the voltages in series-connected resistances in terms of the total voltage across the 

series combination and the value of individual resistances. Hence, these equations are called the 

voltage division rule.

V V
R R

R

1 2
1

1
#=

+      ..... (2.36)

V V
R R

R

1 2
2

2
#=

+

      ..... (2.37)

The following equation will be helpful to remember the voltage division rule.

In two series-connected resistances,

Voltage across one of the
Sum of individual

series combination
resistances

resistances
=

Total voltage across
Value of the resistance#

Proof for Voltage Division Rule

With reference to Fig. 2.35,  by Ohm’s law, we can write,

V
1
 = IR

1
    ..... (2.38)

V
2
 = IR

2
    ..... (2.39)

By Kirchhoff’s Voltage Law, we get,

V = V
1
 + V

2
   ..... (2.40)

On substituting for V
1
 and V

2
 from equations (2.38) and (2.39) in equation (2.40), we get,

V = IR
1
 + IR

2
  = I (R

1
 + R

2
)

I
R R

V

1 2

` =
+

                                                                                                                    ..... (2.41)

On substituting for I from equation (2.41) in equation (2.38), we get,

V
R R

V
R V

R R

R
1

1 2
1

1 2

1
# #=

+
=

+

On substituting for I from equation (2.41) in equation (2.39), we get,

V
R R

V
R V

R R

R
2

1 2
2

1 2

2
# #=

+
=

+

++
E

E

R
1

R
2

V
1

V
2

V

I

Fig. 2.35 : Resistances in series.

+ E
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2.2.2    Voltage Division in Series-connected Impedances

Consider two impedances Z and Z1 2  in series which are connected to an ac source of V  volts 

as shown in Fig. 2.36. Let I  be the current supplied by the source and V and V1 2  be the voltages 

across Z and Z1 2 , respectively. Since the impedances are in series, the current through them will 

be I  amperes.

Equations (2.42) and (2.43) can be used to solve the voltages in series-connected impedances 

in terms of the total voltage across the series combination and the value of individual impedances. 

Hence, these equations are called the voltage division rule.

V V
Z Z

Z
1

1 2

1
#=

+
       .....(2.42)

V V
Z Z

Z
2

1 2

2
#=

+

      .....(2.43)    

The following equation will be helpful to remember the 

voltage division rule.

In two series-connected impedances,

Voltage across one of the impedances
Sum of individual impedances

series combination impedance
=

#
Total voltage across Value of the

2.2.3    Current Division in Parallel-connected Resistances

Consider two resistances R
1 
and R

2
 in parallel are connected 

to a dc source of V volts as shown in Fig. 2.37. Let I be the current 

supplied by the source and I
1
 and I

2
 be the current through R

1
 and R

2
, 

respectively. Since the resistances are parallel to the source, the voltage 

across them will be V volts.

Equations (2.44) and (2.45) given below can be used to 

determine  the currents in parallel-connected resistances in terms of 

the total current drawn by the parallel combination and the values of individual resistances. Hence, 

these equations are called the current division rule.

I I
R R

R

1 2
1

2
#=

+
                                                                   ..... (2.44)

I I
R R

R

1 2
2

1
#=

+

                                                                                                               ..... (2.45)

The following equation will be helpful to remember the current division rule.

In two parallel-connected resistances,

Current through one of the
Sum of individual

parallel combination
resistances

resistances
=

Total current drawn by
# Value of the other resistance

+

+

E

E

Fig. 2.36 : Impedances in series.
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parallel.
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Proof for Current Division Rule

With reference to Fig. 2.37, by Ohm’s law we can write,

I
R

V
1

1

=

                                                                                         ..... (2.46)

I
R

V
2

2

=  ..... (2.47)

By Kirchhoff’s Current Law, we get,

I  =  I
1
 + I

2
  

   R

V

R

V
V

R R
V

R R

R R1 1

12 2 1 2

2 1

1

= + = + =
+c cm m                     Using equations (2.46) and (2.47)

V I
R R

R R

1 2

1 2
` #=

+                                                                                                                           ..... (2.48)

On substituting for V from equation (2.48) in equation (2.46), we get,

I I
R R

R R

R
I

R R

R1
1

1 2

1 2

1 1 2

2
# # #=

+
=

+

On substituting for V from equation (2.48) in equation (2.47), we get,

I I
R R

R R

R
I

R R

R1
2

1 2

1 2

2 1 2

1
# # #=

+
=

+

2.2.4    Current Division in Parallel-connected Impedances

Consider two impedances Z and Z1 2  in parallel are connected to an ac source of V  volts as 

shown in Fig. 2.38. Let I  be the current supplied by the source and I and I1 2  be the current through

Z and Z1 2 , respectively. Since the impedances are parallel to the source, the voltage across them 

will be V  volts.

Equations (2.49) and (2.50) can be used to solve the 

currents in parallel-connected impedances in terms of the total 

current drawn by the parallel combination and the value of 

individual impedances. Hence, these equations are called the 

current division rule.

I I
Z Z

Z
1

1 2

2
#=

+         .....(2.49)

I I
Z Z

Z
2

1 2

1
#=

+
      .....(2.50)    

The following equation will be helpful to remember the current division rule.

In two parallel-connected impedances,

Current through one of the impedances
parallel combination other impedance

=
Sum of individual impedances

Total current drawn by Value of the
#

Fig. 2.38 : Impedances in parallel.
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2.3    Source Transformation

“The practical voltage source can be converted into an equivalent practical current source and  

vice versa, with the same terminal behaviour”. In these conversions, the current and voltage at the 

terminal of the equivalent source will be the same as that of the original source, so that the power 

delivered to the load connected at the terminals of the original and equivalent source will be the same.

The voltage source with series resistance can be converted into an equivalent current source 

with parallel resistance as shown in Fig. 2.39. Similarly, the current source with parallel resistance 

can be converted to an equivalent voltage source with series resistance as shown in Fig. 2.40.

Proof for Conversion of Voltage Source to Current Source 

Consider a voltage source with  source resistance R
s
 delivering a current I to a load resistance R

L
 as shown 

in Fig. 2.39(a).

In Fig. 2.39(a), using KVL, we can write,

E = IR
s
 + V      ..... (2.51)

On dividing equation (2.51) throughout by R
s 
, we get,

R

E
I

R

V

ss

= +

                                ..... (2.52)

,Let
R
E I and

R
V I
ss

s sh= =        ..... (2.53)

From equations (2.52) and (2.53), we can write,

I
s
 = I + I

s h
       ..... (2.54)

Equation (2.54) represents a current source with generated current I
s
 and delivering a load current I to the 

load resistance R
L
. The I

sh
 is the current drawn by a parallel resistance of value R

s
 connected across the current

source. Hence, equation (2.54) can be used to construct an equivalent current source as shown in Fig. 2.39(b). It can 
be observed that the current source of Fig. 2.7(b) is equivalent to the voltage source of Fig. 2.39(a) with respect to the 
terminals A-B.

+ +
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- -

E
+
-

A
A

B
B

V
VI

s

R
s

R
sR

L

R
L

I
II

sh

I = E / R
s s

Fig. a : Voltage source. Fig. b : Equivalent current source of the
voltage source in Fig. a.

Fig. 2.39 : Conversion of voltage source to current source.
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E = I R
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Fig. a : Current source. Fig. b : Equivalent voltage source of the
source in Fig. a.current

Fig. 2.40 : Conversion of current source to voltage source.
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Proof for Conversion of Current Source to Voltage Source 

Consider a current source with source resistance R
s
 delivering a current I to a load resistance R

L
 as shown in 

Fig. 2.40(a).

In Fig. 2.40(a), using KCL, we can write,

I
R

V
Is

s

= +                                                                                 .....(2.55)

On multiplying equation (2.55) by R
s
, we get,

I
s
R

s
 = V + IR

s
      ..... (2.56)

Let,      I
s  

R
s
 = E       ..... (2.57)

From equations (2.56) and (2.57), we can write,

E = V + IR
s
       ..... (2.58)

Equation (2.58) represent a voltage source with generated voltage E and delivering a load current I to the 
load resistance R

L
. The IR

s
 is the voltage across a series resistance of value R

s
. Hence, equation (2.58) can be used to 

construct an equivalent voltage source as shown in Fig. 2.40(b). It can be observed that the voltage source of Fig. 2.40(b) 
is equivalent to the current source of Fig. 2.40(a) with respect to the terminals A-B.

2.4    Star-Delta Conversion

2.4.1    Resistances in Star and Delta 

The star-connected resistances can be converted into equivalent delta-connected resistances 
and vice versa. The conversion is valid if the ratio of voltage to current at any two terminals of the 
equivalent network is the same as that in the original network. This means that the looking back 
resistance at any two terminals of the original network is the same as that of the equivalent network.

Delta to Star Transformation

Consider three delta-connected resistances R
12

, R
23

 and R
31

 as shown in Fig. 2.41(a). These 
resistances can be converted into equivalent star-connected resistances R

1
, R

2
 and R

3
 of Fig. 2.41(b).

The equations used to determine the star equivalent of delta-connected resistances are given 

below:

R
R R R

R R
1

12 23 31

12 31
=

+ +

R
R R R

R R
2

12 23 31

12 23
=

+ +

R
R R R

R R
3

12 23 31

23 31
=

+ +

From the above equations, we can say that when the three resistances in delta are equal to 
the value R, their equivalent star-connected resistances will consist of three equal resistances of 
value R/3.

R
1

R
2

Fig. 2.41 : Delta to star transformation.

R
3

R
23

R
31 R

12

1

2

3

1

2

3

Fig. a : Delta-connected resistances. Fig. b : Star-connected resistances.
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The following equation will be helpful to remember the delta to star conversion equations.

thethe terminal in delta network
Star equivalent at one

Sum of three r in the delta network
resistance terminal

esistances
=

The product of resistances connected to

Star to Delta Transformation

Consider three star-connected resistances R
1
, R

2
 and R

3
 as shown in Fig. 2.42(a). These 

resistances can be converted into equivalent delta-connected resistances R
12

, R
23

 and R
31

 of 

Fig. 2.42(b).

The equations used to determine the delta equivalent of star-connected resistances are  

given below: 

 R R R
R

R R

3
12 1 2

1 2
= + +

R R R
R

R R
23 3

1

2 3
2= + +

R R R
R

R R
3

2

3 1
31 1= + +

From the above equations we can say that when the three resistances in star are equal to the  

value R, their equivalent delta-connected resistances will consist of three equal resistances  

of value 3R. 

The following equation will be helpful to remember the star to delta conversion equations.

+

the star network the star network

the

two terminals in

terminals in star network
=

connected to the

The third resistance in

connected to the twoSum of resistances

Product of the resistances

theDelta equivalent resistance between two terminals

 

Fig. 2.42 : Star to delta transformation.

Fig. b : Delta-connected resistances.
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Fig. a : Star-connected resistances.
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2.4.2    Impedances in Star and Delta

The star-connected impedances can be converted into equivalent delta-connected  

impedances  and vice versa. The conversion is valid if the ratio of voltage to current at any two 

terminals of the equivalent network is the same as that in the original network. This means that 

the looking back impedance at any two terminals of the original network is the same as that of 

the equivalent network.

Delta to Star Transformation

Consider three delta-connected impedances ,Z Z and Z12 23 31
 
as shown in Fig. 2.43(a). 

These impedances can be converted into equivalent star-connected impedances ,Z Z and Z1 2 3  

of  Fig. 2.43(b) using the equations given below:

; ;Z
Z Z Z

Z Z
Z

Z Z Z

Z Z
Z

Z Z Z

Z Z
1

12 23 31

12 31
2

12 23 31

12 23
3

12 23 31

23 31
=

+ +

=

+ +

=

+ +

         

Star to Delta Transformation

Consider three star-connected impedances ,Z Z and Z1 2 3  as shown in Fig. 2.44(a). These 

impedances can be converted into equivalent delta-connected impedances ,Z Z and Z12 23 31  of 

Fig. 2.44(b) using the equations given below:

; ;Z Z Z
Z

Z Z
Z Z Z

Z

Z Z
Z Z Z

Z

Z Z
12 1 2

3

1 2
23 2 3

1

2 3
31 3 1

2

3 1
= + + = + + = + +

Z31 Z12

Z23

Z1

Z3 Z2

Fig. 2.44 : Star to delta transformation.

1

2

3

Fig. b : Delta-connected impedances.

1

2

3

Fig. a : Star-connected impedances.
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Fig. 2.43 : Delta to star transformation.
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Fig. a : Delta-connected impedances. Fig. b : Star-connected impedances.
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2.5    Solved Problems in Network Reduction

EXAMPLE 2.1

In the circuit shown in Fig. 1, find the total resistance across the 

supply voltage.

SOLUTION

The step-by-step reduction of the given network is shown in Figs 2 to 5.

Step-1 :

The series-connected 82 W and 18 W resistances in Fig. 1 are combined to 

form a single equivalent resistance as shown in Fig. 2. Also the parallel-connected 

60 W and 40 W in Fig. 1 are combined to form a single equivalent resistance as 

shown in Fig. 2.

Step-2 :

The series-connected 24 W and 76 W resistances in Fig. 2 are combined to 

form a single equivalent resistance as shown in Fig. 3.

Step-3 :

The two parallel-connected 100 W resistances in Fig. 3 are combined to form 

a single equivalent resistance as shown in Fig. 4.

Step-4 :

The series-connected 100 W and 50 W resistances in Fig. 4 are combined to 

form a single equivalent resistance as shown in Fig. 5.

RESULT

With reference to Fig. 5, we can say that, 

Total resistance across supply  = 150 W

+
-

76W

100W

E

Fig. 1.

60W

40W

82W 18W

ß

60 40

60 40
24

´

+
= W

+
-

76W

100W 82 + 18 = 100W

E

Fig. 2.

ß

+
-

100W

Fig. 3.

100W

24 + 76 = 100W

E

ß

100 100

100 100
50

´

+
= W

+
-

100W

E

Fig. 4.

ß

+
E

100 + 50 = 150�

E

Fig. 5.
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2W

2W

4W
V

B

A

4W

3W 1W

Fig. 1.

+

_

ß

4W 4WV
3 + 1

= 4W

Fig. 3.

+

_
2 + 2

= 4W

A

B

ß

EXAMPLE 2.2

Find the total resistance as seen by the source in the circuit shown 

in Fig. 1.

SOLUTION

The step-by-step reduction of the given circuit is shown in Figs 2 to 5.

Step-1 :

The given circuit is redrawn as shown in Fig. 2.

Step-2 :

The two series-connected 2 W resistances in Fig. 2 are 

combined to form a single equivalent resistance as shown in  

Fig. 3. Similarly, the 3 W and 1 W in series are converted into a 

single equivalent reisistance.

Step-3 :

The circuit of Fig. 3 is redrawn as shown in Fig. 4.

Step-4 :

The four parallel-connected 4 W resistances in Fig. 4 are combined to form a single equivalent resistance 

as shown in Fig. 5.

RESULT

With reference to Fig. 5, we can say that, 

Total resistance across supply  = 1 W

EXAMPLE 2.3

Find the equivalent resistance of the network shown in Fig. 1.

2W

2W

4W

A

4WV

3W

B

1W

Fig. 2.

+

_

ß

4W 4WV

Fig. 4.

+

_
4W 4W
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Fig. 5.
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(AU Dec’14, 4 Marks)
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SOLUTION

The step-by-step reduction of the given network is shown in Figs 2 to 6.

Step-1 :

The delta-connected 30 W, 90 W and 60 W resistances in Fig. 2 are 

converted into equivalent star-connected resistances as shown in Fig. 3. The 

resistances R
1
, R

2
 and R

3
 connected by dotted lines in Fig. 2 are the star 

equivalent resistances.

R
30 90 60

30 60
101

#
Ω=

+ +
=

1R
30 90 60

30 90
52

#
Ω=

+ +
=

R
30 90 60

90 60
303

#
Ω=

+ +
=

Step-2 :

The series-connected 15 W and 75 W resistances in Fig. 3 are combined to 

form a single equivalent resistance as shown in Fig. 4. Similarly, the 30 W and 15 W 

in series are converted into a single equivalent reisistance.

Step-3 :

The parallel-connected 90 W and 45 W resistances in Fig. 4 are combined 

to form a single equivalent resistance as shown in Fig. 5.

Step-4 :

The series-connected 10 W and 30 W resistances in Fig. 5 are combined to 

form a single equivalent resistance as shown in Fig. 6.

RESULT

With reference to Fig. 6, we can say that, 

Equivalent resistance across A-B, R
AB

 = 40 W 

A

B

30W

Fig. 2.

60W

90W

75W 15W

R
1

R
2 R

3

1

2 3

ß

A

B

1

2 3

75W 15W

R = 10
1

W

R = 15
2

W R = 30
3

W

Fig. 3.

ß
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B
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15 + 75
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ß
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B
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3
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EXAMPLE 2.4

Find the equivalent input resistance across terminals A and B of the 

bridged-T network shown in Fig. 1.

SOLUTION

The step-by-step reduction of the bridged-T network is shown  

in Figs 2 to 5.

Step-1 :

The delta-connected resistances 1 W, 3 W and 2 W in Fig. 2 are 

converted into equivalent star-connected resistances as shown in Fig. 3. 

The resistances R
1
, R

2
 and R

3
 connected by dotted lines in Fig. 2 are star 

equivalent resistances.

R
2 1 3

2 1

6

2

3

1
1

#
Ω=

+ +
= =

R
2 1 3

1 3

6

3

2

1
2

#
Ω=

+ +
= =

R
2 1 3

2 3

6

6
13

#
Ω=

+ +
= =

Step-2 :

The series-connected two 1 W resistances in Fig. 3 are combined to form 

a single equivalent resistance as shown in Fig. 4. Similarly, the 1/2 W and 2 W in 

series are converted into a single equivalent reisistance.

Step-3 :

The parallel-connected 5/2 W and 2 W resistances in Fig. 4 are converted into 

a single equivalent resistance as shown in Fig. 5.

Step-4 :

The series-connected 1/3 W and 10/9 W resistances in Fig. 5 are combined to 

form a single equivalent resistance as shown in Fig. 6.

RESULT

With reference to Fig. 6, we can say that, 

B- 1.4444Equivalent across
9
13resistance A Ω Ω= =

2W

Fig. 1.
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EXAMPLE 2.5

Find the equivalent resistance across terminals A-B in the network 

shown in Fig. 1.  All the resistances are 3 W.

SOLUTION

The step-by-step reduction of the network is shown in Figs 2  to 7.

Step-1 :

The innermost delta-connected resistances in Fig. 2 are 

converted into an equivalent star-connected resistance in Fig. 3. Since 

the delta-connected resistances are of equal value, the equivalent  

star-connected resistances will also have equal value, which is one-third  

of the delta-connected resistance.

Step-2 :

The series-connected 3 W and 1 W resistances in each branch of 

the star-connection in Fig. 3 are combined to form a single equivalent 

resistance of 3 W + 1 W = 4 W in each branch, as shown in Fig. 4.

Step-3 :

The star-connected resistances in Fig. 4 are converted into an 

equivalent delta-connected resistance as shown in Fig. 5. Since the 

star-connected resistances are of equal value, the delta-connected 

resistances will also have equal value, which is three times the star-

connected resistance.

Step-4 :

The network of Fig. 5 has three similar parallel connections of 12 W and 3 W resistances.  Each parallel 

connection is converted into a single equivalent resistance as shown in Fig. 6.
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Step-5 :

Since we need resistance across nodes A and B, we can eliminate node C by combining the two  

series-connected resistances in the path ACB to a single equivalent resistance as shown in Fig. 7.

Step-6 :

The parallel-connected 4.8 W and 2.4 W resistances in Fig. 7 are converted into a single equivalent 

resistance in Fig. 8.

RESULT

With reference to Fig. 8, we can say that, 

Resistance across A-B = 1.6 W

EXAMPLE 2.6

Determine the equivalent resistance at A-B in the network 

shown in Fig. 1.

SOLUTION

Method-I

Let us connect a voltage source of value V volts across A-B 

as shown in  Fig. 2. Let I be the current delivered by the source. Let 

R
AB 

 be the resistance across A-B. Now, R
AB

 is given by,

R
I

V
AB =

Due to the symmetry of the network, when a current 

enters a node it will divide equally in the outgoing path.

Similarly, the currents entering a node from incoming 

branches will also be equal. The currents that will flow in the 

various paths are shown in Fig. 2.

With reference to Fig. 2, by KVL in the path 

AMNOSBA, we get,

V
I I I

I
3

2
6

2
3

2
3

2

6

2

3

2
# # #= + + = + +c c c cm m m m

I I I
6

4 2 4

6

10

3

5
=

+ +
= =c m

I

V

3

5
` =

 R
I

V

3

5
AB` Ω= =

Method-II

The given network can be redrawn as shown in Fig. 3, in which two of the resistive branches are 

considered as the parallel combination of two 4 W resistances.
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ß

The network of Fig. 3 can be considered as the parallel combination of two identical networks as shown in 

Figs 4 and 5.

Let R
A1B1

 be the single equivalent resistance of the network shown in Fig. 4 and R
A2B2

 be the single 

equivalent resistance of the network shown in Fig. 5. Now, the equivalent resistance R
AB

 at A-B of the original 

network is given by the parallel combination of R
A1B1

 and R
A2B2

. Since, the networks of Figs 4 and 5 are 

identical, R
A1B1

 will be equal to R
A2B2

 and so .R R or R R2 2AB A1B1 AB A2B2= =

Therefore, it is sufficient if we reduce the network of Fig. 4 into a single equivalent resistance. The 

step-by-step reduction of the network of Fig. 4 is shown in Figs 6 to 10.

Step-1 :

The series-connected 4 W and 2 W resistances in Fig. 4 are 

combined to form a single equivalent resistance as shown in Fig. 6.

Step-2 :

The delta-connected resistances 2 W, 2 W and 6 W in 

Fig. 6 are converted into an equivalent star-connected resistance 

as shown in Fig. 7.
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Step-3 :

The series-connected 
5

6 W  and 2 W resistances in Fig. 7 are combined to form a single equivalent resistance 

as shown in Fig. 8.  Similarly, the series-connected  
5

2 W  and 6 W resistances are converted into a single equivalent.

Step-4 :

The parallel-connected and
5

16

5

32W W  in Fig. 8 are combined to form a single equivalent resistance 

as shown in Fig. 9.  

Step-5 :

The series-connected and
5

6

15

32W W  resistances in Fig. 9 are combined to form a single equivalent 

as shown in Fig. 10.

RESULT

With reference to Fig. 10, we get,

R
3

10
A1B1 Ω=

Let,  R
AB

 be the equivalent resistance at A-B in the network of Fig. 1.

,Now R
R

2 3
10

2
1

3
5

AB
A1B1

# Ω= = =

EXAMPLE 2.7

Find the equivalent resistance and total current I
T
 in the 

network shown in Fig. 1.

SOLUTION

The step-by-step reduction of the given network is shown 

in Figs 2 to 6.

Step-1 :

The delta-connected 30 W, 20 W and 50 W resistances in 

Fig. 2 are converted into equivalent star-connected resistances 

as shown in Fig. 3. The resistances R
1
, R

2
 and R

3
 connected by 

dotted lines in Fig. 2 are the star equivalent resistances.

R
20 30 50

20 30
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#
Ω=

+ +
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20 50
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#
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+ +
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R
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30 50
153

#
Ω=

+ +
=

Step-2 :

The series-connected 24 W and 6 W resistances in Fig. 3 are 

combined to form a single equivalent resistance as shown in Fig. 4.  

Similarly, the 10 W and 10 W in series are converted into a single 

equivalent reisistance.
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Step-3 :

The parallel-connected 30 W and 20 W resistances in 

Fig. 4 are combined to form a single equivalent resistance as 

shown in Fig. 5.

Step-4 :

The series-connected 13 W,12 W and 15 W resistances 

in Fig. 5 are combined to form a single equivalent resistance as 

shown in Fig. 6.

Let,  R
AB

 be the resistance across A and B.

With reference to Fig. 6, we get, 

R
AB 

= 40 W

To find the total current drawn from the source

Let, I
T
 be the total current drawn from the source. 

Now, by Ohm’s law, we get,

, .5Total current I
R

A100
40
100 2T

AB

= = =

EXAMPLE 2.8

When a 6 V source is connected across A and B in the 

network shown in Fig. 1, find a) the total resistance between 

terminals A and B, b) the total current drawn from the source,

c) the voltage across 3 kΩ resistance and d) the current through 

4.7 kΩ resistance.

SOLUTION

a) To find the resistance between A and B

The step-by-step reduction of the given network to a 

single equivalent resistance is shown in Figs 2 to 4.

Step-1 :

The parallel-connected 5 kΩ and 4.7 kΩ resistances 

in Fig. 1 are converted into a single equivalent resistance as 

shown in Fig. 2

A

B

10k�

4k�

3k�

5k�

4.7k�

Fig. 1.
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B
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4kW

5 4.7

5 4.7
2.4227

´

+
= kWFig. 2.

A

B

100V
+
-

= 30W

13W

Fig. 4.

15W

= 20W
24 + 6 10 + 10

I
T

ß
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Step-2 :

The series-connected 4 kΩ and 2.4227 kΩ resistances 

in Fig. 2 are converted into a single equivalent resistance as 

shown in Fig. 3.

Step-3 :

The parallel-connected 10 kΩ, 3 kΩ and 6.4227 kΩ 

resistances in Fig. 3 are converted into a single equivalent 

resistance as shown in Fig. 4.

Let,  R
AB

 be the resistance across A and B.

With reference to Fig. 4, we get,

1.6977R kAB Ω=

b) To find the total current drawn from the source

The given network can be represented by a single  

equivalent  resistance as shown in Fig. 4. Let us connect a 6 V 

source across A and B as shown in Fig. 5. Let, I
T
 be the total 

current drawn from the source. 

Now, by Ohm’s law, we get,

,
.

3.5342 10 3.5342Total current I
R

A mA
6

1 6977 10

6
3

3
T

AB #

#= = = =
-

c) To find the voltage across 3 kW resistance

In the network of Fig. 1, connect a 6 V source across A 

and B as shown in Fig. 6. Now, by inspection we can say that the  

6 V source and 3 kW resistance are in parallel. Since the voltages 

are same in parallel connection, the voltage across 3 kW is 6 V.

∴  Voltage across 3 kΩ resistance = 6 V

d) To find current through 4.7 kW resistance

The voltages and currents that will exist in various resistances when a 6 V source is connected across 

A and B of the network of Fig. 1 are shown in Fig. 7. For convenience, the circuit of Fig. 7 is redrawn as shown 

iin Fig. 8.
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= -
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With reference to Fig. 8, by voltage division rule, we get,

.

.
6

.

.
2.2633V V V

4 2 4227

2 4227

4 2 4227

2 4227
2 # #=

+
=

+
=

With reference to Fig. 7, by Ohm’s law, we get,

. .

.
0.4816 10 0.4816I

V
mA

4 7 10 4 7 10

2 2633
3 3

3
2

2

# #

#= = = =
-

\  Current through the 4.7 kΩ resistance =  I
2
  = 0.4816 mA

RESULT

Total resistance between A and B, R
AB

 = 1.6977 kΩ

Total current, I
T
 = 3.5342 mA

Voltage across the 3 kΩ resistance = 6 V

Current through the 4.7 kΩ resistance = 0.4816 mA

EXAMPLE 2.9

Find the equivalent impedance of the network shown in Fig. 1.

SOLUTION

The step-by-step reduction of the given network to a single 

equivalent impedance is shown in Figs 2 to 5.

Step-1 :

The series-connected 0.5 + j0.5 W and 1.5 + j1.5 W impedance in 

Fig.1 are converted into a single equivalent impedance as shown in Fig. 2.

Step-2 :

The parallel-connected 2 + j2 W impedance and –j2 W capacitive 

reactance are converted into a single equivalent impedance as shown in 

Fig. 3.

Step-3 :

The series-connected 1  W and 3  W resistances and 2
 
–

 
j2  W 

impedance in Fig. 3 are converted into a single equivalent impedance  

as shown in Fig. 4.

j4W
Fig. 1.

3W1W
- Wj2

0.
5
+
j0
.5
W

1.5
+
j1.5

W

A B

ß

j4WFig. 2.

1W
- Wj2

A B

0.5 + j0.5 + 1.5 + j1.5

= 2 + j2W

3W

ß

j4�
Fig. 4. A B

1 + 2 j2 + 3 = 6 j2E �E
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Step-4 :

The parallel-connected 6 – j2 W impedance and j4 W inductive reactance 

are converted into a single equivalent impedance as shown in Fig. 5.

RESULT

With reference to Fig. 5, the equivalent impedance ZAB  at terminals A-B is,

ZAB  = 2.4 + j3.2 W

EXAMPLE 2.10

Obtain the single delta-connected equivalent of the network shown in 

Fig. 1.

SOLUTION

The given network has two star networks between nodes 1, 2 and 3.  

We can convert the star networks one by one to delta.

Consider the star-connections of 10 Ω, 10 Ω and 5 Ω shown in Fig. 2. The equivalent delta network is 

shown in Fig. 3.

The star-connected resistances are denoted by R
1
, R

2
 and R

3
. The equivalent delta-connected 

resistances are denoted by R
12

, R
23

 and R
31

 and they are computed as shown below:

R R R
R

R R
10 10

5

10 10
4012 1 2

3

1 2 #
Ω= + + = + + =

10 0R R R
R

R R
5

10

10 5
223 2 3

1

2 3 #
Ω= + + = + + =

5 10 20R R R
R

R R

10

5 10
31 3 1

2

3 1 #
Ω= + + = + + =

Consider the star connections of j10 Ω, j10 Ω and j5 Ω shown in Fig. 4. The equivalent delta network 

is shown in Fig. 5. 

j10�

10� 10�
1 2

3

j5� 5�

Fig. 1.

j10�

Fig.5.
A B

6 2 4

6 2 4
2 4 3 2
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- +
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j j
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3

Fig. 2.

R
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R
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40W

20W 20W
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2

Fig. 3.
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Fig. 4.
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X1 X2

X3

j10W
1

3

X12

X31 X23

j40W

j20W

2

j20W
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The star-connected reactances are denoted by , .X X and X1 2 3  The equivalent delta-connected 

reactances are denoted by ,X X and X12 23 31  and they are computed as shown below:

X X X
X

X X j j
j

j j
j10 10

5

10 10
4012 1 2

3

1 2 #
Ω= + + = + + =

10 0X X X
X

X X
j j

j

j j
j5

10

10 5
223 2 3

1

2 3 #
Ω= + + = + + =

10 0X X X
X

X X
j j

j

j j
j5

10

5 10
231 3 1

2

3 1 #
Ω= + + = + + =

Using the delta equivalent shown in Figs 3 and 5, the network of Fig. 1 can be transformed into the type 

shown in Fig. 6 and we can observe that R
12

 and X12  are in parallel in Fig. 6. Similarly, R
23

 and X23  are in parallel 

and R
31

 and X31  are in parallel. The parallel combination of resistance and reactance can be combined to give 

a single equivalent impedance as shown below:

Let, Z12  = Parallel combination of R
12

 and X12

    Z23  = Parallel combination of R
23

 and X23

    Z31  = Parallel combination of R
31

 and X31

0Z
R X

R X
j

j
j

40 40

40 40
20 212

12 12

12 12 #
Ω=

+
=

+
= +

10 10Z
R X

R X

j

j
j

20 20

20 20
23

23 23

23 23 #
Ω=

+
=

+
= +

10 10Z
R X

R X

j

j
j

20 20

20 20
31

31 31

31 31 #
Ω=

+
=

+
= +

The single delta equivalent of the network of Fig. 1 is shown in Fig. 7.

EXAMPLE 2.11

Find the equivalent capacitance of the network shown in Fig. 1.

SOLUTION

The step-by-step reduction of the given circuit is shown in  

Figs 2 to 4.

R = 4012 W

R

=
20

23

W

R

=
20

31

W

21

3

X12 = j40W
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Fig. 6.
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5 20
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´

+

Fig. 2.

ß

ß
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= 30mF

60mF
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ß

Step-1 :

The series-connected 20 mf and 5 mf capacitances in Fig. 1 are 

combined to form a single equivalent capacitance as shown in Fig. 2. 

Step-2 :

The parallel-connected capacitances 4 mf, 6 mf and 20 mf in 

Fig. 2 are combined to form a single equivalent capacitance as shown 

in Fig. 3.

Step-3 :

The series-connected capacitances 30 mf and 60 mf in Fig. 3 are 

combined to form a single equivalent capacitance as shown in Fig. 4.

RESULT

With reference to Fig. 4, we can say that, 

Equivalent capcitance A-B, C
eq 

= 20 mF

EXAMPLE 2.12

Find the equivalent capacitance across terminals A-B in the network 

shown in Fig. 1.

SOLUTION

Let us consider the capacitances as capacitive reactances 

as shown in Fig. 2 for convenience in applying reduction 

techniques. 

The step-by-step reduction of capacitive reactances 

into a single equivalent is shown in Figs 2 to 7.

Step-1 :

The delta-conected capacitive reactances in Fig. 2 are 

converted into star-connected capacitive reactances as shown 

in Fig. 3. Since the delta-connected reactances are of equal 

value, the equivalent star-connected reactances will also have 

equal value, which is one third of the delta-connected reactances.

Step-2 :

The series-connected capacitive reactances – jX
C

/3, 

– jX
C
 and – jX

C
/3 in Fig. 3 are converted into a single equivalent 

reactance as shown in Fig. 4. Similarly, the two – jX
C
/3 reactances 

in series are converted into a single equivalent.

Fig. 1.
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C C
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Step-3 :

The parallel-connected capacitive reactances –

j2X
C

/3 and –j5X
C

/3 in Fig.4 are converted into a single 

equivalent capacitive reactance as shown in Fig.5.

Step-4 :

The series-connected capacitive reactances –jX
C

/3, 

–j10X
C

/21, and –jX
C

/3 in Fig.5 are converted into a single 

equivalent reactance as shown in Fig. 6.

Step-5 :

The parallel-connected capacitive reactances –jX
C

 and –j8X
C

/7 

in Fig. 6 are converted into a single equivalent reactance as shown in 

Fig. 7.

RESULT

Let, C
AB

  =  Equivalent capacitance across terminals A-B

     X
CAB

  =  Equivalent capacitive reactance across terminals A-B

With reference to Fig. 7, we get,

X
X

15

8
CAB

C
=     .....(1)

We know that, 

X
fC2

1
C

π

=     .....(2)

Using equation (2), equation (1) can be written as, 

X
fC15

8

2

1
CAB #

π

=    .....(3)

,
2

Let X
fC
1

CAB
ABπ

=    .....(4)

On equating equations (3) and (4), we get,

1.875
fC fC

C C C
15

8

2

1

2

1

8

15

AB
AB&#

π π

= = =

∴  Equivalent capacitance at A-B, C
AB

 = 1.875 C farad.

EXAMPLE 2.13

Find the equivalent admittance of the network shown in Fig. 1.
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SOLUTION

The step-by-step reduction of the given network 

into a single equivalent admittance is shown in Figs 2 to 5.

Step-1 :

The series-connected 2 + j4 M  and 4 + j4 M  

admittances in Fig. 1 are converted into a single equivalent 

admittance as shown in Fig. 2.

Step-2 :

The parallel-connected 2 + j2 M , 3 – j3 M , 1 + j5 M  and 1.44 + j2.08 M  admittances 

in Fig. 2 are converted into a single equivalent admittance as shown in Fig. 3.

Step-3 :

The series-connected 3 + j2 M and 7.44 + j6.08 M  are 

converted into a single equivalent admittance as shown in Fig. 4.

Step-4 :

The parallel-connected 1 + j4 M  and 2.1441 + j1.513 M  admittances 

are converted into a single equivalent admittance as shown in Fig. 5.

RESULT

With reference to Fig. 5, the equivalent admittance YAB  at terminals A-B is,

. .Y j3 1441 5 513AB M= +

EXAMPLE 2.14

Determine the equivalent susceptance for the circuit shown in 

Fig. 1.

SOLUTION

The step-by-step reduction of the given network is shown in  

Figs 2 to 6. Let, jB
AB

 be the equivalent susceptance across A-B. 

With reference to Fig. 6, we get,

0.7jB jAB M=

B
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EXAMPLE 2.15

Using source transformation technique, find the current 

I
o
, through the 7 W resistor shown in Fig. 1.

SOLUTION

The parallel-connected resistances 6 W and 3 W are 

converted into a single equivalent resistance as shown in Fig. 

2. Similarly, the series-connected resistances  1 W and 4 W are converted into a single equivalent resistance 

as shown in Fig. 2. 

Let us convert the 5 A source into a voltage source as shown in Fig. 3.

The voltage sources 10 V and 5 V in series are combined to form a single source as shown in Fig. 4.

Let us convert the 5 V source in series with the 2 W resistance into an equivalent current source in 

parallel with 2 W resistance as shown in Fig. 5.
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The current sources in parallel in Fig. 5 can be combined to form  

a single source as shown in Fig. 6. Also, the resistances 2 W and 5 W  can 

be combined to form a single resistance.

With reference to Fig. 6, by the current division rule,

. .
.

I 5 5

7

10
7

7

10

5 5

7

10 7 7

7

10

59

5 5 10
o

# #
#

#
=

+

=
+

=

    =  0.9322 A

2.6    Network Theorems

Theorems are useful tools for analysing circuits with lesser effort. They are derived 

from fundamental laws and concepts. A given circuit can be analysed by different methods,  

namely., KCL/KVL, mesh/node method, theorems, etc. In most of the cases, the analysis of 

circuits using theorems is much easier as compared to other methods. Remember that theorems 

do not always simplify the task of analysis, sometimes it may become more tough than  

other methods.

2.6.1   Thevenin’s and Norton’s Theorems

Thevenin’s theorem will be useful to find the response of an element in a circuit by replacing 

the complicated part of the circuit by a simple equivalent voltage source. Similarly, Norton’s 

theorem will be useful to find the response of an element in a circuit by replacing the complicated 

part of the circuit by a simple equivalent current source.

Consider a load impedance ZL  connected to two terminals A and B of a circuit represented as 

a box in Fig. 2.45(a). Using Thevenin’s theorem, the circuit can be replaced with a voltage source 

in series with an impedance as shown in Fig. 2.45(b). Using Norton’s theorem, the circuit can be 

replaced with a current source in parallel with an impedance as shown in Fig. 2.45(c).

Fig. 6.
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These theorems can also be used to analyse a part of a circuit by replacing the complicated 

part of the circuit with a simple equivalent circuit. 

Consider two parts of a circuit N
1
 and N

2
 connected through resistance-less wires as shown in 

Fig. 2.46(a). Now, one part of the circuit can be replaced with a simple equivalent circuit using 

Thevenin’s/Norton’s theorem for the analysis of another part of the circuit.

Using Thevenin’s theorem, the circuit N
1
 is replaced with a voltage source in series with 

an impedance as shown in Fig. 2.46(b). Using Norton’s theorem, the circuit N
1
 is replaced with a 

current source in parallel with an impedance as shown in Fig. 2.46(c).

Thevenin’s Theorem

Thevenin’s theorem states that a circuit with two terminals can be replaced with an equivalent circuit, 

consisting of a voltage source in series with a resistance (or impedance). 

The voltage source is called Thevenin’s voltage source and its value is given by the voltage 

across the two open terminals of the circuit.

 The series resistance (or impedance) is called Thevenin’s resistance (or impedance) 

and it is given by looking back resistance (or impedance) at the two open terminals of the 

network. The looking back resistance (or impedance) is the resistance (or impedance) measured 

at the two open terminals of a circuit after replacing all the independent sources with zero  

value sources. 
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Fig. 2.47 : Thevenin’s equivalent of a DC circuit.
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In order to calculate Thevenin’s resistance (or impedance), all the sources are replaced 

with zero value sources and the circuit is reduced to a single equivalent resistance (or impedance) 

with respect to two open terminals. The zero value sources are represented by their internal 

resistance (or impedance). For an ideal voltage source, the internal resistance (or impedance) is zero 

and so it is replaced with a short circuit. For an ideal current source, the internal resistance 

(or impedance) is infinite and so it is replaced with an open circuit.

Norton’s Theorem

Norton’s theorem states that a circuit with two terminals can be replaced with an equivalent circuit, 

consisting of a current source in parallel with a resistance (or impedance). 

The current source is called Norton’s current source and its value is given by the current 

flowing when the two terminals of the circuit are shorted. The parallel resistance (or impedance) is 

called Norton’s resistance (or impedance) and it is given by looking back resistance (or impedance) 

at the two terminals of the circuit. The looking back resistance (or impedance) is the resistance 

(or impedance) measured at the two open terminals of a circuit after replacing all the independent 

sources by zero value sources. 
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Fig. 2.48 : Thevenin’s equivalent of AC circuit.
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In order to calculate Norton’s resistance (or impedance), all the sources are replaced by 

zero value sources and the circuit is reduced to a single equivalent resistance (or impedance) with 

respect to two open terminals. The zero value sources are represented by their internal resistance 

(or impedance). For an ideal voltage source, the internal resistance (or impedance) is zero and so it 

is replaced with a short circuit. For an ideal current source, the internal resistance (or impedance) 

is infinite and so it is replaced with an open circuit.

Relation Between Thevenin’s and Norton’s Equivalents

Consider Thevenin’s equivalent of a given circuit as shown in Fig. 2.51.

Let us find Norton’s equivalent of the circuit N from its Thevenin’s equivalent. To find 

Norton’s current I
n
, the terminals A and B are short-circuited as shown in Fig. 2.52(a). Now, I

n
 is 

the current flowing through the short circuit. By Ohm’s law, we get, I
n
 = V

th
 / R

th
.

To find Norton’s resistance, the voltage source V
th
 is replaced with a short circuit as shown 

in Fig. 2.52(b). With reference to Fig. 2.52(b), we can say that Norton’s resistance R
n
 is the same 

as that of Thevenin’s resistance R
th
. Norton’s equivalent of the circuit N is shown in Fig. 2.52(c).

Norton’s equivalent of a circuit can also be directly obtained from its Thevenin’s equivalent 

(or vice versa) using source transformation technique as shown in Fig. 2.53. In fact, “Thevenin’s 

equivalent is the voltage source model and Norton’s equivalent is the current source model of a 

circuit”.

Fig. b : Thevenin’s equivalent.Fig. a : Original circuit.
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Fig. 2.51 : A circuit and its Thevenin’s equivalent.
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Fig. 2.52 : Norton’s equivalent of circuit N.
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From the above discussion it is evident that ( )R R or Z Znth th n= =  and also that Thevenin’s  

resistance (or impedance) is given by the ratio of Thevenin’s voltage and Norton’s current.

R R
I

V
th n

n

th
` = =

                                 
 .....(2.59)

      Z Z
I

V
nth

n

th
= =                                                          .....(2.60)

Equations (2.59) and (2.60) can be used to determine the looking back resistance (or 

impedance) from the knowledge of open circuit voltage (V
th

) and short circuit current (I
n
). 

EXAMPLE 2.16

Determine Thevenin’s and Norton’s equivalents of the circuit 

shown in Fig. 1 with respect to terminals A and B.

SOLUTION

To find Thevenin’s voltage Vth

Thevenin’s voltage V
th

 is the voltage across terminals A and 

B as shown in Fig. 2. The polarity of V
th

 is assumed such that terminal-A is positive and terminal-B is negative.

The 3 A current source in parallel with the 4 W resistance is converted into a voltage source in series 
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Fig. 2.53 : Conversion of Thevenin’s equivalent to Norton’s equivalent
(or vice versa) using source transformation technique.
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with the 4 W resistance as shown in Fig. 3. Now, the 5 A source is in series with the 4 W resistance and 12 V 

source.

By KVL, we can write,

V
th

 = (4 ´ 5) + 12 = 32 V

To find Thevenin’s resistance Rth (and Norton’s resistance Rn)

The current sources are replaced with an open circuit as shown in Fig. 4. With reference to Fig. 5, 

Thevenin’s resistance, R
th

 = 4 W

\  R
th

 = R
n
 = 4 W

To find Norton’s current In

The terminals A and B are shorted as shown in Fig. 6. Now, the 4 W resistance is short-circuited 

and so no current will flow through it. Hence, the 4 W resistance is removed and the circuit is redrawn as 

shown in Fig. 7. With reference to Fig. 7, by KCL at node-A, we can say that the current through the  

short circuit is 5 + 3 = 8 A.

\ I
n
 = 8 A

Thevenin’s and Norton’s equivalent

I = 0

Fig. 7.
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EXAMPLE 2.17

Find the current through the 10 W resistance of the circuit 

shown in Fig. 1 using Thevenin’s theorem. Confirm the result by mesh 

analysis.

SOLUTION

Let us remove the 10 W resistance and mark the resulting open 

terminals as A and B as shown in Fig. 2. 

Now, Thevenin’s voltage is the voltage measured across A and B 

and Thevenin’s resistance is the resistance measured between A and B. 

The polarity of V
th

 is assumed such that terminal-A is at a higher potential 

than terminal-B.

To find Thevenin’s voltage Vth

With reference to Fig. 3, by Ohm’s law, we get,

2.8571I A
5 2

20
=

+
=

With reference to Fig. 3, by KVL, we can write,

 V
th

= 2I + 12     ⇒     V
th

 = 2 ´ 2.8571 + 12 = 17.7142 V

To find Thevenin’s resistance Rth

The voltage sources are replaced with a short circuit as shown in Fig. 4. 

In Fig. 4, the 5 W and 2 W resistances are in parallel and the parallel 

combination is in series with the 8 W resistance.

| | .R 5 2 8
5 2
5 2 8 9 4286th`
#

Ω= + =
+

+ =
,b l

Thevenin’s equivalent at A-B

To find current through 10 W resistance

The 10 W resistance is connected to terminals A and B as shown in Fig. 6. 

Let, I
L
 be the current through the 10 W resistance.

With reference to Fig. 6, by Ohm’s law, we get,

.

.
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+
=
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Cross-Check by Mesh Analysis

Let us assume mesh currents as shown in Fig. 7. The mesh basis matrix equation is,

I
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5 2
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=> > >H H H
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2
`

∆

∆
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EXAMPLE 2.18

Find Thevenin’s and Norton’s equivalents of the circuit shown in  

Fig. 1 with respect to terminals A and B.

SOLUTION

To find Thevenin’s voltage V
th

With reference to Fig. 2, in the closed path DACBD, by KVL we can write,

10I + 20I + 10 = 50    ⇒   30I = 50 – 10

1.3333I A
30

50 10
` =

−

=

With reference to Fig. 2, in the path DABD, we get,

10I + V
th

 = 50   ⇒   V
th

 = 50 – 10 I 

    \  V
th

 = 50 – 10 ´ 1.3333 = 36.667 V

To find Thevenin’s resistance Rth

The voltage sources are replaced with a short circuit as shown in Fig. 3.

With reference to Fig. 4,
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Thevenin’s and Norton’s equivalent

Using source transformation technique, Norton’s equivalent is obtained from Thevenin’s equivalent 

as shown in Fig. 5.

.

.
.I

R

V
A

6 6667

36 667
5 5n

th

th
= = =

.R R 6 6667n th Ω= =

Alternatively, Norton’s current can be directly determined by 

shorting the terminals A and B and measuring the current through the short.

With reference to the circuit shown in Fig. 7, we can write,

5.5I I I A
20

10

10

50
n 1 2= + = + =

EXAMPLE 2.19

Obtain the Thevenin and Norton equivalent circuits for the active 

network shown in Fig. 1.

SOLUTION

To find Thevenin’s voltage V
th

With reference to Fig. 2, by KVL we can write,

3I + 6I  =  20 + 10    ⇒    9I  =  30  ⇒    I A
9

30

3

10
= =

With reference to Fig. 2, we get,

V
th
 + 10  =  6I    ⇒    V

th
  =  6I - 10 6 10 10V
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To find Thevenin’s resistance Rth

The voltage sources are replaced with a short circuit as shown in Fig. 3.

3 5R
3 6

3 6
th

#
Ω=

+
+ =

Thevenin’s and Norton’s equivalent

Using source transformation technique, Norton’s equivalent is obtained from Thevenin’s equivalent 

as shown in Fig. 4.

2I
R

V
A

5

10th

n

th

= = =

5R Rthn
Ω= =

EXAMPLE 2.20

Using Thevenin’s theorem, find the current I
L
 in the 

circuit shown in Fig. 1.

SOLUTION

Let us remove the 10 W resistance and mark the 

resulting open terminals as A and B as shown in Fig. 2. 

Now, we have to determine Thevenin’s equivalent 

of the circuit shown in Fig. 2, with respect to terminals A and 

B. Let us assume V
th

 as shown in Fig. 2 with terminal-A as 

positive and terminal-B as negative.

To find Thevenin’s voltage Vth

In Fig. 3, by voltage division rule, we can write,

10 6V V
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3
a #=

+
=

V V4
3 1

3
3c #=

+
=

With reference to Fig. 3, using KVL in the path 

ABCA, we can write,
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th

 + V
c
 = V

a
 

    \  V
th

 = V
a
 – V

c
 = 6 – 3 = 3 V

V = 10
th

V

R = 5
th

�

A

B

Fig. 4 : Thevenin’s equivalent.

+
E

R = 5
n

�

A

B

I  = 2A
n

Fig. 5 : Norton’s equivalent.

+
E

3�

4V10V

2�

10�
I
L

3�

1�

Fig. 1.

+
E

+
E

3�

4V10V

2�

3�

1�

Fig. 2.

+
E

A B

R
th

E+

+
E

3�

4V10V

3�

1�

+
E

A B

E+

2�

+

_

Vb

I1

Vth

C

+

_

Va

+

_

Vc

I2

_

+

Vd

Fig. 3.

6 �3 �

3 �

A

B

R
th

SC SC

Fig. 3.



Chapter 2 - Network Reduction and Theorems for AC and DC Circuits                             2. 59

To find Thevenin’s resistance Rth

The voltage sources are replaced with a short circuit as shown in Fig. 4. With reference to Fig. 5, we get,

| | | |R 3 2 3 1th = +
, ,b bl l

1.95
3 2

3 2

3 1

3 1# #
Ω=

+
+

+
=

Thevenin’s equivalent at A-B

To find IL

Connect the 10 W resistance between terminals A and B as shown in Fig. 7.

With reference to Fig. 7, by Ohm’s law,

.
0.251I A

1 95 10

3
L =

+
=

EXAMPLE 2.21

Using Thevenin’s theorem, find the current I
L
, 

through the 20 W resistor shown in Fig. 1.

SOLUTION

Let us remove the 20 W resistance and mark the 

resulting open terminals as A and B as shown in Fig. 2. 

Now, we have to determine Thevenin’s equivalent 

of the circuit shown in Fig. 2, with respect to terminals A 

and B. Let us assume V
th

 as shown in Fig. 2 with terminal-A 

as positive and terminal-B as negative.
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Fig. 6 : Thevenin’s equivalent.

R
th
=1.95�

V
th
=3V

10�

I
L

A

B

Fig. 7.

+
E

1.95�

3V

(AU Dec’14, 16 Marks)

5�10�

Fig. 1.

+

E
10V

9V1�

2�

20�50V

E+

E+

I
L

+
E

20V

3W

2W

3W

1W

Fig. 4.

A B

R
th

A B

R
th

3W 3W

2W 1W

Fig. 5.

SC SC

Þ



2. 60 Circuit Theory

To find Thevenin’s voltage Vth

With reference to Fig. 3, using KVL, we can write,

20 + V
th

  =  50 + 10

     ∴ V
th

 
 
=  50 + 10 - 20 = 40 V 

To find Thevenin’s resistance Rth 

The voltage sources are replaced with a short circuit as shown in Fig. 5. With reference to Fig. 6, we get,

R
th

 = 0 W

Thevenin’s equivalent at A-B

To find I
L
 current through 20W

Connect the 20 W resistance between terminals A and B as shown in Fig. 8.

With reference to Fig. 8, by Ohm’s law,
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Cross-Check

With reference to Fig. 9, by KVL   

  we get, 

20 + V
20

  =  50 + 10  

∴ V
20 

 = 60 - 20 = 40 V

2I
V

A
20 20

40
20

20
` = = =

By KVL ,  

V
1
 + 9 + V

20
 = 50      

∴ V
1 
 = 50 - 9 - V

20
 = 50 - 9 - 40 = 1 V

1I
V

A
1 1

1
1

1
` = = =

By KCL, at node-A,

2I I I
S1 20 1
+ = +                       ⇒         2 1 2 2 1I I I A

S1 1 20
= + − = + − =  

By KCL, at node-B,

5 2I I I
S2 1 20
+ = + +                ⇒          5 2 2 5 2 1 8I I I A

S2 20 1
= + + − = + + − =  

By KCL, at node-C,

2I I
2 S1
+ =                              ⇒          2 2 1 1I I A

2 S1
= − = − =  

By KCL, at node-D,

2 5I I
2 S2
+ + =                         ⇒         2 5 8 2 5 1I I A

2 S2
= − − = − − =  

EXAMPLE 2.22

Find Thevenin’s equivalent of the circuit shown in  

Fig. 1 with respect to terminals A and B.

SOLUTION

To find Thevenin’s voltage Vth

Let us convert the 10V source in series with the 3 W 

resistance to an equivalent current source in parallel with 3 W resistance as shown in Fig. 2.

Also, the 5 A current source in parallel with the 1 W resistance is converted into an equivalent voltage 

source in series with the 1 W resistance as shown in Fig. 3, and the modified circuit is shown in Fig. 4.
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The current sources in parallel in Fig. 4 can be combined 

to form a single source as shown in Fig. 5. Also, the resistances  

3 W and 2 W can be combined to form a single resistance.

The current source in Fig. 5 is converted into a voltage 

source in Fig. 6.

With reference to Fig. 6, using KVL, we can write,

 1.2I + I + 2I = 10 + 5 + 10   ⇒   4.2I = 25

.
5.9524I A

4 2

25
` = =

Also, V
th

 + 10 = 2I

             \ V
th

 = 2I – 10

       = 2 ´ 5.9524 – 10 = 1.9048 V

To find Thevenin’s resistance Rth

In the given circuit, the voltage sources are replaced with a short circuit and the current sources  

are replaced with an open circuit as shown in Fig. 7. Thevenin’s resistance R
th
 is obtained by using 

network reduction technique as shown below:

With reference to Fig. 11, we get,

Rth = 1.0476 W 
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Thevenin’s equivalent at A-B

 

Alternate Method to Find Vth

The voltage sources in Fig. 1 are converted into current sources as shown in Fig. 13. The node basis matrix 

equation is formed using the circuit of Fig. 13, as shown below. Now, V
th
 = V

2
 

5 5
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EXAMPLE 2.23

Determine Thevenin’s and Norton’s equivalents at P-Q for the circuit 

shown in Fig. 1.

SOLUTION

Thevenin’s and Norton’s equivalents can be obtained by using source 

transformation techniques as shown below:

The 5 V source in series with the 2 W resistance is converted into 

a current source as shown in Fig. 2. The 2 A source in parallel with the 

4 W resistance is converted into a voltage source as shown in Fig. 3. The 

modified circuit is shown in Fig 4.

R
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+
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Fig. 12 : Thevenin’s equivalent.
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The series-connected voltage sources in Fig. 4 are combined to form a single source as shown in  

Fig. 5. Also, the 4 W resistances in series are represented by a single equivalent resistance.

The 10 V voltage source in series with the 8 W resistance can be converted into a current source as 

shown in Fig. 6. The modified circuit is shown in Fig. 7. 

In Fig. 7, three current sources are in parallel and they can be combined to form a single current source 

as shown in Fig. 8. Similarly, the resistances 8 W and 2 W in parallel are also represented by a single equivalent 

resistance in Fig. 8.

Here, Fig. 8 is Norton’s equivalent which can be transformed into Thevenin’s equivalent shown in  

Fig. 9, using source transformation technique.

Thevenin’s and Norton’s equivalent

EXAMPLE 2.24

Using Norton’s theorem, determine the current through an ammeter 

connected across A and B of the circuit shown in Fig. 1. Take the resistance of 

the ammeter as 0.5 W.

SOLUTION

To find Norton’s current I
n

The terminals A and B are shorted as shown in Fig. 2. The direction of 

Norton’s current is assumed such that it flows from terminal-A to terminal-B. The 

circuit of Fig. 2 is redrawn as shown in Fig. 3.
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A

B

R
n
=1.5�I

n
=4A

Fig. 9 : Norton’s equivalent at A-B.
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In the circuit of Fig. 3, the 3 W and 1 W resistances are  in parallel 

and so they are represented as a single equivalent resistance as shown in 

Fig. 4. 

In Fig. 4, the two equal resistances are in series with the 12 V source 

and so the source voltage 12 V divides equally between them. Since the 

voltage across the parallel resistances 1 W and 3 W is 6 V, the voltage 

across each resistance is also 6 V. By using Ohm’s law, the current through 

each resistance is calculated and marked in Fig. 3.

With reference to Fig. 3, at node A using KCL, we can write,

 I
n
 + 2 = 6

       ∴  I
n
 = 6 – 2 = 4 A

To find Norton’s resistance Rn

The voltage source is replaced with a short circuit as shown in Fig. 5. Norton’s resistance is determined 

using network reduction techniques as shown below:

With reference to Fig. 8, we get,

Norton’s resistance, R
n
 = 1.5 W

Norton’s equivalent
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To find current through ammeter

Connect the ammeter across terminals A and B as shown in Fig. 10. The ammeter can be represented 

by its internal resistance as shown in Fig. 11.

Let, I
2
 be the current through the ammeter. Now, by current division rule,

, 4
. .

. 3Current through ammeter I A
1 5 0 5

1 5
2 #=

+
=

EXAMPLE 2.25

In the circuit shown in Fig. 1, determine the power 

delivered to the 15 W resistance using Norton’s theorem.

SOLUTION

Let us remove the 15 W resistance and determine 

Norton’s equivalent with respect to terminals A and B. 

Norton’s equivalent of the circuit of Fig. 2 is obtained by 

source transformation technique as shown below:
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Here, Fig. 11 is Norton’s equivalent with respect to terminals A-B of the circuit of Fig. 2.

Norton’s equivalent

To find current through 15 W resistance

Connect the 15 W resistance to terminals A-B of Norton’s equivalent 

as shown in Fig. 13. Now, the current 4 A divides equally between the 

parallel resistances. 

15 2Current through the A
2
4resistance` Ω = =

Power through the 15 W resistance = Current2 ´ Resistance = 22 ´ 15 = 60 W

10 + 5 = 15W
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Fig. 12 : Norton’s equivalent.
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EXAMPLE 2.26

In the network shown in Fig. 1, the resistance R is variable 

from zero to infinity. The current I through R can be expressed as  

I = a + bV where, V is the voltage across R with polarity as shown 

in Fig. 1 and a and b are constants. Determine a and b.

SOLUTION

Case i : Let R = 0 (zero)

When R = 0, the resistance can be represented as a short 

circuit as shown in Fig. 2.

Given that, I = a + bV

Since, R = 0, V is also equal to zero.

\  a = I

The voltage sources in the circuit of Fig. 2 are converted 

into current sources as shown in Fig. 3 and the modified circuit is 

shown in Fig. 4.

The current sources in parallel in Fig. 4 are combined to form a single equivalent source as shown in 

Fig. 5. Similarly, the resistances in parallel are combined to form a single equivalent resistance.

The current sources of Fig. 5, are converted into equivalent voltage sources as shown in Fig. 6. With 

reference to Fig. 6, by KVL, we can write,

5 + I + I = 10

∴  2I = 10 –5     ⇒     2I = 5    ⇒     2.5I A
2

5
= =

Since,  I = 2.5,   a = 2.5

Case ii : Let R = ¥ (infinity)

When R = ¥, the resistance can be represented as 

an open circuit as shown in Fig. 7.
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Given that, I = a + bV

Since, R = ¥, I is equal to zero.

∴  a + bV = 0     ⇒     b
V

a
= −

With reference to Fig. 7, we can write the following KVL equations. 

In the closed path ABCA, using KVL, we can write,

2I
1
 + 2I

1
 = 10

4I
1
 = 10     ⇒     2.5I A

4

10
1 = =

In the closed path DEFCD, we can write,

     10 = 10 + 2I
2
 + 2I

2
 

\ 4I
2
 = 10 – 10        ⇒       4I

2
 = 0        ⇒        I

2
 = 0

In the path BEDCB,

V + 2I
2
 + 10 = 2I

1
 

\ V = 2I
1
 – 2I

2
 – 10

        = 2 ´ 2.5 – 2 ´ 0 – 10

        = –5 V

, 5, . 0.5Since V b
V
a

5
2 5

= − =

−

=

−

−

=

RESULT
a = 2.5    ;     b = 0.5

\ I = a + bV  = 2.5 + 0.5 V

EXAMPLE 2.27

Find the current through the galvanometer shown in Fig.
 
1, using 

Thevenin’s theorem.

SOLUTION

Let us remove the galvanometer and denote the resultant open terminals 

as P and Q. The source is represented as an ideal source with its internal 

resistance (3.2 W) connected external to the source in series as shown in Fig. 1.

Let us represent the circuit of Fig. 2 by Thevenin’s equivalent with respect 

to terminals P and Q. The polarity of Thevenin’s voltage is assumed as shown in 

Fig. 2, with terminal P as positive.

To find Thevenin’s voltage Vth

The circuit of Fig. 2 is redrawn as shown in Fig. 3.

Since the 500 W resistance is left open, the potential at node-P will be the 

same as that of node-B. Also the nodes Q and D are at the same potential. Hence, 

the circuit of Fig. 3 is redrawn as shown in Fig. 4. Now, V
th

 is the voltage across 

B and D.

Let I
s
 be the current supplied by the source and this current divides into I

1
 

and I
2
 between two parallel paths as shown in Fig. 4.

The series resistances and their parallel combinations are represented as 

a single resistance in Fig. 5.
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With reference to Fig. 5, by Ohm’s law, we can write,

. .
12.5I A

3 2 4 8

100
s =

+
=

With reference to Fig. 4, by current division rule, we get,

     ( ) ( )

( )
12.5 5I I A

8 4 2 6

2 6

12 8
8

1 s # #=
+ + +

+
=

+
=

. .I I I A12 5 5 7 52 s 1` = − = − =

With reference to Fig. 6, by KVL, we can write,

2I
2
 + V

th
 = 8I

1
 

    \  V
th

 = 8I
1
 – 2I

2
 

          = 8 ´ 5 – 2 ´ 7.5  = 25 V

To find Thevenin’s resistance Rth

The ideal voltage source of Fig. 2 is replaced with a short circuit as shown in Fig. 7. The network of 

Fig. 7 is redrawn as shown in Fig. 8, and it is reduced to a single equivalent resistance with respect to P-Q. 

The step-by-step reduction of the network is shown in Figs 9 to 14.
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.
.

R R R
R
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With reference to Fig. 14, Thevenin’s resistance, R
th

 = 504.5 W

Thevenin’s equivalent at P-Q
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Fig. 3.
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To find current through galvanometer

Connect the galvanometer across P-Q as 

shown in Fig. 16. The galvanometer has negligible 

resistance and so it can be represented as a short 

circuit as shown in Fig. 17.

Let, I
G

 be the current through a Galvanometer. 

With reference to Fig. 17, by Ohm’s law, we get,

.
0.0496 49.6 10 49.6I A A mA

504 5

25 3
G #= = = =

-

EXAMPLE 2.28

Determine the current through ZL  in the circuit of Fig. 1, 

using Thevenin’s theorem.

SOLUTION

Let us remove the load impedance and denote the 

resultant open terminals as A and B as shown in Fig. 2. Now, 

we have to determine Thevenin’s equivalent of the circuit 

shown in Fig. 2.

To find Thevenin’s voltage Vth

Let us convert the 10 V voltage source into a current 

source. The modified circuit is shown in Fig. 3.

With reference to Fig. 3, using KCL, we can write,
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            = 36.4201 + j34.9992 V = 50.5111Ð43.9o
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To find Thevenin’s impedance Zth   

The current source is represented by an open circuit  

and the voltage source is represented by a short circuit as shown 

in Fig. 4.

With reference to Fig. 4,

3 3.5714Z
j j

j j
j

10 8 4 6

10 8 4 6
th

#
Ω=

+ + +

+ +
= +

^ ^h h

       =  4.6642Ð50o
 W Fig. 4.

10�
4�

j6�

j8�

A

B

OC

SC Zth

Fig. 16.

+
-

504.5W

P

Q

I
G

G25V

Fig. 17.

+
-

504.5W

P

Q

I
G

25V SCÞ

Fig. 1.

10W

1
0

0
o
A

Ð

4W

10 0
o
VÐ

- Wj2

j6W

IL

ZL

j8W +

-

2W

~

~

1
0

0
o
A

=
 1

0
A

Ð

Fig. 2.

10W
4W

10 0 =10
o
V VÐ

j6W

j8W

A

B

+

-

~

~



Chapter 2 - Network Reduction and Theorems for AC and DC Circuits                             2. 73

Thevenin’s equivalent at A-B

To find current through ZL    

Connect the load impedance ZL  across terminals A and B of Thevenin’s 

equivalent as shown in Fig. 6.

Now, by Ohm’s law,

.

. .

. .

. .

I
Z Z

V
j j

j

j A

A

3 3 5714 2 2

36 4201 34 9992

8 6314 4 2872

9 6375 26 4o

L
th L

th

+
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+

=
+ + −

+

= +

=

EXAMPLE 2.29

Find the current flowing in the 5 W resistance connected across 

terminals A and B of the circuit shown in Fig. 1, using Thevenin’s theorem.

SOLUTION

Let us remove the 5 W resistance and denote the resultant open 

terminals as A and B as shown in Fig. 2. Now, the circuit of Fig. 2 should 

be replaced with Thevenin’s equivalent at terminals A and B. The polarity 

of Thevenin’s voltage is assumed as shown in Fig. 2, with terminal-A as 

positive.

To find Thevenin’s voltage Vth    

With reference to Fig. 3, the voltage across the series combination 

of –j10 W and 4 W is 20Ð0o
 V. Hence, by voltage division rule,

V
j

20 0
4 10

4o
b #+=

−

      
2.7586 6.8966

j
j V

4 10
20 4#

=
−

= +

With reference to Fig. 3, the voltage across the series combination 

of j20 W and 4 W is 20Ð0o
 V. Hence, by voltage division rule,

20 0 0.7692 3.8462V
j j

j V
4 20

4
4 20
20 4o

d #
#

+=
+

=
+

= −

With reference to Fig. 3, by KVL, we can write,

. . . .

1.9894 10.7428 10.9255 79.5

V V V

V V V

j j

j V V

2 7586 6 8966 0 7692 3 8462

th d b
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`

+

+ =

= −
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^ h

Fig. 5 : Thevenin’s equivalent at A-B.
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To find Thevenin’s impedance Zth      

The voltage source 20Ð0o
 V in the circuit of Fig. 2 is replaced with a short circuit as shown in Fig. 4, and  is 

Zth  determined by reducing the network of Fig. 4 to a single equivalent impedance across A and B as shown below:

With reference to Fig. 6, we get,

. . . .

. . . .

Z j j

j

3 4483 1 3793 3 8462 0 7692

7 2945 0 6101 7 32 4 8o
th

+Ω Ω

= − + +

= − = −

Thevenin’s equivalent at A-B 

                  . . . .

. . . .

V j

Z j

V V1 9894 10 7428 10 9255 79 5

7 2945 0 6101 7 32 4 8

o

o

th

th

+

+Ω Ω

= + =

= − = −

     

To find current through 5 W resistance

Connect the 5 W resistance across A and B of Thevenin’s equivalent as shown in Fig. 8. Let, IL  be the 

current through 5 W resistance.

,

. .

. .
. .

. .

Now I
Z

V

j

j
j A

A

5

7 2945 0 6101 5

1 9894 10 7428
0 1182 0 8797

0 8876 82 3o

L
th

th

+

=

+

=
− +

+
= +

=

RESULT

Current through the 5 W resistance  = 0.8876Ð82.3o
 A

EXAMPLE 2.30

Determine the voltage across terminals A and B in the circuit of 

Fig. 1, using Norton’s theorem.

SOLUTION

Let us remove the 8 W resistance and denote the resultant open 

terminals as A and B as shown in Fig. 2. Now, the circuit of Fig. 2 should 

be replaced by Norton’s equivalent at terminals A and B.
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Fig. 7 : Thevenin’s equivalent at A-B.
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To find Norton’s current In   

Let us short circuit the terminals A and B in the circuit of Fig. 2 as shown in Fig. 3. The current flowing 

through the short circuit is Norton’s current. Let us assume the direction of Norton’s current as A to B.

With reference to Fig. 3, by current division rule, we can write,

' , . .

. .

Norton s current I
j j

j
j A

A

20 30
2 5 4 12

2 5
9 8632 6 26

11 6821 147 6

o

o

n #+

+

=
+ + −

+
= − +

=

To find Norton’s impedance Zn    

Let us replace the current source in Fig. 2, with an open circuit as shown in Fig. 4.  Zn  is determined 

by reducing the network of Fig. 4 to a single equivalent impedance as shown below:

With reference to Fig. 5, we can write,

' ,

. .

Norton s impedance Z j j j2 5 12 4 6 7

9 2195 49 4o
n

+

Ω

Ω

= + − + = −

= −

Norton’s equivalent at A-B

     

      

    

        

9.8632 6.26 11.6821 147.6

. .

I j

Z j

A A

6 7 9 2195 49 4

o

o

n

n

+

+Ω Ω

= − + =

= − = −

Fig. 6 : Norton’s equivalent at A-B.
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To find voltage across 8 W resistance

Let us connect the 8 W resistance across A and B of Norton’s 

equivalent as shown in Fig. 7. Let, VL  be the voltage across the 8 W 

resistance. With reference to Fig. 7, by KCL we can write,  

Z

V V
I

8n

L L
n+ =      ⇒     V

Z
I

1

8

1
L

n

n+ =c m

. .
V

Z

I

Z

I

j

j

1
8
1 8 6 7 8

9 8632 6 26
1 1 1 1L

n

n

n

n
` =

+

=

+

=

− +

− +

- - - -^ h
    

              = – 31.3876 + j45.2219 V

                        = 55.0473Ð124.8o
 V

RESULT

Voltage across terminals A and B = 55.0473Ð124.8o
 V

2.6.2   Superposition Theorem

The superposition theorem states that the response in a circuit with multiple sources is given by the 

algebraic sum of responses due to individual sources acting alone. The superposition theorem is also referred 

to as the principle of superposition.

The superposition theorem is a useful tool for analysis of linear circuits with multiple sources. 

A linear circuit is a circuit composed entirely of independent sources, linear dependent sources and 

linear elements. A circuit element is said to be linear, if the voltage-current relationship is linear, 

i.e., n a i or n = ki, where k is a constant.

The responses that can be determined by the superposition theorem are listed below:

i)    Current in resistance, inductance and capacitance.

ii)   Voltage across resistance, inductance and capacitance.

iii)  Current delivered by independent voltage sources.

iv)  Voltage across independent current sources.

v)   Voltage and current of linear dependent sources.

While calculating the response due to an individual source, all other sources are made inactive 

or replaced by zero value sources (Sometimes the bloodthirsty term killed is used). A zero value 

source is represented by its internal resistance (or impedance). “In an ideal voltage source, the 

internal resistance (or impedance) is zero, and in an ideal current source, the internal resistance 

(or impedance) is infinite”.
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Therefore, while calculating the response due to one source, all other ideal voltage sources 

are replaced with a  short circuit (or by their internal impedance) and all other ideal current sources 

are replaced with an open circuit (or by their internal impedance).

Procedure for Analysis Using Superposition Theorem

1. When the internal impedances of sources are specified, represent them as an external  

  impedance and so the sources will become ideal sources. For a voltage source, the  

  internal impedance is represented as an impedance in series with the ideal voltage source.  

  For a current source, the internal impedance is represented as an impedance in parallel  

  with the ideal current source.

2. The response is either voltage or current in the elements. The response when all the  

  sources are acting is called the total response. If the polarity of the total voltage response 

  or direction of the total current response are not specified in the problem, then assume a  

  polarity for the total voltage response and direction for the total current response  

  when all the sources are acting together.

3. Determine the response due to each independent source by allowing one source to  

  act at a time. While determining the response due to one source, replace all other  

  independent ideal voltage sources by a short circuit (SC) and all other independent  

  ideal current sources by an open circuit (OC).

4. Denote the voltage response due to each source as , ,V V Vl ll lll... and the current response 

  as , ,I I Il ll lll.... While determining the response due to each source, maintain the polarity of 

  voltage response the same as that of the total response. Similarly, maintain the direction of  

  current response the same as that of the total response.

5. Determine the total response by taking the sum of individual responses.

Note  :  1. Power cannot be directly determined from the superposition theorem. Hence, 

   determine the power only using the total current and voltage response.

 2. When all independent sources are deactivated, there will not be any current or 

   voltage in any part of the circuit. Hence, dependent sources will not contribute  

   to the response when all independent sources are deactivated (i.e., the  

   response due to a dependent source acting alone will be zero).

EXAMPLE 2.31

Find the current through the 5 W resistor in the circuit shown in Fig. 1 

using the superposition theorem.

5�

1�

Fig. 1.

10A 20A

1� 1�
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SOLUTION

Let I
L
 be the current through the 5 W resistance when both the current 

sources are acting together as shown in Fig. 2.

Let, I Ll  = Current through 5 W in the direction of I
L
 when the 10 A source 

    alone is acting.

       I Lll  = Current through 5 W in the direction of I
L
 when the 20 A source 

    alone is acting.

Now, by the superposition theorem,

I I IL L L= +l ll

To find the response I Ll  when the 10 A source is acting alone

The 20 A current source is replaced by an open circuit as shown in Fig. 3. The  circuit of Fig. 3 is 

redrawn as shown in Fig. 4.

In Fig. 4, the 5 W resistance is in series with the 10 A source and so the current through 5 W is also 10 A.

10I AL` =l

To find the response I Lll  when the 20 A source is acting alone

The 10 A current source is replaced by an open circuit as shown in Fig. 5. The circuit of Fig. 5 is redrawn 

as shown in Fig. 6.

In Fig. 6, the 5 W resistance is in series with the 20 A source and so the current through 5 W is also 20 A.

20I AL` =ll

To find the total response I
L
 when both the sources are acting

By the superposition theorem,

I I IL L L= +l ll

I A10 20 30L` = + =

I
L
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Cross-Check by Node Analysis

With reference to Fig. 7, the node basis matrix equation is,
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EXAMPLE 2.32

Using the superposition theorem, find the current through the 3 W 

resistance in the circuit shown in Fig. 1.

SOLUTION

The internal resistances of the voltage sources are represented 

as a series resistance external to the source and the voltage sources are 

represented as ideal sources as shown in Fig. 2.

Let, I Ll  = Current through 3 W in the direction of I
L
 when the10 V source 

   alone is acting.

      I Lll  = Current through 3 W in the direction of I
L
 when the 20 V source

   alone is acting.

Now, by the superposition theorem,

I I IL L L= +l ll

To find the response I Ll  when the 10 V source is acting alone

The 20 V source is replaced with a short circuit as shown in Fig. 3. Let I
s1

 be the current supplied by 

the 10 V source. In Fig. 3, at node-A, the current I
s1

 divides between the parallel resistances 2 W and 3 W. 

The parallel-connected resistances 2 W and 3 W are combined to form a single equivalent as shown 

in Fig. 4.
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With reference to Fig. 4, by Ohm’s law,

.
4.5455I A

1 1 2

10
s1 =

+
=

With reference to Fig. 3, by current division rule,

4.5455 1.8182I I A
2 3

2

2 3

2
L s1 # #=

+
=

+
=l

To find the response I Lll  when the 20 V source is acting alone

The 10 V source is replaced with a short circuit as shown in Fig. 5. Let I
s2

 be the current supplied by 

the 20 V source. In Fig. 5, at node-A, the current I
s2

 divides between the parallel resistances 1 W and 3 W.

The parallel-connected resistances 1 W and 3 W  are replaced with a single equivalent as shown in Fig. 6.

With reference to Fig. 6, by Ohm’s law,

.
.I A

2 0 75

20
7 2727s2 =

+
=

With reference to Fig. 5, by current division rule,

7.2727 1.8182I I A
1 3

1

1 3

1
L s2 # #=

+
=

+
=ll

To find the response I
L
 when both the sources are acting

By the superposition theorem,

I I IL L L= +l ll

                 = 1.8182 + 1.8182 = 3.6364A
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Cross-Check by Mesh Analysis

With reference to Fig. 7, the mesh basis matrix equation is,
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EXAMPLE 2.33

Using the superposition theorem, find the current through the 5W
resistor in the circuit shown in Fig.1. 

SOLUTION

Let , I
5
 = Current through the 5 W resistance shown in Fig. 1.

Let, I
5
l  = Current through the 5 W resistance in the direction of I

5
 

  when the 50 V source alone is acting.

       I
5

ll  = Current through the 5 W resistance in the direction of I
5
 

  when the 2 A source alone is acting.

Now, by the superposition theorem,

I I I
5 5 5
= +l ll

To find the response I
5
l  when the 50 V source is acting alone

The  2 A source is replaced with an open circuit as shown in Fig. 2. 

With reference to Fig. 2, by Ohm’s law,

I A
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3

10'
5 =

+
= =

To find the response I
5

ll  when the 2 A source is acting alone

The 50 V source is replaced with a short circuit as shown in Fig. 3. In the circuit of Fig. 4, the 2 A source 

current divides between parallel resistances 10 W and 5 W. 
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Therefore, by current division rule,

2I A
10 5

10

15

20

3

4''
5 #=

+
= =

To find the total current I
5
 when both the sources are acting                                                       

By superposition theorem,

4.6667I I I A
3

10

3

4

3

14
5 5
' ''

5
= + = + = =

EXAMPLE 2.34

Using the superposition theorem, find the power delivered by the 20 V source 

in the circuit shown in Fig. 1.

SOLUTION

Let, IS  = Current in the series branch with the 20 V source and 33 W in series.

       I Sl  = Current in the series branch when the 20 V source alone is acting.

 I Sll  = Current in the series branch when the 10 V source alone is acting.

Now, by the superposition theorem,

I I IS S S= +l ll

Note  :  Since power is proportional to the square of voltage, it is not a linear quantity. So, power 

cannot be determined directly by the superposition theorem.

To find the response I Sl  when the 20 V source is acting alone

The 10 V source is replaced with a short circuit as shown in Fig. 2.

The delta-connected resistances 22 W, 47 W and 68 W in Fig. 2 are converted into a star-connected 

resistance as shown in Fig. 3.
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.R
22 47 68

22 68
10 91971

#
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.R
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#
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+ +
=

.R
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=

With reference to Fig. 5, by Ohm’s law,

. .
0.3745I A

7 5474 12 8524 33

20
S
=

+ +
=l

To find the response I Sll  when the 10 V source is acting alone

The 20 V source is replaced with a short circuit as shown in Fig. 6. Now the 

current I’’
S
 is solved by mesh analysis.

With reference to Fig. 6, the mesh basis matrix equation is,

I

I

I

47 10 33

47

10

47

22 68 47

68

10

68

68 10 10

0

10

10

1

2

3

+ +

−

−

−

+ +

−

−

−

+ +

= −

R

T

S
S
S
S

R

T

S
S
S
S

R

T

S
S
S
S

V

X

W
W
W
W

V

X

W
W
W
W

V

X

W
W
W
W

  

I

I

I

90

47

10

47

137

68

10

68

88

0

10

10

1

2

3

−

−

−

−

−

− = −

R

T

S
S
S
S

R

T

S
S
S
S

R

T

S
S
S
S

V

X

W
W
W
W

V

X

W
W
W
W

V

X

W
W
W
W

 

Let us define two determinants D and D
1
 as shown below and mesh current I

1
 is solved by Cramerr’s rule.
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To find the total response I
S
 and power

By the superposition theorem,

I I IS S S= +l ll

                 = 0.3745 + (-0.0411) = 0.3334 A

20 20 20 0.3334Power deliveredby source IV 1# #= =

                                                    =  6.668 W

EXAMPLE 2.35

Using the superposition theorem, find the voltage V
L
 and the power consumed 

by the 6 W resistor in the circuit shown in Fig. 1.

SOLUTION

Let, VLl  = Voltage across the 6 W resistance with polarity same as that of V
L
 

     when the 3 V source alone is acting.

       V Lll  = Voltage across the 6 W resistance with polarity same as that of V
L
 

   when the 2 A source alone is acting.

Now, by the superposition theorem,

V V VL L L= +l ll

Power consumed by the 6 W resistor, P
V

6

L
2

L
=

Note  :  Since power is proportional to the square of voltage, it is not a linear quantity. So, power 

cannot be determined directly by the superposition theorem.

To find the response VLl  when the 3 V source is acting alone

The 2 A current source is replaced with an open circuit as shown in Fig. 2. The circuit of Fig. 2 is 

redrawn as shown in Fig. 3.

In Fig. 3, the voltage across series combination of 4 W and 6 W is 3 V. This 3 V divides into V
1
 and V

2
 

and so by voltage division rule, we get,

3 1.8V V V
6 4

6
L 2 #= − = −

+
= −l

6�

2�

Fig. 1.

2A VL

3V

4�

+

_

1�

+ E

V’L 6W

2W

Fig. 2.

3V

4W

+

_

1W

+ -

OC

+ _

3V

V’L+ +__V1

+ _V2

4W 6W

2W

Fig. 3.

3V

1W

+ -

Þ
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To find the response V Lll  when 2 A source is acting alone

The 3 V source is replaced with a short circuit as shown in Fig. 4. The circuit of Fig. 4 is redrawn as shown in 

Figs. 5 and 6.

In the circuit of Fig. 6, the current 2 A divides between the parallel resistances 6 W and 4 W.

Hence, by current division rule,

2 0.8I A
6 4

4
1 #=

+
=

By Ohm’s law,

6 0.8 6 4.8V I VL 1 # #= = =ll

To find V
L
 and power in the 6 W resistor

By the superposition theorem,

1.8 4.8 3V V V VL L L= + = − + =l ll

6 , 1.5Power consumedby the resistor P
V

W
6 6

3L
2 2

LΩ = = =

Cross-Check

 
,

( ) ( . )
0.54Let P

V
W

6 6

1 82 2

L

L
= =

−

=l
l

          

( ) . 3.84P
V

W
6 6

4 8
2 2

L

L
= = =ll

ll

 , 0.54 3.84 4.38Let P P P WL L,L sup
= + = + =l ll  

Here, P
L, sup

 ¹ P
L
. So we can say that the power calculated directly by the superposition theorem is not equal 

to actual power.

EXAMPLE 2.36

Find the voltage across the 2 W resistance in the circuit of Fig. 1 using the 

principle of superposition.

SOLUTION

Let V
L
 be the voltage across the 2 W resistance when both the voltage 

sources are acting together as shown in Fig. 2.

Let, VLl  = Voltage across the 2 W resistance with polarity same as that of V
L
 

    when the 5 V source alone is acting.

  V Lll  = Voltage across the 2 W resistance with polarity same as that of V
L
 

    when the 10 V source alone is acting.
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Fig. 1.
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Now, by the superposition theorem,

V V VL L L= +l ll

To find the response VLl  when the 5 V source is acting alone

The 10 V source is replaced with a short circuit as shown in Fig. 3. The circuit 

of Fig. 3 is redrawn as shown in Figs 4 and 5. 

The parallel combinations of resistances are replaced with a single equivalent 

as shown in Fig. 5. 

In Fig. 5, the source voltage 5 V divides between the series-connected resistances 0.6667 W  

and 0.75 W. Let, these voltages be V
1
 and V

2
. Since 1 W and 2 W are in parallel, the voltage across them will 

be the same and so .V V1 L= l

With reference to Fig. 5, by voltage division rule,

. .

.
.V V V5

0 6667 0 75

0 6667
2 353L 1 #= =

+
=l

To find the response V Lll  when the 10 V source is acting alone

The 5 V source is replaced with a short circuit as shown in Fig. 6. The circuit of Fig. 6 is redrawn as shown in

Figs. 7 and 8. 

Figure 7 is same as that Fig. 4, except the 5 V source, which is the 10 V in this case.

Therefore, by voltage division rule,

10
. .

.
4.706V V

0 6667 0 75

0 6667
L #=

+
=ll

To find the response VL when both the sources are acting

By the superposition theorem,

V V VL L L= +l ll

                 = 2.353 + 4.706 = 7.059 V

VL
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Fig. 2.
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EXAMPLE 2.37

Use the principle of superposition to find the current I
L
 through the 8 W 

resistance in the circuit shown in Fig. 1.

SOLUTION

The internal resistance of the voltage source is represented as a series 

resistance external to the source and the internal resistance of the current source 

is represented as a parallel resistance external to the source as shown in Fig. 2.  

Now, the sources can be treated as ideal sources.

Let, I Ll  = Current through the 8 W resistance in the direction 

    of I
L
 when the 10 V source alone is acting.

 I Lll  = Current through the 8 W resistance in the direction 

    of I
L
when the 5 A source alone is acting.

Now, by the superposition theorem,

I I IL L L= +l ll

To find the response I Ll  when the 10 V source is acting alone

The 5 A source is replaced with an open circuit as shown in Fig. 3. Let, I
s1

 be the total current supplied 

by the 10 V source. This current divides into I
1
 and I

2
 and flows through the two parallel paths as shown in Fig. 3.

With reference to Fig. 4,

.
2.0588I A

2 2 8571

10
s1 =

+
=

With reference to Fig. 3, by current division rule, 

( )
2.0588 0.5882I I I A

4 8 2
4

4 10
4

L 1 s1 # #= =
+ +

=
+

=l

To find the response I Lll  when the 5 A source is acting alone

The 10 V source is replaced with a short circuit as shown in Fig. 5. The parallel combination of 2 W and 

4 W is replaced with a single equivalent as shown in Fig. 6. With reference to Fig. 6, we can say that the 5 A 

current divides between the parallel resistances 2 W and (8 + 1.3333) W. 

By current division rule,

5
( . )

0.8824I I A
2 8 1 3333

2
L 4 #= − = −

+ +
= −ll

IL

8�

10 ,

2

V

�
4�

Fig. 1.

+
E

5 ,

2
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�
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L

Fig. 2.
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10V 4�
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E

I’L

Fig. 3.
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-

Is1
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2 8571
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=
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To find the response I
L
 when both the sources are acting

By the superposition theorem,

I I IL L L= +l ll

                = 0.5882 + (-0.8824 ) = –0.2942 A

EXAMPLE 2.38

Compute the current I
L
 in the circuit of Fig. 1 using the 

superposition theorem.

SOLUTION

Let, I Ll  = Current through the 23 W resistance in the direction 

   of I
L
 when the 200 V source alone is acting.

       I Lll  = Current through the 23 W resistance in the direction 

   of I
L
when the 20 A source alone is acting.

Now, by the superposition theorem,

I I IL L L= +l ll

To find the response I Ll  when the 200 V source is acting alone

The 20 A source is replaced by an open circuit as shown in Fig. 2. Let, I
s1

 be the total current supplied 

by the 200 V  source. This current divides equally between parallel-connected resistances 27 W and (4 + 23) W.

With reference to Fig. 3, by Ohm’s law,

.
.I A

47 13 5

200
3 3058s1 =

+
=

With reference to Fig. 2, by current division rule, 

.
.I I

I
A

2 2

3 3058
1 6529L 1

s1
= = = =l

(AU May’15, 8 Marks)
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To find the response I Lll  when 20 A source is acting alone

The 200 V source is replaced with a short circuit as shown in Fig. 5. The parallel resistances 27 W and 

47 W are replaced with a single equivalent as shown in Fig. 6. In the circuit of Fig. 6, the 20 A source current divides 

between parallel resistances 23 and (4 + 17.1486) W. 

Therefore, by current division rule,

20
( . )

( . )
9.5806I I A

23 4 17 1486

4 17 1486
L 3 #= =

+ +

+
=ll

To find the total current I
L
 when both the sources are acting

By the superposition theorem,

I I IL L L= +l ll

               = 1.6529 + 9.5806 = 11.2335 A

EXAMPLE 2.39

Determine the current in the 5 W resistance in the circuit 

shown in Fig. 1 using the superposition theorem.

SOLUTION

Let, I Ll  = Current through the 5 W resistance in the 

   direction of I
L
 when the 25 V source alone is acting.

       I Lll  = Current through the 5 W resistance in the 

   direction of I
L
when the 50 V source alone is acting.

By the superposition theorem,

I I IL L L= +l ll

To find the response I Ll  when the 25 V source is acting alone

The 50 V source is replaced with a short circuit as shown in Fig. 2. The 2 W resistances in parallel are 

replaced by a single equivalent and then I’

L
 is solved using mesh analysis.

With reference to Fig. 3, the mesh basis matrix equation is,
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.I I A
44

100
2 2727L 2

2
`

∆

∆
= = = =l

To find the response I Lll  when 50 V source is acting alone

The 25 V source is replaced with a short circuit as shown in Fig. 4. The parallel-connected resistances 2 W 

and 4 W are replaced with a single equivalent as shown in Fig. 5 and then I Lll  is solved using mesh analysis.

The mesh basis matrix equation is,

. I

I

5 2 1 3333

2

2

2 2

0

50

1

2

+ +

−

−

+

=> > >H H H    ⇒    
. I

I

8 3333

2

2

4

0
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1

2−

−

=> > >H H H
. . ( )

.
;

( )8 3333

2

2

4

8 3333 4 2

29 3332

0

50

2

4

0 50 2

100

2

1
# #
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−

− = − −

=
=

− = − −

=

.
3.4091I I A

29 3332

100
L 1

1
`

∆

∆
= = = =ll

To find the total response I
L
 when both the sources are acting

By the superposition theorem,

I I IL L L= +l ll

                 = 2.2727 + 3.4091 = 5.6818

EXAMPLE 2.40

Using the superposition theorem, find the current through the 3W
resistor in the circuit shown in Fig.1. 

SOLUTION

Let, I Ll  = Current through 3 W in the direction of I
L
 when the 12 V source 

   alone is acting.

(AU Dec’16, 16 Marks)
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      I Lll  =  Current through 3 W in the direction of I
L
 when the 24 V source alone is acting.

      I Llll =  Current through 3 W in the direction of I
L
 when the 3 A source alone is acting.

Now, by the superposition theorem,

I I I I
L L L L
= + +l ll lll

To find the response I Ll  when the 12 V source is acting alone

The  24 V source is replaced with a short circuit and the 3 A source is replaced with an open circuit as 

shown in Fig. 2. 

With reference to Fig. 3, by Ohm’s law,

I A
3 3

12
2

'

L
=

+
=

To find the response I
L

ll  when the 24 V source is acting alone

The 12 V source is replaced with a short circuit and the 3 A source is replaced with an open circuit as 

shown in Fig. 4.

The series-connected resistances 8  W and 4  W are replaced with a single equivalent and 

parallel-connected resistances 4 W and 3 W  are replaced with a single equivalent in Fig. 5.

With reference to Fig. 5, by voltage division rule,

24
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With reference to Fig. 4, by Ohm’s law,

1I
V

A
3 3

3
L

1
= = =ll

ll

To find the response I
L

lll  when the 3 A source is acting alone

The 12 V and 24 V are replaced with a short circuit as shown in Fig. 6. 

The parallel-connected resistances 4 W and 3 W  are replaced by a single equivalent in Fig. 7.

With reference to Fig. 7, by current division rule,

3
( . )

1.75I A
4 1 7143 8

8
s1

#=
+ +

=

With reference to Fig. 6, by current division rule,

1.75 1I I A
4 3

4

7

4

L s1
# #=

+
= =lll

To find the total current I
L
 when all the sources are acting                                                       

By superposition theorem,

4I I I I A2 1 1
L L L L
= + + = + + =l ll lll

EXAMPLE 2.41

Use the principle of superposition to find the current I
L
 

through the 5 W resistance in the circuit shown in Fig. 1.

SOLUTION

Let, I Ll  = Current through 5 W in the direction of I
L
 when 

    the 9 A source alone is acting.

       I Lll  = Current through 5 W in the direction of I
L
 when 

    the 4 A source alone is acting.

       I Llll  = Current through 5 W in the direction of I
L
 when the 32 V source alone is acting.

Now, by the superposition theorem,

I I I IL L L L= + +l ll lll
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To find the response I Ll  due to the 9 A source

The 32 V source is replaced with a short circuit and the 4 A source with an open circuit as shown in 

Fig. 2. The parallel combination of 2 W and 4 W is replaced with a single equivalent as shown in Fig. 3. With 

reference to Fig. 3, we can say that the 9 A current divides between the parallel resistances 5 W and 11.3333 W. 

By current division rule,

' 9
.

.
6.2449I A

5 11 3333

11 3333
L

#=
+

=

To find the response I Lll  due to the 4 A source

The 32 V source is replaced with a short circuit and 9 A source with an open circuit as shown in Fig. 4. 

The parallel combination of 2 W and 4 W is replaced with a single equivalent in Fig. 5. With reference to Fig. 5, 

we can say that the 4 A current divides between the parallel resistances 10 W and (5+1.3333) W.

By current division rule,
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( . )
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10 1 3333 5

10
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To find the response I Llll due to the 32 V source

The current sources 9 A and 4A are replaced with an open circuit as shown in Fig. 6. Let us assume 

two mesh currents I
1
 and I

2
 as shown in Fig. 6. Now, II L 2

=ll . The mesh basis matrix equation is,

I

I

I

I

4 2

2

2

5 2 10

32

32
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32

1
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= => > > > > >H H H H H H
6

2

2

17
6 17 2 2 98# #∆ = = − =

6 2 2 8
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2
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32
32 3 122 # #∆ = = − =

1.3061I I A
98

128'''

L 2

2

∆

∆
= = = =

To find the total response I
L
 when all the sources are acting

By the superposition theorem,

6.2449 2.449 1.3061 10I I I I A' '' '''

L L L L
= + + = + + =

EXAMPLE 2.42

In Fig. 1, find the component of V
x
 caused by each source acting 

alone. What is the value of V
x
 when all the sources are acting together?

SOLUTION

Let,  Vxl   =  Voltage across the 20 W resistance when the16 V source 

    is acting alone.

 V xll  =  Voltage across the 20 W resistance when the 3 A source 

    is acting alone.

 V xlll  =   Voltage across the 20 W resistance when the10 V 

     source is acting alone.

        V xllll =  Voltage across the 20 W resistance when the 1.5 A source is acting alone.

The polarity of voltages Vxl , V xll , V xlll  and V xllll  are chosen the same as that of V
x
. Now, by the 

superposition theorem,

V V V V Vx x x x x= + + +l ll lll llll

To find the response Vxl  due to the 16 V source

The 10 V source is replaced with a short circuit and the current sources are replaced with an open 

circuit as shown in Fig. 2. 

With reference to Fig. 3, by voltage division rule,
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To find the response V xll  due to the 3 A source

The voltage sources are replaced with a short circuit and the 1.5 A source is replaced with an open 

circuit as shown in Fig. 4. 

With reference to Fig. 5, by current division rule,

3 2.4I A
20 80

80
2 #=

+
=

By Ohm’s law,

20 20 2.4 48V I Vx 2# #= − = − = −ll

To find the response V xlll  due to the 10 V source

The 16 V source is replaced with a the short circuit and the current sources are replaced with an open 

circuit as shown in Fig. 6.

With reference to Fig. 7, by voltage division rule,
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To find the response V xllll  due to the 1.5 A source

The voltage sources are replaced with a short circuit and the 3 A  source is replaced with an open 

circuit as shown in Fig. 8. 

With reference to Fig. 9, we can say that the current source is shorted and so no current will flow 

 through the 20 W resistance.

 V 0x` =llll

To find the response V
x
 due to all the sources

By the superposition theorem,

V
x  

= Vxl  + V V Vx x x+ +ll lll llll  =  3.2 + (–48) + 2 + 0  =  –42.8 V

RESULT

Component of V
x
 when the 16 V source alone is acting, Vxl  =  3.2 V

Component of V
x
 when the 3 A source alone is acting,  V xll  = –48 V

Component of V
x
 when the 10 V source alone is acting, V xlll  =  2 V

Component of V
x
 when the 1.5 A source alone is acting, V xllll   =  0 V

The value of V
x
 when all the sources are acting,          V

x
 = –42.8 V

EXAMPLE 2.43

Using the superposition theorem, find the current through 2 + j2 W 

impedance of the circuit shown in Fig. 1.

SOLUTION

Let IL  be  the  current  through  2 + j2 W  impedance  branch  as  

shown  in   Fig. 2.

Let, I Ll  = Component of IL  due to 20∠0o V source acting alone.

   I L
ll  = Component of IL  due to 10∠30o A source acting alone.

Now, by the superposition theorem,

I I IL L L= +l ll

To find the response I Ll due to the 20Ð0o
 V source

The 10Ð30o
 A current source is replaced with an open circuit 

as shown in Fig. 3.

With reference to Fig. 4, by Ohm’s law, we get, 

1.6216 0.2703I
j j

j A
10 2 2
20 0

12 2
20o

L
+

=
+ +

=
+

= −l

20W

Fig. 8.

80W

+ _
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SC

SC OC

V x’’’’

I = 1.5A
I = 01

I = 01
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To find the response I L
ll  due to the 10Ð30o

 A source

The 20Ð0o
 V voltage source is replaced with a short circuit as 

shown in Fig. 5. 

With reference to Fig. 5, by current division rule, we get,

10 30 7.6975 2.8837I
j j

j A
10 2 2

10
12 2
100 30o

o

L #+
+

=
+ +

=
+

= +ll

To find the response IL  due to both the sources

By the superposition theorem,

. . . .

9.3191 2.6134 9.6786 15.7

I I I j j

j A A

1 6216 0 2703 7 6975 2 8837
o

L L L

+

= + = − + +

= + =

l ll

Cross-Check

The 20∠0o
 V voltage in series with the 10 W is 

converted into a current source as shown in Fig. 6.

With reference to Fig. 6, by KCL at node A, we get, 

V
j

V
10 2 2

2 10 30o++
+

= +

2 10 30V
j10

1
2 2

1 o
` ++

+
= +f p   ⇒   . . 2 10 30j V0 35 0 25 o

+− = +b l    

0.35 0.25
2 10 30 . .V

j
j13 4113 23 8652

o

`
+

=
−

+
= +

Now, by Ohm’s law,

. . A9 6786 15 7+=

. .
. .I

j
V

j

j
j A

2 2 2 2

13 4113 23 8652
9 3191 2 6135

o

L =
+

=
+

+
= +

EXAMPLE 2.44

Using the superposition theorem, find the voltage V1  across the 

capacitance in the circuit shown in Fig. 1.

SOLUTION

Let, V1
l  = Voltage across capacitance when the 10Ð0o

 A source 

    alone is acting.

 V 1
ll  = Voltage across capacitance when the 5Ð90o

 A source 

    alone is acting.

Now, by the superposition theorem, 

V V V1 1 1= +l ll
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To find the response V 1l  due to the 10Ð0o
 A source

The 5Ð90o
 A source is replaced with an open circuit as shown in Fig. 2. The circuit of Fig. 2 is redrawn 

as shown in Fig. 3. 

With reference to Fig. 3, by current division rule,

10 12.3529 9.4118I
j j

j
j A

4 4 5

4 5
1 #=

− + +

+
= +

Now, by Ohm’s law, we get,

4 4 . .V j I j j12 3529 9 41181 1# #= − = − +l a k =  37.6472  –  j49.4116 V 

To find the response V 1
ll  due to the 5Ð90o

 A source

The 10Ð0o
 A  source is replaced with an open circuit as shown in Fig. 4. The circuit of Fig. 4 is redrawn 

as shown in Fig. 5.

With reference to Fig. 5, by current division rule,

5
( )

5.8824 1.4706I j
j j

j
j A

5 4 4

5
4 #=

+ −
= − +

Now, by Ohm’s law, we get,

( )

4 . . 5.8824 23.5296

V j I

j j j V

4

5 8824 1 4706

1 4#

#

= − −

= − + = − −

ll

a k
 

To find the total response V1  when both the sources are acting

By the superposition theorem,

V V V1 1 1= +l ll

      =  (37.6472 – j49.4116) + (–5.8824 – j23.5296)

      =  31.7648  –  j72.9412 V 

 =  79.5577∠–66.5o
 V

Fig. 2.
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Cross-Check by Node Analysis

With reference to Fig. 6, the node basis matrix equation is,

10 5

5

j j

j

j

j

V

V

j

j

5
1

4
1

5
1

5
1

4
1

5
1

1

2

+
−

−

−

+

=

−

R

T

S
S
S
S
SS

R

T

S
S
S
S
SS

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

V

X

W
W
W
W
WW

V

X

W
W
W
W
WW

.

.

.

. .

j

j

j

j

V

V

j

j

0 05

0 2

0 2

0 25 0 2

10 5

52

1

−

=

−> > >H H H

 

.

.

.

. .

. ( . . ) ( . )

. .

j

j

j

j

j j j

j

0 05

0 2

0 2

0 25 0 2

0 05 0 25 0 2 0 2

0 05 0 0125

2
#

∆ =
−

= − −

= +
l

.

. .

( ) ( . . ) ( ) ( . )

. .

j

j

j

j

j j j j

j

10 5

5

0 2

0 25 0 2

10 5 0 25 0 2 5 0 2

2 5 3 25
1

# #
∆ =

−

−

= − − −

= −
l

  
. .

. .
31.7647 72.9412 79.5576 66.5V

j

j
j V V

0 05 0 0125

2 5 3 25 o
1

1
+

∆

∆
= =

+

−
= − = −

l

l

2.6.3   Maximum Power Transfer Theorem

All practical sources have internal resistance or impedance. When a source delivers current 

to a load, the current flows through the internal impedance also and so a part of power is consumed 

by the internal impedance of the source. Hence, when a load is connected to a source, the power 

generated by the source is shared between the internal impedance and the load.

In certain applications, it is desirable to have a maximum power transfer from the source 

to the load. The maximum power transfer to the load is possible only if the source and the load 

has matched impedance. This situation arises in electronics, communication and control circuits.

For example, an antenna used in a TV/radio receives a signal from the atmosphere and the 

power level of the signal is very low. This weak signal should be transferred to the input section of 

an amplifier to which it is connected. For good reception, the maximum power should be transferred 

from the antenna to the amplifier. This is possible only if the input impedance of the amplifier is 

matched with the antenna impedance.

The sources may be dc or ac and the loads may be resistive or reactive. Hence, the matched 

impedance for maximum power will be different for different combinations of source and load. 

The following important six combinations of source and load are discussed in this book.

Case i : DC source with internal resistance connected to a resistive load.

Case ii : AC source with internal resistance connected to a resistive load.

Case iii : AC source with internal impedance connected to a resistive load.

Case iv : AC source with internal impedance connected to a load with variable resistance and 

   variable reactance.

Case v  :  AC source with internal impedance connected to a load with variable resistance and fixed 

   reactance.

Case vi : AC source with internal impedance connected to a load with fixed resistance and variable 

   reactance.

Fig. 6.
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Case i : DC source with internal resistance connected to a resistive load

Theorem:

“Maximum power is transferred from source to load, when load resistance is equal to source resistance”. 

Consider a dc source of emf E and internal resistance R
s
 connected to a variable load resistance R.

Now, the condition for maximum power transfer from source to load is,

   R = R
s

The maximum power P
max

 is, 

   P
R

E

4
max

2

=

Proof:

Consider a dc source of emf E and internal resistance Rs connected to a load resistance R as shown in 
Fig. 2.54. Let, I be the current through the circuit. With reference to Fig. 2.54, by Ohm’s law, we can write,

R R

EI
s

=
+                                        ..... (2.61)

Let,    P = Power delivered to load

Now, P = I2R     ..... (2.62)

Using equation (2.61) in equation (2.62), we get,

P
R R

E
R

R R

E R
2

2

2

s s

=
+

=

+
c ^m h                                      ..... (2.63)

The condition for maximum power can be obtained by differentiating P with respect to R and equating (dP/dR) = 0

On differentiating equation (2.63) with respect to R, we get,

dR

dP

R R

E R R E R R R2

4

2 2 2

s

s s# #
=

+

+ − +

^

^ ^

h

h h

                                                    
..... (2.64)

For (dP/dR) = 0, the numerator of equation (2.64), should be zero.

\   E2(Rs + R)2 – 2E2R(Rs + R) = 0   ⇒   2 E2 R(Rs + R)  =  E2 (Rs + R)2   .... (2.65) 

On dividing equation (2.65) throughout by E2(R
s
 + R), we get,

2R = Rs + R    ⇒   2R – R = Rs    ⇒     R = Rs                                       ..... (2.66)

Equation (2.66) is the condition for maximum power transfer to load, which states that the maximum power 
is transferred from source to load when load resistance is equal to source resistance.

On substituting R for Rs in equation (2.63), we can get an expression for maximum power.

,
( )

Maximum power P P
R R
E R

R
E R

R
E R

R
E

2 4 42

2

2

2

2

2 2

max R Rs
` = =

+

= = =
= ^ h      ..... (2.67)

Case ii : AC source with internal resistance connected to a resistive load

Theorem:

 “Maximum power is transferred from source to load, when load resistance is equal to source resistance.” 

Consider an ac source of emf E and internal resistance R
s
 connected to a variable load 

resistance R.

Now, the condition for maximum power transfer from source to load is,

   R = R
s

(AU Dec’14, 2 Marks)

dv

du

v

du v u dv
2

# #
=

−

I

Fig. 2.54.
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Proof:

Consider an ac source of emf E  and internal resistance R
s
 connected to a load 

resistance R as shown in Fig. 2.55. Let, I  be the current through the circuit. With 
reference to Fig. 2.55, by Ohm’s law, we can write,

     
I

R R

E

s

=
+

I I
R R

E

R R

E

s s

` = =
+

=
+

Let, P = Power delivered to load

,Now P I R
R R

E R

s

2

2

2

= =

+^ h                                                   ..... (2.68)

Equation (2.68) is the same as equation (2.63) and so the condition for maximum power transfer will be the 
same as that of case (i). But here, I is rms value of current and E is rms value of source emf.

Case iii : AC source with internal impedance connected to a resistive load

Theorem:

 “Maximum power is transferred from source to load, when load resistance is equal to magnitude of 

source impedance.”

Consider an ac source of emf E and internal impedance Zs  R jXZs s s= +^ h connected to a 

variable load resistance R.

Now, the condition for maximum power transfer from source to load is, 

  R Z R Xs s
2

s
2

= = +

Proof:

Consider an ac source of emf E  and internal impedance Z s  connected to a load 
resistance R as shown in Fig. 2.56. 

Let, Z R jXs s s= +

,Magnitude of source impedance Z Z R Xs s s s
2 2

` = = +               .....(2.69)

With reference to Fig. 2.56, by Ohm’s law, we can write,

I
Z R
E

R jX R
E

R R jX
E

s s s s s

=

+

=
+ +

=
+ +^ h                                               

..... (2.70)

,Magnitude of current I I
R R jX

E

R R X

E
s s

s s
2 2

= =
+ +

=

+ +
^ ^h h                                                   

..... (2.71)

Let, P = Power delivered to load

,Now P I R I R
2 2

= =                                                                                                          
..... (2.72)

Using equation (2.71) in equation (2.72), we can write,

P
R R X

E R

s s
2 2

2

=

+ +^ h                                                                                             
..... (2.73)

I
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_
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dv

du

v

du v u dv
2

# #
=

−

The condition for maximum power can be obtained by differentiating P with respect to R and equating (dP/dR) = 0.

On differentiating equation (2.73) with respect to R, we get,

dR

dP

R R X

E R R X E R R R2

s s

s s s

2 2 2

2 2 2 2
# #

=

+ +

+ + − +

^

^ ^

h

h h

6

6

@

@

                                            
..... (2.74)

For ,
dR
dP 0=  the numerator of equation (2.74) should be zero.

2E R R X E R R Rs s s
2 2 2 2

` #+ + − +^ ^h h6 @     ⇒    2E R R R E R R Xs s s
2 2 2 2

+ = + +^ ^h h6 @

On dividing the above equation throughout by E2 we get,

R R R R R X2 s s s
2 2

+ = + +^ ^h h

2 2 2RR R R R RR Xs s s s
2 2 22

+ = + + +

2 2 2RR R R RR R Xs s s s
2 2 2 2

+ − − = +

                                   R R Xs s
2 2 2
= +                                                          

                                            R R Xs s
2 2

` = +      .....(2.75)

,Here R X Z Magnitude of source impedances s s
2 2
+ = =

Equation (2.75) is the condition for maximum power transfer. From equation (2.75) we can say that,  maximum 
power is transferred to load when load resistance is equal to magnitude of source impedance.

Case iv : AC source with internal impedance connected to a load with variable resistance 

and variable reactance

Theorem:

”Maximum power is transferred from source to load, when load impedance is equal to complex 

conjugate of source impedance.”

Consider an ac source of emf E and internal impedance Zs  R jXZs s s= +^ h connected to a 

load impedance ,Z where Z R jX= +  with R and X are individually variable.

Now, the condition for maximum power transfer from source to load is, 

Z Z
*
s=    ⇒    R jX R jX *

s s+ = +^ h     ⇒    R jX R jXs s+ = −

Proof :

Consider an ac source of emf E  and internal impedance Z s  connected to a 
load impedance Z as shown in Fig. 2.57. 

,Let Z R jXs s s= +   ⇒   Z R jXs ss = −

)

I Current through the circuit=

,Now I
Z Z
E

R jX R jX
E

R R j X X
E

s s s s s

=

+

=
+ + +

=
+ + +^ ^h h

,Magnitude of current I I
R R j X X

E

s s

= =
+ + +^ ^h h

                                                      
R R X X

E

s s
2 2

=

+ + +^ ^h h
                                      

 .....(2.76)
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dv

du

v

du v u dv
2

# #
=

−

Let, P = Power delivered to load

Now,P I R I R
2 2

= =                                                                                            .....(2.77)

Note  :  In reactive loads, power is consumed only by resistance and active power in the reactance is zero.

Using equation (2.76) in equation (2.77), we can write,

P
R R X X

E R

s s
2 2

2

=

+ + +^ ^h h
                                                           

.....(2.78)

The condition for maximum power can be obtained by partially differentiating P with respect to X and then 
with respect to R and equating (∂P/∂X) = 0 and (∂P/∂R) = 0.

On partially differentiating equation (2.78) with respect to X, we get,

[ ]

[ ]

X
P

R R X X

R R X X E R X X0 2

s s

s s

2 2 2

2 2 2
s# #

2

2
=

+ + +

+ + + − +

^ ^

^ ^ ^

h h

h h h

        [ ]R R X X

E R X X2

s s

s

2 2 2

2

=

+ + +

− +

^ ^

^

h h

h

                                                                                .....(2.79)

For 
X

P
0

2

2
= , the numerator of equation (2.79) should be zero.

∴   -2E2 R(X
s
 + X) = 0                                                    ..... (2.80)

In equation (2.80), E ≠ 0 and R ≠ 0, hence,

X
s
 + X = 0 ..... (2.81)

∴     X = -X
s
     ..... (2.82)

On partially differentiating equation (2.78) with respect to R, we get,

 [ ]

[ ]

R
P

R R X X

E R R X X E R R R2

s s

s s s

2 2 2

2 2 2 2
# #

2

2
=

+ + +

+ + + − +

^ ^

^ ^ ^

h h

h h h

                                                                ..... (2.83)

For 0,
R
P

2

2
=  the numerator of equation (2.83) should be zero.

∴ E2 [(R
s
 + R)2 + (X

s
 + X)2] -  2E2 R(R

s
 + R) = 0

     2E2 R(R
s
 + R) =  E2[(R

s
 + R)2 + (X

s
 + X)2 ] 

On dividing throughout by E2, we get,

2 R (R
s
 + R) =  (R

s
 + R)2 + (X

s
 + X)2        ..... (2.84)

From equation (2.81) we know that X
s
 + X = 0, hence equation (2.84) can be written as,

2 R (R
s
 + R) =  (R

s
 + R)2   ⇒   2 R = R

s
 + R   ⇒   2 R-R = R

s
   ⇒    R = R

s
          .....(2.85)

Equations (2.82) and (2.85) are the conditions for maximum power transfer. From these two equations, for 

maximum power transfer, we can say that, R + jX = R
s
 - jX

s
.

Here, R jX Z
*

s s s− =  = Conjugate of source impedance

Hence, for maximum power transfer, load impedance should be equal to conjugate of source impedance. An 
interesting observation is that when maximum power transfer condition is met, the circuit will behave as a purely 
resistive circuit and so the circuit will be in resonance.
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Case   v  : AC   source  with  internal  impedance  connected  to  a  load  with  variable  resistance  and   fixed   reactance

Theorem:

 “Maximum power is transferred from source to load, when load resistance is equal to absolute value 

of the rest of the impedence of the circuit”. 

Consider an ac source of emf E and internal impedance Zs  R jXZs s s= +^ h connected to a 

load impedance ,Z where Z R jX= +  with variable R and fixed X.

Now, the condition for maximum power transfer from source to load is, 

     R R X Xs s
2 2

= + +^ h  

Proof :

The statement of case (v) can be proved by proceeding similar to that of case (iv) and differentiating  
equation (2.79) with respect to R and equating (dP/dR) = 0.

From equation (2.84) we get,

2 R (R
s
 + R) = (R

s
 + R)2 + (X

s
 + X)2 

2 2 2RR R R R RR X Xs s s s
2 2 2 2

+ = + + + +^ h

2 2RR R R RR R X X2s s s s
2 2 2 2

+ − − = + +^ h    ⇒    R R X Xs s
2 2 2
= + +^ h     

                                  R R X Xs s
2 2

` = + +^ h   .....(2.86)

Equation (2.86) is the condition for maximum power transfer in case (v).

Case vi : AC source with internal impedance connected to a load with fixed resistance 

and variable reactance

Theorem:

“Maximum power is transferred from source to load, when load reactance is equal to conjugate of 

source reactance”.

 Consider an ac source of emf E and internal impedance R jXZ Zs s s s= +^ h connected to a 

load impedance ,Z where Z R jX= +  with fixed R and variable X.

Now, the condition for maximum power transfer is, 

   jX = –jX
s

Proof :

The statement of case (vi) can be proved by proceeding similar to that of case (iv) and differentiating  

equation (2.79) with respect to X and equating (dP/dX) = 0.

From equation (7.24) we get,  

  X = -X
s
           ..... (2.87)

The equation (2.87) is the condition for maximum power transfer in case (vi).
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Table 2.3 :  Summary of Conditions for Maximum Power Transfer

 Case Source Source Load Variable Condition for

  emf impedance impedance element of maximum

     load impedance power transfer

 i dc R
s
 R R R = R

s

 ii ac R
s
 R R R = R

s
 

 iii ac R
s
 + jX

s
  R R R R Xs s

2 2
= +  

 iv ac R
s
 + jX

s
  R + jX R, X R + jX = R

s
 − jX

s

 v ac R
s
 + jX

s
  R + jX R R R X Xs s

2 2
= + +^ h  

 vi ac  R
s
 + jX

s
  R + jX X  jX = − jX

s

Applying maximum power transfer theorem to circuits

Generally it is desirable to have maximum power transfer to a particular element of a 

circuit. In this case remove the concerned element and create two open terminals. Then the circuit 

is represented by Thevenin’s equivalent with respect to open terminals. Now, consider Thevenin’s 

equivalent as the voltage source for load and apply the maximum power transfer theorem.

Sometimes, it is desirable to have maximum power transfer to load by varying some parameter 

of a circuit. In this case, determine an expression for power, P delivered to load by relating the 

variable parameter to P. Let, Y be the variable parameter. Now differentiate P with respect to Y to 

get .
dY

dP  Then form an equation by equating 
dY

dP
0=  and solve the equation to get the condition 

for maximum power transfer. [Refer to Examples 2.58 and 2.59.]

Fig. a : Circuit with dc source and resistances.

Circuit
with dc
source

and
resistances

A

B

A

B

CircuitR

A

B

R Rth s=

+

_

+_

+

_

Rs

A

B

E _+

R

V = Eth

Þ Þ Þ

A

B

Z Zth s=

V Eth =

+

_

+

_

Zs

Fig. b : Circuit with ac source and resistances and reactances.

A

B

Circuit

A

B

E

Z R jX= +

Fig. 2.58 : Applying maximum power transfer theorem to an element of a circuit.

A

B

Z R jX= +

Circuit
with ac
source

and
resistances

and
reactances ~~

Þ Þ Þ
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EXAMPLE 2.45

 In the circuit of Fig. 1, find the value of the adjustable resistor R for maximum 

power transfer to R. Also, calculate the maximum power.

SOLUTION

Let us remove the adjustable resistance R and denote the two open 

terminals by A and B, as shown in Fig. 2. Now, the circuit of Fig. 2 should be replaced 

by Thevenin’s equivalent. Let us assume the polarity of Vth as shown in Fig. 2.

To find Thevenin’s voltage Vth

In Fig. 3, the 20 Ω resistance is open and so no current will flow through it. 

Hence, the voltage across the 20 Ω resistance is zero.

With reference to Fig. 3, by voltage division rule, we can write,

100 40V V
15 10

10

25

1000
th #=

+
= =

To find Thevenin’s resistance Rth

The 100 V voltage source in the circuit of Fig. 2 is replaced with a short 

circuit and the resulting network is reduced to a single equivalent resistance 

as shown below:

With reference to Fig. 5,

R
th

 = 20 + 6 = 26 Ω

To find R for maximum power and P
max

Thevenin’s equivalent of Fig. 2 is shown in Fig. 6. Now, Thevenin’s equivalent is 

the voltage generator for load resistance R.

∴    V
th

 = E     ;          R
th

 = R
s
 

Let us connect the adjustable resistance R across A and B of Thevenin’s equivalent 

as shown in Fig. 7.

With reference to Fig. 7, by maximum power transfer theorem, for maximum power 

in R the value of R should be equal to R
s
.

∴ R = 26 Ω

100V

20�

R

Fig. 1.

10�
+
E

15�

15� 20�

10�100V

R
th

V
th

A

B

Fig. 2.

+

E

+
E

no voltage

A

B
Fig. 3.

+

E

+
E

+

E

Vth

15� 20�

100V 10�Vth

V
=

 E
 =

 4
0

th
V

R = R = 26
th s

�

R
th

A

B

Fig. 6.

+
E

A

B

Fig. 7.

E
 =

 4
0

V

R = 26
s

�

I

+
E R

R
th

SC

15W 20W

10W

A

BFig. 4.

10 15

10 15
6

´

+
= W

20W
A

B
Fig. 5.

R
th

Þ
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, ,

.

We know that power P
R
E

W

4

4 26
40 15 3846

maximum max

2

2

#

=

= =

, 26 15.3846Also P I R W
26 26

402
2

max #= =
+

=c m

RESULT

The value of R for maximum power transfer = 26 Ω

The maximum power in R, P
max

 = 15.3846 W

EXAMPLE 2.46

In the circuit of Fig. 1, find the value of R for maximum power transfer. 

Also, calculate the maximum power.

SOLUTION

Let us remove the resistance R and denote the two open terminals by  

A and B as shown in Fig. 2. 

To find Thevenin’s voltage V
th

The circuit of Fig. 2 should be replaced by Thevenin’s equivalent. Let 

us assume the polarity of V
th

 as shown in Fig. 2. The current source in parallel 

with the 10 W is converted to a voltage source in series as shown in Fig. 3. 

With reference to Fig. 3, by KVL, we can write,

     V
th

 + 68 + 60I = 0 

∴  V
th

 = - 128 V

To find Thevenin’s resistance R
th

Let us replace the voltage source with a short circuit and the current 

source with an open circuit as shown in Fig. 4.

With reference to Fig. 4,

R
th

 = 3 + 10 + 2 = 15 Ω

To find R for maximum power and P
max

Thevenin’s equivalent of Fig. 2 is shown in Fig. 5. Now, the Thevenin’s 

equivalent is the voltage generator for load resistance R.

∴   V
th

 = E       ; R
th

 = R
s
 

Let us connect the resistance R across A and B of Thevenin’s equivalent 

as shown in Fig. 6.

With reference to Fig. 6, by maximum power transfer theorem, for 

maximum power transfer to R the value of R should be equal to R
s
.

Fig. 1.

+ E

3� 68V

6A
10�

2�

R

Fig. 2.

3� 68V

6A
10�

2�

R
th

V
th

A

B

+

E

+ E

Fig. 3.

10W 68V

2W

Vth

A

B

+

-

+ -

3W

no voltage

no voltage

+
-

6 10´

= 60V

(AU Dec’16, 8 Marks)
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∴  R = 15 Ω

,
( )

273.0667Maximumpower P
R
E W
4 4 15

1282 2

max
#

= =

−

=

EXAMPLE 2.47

In the circuit of Fig. 1, find the value of R for maximum power 

transfer. Also, calculate the maximum power.

SOLUTION

Let us remove the resistance R and denote the two open 

terminals by  A and B, as shown in Fig. 2. Now, the circuit of Fig. 2, 

should be replaced by Thevenin’s equivalent. Let us assume the polarity 

of V
th

 as shown in Fig. 2.

To find Thevenin’s voltage V
th

With reference to Fig. 3, by KVL, we can write,

     V
th

 = 2 × 15 + 12 

∴  V
th

 = 42 V

To find Thevenin’s resistance R
th

Let us replace the voltage source with a short circuit and the 

current source with an open circuit as shown in Fig. 4.

With reference to Fig. 5,

R
th

 = 15 Ω

To find R for maximum power and P
max

Thevenin’s equivalent of Fig. 2 is shown in Fig. 6. Now, the Thevenin’s 

equivalent is the voltage generator for load resistance R.

∴   V
th

 = E       ; R
th

 = R
s
 

R

Fig. 1.

+
E
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Fig. 2.
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E
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_
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2 15´

+

Fig. 3.

+
-
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+

_
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12V 2AVth
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 =
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th
V
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�

V
=

 E
 =
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1
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I 
+

 6
8

)
th

V R = R = 15th s �

Rth

A

B

Fig. 5.

+
E

A

B

Fig. 6.

E
 =

 (
1

0
I 

+
 6

8
)V

R = 15s �

I
+
E R

Fig. 4.
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B
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R
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A
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Fig. 5.

15W
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Þ
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A

B Fig. 7.

+
E R

R = 15
s

�

E
 =

 4
2

V

Let us connect the resistance R across A and B of Thevenin’s equivalent 

as shown in Fig. 7.

With reference to Fig. 7, by maximum power transfer theorem, for maximum 

power transfer to R the value of R should be equal to R
s
.

∴  R = 15 Ω

, 29.4Maximumpower P
R
E W
4 4 15

422 2

max
#

= = =

EXAMPLE 2.48 

Determine the value of resistance that may be connected 

across terminals A and B so that maximum power is transferred 

from the circuit to the resistance. Also, estimate the maximum 

power transferred to the resistance.

SOLUTION

The circuit of Fig. 1 should be replaced by Thevenin’s 

equivalent as shown below:

To find Thevenin’s voltage V
th

With reference to Fig. 2, the mesh basis matrix equation is,

I

I

2 8

8

8

8 4 10

20

0

1

2

+

−

−

+ +

=> > >H H H
I

I

10

8

8

22

20

0

1

2−

−

=> > >H H H
10 22 ( 8) 156

10

8

8

22
2

#∆ =
−

−
= − − =

10 0 ( 8) 20 160
10

8

20

0
2 # #∆ =

−
= − − =

1.0256I A
156

160
2

2
`

∆

∆
= = =

With reference to Fig. 2 by KVL, we can write,

     V
th

 = 5 + 10 I
2
 = 5 + 10 × 1.0256

∴  V
th

 = 15.256 V

To find Thevenin’s resistance R
th

Let us replace the voltage sources with a short circuit and reduce the resulting network to a single 

equivalent resistance as shown below:

2� 4� 5V

8� 10�20V

A

Fig. 1.
B

+E

I1
I2

10I2

+

_

Vth

2� 4� 5V

8� 10�20V

A

Fig. 2.
B

+E

+

E

(AU Dec’15, 16 Marks)
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 +
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16

´

+

= . W R
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B
Fig. 4.
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R
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A
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Fig. 5.

2W 4W

8W 10W Þ Þ
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With reference to Fig. 5,

.

.
.R

5 6 10

5 6 10
3 5897th

#
Ω=

+
=

To find the value of R for maximum power transfer and P
max

Thevenin’s equivalent of the given circuit is shown in Fig. 6. Now,  

Thevenin’s equivalent is the voltage generator for the load that may be 

connected across A and B.

∴  E = V
th

      ; R
s
 = R

th
 

Let us connect a load resistance R across A and B of Thevenin’s 

equivalent as shown in Fig. 7. Now, for maximum power transfer, the value of 

R should be equal to R
s
.

∴  R = 3.5897 Ω

,

.
. .

Maximumpower P
R
E

W

4

4 3 5897
15 256 16 2093

2

2

max

#

=

= =

EXAMPLE 2.49

In the circuit shown in Fig. 1, determine the maximum 

power delivered to R
L,
 where R

L
 = 100 W using Norton’s theorem. 

Also, determine the value of R
L
 for maximum power transfer.

SOLUTION

Let us remove the resistance R
L
 and denote the two open 

terminals by A and B as shown in Fig. 2.  The voltage sources in 

the circuit of Fig. 2 are converted into current sources as shown in Fig. 3. The parallel resistances in 

Fig. 3 are converted into a single equivalent resistance as shown in Fig. 4.

The current sources in Fig. 4 are converted into voltage sources in Fig. 5. Now short circuit the 

terminals A and B and the current through this short circuit is Norton’s circuit I
N
.

R = R = 3.5897
th s

�

V
=

 E
 =
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5
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6
th
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B
Fig. 6.
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s

�
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 =
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Fig. 7.
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With reference to Fig. 5, by KVL, we can write,

149.8551 I
N
 + 131.0345 I

N
  + 3.2759 = 6.8184

I
N
(149.8551 + 131.0345) = 6.8184 - 3.2759

I
. .

. .
. A

149 855 131 0345

6 8184 3 2759
0 0126

N
` =

+

−
=

To find Norton’s resistance Rn

The voltage sources are replaced with a short circuit as shown in Fig. 6. Norton’s resistance is determined 

by using network reduction techniques as shown below:

With reference to Fig. 9, we get,

Norton’s resistance, R
n
 = 280.8896  W

Norton’s equivalent

To find maximum power transfer

Norton’s equivalent of the given circuit is shown in Fig. 11. Let us connect a load resistance R across 

A and B of Norton’s equivalent as shown in Fig. 12.

Fig. 10.
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By current division rule,

R R

R
0.0126

.

.
9.292 10I I A

280 8896 100

280 8896 3

L N
N L

N
#

#
# #= =

+
=

-

Power, P
L
 = I R2

L L
= (9.292 × 10-3)2 × 100 = 8.6341 × 10-3 W = 8.6341 mW 

Now, for maximum power transfer the value of R
L
 should be equal to R

n
.

Maximumpower,P
2

I
R . 280.8896

2
0 0126

2 2

max
N

n` #= =d dn n
                                    = 11.1485 × 10-3 m = 11.1485 mW

Note:   When R
L
 = R

n
, the Norton’s current will divide equally between R

n
 and R

L
 and so current through 

           R
L
 is I

N
/2

EXAMPLE 2.50

Determine the value of R for maximum power 

transfer to it and the maximum power.

SOLUTION

The given circuit can be reduced to a single 

voltage source with a resistance in series with 

respect to terminals of load resistance R, by source 

transformation technique, as shown below: 
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In Fig. 10, the given circuit has been reduced to the form of a voltage generator with respect to  

terminals of R. With reference to Fig. 10, 

The value of R for maximum power transfer = R
s
 = 2.7273 Ω

,
.

. 2.7273The power P
R

E W
4 4 2 7273

5 4546maximum
2 2

max
# #

= = =

EXAMPLE 2.51

Determine the value of R in the circuit of Fig. 1 for maximum power 

transfer to R from the rest of the circuit.

SOLUTION

The given circuit should be replaced by Thevenin’s equivalent with 

respect to terminals of R as shown below:

Now, for maximum power transfer to R, the value of R should be equal 

to R
th

. Hence, we have to find the value of Thevenin’s resistance R
th

.
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To find Thevenin’s resistance R
th

Let us replace the voltage source with a short circuit and remove the resistance R and denote the 

resulting open terminals as A and B as shown in Fig. 6. The network of Fig.  6 is reduced to a single equivalent 

resistance as shown below:

With reference to Fig. 10, we can write,

.

.
2.1539R

4 6667 4

4 6667 4
th

#
Ω=

+
=

RESULT

The value of R for maximum power transfer = 2.1539 Ω

EXAMPLE 2.52

Determine the value of R in the circuit of Fig. 1 for maximum 

power transfer to R from the rest of the circuit.

SOLUTION

The given circuit should be replaced by Thevenin’s equivalent 

with respect to terminals of R as shown below:

Now, for maximum power transfer to R, the value of R should be 

equal to R
th

. Hence, we have to find the value of Thevenin’s resistance 

R
th

.
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To find Thevenin’s resistance R
th

Let us replace the voltage source with a short circuit and the current source with an open circuit as 

shown in Fig. 6. Remove the resistance R and denote the resulting open terminals as A and B as shown in 

Fig. 6. Now, the network of Fig. 6 is reduced to a single equivalent resistance as shown below:

With reference to Fig. 8,

R
th

 = 2.5 + 4 + 8 = 14.5 Ω

RESULT

The value of R for maximum power transfer = 14.5 Ω

EXAMPLE 2.53

Determine the load impedance that can be connected 

across terminals A and B for maximum power transfer to load 

impedance. Also, calculate the maximum power transferred to load.
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SOLUTION

Let us convert the given circuit into Thevenin’s equivalent with respect to terminals A and B by using 

source transformation technique as shown below:

Now, the circuit of Fig. 7 is Thevenin’s equivalent of the given circuit with respect 

to terminals A and B. Thevenin’s source is the voltage source for load connected across 

terminals A and B and Thevenin’s impedance is the source impedance.

. .

. .

E j

Z j

V1 6436 4 3836

3 3425 2 2466s

`

Ω

= +

= +

Let us connect a load impedance Z  across terminals A and B of Thevenin’s 

equivalent as shown in Fig. 8.

Now, for maximum power transfer,
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Fig. 2.
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~
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Vth V Eth =

Z Zth s=

R Z Zth s= =

R
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+
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~

Fig. 3.

Fig. 4.

1
0

0
4

5
o
V

Ð

2W 4W j2W

j4W - Wj10 Þ Þ

With reference to Fig. 8, we can write,

. . . .

. .
I

Z Z
E

j j

j

3 3425 2 2466 3 3425 2 2466

1 6436 4 3836

s
=

+

=

+ + −

+

_ _i i

                   .

. .
0.2459 0.6557 0.7003 69.4

j
j A

2 3 3425

1 6436 4 3836 o

#
+=

+
= + =

,Maximumpower delivered to load P I part of ZReal
2

2

max #=

. . . W0 7003 3 3425 1 6392#= =

RESULT

Load impedance across A and B for maximum power transfer = 3.3425 − j2.2466 Ω = 4.0273∠-33.9o
 W

Maximum power transferred to load = 1.6392 W

EXAMPLE 2.54

In the circuit of Fig. 1, determine the value of R so that 

maximum power is transferred to it.

SOLUTION

Let us remove the resistance R and denote the resulting 

open terminals by A and B as shown in Fig. 2. The circuit of Fig. 2 

should be converted into Thevenin’s equivalent with respect to 

terminals A and B as shown in Fig. 3. Let us connect the load resistance R across A and B as shown in Fig. 4. 

Now, by maximum power transfer theorem, the value of R should be equal to magnitude of source impedance 

Zs , for maximum power transfer. Here, .Z Zs th=

To find Zth  and the value of R for maximum power

Let us replace the voltage source in the circuit of Fig. 2 with a short circuit as shown in Fig. 5. The 

network of Fig. 5 is reduced to a single equivalent impedance as shown below:

Fig. 1.

2W 4W
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Ð
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Fig. 5.
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(4 + j2)
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Fig. 6.
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With reference to Fig. 7, we can write,

. .

. .

. .

. .

Z
j j

j j

j

5 6 2 8 10

5 6 2 8 10

6 7308 1 3462

6 8641 11 3

th

o

#

+

Ω

Ω

=
+ + −

+ −

= −

= −

_ _
_ _

i i
i i

Now, by maximum power transfer theorem,

.R Z 6 8641th Ω= =

RESULT

The value of R for maximum power transfer = 6.8641 Ω

EXAMPLE 2.55

In the circuit of Fig. 1, the load impedance Z  has a fixed 

resistance of 2 Ω and a variable reactance jX. Determine the 

value of the reactance jX for maximum power transfer to load.

SOLUTION

Let us remove the load impedance Z  and denote the 

resulting open terminals by A and B as shown in Fig. 2. The 

circuit of Fig. 2 should be reduced to Thevenin’s equivalent with 

respect to terminals A and B as shown in Fig. 3. Let us connect the 

load impedance Z  across terminals A and B as shown in Fig. 4. 

Now, by maximum power transfer theorem, for maximum power transfer to load, jX = − jX
s
.

To find Zth  and the value of jX for maximum power

Let us replace the voltage sources in the circuit of Fig. 2 with a short circuit as shown in Fig. 5. The 

network of Fig. 5 is reduced to a single equivalent impedance as shown below:

Fig. 1.
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Fig. 3.

A

B

Fig. 4.
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I2

2W

j2W

4W

j2W

B

A

Fig. 3.

Vth

+

_

+

_

I1

Vth~

10 45
o
AÐ

I2

I2

I2

4W

With reference to Fig. 6, we can write,

. .

. .

Z j j

j

2 7692 1 8462 2 2

4 7692 0 1538

th

Ω

= + + −

= −

_ _i i

, . .

.

Here Z R jX j

jX j

4 7692 0 1538

0 1538

th s s

s`

= + = −

= −

For maximum power transfer to load,

    jX  =  − jX
s
  =  − (− j0.1538)  =  +j0.1538 Ω

∴  jX  =  j0.1538 Ω

RESULT

For maximum power transfer to load, the value of  jX = j0.1583 Ω

EXAMPLE 2.56

In the circuit of Fig. 1, determine the impedance that can be 

connected across terminals A and B for maximum power transfer.  Also, 

estimate the maximum power.

SOLUTION

Let us determine Thevenin’s equivalent of the given circuit with 

respect to terminals A and B as shown below:

To find Thevenin’s voltage Vth

In the given circuit, 4 Ω resistance is open and so no current will 

flow through it. Hence, there is no voltage across the 4 Ω resistance. The given circuit is redrawn as shown 

in Fig. 3.

1
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Ð
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Fig. 1.
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+
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With reference to Fig. 3, by current division rule,

10 45
. .

5.547 11.3

I
j j j

A

4 2 2 2
4

6 4
40 45

7 2111 33 7

40 45o
o

o

o

o

2 #+
+

+

+

+

=

+ + +

=
+

=

=

_ i

   

. . . .

. .

V I j j

V

2 5 547 11 3 2 5 547 11 3 2 90

11 094 101 3

2
o o o

o

th # # #+ + +

+

= = =

=

To find Thevenin’s impedance Zth    

Let us replace the current source in the given circuit by an open circuit as shown in Fig. 4. The network 

of Fig. 4 is reduced to a single equivalent impedance as shown below:

With reference to Fig. 6, we can write,

2
4 . . 4

. .

Z
j j

j j
j

j

6 2

6 2 2
0 4615 1 6923

4 4615 1 6923

th
#

Ω

=
+ +

+
+ = + +

= +

_
_

i
i> 7H A

To find Z  for maximum power and P
max

Thevenin’s equivalent of the given circuit is shown in Fig. 7. Now, Thevenin’s 

equivalent is the voltage generator for the load that may be connected across A and B.

11.094 101.3E V Voth` += =

    . .Z Z j4 4615 1 6923s th Ω= = +

Let us connect a load impedance Z  across A and B of Thevenin’s equivalent 

as shown in Fig. 8. Now, for maximum power transfer to load, the load impedance Z 

should be equal to complex conjugate of source impedance .Zs  

. . . .Z Z j j4 4615 1 6923 4 4615 1 6923s
* *

` Ω= = + = −_ i

With reference to Fig. 8, we can write,

. . . .
. .I

Z Z
E

j j4 4615 1 6923 4 4615 1 6923
11 094 101 3

s

o
+

=

+

=
+ + −

                   .

. .
1.2433 101.3 A

2 4 4615

11 094 101 3
o

o

#

+
+= =

Z Z
th sa

Fig. 7.
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,

. .

.

Maximumpower in the load P I part of Z

W

1 2433 4 4615

6 8966

Real
2

2

max #

#

=

=

=

RESULT

The load impedance for maximum power transfer, . .Z j4 4615 1 6923Ω= −

Maximum power transferred to load, P
max

  =  6.8966 W

EXAMPLE 2.57

Find the current flowing in the 20 W resistance connected across 

terminals A and B of the circuit shown in Fig. 1 using Norton’s theorem.

SOLUTION

Let us remove the 20 + j5 W and denote the resultant open terminals 

as A and B as shown in Fig. 2. Now, the circuit of Fig. 2 should be replaced 

by Norton’s equivalent at terminals A and B.

To find Norton’s current In   

Let us short circuit the terminals A and B in the circuit of Fig. 2 as shown in Fig. 3. The current flowing 

through the short circuit is Norton’s current. Let us assume the direction of Norton’s current as A to B.

Let us calculate Norton’s current by superposition theorem.

 Let,   I
n
l  = Current when the j40 V source alone is acting.

       I
n

ll  = Current when the 3 A source alone is acting.

To find the response I
n
l  when j40 V source is acting alone

The 3 A current source is replaced with a short circuit as shown in Fig. 4. Now the 10 + j4 W impedance 

is short-circuited and so it is removed and the circuit is redrawn as shown in Fig. 5.

(AU May’17, 16 Marks)
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With reference to Fig. 6, by Ohm’s law we get,

. .
. .I

j

j
j A

3 1214 0 289

40
1 1764 12 7058

n
=

−
= − +l

To find the response I
n

ll  when the 3 A source is acting alone

The j40 V source is replaced with a short circuit as shown in Fig. 7. The circuit of Fig. 7 is redrawn as 

shown in Fig. 8. The 5 W resistance is short-circuited and so entire current 3 A flows through short circuit as 

shown in Fig. 8.

I
n

` ll  = 3 A

To find the response I
n
when both the sources are acting

By the superposition theorem,

. . 3I I I j1 1764 12 7058n n n= + = − + +l ll

                 = 1.8236 + j12.7058 A

To find Norton’s impedance Zn    

Let us replace the voltage source with a short circuit and the current source 

with an open circuit as shown in Fig. 9.

With reference to Fig. 9, we can write,

' ,
( ) ( )

. .Norton s impedance Z
j j

j j
j5

8 2 10 4

8 2 10 4
5 4 9024 0 122n

#
= +

− + +

− +
= + +

                                         = 9.9024 + j0.122 W 

Norton’s equivalent at A-B and current I
o

The Norton’s equivalent is shown in Fig. 10.

Let us connect the 20 + j15 W impedancce across A and B as shown in 

Fig. 11.
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By current division rule, we get,

I I
Z j

Z

20 5
o n

n

n
#=

+ +

                 ( . . )
. .

. .
j

j j

j
1 8236 12 7058

9 9024 0 122 20 15

9 9024 0 122
#= +

+ + +

+

                 (1.8236 12.7058) (0.2654 0.1301) 2.137 3.1349j j j A#= + − = +

                  = 3.794 ∠ 55.7o A

EXAMPLE 2.58

In the circuit of Fig. 1, the load impedance Z  has a fixed 

reactance of +j2 Ω and a variable resistance R. Determine the 

value of R for maximum power transfer.

SOLUTION

The 20∠30
o

 V voltage source in series with 10 Ω is 

converted to an equivalent current source in Fig. 2.

The circuit of Fig. 2 is redrawn as shown in 

Fig. 3. In this circuit, the current sources in parallel 

can be combined to give a single equivalent current 

source and the 10 Ω and 4 Ω resistances in parallel 

can be combined to give a single equivalent 

resistance as shown in Fig. 4.

The current source in parallel with  

2.8571 Ω resistance in the circuit of Fig. 4 is 

converted to a voltage source as shown in Fig. 5.

With reference to Fig. 5, we can write,

.
. .I
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34 1229 42 5o+

=
+ +

.
. .
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=
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=
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Let, P = Power delivered to load.

,Now P I part of ZReal
2

#=

              .

.

.R
R

R

R

2 8571 4

34 1226

2 8571 4

1164
2

2

2
#=

+ +

=

+ +_ _i i

The condition for maximum power can be obtained by differentiating P with respect to R and equating (dP/dR) = 0.

.

. 1164 1164 2 .

dR

dP

R

R R R

2 8571 4

2 8571 4 2 8571

2

2

2
`

# #

=

+ +

+ + − +

_

_ _

i

i i

9
9

C
C

For ,
dR
dP 0=  the numerator of 

dR

dP  should be equal to zero.

∴  1164[ (2.8571 + R)
2
 + 4] − 2 × 1164 R (2.8571 + R) = 0

     2 × 1164 R (2.8571 + R)  =  1164[ (2.8571 + R)
2
 + 4]

On dividing either side by 1164, we get,

2 R (2.8571 + R)  =  (2.8571 + R)
2
 + 4

5.7142 R + 2R
2
  =  8.163 + 5.7142 R + R

2
 + 4

∴   5.7142 R + 2R
2
 − 5.7142 R − R

2
  =  8.163 + 4

∴  R2 = 12.163    ⇒    . 3.4875R 12 163 Ω= =

Note  :  Here, the value of R for maximum power transfer is also given by,

          
. .R 2 8571 2 3 4875

2 2
Ω= + =

RESULT

The value of R for maximum power transfer = 3.4875 Ω

EXAMPLE 2.59

In the circuit of Fig. 1, the phase angle θ of the voltage source, 

5∠θo
 V is continuously variable. Find the value of θ for maximum power 

transfer to 10 Ω resistance.

SOLUTION

Let us assume two mesh currents as shown in Fig. 2.

Let, 5∠θ
o

 V   =  5 cosθ + j5 sinθ V

       10∠0
o

 V = 10 cos0
o
 + j10 sin0

o
 = 10 V

With reference to Fig. 2, the mesh basis matrix equation is,
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=
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−
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cos sin cos sin

cos cos sin sin

cos sin cos sin

j

j

j j

j j

j

5 5
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10

15 8

5 5 15 8 10 10

75 40 75 40 100

75 40 100 40 75

1
# #θ θ θ θ

θ θ θ θ

θ θ θ θ

∆ =
+

+

= + + −
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= − − + +

^ ^

^ ^

h h
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j j j j

j j
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θ θ

θ θ

∆ =
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_ _

_ _

i i

i i

, ;Now I I1
1

2
2

∆

∆

∆

∆
= =

Let, I  =  current through 10 Ω resistance.

With reference to Fig. 2, by KCL, we can write,

I I I
1

1 2
1 2

1 2
∆

∆

∆

∆

∆
∆ ∆= + = + = +7 A

   
75 40 100cos sin cos sin cos sinj j

189
1 40 75 150 50 50 80θ θ θ θ θ θ= − − + + + − + − −_ _ _ _i i i i7 A

  
cos sin cos sinj

189
1 25 40 50 40 25 80θ θ θ θ= − + + + −_ _i i7 A

  
. . .cos sin cos sinj

189
25 1 6 2 1 6 3 2θ θ θ θ= − + + + −_ _i i7 A

. . .cos sin cos sinI I
189

25
1 6 2 1 6 3 2

2 2
` θ θ θ θ= = − + + + −_ _i i

Let,   P = Power delivered to 10 Ω resistance.

, 10 . . .

. . . .

cos sin cos sin

cos sin cos sin

Now P I
189

10 25 1 6 2 1 6 3 2

0 175 1 6 2 1 6 3 2

2

2

2
2 2

2 2

#
#

θ θ θ θ

θ θ θ θ

= = − + + + −

= − + + + −

_ _

_ _

i i

i i

9

9

C

C        

The condition for maximum power transfer can be obtained by differentiating P with respect to θ and 

solving the equation obtained by equating (dP/dθ) = 0.

0.175 . . . . .cos sin sin cos cos sin sin cos
d

dP
2 1 6 2 1 6 2 1 6 3 2 1 6` # #

θ
θ θ θ θ θ θ θ θ= − + − − + + − − +_ _ _ _i i i i7 A

. [ . . . .

. .

cos sin cos sin cos sin sin cos

sin cos

0 175 2 1 6 1 6 2 56 2 3 2

3 12 6 4

2 2

2 2

# θ θ θ θ θ θ θ θ

θ θ

= − − + + − −

−

. . . . . ]cos sin cos sin cos sin sin cos2 56 1 6 1 6 5 12 3 2θ θ θ θ θ θ θ θ− + − + + −

0.35= 7 A       

, ,On equating
d
dP we get0
θ

=

0.35 [3.12 sinθ – 6.4 cos θ] = 0

∴ 3.12 sinθ – 6.4 cos θ = 0

3.12 6.4sin cos` θ θ=   ⇒   
.

.

cos

sin

3 12

6 4

θ

θ
=    ⇒   2.0513tanθ =

∴   θ =  tan
–1

(2.0513) = 64
o
 

RESULT

The value of θ for maximum power transfer = 64
o
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2.6.4   Reciprocity Theorem

The reciprocity theorem states that in a linear, bilateral, single source circuit, the ratio of excitation 

to response is constant when the position of excitation and response are interchanged.

 Here, the excitation is either a voltage source or current source and the response is either a 

current or voltage in an element (R, L or C).

“The reciprocity theorem will be satisfied only by circuits or networks which do not have  

dependent sources”. In circuits without dependent sources, the Z and Y matrices formed for mesh 

and node basis analysis will be symmetric, i.e., the element of matrices Z Z and Y Yjk kj jk kj= = . 

The networks which satisfy the reciprocity theorem are called reciprocal networks.

2.6.5   Reciprocity Theorem Applied to Mesh Basis Circuit

Consider a mesh basis circuit with a single voltage source E as shown in Fig. 2.59. Let I be 

the current in mesh-j when the source is in mesh-k as shown in Fig. 2.59(a). The reciprocity theorem 

implies that the same current I will be produced in mesh-k, if the source is shifted to mesh-j as 

shown in Fig. 2.59(b). It must be noted that currents in other parts of the circuit may not be the same.

Proof by mesh analysis :

Consider a 2-port resistive network without sources shown in  
Fig. 2.60. In order to prove the reciprocity theorem we can connect a voltage 
source at port-1 and short circuit port-2 to observe the current response. 
Then the source can be shifted to port-2 and the same current response can 
be observed in short-circuited port-1.

Case i : Excitation in port-1 and response at port-2

Let us connect a voltage source E to port-1 and short circuit the 
terminals of port-2 as shown in Fig. 2.61. Let I be the current through short 
circuit, which is the response due to excitation, E.

In the circuit of Fig. 2.61, the response I due to excitation E can be 
solved by mesh analysis. Let us consider two meshes mesh-k and mesh-j as 
shown in Fig. 2.61. Now the response, I = Ij

.

In mesh analysis, the current in jth mesh I
j
 is given by (Refer to equation 1.23 in Chapter 1),

..... .....I E E E Ej
j j j kj

kk
1

11
2

22
3

33
∆

∆

∆

∆

∆

∆

∆

∆
= + + + + +                                              .....(2.88)
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Since the circuit of Fig. 2.61, has only one source in mesh-k,

E11
 = E22 = E33 = ..... = 0 and Ekk = E

Hence, equation (2.88) can be written as,

I E Ej
kj

kk
kj

∆

∆

∆

∆
= =

,The response I I Ej
kj

`
∆

∆
= =

                                                            ..... (2.89)

From equation (2.89), the ratio of excitation to response is,

I

E

kj∆

∆
=

       
                                                                         .....(2.90)

Case ii : Excitation in port-2 and response at port-1

Let us change the excitation source E to mesh-j as shown in Fig. 2.62, 
and estimate the current in mesh-k. [In mesh-k the voltage source is replaced 
with its internal impedance. Since the source is ideal the internal impedance 
is zero and so it is replaced  with a short circuit.] Now the response, I = Ik.

In mesh analysis the current in kth mesh, Ik is given by (Refer to 
equation 1.23 in Chapter 1),

..... .....I E E E Ek
k k k jk

jj
1

11
2

22
3

33
∆

∆

∆

∆

∆

∆

∆

∆
= + + + + +                                                    .....(2.91)

Since the circuit of Fig. 2.62 has only one source in mesh-j,

E 11 = E22 = E33 = ..... = 0 and Ejj = E

Hence, equation (2.91) can be written as,

I E Ek
jk

jj
jk

∆

∆

∆

∆
= =

,The response I I Ek
jk

`
∆

∆
= =

                                          ..... (2.92)

From equation (2.92), the ratio of excitation to response is,

I

E

jk∆

∆
=                                                                                                 

..... (2.93)

Conclusion

When the 2-port network does not have dependent sources ∆ kj = ∆jk 
, equations (2.90) and  (2.93) are same. 

Hence, the reciprocity theorem is proved.

2.6.6   Reciprocity Theorem Applied to Node Basis Circuit

Consider a node basis circuit with a single current source Is
 as shown in Fig. 2.63. Let, V be 

the voltage in node-j when the current source is connected between node-k and reference as shown 

in Fig. 2.63a . The reciprocity theorem implies that the same voltage V will exist in node-k if the 

source is shifted to node-j as shown in Fig. 2.63b. It must be noted that the voltages in other parts 

of the circuit may not be the same.

IK Ij

Mesh-k Mesh-j2-port
resistive
network

Port-1 Port-2

E

I

Fig. 2.62.

SC +
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Proof by node analysis:

Consider a 2-port resistive network without sources shown in  
Fig. 2.64. In order to prove the reciprocity theorem we can connect a current 
source at port-1 and observe the open circuit voltage at port-2. Then the source 
can be shifted to port-2 and the same open circuit voltage can be observed in 

port-1.

Case i : Excitation in port-1 and response at port-2

Let us connect a current source, I s to port-1 as shown in Fig. 2.65. 
Let the voltage across the terminals of port-2 be V, which is the response due 
to excitation Is.

In the circuit of Fig. 2.65, the response V due to excitation Is can be 
solved by node analysis. Let us consider two nodes, node-k and node-j as shown 
in Fig. 2.65. Now the response, V = Vj

.

In node analysis, the voltage in jth node V
j
 is given by (Refer to 

equation 1.37 in Chapter 1),

..... .....V I I I Ij
j j j kj

kk
1

11
2

22
3

33
∆

∆

∆

∆

∆

∆

∆

∆
= + + + + +

l

l

l

l

l

l

l

l
                                                    ..... (2.94)

Since the circuit of Fig. 2.65, has only one source in node-k,

I11
 = I22 = I33 = ..... = 0  and  Ikk = Is

Hence, equation (2.94) can be written as,

V I Ij
kj

kk
kj

s
∆

∆

∆

∆
= =

l

l

l

l

,The response V V Ij
kj

s`
∆

∆
= =

l

l
                      ..... (2.95)

From equation (2.95), the ratio of excitation to response is,

V

Is

kj∆

∆
=

l

l
                                 

..... (2.96)

Case ii : Excitation in port-2 and response at port-1

Let us change the excitation source to node-j as shown in Fig. 2.66, and estimate the voltage at node-k. [In node-k 
the current source is replaced with its internal impedance. Since the source is ideal, the internal impedance is infinity 
and so it is replaced with an open circuit.] Now the response, V = V

k
.

In node analysis the voltage in node-k, V
k
 is given by (Refer to equation 1.37 in Chapter 1),

..... .....V I I I Ik
1k 2k

22
3k

33
jk

jj11
∆

∆

∆

∆

∆

∆

∆

∆
= + + + + +

l

l

l

l

l

l

l

l
                                                   ..... (2.95)
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Since the circuit of Fig. 2.66, has only one source in node-j,

I11
 = I22 = I33 = ... = 0  and  Ijj = Is

Hence, equation (2.95) can be written as,

V I Ik
jk

jj
jk

s
∆

∆

∆

∆
= =

l

l

l

l

,The response V V Ik
jk

s`
∆

∆
= =

l

l
                                                                           ..... (2.96)

From equation (2.96), the ratio of excitation to response is,

V

Is

jk∆

∆
=

l

l
                                                                                                        

..... (2.97)

Conclusion

When the 2-port network does not have dependent sources kj jk∆ ∆=l l  , equations (2.94) and (2.97) are the 

same. Hence, the reciprocity theorem is proved.

EXAMPLE 2.60

Prove the reciprocity theorem for the two port network of Fig. 1.

SOLUTION

Method-I : Proof by mesh analysis

Case i : Excitation in port-1 and response at port-2

Let us connect a voltage source of E volts to port-1 and short circuit 

the port-2 as shown in Fig. 2. Let, I be the current through short circuit which 

is the response due to excitation E.

Let us assume three mesh currents I
1
, I

2
 and I

3
 as shown in Fig. 2. Now, 

the response I = I
2
. With reference to Fig. 2, the mesh basis matrix equation is,
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Case ii : Excitation in port-2 and response at port-1

Let us interchange the positions of source and response as shown 

in Fig. 3. Let us assume mesh currents Ia, Ib and Ic as shown in Fig. 3. 

Now the response, I = Ib. With reference to Fig. 3, the mesh basis matrix 

equation is,
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Conclusion

It is observed that the ratio of excitation to response is the same when the positions of excitation and 

response are interchanged. Hence, the reciprocity theorem is proved.

Method II : Proof by node analysis

Case i : Excitation in port-1 and response at port-2

Let us connect a current source of Is amperes to port-1 and open 

circuit the port-2 as shown in Fig. 4. Let, V be the voltage across the open 

terminals of port-2, which is the response due to excitation Is.

Let us assume three node voltages V
1
, V

2
 and V

3
 as shown in 

Fig. 4. Now the response, V = V
2
. With reference to Fig. 4, the node basis 

matrix equation is,
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Case ii : Excitation in port-2 and response at port-1

Let us interchange the positions of source and response as shown 

in Fig. 5. Let us assume node voltages Va, Vb and Vc as shown in Fig. 5. 

Now the response, V = Vb. With reference to Fig. 5, the node basis matrix 

equation is,
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Conclusion

It is observed that the ratio of excitation to response is the same when the positions of excitation and 

response are interchanged. Hence, the reciprocity theorem is proved.
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EXAMPLE 2.61

In the circuit of Fig. 1, calculate Ix. Prove the reciprocity theorem by 

interchanging the position of the 10 V  source and Ix.

SOLUTION

Case i : To solve Ix in the given circuit

Let us assume three mesh currents as shown in Fig. 2. Now the 

response, Ix = I1 − I2 

With reference to Fig. 2, the mesh basis matrix equation is,
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Case ii : To prove the reciprocity theorem by interchanging the positions of source and response

Let us interchange the positions of source and response as shown in Fig. 3. Let us assume mesh 

currents I
a
, I

b
 and I

c
 as shown in Fig. 3. 

Now, the response, I
x
 = I

a
.

With reference to Fig. 3, the mesh basis matrix equation is,
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On comparing equations (2) and (1), we can say that the ∆ is same in both the case.

∴   ∆ = 1069
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Here, the response I
x
 remains the same after interchanging the positions of source and response. 

Hence, the reciprocity theorem is proved.

EXAMPLE 2.62

In the circuit of Fig. 1, calculate Vx. Prove the reciprocity 

theorem by interchanging the positions of the 12 A source 

and Vx.

SOLUTION

Case i : To solve Vx in the given circuit

Let us assume three node voltages as shown in Fig. 2. Now the response, V
x
 = V

2
. With reference to 

Fig. 2, the node basis matrix equation is,
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Case ii : To prove the reciprocity theorem by interchanging the positions of source and response

Let us interchange the positions of source and response as shown in Fig. 3. Let us assume node voltages 

as shown in Fig. 3. Now the response, V
x
 = V

a
. With reference to Fig. 3, the node basis matrix equation is,
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On comparing equations (1) and (2), we can say that the ∆’ remains the same.

∴  ∆’ = 0.9575
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Here, the response V
x
 remains the same after interchanging the positions of source and response. 

Hence, the reciprocity theorem is proved.

EXAMPLE 2.63

In the circuit of Fig. 1, compute .Ix  Demonstrate the 

reciprocity theorem by interchanging the positions of the source 

and .Ix

SOLUTION

Case i : To solve Ix  in the given circuit 

Let us assume three mesh currents ,I I and I1 2 3  as 

shown in Fig. 2. Now, the response, .I Ix 3=   

With reference to Fig. 2, the mesh basis matrix equation is,

( )

( )

j

j

j

j j

j

j

j

I

I

I

8 4

4

0

4

8 4 8

8

0

8

3 8

50 30

0

0

o
1

2

3

++

−

−

+ −

− −

− −

−

=

R

T

S
S
SS

R

T

S
S
SS

R

T

S
S
S
S

V

X

W
W
WW

V

X

W
W
WW

V

X

W
W
W
W

Here, 50∠30o  =  50 cos30o + j50sin30o  =  43.3013 + j25 V

.j

j

j

j

j

j

j

I

I

I

j8 4

4

0

4

8 4

8

0

8

3 8

43 3013 25

0

0

1

2

3

+

−

−

−

−

=

+
R

T

S
S
SS

R

T

S
S
SS

R

T

S
S
SS

V

X

W
W
WW

V

X

W
W
WW

V

X

W
W
WW     .....(1)

( ) ( ) ( ) ( ) ( ) ( )j

j

j

j

j

j

j

j j j j j j j

j j

j

8 4

4

0

4

8 4

8

0

8

3 8

8 4 8 4 3 8 8 4 4 3 8 0 0

752 384 48 128

800 512

2
# # # #

∆ =

+

−

−

−

−

= + − − − − − − − − +

= − + −

= −

7 7A A

V
x

2�

4� 5�

10� 1� 2�

12A

V
a

V
b

V
c

Fig. 3.

+

E

Fig. 1.

+

-

+

-

Ix

j4W

5
0
Ð
3
0
o
V

- Wj8 3W

8W 8W

~

Fig. 2.

+

-

+

-

Ix

j4W

5
0
Ð
3
0
o
V

- Wj8 3W

I2 I3I1

8W 8W

~



Chapter 2 - Network Reduction and Theorems for AC and DC Circuits                             2. 135
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Case ii : To demonstrate the reciprocity theorem by interchanging the positions of source and response

Let us interchange the position of source and response as shown in Fig. 3. Let us assume mesh currents 

as shown in Fig. 3. 

Now, the response, .I Ix a=   

With reference to Fig. 3, the mesh basis matrix equation is,
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On comparing equations (1) and (2), we can say that the value of ∆ remains the same in both the cases.

∴  ∆ = 800 − j512
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It is observed that the response remains the same after interchanging the positions of source and 

response, which demonstrates the validity of the reciprocity theorem.

EXAMPLE 2.64

In the circuit of Fig. 1, compute .Vx  Demonstrate 

the reciprocity theorem by interchanging the positions 

of the source and response.

SOLUTION

Case i : To solve Vx  in the given circuit 

Let us assume two node voltages V and V1 2  as shown in Fig. 2. Now, the response, .V Vx 2=

Fig. 3.
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With reference to Fig. 2, the node basis matrix equation is,
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Case ii : To demonstrate the reciprocity theorem by interchanging the positions of source and response

Let us interchange the positions of source and response 

as shown in Fig. 3. Let us assume node voltages V and Va b  as 

shown in Fig. 3. 

Now, the response, V Vx a=

With reference to Fig. 3, the node basis matrix equation is,
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On comparing equations (1) and (2), we can say that the value of D’ remains the same.

∴  D’  =  –0.06597 – j0.1123
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It is observed that the response remains the same after interchanging the positions of source and 

response, which demonstrates the validity of the reciprocity theorem.
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2.6.7    Millman’s Theorem

Millman’s theorem will be useful to combine a number of voltage sources in parallel into 

a single equivalent source.

Millman’s theorem states that if n number of voltage sources with internal impedance are in parallel 

then they can be combined to give a single voltage source with an equivalent emf and internal impedance. 

Consider n number of parallel connected voltage sources with internal impedance in series 

with an ideal source as shown in Fig. 2.67. Now by Millman’s theorem, the voltage sources in 

parallel can be converted into a single source as shown in Fig. 2.68.

Here,  , , ...E E E E Emf of voltage sources in paralleln1 2 3 =

           , , ...Z Z Z Z impedance ofInternal voltage sources.n1 2 3 =

Let, Eeq  = Emf of equivalent voltage source

 Zeq  = Internal impedance of equivalent voltage source.

Now, by Millman’s theorem,
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1
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=

+ + + +      ..... (2.99)

Since the admittance, ,Y
Z

1
=  equations (2.98) and (2.99) can be written in terms of 

admittance as shown below:

...
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E Y E Y E Y E Y
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1 1 2 2 3 3
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+ + + +

  ..... (2.100)

...Y Y Y Y Yeq n1 2 3= + + + +    ..... (2.101)
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3

= = = =

In case of dc sources with internal resistance, the impedance will become resistance and 

admittance will become conductance. Hence, equations (2.98) to (2.101) can be expressed as shown 

ahead for parallel connected dc sources.
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Fig 2.68 :Millman’s equivalent
voltage source.
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...G G G G Gneq 1 2 3= + + + +       ..... (2.105)

Proof :

The voltage sources in Fig. 2.69 can be converted into current sources as shown in Fig. 2.70.

The parallel current sources in Fig. 2.70 can be added to give a single equivalent current source .I eq  The parallel 

impedances in Fig. 2.70 can be combined to give a single equivalent impedance .Zeq

Here,
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Z
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Z
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Z Z Z Z
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1
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1 2 3 n

=
+ + + +       ..... (2.107)

Therefore, the parallel connected current sources in Fig. 2.70 can be represented as shown in Fig. 2.71.
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Again, by source transformation technique, the current source I eq  in parallel with Zeq  can be converted into 

a voltage source in series with Zeq  as shown in Fig. 2.72. Here the voltage source in series with Zeq  is the Millman’s 

equivalent source of the parallel connected voltage sources of Fig. 2.67. 

Here,

...
Z

Z Z Z Z
1 1 1 1

1
eq

1 2 3 n

=
+ + + +

      ..... (2.108)

E I Zeq eq eq=        ..... (2.109)

On substituting for I eq  from equation (2.106), we get,
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EXAMPLE 2.65

In the circuit of Fig. 1, use Millman’s theorem to find current through 

the 4 Ω resistance.

SOLUTION

The given circuit can be redrawn as shown in Fig. 2. In the circuit of 

Fig. 2 each voltage source has a series resistance which can be considered 

as internal resistance of the source. Hence, the parallel connected voltage 

sources with internal resistance can be converted into a single equivalent 

source using Millman’s theorem.

Let, E
eq

 = Equivalent emf of parallel connected sources

 R
eq

 = Equivalent internal resistance.

Now, by Millman’s theorem,
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The circuit of Fig. 2 can be redrawn as shown in Fig. 3. Let, I be the current through 

4 Ω resistance. With reference to Fig. 3, by Ohm’s law we can write,
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EXAMPLE 2.66

In the circuit of Fig. 1, determine V
0
 using Millman’s theorem.

SOLUTION

In the given circuit the parallel branches with 8 Ω and

4 Ω resistances can be assumed to have a zero value voltage source 

as shown in Fig. 2. In the circuit of Fig. 2, each source has a series 

resistance, which can be considered as internal resistance of the 

source. Therefore, the parallel connected voltage sources with 

internal resistance can be converted into a single equivalent source 

using Millman’s theorem.

Let, E
eq

 = Equivalent emf of parallel connected source

 R
eq

 = Equivalent internal resistance.

Now, by Millman’s theorem,

.
1.6R

R R R

1 1 1

1

4

1

8

1

4

1

1

0 625

1
eq

1 2 3

Ω=

+ +

=

+ +

= =

1.6 4E
R

E

R

E

R

E
R V

4

10

8

0

4

0
eq

1

1

2

2

3

3
eq #= + + = + + =d dn n

The circuit of Fig. 2, can be redrawn as shown in Fig. 3. With reference to 

Fig. 3, by voltage division rule, we can write,

. .
4 2.5V E V

5 1 6 1 4

5

8

5
0 eq # #=

+ +

= =

_ i

EXAMPLE 2.67

In the circuit of Fig. 1, apply Millman’s theorem to find Thevenin’s 

equivalent at A-B. Hence, find ZL  for maximum power transfer.

SOLUTION

Let us remove ZL  and redraw the circuit of Fig. 1 as shown in 

Fig. 2. In the circuit of Fig. 2, each voltage source has a series impedance 

which can be considered as internal impedance of the source.

Therefore, the parallel connected voltage sources with internal impedance can be converted into a 

single equivalent source using Millman’s theorem.

Let, Eeq  = Equivalent emf of parallel connected sources

 Zeq  = Equivalent internal impedance.
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Now by Millman’s theorem,

5.6 0.8

Z

Z Z j j

j j j

1 1
1

4 4
1

2 6
1

1

4 4 2 6
1

eq

1 2

1 1
Ω

=

+

=

+
+

−

= + + − = −
-

- -_ _i i: D

. .E
Z

E

Z

E
Z

j j
j

4 4

20 0

2 6

12 90
5 6 0 8eq

1

1

2

2
eq

o o

#
+ +

= + =

+

+

−

−f d _p n i

 

. . . . . .
j j

j
j j j

4 4

20

2 6

12
5 6 0 8 0 7 1 9 5 6 0 8

o

# #=

+

+

−

− = − −

2.4 11.2 11.4543 77.9j V+= − = −

f _ _ _p i i i

Now, the parallel connected sources in Fig. 2 can be represented as shown in Fig. 3 by Millman’s theorem.

;E V Z ZHere, eq th eq th= =

2.4 11.2 11.4543 77.9V j V Vth
o

` += − = −

    5.6 0.8Z jth Ω= −

The Thevenin’s equivalent of the given circuit at terminals A-B is shown in Fig. 4. Let us connect the 

load impedance ZL  at terminals A-B of Thevenin’s equivalent as shown in Fig. 5. Now, by maximum power 

transfer theorem, for maximum power transfer to ZL, the value of ZL  should be conjugate of .Zth

. . 5.6 0.8Z Z j j5 6 0 8L th
* *

` Ω= = − = +_ i

2.7    Summary of Important Concepts

1. Resistances in series can be replaced with an equivalent resistance whose value is given by  

  the sum of individual resistances.

2. When n number of identical resistances of value R are connected in series, they can  

  be replaced with a single equivalent resistance of value nR.

3. Voltage division rule: When a voltage V exists across a series combination of two 

  resistances R
1
 and R

2
, the voltages V

1
 across R

1
 and V

2
 across R

2
 are given by,

  ;V V
R R

R
V V

R R

R
1

1 2

1
2

1 2

2
# #=

+
=

+

 Similarly, voltages in two impedances Z and Z1 2  in series are,

  ;V V
Z Z

Z
V V

Z Z

Z
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2

1
2

2

2

1 1

# #=

+

=

+
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+

_

A

B

Z
eq

E
eq

+

_

A

B

11.4543 77.9
o
VÐ-

5.6 j0.8- W

Fig 3.

5.6 j0.8- W

11.4543 77.9
o
VÐ-

Z
th

E
th

+

_

A

B

Z
th

V
th

Z
L

Fig 5.



2. 142 Circuit Theory

4. Resistances in parallel can be replaced with an equivalent resistance whose value is given  

  by the inverse of sum of the inverse of individual resistances.

5. When n number of identical resistances of value R are connected in series, they can  

  be replaced with a single equivalent resistance of value R/n.

6. Current division rule : When a total current I flows through a parallel combination of 

  two resistances R
1
 and R

2
, the currents I

1
 through R

1
 and I

2
 through R

2
 are given by,

  ;
R R

R
I I

R R

R
I I1

1 2

2
2

1 2

1
# #

+
=

+
=

 Similarly, currents in two impedances Z and Z1 2  in parallel are,

  
;I I

Z Z

Z
I I

Z Z

Z
1

2

2
2

2

1

1 1

# #=

+

=

+

7. When three resistances R
12

, R
23

 and R
31

 are in delta-connection with respect to terminals

  1, 2 and 3, their equivalent star-connected resistances R
1
, R

2
 and R

3
 with respect to 

  the same terminals are given by,

  ; ;R
R R R

R R
R

R R R

R R
R

R R R

R R

12 23 31

12 31
2

12 23 31

12 23
3

12 23 31

23 31
1 =

+ +
=

+ +
=

+ +

 Similarly, the star equivalent of delta-connected impedances are given by,

  
; ;Z

Z Z Z

Z Z
Z

Z Z Z

Z Z
Z

Z Z Z

Z Z
1

23 31

12
2

23 31

12
3

23 31

2331

12 12

23

12

31
=

+ +

=

+ +

=

+ +

8. When three equal resistances of value R are in delta-connection, their equivalent  

  star-connected resistances will consist of three equal resistances of value R/3.

9. When three resistances R
1
, R

2
, and R

3
 are in star-connection with respect to terminals 

  1, 2 and 3, their equivalent delta-connected resistances R
12

, R
23

 and R
31

 with respect 

  to same terminals are given by, 

  ; ;R R R
R

R R
R R R

R

R R
R R R

R

R R
12 2

3

2
23 3

1

3
31 1

2

1
1

1
2

2
3

3
= + + = + + = + +

 Similarly, the delta equivalent of star-connected impedances are given by,

  ; ;Z Z Z
Z

Z Z
Z Z Z

Z

Z Z
Z Z Z

Z

Z Z
12 1 2

3

1 2
23 2 3

1

2 3
31 3 1

2

3 1
= + + = + + = + +

10. When three equal resistances of value R are in star-connection, their equivalent  

  delta-connected resistances will consist of three equal reisistances of value 3R.

11. A voltage source E with a resistance R
S
 in series can be converted into current source I

S
, 

  (where I
S 
= E/R

S
) with the resistance R

S
 in parallel.

12. A current source I
S
 with a resistance R

S
 in parallel can be converted into voltage source E, 

  (where E  =  I
S
 R

S
) with the resistance R

S
 in series.

13. Sources are connected in series for higher voltage ratings and connected in parallel for  

  higher current ratings.

14. In group-1 parameters (resistance / inductance / impedance / reactance), the series  

  combination of  parameters can be replaced with an equivalent parameter whose value is  

  given by the sum of individual parameters.
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15. In group-1 parameters (resistance / inductance / impedance / reactance), the parallel  

  combination of  parameters can be replaced with an equivalent parameter whose value is  

  given by the inverse of  sum of the inverse of individual parameters.

16. In group-2 parameters (conductance / capacitance / admittance / susceptance), the series  

  combination of parameters can be replaced by with equavalent parameter whose value is  

  given by the inverse of sum of the inverse of individual parameters.

17. In group-2 parameters (conductance / capacitance / admittance / susceptance), the parallel  

  combination of parameters can be replaced with an equivalent parameter whose value is  

  given by the sum of individual parameters.

18. Thevenin’s theorem states that a circuit with two terminals can be replaced with an equivalent  

  circuit consisting of a voltage source in series with a resitance (or impedance).

19. Thevenin’s voltage is given by the voltage across the two open terminals of a circuit.

20. Thevenin’s impedance is given by looking back impedance at the two open terminals of a  

  network.

21. The looking back impedance is the impedance measured at the two open terminals of a  

  circuit after replacing all the sources by zero value sources.

22. Norton’s theorem states that a circuit with two terminals can be replaced with an equivalent  

  circuit consisting of a current source in parallel with a resistance (or impedance).

23. Norton’s impedance is given by looking back impedance at the two open terminals of a  

  network.

24. Thevenin’s equivalent is the voltage source model and Norton’s equivalent is the current  

  source model of a circuit.

25. Thevenin’s and Norton’s impedances are the same and given by the ratio of Thevenin’s  

  voltage and Norton’s current.

26. The superposition theorem states that the response in a circuit with multiple sources is  

  given by the algebraic sum of responses due to individual sources acting alone.

27. The superposition theorem is also referred to as the principle of superposition.

28. A circuit element is said to be linear, if the voltage-current relationship is linear.

29. The principle of superposition is a combination of additivity property and homogeneity  

  property.

30. The property of additivity says that the response in a circuit due to a number of sources is  

  given by the sum of the responses due to individual sources acting alone.

31. The property of homogeneity says that if all the sources are mutiplied by a constant then  

  the respones are also multiplied by the same constant.

32. While calculating the response due to one source, all other sources are made inactive or replaced  

  by zero value sources.

33. A zero value source is represented by its internal impedance. 

34. For an ideal voltage source, the internal impedance is zero and for an ideal current source, the  

  internal impedance is infinite.
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35. While calculating the response due to one source, all other ideal voltage sources are replaced  

  with a short circuit and all other ideal current sources are replaced with an open circuit.

36. The maximum power transfer to load is possible only if the source and load has matched  

  impedance.

37. In a dc source connected to resistive load, the maximum power transfer theorem states that  

  maximum power is transferred from the source to load, when the load resistance is equal to  

  the source resistance.

38. In an ac source connected to reactive load, where resistance and reactance are independently  

  variable, the maximum power transfer theorem states that maximum power is transferred  

  from the source to load, when the load impedance is equal to the complex conjugate of  

  source impedance.

39. In general, the maximum power transfer theorem states that maximum power is  

  transferred to a load impedance if the absolute value of the load impedance is equal to the  

  absolute value of the looking back impedance of the circuit from the terminals  

  of the load.

40. The reciprocity theorem states that in a linear, bilateral, single source circuit, the ratio of  

  excitation to response is constant when the positions of excitation and response are  

  interchanged.

41. The networks which satisfy the reciprocity theorem are called reciprocal networks.

42. The reciprocity theorem will be satisfied only by circuits or networks which do not have  

  dependent sources.

2.8    Short-answer Questions

Q2.1 Determine the currents I
1
 and I

2
 in the circuit shown in Fig. Q2.1.

Solution

 By current division rule,

  
10 6I A

8 12

12
1 #=

+
=

  
10I A

8 12

8
42 #=

+
=

Q2.2 Determine the voltages V
1
 and V

2
 in the circuit shown in Fig. Q2.2.

Solution

 By voltage division rule,

  

20 8V V
4 6

4
1 #=

+
=

  20 12V V
4 6

6
2 #=

+
=

Q2.3 Determine the resistance across A-B in the circuit shown in  

Fig. Q2.3.1.

 Solution

The given network can be redrawn as shown in Fig. Q2.3.2.

8�

Fig. Q2.1.

12�10A

I
1

I
2

+ E + E
V
1

V
2

4� 6�

20V

Fig. Q2.2.
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8
�

4
�

2
�

6
�

3�

A B

Fig. Q2.3.1.

(AU Dec’15, ‘16, 2 Marks)
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10�

10�

B

Fig. Q2.4.2.

A

5�

10�

With reference to Fig. Q2.3.2, we get,

1.35R

6

1

8 6

1

2 4

1

3

1

1
48AB Ω=

+
+

+
+

+

=

Q2.4 Determine the resistance across A-B in the circuit shown 

 in Fig. Q2.4.1.

 Solution

The given network can be redrawn as shown in Fig. Q2.4.2

With reference to Fig. Q2.4.4, we get,

 R
AB

 = 
2

10  = 5 W

Q2.5     The equivalent resistance of four resistors joined in parallel is 30 W. The current flowing 

     through them are 0.5, 0.4, 0.6 and 0.1 A. Find the value of each resistor.

 Solution

Let R
1
, R

2
, R

3
 and R

4
 be the 

resistances in parallel.

Let, R
T
 = Equivalent resistance of 

parallel combination.

Given that, R
T
 = 30 W

With reference to Fig. Q2.5.2

I
T
 = 0.5 + 0.4 + 0.6 + 0.1 = 1.6 A

V = I
T
R

T
 = 1.6 × 30 = 48 V

Now, by Ohm’s law,
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Q2.6 Determine the resistance across A-B in the circuit shown 

 in Fig. Q2.6.1.

 Solution

The given network can be redrawn as shown in Fig. Q2.6.4.

With reference to Fig. Q2.6.4, we get,

 
.

.
1.0546ΩR

2 2 2308

2 2 2308
AB

#
=

+
=

Q2.7 Determine the resistance across A-B in the circuit shown in  

Fig. Q2.7.

 Solution

In the given network, 3.2 W and 4.27 W resistances are in parallel 

 and the parallel combination is in series with 1 W resistance.

∴ R
AB

 = 1
. .

. .

3 2 4 27

3 2 4 27#
+

+
=1 + 1.829 = 2.829 W

Q2.8   Determine the value of R in the circuit shown in Fig Q2.8.1.

 Solution

          The voltage and current in the various resistances are shown 

in Fig. 2.8.1

  With reference to Fig. Q2.8.2, by KVL,

 V V16
8

=

 V
8
 = V

R
 + 4

  On equating equations (1) and (2), we get,

 V
R
 + 4 = 16   .....(1)

 V
R
 = 16 - 4 = 12 V  .....(2)

  With reference to Fig. Q2.8.2, by Ohm’s law,

 1I
V

A
4 4

4
4

4
= = =

I

V

I

V
12R

1

12

R

R

4

R
` Ω= = = =

(AU June’14, 2 Marks)

⇐⇐

⇓

(AU Dec’15, 2 Marks)

(AU May’17, 2 Marks)

1.2 �2
� 2

�

2 �

1 �

A

B

Fig. Q2.6.1.

2 + 1.2

= 3.2 �

2
� 2

�

1 �

A

B

Fig. Q2.6.2.

2 3 2

2 3 2

12308

´

+

=

.

.

. W

2
W

1 W

A

B

Fig. Q2.6.3.

1.2308 + 1

= 2.2308 �

2
�

A

B

Fig. Q2.6.4.

R

16V

+

E

4�

Fig. Q2.8.1.

8� 4V

+

E

R

16V

+

E

4�

Fig. Q2.8.2.

8�

+

+

E

E

E

+

V
8 V = 4

4
V

V
R

I
4

I
R

1�

B

Fig. Q2.7.

A

3.2�

4.27�



Chapter 2 - Network Reduction and Theorems for AC and DC Circuits                             2. 147

Q2.9 In the circuit shown in Fig. Q2.9,  find the total 

resistance across A-B. 

 Solution

 In Fig. Q2.9, the parallel combination of six 

numbers of 5 Ω resistances is equivalent to a 

single resistance of .
6

5 W

  2 2.833R
6

5
3AB` Ω= + =

Q2.10 Seven bulbs each rated at 75 W, 120 V are 

connected in parallel. Calculate the power and 

current consumed by them.  

 Solution

 The parallel connection of seven bulbs is equivalent 

to seven resistances in parallel as shown 

in Fig Q2.10.

 Now, the total power is given by sum of power consumed by each bulb/resistance.

  \  Total power = 7 ´ 75 = 525 W 

 We know that, in purely resistive loads, P = VI

, 4.375Total current I
V
P A

120
525

` = = =

Q2.11 In the circuit shown in Fig. Q2.11, the power in  

 resistance R
A
 is 9.6 kW, current through R

B
 is 60 A and 

 the value of resistance R
C
 is 4.8 W. Determine the value 

 of R
A
, R

B
, total current, total power and equivalent resistance.

Solution

Given that, P
A
 = 9.6 kW = 9.6 × 103 W

Here, P
A
 = V × I

A

9.6 10
40I

V

P
A

240

3

A

A
`

#
= = =

By Ohm’s law,

.
50I

R

V A
4 8

240
C

C

= = =

By KCL,

Total Current, I
T
 = I

A
 + I

B
 + I

C
 = 40 + 60 + 50 = 150 A

∴  Total Power, P
T
 = V × I

T
 = 240 × 150 = 36000 W = 36 kW

,R
I
V 1.6

150
240Equivalent resistance eq

T

` Ω= = =

(AU June’16, 8 Marks)
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Q2.12 Calculate the voltage across the terminals A-B for the circuit 

shown in Fig. Q2.12. 

 Solution

 By voltage division rule,

  
100

50 10 4 20

20 4
28.5714V VAB #=

+ + +

+
=

Q2.13 Determine the resistance of each wire when the resistance of two wires is 25 W when connected 

in series and 6 W when connected in parallel.

 Solution

Let R
1
 and R

2
 be the resistance of two wires.

Equivalent resistance in series = R
1
 + R

2
 = 25 .....(1)

Equivalent resistance in parallel = 
R R

R R
6

1 2

1 2

+
=  .....(2)

From equation (1), we get,

R
2
 = 25 - R

1    
.....(3)

On substituting for R
2
 from equation (3) in equation (1), we get,

25

(25 )
6

R R

R R

1 1

1 1

+ −

−

=     ⇒    25 R 150R
2

1 1
− =      ⇒    R 150R25 0

2

1 1
− + =

( ) ( 25) 4 150
15,10R

2

25

2
25 5

2

1`
! # !

=

− − − −

= =

If, R
1
 = 15 W, then R

2
 = 25 - 15 = 10 W

If, R
1
 = 10 W, then R

2
 = 25 - 10 = 15 W

∴  R
1
 = 15 W,

     R
2
 = 10 W

Q2.14 A star-connected network consists of three resistances 3 W, 6 W and 10 W . Convert the 

star-connected network into an equivalent delta-connected network.

Solution

 Let  R
1
,  R

2
 and R

3
 be the 

resistances in star connection 

as shown in Fig. Q2.14.1 and R
12

 

R
23 

and R
31

 be the resistances in 

equivalent delta connection as 

shown in Fig. Q2.14.2.

  
10.8R R R

R

R R
3 6

10

3 6
12 1 2

3

1 2 #
Ω= + + = + + =
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R R R

R

R R
6 10

3

6 10
3623 2 3

1

2 3 #
Ω= + + = + + =

  
1R R R

R

R R
10 3

6

10 3
831 3 1

2

3 1 #
Ω= + + = + + =

Q2.15 A delta-connected network consists of three resistances 5 W, 6 W and 9 W . Convert the 

delta-connected network into an equivalent star-connected network.

Solution

 Let R
12

, R
23

 and R
31

 be the 

resistances in delta connection 

as shown in Fig. Q2.15.1 

and R
1
, R

2
 and R

3
 be the 

resistances in star connection 

as shown in Fig. Q2.15.2.

  
.R

R R R

R R

5 6 9

5 9
2 251

12 23 31

12 31 #
Ω=

+ +
=

+ +
=

  
.5R

R R R

R R

5 6 9

5 6
12

12 23 31

12 23 #
Ω=

+ +
=

+ +
=

  2.R
R R R

R R

5 6 9

6 9
73

12 23 31

23 31 #
Ω=

+ +
=

+ +
=

Q2.16 What will be the equivalent inductance across A-B in the  

network shown in Fig. Q2.16.1.

Solution

 First, the parallel combination of 0.4 H, 0.5 H and 

 0.2 H has been reduced to a single equivalent as 

 shown in Fig. Q2.16.2.

 In the network of Fig. Q2.16.2, all the inductances 

are in series. 

 Hence, the equivalent inductance L
AB 

across A-B is given by,

  L
AB

 = 0.1 + 0.1053 + 0.6 = 0.8053 H

Q2.17 What will be the equivalent capacitance across A-B in the network 

shown in Fig. Q2.17.

Solution

 In the given network 2  µF and 8  µF capacitances are in 

parallel and the parallel combination is in series with 10 µF 

capacitance. Hence, the equivalent capacitance C
AB 

across 

A-B is given by,

  
5C F

2 8 10

2 8 10
AB

#
µ=

+ +

+
=

^
^

h
h

⇓

R = 2.25
1

W

R = 1.5
2

W

R
=

2.7

3

W

11

2

3

23

Fig. Q2.15.2.

1

2

3

23

1

Fig. Q2.15.1.

R = 6
23

W

R = 9
31

W R = 5
12

W

Þ

A

B

0.1H
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Q2.18 Determine the currents I and I1 2  in the circuit shown in 

Fig. Q2.18.

 Solution

 By current division rule,

 
10 0 8 14 16.1245 60.3I

j j

j
j A A

2 4 1 5

1 5o o
1 #+ +=

+ + −

−
= − = −

 
10 0 2 14 14.1421 81.9I

j j

j
j A A

2 4 1 5

2 4o o
2 #+ +=

+ + −

+
= + =

Q2.19 Determine the voltages V and V1 2  in the circuit shown in Fig. Q2.19.

 Solution

 By voltage division rule,

  
10 0 2 14 14.1421 81.9V

j j

j
j V V

2 4 1 5

2 4o o
1 #+ +=

+ + −

+
= + =

                  
10 0 8 14 16.1245 60.3V

j j

j
j V V

2 4 1 5

1 5o o
2 #+ +=

+ + −

−
= − = −

Q2.20 The resistance of each branch of a star-connected circuit is 5 W. What will be the branch 

resistance of equivalent delta-connected circuit?

 When three equal resistances are in star, equivalent delta resistance of each branch will 

 be three times the star impedance.

 Given that,  R
star

 = 5 W

  ∴ R
delta

 = 3 × R
star

 = 3 × 5 = 15 W

Q2.21 The impedance of each branch of a delta-connected circuit is .Z3  What will be the branch 

impedance of equivalent star-connected circuit?

 Solution

 When three equal impedances are in delta, equivalent star impedance of each branch will 

 be 1/3 times the delta impedance.

 Given that,  Z Z3delta =

  Z Z Z
Z

3

1

3

1
3

3
star delta` # #= = =

(AU May’17, 2 Marks)
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Q2.22 Find the equivalent admittance at A-B in the network shown inFig Q2.22.

 Solution

 B-,Let Z Equivalent impedance at AAB =

 
,

(2 2) (1 2 3)

( ) ( )
.Now Z

j j j

j j j
j

2 2 1 2 3
2 0 4AB

#
Ω=

+ + + + −

+ + + −
= +

 

B- ,
.

Equivalent at A Y
Z j
1

2 0 4
1admittance AB

AB

` = =
+

0.4808 0.0962j M= −

Q2.23 Find the equivalent admittance and impedance at A-B in the network shown inFig Q2.23.

 Solution

 B-,Let Y Equivalent at AadmittanceAB =

 
,

( ) ( )

( ) ( )
0.Now Y

j j j

j j j
j

1 2 2 3

1 2 2 3
1 6667AB

#
M=

+ + − + +

+ − + +
= +

 

B- ,
.

Equivalent impedance at A Z
Y j
1

1 0 6667
1

AB
AB

` = =
+

0.6923 0.4615j Ω= −

 

Q2.24 State the superposition theorem.

 The superposition theorem states that the response in a linear circuit with multiple sources is given by 

 the algebraic sum of the responses due to individual sources acting alone.

Q2.25 What are the properties of additivity and homogeneity?

 The property of additivity says that the response in a circuit due to a number of sources is given 

by the sum of the response due to individual sources acting alone.

 The property of homogeneity says that if all the sources are multiplied by a constant, the response 

is also multiplied by the same constant.

Q2.26 Find the current through the ammeter shown in Fig. Q2.26.1 

by using the superposition theorem. 

Since the resistance of ammeter is not specified it can be  

 represented by a short circuit. The condition of the given circuit  

 when each source is acting separately is shown in  

 Figs Q2.26.2 and Q2.26.3. 

A

B

Fig. Q2.22.

1 + j�

2 j3E �2 + j2�
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B
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E +

E
A

I’
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+
-
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+
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 With reference to Figs Q2.26.2 and Q2.26.3, we can write,

  10 , 2.5due to source IV A
4
10Response = =l

  5 ,
.

2due to source IV A
2 5
5Response = − = −ll

  2.5 ( 2) 0.5Total r I I I Aesponse, = + = + − =l ll

Q2.27  Find the voltage V
L
 in the circuit shown in Fig. Q2.27.1 using the 

 principle of superposition.

  The condition of the circuit when each source is acting 

 separately is shown in Figs Q2.27.2 and Q2.27.3.

  With reference to Figs Q2.27.2 and Q2.27.3, we can write, 

      12 ; 8 ; 12 8 20V V V V VV V VL L L L L`= = = + = + =l ll l ll

Q2.28  In the circuit shown in Fig. Q2.28, the power in resistance R is  

 9 W when V
1
 is acting alone and 4W when V

2
 is acting alone. What 

 is the power in R when V
1
 and V

2
 are acting together ?

  Current through R when V
1
 is acting, 3I A

1

9
= =l  

  Current through R when V
2
 is acting, 2I A

1

4
= =ll

  Total current when V
1
 and V

2
 are acting, I = I’ + I’’ = 3 + 2 = 5 A

  Power in R when V
1
 and V

2
 are acting = I2 R = 5

2
 × 1 = 25 W  

Q2.29  State Thevenin’s theorem.

  Thevenin’s theorem states that a circuit with two terminals can be replaced with an equivalent 

 circuit consisting of a voltage source in series with a resistance (or impedance).

P I R I
R

P2
`= =

4�

+
E

+

E
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24V
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Q2.30 State the applications of thevenin’s theorem.

 1.   Thevenin’s theorem can be used to represent a complicated part of a circuit by an equivalent   

 voltage source by performing two simple measurements namely., open circuit voltage  

 and short circuit current.

 2.   Thevenin’s theorem can be used to estimate the matched resistance or impedance for  

 implementing maximum power transfer condition between any two parts of a circuit.

Q2.31  State Norton’s theorem.

  Norton’s theorem states that a circuit with two terminals can be replaced  with an equivalent 

 circuit consisting of a current source in parallel with a resistance (or impedance).

Q2.32  Find Thevenin’s voltage across terminals A and B in the circuit shown       

 in Fig. Q2.32.

  Thevenin’s voltage, V
th

 = 5 + 10 = 15 V

  Note : Voltage across 5 Ω is 5 V .

Q2.33. Find the value of I
n
 for the circuit shown in Fig. Q2.33.1

  Let us remove the resistance R
L
 and mark the resulting open

  terminals as A and B as shown in Fig. Q2.33.2.

 The terminals A and B are shorted as shown in Fig. Q2.33.3.  

  The 360 W resistance is short-circuited and so no current will flow

   through it. Hence, the circuit of Fig. Q2.33.3 is redrawn as shown in  

  Fig. Q2.33.4.

With reference to Fig. Q2.33.4, by Ohm’s law, we can write,

  0.1I A
20 100

12
n =

+
=

Q2.34 Find Norton’s equivalent of the circuit shown  

 in Fig. Q2.34.1.

 Norton’s current, I
n
 = 10 − 5 = 5 A 

 

(AU Dec’14, 2 Marks)

(AU Dec’15, 2 Marks)

20�

100�

12V

+

E

360� R
L

I
n

Fig. Q2.33.1.

2� 1� 5A10A5�

Fig. Q2.34.1.

10�

A

B

5V

5A

5�

10V

V
th

Fig. Q2.32.

A

B

+
E

+
E

+

E

20�

100�

12V

+

E

360�

A

B

Fig. Q2.33.2.

SC

12V

20�

100�
+

E

360�

A

B

I
n

B

Fig. Q2.33.3.

12V

SC

20�

100�+

E A

B

I
n

Fig. Q2.33.4.



2. 154 Circuit Theory

   Norton’s resistance,

.R

5

1

10

1

2

1

1

1

1
0 5556n Ω=

+ + +

=

Q2.35 Determine Thevenin’s equivalent of the circuit shown  

in Fig. Q2.35.1.

 Thevenin’s voltage is the voltage across 20 Ω resistance.

 By voltage division rule,

 
200 160' , V VThevenin s voltage

20 5
20

th #=
+

=

 To find Thevenin’s resistance, the 200V source is replaced with a 

 short circuit as shown in Fig. Q2.35.2.

 

 With reference to Fig. Q2.35.2, we can write,

 10 14Thevenin's resistance, R
5 20
5 20

th
#

Ω=
+

+ =

Q2.36 In the circuit shown in Fig. Q2.36.1, using  

 Thevenin’s theorem, determine the voltage across  

 90 W resistance after the switch is closed.

 Since the load is balanced when the switch 

 is open, the voltage across 90 Ω is 100 V. This is 

 also Thevenin’s voltage at terminals A-B.

 To find Thevenin’s resistance, the voltage sources  

 are replaced with a short circuit. When the voltage  

 sources are shorted, the three 90 Ω resistances 

 are in parallel.

 30' ,Thevenin s R
3
90resistance th` Ω= =

 The Thevenin’s equivalent at A-B is shown in Fig. Q2.36.2. With reference 

 to Fig. Q2.36.2 by voltage division rule, 

 100 7070 V VVoltage across
70 30
70resistance, L #Ω =
+

=

5A 5.5556�
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B
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Q2.37 Find Thevenin’s equivalent of the circuit shown in Fig. Q.2.37.1.

 To find Thevenin’s voltage, the current source is converted 

 into a voltage source as shown in Fig. Q2.37.2.

 8 4, VBy voltage division rule V
4 4
4

1 #=
+

=

 By KVL, V
th

 = V
1
 + 6 = 4 + 6 = 10 V

 To find Thevenin’s resistance, the voltage source is replaced with  

 a short circuit and the current source is opened as shown in  

 Fig. Q2.37.3.

   
R

2

4
3 5th Ω= + =

 

  Thevenin’s equivalent is shown in Fig. Q2.37.4.

Q2.38 Find V th  at terminals A-B in the circuit shown in Fig. Q2.38.

 In the given circuit the voltage across series combination of 

 4 Ω and j3 Ω elements is 60∠0
o

 V. Hence, by voltage 

 division rule,

  60 0 21.6 28.8 36 53.1V
j

j
j V V

4 3

3o o
th #+ +=

+
= + =

Q2.39 State maximum power transfer theorem.

 In purely resistive circuits, maximum power transfer theorem states that maximum power is 

 transferred from source to load when load resistance is equal to source resistance.

 In general, the maximum power transfer theorem states that maximum power is transferred  

 to a load impedance if the absolute value of the load impedance is equal to the absolute value  

 of the looking back impedance of the circuit from the terminals of the load. 

Q2.40  Determine the maximum power transfer to the load where the load is connected to a network of 

 the terminals for R
th
 = 10 W and V

th
 = 40 V 

Given that R
th
 = 10 W and V

th
 = 40 V

For maximum power transform,

Load resistance, R
L
 = R

th
 = 10 W

40,
R
V

WMaximumpower P
4 4 10

40th
2 2

max
L #

= = =

3�
4�8V
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Q2.41 The VI characteristics of a network are shown in 

 Fig. Q2.41. Determine the maximum power  

 that can be supplied by the network to a  

 resistance connected across A-B.

 When V = 0, I = −5 A

 The condition V = 0 is equivalent to short circuiting terminals A−B and the current flowing through the  

 short circuit is Norton’s current.

∴ Norton’s current, I
n
 = −I = − (−5) = 5 A 

 When I = 0, V = 20 V

 The condition I = 0 is equivalent to open terminals A-B and the voltage across the open terminals is   

 Thevenin’s voltage.

∴  Thevenin’s voltage, V
th

 = 20 V

 4' R
I

V
Thevenin s

5
20resistance, th

n

th
Ω= = =

 The resistance, R to be connected for maximum power transfer across terminals A-B is R
th.
 .

 
25,

R
V

R

V
WMaximumpower transferred toR P

4 4 4 4
20th

2

th

th
2 2

max
#

= = = =

Q2.42 Determine the value of R in the circuit shown in Fig. Q2.42.1 for  

 maximum power transfer.

 The value of R for maximum power transfer is given by the looking back

  resistance (or Thevenin’s resistance) from the terminals of R, which  

 is determined as shown below: 

3 6
4R R k

3 6

2

4
th

#
Ω= =
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+ =
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Q2.43 Determine the value of R in the circuit shown in Fig. Q2.43.1  

 for maximum power transfer.

 The value of R for maximum power transfer is given by the 

 looking back resistance (or Thevenins’s resistance) from the  

 terminals of R, which is determined as shown below:

4 8R R
5 20

5 20
th

#
Ω= =

+
+ =

Q2.44 Find the value of R for maximum power transfer in the circuit shown  

 in Fig. Q2.44.

 For maximum power transfer, the value of R should be equal to the 

 absolute value of the looking back impedance from the terminals of R.

 Here,  E
m

 sinωt = E
m

 sin 100t   ;   ∴  ω = 100 rad/s

 ( . ) 8 ( 0.06)R 8 0 06 100 102 2 2 2
` # #ω Ω= + = + =

Q2.45 State the reciprocity theorem.

 The reciprocity theorem states that in a linear, bilateral, single source circuit, the ratio of excitation to 

 the response is constant, when the positions of excitation and response are interchanged.

Q2.46 Two conditions of a passive, linear network are shown in Figs Q2.46.1 and Q2.46.2. Using the  

 superposition and the reciprocity theorem, find I
x
.

 

 Let us replace the 10 V source in port-1 with a short circuit as shown 

 in Fig. Q2.46.3.

 On comparing Figs Q2.46.1 and Q2.46.3 using the reciprocity  

 theorem we can write,
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 Let us replace the 10 V source in port-2 with a short circuit as 

 shown in Fig. Q2.46.4. On comparing Figs Q2.46.1 and Q2.46.4,  

 using homogeneity property we can write,

I xm  = −4 × 2 = −8 A

 By the principle of superposition,

2 ( 8) 6I I I Ax x x= + = + − = −l ll

Q2.47 State Millman’s theorem.

 Millman’s theorem states that if n number of voltage sources with internal impedance are in 

parallel then they can be combined to give a single voltage source with an equivalent emf and 

internal impedance.

Q2.48 Write the expression for Millman’s equivalent source of n number of parallel connected voltage 

sources.

   ...E
Z

E

Z

E

Z

E

Z

E
Zeqeq

1

1

2

2

3

3

n

n
= + + + +f p

   
....

Z

Z Z Z Z

1 1 1 1
1

eq

1 2 n3

=

+ + + +  

   where, , , ...E E E
1 2 3

 = Emf of voltage sources in parallel.

               , , ...Z Z Z
1 2 3

  = Internal impedance of voltage sources.

Q2.49 In the circuit shown in Fig. Q2.49.1 find the current I using 

Millman’s theorem.

 The circuit can be redrawn as shown in Fig. Q2.49.2.

 Using Millman’s theorem, the parallel connected voltage sources 

can be converted into a single source as shown in Fig. Q2.49.3.

  

 

 R
eq

 = 

4

1

6

1

1

+

 = 2.4 W      ;    E
eq

 =  
4

8

6

9
+d n × 2.4 = 8.4 V 

  With reference to Fig. Q2.49.3,
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Q2.50 Find the current I
L
 in the circuit shown in Fig. Q2.50.1 

using Millman’s theorem.

 The circuit can be redrawn as shown in Fig. Q2.50.2 

and then the parallel connected voltage sources can be 

converted into a single source as shown in Fig. Q2.50.3.

 

  R
eq1

 = 

2

1

8

1

1

+

 = 1.6 W      ;    E
eq1

 = 
2

12

8

0
+d n × 1.6 = 9.6V

  R
eq2

 =  

2

1

3

1

1

+

= 1.2 W      ;    E
eq2

 =  
2

0

3

6
+d n× 1.2 = 2.4V

  With reference to fig Q2.50.3,

   I
L
 = 

0.8 . . .
. . 2

R R

E E
A

1 6 0 8 1 2
9 6 2 4

eq1 eq2

eq1 eq2

+ +

−

=
+ +

−
=  

2.9    Exercises

I.   Fill in the Blanks with Appropriate Words 

1. When n number of resistances of value R are connected in series, the equivalent resistance is 

given by ___________. 

2. When n number of resistances of value R are connected in parallel, the equivalent resistance is 

given by ___________.

3. When three equal resistances of value R are in star-connection, its equivalent delta-connection 

will have three equal resistances of value ___________.

4. When n number of capacitances of value C are connected in series, the equivalent capacitance 

is equal to ___________.

5. The equivalent admittance of three identical parallel-connected admittances of value Y is equal 

to ________.

6. The  ________  impedance is the looking back impedance from the open terminals of a network.

7. The  ________  equivalent is the voltage generator model of a network.

8. Norton’s equivalent is the  ________  generator model of a network.
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9. The principle of superposition is a combination of  ________  and  ________  property.

10. While finding response due to one source, all other sources are replaced with their  ________.

11. While finding response due to one source, all other ideal  ________  sources are replaced with 

a short circuit.

12. While finding response due to one source, all other ideal current sources are replaced with  ________. 

13. When load resistance and reactance are independently variable, maximum power transfer is 

achieved if load impedance is equal to  ________  impedance.

14. In purely resistive circuits  ________  is transferred to load when load resistance is equal to source 

resistance.

15. If a load impedance, R + jX with R alone variable is connected to a source with internal impedance 

R
s
 + jX

s
 then the condition for maximum power transfer is  ________ .

16. If a variable resistance R is connected to a source with impedance R
s
 + jX

s
 then the condition for 

maximum power transfer is  ________ .

17. The networks which satisfy the reciprocity theorem are called  ________  networks.

ANSWERS

1.  nR  6. Thevenin’s /Norton’s  11. voltage 16. R R Xs s
2 2

= +

2. 
n

R   7. Thevenin’s 12. open circuit  17. reciprocal

3. 3R   8. current 13. conjugate of source

4. 
n

C    9. additivity, homogeneity 14. maximum power

5. 3 Y  10. internal impedances 15. ( )R R X Xs s
22

= + +

II.   State Whether the Following Statements are True or False

1. When star-connected resistances are converted into a equivalent delta-connected resistances, 

the power consumed by the resistances remains the same.

2. Inductances connected in series can be replaced by an equivalent inductance whose value is 

given by the sum of individual inductances.

3. Capacitances connected in parallel can be replaced with an equivalent capacitance whose value 

is given by the inverse of sum of the inverse of individual capacitances.

4. Inductive susceptance is always negative and capacitive susceptance is always positive.

5. When the voltage requirement of the load is higher, the voltage sources should be connected in 

parallel.

6. Thevenin’s equivalent can be determined only for the linear part of a circuit.

7. A circuit with a non-linear resistance can be analysed using Thevenin’s theorem by replacing  

 the rest of the circuit with Thevenin’s equivalent.

8. Thevenin’s and Norton’s impedance are the same.

9. The superposition theorem can be extended to non-linear circuits by piecewise linear approximation.

10. The superposition theorem can be used to estimate power directly.

11. The superposition theorem is applicable to any network containing linear dependent sources.
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12. The superposition theorem is applicable to any network containing a time varying resistor.

13. In reactive circuits with variable reactance, the maximum power transfer is achieved at resonance.

14. A reactive circuit with fixed reactance will behave as a purely resistive circuit when the maximum  

 power transfer condition is satisfied.

15. The reciprocity theorem will be satisfied by a circuit with dependent sources.

16. The reciprocity theorem can be applied only to a circuit with a single source.

17. Ideal voltage sources in parallel cannot be converted into a single equivalent source using  

 Millman’s theorem.

ANSWERS

1. True  6. True  11. True 16. True  

2. True  7. True 12. False 17. True  

3. False  8. True 13. True   

4. True  9. True 14. False

5. False  10. False 15. False

III.  Choose the Right Answer for the Following Questions

 1. When n number of identical resistances of value R are connected in parallel, the equivalent 

  value of the parallel combination is,

  
) ) ) )a nR b

n
R c

n
R d

n
R2
2

 2. The star equivalent of three identical resistances in delta of value R will be three identical 

  resistances of value,

  ) ) 3 ) ) 3a R b R c R d R
3 3

2
2

 3. In the network shown in Fig. 3, if the value of all the resistances 

  are 1 W then what will be the equivalent resistance at A-B?

  a) 1 W 

  b) 0.5 W 

  c) 0.4 W

  d) 0.2 W

 4. In the network shown in Fig. 4, if the value of all the resistances are 

  2 W then the equivalent resistance at AC and BD respectively are,

  a) 0 W, 0.8 W 

  b) 0.8 W, 0 W  

  c) 0 W, 0.4 W 

  d) 0.8 W, 0.8 W

A B

Fig. 3.

A C

B

D Fig. 4.
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 5. The equivalent value of two inductances 3 H and 6 H when connected in series and in parallel 

  respectively are,

  a) 9 H, 3 H b) 9 H, 2 H c) 18 H, 2 H d) 2 H, 3 H

 6. In the network shown in Fig. 6, if the value of all the inductance is 2 H, 

  then what is the equivalent inductance at A-B?

  a) 4 H 

  b) 3 H

  c) 2 H

  d) 1 H

 7. The equivalent value of two capacitances 6 mF and 12 mF when connected in series and 

  in parallel respectively are,

  a) 6 mF, 18 mF b) 18 mF, 4 mF c) 4 mF, 18 mF d) 72 mF, 18 mF

 8. In the network shown in Fig. 8, if the values of all the capacitances is  

  2 mF then what is the equivalent capacitance at A-B?

  a) 4 mF 

  b) 3 mF

  c) 2 mF

  d) 1 mF

 9. The equivalent reactance with respect to terminals A-B in the 

  network shown in Fig. 9 is,

  a) j10 W 

  b) j7.5 W

  c) j5 W

  d) j2.5 W

 10. The equivalent value of two impedances 8 + j3 W and 2 – j3 W when connected in parallel is,

  a) 10 + j0 W b) 6 + j6 W  c) 10 + j6 W d) 2.5 - j1.8 W 

 11. In the network shown in Fig. 11, what is the equivalent impedance 

  at A-B?

  a) 3 + j3 W 

  b) 1 + j W

   c) 3 – j4 W

  d) 1 + j2 W 

A

B

Fig. 6.

Fig. 8.

A

B

C D

A

j10�

B

Fig. 9.

j10�

j5�

j5�

j7.5�j5�

Fig. 11.

3 + j4�

3 + j3�

E �j3j2�

A B

E �j2 j9�

3 j4E �
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 12. In the network shown in Fig. 12, if the values of all the conductances

  are 3 M  then what is the value of equivalent conductance at A-B?

  )a 18M

  )b 2 M   

  ) 0.5c M

  
) 0.25d M

 13. In the network shown in Fig. 13, what is the equivalent  

  conductance at A-B?

  ) .a 0 9083M   ) .b 15 5M   

  )c 29 M   
) 0d 2 M

 14. In the network shown in Fig. 14, what is the equivalent susceptance  

  at A-B?

  ) .a j0 5M  

  )b j3M   

  )c j6 M

  )d j12 M

 15. In the network shown in Fig. 15, what is the equivalent admittance at 

  A-B?

  )a j0 4 M+  

  )b j4 4 M+   

  )c j4 0 M+

  )d j4 4 M-

  
) 0d 2 M

16. The current through the ideal ammeter in the circuit shown in  

  Fig. 16 is,

  a) 1 A  

  b) 1.5 A  

  c) 2 A  

  d) 4 A

Fig. 12.

A

B

�
2

�
3

�
4

�
6

Fig. 13.

A

B

�
5

�
2

�
3

�
4

B

A

Fig. 14.

�
Ej6

�
j4

�
j4

�
Ej6

�
Ej6

�
Ej6

Fig. 15.

B

�
2 + j2

�
2 j2E

�
2

j2
E

�

2 + j2

�
Ej2

�
j2

A

2�

4V 3V

Fig. 16.

+
E +

E
A

1.5�
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17. The voltage across the ideal voltmeter in the circuit shown in Fig. 17 is,

  a) 10 V  

  b) 8 V

  c) 6 V 

  d) 4 V

18. The voltage V
L
 in the circuit shown in Fig. 18 is,

  a) 5 V  

  b) 6 V  

  c) 9 V  

  d) 12 V

19. The current I
2
 in the circuit shown in Fig. 19 is,

  a) 8 A  

  b) 7 A  

  c) 4 A  

  d) 2 A

20. The value of V
th
 and R

th
 in the circuit shown in Fig. 20 is,

  a) 20 V, 30 W 

  b) 5 V, 10 W 

  c) 25 V, 4 W 

  d) 10 V, 12 W

21. The value of V
th
 in the circuit shown in Fig. 21 is,

  a) 7 V  

  b) 5 V  

  c) 3 V  

  d) 2 V

 22. The value of R
th
 in the circuit shown in Fig. 22 is,

  a) 6 W  

  b) 7 W  

  c) 13 W   

  d) 22 W

2�

2A

Fig. 18.

+
E

+

�
V
L

6V

2�

2�

3A

Fig. 17.

V2� 2� 5A

Fig. 19.

1�

I
2

5A3A

1� 1�

2A

A

B

R
th

2A

Fig. 22.

+E 5V

3�

6�

4�

5V 5�

2V

V
th

Fig. 21.

A

B

+
E

+

E

+
E

3�

25V

A

B

R
th

10�

Fig. 20.

+

�

15� 6�
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23. The value of R
N
 in the circuit shown in Fig. 23 is,

  a) 4 W  

  b) 1.6 W  

  c) 1.33 W 

  d) 1.2 W

24. The value of I
N
 in the circuit shown in Fig. 24 is,

  a) 2 A  

  b) 3.5 A  

  c) 1 A  

  d) 5 A

25. The value of I
N
 in the cirucit shown in Fig. 25 is,

  a) 1.5 A   

  b) 3 A  

  c) 0.5 A  

  d) 1 A

26. In the 2-terminal linear circuit shown in Fig. 26, the open circuit voltage measured  

  across AB is 10 V and short circuit current through AB is 5 A. The value of resistance that 

  can be connected across AB for maximum power transfer is,

  a) 10 W  

  b) 5 W  

  c) 50 W  

  d) 2 W

27. The value of R for maximum power transfer in the circuit shown in Fig. 27 is,

  a) 8 W  

  b) 10 W  

  c) 8.25 W 

  d) –j0.06 W

28. The value of impedance that can be connected  

          across AB for maximum power transfer in the  

  circuit shown in Fig. 28 is,

  a) 2.4 + j1.2 W          b) 2.4 – j1.2 W

   c) 1.2 + j2.4 W          d) 1.2 – j2.4 W

5A

A

B

R
th

2�

Fig. 23.

10� 3�

5�

Fig. 24.

2A

2� 2�

I
N

A

B

3A

3�

Fig. 25.

4�

I
N1� 3A

A

B

Linear

circuit

A

B

Fig. 26.

2� 0.04H

e = sin 200t
m

V R

Fig. 27.

~

+

�

2W

V sin tm w

Fig. 28.

~

+

_ Z

I
P
Q

A

B

j4W

3W

j6W jX

R
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Fig. 30b.

+
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Fig. 29b.

+

E

R
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X

20V

Fig. 29a.

10V
+

E

R
1

R
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4

R
5

2A

Fig. 30a.

+

E

6V

R
1

R
2

R
3

R
4

R
5

R
6

5A

29. The positions of source and response in the circuit shown in Fig. 29a are changed as shown 

  in Fig. 29b. What is the value of I
X
 ?

  a) 2 A b) 4 A   c) 1 A  d) 8 A

30. The positions of source and response in the circuit shown in Fig. 30a are changed as shown  

  in Fig. 30b. What is the value of V
X
 ?

  a) 6 V b) 3 V   c) 2.4 V  d) 2 V

ANSWERS

1. b 7. c 13. b 19. d 25. a

2. a 8. a 14. d  20.  d  26.  d

3. c 9. c 15 c  21.  c  27.  c

4. a 10. d  16. d  22.  a  28.  d

5. b 11. b  17. b  23.  b  29.  b

6. d 12. a  18. a  24.  b  30.  c

IV.  Unsolved Problems

E2.1 Find the equivalent resistance with respect to terminals A-B in the 

network shown in Fig. E2.1.

E2.2 Find the equivalent resistance across the source terminals A-B of the 

circuit shown in Fig. E2.2 and calculate the current delivered by the 

source.

E2.3 Determine the equivalent resistance at A-B for the circuit shown in Fig. E2.3.

A

B

Fig. E2.1.

2�

1.2�

6�
4�

1.6�

6�

+
E

2�

18� 6�

18�12�6�12V

A

B
Fig. E2.2.

1

A

B

Fig. E2.3.

R

R

R

R
R

R

R

R

R
R

R

R
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E2.4 Determine the equivalent resistance for the circuit shown in Fig. E2.4.

E2.5 In the network shown in Fig. E2.5, find the equivalent resistance between A and B.

E2.6 For the network shown in Fig. E2.6, find the equivalent resistance across A-B.

E2.7 In Fig. E2.7, find the equivalent resistance across A-B.

E2.8 In circuit shown in Fig. E2.8, find the equivalent resistance across A-B.

E2.9 In Fig. E2.9, find the equivalent resistance R
AB

.

E2.10 Convert the circuit shown in Fig.E2.10 with multiple sources into a single equivalent current  

source at terminal A-B, with a single equivalent resistance in parallel. Also, calculate the  

voltage across the equivalent resistance.

E2.11 Find the equivalent inductance across terminals A-B in the network shown in Fig. E2.11.

Fig. E2.6.
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5�

A B
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10�
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14� 5�

8� 12�
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18�

5� 7�
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E2.12 In Fig. E2.12, find the equivalent reactance across A-B.

E2.13 Find the equivalent capacitance across terminals A-B in the network shown in Fig. E2.13.

 Note : Consider 6 mF capacitor as reactance –jX and so reactance of 3mF capacitor is –j2X. Reduce the 

network by treating all the capacitors as reactances and finally convert the reactance to capacitor.

E2.14 In Fig. E2.14, find the equivalent capacitive reactance across A-B.

E2.15 Find the equivalent impedance across A-B in the circuit shown in Fig. E2.15.

E2.16  In the circuit shown in Fig. E2.16, determine I
L
 using Thevenin’s theorem.

E2.17  In the circuit shown in Fig. E2.17, determine V
L
 using Norton’s theorem.

E2.18 Find Thevenin’s and Norton’s equivalents of the circuit shown in Fig. E2.18 with respect to 

terminals A and B.

j0.2�

j2.4�

j0.6�

j3�j0.6�

j0.8�

j1�

j0.2�

j2.3� j3�

Fig. E2.12.

A B
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E �j6 E �j9
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E �j4
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E �j6

E �j3.2
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E2.19 In the circuit shown in Fig. E2.19, determine the current I L  using Norton’s theorem.

E2.20 In the circuit shown in Fig. E2.20, determine the voltage across 5 + j3 W impedance using 

Thevenin’s theorem.

E2.21     Using the superposition theorem, determine the current I
L
 in the circuit shown in Fig. E2.21.

E2.22 Determine the voltage V
L
 in the circuit shown in Fig. E2.22 using the superposition theorem.

E2.23 Calculate the current I
y
 and voltage V

x
 in the circuit shown in Fig. E2.23 using the superposition 

theorem.

E2.24 Determine the current I y  and voltage V x  in the circuit shown in Fig. E2.24 using the 

superposition theorem.

E2.25 In the circuit shown in Fig. E2.25, determine I L  using the superposition theorem and  estimate 

the active and reactive power in 2 - j3 W impedance.
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E2.26 Determine the value of R in the circuit shown in Fig. E2.26 for maximum power transfer. Also 

find the value of the maximum power.

E2.27 Determine the value of Z L  in the circuit shown in Fig. E2.27 for maximum power transfer. 

E2.28 In the circuit of Fig. E2.28, calculate V
x
. Prove reciprocity theorem by interchanging the 

positions of the 5 A source and V
x
.

E2.29 In the circuit of Fig. E2.29, calculate I
x
. Prove the reciprocity theorem by interchanging the

 positions of the 10 V source and I
x
.

E2.30 In the circuit of Fig. E2.30, demonstrate the reciprocity theorem by interchanging the  

positions  of the source and response, .I x

E2.31 Demonstrate reciprocity theorem in the circuit shown in Fig. E2.31 by interchanging the  

positions of the source and response.

E2.32 In the circuit shown in fig E2.32, apply Millman’s theorem to find Thevenin’s equivalent at A-B. 

Also,  find the value of resistance R for maximum power transfer.

E2.33 In the circuit shown in Fig. E2.33, find the current 
L
I using Millman’s theorem.
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ANSWERS

E2.1 R
AB

 = 5.6 Ω 

E2.2 R
AB

 = 3.75 Ω , I = 3.2 A

E2.3 R R
6

5
AB Ω=  

E2.4 R
eq

 = 19 Ω

E2.5 R
AB

 = 1.5686 Ω

E2.6 R
AB

 = 1.9637 Ω

E2.7 R
AB

 = 2.9084 Ω

E2.8 R
AB

 = 6.4478 Ω

E2.9 R
AB

 = 4.6663 Ω

E2.10 I
eq

 = 2.75 A,   R
eq

 = 0.8 W,   V = 2.2 V    

E2.11 L
AB

 = 2.875 H  

E2.12 jX
AB 

 = j0.3522 Ω  

E2.13 C
AB

 = 9.6432 mF

E2.14 –jX
AB

 = −j16.92 Ω    

E2.15 . . . .Z j5 3021 1 2792 5 4542 13 6oAB +Ω Ω= − = −

E2.16 V
th

 = 10 V    ;    R
th

 = 1 Ω    ;    I
L
  = 1.6667 A

E2.17 I
n  

 = 1.8 A    ;    R
n
 = 5 Ω     ;    V

L
 = 6 V

E2.18 V
th

 = 13.25 V    ;    R
th

 = R
n
 = 1.875 Ω    ;    I

n
 = 7.0667 A

E2.19 . . ; . .

. .

I j Z j

I j

A A

A A

4 8 8 9443 116 6 10 5 11 1803 26 6

2 6 6 3246 108 4

o o

o

n n

L

+ +

+

Ω Ω= − − = − = + =

= − − = −

 

E2.20

 

. . . .

. . .

45.9196 1.44 45.9422 1.8

V j

Z j

V j

V V

V V

44 6152 63 0768 77 2606 54 7

3 8462 7 2308 8 1901 62

o

o

o

th

th

L

+

+

+

Ω Ω

= − = −

= − = −

= + =
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E2.21 6I I I I A2 4 0L L(2 ) L(4 ) L(10 )A A V= + + = + + =l ll lll

E2.22 2 ( 4) 2V V V VL L(5 ) L(10 )V V= + = + − = −l ll  

E2.23 1 ( 1.5) 4.5 ( 6.25) 2.25V V V V V Vx x(4 ) x(6 ) x(2 ) x(5 )V V A A= + + + = + − + + − = −l ll lll llll

  0.25 ( 0.375) ( 0.875) ( 1.5625) 2.5625I I I I I Ay y(4 ) y(6 ) y(2 ) y(5 )V V A A= + + + = + − + − + − = −l ll lll llll

E2.24 ( . . ) ( . . ) ( . . )

. . . .

I I I I j j j

j A

0 1061 0 504 0 2122 1 008 0 5623 0 3289

0 244 1 8409 1 857 82 4o

y y(5 ) y(10 ) y(2 )V V A

+

= + + = − + + − + + +

= + =

l ll lll  
  

  ( . . ) ( . . ) ( . . )

. . . .

V V V V j j j

j V

0 1061 0 504 0 2122 1 008 1 4377 0 3289

1 756 1 8409 2 5441 133 6o

x x(5 ) x(10 ) x(2 )V V A

+

= + + = − + + − + + − +

= − + =

l ll lll

E2.25 ( . . ) ( . . )

. . . .

I I I I j j

j A A

3 0769 4 6154 0 1785 2 7678 0

2 8984 1 8476 3 4372 32 5o

L L(20 ) L(10 ) L(3 )V V A

+

= + + = + + − − +

= + =

l ll lll

  P = 23.6287 W    ;    Q = −35.443 VAR

E2.26 R = 3.1429 Ω ,   P
max

 = 0.6492 W

E2.27 4.6432 3.443 5.7804 36.6Z j o
L +Ω Ω= + =   

E2.28 V
x
 = 10.2273 V

E2.29 I
x
 = 0.1176 A

E2.30 0.3554 0.3928 0.5297 47.9I j A Ao
x += + =   

E2.31 1.5529 2.1887 2.6836 54.6V j V Vox += + =

E2.32 V
th
 = 6.9228 V  ;  R

th
 = R = 0.5128 W

E2.33 

=

. . . .

. . . .

. . .

E j

Z j

I j

V V

A

A A

2 439 1 9512 3 1234 141 3

2 1951 0 2439 2 2086 6 3

0 5525 0 4972 0 7433 138

o

o

o

eq

eq

L

+

+

+

Ω Ω

= − − = −

= − = −

= − − −



TRANSIENT RESPONSE ANALYSIS

3.1    L and C Elements and Transient Response

Electrical devices are controlled by switches which are closed in order to connect supply to 

a device or opened in order to disconnect supply to a device. The switching operation changes the 

current and the voltage in a device. Purely resistive devices allow instantaneous change in current and 

voltage. Inductive devices do not allow a sudden change in current (or delay the change in current), 

and capacitive devices do not allow a sudden change in voltage (or delay the change in voltage). 

Hence, when a switching operation is performed in inductive or capacitive devices, the current and 

voltage in the device take some time to change from a pre-switching value to a steady value after 

switching. This phenomena can be observed in starting of a motor, which is an inductive device.

 The study of switching condition in a circuit is called transient analysis. The state (or 

condition) of the circuit from the instant of switching to the attainment of a steady state is called 

transient state or simply, transient. The time duration from the instant of switching till the attainment 

of a steady state is called the transient period. The current and voltage of circuit elements during 

the transient period is called transient response.

Apart from switching, the transient will also occur due to a change in circuit elements (i.e., 

due to change in values of R, L and C). In electrical engineering, transient analysis is a useful tool 

for analysis of switching conditions in circuit breakers, relays, generators and various types of 

loads. It is also useful for the analysis of faulty conditions in electrical devices.

3.1.1   Natural and Forced Response

Transient response is the response (or output) of a circuit from the instant of switching to 

the attainment of a steady state. In order to study the response with respect to time, the switching 

instant is taken as time origin, i.e., t = 0. The time t = 0− is used to denote the time instant just prior 

to switching and the time t = 0+ is used to denote the time instant immediately after switching.

The time difference between t = 0− and t = 0+ is zero. It is necessary to define three time 

instants 0 −, 0 and 0 +  because current and voltage in certain elements may change suddenly.

A resistance will allow a sudden change in current and voltage.

∴    i
R
 (0+) ≠ i

R
 (0−)       and        v

R
 (0+) ≠ v

R
 (0−)

An inductance will not allow a sudden change in current but allow a sudden change in voltage.

∴    i
L
 (0+) = i

L
 (0−)       and        v

L
 (0+) ≠ v

L
 (0−)

A capacitance will allow a sudden change in current but will not allow a sudden change in voltage.

∴    i
C
 (0+) ≠ i

C
 (0−)       and        v

C
 (0+) = v

C
 (0−)

Chapter 3
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Fig. 3.3 : RLC Circuit.

1

C
t dti( )z

R (t)i

i(t)

L
d t

dt

i( )
+ E

+ E

R L

+
E

e(t)

+ E

C

Inductance and capacitance are energy storage devices. Hence, they may have stored energy 

prior to the switching instant. The response of a circuit due to stored energy alone (without an 

external source) is called natural response or source-free response. The response of a circuit due 

to an external source is called forced response.

In time domain analysis, the voltage-current relation of circuits is studied in the form of 

differential equations. Hence, the response of a circuit is the solution of its differential equations. In 

general, the solution of differential equation or the response has  two parts, namely, complementary 

function and particular solution. 

The complementary function becomes zero as t tends to infinity, and so it is the transient 

part of the solution. The complementary function is similar to natural response and so it is also 

called natural response (i.e., the complementary function and source-free response have similar 

form, which depends on the nature of the circuit).

The particular solution attains a steady value as t tends to infinity, and so it is the steady 

state part of the solution. The particular solution depends on the nature of the exciting source and 

so it is also called forced response.

3.1.2   First and Second Order Circuits

In time domain, the equations governing the circuits will be in the form of differential 

equations. The order of the differential equations governing the circuit will be the order of the circuit. 

Consider the RL circuit shown in Fig. 3.1. By KVL, we can write,  

( )
( )

( )R t L
dt

d t
ti

i
e+ =

   .....(3.1)

Equation (3.1) is the differential equation governing the RL circuit. 

The order of equation (3.1) is one and so the RL circuit is a first order circuit.

Consider the RC circuit shown in Fig. 3.2. By KVL, we can write, 

( ) ( ) ( )R t
C

t dt ti i e
1

+ =#
On differentiating the above equation with respect to t, we get,

( )
( )

( )
R

dt

d t

C
t

dt

d ti
i

e1
+ =   .....(3.2)

Equation (3.2) is the differential equation governing the RC circuit. 

The order of equation (3.2) is one and so the RC circuit is a first order circuit.

Consider the RLC circuit shown in Fig. 3.3. By KVL, we can write,

( )
( )

( ) ( )R t L
dt

d t

C
t dt ti

i
i e

1
+ + =#

On differentiating the above equation with respect to t, we get,

( ) ( )
( )

( )
R

dt

d t
L

dt

d t

C
t

dt

d ti i
i

e1
2

2
+ + =                        .....(3.3)

Equation (3.3) is the equation governing the RLC circuit. The order of equation (3.3) is two 

and so the RLC circuit is a second order circuit.

Fig. 3.1 : RL Circuit.

R (t)i

i(t)

L
d t

dt

i( )
+ E + E

R L

+
E

e(t)

Fig. 3.2 : RC Circuit.

1

C
t dti( )z

R (t)i

i(t)

+ E

R

e(t)

C

+ E

+
E
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3.2    Transient Analysis Using Laplace Transform 

In time domain, the voltage-current relation of circuits are governed by differential equations. 

The direct solution of differential equations gives the transient response.

Alternatively, the transient response can be obtained using the Laplace transform technique. In 

this method, the differential equations are converted into simple s-domain algebraic equations using 

Laplace transform. The solution of algebraic equations are simple as compared to the solution of 

differential equations. The s-domain algebraic equations are solved to obtain the s-domain response. 

But for practical purposes, we require the response in time domain, and so the time domain response 

is obtained by taking the inverse Laplace transform of the s-domain response. In this book, transient 

analysis is performed only via the Laplace transform technique.

In order to solve a circuit using the Laplace transform technique, the given circuit is first 

transformed into an s-domain circuit, then the sources and parameters are replaced by their s-domain 

equivalent. 

3.2.1   Some Standard Voltage Functions

Impulse Voltage

Impulse voltage is a function with infinite magnitude  and  zero 

duration, but with an area of  E. Mathematically, impulse voltage is 

defined as, 

, ( ) ( ) ; 0 ( )vI voltage t t t and t dt Empulse 3δ δ= = = =

3

3

-

+

#

                                               =  0  ;   t ≠ 0

Graphically, impulse voltage can be expressed as a pulse of width 

E/∆ and height ∆, as shown in Fig. 3.5. 

Unit impulse voltage is a function with infinite magnitude 

and zero duration, but with unit area. Mathematically, unit impulse  

voltage is defined as, 

, ( ) ( ) ; 0 ( ) 1Unit voltage t t t and t dtvImpulse 3δ δ= = = =

3

3

-

+

#
                                                       =  0  ;   t ≠ 0

Step Voltage

Step voltage is defined as, 

  v(t) = E       ; t ≥ 0

        = 0        ; t < 0

Unit step voltage is defined as, 

  v(t) = u(t) = 1        ; t ≥ 0

                   = 0        ; t < 0

d(t)

0
t

¥

Fig. 3.4 : Impulse voltage.

d(t)

t
0

D

E

D

Fig. 3.5 : Representation
impulse as a pulse.of

v(t)

0
t

E

Fig. 3.6 : Step voltage.

u(t)

0
t

1

Fig. 3.7 : Unit step voltage.
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Ramp Voltage

Ramp voltage is defined as, 

         
 
v(t)   = E t      ; t ≥ 0

   
 
 = 0         ; t < 0

Unit ramp voltage is defined as, 

         
 
v(t)   = t         ; t ≥ 0

     = 0        ; t < 0

Parabolic Voltage

Parabolic voltage is defined as, 

( ) ; 0t Et for t
2

2

$ν =

        =  0        ;   for t < 0  

Unit parabolic voltage is defined as, 

( ) ; 0t t for t
2

2

$ν =

        =  0      ;   for t < 0  

Exponential Voltage

Exponential voltage is defined as, 

v(t) = E eat

where,‘E’ and ‘a’ are  real.

Here, when ‘a’ is positive, the voltage v(t) will be an exponentially rising voltage and when 

‘a’ is negative, the voltage v(t) will be an exponentially decaying voltage.

Sinusoidal and Cosinusoidal Voltage

Sinusoidal voltage is defined as,

v(t) = E
m
 sin (ωt + φ)

Cosinusoidal voltage is defined as,

v(t) = E
m 

cos (ωt + φ)

where, ω = 2πf = 
T

2π  = Angular frequency in rad/s

 f
  

= Frequency in cycles/second or Hz

 T = Time period in seconds

The waveforms of sinusoidal voltages for various choices of φ are shown in Chapter 4, Section 4.2, 

Fig. 4.10. The waveforms of cosinusoidal voltages are phase-shifted versions of sinusoidal voltages, 

shifted in phase by 90 degrees.

v(t)

t
0.5E

0 1 2 3

Fig. 3.10 : Parabolic voltage.

2E

4.5E

v(t)

E

0
t

Fig. 3.11 : Rising
exponential voltage.

a - Positive

v(t)

t

E
a - Negative

Fig. 3.12 : Decaying
exponential voltage.

v(t)

E

0
t

2E

1 2

Fig. 3.8 : Ramp voltage.

v(t)

1

0
t

2

1 2

Fig. 3.9 : Unit ramp voltage.
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s-Domain Representation of Voltage Functions

The s-domain representation of voltage functions is obtained by taking the Laplace transform 

of their time domain representation.  

Table 3.1 : Standard Voltage Functions

Name of the voltage, v(t) Time domain representation Laplace transform of 

          of the voltage, v(t)         the voltage, v(t) = V(s)

 Impulse δ(t) 1 

 Step E            
s

E              

 Unit step 1 
s

1                   

 Ramp E t 
s

E
2

                                             

 Unit ramp t 
s

1
2

                                              

 Parabolic Et

2

2

              
s

E
3

                                               

 Unit parabolic t

2

2

                  
s

1
3

 

 Rising exponential E eat E
s a

1

−
                                            

 Decaying exponential E e−at E
s a

1

+
                   

 Sinusoidal E
m
 sin ωt E

s
2 2m

ω

ω

+

                          

 Cosinusoidal E
m
 cos ωt E

s

s
2 2m

ω+

                           

3.2.2   s-Domain Representation of R, L, C Parameters

In an s-domain circuit, the R, L and C parameters of the circuit are also respresented by  

their s-domain equivalent. The s-domain equivalent of R, L and C parameters without initial 

energy is discussed in Chapter 4, Section 4.6. Since L and C parameters store energy, the s-domain 

equivalent of L and C parameters with initial energy is developed in this section.  

Inductance with Initial Current

Inductance is an energy storage element. Hence, it can have an initial stored energy at the 

time of analysis which results in initial current (or flux). Consider an inductance connected to a 

circuit through position-1 of SPDT(Single Pole Double Throw) switch as shown in Fig. 3.13. Let 

a steady current I
0
 be established in the inductance. (Here, I

0
 is the rms value in case of ac).

(AU Dec’16, 2 Marks)
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i(0)   = − I
0 
 = Initial condition.

Here, I
0
 is negative because 

it is opposite to i(t).

Fig. 3.13 : Voltage-current relation of inductance with initial current in time and s-domain.

I0

L v(t)

i(t)

Fig. b : Inductance with initial
current in time domain.

v(t)

+

E

V(s)

+

_

l(s)

sL l(s)

LI0

sL

Fig. c : Inductance with initial
current in s-domain.

+

E

+
E

Fig. a : Inductance with
steady current I .0

t = 0

v(t)

2 1

L
circuit

I0

+

�

+

�

Fig. 3.14 : Voltage-current relation of inductance with
initial current in the direction of source current.

Fig. b : Inductance with initial
current in s-domain.

V(s)

+

_

l(s)

sL l(s)

Ll0

sL

+

E

+
E

Fig. a : Inductance with initial
current in time domain.

I0

Lv(t)

i(t)

v(t)

+

E

+

�

Let us change the switch position from 1 to 2 and the time instant be t = 0. At the time of 

closing the switch to position-2, a steady current I
0
 is flowing through an inductance and this 

current is called initial current in the inductance for the analysis at (or after) t = 0, (i.e., for t ≥ 0).

Note : L = Nφ / I = Ψ / I ,   ∴ I
0
 = Ψ

0
 / L ,where Ψ

0
 is initial flux linkages in weber turns. 

Let i(t) be the current through the inductance and v(t) be the voltage across the inductance 

for 0,t $ as shown in Fig. 3.13(b).

  , ( )
( )

vNow t L
dt

d ti
=  .....(3.4) 

On taking Laplace transform of the above equation, we get, 

      V(s)  =  L[sI(s) – i(0)]

∴  V(s)  =  sLI(s) – Li(0)

     V(s)  =  sLI(s) + LI
0
equat                                                          .....(3.5)                                                                                                                

Using equation (3.5), the s-domain equivalent circuit of inductance with initial current 

opposite to i(t) is drawn as shown in Fig. 3.13(c). 

When the direction of initial current is the same as that of the source current then i(0) = +I
0
 

and so equation (3.5) can be written as shown in equation (3.6).

     V(s)  =  sL I(s) − LI
0
 .....(3.6) 

Using equation (3.6), the s-domain equivalent circuit of inductance with initial current in  

direction i(t) is drawn as shown in Fig. 3.14.
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Capacitance with Initial Voltage

Capacitance is an energy storage element. Hence, it can have an initial stored energy  

at the time of analysis which results in initial voltage (or charge). Consider a capacitance  

connected to a circuit through position-1 of SPDT(Single Pole Double Throw) switch as shown 

in Fig. 3.15. Let a steady voltage V
0
 be established in the capacitance. (Here, V

0
 is the rms value 

in case of ac).

Let us change the switch position from 1 to 2 and the time instant be t = 0. At the time of 

closing the switch to position-2, a steady voltage V
0
 exists across capacitance and this voltage is 

called initial voltage in the capacitance for the analysis at (or after) t = 0 (i.e., for t ³ 0).

Note : C = Q/V ,    ∴ V
0
 = Q

0
 /C , where Q

0
 is the initial charge.

Let i(t) be the current through the capacitance and v(t) be the voltage across the capacitance 

for t ³ 0 as shown in Fig. 3.15(b).

, ( )
( )

Now t C
dt

d t
i

ν
=                                                                                               .....(3.7)

On taking Laplace transform of the above equation, we get, 

  I(s) = C[sV(s) − v(0)]

∴  I(s) = sCV(s) + C V
0

sCV(s) = I(s) − C V
0

( ) ( )V s
sC

I s
s
V1 0

= −  .....(3.8)

Using equation (3.8), the s-domain equivalent circuit of capacitance with initial voltage 

opposite to v(t) is drawn as shown in Fig. 3.15(c). 

When the polarity of initial voltage is the same as that of voltage v(t) then v(0) = + V
0
 and 

so equation (3.8) can be written as shown in equation (3.9).

 ( ) ( )V s
sC

I s
s
V1 0

= +  .....(3.9) 

v(0) =  −V
0
 = Initial condition.

Here, V
0
 is negative because 

it is opposite to v(t).

t = 0

i(t)

2 1

circuit

Fig. a : Capacitance with
steady voltage V .0

V0

+

E

Fig. b : Capacitance with initial
voltage in time domain.

i(t)

v(t)

+

E
+

E

i(t) V0

Fig. 3.15 : Voltage-current relation of capacitance with initial current in time and s-domain.

V(s)

+

_

l(s)

+

E

1

sC
I(s)

V

s

0

Fig. c : Capacitance with initial
voltage in s-domain.

1

sC

+
E
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I(s) V(s)
+ _

R

I(s) V(s)
+ _

sL

I(s) + _V(s)

1

sC

1

sC
I(s)

I(s)
sL I(s)

+ _

sL

V(s)
+ _

LI0
+E

I(s) + _

sL
+ E+ E

sL I(s) LI0

V(s)
+ _

I(s) + _

V

s

0

1/sC

+ E+ E

1

sC
I(s)

V(s)
+ _

I(s) + _

V

s

0

1/sC

+E

V(s)
+ _

i v+ _

R

i v
+ _

L

i
v

+ _

C

v+ _

i + _V0

C

v+ _

i +_ V0

C

i v+ _

L
I0

i v+ _

L I0

Using equation (3.9), the s-domain equivalent circuit of capacitance with initial voltage of 

polarity same as v(t) is drawn as shown in Fig. 3.16.

Table 3.2 : s-Domain Representation of R, L and C Parameters

S.No. Parameter Time domain s-Domain 

 1. Resistance, R 

 2. Inductance, L

 3. Inductance, L

  with initial current

 4. Capacitance, C

 5. Capacitance, C

  with initial voltage

Fig. 3.16 : Voltage-current relation of capacitance with initial voltage of polarity same as v(t).

Fig. a : Capacitance with initial
voltage in time domain.

i(t)

v(t)

+

E

i(t) V0

+

E

Fig. b : Capacitance with initial
voltage in s-domain.

V(s)

+

_

l(s)

+

E

V

s

0

1

sC
I(s)

+
E

1

sC
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3.2.3   Solving Initial and Final Conditions Using Laplace Transform

The initial condition in circuits can be solved using the initial value theorem of Laplace transform. 

The final condition in circuits can be solved using the final value theorem of Laplace transform.

Initial Condition

The initial value theorem of Laplace transform states that if F(s) is Laplace transform of f(t) then,

( ) ( )Lt f t Lt sF s
t s0

=
" "3

( ) (0) ( )Initial value of f t f Lt sF s
s

` = =
"3

Hence, by the initial value theorem, the initial value of a time domain function can be directly 

determined from its s-domain function.  In transient analysis, the initial value theorem is useful to 

determine the following initial conditions in circuits.

1.  Let,  L{i(t)} = I(s)

     Now,

     
, (0 ) ( ) ( )Initial current Lt t Lt sI si i

t s0

= =
" "3

+

2.  Let,  L{i(t)} = I(s)

L
( )

( ) (0 )
dt

d t
sI s

i
i` = −

+' 1

 ,
( ) ( )

( ) ( )Initial rate of rise of current
dt

d t
Lt

dt

d t
Lt s sI s

i i
i 0

t s0
t 0

= = −

" "3

+

=
+

6 @

3.  Let,  L{i(t)} = I(s)

L
( )

( ) ( )
( )

dt

d t
s I s s

dt

d ti
i

i
02

2

2

t 0

` = − −

+

=
+

) 3
 Now, 

( ) ( )
( ) ( )

( )

dt

d t
Lt

dt

d t
Lt s s I s s

dt

d ti i
i

i
0

t s
2

2

0
2

2

2

t
t

0
0

= = − −

" "3

+

=
=+
+

= G

Similarly, the initial voltage and initial rate of rise of voltage can be solved using the above 

equations after replacing i by v. 

Final Condition

The final value theorem of Laplace transform states that if F(s) is Laplace transform of f(t) then,

( ) ( )Lt f t Lt sF s
t s 0

=
" "3

( ) ( ) ( )Final value of f t f Lt sF s
s 0

` 3= =
"
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Hence, by the final value theorem, the final value of a time domain function can be directly 

determined from its s-domain function.

In transient analysis, the final value theorem is useful to determine the following final 

conditions in circuits.

1.  Let,  L{i(t)} = I(s)

     Now,

     , ( ) ( ) ( )Final current Lt t Lt sI si i
t s 0

3 = =
" "3

2.  Let,  L{v(t)} = V(s)

 Now,

 , ( ) ( ) ( )Final voltage Lt t Lt sV s
t s 0

3ν ν= =
" "3

3.3    Transient Response of RL Circuit

3.3.1   Natural or Source-Free Response of RL Circuit

Consider the RL circuit with initial current i(0−) = I
0 
through inductor 

as shown in Fig. 3.17. Let the switch be closed at t = 0. 

Let,   i(t)   =  Current through the RL circuit 

     v
R
(t)  =  Voltage across resistance, R

  v
L
(t)  =  Voltage across inductance, L

Now, the transient equations of the source-free RL circuit shown in Fig. 3.17 are,

( )t I ei
t

0= x
-            .....(3.10)

( )t RI e
t

R 0ν = x
-

( )t RI e
t

L 0ν = − x
-

,
R
L thewhere Time constant of RL circuitτ = =        .....(3.11)

Equation (3.10) is called source-free response of RL circuit.

Note :  It can be proved that Henry/Ohm has the unit of time and so the unit of time constant 

        is seconds. 

Proof:

The s-domain equivalent of the RL circuit is shown in Fig. 3.18. 

With reference to Fig. 3.18, we can write,

( )I s
R sL

L I0
=

+
    ⇒    ( )I s

L
L
R s

LI0
=

+` j

( )I s
s

L
R

I0
` =

+

i(t)

l0vR(t)
+ _

vL(t)

t = 0
R L

Fig. 3.17.

+ _

Fig. 3.18.

I(s)

Ll0
R sL

+E
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Let us take the inverse Laplace transform of the above equation.

L L( )I s
s

L
R

I1 1 0
` =

+

- -" *, 4 ( )i t I e L
R t

0` =
-              I e I eL/R

t t

0 0= = x
- -  
, .where

R
L Time of the circuitconstantτ = =

The equations for n
R

(t) and n
L
(t) can be obtained by using the equation for i(t) as shown below:

( ) ( )t Ri t R I e
t

R 0ν = = x
-

   

( )
( )

t L
dt

di t
L
dt
d I e LI e L I e

L
R R I e1t t t t

L 0 0 0 0# #ν

τ

= = = − = − = −x x x x
- - - -` `j j

Let us calculate i(t) using equation (3.10) for various values of time in multiples of time 

constant as shown below:

1 , ( ) 0.368At t t I e I e Ii
1

1

0 0 0τ= = = =x

x
- -

2 , ( ) 0.135At t t I e I e Ii
2

2

0 0 0τ= = = =x

x
- -

3 , ( ) 0.05At t t I e I e Ii
3

3

0 0 0τ= = = =x

x
- -

4 , ( ) 0.018At t t I e I e Ii
4

4

0 0 0τ= = = =x

x
- -

5 , ( ) 0.007At t t I e I e Ii
5

5
0 0 0τ= = = =x

x
- -

From the above analysis we can say that the initial current exponentially decays to zero as 

time t tends to infinity.

3.3.2   Step Response of RL Circuit

(Response of RL Circuit Excited by DC Supply)

Note : A step voltage applied at t = 0 is equivalent to switching DC supply at t = 0.

Consider the RL circuit with no initial inductor current and 

excited by a step voltage of E volts as shown in Fig. 3.20. Let the 

switch be closed at t = 0. 

Let,   i(t)   =  Current through RL circuit 

     v
R
(t)  =  Voltage across resistance, R

  v
L
(t)  =  Voltage across inductance, L

L e
s a

1at
=

+

-" ,

(AU May’15, 8 Marks)

i(t)

t

l
0

0 1t 2t 3t 4t 5t

Fig. 3.19 : i(t) Vs t.

0.2l
0

0.368l
0

i(t)

t = 0

Fig. 3.20.

+
vL(t)

L

_+ _

R

vR(t)

+

E
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Now the transient equations of the RL circuit excited by a dc source shown in Fig. 3.20 are,

( ) 1t
R
E ei

t
= − x

-^ h
    .....(3.12)

( )t Ee
t

Lν = x
-

( ) 1t E e
t

Rν = − x
-^ h

,
R
L thewhere Time constant of RL circuitτ = =

Equation (3.12) is called the forced response of the RL circuit when excited by a dc source.

Proof:

L L L L, ( ) ( ) ; ( ) ( ) ; ( ) ( ) ;Let i t I s t V s t V s E
s
E

R R L Lν ν= = = =" " " ", , , ,

The s-domain equivalent of the RL circuit is shown in Fig. 3.21. 

By Ohm’s law, we get,    

V
R
(s)  =  R I(s)    ;    V

L
(s)  =  sL I(s)    .....(3.13)

With reference to Fig. 3.21, by KVL, we can write,

( ) ( )V s V s
s
E

R L+ =

    

( ) ( )RI s sLI s
s
E

+ =

( ) ( )R sL I s
s
E

+ =

            
( )

( )
I s

s R sL
E

` =
+

                        

s L s
L

R

E

s s
L

R

L

E

#

=

+

=

+` `j j

By partial fraction expansion technique, the above equation can be expressed as,

( )I s
s s

L
R

L
E

s

K

s
L
R

K1 2
=

+

= +

+` j

K

s s
L

R

L

E

s

s
L

R

L

E

L

R

L

E

R

E

s 0 s 0

1 #=

+

=

+

= =

= =
` `j j

K

s s
L

R

L

E

s
L

R

s

L

E

L

R

L

E

R

E

s
L

R

s
L

R
2 #=

+

+ = =

−

= −

=-

-=`
`

j
j

( )I s
s
R
E

s
L
R

R
E

R
E

s R
E

s
L
R

1 1
` = −

+

= −

+

Using equation (3.13)

sL

V (s)L

+ _+ _

V (s)R

I(s)

Fig. 3.21.

E

s

+

E

R
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Let us take the inverse Laplace transform of the above equation.

L L( )I s
R
E

s R
E

s
L
R

1 11 1
= −

+

- -" *, 4
L L( )i t

R
E

s R
E

s
L
R

1 11 1
` = −

+

- -$ *. 4            R

E

R

E
e L

R
t

= −

-

            R
E e1 L/R

t
= −

-` j

( )i t
R
E e1

t
` = − x

-^ h    .....(3.14)  , .where
R
L Time of the circuitconstantτ = =

With reference to Fig. 3.20, by Ohm’s law, we can write,

n
R

(t)  =  R i(t)

           R
R

E
e1

t

#= − x
-^ h

( )t E e1
t

R` ν = − x
-^ h  .....(3.15)

With reference to Fig. 3.20, by KVL, we can write,

     n
R

(t) + n
L
(t)  =  E

∴  n
L
(t)  =  E − n

R
(t)

               E E e1
t

= − −

−

x
^ h

 ( )t Ee
t

L` ν =
−

x

Initial and Final Conditions

Let us examine the values of current and voltages of an RL circuit excited by a dc source at  

t  =  0+ and at t  =  ∞.

0 , (0 ) 0At t
R
E e

R
Ei 1 1 10

= = − = − =

+ + a ak k

 At  t = 0+   ,   v
L
(0+)  =  E e0  =  E × 1  =  E

At  t = 0+    ,   v
R
(0+)  =  E (1 − e0)  =  E (1 − 1)  =  0

, ( )At t
R
E e

R
E

R
Ei 1 1 03 3= = − = − =

3-a ak k

At  t = ∞   ,   v
L
(∞)  =  E e−∞  =  E × 0  =  0

At  t = ∞   ,   v
R
(∞)  =  E (1 − e −∞)  =  E (1 − 0)  =  E

L

L

s

e
s a

1
1

1at

=

=
+

-

"

"

,

,

Using equation (3.14)

Using equation (3.15)
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From the above analysis, we can infer that “at t  =  0+, the current through inductance is 

zero and so it behaves as an open circuit. At t = ∞, the voltage across inductance is zero and so it 

behaves as a short circuit”.

The condition of the circuit at t  =  0+ is called the initial condition and the condition of the circuit at 

t  =  ∞ is called the final condition. 

In the transient equations of the RL circuit, the term containing e
t−
x  tends to zero as t tends 

to infinity and so the term containing e
t−
x  is the natural response (or complementary function 

or transient part).

The term E/R is the steady state value of i(t) and the term E is the steady state value of v
R
(t). 

The steady state value of v
L
(t) is zero.

Let us examine the values of current and voltage when t is equal to one time constant.

1 , ( ) 0.6321t t
R
E e

R
E e

R
EiAt 1 1

1 1
τ= = − = − =x

x
- -b al k

1 , ( ) 0.3679t t e E e EvAt
1 1

Lτ= = = =x

x
- -

1 , ( ) 0.6321vt t E e E e EAt 1 1
1 1

Rτ= = − = − =x

x
- -b al k

From the above calculations, we can say that, “the current through inductance rises from 

zero to 63.21% of steady state value in a time of one time constant”. Also we can say that, “the 

voltage across the inductance falls from initial value to 36.79% of initial value in a time of one 

time constant”. These two measures are also used to define time constant.

Theoretically, the circuit attains steady state only at infinite time. But for practical purposes, 

we can show that the circuit attains steady state in a time of five time constants. Let us calculate 

i(t) for various values of time in multiples of time constant as shown below:

1 , ( ) 0.6321t t
R
E e

R
E e

R
EiAt 1 1

1 1
τ= = − = − =x

x
- -b al k

, ( ) 0.t t
R
E e

R
E e

R
EiAt 2 1 1 8647

2 2
τ= = − = − =x

x
- -b al k

Fig. a : Initial condition. Fig. b : Final condition.

vR( ) = E¥

i( )¥ =

E

R

Fig. 3.22 : Initial and final condition of RL circuit of Fig. 3.20.

+ _

R

E

+

-

+

OC
_ +

E

+

-

vL( ) = 0¥

SC

+ _

vR( )0 0+
= vL E( )0+ =

i( )0 0+
=

_

R
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, ( ) 0.t t
R
E e

R
E e

R
EiAt 3 1 1 9502

3 3
τ= = − = − =x

x
- -b al k

, ( ) 0.9t t
R
E e

R
E e

R
EiAt 4 1 1 817

4 4
τ= = − = − =x

x
- -b al k

, ( ) 0.9t t
R
E e

R
E e

R
EiAt 5 1 1 933

5 5
τ= = − = − =x

x
- -a ak k

From the above calculations we can say that the current i(t) approximately reaches steady 

value in a time of five time constants. Hence, “for all practical purposes the transient period is 

assumed to be for a duration of five time constants, and after five time constants, the circuit is said 

to be in a steady state”. 

Time Constant

The time constant of an RL circuit is defined as the time taken by the inductor current to 

reach a steady state if the initial rate of rise is maintained. It can be proved that the time constant,  

t = L/R, for an RL circuit.

Proof:

In the RL circuit, the inductance delays the rate of rise of current. The rate of rise of current is obtained by 
differentiating i(t) with respect to t.

, ( )Here i t
R
E e1

t
= −

−

x
^ h

On differentiating i(t) with respect to t, we get,

( )

dt

di t

R
E e 1t

τ

= − −
−

x
^ `h j    ⇒    

( )

dt

di t

R
E e

t

τ

=
−

x

The value of 
( )

dt

di t
 at t = 0+ is the initial rate of rise of current.

( )

dt

di t

R
E e

R
E

R
R
L

E
L
E

t 0

0
`

#
τ τ

= = = =

=
+

(AU May’17, 2 Marks)

Fig. 3.23 : The sketch of transient current and voltages of the RL circuit of Fig. 3.20.

1t 2t 3t 4t 5t

E

0.3679E

0.2E

vL(t)

0 t

Fig. b : v (t) vs t.L

1t 2t 3t 4t 5t

vR(t)

E

0.6321E

0.2E

0 t

Fig. c : v (t) vs t.R

0
1t 2t 3t 4t 5t

Transient state Steady state

i(t)

t

Fig. a : i(t) vs t.

0.2E/R

0.6321E/R

E/R
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For small time intervals, 
( ) ( )

,
dt

di t

t

i t

∆

∆
=  and so using the above equation we can write,

( ) ( )

dt

di t

t

i t

L
E

t 0 ∆

∆
= =

=
+

           ⇒         ( )t
E
L i t#∆ ∆=

, ( )In the above equation if i t
R
E

∆ =

, ( )then t
E
L i t

E
L

R
E

R
L

# #∆ ∆= = =

From the above analysis we can say that if the initial rate of rise of current is maintained then the current  
would have reached the steady value of E/R in a time of  ∆t = L/R, which is called time constant of RL circuit. 

R
LTime constant,` τ =

      .....(3.16)

From the above discussions we can say that the time constant of the RL circuit may be defined 

in different ways. The various definitions of time constants are summarised below:

Definitions of Time Constant of RL Circuit

 The time constant of the RL circuit is defined as the time taken by the current through the 

 inductance to reach a steady value if the initial rate of rise is maintained.

 The time constant of the RL circuit is defined as the ratio of inductance and resistance of 

 the circuit.

 The time constant of the RL circuit is defined as the time taken by the current through the 

 inductance to reach 63.21% of the final steady value.

 The time constant of the RL circuit is defined as the time taken by the voltage across the 

 inductance to fall to 36.79% of the initial value.

3.3.3   RL Transient with Initial Current I
0

Case i : When I
0
 is in a direction opposite to that of i(t)

Consider the RL circuit with initial current i(0−)  =  − I
0
 through 

inductor as shown in Fig. 3.24. Let the switch be closed at t  =  0. 

Let,   i(t)   =  Current through the RL circuit 

     v
R
(t)  =  Voltage across resistance, R

  v
L
(t)  =  Voltage across inductance, L

Now, the response i(t) of RL circuit shown in Fig. 3.24 is,

( )t
R
E e I ei 1

t t

0= − −x x
- -^ h    .....(3.17)

,
R
Lwhere Time constantτ = =

E
i(t)

vR(t)
+ _

vL(t)

t = 0
R L

Fig. 3.24.

+ _

+

E

I0
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Proof:

L L, ( ) ( ) ; ( ) ( ) ;Let i t I s t V sR Rν= =" ", ,

        
L ( ) ( ) ;t V s L E

s
E

L Lν = =" ", ,

The s-domain equivalent of the RL circuit is shown in Fig. 3.25. 

In Fig. 3.25, V
R
(s)  =  R I(s)                                      .....(3.18)

           V
L
(s)  =  sL I(s) + LI

0
                                     .....(3.19)

With reference to Fig. 3.25, by KVL, we can write,

( ) ( )V s V s
s
E

R L+ =  

( ) ( )R I s sL I s LI
s
E

0+ + =

( )R sL I s
s
E LI0+ = −^ h

( )L s
L
R I s

s

E sLI0
+ =

−` j

           ( )I s
s s

L
R

L
E sI0

` =

+

−

` j

By partial fraction expansion technique, the above equation can be expressed as,

( )I s
s s

L
R

L
E sI

s

K

s
L
R

K0
1 2

=

+

−

= +

+` j

K

s s
L

R

L

E
sI

s

s
L

R

L

E
sI

L

R

L

E

R

E

s 0 s 0

1

0 0

#=

+

−

=

+

−

= =

= =
` j

K

s s
L

R

L

E
sI

s
L

R

s

L

E
sI

L

R

L

E

L

R
I

R

E
I

s
L

R

s
L

R
2

0 0 0

0#=

+

−

+ =

−

=
−

+

= − +

=

=

−

−`
` `

j
j j

( )I s
s
R
E

s
L
R

R
E I

R
E

s R
E I

s
L
R

1 10

0` = −

+

+

= − +

+` ` fj j p
   

Let us take the inverse Laplace transform of the above equation.

L L( )I s
R
E

s R
E I

s
L
R

1 11 1
0` = − +

+

- - ` fj p" *, 4

Using equations (3.18) and (3.19)

I(s)

Ll0sL

VR(s)

VL(s)

sL l(s)

E

s

+ _

R

Fig. 3.25.

+ _

+
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+ _

+ E+ E
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L L( )i t
R
E

s R
E I

s
L
R

1 11
0

1
` = − +

+

- -` j$ *. 4            R

E

R

E
I e L

R
t

0= − +
−` j            R

E

R

E
e I eL

R
t

L

R
t

0= − −

− −     R

E
e I e1 L

R
t

L

R
t

0= − −

− −^ h      
( )i t

R
E e I e1

t t

0` = − −x x
− −^ h        

R
Lwhere, Time constantτ = =

Let us examine the values of i(t) at t = 0+ and t = ∞. 

0 , (0 )t
R
E e I e

R
E I IiAt 1 1 1 10

0
0

0 0#= = − − = − − = −

+ + a ak k

, ( ) 0t
R
E e I e

R
E I

R
EiAt 1 1 00 0 #3 3= = − − = − − =

3- 3-a ak k

From the above analysis we can say that the current i(t) has a component due to I
0
, which 

decays exponentially to zero as time t tends to infinity.

Also, on comparing the above results with the RL transient without initial current, we can 

conclude that the steady state value is not affected by the initial current in the inductance. 

Case ii : When I
0
 is in the same direction as i(t)

Consider the RL circuit with initial current, i(0−) = +I
0
 through 

the inductor as shown in Fig. 3.28, 

The response of this circuit can be obtained from case (i) by 

replacing I
0
 by − I

0
.

On replacing I
0
 of equation (3.17) by −I

0
, we get,

( )t
R
E e I ei 1

t t

0= − +
− −
x x

a k           .....(3.20)

Let us examine the values of i(t) at t = 0+ and t = ∞.

0 , (0 )t
R
E e I e

R
E I IiAt 1 1 1 10

0
0

0 0#= = − + = − + =
+ + a ak k

, ( ) 0t
R
E e I e

R
E I

R
EiAt 1 1 00 0 #3 3= = − + = − + =

3- 3−a ak k

L

L

s

e
s a

1
1

1at

=

=
+

-

"

"

,

,

E

R

i(t)

EI
0

t
0

Fig. 3.27 : i(t) Vs t.

E i(t)

I0

t = 0
R L

Fig. 3.28.

+

E

E

R

+

-

I0

Fig. a : Initial condition.

E

R

+

-

SC

i( )¥ =

E

R

Fig. b : Final condition.

Fig. 3.26 : Initial and final condition of the RL circuit of Fig. 3.24.

i( )0 0
+

= -I
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From the above analysis we can say that the current i(t) has a 

component due to I
0
, which decays exponentially to zero as time t tends to 

infinity.

Also, on comparing the above results with the RL transient without 

initial current, we can conclude that the steady state value is not affected by 

the initial current in the inductance. 

Note : When initial flux is specified in terms of weber-turns Ψ then the initial current can be

calculated using the relation, .L
I

Ψ
=

   ∴ Initial current, ,I
L

0
0Ψ

=  where Ψ
0
 is the initial flux linkage.

3.4    Transient Response of RC Circuit

3.4.1   Natural or Source-Free Response of RC Circuit

Consider the RC circuit with initial voltage, v
C
(0−) = −V

0
 across the capacitor as shown in 

Fig. 3.31. Let the switch be closed at t  =  0. 

Let,   i(t)   =  Current through the RC circuit 

     v
R
(t)  =  Voltage across resistance, R

  v
C
(t)  =  Voltage across capacitance, C

Now the transient equations of the source-free RC circuit shown 

in Fig. 3.31 are,

( )t V e
t

C 0ν = − x
-

     .....(3.21)

( )t
R
V

ei
t

0
= x

-

     

( )t V e
t

R 0ν = x
-

where,  t  =  RC  =  Time constant of the RC circuit   ......(3.22)

Equation (3.21) is called source-free response of the RC circuit.

Note : It can be proved that Ohm × Farad has the unit of time and so the unit of time constant 

        is seconds.

E

R

i(t)

I
0

t

I
E

R
0
`

i(t)

t

I
E

R
0
b

E

R

I
0

Fig. 3.30 : i(t) Vs t.

C

i(t)

+ _

vC(t)

t = 0
R

Fig. 3.31.

+ _

vR(t)

V0
+E

R

E

+

-

I0

Fig. a : Initial condition.

E

R

+

-

SC

Fig. b : Final condition.

Fig. 3.29 : Initial and final condition of the circuit of Fig. 3.28.

i( )¥ =

E
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Proof:

The s-domain equivalent of the RC circuit is shown in Fig. 3.32. 

With reference to Fig. 3.32, we can write,     ( )I s
R

sC

s

V

1

0

=

+

    ⇒    ( )I s
s

sC
sRC

V

1
0

=
+c m

( )I s

C
sRC

V

C
RC s

RC

V

1 1 1 1
0 0

`

#

=

+

=

+^ `h j

             R s
RC

V

1

0
=

+` j

Let us take the inverse Laplace transform of the above equation.

L L( )I s
R s

RC

V

1
1 1 0

=

+

- -

` j" *, 4    ⇒    L( )i t
R

V

s
RC
1

10 1
=

+

- * 4
( )i t

R

V
e

R

V
eRC

t t
0 0

` = = x
- -       

where, τ = RC = Time constant of the RC circuit.

The equations for n
C

(t) and n
R

(t) can be obtained using the equation of i(t), as shown below: 

( ) ( )t
C

i t dt
C R

V
e dt

RC

V e1 1
1

t
t

0 0
Cν

τ

= = =

−

−
−

x
x# #

                       RC

V
e

RC

V
RC e V e

t t t
0 0

0τ= − = − = −

− − −

x x x    
( ) ( )t Ri t R

R

V
e V e

t t

R
0

0#ν = = =x x

- -

Let us calculate the voltage across the capacitance v
C
(t) for various values of time constant 

using equation (3.21).

1 , ( ) 0.368t t V e V e VvAt
1

C 0 0
1

0τ= = − = − = −
−

x

x
-

2 , ( ) 0.135t t V e V e VvAt
2

C 0 0
2

0τ= = − = − = −
−

x

x
-

3 , ( ) 0.05t t V e V e VvAt
3

C 0 0
3

0τ= = − = − = −
−

x

x
-

4 , ( ) 0.018t t V e V e VvAt
4

C 0 0
4

0τ= = − = − = −
−

x

x
-

5 , ( ) 0.007t t V e V e VvAt
5

C 0 0
5

0τ= = − = − = −
−

x

x
-

From the above analysis, we can say that the initial voltage exponentially decays to zero as 

time t tends to infinity.

L e
s a

1at
=

+

-" ,

I(s)

V

s

0
R

Fig. 3.32.
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0 1t 2t 3t 4t 5t
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-V
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Fig. 3.33 : v (t) Vs t.C

t
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3.4.2   Step Response of RC Circuit

(Response of RC Circuit Excited by DC Supply)

Note : A step voltage applied at t = 0 is equivalent to switching dc supply at t = 0.

Consider the RC circuit with no initial capacitor voltage and excited by a step voltage of E 

volts as shown in Fig. 3.34. Let the switch be closed at t  =  0. 

Let,   i(t)   =  Current through the RC circuit 

     v
R
(t)  =  Voltage across resistance, R

  v
C
(t)  =  Voltage across capacitance, C

Now, the transient equations of the RC circuit excited by a dc 

source shown in Fig. 3.34 are,

( )t E e1
t

Cν = − x
-^ h   .....(3.23)

( )t
R
E ei

t
= x

-

( )t Ee
t

Rν = x
-

where,  t  =  RC  =  Time constant of the RC circuit.  .....(3.24)

Equation (3.23) is called forced response of the RC circuit when excited by a dc source.

Proof:

L L L, ( ) ( ) ; ( ) ( ) ; ( ) ( ) ;Let i t I s t V s t V s L E
s
E

R R C Cν ν= = = =" " " ", , , ,

The s-domain equivalent of the RC circuit is shown in Fig. 3.35. 

With reference to Fig. 3.35, by voltage division rule, we can write,

( )V s
s
E

R
sC

sC
s
E

sC
sRC

sC
s
E

RC s
RC

1

1

1

1

1
1

C # # #=

+

=
+

=

+` j

( )V s
s s

RC

RC
E

1
C` =

+` j

By partial fraction expansion technique, the above equation can be expressed as,

( )V s
s s

RC

RC
E

s

K

s
RC

K

1 1
C

1 2
=

+

= +

+` j

K

s s
RC

RC

E

s

s
RC

RC

E

RC

RC

E

E
1 1 1

s 0 s 0

1 #=

+

=

+

= =

= =
` j

(AU May’15, 8 Marks)

E

C

i(t)

+ _

vC(t)

t = 0
R

Fig. 3.34.

+ _

vR(t)

+

E

I(s)

Fig. 3.35.

1

sC

+ _

V (s)R V (s)C

R

+ _

+

E

E
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K

s s
RC

RC

E

s
RC s

RC

E

RC

RC

E

E
1

1

1

s
RC

1

s
RC

1
2 #=

+

+ = =
−

= −

=

=

−

−`
`

j
j

( )V s
s
E

s
RC

E
1

C` = −

+

Let us take the inverse Laplace transform of the above equation.

L L( )V s
s
E

s
RC

E
1

1
C

1
= −

+

- -" *, 4    ⇒   L L( )t E
s

E
s

RC

1
1

1
C

1 1
ν = −

+

- -$ *. 4
( )t E Ee RC

t

Cν = −
−     ⇒   ( )t E e1 RC

t

Cν = −
-^ h

( )t E e1
t

C` ν = −
−

x
^ h      .....(3.25)

where, τ  =  RC  =  Time constant of the RC circuit. 

If n is the voltage across capacitance then the current i through the capacitance is given by, .i C
dt

dv
=

( ) ( )i t C
dt
d tC` ν=            C
dt

d
E e1

t

= −

−

x
^ h6 @

( )i t C E e 1t
` #

τ

= − −
−

x
^ `h j            C

Ee
RC

C
Ee

t t

# #
τ

= =
− −

x x

( )i t
R
E e

t
` =

−

x         
With reference to Fig. 3.34, by KVL, we can write,

     n
R

(t) + n
C

(t)  =  E 

∴ n
R

(t)  =  E − n
C

(t)              E E e1
t

= − −

−

x
^ h

( )t Ee
t

R` ν =
−

x         

Initial and Final Conditions

Let us examine the values of current and voltages of an RC circuit excited by a dc source,  

at t  =  0+ and at t  =  ∞.

0 , 0At t E e Ev 0 1 1 1C
0

= = − = − =

+ +a a ak k k

0 ,At t
R
E e

R
E

R
Ei 0 1

0
#= = = =

+ +a k

0 , 1At t Ee E Ev 0R
0

#= = = =
+ +a k

L

L

s

e
s a

1
1

1at

=

=
+

-

"

"

,

,

Using equation (3.25)
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, ( )At t E e E Ev 1 1 0C3 3= = − = − =

3-a ak k

, ( )At t
R
E e

R
Ei 0 0#3 3= = = =

3-

, ( ) 0 0At t Ee EvR #3 3= = = =
3-

From the above analysis we can infer that, “at t  =  0+, the voltage across capacitance is 

zero and so it behaves as short circuit. At t  =  ∞, the current through the capacitance is zero and 

so it behaves as an open circuit”.

The condition of the circuit at t  =  0+ is called the  initial condition and the condition of the 

circuit at t  =  ∞ is called the final condition. 

In the transient equations of the RC circuit, the term containing e
t−
x  tends to zero as t tends 

to infinity and so the term containing e
t−
x   is the natural response (or complementary function 

or transient part).

The term E is the steady state value of v
C
(t) and steady state value of i(t) and v

R
(t) are zero.

Let us examine the values of voltages and current when t is equal to one time constant.

1 , ( ) 0.6321t t E e E e EvAt 1 1
1 1

Cτ= = − = − =x

x
- -b al k

1 , ( ) 0.t t
R
E e

R
E e

R
EiAt 3679

1 1
τ= = = =x

x
- -

1 , ( ) 0.3679t t Ee Ee EvAt
1 1

Rτ= = = =x

x
- -

From the above calculations we can say that, “the voltage across the capacitance rises from 

zero to 63.21% of steady value in a time of one time constant”. Also we can say that, “the current 

through the capacitance falls from initial value to 36.79% of initial value in a time of one time 

constant”. These two measures are used to define the time constant.

Theoretically, the circuit attains steady state only at an infinite time. But for practical purposes, 

we can show that the circuit attains steady state in a time of five time constants. Let us calculate 

v
C
(t) for various values of time in multiples of the time constant as shown below:

1 , ( ) 0.6321t t E e E e EvAt 1 1
1 1

Cτ= = − = − =x

x
- -b al k

2 , ( ) 0.8647t t E e E e EvAt 1 1
2 2

Cτ= = − = − =x

x
- -b al k

Fig. 3.36 : Initial and final condition of RC circuit of Fig. 3.34.

Fig. a : Initial condition. Fig. b : Final condition.

i( ) = 0¥

vR( ) = 0¥ vC( ) = E¥

E

+ _

R

+

-

+ _
OC

i( )0+ =

E

R

E

+ _

R

+

-

+ _

SC

vR E( )0+ = vC E( )0+ =
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3 , ( ) 0.9502t t E e E e EvAt 1 1
3 3

Cτ= = − = − =x

x
- -b al k

4 , ( ) 0.9817t t E e E e EvAt 1 1
4 4

Cτ= = − = − =x

x
- -b al k

5 , ( ) 0.9933t t E e E e EvAt 1 1
5 5

Cτ= = − = − =x

x
- -a ak k

From the above calculations we can say that the voltage v
C
(t) approximately reaches steady 

value in a time of five time constants. Hence, for all practical purposes, the transient period is 

assumed to be for a duration of five time constants and after five time constants the circuit is said 

to be in a steady state. 

          

Time Constant

The time constant of an RC circuit is defined as the time taken by the capacitor voltage to 

reach a steady state if the initial rate of rise is maintained. It can be proved that the time constant,  

t = RC, for an RC circuit.

Proof:

In the RC circuit, the capacitance delays the rate of rise of voltage. The rate of rise of voltage is obtained by  
differentiating v

C
(t) with respect to t.

, ( )Here v t E e1
t

c = − x
-^ h

On differentiating v
C
(t) with respect to t, we get,

    ( )
dt
d v t

dt
d E e1

t

c = − x
-^ h    ⇒   ( )

dt
d v t E e 1t

c
τ

= − −x
-^ `h j

( )
dt
d v t E e

t

c`
τ

= x
-

The value of  
( )

dt

dv tc  at t = 0+ is the initial rate of rise of voltage.

( )
1

dt

dv t E e E
RC
E

t 0

c 0
` #

τ τ

= = =

=
+

E

0.6321E

0.2E

0 1t 2t 3t 4t 5t
t

Transient state Steady state

0.3679 E/R

0.2 E/R

0 1t 2t 3t 4t 5t
t

i(t)vC(t)

E

0.3679E

0.2E

0 1t 2t 3t 4t 5t
t

vR(t)

Fig. a : v (t) vs t.C
Fig. b : i(t) vs t. Fig. c : v (t) vs t.R

Fig. 3.37 : The sketch of transient current and voltages of the RC circuit of Fig. 3.34.

E
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( ) ( )
,

dt

dv t

t

v t
For small time intervals, c c

∆

∆
=  and so using the above equation we can write,

( ) ( )

dt

dv t

t

v t

RC
E

t 0

c c

∆

∆
= =

=
+

         ⇒         ( )t
E
RC v tC#∆ ∆=

( )v t EIn the above equation if, C∆ =

( )t
E

RC v t
E

RC E RCthen, C# #∆ ∆= = =

From the above analysis we can say that if the initial rate of rise of voltage is maintained then the voltage  
would have reached the steady value of E in a time of ∆t = RC, which is called time constant of the RC circuit.

∴  Time constant,  t = RC       .....(3.26)

From the above discussions we can say that the time constant of the RC circuit may be 

defined in different ways. The various definitions of time constants are summarised here.

Definitions of Time Constant of RC Circuit

 The time constant of the RC circuit is defined as the time taken by the voltage across the 

 capacitance to reach a steady value if the initial rate of rise is maintained.

 The time constant of the RC circuit is defined as the product of resistance and capacitance 

 of the circuit.

 The time constant of the RC circuit is defined as the time taken by the voltage across the

 capacitance to reach 63.21% of the final steady value.

 The time constant of the RC circuit is defined as the time taken by the current through the 

 capacitance to fall to 36.79% of the initial value.

3.4.3   RC Transient with Initial Voltage V
0

Case i : When polarity of V
0
 is opposite to that of v

C
(t)

Consider the RC circuit with initial voltage, v
C
(0 −)  =  −V

0
 across 

the capacitor as shown in Fig. 3.38. Let the switch be closed at t  =  0. 

Let,   i(t)   =  Current through the RC circuit 

     v
R
(t)  =  Voltage across resistance, R

  v
C
(t)  =  Voltage across capacitance, C

Now, the response n
C
(t) of the RC circuit shown in Fig. 3.38 is,

( )t E e V e1
t t

C 0ν = − −x x
- -^ h

      .....(3.27)

where,  t = RC = Time constant.

V0

E i(t)

+ _

vC(t)

t = 0
R

Fig. 3.38.

+ _

vR(t)

+

E

+E
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Proof:

L L L L, ( ) ( ) ; ( ) ( ) ; ( ) ( ) ;Let i t I s t V s t V s E
s
E

R C CRν ν= = = =" " " ", , , ,

The s-domain equivalent of the RC circuit is shown in Fig. 3.39. 

With reference to Fig. 3.39, the expression for current I(s) can be written as,

     ( )I s
R

sC

s
E

s

V

1

0

=

+

+     ⇒   ( )I s
s
E

s

V

sC
sRC s

E
s

V

sRC
sC

1
1

1
0 0
# #= +

+
= +

+
c cm m

( )I s
s
E

s

V

RC s
RC

sC
s
E

s

V

R s
RC

s
1 1

0 0
` #= +

+

= +

+

c
`

c
`

m
j

m
j

            R

E

s
RC

R

V

s
RC

1

1

1

10
=

+

+

+` `j j  .....(3.28)

By Ohm’s law, we can write, V
R
(s) = R I(s)  .....(3.29)

With reference to Fig. 3.39, by KVL, we can write,    ( ) ( )V s V s
s
E

R C+ =

( ) ( )V s
s
E V sC R` = −     

               ( )
s
E RI s

s
E R

R
E

s
RC

R

V

s
RC

1
1

1
10

= − = −

+

+

+` `j j> H

               s

E
E

s
RC

V

s
RC

1

1

1

1
0= −

+

−

+` `j j

Let us take the inverse Laplace transform of the above equation.

L L( )V s
s
E E

s
RC

V
s

RC
1

1
1

11
C

1
0` = −

+

−

+

- -

` `j j" *, 4

L L L( )t E
s

E
s

RC

V
s

RC

1
1

1
1

1
C

1 1
0

1
` ν = −

+

−

+

- - -$ * *. 4 4               E Ee V eRC

t

RC

t

0= − −

- -                       E e V e1
t t

0= − −x x
- -^ h       

where, τ  =  RC  =  Time constant.

Using equations (3.28) and (3.29)
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Let us examine the values of n
C
(t) at t = 0+ and t = ∞

At t  =  0+,   v
C
(0+)  =  E (1 − e0) − V

0
 e0  =  E (1 − 1) − V

0
 × 1  =  − V

0

At t  =  ∞,    v
C
(∞)  =  E (1 − e−∞) − V

0
 e−∞  =  E (1 − 0) − V

0
 × 0  =  E

From the above analysis, we can say that the voltage v
C
(t) has a component due to V

0
, which 

decays exponentially to zero as time t tends to infinity.

Also, on comparing the above results with the RC transient without initial voltage, we can 

conclude that the steady state value is not affected by the initial voltage in the capacitance. 

Case ii : When the polarity of V
0
 is same as that of v

C
(t)

Consider the RC circuit with initial voltage, v
C
(0−) = + V

0 
 as 

shown in Fig. 3.42. 

The response of this circuit can be obtained from case (i)  

by replacing V
0
 by −V

0
.

On replacing V
0
 of equation (3.27) by −V

0
, we get,

( )t E e V ev 1
t t

C 0= − +x x
- -a k    .....(3.30)

Let us examine the values of n
C
(t) at t = 0+ and t = ∞.

At t  =  0+,   v
C
(0+)  =  E (1 − e0) + V

0
 e0  =  E (1 − 1) + V

0
 × 1  =  V

0

At t  =  ∞,   v
C
(∞)  =  E (1 − e −∞) + V

0
 e−∞  =  E (1 − 0) + V

0
 × 0  =  E

From the above analysis we can say that the voltage v
C
(t) has a component due to V

0
, which 

decays exponentially to zero as time t tends to infinity.

Also, on comparing the above results with the RC transient without initial voltage, we can 

conclude that the steady state value is not affected by the initial voltage in the capacitance. 

vC(t)

EV
0

t

E

Fig. 3.41 : Vs t.v (t)C

V0

E i(t)

vC(t)

t = 0
R

Fig. 3.42.

+ _

+

E

+ _

i( ) = 0¥

Fig. a : Initial condition.

E

Fig. b : Final condition.
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+
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+ _
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+

-

+ _
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i( )0 0+
=

+E V
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Fig. 3.40 : Initial and final condition of RC circuit of Fig. 3.38.
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R
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SC

SC
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OC
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I
0

SC
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+ E+ E

V
0

+E

R

L

I0

L

I0

L

C

V0

C

+ _

C

V0
+_

Note : When initial charge is specified, the initial voltage can be 

calculated using the relation, .C
V

Q
=  

∴ Initial voltage, ,V
C

Q
0

0
=  where Q

0
 is the initial charge.

Table 3.3 : Initial and Final Condition of R, L and C when a Circuit is Excited by DC Supply

Element      Initial condition Final condition

        t = 0+  t = ∞ 

 

vC(t)

V
0

t

E
V > E

0

V
0

t

E

V < E
0

vC(t)

Fig. 3.44 : v (t) Vs t.C

Fig. 3.43 : Initial and final condition of the circuit of Fig. 3.42.

Fig. a : Initial condition. Fig. b : Final condition.
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3.5    Transient Response of RLC Circuit 

3.5.1   Natural or Source-Free Response of RLC Circuit

Consider the RLC circuit with initial voltage across the capacitor as shown in Fig. 3.45. 

Let the switch be closed at t  =  0. Let i(t) be the current through the circuit. Let V
0
 be the initial 

voltage across the capacitor before closing the switch.

The s-domain equivalent of the RLC circuit is shown in Fig. 3.46. 

With reference to Fig. 3.46, we can write,

( )I s
R sL

sC

s
V

1

0

=

+ +

( )I s
sR s L

C

V
12

0
=

+ +

( )I s
L
V

s
L
R s

LC
1

10

2
` =

+ +
f p

    .....(3.31)

The denominator of equation (3.31) is a quadratic polynomial and the roots of the  

quadratic polynomial may be real or complex. Hence, the solution of equation (3.31) will 

depend on the roots of the denominator polynomial. The solution of equation (3.31) is the 

source-free response and this solution will be in the form similar to that of the step response  

discussed in Section 3.5.2.

3.5.2   Step Response of RLC Circuit 

(Response of RLC Circuit Excited by DC Supply)

Note : A step voltage applied at t = 0 is equivalent to switching dc supply at t = 0.

Consider the RLC circuit with no initial current or  

voltage and excited by a step voltage of E Volts as shown in  

Fig. 3.47. Let the switch be closed at t  =  0. 

Let,  i(t) = Current through the RLC circuit.

i(t)

t = 0

Fig. 3.45.

R L

+E

C

V0

I(s)

sL

V

s

0

Fig. 3.46.

+E

1

sCR

E
i(t)

t = 0
R

Fig. 3.47.

CL

+

E
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The response i(t) of the RLC circuit excited by a dc source (as shown in Fig. 3.47) will take 

three different forms, as shown below:

( ) sind t
L
E e tiUnder amped response:

d
d

tn

ω

ω=
g~-

   .....(3.32)

( ): t
L
E teiCritically damped response tn

=
~-

    .....(3.33)

( )t ei =:
L

E e eOverdamped response
2 1

t t1 1

2
n

tn
2 2

n n

ω ζ −
−~ g ~ g- - -g~- ^ h    .....(3.34)

, R
L
Cwhere Damping ratio

2
ζ = =     .....(3.35)

       LC

1 Natural frequency of oscillationnω = =
  .....(3.36)

          Damped frequency of oscillation1d n
2

ω ω ζ= − =                       .....(3.37)

Response of RLC Circuit Excited by DC Supply in s-domain 

L L( ) ( ) ;, t I s E
s
EiLet = =% %/ /

The s-domain equivalent of the RLC circuit is shown 

in Fig. 3.48. 

With reference to Fig. 3.49, we can write,

( )I s
R sL

sC

s
E

1
=

+ +

    ⇒   ( )I s
sR s L

C

E
12

=

+ +

( )I s
L
E

s
L
R s

LC
1

1
2

` =

+ +
f p     .....(3.38)

Equation (3.38) is the s-domain response of the RLC circuit excited by a dc supply. Equation 

(3.38) can be expressed in terms of damping ratio ζ and natural frequency of oscillation ω
n
 as 

shown below:

2 2 2 2 2
L

R

L

R

L L

R

C

L

R

L C

R

L

C

LC2 2
2

1

2

1
n# # # # # # ζω= = = = =

LC LC

1 1 1
2

n

2
ω

= =

^ h

( )
2

I s
L
E

s
L
R s

LC
L
E

s s1
1 1

2 2
n n

2
`

ζω ω
=

+ +
=

+ +
   .....(3.39)
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Damping Ratio

Consider the s-domain response I(s) of the RLC circuit excited by a dc supply as shown below:

( )I s
L
E

s
L
R s

LC
1

1
2

=

+ +

Let us examine the roots of the second order polynomial, s
L

R
s

LC

12
+ +  in the above equation.

Let, s
1
 and s

2
 be the roots of the second order polynomial, s

L

R
s

LC
0

12
=+ +

,s s
L
R

L
R

LC

L
R

L
R

LC2

4

2 2
1 4

4
1 1

1 2

2

2

`

!

!=

− −

= − −

d
d

n
n> H

             L

R

L

R

LC2 2

1
2

!= − −d n
     .....(3.40)

The above roots of the denominator polynomial may be complex or real depending on the 

value of R, L and C. Hence, we may come across the following three cases:

Case i       :  When ,
L

R

LC2

1
<

2

` j the  term
L

R

LC2

12

−` j  will be imaginary and  roots will be complex conjugate.

Case ii  : When ,
L

R

LC2

12

=` j the term 
L

R

LC2

12

−` j  will be zero and so the roots will be real and equal.

Case iii :  When ,
L

R

LC2

1
>

2

` j  the  term 
L

R

LC2

12

−` j  will be positive and so the roots will be real and unequal.

“When the roots are complex, the current i(t) will be damped oscillatory (or damped sinusoid). 

When roots are real, the oscillations are completely damped (or eliminated).”

When the term 
L

R

2

2d n  is equal to 
LC

1 , the oscillations are just eliminated and this condition is 

called critical damping. Critical damping can be achieved by choosing a value of R that makes 

the term   
L

R

2

2d n  equal to 
LC

1  for a given value of L and C.

Let, R
C
 = Value of R for critical damping.

∴  At critical damping,

0
L

R

LC2

1C
2

− =c m    ⇒    
L

R

LC2

1C
2

=c m    ⇒   
L

R

LC2

1C
=    ⇒   R L

LC
2

1
C #=

2R
C

L
C` =       .....(3.41)

From equation (3.38)
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The ratio of resistance of the circuit and resistance for critical damping (critical resistance, R
c 
) 

is called damping ratio and denoted by ζ.

,
R
R

C
L

R R
L
CDamping ratio

2
2C

` ζ = = =

R

L

C

2
` ζ =

       .....(3.42)

Natural Frequency of Oscillation

In an RLC circuit, if the resistance is zero then from equation (3.40), we can say that the 

roots are purely imaginary and the current will be completely oscillatory.

0, ,When R s s
LC

j1
1 2 n

2
! ! ω= = − =

LC

1where, Natural frequency of oscillation.nω = =  .....(3.43)

On substituting the condition R = 0 in equation (3.38), we get,
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On taking the inverse Laplace transform of the above equation, we get,
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L
E ti n
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From equation (3.43) we can say that current i(t) is completely oscillatory with a frequency 

ω
n
 in the absence of resistance and so this frequency of oscillation is called natural frequency 

of oscillation.

Also, when R = 0, the damping ratio, ζ = 0 and so equation (3.44) is called undamped 

response of the RLC circuit excited by a dc supply.

Condition for Three Cases of Response in Terms of Damping Ratio

Consider the s-domain response I(s) of the RLC circuit excited by a dc supply as shown below:
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2
 be the roots of the second order polynomial, 2 0.s s
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s
2 2
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ω

ω
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% /

From equation (3.39)
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Depending on the value of ζ the roots may be real or complex.

Case i : If 0 < ζ < 1, then ζ < 1 and ζ 
2
 is also less than 1. Hence, 1

2
ζ −  is imaginary and so 

   the roots are complex conjugate. In this case the current i(t) will be damped oscillatory.

Case ii : If ζ  =  1, then 01
2
ζ − =  and so the roots are real and equal. In this case, the oscillation 

   of the current is just eliminated and so the response is called critically damped response.

Case iii : If ζ > 1, then 1
2
ζ −  is real and so the roots are real and unequal. In this case, the response 

   is called overdamped response.

The equations for time domain response of the RLC circuit for the above three cases are 

presented here.

Note : Here the current i(t) is referrd as time domain response.

Case i : Underdamped response (0 < ζ < 1)

The time domain response i(t) of the RLC circuit excited by a dc supply, as shown in  

Fig. 3.47, when damping ratio ζ lies between 0 to 1 is given by equation (3.45).

( ) sint
L
E e ti t

d
d

n

ω

ω=
g~-

      .....(3.45)

, .where Damped frequency of oscillation1d n
2

ω ω ζ= − =  .....(3.46)

Equation (3.45) has a sinusoidal component of frequency ω
d
. The sinusoidal oscillations 

are damped by the exponential term .e
t
n

g~-  Hence, “the current i(t) will have damped oscillations, 

whose amplitude decays to zero as t tends to infinity”. Therefore, equation (3.45) is called damped 

oscillatory response or underdamped response. 

i i i(t) = (t) (t)1 2´

t

Fig. c : Underdamped
response of the RLC circuit.

Fig. 3.50 : Underdamped response of the RLC circuit of Fig. 3.47.

t

Fig. b : Sinusoidal
component.

i2 d(t) sin t= w

Þ

i1
nt(t) e=

-E

L dw

zw

t

Fig. a : Decaying exponential
component.

´
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Proof:

The s-domain response, I(s) of the RLC circuit excited by dc supply is,

( )I s
L
E

s s2

1
2

n n
2

ζω ω
=

+ +        
L

E

s s2

1
2

n
2 2

n

2

n

2

n

2ζω ζ ω ζ ω ω
=

+ + − +

( )I s
L
E

s s2 1

1
2

n
2 2

n
2

n
2

`

ζω ζ ω ω ζ
=

+ + + −` ^j h             L

E

s L

E

s

1

n
2

d n
2

d

d

2

d

2ζω ω ω ζω ω

ω
=

+ +
=

+ +^ ^h h

Let us take inverse Laplace transform of the above equation.
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            sin
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Case ii : Critically damped response ( ζ = 1)

The time domain response i(t) of the RLC circuit excited by a dc supply, as shown in 

Fig. 3.47, when damping ratio ζ is equal to 1 is given by equation (3.47).

( )t
L
E t ei tn=

~-

      .....(3.47)

Equation (3.47) has a ramp component and decaying exponential component. “Initially 

the current rises due to ramp component and then it gradually decays to zero due to exponential 

component”. The sketch of i(t) for critically damped case is shown in Fig. 3.51.

From equation (3.39)

Add and subtract 

the term 2
n
2

ζ ω

2a b a b ab
2 2 2

+ = + +^ h
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2 2
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´

i1(t) t=

t

Fig. a : Ramp
component.

i i i(t) (t) (t)1 2= ´

t

Fig. c : Critically damped
response.

Fig. 3.51 : Critically damped response of the RLC circuit of Fig. 3.47.

t

Fig. b : Decaying exponential
component.
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-
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Proof:

The s-domain response, I(s) of the RLC circuit excited by dc supply is,
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+ +^ h        L
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Let us take inverse Laplace transform of I(s).

L L( )I s
L
E

s

1
2

1 1

nω
=

+

- -

^ h" ', 1       L( )i t
L
E

s L
E te1

2

t1

n

n`
ω

=

+

=
~- -

^ h' 1

Case iii : Overdamped response (ζ > 1)

The time domain response i(t) of the RLC circuit excited by a dc supply, as shown in 

Fig. 3.47, when damping ratio ζ is greater than 1 is given by equation (3.48).

( )t
L

E e e ei
2 1

t t t1 1
2 2

n
2

n n n

ω ζ
=

−
−g~ ~ g ~ g- - - -^ h   .....(3.48)

Equation (3.48) is called overdamped response of the 

RLC circuit excited by a dc supply. The decaying exponential 

component e tng~-  in equation (3.48) will make the current i(t) to 

zero as t tends to infinity. “Since the circuit is overdamped, the 

current decays at a faster rate than the underdamped or critically 

damped RLC circuit”.

Proof:

The s-domain response I(s) of the RLC circuit excited by a dc supply is,
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Using the above roots of the denominator polynomial, the s-domain response I(s) can be written as,
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s s L
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By partial fraction expansion technique, the above equation can be expressed as,
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For critical damped case ζ = 1

From equation (3.39)
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From equation (3.39)

t

Fig. 3.52 : Overdamped response
of the RLC circuit.

i(t)
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Using equations
(3.49) and (3.50)
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The time domain response, i(t) is obtained by taking inverse Laplace transform of equation (3.51) as shown below:
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On substituting the expressions for s
1
, s

2
, K

1
 and K

2
 in the above equation, we get
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3.5.3   s-Domain Current and Voltage Equation of RLC Circuit

Consider the RLC circuit excited by a dc supply and its s-domain equivalent as shown 

in Fig. 3.53. 

Let,   i(t)   =  Current through the RLC circuit in time domain 

     v
R
(t)  =  Voltage across resistance in time domain

  v
L
(t)  =  Voltage across inductance in time domain

  v
C
(t)  =  Voltage across capacitance in time domain

In RLC series circuit we are interested in the initial and final value of i(t), v
R
(t), v

L
(t) and 

v
C
(t). The initial and final condition can be evaluated using the initial and final value theorem of 

Laplace transform. In order to evaluate the initial and final conditions using Laplace transform 

technique, we require the current and voltage as s-domain functions.

Let,   I(s)   =  Current through the RLC circuit in s-domain 

     V
R
(t)  =  Voltage across resistance in s-domain

  V
L
(t)  =  Voltage across inductance in s-domain

  V
C
(t)  =  Voltage across capacitance in s-domain

Using equations
(3.49) and (3.50)

L
( )

e
s a
1at

=

−

" ,
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The s-domain response I(s) of this circuit is given by equation (3.39).
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ζω ω
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With reference to Fig. 3.53, by using Ohm’s law and equation (3.52), we can get the following 

equations for voltage across R, L and C.
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In Summary,
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3.5.4   Initial Conditions in RLC Circuit

The initial value theorem of Laplace transform states that if F(s) is the Laplace transform of  

f (t) then the initial value of f(t) is given by,

( ) ( )Lt f t Lt sF s
t 0 s

=
" "3

(0) ( ), f Lt sF sInitial value
s

` =
"3

The initial value of current and voltage of the RLC circuit shown in Fig. 3.53 can be solved  

using the initial value theorem of Laplace transform as shown ahead.

vC(t)vL(t)vR(t)

E i(t)

t = 0
R

Fig. a : Time domain RLC circuit

C

+ E

L

+ E
+ E

+

E

R

I(s)

Fig. b : s-domain RLC circuit

+

E

E

s

1

sCsL

+ _ + _ + _

VR(s) VL(s) VC(s)

Fig. 3.53 : RLC circuit excited by dc supply.
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Initial Currrent in RLC Circuit
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Now, by initial value theorem of Laplace transform,
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Initial Voltage Across Resistor
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Now, by initial value theorem of Laplace transform,
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Initial Voltage Across Inductor

( ), ( ) .tv v vLet Initial value of inductor voltage t0
t 0

L L L= =
= +

+^ h

Now, by initial value theorem of Laplace transform,
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Using equation (3.52)

Using equation (3.53)

Using equation (3.54)
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Initial Voltage Across Capacitor
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Now, by initial value theorem of Laplace transform,
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Initial Condition Circuit

From the above analysis we can make the 

following conclusions:

• At t = 0+, the current through the inductance 

is zero and so it behaves as an open circuit.

• At t = 0+, the voltage across the capacitance 

is zero and so it behaves as a short circuit.      

3.5.5   Final Conditions in RLC Circuit

The final value theorem of Laplace transform states that if F(s) is Laplace transform of f (t) 

then the final value of f(t) is given by,

( ) ( )Lt f t Lt sF s
t s 0

=
" "3

( ) ( ), f Lt sF sFinal value
s 0

` 3 =
"

The final value of current and voltage of the RLC circuit shown in Fig. 3.53 can be solved 

using the final value theorem of Laplace transform as shown below:

Final Current in RLC Circuit
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Now, by final value theorem of Laplace transform,
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Using equation (3.55)

Using equation (3.52)

Fig. 3.54 : Initial condition circuit of the
RLC circuit shown in Fig. 3.53.
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Final Voltage Across Resistor
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Now, by final value theorem of Laplace transform,
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Final Voltage Across Inductor
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Now, by final value theorem of Laplace transform,
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Final Condition Circuit

From the above analysis we can make the following conclusions:

 At t = ∞, the voltage across the inductance 

  is zero and so it behaves as a short circuit.

 At t = ∞, the current through the capacitance 

  is zero and so it behaves as an open circuit.

Using equation (3.53)

Using equation (3.54)

Using equation (3.55)

LC

1
n

2
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vL( ) = 0¥
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vC( ) = E¥

Fig. 3.55 : Final condition circuit of the
RLC circuit shown in Fig. 3.53.
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3.6    Transient Response of Circuits Excited by Sinusoidal Source

3.6.1   RL Circuit Excited by Sinusoidal Source

Consider the RL circuit with no initial current and excited by 

a sinusoidal source e(t) = E
m
sinωt, as shown in Fig. 3.56. Let the 

switch be closed at t  =  0.

Let, i(t) = Current through the RL circuit

Now, the response, i(t) of the RL circuit excited by sinusoidal 

source as shown in Fig. 3.56 is,
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The s-domain equivalent of the RL circuit is shown in Fig. 3.57. With 
reference to Fig. 3.57, we can write,
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 By partial fraction expansion technique, the above equation of I(s) can be expressed as,
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On cross-multiplying equation (3.57), we get,
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In frequency domain, magnitude
of the impedance of RL circuit is

given by,      Z R L
2 2

ω= + _ i

∴  Z
2
  =  R

2
 + (ωL)

2

i(t)

t = 0
R L

Fig. 3.56.
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On equating coefficients of s2 term of equation (3.58), we get,

K
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On equating coefficients of s term of equation (3.58), we get,
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By using the expressions for K
1
, K

2
 and K

3 
, equation (3.57) of I(s) can be expressed as,
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Let us take the inverse Laplace transform of I(s).
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Let us construct a right-angled triangle with R and ωL as two sides as shown in Fig. 3.58. With reference to 
Fig. 3.58, we can write,

tan
R

Lφ ω=     ⇒   tan
R

L1
φ ω= -    .....(3.60) 

, cosAlso
Z
Rφ =       ⇒   cosR Z φ=    .....(3.61)

 sin
Z

Lφ ω=     ⇒   sinL Zω φ=    .....(3.62)

Using equations (3.60) to (3.62), equation (3.59) can be written as,
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3.6.2   RC Circuit Excited by Sinusoidal Source

Consider the RC circuit with no initial voltage and excited 

by a sinusoidal source e(t) = E
m
sinωt, as shown in Fig. 3.59. Let the 

switch be closed at t = 0. 

Let, i(t) = Current through the RC circuit

Now, the response i(t) of the RC circuit excited by a sinusoidal 

source as shown in Fig. 3.59 is,

( ) ( )sint
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E
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Z
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ti RC
t
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2
m m

ω
ω φ= − + +-

1 2 3444 444 1 2 3444 444

  

  .....(3.63)
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where 1 112
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Proof:
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The s-domain equivalent of the RC circuit is shown in Fig. 3.60. With reference 
to Fig. 3.60, we can write,
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By partial fraction expansion technique, the above equation of I(s) can be expressed as,
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 On cross-multiplying equation (3.64), we get,
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ω= + + + + +d n            .....(3.65)                                                    

In frequency domain, magnitude of the

impedance of RC circuit is given by,    Z R
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On equating coefficients of s2 term of equation (3.65), we get,
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On equating coefficients of s term of equation (3.65), we get,
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By using the expressions for K
1
, K

2
 and K

3 
, equation (3.64) of I(s) can be expressed as,
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Let us take the inverse Laplace transform of I(s).
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Let us construct a right-angled triangle with R and 
C

1

ω
 as two sides as shown in Fig. 3.61. With reference to

Fig. 3.61, we can write,
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Using equations (3.67) to (3.69), equation (3.66) can be written as,
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3.6.3   RLC Circuit Excited by Sinusoidal Source

Consider the RLC circuit with no initial current and 

voltage and excited by a sinusoidal source e(t) = E
m
sinωt, as 

shown in Fig. 3.62. Let the switch be closed at t = 0. 

Let,      i(t)   = Current through the RLC circuit

       L L( ) ( ) ; ( ) ( )t I s t E si e= =" ", ,

L L( ) ( ) sinE s t E t
s

E
e m 2 2

m
` ω

ω

ω
= = =

+

" ", ,

The s-domain equivalent of the RLC circuit is shown in Fig. 3.63. With reference to Fig. 3.63, 

we can write,
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The roots of the quadratic factor in the denominator of equation (3.70) may be real or 

complex. Hence, we may come across the following three cases of response.

Case i : The roots of quadratic are real and equal

Let,  ,s
L
R s

LC
s a12 2

+ + = +c ^m h  where s = −a, is the real root of the quadratic factor.

Now by partial expansion technique, equation (3.70) can be expressed as shown below :
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On taking inverse Laplace transform of equation (3.71), we get the time domain response 

shown in equation (3.72).
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where,  I
m1

 = Maximum value of steady state current.

Note : The evaluation of a, K
1 
, K
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, K

3 
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, I
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 and φ

1
 are left as exercise to the readers.
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Case ii : The roots of quadratic are real and unequal

Let,  s
L
R s

LC
s b s c12

+ + = + + ,c ^ ^m h h  where s = −b and s = −
 
c are the real roots of the

quadratic factor.

Now, by partial fraction expansion technique, equation (3.70) can be expressed as shown below:
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On taking inverse Laplace transform of equation (3.73), we get the time domain response 

shown in equation (3.74).
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where, I
m2

  =  Maximum value of steady state current.

Note : The evaluation of b, c, K
5 
, K

6 
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, K

8 
, I

m2
 and φ

2
 are left as exercise to the readers.

Case iii : The roots of quadratic are complex conjugate

When the roots are complex conjugate, the quadratic factor can be rearranged as shown in 

equation (3.75), and then by partial fraction expansion technique, equation (3.70) can be expressed 

as shown in equation (3.76).
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On taking inverse Laplace transform of equation (3.77), we get the time domain response 

shown in equation (3.78).
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3.7    Solved Problems in RL Transient

EXAMPLE 3.1

In the circuit of Fig. 1, a steady current of 5 A is established through the 

inductance by connecting it to a current source. At time t = 0, the current source 

is disconnected and switch S
1
 is closed to connect a 20 Ω resistance across the 

inductance. Find the expression for i (t) and sketch the response. Also draw the 

initial and final condition of the circuit.

SOLUTION

L, ( ) ( )Let t I si =" ,

The s-domain equivalent circuit is shown in Fig. 2. With reference to  

Fig. 2, we can write,
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s 10
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` =
+                                                                    .....(1)

Equation (1) is the s-domain response of the circuit. Let us take the inverse 

Laplace transform of I(s) to get the time domain response.
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At  t  =  ∞,  i (∞)  =  5 × e−∞  =  5 × 0  =  0

From the above analysis, we can say that at t = 0+, the initial current is 5 A and this current of 5 A 

exponentially decays to zero as t  tends to infinity. 
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EXAMPLE 3.2

In the RL circuit of Fig. 1, the switch is closed at  t = 0. Find the 

current i (t) and the voltage across resistance and inductance.

SOLUTION
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10 10
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The s-domain equivalent circuit is shown in Fig. 2. With reference 

to Fig. 2, we can write,
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By partial fraction expansion, I(s) can be expressed as,
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On taking the inverse Laplace transform of I(s), we get,
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 With reference to Fig. 1, by Ohm’s law, we can write,
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With reference to Fig. 1, by KVL, we can write,
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L
(t) = 10 − v

R
(t) 

                        
10 10 10e e V1 0.1

t

0.1

t

= − − =

- -c m
RESULT

, ( ) 2Current throughRL series circuit t ei A1 0.1
t

= −

-c m

Voltage across resistance,          ( ) 10t ev V1 0.1
t

R = −

-c m

Voltage across inductance,         ( ) 10t ev V0.1
t

L =

-

EXAMPLE 3.3

In the RL circuit of Fig. 1, the switch is closed at position-1 for a long 

time and then thrown to position-2 at time t = 0. Determine the response i(t).

SOLUTION

Case i : Switch in position-1

Since the switch remains closed at position-1 for a long time, the  

circuit might have attained a steady state. The steady state (final condition)  

of the RL circuit with switch in position-1 is shown in Fig. 2. Let the current in 

the circuit be I
0
.

 , 10Now I A
5
50

0 = =

Case ii : Switch in position-2

When the switch is changed from position-1 to position-2, a steady 

current I
0
 is flowing in the inductance. Since the inductance does not allow 

a sudden change in current, this steady current I
0
 will be the initial current 

when the switch is closed to position-2.

∴   i (0
–
) = i (0+) = I

0
 = 10 A

The time domain RL circuit with switch in position-2 is shown in Fig. 3.

L, ( ) ( )Let t I si =" ,

L,Also
s

50 50
=" ,

The s-domain equivalent of the circuit of Fig. 3 is shown in Fig. 4.

With reference to Fig. 4, by KVL, we can write,

( ) ( )I s sI s
s

5 2 20 50
+ + =

i(t)

t = 0

2
5�

2H

50V

1

Fig. 1.

+
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E
50V
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50V
+
E i(t)

I = 100 A

2H

Fig. 3.

+
-

5

2s

I(s)

LI

= 2 10
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Fig. 4.
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+
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Fig. 5 : i(t) Vs v (t).R
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Fig. 2 : Final condition with
switch in position-1.

+
E

SC



3. 50                                                Circuit Theory

         
( ) [ 2 ]I s s
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5 50 20+ = −

   
( ) 2I s s
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# + =
−a k
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( . )

I s
s s
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2 2 5
50 20

`
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          ( . )s s
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2 5
25 10

=
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By partial fraction technique, I (s) can be expressed as,

( )
( . ) .

I s
s s

s
s
K

s
K

2 5
25 10

2 5
1 2

=
+

−
= +

+

( . ) . .
10K

s s
s s

s
s

2 5
25 10
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2 5
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s 0 s 0

1 #=
+
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= =
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( . )
( . )

.

( . )
K

s s
s s

s
s

2 5
25 10 2 5 25 10

2 5

25 10 2 5
202

s 2.5 s 2.5

#
#

=
+

−
+ =

−
=

−

− −
= −

= =- -     

( )
.

I s
s s
10

2 5
20

` = −
+

On taking the inverse Laplace transform of I(s), we get,

L L( )
.

I s
s s
10

2 5
201 1

= −
+

- -" ', 1

        ∴  i(t)  =  10 – 20e–2.5t

0.4Time
R
L

ond
5
2constant, secτ = = =

     
( ) 10 10t e ei A1 2 1 21/2.5 0.4

t t

` = − = −

- -c cm m
               

At  t = 0+  ,  i(0+) = 10(1 − 2 × e0) = −10 A 

At  t = ∞  ,  i(∞)  = 10(1 − 2 × e
−∞

 ) = 10(1 − 2 × 0) = 10 A

EXAMPLE 3.4

In the RL circuit of Fig. 1, the switch is closed at t = 0. Find the current i (t) 

for t ≥ 0. Also determine 
( )
,

( )

dt

d t

dt

d ti i
2

2

 at t = 0+.

SOLUTION 

L L, ( ) ( ) . ,Let t I s Also
s

i 5 5
= =" ", ,

The s-domain equivalent circuit is shown in Fig. 2. With reference to  

Fig. 2, we can write, 

( )
.

I s
s

s
10 0 1

5

=
+

      .
.

( )s s s s
5

0 1
0 1
10

1
100

50
#=

+

=
+c m

L

L

A
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e
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=

=
+

-
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Fig. 5 : i(t) Vs t.
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By partial fraction expansion, I(s) can be expressed as,

( )
( )

I s
s s s

K
s
K

100
50

100
1 2

=
+

= +
+

( )
0.5K

s s
s

s100
50

100
50

100
50

1

s 0 s 0

#=
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+
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( ) 0.5K

s s
s
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50 100 50

100
50

2

s 100 s 100

#=
+

+ = =
−

= −

= =- -

( ) . .I s
s s
0 5

100
0 5

` = −
+

On taking the inverse Laplace transform of I(s), we get,

L L( ) . .I s
s s
0 5

100
0 51 1

= −
+

- -" ', 1

L L( ) 0.5 0.5t
s s

i 1
100
11 1
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- -' '1 1

             =  0.5 − 0.5 e−100t
 A

. 0.01Time
R
L

10
0 1constant, secτ = = =

( ) 0.5 0.5 0.t e e for ti A1 11/100
t

0.01
t

` $= − = −

- -c cm m  

On differentiating i (t) with respect to t, we get,

( )
0.5

.dt

d t
e

i
0

0 01
10.01

t
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- cf mp    ⇒    
( )

50 /
dt
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e

i
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-

On differentiating 
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d ti  with respect to t, we get,
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2
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EXAMPLE 3.5

In the RL circuit shown in Fig. 1, the switch is closed to position-1 

at t = 0. After t = 100  ms, the switch is changed to position-2. Find i(t) and 

sketch the transient.

SOLUTION

Case i : Switch in position-1

Let,  L{i(t)}  =  I(s)

The s-domain equivalent of the RL circuit with switch in position-1 is shown in Fig. 2.

Let, I
a
(s) be the current delivered by 5 V source.

With reference to Fig. 2, we can write,

( )
. .

.

I s
s

s
s s s s2 0 2

5
5

0 2
0 2
2

1
10

25
a #=

+
=

+

=

+c ^m h

By partial fraction expansion, I
a
(s) can be expressed as,

( )
( )

I s
s s s

K
s
K

10
25

10
a

1 2
=

+
= +

+

( )
2.5K

s s
s

s10
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1

s 0 s 0

` #=
+

=
+
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( )

( ) 2.5K
s s

s
s10

25 10 25
10
25

2

s 10 s 10

#=
+

+ = =
−

= −

= =- -

( ) . .I s
s s
2 5

10
2 5

a` = −
+

, ( ) ( ) . .Here I s I s
s s
2 5

10
2 5

a= − = − +
+

On taking the inverse Laplace transform of I (s), we get,

L L( ) . .I s
s s
2 5

10
2 51 1

= − +
+

- -" ', 1

∴   i (t) = − 2.5 + 2.5 e–10 t  A

               2.5 e A1 1/10

t

= − −

-^ h

                  2.5 e A1 0.1

t

= − −

-c m

 
100 , ( ) 2.5 2.5 1.5803At t t e ems i A1 10.1

100 10
1

3

= = − − = − − =−

#

- -

-f ap k
, ( ) 1.5803Let t Ii A

t 100
0

ms

= = −

=

This current I
0
 will be the initial current for circuit transient when the switch is moved from position-1 

to position-2.

L
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e
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Case ii : Switch in position-2

Let us assume another time frame, where time is denoted by t′ 

and time t′  is related to the original time frame by the relation t′ = t −  0.1 

(Because 100  ms = 0.1 second).

Now the switch is moved from position-1 to position-2 at the 

time instant t′= 0, and at this instant there is a current of  I
0
 = −1.5803 A 

flowing in the direction of i(t’). The time domain circuit is shown in Fig. 3.

The s-domain equivalent of the RL circuit with switch in position-2 

is shown in Fig. 4.

In the s-domain equivalent, the initial current I
0
 can be represented by a voltage source of value L I

0
.

With reference to Fig. 4, by using KVL, we can write, 

0.2 ( ) 2 ( )s I s I s
s

LI20
0+ = +

( ) .I s s
s
sLI

0 2 2
20 0

+ =
+

6 @

( )
. .

.

. .I s
s s

sLI

s s

sLI

s s

sLI

0 2 2

20

0 2
0 2
2

20

10
0 2
20

0 20 0

0

`

#

=

+

+
=

+

+
=

+

+

^ c ^h m h

          

.

. .

1.5803

s s

s

s s

s

10

100
0 2

0 2 1 5803

10

100

# #

=

+

+

−

=

+

−

^

^

^h

h

h

By partial fraction expansion, I (s) can be expressed as,
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On taking the inverse Laplace transform of I(s), we get, 

L L( ) .I s
s s
10

10
11 58031 1

= −
+

- -" ', 1

10 11.5803t ei 10t
` = −

-
l

l^ h

                   
10

.
e1

10

11 5803 1/10

t

= −

-
lc m

( ) 10 . ' 0t e for ti A1 1 15803 0.1
t

` $= −

-

l

lc m

L

L

A
s

A

e
s a

1at

=

=
+

-

"

"

,

,

t = 0’

0.2H
20V

2

Fig. 3.

2�

I = 1.58030 E A

+

E
i(t )’

Fig. 4.

I(s)

2

0.2s

20

s

LI0

0.2sI(s)

2I(s)

+

E

+
E

+E

+

E

E2A



3. 54                                                Circuit Theory

Put t’  =  t – 0.1,

( 0.1) 10 . ; 100t e for ti A ms1 1 15803 0.1

(t 0.1)

` $− = −

-
-c m

, ( 0.1) ( ) 100 .For convenience t can be written as t for ti i ms$−

( ) 10 . ; 100t e for ti A ms1 1 15803 0.1

(t 0.1)

` $= −

-
-c m

To sketch i (t)

, ( ) 2.5 ; 0 100Here t e for ti A ms1 0.1
t

# #= − −

-c m

( ) 10 . ; 100and t e for ti A ms1 1 15803 0.1

(t 0.1)

3# #= −

- -c m

∴   At  t = 0+,  i (t) = i (0+) = −2.5(1−e0) = 0

     At  t = 100 ms,  i (t) = −1.5803 A

     At  t = ∞,  i (t) = i (∞) = 10(1 − 1.15803e− ∞) = 10 A

Initially, the current is zero and it rises to −1.5803 A in a time of 100 ms. After the switch is moved to 

position-2, the negative current becomes zero and rises to +10 A. Let us find the time instant t = t
0
 at which 

the current is zero, when it changes from negative to positive.

( ) ( ) 10 .t t ei i 1 1 15803 0.1

t 0.1

t t
0

0

0

= = −

-
-

=

f ^ ph

Here, at t = t
0
, i(t) = i(t

0
) = 0

10 . 0e1 1 15803 0.1

(t 0.1)0
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- -f p
1.15803 1e 0.1

(t 0.1)0
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-
-

.
e

1 15803
10.1

(t 0.1)0
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-
-

On taking the natural logarithm, we get,
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0 1
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1 15803
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=c cm m

0.1 0.1
.

lnt
1 15803

1
0 − = − ; E
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.

0.1lnt
1 15803

1
0` = − +; E

      =  0.1147 second 

                      = 0.1147 ´ 1000 ms

      =  114.7 ms

RESULT
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Fig. 5 : i(t) Vs t.
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EXAMPLE 3.6

In the circuit shown in Fig. 1, the switch is kept open for a long time.  

The switch is closed at t = 0. Find i (t) and sketch.

SOLUTION

Case i : Switch remains open 

Since the switch remains open for a long time, the circuit might 

have attained steady state. The steady state (final condition) of the RL 

circuit with switch remains open as shown in Fig. 2. Let the steady current 

flowing in the circuit be I
0
.

, 0.2Now I A
10 40
10

0 =
+

=

Case ii : Switch remains closed 

When the switch is closed the total circuit resistance reduced to  

10  Ω because the 40 Ω resistance is short-circuited.

The time instant at which the switch is closed is considered as the 

origin of time and at this instant, and there is an initial current of I
0
 = 0.2  A 

flowing in the direction of i(t).  

The s-domain equivalent of the circuit with the switch closed is shown in Fig. 3.

The initial
 
current I

0
 is represented by a voltage source of value LI

0
 in the s-domain equivalent circuit.

With reference to Fig. 3, by KVL, we can write,
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By partial fraction expansion, I (s) can be expressed as,
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0.2A

i(t)

t
0

1A

Fig. 4 : i(t) Vs t.

On taking the inverse Laplace transform of I(s), we get,

L L( ) .I s
s s
1

25
0 81 1

= −
+

- -" ', 1

              i (t) = 1 – 0.8 e–25t
 A

                       1 0.8 e A1/25

t

= −

-

          1 0.8 e A0.04

t

= −

-

        

At  t = 0,  i (t) = i(0) = 1−0.8 e0 = 0.2 A

At  t = ∞, i(t) = i(∞) = 1−0.8 e– ∞ 
 
= 1 A

EXAMPLE 3.7

In the circuit shown in Fig. 1, the switch is closed to position-1 at t = 0 

and at  t = t′ the switch is moved to position-2. Find the time instant t = t′ such 

that the current i(t) remains constant at 1 A  for t ≥ t′.

SOLUTION 

Case i : Switch in position-1

The s-domain equivalent of the RL circuit with switch in position-1 is 

shown in Fig. 2. With reference to Fig. 2, we can write,
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By partial fraction expansion, I(s) can be expressed as,
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On taking the inverse Laplace transform of I(s), we get,
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Case ii : Switch in position-2

When the switch is moved to position-2 there should not be any transient.  

This is possible only if the initial current is equal to the steady state current in  

position-2. The steady state condition of the RL circuit with switch in postion-2 

is shown in Fig. 3. With reference to Fig. 3,

, 1Steady state current I A
10
10

SS = =  

Now we have to find a time instant t = t′ at which the current i(t) with switch in position-1 is 1 A.

( ) ( ) 2t i t ei 1 0.05
t

t t
= = −

-

=

l

l

l

c m

Here,  at t = t’, i(t’) = 1 A

2 1e1 0.05
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` − =

- lc m

1 e
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` − =

- l

    ⇒    1e
2

10.05

t
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- l

    ⇒    e
2

10.05

t
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- l

On taking natural logarithm, we get,

.
ln

t

0 05 2

1
− =

l c m

0.05 0.0347lnt econd
2

1
s` #= − =l c m

RESULT

At t = t’ = 0.0347 second, the switch can be moved from position-1 to position-2 to maintain the current 

as 1 A with switch in position-2 . 

EXAMPLE 3.8

An RL series circuit excited by a sinusoidal source e(t) = 10 sin100t V by closing the switch at t = 0. Take 

R = 10 Ω and L = 0.1 H. Determine the current i(t) flowing through the RL circuit.

SOLUTION

Given that, e(t) = 10 sin100t V

Let, E(s) = L {e(t)}

L L( ) ( ) 10sinE s e t t
s s

10 100
100

100

10

10
22 2 4

3

` #= = =

+

=

+

" ", ,

The time domain and s-domain RL circuits excited by a sinusoidal source are shown in Figs 1 and 2.

(AU June’16 & May’17, 16 Marks)

Fig. 3.

I
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10V

10�

SC
+
E

Fig. 1.

t = 0

i(t)

R = 10�

e(t) L = 0.1H

+

E

10�

E(s) 0.1s

Fig. 2.
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+

E
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With reference to Fig. 2, we can write,

( )
.

( )
I s

s

E s

10 0 1
=

+

       
.

.

/ .

s

s

s s s s0 1
0 1

10

10

10

100 10

10 0 1

100 10

10
2 4

3

2 4

3

2 4

4

=

+

+
=

+ +

=

+ +c ^ ^ ^ ^m h h h h
                                

By partial fraction expansion technique, I(s) can be expressed as,

( )I s
s s s

K

s

K s K

100 10

10
100 102 4

4
1

2 4
2 3

=

+ +

=
+

+

+

+

^ ^h h
                                              .....(1)

.K
s s

s
s100 10

10
100

10

10

100 10

10
0 5

4

1 2 4

s 100

2 4

4

s 100

2 4

4

#=

+ +

+ =

+

=

− +

=

= =- -
^ ^

^
^h h

h
h

On cross-multiplying equation (1), we get,

104 = K
1
 (s2 + 104 ) + (K

2
 s + K

3
) (s+100)

 104 = K
1
 s2 + 104  K

1
+ K

2
s2 + 100 K

2
 s + K

3
 s + 100 K

3

104 = (K
1
 + K

2
) s2 + (100 K

2
 + K

3
) s + (104 K

1
 + 100 K

3
)                                                                .....(2)                    

On equating coefficients of s2 of equation (2 ), we get,

K
1
 + K

2
 = 0

   ∴   K
2
 = −K

1
 = −0.5

On equating coefficients of s of equation (2 ), we get,

100 K
2
 + K

3
 = 0

          ∴   K
3
 = −100 K

2
 = −100 × (−0.5) = 50

        
( ) . .I s

s s

s
100

0 5

10

0 5 50
2 4

` =
+

+

+

− +

               

0.5 0.5
s s

s

s100

1

100 100

50

100

100
2 2 2 2

=
+

−

+

+

+

                    

0.5 0.5 0.5
s s

s

s100

1

100 100

100
2 2 2 2

=
+

−

+

+

+

     

Let us take the inverse Laplace transform of I(s).

L L( ) . . .I s
s s

s

s
0 5

100
1 0 5

100
0 5

100

1001 1
2 2 2 2

` =
+

−

+

+

+

- -" ', 1

L L L( ) 0.5 0.5 0.5t
s s

s

s
i

100
1

100 100

1001 1
2 2

1
2 2

` =
+

−

+

+

+

- - -' ' '1 1 1

            =  0.5e–100t – 0.5 cos100t + 0.5 sin100t

           =  0.5e–100t + [sin100t × 0.5 – cos100t × 0.5]     

L A
s

A
=" ,

L cos t
s

s
2 2

ω

ω

=

+

" ,

L sin t
s
2 2

ω

ω

ω
=

+

" ,
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Let us construct a right-angled triangle with 0.5 as two sides as shown in Fig. 3.

With reference to Fig. 3,

.

.
tan

0 5

0 5
1φ = =

∴ φ  =  tan−1 1  =  45
o

,
.
.cosAlso

0 7071
0 5φ =      ⇒   0.5 0.7071 0.7071 45cos cos

o
φ= =

                  
.

.
sin

0 7071

0 5φ =
     ⇒     0.5 0.7071 0.7071 45sin sin

o
φ= =

∴  i (t)  =  0.5e–100t + [sin100t × 0.7071 cos 45
o
 − cos100t × 0.7071 sin 45

o
]

      =  0.5e–100t + 0.7071 [sin100t cos 45
o
 − cos100t sin 45

o
]

           

. . sine t A0 5 0 7071 100 45
Transient part Steady state part

100t o

= + −
- ^ h

1 2 344 44 1 2 3444444 444444

( )
( )

. . ( )v sint L
dt

di t
L
dt
d e t0 5 0 707 100 45100t o

L = = + −
-7 A

. . ( ) . ( )cose t0 1 0 5 100 0 707 100 45 100100t o

# #= − + −
-7 A

5 7.07 (100 45 )cose t100t o

= − + −
-

5 7.07 (100 45 )sine t 90100t o o

= − + − +
-

. sine t V5 7 07 100 45
Transient part Steady state part

100t o

= − + +
- ^ h

1 2 344 44 1 2 344444 44444

0.5 0.5 0.7071
2 2+ =

f

0.5

Fig. 3.

0.5

( )cos sin 90oa θ θ= +

sin(A – B) = sinA cosB – cosA sinB

0 t

0.5

Fig 4: Waveform of current through inductance, i (t).t
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EXAMPLE 3.9

In the circuit of Fig. 1, the switch remains in position-1 until steady 

state is reached. At time t = 0, the switch is changed to position-2. Find i(t).

SOLUTION

Case i : Switch in position-1

In position-1, the circuit has attained a steady state. Hence, we can 

perform steady state analysis. The steady state of the RL circuit with switch 

in position-1 is shown in Fig. 2. The standard form of sinusoidal source is E
m 

sin(ωt ± φ).

Here, E
m

sin (ωt ± φ) = 150 sin(200t + 30
o
) V

∴  E
m

 = 150  V,   ω = 200 rad/s,  φ = 30
o

Let, I
0
 be the magnitude of rms value of current flowing in 

the circuit.

, 4.7434Now I A
20 10

2

150

0
2 2

=

+

=

This steady rms current I
0
 will be the initial current when the switch is moved from position-1 to position-2.

Case ii : Switch in position-2

When the switch is changed from position-1 to position-2, a steady current of I
0
 is flowing in the induc-

tance. Since the inductance does not allow sudden change in current, this steady current I
0
 will be the initial 

current when the switch is closed to position-2.

0 4.7434Ii i A0 0` = = =
+-^ ^h h

0

t

5

vt(t)
(+)

7.05

-7.05

t
0

7.05

-7.05

t
0

12.07

-12.07I
P
Q Þ

vs(t)

v(t) = (t) + (t)t sv v

Fig 5: Waveform of voltage across inductance, v(t).

1
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2 20�

0.05H

Fig. 1.
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+
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o
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Fig. 2.

20W

I0

j L

= j

w

´ ´

W

200 0.05

= j10

+

-

150

2
30o

Ð
~



Chapter 3 - Transient Response Analysis                                                   3. 61

The time domain and s-domain RL circuits with switch in position-2 are shown in Figs 3 and 4, respectively.

With reference to Fig. 4, by KVL, we can write,

 20 I(s) + 0.05s I(s)  =  0.23717

( ) .
.

.I s s0 05
0 05
20 0 23717# + =c m

I(s) × 0.05 (400 + s)  =  0.23717

( )
.

.I s
s0 05 400

0 23717
` =

+^ h

           
.

s 400

4 7434
=

+

Let us take inverse Laplace transform of I(s).

L L( ) .I s
s 400
4 74341 1

=
+

- -" ', 1

           i(t)  =  4.7434e–400t A

EXAMPLE 3.10

In the circuit of Fig. 1, the switch is closed at a particular value of α 

so that there is no transient in the RL circuit. Find the value of α. 

SOLUTION

Given that, e(t) = 10 sin (20t + α) V

Let,  L{e(t)} = E(s)

∴   E(s)  =  L{e(t)}  =  L{10 sin (20t + α)}

                       =  10 × L{sin 20t cos α + cos 20t sin α}

                       =  10 × cos α × L{sin 20t} + 10 × sin α × L{cos 20t}

                          
cos sin

s s

s
10

20

20
10

20
2 2 2 2

# # # #α α=

+

+

+

          
cos sin

s

s

20

200 10
2 2

α α
=

+

+

  .....(1)

The s-domain equivalent of the given circuit is shown in Fig. 2.

With reference to Fig. 2, by KVL, we can write,

4 I(s) + 0.1s I(s)  =  E(s)

sin(A + B) = sinA cosB + cosA sinB

i(t)

Fig. 3.
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Fig. 4.
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LI
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+
-

Fig. 1.
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( ) 0.1
.

cos sinI s s
s

s
0 1
4

20

200 10
2 2

` #
α α

+ =

+

+c m

    
( ) .

20

cos sinI s s
s

s0 1 40 200 10
2 2#
α α

+ =

+

+^ h

( )
. 20

cos sinI s
s s

s

0 1 40

200 10
2 2

`
α α

=

+ +

+

^ ^h h

           

cos sin

s s

s

40 20

2000 100
2 2

α α
=

+ +

+

^ ^h h

By partial fraction expansion, I(s) can be expressed as,

( )
20

cos sinI s
s s

s
s
K

s

K s K

40 20

2000 100
402 2
1

2 2
2 3α α

=

+ +

+
=

+
+

+

+

^ ^h h    

( )I s
s
K

s

K s K
40 20

1
2 2
2 3

` =
+

+

+

+

             s

K
K

s

s K

s40 20 20 20

201
2 2 2

3

2 2
=

+
+

+

+

+

Let us take the inverse Laplace transform of I(s).

L L( )
20

I s
s
K

K
s

s K

s40 20 20
201 1 1

2 2 2
3

2 2
` =

+
+

+

+

+

- -" ', 1

               

( ) cos sint K e K t
K

ti 20
20

20

Transient part
Steady state part

1
40t

2
3

= + +
-

1 2 3444444 444444
S

For no transient in i(t), the transient part should be zero.

0K e1
40t

` =
-

At t = 0,  e–40t = e0 = 1, and so e–40t cannot be zero. Therefore, K
1
 = 0.

Let us determine an expression for K
1
 and equate to zero as shown below:

cos sin
K

s s

s
s

40 20

2000 100
40

s 40

1 2 2
#

α α
=

+ +

+
+

=-
^ ^

^
h h

h

      

cos sin cos sin

s

s

20

2000 100

40 20

2000 100 40

s 40

2 2 2 2

α α α α
=

+

+
=

− +

+ −

=-

^ ^

^

h h

h

      cos sin
cos sin

2000

2000 4000
2

α α
α α=

−
= −

Here,  K
1
 = 0   ;   ∴  cos α − 2 sin α = 0

∴  2 sin α  =  cos α

Using equation (1)

L e
s a

1at
=

+

-" ,

L cos t
s

s
2 2

ω

ω

=

+

" ,

L sin t
s
2 2

ω

ω

ω
=

+

" ,
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       cos
sin

2

1

α

α
=

       tan  α   =  0.5

              α  =  tan–1(0.5)  =  26.6
o

RESULT

For no transient in i(t), α = 26.6
o

3.8    Solved Problems in RC Transient

EXAMPLE 3.11

In the RC circuit of Fig. 1, a charge of 100  µC is stored in the capacitor 

before closing the switch. At t = 0, the switch is closed to discharge the charge 

through 10 kΩ resistance. Determine and sketch v
C
(t). Also draw the initial and 

final condition of the circuit. Take C = 25 µF.

SOLUTION

Given that, Q
0
 = 100 µC  and C = 25 µF

25 10

100 10 4V
C
Q

VInitial voltage, 0
0

6

6

`

#

#
= = =

-

-

The s-domain equivalent of the given circuit is shown in Fig. 2. 

With reference to Fig. 2, by using voltage division rule, we get,

V
s

V

R
sC

sC

1

1

1
0
#=

+

     
V

s

V

sRC 1

1
1

0
` #=

+    .....(1)

With reference to Fig. 2, using KVL, we can write,

( )V s V
s
V

C 1
0

+ =      ⇒     ( )V s
s
V

VC
0

1= −

( )V s
s
V

s
V

sRC 1
1

C
0 0

` #= −
+

                
1

s

V

sRC s

V

sRC

sRC

1

1

1

1 10 0
= −

+
=

+

+ −c cm m

                
s

V

RC s
RC

sRC

s
RC

V

s
s1 1

10 10 25 10

1

4

4

4

3

0 0

6
# # #

=

+

=

+

=

+

=
+

-
c m

 ( )V s
s 4
4

C` =
+

On taking the inverse Laplace transform of V
C

(s), we get,

L L( )V s
s 4
41

C
1

=
+

- -" ', 1

Using equation (1)

Fig. 1.
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+

E

+

E
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Fig. 2.
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_

+

V (s)C
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25 10 6

sC

s
=

´
-
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+-
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-

+
-

V
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∴   v
C
(t)  =  4e−4t     ⇒     ( ) 4t ev 1/4

t

C =
-

( ) 4t ev V0.25
t

C` =
-

At t = 0+ ,  v
C
(0+) = 4e0 = 4 V

At t = ∞  ,  v
C
(∞ ) = 4e−∞ = 4 × 0 = 0

From the above analysis, we can say that at t  =  0+, the initial voltage is 4 V and this voltage of 4 V, 

exponentially decays to zero as t tends to infinity. 

EXAMPLE 3.12

In the RC circuit of Fig. 1, the switch is closed at t = 0. Find the 

current i(t). The initial charge in capacitor, Q
o
 = 100 µC. Take R = 15W and 

C = 200 µF. Sketch i(t).

SOLUTION

Given that, Q
0
 = 100  µC  and  C = 200 µF  

, .V
C
Q

V
200 10

100 10 0 5Initial voltage 0
0

6

6

`

#

#
= = =

-

-

The s-domain equivalent of the RC circuit is shown in Fig. 2. 

With reference to Fig. 2, by KVL we can write,

( ) ( ) .R I s
sC

I s
s s

1 0 5 50
+ + =

( ) .I s R
sC s s
1 50 0 5

` + = −< F

( ) .I s
sC

sRC
s

1 50 0 5
`

+
=

−< F

( ) .I s
sC

RC s
RC

s

1

49 5
+

=

d n> H

Fig. 1.

t = 0

+

E

+

E

Qo(t)
i(t)

R

50V C

R = 15 , C = 200� mF

V

s

0.5

s

0
a

Fig. 2.

+

E

+

E

R

+ E

I(s)

I(s)

R I(s)

1

sC50

s

1

sC

+
E

(AU June’16, 16 Marks)
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4V

Fig. 3 : v (t) Vs t.C Fig. 5 : Final condition.
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Fig. 4 : Initial condition.
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( ) .I s
s

RC s
RC

sC49 5
1

` #=

+d n> H
( ) .I s

R s
RC

49 5
1

1
` =

+

On taking the inverse Laplace transform of above equation, we get,

( ) .i t
R

e49 5 RC
1 t

=
-

      .
e

15

49 5 15 200 10

1
t

6
= # #

-
-

    =  3.3 e−333.33t A

EXAMPLE 3.13

In the RC circuit of Fig. 1, the switch is closed at t = 0. Find the 

current i(t), and the voltage across resistance and capacitance.

SOLUTION

Let, L{i(t)} = I(s),   L{v
R
(t)} = V

R
(s)    and    L{v

C
(t)} = V

C
(s)

L,Also
s

25 25
=" ,

 

The s-domain equivalent circuit is shown in Fig. 2 (Please refer to Table 3.2 for the s-domain equivalent 

of R and C parameters.) With reference to Fig. 2, we can write,

( )I s
R

sC

s
1

25

=

+

       

25

100sR
C

R s
RC

s
RC

1 1

25

1

25
=

+

=

+

=

+c cm m

Here,  Time constant, t = RC = 100 × 5000 × 10
–6

 = 0.5 second

( )

.

.I s
s

0 5
1

0 25
` =

+c m
Let us take the inverse Laplace transform of I(s).

L L( )

.

.I s
s

0 5
1

0 251 1
=

+

-- " *, 4
      ( ) 0.25t ei A0.5

t
` =

-

Fig. 1.
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With reference to Fig. 1, by Ohm’s law, we can write,

v
R
(t)  =  i(t) × R

         0.25 100 25e e V0.5

t

0.5

t

#= =
- -  

With reference to Fig. 1, by KVL, we can write,

v
R
(t) + v

C
(t)  =  25

       ∴  v
C
(t)  =  25 − v

R
(t)

                     25 25 25e e V10.5

t

0.5

t

= − = −

- -^ h

RESULT

( ) 0.25t ei A0.5
t

=
-

( ) 25t ev V0.5
t

R =
-

( ) 25t ev V1 0.5
t

C = −

-^ h

EXAMPLE 3.14 

In the RC circuit of Fig. 1,the switch in the circuit is moved 

from position 1 to 2 at t = 0. Find the voltage across resistance and 

capacitance, and energy in the capacitor for t > 0.

SOLUTION

Case i : Switch in position-1

 Given , C = 1 × 10−6 F

Let , V
0
  = Voltage across capacitor with switch in position-1

        W
0
 =  Energy stored in capacitor with switch in position-1

With switch in position-1, the circuit attains steady state. The 

steady state circuit is shown in Fig. 2. Therefore, the capacitor gets 

charged to 100 V.

∴  V
0
  =  100 V

     1 10 100 5 10W CV Joules
2

1

2

12 6 2 3

0 0
# # # #= = =

- -

(AU Dec’14, 16 Marks)
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Case ii : Switch in position-2

When the switch is changed from position-1 to position-2, a steady voltage of V
0  

exists across the 

capacitance. Since the capacitance does not allow a sudden change in voltage, this steady voltage V
0
 will be 

the initial voltage and W
0
 will be the initial energy when the switch is closed to position-2.

Let,  v
C

(t) = Voltage across capacitor

        v
R
(t) = Voltage across resistance

           i(t) =  Current through capacitor.

The time domain and s-domain RC circuits are shown in Figs 3 and 4, respectively.

Let,  I(s) = L{i (t)} 

With reference to Fig. 4, we can write,

( )
5000 5000

I s

s

s s

s

s

s5 10
1 10

1

50 100

1 10

1

150

1 10

1
150

3
6 6 6

#

# # #

=

+

+

=

+

=

+
- - -

       .

s
s

5000
1 10 5000

1

150

200

0 03

6
# #

=

+

=
+

-c m

On taking the inverse Laplace transform of the above equation, we get,

L L( ) ( ) . 0.03i t I s
s

e A
200

0 031 1 200t
` = =

+
=

- - -" ', 1  

With reference to Fig. 3, by Ohm’s law, we can write,

( ) ( ) 0.03 500 150v t i t R e e V0200t 200t
R # #= = =

- -

With reference to Fig. 3, by KVL,we can write,

( ) 50 ( ) 50 150v vt t e V200t
C R= − = −

-    

Let,  p
C
(t)  =  Power in capacitor for t > 0

       w
C
(t)  =  Energy in capacitor for t > 0

( ) ( ) ( ) 0.03vt t i t e ep 50 150 200t 200t
C C

` # #= = −

- -^ h

                         
 

1.5 4.5e e W200t 400t
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- -

Fig. 3.
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( ) ( ) . .t t dt e e dtw p 1 5 4 5200t 400t

0

t

0

t

C C= = −

- -^ h##

 
. .e e

W
200

1 5

400

4 5
200t 400t

0

t

0
=

−
−

−
+

- -; E

 
. . . .e e e e

200

1 5

400

4 5

200

1 5

400

4 5
5 10

200t t400 0 0
3

#=
−

−
−

−
−

+
−

+

- -
-

 7.5 10 11.25 10 7.5 10 11.25 10 5 10e e
3 200t 3 400t 3 3 3

# # # # #= − + + − +
- - - - - - -

 . . . 10e e Joules1 25 7 5 11 25
200t 400t 3

#= − +
- - -^ h

EXAMPLE 3.15

In the circuit shown in Fig. 1, the capacitor C
1
 has an initial charge 

of 12 × 10–4
 C. Find the current through the RC circuit if the switch is closed 

at t = 0.

SOLUTION

Given that, Q
0
 = 12 × 10

−4
 C  and  C

1
 = 12 × 10

−6
 F.  

100V
C
Q

V
12 10

12 10Initial voltage in capacitor C is,1 0
1

0
6

4

#

#
= = =

-

-

Let, i(t)  =  Current through the circuit when the switch is closed at t = 0.

Let, L{i(t)} = I(s)

The s-domain equivalent of the RC circuit is shown in Fig. 2. With reference to Fig. 2, we can write,

( )I s
R

sC sC

s
V

sR
C C

V

R s
R C C

V
1 1 1 1 1 1 1

1 2

0

1 2

0

1 2

0
=

+ +

=

+ +

=

+ +cc mm

       

R s
R C C

C C

V

R s

R
C C

C C

V

1 1

1 2

1 2

0

1 2

1 2

0
=

+
+

=

+

+

cc cfmm m p

,
12 10 6 10

.Here R
C C

C C
100 10 12 10 6 10 0 4

1 2

1 2 3

6 6

6 6

# #

# #

# # #

+
=

+

=
- -

- -c m

( )

. .

I s
s s100 10

0 4
1

100

0 4
1

10
3

3

`

#

=

+

=

+

-

c m

W
o
 = Integral constant

      = Initial energy

Fig. 1.

t = 0

C
=

 1
2

1
m

F

C
=

 6
2

m
F

100k�

i(t)

E

+

Q0

R = 100 ´ 10
3

I(s)

1

sC1

V

s

100

s

0
=

Fig. 2.

+
-

1

sC2
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Let us take the inverse Laplace transform of I(s).

L L( )

.

10I s
s

0 4
1

1 1
3

` =

+

- -
-" *, 4

( ) 10t e ei A mA0.4
t

0.4
t3

` = =
- --

EXAMPLE 3.16

In the circuit of Fig. 1, the switch is open for a long time. On closing 

the switch at t = 0, the capacitor voltage rises to 70 V in 10 ms. After the 

steady state is reached, the switch is opened again and found that capacitor 

voltage is 90 V in 0.5 second. Find the value of R and C. 

SOLUTION

Case i : Switch is closed at t = 0  

When the switch is closed at t = 0, the source voltage 120 V is 

applied across the series combination of 120 Ω and C. The s-domain 

equivalent is shown in Fig. 2.

L L, ( ) ( )Here
s

and t V sv120 120
C C= =" ", ,

With reference to Fig. 2, by voltage division rule, we can write,

( )V s
s

sC

sC120

120 1

1

C #=

+

          s Cs

120

120 1

1
#

#
=

+

          

s
C s

C
s s

C

C120

120
120

1

1

120

1

1

#=

+

=

+c cm m

, ( )Let V s
s s

C

C
s
K

s
C

K

120
1

1

120
1C

1 2
=

+

= +

+c m

K

s s
C

C
s

s
C

C

C

C

120

1

1

120

1

1

120

1

1

1201

s 0 s 0

#=

+

=

+

= =

= =

c m

120K

s s
C

C
s

C s

C

C

C

120

1

1

120

1

1

120

1

1

s
120C

1

s
120C

1
2 #=

+

+ = =

−

= −

=

=

-

-c
c

m
m

L e
s a

1at
=

+

-" ,

Using partial fraction

expansion technique.

120�

120V R

Fig. 1.

t = 0

+

E

vC(t) C
+
E

120

R

Fig. 2.

+

E

+
E

V (s)C

1

sC

120

s

+

E

120

s
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( )V s
s s

C

120

120
1

120
C` = −

+

Let us take the inverse Laplace transform of V
C
(s).

L L( )V s
s s

C

120

120
1

1201 1
C = −

+

- -" *, 4
( ) 120 120t ev 120C

t

C` = −

-

             120 e1 120C

t

= −

-^ h

Given that, at t = 10 ms, v
C
(t) = 70 V

70 120 e1 120C

10 10 3

` = −

#
-

-` j     ⇒     1 e
120

70
120C

10 10 3

= −

#
-

-

e 1
120

70
120C

10 10 3

` = −

#
-

-

On taking the natural logarithm of the above equation, we get,

C
In

120

10 10
1

120

70
3

#
− = −

- c m     ⇒     0.8755
C120

10 10
3

#
− = −

-

     ⇒     
.

C

10 10

120

0 8755

1
3

#

=
-

.
9.518 10 95.18 10 95.18 µC F F F

0 8755 120

10 10
4 4 4

6
3

5
`

#

#
# #= = = =

-
- -

Steady state in Case i

The steady state condition of the circuit with the switch closed is 

shown in Fig. 3.

With reference to Fig. 3, we can say that,

At t = ∞,  v
C
(t) = 120 V

This steady state voltage 120 V will be the initial voltage across 

the capacitor for the analysis in Case ii.

Case ii : Switch is opened after steady state in Case i

Let us denote the time by t’ in Case ii. Here the switch is opened at t’ = 0 and at this instant the capacitor 

has an initial voltage of 120 V. The time domain and s-domain circuits are shown in Figs 4 and 5, respectively.

L

L

s

A
A

e
s a

1at

=

=
+

-

'
"

1
,

120V R

Fig. 4.

+
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120�t = 0’

E

+

V
0
=120 C
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+

_

+

_

V (s)C

V1
1

sC

120

s

R

Fig. 5.

+
E

E

+

120�

120V R

Fig. 3.

+

E

vC(t)
+
E

120�

OC

+

E

120V
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Here, V
0
 = 120 V

L V
s

V

s

120
0

0
` = =" ,

  

With reference to Fig. 4, by voltage division rule, we can write,

V
s

R
sC

sC120

120
1

1

1 #=

+ +^ h

Let, 120 + R  =  R
1

V
s sR C

120

1

1
1

1

` #=
+   

  .....(1)

By KVL, we can write,

( )V s V
s
120

C 1+ =

( )V s
s

V
s s sR C

120 120 120
1

1
C 1

1

` #= − = −
+

              

1
1

1

s sR C s sR C

sR C120

1

1 120 1

1 1

1
= −

+
=

+

+ −; ;E E

              

s
R C s

R C

sR C120

1
1

1

1
=

+c m> H
( )V s

s
R C
1

120
C

1

` =

+

On taking the inverse Laplace transform of V
C

(s), we get,

( ) 120t ev R C
t

C 1=
-

l

Given that, at t’ = 0.5 second, v
C

(t) = 90 V

90 120 e R C

0.5

1
` =

-    ⇒    e
120

90
R C

0.5

1
=

-

On taking the natural logarithm of the above equation, we get,

.

R C
In

0 5

120

90

1

− = c m   ⇒   .
0.2877

R C

0 5

1

− = −    ⇒   
. .

R C

0 5 0 2877

11
=

.

.

. .

.
18259R

C0 2877

0 5

0 2877 95 184 10

0 5
1 6

`

# #

Ω= = =
-

Here, R
1
  =  120 + R

∴  R  =  R
1
 − 120  =  18259 − 120  =  18139 Ω  =  18.139 kΩ 

RESULT

R  =  18.139 kΩ

C  =  95.184 µF

Using equation (1)
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EXAMPLE 3.17

In Fig. 1, the neon lamp connected across the capacitor strikes at 100 V. 

Find the value of R for the lamp to strike at 5 seconds after the switch is closed. 

If R = 5 MΩ, how long will it take for the lamp to strike?

SOLUTION

Let, v
C

(t)  =  Voltage across the capacitor.

L L( ) ( ) . ,t V s Also
s

v 220 220
C C` = =" ", ,

The s-domain equivalent of the given circuit is shown in Fig. 2. (For simplicity in analysis, the R, L and 

C parameters of the lamp are neglected.) 

With reference to Fig. 2, by voltage division rule,

( )V s
s R

sC

sC220
1

1

C #=

+

( )V s
s sRC s RC s

RC
s s

RC

RC220
1

1 220
1

1
1

220

C # #=
+

=

+

=

+c cm m

By partial fraction expansion techniques, V
C

(s) can be expressed as,

( )V s
s s

RC

RC
s
K

s
RC

K
1

220

1C
1 2

=

+

= +

+c m

K

s s
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s
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1

220

1

220

1

220

2201

s 0 s 0
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+

=

+

= =

= =

c m

220K

s s
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s

RC s
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RC
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1

220

1

220

1

220

2

s
RC

1

s
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1

#=

+

+ = =

−

= −

=

=

-

-
c

c
m

m

( )V s
s s

RC

220
1

220
C` = −

+

On taking the inverse Laplace transform, we get,

L L( )V s
s s

RC

220
1

2201 1
C = −

+

- -" *, 4

      ( ) 220 220t ev RC
t

C` = −

-

                    220 e V1 RC

t

= −

-^ h       .....(1)

1

sCR

Fig. 2.

V (s)C

220

s

+ E

+ E

Fig. 1.

C = 4mFR

100 , Neon lampV

220V
+ E
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Case i : To find R for lamp to strike after 5 seconds

From equation (1), we get,

( ) 220t ev 1 RC
t

C = −

-^ h   ⇒   
( )

1
t

e
v

220
RC
tC

= −

-    ⇒   1
( )

e
tv

220
RC
t C

= −

-

On taking the natural logarithm of the above equation, we get,

( )

RC
t In

tv
1

220
C

− = −c m                .....(2) 

    

( )t
RC

In
tv

1
220

1

C
` = −

−c m
     ⇒     

( )
R

C
t

In
tv

1
220

1

C
= −

−c m> H   

Given that, t = 5 seconds   ;    C  =  4 µF    ;    The lamp will strike when v
C

(t) = 100 V

R

In4 10

5

1
220

100

1
6

`

#

= −

−

- c m> H
      

2062244.125
.

2.0622M M
10

2062244 125
6

Ω Ω Ω= = =

Case ii : To find time for lamp to strike if R = 5  MΩ

From equation (2), we get, 

( )
t RC In

tv
1

220
Time, C

= − −c m; E

Here,  R = 5 MΩ = 5 × 10
6

 Ω ,  C = 4 µF = 4 × 10
−6

 F ,   v
C

(t) = 100 V

t In5 10 4 10 1
220

1006 6
` # # #= − −

- c m; E

                 =  12.1227 seconds

RESULT

1. For lamp to strike at 5 seconds after switching, R = 2.0622 MΩ

2. When R = 5 MΩ, the time for lamp to strike after switching, t = 12.1227 seconds

EXAMPLE 3.18

In the RC circuit of Fig. 1, when the switch is closed at t = 0, the current 

through the circuit is i (t) = 0.075 e−50t
 A. Find the value of Q

0
 and its polarity.

SOLUTION

Given that, 

Initial charge = Q
0

V
C
Q

Initial voltage, 0
0

` =

Fig. 1.

t = 0

+

E

i(t)

1000�

Q0 20mF50V
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L L( ) ( ),t I s
s

i 50 50Let, = =" ", ,

The s-domain equivalent of the given circuit is shown in Fig. 2. 

In Fig. 2, the polarity of Q
0
 is assumed to be opposing the 

direction of current.

With reference to Fig. 2, by KVL, we can write,

( ) ( )RI s
sC

I s
sC
Q

s
1 500

+ + =

( )I s R
sC s sC

Q1 50 0
+ = −< F

( )I s
sC

sRC
sC
C Q1 50 0+

=
−< F      ⇒     ( )I s

sRC
C Q

1
50 0

=
+

−

( )I s
RC
C Q

s
RC

50
1

10
` =

−

+

c
c

m
m

On taking the inverse Laplace transform of I(s), we get,

L L( )I s
RC
C Q

s
RC

50
1

11 1 0
=

−

+

- - c cm m" *, 4
( )t

RC
C Q

ei A
50

RC
t

0
` =

− -

      .....(1)

Given that, i (t) = 0.075 e–50t
 A    .....(2)

On comparing equations (1) and (2), we get,

.
RC

C Q50
0 0750−

=

50C − Q
0
 = 0.075 × RC

          – Q
0
 = 0.075RC − 50C 

       ∴ Q
0
 = −0.075RC + 50C

                 . 50 20 100 075 1000 20 10
6 6

# # # # #= − +
- -^ ^h h 

 = −5 × 10
–4

 C  =  − 500 × 10–6
 C

 = −500 µC

Since the initial charge is negative, the actual polarity of Q
0
 is 

opposite to that of the assumed polarity. The actual polarity of Q
0
 is 

shown in Fig. 3.

RESULT

Initial charge, Q
0
 = 500 mC (with polarity as shown in Fig. 3) 

L e
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Fig. 2.
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EXAMPLE 3.19

In the RC circuit of Fig. 1, the capacitor has an initial charge of Q
0
 = 120 µC. 

When the switch is closed at t = 0, find the time taken for the capacitor voltage to 

drop from 50 V to 10 V.

SOLUTION

Given that, 

Initial charge, Q
0
 = 120 µC

2 10
60V

C
Q

V120 10Initial voltage, 0
0

6

6

`

#

#
= = =

-

-

Let, v
C

(t) be the voltage across the capacitor with a polarity same as that of Q
0
, as shown in Fig. 2. 

The s-domain equivalent circuit is shown in Fig. 3.

With reference to Fig. 1, by voltage division rule,

V
s

V

R
sC

sC

1

1

1
0
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+

     
s

V

sRC 1

10
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+
     .....(1)

With reference to Fig. 3, by KVL, we can write,
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+ −
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+
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c

m m
m

( )V s
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V
1C
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` =

+

On taking the inverse Laplace transform of the above equation, we get,

( )t V ev RC
t

C 0=
-     ⇒    

( )

V

t
e

v
RC
t

0

C
=

-     ⇒    
( )

In
V
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tv

0

C
= −c m

 

( )
t RC In

V

tv

0

C
` = − c m; E

       

Using equation (1)
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Fig. 1.
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Here,  RC = 100 × 2 × 10
–6

 = 200 × 10
–6

 seconds

V
0
 = 60 V

200 10
( )

t In
tv

60
C6

` #= −

- c m; E     .....(2)

Let, the time instant at which v
C

(t) = 50 V be t
1
.

From equation (2),

200 10 3.6464 10 36.464 10t In onds
60

50
sec

5
1

6 6
# # #= − = =

-- -c m; E
Let the time instant at which v

C
(t) = 10 V  be t

2
.

From equation (2),

200 10 3.5835 10 358.35 10t In onds
60

10
sec

4
2

6 6
# # #= − = =

-- -c m; E

t t
Time for capacitor voltage

to drop from 50 to10V V
2 1

`
= −3

  
                   =  358.35 × 10

–6
 − 36.464 × 10

–6

                =  321.886 × 10
–6

 seconds

                =  321.886 µs

EXAMPLE 3.20

A capacitor has an initial charge of Q
0
. A resistance R is connected across the capacitor at t = 0, to 

discharge the charge. The power transient of the capacitor p
C

(t) = 800e–4000t
 W. Find the value of R and Q

0
. 

Take C = 10 µF.

SOLUTION

Let, v
C

(t) = Voltage across capacitor

           i(t) =  Current through capacitor

∴  Power, p (t) = v
C

(t) × i(t)

The time domain and s-domain RC circuits are shown in Figs 1 and  2, respectively.
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Fig. 1.
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+
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With reference to Fig. 2, we can write,

( )I s

sC
R

s
V

s
V

sC
R

C
sR

V

R s
RC
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1 1

1
1 1
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0 0 0
#=
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=

+

=

+

=

+c m

( )I s
R
V

s
RC
1

10
` =

+

On taking the inverse Laplace transform of the above equation, we get,

L L( )I s
R
V

s
RC
1

11 1 0
=

+

- -" *, 4
( )t

R
V

ei ARC
t

0
` =

-

With reference to Fig. 1, by Ohm’s law, we can write,

( ) ( )t t Rv iR #=

( )t
R
V

e Rv RC
t

R
0

` #=
-

             V e VRC

t

0=
-

Also,  v
R
(t) = v

C
(t)

( )t V ev VRC
t

C 0` =
-

Power in capacitor, p
C

(t)  =  v
C

(t) × i (t)

                                        V e
R

V
eRC

t

RC

t

0
0

#=
- -

                                        R

V
e WRC

2t
0

2

=
-

      .....(1)

Given that,  p
C

(t) = 800e−4000t
 W      .....(2)

On comparing equations (1) and (2), we get,

RC

2
4000=     ⇒   

4000

RC

2

1
=

R
C

2

4000

1

10 10

2

4000

1
50

6
` #

#

# Ω= = =
-

Again on comparing equations (1) and (2), we get,

R

V
800

0

2

=

800 200V R V800 500` # #= = =

We know that, Q
0
 = V

0
C

       ∴  Q
0
 = 200 × 10 × 10

–6
 = 2000 × 10

–6
 C

                  = 2000 µC

RESULT

R = 50 Ω,     Q
0
 = 2000 µC

L e
s a

1at
=

+

-" ,

Given that, C = 10 µF
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EXAMPLE 3.21

In the circuit of Fig. 1, the switch is closed for a long time.  

At t = 0, the switch is opened. Find v
C

(t).

SOLUTION

When the switch is closed the current source is shorted 

and so no current will flow to R and C in parallel. Since the switch 

is closed for a long time, the charges in the capacitor might have discharged through 100 kΩ in parallel. Hence, 

there is no initial charge in the capacitor.

L L, ( ) ( ), ,Let t V s Also
s

v 25 25
C C= =" ", ,

The s-domain equivalent of the RC circuit is shown in Fig. 2. 

With reference to Fig. 2, by KCL we can write,
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By partial fraction expansion technique, V
C

(s) can be expressed as,
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+

=

+

= =

= =

c m

25K

s s
RC

C
s

RC s

C

RC

C
R

1

25

1

25

1

25

2

s
RC

1

s
RC

1

#=

+

+ = =

−

= −

=

=

-

-
c

c
m

m

( )V s
s
R

s
RC

R25
1

25
C` = −

+

150mF

1
0
0

k
�

vC(t)

t = 0
25A

+

E

Fig. 1.

R

Fig. 2.

+

E

V (s)C

V (s)

1

sC

C

1

sC

V (s)

R

C

V (s)C

25

s
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Let us take the inverse Laplace transform of V
C

(s).

L L L( )V s
s
R

s
RC

R25
1

251
C

1 1
= −

+

- - -" ' *, 1 4
( ) 25 25t R R ev RC

t

C` = −

-

             25 1R e VRC

t

= −

-^ h

Here,   RC = 100 × 10
3
 × 150 × 10

–6
 = 15 seconds

( ) 25 100 10 1t ev V15
t

C
3

` # #= −

-^ h

             
2.5 10 2.5e eV MV1 115

t

15

t
6

#= − = −

- -^ ^h h

EXAMPLE 3.22

 When a dc voltage is applied to the capacitor in the circuit of  

Fig. 1 the voltage across its terminals is found to build up in accordance with  

v
C
(t) = 50(1 – e−100t) V. After 0.01 second the current flow is equal to 2 mA.

(1) Find the value of capacitance in Farad.

(2) How much energy is stored in the electric field?

SOLUTION

The capacitor voltage and current in an RC series circuit is,

( )t E ev 1 RC

t

C
= −

-d n                                                                                                           .....(1)

( )t
R
E ei RC

t

=

-

                                                                                                                    .....(2)

Given that,

( ) 50t ev 1
t100

C = −

-_ i                                                                                                         .....(3)

On comparing equations (1) and (3), we get,

50 ; 100E V
RC
1

= =

On substituting the above values in equation (2), we get, 

( )t
R

ei 50 t100
=

-    .....(4)

Given that, at t = 0.01 second,  i(t)  =  2 mA = 2 × 10-3 A

On substituting the above values in equation (4), we get, 

2 10
R

e R e
50

2 10

50100 0.01 13

3
&# #

#

#= =
#- --

-
  = 9196.986 W 

∴  R  =  9196.986 W  ≈  9197 W

L

L

s

A
A

e

A

s a

A
at

=

=

+-

$
'

.
1

(AU June’14, 10 Marks)

Fig. 1.

i(t)

+

E

R
t = 0

vC(t)

+

E

E C
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,Here
RC
1 100=

. .C
R

F F
100

1

9197 100

1
1 0873 10 1 0873

6
`

# #
# µ= = = =

-

The energy stored in the capacitor is,

( )W C v
2
1 2

C C 3=

, ( ) ( ) 50 50Here t ev v V1C C
t

3 = = − =

3-

3=

_ i

, ( ) 1.0873 10 50 1.3591 10Energy W C v Joules
2
1

2
12 2

C C
6 3

# # # #3= = =
- -

EXAMPLE 3.23

An RC circuit is excited by a sinusoidal source of voltage  

50 sin 314 t V. Find the voltage and current in the capacitor. Take 

R = 100 Ω and C = 20 µF.

SOLUTION

Given that, e(t) = 50 sin 314t V

    R = 100 Ω  and  C = 20 µF = 20 × 10
–6

 F

The time domain RC circuit is shown in Fig. 1.

Let, L{e(t)} = E(s) and L{i(t)} = I(s)

∴  E(s)  =  L{e(t)}  =  L{50 sin 314t }

              314s s
50

314

314 15700
2 2 2 2

#=

+

=

+

The s-domain equivalent of the RC circuit is shown in Fig. 2. With reference to Fig. 2, we can write,

( )
( )

I s
R

sC

E s

1
=

+

       
( )

( )

sC
sRC

E s
E s

RC s
RC

sC
1 1

#=
+

=

+c m

s R s
RC

s

314

15700

1
2 2

#=

+
+d n

Here, RC = 100 × 20 × 10
−6

 = 0.002 second.

( )

.

I s
s s

s

314

15700

100
0 002
12 2

` #=

+ +c m

    
s s

s

500 314

157
2 2

=

+ +^ ^h h

e(t)

Fig. 1.

t = 0

+

E

+

E

vC(t)i(t)

R

vR(t)

C

+ E

~

E(s)

Fig. 2.

+

E

R

I(s)
1

sC~
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By partial fraction expansion technique, we can write,

( )
314

I s
s s

s
s
K

s

K s K

500 314

157
5002 2
1

2 2
2 3

=

+ +

=
+

+

+

+

^ ^h h     ..... (1)

.K
s s

s
s

500 314

157
500

500 314

157 500
0 22521 2 2

s 500

2 2
#

#
=

+ +

+ =

− +

−
= −

=-

^ ^
^

^

^

h h
h

h

h

On cross-multiplying equation (1), we get,

157s =  K
1
(s2 + 314

2
)  +  (K

2
s + K

3
) (s + 500)

 157s  =  K
1
s2  +  314

2
K

1
  +  K

2
s2  +  500 K

2
s  +  K

3
s  +  500K

3
 

 157s  =  (K
1
 + K

2
)s2  +  (500 K

2
 + K

3
)s  +  3142 K

1
  +  500K

3
  ..... (2)

On equating coefficients of s2 of equation (2), we get,

K
1
  +  K

2
  =  0

∴  K
2
  =  −K

1
  =  0.2252

On equating coefficients of s of equation (2), we get,

500K
2
  +  K

3
  =  157

∴  K
3
  =  157  −   500K

2
 

           =  157  −   500  ×  0.2252  =  44.4

( ) . . .I s
s s

s
500

0 2252

314

0 2252 44 4
2 2

` =
+

−
+

+

+

            

.
.

314

.

314s s

s

s500

0 2252
0 2252

314

44 4 314
2 2 2 2

#=
+

−
+

+

+

+

            0.2252 0.2252 .
s s

s

s500

1

314
0 1414

314

314
2 2 2 2

# # #= −
+

+

+

+

+

Let us take the inverse Laplace transform of I(s).

L L( )

0.2252 0.2252

0.1414

I s
s s

s

s

500
1

314

314

314

1 1
2 2

2 2

# #

#

=

−
+

+

+

+

+

- -

Z

[

\

]]

]]

"

_

`

a

bb

bb

,

∴  i(t)  =  −0.2252 e−500t  +  0.2252 cos 314t  +  0.1414 sin314t

     i(t)  =  −0.2252 e−500t  + [sin 314t × 0.1414 + cos 314t × 0.2252]

Let us construct a right-angled triangle with 0.1414 and 0.2252 as 

two sides as shown in Fig. 3.

With reference to Fig. 3, we can write,

.

.
.tan

0 1414

0 2252
1 5926φ = =

∴ φ  =  tan
−1

(1.5926)  =  57.9
o

 
≈ 58

o

L

L

L

cos

sin

e

s

s

s a

t
s

t

1at

2 2

2 2

ω

ω

ω

ω

ω

=

=

+

=

+

+

-"

"

"

,

,

,

01414 0 2252 0 2659
2 2

. . .+ =

f

0.1414

Fig. 3.

0.2252



3. 82                                                Circuit Theory

.

.cos
0 2659
0 1414Also, φ =     ⇒    0.1414 0.2659 0.2659 58cos cos

o
φ= =

 
.

.
sin

0 2659

0 2252φ =     ⇒    0.2252 0.2659 0.2659 58sin sin
o

φ= =

∴  i(t)  =  −0.2252 e−500t  +  [sin 314t × 0.2659 cos58
o
 + cos 314t × 0.2659 sin58

o
]

       =  −0.2252 e−500t  +  0.2659 [sin 314t cos58
o
 + cos 314t sin58

o
]

       =  −0.2252 e−500t  +  0.2659 sin (314t + 58
o
) A

If i(t) is the current through the capacitor then the voltage across the capacitor v
C

(t) is given by,

( ) ( )t
C

t dtv i
1

C = #

( ) . . sint
C

e t dtv 1 0 2252 0 2659 314 58C
500t o

` = − + +
- ^ h6 @#

             

0.2252 0.2659 cose t

20 10

1

500 314

314 58
6

500t o

#

=
−

−
−

+

-

- ^ h; E

             
500

.

20 10 314

.
sine t

20 10

0 2252 0 2659
314 58 90

6

500t

6

o o

# # # #

=

−

−
+ + −

-

-

-^
^

h
h

        =  22.52 e−500t  + 42.34 sin (314t − 32
o
) V

RESULT

i(t) = −0.2252 e−500t  + 0.2659 sin (314t + 58
o
) A

v
C

(t) = 22.52 e−500t  + 42.34 sin (314t −32
o
) V  

EXAMPLE 3.24

In the circuit of Fig. 1, the switch remains in position-1 for a long  

time. At t = 0, the switch is moved from position-1 to position-2. Find an 

expression for the current through the RC circuit.

SOLUTION

Case i : Switch in position-1

In position-1, the circuit has attained a steady state. Hence, we can 

perform steady state analysis. The steady state of the RC circuit with switch 

in position-1 is shown in Fig. 2.

The standard form of sinusoidal source is, E
m

 sin (ωt ± φ).

Here, E
m

 sin (ωt ± φ) = 100 sin(200t + 45
o
) V

∴  E
m

 = 100 V,  ω = 200 rad/s,   φ = 45
o     

    100 45E Vom +=

, 45Rms value of voltage E E V
2 2

100 om
` += =

sin(A + B) = sinA cosB + cosA sinB

sin(q – 90o) = –cosq 

21

Fig. 1.

t = 0

50�

20mF

e(t) 50�

e(t) = 100 sin(200t + 45 )
o

V

~

+

E

Fig. 2.

+

-

50W

1

1

200 20 10

250

6

j C

j

j

w

=
´ ´ ´

= -

-

W

V0

~

+

-

E o
= Ð
100

2
45
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Let V0  be the voltage across the capacitor in steady state. By voltage division rule,

45V
j

j

2

100
50 250

250
0

o
#+=

−

−

      
45

. .2

100

254 951 78 7

250 90o

o

o

#+

+

+
=

−

−

      =  69.3375∠33.7
o

 V

, 69.3375Let V V V0 0= =

This steady state voltage V
0
 = 69.3375 V will be the initial voltage when the switch is moved from 

position-1 to position-2.

Case ii : Switch in position-2

When the switch is changed from position-1 to position-2, a steady voltage of V
0  

(and hence a charge 

of Q
0
) exists across the capacitance. Since the capacitance does not allow a sudden change in voltage, this 

steady voltage V
0
 will be the initial voltage when the switch is closed to position-2.

∴ v
C

(0−) = v
C

(0+) = V
0
 = 69.3375 V

The time domain and s-domain RC circuits with the switch in position-2 are shown in Figs 3 and 4, 

respectively.

Let, i(t) be the current through the RC circuit, when the switch is closed to position-2 at t = 0.

Let,  I(s) = L{i (t)} 

With reference to Fig. 4, we can write,

( )

.

I s

s

s

50 50
20 10

1

69 3375

6
#

=

+ +
-

       

.

s

s

69 3375

100
20 10

1

1

6

#

#

=

+
-

       

100

. 69.3375 .

s s
s

20 10

1

69 3375

100
100 20 10

1 500

0 693375

66
# # #

=

+

=

+

=
+

-- c ^m h

( ) .I s
s 500
0 693375

` =
+

On taking the inverse Laplace transform of I(s), we get,

  i(t) = 0.693375 e−500t
 A

L e
s a

1at
=

+

-" ,

Fig. 3.

50W

vC(t) V0

50W i(t)
+

-

+

-

50W

50W 1 1

20 10 6sC s
=

´
-

Fig. 4.

+
-

I(s)

V

s s

0 69 3375
=

.
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3.9    Solved Problems in RLC Transient

EXAMPLE 3.25

An RLC series circuit is excited by a dc source of 100 V. Find 

an expression for current and voltage in the elements of the circuit. 

Take R = 60 Ω, L = 0.2 H and C = 50 µF. Also draw the initial and final 

state of the circuits.

SOLUTION

The time domain RLC circuit is shown in Fig. 1. Let the switch 

be closed at t = 0 and i(t) be the current through the circuit.

L L( ) ( )t I s
s

i 100 100Here, and= =" ", ,

The s-domain RLC circuit is shown in Fig. 2. With reference 

to Fig. 2, we can write,

( )
.

I s
s

s

s

60 0 2
50 10

1

100

6
#

=

+ +
-

       

.

100

.
. 0.2 50 10

s s s s60 0 2
50 10

1
0 2

0 2

60 1

100

2

6

2

6
# # #

=

+ +

=

+ +
- -c m

       s s300 10

500
2 5

=

+ +

Let us examine the roots of the denominator polynomial of I(s). 

The roots of quadratic s2 + 300s + 105 = 0 are,

s
2

300 300 4 10

2

300 310000
2 5

! # !
=

− −

=

− −

    
.j

2
300 1 310000 150 278 3882!

!=

− −

= −

Since the roots are complex conjugate the current i(t) will be damped sinusoid. Let us rearrange the 

terms of denominator polynomial of I(s) as shown below:

( )I s
s s s2 150 150 10 150

500

150 77500

500
2 2 5 2 2

#

=

+ + + −

=

+ +^ ^h h

           
77500 .s s150

500

150 278 4

500

2 2 2 2
=

+ +

=

+ +^ ^ ^h h h

           
. .

278.4
.

278.4

.

s s278 4

500

150 278 4
1 796

150

278 4
2 2 2 2

# #=

+ +

=

+ +^ ^h h

Let us take the inverse Laplace transform of I(s).

L L( ) .
.

.I s
s

1 796
150 278 4

278 41 1

2 2#=

+ +

- -

^ h" ', 1

∴  i(t) = 1.796 e−150t sin278.4t A    ..... (1)

Add and subtract 1502

(a + b)2 = a2 + 2ab +b2

L sine t
s a

at

2 2
ω

ω

ω
=

+ +

-

^ h
" ,

(AU June’14, 16 Marks)

i(t)

t = 0

Fig. 1.

+

E

+

E

+ E + E
vR(t) vL(t)

vC(t) 50mF100V

60� 0.2H

Fig. 2.

+

-

I(s)

60 0.2s

1
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With reference to Fig. 1, by Ohm’s law, we can write,

v
R

(t)  =  R × i(t)

         =  60 × 1.796e−150t
 
sin278.4t  

     =  107.76e−150t sin278.4t V   ..... (2)

We know that if i(t) is the current through inductance then voltage across the inductance is given by,

( ) ( )t L
dt
d tv iL =

        . . .sin
dt

d
e t0 2 1 796 278 4

150t
=

-6 @

 = 0.2 × 1.796 [e−150t cos 278.4t × 278.4 + e−150t × (−150) sin278.4t ]

 =  100 e−150t cos 278.4t − 53.88 e−150t sin278.4t   ..... (3)

 = e−150t
 
[cos 278.4t × 100 − sin278.4t × 53.88]   ..... (4)   

Let us construct a right-angled triangle with 100 and 53.88 as two sides as shown in Fig. 3. 

With reference to Fig. 3, we can write,

.
.tan

100

53 88
0 5388φ = =

∴  φ  =  tan−1 0.5388  =  28.3
o

,
.
.sinAlso

113 592
53 88φ =     ⇒    . . sin53 88 113 592 φ=

                . 113.592 28.3sin53 88
o

` =     .....(5)

.
cos

113 592

100φ =     ⇒    . cos100 113 592 φ=  

                                   . .cos100 113 592 28 3
o

` =     .....(6)

Using equations (5) and (6), equation (4) can be written as,

v
L
(t)   =  e−150t [cos278.4t × 113.592 cos28.3

o
 − sin278.4t × 113.592 sin 28.3

o
]

 = e−150t 113.592 [cos278.4t cos28.3
o
 − sin278.4t sin 28.3

o
]

 = 113.592 e−150t cos (278.4t + 28.3
o
)

 = 113.592 e−150t sin (278.4t + 28.3
o + 90

o
)

 = 113.592 e−150t sin (278.4t + 118.3
o
) V 

With reference to Fig. 1, by KVL, we get,

v
R

(t) + v
L
(t) + v

C
(t) = 100

Using equation (1)

Using equation (1)

( )d uv u dv v du= −

cos(A + B) = cosA  cosB – sinA sinB

cosq = sin(q + 90o)

f

100

Fig. 3.

53.88

100 53 88 113 592
2 2+ =. .
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∴  v
C
(t) = 100 − v

R
(t) − v

L
(t)

                = 100 − 107.76e−150t sin278.4t − 100 e−150t cos278.4t + 53.88e−150t sin278.4t  

                   = 100 − 53.88e−150t sin278.4t − 100 e−150t cos278.4t

                   = 100 − e−150t [sin278.4t × 53.88 + cos278.4t × 100]  .....(7)

Let us construct a right-angled triangle with 53.88 and 100 as two sides as shown in Fig. 4.

With reference to Fig. 4, we get,

53.88

100
.tan 1 856φ = =

       ∴  φ  =  tan−1 1.856  =  61.7
o

,
.
.cosAlso

113 592
53 88φ =     ⇒    . . cos53 88 113 592 # φ=

                                             . . .cos53 88 113 592 61 7
o

` =    .....(8)

.
sin

113 592

100φ =     ⇒    . sin100 113 592 φ=

                                              . .sin100 113 592 61 7
o

` =     .....(9)

Using equations (8) and (9), equation (7) can be written as,

v
C

(t) = 100 − e−150t [sin278.4t × 113.592 cos61.7
o
 + cos278.4t × 113.592 sin61.7

o
]

        = 100 − 113.592 e−150t [sin278.4t cos61.7
o
 + cos278.4t sin 61.7

o
]

          = 100 − 113.592 e−150t sin (278.4t + 61.7
o
) 

In summary

      i(t)   =  1.796 e−150t sin278.4t A

    v
R

(t)  = 107.76 e−150t sin278.4t V

    v
L
(t) = 113.592 e−150t sin (278.4t + 118.3

o
) V

    v
C

(t) = 100 − 113.592 e−150t sin (278.4t + 61.7
o
) V

Initial state circuit

  At  t = 0
+
, i(t) = i(0

+
) = 1.796 × e0 × sin0 = 0

  At  t = 0
+
, v

R
(t) = v

R
(0

+
) = 107.76 × e0 × sin0 = 0

  At  t = 0
+
, v

L
(t) = v

L
(0

+
)  = 113.592 × e0 × sin118.3

o
 = 100.0152V  ≈ 100 V

  At  t = 0
+
, v

C
(t) = v

C
(0

+
) = 100 − 113.592 × e0 × sin61.7

o

                      
                  = 100 − 100.0152 ≈ 0

Using equations (2) and (3)

sin(A + B) = sinA  cosB + cosA sinB

f

53.88

Fig. 4.

100

53 88 100 113 592
2 2

. .+ =
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From the above analysis we can say that at t = 0
+
, the inductance 

behaves as an open circuit and the capacitance behaves as a short circuit. 

Final state circuit

 At  t = ∞,  i(t) =  i(∞) = 1.796 × e− ∞ × sin(∞) = 0

 At  t = ∞, v
R

(t) = v
R

(∞) = 107.76 × e− ∞ × sin(∞) = 0 

 At  t = ∞ , v
L
(t) = v

L
(∞) = 113.592 × e− ∞ × sin (∞) = 0

 At  t = ∞, v
C

(t) = v
C
(∞) = 100 − 113.592 × e− ∞ × sin(∞) = 100 − 0 = 100 V

From the above analysis we can say that at t = ∞, i.e., at steady 

state, the inductance behaves as a short circuit and the capacitance 

behaves as an open circuit. 

EXAMPLE 3.26

In the RLC circuit of Fig. 1, the capacitor has an initial voltage  

of 40 V, when the switch is closed at t = 0. Find an expression for the 

current i(t).

SOLUTION

Let,  L{i(t)} = I(s)

L,Also
s

100 100
=" ,

The s-domain equivalent of the given RLC circuit is shown in Fig. 2. 

With reference to Fig. 2, we can write,

( ) ( ) ( )I s sI s
s
I s

s s
2 10

4
1 40 100

+ + + =

( ) 2 10I s s
s s s4
1 100 40

` + + = −; E

    
( )I s s

s s
2 10

4
1 60

+ + =; E

( )
2 10

I s
s s

s

60

4
1

1
` #=

+ +

           
s s s s2 10

4

1

60

10
10

2

4 10

1

60

2 2

#

=

+ +

=

+ +c m

           . .s s0 2 0 025

6
2

=

+ +

Let us examine the roots of the denominator polynomial of I(s).

i(t)

t = 0

Fig. 1.

2� 4F

40V

10H

100V

+ E

+ E

I(s)

Fig. 2.

+ E+ E

+ E + E + E

2 10s

1

4s

40

s

1

4s
I(s)

10sI(s)2I(s)

+ E

100

s

Fig. 6 : Final state circuit.
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The roots of quadratic s2 + 0.2s + 0.025 = 0 are,

. . .
s

2

0 2 0 2 4 0 025
2

! #
=

− −

    
. . . . . .j

2
0 2 0 06

2
0 2 1 0 06 0 1 0 1225! !

!=

− −

=

− −

= −

Since the roots are complex conjugate, the current i(t) will be damped sinusoid. Let us rearrange the 

terms of denominator polynomial of I(s) as shown below:

( )
. . . .

I s
s s2 0 1 0 1 0 025 0 1

6
2 2 2

#

=

+ + + −^ h

       
. . . .s s0 1 0 015

6

0 1 0 015

6
2 2 2

=

+ +

=

+ +^ ^ ^h h h

       
. . . . 0.1225

.

s s0 1 0 1225

6

0 1225

6

0 1

0 1225
2 2 2 2

#=

+ +

=

+ +^ ^h h

       
.

. 0.1225

.

s
48 9796

0 1

0 1225
2 2

#=

+ +^ h

Let us take the inverse Laplace transform of I(s).

L L( ) .
. 0.1225

.I s
s

48 9796
0 1

0 12251 1

2 2#=

+ +

- -

^ h" ', 1

  ∴   i(t)  =  48.9796 e–0.1t sin0.1225t  A

EXAMPLE 3.27

In the RLC circuit of Fig. 1, the inductor has an initial current of  

10 A, when the switch is closed at t = 0. Find an expression for the current i(t).

SOLUTION

Let, L{i(t)} = I(s)

L,Also
s

200 200
=" ,

The s-domain equivalent of the given RLC circuit is shown in Fig. 2. 

With reference to Fig. 2, we can write,

10. ( ) 0.2 ( )
.

( ) 2I s s I s
s
I s

s
08

0 25
1 200

+ + = +

( ) . .
.

I s s
s s

s10 08 0 2
0 25
1 200 2

+ + =
+; E

( )
. .

.

I s
s

s

s
s

200 2

10 08 0 2
0 25
1

1
` #=

+

+ +

           . .
.

.
.

.

. .
.s s

s

s s

s

s s

s

10 08 0 2
0 25

1

200 2

0 2
0 2

10 08

0 2 0 25

1

200 2

50 4 20

1000 10

2 2 2

#

=

+ +

+
=

+ +

+
=

+ +

+

c m

Add and subtract 0.12

(a + b)2 = a2 + 2ab +b2

L
( )

sine t
s a

at

2 2
ω

ω

ω
=

+ +

-" ,

i(t)
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Fig. 1.
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The roots of quadratic, s2 + 50.4s + 20 = 0 are,

        

. .
s

2

50 4 50 4 4 20
2

! #
=

− −

           

. . 0.4,
2

50 4 49 6 50!
=

−

= − −

( )
.

I s
s s

s
0 4 50

1000 10
` =

+ +

+

^ ^h h

By partial fraction expansion, I(s) can be expressed as,

( )
. .

I s
s s

s
s
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s
K
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=
+ +
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=

+
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h h
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.

K
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#=
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+
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#
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+

+
=

− +

+ −
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^ h

( )
.

I s
s s0 4
20

50
10

` =
+

−
+  

Let us take the inverse Laplace transform of I(s).

L L( )
.

I s
s s0 4
20

50
101 1

=
+

−
+

- -" ', 1

      ∴  i(t)  =  20 e–0.4t − 10 e–50t
 A

                 10 e e A
10

20 0.4t 50t
= −

- -c m
            =  10 (2 e−0.4t − e−50t ) A

EXAMPLE 3.28

Find i(t) in the circuit of Fig. 1, if the switch is closed at t = 0.

SOLUTION

Let,  L{i(t)} = I(s)

L,Also
s

18 18
=" ,

L e
s a

1at
=

+

-" ,

i(t)

t = 0

Fig. 1.
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The s-domain equivalent of the given circuit is shown in Fig. 2. With reference to Fig. 2, by KVL, we 

can write,

0 ( ) 2 ( )
.

( )I s s I s
s
I s

s s
2

0 02
1 18 6

+ + = +

( )
.

I s s
s s

20 2
0 02
1 24

+ + =; E

( )
20 2

.

I s
s s

s

24

0 02
1

1
` #=

+ +

           
20 2

. .
s s s s

0 02

1

24

2
2

20

2 0 02

1

24

2 2

#

=

+ +

=

+ +c m

           s s10 25

12
2

=

+ +

The roots of quadratic, s2 + 10s + 25 = 0 are,

10 4 25
s

2

10

2

10
5

2
! #

=

− −

=

−

= −

( )I s
s 5

12
2

` =

+^ h

Let us take the inverse Laplace transform of I(s).

L L( )I s
s 5

121 1
2

=

+

- -

^ h" ', 1

i(t) = 12t e–5t
 A

EXAMPLE 3.29

In the circuit of Fig. 1, the switch is closed to position-1 for a long time. 

At t = 0, the switch position is changed from position-1 to position-2. Find an 

expression for i(t).

SOLUTION

Case i : Switch in position-1

Since the switch is closed for a long time, the circuit might have attained 

steady state. The steady state circuit with switch in position-1 is shown in Fig. 2. 

Here a steady current of I
0
 flows through the inductance.

With reference to Fig. 2, we get,

I
R

E
0 =

This current I
0
 will be the initial current through the inductance when the 

switch is moved  to position-2.

L t
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e
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2
=
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Case ii : Switch in position-2

L, ( ) ( )Let t I si =" ,

 The s-domain equivalent of the given circuit with switch in position-2 is shown in Fig. 3. 

With reference to Fig. 3, we get,

( )I s

sC
sL

R
LE

1
=

+

       

R

LE

sC

s LC R

LE

LC s
LC

sC

1

1

12 2
# #=

+

=

+c m

       

R

E

s
LC

s

R

E

s
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s

1 12 2
2

=

+

=

+ c m

Let us take the inverse Laplace transform of I(s).

L L( )I s
R
E

s
LC

s

1

1 1

2
2

=

+

- -

c m
" *, 4

( ) cost
R
E

LC
ti A

1
` =

CONCLUSION

The current is sinusoidal in nature and does not decay because the ideal inductance and capacitance 

do not consume energy.

EXAMPLE 3.30

In the circuit of Fig. 1, the switch remains in position-1 for a long time. 

At t = 0, the switch is closed to position-2. Determine the current response.

SOLUTION

Case i : Switch in position-1

In position-1, the circuit should have attained steady state because the 

switch is closed for a long time. The steady state condition of the given circuit 

with switch in position-1 is shown in Fig. 2. Here a steady current of I
0
 flows 

through the inductance. 

With reference to Fig. 2, we can write,

5I A
2

10
0 = =

This current I
0
 will be the initial current when the switch is changed 

from position-1 to position-2.

L cos t
s

s
2 2

ω
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Case ii : Switch in position-2

Let, i(t) be the current through the circuit when the switch is closed to position-2. 

Let, I(s) = L{i(t)}

The time domain and s-domain circuits with switch in position-2 are shown in Figs 3 and 4, respectively.

With reference to Fig. 4, we can write,

( )
.

.

I s
s

s
2 0 4

0 1
1

2
=

+ +

       .

. . . . .
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 The roots of the quadratic, s2 + 5s + 25 = 0 are,
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Since the roots are complex conjugate, the response will be damped sinusoid. Let us rearrange the 

terms of denominator polynomial of I(s).

( )
. . . . 18.75

I s
s s

s

s

s

2 2 5 2 5 25 2 5

5

2 5

5
2 2 2 2

#

=

+ + + −

=

+ +^ ^h h

       
. 18.75 . .

. .

s

s

s

s

2 5

5

2 5 4 33

5 2 5 2 5

2 2 2 2
=

+ +

=

+ +

+ −

^ ^ ^

^

h h h

h

       
. .

.

.

.

. 4.33

.

s

s

s2 5 4 33

5 2 5

4 33

2 5 5

2 5

4 33
2 2 2 2

#
#=

+ +

+
−

+ +^

^

^h

h

h

       
. .

.
.

. .

.

s

s

s
5

2 5 4 33

2 5
2 8868

2 5 4 33

4 33
2 2 2 2

# #=

+ +

+
−

+ +^

^

^h

h

h
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(a + b)2 = a2 + 2ab +b2
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Let us take the inverse Laplace transform of I(s).

L L L( ) 5
. .

.
2.8868

. .

.I s
s

s

s2 5 4 33

2 5

2 5 4 33

4 331 1

2 2
1

2 2# #=

+ +

+
−

+ +

- - -

^
^

^h
h

h" ) ', 3 1

∴  i(t) = 5e–2.5t cos 4.33t − 2.8868e–2.5t sin 4.33t

                       = e–2.5t [cos 4.33t × 5 − sin4.33t × 2.8868]    .....(1)

Let us construct a right-angled triangle with 5 and 2.8868 as two sides as shown in Fig. 5. 

With reference to Fig. 5, we can write,

2.8868
.tan

5
0 5774φ = =

∴  φ  =  tan−1 0.5774  =  30
o

,
.

cosAlso
5 7735

5φ =      ⇒    5 5.7735cosφ=

                                        5.7735 30cos5
o

` =   .....(2) 

.

.
sin

5 7735

2 8868φ =      ⇒   2.8868 5.7735sinφ=   

                            . 5.7735 30sin2 8868
o

` =   .....(3)

Using equations (2) and (3), equation (1) can be written as,

i(t) = e− 2.5t [cos 4.33t × 5.7735 cos30
o
 − sin 4.33t × 5.7735 sin30

o
]

     = 5.7735e− 2.5t [cos 4.33t cos30
o
 − sin 4.33t sin30

o
]

     = 5.7735e− 2.5t cos (4.33t + 30
o
)

     = 5.7735e− 2.5t sin (4.33t + 30
o
 + 90

o
)

      = 5.7735e− 2.5t sin (4.33t + 120
o ) A

EXAMPLE 3.31

In the circuit of Fig. 1, the switch is closed to position-1 for a long 

time. At t = 0, the switch position is changed from 1 to 2. Determine the 

current response.

SOLUTION

Case i : Switch in position-1

In position-1, the circuit should have attained steady state because 

the switch is closed for a long time. The steady state condition of the  

given circuit with switch in position-1 is shown in Fig. 2. Here the capacitor 

is fully charged and behaves as an open circuit. Hence, the voltage across  

the capacitor V
0
 will be equal to the supply voltage 20  V.

∴  V
0
 = 20  V

This voltage V
0
 will be the initial voltage when the switch position is 

moved from 1 to 2.

cos(A + B) = cosA  cosB – sinA sinB

cosq = sin(q + 90o)

f

5

Fig. 5.
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Case ii : Switch in position-2

Let, i(t) be the current through the circuit when the switch is closed to position-2. 

Let, I(s) = L{i(t)}

The time domain and s-domain circuits with the switch in position-2 are shown in Figs 3 and 4, respectively.

With reference to Fig. 4, we can write,
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Let us take the inverse Laplace transform of I(s).

L L( ) .
.

.I s
s

0 45
25 222 2

222 21 1

2 2#=

+ +

- -

^ h" ', 1

     i(t) = 0.45 e–25t
 
sin (222.2t) A

3.10    Summary of Important Concepts

1. The study of switching condition in a circuit is called transient analysis.

2. The state of  a circuit from the instant of switching to attainment of steady state is called transient.

3. The duration from the instant of switching till the attainment of steady state is called transient  

  period.

Add and subtract 252

(a + b)2 = a2 + 2ab +b2

L
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4. The current and voltage of circuit elements during the transient period is called transient  
  response.

5. The transients are due to inductance and capacitance. There is no transient in purely resistive  
  circuits.

6. The response of a circuit due to stored energy alone is called natural response or  
  source-free response.

7. The response of a circuit due to an external source is called forced response.

8. In s-domain or Laplace domain, the inductive reactance is represented as sL and capacitive  
  reactance as 1/sC.

9. In transient analysis using Laplace transform, the intial current I
0
 in inductance can be 

  represented by a voltage source of value LI
0 
 delivering current in the direction of I

0 
.

10. In transient analysis using Laplace transform, the initial voltage V
0
 in capacitance can be 

  represented by a voltage source of value V
0
/s with the same polarity/sign as that of V

0
. 

11. The inital value theorem of Laplace transform can be used to determine the initial value  
  of voltages and currents form their s-domain equations.

12. The initial value theorem of Laplace transform states that if F(s) is Laplace transform of f(t) then 

  
( ) ( )Lt f t Lt s F s

st 0
=

" "3

( ) (0) ( )Initial value of f t f Lt s F s
s

` = =
"3

13.  The final value theorem of Laplace transform can be used to determine the final values of  
   voltages and currents from their s-domain equations.

14. The final value theorem of Laplace transform states that if F(s) is Laplace transform of f(t) then 

  
( ) ( )Lt f t Lt s F s

t s 0
=

" "3

  ( ) ( ) ( )Final value of f t f Lt s F s
s 0

` 3= =

"

15. When switched to dc supply, an inductance initially behaves as a current source if there  
  is an initial current or as an open circuit if there is no initial current and finally behaves 
  as a short circuit irrespective of inital current. 

16. When switched to dc supply, a capacitance initially behaves as a voltage source if there is  
  an initial voltage or as a short circuit if there is no initial voltage and finally behaves as an  
  open circuit irrespective of inital voltage.

17. The source-free response i(t) in an RL circuit due to initial current I
0
 is given by,

  ( ) ; ,t I e where
R
Li Time constant.

t

0 τ= = =x
-

18. The transient equations of an RL circuit excited by a dc supply of E volts are,

  ( )t
R
E ei 1

t

= − x
-_ i

( )t E ev
t

L = x
-

( )t E ev 1
t

R = − x
-_ i

,where
R
L Time constant.τ = =
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19. The time constant of an RL circuit can be defined in the following four different ways.

    The time constant of an RL circuit is defined as the time taken by the current through the 

    inductance to reach steady value if the initial rate of rise is maintained.    The time constant of an RL circuit is defined as the ratio of inductance and resistance 

    of the circuit.    The time constant of an RL circuit is defined as the time taken by the current through the 

    inductance to reach 63.21% of the final steady value.    The time constant of an RL circuit is defined as the time taken by the voltage across

    the inductance to fall to 36.79% of the initial value.

20. The source-free response v
C
(t) in an RC circuit due to inital voltage V

0
 is given by,

  ( ) ; ,t V e where RCv Time constant.
t

C 0 τ= − = =x
-

21. The transient equations of an RC circuit excited by a dc supply of E volts are,

         ( )t E ev 1
t

C = − x
-_ i

( )t
R
E ei

t

= x
-

( )t E ev
t

R = x
-

,where RC Time constant.τ = =

22. The time constant of an RC circuit can be defined in the follwing four different ways:

   The time constant of an RC circuit is defined as the time taken by the voltage across 

    the capacitance to reach steady value if the initial rate of rise is maintained.

    The time constant of an RC circuit is defined as the product of resistance and 

    capacitance of the circuit.

    The time constant of an RC circuit is defined as the time taken by the voltage across 

    the capacitance to reach 63.21% of the final steady value.

    The time constant of an RC circuit is defined as the time taken by the current through 

    the capacitance to fall to 36.79% of the initial value.

23. The response i(t) of an RLC circuit excited by a dc supply of E volts will take any one 

  of the following three forms depending on the value of R, L and C:

  ( ) ; 0 1 ; .sint
L
E e t Underdamped responsei < <t

d

d
n

ω
ω ζ= g~-

  ( ) ; 1 ; .t
L
E t e Critically damped responsei tn ζ= =~-

  ( ) ; 1; .t
L

E e e e Overdamped responsei
2 1

>t t t1 1

n
2

n n n
2 2

ω ζ
ζ=

−
−g~ ~ g ~ g- - - -a k

  , .where R
L
C Damping ratio

2
ζ = =

             .
LC

Natural frequency of oscillation1
nω = =

            .Damped frequency of oscillation1 2
d nω ω ζ= − =



Chapter 3 - Transient Response Analysis                                                   3. 97

24. The ratio of resistance of a circuit and resistance for critical damping (or critical resistance) is  

  called damping ratio, ζ.

,ratio
R
R

C
L

R R
L
C

2
2

Damping
C

` ζ = = =

25. Critical resistance R
C
 is the value of the resistance of a circuit to achieve critical damping 

  and it is given by, 2 .R
C

L
C =

3.11    Short-answer Questions

Q3.1 What is transient?

 The state (or condition) of a circuit from the instant of switching to attainment of steady state 

is called transient state or simply transient.

Q3.2 Why does transient occur in electric circuits?

 The inductance does not allow a sudden change in current and the capacitance does not 

allow a sudden change in voltage. Hence, in inductive and capacitive circuits (or in general 

in reactive circuits), transient occurs during a switching operation.

Q3.3 What are free and forced response?

 The response of a circuit due to stored energy alone is called free response and the response 

of a circuit due to an external source is called forced response.

Q3.4 What is a complementary function?

 The part of the response or solution which becomes zero as t tends to infinity is called 

complementary function. It is the transient part of the response or solution.

Q3.5 What is a particular solution?

 The part of the solution or response which attains a steady value as t tends to infinity is called 

particular solution. It is the steady state part of the solution.

Q3.6 Define time constant of an RL circuit.

 The time constant of an RL circuit is defined as the time taken by the current through the 

inductance to reach a steady value if the initial rate of rise is maintained.

Q3.7 Distinguish between steady state and transient state.

 In transient state, the values of voltage and current will not be constant, whereas in steady 

state, the values of voltage and current will attain a steady value.

Q3.8 What is the time constant of an RL circuit with R = 10 W and L = 20 mH ?

2 10 2
R
L

ond ms
10

20 10Time constant, sec
3

3#
#τ = = = =

-
-

(AU June’14, 2 Marks)

(AU June’14,’16, Dec’15, & May’17, 2 Marks)

(AU Dec’15, 2 Marks)
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0.3H

0.9H 10�E

Fig. Q3.9.1.

+
E

Q3.9 What is the time constant of an RL circuit shown in Fig. Q3.9.1?

 Let us find an equivalent inductance at terminals A-B using 

Thevenin’s theorem as shown below:

 Using Thevenin’s equivalent, the given network can be drawn as 

shown in Fig. Q3.9.5.

. 0.0225 22.5
R

L
ond ms

10
0 225Now, Time constant, sec

eq
τ = = = =

Q3.10 Define time constant of an RC circuit.

 The time constant of an RC circuit is defined as the time taken by the voltage across the 

capacitance to reach a steady value if the initial rate of rise is maintained.

Q3.11 What is the time constant of an RC circuit with R = 10 kW and C = 40 mF ?

  Time constant, t = RC = 10 × 10
3
 × 40 × 10

−6
 = 0.4 second.

Q3.12 What is the time constant of an RC circuit shown in Fig. Q3.12.1?

 Let us find an equivalent resistance at terminals A-B using 

Thevenin’s theorem as shown below:

 Using Thevenin’s equivalent, the given network can be drawn 

as shown in Fig. Q3.12.5.

Now, Time constant, t = R
eq

C = 8 × 0.5 = 4 seconds.

Q3.13 What is damping ratio?

 The ratio of resistance of a circuit and resistance for critical damping is called damping ratio.

Q3.14 What is critical damping?

 Critical damping is the condition of a circuit at which the oscillations in the response are just 

eliminated. This is possible by increasing the value of resistance in the circuit.

(AU June’14 & Dec’15, 2 Marks)

E
+
- 0.5F

10W

Fig. Q3.12.2.

40W

A

B

Req

Fig. Q3.12.3.

SC

A

B

10W

40W Req =
´

+

=

10 40

10 40

8W

A

B

Fig. Q3.12.4.

Req

R = 8eq W

0.5F

Fig. Q3.12.5.

+
-

Vth

E
+
E 0.5F

10�

Fig. Q3.12.1.

40�

A

B

0.3H

0.9H 12WE

Fig. Q3.9.2.

+
-

SC

0.3H
A

B

Leq

Fig. Q3.9.3.

0.9H

A

B

Fig. Q3.9.4.

Leq =
´

+

=

0 3 0 9

0 3 0 9

0 225

. .

. .

. H

Leq
10W

Fig. Q3.9.5.

+
-

L = 0.225eq H

Vth
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Q3.15 What is critical resistance?

 Critical resistance is the value of the resistance of a circuit to achieve critical damping.

Q3.16 Write the expression for critical resistance and damping ratio of an RLC series circuit.

2R
C
LCritical resistance, C =

R
R R

L
C

2
Damping ratio,

C

ζ = =

Q3.17 What is natural and damped frequency?

 The response of a circuit is completely oscillatory with a frequency ω
n
 in the absence of 

resistance and this frequency ω
n
 is called natural frequency.

 The response of an underdamped circuit is oscillatory with a frequency of ω
d
 and these 

oscillations are damped as t tends to infinity. The frequency of damped oscillatory response 

is called damped frequency.

Q3.18 Write the condition for underdamping and critical damping in an RLC series circuit.

L
R

LC2
1The condition for underdamping is, <

2c m

L
R

LC2
1The condition for critical damping is,

2

=c m

Q3.19 An RLC series circuit with L = 2 H and C = 5 mF. Determine the value of R to give critical 

damping.

Let, R
C
 = Value of R for critical damping

       2 .R
C

L
2

5 10

2
1264 911

6C #

#

Ω= = =
-

Q3.20 An RLC series circuit with R = 10 W and L = 2 H. Determine the value of C to give critical 

damping.

For critical damping, the value of R is given by,

2R
C

L
=     ⇒    4R

C

L2
=     ⇒    C

R

L4
2

=

Let, C
C
 = Value of capacitor for critical damping.

0.08 80 10 80C
R

L
F F mF

4

10

4 2
2 2

3

C
`

#
#= = = = =

-

Q3.21 An RL series circuit with R = 10 W is excited by a dc voltage source of 30 V  by closing the 

switch at t = 0. Determine the current in the circuit at t = 2  t.

( )t
R
E ei 1Current,

t
= − x

-^ h

                      2.594e A
10

30
1

2
= − =

-^ h

(AU June’16, 2 Marks)

(AU Dec’16, 2 Marks)
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Q3.22 An RC series circuit is excited by a dc voltage source of 80 V by closing the switch at t = 0. 

Determine the voltage across the capacitor in a time of one time constant.

( )v t E e1Voltage across capacitor,
t

C = − x
-^ h

                                                      80 50.5696e V1
1

= − =

-^ h

Q3.23 A 50 mF capacitor is discharged through a 100 kW resistor. If the capacitor is initially 

   charged to 400 V, determine the initial energy.

Initial energy = 50 10 400CV
2

1

2

12 6 2

0 # # #=
-   

  
  
=  4 Joules

Q3.24 An RLC series circuit with R = 5 W is excited by a dc source of 10 V by closing the switch 

 at t = 0. Draw the initial and final conditions of the circuit.

3.12    EXERCISES

I. Fill in the Blanks With Appropriate Words

1. The time duration from the instant of switching till the attainment of steady state is called  ________ .

2. The current and voltage of circuit elements during transient period is called  ________ .

3. The response of a circuit due to  ________  alone is called natural response.

4. The complementary function is also called  ________ .

5. In  _______,  the current at  t = 0−  is equal to the current at t = 0
+
.

6. In circuits excited by a dc source at steady state, the _______ behaves as a short circuit and   

 ________ behaves as an open circuit.

7. In circuits excited by a dc source when there is no stored energy at initial state,  ________  behaves  

 as a short circuit and  ________  behaves as an open circuit.

8. The time constant of an RL circuit with R = 5 Ω and L = 0.2 H is  ________ .

9. The time constant of an RC circuit with R = 200 Ω and C = 10 µF is  ________ .

10. The steady state current in an RC series circuit with R = 100 Ω excited by a dc source of 10 V 

 is  ________ .

11. The steady state voltage across the inductance in an RL circuit with R = 5 Ω, excited by a dc source 

 of 20 V is  ________ .

12. The ratio of resistance of a circuit and resistance for critical damping is called  ________ .

13. The  ________  is the condition for critical damping in an RLC series circuit.

(AU Dec’14, 2 Marks)

vL( ) = 0¥

i( ) = 0¥

vC( ) = 10V¥

+ _

+

-

OCSC

+ _

Fig. Q3.24.2 : Final condition.

10V

5W

+ _

+

-

OC SC

+ _

5W

Fig. Q3.24.1 : Initial condition.

10V

vL( )0 10+
= V vC( )0 0+

=

i( )0 0+
=
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14. The frequency of oscillatory response of a circuit with zero resistance is called  ________ . 

15. The resistance of a circuit at critical damping is called  ________ . 

ANSWERS

1. transient period 6. inductance, capacitance 11. zero

2. transient response 7. capacitance, inductance 12. damping ratio

3. stored energy 8. 0.04 second 13. 
L

R

LC2

1
2

=c m  

4. natural response 9. 2 ms  14. natural frequency 

5. inductance 10. zero 15. critical resistance

II. State Whether the Following Statements are True or False

1. Transients are due to energy storage elements.

2. There is no transient in resistive circuits.

3. The complementary function depends on the nature of the exciting source.

4. The particular solution depends on the nature of the circuit.

5. In a capacitance, the voltage at  t = 0− is equal to the voltage at t = 0
+
.

6. The steady state value does not depend on initial conditions.

7. The transient in a circuit exists for a period of five time constant.

8. The time constant of a circuit does not depend on R, L and C parameters.

9. In circuits with energy storage elements, the response can attain steady state in a time of one  

 time constant if the initial rate of change is maintained.

10. An inductance with stored energy behaves as a current source at t = 0.

11. A capacitance with stored energy behaves as a voltage source at t = 0.

12. The oscillations in response can be reduced by reducing the resistance of a circuit.

13. Damping ratio can be adjusted by varying the capacitance of a circuit.

14. Critical resistance does not depend on inductance and capacitance.

15. Natural frequency depends on damping ratio.

ANSWERS

 1. True 4. False 7. True 10. True 13. True

 2. True 5. True 8. False  11. True 14. False

 3. False 6. True 9. True 12. False 15. False
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III.  Choose the Right Answer for the Following Questions

 1. The time constant of an RL series circuit with R = 5 W and L = 0.1 H is,

  a) 0.05 ms b) 20 ms  c) 0.5 ms  d) 2 ms

 2. The current through an RL circuit excited by a 10 V dc source is given by i(t) = 2 (1 – e–10t) A. What 

  is the value of R and L ?

  a) 5 W, 0.5 H b) 2 W, 0.1 H  c) 5 W, 0.2 H  d) 20 W, 0.5 H

 3. An RL series circuit with R = 10 W and L = 0.2 H is excited by a dc supply of 15 V by closing the 

  switch at t = 0. The voltage across the inductance is,

  a) 1.5 e–50 t
 V b) 1.5 e–0.02 t

 V  c) 15 e–50 t
 V  d) 15 e–0.02 t

 V 

 4. The steady state voltage across the inductance in an RL circuit with R = 5 W and excited by a dc 

  source of 20 V is, 

  a) 20 V b) – 20 V c) 4 V d) 0 V

 5. An RL circuit with R = 12 W and L = 0.2 H is excited by a dc source of 24 V by closing the 

  switch at t = 0. The initial and final currents through the circuit respectively are,

  a) 2 A,  0 A b) 0 A,  2 A c) 0.50 A,  0 A d) 0 A,  0.5 A

 6. The time constant of an RC series circuit with R = 200 W and C = 100 mF is, 

  a) 0.05 ms b) 5.0 ms  c) 2 ms  d) 20 ms

 7. The current through an RC circuit excited by a 5 V dc source is given by, i(t) = 2.5 e –20 t A. 

  What is the value of R and C ?

  a) 2 W, 0.025 F b) 0.5 W, 20 F c) 5 W, 0.2 F d) 12.5 W, 0.1 F

 8. An RC series circuit with R = 10kW and C = 1mF is excited by a dc supply of 20 V by closing 

  the switch at t = 0. The voltage across the resistance is,

  a) 2 e–100 t
 mV b) 20 e–0.01 t

 mV c) 20 e–100 t
 V d) 2 e–0.01 t

 V 

 9. The steady state current through the capacitance in an RC circuit with R = 100 W and 

  excited by a DC source of 10 V is,

  a) 10 A b) –10 A c) 0.1 A d) 0 A  

 10. An RC circuit with R = 150 W and C = 2 mF is excited by a dc source of 15 V by closing the 

  switch at t = 0. The initial and final voltages across the capacitor respectively are,

  a)  10 V,  15 V b) 15 V,  0 V c) 0 V,  15 V d) 0 V,  10 V
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 11. What is the time constant of the RC circuit shown in Fig. 11?

  a) 4 ms 

  b) 40 ms 

  c) 0.25 ms 

  d) 25 ms

 12. What is the time constant of the RC circuit shown in Fig. 12?

  a) 3 RC 

  )b RC
9
2  

  )c RC
2
9  

  d) 2 RC  

 13. What is the steady state current through the inductance in the circuit shown in Fig. 13?

  a) 0.5 A

  b) 2 A 

  c) 3 A 

  d) 4 A  

 14. In a series RLC circuit, what is the condition for critically damped response?

  )a
L
R

LC2
1

=  )b
L
R

C
L

2
=  )c

L
R

LC2
1 2

= a k  )d
L
R

LC2
12

=a k

 15. An RLC series circuit with R = 10 W, L = 0.01 H and C = 1 mF is excited by a dc source of 16V by 

  closing the switch at t = 0. The initial and final voltages across the capacitor respectively are,

  a)  0 V,  1.6 V b) 0 V,  16 V c) 1.6 V,  16 V d) 1.6 V,  0 V

ANSWERS

 1.  b   5. b   9. d   13. b   

 2.  a   6. d   10. c   14. d    

 3.  c   7. a  11. b   15. b  

 4.  d  8. c  12. d  

20V
+
E 0.002F

30�

Fig. 11.

60�

R

2R C 2C

Fig. 12.

0.1F

Fig. 13.

60�
+

E

120V

12mH
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IV.  Unsolved Problems

E3.1 A steady current of 12.5 A is established through an inductance of 0.4 H by connecting it to a 

current source. At time t = 0, the inductance is disconnected from the source and connected to 

a resistance of 32  W . Find an expression for the current through the resistance. Also draw the 

initial and final conditions of the circuit.

E3.2 In the RL circuit shown in Fig. E3.2, the switch is closed at t = 0. Find the current through the 

circuit and voltage across inductance and resistance. Also determine 
( ) ( )

dt

di t
and

dt

d i t
2

2

 at t = 0
+
.

E3.3 In the RL circuit shown in Fig. E3.3, the switch is closed at position-1 for a long time and 

then switched to position-2 at t = 0. Determine the response i(t). Also draw the initial and final 

condition of the circuit.

E3.4 In the RL circuit of Fig. E3.4, the switch is closed to position-1 at t = 0. Then at t = 0.24 second, 

the switch is moved to position-2. Determine the response i(t) and sketch the response. Also 

determine the time at which i(t) is zero.

E3.5 The switch in the circuit of Fig. E3.5 is closed at position-1 for a long time. At time t = 0, the 

switch is moved to position-2. Find i(t) for t ≥ 0.

E3.6 A voltage of 12 V is established across a capacitor of 100 mF by connecting it to a voltage source. 

At time t = 0, the capacitor is disconnected from the source and connected to a resistance of 

10 k W . Find an expression for current through the resistance. Also draw the initial and final 

conditions of the circuit.

t = 0

i(t)

+

E

8�

Fig. E3.2.

0.2H12V

t = 0

21

+
E+

E
0.8H

24V10V

20�

Fig. E3.3.

20�

10�

1.2H

Fig. E3.4.

12V

1

2

t = 0

+
E+

E
10V

5V

2�

e V(t) = 20 sin(120t + 15 )
0

t = 0

21

+
E

0.7H

Fig. E3.5.

+

E

i(t)

e(t)
~
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E3.7 In the RC circuit shown in Fig. E3.7, the switch is closed at t = 0. Determine the current and 

voltage in the resistance and capacitance. Also determine 
( ) ( )

dt

dv t
and

dt

d v tC

2

2
C  at t = 0

+
.

E3.8 In the RC circuit shown in Fig. E3.8, the switch is closed to position-1 for a long time. At time  

t = 0, the switch is moved to position-2. Determine and sketch the voltage across the capacitance 

for t ≥ 0. Also draw the initial and final conditions of the circuit.

E3.9 A capacitor of 100 mF has to be charged to a voltage of 160 V by connecting it to a dc source of

200 V. Determine the value of series resistance required to charge the capacitor in 0.1 second.

E3.10 In the RC circuit shown in Fig. E3.10, the capacitor has an initial charge of 300 mC. If the switch 

is closed at t = 0, determine the time at which the capacitor voltage is zero. Also estimate and 

sketch the current and voltage in the capacitor for t ≥ 0.

E3.11 The RC circuit shown in Fig. E3.11 is excited by a sinusoidal voltage source  

e(t) =  60 sin (144t  + φ) V by closing the switch at φ = 20
o
. Determine the current and voltage 

in the capacitor.

E3.12 An RLC series circuit is excited by a dc source of 80 V. If the initial current through the inductance 

is 2 A opposing the circuit current, determine the current through the circuit and voltage across 

the capacitor. Take R = 10 W, L = 0.1 H and C = 4 mF. Also draw the initial and final state of the 

circuits.

E3.13 An RLC series circuit with R = 40 W, L = 0.8 H and C = 200 mF  is connected to a dc source of 

100 V by closing the switch at t = 0. Determine the current and voltage in the inductance. Take 

initial charge on the capacitor as 4 mC opposing the capacitor voltage.

t = 0

Fig. E3.7.

150W

0.8mF18V +
-

t = 0

21

+
- 20V5V

Fig. E3.8.

160mF

250W

vC(t)
+
-

+

-

240�

Fig. E3.11.

0.45mCe(t) 75mF

t = 0

+

E

t = 0

+

E

18V

800�

Fig. E3.10.

60mF 300 Cm

E

+ +

E

~
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E3.14 From the RLC circuit shown in Fig. E3.14, find an expression for i(t) for t ≥ 0. Also calculate 

the value of   
( ) ( )

dt

di t
and

dt

d i t
2

2

 at t = 0
+
.

E3.15 The RLC series circuit shown in Fig. E3.15 is excited by a sinusoidal source of value  

e(t) = 40 sin (415t + φ) V by closing the switch at φ = 0. Find an expression for the response i(t).

ANSWERS

E3.1 ( ) 12.5 12.5t e ei A A0.0125
t80t

= =
--

 i(0+) = 12.5 A    ;    i(∞) = 0

 

E3.2 ( ) 1.5 1.5t e ei A A1 11/40
t

0.025
t

= − = −

-
-c ^m h

 ( ) 12 ; ( ) 12v vt e t eV V1 0.025
t

0.025
t

R L= − =

- -^ h

 

( )
60 / ;

( )
2400 /

dt

d

dt

di
A s

i
A s

0 0
2

2
2

= = −

+ +

E3.3 ( ) 1.2 1.7 ; (0 ) 0.5 ; ( ) 1.2t ei A i A i A0.04
t

3= − = − =

- +

i(t)

t = 0
32� 0.5mF50mH

+

E

90V

Fig. E3.14.

i(t)

t = 0

+

E

Fig. E3.15.

~

e(t)

147.2� 0.08H 32.552mF

32W

Fig : Initial condition.

12.5A i(0 ) = 12.5
+

A i( ) = 0¥

Fig : Final condition.

32W

OC

20W

Fig : Initial condition.

24V i(0 ) = 0.5
+

- A 0.5A+
- i( ) = 1.2A¥

Fig : Final condition.

20W

+
-

24V SC
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E3.4 ( ) 1 ; 0 0.24t e for ti A sec0.12
t

# #= − +
-

 ( ) 0.6 1.4647 ; 0.24t e for ti A sec0.06

t 0.24

$= −

-
-^ h

  t
0
 = 0.2935 sec, (Time at which i(t) is zero)

E3.5 i(t) = −2.272e
−2.857t

 + 0.238 sin (120t − 73.6
o
) A

E3.6 i(t) = 1.2 e
−t

 mA     ;     i(0+) = 1.2 mA     ;     i(∞) = 0 

  v
C
(t) = 12 e

−t
 V      ;     v

C
(0+) = 12 V      ;     v

C
(∞) = 0

E3.7 ( ) 0.12 ; ( ) 18t e t ei A v V0.12
t

0.12
t

R= =
- -

 ( ) 18 ;
(0 )

150 /v
v

t e
dt

d
V V s1 0.12

t C
C = − =

-
+

^ h

 
(0 )

1250 /
v

dt

d
V s

2

2
C 2

= −

+

E3.8 ( ) 20 15v t e V0.04
t

C = −

-

 v
C
(0+) = 5 V       ;    v

C
(∞) = 20 V

 i(0+) = 0.06 A     ;    i(∞) = 0

250W

Fig : Initial condition.

5V i(0 ) = 0.06
+

A
+
-

+
-

V = 50 V i( ) = 0A¥

Fig : Final condition.

250W

+
-20V vC( ) = 20V¥

+

-

vC(t)

0 t

20V

15V

10V

5V

Fig : Capacitor voltage.

Fig : Final condition.

+

-

vC( ) = 0V¥ 10kW

Fig : Initial condition.

+
- 10kW=12VvC( )0+

i mA(0 ) = 1.2
+

i( ) = 0¥

0.1 0.2 0.50.40.3

t
0

t = 0.2935
0

sec

0

0.2

0.4

0.6

i
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(t)
in

E 20.

E0.4

E0.6
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E0.8647
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E3.9 R = 1609 W

E3.10 ( ) 18 23v t e V0.048
t

C = −

-

 ( ) 28.75t ei mA0.048
t

=
-

  t
0
 = 0.0118 second ,  (Time at which v

C
(t) = 0)

E3.11 v
C
(t) = 10.278e

−55.556t
 + 21.593 sin (144t − 48.9

o
) V 

  i(t) = − 0.043e
−55.556t

 + 0.233 sin (144t + 41.1
o
) A

E3.12 i(t) = 900t e
−50t

 − 2 e
−50t

 A   ;  v
R
(t) = 9000t e

−50t
 – 20 e

−50t 
V

   
;  v

L
(t) = 100 e

−50t
 – 4500t e

−50t 
V

  v
C
(t) = 80 − 4500t e

−50t
 − 80e

−50t
 V 

  i(0
+
) = −2 A      ;    v

R
(0+) = −20 V     ;    v

L
(0+) = 100 V        ;    v

C
(0+) = 0       

  i(∞) = 0 ; v
R
(∞) = 0   ;   v

L
(∞) = 0          ;     v

C
(∞) = 80 V 

E3.13 i(t) = 2 e
−25t

 sin 75t A

  v
L
(t) = 126.491 e

−25t
 sin(75t + 108.4

o
) V 

E3.14 ( ) 3.603t e ei A
70.2t 569.8t

= −

- -^ h

 
( )

1 ;
( )

/ /
dt

d

dt

di
A s

i
A s

0
800

0
1152038

2

2
2

= = −

+ +

E3.15 i(t) = – 0.159 e
−240t

+ 0.0896 e
−1600t

 + 0.261 sin (415t + 15.6
o
) A

i
mA
(t)

in

0 t

28.75mA

v VC(t) in

0 t

20

15

10

5

E5

18

t = 0.0118
0

sec

Fig : Capacitor current. Fig : Capacitor voltage.
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+
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+
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Fig : Initial condition circuit.
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+
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Fig : Final condition circuit.
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AC SINGLE AND THREE-PHASE CIRCUITS

4.1    AC Circuits

The sources in which the current/voltage sinusoidally varies with time are called sinusoidal 

sources. In sinusoidal sources, the voltage/current undergoes cyclic changes and the number of 

cycles per second is called frequency. The time for one cycle is called time period. Since the 

nature of variation is identical in every period, the sinusoidal voltages and currents are also called 

periodic voltages and currents.

In one period/cycle of sinusoidal quantity, the value of the quantity (i.e., voltage or current) 

is positive for one half period/cycle and the value of the quantity is negative for another half period/

cycle. The nature of variations in the positive half cycle is identical to that of the negative half cycle 

but with opposite polarity. Since the sinusoidal voltage/current has alternate identical positive and 

negative half cycles, it is called alternating voltage/current. Therefore, the sinusoidal sources 

are called alternating current sources or in short ac sources.

The circuits excited by sinusoidal sources are called ac circuits. In ac circuits, the current 

and voltage varies with time and so all the three basic parameters, i.e., resistance, inductance 

and capacitance exist in ac circuits. The basic concepts of resistance parameter are discussed in  

Chapter 1 and the basic concepts of inductance and capacitance are discussed in this chapter.

4.1.1    AC Voltage and Current Source

Voltage and current are the two quantities which control the energy supplied by the sources 

of electrical energy. Usually, the sources are operated by maintaining one of the two quantities as 

constant and by allowing the other quantity to vary depending on the load.

In ac sources, when the rms value of voltage is maintained constant and the rms value of 

current is allowed to vary, the source is called a voltage source. When the rms value of current is 

maintained constant and the rms value of voltage is allowed to vary, the source is called a current 

source. 

The voltage across an ideal voltage source should be constant for whatever current is 

delivered by the source. Similarly, the ideal current source should deliver a constant current for 

whatever voltage exists across its terminals. 

Chapter 4

+

-

Fig. a : Ac voltage source. Fig. b : Ac current source.

Fig. 4.1 : Symbols for ac source.
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4. 2  Circuit Theory

In reality, such ideal conditions never exist (but for analysis purposes the sources can be 

considered ideal). In practical ac voltage source, the voltage across the source decreases with 

increasing load current and the reduction in voltage is due to its internal impedance. In practical 

ac current source, the current delivered by the source decreases with increasing load voltage and 

the reduction in current is due to its internal impedance. 

Here,   E, V = Magnitude of rms value of voltage.

            I, I
S
 = Magnitude of rms value of current.

Let,   E  = Voltage across ideal source (or internal voltage of the source)

          Is  = Current delivered by ideal source (or current generated by the source)

          V = Voltage across the terminals of the source

          I  = Current delivered through the terminals of the source

          Zs  = Source impedance (or internal impedance).

The practical voltage source can be considered as a series combination of an ideal voltage 

source and a source impedance Z
s
. The reduction in voltage across the terminals with increasing 

load current is due to the voltage drop in the source  impedance. When the value of source impedance 

is zero, the ideal condition is achieved in voltage sources. Hence, the source  impedance for an 

ideal voltage source is zero. 

E

I V

I
s

Fig. a : Characteristics of an ideal voltage source.

Fig. 4.2 : Characteristics of ideal sources.

Fig. b : Characteristics of an ideal current source.

~

+

E

E

I
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+

E

V
~

E

I V

I
s

Fig. a : Characteristics of a practical
voltage source.

Fig. 4.3 : Characteristics of practical sources.

Fig. b : Characteristics of a practical
current source.
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The practical current source can be considered as a parallel combination of an ideal 

current source and a source impedance Z
s
. The reduction in current delivered by the source is 

due to the current drawn by the parallel source  impedance. When the value of source  impedance  

is infinite, the ideal condition is achieved in current sources. Hence, the source impedance for an 

ideal current source is infinite.  

4.1.2   AC Source Transformation

The practical voltage source can be converted into an equivalent practical current source and 

vice-versa, with the same terminal behaviour. In these conversions, the current and voltage at the 

terminal of the equivalent source will be the same as that of the original source, so that the power 

delivered to a load connected at the terminals of the original and equivalent source is same.

The voltage source with series impedance can be converted into an equivalent current source 

with parallel impedance. Similarly, the current source with parallel impedance can be converted 

into an equivalent voltage source with series impedance.

4.2    Sinusoidal Voltage

A sinusoidal voltage can be considered as a vector of length V
m
 

rotating in space with a uniform angular speed ω rad/s as shown in Fig. 4.7. 

At any time instant, the vector can be resolved into x
comp 

and y
comp

. Now,  

y
comp

 gives the value of sinusoidal voltage at any time instant. Therefore, 

the instantaneous value (i.e., the value at any particular time instant) of a 

sinusoidal voltage is given by,

  v = V
m
 sin ωt 

w

ycomp

xcomp

y

x

Fig. 4.7.
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4. 4  Circuit Theory

Since sinusoidal voltage is a rotating vector, the value of the voltage repeats after an angular 

rotation of 2π radians or 360
o
. The number of revolutions (or rotations) per second is called 

frequency and it is denoted by f. The unit of frequency is Hertz and denoted by Hz (or cycles 

per second). One rotation of the voltage vector is also called cycle because the value of voltage 

repeats in every revolution.

One revolution is equal to an angular motion of 2π radians. Hence, frequency can also 

be expressed in radians per second (rad/s) which is denoted by ω and popularly called angular 

frequency.

The relation between angular frequency (ω) and frequency (f ) is,

  ω = 2πf 

The time taken for one revolution or cycle is called time period (or simply period), and it 

is denoted by T. The unit of time period (T) is seconds.

We know that, 

Frequency,  f = Number of cycles per second.

Hence, Time for one cycle
f
1=

 , T
f

Time period 1 seconds` =

The plot of the instantaneous value of sinusoidal voltage with respect to ωt is called 

waveform. The instantaneous value of sinusoidal voltage is computed for one cycle and the 

waveform is plotted in Fig. 4.8.
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Since ω = 2πf  = 2π/T, the instantaneous value of sinusoidal voltage can also be expressed 

as shown in equation (4.1).

  sinV
T

t
2

mν
π

=                                                                                         ..... (4.1)
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Fig. 4.8 : Sinusoidal voltage waveform on an angular scale.
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Using equation (4.1), the instantaneous value of voltage can be calculated for various time 

instants and the waveform is plotted as a function of t in Fig. 4.9. It can be observed that the 

waveform of Fig. 4.9 is the same as that of Fig. 4.8 except the angular scale, which is replaced by 

the time scale.
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The sinusoidal voltage described by equation (4.1) starts at ωt = 0 (i.e., the origin is at ωt = 0). 

At the origin, the value of the voltage is zero. Sometimes, the voltage may be non-zero at the origin  

(i.e., at ωt = 0). Such a sinusoidal voltage can be described by equation (4.2).

  v = V
m
 sin (ωt + φ)  ..... (4.2)

Equation (4.2) for sinusoidal voltage is the more generalised equation. 
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Vm

0

-Vm

wt

p 2p 3p 4p

v = V sin ( t + )

= Positive

m w f

f

p 2p 3p 4p0

-Vm

Vm

| |f

Vm

0

| |f

-Vm

v = V sin ( t )

= Negative

m w - f

f

p 2p 3p 4p

Fig. 4.10 : Sinusoidal voltage waveforms.
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Fig. 4.9 : Sinusoidal voltage waveform on a time scale.
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4. 6  Circuit Theory

4.2.1   Average Value

The average value of a time varying quantity is the average of the instantaneous value for 

a particular time period. Usually, for periodic waveforms, the average is taken for one time period. 

In alternating quantities, the average value for one time period is zero because in one period it has 

equal positive and negative values. Therefore, for alternating quantities, the average is taken over 

half a period.

The instantaneous value of sinusoidal voltage is expressed by, v = V
m
sinωt = V

m
sin q, 

where, q = ωt. The total value over half  a period (π) is obtained by integrating the instantaneous value 

between limits 0 to π. Then the average is obtained by dividing this total value by half a period (π).

Let, V
ave

 = Average value of sinusoidal voltage or alternating voltage.

Now, by definition of average value, we can write,

 

sin sin

cos cos cos

V d V d
V

d

V V

V V

V
V

1 1

0

1 1
2

2

ave m
m

m m

m m

ave
m

0 0 0

0

`

π
ν θ

π
θ θ

π
θ θ

π
θ

π
π

π π

π

= = =

= − = − +

= + =

=

r r r

r6 6

6

@ @

@

# # #

                                                                                       .....(4.3)                         

4.2.2   RMS Value

The rms value of a time varying quantity is the equivalent dc value of that quantity. (The 

rms value is also known as effective value.) For example, a 5 V dc is equivalent to 5 V rms value 

of ac. The rms stands for root-mean-square, which means that the value is obtained by taking the 

root of the mean of the squared function. Hence, to obtain the rms value, a function is squared 

and the mean (average) of the squared function is determined. And the root of this mean value is 

taken. For periodic waveforms, rms value is computed for one period. For alternating quantities,  

rms value will be the same if it is computed for half a period or one period.

The instantaneous value of sinusoidal voltage is expressed by, v = V
m
sinωt = V

m
sin q, 

where, q = ωt. The total value of the squared function over half a period (π) is obtained by integrating 

v2 between limits 0 to π . The mean (average) is obtained by dividing the total value of the squared 

function by half a period (π). The rms value is obtained by taking the square root of this mean value.

Let, V = Rms value of sinusoidal voltage or alternating voltage.

Now, by definition of rms value, we can write,

 ( )sinV d V d1 1
m

2

0

2

0

π
ν θ

π
θ θ= =

r r

# #

      sin
cosV

d
V

d
2

1 2
m m
2

2
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2
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π
θ θ

π

θ
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−
r r

^ h# # sin
cos

2

1 22
θ

θ
=
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          ∴  V  cos
sinV

d
V

2
1 2

2 2

2m m
2
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0π
θ θ

π
θ

θ
= − = −
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0
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2 2

π
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π

π
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          V
V

2

m
` =        .....(4.4)

4.2.3   Form Factor and Peak Factor

Form factor is defined as the ratio of rms value and average value of a periodic waveform. 

Peak factor is defined as the ratio of peak value (or maximum value) and the rms value of a 

periodic waveform.

, ,Form factor k
Average value

rms value Peak factor k
rms value

Maximum value
f p` `= =

 

Form and peak factors are constant for a particular waveform. If the average value of a 

waveform is known then its rms value can be estimated using the form factor (or vice-versa). If 

the rms value of a particular waveform is known then its peak value can be estimated using the 

peak factor (or vice-versa).The form and peak factors for sinusoidal voltage can be estimated using 

equations (4.5) and (4.6) as shown below:

, 1.111Form factor k
V

V
For full wave

2

2

2 2
sinef

m

m

π

π
= = = ^ h ..... (4.5)

, 1.414Peak factor k
V

V
For full wave

2
2 sinep

m

m= = = ^ h
 

..... (4.6)

The form factor and peak factor of equations (4.5) and (4.6) are applicable for full  

sinusoidal waveform of voltage or current or any other quantity.

4.3    Sinusoidal Current

The discussions and analysis presented in Section 4.2 for sinusoidal voltage are applicable 

to sinusoidal currents. The equations derived for sinusoidal voltage in Section 4.2 are applicable 

to sinusoidal currents if we change the variable v by i.

The instantaneous value of sinusoidal current is given by,

i = I
m
 sin ωt =  I

m
 sin q,   where, q = ωt

The general equation for instantaneous value of sinusoidal current is given by,

i = I
m

 sin (ωt + φ)



4. 8  Circuit Theory

,
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4.4    Inductance

Inductance is the property of an element (or matter) by which it opposes any change in 

flux or current. The opposition is offered by the way of an induced emf opposing the current flow. 

Hence, in an element with inductance property, current cannot change instantaneously, i.e., change in 

current will be delayed. (However, in purely resistive elements, current can change instantaneously).

Note :  Flux and current are inseparable in nature. Whenever flux exists in an element, it 

is due to motion of electrons (i.e., current). Whenever current flows in an element, flux is created 

in the element.

Flux in straight current-carrying conductors is negligible, but flux in conductors in the form 

of a coil is appreciable. Hence, the property of inductance is predominant in coils and so commercial 

inductors are also made in the form of coils. Typically, a coil consists of a number of turns of 

copper or aluminium conductor wound on an iron core (Sometimes the coils may not have a core).
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Fig. 4.11 : Sinusoidal current waveforms.
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The unit of inductance is Henry and denoted by H. The inductance of a coil is defined as 

the ratio of flux linkages (weber-turns) and current through the coil. The weber-turns refers to the 

product of flux φ and number of turns N of a coil. Hence, the inductance of a coil with N turns and 

carrying a current of I amperes is given by, 

  L
I

N
Inductance,

φ
=                                 ..... (4.7)

In equation (4.7), if N = 1 turn, φ = 1 Weber, I = 1 Ampere, then L = 1 Henry.

Therefore, “a coil is said to have an inductance of one Henry if a current of one ampere 

flowing through it produces a flux linkage of one weber-turn in it”. Practically, one Henry is a large 

value and so the smaller values, mH (milli-Henry) and µH (micro-Henry) are used.

Note  :  In this section, inductance refers to self-inductance.

4.4.1   Voltage-Current Relation in an Inductance

We know that a current-carrying conductor will always have a flux associated with current. 

Faraday has observed that whenever the flux linkage of a conductor changes, an emf is induced 

in the conductor. He proposed this phenomena as Laws of magnetic induction.

Law I  :  Whenever the magnetic flux linked with a conductor changes, an emf is always induced in it. 

Law II  :  The magnitude of the induced emf is equal to the rate of change of flux linkage.

Consider an inductor with N turns carrying a current i as shown in Fig. 4.12. Let, φ be the 

instantaneous value of flux in the inductor. When the current i is varied the flux φ will also vary 

and so an emf is induced in the coil in a direction opposing the current flow. (The direction of the 

induced emf can also be found using Len’s law or Fleming’s right-hand rule).

Now, by Faraday’s Law we can write,

 N
dt

d
N
dt

d

N

Li
&= =ν

φ
ν ` j                                     

 N
N

L

dt

di
#ν =                              

 L
dt

di
` ν =                  .....(4.8) 

Equation (4.8) gives the voltage-current relation in an inductance. From equation (4.8), we can 

say that when i = constant, 
dt

di
0=  and so v = 0. Hence, for constant or direct current, the inductance 

will behave as a short circuit (in steady state). Therefore, in steady state analysis of circuits 

excited by dc sources, inductances are considered as short circuits (or simply the inductances are  

neglected).

On rearranging equation (4.8), we get,

dt L diν =

Integrating on both sides, we get,

dt L diν = ##        ⇒       dt L diν = ##        ⇒        
L

dt i1
ν =#

L
dti 1

` ν= #           .....(4.9)

Using equation (4.7)

N and L are constants

L

Fig. 4.12.
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4.4.2   Energy Stored in an Inductance

 Energy is stored as magnetic field in an inductance. Let, dw be the energy stored in the 

inductance in the time interval dt. Now the energy dw is given by the product of power p and time dt.

∴ dw  =  p dt             

            =  vi dt                          Put,  p  =  ni

             ,L
dt
d dt Put L

dt
di i i

ν ==

            =  Li di                                          ..... (4.10)

Let the current i rise from zero to a steady value of I (where I is the rms value in case of 

ac) to establish an energy of W. Now, the stored energy (or total work) is obtained by integrating  

equation (4.10) between limits 0 to I.   

W L d L d L
i

L
Ii i i i

2 2

I I
I

0 0

2

0

2

` = = = =; E# #

        W LI
2

1 2
` =                             ..... (4.11)

Equation (4.11) can be used to compute the energy stored in an inductance when a steady 

current I flows through it.

4.5    Capacitance

Capacitance is the property of an element (or matter) by which it opposes any change 

in charge or voltage. Since charge is a physical quantity, it cannot change from one value to 

another instantaneously. Whenever charge exists at a point, there should be some voltage at that 

point. Hence, in an element with capacitance property, voltage cannot change instantaneously,  

i.e., change in voltage will be delayed. (However, in purely resistive elements,  voltage can change  

instantaneously).

Note:  Charge and voltage are inseparable in nature. Whenever charge exists in an element,  

there should be some voltage in it, or whenever voltage exists in an element, there should be some 

charge stored in that element.

Capacitance will exist between any two conductors separated by a dielectric. Commercial 

capacitors consist of two conducting plates separated by a dielectric.

The unit of capacitance is farad and it is denoted by F. The capacitance of a capacitor is 

defined as the ratio of stored charge and the potential difference across its plates. The capacitance 

of a capacitor with a charge of Q coulombs and a potential difference of V volts across its plate 

is given by,

  
C

V
Q

Capacitance, =
               ..... (4.12)

In equation (4.12), if Q = 1 coulomb and V = 1 volt, then C = 1 farad.

Therefore, “a capacitor is said to have a capacitance of one farad if a charge of one Coulomb 

establishes a potential difference of one volt between its plates”. Practically, one Farad is a large 

value and so the smaller values, µF (micro-Farad), nF (nano-Farad) and pF (pico-Farad) are used.
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4.5.1   Voltage-Current Relation in a Capacitance

We know that a potential difference exists between two charged conductors. Charge is directly 

proportional to voltage and the proportionality constant is capacitance C.

Consider a capacitor with capacitance C and carrying a current of i as shown in Fig. 4.13. 

Let, q and v be the instantaneous value of charge and voltage in the capacitor, respectively. Since 

charge is directly proportional to voltage, we can write,

q α v

∴      q = Cv                                    

On differentiating the above equation, we get, 

dt

d
C
dt

dq ν
=

                                         

C
dt

di`
ν

=                                                                                  ..... (4.13)

Equation (4.13) gives the voltage-current relation in a capacitance. From equation (4.13), 

we can say that when v = constant, 
dt

d
0

ν
=  and so i = 0. Hence, for constant or dc voltage, the 

capacitance will behave as an open circuit (in steady state). Therefore, in steady state analysis 

of circuits excited by dc sources, capacitances are considered as open circuits (or simply the 

capacitances are neglected).

On rearranging equation (4.13), we get,

i dt = C dv

On integrating both sides, we get,

dt C di ν= ##          ⇒            dt C di ν= ##           ⇒           dt Ci ν=#

C
dti1

` ν = #             ..... (4.14)

4.5.2   Energy Stored in a Capacitance

Energy is stored as electric field in a capacitance. Let, dw be the energy stored in the 

capacitance in the time interval dt. Now the energy dw is given by the product of power p and 

time dt.

     ∴ dw  =  p dt 

               =  vi dt                           Put, p  =  ni

                ,Put C
dt

diC
dt
d dt ν

ν
ν

==

                 =  C v dv ..... (4.15)

Let the voltage v rise from zero to a steady value of V (where V is the rms value in case of 

ac) to establish an energy of W.  Now, the stored energy (or total work) is obtained by integrating  

equation (4.15) between limits 0 to V.

( . ); equation
dt

dq
i 1 5Refer=

C

Fig. 4.13.
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W C d C d C
CV

2 2

V V
V

0 0

2

0

2

` ν ν ν ν
ν

= = = =; E# #

W CV
2

1 2
` =                                                                                         ..... (4.16)

Equation (4.16), can be used to compute the energy stored in a capacitance when a steady 

voltage V exists across it. 

4.6    Voltage-Current Relation of R, L and C in Various Domains

The circuit variables like voltage, current, power and energy are functions of time t. Time  

domain is a practical domain where we can physically realise any system or phenomena or activity. 

The voltage-current relations of  fundamental parameters in time domain are differential equations. 

The solutions of differential equations are tedious when compared to algebraic equations. Hence, 

it will be convenient if we transform the differential equation into algebraic equations. One 

such transform is Laplace transform. A brief discussion about Laplace transform is presented in  

Appendix 3.

Let, i = i(t) = Current in time domain 

     v = v(t) = Voltage in time domain

         L{v(t)} = V(s) = Voltage in s-domain or Laplace domain

         L{i(t)}  = I(s)  = Current in s-domain or Laplace domain.

4.6.1   Voltage-Current Relation of Resistance

Consider a resistance R connected to a source of voltage v(t) as shown in Fig. 4.14.

 Let, i(t) = Current through the resistance

        v(t) = Voltage across the resistance.

By Ohm’s law, we can write

v(t)  =  R i(t)         
For simplicity

         v  =  R i ..... (4.17)

On taking Laplace transform of equation (4.17), we get,

V(s)  =  R I(s) ..... (4.18) 

On substituting s  =  jω in equation (4.18), we get,

V j R I j V RI
For simplicity

ω ω= =^ ^h h  

R

+

E

V(s)

I(s)

+

E

E

+

v(t)

i(t)

v(t)

Fig. a : Resistance in
time domain.

Fig. b : Resistance in
s-domain.

R

+

E

Fig. c : Resistance in
frequency domain.

I

V

Fig. 4.14 : Voltage-current relation of resistance in various domains.

R
~
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In Summary,

v  =  R i  ; Voltage-current relation of resistance in time domain.

V(s)  =  R  I(s) ; Voltage-current relation of resistance in s-domain.

V R I=   ; Voltage-current relation of resistance in frequency domain.

4.6.2   Voltage-Current Relation of Inductance

Consider an inductance L connected to a source of voltage v(t) as shown in Fig. 4.15. 

Let,  i(t) = Current through the inductance

        v(t) = Voltage across the inductance

By Faraday’s Law, we can write,

( ) ( )t L
dt
d t L

dt
di iFor simplicity

ν ν= =  .....(4.19)

On taking Laplace transform of equation (4.19) with zero initial conditions, we get,

     V(s)  =  L sI(s)

       ∴ V(s)  =  sL I(s)         .....(4.20)

     where,  sL  =  Inductive reactance in s-domain                           

On substituting  s  =  jω in equation (4.20), we get,

V j j L I j V j L I
For simplicity

ω ω ω ω= =^ ^h h  

 where, ωL =   X
L
 = Inductive reactance

In Summary,

v L
dt

di
=    ; Voltage-current relation of inductance in time domain.

V(s)  =  sL I(s) ; Voltage-current relation of inductance in s-domain.

V j LIω=    ; Voltage-current relation of inductance in frequency domain.

sL

+

-

V(s)

I(s)

+

-

-

+

v(t)

i(t)

v(t)

+

-

I

L j Lw

Fig. a : Inductance in
time domain.

Fig. b : Inductance in
s-domain.

Fig. c : Inductance in
frequency domain.

Fig. 4.15 : Voltage-current relation of inductance in various domains.

V
~
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4.6.3   Voltage-Current Relation of Capacitance

Consider a capacitance C connected to a source of current i(t) as shown in Fig. 4.16. 

Let,  i(t) = Current through the capacitance

      v(t) = Voltage across the capacitance.

( )
( )

, t C
dt

d t
C
dt
di iNow

For simplicityν ν
= =     ..... (4.21)

On integrating and rearranging equation (4.21), we get,

C
dti1

ν = #
On taking Laplace transform of equation (4.21) with zero initial conditions, we get,

( ) ( )I s CsV s=

  

( ) ( )V s
sC

I s1
` =            ..... (4.22)

domain-,
sC

Capacitive inwhere 1 reactance s=
   

 

On substituting s = jω in equation (4.22), we get,      

( ) ( )V j
j C

I j V
j C

I j
C

I1 1 1For simplicity
ω

ω

ω

ω ω

= = = −

     
,

C
X Capacitivewhere 1 reactanceC

ω

= =

In Summary,

 
C

dtv i
1= #   ; Voltage-current relation of capacitance in time domain.

( ) ( )V s
sC

I s1=  ; Voltage-current relation of capacitance in s-domain.

V j
C
I1

ω

= −   ; Voltage-current relation of capacitance in frequency domain.

+

-

V(s)

I(s)

+

-

i(t)

v(t)

+

-

I

~

C
i(t) 1

sC

1

j Cw

Fig. a : Capacitance in
time domain.

Fig. 4.16 : Voltage-current relation of capacitance in various domains.

Fig. b : in
s-domain.
Capacitance Fig. c : in

frequency domain.
Capacitance

V
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+ -
v

L

i + -
V(s)

sL

I(s) + -

j Lw

VI

+ -
v

C

i + -

V(s)I(s)

1

sC

+ -

1

j Cw

V
I

+ -
v

R

+ -
V(s)

R

I(s) + -

R

I Vi

Table 4.1 : R, L, C Representation in Various Domains

 S.No. Parameter    Time domain s-domain                Frequency   

     domain

 1. Resistance, R 

 2. Inductance, L

 3. Capacitance, C

4.7    Sinusoidal Voltage and Current in Frequency Domain

The instantaneous value of sinusoidal voltage in time domain is represented as,

v(t)  =  V
m
sin(ωt ± φ)

In frequency domain, the rms value of sinusoidal voltage can be represented as, 

V j V V V
For simplicity

! !+ +ω φ φ= =^ h

/, V Vwhere 2m=

∴  sinV tm !ω φ^ h        ⇒         V V
V

2

m
! !+ +φ φ= =       .....(4.23)

The instantaneous value of sinusoidal current in time domain is represented as,

i(t)  =  I
m 

sin(ωt ± φ)

In frequency domain, the rms value of sinusoidal current can be represented as, 

I j I I I
For simplicity

! !+ +ω φ φ= =^ h

/ ., I Iwhere 2m=

∴  sinI tm !ω φ^ h        ⇒            I I
I

2

m
! !+ +φ φ= =       .....(4.24)

4.8    Phasor Diagram

4.8.1   Phase and Phase Difference

Sinusoidal quantities are rotating vectors and the y-component of the rotating vector gives the 

instantaneous value. The plot of the instantaneous value on an angular scale or time scale gives the 

waveform of a sinusoidal quantity. These waveforms are continuous (i.e., with no beginning and 

end). For analysis purposes, we assume a starting point (or origin) for the waveform. Normally, 

the origin of the waveform is considered as time t = 0. The position of the rotating vector at time 

t = 0 decides the phase (or phase angle) of the vector. Three different positions of a vector at time 

t = 0 and their waveforms are shown in Fig. 4.17.

“The phase (or phase angle) of a vector is the angular position of the vector with respect 

to reference at time t = 0”. In Fig. 4.17(a), the vector lies on the reference line at time t = 0. Hence, 

the phase angle of the vector is zero. 
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In Fig. 4.17(b), the vector is lying at an angle φ ahead of reference at t = 0. Hence, the phase 

angle of the vector is φ degrees (or radians) leading. 

In Fig. 4.17(c), the vector is lying at an angle φ behind the reference at t = 0. Hence, the 

phase angle of the vector is φ degrees (or radians) lagging.

In electrical engineering (or circuit theory) we are interested in phase difference between 

two sine waves more than the phase of a single sine wave. “The phase difference between two 

(or more) sine waves can be estimated only if the frequency of sine waves is the same (or speed of 

rotation is the same), but the magnitudes need not be the same”.

Consider two voltage vectors with maximum values V
m1

 and V
m2

 rotating at the same speed 

but having an angular spacing of φ radians between each other, as shown in Fig. 4.18(a). The two 

vectors represent two sinusoidal voltages of same frequency ω, as shown in Fig. 4.18(b).

With reference to Fig. 4.18, we can say that phase of voltage V
m1

 is φ
1
 and that of voltage V

m2
 

is φ
2
. The phase difference between the two voltages is φ, where φ = φ

2
 − φ

1
. “The phase difference 

φ can be expressed either in degrees or in radians”. Also we can say that wave-2 is leading  wave-1 

by an angle φ or wave-1 is lagging wave-2 by an angle φ.

If “the phase difference between two sinusoids is zero then they are said to be in-phase”, 

because both the sinusoids have the same phase.

y

ref

w
Vm

x

y

ref

w

V m

x

f

y

ref
wVm

x-f

Fig. a : The vector lies on
the reference line at time t = 0.

Fig. b : The vector is lying ahead of the
reference (in the direction of rotation)

at an angle at time t = 0.f

Fig. c : The vector is lying behind the
reference (in the direction of rotation)

at an angle at time t = 0.f

Fig. 4.17 : Different positions of a vector at t = 0.
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Vm

v = V sin ( t+ )m w f

f

t = 0

v

-Vm

v

wt

Vm

v = V sin tm w

t = 0

-Vm

wt

v = V sin ( t )m w - f

f

t = 0

v

Vm

-Vm

Fig. 4.18 : Two sinusoidal voltages with a phase difference of .f

f

f

f

f

f

t = 0
wt = 0

wt

wave-1

wave-2

f
1

Fig. b : Waveform of the vectors
shown in Fig. a.

V
m1

V
m2

f
2

w

wV
m1

V
m2

f

f
1

f
2

x

y

Fig. a : Position of two vectors
rotating at the same speed at t = 0.
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4.8.2   Phasor Representation of Sinusoidal Quantities

Sinusoidal quantities are rotating vectors. When  represented in a complex plane, the 

position of the vector at any time instant can be specified by two quantities namely., magnitude 

and phase angle. The magnitude of a rotating vector is constant but the phase angle varies with 

rotation. Hence, “rotating vectors are functions of phase angle and so they are called phasors”. 

The sinusoidal quantity is given by the y-component (vertical component) of a rotating 

vector and so the sinusoidal quantity is also called a phasor (or sinor or vector). The x-component 

(horizontal component) of a rotating vector gives the cosinusoidal wave. In general, both the sine 

wave and cosine wave are called phasors (or sinors or vectors). Throughout this book, the terms, 

phasor and vector are used synonymously to denote sinusoidal quantity.

Since the sinusoidal quantity or phasor is a rotating vector, we can take the position of the 

phasor at t = 0 for analysis purposes, as shown in Fig. 4.19. 

From the theory of complex numbers, the phasors (or vectors) shown in Fig. 4.19 can be 

represented as shown below:

Vm+φ               ; Polar form

V
m
 cos φ + j V

m
 sin φ     ; Rectangular form

V
m
 ejφ              ; Eular form

In the above representation, the phase angle φ can be positive, zero or negative.

• When φ is positive, the voltage vector will be in the position shown in Fig. 4.19(a) at t  =  0.

• When φ is zero, the voltage vector will be in the position shown in Fig. 4.19(b) at t  =  0.

• When φ is negative, the voltage vector will be in the position shown in Fig. 4.19(c) at t  =  0.

We know that rms values (or effective values) are used for practical measurements/

applications. For example, the rated voltage 230 V of a ceiling fan at home refers to the rms value 

of sinusoidal voltage. The relation between rms value and maximum value for a sinusoidal voltage 

is / ,V V 2m=  where V is rms value and V
m
 is maximum value.

From the relation, /V V 2m= , we can say that the rms value is the scaled down value of 

maximum value. Hence, the rms value can also be represented as a phasor of the same phase as 

that of maximum value but with reduced magnitude, as shown in Fig. 4.20. However, remember 

that the rotation of rms value of phasor will not produce the instantaneous value.

Imaginary
axis

Complex plane
a =V cosm f

b =V sinm f
w

V m

jb

Real
axis

Fig. a : A leading phasor.

Imaginary
axis

Real
axis

Imaginary
axis

w

w

Complex plane

Complex planeVm

V
m

a
a = Vm

-f

a =V cosm f

b =V sinm f

Fig. b : A phasor with zero phase. Fig. c : A lagging phasor.

Fig. 4.19 : Various positions of a sinusoidal voltage phasor at t = 0.
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a

-jb
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V nce phasor.

I V by an angle .

V se with I.

V I by an angle 90

R

C
o
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.

Fig. b : RC series circuit and its phasor diagram.
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fFig. c : RLC parallel circuit and its phasor diagram.
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Fig. 4.21 : Phasor diagrams of simple circuits.
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“In order to draw the rms vector take a snapshot of the rotating phasor at t = 0 and divide 

its magnitude by 2 ”.

4.8.3   Phasor Diagram of a Circuit

When the excitation source in a circuit is sinusoidal, the voltage, current and power in 

various elements of the circuit will also be sinusoidal. Hence, the various voltages and currents in 

a circuit can be represented by phasors. While drawing these phasors, one quantity (either voltage 

or current) is chosen as reference and the phasors of the other quantity are drawn in relation to the 

chosen reference phasor. Such a diagram is called a phasor diagram. 

Note  :  Phasor diagrams throughout this book are drawn only using rms phasors.
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b =V sin f
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Fig. a : A leading phasor.
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Fig. b : A phasor with zero phase. Fig. c : A lagging phasor.

Fig. 4.20 : Phasor representation of rms values of sinusoidal voltage.
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4.9    Power, Energy and Power Factor

Power is the rate at which work is done or power is the rate of energy transfer.

Let, w = Instantaneous value of energy

      q = Instantaneous value of charge.

, ,
dt
d

d
d

dt

d
p

w

q

w q
Now powerInstantaneous #= =

,
d
d

dt

d

q
w q

iWe know that andν= =

   

∴ Instantaneous power,  p = v i 

i.e.,  power is the product of voltage and current. In circuits excited by dc sources, voltage 

and current are constant and so power is also constant. This constant power is called average power 

or power and it is denoted by P.

∴ In dc circuits,

Power, P = VI 

In circuits excited by ac sources, voltage and current are sinusoidal quantities which vary  

with time. When voltage and current are time varying quantities, power is also a time varying 

quantity.  

For time varying quantities, power is defined as the average over a period of time. Since  

the average values of sinusoidal voltage and current are zero, we can take the rms values of voltage  

and current. We know that the rms values of voltage and current are complex and so power is also 

complex. “Complex power is denoted by S  and it is defined as the product of rms voltage and the 

conjugate of rms current”.

, S V IComplex power
*

` =

     ,where I Conjugate of I
*

=

, V VLet +δ=

I I+γ=

, I Ithen
*

+ γ= −  

where, δ is phase of voltage and γ is phase of current.

( )S V I V I VI
*

` #+ + +δ γ δ γ= = − = −

Let, δ − γ  =  φ

where, φ  =  Phase difference between V and I

S VI` +φ=

, S S VILet = =

where, S = Apparent power and expressed in Volt-Ampere, i.e., VA.

      (The larger units of S are kVA and MVA).

Refer Chapter - 1

Equations (1.5) and (1.7)
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“Apparent power S is defined as the product of the magnitude of rms voltage and rms current”.

Since S  is complex, it can be expressed as a vector in a complex plane as shown in Fig. 4.22.

The real part of S  is called active power or simply power.  The imaginary part of S  is called 

reactive power. Power is denoted by P and expressed in watts, W. Reactive power is denoted by 

Q and expressed in volt-ampere-reactive, VAR.

With reference to Fig. 4.22, we can write, 

cos sinS S j Sφ φ= +

, S P jQLet = +  

cosP S` φ=

    sinQ S φ=

We know that,  S S VI= =

∴ P  =  VI cosφ  in W  

        ∴    Q  =  VI sinφ  in VAR 

In Fig. 4.22, the triangle formed by P, Q and S is also called a power triangle.

The larger units of power P is kW or MW and larger units of reactive power Q is kVAR or MVAR.

cos
cos cos

P VI in
VI

in
VI

inW kW MW
10 10

3 6
` φ

φ φ
= = =

    sin
sin sin

Q VI in
VI

in
VI

inVAR kVAR MVAR
10 103 6

φ
φ φ

= = =

In dc circuits, V and I are constants and there is no phase difference between V and I. Hence, 

φ = 0 and so, cos φ = 1 and sin φ = 0. Therefore, in dc circuits, complex power or apparent power 

is equal to active power, and reactive power is zero.

f

Q

P

Imaginary
axis

Complex plane
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Q = S sin f
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Fig. a : Vector of when
is positive.
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Fig. 4.22 : Vector of complex power for various values of .fS
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In ac circuits, the phase angle φ may be positive, zero or negative. (Remember that φ is 

phase difference between V and .I )

When φ is positive,

 • the current lags voltage.

 • the circuit is inductive.

 • the active power is positive.

 • the reactive power is positive.

When φ is zero,

 • the current is in-phase with voltage.

 • the circuit is resistive.

 • the active power is positive.

 • the reactive power is zero.

When φ is negative,

 • the current leads the voltage.

 • the circuit is capacitive.

 • the active power is positive.

 • the reactive power is negative.

In summary, we can say that active power P is always positive. Reactive power Q is  

positive in inductive circuits and negative in capacitive circuits. In resistive circuits, active power 

is equal to apparent power.

Power is rate of work done and  energy is the total work done.  Hence, “energy is given by 

the product of power and time”.  When time is expressed in seconds, the unit of energy is watt-

second and when time is expressed in hours, the unit of energy is watt-hour.

∴  Energy, E  =  Pt in W-s  or  W-h

The larger unit of energy is kWh and commercially one kWh of electrical energy is called one unit.

“The ratio of active power and apparent power is defined as power factor”. Power factor is 

a measure of active power in the apparent power.

Power factor
Apparent power

Active power

S
P

` = =    

From the power triangle of Fig. 3.22, we get,

     P  =  S cos φ

cos
cos

S

P

S

S
Power factor`

φ
φ= = =     

Here, φ is the phase difference between voltage and current. Hence, from the above 

equation we can say that, “ power factor is also defined as cosine of the phase difference 

between voltage and current”.
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4.10    Resistance Connected to Sinusoidal Source

Consider a resistance R connected to an ac source of voltage,  

v = V
m
 sin ωt as shown in Fig. 4.23. Since the resistance is connected 

across (or parallel to) the source, the instantaneous value of voltage 

across resistance is also v volts.

\ Voltage, n  =  V
m
 sin ωt   .....(4.25)

By Ohm’s law, the instantaneous current through the resistance is given by,

,
R

iCurrent ν
=  

                    sin
sin

sin V tv
R

V t

R

V
t

m m
m ω

ω
ω == =

        =  I
m
 sin ωt       ..... (4.26)

 ,
R
V

Iwhere Maximum value of currentm
m= =

From equations (4.25) and (4.26), we can say that the voltage and current in a resistance are 

sinusoidal quantities of the same frequency and are in-phase (i.e., the phase difference between 

voltage and current in a resistance is zero).

Sinusoidal voltage and current can be expressed in polar form as shown below:

V V 0m m

o

+=

 I I 0m m

o

+=

Since the rms values are practically used (than the maximum values), the rms values of 

voltage and current are shown in the circuit of Fig. 4.24.

Rms value of voltage across resistance, 0V V
o

+=

Rms value of current through resistance, 0I I
o

+=

The instantaneous value of power in a resistance is given by the product of the instantaneous 

value of voltage and the current in the resistance.

∴ Instantaneous power, p  =  v × ip =  V
m 

sin ωt × I
m
 sin ωt

∴ Instantaneous power, p  =  V
m
 I

m
 sin2 ωt  =  V  

m
 I

m
 sin2q =  P  

m
 sin2q ..... (4.27)

   where,         q  =  ωt   ;   P  
m
 = V  

m
 I

m

E

+

R v

i

v

Fig 4.23 : Resistance

connected to an ac source.
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Fig. a : Circuit showing rms value of
voltage and current in resistance.
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Fig. b : Phasor diagram of voltage and
current in circuit of Fig. a.

Fig. 4.24 : Resistance connected to an ac source.
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From equation (4.27), we can say that instantaneous power is squared sine wave and so it 

is always positive (because on squaring the negative cycle it becomes positive). 

Practically, power is measured as an average value obtained by taking the average value of 

equation (4.27) over one period of voltage or current (or the average can be taken for half a period 

of voltage or current).

, sinPower P d V I dp1 1
m m

0

2

0

`
π

θ
π

θ θ= =

r r

# #

cosV I
d

2

1 2m m

0

π

θ
θ=

−

r

#

cos
V I

d
2

1 2
m m

0
π

θ θ= -

r

^ h#      

sinV I

2 2

2m m

0π
θ

θ
= −

r

8 B  

sin sinV I

2 2

2
0

2

0m m

π
π

π
= − − +8 B   e

V I V I
VI

2 2 2

m m m m= = = rag

P VI` = e power          

Alternatively, the expression for power can be obtained from complex power. 

0 ( 0 ) 0 0 0Complex power, S V I V I V I VI
* *o o o o o

# #+ + + + += = = =

sin 2π = 0  and  sin 0 = 0
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+ +
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- -

+ +
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I
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p
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Fig. 4.25 : Waveform of voltage, current and power in a resistance.
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0We know that, S S VI Sand o
+ φ= = = =

∴ Power, P  =  S cos φ  =  VI cos 0
o
  =  VI

  Reactive power, Q  =  S sin φ  =  VI sin 0
o
  =  0

“Resistance consumes only active power and the reactive power in a resistance is zero”.

4.11    Inductance Connected to Sinusoidal Source

Consider an inductance L connected to an ac source of voltage,  

v = V
m
 sin ωt as shown in Fig.  4.26. Since the inductance is connected 

across (or parallel to) the source, the instantaneous value of voltage 

across inductance is also v volts.

\  Voltage, v = V
m
 sin ωt       ..... (4.28)

 The current i through the inductance is given by,

          
L

dti 1
ν= #

sinsin V t
L

V t dt
1

mm ν ωω == #

sin
cos

L

V
t dt

L

V tm m
ω

ω

ω
= =

−8 B#
cos

L

V
t

m

ω

ω= −^ h

cos
X

V
t

L

m
ω= −^ h

( )sin cossin A A
X
V t 9090 o

L

m o
ω − = −= −^ h

( 90 )sinI tm

o

ω= −  .....(4.29)

    where, Inductive reactanceL XLω = =

                                 Maximum value of current
X

V
I

L

m
m= =    ..... (4.30)

From equations (4.28) and (4.29), we can say that the voltage and current in an inductance 

are sinusoidal quantities of the same frequency, but have a phase difference of 90
o
. “The current 

in an inductance lags behind the voltage by 90
o” (or the voltage across the inductance leads the 

current in an inductance by 90
o
).

The sinusoidal voltage and current of equations (4.28) and (4.29) can be expressed in polar 

form as shown below:

Vm   =  V
m
∠0

o
 

 Im    =  I
m
∠−90

o
 

Fig. 4.26 : Inductance

connected to an ac source.
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Since rms values are practically used (than the maximum values), the rms values of voltage 

and current are shown in circuit of Fig. 4.27.

Rms value of voltage across inductance, V  =  V∠0
o
 

Rms value of current through inductance, I   =  I∠−90
o
 

From equation (4.30), we get,

X
I

V
L

m

m=

Since, V = V 2m   and  I = I 2m  we can write,

X
I

V
L =

90 90,
I

V

I

V
I
V X jX j LNow

90

0
o

o
o

L
o

L

+

+
+ + ω=

−

= = = =   ..... (4.31)

From equation (4.31), we can say that, “ inductive reactance is given by the ratio of sinusoidal 

voltage to current in an inductance”.

The instantaneous value of power in an inductance is given by the product of the  

instantaneous value of voltage and the current in the inductance.

∴ Instantaneous power, p = v × i     

                        = V
m
 sin ωt × I

m
 sin (ωt − 90

o
)  

                         = V
m
 I

m
 sin ωt (−cos ωt)                  

                         = −V
m
 I

m
 sin ωt cos ωt

sin
V I

tp
2

2
m m`

ω
= −     

          sin sin
V I

t
V I

2
2

2
2

m m m m
ω θ= − = −               ..... (4.32)

where,  q  =  ωt

From equation (4.32), we can say that instantaneous power is also a sinusoidal quantity 

whose frequency is double that of voltage or current. 

sin(A − 90
o
) = −cos A

+

- -

+

j Lw

Fig. a : Circuit showing rms values of
voltage and current in inductance.

I I 90o= Ð -

V V= Ð0o

I

V

Fig. b : Phasor diagram of voltage
and current in circuit of Fig. a.

Fig. 4.27 : Inductance connected to ac source.

V V= Ð0o

- 90
o
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Practically, power is measured as an 

average value. With reference to Fig. 4.28, 

we can say that for half a period of voltage 

or current wave, the power wave undergoes 

one full cycle and it is sinusoidal. Hence, the 

average value of power over half a period or 

a full period of voltage will be zero. 

, P dpPower 1

0

π
θ=

r

#

       
2sin

V I
d

1

2

m m

0

π
θ θ=

−

r

#

       
sin

cos

V I
d

V I

2
2

2 2

2

m m

m m

0

0

π
θ θ

π

θ

=
−

=
− −

r

r

8 B

#
                                        

0

cos cosV I

V I

2 2

2

2

0

2 2

1

2

1

m m

m m

π

π

π

=
−

− +

=
−

− + =

8

8

B

B

Alternatively, the expression for power can be obtained from complex power.

0, V IS V IComplex Power 90
* *o o

#+ += = −^ h

                                 =  V∠0
o
  ×  I∠ +90

o
 

                                 =  VI∠90
o
 

We know that, S  = S = VI and ∠S  = φ = 90
o
 

        ∴ Power, P  =  S cos φ  =  VI cos 90
o
  =  0

Reactive Power, Q  =  S sin φ  =  VI sin 90
o
  =  VI

Inductance consumes only reactive power and “the active power in pure inductance is zero.” 

The reactive power of inductance is positive, which means that it absorbs reactive power.

4.12    Capacitance Connected to Sinusoidal Source

Consider a capacitance C connected to an ac source of voltage,  

v = V
m
 sin ωt as shown in Fig. 4.29. Since the capacitance is 

connected across (or parallel to) the source, the instantaneous value  

of voltage across the capacitance is also v volts.

∴  Voltage, n  =  V
m
 sin ωt             .....(4.33)

Fig. 4.29 : Capacitance
connected to an ac source.
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Fig. 4.28 : Waveform of voltage, current
and power in an inductance.
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The current i through the capacitance is given by,

C
dt

d
i

v=

   sinC
dt

d
V tm ω=

   sinC V
dt

d
tm ω=

   =  C V
m
 cos ωt ´ ω

   
/

cos
C

V
t

1

m

ω

ω=

   cos
X

V
t

C

m
ω=

   sin
X

V
t 90

C

m o
ω= +^ h

   =  I
m
 sin (ωt + 90o)                           .....(4.34)

C
1 Xwhere, Capacitive reactance.C
ω

= =

 Maximum value
X

V
I of current.

C

m
m= =   .....(4.35)

 From equations (4.33) and (4.34), we can say that voltage and current in a capacitance are 

sinusoidal quantities of the same frequency, but have a phase difference of 90
o
. “The current in 

a capacitance leads the voltage across it by 90
o” (or the voltage across the capacitance lags the 

current in a capacitance by 90
o
).

The sinusoidal voltage and current of equations (4.33) and (4.34) can be expressed in polar 

form as shown below:

0V Vm m

o

+=

90I Im m

o

+= +

Since rms values are practically used (than the maximum values), the rms values of voltage 

and current are shown in circuit of Fig. 4.30.

Rms value of voltage across capacitance, V  =  V∠0
o

Rms value of current through capacitance, I   =  I∠+90
o

v  =  V
m
 sin ωt

+

- -

+

Fig. a : Circuit showing rms values of
voltage and current in capacitance.

I I o
= Ð90

V V= Ð0o

I

V

Fig. b : Phasor diagram of voltage
and current in circuit of Fig. a.

Fig. 4.30 : Capacitance connected to an ac source.
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From equation (4.35), we get,

X
I

V
C

m

m=

Since,  V  =  V 2m  and  I  =  I 2m  we can write,

X
I

V
C =

90 90Now,
I

V

I

V
I
V X jX j

C j C90

0 1 1
o

o
o

C
o

C

+

+
+ +

ω ω

= = − = − = − =− =   ..... (4.36)

From equation (4.36), we can say that, “capacitive reactance is given by the ratio of sinusoidal 

voltage to current in a capacitance”.

The instantaneous value of power in a capacitance is given by the product of the instantaneous 

value of voltage and the current in the capacitance.

Let,  p = Instantaneous power in the capacitance

∴   p =  v  ×  i  

∴Inst =  V
m
 sin ωt  ×  I

m
 sin(ωt + 90

o
)

∴Inst =  V
m
 I

m
 sin ωt cos ωt 

 sin cos
V I

t t

2

2
m m

ω ω
=

 2sin
V I

t
2

m m
ω=

 2sin
V I

2

m m
θ=             ..... (4.37)

From equation (4.37), we can say that 

instantaneous power is also a sinusoidal quantity 

whose frequency is double that of voltage or current. 

Practically, power is measured as an average 

value. With reference to Fig. 4.31, we can say that for 

half a period of voltage or current wave, the power 

wave undergoes one full cycle and it is sinusoidal.  

Hence, the average value of power over half a period 

or a full period of voltage will be zero. 

Power, P dp1

0

π
θ=

r

#

     sin sin
V I

d
V I

d
1

2
2

2
2

m m m m

0 0

π
θ θ

π
θ θ= =

r r

# #

sin(A + 90o) = cosA

sin 2A = 2 sinA cosA

where,q = ωt
v

V
m

i
I
m

p

V Im m

2

+ +

p 2p 3p 4p wt

+ +

----
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0

+
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Fig. 4.31 : Waveform of voltage, current
and power in a capacitance.
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 ∴  P  
cosV I

2 2

2m m

0π

θ
= −

r

8 B

      
cos cosV I

2 2

2

2

0m m

π

π
= − +8 B

      0
V I

2 2

1

2

1m m

π
= − + =8 B

Alternatively, the expression for power can be obtained from complex power.

0, V IS V IComplex Power 90
* *o o

#+ += = ^ h

    =  V∠0
o
  ×  I∠−90

o

     =  VI∠−90
o

We know that, S   =  S  =  VI  and  ∠S  =  φ  =  −90
o

∴ Power, P  =  S cos φ  =  VI cos (−90
o
)  =  0

               Reactive power, Q  =  S sin φ  =  VI sin (−90
o
)  =  −VI

Capacitance has only reactive power and “active power in pure capacitance is zero”. The 

reactive power of capacitance is negative, which means that it delivers reactive power.

4.13    Impedance

“Impedance is defined as the ratio of (sinusoidal) voltage and current”. It is a frequency 

domain parameter but not a sinusoidal quantity. “Impedance is also defined as the total opposition 

offered to flow of (sinusoidal) current”. Hence, impedance is measured in Ohms (same as the unit 

of resistance).

Impedance is a complex quantity and denoted by .Z  The real part of impedance is resistance 

and the imaginary part of impedance is reactance. The unit of resistance, reactance and impedance  

are Ohm. There are two types of reactances, namely., the inductive reactance and capacitive 

reactance. Inductive reactance is denoted by X
L 
and equal to ωL. Capacitive reactance is denoted by 

X
C
 and equal to 1/ωC. Inductive and capacitive reactances have the exact opposite behaviours. 

Therefore, when expressed as a complex quantity, inductive reactance takes a positive value and 

capacitive reactance takes a negative value [Refer to equations (4.31) and (4.36)].

∴   Impedance, Z  =  R  +  jX ..... (4.38)

where,   R  =  Resistance

              X  =  Reactance

Also, Z  =  R  +  jX  =  R  +  jX
L
    ; when reactance is inductive.

 Z  =  R  +  jX  =  R  −  jX
C
    ; when reactance is capacitive.

 Z  =  R  +  jX  =  R  +  j(X
L 
 –  X

C
)  ; when  reactance  is  the sum  of  inductance  and  

      capacitance.



4. 30  Circuit Theory

The symbol used to represent impedance is a rectangle as shown in 

Fig. 4.32. Impedance is connected to other parts of circuits using resistance-

less wires.

The magnitude of impedance is denoted by Z (i.e., without an overbar). 

The argument of impedance is called impedance angle and it is denoted by q.

In equation (4.38), complex impedance is expressed in rectangular 

form. It can be expressed in polar form as shown below:

tanZ R jX R X
R
X Z2 2 1

+ +θ= + = + =
-    ..... (4.39)

where, tanZ Z R X Z
R
Xand2 2 1

+θ= = + = =
-

mpedance,Magnitude of i Z Z R X2 2
` = = +

                   tanZ
R
XImpedance angle, 1

+θ = =
-

Since impedance is a complex quantity it can be represented 

as a point in a complex plane with polar coordinates Z and q, as 

shown in Fig. 4.33. The line joining the origin and Z will be a 

vector of length Z and making an angle q with the reference. 

Now, the vector Z can be resolved into horizontal and vertical 

components. The horizontal component is resistance R and vertical 

component is reactance X. The right-angled triangle formed 

by R, X and Z is called the impedance triangle.          

4.13.1   Impedance Connected to Sinusoidal Source

Consider an impedance Z connected to an ac source of voltage V volts rms value as shown 

in Fig. 4.34.  Since the impedance is connected across (or parallel to) the source, the voltage across 

the impedance is also V volts.

By Ohm’s law, the current through the impedance is given by,

I
Z

V=                                                   ..... (4.40)

Let, V be the reference phasor and q be the impedance angle.

0V V Z Zand
o

` !+ + θ= =       ..... (4.41)

(+for inductive reactance and − for capacitive reactance)

From equations (4.40) and (4.41), we can write,

I
Z

V

Z

V

Z

V
I

0
o

!
" "

+

+
+ +

θ
θ θ= = = =

, I
Z
Vwhere =

Z R jXa C

Fig. 4.32 : Symbol
for impedance.
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Fig. 4.33 : Impedance triangle.
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Fig. 4.34 : Impedance
connected to an ac source.
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I V
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I V
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f

I

V
f

I V

I

V

f

I

V
f

The power factor angle is the phase difference between V and .I  Let, φ be the phase 

difference between V and .I

0 ( ), V INow " !+ +φ θ θ= − = − =

“It is interesting to observe that the power factor angle is the same as that for the impedance 

angle”.

From the above analysis, we can say that the current through the impedance leads or lags 

the voltage by an angle φ. 

Impedance is a combination of resistances and reactances. Depending on the combination, 

the phase of current may be in-phase or leading or lagging the voltage.

Table 4.2 : Various Combinations of Resistance and  Reactance

     Impedance, Z   Phase of current Phasor diagram

  with respect to voltage    of V and I  

 

  I  in-phase with V   

           Z  =  R

 

  I  lags V

         Z   =  R  +  j X
L

 

  
I  leads V

 

         
Z   =  R  −  j X

C

 

 Z  =  R  +  j X
L 
 −  jX

C
 I  in-phase with V

 and X
L
  =  X

C 

 (This condition is 

 called resonance)

 

 

 Z  =  R  +  j X
L 
 −  jX

C
 I  lags V

 and X
L  

>  X
C

 

 
Z   =  R  +  j X

L 
 −  jX

C
 I  leads V

 and X
L  

<  X
C
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4.14    Conductance, Susceptance and Admittance

In certain circuits, inverse parameters are useful for analysis. The inverse of resistance is 

conductance, the inverse of reactance is susceptance and the inverse of impedance is admittance. 

The MKS unit of conductance, susceptance and admittance is mho, (Ohm spelt in the reverse order). 

The SI unit of conductance, susceptance and admittance is Siemens, S. The circuit symbol used 

for an inverse parameter is the same as that for the original (or parent) parameter. The letters used 

to denote conductance, susceptance and admittance are G, B and Y, respectively.

; ;
Z

G
R

B
X

Y1 1 1Conductance, Susceptance, Admittance,= = =  

4.14.1   Conductance

The relationship between voltage and current in a conductance can be obtained from Ohm’s 

law. Consider a conductance carrying a current of I amperes as shown in Fig.  4.35. The conductance 

of the element is G and resistance is R = 1/G. By Ohm’s law, the voltage across the element is 

given by the product of current and resistance.

G
IV IRVoltage across conductance,` = =

I VG or V
G

I
` = =

   ..... (4.42)

Equation (4.42), gives the relation between voltage and current in a conductance.

4.14.2   Admittance

Admittance is the inverse of impedance and so “admittance is defined as the ratio of 

(sinusoidal) current and voltage”. The unit of admittance is mho or Siemens. Admittance is a 

complex quantity and denoted by Y.  The real part of admittance is conductance and the imaginary 

part of admittance is susceptance. The unit of conductance, susceptance and admittance is mho 

or Siemens.

There are two types of susceptance, namely., inductive susceptance and capacitive  

susceptance. Inductive susceptance is denoted by B
L
 and equal to 1/ωL. Capacitive susceptance 

is denoted by B
C
 and equal to ωC. Inductive and capacitive susceptances have the exact opposite 

behaviours. Therefore, when expressed as a complex quantity, the inductive susceptance takes a 

negative value and the capacitive susceptance takes a positive value [Refer equations (4.31) and (4.36)].

Admittance, Y  =  G + jB     ..... (4.43)

where,   G  =  Conductance          

              B  =  Susceptance

Also,  Y  =  G + jB = G – jB
L
   ; when susceptance is inductive.

          Y  =  G + jB = G + jB
C
   ; when susceptance is capacitive.

          Y  =  G + jB = G + j(–B
L
+ B

C
) ; when susceptance is the sum of inductance and 

      capacitance.

G
R

a

1

Fig. 4.35 : Conductance.
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The symbol used to represent admittance is a rectangle as shown 

in Fig. 4.36. Admittance is connected to other parts of circuits using 

resistance-less wires.The magnitude of admittance is denoted by Y  

(i.e., without overbar). The argument of admittance is called admittance 

angle and it is denoted by q.

In equation (4.43), complex admittance is expressed in rectangular 

form. It can be expressed in polar form as shown below:

tanY G jB G B
G
B Y2 2 1

+ +θ= + = + =
-

, tanY Y G B Y
G
Bwhere and2 2 1

+θ= = + = =
-

of a Y Y G BMagnitude dmittance, 2 2
` = = +

                  tanY
G
BAdmittance angle, 1

+θ = =
-

Since the admittance is a complex quantity it can be 

represented as a point in a complex plane with polar coordinates 

Y and q, as shown in Fig. 4.37. The line joining the origin and 

Y will be a vector of length Y and making an angle q with the 

reference. Now, the vector Y can be resolved into horizontal and 

vertical components. The horizontal component is conductance G

 and the vertical component is susceptance B. The right-angled 

triangle formed by G, B and Y is called the admittance triangle.

4.14.3   Admittance Connected to Sinusoidal Source

Consider an admittance Y connected to an ac source of voltage V volts rms value as shown 

in Fig. 4.38.  Let, Z Y1=  or Y Z1= .  Since the admittance is connected across (or parallel 

to) the source, the voltage across the admittance is also V volts.

By Ohm’s law, the current through the admittance is given by,

I
Z

V

Y

V
V Y

1
= = =     ..... (4.44)

Let,  V be the reference vector and q be the admittance angle.

0V V Y Yand
o

` "+ + θ= =       ..... (4.45)

(− for inductive susceptance and + for capacitive susceptance).

From equations (4.44) and (4.45), we can write,

0I V Y V Y VY I
o

" " "+ + + +θ θ θ= = = =

where, I  =  VY

Y G jBa C

Fig. 4.36 : Symbol
for admittance.
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Y
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q

Fig. 4.37 : Admittance triangle.
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I V
C E

I V
C E

I V

I

V

f

I

V
f

I V
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The power factor angle is the phase difference between V and .I  Let, φ be the phase 

difference between V and .I

0, V INow o
" !+ +φ θ θ= − = − =^ h

“It is interesting to observe that the power factor angle is the same as that for the admittance 

angle”.

From the above analysis, we can say that the current through the admittance leads or lags 

the voltage by an angle φ.

Admittance is a combination of conductances and susceptances. Depending on the  

combination, the phase of current may be in-phase or leading or lagging the voltage.

Table 4.3 : Various Combinations of Conductance and Susceptance

     Admittance, Y Phase of current Phasor diagram

  with respect to voltage     of V and I

  I  in-phase with V

                 Y = G 

         I  lags V

       Y = G − j B
L

  I  leads V 

       Y = G + j B
C
 

  I  in-phase with V 

   Y = G − jB
L
 + j B

C
 

   and B
L
 = B

C
 (This 

   condition is also called

   resonance)
 

  I  lags V 

       Y = G − jB
L
 + j B

C
  

   and B
L 
> B

C
 

  I  leads V

   Y = G − jB
L
 + j B

C
  

   and B
L 
< B

C     
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+

E

V

I

I1
I2

Z1
Z2

Fig. 4.39 : Impedances in parallel.

~

4.15    KVL, KCL and Ohm’s Law Applied to AC Circuits

In ac circuits, the total opposition to the flow of sinusoidal current is called impedance .Z  

Impedance is given by the ratio of sinusoidal voltage and current.

Z
I

V
or V I Z or I

Z

V
` = = =

The above equation is called Ohm’s law of ac circuits. From above equation we can say 

that when a current I  flows through an impedance ,Z  the voltage V across the impedance is given 

by the product of current and impedance, i.e., .V I Z=

In ac circuits, voltage and current will vary with time. Hence, while applying KCL and KVL 

to ac circuits we have to consider the signs of voltage and current at a particular time instant. The 

sign conventions for ac circuits are applicable to a particular time instant.

4.16    Current and Voltage Division Rules for Impedances

4.16.1   Current Division in Parallel Connected Impedances

Consider two impedances Z and Z1 2  in parallel and connected to an ac source of V volts as 

shown in Fig. 4.39. Let, I  be the current supplied by the source and I and I1 2  be the current through 

,Z and Z1 2   respectively. Since the impedances are parallel to the source, the voltage across them 

will be V volts.

Equations (4.46) and (4.47) can be used to solve currents in parallel connected impedances 

in terms of the total current drawn by the parallel combination and the values of individual  

impedances. Hence, these equations are called the current division rule.

 I I
Z Z

Z
1

1 2

2
#=

+

  ..... (4.46)

 I I
Z Z

Z
2

1 2

1
#=

+

  ..... (4.47)

The following equation will be helpful to remember the current division rule.

In two parallel connected impedances,

Current through one of the impedances
Sum of the individual impedances

Total current drawn by

parallel combination

Value of the

other impedance
#

=

4.16.2   Voltage Division in Series Connected Impedances

Consider two impedances Z and Z1 2  in series and connected 

to an ac source of V volts as shown in Fig. 4.40. Let, I  be the 

current supplied by the source and V and V1 2  be the voltages across 

,Z and Z1 2  respectively. Since the impedances are in series, the 

current through them will be I  amperes.

+ E + E

V1 V2

Z2

I

+ E

V

Fig. 4.40 : Impedances in series.
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Equations (4.48) and (4.49) can be used to solve the voltages in series connected impedances 

in terms of the total voltage across the series combination and the values of individual impedances. 

Hence, these equations are called voltage division rule.

V V
Z Z

Z
1

1 2

1
#=

+

 ..... (4.48)

V V
Z Z

Z
2

1 2

2
#=

+

 ..... (4.49)

The following equation will be helpful to remember the voltage division rule.

In two series connected impedances,

Voltage across

voltage across

series
one of the impedances

Sum of the individual impedances

Total

combination

Value of the

impedance
#

=

4.17    Solved Problems in Single Phase Circuits

EXAMPLE 4.1

Find the node voltages V and V1 2  in the circuit shown in Fig. 1.

SOLUTION

In the circuit of Fig. 1, the reference node is 0. The voltage of the reference node is zero. To find the 

voltages V1  and V2  with respect to the reference node, write two KCL equations at these nodes and solve the 

two equations for a unique solution.

With reference to Fig. 2, at node-1, using KCL we get,

1-
2

Currents leaving node : 5 90 , V ,
j2

V V ,
j5

V Vo 1 1 2 1 2
+

−
−
−

Current entering node-1   :   Nil

2
5 90 V

j2
V V

j5
V V 0o 1 1 2 1 2

+ + + =` +
−

−
−

               
2

j5 V
j2
V

j2
V

j5
V

j5
V 01 1 2 1 2

+ + + =− −

      2
1

j2
1

j5
1 V

j2
1

j5
1 V j51 2+ + + =` − − −c cm m

                              0.5 j0.3 V j0.3 V j51 2+ =− −^ h              ..... (1)

V1 V2

j2W

4W2W5Ð90
0
A 10 0Ð

0
A

- Wj5

0

Fig. 1.

~ ~

V1 - V

j

2

2

V1 -

-

V

j

2

5V1

2

V2

V1
5Ð90

0
A

0 0

Fig. 2.

V2

~
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With reference to Fig. 3, at node-2, using KCL we get, 

Currents leaving node-2    :     
4j2

V V , V ,
j5

V V2 1 2 2 1−
−
−          

Current entering node-2    :     10∠0
o

 A

4j2
V V V

j5
V V 10 0o2 1 2 2 1

` +
−

+ +
−

−
=

4j2
V

j2
V V

j5
V

j5
V 102 1 2 2 1

− + − + =

4j2
1

j5
1 V

j2
1 1

j5
1 V 1021− + + + − =c cm m

j0.3 V 0.25 j0.3 V 101 2+ − =^ h

                     0.25 j0.3 V 10 j0.3 V2 1` − = −^ h

V
0.25 j0.3

10
0.25 j0.3

j0.3
V2 1=`

−
−

−

    16.3934 j19.6721 0.5902 j0.4918 V1= + + −^ h   ..... (2)

In order to solve V1 , let us substitute for V2  from equation (2) in equation (1).

16.39340.5 j0.3 V j0.3 j19.6721 0.5902 j0.4918 V j51 1` − + + + − =−^ ^h h6 @

5 4.91j j80.5 j0.3 V .9016 0.1475 0.1771 V j51 1− − + + + =−^ ^h h

. 5j0 17710.5 j0.3 0.1475 V j5 .9016 j4.9181− + + = − + −^ h

.j5 9 9180.6475 j0.1229 V .90161− = −^ h

0.6475 .

5.9016 .
11.6037 13.1149 17.5113 48.5

j

j
j V V

0 1229

9 918
V1 o

` +=

−

−

= − = −

 From equation (2), we get,

V2  =  16.3934 + j19.6721 + (0.5902 − j0.4918) V1

      =  16.3934 + j19.6721 + (0.5902 − j0.4918) × (11.6037 − j13.1149)

      =  16.792 + j6.225 V 

     =  17.9087Ð20.3
o

 V

RESULT

The node voltages are, 

V1   =  17.5113Ð−48.5
o

 V

V2   =  17.9087Ð20.3
o

 V

V1 - V

j

2

2

V1

V1

V2

V2 -

-

V

j

1

5 V2

4
10 0Ð

0
A

0 0

Fig. 3.

~
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EXAMPLE 4.2

In the circuit shown in Fig. 1, find the node voltages 

V1  and V2  and the current Is  supplied by the voltage 

source.

SOLUTION

In the circuit of Fig. 1, the reference node is 0. The 

voltage of the reference node is zero. To find the voltages 

V1  and V2  with respect to the reference node, write two 

KCL equations at these nodes and solve the two equations 

for a unique solution.

, 10 30 10 8.6602 5cos sinGiven that E j jV V30 30o o o
+= = + = +^ h   .....(1)

With reference to Fig. 2, using KCL we get, 

Currents leaving node-1    :    
35 j2

V E ,
j5

V V , V1 1 2 1

−
− −       

Current entering node-1    :   Nil

3
0

5 j2
V E

j5
V V V1 1 2 1

`
−

−
+

−
+ =

     0E
j j5 5 35 j2

V
5 j2

V V V1 1 2 1

−
−

−
+ − + =

     
j j

V
j

E
5 2

1
5
1

3
1

5
V

5 j2
1

2

−
+ + − =

−
c m                 

 

     (1)
.

j j
V

j

j

5 2
1

5
1

3
1

5

8 6602 5
Using equationV

5 j2
1

2

−
+ + − =

−

+c m

     ( 0.5057 − j0.131) V1+ j0.2 V2  = 1.1483 + j1.4593   ..... (2)

With reference to Fig. 3, at node-2, using KCL we get, 

Currents leaving node-2    :    V
j2 2j5

V ,
5
V , V2 22 1−

−
      

Current entering node-2    :   Nil

0V
j2 2j5

V
5
V V2 22 1

`
−

+ +
−

=

    0V
j5 2 2j5

V
j5

V V2 2 21
− + +

−
=

j j
V

j5
1

5
1

2 2
1

5
0V

2
1

+ +
−

− =c m
    . . .j V j V0 45 0 05 0 2 02 1+ + =^ h

. .

.
V

j

j
V

0 45 0 05

0 2
2 1` =

+

−
   ⇒ . .V j V0 0488 0 4392 1= − −^ h        ..... (3)

Is

5W - Wj2 V1 V2
j5W

2W

3W 5W

- Wj2

0

Fig. 1.

~
E 10 300= Ð V

V1

3

V1 E

E

E

j5 2

V1 E V

j

2

5

V1

0

Node-1

Fig. 2.

E V2

Node-1

V1

V2

V2 E V

j

1

5

V2

5

V2

2 2E j

0 0

Fig. 3.
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In order to solve ,V1  let us substitute for V2  from equation (3) in equation (2).

\  (0.5057  −   j0.131) V1   +  j0.2 (−0.0488 − j0.439)V1   =  1.1483  +  j1.4593

     [ 0.5057  −  j0.131  +   j0.2 (−0.0488  −  j0.439 ) ]V1   =  1.1483  +  j1.4593

               [ 0.5935  −  j0.1408 ] V1   =  1.1483  +  j1.4593

 
. .

. .
V

j

j

0 5935 0 1408

1 1483 1 4593
1` =

−

+
 

            = 1.2795 + j2.7623 V      ..... (4)

            = 3.0442∠65.1
o

 V   

In order to solve ,V2  let us substitute for V1  from equation (4) in equation (3).

 V2`   = ( −0.0488  −  j0.439 )  ×  ( 1.2795  +  j2.7623 )

             = 1.1502 − j0.6965 V

             = 1.3446∠−31.2
o

 V     ..... (5)

With reference to Fig. 1, we can write,

Current suppliedby the voltage source, I
5 j2
E V

s
1

=

−

−

                                    
. ( . . )

j

j j

5 2

8 6602 5 1 2795 2 7623
=

−

+ − +

                                     = 1.1182 + j0.8948 A = 1.4321∠38.7
o

 A

RESULT

The node voltages are,

    V1   =  3.0442∠65.1
o

 V          

    V2   =  1.3446∠−31.2
o

 V

Current delivered by the source, Is   = 1.4321∠38.7
o

 A

EXAMPLE 4.3

Determine the current I2  in the circuit shown in Fig. 1.

SOLUTION

Let, IT  be the total current supplied by the source. This current 

IT  divides into I and I21  and flows through parallel impedances −j4 Ω 

and  2 + j2 Ω as shown in Fig. 2. The current IT  is given by the ratio of 

source voltage and total impedance at the source terminals.

100 45Ð
0
V

5W j2W

- Wj4

I2

2W

j2W

Fig. 1.

+

-
~

Fig. 2.

100 45Ð
o
V

5W j2W

- Wj4

I2

2W

j2W

I1

IT

~

+

-
100 45Ð

0
V Z jT = +9 2W

IT

~

+

-
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10 0Ð
0
V

5W

5 45Ð
0
V

2W

- Wj2

IL

j5W

Fig. 2.

I1 I2

I2

I1

A
B

CD

~

+

-
~

-

+

The total impedance ZT  at the source terminal is given by the parallel combination of −j4 Ω and 2 + j2 Ω in series 

with 5 + j2 Ω.

| |Z j j j j
j j

j j

j j j

5 2 4 2 2 5 2
4 2 2

4 2 2

5 2 4 0 9 2

T`
#

Ω

= + + − + = + +
− + +

− +

= + + + = +

,^ ^ ^
^ ^

h h h
h h6 ;@ E 

, 9.1508 5.8 32
cos sin

Now I
j j

j
j A

9 2
100 45

9 2

100 45 45
2

o o o

T
+

=
+

=
+

+
= +

^ h

By current division rule,

 
. .

I I
j j

j

j

j j

4 2 2

4

2 2

9 1508 5 8232 4
2 T #

#
=

− + +

−
=

−

+ −^ ^h h

      = 14.974  −  j3.3276  =  15.3393∠−12.5
o 
A

EXAMPLE 4.4

Determine the current IL  in the circuit shown in Fig. 1.

SOLUTION

Let us mark the nodes of the circuit as A, B, C and D as shown 

in Fig. 2. Let, I1  and I2  be the current delivered by 10∠0
o

 V and 5∠45
o

   V 

sources, respectively, from their positive end as shown in Fig. 2.

By KCL at node-B, we can write,

I I IL 2 1+ =     ..... (1)

The currents I1  and I2  can be solved by writing KVL equations 

in the closed paths ABDA and BCDB.

Consider the closed path ABDA shown in Fig. 3. By KVL, we can write,

5 10 0I j I2 21 L
o

++ − =^ h

5 10I I j I2 2
L L2
+ + − =^ ^h h

I j I5 7 2 10
L2

+ − =^ h

I j I5 10 7 2
L2

` = − −^ h  

I
j

I
5
10

5

7 2
L2

` = −

−

 

         2 . .j I1 4 0 4
L

= − −^ h                      .....(2)

Using equation (1)

10 0Ð
0
V

5W

5 45Ð
0
V

2W

j2W

IL

j5W

Fig. 1.

~

-

+
~

+

-

10 0Ð
0
V

I1 5 I1 IL = -I I1 2e j

2 2- j ILb g

A B

D

5W

2W

- Wj2

Fig. 3.

+

-

+

-
~

+ -
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50 0Ð
0
V

IT

~

+

-

-

W

j15.9155 + 10
+ 24.4305 + j11.6647

= 34.4305 j4.2508-

Fig. 4.

Consider the closed path BCDB shown in Fig. 4. By KVL, we can write,

5j I j I5 45 2 22 L
o

+= + −^ h

5 5 cos sinj I j I j2 2 45 452
o o

L− − = +^ ^h h

5 . . 5 cos sinj j I j I j2 1 4 0 4 2 2 45 45o o

L L− − − − = +^ ^ ^h h h6 @

. .j j I j I j10 2 7 2 2 3 5355 3 5355L L− + − − = +^ ^h h         

. .j I j j4 5 3 5355 3 5355 10L− − = + −^ h            

. .
I

j

j j

4 5

3 5355 3 5355 10
L` =

− −

+ −
           

     . .j A0 4434 1 0618= +     

           1.1507 67.3 A+= c       

EXAMPLE 4.5

In the circuit shown in Fig. 1, Find total current IT  and power factor. 

Take frequency of supply as 100 Hz.

SOLUTION

Given that,  V = 50 V,   f = 100 Hz,   L = 0.1 H   and   C = 100 µF

Capacitive reactance, .X
fC2

1

2 100 100 10

1
15 9155

6C
# # #π π

Ω= = =
-

Inductive reactance, 2 2 100 0.1 62.8319X fL
L # #π π Ω= = =

The frequency domain representation of the circuit is shown in Fig. 2.

With reference to Fig.4, by Ohm’s law,

. .
I

j34 4305 4 2508
50

T
=

−

=  1.4304 + j0.1766 A

=  1.4413 ∠ 7o A

Power factor angle, 0 7 7V I
o o o

T
+ +φ = − = − = −

∴  Power factor =  cos φ = cos(−7o)  =  0.9925 lead

j5 I2

2 2- j ILb g

D

Fig. 4.

IL

5 45Ð
0
V

C

B

I2

~

-

+

+

-

+-

Using equation (1)

100 Fm

0.1H30W

Fig. 1.

10W

~
50 Ð0

0

V

IT
+

-

- Wj15.9155

30W

Fig. 2.

10W

~
50 Ð0

0
V

IT

+

-

W
j6

2
.8

3
1
9

- Wj15.9155

Fig. 3.

10W

~
50 Ð0

0
V

IT

+

-

30 62 8319

30 62 8319

´

+

j

j

.

.

= 24.4305 + j11.6647 W

Þ

Since the current leads the voltage, 

        the power factor is lead.

(AU June’16, 8 Marks)
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EXAMPLE 4.6

A series combination of 10 Ω resistance and 50 mH inductance is connected to a 220 V, 50 Hz supply. 

Estimate the current, active power, reactive power and apparent power. Also estimate the voltage across R 

and L and draw the phasor diagram. 

SOLUTION

Given that,      V = 220 V,   f = 50 Hz

       R = 10 Ω,    L = 50 mH

The RL series circuit excited by a sinusoidal source is shown in Fig. 1.

Inductive reactance = jX
L
 = jωL = j2πfL = j2π × 50 × 50 × 10−3 = j15.708 Ω

10 15.708 18.621 57.5Z R jX jImpedance, L
o

+Ω Ω= + = + =

Let the supply voltage be the reference phasor.

 0 220 0V V Vo o
` + += =

Let, I  be the current through the RL circuit. Now by Ohm’s law,

,
. .

11.8146 57.5Current I
Z

V A
18 621 57 5

220 0
o

o
o

+

+
+= = = −

∴  I  =  |I |  =  11.8146 A

, 0 . 57.5Power factor angle V I 57 5o o o
+ +φ = − = − − =^ h

∴  Power factor  =  cosφ  =  cos 57.5
o = 0.5373 lag 

Apparent power,  S  =  VI  =  220  ×  11.8146  =  2599.2 VA

               .
2.5992kVA kVA

1000

2599 2= =          

Active power,        P = VIcosφ = 220 × 11.8146 × cos 57.5o

  
(or power)

               1396.6
.

1.3966W kW kW
1000

1396 6= = =             

Reactive power,   Q = VIsinφ = 220 × 11.8146 × sin57.5
o

               2192.2
.

2.1922VAR kVAR kVAR
1000

2192 2= = =

Since the current lags the voltage, 

the power factor is lag.

~~

V = V 00
Ð

I

VR VL

R jX = j LL w

Z R jXL= +

Fig. 1.

+ - + -

+ -
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Voltage across resistance, V I RR #= = 11.8146∠−57.5
o × 10

                                                               = 118.146∠−57.5
o 
V

Voltage across inductance,  V I jXL L#= = 11.8146∠−57.5
o ×  j15.708

                   = 11.8146∠− 57.5
o
 × 15.708∠90

o

                            = 185.5837∠32.5
o

 V

The phasor diagram of the RL circuit with V  as the reference phasor is shown in Fig. 2.

EXAMPLE 4.7

A current of 50∠−30
o

 A is flowing through a circuit which consists of series connected elements, when 

excited by a source of 230∠45
o

 V, 50 Hz. Determine the elements of the circuit and power. Also draw the 

phasor diagram.

SOLUTION

Given that,   V   =  230∠45
o

 V   and   I   =  50∠−30
o

 A 

4.6 75 1.1906 4.4433Z
I
V j

50 30

230 45Impedance,
o

o
o

`

+

+
+ Ω Ω= =

−
= = +

Since the reactance is positive, the circuit is RL series circuit. (Also the current is lagging and so the 

circuit is inductive.)

,We know that Z R jXL= +

∴  R = 1.1906 Ω  

     X
L
 = 4.4433 Ω

We know that, X
L
 = 2πfL

       .
0.0141 14.1L

f

X
H mH

2 2 50

4 4433L
`

#π π

= = = =

The complex power, 230 45S V I 50 30
* *o o

#+ += = −^ h

       =  230∠45
o
  × 50∠30

o   =  11500∠75
o
   =  2976.4 + j11108.1 VA

, 2976.4 11108.1Also S P jQ P jQ j&= + + = +

∴  Active power,   P  =  2976.4 W  =   .
kW

1000

2976 4   =  2.9764 kW 

Reactive power, Q  =  11108.1 VAR  =  .

1000

11108 1
 kVAR  = 11.1081 kVAR  

Apparent power, S  =  |S |  =  11500 VA  =  
1000

11500 kVA  =  11.5 kVA

The RL series circuit is shown in Fig. 1. Let, V and VR L  be the 

voltage across R and L. 

Now, by Ohm’s law,

V I RR #=   =  50∠−30
o  ×  1.1906  =  59.53∠−30

o
 V

V I jXL L#=  =  50∠−30
o  ×  j4.4433  =  50∠−30

o
  ×  4.4433∠90

o

          =  222.165∠60
o

 V

The phasor diagram of the RL series circuit is shown in Fig. 2.

32.5
0

E57.5
0

90
0

VR

I

VL

V

Fig. 2 : Phasor diagram.

VI

R jXL

Z

Fig. 1.

VR VL

+ E+ E

~

+ E

Fig. 2 : Phasor diagram.

E30
0

45
0

60
0

I

VR

V

VL

Reference
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EXAMPLE 4.8

Consider an RL series circuit with an impedance angle of 50
o
 at a frequency of 60 Hz. At what frequency 

will the magnitude of the impedance be twice the magnitude of the impedance at 60 Hz?

SOLUTION

Let, R  =  Resistance of RL series circuit

      L =  Inductance of RL series circuit

Case i :  f
1
 = 60 Hz,  ω

1
 = 2πf

1
 

Let, Z1   =  Impedance of RL circuit at f
1

, tanNow Z R j L R L
R
L

Z1
2

1
2 2 1

11
1

1+ +ω ω
ω

θ= + = + =
-

,where Z Z R L2
1
2 2

11
ω= = +      .....(1)

             tanZ
R

L
1 1

1 1
+θ

ω
= =

-  

Given that,  φ
1
 = 50

o

50tan
R

L1 o1
`

ω
=

-  ⇒   50tan
R

L o1ω
=    ⇒     1.1918

R

L1ω
=  .....(2)

Case ii :  Frequency  =  f
2
 ,  ω

2
 = 2πf

2
 

Let, f
2
  =  Frequency at which magnitude of impedance doubles

   Z2  =  Impedance of RL circuit at f
2

, tanNow Z R j L R L
R
L

Z2
2 2 2 1

22 2
2

2+ +ω ω
ω

θ= + = + =
-

,where Z Z R L2 2 2
2 22

ω= = +      .....(3)

             tanZ
R

L
2 2

1 2
+θ

ω
= =

-  

To solve for f
2 
:

Given that,  Z
2
 = 2Z

1

2R L R L
2

2
2 2 2

1
2 2

` #ω ω+ = +  

On squaring the above equation, we get,

R L R L4
2

2
2 2 2

1
2 2

ω ω+ = +^ h

On dividing by R2, we get,

1 4
R

L

R

L
1

2

2
2 2

2

1
2 2

ω ω
+ = +e o   ⇒ 4 1

R

L

R

L
1

2

2

1

2

ω ω
= + −e eo o= G

. .
R

L

R

L
4 1 1 4 1 1 1918 1 2 9464

2 1

2

2
`

ω ω
= + − = + − =e ^o h= G

,
.
.Now

R

L
R

L

1 1918
2 9464

1

2

ω

ω

=    ⇒   2.4722
1

2

ω

ω
=    ⇒   2.4722

f

f

2

2

1

2

π

π
=

2.4722 2.472 60 148.332f f Hz22 1` # #= = =

RESULT

The frequency at which the magnitude of the impedance doubles = 148.332 Hz

Using equations (1) and (3)

Using equation (2)
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Cross-Check

Let,  R = 2 Ω

, 1.1918Here
R

L1ω
=  

              . . .
6.3227 10 6.3227 10L

R

f

R
H H

1 1918

2

1 1918

2 60

1 1918 2

1

3 3

1
`

#

#
# #

ω π π

= = = = =
- -              

             ( ) ( . ) 3.1115Z R L R f L2 2 2 60 6 3227 101 1
2

1
2 3 22 2 2

# # #ω π π Ω= + = + = + =
-^ h

      ( ) ( . . ) 6.2229Z R L R f L2 2 2 148 332 6 3227 102
2

2
2 3 2

2
2 2 2

# # #ω π π Ω= + = + = + =
-^ h

     
.

.
1.999968 2

Z

Z

3 1115

6 2229

1

2 = = =

EXAMPLE 4.9

A resistance of 16 Ω is connected in parallel to an inductance of 20 mH and the parallel combination is 

connected to an ac supply of 230 V, 50 Hz. Determine the current through the elements and power delivered 

by the source. Draw the phasor diagram.

SOLUTION

Given that, R = 16 Ω,     L = 20 mH

                 V = 230 V,   f = 50 Hz

The parallel RL circuit is shown in Fig. 1.

Conductance, 0.0625G
R

1

16

1
M= = =

0.1592Inductive jB j
L

j
fL

j j1
2
1

2 50 20 10

1susceptance L
3

# # #

M
ω π π

= − = − = − = − = −
-

 

    Admittance,  0.0625 0.1592 0.171 68.6Y G jB jL
o

M M+= − = − = −  

Let the supply voltage be the reference phasor.

∴   V  = V∠0
o 
 = 230∠0

o
 V

Let,  I  be the current through the RL circuit. Now, by Ohm’s law,

, 230 0 0.171 68.Current I
Z

V V Y 6o o
#+ += = = −

                  = 39.33∠−68.6
o 
A

39.33I I A` = =

, 0 ( 68.6 ) 68.6Power factor angle V I o o o
+ +φ = − = − − =

∴  Power factor = cosφ = cos68.6
o
 
 
= 0.3649 lag 

Since the current lags the voltage, 

the power factor is lag.

- = -jBL j
L

1

w

Fig. 1.

ILIR

I
2
3

0
Ð

0
0
V

R = 16W L = 20mH
W

G =
1

16

~

+

-



4. 46  Circuit Theory

Power,    P  =  VI cosφ  =  230  ×  39.33  ×  0.3649   =  3300.8 W  =  .
3.3008kW kW

1000

3300 8 =

. .

Current through I
R
V V G

A230 0 0 0625 14 375 0

resistance, R

o o

#

#+ +

= =

= =

.

. .

Current through I
j L
V V jB j

A

230 0 0 1592

230 0 0 1592 90 36 616 90

inductance, L L
o

o o o

# #

#

+

+ + +

ω

= = − = −

= − = −

^ ^h h

The phasor diagram of the RL parallel circuit with V  as the reference 

phasor is shown in Fig. 2.

Alternate method

Inductive reactance  =  jX
L
  =  jωL  =  j2πfL  =  j2π  ×  50  ×  20 × 10

−3
  =  j6.2832 Ω

.

.
2.1377 5.4437 5.8484 68.6Z

R jX

R jX

j

j
j

16 6 2832

16 6 2832
Impedance,

L

L o# #
+ Ω=

+
=

+
= + =

, , 0 230 0Let V be reference phasor V V Vo o
` + += =

,
. .

39.327 68.6 ; 39.327Current I
Z

V I IA A
5 8484 68 6

230 0
o

o
o

`

+

+
+= = = − = =

Power factor angle,  φ  =  V I 0
o

+ +− =  − (−68.6
o
)  =  68.6

o

∴  Power factor  =  cos  φ  =  cos 68.6
o
 
 
=  0.3649 lag 

Power, P = VIcosφ  =  230 × 39.327 × 0.3649  =  3300.6 W  =  3.3006 kW

Current through resistance,  14.375 0I
R

V A
16

230 0
R

o
o+

+= = =   

Current through inductance, 
. 6.2832 0

230 0 36.606 0I
j L
V

j
A

6 2832
230 0

9
9L

o

o

o
o+

+

+
+

ω

= = = = −  

EXAMPLE 4.10

A series combination of 12 Ω resistance and 600 µF capacitance is connected to a 220 V, 50 Hz  supply. 

Estimate the current, active power, reactive power and apparent power. Also estimate the voltage across R 

and C and draw the phasor diagram. 

SOLUTION

Given that,     V  =  220 V,    f  =  50 Hz

      R  =  12 Ω,    C  =  600 µF

The RC series circuit excited by a sinusoidal source is shown in Fig. 1.

Capacitive jX j
C

j
fC

1
2
1reactance C

ω π

= − = − = −

                                   
2 50 600 10

5.3052j j1
6

# # #π
Ω= − = −

-

Impedance, Z   =  R – jX
C 

 =  12 – j5.3052 Ω   =  13.1204∠−23.9
o

 Ω

V = V 00Ð V
I

VR VC

R

Z R jXC= -

Fig. 1.

- = -j X j
C

C

1

w

+ - + -

~+ -

E68.6
0

E
9
0
0

IL

IR V

I

Fig.2: Phasor diagram.
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Let the supply voltage be the reference phasor.

0 220 0V V Vo o
` + += =  

Let, I  be the current through the RC circuit. Now, by Ohm’s law,

,
. .

16.7678 23.9Current I
Z

V A
13 1204 23 9

220 0
o

o
o

+

+
+=

−

=

            ∴ I = |I | = 16.7678 A

, . .Power factor angle V I 0 23 9 23 9o o o
+ +φ = − = − = −  

∴ Power factor = cos φ = cos (−23.9
o
) = 0.9143 lead 

Apparent power, S  =  VI  =  220  ×  16.7678  =  3688.9 VA

                    .
3.6889kVA kVA

1000

3688 9= =  

Active power,    P  =  VIcos φ  =  220  ×  16.7678  ×  cos (–23.9o)

  
(or power)

            3372.
.

3.372W kW kW6
1000

3372 6
6= = =

Reactive power, Q = VIsin φ  =  220  × 16.7678  ×  sin(−23.9
o
)

                  .
.

.VAR kVAR kVAR1494 5
1000

1494 5
1 4945= − =

−

= −

Voltage across resistance, V I RR #=   =  16.7678∠23.9
o 

 × 12

     =  201.2136∠23.9
o

 V

Voltage across capacitance,   V I jXCC #= −^ h  = 16.7678∠23.9
o
 ×  (−j5.3052)

        = 16.7678∠23.9
o
 ×  5.3052∠−90

o

       
 = 88.9565∠−66.1

o
 V

The phasor diagram of the RC circuit with V  as reference phasor is shown in Fig. 2

EXAMPLE 4.11

A current of 60∠25
o

 A is flowing through a circuit which consists of parallel connected elements when 

excited by a source of 230∠−20
o

 V, 50 Hz. Determine the elements of the circuit, active power and reactive 

power. Also calculate the current through the elements and draw the phasor diagram.

SOLUTION

Given that,  V   =  230∠−20
o

 V    and   I   =  60∠25
o

 A

.Y
V
I

230 20

60 25 0 2609 45Admittance,
o

o
o

` M
+

+
+= =

−

=

. .j0 1845 0 1845M= +

Since the susceptance is positive, the circuit is an RC parallel circuit. (Also the current is leading and 

so the circuit is capacitive.)

Since the current leads the voltage, 

the power factor is lead.

Alternatively,

Q = 1.4945 kVAR-capacitive

E66.1
090

0

23.9
0

I

VR

V

VC

Fig. 2 : Phasor diagram.
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Fig 2 : Phasor diagram.

E200

25
0

Reference

I

IC

IR

90
0
70

0

V

We know that,  Y G jBC= +

.
.

.G and R
G

0 1845
1

0 1845

1
5 4201` M Ω= = = =

     0. 845B 1C M=

We know that,  B
C
 =  ωC  =  2πfC

.
5.8728 10C

f

B
F

2 2 50

0 1845 4C
`

#
#

π π

= = =
-

                     =  0.5873  ×  10
–3 

F

                      =  0.5873 mF

,The complex power S V I
*

=

                                     =  230∠−20
o
  ×  (60∠25

o
) * =  230∠−20

o
 ×  60∠−25

o

                                     =  13800∠−45
o

 VA

                                     =  9758.1 − j9758.1 VA

,Also S P jQ= +

, 9758.1 . 9.7581Active power P W kW kW
1000
9758 1

` = = =

, 9758.1 . 9.7581power Q VAR kVAR kVAR
1000
9758 1Reactive = − = − = −

, 13800Apparent power S S VA= =

The RC parallel circuit is shown in Fig. 1. Let, IR  and IC  be the current 

through R and C. 

Now, by Ohm’s law,

230 20 0.1845 42.435 0I
R

V
V G A2

o o
R # #+ += = = − = −

230 20 0.1845

. . 0

I
jX
V V jB j

A230 20 0 1845 90 42 435 7

C
C

C
o

o o o

# #

#

+

+ + +

=

−

= = −

= − =

 The phasor diagram of the RC parallel circuit is shown in Fig. 2.

EXAMPLE 4.12

An RLC series circuit consists of R = 75 Ω,  L = 125 mH  and C = 200 µF . The circuit is excited by a 

sinusoidal source of value 115 V, 60 Hz. Determine the voltage across the various elements. Calculate the 

current and power. Draw the phasor diagram.

SOLUTION

Given that,  V = 115 V  ,   f = 60 Hz  ,   R = 75 Ω  ,   L = 125 mH  and C = 200 µF

Inductive reactance   =  jX
L
  =  jωL  =  j2πfL  =  j2π × 60 × 125 × 10

−3
  =  j47.1239 Ω

Capacitive reactance 13.2629jX j
C

j
fC

j j1
2
1

2 60 200 10

1
6C

# # #ω π π
Ω= − = − = − = − = −

-

Total reactance  =  jX  =  jX
L
 − jX

C
  =  j47.1239 − j13.2629  =  j33.861 Ω

∴  Impedance,  Z   =  R + jX  =  75 + j33.861 Ω  =  82.2895 ∠24.3
o

 Ω

Alternatively,

Q = 9.7581 kVAR-capacitive

Fig. 1.

ICIR

I

jB = j CC wG
R

=

1
V
~

+

-
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The RLC series circuit is shown in Fig. 1. Let, I  be the current 

through the circuit and ,V V and VR L C  be the voltage across R, L and C 

respectively. Let, V  be the reference phasor.

0 VV V
o

` +=

Now, by Ohm’s law,

. .
1.3975 24.3 AI

Z

V

82 2895 24 3

115 0
o

o
o

+

+
+= = = −

1.3975 AI I` = =

1.3975 24.3 75 104.8125 24.3 VV I R
o o

R # #+ += = − = −

. . .V I jX j1 3975 24 3 47 1239o

o o o

LL # #+= = −

. . . . . V1 3975 24 3 47 1239 90 65 8557 65 7#+ + += − =

. . .V I jX j1 3975 24 3 13 2629o

o o o

C C# #+= − = − −

. . . . . V1 3975 24 3 13 2629 90 18 5349 114 3#+ + += − − = −

^ ^h h

Apparent power,  S =  VI  =  115 × 1.3975  =  160.7125 VA

Power factor angle,  φ =  ∠V  −  ∠I  =  0
o
  −  (−24.3

o
)  =  24.3

o
 

Active power,   P =  VIcos φ  =  115  × 1.3975  × cos 24.3
o
  =  146.4739 W

Reactive power,  Q =  VI sin  φ  =  115 × 1.3975 × sin 24.3
o  

  =  66.1355 VAR

The phasor diagram of the RLC series circuit is shown in Fig. 2.

,Here V V VX L C= +

 I jX I jXL C= + −^ h

 I j X XL C#= −^ h

  1.3975 24.3 33.861I jX jo
# #+= = −

 1.3975 24.3 33.861 90
o o

#+ += −

 47.3207 65.7 Vo+=  

EXAMPLE 4.13

An RLC parallel circuit consists of R  =  50 Ω, L  =  150 mH  and C = 100 µF.  The circuit is excited by a 

current source of 5∠0
o

 A, 100 Hz. Calculate the voltage and current in the various elements. Determine the 

apparent, active and reactive power delivered by the source. Draw the phasor diagram.

SOLUTION

, 5 0 , 100Given that I fA Hz
o

+= =

                 R  =  50 Ω       ,    L  = 150 mH   and   C = 100 µF.

Let us analyse the parallel circuit in terms of admittance.

Alternatively,

Q = 66.1355 VAR-inductive

V = V 00
Ð V

I

VR VC

R

Z R jX= +

Fig. 1.

VL

jX = j LL w - = -j X j
C

C

1

w

jX

~

+ - + - + -

+ -

-+
VX

VC

VR

I

VL

VX

V
65.7

0

Referen
ce

E24.3
0

E114.3 0

Fig. 2 : Phasor diagram of
RLC series circuit.
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I 5 00
= Ð A

I

Fig. 1.

jBCV

IR IL IC

-jBLG
R

=
1

Y G jB jB G jBL C= - + = +

~

+

-

=   +IB IL IC

.G
R
1

50
1 0 02Conductance, M= = =

.jB j
fL

j j
2
1

2 100 150 10

1 0 0106Inductive susceptance
3L #

# # #

M
π π

= − = − = − = −
-

Capacitive susceptance  =  jB
C
  =  j2πfC  =  j2π  ×  100 × 100  ×  10

−6
  =  j0.0628 M

Total susceptance  =  jB  =  jB
C
  −  jB

L
  =  j0.0628  −  j0.0106 = j0.0522 M

Admittance, Y   =  G  +  jB  =  0.02  +  j0.0522  =  0.0559∠69
o

 M

The RLC parallel circuit excited by a current source 

is shown in Fig. 1. Let, V  be the voltage across the source 

and parallel connected elements. Let, ,I I and IR L C  be the 

current through R, L and C, respectively.

Now, by Ohm’s law,

.
89.4454 69 VV I Z

Y

I

0 0559 69

5 0
o

o
o

+

+
+= = = = −

89.4454 69 0.02 1.7889 69I V G Ao o
R # #+ += = − = −

89.4454 69 .

89.4454 69 0.0 90 0.9481 159 A

I V jB j0 0106

106

o

o o o

L L# #

#

+

+ + +

= − = − −

= − − = −

^ ^h h

. .

. . . A

I V jB j89 4454 69 0 0628

89 4454 69 0 0628 90 5 6172 21

o

o o o

CC # #

#

+

+ + +

= = −

= − =

,Let I I I V jB V jB V j B B V jBB L C L C C L# # # #= + = − + = − =^ ^h h

 = 89.4454∠−69
o
 × j0.0522  =  89.4454∠−69

o
 × 0.0522∠90

o

 
= 4.669∠21

o
 A

, .Complex power S V I 89 4454 69 5 0o o
#+ += = −

) )^ h

 = 89.4454∠−69
o
 × 5 ∠0

o

 = 447.227∠−69
o

 VA

 = 160.2718 − j417.5224 VA

447.227S S VAApparent power, = =

,Also S P jQ= +

∴ Active power, P  = 160.2718 W

    Reactive power, Q  = −417.5224 VAR

The phasor diagram of the RLC parallel circuit with I  as the reference phasor is shown in Fig. 2.

EXAMPLE 4.14

A load absorbs 2.5 kW at a power factor of 0.707 lagging from a 230 V, 50 Hz source. A capacitor is 

connected in parallel to the load in order to improve the power factor to 0.9 lag. Determine the value of the capacitor.

E69
0

21
0

E159
0

IL

IC

IR

I

V

IB

Fig. 2 : Phasor diagram.
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o



Chapter 4 - AC Single and Three-Phase Circuits                                                   4. 51

SOLUTION

Method - I

Case i                                                                              

Given that,  V  =  230 V  ,   P
1
  =  2.5 kW   ,   cosφ

1
  =  0.707 lag  ,   f  =  50 Hz

,
.
. 3.5361

cos
Apparent power S P

kVA
0 707
2 5

1
1φ

= = =

Power factor angle, φ
1
  =  cos–1 0.707  =  45

o

Reactive power, Q
1
  =  S

1
 sinφ

1
  =  3.5361 × sin 45

o
  =  2.5 kVAR

Case ii                                                                               

Given that,  V  =  230 V  ,   f  =  50 Hz   ,   cosφ
2
  =  0.9 lag

The addition of capacitor to the load does not alter the active power but decreases the reactive power 

supplied by the source. Hence, the active power remains the same as that of 2.5 kW.

∴  P
2
  =  2.5 kW

.

. 2.7778
cos

S
P

kVA
0 9
2 5Apparent power, 2

2

2

φ
= = =

Power factor angle, φ
2
  =  cos–1 0.9 = 25.8

o

Reactive power, Q
2
  =  S

2
 sinφ

2
  =  2.7778  ×  sin25.8

o
  =  1.209 kVAR

Now, the reactive power supplied by the capacitor Q
C
 is given by,

  Q
C
  =  Q

2
  −  Q

1
  =  1.209  −  2.5  =  −1.291 kVAR  =  −1291 VAR

,We know that Q V IC C=     ⇒    Q VIC C=    ⇒    I
V

Q
C

C
=

where, I
C
 is the magnitude of current through capacitor.

Capacitive reactance, 40.976X
I
V

Q V
V

Q
V

1291
2302

C
C C C

2

= = = = =

,Also X
fC2
1

C
π

=

.
77.68 10 77.68C

fX
F F

2
1

2 50 40 976
1 2 2Capacitance, 6

C

`
# #

#
π π

µ= = = =
-

Method - II

Case i                                                                               

Given that,  V  =  230 V  ,   f  =  50 Hz   ,   P
1
  =  2.5 kW   ,   cosφ

1
  =  0.707 lag

Let, IL  be the current through the inductive load as shown in Fig. 1.

We know that, P
1
 = VI

L
cos φ

1

.

.
15.3742

cos
I I

V

P
A

230 0 707

2 5 10
L L

1

1
3

`
#

#

φ
= = = =     .....(1)

Alternatively, 

Q
1
 = 2.5 kVAR-inductive

Alternatively, 

Q
2
 = 1.209 kVA-inductive

Here, Q
2
 is inductive because the 

power factor is still lagging.

V = V 0
0Ð

I I
L L
= Ð - f

ZL

Fig. 1.

-

+
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Let the supply voltage V  be the reference phasor.

0 230 0 VV V
o o

` + += =

Since the power factor is lagging, the current IL  will lag the supply voltage V by an angle φ
1
, where φ

1
  =  cos−1

 
0.707

cosI IL L
1

1
` + φ= − -

         . 0.707 10.8696 10.8728cos j A15 3742 1
+= − = −

-

Case ii : When capacitor is added to inductive load

An inductive load with capacitance in parallel is shown in Fig. 2. Here, 

the current through the load remains the same as that of IL . Let, I  be the current 

supplied by the source and IC  be the current through the capacitor. 

Active power remains the same even after addition of the capacitor.

∴  P
2
  =  2.5 kW

We know that, P
2
  =  VI cos φ

2

.

.
12.0773

cos
I I

V

P
A

230 0 9

2 5 10
3

2

2
`

#

#

φ
= = = =    .....(2)

cosI I
1

2` + φ= − -

. 0.9 10.8696 5.264cos j A12 0773 41
+= − = −

-

By KCL, we can write, 

I I IC L= +

10.8696 10.8728 . . 5.608I I I j j j A10 8696 5 2644 4C L` = − = − − − = −^ h

Magnitude of capacitor current, I
C

 =  5.6084 A

.
41.0092Capacitive X

I
V

5 6084
230reactance, C

C
Ω= = =

,Also X
fC2
1

C
π

=

.
77. 10 77.C

fX
F F

2
1

2 50 41 0092
1 619 619Capacitance, 6

C

`
# #

#
π π

µ= = = =
-

Note :  The slight difference in the capacitance value is due to approximation in calculations.

EXAMPLE 4.15

An inductive coil of power factor 0.8 lagging is connected in series with a  

120 µF capacitor. When the series circuit is connected to a source of frequency 

50 Hz, it is observed that the magnitude  of voltage across the coil and capacitor are 

equal. Determine the parameters of the coil.

SOLUTION

The given circuit is an RLC series circuit as shown in Fig. 1.

Let, Z   =  Impedance of the coil

        I   =  Current through the RLC series circuit

Using equation (1)

Using equation (2)

V = 230 0
0

Ð V

Fig. 2.

C

IC IL

I

ZL

+

-

Z R jX La C

V, f = 50Hz

R

Fig. 1.

L C
I

~+ E

+ E
IZ

E+
EjXCI
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Given that, 

Z I jX IC= −   ⇒   Z XC=

,where Z R X Magnitude of impedance of the coil2
L
2

= + =

, 26.5258Magnitude of impedance Z X
fC2
1

2 50 120 10

1
6C`

# # #π π
Ω= = = =

-

Given that, power factor of the coil  =  0.8 lag

∴  Power factor angle of the coil,  φ   =  cos−1 0.8  =  36.9
o

Let us construct an impedance triangle for Z
 
using R and X

L
 as the two sides, as shown in Fig. 2. Here, 

the impedance angle is the same as the power factor angle.

With reference to Fig. 2, we can write,

 cos sin
Z

R
and

Z

XLφ φ= =

∴  Resistance,  R = Z cos  φ =  26.5258 × cos 36.9
o  =  21.2123 Ω

Inductive reactance,  X
L
 =  Z sin  φ = 26.5258 × sin 36.9

o
 = 15.9266 Ω

We know that,            X
L
 =  ωL

. 0.0507 50.7L
X

f

X
H mH

2 2 50
15 9266Inductance, L L

`
#ω π π

= = = = =

RESULT

The parameters of the coil are R and L.

Resistance of the coil, R  =  21.2123 Ω

Inductance of the coil,  L  =  50.7 mH

EXAMPLE 4.16

Three impedances 12  Ω, 5 + j8 Ω and −j7 Ω are 

connected in parallel. This parallel combination is connected 

in series with an impedance of 4 + j6 Ω across a 230 V source. 

Determine the current through each impedance and the power.

SOLUTION

The series-parallel connections of the impedances 

are shown in Fig. 1. Let us name the impedances as 

, ,Z Z Z and Z1 2 3 4
 
, as shown in Fig. 1. Let, the current 

through the impedances be , ,I I I and I1 2 3 4  as shown in Fig. 1. Let, supply voltage be the reference phasor.

∴ Supply voltage  =  230∠0
o

 V

Let, Zeq  be the equivalent impedance of the parallel combination of ,Z Z and Z1 2 3  and the circuit 

can be modified as shown in Fig. 2.

,Now Z

Z Z Z j j
1 1 1

1

12
1

5 8
1

7
1

1

2

eq

1 3

=

+ +

=

+
+

+
−

               =  [12
−1

 + (5 + j8)
−1

 + (− j7)
−1

]
−1

 = 6.2647 −  j2.3785 Ω

f

R

Z

Fig. 2 : Impedance
triangle.

X
L

Fig. 1.

I1 I2 I3

2
3
0
Ð
0

=
2
3
0

0
V

V

Z1 12= W Z j2 5 8= + W Z3 = - j7W
~

Z j= +4 6WI4
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Va

Vb230V

Fig. 2.

Z j4 4 6a C �I4

+

E

+ E

+

EZeq a

E

6 2647.

.j2 3785�

~

Let, Va   and Vb  be the voltage across Z and Z4 eq  as shown in Fig. 2.

Now, by voltage division rule, we can write,

230
. .

V
j j

j

4 6 6 2647 2 3785

4 6
a #=

+ + −

+

. .j V121 8879 91 4379= +

152.3731 36.9 Vo+=

By KVL, we can write,

230 230 . . 108.1121 91.4379V V j j V121 8879 91 4379b a= − = − + = −^ h

                    = 141.5949 ∠−40.2
o 
 V

Here, the voltage across Z is V4 a  and the voltage across ,Z Z and Z are V1 2 3 b  (because 

,Z Z and Z1 2 3  are in parallel). Now, the current through the impedances can be evaluated using Ohm’s law, 

as shown below:

. .

. .

152.3731 36.9 21.1304 19.4I
Z
V

j
A

4 6
152 3731 36 9

7 2111 56 34

a
o

o

o
o

4
+

+

+
+= =

+
= = −

. .
. .I

Z

V A
12

141 5949 40 2
11 7996 40 2

1

b
o

o
1

+
+= =

−

= −

. .

.

141.5949 40.2 . .I
Z
V

j
A

5 8
141 5949 40 2

9 434 58
15 009 98 2

2

b
o

o

o
o

2
+

+

+
+= =

+

−
=

−
= −

. . . . . .I
Z
V

j
A

7
141 5949 40 2

7 90

141 5949 40 2 20 2278 49 8
3

b
o

o

o
o

3
+

+

+
+= =

−

−

=

−

−

=

We know that complex power is given by the product of voltage and conjugate of current. Hence, the 

complex power in each impedance can be obtained from the product of voltage and conjugate of current in 

the impedance.

Let, , ,S S S and S1 2 3 4  be the complex power of the impedances , , ,Z Z Z and Z1 2 3 4  respectively. Let, 

P
1
, P

2
, P

3
 and P

4
 be the active power and Q

1
, Q

2
, Q

3
 and Q

4
 be the reactive power of the impedances.

For impedance ,Z4

   152.3731 36.9 . .S V I 21 1304 19 4
* *o o

4 a 4# #+ += = −^ h

          =  152.3731∠36.9
o
 × 21.1304∠19.4

o
  = 3219.7∠56.3

o
 VA  

          =  1786.4 + j2678.6  =  P
4
 + jQ

4

∴ S
4
  =  3219.7 VA  =  3.2197 kVA

     P
4
  = 1786.4 W  = 1.7864 kW

    Q
4  

= 2678.6 VAR  =  2.6786 kVAR

For impedance ,Z1

    . . . .S V I 141 5949 40 2 11 7996 40 2
* *o o

1 b 1# #+ += = − −^ h

          =  141.5949∠−40.2
o
  ×  11.7996∠40.2

o
  =  1670.8∠0

o
 VA

     =  1670.8  +  j0  =  P
1
  +  jQ

1

∴ S
1 

= 1670.8 VA  =  1.6708 kVA

 P
1
 = 1670.8 W  =  1.6708 kW

      Q
1
 = 0
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For impedance ,Z2  

    141.5949 40.2 . .S V I 15 009 98 2
* *o o

2 b 2# #+ += = − −^ h   

          =  141.5949∠−40.2
o 
 ×  15.009∠98.2

o

     =  2125.2∠58
o

 VA

          =  1126.2  +  j1802.3 VA  =  P
2
  +  jQ

2

∴ S
2
 = 2125.2 VA  =  2.1252 kVA

    P
2
 = 1126.2 W  =  1.1262 kW

    Q
2
 = 1802.3 VA R  =  1.8023 kVAR

For impedance ,Z3  

   141.5949 40.2 . .S V I 20 2278 49 8
* *o o

3 b 3# #+ += = − ^ h

         =  141.5949∠−40.2
o
  ×  20.2278∠−49.8

o

    =  2864∠−90
o
  =  0 − j2864  =  P

3
  +  jQ

3

∴ S
3
  =  2864 VA  =  2.864 kVA

    P
3
  =  0

    Q
3
  =  − 2864 VAR  =  − 2.864 kVAR

EXAMPLE 4.17

Two reactive circuits have an impedance of 20 Ω each. One of them has a power factor of 0.75 lagging 

and the other 0.65 leading. Find the voltage necessary to send a current of 12 A through the two circuits in 

series. Also determine the current drawn from the 200 V supply if they are connected in parallel to the supply.

SOLUTION

Case i : Impedances in series

Let, Z and Z1 2  be the impedances of the two circuits. The series combination of two circuits excited 

by a voltage source can be represented by the circuit shown in Fig. 1.

Now, the impedances Z1  and Z2  can be expressed as shown below:

  Z1   =  20∠cos
−1

 0.75 

                  =  20∠41.4
o

 Ω  

                  = 15.0022 + j13.2262 Ω

  Z2   =  20∠−cos
−1

 0.65  

                   = 20∠−49.5
o

 Ω 

                   = 12.989 − j15.2081 Ω

Let, Z  be the total impedance of series combination.

Now,   Z   =  Z1  + Z2  = 15.0022 + j13.2262 + 12.989 − j15.2081

      = 27.9912 − j1.9819  =  28.0613∠−4.1
o

 Ω

When the current is lagging, the 

impedance is inductive and the 

impedance angle is the same as the 

power factor angle.

When the current is leading, the 

impedance is capacitive and the 

impedance angle is the negative of 

the power factor angle.

V

I

Z1

Fig. 1.

Z2

Z

~+ E
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Magnitude of impedance,  Z  =  |Z | = 28.0613 Ω

Given that, the magnitude of current,  I  =  |I | = 12 A

∴  Magnitude of supply voltage, V  =  IZ = 12 × 28.0613  = 336.7356 V

If V  is the reference phasor then,

  336.7356 0 12 4.1V and IV A
o o

+ += =

If I  is the reference phasor then,

  336.7356 . 12V and IV A4 1 0
o o

+ += − =

Case ii : When the impedances are in parallel

Two circuits in parallel and excited by a 200 V source can be represented by the circuit shown in Fig. 2. 

Let, I1  and I2  be the current through the impedances Z1  and Z2 , respectively. Let, I  be the total current 

supplied by the source.

Let, the supply voltage V  be the reference phasor.

0 200 0V V Vo o
` + += =

,
.

10 41.4Now I
Z

V A
20 41 4

200 0
o

o
o

1
1 +

+
+= = = −

          

          .
10 49.5I

Z

V A
20 49 5

200 0
o

o
o

2

2 +

+
+= =

−

=

By KCL, we can write,

 . .I I I 10 41 4 10 49 51
o o

2 + += + = − +

                     = 7.5011 −j6.6131 + 6.4945 + j7.6041

                    = 13.9956 + j0.991 A = 14.0306∠4.1
o 
A

EXAMPLE 4.18

In the circuit shown in Fig. 1, (a) determine the currents in all the 

branches,(b) calculate the power and power factor of the source, (c) 

show that power delivered by the source is equal to power consumed 

by the 2 Ω resistor.

SOLUTION

a)   To find branch currents

The circuit has three branches. Let us assume three branch 

currents ,I I and Ia b c   as shown in Fig. 2. Let us denote the nodes 

as A, B and C.

By KCL at node-B, we can write,

    I I Ib c a+ =

I I Ic a b` = −                     ..... (1)

V = 200 0
0

Ð V
I

I1

I2 Z2

Z1

Fig. 2.

~
+ -

Fig. 1.

- Wj1

1
0
0
Ð
0
0
V

j2.5W

2W
~

+

-

Fig. 2.

- Wj1

1
0
0
Ð
0
0
V

j2.5WIa

Ib Ic

A B

C

~
2W

+

-
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With reference to Fig. 3, using KVL in the closed path 

ABCA, we can write,

    .j I I2 5 2 100 0oa b ++ =

.j I I2 5 2 100a b` + =                     ..... (2)                     

With reference to Fig. 4, using KVL in the closed path 

BCB, we can write,

             jI I2c b− =   

I jI2 0b c` + =      ..... (3)  

On substituting for Ic  from equation (1) in equation (3), we get,

I j I I2 0b a b+ − =^ h

jI j I2 0a b` + − =^ h        ..... (4)

Equation (2) × 1 ⇒ j2.5Ia  + 2Ib   = 100

Equation (4) × (−2.5) ⇒ −j2.5Ia  − 2.5 ( 2 − j )Ib  = 0

                       On adding                    [ 2 − 2.5 (2 − j) ]Ib  = 100

. .
. . . .I

j j
j

2 2 5 2
100

3 2 5
100 19 6721 16 3934 25 6073 140 19ob` +=

− −
=

− +
= − − = −

^ h

From equation (2), we can write,

. .

. .

.

. .
I

j
I

j

j

j

j

2 5
100 2

2 5

100 2 19 6721 16 3934

2 5

139 3442 32 7868
a

b #
=

−
=

− − −
=

+^ h

                =  13.1147  −  j55.7377  =  57.2598∠−76.76
o
 A

From equation (1), we get,

I I Ic a b= −

 = 13.1147  −  j55.7377  −  (−19.6721  −  j16.3934)

 = 32.7868  −  j39.3443  =  51.2147∠−50.19
o
 A

b)   To find power and power factor of the source

Let, E  = Source voltage.

 Is  =  Current delivered by the source.

 φ = Phase difference between E  and .Is

, 100 0Given that E Vo+=

With reference to Fig. 2, we can write,

57.2598 76.76 AI I
o

s a += = −

Fig. 3.

Ia

C

A

Ib

1
0
0
Ð
0
0
V

j 2.5Ia

B

2Ib~

+ -

+

-

+

-

Fig. 4.
C

Ib

E j Ic

B

2Ib

Ic

+

E

+

E
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,Now E Is+ +φ = −

                 =  0
o
  −  (−76.76

o
)  =  76.76

o
 

. .cos cosPower factor of the source lag76 76 0 229o
` φ= = =^ h

    cosPower delivered of the source E Is# # φ=

                      =  100  × 57.2598  ×  0.229  =  1311 W ..... (5)

c)   To find power consumed by 2 Ω resistor

Power consumedby resistor I2 2b
2

#Ω =

     =   25.6073
2
 × 2 = 1311 W   ..... (6)

From equations (5) and (6) we can say that the power delivered by the source is equal to the power 

consumed by the 2 Ω resistor. (Remember that reactive elements do not consume power).

RESULT

a) The branch currents are, 

 57.2598 76.76 ; 25.6073 140.19 ; 51.2147 50.19I I IA A Ao o o
a b c+ + += − = − = −

b) The power delivered by the source = 1311 W

 The power factor of the source = 0.229 lag

c) The power consumed by 2 Ω resistor = 1311 W

EXAMPLE 4.19

Impedances Z1and Z2are parallel and this combination is in series 

with an impedance Z3 , connected to a 100 V, 50 Hz ac supply. 5Z jX1 c Ω= −

, 5 0Z j2 Ω= + , 6.25 1.25Z j3 Ω= + . Determine the value of capacitance such 

that the total current of the circuit will be in phase with the total voltage. Find 

the circuit current and power.

SOLUTION

Given that, 5Z jX1 c Ω= −   ;   5 0Z j2 Ω= +    ;    6.25 1.25Z j3 Ω= +

   V  =  100 V       ;       f  =  50 Hz

With reference to Fig. 1, equivalent impedance is obtained as shown below:

Z Z
Z Z

Z Z
eq 3

1 2

1 2#
= +

+

      . .
5

( )
j

jX

jX
6 25 1 25

5

5 5

C

C #
= + +

− +

−

(AU Dec’14, 16 Marks)

100

50

V

Hz

Z = 6.25 + j1.253 �

Z
=

 5
jX

1
c

E
�

Z
=

 5
 +

 j
0

2
�

+

E

~

Fig. 1.
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      6.25 1.25Z j
jX

j X

jX

jX

10

25 5

10

10
eq

C

C

C

C
` #= + +

−

−

+

+

      6.25 1.25j
X

j X j X X

10

250 25 50 5
2 2

2

C

C C C
= + +

+

+ − +

      6.25 1.25j
X

X
j

X

X

10

250 5

10

25
2 2

2

2 2
C

C

C

C
= + +

+

+

−

+

For voltage and current to be in phase, Zeqshould be real and so the imaginary part of Zeqshould 

be zero.

1.25 0 1.25 10
.

j j
X

X
j

X

j X
X

j

j X

10

25

10

25

1 25

25
2 2 2 2

22

C

C

C

C
C

C
& &` −

+

= =

+

+ =

10 20 20X X X X 100 0
2 22

C C C C
&+ = − + =

10X
2

20 20 4 100

2

20
2

C
`

! #
Ω=

−
= =

We know that,

3.1831 10 318.31 10X
fC

C
fX

F F
2

1

2

1

2 50 10

1 4 6

C
C

&

# #
# #

π π π

= = = = =
- -

                                                                                                                =  318.31 µF

When X
C
 = 10 W,

6.25 6.25Z
X

X

10

250 5

10 10

250 5 10
2 2

2

2 2

2

eq

C

C #
= +

+

+

= +

+

+

                                              
 
=  6.25 + 3.75  =  10 W

, 10Current I
Z
V A

10
100

eq

` = = =

     , 100 10 1000 1Power P V I W kW# #= = = =

    (or Power, P = I2 × real part of Zeq= 102 × 10 = 1000 W)

4.18    Three-Phase Circuits

In many countries electrical energy is generated and distributed as a three-phase ac  

supply. For many reasons three-phase system has been adopted for generation and distribution of  

electrical energy. The three-phase system is more economical than the single-phase system. 

Also, three-phase motors are self-starting and produce more uniform torque as compared to  

single-phase motors.

Three-phase sources are three-phase alternators generating three emfs having 

equal magnitude but with a phase difference of 120
o
 with respect to each other. Each generated 

emf is called a phase and so the three generated emfs are called three phase.

(AU Dec’15 & ‘16, 2 Marks)
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The three phases are named as R phase, Y phase and B phase in British convention and  

A phase, B phase and C phase in American convention. 

The letters R,Y,B, have been chosen from the first letters, of three colours Red, Yellow, and 

Blue. In practical wiring, these coloured wires are used for wiring of three phase circuits in order 

to provide clear visual distinction between different phase connections to loads.

In a polyphase system, when the magnitude of emfs are equal and the phase difference 

between consecutive emfs are equal, the system is called a balanced system and the emfs are 

called balanced emfs. Three-phase sources are designed to generate balanced emfs. Hence, in the 

analysis of three-phase systems, the source emfs are always considered as a balanced set of emfs.

4.19    Three-Phase Sources

The three-phase sources can be represented by three independent sources. For operational 

convenience the three sources can be connected either in star or delta as shown in Fig. 4.41. The emfs 

generated by the sources vary sinusoidally and so instantaneous values of the emfs are represented 

by the following equations.

e
R
  =  E

R,m
 sin ωt                =  E

m
 sin ωt

e
Y
  =  E

Y,m
 sin (ωt − 120

o
)  =  E

m
 sin (ωt − 120

o
)           

e
B
  =  E

B,m
 sin (ωt − 240

o
)  =  E

m
 sin (ωt − 240

o
)

where, E
R,m

, E
y,m

 and E
B,m

 are maximum values of generated emfs.

In star connection, the meeting point of the three sources is called neutral and there is 

no such neutral point in delta connection. The neutral point is denoted by N. The two types of  

three phase sources offer three terminals for connecting the load. The transmission lines or 

connecting wires from the source terminals to the load terminals are called lines, as shown in 

Fig. 4.42.

E E E ER, m Y, m B, m m= = =

+

E

+

E

+

E

e
R

e
B e

Y

R

Y

B I
P
Q

Terminals to

connect

load

+

+

+

E

E

E

e
R

e
B

e
Y

R

Y Y

B I
P
Q

Terminals

to connect

load

Fig. a : Star-connected source. Fig. b : Delta-connected source.

Fig. 4.41 : Three phase ac sources.
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The voltage generated by each phase of a three-phase source is called phase voltage and 

the voltage between the lines connecting the load is called line voltage.

The current delivered by each phase of the three-phase source is called phase current and 

the current flowing through the line is called line current.

4.20    Representation of Three-Phase EMFs

The three-phase emf can be represented by three rotating phasors (or vectors) having  

equal magnitude but maintaining a phase difference of 120
o
 with respect to each other. 

The phasor will rotate at a constant angular speed of ω rad/s. The rotation of the phasors can be 

clockwise or anticlockwise. It is conventional practice to choose anticlockwise rotation for phasors 

(throughout this book anticlockwise rotation is followed for phasors). The reference point is chosen 

as ωt = 0. For the three-phase rotating phasors, the order of reaching the reference point is called 

phase sequence.

In the three-phase rotating phasors, when the order of reaching the reference is R phase,  

Y phase and B phase, the phasors are said to have normal phase sequence or RYB sequence. 

When the order of reaching the reference is R phase, B phase and Y phase, the phasors are said to 

have reversed phase sequence or RBY sequence. The normal and reversed sequence three-phase 

emfs are shown in Fig. 4.43.

w

RYB

Fig. a : Phasors rotating in RYB sequence. Fig. b : Phasors rotating in RBY sequence.

Fig. 4.43 : Phasors representation of three phase emf.

Reference

-120
0

-240
0

w

RBY

EY m,

EB m,

ER m,

Reference

-120
0

-240
0

EY m,

EB m,

ER m,

Fig. 4.42 : Phase and lines in a three-phase system.
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E
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Fig. a : Star-connected source
with load.

+
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+
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load

lines

phase

SOURCE

Fig. b : Delta-connected source
with load.
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The instantaneous values of three emfs for RYB sequence with R-phase emf as reference are,

e
R
  =  E

R,m
 sin ωt        =  E

m
 sin ωt

e
Y
  =  E

Y,m
 sin (ωt − 120

o
)  =  E

m
 sin(ωt − 120

o
)

e
B
  =  E

B,m
 sin (ωt − 240

o
)  =  E

m
 sin(ωt − 240

o
)

The instantaneous values of three emfs for RBY sequence with R-phase emf as reference are,

 e
R
  =  E

R,m
 sin ωt        =  E

m
 sin ωt

 e
B
  =  E

B,m
 sin (ωt − 120

o
)  =  E

m
 sin (ωt − 120

o
)

 e
Y
  =  E

Y,m
 sin (ωt − 240

o
)  =  E

m
 sin (ωt − 240

o
)

The rms phasors can be drawn by taking a “snapshot” of rotating phasors at ωt = 0 and 

reducing the length by .2  However remember that the rms phasors are not rotating phasors. The 

three-phase rms voltage phasors for RYB and RBY sequence are shown in Fig. 4.44. (Note that 

the phasor diagram in this book are drawn using rms phasors.)

The rms values of three emfs for RYB sequence in polar form with R-phase emf as  

reference are,

0 0E E ER R

o o
+ += =

0 0E E E12 12Y Y

o o
+ += − = −

2 0 2 0E E E4 4B B

o o
+ += − = −

The rms values of three emfs for RBY sequence in polar form with R-phase emf as  

reference are,

0 0E E ER R

o o
+ += =

120 120E E EB B

o o
+ += − = −

240 240E E EY Y

o o
+ += − = −

E E E ER Y B= = =

E E 2m=

E E E ER B Y= = =

E E 2m=

E
R, m

  =  E
Y, m

  =  E
B, m

  =  E
m

E
R, m

  =  E
B, m

  =  E
Y, m

  =  E
m

Fig. 4.44 : Phasors representation of three phase rms value of emf.

Fig. b : Rms phasors in RBY sequence.
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Fig. a : Rms phasors in RYB sequence.
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4.21    Analysis of Three-Phase Star and Delta-connected Source

4.21.1   Star-connected Source Three-Wire System

Let the phase sequence of the source emfs be RYB.

 e
R
, e

Y
, e

B
  = Instantaneous values of source emfs

 , ,E E ER Y B  = rms values of source phase emfs

 E
R
, E

Y
, E

B
  = Magnitude of rms values of source phase emfs

 , ,V V VRY YB BR  = Rms values of line voltages

 V
RY

, V
YB

, V
BR

  = Magnitude of rms values of line voltages

 , ,I I IR Y B  = Rms values of phase and line currents

 I
R
, I

Y
, I

B
  = Magnitude of rms values of phase and line currents.

The three-phase star-connected source with conventional polarity (or sign) of voltages and 

direction of currents for RYB sequence are shown in Fig. 4.45. 

The instantaneous values of three emfs for RYB sequence with R-phase emf as reference are,

 e
R
  =  E

m
 sin ωt

 e
Y
  =  E

m
 sin (ωt − 120

o
)

 e
B
  =  E

m
 sin (ωt − 240

o
)

Here, E
m
 is the maximum value of rotating phasors. Hence, the rms value E of the rotating 

phasor is .
E

2

m

The phase emfs in the polar form are,

0 0E E ER R

o o
+ += =

120 120E E EY Y

o o
+ += − = −

240 240E E EB B

o o
+ += − = −

      E
R
  =  E

Y
  =  E

B
  =  E  =  Magnitude of phase emf.

., E EAlso 2m=

~ ~

~

+

E

+

E

+

E

R

B

I
P
Q

To load

Y

N
E

B E
Y

E
R

I
R

IB IY

+ E

E

+

E

I
B

I
Y

I
R

V
RY

V
BR

V
YB

+

Fig. 4.45 : Three phase star-connected source with conventional polarity
of voltages and direction of currents for RYB sequence.

(AU May’15, 16 Marks)
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In a balanced star-connected supply, the magnitude of line voltage is 3  times the magnitude 

of phase voltage and the line voltage leads the phase voltage by 30o. Therefore, the line voltages 

of a star-connected source can be written as shown below:

V E V V3 30 30 30RY RY L

o o o
+ + += = =

V E V V3 90 90 90YB YB L

o o o
+ + += − = − = −

V E V V3 210 210 210BR BR L

o o o
+ + += − = − = −

., V V V E V Magnitude of line voltagewhere 3RY YB BR L= = = = =

Proof for line voltages in star-connected source:

Consider the star-connected source shown in Fig. 4.45.

Now, the phase emf of the source are,

E E 0
o

R +=

0E E 12
o

Y += −

240E E
o

B += −

With reference to Fig. 4.46 in the path RNYR using KVL, we can write,

E V EY RY R+ =

    V E ERY R Y` = −

             =  E∠0o − E∠−120o 

             =  E (1∠0o − 1∠−120o )  =  E(1.5 + j0.866) 

               .E E1 732 30 3 30
o o

+ += =^ ^h h

                 30V E3RY

o
` +=

With reference to Fig. 4.47 in the path YNBY using KVL, we can write,

E V EB YB Y+ =

   V E EYB Y B` = −

                   =  E∠−120o − E∠−240o 

             =  E (1∠−120o − 1∠−240o )  =  E(0 – j1.732)

              .E E1 732 90 3 90
o o

+ += − = −^ ^h h

     90V E3YB

o
` += −

With reference to Fig. 4.48 in the path BNRB using KVL, we can write,

E V ER BR B+ =

    V E EBR B R` = −

             =  E∠−240o − E∠0o 

             =  E (1∠−240o − 1∠0o )  =  E( –1.5 + j0.866 )

             .E E1 732 150 3 210
o o

+ += = −^ ^h h                     

              210V E3BR

o
` += −

+

E

+

E

E
R

E
Y

V
RY

+

E

R

Y

Fig. 4.46.
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From the above analysis, we can make the following conclusions,

1. The magnitude of line voltage is 3  times the phase voltage.

2. The line voltage leads the phase voltage by 30
o
. 

It is conventional practice to assume one of the line voltages as reference. “When we take 

line voltage as reference we can say that the phase voltage lags the line voltage by 30
o
”. By taking 

the line voltage VRYas reference, we can rewrite the line and phase voltages as shown below:

  Line voltages           Phase voltages

0 0V V VRY RY L

o o
+ += =  30 30E E ER R

o o
+ += − = −

120 120V V VYB YB L

o o
+ += − = −  150 150E E EY Y

o o
+ += − = −

240 240V V V V 120
o

BR BR L

o o

L+ + += − = − =  270 270 90E E E EB B

o o o
+ + += − = − =

Here,  E E E ER Y B= = =

V V V V E3RY YB BR L= = = =

The rms phasors of the line and phase voltages of a star-connected source for RYB sequence 

are shown in Fig. 4.49.

From Fig. 4.50, we can say that the current delivered by the source will also flow through 

the lines. Hence, we can say that the phase current and line current are the same in a star-connected 

system. The phase difference between the voltage and current depends on the load impedance. 

Also, we can say that the source current is balanced if the load impedance is balanced. The source 

current will be unbalanced if the load impedance is unbalanced.

Let φ
R
, φ

Y
 and φ

B
 be the phase difference between phase voltage and current. Now, the phase 

currents can be written as,

I I 30R R R

o
!+ φ= −^ h

I I 150Y Y Y

o
!+ φ= −^ h

I I 270B B B

o
!+ φ= −^ h

Note :  To remember suffix for 

line voltages of RYB sequence 

write as shown below:

R  Y  B  R  Y  B 

Now the underlined letters will 

be the suffix for three consecutive 

line voltages. The suffix are RY, 

YB, BR.

“−” for lagging power factor

“+” for leading power factor.

Reference

1
2
0
o

9
0
o

E30
o

E150
o

E120
o

E
B

V
BR

V
YB

E
Y E

R

V
RY

Fig. 4.49 : Phasor diagram of rms value of line and phase
voltages of a star-connected source for RYB sequence.
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For a balanced system,

 I
R
  =  I

Y
  =  I

B
  =  I

 φ
R
  =  φ

Y
  =  φ

B
  =  φ

Line and Phase Voltages of RBY Sequence

The line voltages of RBY sequence are , .V V and VRB BY YR  By taking VRB  as the reference 

phasor, the line and phase voltages of RBY sequence can be expressed as shown below:

  Line voltages          Phase voltages

0 0V V VRB RB L

o o
+ += =   30 30E E ER R

o o
+ += − = −

120 120V V VBY BY L

o o
+ += − = −   150 150E E EB B

o o
+ += − = −

240 240 0V V V V 12YR YR L L

o o o
+ + += − = − =   270 270 90E E E EY Y

o o o
+ + += − = − =

Here,  E E E ER B Y= = =

 V V V V E3RB BY YR L= = = =

The rms phasors of the line and phase voltages of a star-connected source for RBY sequence 

are shown in Fig. 4.50.

4.21.2   Star-connected Source Four-Wire System

Since neutral point is available in a star-connected system, it is possible to have a four-wire 

supply system. In a four-wire star-connected source, in addition to three terminals for phase, there 

will be a fourth terminal called neutral, as shown in Fig. 4.51.

With reference to Fig. 4.51, using KCL we can write,

I I I IR Y B N+ + =

“In a balanced system, the sum of three-phase currents is zero and so the neutral current 

is zero”.

Therefore, in a balanced system,

0 0I I I Iand soR Y B N+ + = =

Note : To remember suffix for 

line voltages of RBY sequence 

write as shown below:

R  B  Y  R  B  Y 

Now the underlined letters 

will be the suffix for the three 

consecutive line voltages. The 

suffix are RB, BY and YR.

Reference

1
2
0
o

9
0 o

E30
o

E150
o

E120
o

Fig. 4.50 : Phasor diagram of rms value of line and phase
voltages of a star-connected source for RBY sequence.
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“In an unbalanced system, the sum of three-phase currents is not zero and so there is a 

definite neutral current flowing through the neutral wire and the neutral current is equal to the 

sum of all the phase currents”.

Therefore, in an unbalanced system,

I I I INeutral current, N R Y B= + +

In a four-wire system, the relation between phase and line voltage and the relation between 

phase and line current remains the same as that of a three-wire system.

Points to remember

1. The voltages are always balanced in star-connected sources.

2. The currents may be balanced or unbalanced depending on load.

3. The phase and line currents are the same in a star system.

4. The magnitude of line voltage is 3  times the magnitude of phase voltage.

5. The phase difference between the line voltage and phase voltage of source is 30
o
. The phase 

  voltage of source lags line voltage by 30
o
. 

6. In a balanced four-wire system, the neutral current is zero.

4.21.3   Delta-connected Source

Let the phase sequence of source emfs be RYB.

Let,  e
R
, e

Y
, e

B
 = Instantaneous values of source emfs

, ,E E ER Y B  = Rms values of source phase emfs

E
R
, E

Y
, E

B
  = Magnitude of rms values of source phase emfs

, ,V V VRY YB BR  = Rms values of line voltages

V
RY

, V
YB

, V
BR

  = Magnitude of rms values of line voltages

~ ~

~

+

E

+

E

+
E

R

B

I
P
Q

To load
Y

N

E
B

E
Y

E
R

I
R

I
B I

Y

+ E

E

+

E

I
B

I
Y

I
R

V
RY

V
BR

V
YB

+

Fig. 4.51 : Three-phase four-wire star-connected source with conventional polarity
of voltages and direction of currents for RYB sequence.
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, ,I I IRY YB BR  = Rms values of phase currents

I
RY

, I
YB

, I
BR

  = Magnitude of rms values of phase currents

, ,I I IR Y B  = Rms values of line currents

I
R
, I

Y
, I

B
  = Magnitude of rms values of line currents.

A three-phase delta-connected source with polarity (or sign) of voltages and direction of 

currents are shown in Fig. 4.52. 

The instantaneous values of three emfs for RYB sequence with R-phase emf as reference are,

 e
R
  =  E

m
 sin ωt

 e
Y
  =  E

m
 sin (ωt − 120

o
)

 e
B
  =  E

m
 sin (ωt − 240

o
)

Here, E
m
 is the maximum value of rotating phasors. Hence, the rms value E of the rotating 

phasor is .E 2m

The phase emfs in polar form are,

0 0E E ER R

o o
+ += =

120 120E E EY Y

o o
+ += − = −

240 240E E EB B

o o
+ += − = −

Here, E
R
  =  E

Y
  =  E

B
  =  E  =  Magnitude of phase emf.

., E EAlso 2m=

With reference to Fig. 4.52, we can say that the phase voltage ER  is the same as line voltage 

.VRY  Similarly, the phase voltage EY  is the same as line voltage VYB  and the phase voltage EB  

is the same as line voltage .VBR  Hence, we can conclude that the phase and line voltages are the 

same in delta-connected sources. Therefore, the line voltages are,

~

~
+E

E

+

I
Y

I
B

E
R

~
+

E

E
B

E
Y

I
BR

V
RY

V
BR

I
R

+ E

RR

B

+

E

+

E

V
YB

Y

B

Y

I
YB

I
P
Q

To load

Fig. 4.52 : Three-phase delta-connected source with conventional polarity
of voltages and direction of currents for RYB sequence.
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0 0V V VRY RY L

o o
+ += =

0 0V V V12 12YB YB L

o o
+ += − = −

40 40V V V2 2YB YB L

o o
+ += − = −

Here, V
RY

  =  V
YB

  
 
=  V

BR
  

 
=  V

L
  =  Magnitude of line voltage. 

Also, V
L
  =  E. 

The rms phasors of the line voltage of a delta-connected source are shown in Fig. 4.53.

With reference to Fig. 4.52, we can say that 

the phase and line currents are not the same. The line 

currents can be computed with the knowledge of phase 

currents by writing KCL equations at nodes R, Y and B. 

The phase and line currents can be balanced or 

unbalanced depending on the load impedance. If the 

load impedance is balanced then the currents are also 

balanced. If the load impedance is unbalanced then the 

currents will be unbalanced. Also, the phase difference 

between voltage and current depends on the nature of 

load impedance.

Let, φ
RY

, φ
YB

, and φ
BR

 be the phase differences 

between phase voltage and current. Now, the phase currents can be written as,

0I IRY RY

o

RY
!+ φ= ^ h

0I I 12YB YB

o

YB
!+ φ= −^ h

0I I 24BR BR

o

BR
!+ φ= −^ h

For a balanced system,

I I I IRY YB BR= = =

RY YB BRφ φ φ φ= = =

The relation between phase and line currents in a balanced delta system can be studied by 

considering the load as purely resistive, so that the phase voltage and current are in-phase.

Therefore, φ
RY 

 = φ
YB

 = φ
BR

 = φ = 0o.

Now, the balanced phase currents for RYB sequence can be written as,

0 0I I IRY RY

o o
+ += =

0I I I120 12YB YB

o o
+ += − = −

0 0I I I24 24BR BR

o o
+ += − = −

where, I
RY  

=  I
YB  

=  I
BR  

=  I   =  Magnitude of phase current.

“−” for lagging power factor

“+” for leading power factor.

V
RY

V
BR

V
YB

Reference

E

12
0
o

E

24
0
o

Fig. 4.53 : Phasor diagram of rms value of
line voltages of delta-connected source.
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        In a balanced delta-connected source, the magnitude of line current is 3  times the 

magnitude of source current and the line current lags the phase current by 30o. Therefore, for a 

purely resistive load, the line currents can be expressed as shown below:

I I

I I I I

I I I I

3 30

3 150 150 150

3 270 150 270

o

o

o

R

Y Y

B B L

o o

L

o o

L

o o

R
+

+ + +

+ + +

= − = =

= − = − = −

= − = − = −

I I30 30+ +− −

        where,  I I I I I3R Y B L= = = =

Proof for line currents in delta-connected source:

Consider the delta-connected source shown in Fig. 4.52.

Now, the phase currents when the load is purely resistive are,

0I I
o

RY +=

120I I
o

YB += −

240I I
o

BR += −

 With reference to Fig. 4.54 in the node-R using KCL, we can write,

I I IR BR RY+ =

     I I IR RY BR` = −

      =  I∠0o − I∠−240o 

        =  I (1∠0o − 1∠−240o) = I(1.5 – j0.866)

             .I I1 732 30 3 30
o o

+ += − = −^ ^h h

                   30I I3R
o

` += −

With reference to Fig. 4.55 in the node-Y using KCL, we can write,

 I I IY RY YB+ =

       I I IY YB RY` = −

 =  I∠−120o − I∠0o 

 =  I (1∠−120o − 1∠0o ) = I(–1.5 – j0.866)

  .I I1 732 150 3 150
o o

+ += − = −^ ^h h

       150I I3Y
o

` += −           

~ ~

+

E

E
B E

R

I
BR

E

+

I
RY

I
RR

Fig. 4.54.
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Reference

E

12
0
o

E

24
0
o

Fig. 4.57.

V
YR

V
BY

V
RB

With reference to Fig. 4.56 in the node-B using KCL, we can write,

I I IB YB BR+ =

   I I IB BR YB` = −

             = I ∠−240o − I ∠−120o 

                         = I (1 ∠−240o − 1 ∠−120o ) = I( 0 + j1.732)

                .I I1 732 90 3 270
o o

+ += = −^ ^h h

                270I I3
o

B` += −

From the above analysis we can make following conclusion for balanced loads:

1.  The magnitude of line current is 3  times the phase current.

2.  The line current lags the phase current by 30
o
.

Line and Phase Voltages of RBY Sequence

The line voltages of RBY sequence are , , .V V and VRB BY YR  By taking VRB  as the reference 

phasor, the line and phase voltages of RBY sequence can be expressed as shown below:

  Line voltages              Phase voltages

 

V V V E E E

V V V E E E

V V V E E E

0 0 0 0

120 120 120 120

240 240 240 240

o o o o

o o o o

o o o o

RB RB L R R

BY BY L B B

YR YR L Y Y

+ + + +

+ + + +

+ + + +

= = = =

= − = − = − = −

= − = − = − = −

Here,  V
RB

 = V
BY

 = V
YR

 = V
L
 

 E
R
 = E

B
 = E

Y
 = E = V

L

The rms phasors of the line voltages of a delta-connected 

source for RBY sequence are shown in Fig. 4.57.

Points to remember

1. The voltages are always balanced in delta-connected 

sources.

2. The currents may be balanced or unbalanced depending on load.

3. The phase and line voltages are the same in a delta system.

4. The magnitude of line current is 3  times the magnitude of phase current.

5. The line current lags the phase current by 30
o
 in a balanced delta system.

~

~

+

E

+E

E
B

E
Y

I
BR

I
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I
B

Fig. 4.56.
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4.22    Three-Phase Loads

The three-phase loads can be connected in star or delta and the load impedance may be 

balanced or unbalanced. In a balanced load, the magnitude of load impedance of each phase will 

be equal and also the load impedance angle of each phase will be the same. In an unbalanced 

load, the load impedance of each phase may have different magnitude and/or different impedance 

angle. Three-phase loads can be classified as shown below. The balanced and unbalanced loads of 

star and delta systems are shown in Fig. 4.58.

Four-wire star-connected load

Three-wire star-connected load

Delta-connected load

Balanced load

Three phase load

Unbalanced load

Four-wire star-connected load

Three-wire star-connected load

Delta-connected load

Fig. a : Four-wire star-connected
balanced load.

R

B

Y

Z ZY = Ðf

Z ZB = Ðf

Z ZR = Ðf

N

N

R

B

Y

Z ZRY = Ðf
N

R

Y

B

Z ZBR = Ðf

Z ZYB = Ðf

Fig. b : Three-wire star-
connected balanced load.

Fig. c : Delta-connected
balanced load.

Z ZR = Ðf

Z ZY = Ðf

Z ZB = Ðf

Fig. 4.58 : Three-phase loads.

R

B

Y

Fig. d : Four-wire star-connected
unbalanced load.

Z ZY Y Y= Ðf

Z ZB B B= Ðf

Z ZR R R= Ðf

N

N

R

B

Y

N

R

Y

B

Fig. e : Three-wire star
-connected unbalanced load.

Fig. f : Delta-connected
unbalanced load.

Z ZR R R= Ðf

Z ZY Y Y= Ðf

Z ZB B B= Ðf

Z ZBR BR BR= ÐfZ ZRY RY RY= Ðf

Z ZYB YB YB= Ðf
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120
o

E120
o

V
YB

V
BR

V
RY

120
o

E120
o

V
RY

V
YB

V
BR

V
BR

V
RY

V
YB

120
o

E120
o

4.22.1   Choice of Reference Phasor in Analysis of Three-Phase Circuits

In the analysis of three-phase circuits, it is conventional practice to choose one of the line 
voltages of the source as the reference phasor. In an RYB sequence, there are three line voltages 
and so we have three choices for reference phasor. In an RBY sequence, there are three line voltages 
and so we have another three choices for reference phasor. The line voltages for six possible choices 
for the reference phasor are listed in Table 4.4.

Table 4.4 : Choice of Reference Phasor

 Phase Reference Line voltages Phasor diagram

 sequence phasor

 RYB VRY   0

120

2 0

V V

V V

V V V4 120

o

o

o o

RY L

YB L

BR L L

+

+

+ +

=

= −

= − =

    

 

 RYB VYB   V V

V V

V V V

0

120

240 120

o

o

o o

YB L

BR L

RY L L

+

+

+ +

=

= −

= − =

 

 RYB VBR  V V

V V

V V V

0

120

240 120

o

o

o o

BR L

RY L

YB L L

+

+

+ +

=

= −

= − =

             

 RBY VRB  V V

V V

V V V

0

120

240 120

o

o

o o

RB L

BY L

YR L L

+

+

+ +

=

= −

= − =

  

 RBY VBY  V V

V V

V V V

0

120

240 120

o

o

o o

BY L

YR L

RB L L

+

+

+ +

=

= −

= − =

  

 RBY VYR  V V

V V

V V V

0

120

240 120

o

o

o o

YR L

RB L

BY L L

+

+

+ +

=

= −

= − =

              

120
o

E120
o

V
YR

V
BY

V
RB

120
o

E120
o

V
RB

V
BY

V
YR

120
o

E120
o

V
BY

V
YR

V
RB
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4.23    Analysis of Balanced Loads

4.23.1   Four-Wire Star-connected Balanced Load

Let us assume a phase sequence of RYB. Let the reference phasor be .VRY  The three-phase 

four-wire star-connected load with conventional polarity of voltages and direction of currents is 

shown in Fig. 4.59.

The line voltages of the supply/source for the RYB sequence are,

V V 0
o

RY L+=

0V V 12
o

YB L+= −

2 0V V 4
o

BR L+= −

where, V
L
= Magnitude of line voltage.

Since the load impedance is balanced, the phase voltages of the load will be balanced. Since 

the load neutral is tied to source neutral, the phase voltages of the load will be the same as that 

of the phase voltages of the source. Hence, we can say that the magnitude of the phase voltage is 

/1 3  times the magnitude of the line voltage and the phase voltage lag behind the line voltage by 

30
o
. Therefore, the phase voltages of the load are,

(0 30 ) 30V
V

V
3

o o o
R

L
+ += − = −

( )V
V

V
3

120 30 150o o o
Y

L
+ += − − = −

( 2 0 30 ) 0V
V

V
3

4 27o o o
B

L
+ += − − = −

, .where V
V

Magnitude of phase voltgage
3

L= =

Y

I
R

I
B

I
B

I
Y

I
R

V
BR

V
YB

I
N

Z Z
Y
= Ðf

+

-

B

N
I
N

V
B

R
R

Y

B

N

V
RY

Fig. 4.59 : Four-wire star-connected balanced load with conventional
polarity of voltages and direction of currents for RYB sequencce.
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V V V VR Y B= = =

I I I IR Y B= = =

 φ
1
 = φ

2
 = φ

3
 = φ

In balanced star system,

        
V

V

3

L=
 and  I = I

L

The phase currents are given by the ratio of phase voltage and phase impedance (Ohm’s law 

applied to ac circuit). Therefore, the phase currents are,

( 30 ) ( 30 )I
Z

V

Z
V

Z
V I30o o o

R

R

R

+

+
+ +

φ
φ φ= = − = − − = − −

( 150 ) ( 150 )I
Z

V
Z

V
Z
V I150o o o

Y

Y

Y

+

+
+ +

φ
φ φ= = − = − − = − −

( 270 ) ( 270 )I
Z

V
Z

V
Z
V I270o o o

B

B

B

+

+
+ +

φ
φ φ= = − = − − = − −

, .where I
Z
V Magnitude of phase currets=

Since the load is balanced, the neutral current will be zero.

, .Neutral current I 0N` =

In a star system, the line currents are the same as phase currents. Therefore, the line currents are,

( 0 )I I 3 o
R L+ φ= − −

( 1 0 )I I 5 o
Y L+ φ= − −

( 2 0 )I I 7 o
B L+ φ= − −

where, I
L
 = I = Magnitude of line current.

The power P consumed by a balanced three-phase star-connected load is given by,

cos cosP V I or P V I3 3 L Lφ φ= =

Proof for power consumed by a balanced star-connected load:

Let,  P  =  Power consumed by a balanced three-phase load 

 φ
1  

=  Phase difference between V and I RR  

 φ
2  

=  Phase difference between V and IYY

 φ
3  

=  Phase difference between V and I BB

Now, 

phase loadphase load phase load-- -

P
Power consumed

by R

Power consumed

by Y

Power consumed

by B
= + +

     cos cos cosV I V I V IR R Y Y B B1 2 3φ φ φ= + +

     = VI cos φ + VI cos φ + VI cos φ 

     = 3VI cos φ      ..... (4.50)

     3 cos
V

I
3

L
L φ=  

     cosV I3 L L φ=                                       ..... (4.51)
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4.23.2   Three-Wire Star-connected Balanced Load

Let us assume a phase sequence of RYB. 

Let the reference phasor be .VRY  The three-phase 

three-wire star-connected load with conventional 

polarity of voltages and direction of currents is 

shown in Fig. 4.60.

The analysis of three-wire star-connected 

balanced load and four-wire star-connected 

balanced load are one and the same because 

both the source and load neutrals will be at zero 

potential when the source and load are balanced. 

In balanced loads, the physical connection of 

source and load neutral by the neutral line has no 

significance. Hence, for the analysis of three-wire 

balanced star-connected loads, follow the steps given in Section 4.23.1.

4.23.3   Delta-connected Balanced Load

Let us assume a phase sequence of RYB. Let the reference phasor be .VRY  The three-phase 

delta-connected load with conventional polarity of voltages and direction of currents is shown in 

Fig. 4.61.

The line voltages of the supply/source for RYB sequence are,

0V V
o

RY L+=

120V V
o

YB L+= −

240V V
o

BR L+= −

where, V
L
= Magnitude of line voltage.

In delta-connected loads, the impedances are connected between two lines. Hence, the 

voltage across the impedance connected between two lines will be same as that of the line voltage 
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Fig. 4.60 : Three-wire star-connected balanced
load with conventional polarity of voltages and

direction of currents for RYB sequence.

Z Z
R
= Ðf

Z Z
Y
= Ðf Z Z

B
= Ðf

++ -

-

+

- +

+

-

+

- -

+

Z Z
RY

= Ðf

R

Y

B

Z Z
BR

= Ðf

Z Z
YB

= Ðf

I
Y

I
B

I
R

V
BR

V
YB

R

Y

B

V
RY

V
YB

V
RY

V
BR

I
RY

I
BRI

YB
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between those two lines. Therefore, the phase voltages will be the same as that of the line voltages 

of the source. The phase voltages are,

0V V
o

RY +=

120V V
o

YB += −

240V V
o

BR += −

where, V = V
L
 = Magnitude of phase voltage.

The phase currents are given by the ratio of phase voltage and phase impedance (Ohm’s law 

applied to an ac circuit). Therefore the phase currents are,

( ) ( )

( ) ( )

I
Z

V

Z
V

Z
V I

I
Z

V
Z

V
Z
V I

I
Z

V
Z

V
Z
V I

0

120 120 120

240 240 240

o

o
o o

o
o o

RY

RY

YB

YB

YB

BR

BR

BR

RY

+

+
+ +

+

+
+ +

+

+
+ +

φ
φ φ

φ
φ φ

φ
φ φ

= = = − = −

= = − = − − = − −

= = − = − − = − −

where, I = 
Z

V  = Magnitude of phase current.

In balanced delta-connected loads, the relation between line and phase currents will be the 

same as that in balanced delta-connected source. Hence, we can say that the magnitude of line 

current will be 3  times the phase current and the line current will lag the phase current by 30
o
. 

Therefore, the line currents are,

( ) ( )I I I3 30 30o
L

o
R + +φ φ= − − = − −

( ) ( )I I I3 120 30 150o o
L

o
Y + +φ φ= − − − = − −

( ) ( )I I I3 240 30 270o o
L

o
B + +φ φ= − − − = − −

where, I
L
 = 3 I = Magnitude of line current.

Alternatively, line currents can be computed from the following relation:

I I IR RY BR= −

I I IY YB RY= −

I I IB BR YB= −

The power P consumed by a balanced three-phase delta-connected load is given by,

cos cosP V I or P V I3 3 L Lφ φ= =
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V V V VRY YB BR= = =

I I I IRY YB BR= = =

 φ
1
 = φ

2
 = φ

3
 = φ

In balanced delta system,

         I
I

3

L=  and  V = V
L

Proof for power consumed by a balanced delta-connected load:

Let,  P  =  Power consumed by a balanced three-phase load 

 φ
1  

=  Phase difference between V and I RYRY  

 φ
2  

=  Phase difference between V and IYBYB

 φ
3  

=  Phase difference between V and I BRBR

Now, 

phase load phase load-phase load --

P
Power consumed

by R

Power consumed

by Y

Power consumed

by B
= + +

     cos cos cosV I V I V IRY RY YB YB BR BR1 2 3φ φ φ= + +

     = VI cos φ + VI cos φ + VI cos φ 

     = 3VI cos φ      ..... (4.52)

     3 cosV
I

3
L

L φ=  

     cosV I3 L L φ=                                       ..... (4.53)

Note :   From equations (4.50) to (4.53), we can say that the expression (or equation) for 

calculating power in a balanced star and delta load is the same. 

4.23.4    Power Consumed by Three Equal Impedances in Star and Delta

For same load impedance and supply voltage the power consumed by a delta-connected 

load will be three times the power consumed by a star-connected load. Alternatively, the power 

consumed by a star-connected load will be one-third the power consumed by a delta-connected load.

Let,  P
D
 = Power consumed in delta connection

       P
S
 = Power consumed in star connection

, 3Now P P or P P
3
1

D S S D= =        ..... (4.54)

Proof:

Let us consider three equal impedances Z ∠φ connected in star. Let the supply voltage be V
L
 volts.

, ,Now phase current in star I
Z

V

Z

V3
3

S

L

L= =

       ,Line current in star I I
Z

V

3
,L S S

L= =   

cos cos cosP V I V
Z

V

Z

V
3 3

3

2

,S L L S L
L L

` φ φ φ= = =
 

..... (4.55)

Let us reconnect the three equal impedances Z ∠φ in delta. Let the supply voltage be V
L 
volts.
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Now, phase voltage in delta, V
D
 = V

L

,Phase current in delta I
Z

V

Z

V
D

D L= =

,Line current in delta I I
Z

V
3 3,L D D

L= =

3cos cos cosP V I V
Z

V

Z

V
3 3 3

2

,D L L D L
L L

` φ φ φ= = =  ..... (4.56)

From equations (4.55) and (4.56), we can say that,

P
D
 = 3 P

S
  

or P P
3

1
S D=

4.24    Analysis of Unbalanced Loads

In the analysis of unbalanced loads, the supply/source is always assumed to be balanced. 

Moreover, the line voltages of the source and load are the same. Therefore, we can say that the line 

voltages are always balanced, for any type of load.

4.24.1   Four-Wire Star-connected Unbalanced Load

Let us assume a phase sequence of RYB. Let the reference phasor be .VRY  The three-phase, 

four-wire unbalanced star-connected load with conventional polarity of voltages and direction of 

currents is shown in Fig. 4.62.

The line voltages of the supply/source for the RYB sequence are,

0V V
o

RY L+=

120V V
o

YB L+= −

240V V
o

BR L+= −

where, V
L
 = Magnitude of line voltage.
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Fig. 4.62 : Four-wire star-connected unbalanced load with conventional
polarity of voltages and direction of currents.
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In a four-wire system, the load neutral is tied to the source neutral and so the phase voltages 

of  source
 
 and load are the same. Since the source voltages are balanced, the phase voltages of the 

load are also balanced. Here, “the significance of connecting the load and source neutral is that, 

it will not allow voltage unbalance even though the load is unbalanced”.

Therefore, in a four-wire three-phase star-connected unbalanced load system, the relation 

between line and phase voltages will be the same as that in balanced loads. The magnitude of phase 

voltage will be /1 3  times the line voltage and the phase voltage will lag behind the line voltage 

by 30
o
. The phase voltages are,

(0 30 ) 30

( 120 30 ) 150

( 240 30 ) 270

V
V

V

V
V

V

V
V

V

3

3

3

o o o

o o o

o o o

R
L

Y
L

B
L

+ +

+ +

+ +

= − = −

= − − = −

= − − = −

, .where V
V

Magnitude of phase voltage
3

L= =

The phase currents are given by the ratio of phase voltage and phase impedance (Ohm’s law 

applied to an ac circuit). Therefore, the phase currents are,

( 30 ) ( 30 )I
Z

V
Z
V

Z
V I30R

o
o o

R

R R R R

R R R
+

+
+ +

φ
φ φ= = − = − − = − −

( 150 ) ( 150 )I
Z

V
Z

V
Z
V I150o o o

Y

Y

Y

Y Y Y

Y Y Y
+

+
+ +

φ
φ φ= = − = − − = − −

( 270 ) ( 270 )I
Z

V
Z

V
Z
V I270o o o

BB

B

B

B B B

B B
+

+
+ +

φ
φ φ= = − = − − = − −

where, I
R
, I

Y
 and I

B
 are magnitude of R-phase, Y-phase and B-phase currents respectively.

Neutral current, I I I IN R Y B= + +       ..... (4.57)

In star system, the line currents are the same as phase currents. Therefore, the line currents are,

( 30 )I I o
R R R+ φ= − −

( 150 )I I o
Y Y Y+ φ= − −

( 270 )I I o
B B B+ φ= − −

Let, P = Power consumed by three-phase load.

phase loadphase load phase load-- -

,Here P
Power consumed

by R

Power consumed

by Y

Power consumed

by B
= + +

   cos cos cosV I V I V IR R Y Y B B1 2 3φ φ φ= + +   

    = V
L
I

R
 cosφ

1
 + V

L
I

Y
 cosφ

2
 + V

L
I

B
 cosφ

3
         ..... (4.58)
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where,  V V V VR Y B L= = =

 φ
1
 =  Phase difference between V and IRR

 φ
2
 =  Phase difference between V and IYY

 φ
3
 = Phase difference between V and IBB  

Also,  φ
1
 = φ

R
      ;      φ

2
 = φ

Y
       ;       φ

3
 = φ

B
 

Note :  The equation, P 3= V
L
I

L 
cos φ cannot be used to calculate power in unbalanced loads.

4.24.2   Three-Wire Star-connected Unbalanced Load

Let us assume a phase sequence of RYB. Let the reference phasor be .VRY  

The line voltages of the supply/source for an RYB sequence are,

0V V
o

RY L+=

120V V
o

YB L+= −

240V V
o

BR L+= −

where, V
L
 = Magnitude of line voltage.

In an unbalanced star-connected load, it will be easier to 

solve the line currents by assuming two sources across the lines 

whose values are equal to the corresponding line voltages. Consider 

the circuit shown in Fig. 4.64 in which a voltage source of value 

VRY  is connected across lines R and Y and a voltage source of 

value VYB  is connected across lines Y and B.

The circuit of Fig. 4.64 has two meshes. Hence, we can 

assume two mesh currents I and I1 2  as shown in Fig. 4.64. The 

mesh basis matrix equation is,

(AU May’15, 16 Marks)
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Fig. 4.63 : Three-wire star-connected unbalanced load with conventional
polarity of voltages and direction of currents for an RYB sequence.
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Z Z

Z

Z

Z Z

I

I

V

V

1

2

R Y

Y

Y

Y

RY

YBB

+

−

−

+

== = =G G G

, ; ;Let
Z Z

Z

Z

Z Z
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Z

Z Z

Z Z

Z

V

V
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+
=
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+
=

+
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,Now I and I1
1

2
2

∆

∆

∆

∆
= =

From the mesh currents, the line currents can be obtained as shown below:

I IR 1=

I I IY 2 1= −

I IB 2= −

In a star-connected load, the phase currents are the same as line currents. Therefore, the 

phase and line currents in polar form can be written as,

γI IR R R+=

γI IY Y Y+=

γI IB B B+=

where,  , ,I I and IR Y B  are the magnitudes of line and phase currents and 

      γ
R
, γ

Y
 and γ

B
 are phase angles of line and phase currents with respect to 

                    the reference phasor.

Now, the phase voltages are given by the product of phase current and phase impedance 

(Ohm’s law applied to an ac circuit.) Therefore, the phase voltages are,

V I Z VR R R R R+δ= =

V I Z VYY Y Y Y+δ= =

V I Z VB B BB B +δ= =

where, V
R
, V

Y
 and V

B
 are magnitudes of phase voltages and 

   δ
R
, δ

Y
 and δ

B
 are phase angles of phase voltages with respect to the 

      reference phasor.

Let, P = Power consumed by the three-phase load.

phase load phase load phase load- - -

P
Power consumed

by R

Power consumed

by Y

Power consumed

by B
= + +

    cos cos cosV I V I V IR R Y Y B B1 2 3φ φ φ= + +   

     = V
R
I

R
 cosφ

1
 + V

Y
I

Y
 cosφ

2
 + V

B
I

B
 cosφ

3
         ..... (4.59)
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where,  φ
1 

= Phase difference between V and IR R

 φ
2
 = Phase difference between V and IY Y

 φ
3
 = Phase difference between V and IB B

Here, φ
1
 = δ

R
 − γ

R
    ;    φ

2
 = δ

Y
 − γ

Y
   ;      φ

3
 = δ

B
 − γ

B
.

Also,  φ
1
 = φ

R
           ;    φ

2
 = φ

Y
           ;      φ

3
 = φ

B
 

4.24.3   Neutral Shift in Star-connected Load

In a three-wire star-connected load, the load neutral is not connected to the source neutral. 

Hence, when the load is unbalanced, the load neutral is not at zero potential. The voltage of load 

neutral with respect to source neutral is called neutral shift voltage (or neutral displacement 

voltage).

The neutral shift voltage can be obtained by subtracting a phase 

voltage of load from the corresponding phase emf of the source. Consider 

the R-phase source and load as shown in Fig. 4.65. Let, N’ be the source 

neutral and N be the load neutral. 

Let, VNNl =  Load neutral shift voltage with respect to source neutral.

In a star-connected source, the phase emf will lag behind the line voltage by 30
o
 and the 

magnitude of phase emf will be /1 3  times the magnitude of line voltage. Hence, ER  will have a 

magnitude of /V 3L  and lag behind VRY  by 30
o
 

30E
V

3

o
R

L
` += −

With reference to Fig. 4.65, using KVL, we can write,

V V ENN R R+ =l

,Neutral shift voltage V E VNN R R` = −l     ..... (4.60)

4.24.4   Delta-connected Unbalanced Load

Let us assume a phase sequence of RYB. Let the reference phasor be VRY . 
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Fig. 4.66 : Three-phase delta-connected unbalanced load with conventional
polarity of voltages and direction of currents for an RYB sequence.
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The line voltages of the supply/source for the RYB sequence are,

0V V
o

RY L+=

120V V
o

YB L+= −

240V V
o

BR L+= −

where, V
L
 = Magnitude of line voltage.

In delta-connected loads, the impedances are connected between two lines. Hence, the 

voltage across the impedance connected between two lines will be the same as that of line voltage 

between those two lines. Therefore, the phase voltages will be the same as that of line voltages of 

the source. Since the line voltages are balanced, the phase voltages of the load are also balanced 

even though load impedances are unbalanced. Therefore, the phase voltages are,

0

120

240

V V

V V

V V

o

o

o

RY

YB

BR

+

+

+

=

= −

= −

where, V = V
L
 = Magnitude of phase voltage.

The phase currents are given by the ratio of phase voltage and phase impedance (Ohm’s law 

applied to an ac circuit). Therefore, the phase currents are,

γI
Z

V
IRY

RY

RY RY

RY
+= =

γI
Z

V
IYB

YB

YB YB

YB
+= =

γI
Z

V
IBR

BR

BR BR

BR
+= =

where, I
RY

, I
YB

 and I
BR

 are magnitude of phase currents and 

            γ
RY

, γ
YB

 and γ
BR

 are phase angle of phase currents.

Using KCL at nodes R, Y, and B, the line currents can be calculated as shown below. The 

line currents are,

I I IR RY BR= −

I I IY YB RY= −

I I IB BR YB= −

Let,  P = Power consumed by the three-phase load.

       phase load phase load phase load- - -

P
Power consumed

by R

Power consumed

by Y

Power consumed

by B
= + +

cos cos cosV I V I V IRY RY YB YB BR BR1 2 3φ φ φ= + +

 = V
L
I

RY
 cosφ

1
 + V

L
I

YB
 cosφ

2
 + V

L
I

BR
 cosφ

3
          ..... (4.61)
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,where V V V VRY YB BR L
= = =

    φ
1
 = Phase difference between RV and IRY Y

    φ
2
 = Phase difference between V and IYB BY

    φ
3
 = Phase difference between V and IBR RB

Here,   φ
1
 = 0

o
 − γ

RY
         ;      φ

2
 = −120

o
 − γ

YB
         ;       φ

3
 = −240

o
 − γ

BR

Also,   φ
1
 = φ

RY
                 ;      φ

2
 = φ

YB
                        ;       φ

3
 = φ

BR
 

4.25   Power Measurement in Three-Phase Circuits

Power is generally measured using wattmeters. Logically we may require one wattmeter 

for measuring power in one-phase and so we may require three wattmeters to measure power in 

three-phase. But it can be proved that, “the power in any three-phase load(balanced/unbalanced 

and star/delta) can be measured using only two wattmeters”.

A wattmeter will have a current coil (CC) and a pressure coil (PC). The pressure coil is 

also called voltage coil. The current coils of the two wattmeters employed for measurement are 

connected such that they carry any two line currents. The third line in which there is no current 

coil is called the common line.

The voltage coil of a wattmeter is connected between the line to which its current coil is 

connected and the common line. Similarly, the voltage coil of the other wattmeter is connected 

between the line to which its current coil is connected and the common line. The possible connections 

of two wattmeters to measure the three-phase power are shown in Fig. 4.67.

(AU Dec’15 & ‘14, 16 Marks)
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4.25.1   Power Measurement in Balanced Load

Consider a balanced three-phase load (star or delta-connected). Let us connect wattmeters in 

the lines R and B and line Y be the common line for connecting the voltage coil as shown in Fig. 4.68.

Let,   P
1
 = Power measured by wattmeter-1

 P
2
  =  Power measured by wattmeter-2

 P  =  Power consumed by load

 φ  =  Load power factor angle

Now, the load power and power factor angle in terms of wattmeter readings P
1
 and P

2
 are,

Power, P = P
1
 + P

2      
..... (4.62)

, tan
P P
P P

Power factor angle 31

1 2

2 1φ =
+
−- c m    ..... (4.63)

, cos cos tan
P P

P P
Power factor 31

1 2

2 1φ =
+
−- c m; E    ..... (4.64)

Proof for power measurement in a three-phase load using two wattmeters :

Consider the circuit shown in Fig. 4.68 for power measurement in a three-phase load using two wattmeters.

Now, the current through wattmeter-1 is I R  and voltage across its pressure coil is .V RY Hence, power P
1
 

measured by wattmeter-1 is,

cosP V IRY R1 1# # θ=   ..... (4.65) 

where, θ
1
 = Phase difference between .V and IRY R

The current through wattmeter-2 is I B  and voltage across its pressure coil is .V BY  Hence, power P
2
 measured 

by wattmeter-2 is, 

        cosP V I2 BY B 2# # θ=       ..... (4.66)

where, θ
2
 = Phase difference between .V and IBY B
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Fig. 4.68 : Power measurement in a balanced load.
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Refer  sect ion (4.23.1) , 
(4.23.2) and (4.23.3)

( ) ( )cos cos

cos cos

C D C D

C D2

3 2o

+ + −

=

=cos 30

( ) ( )cos cos

sin sin

C D C D

C D2

+ − −

= −

For balanced star and delta-connected loads, the line voltages and currents are,

  Line voltages   Line currents

0V V
o

RY L+=    ( 30 )I I o
R L+ φ= − −

120V V
o

YB L+= −    ( 150 )I I o
Y L+ φ= − −

240V V
o

BR L+= −    ( 270 )I I o
B L+ φ= − −

;V V I I and I IRY L R L B L` = = =

, 180 180 120 (180 120 )Here V V V V V1 1o o o o o
BY YB YB L L# #+ + + += − = = − = −

60V V
o

BY L` +=

V VBY L` =

Now,  θ
1
 = 0o − (−30o − φ) = 30o + φ = φ + 30o 

          θ
2
 = 60o − (−270o − φ) = 330o + φ = −30o + φ = φ − 30o 

From the above discussions, equations (4.65) and (4.66) for balanced loads (star/delta-connected) can be  
written as,

P
1
 = V

L
 I

L
 cos (φ+ 30o)        ..... (4.67)  

P
2
 = V

L
 I

L
 cos (φ− 30o)        ..... (4.68)  

Let us add the power measured by two wattmeters.

∴  P
1
 + P

2
 = V

L
 I

L
 cos (φ+ 30o) + V

L
 I

L
 cos (φ− 30o)  

             = V
L
 I

L
 [cos (φ+30o) + cos (φ− 30o) ] 

            = V
L
 I

L
 [2 cosφ cos30o]

             = V
L
 I

L
 cos2

2

3
#φ; E

             = 3 V
L
 I

L
 cosφ      ..... (4.69)

Equation (4.69) is the same as the equation for power in a balanced load. Hence, we can say that the sum of 
power measured by two wattmeters is equal to the power in a three-phase load.

Power factor

From equations, (4.67) and (4.68) we can write,

P
1
 − P

2
 = V

L 
I

L
 cos(φ + 30o)  −  V

L 
I

L
 cos (φ − 30o)

        = V
L 
I

L
 [cos(φ + 30o) − cos (φ − 30o)]

                          = V
L 
I

L
 [ −2 sinφ sin30o]

sinP P V I 2
2

1
L L1 2` #φ− = −8 B

       
                         =  −V

L 
I

L
 sinφ

            ∴  P
2
 − P

1
  =  V

L 
I

L
 sinφ       ..... (4.70)
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30sin
2

1o =

On dividing equation (4.70) by equation (4.69) we get,

cos

sin

V I

V I

P P

P P

3 L L

L L

1 2

2 1

φ

φ
=

+
−

 

         
tan

P P

P P
3

1 2

2 1
` φ =

+
−

 

, tanPower factor angle
P P
P P

31

1 2

2 1
` φ =

+
−- c m            ..... (4.71)

            , cos cos tanPower factor
P P
P P

31

1 2

2 1φ =
+
−- c m; E  ..... (4.72)

Equation (4.72) gives the power factor of a balanced load in terms of wattmeter reading. 

One drawback in this method of power factor estimation is that we cannot determine whether the 

power factor is lagging or leading (But practically most of the loads are inductive in nature and so 

we can safely assume that the power factor is lag).

4.25.2   Relation Between Power Factor and Wattmeter Readings

Case i : Wattmeter readings are equal

Let, P
1
 = P

2
 = P

x

, cos cos tan cos tanPower factor
P P

P P

P P

P P
3 31 1

x x

x x

1 2

2 1
` φ =

+
−

=
+
−- -c cm m< <F F

                                                             

cos tan cos0 0 1
o1= = =-7 A

Conclusion: When the wattmeter readings are equal, the power factor is unity.

Case ii : One of the wattmeter readings is zero

,Let P and P0 01 2 !=

, cos cos tan cos tanPower factor
P P

P P

P

P
3 3

0

01 1

1 2

2 1

2

2φ =
+
−

=
+
−- -c cm m< <F F

                                                     
0 .cos tan cos3 6 0 5
o1= = =- ^ h7 A

, 0 0Let P and P2 1 !=

, cos cos tan cos tanPower factor
P P

P P

P

P
3 3

0

01 1

1 2

2 1

1

1φ =
+
−

=
+
−- -c m< <F F

                                                      

60 0.5cos tan cos3
o1

= − = − =

- ^ h7 7A A

Conclusion:  When one of the wattmeter readings is zero, the power factor is 0.5.
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Case iii : One of the wattmeter readings is negative

Let, P
1
 = −P

x
  and  P

2
 = +P

y

, cos cos tan cos tanPower factor
P P

P P

P P

P P
3 31 1

x y

y x

1 2

2 1φ =
+
−

=
− +

+- -c cm m< <F F

                      

cos tan
P P

P P
3

1

y x

y x
=

−

+- c m< F

Let, P
1
 = +P

x
  and  P

2
 = −P

y

, cos cos tan cos tanPower factor
P P

P P

P P

P P
3 31 1

x y

y x

1 2

2 1
` φ =

+
−

=
−

− −- -c cm m< <F F

                              

cos tan
P P

P P
3

1

y x

y x
=

−

+- c m< F

,Let
P P

P P
A3

y x

y x

−

+
=c m

∴   cosφ = cos (tan−1A)

Here,  (P
y
 + P

x
) > (P

y
 − P

x
),          ∴  A > 3   and  tan−1A > 60

o
 

Since, tan−1A is greater than 60
o
, cos (tan−1A) will be less than 0.5.

∴   Power factor, cosφ < 0.5  

Conclusion:   When one of the wattmeter readings is negative, the power factor will be less 

     than 0.5.

Case iv : Both the wattmeter readings are positive

Let, P
1
 = +P

x
  and  P

2
 = +P

y
 

, cos cos tan cos tanPower factor
P P

P P

P P

P P
3 31 1

x y

y x

1 2

2 1φ =
+
−

=
+

−- -c cm m< <F F

    = cos [tan−1B]

,where B
P P

P P
3

x y

y x
=

+

−

Here, (P
y
 − P

x
) < (P

x
 + P

y
),          ∴ B < 3   and   tan−1B < 60

o
 

Since, tan−1B is less than 60
o
, cos(tan−1B) will be greater than 0.5.

 ∴ Power factor, cosφ > 0.5  

Conclusion:   When both the wattmeter readings are positive, the power factor will be  greater

   than 0.5.

60tan 3
o

=

Note: The value of cos 60o

 to cos 90o will lie in the 
range of 0.5 to 0.

60tan 3
o

=

Note: The value of  

cos 60o  to cos 0o will lie

 in the range of 0.5 to 1.
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A Note on Power and Power Factor Estimation using Two Wattmeters

It is possible to prove that the sum of power measured by two wattmeters is equal to the 

power in three-phase, even if the load is unbalanced star/delta.

Power factor is defined as ratio of active power and apparent power. In balanced loads, 

the ratio of real and apparent power of each phase is the same, and so the power factor is the same 

for each phase. Also the three-phase load power factor is the same as power factor of each phase 

because the ratio of one phase active power and apparent power is the same as the ratio of three-

phase active power and apparent power.

In unbalanced loads, the ratio of active and apparent power of each phase is different and so 

the power factor of each phase is different. Using two wattmeter readings we cannot determine the 

power factor of an individual phase load. Therefore, estimation of apparent power and hence, the 

estimation of three-phase load power factor in unbalanced loads is not possible by two wattmeter 

method of power measurement.

Note :  VAR meters are available for measurement of reactive power in three-phase loads.

4.26    Solved Problems in Three-Phase Circuits

EXAMPLE 4.20

An unbalanced four-wire star-connected load has a balanced supply voltage of 400 V. The load 

impedances are ZR  = 4 + j8  Ω, ZY  = 3 + j4 Ω  and ZB  = 15 + j10 Ω. Calculate the line currents, neutral current 

and the total power. Also draw the phasor diagram.

SOLUTION

Let the phase sequence by RYB. Let the reference phasor be .VRY  The star-connected load with polarity 

of voltages and direction of currents is shown in Fig. 1.

B
YIY

IB

IR

N
I
N

VY VB

VR

R
R

Y

B

N

Fig. 1.

Z Y a C3 j4�

ZR a C4 j8�

ZB a C15 j10�

VRY VBR

VYB

+

+

E

IN

E +

+

E

+

E E

+

E
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The line voltages for the RYB sequence, with VRY  as the reference phasor are,

400 0V VoRY +=

400 0V V12
o

YB += −

400 240 400 120V V Vo o
BR + += − =

In a four-wire star-connected unbalanced load, the phase voltages are balanced because of neutral 

connection. Hence, the phase voltages will have a magnitude of 1 3  times the line voltage and phase 

voltages lag 30
o
 with respect to line voltages.

Therefore, the phase voltages are,

(0 ) .V V
3

400 30 230 9401 30o o o
R + += − = −

( 0 30 ) 230.9401 0V V
3

400 12 15o o o
Y + += − − = −

( 240 30 ) 230.9401 270 230.9401 90V V V
3

400 o o o o
B + + += − − = − =

In a star system, the line and phase currents are the same. The phase currents are given by the ratio 

of phase voltage and phase impedance. Therefore, the phase and line currents are,

.

. .

. 25.8198 93.4I
Z

V
j

A
4 8

230 9401 30

8 9443 63 4

230 9401 30o

o

o
o

R
R

R +

+

+
+= =

+

−
=

−
= −

.

.

. . 3.I
Z

V
j

A
3 4

230 9401 150

5 53 1

230 9401 150 46 188 20 1
o

o

o
o

Y
Y

Y +

+

+
+= =

+

−
=

−
= −

.

. .

. . .

. .

I
Z

V
j

A

A

15 10
230 9401 270

18 0278 33 7

230 9401 270 12 8102 303 7

12 8102 56 3

o

o

o
o

o

B
B

B +

+

+
+

+

= =
+

−
=

−
= −

=

,Neutral current I I I IN R Y B= + +                          

 = 25.8198∠−93.4
o
 + 46.188∠−203.1

o
 + 12.8102∠−303.7

o
 

 = −36.9083 + j3.0044 = 37.0304∠175.3
o

 A –303.7o + 360o  =  56.3o

V
BR

V
B

I
B

V
RY

120
o

9
0

o

5
6
.3

o

E30
o

E

12
0
o

E

93
.4
o

E

1
5
0
o

E203.1
o Reference

Fig. 2 : Rms phasors of voltages and currents.
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phase load phase loadphase load -- -
,Power P

Power consumed

by R

Power consumed

by Y

Power consumed

by B
= + +

               cos cos cosV I V I V IR R 1 Y Y 2 B B 3φ φ φ= + +

φ
1
 = Phase difference between V and IR R  = −30

o
 − (−93.4o) = 63.4

o
 

φ
2
 = Phase difference between V and IY Y  = −150

o
 − (−203.1o) = 53.1

o
 

φ
3
 = Phase difference between V and IB B  = −270

o
 − (−303.7o) = 33.7

o
 

, 230.9401Here V V V V VR Y B= = = =

∴  P = VI
R
cos φ

1
 + VI

Y
cosφ

2
 + VI

B
cosφ

3
 

        = V [ I
R
cosφ

1
 + I

Y
cosφ

2
 + I

B
cosφ

3
]

  = 230.9401 × [25.8198 × cos63.4
o
 + 46.188 × cos53.1

o
 + 12.8102 × cos33.7

o
]

        

11535.6
.

11.5356W kW kW
1000

11535 6= = =

EXAMPLE 4.21

A three-phase four-wire symmetrical 440  V RBY system supplies power to a star-connected load in 

which ZR  = 10∠0
o 

 Ω, ZY  = 10∠26.8
o

 Ω and ZB  = 10∠−26.8
o

 Ω. Find the line currents, neutral current and 

the total power. Draw the phasor diagram.

SOLUTION

The phase sequence is RBY. The line voltages for the RBY sequence are , .V V and V VLet,RB BY YR RB  be

the reference phasor. The star-connected load with polarity of voltages and direction of currents is  

shown in Fig. 1.

The line voltages for RBY sequence, with VRB  as reference phasor are,

4 0 0V V4
o

RB +=

0V V440 12
o

BY += −

440 240 440 120V V Vo o
YR + += − =

B
YI

Y

I
B

I
R

N
I
N

V
Y

V
B

V
R

R
R

Y

Fig. 1.

Z
Y
= Ð10 26.8

o
W

Z
R
= Ð10 0

o
W

Z
B
= Ð -10 26.8

o
W

V
RB V

YR

V
BY

+ -

+

-

I
N

B

N

- +

-

+

-

+

-

+
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In a four-wire star-connected unbalanced load, the phase voltages are balanced because of neutral 

connection. Hence, the phase voltages will have a magnitude of 1 3  times the line value and phase voltages 

lag 30
o
 with respect to line voltages. Therefore, the phase voltages are,

(0 30 ) 254.0341 30V V
3

440 o o o
R + += − = −

( 0 30 ) 254.0341 0V V
3

440 12 15o o o
B + += − − = −

( 240 30 ) 254.0341 270 254.0341 90V V V
3

440 o o o o
Y + + += − − = − =

In a star system, the line and phase currents are the same. The phase currents are given by the ratio 

of phase voltage and phase impedance. Therefore, the phase and line currents are,

.
25.4034 30I

Z

V A
10 0

254 0341 30
R

R

R

o

o
o

+

+
+= =

−

= −

.

.
25.4034 3.I

Z

V A
10 26 8

254 0341 150
12 2B

B

B

o

o
o

+

+
+= =

−

−

= −

.

.
25.4034 296.8 25.4034 63.2I

Z

V
A A

10 26 8

254 0341 270
Y

Y

Y

o

o
o o

+

+
+ += =

−

= − =

I I I INeutral current, N R B Y= + +

   =  25.4034∠−30
o
 + 25.4034∠−123.2

o
 + 25.4034∠−296.8

o
 

   =  19.5438 − j11.2836

   =  22.5672∠−30
o

 A

phase load phase load phase load- - -
,Power P

Power consumed

by R

Power consumed

by B

Power consumed

by Y
= + +

                
cos cos cosV I V I V IR R 1 B B 2 Y Y 3φ φ φ= + +

Phase difference between V and I 30 30 01 R R
o o o

φ = = − − − =^ h

150 . 26.8Phase difference between V and I 123 22 B B
o o o

φ = = − − − = −^ h

270 . 26.8Phase difference between V and I 296 83 Y Y
o o o

φ = = − − − =^ h

, 254.0341Here V V V V VR B Y= = = =

             25.4034I I I I AR B Y= = = =

∴  P  =  V Icosφ
1
 + VIcosφ

2
 + VIcosφ

3
 

     =  V I [ cosφ
1
 + cosφ

2
 + cosφ

3
]

    =  254.0341 × 25.4034 × [cos 0
o
 + cos (−26.8

o
) 

                                                                     + cos(26.8
o
)]

         17973.6
.

17.9736W kW kW
1000

17973 6= = =       

–296.8o + 360o = 63.2o

1
2
0
o

9
0

o

I
B

V
RB

V
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I
R V

R

V
Y

V
BY

I
Y

V
B

E30
o

6
3
.2
o

E

123
.2

o

E

120
o

E150
o

Reference

Fig. 2 : Rms phasors of
voltages and currents.
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EXAMPLE 4.22

In a four-wire three-phase system,  two phases have currents of 

10 A and 6 A of lagging power factor of 0.8 and 0.6, respectively, while the 

third phase is open-circuited. Calculate the current in neutral and sketch 

the phasor diagram.

SOLUTION

Let the given two phase currents be .I and IR Y  Let the phase-B 

be open-circuited and so the phase-B current IB  is zero.

∴  IR  = 10 A at lagging pf of 0.8 = 10∠–cos−10.8 = 10∠−36.9
o

 A

     IY  = 6 A at lagging pf of 0.6 = 6∠–cos−10.6 = 6∠−53.1
o

 A

     IB  = 0

In 4-wire 3-phase system, the neutral current is given by sum of three-phase currents.

I I I INeutral current, N R Y B` = + +

  = 10∠−36.9
o
 + 6∠−53.1

o
 + 0

   = 11.5994 − j10.8023

  = 15.8504 ∠−43
o

 A

EXAMPLE 4.23

A balanced star-connected load of impedance 15 + j20 Ω per phase is connected to a three-phase, 

440 V, 50Hz  supply. Find line currents and power absorbed by the load. Assume the RYB sequence. Draw 

the phasor diagram.

SOLUTION

The phase sequence is RYB. The line voltages 

for the RYB sequence are , , .V V and VRY YB BR  Let 

us choose VRY  as the reference phasor. The star-

connected load with polarity of voltages and direction 

of currents is shown in Fig. 1.

The line voltages for the RYB sequence with 

VRY  as the reference phasor are,

4 0 0V V4
o

RY +=

440 120V VoYB += −

440 240 440 120V V Vo o
BR + += − =

, 440Here V V V V VRY YB BR L= = = =

In a three-phase balanced star-connected load, the magnitude of phase voltage will be 1 3  times 

the magnitude of line voltage. Also the phase voltage lags behind the line voltage by 30
o
. Therefore, the phase 

voltages are,

(0 30 ) 254.0341 30V V
3

440 o o o
R + += − = −

( 120 30 ) 254.0341 150V V
3

440 o o o
Y + += − − = −

( 240 30 ) 254.0341 270 254.0341 90V V V
3

440 o o o o
B + + += − − = − =

Reference

E

5
3
.1

o

E

4
3
o

E

3
6
.9

o

I
R

I
Y

I
N

Fig. 1 : Phasor diagram.

(AU Dec’14, ’15 & ’16, 8 Marks)
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1
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o
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o
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E
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o

E203.1
o

I
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I
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I
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V
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V
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Fig. 2 : Rms phasors of voltages
and currents.

Reference

, .Here V V V V V254 0341R Y B= = = =

Given that, load impedance per phase, Z  = 15 + j20 Ω = 25∠53.1
o

 Ω

In a star system, the line and phase currents are the same. Therefore, the line and phase currents are,

.

.
10.1614 .1I

Z

V A
25 53 1

254 0341 30
83R

R

o

o
o

+

+
+= =

−

= −

.

.
10.1614 203.1I

Z

V A
25 53 1

254 0341 150
Y

Y

o

o
o

+

+
+= =

−

= −

.

.
10.1614 323.1

10.1614 .

I
Z

V
A

A

25 53 1

254 0341 270

36 9

B
B

o

o
o

o

+

+
+

+

= =

−

= −

=

, 10.1614Here I I I I I AR Y B L= = = = =

Power, P = 3  V
L
I
L
cos φ 

Here,  φ = Impedance angle = 53.1
o
 

        ∴    P = 3  × 440 × 10.1614 × cos 53.1
o
 

     

4649.7
.

4.6497W kW kW
1000

4649 7= = =

Reactive power, V I sinQ 3
L L

φ=

440 10.1614 53.1sin3
o

# # #=

6192.8
.

6.1928VAR kVAR kVAR
1000

6192 8= = =

EXAMPLE 4.24

The power consumed in a three-phase balanced star-connected load is 2 kW at a power factor 

of 0.8 lagging. The supply voltage is 400 V, 50 Hz. Calculate the resistance and reactance of each phase.

SOLUTION

Given that, 

Power factor, cos  φ = 0.8 lag

Power,  P = 2 kW = 2 × 1000 W = 2000 W

Line voltage, V
L
 = 400 V

We know that,

 cosP V I3 L L φ=

,
.

3.6084
cos

Line current I
V

P A
3 3 400 0 8

2000
L

L

`

# #φ
= = =

In a star-connected load, the line and phase current are the same.

∴  Phase current, I = I
L
 = 3.6084 A

The magnitude of phase voltage in a star-connected balanced load will be 1 3  times the magnitude 

of line voltage.
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, 230.9401Phase voltage V
V

V
3 3

400L
` = = =

Now,

,
.
.Magnitude of impedance per phase Z

I
V

3 6084
230 9401 64Ω= = =

We know that the impedance angle θ is the same as the power factor angle φ.

∴  Impedance angle, θ = cos−10.8 = 36.9
o
 

, .per phase Z Z 64 36 9Impedance o
` + +θ Ω= =

Let us express the impedance in rectangular form.

64 36.9 51.1798 38.4269Z jo
` + Ω Ω= = +

,We know that Z R jX= +

, 51.1798 /of load R part of Z phaseResistance Real` Ω= =

      , 38.4269 /of load X part of Z phaseResistance Imaginary Ω= =

EXAMPLE 4.25

For the circuit shown in Fig. 1, calculate the line current, the power and 

power factor when the supply voltage is 300 V, 50 Hz. The values of R, L and C 

in each phase are 10 Ω,1 H and 100 µF, respectively.

SOLUTION

Inductive reactance,  X
L
 = 2πfL = 2π × 50 × 1 = 314.1593 Ω

31.831Capacitive X
fC2

1

2 50 100 10

1reactance,
6

C

# # #π π
Ω= = =

-

Let,   Z  = Impedance per phase.

 

,Here
Z R jX jX R

j
X

j
X

1 1 1 1 1 1 1

L C L C

= + +
−

= − +

. .

Z

R
j
X

j
X

j j1 1 1
1

10
1

314 1593
1

31 831
1

1

L C

` =

− +

=

− +

          . . . . .j j j0 1 0 0032 0 0314
1

0 1 0 0282
1

=
− +

=
+

          . .
9.6246 15.7 /phase

0 1039 15 7

1 o

o
+

+ Ω= = −

∴  Magnitude of impedance, Z = 9.6246 Ω

    Impedance angle,              θ = −15.7
o
 

    Given that, Line voltage,   V
L
= 300 V

, 173.2051Phase voltage V
V

V
3 3

300L
` = = =

,
.
. 17.9961Current per phase I

Z
V A

9 6246
173 2051= = =

Here, the power factor is lagging and 

so the impedance angle is positive.

Fig. 1.

L

C
R

R

C

L
R

C

L
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In star system, the line and phase currents are the same.

∴   Line current, I
L
 = I = 17.9961 A

Power factor, cosφ = cosθ = cos(−15.7
o
) = 0.9627 lead

, cosPower P V I3 L L φ=

           
300 17.9961 0.9627 9002.3W3 # # #= =

                 

.
9.0023kW kW

1000

9002 3= =

EXAMPLE 4.26

Three equal inductors connected in star takes 5 kW at 0.7 power factor, when connected to a 400 V, 50 Hz, 

three-phase, three-wire supply. Calculate the line currents, (i) if one of the inductor is disconnected and  

(ii) if one of inductor is short-circuited.

SOLUTION

Given that, Power, P = 5 kW = 5 × 1000 W = 5000 W

Power factor,  cosφ = 0.7

Line voltage,       V
L
  = 400 V

We know that,     P  = 3 V
L
I
L

cosφ 

,
.

10.3098
cos

Line current I
V

P A
3 3 400 0 7

5000
L

L

`

# #φ
= = =

In a star system the line and phase currents are the same.

∴  Phase current,    I = I
L
 = 10.3098 A

In a balanced star-connected load, the magnitude of phase voltage is 1 3  times the line voltage.

, 230.9401Phase voltage V
V

V
3 3

400L
` = = =

,
.
. 22.4001 /Z

I
V phase

10 3098
230 9401Magnitude of impedance per phase Ω= = =

We know that the impedance angle θ is the same as the power factor angle, φ.

∴ Impedance angle, θ = cos−10.7 = 45.6
o
 

Impedance per phase, Z  = 22.4001∠45.6
o 
 Ω/phase

Here, the impedance angle is negative 

and so the load is capacitive. Therefore, 

the power factor  is lead.

Here the impedance angle is positive 

because the load is inductive.
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Case i : When one of the inductors is disconnected

Let B-phase inductor be disconnected. With reference to  

Fig. 1, we can say that when one of the inductors is disconnected, 

the load becomes a two-phase load. Let us assume the RYB sequence. The 

line voltages of the RYB sequence are , and .V V VRY YB BR   

Let VRY  be the reference phasor.

400 0V VoRY` +=

With reference to Fig. 1, we can say that the voltage across the load is 

VRY  and the total load impedance is 2 Z .  Also .I IR Y= −

By Ohm’s law, we can write,

. .
8.9285 45.6I

Z

V A
2 2 22 4001 45 6

400 0
o

o
o

R
RY

# +

+
+= = = −

      8.9285 45.6 1 180 8.9285 45.6I I 1
o o o

Y R` # #+ + += − = − − = −

                 =  8.9285∠134.4
o

 A

Since, phase-B is open, 0IB =

In summary, the line currents when one of the inductors is disconnected are,

8.9285 45.6I Ao
R += −

8.9285 134.4I Ao
Y +=

0IB =

Case ii : When one inductor is short-circuited

Let B-phase inductor be short-circuited as shown in 

Fig. 2. Now the load can be treated as an unbalanced load 

and analysed using mesh method. Let the phase sequence 

be RYB and VRY  be the reference phasor. 

The line voltages are,

400 0V VoRY +=

4 0 120V V0
o

YB += −

4 0 240 4 0 120V V V0 0
o o

BR + += − =

Let us connect the two voltage sources V and VRY YB  to an 

unbalanced load as shown in Fig. 3. Let us assume the two mesh currents 

I and I1 2  as shown in Fig. 3. Now, the line currents in terms of mesh currents 

are, 

I IR 1=

I I IY 2 1= −

I IB 2= −

Fig. 1.
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B
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+
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Fig. 3.

Z

I
2

Z

+

E

+

E

~

~



Chapter 4 - AC Single and Three-Phase Circuits                                                   4. 99

The mesh basis matrix equation for the circuit of Fig. 3 is,

Z Z

Z

Z

Z

I

I

V

V

1

2

RY

YB

+

−

−
=> > >H H H

Z

Z

Z

Z

I

I

V

V

2 1

2

RY

YB−

−

=> > >H H H

2 2
Z

Z

Z

Z
Z Z Z Z Z Z Z

2 2 2 2
# #∆ =

−

−
= − − − = − =^ ^h h

V

V

Z

Z
V Z V Z Z V V1

RY

YB

RY YB RY YB# #∆ =
−

= − − = +^ ^h h

2
Z

Z

V

V
Z V Z V Z V V

2
22

RY

YB

YB RY YB RY# #∆ =
−

= + = +^ h

. .
I

Z

Z V V

Z

V V

22 4001 45 6

400 400 120
o

o

2
1

1 RY YB RY YB

+

+

∆

∆
= =

+
=

+
=

+ −^ h

               = –4.8021 – j17.1993 A

. .
I

Z

Z V V

Z

V V2 2

22 4001 45 6

2 400 120 400
o

o

2
2

2 YB RY YB RY #

+

+

∆

∆
= =

+
=

+
=

− +^ h

               = –22.0982 – j21.6401 A

Now, the line currents are,

4.8021 17.1993 17. 105.6I I j A8571R 1
o

+= = − − = −

. . . .I I I j j22 0982 21 6401 4 8021 17 1993Y 2 1= − = − − − − −^ h

 =  −17.2961 − j4.4408 = 17.8571∠–165.6oA

. . 30.9293 44.4I I j A22 0982 21 6401B 2
o

+= − = − − − =^ h  

EXAMPLE 4.27

Three similar resistors are connected in star across 400 V, three-phase lines. The line current is 5 A. 

Calculate the value of each resistor. To what value should the line voltage be changed to obtain the same line 

current with the resistances delta-connected?

SOLUTION

Case i : Star connection

Line voltage in star, V
L, S

  = 400 V

230.9401V
V

V
3 3

400Phase voltage, L
` = = =

Given that, line current,  I
L
 = 5 A
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In a star system, the line and phase currents are the same.

∴  Phase current, I = I
L
 = 5 A

. 46.188R
I
V

5
230 9401Resistance per phase, Ω= = =

Case ii : Delta connection

The line current in a delta connection should be maintained the same as that in a star connection.

  ∴  Line current,  I
L
 = 5 A

In a delta connection, the phase current is 1 3  times the line current.

2.8868I
I

A
3 3

5Phase current, L
` = = =

The resistance per phase in a delta connection is the same as that in a star connection.

Resistance per phase, R = 46.188 Ω

By Ohm’s law,

Phase voltage, V = IR = 2.8868 × 46.188 = 133.3355 V

In a delta connection, the line voltage is the same as phase voltage.

∴  Line voltage in delta, V
L, D

 = V = 133.3355 V

Conclusion

The line voltage in star, V
L, S

 = 400 V

The line voltage in delta, V
L, D

 = 133.3355 V

Here,  V
L, S

 = 3 V
L, D

, (i.e., 3  × 133.3355 = 400 V )

Hence, we can say that when three equal impedances in star are reconnected to delta, then in  

order to maintain the same line current, the line voltage should be reduced to one-third. Alternatively,  

when three equal impedances in delta are reconnected to star, then in order to maintain the same line current, 

the line voltage should be increased by three times.

EXAMPLE 4.28

A total three-phase power of 100 kW  is transmitted over transmission line of impedance 1 + j2 Ω/phase. 

The line voltage of the balanced three-phase load is 11 kV. The load pf is 0.8 lagging. Find the line voltage 

and power factor at sending end.

SOLUTION

Given that, 

Active power of load,  P = 100 kW = 100 × 10
3

 W

Power factor of load,  cosφ = 0.8 lag

∴  φ = cos–10.8 

∴  tan φ = tan (cos–10.8) = 0.75

With reference to the power triangle shown in Fig. 1,

S

f

P

tan
Q

P
f =

Q

Fig. 1 : Power
triangle.
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Reactive power of load, Q = P tanφ

                                          = 100 × 103 × 0.75 = 75 × 10
3

 VAR = 75 kVAR

cosP V I3We know that, L L φ=

,
.

6.5608
cos

Line current I
V

P A
3 3 11 10 0 8

100 10
L

L
3

3

`

# # #

#

φ
= = =

Let, V Voltage drop in the line.d =

1 2Z jGiven that, line impedance, line Ω= +

Since the current through the transmission line is ,IL  the line drop is given by,

V I Zd L line=          ..... (1)

,Let S Complex power consumed by line impedance.line =

S V INow, line d L=
)
         

S I Z Iline L line L` #=
)

              I I Z I Z
2

L L line lineL
= =

)^ h

          =  6.5608
2
 × (1 + j2 ) = 43 + j86 VA

Let,  P
s
 = Real power at sending end.

        Q
s
 = Reactive power at sending end.

P P SNow, Real part ofs line= + 6 @

             = 100 × 10
3
 + 43 = 100043 W

       Q Q SImaginary part ofs line= + 6 @

               =  75 × 10
3
 + 86 = 75086 VAR

With reference to the power triangle shown in Fig. 2,

tan
P

Q

s

s
s
φ =

tan
P

Q1

s

s
s

` φ = -

cos cos tan
P
Q

Power factor at sending end, 1

s

s
sφ = -c m

                                                          0.7998cos tan lag
100043

750861
= =-c m

cosP V I3We know that, s L,s L sφ=

cos
V

I

P

3
Line voltage at sending end, L,s

L s

s
`

φ
=

                                                         . .3 6 5608 0 7998

100043

# #

=

         11007.5
.

V kV
1000

11007 5= =

11.0075V= 

Using equation (1)

I I I I
2

2
L L L L= =

)

Fig. 2.

S
s

Q
s

P
s

f
s
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EXAMPLE 4.29

A symmetrical three-phase, 100 V, three-wire supply feeds an unbalanced star-connected load with 

impedances of the load as  5 0 , 2 90 4 90 .Z Z and ZR Y B
o o o

+ + +Ω Ω Ω= = = −  Find the line currents, voltage 

across the impedances and the displacement neutral voltage. Also calculate the power consumed by the load.  

Sketch the phasor diagram.

SOLUTION

Let the phase sequence be RYB. The line voltages for the RYB sequence are , .V V and VRY YB BR  

The star-connected unbalanced load, connected to a balanced source is shown in Fig. 1.

The line voltages for the RYB sequence with VRY  as the reference phasor are,

100 0 100V V VRY
o

+= =

100 0V V12YB
o

+= −

100 240 100 120V V VBR
o o

+ += − =

Let us solve the line currents using the mesh method. Consider two voltage sources, V and VRY YB  

connected across the load as shown in Fig. 2. Let I and I1 2  be the mesh currents. Now, the line currents in 

terms of mesh currents are,

I IR 1=

I I IY 2 1= −

I IB 2= −

The mesh basis matrix equation for the circuit of Fig. 2 is,

Z Z

Z

Z

Z Z

I

I

V

V

R Y

Y

Y

B Y

1

2

RY

YB

+

−

−

+

== = =G G G

Z Z

Z

Z

Z Z
Z Z Z Z Z

Z Z Z Z Z Z Z Z

2

2 2

R Y

Y

Y

B Y

R Y B Y

R B R Y Y B

Y

Y Y

` ∆ =
+

−

−

+
= + + −

= + + + −

^ ^h h

                                          Z Z Z Z Z ZR B R Y Y B= + +

                                          j j j j j5 4 5 2 2 4 8 10# # #= − + + − = −^ ^h h

B

I
Y

I
B

I
R

V
B

N

R

Y

Fig. 1.

Z
Y

Z
R

Z
B

V
RY V

BR

V
YB

V
NN¢

~

~ ~
E
Y

E
B

E
R

¢N

Y
B

R

+

-

+

-

-

+

V
R

+

-
-

+

+

-

+

- +

-

V
Y

- +

+

-

I1

I2

~

~

IY

IR

IB

Z

= j2
Y = Ð2 90oW

W

Z

= 5
R = Ð5 0oW

W

Z

= j4

B = Ð -

-

4 90oW

W

Fig. 2.
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VYB

+
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(AU May’17, 16 Marks)
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V

V

Z

Z Z
V Z Z V Z1

RY

YB

Y

B Y

RY B Y YB Y∆ =
−

+
= + +^ h

                                                          
V Z V Z V Z j j j100 4 100 2 100 120 2o
RY B RY Y YB Y # # #+= + + = − + + −^ h

              = 173.2051 – j300 

Z Z

Z

V

V
Z Z V Z V

Z V Z V Z V

2

R Y

Y

RY

YB

R Y YB Y RY

R YB Y YB Y RY

∆ =
+

−
= + +

= + +

^ h

 

 =  5 × 100∠−120
o
 + j2 × 100∠−120

o
 + j2 × 100 

 =  −76.7949 − j333.0127

.
2 . .I

j

j
j A

8 10

173 2051 300
6 7417 4 07291

1
`

∆

∆
= =

−

−
= −

    

. .
16.5596 20.9271I

j

j
j A

8 10

76 7949 333 0127
2

2

∆

∆
= =

−

− −
= −

Now, the line currents are,

26.7417 4.0729 . 8.7I I j A A27 0501R 1
o

+= = − = −

. . . . . .

. .

I I I j j j A

A

16 5596 20 9271 26 7417 4 0729 10 1821 16 8542

19 6911 121 1o

Y 2 1

+

= − = − − − = − −

= −

^ h

. . . .

. .

I I j j A

A

16 5596 20 9271 16 5596 20 9271

26 6864 128 4o
B 2

+

= − = − − = − +

=

^ h

The voltages across the impedance (i.e., phase voltages) are,

27.050 8.7 5 0 135.25 8.7V I Z V1 05R R R
o o o
#+ + += = − = −

19.6911 121. 2 90 39.3822 31.V I Z V1 1Y Y Y
o o o
#+ + += = − = −

26.686 128. 4 90 106.74 6 38.V I Z V4 4 5 4B B B
o o o
#+ + += = − =

Let,  VNNl  = Neutral shift voltage.

With reference to Fig. 3, using KVL we can write,

    V V ENN R R+ =l

V
NN¢

R

V
RE

R

R

¢N N

Fig. 3.

+

-

+

-

- +

~
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V E VNN R R` = −l

Since the source is balanced, ER  will have a magnitude of 1 3  times the line voltage and lag behind 

VRY  by 30
o
.

57.735 30E V
3

100
0 30
o

R
o o

` + += − = −^ h

57.735 30 135.2505 8.7V E VNeutral shift voltage, NN R R
o o

` + += − = − − −l

  =  – 83.6943 − j8.4094 V

                                              = 84.1157∠−174.3o
 V

cos cos cosP V I V I V IPower, R R 1 Y Y 2 B B 3φ φ φ= + +

8.7 . 0V and I 8 7Here, Phase difference between1 R R
o

φ = = − − − =^ h

31.1 . 90V and I 121 1Phase difference between
o

2 Y Y
o o

φ = = − − − =^ h

38. 128. 90V and I 4 4Phase difference between3 B B
o o o

φ = = − = −

∴ P = V
R

I
R

cosφ
1
 + V

Y
I
Y

cosφ
2
 + V

B
I
B

cosφ
3
 

Here, φ
2
 = +90

o
 ,         ∴  cos φ

2
 = cos (+90

o
) = 0 

and φ
3
 = −90

o
 ,         ∴  cos φ

3
 = cos (−90

o
) = 0 

∴ P  =  V
R

I
R

cosφ
1
 = 135.2505 × 27.0501 × cos0o

        3658.
.

3.658W kW kW5
1000

3658 5
5= = =

Note : Since Y-phase and B-phase loads are purely reactive loads, the power consumed by them is zero.

EXAMPLE 4.30

A three-phase, three-wire unbalanced load is star-connected. The phase voltages of two of the arms are,  

100 10 150 100 .V and VV VR Y
o o

+ += − =  Calculate the voltage between star point of the load and the supply neutral.

SOLUTION

Let us assume the RYB sequence. The line voltages for the RYB sequence are , .V V and VRY YB BR  

The line voltage VRY  can be calculated as shown below:

With reference to Fig. 1, using KVL we can write,

V V VRY Y R+ =

V V VRY R Y` = −

 =  100∠−10
o
 − 150∠100

o
 

 =  124.528 − j165.086

 =  206.7864∠−53
o

 V

I
B

V
B

V
RY

V
R

I
R

V
Y

V
YB

I
Y

120
o

128.3
o

38.
3
o

E8.7
o

E31.2
o

E
120

o

121.2
o

E51.7 o

Reference

Fig. 4 : Rms phasor diagram
of voltages and currents.

V
BR
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E
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Usually the source is balanced. Let us assume a star-connected balanced source. We know that the 

line voltage of source and load are the same. Hence, the R-phase emf ER  of the source will have a magnitude 

of 1 3  times the magnitude of VRY  and phase lag by 30
o
 with respect to .VRY

.
119.3882 83E V

3

206 7864
53 30R

o o o
` + += − − = −^ h

 

The neutral shift voltage can be estimated 

from the knowledge of .E and VR R  Consider the circuit 

shown in Fig. 2. By KVL we can write,

V V ENN R R+ =l

V E VNeutral shift voltage, NN R R` = −l

  =  119.3882∠−83
o
 − 100∠−10

o
 

  =  −83.931 − j101.1335

  =  131.4245∠−129.7
o

 V

EXAMPLE 4.31

A three-phase balanced delta-connected load of  

4 + j8 Ω is connected across a 400 V, three-phase 

balanced supply. Determine the phase currents and 

line currents. Assume the phase sequence to be RYB. 

Also calculate the power drawn by the load. Sketch the 

phasor diagram.

SOLUTION

The phase sequence is RYB. The line voltages for 

the RYB sequence are , .V V and VRY YB BR  Let us choose 

VRY  as the reference phasor. The delta-connected load 

with polarity of voltages and direction of currents is 

shown in Fig. 1.

The line voltages of the RYB sequence with VRY  as reference phasor are,

00 0V V4RY
o

+=

00 120V V4YB
o

+= −

00 240 00 120V V V4 4BR
o o

+ += − =

, 4 0Here V V V V V V0RY YB BR L= = = = =

Now, the phase currents ,I I and IRY YB BR  are given by the ratio of phase voltage and impedance.

, , 4 8 8.9443 63.4Given that impedance per phase Z j o
+Ω Ω= + =

Now, the phase currents are,

. .
44.7212 63.4I

Z

V

8 9443 63 4

400 0
RY

RY

o

o
o

+

+
+= = = −

. .
44.7212 183.4I

Z

V

8 9443 63 4

400 120
YB

YB

o

o
o

+

+
+= =

−

= −

. .
. . . .I

Z

V A
8 9443 63 4

400 240
44 7212 303 4 44 7212 56 6

o
BR

BR

o

o
o

+

+
+ += =

−

= − =

Z

R

Y
B

IY

IB

IR

VBR

VYB

R

Y

B

VRY

VYB

VRY VBR

IRY

IBRIYB

Fig. 1.
Z 4 j8a C �

Z

Z

+

E

E

+E

+

In a delta-connected load, the 

phase and line voltages are the 

same.

(AU May’17, 8 Marks)

Fig. 2.

R

N¢N

R

E
R

V
R

V
NN¢

+

-

+

-

- +

~



4. 106  Circuit Theory

, 44.7212Here I I I I ARY YB BR= = = =

In a delta-connected balanced load, the line currents will have a magnitude of 3  times the magnitude 

of phase current and lag the phase current by 30
o
.

Therefore, the line currents are,

44.7212 . 77.4594 93.4I A3 63 4 30
o o o

R # + += − − = −^ h

. . . .

. .

I A

A

44 7212 3 183 4 30 77 4594 213 4

77 4594 146 6

o o o

o

Y # + +

+

= − − = −

=

^ h

. . . .

. .

I A

A

44 7212 3 303 4 30 77 4594 333 4

77 4594 26 6

o o o

o

B # + +

+

= − − = −

=

^ h

, 77.4594Here I I I I AR Y B L= = = =

 , cosPower P V I3 L L φ=

Here,   φ = Impedance angle = 63.4
o
 

. .cosP 3 400 77 4594 63 4
o

` # # #=

.

1000

24029 2
24029.2 24.0292W kW= = =

EXAMPLE 4.32

A delta-connected balanced three-phase load is supplied from a three-phase, 400 V supply. The line 

current is 20 A and the power taken by the load is 10,000 W. Find a) impedance in each branch, b) phase current, 

c) power factor and d) the power consumed if the same load is connected in star.

SOLUTION

Case i : Delta connection

Given that,  Line voltage, V
L 
= 400 V

  Line current,  I
L
  = 20 A

  Power,       P  = 10,000 W

, cosWe know that P V I3 L L φ=

,
,

.cosPower factor
V I

P

3 3 400 20

10 000
0 7217

L L

`

# #

φ = = =

In a delta-connected balanced load, the phase current is 1 3  times the line current and phase voltage 

is the same as line voltage.

V
BR

I
Y I

B

V
RY

V
YB

I
RY

I
BR

I
R

I
YB Reference

120
o

56
.6
o

26.6
o

E

6
3
.4

o

E

9
3
.4

o

E

1
2
0

o

E183.4
o

146.6 o

Fig. 2 : Rms phasors of
voltages and currents.
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, 11.547Phase current I
I

A
3 3

20L
` = = =

                  Phase voltage, V = V
L
 = 400 V

 , ,
.

34.641Now i per phase Z
I
V

11 547
400mpedance Ω= = =

Case ii : Star connection

In a star connection, the phase voltage is 1 3  times the line voltage.

, 230.9401Phase voltage V
V

V
3 3

400L
` = = =

The impedance and power factor in a star connection is the same as that in a delta connection.

,
.
. 6.6667Phase current I

Z
V A

34 641
230 9401

` = = =

In a star connection, the line current is the same as phase current.

∴   Line current,  I
L
 = I = 6.6667 A

, , cosNow Power P V I3 L L φ=

                          400 6.6667 0.7217 3333.4W3 # # #= =

Conclusion

The power consumption in a star connection is one-third of the power in a delta connection. Also, the  

line current in star is one-third of the line current in delta. This concept is utilised in star-delta starters of induction 

motors in order to reduce the starting current.

EXAMPLE 4.33

Three capacitors of 100 µF each are connected in delta to a 440 V, three-phase, 50 Hz supply. What 

will be the capacitance of each of the three capacitors if the same three capacitors are connected in star  

across the same supply to draw the same line current?

SOLUTION

Case i : When capacitors are connected in delta

Let, C
D
 = Capacitance per phase in delta.

Given that, C
D
 = 100 µF = 100 × 10

–6
 F

31.831 /

Capacitive per

phase in delta connection
X

fC

phase

2
1

2 50 100 10

1reactance
6C,D

D

`

# # #π π

Ω

= =

=

-4

Given that, line voltage, V
L
 = 440 V

In a delta connection, the phase voltage is the same as line voltage.

∴   Phase voltage, V = V
L
 = 440 V

, ,
.

13.823Now phase current I
X
V A

31 831
440

C,D
= = =

In a balanced delta-connected load, the line current will be 3  times the phase current.

, 13.823 3.9421Line current I I A3 3 2L` #= = =
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Case ii : When capacitors are connected in star

The line voltage and current in a star connection should be maintained the same as that in a delta 

connection.

∴ Line voltage,   V
L
 = 440 V

  Line current,    I
L
  = 23.9421 A

In a star connection, the phase current is the same as line current and phase voltage is 1 3  times 

the line voltage.

  ∴  Phase current, I = I
L
  = 23.9421 A

           
, .Phase voltage V

V
V

3 3

440 254 0341L= = =

,
.
. 10.6104 /

Now capacitive

per phase in star connection
X

I
V phase

23 9421
254 0341reactance

C.S Ω= = =4
,We know that X

fC2
1

C,S
Sπ

=

where, C
S
 = Capacitance per phase in star connection

.
3 10C

fX
F

2
1

2 50 10 6104
1Capacitance, S

4

6

C,S
`

# #
#

π π
= = =

-

-300 10 300F F# µ= =

Conclusion

, 3It is observed that X
X

or X X
3

C,S
C,D

C,D C,S= =

When three equal impedances in delta are converted into star, in order to maintain the same line  

current for the same line voltage, the star-connected impedance should have a value one-third the  

delta-connected impedance.

Conversely, when three equal impedances in star are converted into delta, in order to maintain the  

same line current for the same line voltage, the delta-connected impedance should have a value three times 

that of the star-connected impedance.

, 3Also it is observed that C
C

or C C
3

D
S

S D= =

Hence, for a given line voltage and same line current when three equal elements are converted from 

star to delta or vice versa, the following relations will hold good:

R R R R
3

1
3S D D S= =

L L L L
3

1
3S D D S= =

3C C C C
3

1
S D D S= =

X X X X
3

1
3S D D S= =

Z Z Z Z
3

1
3S D D S= =

The suffix S stands for star-connected element per phase. The suffix D stands for delta-connected 

element per phase.
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I
RY

Y I
YB

Fig. 3.

I
Y

EXAMPLE 4.34

A three-phase delta-connected load has ZRY  = 100 + j50 Ω, ZYB  = 20 − j75 Ω and ZBR  = 70.7 + j70.7 Ω 

and it is connected to balanced three-phase, 400 V supply. Determine the line currents, power consumed by  

the load. Sketch the phasor diagram. Assume the RYB sequence and take VYB  as the reference phasor.

SOLUTION

The phase sequence is RYB. The line voltages 

for the RYB sequence are , , .V V and VRY YB BR  The three-

phase delta-connected load with conventional polarity 

of voltages and direction of currents is shown in Fig. 1.

The line voltages of the RYB sequence with 

VYB  as the reference phasor are,

400 0VYB
o

+=

400 120VBR
o

+= −

400 240VRY
o

+= −

, 400Here V V V V VYB BR RY L= = = =

In a delta-connected load, the phase voltage is the same as line voltage. Now, the phase currents 

, ,I I and IRY YB BR  are given by the ratio of respective phase voltages and impedance.

Therefore, the phase currents are,

  

. .I
Z

V
j

j A
100 50

400 240 0 2144 3 5713

o

RY
RY

RY
o

+
= =

+

−
= − +

3.5777 93.4 A+=

. .I
Z

V
j

j A
20 75
400 0 1 3278 4 9793

o

YB
YB

YB
o

+
= =

−
= +

5.1533 75.1 A+=

. .
. .I

Z

V
j

j A
70 7 70 7
400 120 3 8643 1 0354

o

BR
BR

BR
o

+
= =

+

−
= − −

4.0006 165 A+= −

The line currents can be computed by writing KCL  equations at nodes R, Y and B.

With reference to Fig. 2, at node-R by KCL we can write,

I I IR BR RY+ =

     I I IR RY BR` = −

                       = −0.2144 + j3.5713 − (−3.8643 − j1.0354)

                 = 3.6499 + j4.6067 = 5.8774∠51.6
o

 A

With reference to Fig. 3, at node-Y by KCL we can write,

I I IY RY YB+ =

     I I IY YB RY` = −

                      = 1.3278 + j4.9793 − (−0.2144 + j3.5713)

                     = 1.5422 + j1.408 = 2.0883∠42.4
o

 A

Z
RY

Y

B

I
Y

I
B

I
R

V
BR

V
YB

R

Y

B

V
YB

V
BR

I
BRI

YB

Fig. 1.
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With reference to Fig. 4, at node-B by KCL we can write,

I I IB YB BR+ =

     
I I IB BR YB` = −

                       =  −3.8643 − j1.0354 − (1.3278 + j4.9793)

                  =  −5.1921 − j6.0147 = 7.9457∠−130.8
o

 A

In summary, the line currents are,

5.87 51.6 ; 2.08 42. ; 7.94 130.8I I IA A A74 83 4 57R Y B
o o o

+ + += = = −

, cos cos cosPower P V I V I V IRY RY 1 YB YB 2 BR BR 3φ φ φ= + +

400V V V V VHere, RY YB BR L= = = =

240 93.4 333.4V and IPhase difference between1 RY RY
o o o

φ = = − − = −

0 75.1 75.1V and IPhase difference between2 YB YB
o o o

φ = = − = −

0 5V and I 12 165 4Phase difference between3 BR BR
o o o

φ = = − − − =^ h

∴  P  =  V
L

I
RY

cosφ
1
 + V

L
I
YB

cosφ
2
 + V

L
I
BR

cosφ
3
 

          =  V
L

[ I
RY

cosφ
1
 + I

YB
cosφ

2
 + I

BR
cosφ

3
]

          =  400 × [3.5777 × cos (–333.4
o
) + 5.1533 × cos(−75.1

o
) + 4.0006 × cos45

o
]

                     
2941.2

.
2.9412W kW kW

1000

2941 2= = =

EXAMPLE 4.35

A 300  V, three-phase balanced source is connected to a delta-connected load of impedance  

10 45 , 8 0Z ZYR BY
o o

+ +Ω Ω= =   and 5 45 .ZRB
o

+ Ω= −  Determine the line currents and power consumed by 

the load. Assume the RBY sequence. Sketch the phasor diagram.

I
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Fig. 4.
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9
3
.4

o

7
5
.1

o

5
1
.6
o

42.4
o

E
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0
o

E

1
3
0
.8

o

E

16
5
o

E240
o
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Fig. 5 : Rms phasors of voltages and currents.
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SOLUTION

The phase sequence is RBY. The line voltages for the RBY sequence are , .V V and VRB BY YR  Let us 

take VBY  as the reference phasor. The three-phase delta-connected load with conventional polarity of voltages 

and direction of currents is shown in Fig. 1.

The line voltages for the RBY sequence, with VBY  as the reference phasor are,

V 300 0BY
o

+=

300 0V 12YR
o

+= −

300 0V 24RB
o

+= −

00V V V V V3Here, BY YR RB L= = = =

In a delta connection, the phase voltage is the same as line voltage. Now, the phase currents 

,I I and IRB BY YR  are given by the ratio of respective phase voltages and impedance.

Therefore, the phase currents are,

60 195 57.9555 15.5291I
Z

V jA A
5 45

300 240
RB

RB

RB
o

o
o

+

+
+= =

−

−
= − = − +

37.5 0 37.5 0I
Z

V jA A
8 0

300 0
BY

BY

BY
o

o
o

+

+
+= = = = +

30 165 28.9778 7.7646I
Z

V jA A
10 45

300 120
YR

YR

YR
o

o
o

+

+
+= =

−

= − = − −

The line currents can be computed by writing KCL equations at nodes R, Y and B.

With reference to Fig. 2, at node-R by writing KCL equation we get,

I I IR YR RB+ =

     I I IR RB YR` = −

                     =  −57.9555 + j15.5291 − (−28.9778 − j7.7646 )

                            =  −28.9777 + j23.2937 A  =  37.1793∠141.2
o

 A

Z
YR

Y

B

I
Y

I
B

I
R

V
RB

V
BY

R

Y

B

V
BY

V
RB

I
BY

I
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Fig. 1.
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4. 112  Circuit Theory

With reference to Fig. 3, at node-Y by writing KCL equation we get,

I I IY BY YR+ =

     I I IY YR BY` = −

                       =  −28.9778 − j7.7646 − (37.5 + j0)

                      =  −66.4778 − j7.7646 A  =  66.9297∠−173.3
o

 A

With reference to Fig. 4, at node-B by writing KCL equation we get,

I I IB RB BY+ =

     I I IB BY RB` = −

                      =  37.5 + j0 −  (−57.9555 + j15.5291)

                 =  95.4555 −  j15.5291 A  =  96.7104 ∠−9.2
o

 A

In summary, the line currents are,

37.1793 141.2I AR
o

+=

. .I A66 9297 173 3Y
o

+= −

6. .I A9 7104 9 2B
o

+= −

, cosPower P V IRB RB 1φ=

                   cosV IBY BY 2φ+

                    cosV IYR YR 3φ+

300V V V V VHere, RB BY YR L= = = =

( )Phase difference between V and I 240 195 45o o o
1 RB RBφ = = − − − = −

0Phase difference between V and I 0 0
o o o

2 BY BYφ = = − =

20 ( 1 5 ) 45Phase difference between V and I 1 6o o o
3 YR YRφ = = − − − =

∴  P  = V
L

I
RB

cosφ
1
 + V

L
I
BY

cosφ
2
 + V

L
I
YR

cosφ
3
 

  = V
L

[ I
RB

cosφ
1
 + I

BY
cosφ

2
 + I

YR
cosφ

3
]

       = 30 0 × [60 × cos (−45
o
) + 37.5 × cos0

o
 + 30 × cos45

o
]

      

30341.9
.

30.3419W kW kW
1000

30341 9= = =

I
BYY
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Fig. 3.
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EXAMPLE 4.36

A symmetrical three-phase, three wire, 400V supply is connected to a delta-connected load. Impedance in 

each branch are 10 30 , 10 45 2.5 60Z Z and Z
0

RY YB BR

0 0
+ + +Ω Ω Ω= = = . Find its equivalent star-connected 

load. 

SOLUTION

The equivalent star load can be obtained by using delta to star transformation as shown below :

.

. . .

.

Z
Z Z Z

Z Z
j

10 30 10 45 2 5 60

10 30 2 5 60 0 7248 0 8646

1 1282 50

o o o

o o

o

R

RY YB BR

RY BR# #

+ + +

+ +

+

Ω

Ω

=
+ +

=
+ +

= +

=

.
. .

.

Z
Z Z Z

Z Z
j

10 30 10 45 2 5 60

10 45 10 30 3 6955 2 5901

4 5128 35

o o o

o o

o

Y

RY YB BR

YB RY# #

+ + +

+ +

+

Ω

Ω

=
+ +

=
+ +

= +

=

.

. . .

.

Z
Z Z Z

Z Z
j

10 30 10 45 2 5 60

2 5 60 10 45 0 4763 1 0227

1 1282 65

o o o

o o

o

B

RY YB BR

BR YB# #

+ + +

+ +

+

Ω

Ω

=
+ +

=
+ +

= +

=

EXAMPLE 4.37

A symmetrical three-phase three wire 440V supply is connected to a star-connected load. The  

impedance in each branch is 2 3 , 1 2 3 4Z j Z j and Z jR Y BΩ Ω Ω= + = − = + . Find its equivalent delta 

connected load. 

SOLUTION

The standard equations for converting star connected impedances into delta or vice-versa are based 

on the concept that the power drawn by the impedances in the star or delta connection is the same. Hence, 

the equivalent delta load can be obtained by using star to delta transformation.

(AU June’14, 8 Marks)
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2 3 1 2Z Z Z
Z

Z Z
j j

j

j j

3 4

2 3 1 2
RY R Y

B

R Y #
= + + = + + − +

+

+ −_ _i i

2 3 1 2 0.8 1.4j j j= + + − + −

3.8 0.4 3.821j 60+Ω Ω= − = −

1 2 3 4Z Z Z
Z

Z Z
j j

j

j j

2 3

1 2 3 4
YB Y B

R

Y B #
= + + = − + + +

+

− +_ _i i

1 2 3 4 1.2308 2.8462j j j= − + + + −

5.2308 0.8462j Ω= −

5.2988 9.2
0

+ Ω= −

3 4 2 3Z Z Z
Z

Z Z
j j

j

j j

1 2

3 4 2 3
BR B R

Y

B R #
= + + = + + + +

−

+ +_ _i i

. .

j j j

j

3 4 2 3 8

3 8 8 544 110 60+Ω Ω

= + + + − +

= − + =

The equivalent delta connected load impedances are,

 3.8 0.4 ; 5.2308 0.8462 ; 3 8Z j Z j Z jRY YB BRΩ Ω Ω= − = − = − +

EXAMPLE 4.38

A three phase, balanced delta−connected load of 4 + j8 W, is connected across a 400 V, three-phase 

balanced supply. Determine the phase currents and line currents (Phase sequence is RYB). 

SOLUTION

The phase sequence is RYB. The line voltages 

for the RYB sequence are , .V V and VRY YB BR  Let us 

take VRY  as the reference phasor. The three phase 

delta-connected load with conventional polarity of 

voltages and direction of currents is shown in Fig. 1.

The line voltages for the RYB sequence, with 

VRY  as the reference phasor are,

0 400 0V V VL

0 0

RY + += =

120 400 120V V VL

0 0

YB + += − = −

240 400 240V V VL

0 0

BR + += − = −

00V V V V V4Here, RY YB BR L= = = =

In a delta connection, the phase voltage is the same as line voltage. Now, the phase currents 

,I I and IRY YB BR  are given by the ratio of respective phase voltages and impedance.

The load impedance per  phase, 4 8 8.9443 63.4Z j
0

+Ω Ω= + = .

(AU June’14, 8 Marks)
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Therefore, the phase currents are,

. .
44.7212 63.4I

Z

V A
8 9443 63 4

400 0RY

0

0
0

RY
+

+
+= = = −

. .
44.7212 183.4I

Z

V A
8 9443 63 4

400 120YB

0

0
0

YB
+

+
+= =

−

= −

. .
44.7212 303.4I

Z

V A
8 9443 63 4

400 240BR

0

0
0

BR
+

+
+= =

−

= −

The line currents can be computed by writing KCL equations at nodes R, Y and B.

With reference to Fig. 2, at node-R by writing KCL equation we get,

I I IR RY BR= −

. . . .44 7212 63 4 44 7212 303 4
o o

+ += − − −

77.4594 93.4 Ao
+= −

With reference to Fig. 3, at node-Y by writing KCL equation we get,

I I IY YB RY= −

. . . .44 7212 183 4 44 7212 63 4
o o

+ += − − −

77.4594 146.6 77.4594 213.4 Ao o
+ += = −

With reference to Fig. 4, at node-B by writing KCL equation we get,

I I IB BR YB= −

. . . .44 7212 303 4 44 7212 183 4
o o

+ += − − −

77.4594 26.6 77.4594 333. A4
o o

+ += = −

EXAMPLE 4.39

Three star-connected impedances 20 37.7 /Z j phase1 Ω= + are in parallel with three delta-connected 

impedances 20 37.7 /Z j phase2 Ω= + . The line voltage is 398 V. Find the line current, power factor, power and 

reactive volt-ampere taken by the combination.

SOLUTION

Given that,  20 37.7 /Z j phase1 Ω= +    

  20 37.7 /Z j phase2 Ω= +

  Line voltage, V
L
 = 398 V

I
RY

I
R

R

Fig. 2.

I
BR

I
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Y I
YB

Fig. 3.
I
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I
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I
B

Fig. 4.

B

I
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The star and delta-connected parallel loads are shown in Fig.1

The delta-connected load can be converted into star, so that the total load is a parallel combination  

of two star-connected loads as shown in Fig. 2.

The two parallel star-connected loads shown in Fig. 2 are combined to give a single equivalent star-

connected load as shown in Fig. 3

Let, Zeq  = Equivalent impedance per phase in star connection.

.
.

.
.

Z

Z
Z

Z
Z

j
j

j
j

3

3

20 37 7
3

20 37 7

20 37 7
3

20 37 7

eq

1
2

1
2

`

# #

=

+

=

+ +
+

+
+

^
^

^
^

h
h

h
h

       
. . .

. . .
. . .

j j

j j
j

20 37 7 6 6667 12 5667

20 37 7 6 6667 12 5667
5 9 425 10 6691 62 1o

#
+ Ω=

+ + +

+ +
= + =

^ ^h h

Note : Since the loads are balanced there is no shift in neutral and so both the star-connected phase 

impedances can be considered as parallel.

We know that,

Line current,  
.

.I
Z

V
A

3

10 6691

398 3
21 5375L

eq

L
= = =

Power factor,  62.1 0.4679cos cos cosZ lago

eq+φ = = =

Power, 398 . .cos cosP V I3 3 21 5375 62 1
o

L L # # #φ= =

                                      = 6947.4 W = 6.9474 kW

Reactive power, 398 . .sin sinQ V I3 3 21 5357 62 1
o

L L # # #φ= =

                                                    = 13121.2 VAR = 13.1212 kVAR

R

B

Z 2 Z 2

Z 2

Z 1

Z 1 Z 1

Fig. 1.
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EXAMPLE 4.40

Determine the power and power factor of a three-phase load if the two wattmeters used for power 

measurement read i) 1000 W each, both positive and ii) 1000 W each of opposite sign.

SOLUTION

Case i :  Wattmeter readings are equal and positive

Let,       P
1
 = P

2
 = 1000 W

Power,  P  = P
1
 + P

2
 = 1000 + 1000 = 2000 W = 2 kW

, cos cos tanPower factor
P P

P P
31

1 2

2 1φ =
+

−- c m< F

                               
0 1cos tan cos tan cos3

1000 1000

1000 1000
0

o1 1
#=

+

−
= = =

- -c m< 7F A

Case ii :  Wattmeter readings are equal but opposite in sign

Let,        P
1
 = 1000 W,   P

2
 = −1000 W

Power,   P = P
1
 + P

2
 = 1000 − 1000 = 0 W

, cos cos tan cos tanPower factor
P P

P P
3 3

1000 1000
1000 10001 1

1 2

2 1
#φ =

+

−
=

−
− −- -c cm m< <F F

                               

0cos tan cos tan cos3
0

2000
90

o1 1
# 3=

−

= − = − =

- -c ^ ^m h h< 7F A

EXAMPLE 4.41

In a balanced load, the readings of two wattmeters are 2000 W and 500 W. Calculate the power factor 

of the load i) when both 2000 W and 500 W are positive and ii) when the later is obtained after reversing the 

connections to the current coil of one instrument.

SOLUTION

Case i :  When both wattmeter readings are positive

Let,       P
1
 = 2000 W

          P
2
 = 500 W

, cos cos tanPower factor
P P

P P
31

1 2

2 1φ =
+

−- c m< F

                               ( . ) .cos tan cos tan3
2000 500
500 2000 1 0392 0 69341 1

#=
+

−
= − =

- -c m< 7F A

Case ii :  When current coil of one wattmeter is reversed

When the current coil of one wattmeter is reversed, its reading is considered as negative. Let us take 

500 W as a negative reading.

Let,       P
1
 = 2000 W

           P
2
 = −500 W

(AU Dec’15, 8 Marks)



4. 118  Circuit Theory

, cos cos tan cos tanPower factor
P P

P P
3 3

2000 500
500 20001 1

1 2

2 1
#φ =

+

−
=

−
− −- -c cm m< <F F

                               . 0.cos tan cos tan3
1500

2500
2 8868 3273

1 1
#=

−

= − =

- -c ^m h< 7F A

Note : When a wattmeter reading is negative, power factor is less than 0.5

EXAMPLE 4.42

Each of two wattmeters connected to measure the power input to a three-phase circuit read 10 kW on 

a balanced load, when the power factor is unity. What does the instrument read when the power factor falls to 

i) 0.866 lagging, and ii) 0.5 lagging, the total three-phase power remaining unaltered?

SOLUTION

When power factor is unity, the power input to the load is 10 + 10 = 20 kW. This power remains the 

same for any power factor.

∴  P
1
 + P

2
 = 10 + 10 = 20 kW    ..... (1)

We know that,

, cos cos tanPower factor
P P

P P
31

1 2

2 1φ =
+

−- c m< F

( )cos cos tan
P P
P P

31 1

1 2

2 1
` φ =

+

−- - c m

 
( )tan cos cos

P P
P P

31

1 2

2 1φ =
+

−-7 A

( ) ( )tan cos cos tan cos cosP P
P P

3 3

201 1
2 1

1 2
` # φ φ− =

+
=- -^ h 7 7A A

            ( )cos cos1 φ-11.547 tan= 7 A    ..... (2)

Case i : Power factor, cosφ = 0.866 lag

From equation (1), we get,

P
1
 + P

2
  = 20 kW     ..... (3)

From equation (2), we get,

P
2
 − P

1
 = 11.547 tan [cos−1 (cosφ)]

             = 11.547 tan [cos−1 (0.866) ]  

              = 11.547 tan 30
o
 

              = 6.6667 kW     ..... (4)

On adding equations (3) and (4), we get,

P
1
 + P

2
  = 20

P
2
 − P

1
  = 6.6667

       2P
2
 = 26.6667

.
13.3334P kW

2

26 6667
2` = =

(AU May’17, 8 Marks)
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From equation (3), we can write,

       P
1
 = 20 − P

2

∴ P
1
 = 20 − 13.3334 = 6.6666 kW

The readings of wattmeter are,

P
1
 = 6.6666 kW      and    P

2
 = 13.3334 kW

Case ii : Power factor, cosφ = 0.5 lag

From equation (1), we get,

P
1
 + P

2
  = 20 kW     ..... (5)

From equation (2) we get,

P
2
 − P

1
 = 11.547 tan [cos−1 (cosφ)]

             = 11.547 tan [cos−1 (0.5) ]  

             = 11.547 tan 60
o
 

              = 20 kW     ..... (6)

On adding equations (5) and (6), we get,

P
1
 + P

2
  = 20

P
2
 − P

1
  = 20

       2P
2
 = 40

P kW
2

40
202` = =

From equation (5), we get,

     P
1
 = 20 − P

2

∴  P
1
 = 20 − 20 = 0

The readings of wattmeter are,

P
1
 = 0     and     P

2 
= 20 kW

EXAMPLE 4.43

A 500 V, three-phase motor has an output of 3.73 kW and operates at a power factor of 0.85, with an efficiency 

of 90%. Calculate the reading on each of the two wattmeters connected to measure the input.

SOLUTION

Given that, Power output = 3.73 kW

Efficiency = 90%

.
.
. 4.1444Power input

Efficiency

Power output
kW

100
90
3 73

0 9
3 73= = = =

We know that in two wattmeter method of power measurement, the power input is equal to the sum 

of two wattmeter readings.

∴  P
1
 + P

2
 = 4.1444 kW     ..... (1)

We know that,

, cos cos tanPower factor
P P

P P
31

1 2

2 1φ =
+

−- c m< F
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( )cos cos tan
P P
P P

31 1

1 2

2 1
` φ =

+

−- - c m

 

( )tan cos cos
P P
P P

31

1 2

2 1φ =
+

−-7 A

( )tan cos cosP P
P P

3

1
2 1

1 2
` φ− =

+ -7 A

                            
.tan cos

P P

3
0 85

11 2
=

+ -7 A

                   

.
.tan cos

3

4 1444
0 85

1
#= -7 A

              = 1.4829 kW    ..... (2)

On adding equations (1) and (2), we get,

P
1
 + P

2
 = 4.1444

P
2
 − P

1
 = 1.4829

       2P
2
 = 5.6273 

 

.
2.8137P kW

2

5 6273
2` = =

From equation (1), we get,

     P
1
 = 4.1444 − P

2

∴  P
1
 = 4.1444 − 2.8137

          = 1.3307 kW

Therefore, the wattmeter readings are,

P
1
 = 1.3307 kW    and    P

2
 = 2.8137 kW

EXAMPLE 4.44

A delta-connected load consists of 12 ∠ 30o W/phase is connected to a 120 V, three-phase supply of 

phase sequence RYB. Calculate phase power and wattmeter readings.

SOLUTION

Given that,  V
L
 = 120 V and 12 30Z

o
+=  W/phase

Let, Z Z 12 30
o

+ +θ= =

where,  Z Z

Z

12

o

Ω= =

30+θ = =

∴  Phase current, I
Z

V

Z

V
L= =  .....(1)

∴  Line current I I
Z

V
3

3

12

3 120
L

L #= = =  .....(2)

     Power factor, cos φ = cos q = cos 30o = 0.866 .....(3)

.cos 0 85φ =

Using equation (1)

In delta, phase voltage is

the same as line voltage.

Impedance angle q is the same 

as the power factor angle φ.
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The total load power P can be calculated using equations (1), (2) and (3) as shown below:

     Total load power, I cosP V3
L L

φ=

                                    .3 120
12

3 120
0 866# #

#
#=

                                    30 3117.7 3.1177cos W kW
12

3 120
2

o#
#= = =  .....(4)

Let, P
1
 and P

2
 be two wattmeter readings.

Now, P
1
 + P

2
 = P

∴  P
1
 + P

2
 = 3.1177  .....(5)

We know that, 

, cos cos tanPower factor
P P

P P
31

1 2

2 1φ =
+

−- c m< F

∴ tan
P P

P P
3

1

1 2

2 1φ =
+

−- c m

tan
P P

P P
3

1 2

2 1
` φ =

+

−

tanP P
P P

3
2 1

1 2
` φ− =

+

                             .
tan

3

3117 7
30

o
#=

                               = 1039.2 W  =  1.0392 kW      

..... (6)

On adding equations (5) and (6), we get,

P
1
 + P

2
 = 3.1177

P
2
 − P

1
 = 1.0392

       2P
2
 = 4.1569 

 .
2.07845P kW

2

4 1569
2` = =

From equation (5), we get,

     P
1
 = 3.1177 − P

2

∴  P
1
 = 3.1177 − 2.07845

          = 1.03925 kW

Therefore, the wattmeter readings are,

P
1
 = 1.03925 kW    and    P

2
 = 2.07845 kW

03
oφ =

Using equation (5)
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EXAMPLE 4.45

The input power to a three-phase motor was measured by two wattmeter method. The readings are 

5.2 kW and 1.7 kW. The later reading have been obtained after reversing the current coil connections. The line 

voltage was 400 V. Calculate a) the total power, b) power factor and c) line current.

SOLUTION

Given that, P
1
 = 5.2 kW

                 P
2
 = −1.7 kW

Power, P = P
1
 + P

2

           = 5.2 + (−1.7) = 3.5 kW 

, cos cos tanPower factor
P P

P P
31

1 2

2 1φ =
+

−- c m< F

                   . ( . )
. .cos tan 3

5 2 1 7
1 7 5 21

=
+ −

− −- c m< F

               = cos [tan−1 (−3.4146)]

               = cos(−73.7
o
) = 0.2807

, cosWe know that P V I3 L L φ=

,
cos

Line current I
V

P

3
L

L

`

φ
=

                                
.

.

3 400 0 2807

3 5 1000

# #

#=  = 17.9972 A

EXAMPLE 4.46

Two wattmeters are used to measure power in a three-phase load. The wattmeter readings are 1560 W and 

2100 W and line voltage is 220 V. Calculate  a) average power per phase,  b) total reactive power, c) power 

factor and d) phase impedance. Determine whether the impedance is inductive or capacitive.

SOLUTION

Given that,  P
1
 = 1560 W

   P
2
 = 2100 W

Power, P = P
1
 + P

2
 = 1560 + 2100 = 3660W

1220Power per phase P W
3 3

3660= = =

(Average power 

    per phase)

, cos cos tanPower factor
P P

P P
31

1 2

2 1φ =
+

−- c m< F

                   cos tan 3
1560 2100

2100 15601
=

+

−- c m< F
               = cos [tan−1 (0.2555)] = 0.9689

The power factor cos φ is defined as the ratio of active power P and apparent power S.

cos
S

P
` φ =

Here, P
2
 is negative because the reading 

has been obtained after reversing the 

current coil connections.

(AU Dec’16, 16 Marks)



Chapter 4 - AC Single and Three-Phase Circuits                                                   4. 123

.
3777.5

cos
S

P
VA

0 9689

3660
`

φ
= = =

We know that, S P jQ= + , where Q is reactive power,

S S P Q
2 2

` = = +           ⇒         S2 = P2 + Q2

Q S PReactive power,
2 2

` = −

                                                         3777.5 3660
2 2

= −   =  934.8 VAR

Since the given load is delta-connected, the line voltage V
L 
and phase voltage V are the same.

Given that, V
L
 = 220 V

      V = V
L
 = 220 V

Now, power per phase = VI cos φ .....(1)

            where I = current per phase

We know that,

,I Z
I
Vmpedance per phase =

                                I
Z

V
` =  .....(2)

From equations (1) and (2), we get,

Power per phase = cosV
Z

V
# # φ

,
cos

Z
power per phase

V
Impedance per phase

2

`
φ

=

                                                220 0.9689
38.4383 /phase

1220

2
#

Ω= =

In two wattmeter method of power measurement, the lag and lead nature of power factor cannot be 

determined. And so the nature of impedance, whether inductive or capacitive, cannot be determined.

EXAMPLE 4.47

Two wattmeters are used to measure power in a three-phase load. The wattmeter readings are 400 W and 

−35 W. Calculate a) total active power, b) power factor, c) reactive power and d) volt-amperes.

SOLUTION

Given that,  P
1
 = 400 W

   P
2
 = −35 W

Total active power,  P = P
1
 + P

2

    = 400 + (−35) = 365 W

, cos cos tanPower factor
P P

P P
31

1 2

2 1φ =
+

−- c m< F

                   
0.436cos tan 3

400 35

35 4001
#=

−

− −

=

- c m< F
Here,    cosφ  = 0.436

 ∴    φ  = cos−10.436 = 64.2
o
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Consider the power triangle shown in Fig. 1.

With reference to Fig. 1, we can write,

tan
P

Qφ =
 

∴  Reactive power, Q = P tanφ

                   = 365 ´ tan(64.2
o
) = 755 VAR 

, 838.6Volt amperes S P Q VA365 7552 2 2 2- = + = + =

EXAMPLE 4.48

Calculate the total power input and reading of the two wattmeters connected to measure power in 

a three-phase balanced load, if the reactive power input is 15 kVAR and the load power factor is 0.8. Also 

compute load kVA.

SOLUTION

Given that, Reactive power, Q = 15 kVAR

     Power factor,  cosφ = 0.8

∴  Power factor angle, φ = cos−10.8 = 36.9
o

Consider the power triangle shown in Fig. 1. With reference to Fig. 1, we can write,

tan
P

Qφ =

,
tan

Active power P Q
`

φ
=

                                .
19.9781

tan
kW

36 9

15
o

= =

, . 24.9825LoadkVA S P Q kVA19 9781 152 2 2 2
= + = + =

In two-wattmeter method of power measurement, we know that the sum of two wattmeter readings  

is equal to active power, P.

∴  P
1
 + P

2
 = P  =  19.9781 kW   ..... (1)

We know that,

, cos cos tanPower factor
P P

P P
31

1 2

2 1φ =
+

−- c m< F

( )cos cos tan
P P
P P

31 1

1 2

2 1φ =
+

−- - c m

 
( )tan cos cos

P P
P P

31

1 2

2 1φ =
+

−-7 A

( )tan cos cosP P
P P

3

1
2 1

1 2
` φ− =

+ -7 A

                  
. ( . ) 8.6508tan cos kW
3

19 9781 0 81
#= =-7 A

         ..... (2)

On adding equations (1) and (2), we get,

2P
2
 = 19.9781 + 8.6508

. .
14.3145P kW

2

19 9781 8 6508
2` =

+
=

From equation (1), we get,

P
1
 = 19.9781 − P

2

     = 19.9781 − 14.3145 = 5.6636 kW

S

f

P

Q

Fig. 1 : Power triangle.

S

f

P

Q

Fig. 1 : Power triangle.
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V
BR

I
R

I
BR

I
RY

V
YB

Reference

Fig. 3 : Rms phasors of voltages and currents.

120 o

E20.1
o

E

6
3
.4
o

E

1
2
0
o

E

15
0
o

V
RY

EXAMPLE 4.49

Find the reading of the wattmeter in the circuit shown in  

Fig. 1. Assume a symmetrical 360 V supply with RYB sequence. Draw 

the phasor diagram.

SOLUTION

The phase sequence is RYB. The line voltages for the RYB 

sequence are , .V V and VRY YB BR  Let us take VRY  as the reference 

phasor.

, 360 0Now V VRY
o

+=

360 120V VYB
o

+= −

360 240V VBR
o

+= −

The polarity of voltages and direction of currents are shown in Fig. 2. 

With reference to Fig. 2,

7.2 14.4 16.0997 63.4I
j

V
j

j A A
10 20 10 20

360 0 o
RY

RY
o

+
+=

+
=

+
= − = −

12.4708 7.2 14.4 150I
j
V

j
j A A

25 25
360 240 o

BR
BR

o
+

+=

−

=

−

−

= − − = −

By KCL at node-R, we get,

I I IR BR RY+ =

     I I IR RY BR` = −

    =  7.2 – j14.4 A – (– 12.4708 – j7.2)

    =  19.6708 –j7.2

    =  20.9471Ð–20.1o
 A

, cosThe wattmeter reading P V I1 YB R 1# θ=

, 360Here V VYB =

   20.9I A471R =

     120 . 99.920 1
o o o

1θ = − − − = −^ h

∴   P
1
 = 360 ´ 20.9471 ´ cos (−99.9

o
) = −1296.5 W

R

Y
B

IY

IB

IR

VBR

VYB

R

Y

B

VRY

VBR

IRY

IBR

Fig. 2.

1
0
+
j2
0
�

E �j25

CC
P1

PC

VRY

+

E

+

E

E

+

E

+

E

+

P1CC

PC 10 �

j20�

E

�
j2
5

R

Y

B

Fig. 1.
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EXAMPLE 4.50

A  440V, three-phase, three-wire system has a current of 10Ð −30
o 
A in R-phase, 14Ð−60

o 
A  in the Y-phase. 

Find, a) the current in B-phase and b) the reading of two wattmeters with current coils in R and Y phase 

and voltage coils connected to B-phase. Phase sequence is RYB with VRY  as the reference phasor.

SOLUTION

The line currents are , .I I and IR Y B

, 10 30Given that I Ao
R += −

  1 0I A4 6
o

Y += −

We know that in a three-phase three-wire system, the sum of the line currents is zero.

I I I 0R Y B` + + =

I I IB R Y` = − +^ h

    10 30 14 60
o o

+ += − − + −^ h

    . .j15 6603 17 1244= − +

    23.2054 132.4 Ao
+=

The line voltages for the RYB sequence with VRY  as the reference phasor are, 

4 0 0V V4RY
o

+=

4 0 120V V4YB
o

+= −

4 0 240V V4BR
o

+= −

The connections of two wattmeters with polarity of voltages and direction of currents are shown in Fig. 1.

With reference to Fig. 1, the reading of wattmeter, P
1
 is given by,

cosP V I1 RB R 1# θ=

, .where phase difference between V and I1 RB Rθ =

1 180 1 180 440 240 440 60V V V Vo o o o
RB BR BR# #+ + + += − = = − = −

440V VRB =
 

10I AR =          

IR

IY

CC

PC

CC

P1

P2

VRB

PC

Three
phase
load

Fig. 1.

VBRVRY

VYB

IB

R

Y

B

+

E

+

E

E

+ E

+
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θ
1
 = −60

o
 − (−30

o
) = −30

o

  440 10 ( 30 ) 3810.5 . 3.8105cosP W kW kW
1000
3810 5o

1` # #= − = = =

With reference to Fig. 1, the reading of wattmeter, P
2
 is given by,

cosP V I2 YB Y 2# # θ=

, .where phase difference between V and I2 YB Yθ =

, 440 120Here V VoYB += −

            1 0I A4 6
o

Y += −

440 , 14 , 120 ( ) 0V IV A 60 6o o o
YB Y 2` θ= = = − − − = −

440 14 ( 60 ) 3080 3.08cosP W kW kW
1000
3080o

2` # #= − = = =

EXAMPLE 4.51

A delta-connected load consists of 10 10 , 15 15 , 0 10Z j Z j and Z j2RY YB BRΩ Ω Ω= + = − = +  and it 

is connected to a 400 V, three-phase supply of phase sequence RYB. Calculate the readings of the wattmeter  

with current coil in line R and B.

SOLUTION

The phase sequence is 

RYB.The line voltages for the RYB 

sequence are , .V V and VRY YB BR  Let 

us take VRY  as the reference phasor. 

In delta connection, the line and 

phase voltages are the same. Hence, 

the line and phase voltages are,

400 0V VRY
o

+=

400 120V VYB
o

+= −

400 240V VBR
o

+= −

The connections of wattmeters with polarity of voltages and direction of currents are shown in Fig. 1.

With reference to Fig. 1, we can say that the current through the wattmeters are .I and IR B  The voltage 

across the wattmeters are .V and VRY BY  Hence, the wattmeter readings P
1
 and P

2
 are,

cosP V I1 RY R 1# # θ=

cosP V I2 BY B 2# # θ=

, .where Phase difference between V and I1 RY Rθ =

             .Phase difference between V and I2 BY Bθ =

R

Y

B

I
Y

I
B

I
R

V
BR

V
YB

R

Y

B

V
RY

V
RY V

BR

I
RY

I
BR

Fig. 1.

CC
P
1

PC

CC

PCV
BY

P
2

Z
RY

Z
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YB

V
RY

+

E

+

E +

E +

E

E

+

+
E

+

E

+ E
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Using Ohm’s law, the phase currents can be obtained as a ratio of phase voltage and impedance.

Therefore, phase currents are,

20 20I
Z

V
j

j A
10 10
400 0

RY
RY

RY
o

+
= =

+
= −

4.8803 18.2137I
Z

V
j

j A
15 15

400 120
YB

YB

YB
o

+
= =

−

−

= −

1.0 17.8I
Z

V
j

j A
20 10

400 240 718 564BR
BR

BR
o

+
= =

+

−
= − +

With reference to Fig. 2, by KCL, the line current IR  is given by,

 I I IR RY BR= −

 =  20 – j20 – (–1.0718 + j17.8564)

 =  21.0718 – j37.8564 A

 =  43.3258Ð–60.9o
 A

With reference to Fig. 3, by KCL, the line current IB  is given by,

 I I IB BR YB= −

 =  –1.0718 + j17.8564 – (4.8803 – j18.2137)

 =  – 5.9521 + j36.0701 A

 =  36.5579Ð99.4o
 A

The wattmeter reading P
1
 is given by,

cosP V I1 RY R 1# # θ=

, 400 0 43.3258 60.9Here V and IV A
o o

RY R+ += = −

4 0V V0RY` =

         43.3258I AR =

           θ
1
 = 0

o
 − (−60.9

o
) = 60.9

o

   . .cosP 400 43 3258 60 9
o

1
` # #=  

           .
.

8.42W kW kW8428 3
1000

8428 3
83= = =

The wattmeter reading P
2
 is given by,

cosP V I2 BY B 2# # θ=

I I IR BR RY+ =

I I IB YB BR+ =

I
BR

I
RY

R

Fig. 2.
BY

I
R

I
BR

I
B

Fig. 3.

B

R

Y

I
YB
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,Here V V V and

I

V1 1 180 400 120 400 60o o o

o

BY YB YB

B

# #+ + += − = − = − =

. . A36 5579 99 4+=

400V VBY` =

        36.55I 79B =            

           θ
2
 = 60

o
 − 99.4

o
 = –39.4

o

    . .cosP 400 36 5579 39 4
o

2
` # #= −^ h

          11299.
.

11.299W kW kW8
1000

11299 8
8= = =

The readings of wattmeter are,

P
1
 = 8.4283 kW 

P
2
 = 11.2998 kW 

EXAMPLE 4.52

A delta-connected generator with 

phase sequence of RBY is connected to a delta-

connected load with phase sequence RYB as 

shown in Fig. 1. Determine the voltages of 

generator and load by taking 120 0 .V VoRY +=

Also calculate the phase and line currents of 

the load.   

SOLUTION

The phase sequence of generator is 

RBY (or reversed sequence). Therefore, the phase and line volttages of the generator are,

E ERB 1
+ δ=

E EBY 2
+ δ=

E EYR 3
+ δ=

The phase sequence of load is RYB (or normal sequence). Also it is given that V 120 0
o

RY +=  and 

so it is the reference phasor. By taking VRY  as the reference phasor, the phase and line voltages of load are,

120 120 0V VoRY 1
+ +θ= =

120 120 0V V12
o

YB 2
+ +θ= = −

120 120V V240
o

BR 3
+ +θ= = −

R

Y
B

IY

IB

IR

VBR

R

Y

B

IRY

IBRIYB

Fig. 1.

E

+

E

+

VRY

+

E

VYB

E

+

ERB

EYR

E

+

EBY

E

+

E �j5 E �j5

E �j5

5�

5�

5�

h connected
generator
with phase
sequence
RBY

In a delta connection, the phase 

and line voltages are the same.

(AU Dec’16, 8 Marks)
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The phasor diagram of generator and load voltages are 

shown in Fig. 2.

With reference to Fig. 2, we get,

120 60E E VoRB 1
+ +δ= = −

120 60E E VoBY 2
+ +δ= = +

120 0E E V18
o

YR 3
!+ +δ= =

Here the load impedances of all the phase are equal.

( )

( )
2.5 2.5Z Z Z

j

j
j

5 5

5 5
RY YB BR`

#
Ω= = =

+ −

−
= −

Now, the phase currents , , .I I and IRY YB BR  are given by the ratio of respective phase voltage and 

impedance.

Therefore the phase currents are,

. .
24 24 33.9411 45I

Z

V
j

j A A
2 5 2 5
120 0 o

RY
RY

RY
o

+
+= =

−
= + =

. .
8.7846 32.7846 33.9411 75I

Z

V
j

j A A
2 5 2 5

120 120 o
YB

YB

YB
o

+
+= =

−

−

= − = −

. .
32.7846 8.7846 33.9411 165I

Z

V
j

j A A
2 5 2 5

120 240 o
BR

BR

BR
o

+
+= =

−

−
= − + =

The line currents , ,I I IR Y B  of load can be computed by writing KCL equations at nodes R, Y and B.

With reference to Fig. 3, the line current IR  is given by,

(24 24) ( 32.7846 8.7846)I I I j jR RY BR= − = + − − +

56.7846 15.2154j A= +

58.7877 15 Ao
+=

With reference to Fig. 4, the line current IY  is given by,

( . . ) ( )I I I j j8 7846 32 7846 24 24Y YB RY= − = − − +

. 5 .j A15 2154 6 7846= − −

58.7877 1 5 A0
o

+= −

With reference to Fig. 5, the line current IB  is given by,

( . . ) ( . . )I I I j j32 7846 8 7846 8 7846 32 7846B BR YB= − = − + − −

. .j A41 5692 41 5692= − +

58.7877 1 5 A3
o

+=

In delta connection the phase and 

line voltages are same.

I
RY

I
R

R

Fig. 3.

I
BR

I
RY

Y I
YB

Fig. 4.

I
Y

I
BR

I
B

Fig. 5.

B

I
YB

120
o

E120
o

VYB V ERB RB
a

VBY BY
=E

VRY

VBR

VYR YR
=E

E60
o

60
o

Fig. 2: Rms phasors of voltages.
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EXAMPLE 4.53

A balanced delta-connected load takes a line current of 15 A  when connected to a balanced 

three-phase, 400 V system. A wattmeter with its current coil in one line and its pressure coil between the two 

remaining lines reads 2000 W. Describe the load impedance.

SOLUTION

Let the load impedance, /Z Z phase+φ Ω=      

Given that,  Line voltage, V
L
 = 400 V

     Line current,  I
L
 = 15 A

In a delta connection, the phase and line 

voltages are the same, and the phase current is 

1 3  times the line current.

\   Phase voltage, V = V
L
 = 400 V

, 8.6603Phase current I
I

A
3 3

15L= = =

Now, the magnitude of load impedance, Z is given by,

.
46.1878 /Z

I

V phase
8 6603

400
Ω= = =

Let the current coil of wattmeter be connected in line-R and its voltage coil be connected across line-Y 

and B as shown in Fig. 1.

Now, the reading of wattmeter, P is,

cosP V IYB R# # θ=

 where, θ = phase difference between .V and IYB R

Let the phase sequence of supply be RYB and VRY   be the reference phasor. Now, the line and phase 

voltages can be expressed as,

0V V V 0
o

RY L
o

+ += =

0 0V V V12 12
o

YB L
o

+ += − = −

0 0V V V24 24
o

BR L
o

+ += − = −

Now, the phase current IRY  for an impedance of Z∠φ W/phase can be expressed as,

I
Z

V

Z

V

Z

V
I

0
0
o

RY
RY

o

+ +

+
+ +

φ φ
φ φ= = = − = −^ h

,where
Z
V I phase current= =

In a balanced delta-connected load, the line current IR  will lag behind the phase current IRY  by 30
o
. 

Also the magnitude of line current is 3  times the phase current. Hence, the line current IR  can be expressed as,

15I I I A3 30 30 30
o o o

R L+ + +φ φ φ= − − = − − = − −^ ^ ^h h h

R

Y

B

I
R

V
YB

R

Y

B

V
RY

V
RY

I
RY

Fig. 1.

CC
P

PC

Z Z

Z

+

E

+

E

+

E
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, 400Now V V VYB L= =

  15I I AR L= =

    θ
1
 = − 120

o
 − (−φ −30

o
) = − 120

o
 + φ + 30

o
 = φ − 90

o

, cos sinPower P 400 15 90 400 15o
` # # # #φ φ= − =^ h

Given that,      P = 2000 W

  400 15 sin2000` # # φ=

 
sin

400 15

2000
`

#
φ =

, .sinNow impedance angle
400 15
2000 19 51 o

#
φ = =- c m

, . . /Load impedance Z Z phase46 1878 19 5
o

` + +φ Ω= =

       
. 30 200 16230 9401

o o
+ += − −

EXAMPLE 4.54

 If P
1
 and P

2 
are the readings of two wattmeters which measured power in a three-phase balanced 

system and if P
1
/P

2 
= a, show that the power factor of the circuit is given by,

                            cos
a a

a

2 1

1

2
φ =

− +

+

SOLUTION

In two wattmeter method of power measurement, the power factor cos φ is given by,

cos cos tan
P P

P P
3

1

1 2

2 1
=

+

−
- f p> H

tan
P P

P P
3

1

1 2

2 1
` φ =

+

−
- f p

tan
P P

P P
3

1 2

2 1
` φ =

+

−

cos

sin

P
P

P

P
P

P

3

1

1

2
2

1

2
2

1

`
φ

φ
=

+

−

f
f

p
p

( )

cos

sin

a

a

1

3 1

φ

φ
=

+

−

( 1) (1 )sin cosa a3` φ φ+ = −

On squaring both sides we get,

( 1) (1 )sin cosa a32 2 2 2φ φ+ = −

15I AL =

cos sin90
oφ φ− =^ h

P

P
a

2

1 =

(AU June’16, 8 Marks)
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(a + 1)2 (1 − cos2φ)  = 3(1 − a)2 cos2φ

(a + 1)2 − (a + 1)2 cos2φ = 3(1 − a)2 cos2φ

(a + 1)2 = 3(1 − a)2 cos2φ + (a + 1)2 cos2φ

(a + 1)2 = [3(1 − a)2 + (a + 1)2] cos2φ

3(1 ) ( 1)

( 1)
cos

a a

a2
2 2

2

` φ =
− + +

+

                 
( )

( )

a a a a

a

3 1 2 2 1

1
2 2

2

=

+ − + + +

+

                 
( )

a a a a

a

3 3 6 2 1

1
2 2

2

=

+ − + + +

+

                 
( )

a a

a

4 4 4

1
2

2

=

− +

+

                 
( )

( )

a a

a

4 1

1
2

2

=

− +

+

On taking square root on both sides we get,

cos

a a

a

2 1

1

2
φ =

− +

+

4.27    Summary of Important Concepts

1. The sources in which current/voltage sinusoidally varies with time are called sinusoidal  

  sources.

2. Frequency is the number of cyclic changes that a sinewave will undergo in one second.

3. The time for one cycle is called time period and it is also given by the inverse of frequency.

4. The angular rotation of a sinusoidal vector in one second is called angular frequency.

5. The circuits excited by sinusoidal sources are called ac circuits.

6. The relation between frequency f and angular frequency ω is given by, ω  =  2πf. 

7. The plot of the instantaneous value of the sinusoidal voltage/current with respect to ωt or 

  t is called waveform.

8. In an ac source, when the rms value of voltage is constant and the rms value of current  

  varies, it is called an ac voltage source.

9. In an ac source, when the rms value of current is constant and the rms value of voltage  

  varies, it is called an ac current source.

10. In an ideal ac voltage source, the source impedance is zero.

11. In an ideal ac current source, the source impedance is infinite.

12. An ac voltage source with internal impedance Zs  can be represented by an ideal ac voltage 

  source in series with an external impedance of value .Zs

   sin2φ + cos2φ = 1

∴ sin2φ = 1 − cos2φ
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13. An ac current source with internal impedance Zs  can be represented by an ideal ac current 

  source in parallel with an external impedance of value .Zs

14. An ac voltage source E in series with impedance Zs  can be converted into an equivalent

  current source I I E Zs s s=a k in parallel with impedance .Zs

15. An ac current source Is  in parallel with impedance Zs  can be converted into an equivalent

  

  voltage source E E I Zs=a k in series with impedance .Zs

16. The instantaneous value of a sinusoidal voltage(n) is expressed as, n  =  V
m
 sin(ωt ± φ).

17. The instantaneous value of a sinusoidal current(i) is expressed as, i  =  I
m
 sin(ωt ± φ).

18. The average value of a time varying quantity is the average of the instantaneous value for a  

  particular time period.

19. The rms value of a time varying quantity is the equivalent dc value of that quantity.

20. Form factor is defined as the ratio of rms value and average value of a periodic waveform.

21. Peak factor is defined as the ratio of peak value and rms value of a periodic waveform.

22. Inductance is the property of an element (or matter) by which it opposes any change in flux  

  or current.

23. The inductance of a coil is defined as the ratio of flux linkages and current through the coil.

24. A coil is said to have an inductance of one Henry if a current of one ampere flowing through it  

  produces a flux linkage of one weber-turn in it.

25. Faraday’s law says that an emf is induced in a conductor when there is a change in flux  

  linkage and the emf is equal to the rate of change of flux linkage.

26. The n-i relation in an inductor is governed by Faraday’s law. Therefore, the voltage acorss 

  an inductor is directly proportional to the rate of change of current through it.

27. Energy W stored in an inductance L carrying a steady current I is given by, .W
LI

2

2

=

28. Capacitance is the property of an element (or matter) by which it opposes any change in  

  charge or voltage.

29. The capacitance of a capacitor is defined as the ratio of stored charge and potential difference  

  across it.

30. A capacitor is said to have a capacitance of one Farad if a charge of one Coulomb establishes a  

  potential difference of one volt across it.

31. The current through a capacitor is directly proportional to the rate of change of voltage  

  across it.
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32. The energy W stored in a capacitance C having a steady voltage V across it is given by,  

  .W
CV

2

2

=

33. The phase (or phase angle) of a vector is the angular position of the vector with respect to  

  reference at time t = 0.

34. Rotating vectors are functions of phase angle and so they are called phasors.

35. The diagram in which all the voltage and current phasors of a circuit are drawn with respect  

  to the reference phasor is called a phasor diagram.

36. The complex power S  is defined as the product of rms voltage V and conjugate of rms 

  current I
)

 . ., .i e S V I=
)a k

37. The magnitude of complex power S  is called apparent power S. It is also given by the 

  product of voltage and current . ., .i e S S V I VI= = =
)d n

38. The unit of apparent power is volt-ampere (VA). The higher units are kVA and MVA.

39. The complex power S  can be expressed as ,cos sinS VI VI jVI P jQ! ! !+ φ φ φ= = =

  where, φ is the phase difference between V and ,I  P  =  VI cosφ and Q  =  VI sinφ.

40. The real part of complex power S  is called active power  P (or simply power) and the unit

  of power is Watts (W). The higher units are kW and MW.

41. The imaginary part of complex power S  is called reactive power Q and the unit of reactive 

  power is Volt-Ampere-Reactive (VAR). The higher units are kVAR and MVAR.

42. Power factor is defined as the ratio of (active) power and apparent power. It is also given 

   by cosine of the phase difference between voltage and current.

43. When a resistance is excited by an ac source, the current and voltage will be in-phase.

44. Resistance consumes only active power and the reactive power in a resistance is zero.

45. When an inductance is excited by an ac source, the current lags the voltage by 90o.

46. Inductance consumes only reactive power and the active power in an inductance is zero.

47. When a capacitance is excited by an ac source, the current leads the voltage by 90o.

48. Capacitance delivers only reactive power and the active power in a capacitance is zero.

49. The impedance of an element is defined as the ratio of sinusoidal voltage and current in that  

  element.

50. Impedance is a complex quantity. The real part of impedance is resistance and the 

  imaginary part is reactance.

51. Admittance is the inverse of impedance and it is defined as the ratio of sinusoidal current 

 and voltage.
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52. Admittance is a complex quantity. The real part of admittance is conductance and the  

  imaginary part is susceptance.

53 The three-phase sources are three-phase alternators generating three emfs having equal  

  magnitude but with a phase difference of 120o with respect to each other.

54. The three-phases are named R phase, Y phase and B phase in British convention and  

  A phase, B phase and C phase in American convention.

55. In a polyphase system, when the magnitude of emfs is equal and the phase difference  

  between consecutive emfs is equal then the system is called a balanced system and the emfs  

  are called balanced emfs.

56. Three-phase sources are always designed to generate balanced emfs.

57. For operational convenience and cost effective system, the three-phase sources are operated in 

  star/delta connection.

58. In a star connection, the meeting point of the three sources is called neutral and there is no such  

  neutral point in a delta connection.

59. The transmission lines or connecting wires from the source terminals to the load terminals are  

  called lines.

60. The voltage generated by each phase of a three-phase source is called phase voltage and  

  the voltage between the lines connecting the load is called line voltage.

61. The current delivered by each phase of a three-phase source is called phase current and the  

  current flowing through the line is called line current.

62. In three-phase rotating phasors, the order of reaching the reference point is called phase  

  sequence.

63. In three-phase rotating phasors, when the order of reaching the reference is R phase, Y phase  

  and B phase, the phasors are said to have normal phase sequence or RYB sequence.  

  When the order of reaching the reference is R phase, B phase and Y phase, the phasors are  

  said to have reversed phase sequence or RBY sequence.

64. The maximum value phasors are rotating phasors and the rms phasors are non-rotating phasors.

65. The rms phasors can be drawn by taking a snapshot of rotating phasors at ωt = 0 and reducing 

  the length by .2

66. The salient features of a star-connected three-/four-wire source are, 

 g The voltages are always balanced in star-connected sources.

 g The currents may be balanced or unbalanced depending on load.

 g The phase and line currents are the same in a star system.

 g The magnitude of line voltage is 3  times the magnitude of phase voltage.

 g The phase voltage of source lags the line voltage by 30
o
. 

 g In a balanced four-wire system, the neutral current is zero.
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67. The line and phase voltages of a star-connected three-/four-wire source for the RYB sequence  

  with VRY  as the reference phasor are,

   Line voltages           Phase voltages

 0 0V V VRY RY L

o o
+ += =  30 30E E ER R

o o
+ += − = −

 120 120V V VYB YB L

o o
+ += − = −  150 150E E EY Y

o o
+ += − = −

 240 240 120V V V V
o

BR BR L

o o

L+ + += − = − =  270 270 90E E E EB B

o o o
+ + += − = − =

where, E
R
  =  E

Y
  =  E

B
  =  E

 V V V V E3RY YB BR L= = = =  

68. The line and phase voltages of a star-connected three-/four-wire source for the RBY  

  sequence with VRB  as the reference phasor are,

   Line voltages          Phase voltages

 0 0V V VRB RB L

o o
+ += =  30 30E E ER R

o o
+ += − = −

 120 120V V VBY BY L

o o
+ += − = −  150 150E E EB B

o o
+ += − = −

 240 240 120V V V VYR YR L L

o o o
+ + += − = − =  270 270 90E E E EY Y

o o o
+ + += − = − =

where, E
R
  =  E

B
  =  E

Y
  =  E

 V V V V E3RB BY YR L= = = =

69. In a star-connected four-wire system,

,

,

Neutral current I for balanced system

Neutral current I I I I for unbalanced system

0N

N R Y B

=

= + +

-

-

70. The salient features of a delta-connected source are,

 g The voltages are always balanced in delta-connected sources.

 g The currents may be balanced or unbalanced depending on load.

 g The phase and line voltages are the same in a delta system.

 g The magnitude of line current is 3  times the magnitude of phase current.

 g The line current lags the phase current by 30
o
 in a balanced delta system.

71. The line and phase voltages of a delta-connected source for the RYB sequence with VRY  

  as the reference phasor are,

 Line voltages Phase voltages

 

V V V

V V V

V V V

0 0

120 120

240 240

o o

o o

o o

RY RY L

YB YB L

BR BR L

+ +

+ +

+ +

= =

= − = −

= − = −

  

=E E E

E E E

E E E

0 0

120 120

240 240

o o

o o

o o

R R

Y Y

B B

+ +

+ +

+ +

=

= − = −

= − = −

where, E
R
  =  E

Y
  =  E

B
  =  E  =  V

L

 V V V V ERY YB BR L= = = =
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72. The line and phase voltages of a delta-connected source for the RBY sequence with VRB  

  as the reference phasor are,

 Line voltages Phase voltages

 

V V V

V V V

V V V

0 0

120 120

240 240

o o

o o

o o

RB RB L

BY BY L

YR YR L

+ +

+ +

+ +

= =

= − = −

= − = −

  

=E E E

E E E

E E E

0 0

120 120

240 240

o o

o o

o o

R R

B B

Y Y

+ +

+ +

+ +

=

= − = −

= − = −

where, E
R
  =  E

B
  =  E

Y
  =  E  =  V

L

 V V V V ERB BY YR L= = = =

73. In a balanced load, the magnitude of load impedance of each phase will be equal and also  

  the load impedance angle of each phase will be the same.

74. In an unbalanced load, the load impedance of each phase may have different magnitudes  

  and/or different impedance angle.

75. Using analysis of three-phase circuits, it is conventional practice to choose one of the line  

  voltages of the source as the reference phasor. There are six choices for the reference  

  phasor. (Refer Table 12.1 for various choices for the reference phasor).

76. The apparent, active and reactive power in three-phase balanced star/delta-connected load are 

  given by,

,Apparent power S V I3 L L=

( ) , cosActive Power P V I3 L L φ=

sinQ V I3Reactive power, L L φ=

77. For the same load impedance and supply voltage, the power consumed by a delta-connected  

  load will be three times the power consumed by a star-connected load. Alternatively, power  

  consumed by a star- connected load will be one-third the power consumed by a delta- 

  connected load.

 Let, P
D
  =  Power consumed by a delta-connected load.

  P
Y
  =  Power consumed by a star-connected load.

 Now,

( )P P or P P3
3
1

D Y Y D= =

78. The power in an unbalanced star-connected load is,

 , cos cos cosPower P V I V I V IR R 1 Y Y 2 B B 3φ φ φ= + +

,where V V V VR Y B L= = =

 φ
1
  =  Phase difference between .V and IR R

 φ
2
  =  Phase difference between .V and IY Y

 φ
3
  =  Phase difference between .V and IB B  
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79. In a three-wire star-connected unbalanced load, the voltage of load neutral with respect to  

  source neutral is called neutral shift voltage or neutral displacement voltage.

80. The neutral shift voltage can be obtained by subtracting a phase voltage of load from the  

  corresponding phase emf of the source.

 Let,  ER  = R-phase source emf

  VR  = R-phase load emf.

 Now,

E VNeutral shift voltage R R= −

81. The power in an unbalanced delta-connected load is,

 , cos cos cosPower P V I V I V IRY RY 1 YB YB 2 BR BR 3φ φ φ= + +

,where V V V VRY YB BR L= = =

 φ
1
  =  Phase difference between .V and IRY RY

 φ
2
  =  Phase difference between .V and IYB YB

 φ
3
  =  Phase difference between .V and IBR BR

82. The power in any three-phase load (balanced/unbalanced and star/delta) can be measured  

  using only two wattmeters. The power is given by the sum of the two wattmeter readings. 

83. In two wattmeter method of power measurement, the power factor of a balanced three-phase  

  load in terms of two wattmeter readings P
1
 and P

2
 is,

  

, cos cos tanPower factor
P P

P P
3

1

1 2

2 1φ =
+
−- c m; E

tan
P P
P P

3Also, Power factor angle,
1

1 2

2 1φ =
+
−- c m

84. In two wattmeter method of power measurement, the following observations can be  

  made regarding the power factor of a balanced load.

 • When wattmeter readings are equal, the power factor is unity.

 • When one of the wattmeter readings is zero, the power factor is 0.5.

 • When one of the wattmeter readings is negative, the power factor is less than 0.5.

 • When both the wattmeter readings are positive, the power factor is greater than 0.5.

4.28    Short-answer Questions

Q4.1 A sinusoidal voltage is represented by the equation 100 sin(503t + 30o) volts.  What is the frequency 

 and time period?

Solution

 The general form of sinusoidal voltage is,

( )v sint V tm ω φ= +^ h        ......(1)



4. 140  Circuit Theory

+
-

v(t) = 10 cos t 1W

Fig. Q4.3.2.

i(t)

j L = j 1 1
= j

w ´ ´
- = -

´
j

c
j

1 1

1 1w

= j-

+
-

v(t) = 10 cos t 1W

Fig. Q4.3.3.

i(t)Þ

 Given that,

         v(t)  =  100 sin (503t  +  30o)      ......(2)

 On comparing equations (1) and (2), we get,

          ω  =  503 rad/s

 Since, ω  =  2πf

, 80Frequency f Hz
2 2

503
π

ω

π

= = =

, 0.0125 12.5 10 12.5Time period T
f

ms
1

80
1

second second
3

#= = = = =-

Q4.2 A sinusoidal current is given by the equation i(t) = 7.072 sin 314t A. What is the rms and average value 

 of the current?

Solution

 The general form of sinusoidal current is, i(t)  =  I
m

 sin (ω t + φ)   .....(1)

 Given that, i(t)  =  7.072 sin 314t      .....(2)

  On comparing equations (1) and (2), we get, I
m

  =  7.072 A

, . 5Rms value of current I
I

A
2 2

7 072m
` = = =

, . 4.502Average value of current I
I

A
2 2 7 072

ave
m #

π π

= = =

Q4.3 Determine the current i(t) for the circuit shown in Fig. Q4.3.1.

Solution

 The general form of cosinusoidal voltage is,

( )v cost V tm !ω φ= ^ h  .....(1)

Given that, v(t)  =  10 cos t  .....(2)

  On comparing equations (1) and (2), we get, ω = 1 rad/sec

The circuit with L and C represented by their reactance is shown in Fig. Q4.3.2. Now it can be observed  

 that the inductive and capacitive reactance cancel each other and the circuit is purely resistive  

 as shown in Fig. Q4.3.3.

With reference to Fig. 3, by Ohm’s law,

( )
( )

10i
v cos cost
R
t t t A

1
10= = =

+
E

10 cos t

1 F

1�

Fig. Q4.3.1

1 H

i(t)

(AU May’17, 2 Marks)
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Q4.4 Define form factor.

 Form factor is defined as the ratio of rms value and average value of a periodic waveform.

,Form factor k
Average value
Rms value

f` =

Q4.5 Define peak factor.

 Peak factor is defined as the ratio of peak value (or maximum value) and the rms value of a periodic 

 waveform.

,Peak factor k
Rms value

Maximum value
p` =

Q4.6 What will be the inductance of a coil with 1000 turns while carrying a current of 2 A and producing a 

 flux of 0.5 mWb?

Solution

 Given that, N  =  1000,  φ  =  0.5 mWb,  I  =  2 A

. 0.25
I

N
H

2
1000 0 5 10Inductance,L

3
# #φ

= = =
-

  

Q4.7 A steady current of 3 A flows through an inductance of 0.2 H. What will be the energy stored 

 in the inductance?

Solution

 Given that, I  =  3 A,  L  =  0.2 H

0.2 3 0.9W LI Joules
2
1

2
1Energy stored in inductance, 2 2

# #= = =

Q4.8 A 100  µF capacitance is charged to a steady voltage of 500 V. What will be the energy stored in 

 the capacitance?

Solution

 Given that, C  =  100 µF , V  =  500 V 

100 10 500 12.5W CV Joules
2
1

2
1Energy stored in capacitance, 2 6 2

# # #= = =-

Q4.9 When a sinusoidal voltage v = 200 sin (377t + 30
o
) V is applied to a load, it draws a current of

 10 (sin 377t + 60
o
) A. Determine the active and reactive power of the load.

  The rms current and voltage phasors in polar form are,

30 ; 60V IV A
2

200

2

10o o
+ += =

, 30 30 60Complex power S V I
2

200

2

10 60
2

200

2

10*
*

o o o o
# #+ + + += = = −c m

                                   1000 30 866 500j VA
2

2000 30 60o o o
+ += − = − = −^ h
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  Since,  S   =  P  +  jQ ; Active power, P  =  866 W

            Reactive power, Q  =  −500 VAR    (or 500 VAR-Capacitive)

Q4.10  A load consisting of 3 Ω resistance and 4 Ω inductive reactance draws a current of 10  A when 

 connected to a sinusoidal source. Determine the voltage and power in the load.

, 5Magnitude of impedance Z R X 3 42 2 2 2
L Ω= + = + =

Voltage, V  =  IZ  =  10  ×  5  =  50 V

Power,   P  =  I
2
R  =  10

2
  ×  3  =  300 W

Q4.11  When a sinusoidal voltage of 120  V is applied across a load, it draws a current of 8 A with a phase 

 lead of 30
o
. Determine the resistance, reactance and impedance of the load.

Let, V  be the reference phasor.

120 0 8 30V and IV A
o o

` + += = +

15 30 12.99 7.5Z
I
V j

8 30

120 0Impedance,
o

o
o

+

+
+ Ω= = = − = −

, ; , 12.99Since Z R jX RResistance Ω= + =  

                                       Reactance, jX  =  –j7.5 W   (or 7.5 W-Capacitive)

Q4.12 When a sinusoidal voltage of 100 V is applied across a load, it draws a current of 10 A with 30
o
 

phase lag. Determine the conductance, susceptance and admittance of the load.

 Let, V  be the reference phasor.

100 0 10 30V and IV A
o o

` + += = −

 0.1 30 0.0866 0.05Y
V
I j

100 0

10 30Impedance,
o

o
o

M
+

+
+= =

−

= − = −

 , ; 0.0866Since Y G jB GConductance, M= + =

                      Susceptance,  jB  =  j0.05 M     ( or 0.05 M  - inductive)

Q4.13 An inductive load consumes 1000 W power and draws 10 A current when connected to a 250 V, 25 

Hz supply. Determine the resistance and inductance of the load.

 We know that, P = I
2
R 

      10R
I

P

10

1000Resistance,
2 2

` Ω= = =

    25Z
I
V

10
250Impedance,` Ω= = =

 ,We know that Z R X
2

L
2

= +

    22.9129Inductive X Z R 25 10reactance, L
2 2 2 2

` Ω= − = − =

    . 0.1459L
f

X
H

2 2 25
22 9129Inductance, L

#π π

= = =                                   
X

L
 = ωL = 2πfL
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Fig. Q4.17.

100V

4A 4A1A

+

E

R L C
~

Q4.14 In an RC series circuit excited by a sinusoidal source, the voltages across 

resistance and capacitance are 60 V and 80 V, respectively. What will be 

the supply voltage?

 Let current, I  through the RC series circuit be the reference phasor. 

With reference to the phasor diagram shown in Fig. Q4.14, we can write,

, 60 0 80 90Supply voltage V V V o o
R C + += + = + −

               =  60  –  j80  =  100∠–53.1 o V

Q4.15 In an RL series circuit with R = 20 Ω and X
L
 = 30 Ω, for what value of R will the impedance of RL 

series combination be doubled ?

 20 30 , 36.0555When R and X Z R X 20 30L
2

L
2 2 2

Ω Ω Ω= = = + = + =

 Let, R
2
 be the value of resistance when impedance is doubled.

  , ( ) . 65.5744Now R Z X2 2 36 0555 302
2

L
2 2 2

# Ω= − = − =^ h

Q4.16 An RC series circuit with R = 1.2 kΩ and C = 0.1 µF is excited by a sinusoidal source of 45 V and 

frequency 1 kHz. Find the apparent power.

 

,

.
2 10 0.1 10

.

Magnitude of impedance

Z R X 1 2 10 1 1993 246
6

2
C
2 3 2

3

2

#

# # #π
Ω= + = + =

-
^ ch m  

  ,Magnitude of current I
Z
V=

 ,
.

1.0159Apparent power S VI V
Z
V

Z
V

VA
1993 246

452 2

#= = = = =

Q4.17 Determine the impedance of the RLC parallel circuit shown in Fig. Q4.17.

25 ; 100 ; 25R X X
4
100

1
100

4
100

L CΩ Ω Ω= = = = = =

16 12

R jX jX j j

Z j
1 1 1

25
1

100
1

25
1

1 1

L C

Ω

+
−

+ +
−

+

= = −

20Z Z 16 12
2 2

Ω= = + =

 Alternate method :

 Let total current be .I

;I j j j I IA A4 1 4 4 3 4 3 52 2
= + − = − = = + =

 
,Now Z

I
V

5
100 20Ω= = =

X
fC2

1
C

π

=

E53.1
0

E
9
0
0

I

Fig. Q4.14.
V
C

VR

V
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Q4.18 Determine the power factor of an RLC series circuit with R = 5 Ω, X
L
 = 8 Ω  and X

C
 = 12 Ω.

  Z R jX jX j j j5 8 12 5 4Impedance, L C Ω= + − = + − = −

  , .tanPower factor angle
5
4 38 71 oφ = − = −-

  Power factor = cos φ = cos (−38.7
o
) = 0.7804 lead

Q4.19 What is balanced voltage?

 In a polyphase system when the magnitude of phase voltages is equal and the 

phase difference between consecutive phasors is equal, the voltages are called  

balanced voltages.

Q4.20 What is balanced impedance?

 When the impedances of all the phases of a three-phase load are equal, the impedances are 

called balanced impedances.

Q4.21 What is phase sequence?

 In a set of rotating phasors, the order of reaching the reference point is called phase sequence.

Q4.22 When is a three-phase system is called balanced supply system?

 A three-phase supply system is called a balanced supply system if the magnitude of voltages 

 is the same and phase difference between any two phase is 120o with respect to each other.

Q4.23 Write the relation between the line and phase values of voltage and current in a balanced star-

connected source/load.

 In a star-connected system, the line current and phase current are the same. In a balanced 

star-connected system, the magnitude of line voltage is 3  times the phase voltage and it 

leads the phase voltage by 30
o
.

Q4.24 Write the relation between the line and phase values of voltage and current in a balanced delta-

connected source/load.

 In a delta-connected system, the line voltage and phase voltage are the same. In a balanced 

delta-connected system, the magnitude of line current is 3  times the phase current and it

lags the phase current by 30o.

Q4.25 Distinguish between unbalanced source and unbalanced load.

 In a three-phase source, when the phase difference between any two phases is not equal 

to 1200 , the sources are called unbalanced sources. Whereas in a three-phase load if 

the impedance angles of all the phases are not equal then the load is called an unbalanced load.

Q4.26 Write the equations for the phasor difference between the potentials of the delta connected 

networks.

 The phasor voltages in delta-connected network are,

 0V V VoRY L+=

 120V V VoYB L+= −  

 240V V VoBR L+= −

(AU May’15, June’14 & May’17, 

            2 Marks)

(AU Dec’16, 2 Marks)

, , tanIf Z R jX then
R
X1

φ= + =
-

Since impedance angle is

negative, pf is lead.

(AU Dec’15, 2 Marks)

(AU Dec’14, 2 Marks)
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Q4.27  Write the distortion power factor equation of three-phase circuits.

 Distortion power factor = 
THD1

1
2

+

where, THD = Total Harmonic Distortion

When excited by a voltage source, the current gets distorded and so THD is calculated for  

  current as shown below :

.....
THD

I

I I I I

1

2

2

3

2

4

2 2

n
=

+ + + +

   Where, I
1
 = RMS value of fundamental

  I
n
 = RMS value of nth harmonic.

True power factor  =  Power factor of fundamental  ×  Distortion power factor

Q4.28 A star-connected load has 6 + j8 W impedance per phase. Determine the line current if it is 

connected to 400 V, 3φ, 50 Hz supply.

  10 /Z phase6 8Impedance, 2 2
Ω= + =

  
, 23.094Phase current I

Z
V

Z

V
A

3

3 10

400L

#

= = = =

  ∴  Line current,   I
L
 = I = 23.094 A

Q4.29 A star-connected load having a resistance of 20 W and an inductive reactance of 15 W is 

   connected to a 400 V, 3-phase, and 50 Hz supply. What is the line current, power factor and power  

   supplied?

Phase current, 
/ / 9.2376I

Z

V

R X

V
A

3

20 15

400 3
2 2 2 2

phase L

L

= =

+

=

+

=

In a star connection, the line current and phase current are the same.

, 9.2376Line current I I AL` = =

, 0.8cosPower factor
Z
R lag

20 15

20
2 2

φ = =
+

=

, 400 9.2376 0.8cosPower P V I3 3
L L # # #φ= =

                                               
       

=  5120 W  =  5.12 kW

Q4.30 A delta-connected load has 30 − j40 W impedance per phase. Determine the line current if it is 

connected to 415 V, 3φ , 50 Hz supply.

  50 /Z phase30 40Impedance, 2 2
Ω= + =

  
,Phase current I

Z
V

Z

V
A

50
400 8L= = = =

  , 8 13.8564Line current I I A3 3L` #= = =

Q4.31 A star-connected balanced load draws a current of 35 A per phase when connected to a 440 V 

supply. Determine the apparent power.

  

,Apparent power S V I3 3 440 35L L # #= =

26673.6 26.6736VA kVA= =

(AU Dec’14, 2 Marks)

(AU June’16, 2 Marks)

(AU May’15, 2 Marks)
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Q4.32 A balanced delta-connected load of 4 – j6 W impedance is connected to 400 V 3-phase supply. 

What is the power and power factor of the load?

  7.2111 /Z phase4 6
2 2

Ω= + =

    .
.I

Z

V A
7 2111

400
55 47= = =

  0.5547cos tanPower factor lead
4

61
=

−

=

-c m

  

, . .cos cosPower P V I VI3 3 3 400 55 47 0 5547L L # # #φ φ= = =

. .W kW36923 1 36 9231= =

Q4.33 In a three-wire system, the two line currents of an unbalanced load are I 10 67 A
o

R + −=  and 

.I 6 A5 13
o

B +=  Determine the line current .I Y  

  ,We know that I I I 0R Y B+ + =

  I I I 10 67 5 136
o o

Y R B` + += − + = − − +^ ^h h

             =  –0.3106 + j5.7318 A = 5.7402∠93.1o
 A

Q4.34 What is neutral shift voltage?

    In a three-wire star-connected load, the load neutral is not connected to the source neutral. 

Therefore, when the load is unbalanced, the load neutral will not be at zero potential.  

The voltage of the load neutral with respect to source the neutral is called neutral shift voltage 

or neutral displacement voltage.

Q4.35 When a three-phase star-connected unbalanced load is connected to a 400 V supply, the R-phase 

voltage is 200 ∠16
o 
V. Determine the neutral shift voltage.

 Let VRY  be the reference phasor.

 
,phase source voltage- 30TheR E V

3

400 o
R += −

 With reference to Fig. Q4.35,

 
,Neutral shift voltage V E VNN' R R= −

     3

400
30 200 16

o o
+ += − −

     
. 30 200 16230 9401

o o
+ += − −

     7.7477 170.597 170.773 87.4j V5 3 o
+= − = −

Q4.36 In a four-wire star-connected system, I 5 10 A, I 7 85 A, I 3 200 A.o o o
R Y B+ + += == What 

is the neutral current?

  ,Neutral current I I I IN R Y B= + +

                             5 10 7 85 3 200
o o o

+ + += + +

                                 . .j A2 7151 6 8155= +

                                 . . A7 3364 68 3
o

+=

+

-

+

-

V
R

N
V
NN¢

¢N

+-

Fig. Q4.35.

E
R ~



Chapter 4 - AC Single and Three-Phase Circuits                                                   4. 147

Q4.37 Write the expression for the power measured by two wattmeters used in 3-phase balanced load, 

in terms of voltage, current and power factor.

  P
1
 = V

L 
I
L
 cos(φ + 30

o
)

  P
2
 = V

L 
I
L
 cos(φ − 30

o
)

        where, φ is the power factor angle.

Q4.38 Write the expression for power factor in two-wattmeter method of power measurement.

  
, cos cos tanPower factor

P P

P P
31

1 2

2 1φ =
+

−- c m< F
Q4.39 Write the relation between the power factor and wattmeter readings in two wattmeter method 

of power measurement.

 1. When the wattmeter readings are equal, the power factor is unity.

 2. When one of the wattmeter reading is zero, the power factor is 0.5.

 3. When one of the wattmeter reading is negative, the power factor will be less than 0.5.

 4. When both the wattmeter readings are positive, the power factor will be greater than 0.5.

Q4.40 If P
1
 and P

2
 are two wattmeter readings and φ is the power factor angle of a three-phase load, 

write the relation between wattmeter readings and power factor angle. 

 1. When P
1
 = P

2
, then φ = 0

o
.

 2. When P
1
 = 0  and  P

2
 ≠ 0 (or P

1
 ≠ 0  and  P

2
 = 0), then φ = 60

o
.

 3. When P
1
 is negative and P

2
 is positive (or P

2
 is negative and P

1
 is positive), then φ > 60

o
. 

 4. When P
1
 and P

2
 are positive, then φ < 60

o
.

Q4.41 The readings of two wattmeter used for 3-phase power measurement are 5.2 kW and −1.6 kW. 

Determine the power and power factor of the load.

  Power, P = P
1
 + P

2
 = 5.2 + (−1.6) =3.6 kW

  
. .
. . 0.2923, tan cos tancos cos

P P

P P
Power factor 3 3

5 2 1 6
1 6 5 21 1

1 2

2 1
#φ

+

−
=

−
− − == - -c cm m< <F F

Q4.42 In a star-connected 3-phase balanced load the total power measured by two wattmeter is 2400 

W. What will be the power measured by two wattmeters if the load impedance is reconnected 

in delta.

 For same load impedance, the power consumed by delta-connected load will be three times 

the power consumed by star-connected load. Therefore the total power measured  

by wattmeters for delta-connected load will be 7200 W.

Q4.43 The line current of a delta-connected balanced load is 18A when connected to a 400 V supply. 

What will be the line current when the impedances are reconnected in star?

 When the balanced delta-connected impedances are reconnected in star, for the same supply 

voltage, the current drawn by the star-connected load will be one-third the current drawn by  

the delta-connected load.

  
6Line current in a star connection A

3

18
` = =
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4.29   Exercises

I.   Fill in the Blanks with Appropriate Words 

1. The sources in which the current/voltage do not change with time are called ________.

2. In sinusoidal voltage/current, the number of cycles per second is called ________ .

3. The ratio of rms value and average value of a periodic waveform is called ________.

4. The ratio of peak value and rms value of a periodic waveform is called ________.

5. In a current-carrying conductor, the induced emf is equal to the rate of change of ________.

6. In a capacitor, energy is stored as ________.

7. In an inductive circuit, current  ________  and in a capacitive circuit, current  ________  the supply  

 voltage.

8. The  ________  is defined as the ratio of active power and apparent power.

9. In an RLC circuit, when total reactance is negative, the current  ________  the voltage.

10. In an RLC parallel circuit, the inductance and capacitance  ________  are always in phase opposition.

11. In a balanced star-connected load, the line voltage is  ________  times the phase voltage.

12. The line voltage  ________  phase voltage by  ________  in a balanced star-connected system.

13. The  ________  current is zero in a balanced four-wire system.

14. In a balanced delta-connected load, the phase current is  ________  times the line current.

15. The line current  ________  phase current by  ________  in a balanced delta system.

16. In a balanced three-phase load, the power consumed in a delta connection is  ________  times the  

 power consumed in a star connection.

17. The voltage of load neutral with respect to source neutral is called  ________  voltage.

18. In a balanced three-phase load, for the same line voltage, the line current in a star connection  

 is  ________  times the line current in a delta connection.

19. The  ________  current is equal to the sum of three line currents in a four-wire system.

20. In a three-wire unbalanced star-connected load, the sum of a  ________  voltage of load  

 and  ________  voltage is equal to the corresponding phase voltage of the source.

21. In a balanced three-phase load, the total power consumed is equal to  ________  times the power  

 in one phase.

22. In three-phase load  ________  can be measured by using only  ________  wattmeters.

23. In two wattmeter method of power measurement, when pf is  ________  , one wattmeter reading  

 will be zero.

24. In two wattmeter method of power measurement, the readings of two wattmeters are  ________   

 when the pf is unity.

25. In two wattmeter method of power measurement, one wattmeter reading is negative when pf angle 

 is  ________  than  ________ .
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ANSWERS

1. dc sources  8. power factor 15. lags, 30
o
  22. power, two

2. frequency  9. leads 16. three  23. 0.5

3. form factor 10. current 17. neutral shift
  24. equal

 4. peak factor  11. 3  18. 1/3  25. greater, 60
o
 

 5.  flux linkages 12. leads, 30
o
 19. neutral 

 6. electric field 13. neutral 20. phase, neutral shift

 7. lags, leads 14. 1 3  21. three

II.  State Whether the Following Statements are True or False

1. The average value of sinusoidal voltage over one period is zero.

2. Flux and current are inseparable in nature.

3. Charge and voltage are inseparable in nature.

4. In an inductance, energy is stored as electric field.

5. In a capacitance, energy is stored as magnetic field.

6. In a resistance, voltage and current are always in phase.

7. In an inductance, voltage and current are always in phase quadrature.

8. The reactive power in a capacitive circuit is positive.

9. In an RLC circuit, when the total susceptance is positive, the current lags the voltage.

10. In an RLC series circuit, the inductance and capacitance voltage are always in phase opposition.

11. Rms phasors are rotating phasors.

12. In a balanced load, the magnitude and argument of the impedances of all the phases are equal.

13. In a three-phase system, the line voltages of the source and load are the same.

14. In a star-connected load, the line current and phase current are not the same.

15. In a delta-connected load, the line voltage and phase voltage are the same.

16. In a three-wire system, the sum of three line currents is zero.

17. In a four-wire system, the sum of three line currents and neutral current is zero.

18. In an unbalanced star-connected load, the sum of the three-phase voltages is zero.

19. In an unbalanced delta-connected load, the sum of the three-phase voltages is zero.

20. In a four-wire system, the voltages are always balanced irrespective of balanced or unbalanced  
 load.

21. Two wattmeters are sufficient for measuring power in balanced and unbalanced loads.

22. In a balanced load, the power factor is the same in all the phases.

23. In an unbalanced load, the power factor is the same in all the phases.

24. The power factor of unbalanced load can be estimated from two wattmeter readings.

25. In two wattmeter method of power measurement we cannot determine whether the power factor is  

 lagging or leading.  
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ANSWERS

1. True  6. True 11. False 16. True 21. True

2.  True  7.  True 12. True 17. True  22. True

3.  True  8.   False 13. True  18. False 23. False

4. False  9. False 14. False 19. True 24. False  

5.   False  10.  True 15. True 20. True 25. True

III.  Choose the Right Answer for the Following Questions

1. The frequency of the sinusoidal voltage, v  =  163 sin377t V is,  

  a) 40 Hz b) 50 Hz c) 60 Hz d) 70 Hz

 2. The average and rms value of the sinusoidal current, i  =  10 sin314t A respectively are,

  a)  3.183 A, 6.366 A   b) 6.366 A, 7.071 A

  c) 15.708 A, 14.142 A   d) 7.854 A, 9.003 A

 3. The form factor of the sinusoidal voltage, n  =  230 sin314t V is,

  a) 1.111 b) 2.222 c) 0.901 d) 0.451

 4. The peak factor of the sinusoidal voltage, n  =  400 sin377t V is,

  a) 1.732 b) 0.866 c) 0.707 d) 1.414

 5. The inductance of a coil with a flux linkage of 0.202 Wb-turn and carrying a current of 0.2 A is,

  a) 0.404 H b) 0.101 H c) 0.002 H d) 0.402 H

 6. The energy stored in a coil carrying a current of 20 A and having an inductance of 5 mH is,

  a) 2 Joule b) 1 Joule c) 0.5 Joule d) 0.1 Joule

 7. What is the charge in a 0.01 F capacitor when a voltage of 100 V exists in it?

  a) 10 Coulomb b) 1 Coulomb c) 0.1 Coulomb d) 0.01 Coulomb

 8. What is the energy in a 0.01 F capacitor when a voltage of 10 V exists in it?

  a) 2 Joule b) 1 Joule c) 0.5 Joule d) 0.1 Joule

 9. The phase difference between the voltages v
1
  =  230 sin(377t + 30o) V and v

2
  =  230 sin(377t – 30o) V is,

  a)  60o with v
1
 leading v

2
  b) 30o with v

2
 leading v

1
 

  c)  60o with v
1
 lagging v

2
  d) 30o with v

2
 lagging v

1

 10. When a load is connected to 230Ð10o
 V, it draws a current of 10Ð-50o

 A. What is the real and 

  reactive power of the load?

  a)  1992 W, 1150 VAR   b) 1150 W, 1150 VAR
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  c)  1626 W, 2086 VAR   d) 1150 W, 1992 VAR

 11. The power factor of a load with active power 120 W and reactive power 100 VAR is,

  a) 0.64 lag b) 0.64 lead c) 0.768 lag d) 0.768 lead

 12. What is the value of the impedance drawing a current of 8Ð-37o
 A, when connected to 220Ð10o

 V 

  supply?

  a)  27.5Ð47o
 W b) 27.5Ð-47o

 W c)  27.5Ð27o
 W d) 27.5Ð-27o

 W

 13. The resistance and reactance of the impedance 4Ð60o
 W respectively are,

  a)  2 W, 3.46 W-capacitive  b) 2 W, 3.46 W-inductive

  c)  3.46 W, 2 W-capacitive  d) 3.46 W, 2 W-inductive

 14. What is the value of the admittance drawing a current of 20Ð-26o
 A when connected to 40Ð10o

 V 

  supply?

  ) 0.5 36 ) 0.5 36 ) 2 16 ) 2 16a b c d
o o o o
M M M M+ + + +− −

 15. The conductance and susceptance of the admittance 8 30
o
M+ respectively are, 

  ) , . ) , .a inductive b capacitive4 6 93 4 6 93M M M M- -

  ) 6.93 , 4 ) 6.93 , 4c inductive d capacitiveM M M M- -

 16. In a star-connected three-phase system, the relation between the line and phase values is,

  ) , ) ,a V V I I b V V I I3 3L L L L= = = =

  
) , ) ,c V V I I d V V I I

3 3
L L L L= = = =

 17. In a delta-connected three-phase system, the relation between the line and phase values is,

  ) , ) ,a V V I I b V V I I3 3L L L L= = = =

  
) , ) ,c V V I I d V V I I

3 3
L L L L= = = =

 18. Three identical impedances 3 + j6 W are connected in delta. What will be the equivalent 

  star-connected impedance that draws the same current when connected to the same supply  

  voltage?

  a) 3 + j6 W b) 6 + j12 W c) 1 + j2 W d) 1.5 + j3 W

 19. Three identical impedances 2 + j5 W are connected in star. What will be the equivalent 

  delta-connected impedance that draw same current when connected to the same supply voltage?

  a) 2 + j5 W b) 1 + j2.5 W c) 
j

3

2 5
Ω

+
 d) 6 + j15 W
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 20. A star-connected balanced load with impedance 4 + j5 W /phase is connected to a three-phase 

  200 V supply. What is the apparent power?

  a) 975.6 VA b) 1281 VA c) 6247 VA d) 8200 VA

 21. A balanced delta-connected load with impedance 5 + j2 W/phase is connected to a three-phase 

  100 V supply. What is the power?

  a) 2586.3 W b) 2986.3 W c) 5172.5 W d) 4479.6 W

 22. In a three-phase unbalanced load, the line currents 5 30 7 180I A and I A
o o

R Y+ += = . 

  What is the value of the line current ?I B

  a) 11.6∠–167.6o
 A b) 3.66∠–43.1o

 A c) 3.66∠136.9o
 A d) 11.6∠12.4o

 A

 23. The line currents of a four-wire star-connected load are 20 , 4I j A I A andR Y= =    

  2 3 .I j AB − −= What is the neutral current?

  a) 2 – j23 A b) –6 + j17 A c) 2 + j17 A d) –2 – j17 A

 24. A three-phase balanced inductive load draws a current of 10 A and consumes 6 kW when 

  connected to a 400 V supply. What is the power factor of the load?

  a) 0.866 lag b) 0.5 lag c) 0.866 lead d) 0.5 lead

 25. A symmetrical delta-connected load draws a power of 8 kW when connected to a 380 V supply. 

  If the power  factor of the load is 0.866 lead then the line current is,

  a) 10.5 A b) 24.3 A c) 8.1 A d) 14 A

 26. In two-wattmeter method of power measurement the expression for power factor angle is,

  ) tana
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1 2
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+
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 27. In two-wattmeter method of power measurement what is the value of wattmeter readings 

  when the load power is 8 kW with unity power factor?

  a) 8 kW, 0 kW b) 4 kW, 4 kW c) 12 kW, –4 kW d) 16 kW, –8 kW

 28. In two-wattmeter method of power measurement what is the value of wattmeter readings  

  when the load power is 7 kW with 0.5 power factor?

  a) 7 kW, 0 kW b) 3.5 kW, 3.5 kW c) 9 kW, –2 kW d) 14 kW, –7 kW
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 29. In two-wattmeter method, the readings of wattmeter for a balanced load are, P
1
 = 500 W, 

  P
2
 = 400 W. What is the power factor of the load?

  a) 0.347 b) 0.949 c) 0.999 d) 0.982

 30. In two-wattmeter method, the readings of wattmeter for a balanced load are, P
1
 = 800 W, 

  P
2
 = 600 W. What is the reactive power of the load?

  a) 1200 VAR b) 600 VAR c) 346 VAR d) 692 VAR

ANSWERS

1. c  6. b 11. c 16. b 21.   b  26.   b

2. b  7. b 12. a 17. a 22. b  27.   b

3. a  8. c 13. b 18. c  23. c  28.   a

4. d  9. a  14. a  19. d 24. a  29.   d 

5. b 10. d  15. d  20. c 25. d  30.   c  

IV.   Unsolved Problems

E4.1  In the circuit shown in Fig. E4.1, determine the currents in all the branches. 

E4.2  Determine the current I 2  in the circuit shown in Fig. E4.2.

E4.3  Determine the voltage V 2  in the circuit shown in Fig. E4.3.

E4.4 A series combination of 5 Ω and 10 mH inductance is connected to a 115 V, 60 Hz supply. Estimate 

the voltage and current in the elements. Also calculate the active, reactive and apparent power.

E4.5 A parallel RL circuit connected to a 230 V, 50 Hz supply has active power of 2.5.kW and reactive 

power of 3.12 kVAR. Calculate the current through the elements, total current supplied by the 

source and the value of R and L.

E4.6 A current of 10∠30o
 A  flowing through a circuit consists of series connected elements when excited 

by a source of 200∠−30o
 V, 50 Hz. Determine the elements of the circuit, voltage across the elements 

and active, reactive and apparent power.

E4.7 A parallel combination of 10 Ω resistance and 400 µF capacitance is connected to a 160 V, 50 Hz 

supply. Estimate the current through the elements and the total current drawn from the supply. 

Also calculate the apparent, active and reactive power.

Fig. E4.1.
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E4.8 An RLC series circuit consists of R = 40 Ω, L = 70 mH and C = 450 µF. The circuit is excited by a 

sinusoidal source of value 100 V, 50 Hz. Determine the current and voltage in the elements. Also 

estimate the apparent, active and reactive power.

E4.9 A load absorbs 4 kW at a pf of 0.65 lagging from a 160 V, 50 Hz  source. A capacitor is connected 

in parallel to the load to improve the pf to 0.8 lag. Determine the value of the capacitor.

E4.10 An unbalanced four-wire star-connected load is connected to a balanced supply of 380 V. 

Estimate the line currents, neutral current and the power consumed by the load. Also draw  

the phasor diagram. Take ; ;Z j Z j Z j2 4 3 2 6 10BR YΩ Ω Ω= + = + = +   

E4.11 A balanced star-connected load of 4 + j8 W per phase is connected to a three-phase, 400 V, 

60 Hz supply. Find the line currents, active and reactive power of the load. Draw the phasor diagram

E4.12 The power consumed by a three-phase balanced star-connected load is 2.25 kW at a power factor 

of 0.72 leading. The supply voltage is 360 V, 50 Hz. Describe the impedance per phase.

E4.13 An unbalanced three-wire star-connected load is connected to a symmetrical supply of 415 V. 

If the load impedances are ,Z Z and Z7 30 9 60 8 45
o o o

R Y B+ + +Ω Ω Ω= = = ,  calculate 

the line currents, phase voltages and displacement neutral voltage.

E4.14 Determine the values of the three impedances ,Z Z and ZR Y B  connected in star to a 415 V,  

three-phase supply, if the neutral shift voltage is 180 ∠ 75
o
V and the line currents 

I A12 60
o

Y += −  and  .I A16 90
o

B +=

E4.15 A delta-connected balanced three-phase load is supplied from a three-phase, 415 V supply. The 

line current is 19 A and the power consumed by the load is 12 kW. Find a) impedance per phase, 

b) current per phase, c) power factor and d) the power consumed if the same load is connected in star.

E4.16 A balanced delta load of 14 − j10 W per phase is connected to a 415 V, three-phase supply. Determine 

the line and phase currents for the RBY sequence, by taking BYV as the reference phasor. Sketch 

the phasor diagram. Also calculate the power factor, active and reactive power of the load.

E4.17 An unbalanced delta load is connected to a three-phase 415 V supply. Determine the phase and 

line currents for the RYB sequence by taking as the reference phasor. The impedances of the three  

arms are 70 + j45 W, 10 − j20 W and 30 + j10 W.

E4.18 The readings of two wattmeters connected to measure a three-phase power is 8 kW each, when the 

power factor is unity. What will be the reading of wattmeters if the power factor falls to i) 0.7 lagging,  

ii) 0.5 lagging and iii) 0.4 lagging, the total three-phase power remaining unaltered.

E4.19 A 415 V, three-phase motor has an output of 5.595 kW and operates at a power factor of 0.82 with 

an efficiency of 85%. Calculate the readings of the two wattmeters connected to measure the input 

power.

E4.20 A three-phase load connected to a 415 V, three-phase, three-wire system draw a current of  12 ∠−40
o

 A in 

R phase and 16 ∠−200
o

 A in the B phase. Determine the readings of the two wattmeters connected 

to measure the power if current coil of one wattmeter is connected to R phase and that of other to  

B phase.

E4.21 The three impedances of star-connected load are 4 + j6 W, 8 − j10 W and 12 + j4 W . Calculate the 

readings of two wattmeters connected to measure the power consumed by the load if the current 

coils are connected to R and Y phase. Take supply voltage as 600 V, 50 Hz, RYB sequence.
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ANSWERS

E4.1    Ia= 57.2598∠−76.8
o 
A ; Ib  = 25.5711∠−140.2

o
 A ;  Ic   = 51.2147∠−50.2

o 
A

E4.2  I2= 6.2469∠171.3o A    

E4.3    V2= 18.9734∠18.4o V

E4.4  I   = 18.3648∠−37
o
 A    ; VR  = 91.8242∠−37

o 
V  ;   VL  = 69.2336∠53

o V

   S = 2.112 kVA       ;  Q  = 1.271
 
kVAR         ;   P  = 1.6867 kW

E4.5   I   = 17.3828∠−51.3
o  A ; IR  = 10.8696∠0

o
 A      ; IL   = 13.5652∠−90

o  A

 R = 21.1599 Ω       ;  L  = 54 mH

E4.6 R = 10 Ω             ;       C  = 183.78 µF     ;  VR=  100∠30
o 
V            ;        VC  =173.205∠−60

o V

 S = 2 kVA            ;       P  = 1 kW     ;  Q  = −1.7321 kVAR

E4.7 I   = 25.6955∠51.5
o
 A   ;  IR   = 16∠0

o 
A      ;  Ic   = 20.1062∠90

o
 A

 S = 4.1113 kVA     ;  P  = 2.5593
 
kW      ;  Q  = –3.2175 kVAR

E4.8 I   = 2.3424∠−20.5
o A  ; VR  = 93.696∠−20.5

o 
V ; VL= 51.512∠69.5

o V ;VC=16.5692∠−110.5
o V

 S = 234.24 VA     ;  P  = 219.4061
 
W     ; Q = 82.0326 VAR

E4.9 C   = 207.31 µF 

E4.10 RYB sequence with VRY  as reference phasor

  49.0582 93.4 ; 60.8479 183.7 ; 18.8128 329 18.8128 31I I IA A A Ao o o o
R Y B+ + + += − = − = − =

  . .I A59 2178 143 3
o

N += −    P = 18.0513 kW

E4.11 RYB sequence with VRY  as reference phasor

  . 93.4 ; . . ; . .I I IA A A25 8198 25 8198 213 4 25 8198 26 6o o o
R Y B+ + += − = − =

  P = 8.0097 kW  ;  Q = 15.9951 kVAR 

E4.12 41.4722 43.9 /Z phaseo
+ Ω= −
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E4.13 RYB sequence with VRY  as reference phasor

  
34.924 70.2 ; 30.8 154.6 ; 25.3461 50.I I IA A A8 186 9o o o

R Y B+ + += − = =

  43.3044 61.3 ; 244.4736 40.2 ; 277.3674 .V V VV V V145 4o o o
NN' R Y+ + += = − = −

  202.7688 95.V V9
o

B +=

E4.14 40.7744 75.6 ; 3 .3609 70.9 ; 5. 356 35.3Z Z Z2 0o o o
R Y B+ + +Ω Ω Ω= = − =

E4.15 ) 37.8315 28.5 ; ) 10.9697/a Z b Iphase Ao
+ Ω= =

  c) cos φ = 0.8787              ;    d) P
star

 = 4 kW

E4.16 24.1213 35.5 ; 24.1213 84.5 ; 24.1213 204.5I I IA A Ao o o
BY YR RB+ + += = − = −

  . 5.5 ; . 114.5 ; . 234.5I I IA A A41 7793 41 7793 41 7793o o o
B Y R+ + += = − = −

    cos φ = 0.8141lag      ;    P = 24.4482 kW                ;    Q = −17.4391 kVAR

E4.17 13.123 18.4 ; 4.987 152.7 ; 18.5593 176.6I I IA A A5 o o o
BR RY YB+ + += − = − = −

  31.1246 5.6 ; 16.9856 173.7 ; 14.14 175.2I I IA A A18o o o
B R Y+ + += − = =

E4.18 i) P
1
 = 3.2879 kW      ;    P

2
 = 12.7121 kW      ;     ii) P

1
 = 0 ; P

2
 = 16 kW

  iii) P
1
 = −2.583 kW   ;    P

2
 = 18.583 kW 

E4.19 P
1
 = 1.9648 kW        ;    P

2
 = 4.6176 kW

E4.20 P
1
 = 3.8149 kW        ;    P

2
 = −5.0865 kW

E4.21 P
1
 = 15.1432 kW      ;    P

2
 = 19.1062 kW



RESONANCE AND COUPLED CIRCUITS

5.1    Resonance

In RLC circuits excited by sinusoidal sources, the inductive and capacitive reactances have 

opposite signs. Hence, when the reactances are varied, there is a possibility that the inductive 

reactance may cancel the capacitive reactance and the circuit may behave as a purely resistive 

circuit. This condition of an RLC circuit is called resonance. Resonance may be defined as a circuit 

condition at which the circuit behaves as a purely resistive circuit.

The inductive reactance, X
L
 = wL = 2pfL, and so the inductive reactance can be varied by 

varying either frequency (f ) or inductance (L).

The capacitive reactance, X
C fC

1
2

1
C

ω π

= =
, and so the capacitive reactance can be varied 

by varying either frequency (f ) or capacitance (C).

When the frequency of the sinusoidal source exciting the RLC circuit is varied, there is 

a possibility that “the inductive reactance is equal and opposite to the capacitive reactance at a 

particular frequency”. Therefore, the total  reactance is zero and the circuit will behave as a purely 

resistive circuit. Now, the circuit will be in resonance and the frequency at which resonance occurs 

is called resonant frequency.

5.2    Series Resonance

In a series RLC circuit, the resonance condition can be achieved by varying the frequency 

of exciting sinusoidal source. When the frequency is varied, at a particular frequency the inductive 

reactance will cancel the capacitive reactance and the circuit will behave as a resistive circuit. This 

condition of an RLC series circuit is called series resonance.

5.2.1  Resonance Frequency of Series RLC Circuit

Consider the RLC series circuit shown in Fig. 5.1 excited by a 

sinusoidal source of variable frequency. 

When the frequency of the source is varied by maintaining the voltage 

of the source as constant, the resonance occurs at a particular frequency. 

The expressions for resonance frequency in the RLC series circuit of Fig. 

5.1 are given below:

/
LC

in rad s
1Resonant angular frequency, rω =       .....(5.1)

f
LC

in Hz
2 2

1Resonant frequency, r
r

π

ω

π

= =         .....(5.2)
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Proof for resonance frequency in series RLC

Consider the RLC series circuit shown in Fig 5.1.

,Let Z of RLC series circuitImpedance= .

,Here Z R j L j
C

R j L
C

1 1
ω

ω
ω

ω
= + − = + −a k    .....(5.3)

At resonance frequency w
r
, the total reactance is zero.

, 0At L
C
1

r r

r

` ω ω ω

ω

= − =        .....(5.4)

L
C LC

1 12
r

r

r&` ω

ω

ω= =

LC

1
r` ω =          .....(5.5)

f f
LC2 2

1
r

r
r&`

π

ω

π

= =

5.2.2  Frequency Response of Series RLC Circuit

Consider the RLC circuit shown in Fig. 5.1.

,

.

.

Let V V

I Current through the RLC series circuit

I Current at resonance

Z I

V0 Supply voltage.

mpedance at resonance.r

r

o
+= =

=

=

=

The impedance at resonance is obtained by substituting w = w
r
 in equation (5.3).

Z R j L j
C

R1
r r

r

` ω
ω

= + − =

Z RImpedance at resonance, r` =      ..... (5.6)

0 0 AI
Z

V
R

V
R
V I0Current at resonance,

o
o o

r

r
r

+
+ += = = =   .....(5.7)

., I
R
V Magnitude of current at resonancewhere r = =    .....(5.8)

Let us examine the variation of impedance Z of the RLC series circuit with frequency. At 

frequencies lower than resonant frequency, the capacitive reactance will be more than the inductive 

reactance and so the total reactance will be capacitive. Since the capacitive reactance is inversely 

proportional to frequency, the capacitive reactance and hence, the total reactance will increase when 

the frequency is decreased from the resonant frequency. Therefore, the impedance of the series 

RLC circuit will increase when the frequency is decreased from the resonant value.

Using equation (5.4)

Equating imaginary part
of equation (5.3) to zero

w = 2pf
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At frequencies higher than resonant frequency, the inductive reactance will be more than 

the capacitive reactance and so the total reactance will be inductive. Since the inductive reactance 

is directly proportional to frequency, the inductive reactance and hence, the total reactance will 

increase when the frequency is increased from the resonant frequency. Therefore, the impedance 

of the series RLC circuit will increase when the frequency is increased from the resonant value.

At resonant frequency, the impedance of the RLC series circuit is equal to the resistance and 

this value of the impedance is minimum. Since the impedance is minimum, the current is maximum 

at resonance. Also the current at resonance will be in-phase with the supply voltage V.  

Since the impedance increases for frequencies lesser or higher than resonant value, the 

current decreases when frequency is increased or decreased from the resonant value.

5.2.3   Q-Factor (Quality Factor) of RLC Series Circuit

When a circuit consisting of a resistor, inductor and capacitor is excited by a sinusoidal 

source, the resistor dissipates energy in the form of heat, the inductor stores energy in the magnetic 

field associated with it and the capacitor stores energy in the electric field associated with it. In the 

steady state (after the transient period), there is a possibility that the sum of the energy stored in 

the inductor and capacitor is greater than the energy dissipated in the resistor.

In a series RLC circuit, due to larger stored energy in the inductor and capacitor, the voltage 

across these devices will be greater than the supply voltage. In other words we can say that there is a 

voltage magnification or amplification. The voltage magnification can be expressed by a factor called 

Quality factor (Q), which is defined as the ratio of maximum energy stored to the energy dissipated 

in one period.

2QQuality factor,
Energy dissipated in one period

Maximum energy stored
` #π=   .....(5.9)

The term 2p is introduced to simplify the expression for quality factor.
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frequency.

Fig. c : Reactance vs
frequency.Fig. 5.2 : Characteristics of series resonance.
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Fig. 5.3.
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Energy dissipated in one period at resonance

Maximum energy stored at resonance
Quality factor at resonance, r #π=

   

.....(5.10)

,Here Q
R

L
r

rω
=

       
.....(5.11)

;,
LC LC

L
C

At resonance and1 1 1
r r

2

r
2

ω ω

ω

= = =

Therefore, the quality factor at resonance, Q
r
 can also be expressed as shown below:

Q
R

L

R C CR
Q

CR
1 1 1r

r
2

r
r

r

r
r # `

ω ω

ω ω ω

= = = =  .....(5.12)

Q
R

L

LC R
L

R C
L Q

R C
L1 1 1

r
r

r`
ω

= = = =  .....(5.13)

For frequencies less than resonant frequency, the RLC series circuit behaves as a capacitive 

circuit.

∴ When w ≤ w
r
 ,  Q

CR
1

ω

=            .....(5.14)

For frequencies higher than resonant frequency, the RLC series circuit behaves as an 

inductive circuit.

∴  When w ≤ w
r
 ,  Q

R
Lω

=    .....(5.15)

Note : In an RLC series circuit, when the inductor stores energy the capacitor discharges 

and vice-versa. At resonance, the sum of energy stored in the inductor and capacitor is maximum. 

For w < w
r
, the energy stored in the capacitor is maximum and for w > w

r
, the energy stored 

in the inductor is maximum.

Equation (5.15) can be used to calculate the Q-factor of a coil or an RL series circuit and 

the equation (5.14) can be used to calculate the Q-factor of an RC series circuit.

Proof for quality factor at resonance, Q
r
 in RLC series circuit

Consider an RLC series circuit shown in Fig 5.3, excited by a sinusoidal voltage source of frequency, w.

, .Let I be the reference phasor

I I A0o` +=

Let,  i = Instantaneous value of current.

   ∴  i = I
m
 sinwt     .....(5.16)

Let, w
L
 = Instantaneous value of energy stored in inductor

       w
C
 = Instantaneous value of enrgy stored in capacitor

       w = Total instantaneous energy stored in the RLC circuit

       w
r
 = Total intantaneous energy stored in the RLC circuit at resonance.
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We know that,

     w L i
2

1 2
L =                   Using equation (4.11) of Chapter - 4

          sinL I t
2

1
m

2
ω= _ i                             Using equation (5.16)

           sinL I t
2

1
m
2 2

ω=               .....(5.17)

We know that,

      w C
2

1
c
2

C ν=                   Using equation (4.16) of Chapter - 4

           C
C

i dt
2

1 1
2

= < F#                  
C

i dt
1

C
ν = #

           sinC
C

I t dt
2

1 1
m

2

ω= < F#                 Using equation (5.16)

           cos
cosC

C
I

t

C

I
t

2

1 1

2

2

2

2
2

m
m

C
` ω

ω

ω

ω

ω= − =d n< F     .....(5.18)

, sin cosNow w w w L I t
C

I
t

2

1

2

2 2

2

2
2

L C m
m

ω

ω

ω= + = +              Using equations (5.17) and (5.18)

                                sin cos
I

L t
C

t
2

1
2

2

2

2m
ω

ω

ω= +< F

    sin cosw w
I
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2
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=

=

< F

               sin cos
I
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t
2

1m
2

2
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r
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rω

ω
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                                sin cos
I
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C

LC
t

2

2
2 2m

r rω ω= +< F              
LC

LC
1 1

2
r

r

&ω
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= =

                                sin cos
I L

t t
2

2
2 2m

r rω ω= +7 A              1sin cos
2 2

θ+ =

                     
I L

2

2
m

r
` ω =      .....(5.19)

From equation (5.19) we can say that, the energy stored in the RLC circuit at resonance is independent of time 
and it is constant. Therefore, the instantaneous energy is the maximum energy stored at resonance.

Let, W
mr

 = Maximum energy stored at resonance 

W w
I L

2

2

mr r
m

` = =       .....(5.20)

In the RLC series circuit, the enrgy is dissipated by the resistor.

Let,  W
R
 = Energy dissipated in resistor in one period.

     W
Rr

 = Energy dissipated in resistor in one period at resonance.

W Power Time period

I R T2

R` #

#

=

=
I = RMS value of current
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I R
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π
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W W
I R
2

Rr R

r

m

r

`
ω

π
= =

~ ~=

    .....(5.22)

Q
W

W
W

W
2 2

1
r

Rr

mr
mr

Rr

` # # #π π= =

           
I L

I R

2
2

2

2

m

m

r
# #π

π

ω
=                         Using equations (5.20) and (5.22)

           
R

Lrω
=        .....(5.23)

5.2.4   Bandwidth of Series RLC Circuit

From the current response (Refer Fig. 5.2(a)) of an RLC series circuit we can say that the 

current is maximum at resonance and it decreases when frequency is decreased or increased from 

the resonant value. For practical applications, we have to define a range of frequencies over which 

the current response is appreciable and this range of frequency is called bandwidth.

Since the resistance is the load resistance in the practical circuits, the range of frequencies 

over which the response is appreciable can be decided based on the power in the resistance. At 

resonance, the current is maximum and so, power is maximum. For practical applications, the 

frequency range in which the power is greater than or equal to 50% of the maximum power is 

chosen as a useful range. It can be proved that when power is 50% of maximum value (or 1/2 times 

of maximum value), the current is /1 2  times of maximum value.

“The current response is maximum at resonance” and it decreases for increasing or decreasing 

frequency from the resonance value. Therefore, when frequency is decreased from the resonant 

value, we come across a frequency at which power is 1/2 times that of maximum value (or current 

is /1 2  times that of maximum value), and this frequency is called lower cut-off frequency, w
l
. 

When frequency is increased from the resonant value, we come across a frequency at which  

power is 1/2 times that of maximum value (or current is /1 2  times that of maximum value), and 

this frequency is called higher cut-off frequency, w
h
.

The two cut-off frequencies are also called half-power frequencies, and they lie on either 

side of the resonant frequency as shown in Fig. 5.4. It can be proved that resonant frequency is 

given by the geometric mean of the two half-power frequencies, i.e., r hlω ω ω=

Now, “bandwidth can be defined as the range of frequencies over which power is greater 

than or equal to 1/2 times the maximum power”.

I
I

T
f2

1m= =

2 f
f
1 2

&ω π

ω

π
= =

(AU May’17, 8 Marks)(AU June’16, 16 Marks)
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Alternatively, “bandwidth can be defined as the range 

of frequencies over which the current is greater than or equal 

to 1/ 2    times the maximum current”. 

Bandwidth is given by the difference between the cut-off 

frequencies and it can be denoted by β. The unit of bandwidth 

is rad/s or Hz.

The equations for cut-off frequencies and bandwidth are 

given below:

off angular frequency,ω- /Higher cut
L
R

L
R

LC
in rad s

2 2
1

h

2

= + +e o  .....(5.24)

off angular frequency,ω- /
L

R
L

R
LC

in rad s
2 2

1Lower cut
2

l = − + +e o   .....(5.25)

Alternatively,

/
Q Q

in rad s
2

1
1

4

1

2h r

r r

ω ω= + +> H     .....(5.26)

/
Q Q

in rad s
2

1
1

4

1

2r

r r

lω ω= − + +> H    .....(5.27)

off frequency, f-Higher cut
L
R

L
R

LC
in Hz

2
1

2 2
1

h

2

π
= + +e o> H  .....(5.28)

off frequency, f-Lower cut
L
R

L
R

LC
in Hz

2
1

2 2
1

2

l
π

= − + +e o> H  .....(5.29)

, /Bandwidth
L
R in rad sβ =

    
.....(5.30)

Alternatively,

Q
in rad/sBandwidth,

r

rβ
ω

=       .....(5.31)

Bandwidth in in
L

R
Hz Hz

2 2π

β

π
= =

    
.....(5.32)

I

w

I
r

wl w
r w

h

b

1

2

0 707I Ir r= .

Fig. 5.4 : Current response of
RLC series circuit
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Proof for cut-off frequencies and bandwidth

Consider an RLC series circuit shown in Fig. 5.5, excited by a sinusoidal voltage 
source of frequency, w.

Let,  V  = V∠0o = Supply voltage.

 I  = Current through the RLC series circuit.

 Z  = Impedance of RLC series circuit.

,Here Z R j L j
C

R j L
C

1 1
ω

ω
ω

ω
= + − = + −a k

Z Z R L
C

12
2

` ω
ω

= = + −a k      .....(5.33)

,Here I
Z

V=

I I
Z

V

Z

V

Z

V
` = = = =

I

R L
C

V

12
2

`

ω
ω

=

+ −a k
      .....(5.34)

Let, P = Power in RLC circuit.

 P
r
 = Power in RLC circuit at resonance.

,Here P I R

R L
C

V R

1

2

2
2

2

ω
ω

= =

+ −a k
      .....(5.35)

At resonance, .L
C

1
0ω

ω

− =  On substituting this condition in equation (5.35), we get power at resonance, P
r
.

P
R

V R

R

V
r 2

2 2

` = =
     .....(5.36)

,: Alternatively P I R
R
V R

R
V

Note r r
2 2 2

= = =a k

At half-power frequencies or cut-off frequencies, the power will be equal to half the power at resonance.

P P
2

1
r` # =

     
R

V

R L
C

V R

2

1

1

2

2
2

2

#

ω
ω

=

+ −a k                 

On cross multiplying the above equation, we get,

2R L
C

R
12

2
2

ω
ω

+ − =a k     ⇒     2L
C

R R
1

2
2 2

ω

ω

− = −a k

L
C

R
1

2
2

` ω

ω

− =a k
On taking square root of above equation, we get,

L
C

R
1

!ω

ω

− =        .....(5.37)

Using equation (5.34)

Using equations (5.35) and (5.36)

Using equation (5.33)

~+ -

R L C

I

Fig. 5.5.

Z R j L j
C

= + -w

w

1

V, w



5. 9Chapter 5 - Resonance and Coupled Circuits

Note : Equation (5.37) implies that the absolute value of total reactance at half-power frequencies is equal to 
the resistance of the circuit.

;L
C

R L
C

R1 1
h

h

l

l

` ω

ω

ω

ω

− = − = −

On multiplying equation (5.37) by 
L
w , we get,

LC L

R12
!ω ω− =     ⇒    0

L

R

LC

12
"ω ω − =

0
L

R

LC
and

L

R

LC

1 1
0

2 2
` ω ω ω ω− − = + − =

The roots of quadratic ,
L
R

LC
are1 0

2
ω ω− − =  The roots of quadratic 0 ,

L
R

LC
are12

ω ω+ − =  

L

R

L

R

LC

2

4
2

!

ω =

+a k
                                             L

R

L

R

LC

2

4
2

!

ω =

− +a k

  L

R

L

R

LC2 2

1
4

4

1 1
2

!= +a k< F                                     L

R

L

R

LC2 2

1
4

4

1 1
2

!= − +a k< F

  L

R

L

R

LC2 2

1
2

!= +a k
                                               L

R

L

R

LC2 2

1
2

!= − +a k

The cut-off frequencies are given by the positive roots of the two quadratic.

,off angular frequency ω- /Higher cut
L
R

L
R

LC
in rad s

2 2
1

h

2
` = + +a k   .....(5.38)

       ,off angular frequency ω- /Lower cut
L
R

L
R

LC
in rad s

2 2
1

l

2

= − + +a k   .....(5.39)

Since, w = 2pf and ,f
2π
ω

=  the cut-off frequency in Hz can be expressed as shown below:

o ,ff frequency f-Higher cut
L
R

L
R

LC
in Hz

2
1

2 2
12

h
`

π
= + +a k< F

  .....(5.40)

  ,off frequency f-Lower cut
L

R
L

R
LC

in Hz
2
1

2 2
12

l π
= − + +a k< F       .....(5.41)

The bandwidth, β is given by the difference between cut-off frequencies.

∴ Bandwidth, β  =  w
h
 – w

l

                            L

R

L

R

LC L

R

L

R

LC2 2

1

2 2

1
2 2

= + + − − + +a ak k< F

                         /
L
R

L
R

L
R

L
R in rad s

2 2
2
2

= + = =     .....(5.42)

Bandwidth in Hz
L

R
in Hz

2 2
`

π

β

π
= =     .....(5.43)

Alternatively, the bandwidth and cut-off frequencies can be expressed in terms of angular resonant frequency, 
w

r
 and quality factor, Q

r
 as shown below:

L
RFrom equation (5.42), we get, β =
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( .23), ,From equation we get Q
R
L

L
R

Q
5 r

r

r

r
&

ω ω
= =

On comparing the above two equations, we get,

Qr

rβ
ω

=     .....(5.44)

From equation (5.38), we get,

L

R

L

R

LC2 2

1

2 4
h

2

r
2

ω
β β

ω= + + = + +
2

a k

      4Q Q Q Q2 4 2
1 1

r

r

r
2

r
2

r
2

r

r
r
2

r
2

ω ω
ω

ω
ω= + + = + +d n

      2
1

Q Q Q Q2
1

4

1 1

4

1

r

r
r

r
2 r

r r
2

ω
ω ω= + + = + +> H    .....(5.45)

Similarly,

Q Q2
1 1

4

1
l r

r
2
r

ω ω= − + +> H
    .....(5.46)

On multiplying equations (5.45) and (5.46), we get,

Q Q Q Q2
1 1

4

1
2
1 1

4

1
2 2h l r

r r

r
r r

#ω ω ω ω= + + − + +> >H H

          Q Q Q Q
1

4

1
2
1 1

4

1
2
1

2 2
r r r r

r

2
ω= + + + −> >H H

       
1

Q Q4

1

4

1
2 2
r r

r

2
ω= + −< F                 (a + b) (a – b) = a2 – b2

       r
2

ω=

r h l` ω ω ω=     .....(5.47)

From equation (5.47) we can say that resonant frequency is given by the geometric mean of the cut-off  

frequencies.

5.2.5   Selectivity of Series RLC Circuit

RLC circuits are operated at resonance condition in order to select a particular frequency 

signal from a group of signals, or they are employed to pass a particular frequency of signal from 

one part of the circuit to the other. In general, resonance circuits are frequency selective circuits.

The best example of resonant circuits are tuned circuits used in TV/Radio. Each TV/Radio 

station broadcasts its signal at a particular frequency allotted to it. The tuning circuit is basically an 

RLC circuit with variable capacitance. In order to select a channel/station, the capacitance is varied 

and the circuit is made to resonate at the frequency of desired channel/station. Under resonance 

condition, the response is maximum at the desired frequency. Hence, the tuning circuit selects a 

particular frequency and rejects all the other frequencies.

A resonant circuit should be capable of selecting the desired frequency and rejecting all the 

other frequencies. This is possible only by achieving a very narrow response curve with smaller 

LC

1
rω =

L

R β=

Qr

rβ
ω

=
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bandwidth as shown in Fig. 5.6. When the response curve is very 

narrow the circuit is highly selective. A term called selectivity 

can be defined in order to measure the ability of the resonant 

circuit to discriminate between the desired and unwanted  

frequencies.

Selectivity is defined as the ratio of bandwidth and resonant 

frequency.

Selectivity
r r

h l
`

ω

β

ω
ω ω

= =
−

        .....(5.48)

From the definition of selectivity we can say that a circuit is highly selective when the value 

of selectivity is low, which is possible with a smaller value of bandwidth, β.

From equation (5.44), we get,

Qr

rβ
ω

=

Q Q
Selectivity 1 1

r r

r

r r
#`

ω

β ω
ω

= = =        .....(5.49)

From equation (5.49), we can say that selectivity is the 

inverse of the quality factor. Therefore, when the quality factor is 

high, the selectivity will be small and so the circuit will be highly 

selective.

Also, from the expression of bandwidth we can say that 

when the quality factor is high, the bandwidth will be small and 

the circuit will be highly selective. The current response of a series 

RLC resonant circuit for various values of Q is shown in Fig. 5.7.

5.2.6   Solved Problems in Series Resonance

EXAMPLE 5.1

For the RLC circuit shown in Fig. 1, determine the impedance at a) resonant 

frequency, b) 10 Hz below resonant frequency and c) 10 Hz above resonant frequency.

SOLUTION

Given that,  R  =  12 Ω   ;   L = 0.15 H    and   C  =  22 µF  =  22  ×  10
–6

 F

.
550.4819 /

LC
rad s

1

0 15 22 10

1Angular resonant frequency, r
6

# #

ω = = =
-

. 87.6119f Hz
2 2

550 4819Resonant frequency, r
r

π

ω

π

= = =

Let, Z  be the impedance of an RLC series circuit. With reference to Fig. 1, we get,

Z R j L j
C

R j L
C

1 1
ω

ω
ω

ω
= + − = + −e o

I

w

Q > Q > Q
1 2 3

w
r

I
r

Fig. 5.7 : Current response of
RLC series resonant circuit for

various values of Q.

Q
3

Q
2

Q
1

(AU June’14, 16 Marks)

~+ -

12W

Fig. 1.
V

0.15H 22 mF

I

I
r

1

2

Ir

w
w
r

Fig. 5.6 : Current response curve
of highly selective RLC series

resonant circuit.
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a)  Impedance at resonance

Let, Zr  be the impedance at the resonance frequency. At resonant frequency w
r
, the total reactance is zero,

i.e., 0L
C

1
r

r

ω

ω

− =  and the impedance is equal to resistance.

12Z RImpedance of resonance, r` Ω= =

b)  Impedance at 10 Hz below the resonant frequency

Let, Z1  be the impedance at 10 Hz below the resonant frequency and w
1
 be the corresponding frequency.

Now, w
1
  =  2p (f

r
 − 10)  =  2p × (87.6119 − 10)  =  487.6499 rad/s

Z R j L
C
1

1 1
1

` ω
ω

= + −e o

          
12 . .

.
j 487 6499 0 15

487 6499 22 10

1
6

#

# #

= + −
-e o

                      =  12 − j20.0639 Ω  =  23.3786∠−59.1
o

 Ω

c)  Impedance at 10 Hz above the resonant frequency

Let, Z2  be the impedance at 10 Hz above the resonant frequency and w
2
 be the corresponding frequency.

Now, w
2
  =  2p (f

r
 + 10)  =  2p × (87.6119 + 10)  =  613.3137 rad/s

Z R j L
C
1

2 2
2

` ω
ω

= + −e o

                      
12 . .

.
j 613 3137 0 15

613 3137 22 10

1
6

#

# #

= + −
-e o

     =  12 + j17.884 Ω  =  21.5369∠56.1
o

 Ω

EXAMPLE 5.2

For the circuit shown in Fig. 1,find I, V
R
, V

L
 and V

C 
at resonance. Also 

calculate bandwidth, Q factor, half-power frequencies and power dissipated 

at resonance and at the half-power frequencies. Take resonant frequency 

as 5000 Hz.

SOLUTION

At resonance the voltage across the resistor is equal to the supply voltage.

10 0V E VoR` += =

Current at resonance, 10 0
5 0I

R

V

R

E A
2

o
o

r
R +

+= = = =

Now, by Ohm’s law,

5 0 10 5 0 10 90 50 90V I jX j Vo o o o
L r L# # #+ + + += = = =

( ) 5 0 ( 10) 5 0 10 90 50 90V I jX j Vo o o o
C r C# # #+ + + += − = − = − = −

(AU Dec’16, 16 Marks)
V

R
+ E

2�

Fig. 1.

+ E

+

E

10 V

V
L

X = 10
L

�

X = 10
C

�

+

E
V

C

~
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Q
R

L
R

X

2
10 5Quality factor at resonance, r

r Lω
= = = =

,
Q

f
00Bandwidth Hz

5
5000 10

r

rβ = = =

off frequency−Higher f f
Q Q2
1 1

4

1cut ,
2r

r r
h
= + +> H

                                     5000 . Hz
2 5

1
1

4 5

1
5524 9378

2
#

# #

= + + =< F

off frequency−Lower f f
Q Q2
1 1

4

1cut ,
2r

r r
l
= − + +> H

                                    5000 . Hz
2 5

1
1

4 5

1
4524 9378

2
#

# #

= − + + =< F

Power dissipated at resonance, R 5 2 50P I W2 2

r r
#= = =

Power dissipated at half-power frequency = 25
P

W
2 2

50r = =

EXAMPLE 5.3

For the circuit shown in Fig. 1, determine the frequency at which the circuit 

resonates. Also find the quality factor, voltage across inductance and voltage across 

capacitance at resonance.

SOLUTION

Given that,  R = 5 Ω   ;   L = 0.03 H   ;   C = 100 µF  and  Supply voltage, V = 20 V

.
577.3503 /

LC
rad s

1

0 03 100 10

1Angular frequency of resonance, r
6

# #

ω = = =
-

. 91.8882f Hz
2 2

577 3503Resonant frequency, r
r

π

ω

π

= = =

. . 3.4641Q
R

L
5

577 3503 0 03Quality factor at resonance, r
r #ω

= = =

3.4641 20V jQ V jVoltage across inductance at resonance, Lr r #= =

            =  j69.282 V = 69.282∠90o
 V

3.4641 20V jQ V jVoltage across capacitance at resonance, Cr r #= − = −

                             =  –j69.282 V = 69.282∠-90o
 V

~+ -

5W

Fig. 1.

0.03H 100 mF

20V

(AU Dec’15, 16 Marks)
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Alternatively, VLr  and VCr  can be computed as shown below:

, 4Current at resonance I
R
V A

5
20

r = = =

577.3503 0.03 69.282 69.282 90V I j L j j V V4Lr r r
o

# # # +ω= = = =

4
.

69.282 69.282 90V I j
C

j j V1

577 3503 100 10

1 V
r

Cr r 6

o

# #

# #

+
ω

= − = − = − = −
-

e eo o
  

EXAMPLE 5.4

A series RLC circuit has an impedance of 40 Ω at a frequency of 200 rad/s. When the circuit is made to 

resonate by connecting a 10 V source of variable frequency the current at resonance is 0.5 A and the quality 

factor at resonance is 10. Determine the circuit parameters.

SOLUTION

Given that, supply voltage, V  =  10 V    ;    I
r
  =  0.5 A   ;   Q

r
  =  10    ;    Z 40

200 rad/s
Ω=

=~

,We know that I
R
V

r =
          .

R
I

V

0 5

10
20

r

` Ω= = =

;Q
R C

L Q
R C

L1 1We know that, 2

2
r r

`= =     ⇒   C
Q R

L
1 1

2 2

r

=

.C L L
10

1

20

1
2 5 10

2 2

5
` # # #= = -       

The magnitude of impedance, Z of the RLC series circuit is given by,

Z R L
C

12
2

ω
ω

= + −d n    ⇒   Z R L
C

12 2
2

ω
ω

= + −d n     ⇒    Z R L
C

12 2
2

ω

ω

− = −d n      

 L
C

Z R
1 2 2

` ω

ω

− = −  

On substituting w = 200 rad/s, Z = 40 Ω, R = 20 Ω and C = 2.5 × 10–5L in the above equation we get,

   
.

L
L

200
200 2 5 10

1
40 20

5

2 2

# #

− = −

-
    ⇒   .L

L
200

200
34 641− =

On multiplying throughout by L/200, we get,

.
L

L
L

L

L

200
200

200

200

200
34 641# # #− =   ⇒    1 0.1732L L

2
− =

∴  L2 – 0.1732 L – 1 = 0

. .
1.0903L H

2

0 1732 0 1732 4
2

`
!

=
+

=  

. . . .C L F2 5 10 2 5 10 1 0903 2 72575 10
5 5 5

6

` # # # #= = =
- - -

-
. .F F27 2575 10 27 2575# µ= =

 

RESULT

The  circuit  parameters R, L and C are,

R = 20 Ω   ;   L = 1.0903 H    and   C = 27.2575 µF

Taking positive value
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EXAMPLE 5.5

An RLC series circuit consists of R = 16 Ω, L = 5 mH  and C = 2 µF. Calculate the quality factor, bandwidth 

and half-power frequencies.

SOLUTION

, 10,000 /Angular resonant frequency
LC

rad s
1

5 10 2 10

1
r

3 6
# # #

ω = = =
- -

,
,

3.125Quality factor at resonance Q
R
L

16
10 000 5 10

r
r

3
# #ω

= = =

-

,
.

,
3200 /Bandwidth

Q
rad s

3 125

10 000

r

rβ ω= = =

2
509.2958Bandwidth inHz Hz

2

3200

π

β

π
= = =

off frequency, ω−

L
R

L
R

LC2 2
1Lower angular cut

2

r =
−

+ +d n

off frequency,ω−Higher
L

R
L

R
LC2 2
1angular cut

2

h = + +d n

,
2 5 10

Here
L
R
2

16 1600
3

# #

= =
-        

10
LC

1

5 10 2 10

1
3 6

8

# # #

= =
- -

1600 8527.1911 /rad s1600 10
2 8

l` ω = − + + =

   1600 . /rad s1600 10 11727 1911
2 8

hω = + + =

foff frequency,−
. 1357.1446 Hz

2 2
8527 1911Lower cut l

l

π

ω

π

= = =

 
foff frequency,−

. 1866.4404Higher Hz
2 2

11727 1911cut h
h

π

ω

π

= = =

EXAMPLE 5.6

An RLC series circuit is to be designed to produce a magnification of 10 at 100 rad/s. The 100 V  source 

connected to an RLC series circuit can supply  a maximum current of 10 A. The half-power frequency impedance 

of the circuit should not be more than 14.14 Ω. Find the values of R, L and C.

SOLUTION

Given that   w
r
 = 100 rad/s,   Q

r
 = 10,   V = 100 V,   I

r
 = 10 A.

The current will be maximum only at resonance. Hence, 10 A current can be considered as current at 

resonant condition.

,Current at resonance I
R
V

r =

10R
I

V

10

100

r

` Ω= = =

(AU June’16, 16 Marks)
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,Quality factor at resonance Q
R
L

r
rω

=

1L
Q R

H
100

10 10r

r

`
#

ω

= = =

2
1

Q Q

1

4

1Angular higher cut off frequency,
2h r

r r

ω ω− = + +< F

                                                 
100 105.1249 /rad s

2 10

1
1

4 10

1
2# #

= + + =< F
Let, Z = Impedance of RLC series circuit.

,Here Z R L
C
12

2

ω
ω

= + −d n

Z R L
C

L
C

L
C

1 1 12
2 2 2

h
h

h
h

h
hh

` ω
ω

ω
ω

ω
ω

= + − = − + −
~ ~=

d d dn n n

                 
2 L

C
L

C

1
2

1
h

h

2

h
h

ω

ω

ω

ω

= − = −d dn n
     

, 14.14Here L
C

2 1
h

h

#ω

ω

−d n    ⇒   14.14L
C

2
1

h
h

ω

ω

− =c m   ⇒ .

C
L

1

2

14 14

h
h

ω

ω= −

.
. .

.
C

L
2

14 14

1

105 1249 105 1249
2

14 14

1

h h

`

#ω ω

=

−

=

−d dn n

                 99.998 10 99.998 100F F F6
# .µ µ= =

-

RESULT

The values of the parameters of an RLC series circuit are, 

R = 10 Ω,   L = 1 H    and   C = 100 µF

5.3    Parallel Resonance

Like series RLC circuits, the resonance condition can be achieved in parallel RLC circuits 

by varying the frequency of the exciting source. In a parallel RLC circuit, the circuit will behave 

as a purely resistive circuit at resonance and this circuit condition is called parallel resonance. 

However, the current supplied by the source is minimum in parallel resonance, which is why  

parallel resonance is also called anti-resonance.

For simplicity in analysis, parallel circuits can be analysed in terms of admittance. In 

admittance, the inductive and capacitive susceptances have opposite signs and they are functions 

of frequency. Hence, when the susceptances are varied by varying the frequency of the exciting 

source, there is a possibility that the inductive susceptance cancels the capacitive susceptance at a 

particular frequency. Therefore, the total susceptance is zero and the circuit will behave as a purely 

resistive circuit. Now, the circuit will be in resonance and the frequency at which resonance occurs 

is called resonant frequency.

The effective resistance of the RLC parallel circuit at resonance is called dynamic resistance. 

At resonance, the admittance of the RLC parallel circuit is purely real and so the dynamic resistance 

is given by the inverse of admittance at resonance.

off-

,

At higher cut

frequency

R L
C
1

h
h

ω

ω

= −

(AU Dec’14, 16 Marks)
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In a parallel RLC circuit, we may come across the following four combinations of R, L and 

C circuits, as also shown in Fig. 5.8.

Case i : R, L and C are in parallel.

Case ii : A branch with R
1
 and L in series is parallel with another branch with R

2
 and C in series.

Case iii : A branch with R
1
 and L in series is parallel with C.

Case iv : A branch with R
2
 and C in series is parallel with L.

5.3.1   Resonant Frequency of Parallel RLC Circuits

Case i : Parallel combination of R, L and C

Consider the RLC parallel circuit shown in Fig. 5.9, excited by 

a sinusoidal source of variable frequency. When the frequency of the 

source is varied, the resonance occurs at a particular frequency. The 

expressions for resonance frequency and dynamic resistance for the 

RLC parallel circuit of Fig. 5.9 are given below:

/,
LC

in rad sangular frequency
1

Resonant rω =

 .....(5.50)

,
2

frequency f
LC

in Hz
2

1
Resonant r

r

π

ω

π

= =     .....(5.51)

,Dynamic R Rresistance dynamic =     .....(5.52)

Proof for resonance frequency in RLC parallel circuit

Consider the parallel combination of R, L and C shown in Fig. 5.9.

 , , .Let Y of the parallel combination of R L and CAdmittance=

,Now Y G jB jB
R

j
L

j C1 1
L C

ω
ω= − + = − +

        R
j C

L
1 1

ω
ω

= + −a k     .....(5.53)

At resonant frequency ω
r
, the circuit behaves as a purely resistive circuit and so the imaginary part of admittance 

is zero.

, 0At C
L
1

r r

r

` ω ω ω

ω

= − =    .....(5.54)

; ;G
R

B
L

B C
1 1

L C
ω

ω= = =

R L C

Fig. a : R, L and C are
in parallel.

R
1

L C

R
2

Fig. b : RL parallel
with RC.

R
1

L

C

Fig. c : RL parallel
with C.

L

C

R
2

Fig. d : L parallel
with RC.

Fig. 5.8 : RLC parallel resonant networks.
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Fig. 5.9.
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L
C

1

r
r`

ω

ω=

LC

1
r
2

` ω =

LC

1
r` ω =

f f
LC2 2

1
r

r
r&`

π

ω

π

= =

,Let Y r  be the admittance at resonance and it is obtained by substituting w = w
r
 in equation (5.53).

Y
R

j C
L R

1 1 1
r r

r

` ω
ω

= + − =d n
 Dynamic resistance is the inverse of the admittance at resonance.

Dynamic R
Y

R1resistance,
r

dynamic` = =
    

Case ii : RL parallel with RC

Consider the RLC parallel circuit shown in Fig. 5.10, excited 

by a sinusoidal source of variable frequency. When the frequency of 

the source is varied, the resonance occurs at a particular frequency. 

The expression for resonance frequency and dynamic resistance for 

the RLC parallel circuit of Fig. 5.10 are given below:

/,
LC L CR

L CR
in rad sangular frequency

1
Resonant

2

2

r

2

1
ω =

−

−  .....(5.55)

, f
LC L CR

L CR
in Hzfrequency

2 2

1
Resonant

2

2

r

r

2

1

π

ω

π

= =

−

−
   

.....(5.56)

stance, R

R X

R

R X

R
inDynamic resi

1
dynamic

1
2

Lr
2

2
2

Cr
2

21

Ω=

+
+

+

   

.....(5.57)

, ;where X L X
C

1
Lr r Cr

r

ω

ω

= =

Proof for resonance frequency in parallel RLC circuit in which RL parallel with RC

Consider the parallel resonant circuit shown in Fig. 5.10. 

Let, Y  = Total admittance of the RLC parallel network. 

,Now Y Y Y
Z Z

1 1
1 2

1 2

= + = +

 R j L R j
C

1
1

1
1

2

ω

ω

=
+

+

−

Using equation (5.54)
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Fig. 5.10.
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Let us separate the real and imaginary parts by multiplying the numerator and denominator of each term by 
the conjugate of the denominator.

Y
R j L R j L

R j L

R j
C

R j
C

R j
C1

1
1

1

1

1 1

1

2 2

2

` # #
ω ω

ω

ω ω

ω
=

+ −

−
+

− +

+

           R L

R j L

R
C

R j
C
1

1

2 2 2

2

1

2

2

1 2

2ω

ω

ω

ω
=

+

−
+

+

+

           
R L

R
j
R L

L

R
C

R
j
R

C

C
1 1

1

2 2 2 2 2 2 2

2 2

2

2 2

1 2

1 1 2 2
ω ω

ω

ω ω

ω
=

+

−

+

+

+

+

+

           R L

R

R
C

R j
R

C

C
R L

L
1 1

1

2 2 2 2

2 2

2

2

2 2

2 2 2

1

1 2 2 1
ω

ω ω

ω

ω

ω
=

+

+

+

+

+

−

+

R

T

S
S
S
S

V

X

W
W
W
W
  .....(5.58)

At resonant frequency ω
r
, the circuit behaves as a purely resistive circuit and so the imaginary part of the 

admittance is zero.

 

; 0At
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2 2
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2 1

` ω ω
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+

−

+
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              C R
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R L

L

1

1

2

2

2 2

r

r

r

r2 2
1

2
`

ω

ω

ω

ω

+

=

+d n     

On cross-multiplying the above equation, we get,

R L LC R
C

1
1
2 2 2 2 2

2
r r

r

2 2
ω ω

ω

+ = +d n     ⇒     R L R LC
C

L
1
2 2 2 2 2

r r 2
ω ω+ = +  .....(5.59)

L R LC
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2 2 2
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2
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2

2
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2
` ω =

−

−

=
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a _k i
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r` ω =

−
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f
LC L CR

L CR
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2
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1
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`
π

ω
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−

−

The value of admittance at resonance is obtained from the real part of equation (5.58) at w = w
r
.

,at resonance Y Y
R L

R

R
C

R

R X

R
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1
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1
2 2 2
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2 2
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2 2 2 2
Lr Cr
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 , ;where X L X
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Dynamic resistance is the inverse of the admittance at resonance.
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1 1
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Resonance at All Frequency

The parameters R
1
, R

2
, L and C of the parallel resonant circuit shown in Fig. 5.11 can be 

chosen such that the circuit behaves as a purely resistive circuit at all frequencies. Hence, the circuit 

will be in resonance at all frequencies.

From equation (5.59), we can write,

R
C

L
L R LC 01

2 2 2 2 2

r r 2
ω ω− + − =

0R
C

L
LC R

C

L
1
2 2

2
2

r` ω− − − =a ak k

Let, R
1
 = R

2
 = R

0R
C

L
LC R

C

L2 2 2

r` ω− − − =a ak k

(1 ) 0R
C
L LC

2

r

2
ω− − =a k                                                        

The above equation is zero, if R
C

L
0

2
− =a k  

Let,  0R
C

L2
− =     

   R
C

L2
` =

   R
C

L
` =     .....(5.60)

Equation (5.60) is the condition for resonance at all frequencies. Therefore, we can say that when 

R R
C

L
1 2= =  , the imaginary part of the admittance will be zero for all frequencies and the circuit of 

Fig. 5.11 will behave as a resistive circuit at all frequencies, i.e., resonate at all frequencies.

Case iii : RL parallel with C

Consider the RLC parallel circuit shown in Fig. 5.12, excited 

by a sinusoidal source of variable frequency. When the frequency of 

the source is varied, the resonance occurs at a particular frequency. 

The expressions for resonance frequency and dynamic resistance for 

the RLC parallel circuit of Fig. 5.12 are given below:

,
LC L

CR
angular frequency

1
1Resonant

2

r

1
ω = −

 

 .....(5.61)

, f
LC L

CR
frequency

2 2

1
1Resonant

2

r

r 1

π

ω

π

= = −

    

.....(5.62)
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, R
R C
L

inDynamic resistance dynamic
1

Ω=     .....(5.63)

Note : Equation (5.61) for resonant frequency can be obtained from equation (5.55), if we 

           put R
2
 = 0.

Proof for resonance frequency in parallel RLC circuit in which RL is parallel with C

Consider the parallel resonant circuit shown in Fig. 5.12. 

Let, Y  = Total admittance of the RLC parallel network.

,Now Y Y jB
Z

jB1
1

1
C C= + = +

                R j L
j C

R j L R j L
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j C1 1

1 1 1
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ω ω
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−
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2 2
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+
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+

                R L

R j C
R L

L

1
2 2 2

1

1
2 2 2

ω

ω

ω

ω
=

+

+ −

+
d n    .....(5.64)

   At resonant frequency ω
r
, the circuit behave as a purely resistive circuit and so the imaginary part of the 

admittance is zero.
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2 2 2

1
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On dividing the above equation by L2, we get, 

LC L
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2

2

1
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1
ω = −d n

LC L
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f

LC L
CR

2 2
1 1 1

2

r
r

`
π

ω

π

= = −

The value of admittance at resonance is obtained from the real part of equation (5.64) at w = w
r
.

,at resonance Y Y
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R
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2 2

1
r r`
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Dynamic resistance is given by the inverse of the admittance at resonance.
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Using equation (5.65)
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Case iv : L parallel with RC

Consider the RLC parallel circuit shown in Fig. 5.13, 

excited by a sinusoidal source of variable frequency. When 

the frequency of the source is varied, resonance occurs at a 

paricular frequency. The expressions for resonance frequency 

and dynamic resistance for the RLC parallel circuit of 

Fig. 5.13 are given below:

/
LC L CR

L in rad s
1Resonant angular frequency, r

2
2

ω =

−  .....(5.66)

f
LC L CR

L in Hz
2 2

1Resonant frequency, r
r

2
2

π

ω

π

= =

−   .....(5.67)

R
R C
L inDynamic resistance, dynamic
2

Ω=

    .....(5.68)

Note : Equation (5.66) for resonant frequency can be obtained from equation (5.55), if we

   put R
1
 = 0.

Proof for resonance frequency in RLC parallel circuit in which L parallel with RC

Consider the parallel resonant circuit shown in Fig. 5.13. 

Let, Y =  Total admittance of the RLC parallel network. 
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At resonant frequency ω
r
, the circuit behaves as resistive circuit and so the imaginary part of the admittance 

is zero.
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On multiplying and dividing the above equation by L, we get,
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The value of admittance at resonance is obtained from the real part of equation (5.69) at w = w
r
.
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Using equation (5.70)
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5.3.2    Frequency Response of Parallel RLC Circuit

Consider the parallel RLC circuit excited by a sinusoidal 

source of variable frequency as shown in Fig. 5.14. The admittance 

Y of the circuit is given by,

Y G jB jB G j B BC LCL= − + = + −_ i           .....(5.72)

, .

.

Let I Current at resonance

Y Admittace at resonance

r

r

=

=

At resonance, B
L
 = B

C

Therefore, from equation (5.72), we get,

, Y
R

at resonance 1Admittance r =     .....(5.73)

, 0 0 0Current at resonance I V Y V
R R

V I A1o o o

r r r` #+ + += = = =   .....(5.74)

,where I
R
V Magnitude of current at resonancer = =    .....(5.75)

Let us examine the variation of admittance of the RLC parallel circuit with frequency. 

At frequencies lesser than resonant frequency, the inductive susceptance will be more than the 

capacitive susceptance and so the total susceptance will be inductive. Since the inductive susceptance 

is inversely proportional to frequency, the inductive susceptance and hence the total susceptance 

increases when the frequency is decreased from the resonant frequency. Therefore, the admittance 

of the RLC parallel circuit increases when the frequency is decreased from the resonant value.

At frequencies higher than resonant frequency, the capacitive susceptance will be more than the 

inductive susceptance and so the total susceptance will be capacitive. Since the capacitive susceptance 

is directly proportional to frequency, the capacitive susceptance and hence the total susceptance 

increases when the frequency is increased from the resonant frequency. Therefore, the admittance 

of the RLC parallel circuit increases when the frequency is increased from the resonant value. 
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Fig. 5.14.
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At resonant frequency, the admittance of the RLC parallel circuit is equal to the conductance 

and this value of admittance is minimum. Since the admittance is minimum, the current is minimum 

at resonance. Also the current at resonance will be in-phase with the supply voltage.

Since the admittance increases for frequencies lesser or higher than resonant value, the 

current increases when the frequency is increased or decreased from the resonant value. The 

variation of current, susceptances and admittance of an RLC parallel circuit with frequency are 

shown in Fig. 5.15.

When the RLC parallel circuit is excited by a constant current source as shown in Fig. 5.16(a), 

it can be justified from the above discussion that the voltage across the parallel elements is maximum 

at resonance and decreases when the frequency is increased or decreased from the resonance value. 

The variation of voltage with frequency when excited by a constant current source is shown in 

Fig. 5.16 (b).

, .aLet V Voltage across parallel elements at resonance when excited by current sourceri =

        .Y of RLC circuit at resonanceAdmittanceri =

,Here Y G
R
1

ir = =
     .....(5.76)

0 0V
Y

I

G

I
IR V

0

ri

o
o

ri
o

ri
+

+ += = = =     .....(5.77)

where, V
ri
 = IR = Magnitude of voltage at resonance  .....(5.78)

5.3.3    Q-Factor(Quality Factor) of RLC Parallel Circuit

In an RLC parallel circuit, due to stored energy in the inductor and capacitor, the current 

through these devices will be greater than the current supplied by the source. In other words, we can 

say that there is a current magnification or amplification. Current magnification can be expressed 

by a factor called Quality factor (Q), which is defined as the ratio of maximum energy stored to 

the energy dissipated in one period.

,Quality factor Q
Energy dissipated in one period

Maximum energy stored
2` #π=   .....(5.79)

The term 2p is introduced to simplify the expression for quality factor.      

,Quality factor at resonance Q
Energy dissipated in one period at resonance

Maximum energy stored at resonance
2r #π=   .....(5.80)
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,Here Q CRrr ω=           .....(5.81)

, ,At resonance
LC LC

and C
L

1 1 1
r r

r

2

2
ω ω

ω

= = =

         

Therefore, the quality factor at resonance, Q
r
 can also be expressed as shown below:

Q CR
L

R
L

R1
r r r

r r

2
# #ω ω

ω ω

= = =  Q
L
R

r
r`

ω

=   .....(5.82)

               CR
LC

CR R
L

C1
r #ω= = =  Q R

L
C

r` =  .....(5.83)

For frequencies less than the resonant frequency, the RLC parallel circuit behaves as an 

inductive circuit. 

,When Q
L
R

r r` #ω ω

ω

=      .....(5.84)

For frequencies higher than the resonant frequency, the RLC parallel circuit behaves as a 

capacitive circuit.

∴  When   ω ≥ ω
r
  ,     Q = ωCR    .....(5.85)

Note : Equation (5.84) can be used to calculate the Q-factor of an RL parallel circuit 

and equation (5.85), can be used to calculate the Q-factor of a capacitor or RC parallel circuit.

Proof for quality factor at resonance, Q
r
 in RLC parallel circuit

Consider a RLC parallel circuit shown in Fig. 5.17, excited by a sinusoidal voltage source of frequency, w.

, .Let V be the reference phasor

V V V0
o

` +=

,Let v value of voltageInstantaneous=

sinv V tm` ω=    .....(5.86)

Let, w
L
 = Instantaneous value of energy stored in inductor

 w
C
 = Instantaneous value of energy stored in capacitor

 w  =  Total instantaneous energy stored in the RLC circuit

 w
r
 =  Total instantaneous energy stored in the RLC circuit at resonance.

We know that, 

( .11)w Li equation of Chapter
2
1 4 4Using2

L L=

            L
L

v dt i
L

v dt
2

1 1 1
2

L= =< F# #

            ( . )sinL
L

V t dt equation
2
1 1 5 86Using

2

m ω= < F#

      
cos

L
L

V
t

2

1 1
2

m
ω

ω
= −a k< F

           cos
L

V
t

2
2

2
2m

ω

ω=     .....(5.87)
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We know that,

( .16)w CV equation of Chapter
2
1 4 4Using2

C -=

     ( . )sinC V t equation
2
1 5 86Using2

m ω= _ i

     sinCV t
2

1 2 2
m ω=     .....(5.88)

, cos sinNow w w w
L

V
t CV t

2 2
1

2

2
2 2 2

L C
m

m

ω

ω ω= + = +                       Using equations (5.87) and (5.88)

                     sin cos
V

C t
L

t
2

1
2

2

2

2m
ω

ω

ω= +< F

sin cosw w
V

C t
L

t
2

1
2

2

2

2
r

m

r

r

` ω

ω

ω= = +

~ ~

~ ~

=

=

< F  sin cos
V

C t
L

t
2

1
2

2

2

2m
r

r

rω

ω

ω= +< F

                          sin cos
V

C t
L

LC
t

2

2
2 2m

r rω ω= +9 C

                           1sin cos sin cos
V C

t t
2

2
2 2 2 2m

r rω ω θ θ= + + =7 A

                           
V C

2

2
m=      .....(5.89)

From equation (5.89) we can say that the energy stored in the RLC circuit at resonance is independent of time 
and it is constant. Therefore, the instantaneous energy is the maximum energy stored at resonance.

Let, W
mr

 = Maximum energy stored at resonance

W w
V C

2

2

mr r
m

` = =      .....(5.90)

In the RLC parallel circuit, the energy is dissipated by the resistor

Let, W
R
 = Energy dissipated in resistor in one period

 W
Rr

 = Energy dissipated in resistor in one period at resonance

 ∴ W
R
 =  Power × Time Period.

       
R

V
T

2

#=     V = RMS value of voltage

               
V

R f2
1 1

2

m
# #= f p                    V

V
T

f2
1m= =

       
V

R2

1 2
2
m
# #

ω

π
=    2 fω π=   ⇒   

f
1 2

ω

π
=

       
R

V
2
m

ω

π
=

     .....(5.91)

W W
R

V
2

Rr R

r

m

r

`
ω

π
= =

~ ~=
     .....(5.92)

Q
W

W
W

W

V C

V

R

2 2 1

2

2

2

r

Rr

mr
mr

Rr

m

m

r

r r

` # # #π π

π

ω

= =

Q w CR` =

2 # #π=

     .....(5.93)

Using equations (5.90) and (5.92)

LC

1
rω =   ⇒  LC

1
2
rω

=
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Fig. 5.18 : RLC parallel circuit excited by voltage source.
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5.3.4   Bandwidth of RLC Parallel Circuit

When an RLC parallel circuit is excited by a constant voltage source as shown in  

Fig. 5.18(a), the current is the response as shown in Fig. 5.18(b). From this current response we 

can say that the RLC parallel circuit acts as a rejector circuit where a band of frequencies are 

rejected. This is because for the band of frequencies around resonant frequencies, the current 

response is minimum.

On the other hand, when an RLC parallel circuit is excited by a constant current source 

as shown in Fig. 5.19(a), the voltage is the response as shown in Fig. 5.19(b). From this voltage 

response, we can say that the RLC parallel circuit acts as a selector circuit where a band of 

frequencies are selected. This is because for the band of frequencies around resonant frequencies, 

the voltage response is maximum. Bandwidth based on current response and voltage response is 

discussed here.

Bandwidth Based on Current Response

The current response of an RLC parallel circuit is shown in 

Fig. 5.20. The current response is minimum at resonance and it increases 

for increasing or decreasing frequency from the resonance value. Since 

current is minimum, power is also minimum at resonance. Therefore, 

when the frequency is decreased from the resonant value, we come 

across a frequency at which power is twice that of the minimum value 

(or the current is 2  times the minimum value), and this frequency is 

called lower cut-off frequency, w
l
. When frequency is increased from 

the resonant value, we come across a frequency at which  power is twice 

that of the minimum value (or the current is 2  times the minimum 

value), and this frequency is called higher cut-off frequency, w
h
.
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w
r
w

h
w

l

I

2 I
r

I
r

w
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The two cut-off frequencies lie on either side of the resonant frequency as shown in  

Fig. 5.20. It can be proved that “the resonant frequency is given by the geometric mean of the two 

cut-off frequencies”, i.e., .r hlω ω ω=

The bandwidth based on current response can be defined as the range of frequencies over 

which power is less than or equal to twice the minimum power.

Alternatively, the bandwidth based on current response can be defined as the range of 

frequencies over which current is less than or equal to 2  times the minimum current.

The bandwidth is given by the difference between the cut-off frequencies and it can be denoted  

by β. The unit of bandwidth is rad/s or Hz.

The equations for cut-off frequency and bandwidth are given below:

/,
RC RC LC

in rad s
2
1

2
1 1Higher cut off angular frequency h

2

- ω = + +a k  ..... (5.94)

/,
RC RC LC

in rad sLower
2
1

2
1 1cut off angular frequency

2

l- ω = − + +a k  ..... (5.95)

Alternatively,

/
Q Q

in rad s
2
1 1

4

1
h r

r r
2

ω ω= + +< F
     .....(5.96)

/
Q Q

in rad s
2
1 1

4

1
r

r r
2lω ω= − + +< F      .....(5.97)

, f
RC RC LC

in Hz
2 2

1
2
1

2
1 1Higher cut off frequency h

h
2

-
π

ω

π
= = + +a k< F   .....(5.98)

, f
RC RC LC

in HzLower
2 2

1
2
1

2
1 1cut off frequency h

2

l-
π

ω

π
= = − + +a k< F  .....(5.99)

/,
RC

in rad sBandwidth 1β =
     .....(5.100)

Alternatively,

/,
Q

in rad sBandwidth
r

rβ
ω

=
      .....(5.101)

RC
in HzBandwidth in Hz

2 2

1

π

β

π
= =      .....(5.102)
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Proof for cut-off frequency and bandwidth based on current response

Consider an RLC parallel circuit shown in Fig.  5.21, excited by a sinusoidal voltage source of frequency w.

,

.

Let V V Supply voltage

I Current delivered by the source

Y of RLC parallel circuit

0

Admittance

o

+= =

=

=

,Here Y
R

j
L

j C
R

j C
L

1 1 1 1
ω

ω ω
ω

= − + = + −a k

Y Y
R

C
L

1 1
2

2

` ω
ω

= = + −a k  .....(5.103)

,Here I V Y=

I I V Y V Y VY` = = = =

I V
R

C
L

1 1
2

2

` # ω
ω

= + −a k
   .....(5.104)           Using equation (5.103)

Let,  P = Power in RLC circuit

     P
r
 = Power in RLC circuit at resonance.

,Here P I R V
R

C
L

R1 12 2

2

2

ω
ω

= = + −ad k n                                Using equation (5.104)

P V
R

R C
L

1 12
2

` ω
ω

= + −ad k n    .....(5.105)

At resonance, wC = 1/wL. On substituting this condition in equation (5.105), we get power at resonance, P
r
.

P
R

V
2

r` =     .....(5.106)

,: Alternatively P I R
R
V R

R
V

Note
2

2 2

r r= = =a k
At half-power frequencies or cut-off frequencies, the power will be equal to twice the power at resonance.

P P2 r` # =

      
R

V
V

R
R C

L
2

1 1
2

2
2

# ω
ω

= + −ad k n                   Using equations (5.105) and (5.106)

R R
R C

L

2 1 1 2

` ω
ω

= + −a k       ⇒      
R R

R C
L

2 1 1 2

ω

ω

− = −a k        ⇒        
R

R C
L

1 1 2

ω

ω

= −a k

C
L R

1 12

2
` ω

ω

− =a k
On taking the square root of the above equation, we get,

C
L R

1 1
!ω

ω

− =     .....(5.107)

Note : Equation (5.107) implies that the absolute value of the total susceptance at cut-off frequencies is equal 
to the conductance of the circuit.
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( .1 ) ,On multiplying the equation by
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,

The roots of quadratic

RC LC
are
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RC LC
are

RC RC LC

RC RC LC

RC RC LC

1 1 0

2

1 1 4

2
1

2
1 4

4
1 1 1

2
1

2
1 1

2

2

2

2

!

!

!

w w

w

+ - =

=

- +

= - +

= - +

`

`

`

j

j

j

; E

The cut-off frequencies are given by the positive roots of the two quadratic.

ω, /Higher cut off angular frequency
RC RC LC

in rad s
2
1

2
1 1

h

2

` - = + +a k
 ..... (5.108)

     , /Lower cut off angular frequency
RC RC LC

in rad s
2
1

2
1 1

l

2
- ω = − + +a k  ..... (5.109)

Since, w = 2pf and ,f
2π
ω

=  the cut-off frequency in Hz can be expressed as shown below:

,off frequency f-Higher cut
RC RC LC

in Hz
2
1

2
1

2
1 1

h

2
`

π
= + +a k< F   ..... (5.110)

    ,off frequency f-Lower cut
RC RC LC

in Hz
2
1

2
1

2
1 1

l

2

π
= − + +a k< F   ..... (5.111)

The bandwidth, β is given by difference between cut-off frequencies.

∴  Bandwidth, β  =  w
h
 – w

l

                             RC RC LC RC RC LC2

1

2

1 1

2

1

2

1 1
2 2

= + + − − + +a ak k< F

        /
RC RC RC

in rad s
2
1

2
1 1

= + =     ..... (5.112)

Bandwidth in Hz
RC

in Hz
2 2

1
`

π

β

π
= =     ..... (5.113)

Alternatively, bandwidth and cut-off frequencies can be expressed in terms of angular resonant frequency, w
r
 

and quality factor, Q
r
 as shown below:

( .11 ), ,From equation we get
RC

5 2 1β =

( .8 ), ,From equation we get Q CR5 1 r rω=    ⇒    RC Q
1

r

rω
=

On comparing the above two equations, we get,

Qr

rβ
ω

=
        ..... (5.114)

From equation (5.108), we get,
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2 4
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β β

ω= + + = + +
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r
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Q Q Q Q2 4
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1 1
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r
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r
2 r

r r
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ω
ω ω= + + = + +> H    ..... (5.115)

LC RC

1 1
rω β= =

Qr

rβ
ω
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Similarly,

Q Q2
1 1

4

1
l r

r r
2

ω ω= − + +> H
      ..... (5.116)

On multiplying equations (5.115) and (5.116), we get,

Q Q Q Q2
1 1

4

1
2
1 1

4

1
h l r

r r
2 r

r r
2#ω ω ω ω= + + − + +> >H H

          Q Q Q Q
1

4

1
2
1 1

4

1
2
1

r
2

r
2

r r
2

r
ω= + + + −> >H H

          
1

Q Q4

1

4

1
r
2

r
2

r
2

ω= + −< F
          r

2
ω=

r h l` ω ω ω=        ..... (5.117)

From equation (5.117) we can say that, resonant frequency is given by the geometric mean of the cut-off 
frequencies.

Bandwidth Based on Voltage Response

Consider a parallel RLC circuit excited by a constant current source as shown in Fig. 5.22(a). 

Now, the voltage response will be as shown in Fig. 5.22(b). The voltage response is maximum at 

resonance and it decreases for increasing or decreasing frequency from the resonance value. Since 

current is maximum, power is also maximum at resonance. 

Therefore, when frequency is decreased from the resonant value, we come across a frequency 

at which power is 1/2 times the maximum power (or voltage is 1 2  times the maximum value) and 

this frequency is called lower cut-off frequency, w
l
. When frequency is increased from the resonant 

value, we come across a frequency at which power is 1/2 times the maximum power (or voltage 

is 1 2  times the maximum value) and this frequency is called higher cut-off frequency, w
h
.

Now, bandwidth based on voltage response can be defined as the range of frequencies over 

which power is greater than or equal to 1/2 times the maximum power.

Alternatively, bandwidth based on voltage response can be defined as the range of frequencies 

over which voltage is greater than or equal to 1 2  times the maximum voltage.

(a + b) (a – b) = a2 – b2 

Fig. a : RLC parallel circuit.
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Fig. b : Voltage response.

Fig. 5.22 : Voltage response of an RLC parallel circuit excited by a current source.
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Bandwidth is given by the difference between cut-off frequencies and is denoted by β. The 

unit of bandwidth is rad/s or Hz.

The expression for cut-off frequencies and bandwidth in an RLC parallel circuit is independent 

of the excitation source and depends only on parameters R, L and C. Therefore, equations (5.94) 

to (5.102) for cut-off frequencies and bandwidth are applicable for an RLC parallel circuit excited 

by a current source.

Proof for cut-off frequency and bandwidth based on voltage response

Consider an RLC parallel circuit shown in Fig. 5.23, excited by a sinusoidal current source of frequency, w.

Let, I  =  I∠0o = Supply current.

 V  = Voltage across parallel combination of R, L and C.

 Y  = Admittance of RLC parallel circuit.

,Here Y
R

j
L

j C
R

j C
L

1 1 1 1
ω

ω ω
ω

= − + = + −a k

Y Y
R

C
L

1 1
2

2

` ω
ω

= = + −a k
    ..... (5.118)

,Here V
Y

I=

V V
Y

I

Y

I

Y

I
` = = = =

V

R
C

L

I

1 1
2

2
`

ω
ω

=

+ −a k
   ..... (5.119)           Using equation (5.118)  

Let, P = Power in RLC circuit.

      P
r
 = Power in RLC circuit at resonance.

,Here P
R
V

R

R
C

L

I1

1 1

2

2

2

2

ω
ω

= =

+ −a k    ..... (5.120)           Using equation (5.119)

At resonance, .C
L

1
ω

ω

=  On substituting this condition in equation (5.120), we get power at resonance, P
r
.

P
R

R

I
I R

1

1
r

2

2
2

` = =     ..... (5.121)

At half-power frequencies or cut-off frequencies, power will be equal to 1/2 times the power at resonance.

P P
2

1
r` =

Fig. 5.23.
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R

R
C

L

I
I R

1

1 1 2

1

2

2

2
2

ω
ω

+ −

=

a k
             Using equations (5.120) and (5.121)

R
C

L

R

1 1

1

2

2

2

2

`

ω
ω

+ −

=

a k

On inverting the above equation, we get,

R
C

L R

1 1 2
2

22
ω

ω
+ − =a k       ⇒      C

L R R

1 2 1
2

2 2
ω

ω

− = −a k

C
L R

1 1
2

2
` ω

ω

− =a k
On taking square root of the above equation, we get,

C
L R

1 1
!ω

ω

− =
       ..... (5.122)

Note : Equation (5.122) implies that the absolute value of the total susceptance at cut-off frequencies is equal to 
    the conductance of the circuit.

Equation (5.122) is same as equation (5.107), and so the rest of the proof will be similar to the proof of cut-off 
frequency and bandwidth based on current response.     

5.3.5   Solved Problems in Parallel Resonance

EXAMPLE 5.7

The parameters of an RLC parallel circuit excited by a current source are R = 40 Ω, L = 2 mH and C = 

3 µF. Determine the resonant frequency, quality factor, bandwidth and cut-off frequencies.

SOLUTION

Given that,   R = 40 Ω,   L = 2 mH    and    C = 3 µF

,Angular resonant frequency
LC

1
rω =

      12909.9445 12910 /rad s

2 10 3 10

1

3 6
# # #

.= =
- -

, 2054.7 . 2.0547frequency f Hz kHz kHz
2 2

12910
1000

2054 7Resonant r
r

π

ω

π

= = = = =

, 1.5492Quality factor at resonance Q
L

R

12910 2 10

40
3r

r # #ω

= = =
-

, 8333.3333 8333/ /Bandwidth
RC

rad s rad s
1

40 3 10

1
6

# #

.β = = =
-
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.
1326.3

.
1.3263Bandwidth inHz Hz kHz kHz

2 2

8333 3333
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1326 3

π

β

π
= = = = =

off frequecy,- f f
Q Q2
1 1

4

1Higher cut h r

r r
2

= + +; E

            2.0547
. .2 1 5492

1
1

4 1 5492

1
2

#
# #

= + +; E

                                    2.8222 kHz=

off frequecy,-Lower f f
Q Q2
1 1

4

1cut r
r r

l
2

= − + +; E

                                   2.0547
. .2 1 5492

1
1

4 1 5492

1
2

#
# #

= − + +; E
                                  1.4959 kHz=

EXAMPLE 5.8

The  RLC parallel circuit shown in Fig. 1, consists of R = 8 kΩ, 

L = 0.2 mH  and C = 8 µF. Determine the resonant frequency, quality 

factor, bandwidth and cut-off frequencies.

SOLUTION

Given that,   R = 8 kΩ,   L = 0.2 mH    and    C = 8 µF

,
.

25 00/ /frequency in
LC

rad sec rad s
1

0 2 10 8 10

1 0Resonant
3 6

r

# # #

ω = = =
- -

, 250 0 8 10 8 10 1600Quality factor at resonance Q CR 0 6 3
r r

# # # #ω= = =
-

, . /Bandwidth
Q

rad s
1600
25000 15 625

r
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ω

= = =
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2Q Q

1 1
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r 2r

r
hω ω= + +; E

            250 00
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1
1
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1
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#
# #

= + +; E
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lω ω= − + += G

                                   250 00
2 1600

1
1

4 1600

1
2

#
# #

= − + +; E
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EXAMPLE 5.9

A coil of inductance 31.8 mH and resistance 10 Ω is connected in parallel with a capacitor across a 250 V, 

50 Hz supply. Determine the value of the capacitor if no reactive current is taken from the supply.

SOLUTION

The parallel combination of the coil and capacitor excited by the 

voltage source is shown in Fig. 1.

Let, Y  = Admittance of parallel combination of coil and capacitor.

 Z1  = Impedance of coil.

 Y
Z

1
1

1

=  = Admittance of coil.

 B
C
 = Susceptance of capacitor.

The current supplied by the source does not have any reactive component. This happens only at 

resonance. At resonance, the circuit behaves as a purely resistive, which means that the imaginary part of 

admittance Y is zero. Therefore, the value of the capacitor can be determined by equating the imaginary part 

of admittance to zero.     

Y Y jB
Z

jB
R j L

jB
R j fL

jB1 1
2
1

1
1 C C C C`

ω π
= + = + =

+
+ =

+
+

       2 50 31.8 10j
jB

10

1
3 C

# # #π

=

+

+
-^ h

       0.05 0.05 0.05 .j jB j B 0 05C C= − + = + −^ h

On letting the imaginary part of admittance to zero, we get,

B
C
 − 0.05 = 0    ⇒    B

C
 = 0.05

Since, B
C
 = wC we get,

.
.C

B

f

B
F

2 2 50

0 05
1 5915 10

4

6

C C

#
#

ω π π
= = = =

-

-
. .F F159 15 10 159 15# µ= =

EXAMPLE 5.10

In the RLC network shown in Fig. 1, determine the value of R
C
 for resonance. 

Also calculate the dynamic resistance.

SOLUTION

The given network has two parallel branches and the admittances of the 

parallel branches are named as shown in Fig. 2

Let, ,Z Z1 2  = Impedance of parallel branches.

 ,Y Y1 2  = Admittance of parallel branches.

      Y  = Total admittance of the RLC parallel network.

,
.

Now Y Y Y
Z j R j

1 1
3 12
1

12 5
1

Z
1 2

2 C1

= + = + =
+

+
−

Let us separate the real and imaginary parts of the admittance by multiplying the numerator and de-

nominator of each term of the admittance by the complex conjugate of the denominator.

Y
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Fig. 1.
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At resonance, the imaginary part of the admittance Y  will be zero.
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Dynamic resistance is given by the inverse of the real part of the admittance at resonance.
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RESULT

For resonance, R
C
 = 1.7857 Ω

Dynamic resistance, R
dynamic

 = 32.4676 Ω

EXAMPLE 5.11

Determine the value of R
L
 for resonance in the network shown in Fig. 1. Also 

calculate the dynamic resistance.

SOLUTION

The given network has two parallel branches and the admittances of the parallel 

branches are named as shown in Fig. 2.

Let, ,Z Z1 2  = Impedance of parallel branches

 ,Y Y1 2  = Admittance of parallel branches

      Y  = Total admittance of the RLC parallel network.

,Now Y Y Y
Z Z R j j
1 1

20
1

20 10
1

1 2
1 2 L

= + = + =
+

+
−

Let us separate the real and imaginary parts of the admittance by multiplying the numerator and 

denominator of each term of the admittance by the complex conjugate of the denominator.

Y
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At resonance, the imaginary part of the admittance Y  will be zero.
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Dynamic resistance is given by the inverse of the real part of the admittance at resonance.
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RESULT

For resonance, R
L
 = 24.4949 Ω

Dynamic resistance, R
dynamic

 = 15.5051 Ω

EXAMPLE 5.12

Determine the equivalent parallel network for a series RL combination. 

SOLUTION

The series RL network excited by source Eand its parallel equivalent are shown in Figs 1 and 2. The 

networks are equivalent if the impedances (or the admittances) with respect to source terminals are equal.

With reference to Fig. 1.
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Y
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With reference to Fig. 2.
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On equating the real part of equations (1) and (2), we get,
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On equating the imaginary part of equations (1) and (2), we get,
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EXAMPLE 5.13

In the RLC network shown in Fig. 1, determine the two possible values of C for 

the network to resonate at 2000 rad/s. Also, determine the value of C for resonance at 

all frequencies.

SOLUTION

The given network has two parallel branches and the 

admittance of the parallel branches are named as shown in Fig. 2.

Let, ,Z Z1 2  = Impedance of parallel branches

 ,Y Y1 2  = Admittance of parallel branches

      Y  = Total admittance of the RLC parallel network.

,Now Y Y Y
Z Z R jX R jX
1 1 1 1
1 L C

1 2

2

= + = + =
+

+
−

            R j L R jX j jX
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−

Let us separate the real and imaginary parts of the admittance by multiplying the numerator and 

denominator of each term of the admittance by the complex conjugate of the denominator.
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At resonance, the imaginary part of the admittance Y  will be zero.
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 The roots of the quadratic equation are,
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RESULT

2000 312.5/Two possible values of C for resonance at andrad s F F50 µ µ=

312.5The value of C for resonance at all frequencies Fµ=
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EXAMPLE 5.14

In the RLC network shown in Fig. 1, determine the two possible values of 

L for the network to resonate at 4000 rad/s.

SOLUTION

The given network has two parallel branches and the admittances 

of the parallel branches are named as shown in Fig. 2.

Let, ,Z Z21  = Impedance of the parallel branches

      ,Y Y1 2  = Admittance of parallel branches

             .Y Total of theRLCparallel networkadmittance=

,Now Y Y Y
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Let us separate the real and imaginary parts of the admittance by multiplying the numerator and de-

nominator of each term of the admittance by the complex conjugate of the denominator.
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At resonance, the imaginary part of the admittance Y  will be zero.
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We know that, X
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RESULT

4000 3.3693 74.2/Two possible values of L for resonance at andrad s mH Hµ=

5.4    Coupled Circuits

Coupled circuits refer to circuits involving elements with magnetic coupling. If the flux 

produced by an element of a circuit links (or pass through) other elements of the same circuit or a 

nearby circuit then the elements are said to have magnetic coupling (or connection through magnetic 

flux). Likewise, circuits with a number of branches and loops are said to have conductive coupling.

In magnetically coupled elements, the power (or energy) transfer occurs through the  

magnetic flux. In conductively coupled elements, the power (or energy) transfer takes place through 

the current. In general, coupled circuits refer to circuits with magnetically coupled elements.

Whenever current passes through a coil flux is set up in the coil. If the current is varying 

then the flux will also follow the variations in the current. Due to change in flux, an emf will be 

induced in the coil. The direction of the induced emf will be such as to oppose the current through 

the coil. This emf is called self-induced emf.

When a circuit has two or more coils then there is a possibility that the flux produced by one 

coil links the other coils. If the flux produced by coil-1 of a circuit links (or pass through) coil-2 of the 

circuit then an emf is induced in coil-2 due to change in flux (or current) in coil-1. This emf is called 

mutual induced emf . The term mutual is used here for induced emf because the action is reversible, 

i.e., if the flux produced by coil-2 links coil-1 then a change in flux in coil-2 will induce an emf in 

coil-1. The two coils linked by magnetic flux are called coupled coils.

A transformer is the best example of a coupled circuit. A transformer consists of two coils 

wound on a common core. The two coils are electrically isolated but linked magnetically. The two 

coils are called primary winding and secondary winding. When the primary is connected to an 

ac source, the current flows through the primary which creates flux. Since the coils are wound 

on a common core, the flux produced by primary current links both the coils. Here, the current is 

sinusoidal in nature and so the flux will also be sinusoidal. The sinusoidal flux varies with respect 

to time and so emfs are induced in primary and secondary.

The induced emf in primary is called self-induced emf and the induced emf in secondary 

is called mutual induced emf. The mutual induced emf acts as a source for the load connected 

to secondary. Hence, the power flows from primary to secondary through magnetic flux linking 

primary and secondary.

Note :  A transformer is a linear device as long as the flux in the core is not saturated. 

Normally, the flux density of a practical transformer is maintained to avoid saturation and so the 

transformer is also called linear transformer.
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5.5    Self-Inductance and Mutual Inductance

5.5.1   Self-Inductance

Consider a coil with N turns carrying a current i as shown in Fig. 5.24. Let φ 

be the flux in the coil. When the current in the coil is variable in nature, the flux φ also 

varies and so an emf is induced in the coil in a direction opposing the current flow. 

This emf is called self-induced emf.

Self-induced emf is directly proportional to the rate of change of current and 

the constant of proportionality is self-inductance, L. (Refer to Chapter 4, Section 4.4, 

equation (4.8)).  

dt

di
` ν α

     and L
dt

di
ν =                                  ..... (5.123)

When the permeability is constant, self-inductance is given by the ratio of weber-turn and 

current. (Refer to Chapter 4, Section 4.4, equation (4.7)). 

Self L
N

i
inductance,` -

φ
=

    ..... (5.124)

5.5.2   Mutual Inductance

Consider two coils with turns N
1
 and N

2
 placed very close to each other 

as shown in Fig. 5.25. Let L
1
 and L

2
 be the self-inductances of the coils 1 and 

2, respectively.

Let us excite the coil-1 by connecting a voltage source across its 

terminals as shown in Fig. 5.26. Now, current passes through coil-1 and so 

flux is set up in coil-1. Since coil-2 is placed very close to coil-1, a part of 

this flux will also pass through (or links) coil-2.

Let,  i
1
  =  Current through coil-1

     φ
1 
 =  Flux set-up in coil-1

     φ
12

  =  Flux produced by coil-1 linking coil-2.

When the current i
1
 is variable, the flux will also be 

variable. Now an emf is induced in coil-1 due to φ
1
, which is called 

self-induced emf and an emf is induced in coil-2 due to φ
12

,which 

is called mutual induced emf.

Self-induced emf is proportional to the rate of change of current in coil-1 and the constant 

of proportionality is self-inductance of coil-1(i.e., L
1
).

1, Lν =-Self induced emf in coil
dt

di
1 1

1
` -

   ..... (5.125)

L
N

i
where, 1

1

1 1φ=    ..... (5.126)
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Mutual induced emf in coil-2 is proportional to the rate of change of current in coil-1 and 

the constant of proportionality is the mutual inductance between coils 1 and 2.

Let, M
12

 = Mutual inductance between coils 1 and 2.

2, Mν =-Mutual induced emf in coil
dt

di
m2 12

1
`    ..... (5.127)

Similar to self-inductance, mutual inductance is also given by the ratio of weber-turn (flux 

linkage) and current.

M
N

i
12

1

2 12
`

φ
=    ..... (5.128)

In another case, let us excite coil-2 by connecting a voltage 

source across its terminals as shown in Fig. 5.27. Now current passes 

through coil-2 and so flux is set up in coil-2. Since coil-1 is placed very 

close to coil-2, a part of this flux will also pass through (or links) coil-1.

Let,  i
2
 =  Current through coil-2

     φ
2
  =  Flux set-up in coil-2

     φ
21 
=  Flux produced by coil-2 linking coil-1.

When the current i
2
 is variable, the flux will also be variable. Now an emf is induced in coil-2 

due to φ
2
, which is called self-induced emf and an emf is induced in coil-1 due to φ

21
, which is 

called mutual induced emf.

Self-induced emf is proportional to the rate of change of current in coil-2 and the constant 

of proportionality is self-inductance of coil-2 (i.e., L
2
).

 
2,-Self induced emf in coil L

dt

di
2 2

2
` - ν =

    ..... (5.129)

L
N

i
where, 2

2

2 2φ=    ..... (5.130)

Mutual induced emf in coil-1 is proportional to the rate of change of current in coil-2 and 

the constant of proportionality is the mutual inductance between coils 2 and 1.

Let, M
21

 = Mutual inductance between coils 2 and 1.

1,-Mutual induced emf in coil M
dt

di
m1 21

2
` ν =   ..... (5.131)

Similar to self-inductance, mutual inductance is also given by the ratio of weber-turn (flux 

linkage) and current.

M
N

i
21

2

1 21
`

φ
=     ..... (5.132)
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When variable current flows in both the coils, we have mutual induced emf in coil-2 due to 

current in coil-1 and mutual induced emf in coil-1 due to current in coil-2. Now, the turns ratio, 

the ratio of induced emfs and the ratio of currents are related as shown below:

N
N

i
i

2

1

m

m

2

1

1

2

ν

ν
= =

    
..... (5.133)

From equation (5.133), we can write,

N N
i i
1

2 1

2=     ..... (5.134)

In most of the practical coupled coils, the flux linking coils 1 and 2 is the same as that of flux  

linking coils 2 and 1.

∴  φ
12

 = φ
21 
= φ    ..... (5.135)

where, φ = Flux linking coils 1 and 2.

From equations (5.134) and (5.135), we can say that,

M
12

 = M
21

 = M    ..... (5.136)

where, M = Mutual inductance.

“The existence of magnetic coupling and hence, mutual inductance between two coils is 

represented by a double-headed arrow as shown in Fig. 5.28”.

Mutual M
N N

i i
inductance,

2

1

1

2
`

φ φ
= =      ..... (5.137)

where, φ = Flux linking coils 1 and 2.

5.5.3   Coefficient of Coupling

The coefficient of coupling can be defined for two coils linked by magnetic flux. It is a 

measure of flux linkages between the two coils. The coefficient of coupling is defined as the 

fraction of the total flux produced by one coil linking another and it is denoted by k.

Let,    φ
1
  = Flux produced by coil-1

       φ
2
 = Flux produced by coil-2

       φ
12

 = Flux produced by coil-1 linking coil-2

       φ
21

 = Flux produced by coil-2 linking coil-1.

, , kNow Coefficient of coupling
1

12

2

21

φ

φ

φ

φ
= =     ..... (5.138)

When k = 1, all the flux produced by one coil links the other coil and the coils are said to be 

tightly coupled or closely coupled coils. On the other hand, when k = 0, the flux produced by one 

coil does not link the other coil and the coils are said to be magnetically isolated. When the value 

of k is very low, the coils are said to be loosely coupled.
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Using equation (5.136)

Using equation (5.138)

φ
12

 = kφ
1   

;   φ
21

 = kφ
2

Using equations (5.126) and (5.130)

(AU Dec’14, 6 Marks)

 The expression relating the coefficient of coupling with self- and mutual inductance is given 

by,

,Coefficient of coupling k
L L

M

1 2

=     ..... (5.139)

Also, from the above equation we can write,

Mutual M k L Linductance, 1 2=  ..... (5.140)

Proof:

On multiplying equations (5.128) and (5.132), we get,

M M
i
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i

N
12 21
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2 12
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1 21
# #

φ φ
=     ⇒   M
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N k
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i

N
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N2 2

1

2 1

2

1 2

1

1 1

2

2 2
` # #

φ φ φ φ
= =  

         ∴   M2  =  k2 L
1
 L

2
    ..... (5.141)

On taking the square root of equation (5.141), we get,

M k L L
1 2

=   

L L

M

1 2

k` =

5.6   Analysis of Coupled Coils

In magnetically coupled coils, there are two induced emfs in each coil. One is self-induced 

emf and the other is mutual induced emf. “The self-induced emf is due to current (or flux) in the 

same coil and the polarity (or sign) of self-induced emf will be always opposing the current through 

the coil”.

The mutual induced emf is due to current or flux in a nearby coil. The polarity (or sign) of 

mutual induced emf may be either the same as that of the self-induced emf or opposite to that of 

the self-induced emf.

In a pair of coupled coils, if the flux produced by one coil aids the flux produced by another 

coil then the polarity of self- and mutual induced emf will be the same in both the coils. On the 

other hand, if the flux produced by one coil opposes the flux produced by the other coil then the 

polarity of self- and mutual induced emf will be opposite in both the coils.

Consider a coil wound on a core carrying current i. Now, the direction of flux lines can be 

found using the right-hand rule. Hold the coil in the palm of the right-hand and fold the fingers except 

the thumb in the direction of current through the turns. Now, the thumb indicates the direction of flux.

FluxFlux

i
i

i
i

i
i

i
i

Fig. 5.29 : Direction of flux in a coil with different winding sense.
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Two possible coil orientation (or winding sense) and resulting direction of flux for the 

same direction of (external) current are shown in Fig. 5.29. Coil orientation is also known as  

winding sense.

Let us apply the above concept to two coupled coils. The polarity of self- and mutual induced 

emf for some possible winding sense and direction of current are shown in Fig. 5.30.

In the coupled coils shown in Fig. 5.30, the polarity of self-induced emf is fixed first by 

assigning positive to the terminal where the current enters the coil (because the self-induced emf 

will always oppose the current).

Then the polarity of mutual induced emf is fixed depending on whether the fluxes are  

aiding or opposing. “If the fluxes are aiding then the polarity of mutual induced emf is the same 

as that of the self-induced emf. If the fluxes are opposing then the polarity of the mutual induced 

emf is opposite to that of the self-induced emf ”.

Note : In Fig. 5.30, separate cores are shown for coupled coils in order to explain the 

concepts. However, most coupled coils are wound on a common core (or on a single core).

5.6.1   Dot Convention for Coupled Coils

The polarity (or sign) of mutual induced emf depends on coil orientation (or winding sense) 

and the direction of current through the coil. Most manufacturers of coupled coils/transformers 

mark one end of each coupled coil by a dot, which represents the polarity of mutual induced emf. 

The dot rule can be stated for the polarity of mutual induced emf as shown ahead.
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Fig. 5.30 : Polarity of self- and mutual induced emf for different winding sense
and direction of current.
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Fig. 5.31 : Assigning dot to coupled coils.
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Dot Rule

“In coupled coils, current entering at the dotted terminal of one coil induces an emf in the second 

coil, which is positive at the dotted terminal of the second coil. Conversely, current entering at the 

undotted terminal of one coil induces an emf in the second coil, which is positive at the undotted terminal 

of the second coil”.

Note : When dot markings are not provided in coupled coils, they can be determined 

experimentally by measuring the additive and subtractive voltages of coupled coils using a voltmeter.

The method of assigning dots to terminals of coupled coils is discussed in detail here.

Consider two coils wound on a common core as shown in Fig. 5.31(a). The terminals of 

coil-1 are marked as 1 and 1′ and the terminals of coil-2 are marked as 2 and 2′. Let us excite the 

coil-1 by connecting a time varying voltage source e
1
 through current limiting resistance R

1
. Now 

a current i
1
 flows through coil-1 and a flux φ

1
 is set up in the core. The direction of flux can be 

determined using the right-hand rule.

The flux φ
1
 links both coils 1 and 2. Since the exciting source is a time varying source, the 

current and hence, flux are variable. Therefore, emfs are induced in coils 1 and 2. The emf in coil-1  

is called self-induced emf and the emf in coil-2 is called mutual induced emf.

Let us connect a resistance, R
2
 across the terminals of coil-2. Now a closed path is provided in 

coil-2 and a current flows in coil-2. The coupled coil shown in Fig. 5.31(b) is basically a transformer 

( or linear transformer or natural transformer) and so the current is also known as natural current.

By Lenz’s law, the direction of current is to oppose the cause producing it. The cause is the 

flux φ
1
 which induces mutual emf. Hence, the current i

2
 will establish a flux φ

2
 in order to oppose 

φ
1
. (In a practical sense, in this case, φ

2
 can never be greater than φ

1
).

By taking the direction of flux φ
2
 as opposite to that of φ

1
 and applying the right-hand 

rule, the direction of current through coil-2 can be determined. It is found that i
2
 leaves the coil 

at terminal-2 and enters the coil at terminal-2′. The mutual induced emf is the source for current 

i
2
 and the terminal at which current leaves is positive for mutual induced emf. A dot is placed at 

terminal-2 of coil-2 to mark the positive polarity of the mutual induced emf.

(AU May’15, 2 Marks)

(AU May’15, 16 Marks)
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By similar analysis on exciting the coil-2 by a source of e
2
 and connecting a resistance across

coil-1 as shown in Fig. 5.32, it is found that the polarity of mutual induced emf is positive at 

terminal-1 of coil-1. Hence, a dot is placed at terminal-1 of coil-1 to mark the positive polarity of 

mutual induced emf.

Let us assign the polarity of self- and mutual induced emf for the coupled coils as shown  

in Fig. 5.31(b) and 5.32(b). Now, the self-induced emf will oppose the current in the same coil.  

Since the fluxes produced by coils 1 and 2 are opposing, the polarity of mutual induced emf  

will be opposite to that of the self-induced emf. The coupled coils of Figs 5.31(b) and 5.32(b) with 

polarity of self- and mutual induced emf are shown in Figs 5.33 and 5.34, respectively.

Here it is observed that the current enters at the dotted terminal in one coil and leaves at 

the dotted terminal in the other coil. In this situation, the polarity (or signs) of self- and mutual 

induced emfs are opposite.

Let us consider two other cases of exciting the coupled coils of Figs 5.33 and 5.34 with the 

same dot marking by two voltage sources e
1
 and e

2
 as shown in Figs 5.35 and 5.36, respectively. 

The self-induced emf will always oppose the current in the same coil. Since, the fluxes produced 

by the two coils are aiding each other, the mutual induced emf will have the same sign as that of 

the self-induced emf.

From the above discussions, the dot rule can be interpreted as follows to fix the polarity of 

self- and mutual induced emf in coupled coils.

For analysis of coupled coils with dot marking, let us assume an arbitrary direction for current 

in coils 1 and 2. Now the current may either enter at the dotted end or leave at the dotted end and 

so we may come across the following four cases of current direction in relation to the dot marking.

Case i : The current in coil-1 enters at the dotted end and current in coil-2 leaves at the dotted end.

Case ii : The current in coil-1 leaves at the dotted end and current in coil-2 enters at the dotted end.

Case iii : The current enters at the dotted end in both coils 1 and 2.

Case iv : The current leaves at the dotted end in both coils 1 and 2.
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In case (i) and (ii), the polarity (or sign) of self- and mutual induced emfs are opposite. (Refer  

to Figs 5.33 and 5.34). In case (iii) and (iv), the polarity (or signs) of self- and mutual induced emf 

are the same (Refer Figs. 5.35 and 5.36). These four cases of coupled coils are shown in Fig. 5.37, 

without details of winding orientation (or winding sense).

Note : In circuits with more than two coils, the coupling between various coils are denoted 

by different symbols like , , , , etc.

5.6.2   Expression for Self- and Mutual Induced EMF in Various Domains

Time Domain

Consider the coupled coils as shown in Fig. 5.38, with i
1
 entering at the dotted end and i

2
 

leaving at the dotted end. Now, the polarity of self- and mutual induced emfs are opposite. The 

polarity of self-induced emf are fixed such that they oppose the current through the same coil and 

the polarity of mutual induced emf are fixed such that they are opposite to that of the self-induced 

emf. From the discussions made in Section 5.5, the equation for self- and mutual induced emf are,

     ; ; ;L
dt

d
L
dt

d
M
dt

d
M
dt

di i i i
m m1 1

1
2 2

2
1

2
2

1
ν ν ν ν= = = =                        ..... (5.142)

[Refer equations (5.125), (5.127), (5.129), (5.131) and (5.136)].

The coupled coils with time domain expression for self- and mutual emfs are shown in Fig. 5.39.

  

Laplace Domain

Let, L{v
1
}   = V

1
(s)  L{v

2
}   = V

2
(s)    

    L{v
m1

} = V
m1

(s) L{v
m2

} = V
m2

(s)

    L{i
1
}     = I

1
(s)  L{i

2
}    = I

2
(s)

On taking Laplace transform of time domain expression for self- and mutual induced emfs 

with zero initial conditions, we get,
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

V s sL I s V s sM I s

V s sL I s V s sM I s2 2

m

m

1 1 1 1 2

2 2 1

= =

= =
3
 ..... (5.143)

The coupled coils with Laplace domain expression for self- and 

mutual induced emfs are shown in Fig. 5.40.

Frequency Domain

On substituting s = jw, in the s-domain expression for emfs (i.e., 

in equation (5.143)), we get the expression for frequency domain emfs.

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

V j j L I j V j j M I j

V j j L I j V j j M I j2 2

m

m

1 1 1 1 2

2 2 1

ω ω ω ω ω ω

ω ω ω ω ω ω

= =

= =

3  ... (5.144)

For simplicity, F(jw) is denoted as F . 

Therefore, equation (5.144) can be written as 

shown below:

V j L I V j M I

V j L I V j M I2

1m

m

1 1 1 2

2 2 2 1

ω ω

ω ω

= =

= =

The coupled coils with frequency domain 

expression for self- and mutual induced emfs are 

shown in Fig. 5.41.

5.6.3   Writing Mesh Equations for Coupled Coils

Consider the coupled coils shown in Fig. 5.42. Let us choose 

mesh currents I and I1 2  as shown in Fig. 5.42.

The assumed mesh currents enter at the dotted end in coil-1 

and leave at the dotted end in coil-2. Hence, the polarity (or signs) 

of the mutual induced emf will be opposite to that of the self-

induced emf. The voltages across the various elements of mesh-1 

and mesh-2 are shown in Fig. 5.43.

By using KVL in mesh-1, we can write,

R I j L I E j MI1 1 1 1 21
ω ω+ = +

R j L I j MI E1 1 2 11
` ω ω+ − =^ h  ..... (5.145)

By using KVL in mesh-2, we can write,

 j L I R I j MI2 2 2 12
ω ω+ =

 ( )j M I R j L I 01 2 2 2` ω ω− + + =                                         ..... (5.146)
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On arranging equations (5.145) and (5.146) in the matrix form, we get,

R j L

j M

j M
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I

E

0

1 1

2 2

1

2

1ω

ω

ω

ω

+

−

−

+
== = =G G G

  ..... (5.147)

From equation (5.147), it can be observed that the mutual reactance, (jwM) is introduced 

as an element common to meshes 1 and 2 and it is negative. However, it is not included in the 

self-impedance (i.e., not included  in Z and Z11 22 ) of meshes 1 and 2.

In general, we can say that if there is a coupling between meshes j and k, first form the mesh 

basis matrix equation without considering the mutual reactance, and then add the mutual reactance 

to the impedances .Z and Zkjjk  The sign of mutual reactance is negative if current enters at the 

dotted end in one coil and leaves at the dotted end in another coil. The sign of mutual reactance is 

positive if current enters (or leaves) at the dotted end in both the coils.

5.6.4   Electrical Equivalent of Magnetic Coupling

(Electrical Equivalent of a Transformer or Linear Transformer)

Magnetic coupling between two coils can be replaced by an electrical equivalent. Consider  

mesh-1 of the coupled circuit shown in Fig. 5.42. The mutual reactance introduce a voltage in  

mesh-1 due to current in mesh-2, but it does not introduce a voltage in mesh-1 due to mesh-1 

current. The (self-) inductive reactance jwL
1
 introduce a voltage in mesh-1 due to mesh-1 current.

Similarly in mesh-2, the mutual reactance introduce a voltage in mesh-2 due to current in 

mesh-1 and (self-) inductive reactance jwL
2
 introduce a voltage in mesh-2 due to mesh-2 current.

From the above discussion, we can conclude that self-reactances of coupled coils can 

be introduced as elements associated with respective meshes alone and mutual reactance 

as an element common to two meshes. However, when we introduce mutual reactance as 

an element common to meshes 1 and 2, it will introduce voltage in mesh-1 due to both  

mesh-1 and mesh-2 currents. The voltage introduced by mesh-1 current can be eliminated 

by introducing a negative mutual reactance in mesh-1 as an element associated with mesh-1  

alone. By similar argument, a negative mutual reactance has to be introduced in mesh-2 as an 

element associated with mesh-2 alone.

Therefore, in general, when a magnetic coupling exists between meshes j and k, the coupled 

coils can be replaced by introducing the following elements in mesh-j and mesh-k, provided the 

direction of current in coils j and k are not specified.

i) The mutual reactance jwM is introduced as an element common to mesh-j and mesh-k.

ii) The reactance jw(L
j
-M) is introduced as an element associated with mesh-j alone.

iii) The reactance jw(L
k
-M) is introduced as an element associated with mesh-k alone.

where, L
j
 and L

k
 are self-inductances of the coils in mesh-j and mesh-k, respectively, 

   and M is the mutual inductance between these two coils.

The electrical equivalent of coupled coils is shown in Fig. 5.44. The electrical equivalent 

of the coupled circuit of Fig. 5.42 is shown in Fig. 5.44. “This type of magnetic coupling exists in 

a transformer and so the electrical equivalent of coupled coils shown in Figs 5.44 and 5.45 are 

applicable for a transformer or linear transformer or natural transformer”.
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 Note : Physically realisable electrical equivalent is possible as long as M < L
1
 and M < L

2
.

Equivalent of Coupled Coils with Resistances

So far we have considered only ideal coils, in which the resistance of the coil is zero. 

Sometimes, the resistance of the coil is specified along with the inductance (practically, the resistance 

of the coil is the resistance of the wire that is used to construct the coil). In such cases, the resistance 

of the coil can be represented by a resistance external to the coil in series as shown in Fig. 5.46.

Equivalent of Coupled Coils When Currents and Dots are Specified

When the direction of current through the coils is specified along with dot convention,  

the electrical equivalent of coupled coils (shown in Fig. 5.44) will not be applicable for certain 

combination of dot marking and mesh currents. When mesh currents are specified, we come across 

the following two groups of coupled coils:

Group I : Mesh currents in opposite orientation and fluxes are aiding.

   Mesh currents in same orientation and fluxes are opposing.

Group II : Mesh currents in same orientation and fluxes are aiding.

   Mesh currents in opposite orientation and fluxes are opposing.

For group-I coupled coils, the electrical equivalent will be as shown in Fig. 5.47. For group-II  

coupled coils, the electrical equivalent is obtained by replacing M by -M in the electrical equivalent 

shown in Fig. 5.48. 

Note : 1. When fluxes are aiding, emf due to self- and mutual inductances have the same sign.

    2.  When fluxes are opposing, emf due to self- and mutual inductances have the opposite sign.
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Fig. 5.48 : Electrical equivalent of group-II coupled coils.
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Fig. 5.47 : Electrical equivalent of group-I coupled coils.

Note : In the electrical equivalent, the
mesh currents’ orientation should be 
the same as that of the original circuit.

Note : In the electrical equivalent, the
mesh currents’ orientation should be 
the same as that of the original circuit.
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5.6.5   Writing Mesh Equations in Circuits with Electrical Connection and 

Magnetic Coupling

Consider the circuit shown in Fig. 5.49(a) in which two electrically connected coils 

have magnetic coupling between them. Let us choose two mesh currents I1  and I2  as shown in 

Fig. 5.49(b). The voltages across various elements excluding the voltages due to mutual inductance 

are shown in Fig. 5.49(b).

Here I2  is the current through coil-2. Let us take the current through coil-1 as I1  – .I2  Now 

due to mutual inductance, the current I1  – I2  entering at the dotted end in coil-1 will induce an 

emf jwM (I1  – I2) in coil-2 such that the induced emf is positive at the dotted end in coil-2. Similarly, 

the current I2  entering at the dotted end in coil-2 will induce an emf jwMI2  in coil-1 such that the 

induced emf is positive at the dotted end in coil-1. The mutual induced emf along with self-induced 

emf are shown in Fig. 5.50.

With reference to Fig. 5.50, in mesh-1 by KVL, we can write,

R I j MI j L I E j L I1 1 2 1 1 1 2ω ω ω+ + = +

R j L I j L j M I E1 1 21 1
` ω ω ω+ + − + =^ ^h h     ..... (5.148)

With reference to Fig. 5.50, in mesh-2 by KVL, we can write,

R I j L I j L I j M I I j MI j L I2 22 2 1 2 1 2 1 12
ω ω ω ω ω+ + + − = +^ h  

 ( ) 0j L j M I R j L j L j M I21 1 2 2 1 2` ω ω ω ω ω− + + + + − =^ h   ..... (5.149)

On arranging equations (5.148) and (5.149) in the matrix form, we get,

R j L

j L j M

j L j M

R j L j L j M

I

I

E

2 0

1 1

1

1

2 2 1

1

2

ω

ω ω

ω ω

ω ω ω

+

− +

− +

+ + −
== = =G G G

 
..... (5.150)

Fig. 5.49 : Magnetic coupling in electrically connected coils.
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5.7    Series and Parallel Connections of Coupled Coils

In certain circuits there may be a magnetic coupling between series-connected or parallel-

connected coils. In such case it is possible to replace the series or parallel combination by a single 

equivalent inductive reactance. In series (or parallel) connection, the mutual induced emf will have 

either the same polarity or opposite polarity as that of the self-induced emf.

In series connection, when the mutual and self-induced emf have the same polarity (or sign), 

the connection is called series aiding. When the mutual and self-induced emf have an opposite 

polarity, (or sign) the connection is called series opposing.

Similarly, in parallel connection, when the mutual and self-induced emf have the same  

polarity (or sign) the connection is called parallel aiding. When the mutual and self-induced emf 

have an opposite polarity (or sign) the connection is called parallel opposing.

Physically, in series or parallel aiding the flux produced by one coil aids the other (i.e., both 

the coil will set up flux in the same direction). Alternatively, in series or parallel opposing, the flux 

produced by one coil will oppose the other.

5.7.1   Series Aiding Connection of Coupled Coils

Consider the coupled coils connected in series as shown in Fig. 5.51(a). Here, the current 

enters at the dotted end in both the coils and so the self- and mutual induced emf will have the 

same polarity (or sign). Therefore, the connection shown in Fig. 5.51(a) is series aiding. Now, the 

coupled coils can be represented by a single equivalent inductance as shown in Fig 5.51(b), where 

equivalent inductance, L
eq

 is given by,

           L
eq 

= L
1
 + L

2
 + 2M    .....(5.151)

Proof: Equivalent inductance of series aiding connection.

With reference to Fig. 5.51(a), by KVL, we can write,

j L I j MI j L I j MI j MI E21ω ω ω ω ω+ + + + =

                                  ( 2 )j L L M I E1 2ω + + =

                                               j L I Eeq` ω =              ..... (5.152)

   where,   L
eq

 = L
1
 + L

2
 + 2M     

From equation (5.152), we can say that the coupled coils of Fig. 5.51(a) can be replaced by an equivalent 
reactance as shown in Fig. 5.51(b). 

j Mw

~

-+ -+

-+-+

-+

-+

I

~
-+

E

Fig. 5.51 : Series aiding connection of coupled coils and its equivalent.

Fig. a : Series aiding connection. Fig. b : Equivalent of coupled coils in series aiding.
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Equation (5.151), can be written as,

L
eq

 = (L
1
 + M) + (L

2
 + M)          ..... (5.153)

From equation (5.153), we can say that, “the series aiding connection of coupled coils can 

be viewed as a series connection of two inductances (L
1
 + M) and (L

2
 + M)”, as shown in Fig. 5.52.

5.7.2   Series Opposing Connection of Coupled Coils

Consider the coupled coils connected in series as shown in Fig. 5.53(a). Here the current 

enters at the dotted end in one coil and leaves at the dotted end in the other coil. Hence, the polarity 

(or sign) of self- and mutual induced emf will be opposite. Therefore, the connection shown in 

Fig. 5.53(a) is series opposing. Now, the coupled coils can be represented by a single equivalent 

inductance as shown in Fig. 5.53(b), where equivalent inductance, L
eq

 is given by,

L
eq

 = L
1
 + L

2
 - 2M           .....(5.154)

Proof : Equivalent inductance of series opposing connection.

With reference to Fig. 5.53(a), by KVL, we can write,

j L I j L I E j MI j MI21ω ω ω ω+ = + +    ⇒   j L I j L I j MI E221ω ω ω+ − =  

     ( 2 )j L L M I E1 2` ω + − =  

                        j L I Eeqω =      ..... (5.155)

where,   L
eq

 = L
1
 + L

2
 − 2M     

From equation (5.155), we can say that the coupled coils of Fig. 5.53(a) can be replaced by an equivalent 

reactance as shown in Fig. 5.53(b). 

M

Fig. 5.52 : Alternate representation for series aiding connection.
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Fig. 5.53 : Series opposing connection of coupled coils and its equivalent.

Fig. a : Series opposing connection. Fig. b : Equivalent of coupled coils in series opposing.
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Equation (5.154) can be written as,

 L
eq

  = (L
1
 - M)  +  (L

2
 - M)     ..... (5.156)

From equation (5.156), we can say that, “the series opposing connection of coupled coils can 

be viewed as a series connection of two inductances (L
1
- M) and (L

2
 - M)”, as shown in Fig. 5.54.

5.7.3   Parallel Aiding Connection of Coupled Coils

Consider the coupled coils connected in parallel as shown in Fig. 5.55(a). Here, the current 

enters at the dotted end in both the coils and so the self- and mutual induced emfs will have the 

same polarity (or sign). Therefore, the connection shown in Fig. 5.55(a) is parallel aiding. Now, 

the coupled coils can be represented by a single equivalent inductance as shown in Fig. 5.55(b), 

where equivalent inductance, L
eq

 is given by, 

L
L L M

L L M

2

2

eq
1 2

1 2
=

+ −

−
      ..... (5.157)

Proof: Equivalent inductance of parallel aiding connection.

With reference to Fig. 5.55(a), by using KVL in the parallel arms, we get the following two equations.

j L I j MI E1 1 2ω ω+ =       ..... (5.158)

j MI j L I E1 2 2ω ω+ =       ..... (5.159)

Let us arrange equations (5.158) and (5.159) in the matrix form, as shown below:

j L

j M

j M

j L

I

I

E

E
1

2

1

2

ω

ω

ω

ω

== = =G G G

M

Fig. 5.54 : Alternate representation for series opposing connection.
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Fig. a : Parallel aiding connection. Fig. b : Equivalent of coupled coils in parallel aiding.

Fig. 5.55 : Parallel aiding connection of coupled coils and its equivalent.
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L L M
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1 2
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−; E

 or E I j Leqω=              ..... (5.160)

,where L
L L M

L L M

2

2

eq
1 2

1 2
=

+ −

−  

From equation (5.160), we can say that the coupled coils of  Fig. 5.55(a) can be replaced by an equivalent 

reactance as shown in Fig. 5.55(b). 

Consider the network shown in Fig. 5.56(a). It can be reduced to a single equivalent 

inductance as shown in Fig. 5.56(d). Here this value of equivalent inductance is the same as that 

of equation (5.157). Therefore, the parallel aiding connection of coupled coils can be represented 

by an equivalent network as shown in Fig. 5.56(b).
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Fig. 5.57 : Parallel opposing connection of coupled coils and its equivalent.
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5.7.4    Parallel Opposing Connection of Coupled Coils

Consider the coupled coils connected in parallel as shown in Fig. 5.57(a). Here, the current 

enters at the dotted end in one coil and leaves at the dotted end in the other coil. So the self- and 

mutual induced emf will have an opposite polarity (or sign). Therefore, the connection shown in 

Fig. 5.57(a) is parallel opposing. Now, the coupled coils can be represented by a single equivalent 

inductance as shown in Fig. 5.57(b), where equivalent inductance, L
eq

 is given by, 

L
L L M

L L M

2

2

eq
1 2

1 2
=

+ +

−
           .....(5.161)

Proof: Equivalent inductance of paralled opposing connection.

With reference to Fig. 5.57(a), by using KVL in the parallel arms, we get the following two equations.

j L I j MI E1 1 2ω ω− =         ..... (5.162)

j MI j L I E1 2 2ω ω− + =  ..... (5.163)
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Let us arrange equations (5.162) and (5.163) in the matrix form, as shown below:

j L

j M

j M
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I
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,where L
L L M

L L M

2

2

eq
1 2

1 2
=

+ +

−  

From equation (5.164), we can say that the coupled coils of Fig. 5.57(a) can be replaced by an equivalent 

reactance as shown in Fig. 5.57(b). 

Consider the network shown in Fig. 5.58(a). It can be reduced to a single equivalent 

inductance as shown in Fig. 5.58(d). Here this value of equivalent inductance is the same as that of 

equation (5.161). Therefore, the parallel opposing connection of coupled coils can be represented 

by an equivalent network as shown in Fig. 5.58(b).



5. 63Chapter 5 - Resonance and Coupled Circuits

5.8    Tuned Coupled Circuits

The coupled circuits are mainly used to transfer energy from a weak source to a load or 

employed for maximum power transfer from one circuit to another. This is possible only when 

both the coils work at resonance condition.

In coupled coils, the coil to which the source is connected is called primary and the coil to 

which the load is connected is called secondary. The coupled coils can be brought to resonance 

by adding capacitors to the primary and secondary coils. When the primary inductive reactance is 

very low or negligible, it is sufficient if we resonate the secondary coil alone by adding a capacitor 

to the secondary coil, to achieve maximum power transfer condition.

When a capacitor is added only to the secondary coil, the coupled coils are called single 

tuned coupled coils and the resultant circuit is called a single tuned coupled circuit.

When capacitors are added to both secondary and primary coils, the coupled coils are called 

double tuned coupled coils and the resultant circuit is called a double tuned coupled circuit. 

Normally, in a double tuned circuit, the primary and secondary are tuned to the same frequency. 

However, sometimes, intentionally the primary and secondary are tuned to slightly different 

frequencies and such double tuned circuits are called stagger tuned circuits.

5.8.1   Single Tuned Coupled Circuits

Let us connect a voltage source E with internal resistance R
g
 to single tuned coupled coils 

as shown in Fig. 5.59(a). Here R
p
 and R

s
 are resistances of primary and secondary coil and L

p
 and 

L
s
 are inductances of primary and secondary coil.

Let us represent the total resistance of primary as R
1
 and that of secondary as R

2
 as shown in

Fig. 5.59(b). Also, let us denote the inductances of primary and secondary as L
1
 and L

2
.

Fig. 5.58 : Alternate representation for parallel opposing connection.
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∴    R
1
 = R

g
 + R

p
       ;      R

2
 = R

s
      ;        L

1
 = L

p
      and      L

2
 = L

s
     

In a single tuned coupled circuit, the secondary is tuned by varying the capacitance in 

secondary. The secondary is equivalent to an RLC series circuit. Therefore, the condition for 

resonance and the resonace frequency of secondary will be the same as an RLC series resonance.

Now, the condition for resonance is,

L
C

1
r

r

2ω

ω

=     ⇒   L
C

1
0r

r

2ω

ω

− =        .....(5.165)

∴ Resonant frequency, 
L C

1
r

2

ω =          .....(5.166)

Now, the secondary current and output voltage at resonance are given by the following equations:

Secondary current at resonance,  I
R R M

j ME

r
2 2

,r
r

2

1 2 ω

ω
=

+

      .....(5.167)

Output voltage at resonance,      V
R R M

C

ME

r
2 2

,o r

1 2 ω

=

+

      .....(5.168)

Proof:

Let us assume two mesh currents I and I1 2  as shown in Fig. 5.59(b). With reference to Fig. 5.59(b), the mesh 
basis matrix equation is given below:
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c m
    

..... (5.169)

Single tuned coupled circuits are employed only when the primary inductive reactance is negligible.

~

M

+

-

E, Rg
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Hence, in the primary circuit, R
1
 >> ωL

1
 

∴ R
1
 + jwL

1
 ≈ R

1
 

On neglecting the primary inductive reactance, equation (5.169) can be written as shown below:
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Let, V 0  be the output voltage in secondary as shown in Fig. 5.59.
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Critical Coupling

 From equations (5.167) and (5.168), we can say that the secondary current and the output voltage 

at resonance are functions of mutual inductance. Hence, it is possible to vary the secondary current 

and output voltage by varying mutual inductance, which in turn can be varied by varying coefficient of 

coupling k.

It can be proved that for a particular value of k called critical coupling k
C
, the output voltage 

at resonance will be maximum. The mutual inductance at critical coupling is denoted by M
C
. It is 

also called optimum mutual inductance, M
opt

.

Now, critical coupling and mutual inductance at critical coupling are given by the following 

equations:

Critical coupling, k
L L

M
c

c

1 2

=         .....(5.170)

Mutual inductance at critical coupling, M
R R

c

r

1 2

ω

=       .....(5.171)

Using equation(5.165)

Using equation(5.165)
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Proof:

Cosider the output voltage of a single tuned coupled circuit at resonance.

V
R R M

C

ME

r
2 2

,o r

1 2 ω

=

+

             .....(5.172)

The condition for maximum V , r0  can be obtained by differentiating V , r0  with respect to M and equating 
dM

dV , r0  
equal to zero when M = M

C
.

On differentiating equation (5.172) with respect to M, we get,

(2 )

dM

dV

R R M

R R M
C
E

C
ME M

2 2

2

,

r

r r
r

1 2
2

1 2
2 2

0

ω

ω ω

=

+

+ −

^

^

h

h

For 
dM

dV
0

, r0
=  the numerator should be zero. Let us equate the numerator of 

dM

dV , r0  as zero after

replacing M by M
C
.

0
C

E
R R M

C

M E
M2r r1 2

2 2

C

C2
C

` ω ω+ − =^ ^h h

C

M E
M

C

E
R R M2

2
C Cr r

2

1 2

2C
ω ω− =

−
+^ ^h h

2 M R R M
2 2
C Cr r

2

1 2

2
ω ω= +

2 M M R RC
2 2

Cr r

2 2

1 2ω ω− =

        M R RC
2

r

2

1 2` ω =

M
R R

r

1 2

C
`

ω

=    

We know that,

,Coefficient of coupling k
L L
M

1 2

=

,Critical coefficient of coupling k
L L

M
C

1 2

C` =   

From equations (5.170) and (5.171), we can write,

    k
L L

R R

C
r

1 2

1 2

ω
=

.           .... (5.173)

            

 We know that,

, ;Quality factor of primary coil Q
R
L

L
R

Q
r r

1

1 1 1

1 1
`

ω ω
= =  

, ;Quality factor of coil Q
R
L

L
R

Q
secondary r r

2

2 2

2

2

2
`

ω ω
= =  
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Using the above equations we can write equation (5.173) as shown below:  

k
L L

R R

Q Q
1 1

C

r r

r r

1 2

1 2

1 2ω ω

ω ω
= =     ⇒   k

Q Q

1
C

1 2

=      .... (5.174)

Let, I , C2  = Secondary current at critical coupling.

The expression for secondary current at critical coupling can be obtained from equation 

(5.168), by replacing M by M
C
.

I
R R M

j M E

R R
R R

j
R R

E

R R

j R R E

2
C

r C
r

r

2
,

r
r

r

C

1 2
2

1 2
2

2

1 2

1 2

1 2

1 2
2`

ω

ω

ω

ω

ω
ω

=

+

=

+

=

                           

            
R R

j E

2 1 2

=                              ..... (5.175)

Let, V0 C,  = Output voltage at critical coupling.

The expression for output voltage at critical coupling can be obtained from equation (5.168), 

by replacing M by M
C
.

V
R R M

C

M E

R R
R R

R R

C

E

R R

R R
C

E

2
C

C

r r

2
,

r
r

r

C

1 2
2

1 2
2

2

1 2

1 2

1 2

1 2

0`

ω
ω

ω

ω ω
=

+

=

+

=

 

              2 C R R

E

r 1 2ω

=

              .....(5.176)

The variation of output voltage V0  with angular frequency w is shown in Fig. 5.60(a). From

Fig. 5.60(a), it can be observed that the maximum value of V0  occurs at a frequency slightly less 

than the resonant frequency.

The variation of output voltage V0  with angular frequency w for different values of k are 

shown in Fig. 5.60(b). From the curves of Fig. 5.60(b), it can be observed that when the value of k 

is above k
c
, the curve becomes broader and when the value of k is less than k

c
, the curve becomes 

narrower. In practical circuits k
c
 will be less than 0.5. For better selectivity, the curve should be 

narrow and so the value of k is less than 0.5 (or less than k
c
).

V
0

V0,C

V r0,

V
0

Fig. a : V Vs .0 w

Fig. 5.60 : Frequency response of single tuned coupled circuit..

Fig. b : V Vs for different values of k.0 w

ww
wr

wr

k = kC

k > kC

k < kC
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5.8.2    Double Tuned Coupled Circuits

In a double tuned circuit, the capacitance may be connected either in series or parallel to the primary 

coil. When the capacitance is connected in series with the primary coil, the tuned circuit is called  a

series fed double tuned circuit and when the capacitance is connected in parallel with the 

primary coil, the tuned circuit is called a parallel fed double tuned circuit.

Series Fed Double Tuned Circuit

Let us connect a voltage source E with internal resistance R
g
 to a series fed double tuned 

coupled coils as shown in Fig. 5.61(a). Here, R
p
 and R

s
 are resistances of primary and secondary 

coil and L
p
 and L

s
 are inductances of primary and secondary coil.

Let us represent the total resistance of primary as R
1
 and that of secondary as R

2
 as shown in

Fig. 5.61(b). Also, let us denote the inductances of primary and secondary as L
1
 and L

2
.

∴    R
1
 = R

g
 + R

p
       ;      R

2
 = R

s
      ;        L

1
 = L

p
     and      L

2
 = L

s
  

In a double tuned coupled circuit both the primary and secondary are tuned to resonate at 

the same frequency. Let ω
r
 be the frequency of resonance. At resonance, both the primary and 

secondary coils will behave as a purely resistive circuit.

0 0, L
C

L
C

Hence at resonance and1 1
r 1

r 1
r 2

r 2

ω

ω

ω

ω

− = − =    

..... (5.177)

,
L C L C

1 1Resonant frequency r

1 1 2 2

` ω = =        .....(5.178)

Now, the secondary current and output voltage at resonance are given by the following equations:

I
R R M

j ME
Secondary current at resonance, 2, r

1 2 r
2 2

r

ω

ω
=

+

  ..... (5.179)

V
R R M

C
ME

,Output voltage at resonance 0, r

1 2 r
2 2

2

ω

=

+

    ..... (5.180)

~
+

-

Fig. 5.61 : Series fed double tuned coupled circuit.
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Using equation (5.177)

Proof:

Let us assume two mesh currents  I and I1 2  as shown in Fig. 5.61(b). With reference to Fig. 5.61(b), the mesh 
basis matrix equation is given below:

R j L j
C

j M

j M

R j L j
C

I

I

E1

1
0

1

22

1 1

1

2 2

ω
ω

ω

ω

ω
ω

+ −

−

−

+ −

=

R

T

S
S
S
S

R

T

S
S
S
S

R

T

S
S
S
S

V

X

W
W
W
W

V

X

W
W
W
W

V

X

W
W
W
W

R j L j
C

j M

j M

R j L j
C

1

1
2

1 1

1

2 2

ω
ω

ω

ω

ω
ω
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+ −

−

−

+ −

R j L j
C

R j L j
C

j M1 1
2

2
1 1

1

2 2#ω
ω

ω
ω

ω∆ = + − + − − −c c ^m m h

    R j L
C

R j L
C

M1 1
2

2 2
1 1

1

2 2#ω
ω

ω
ω

ω= + − + − +cc ccmm mm

R j L j
C

j M

E
j ME

1

0
2

1 1

1

ω
ω

ω

ω∆ =
+ −

−

=

I
R j L

C
R j L

C
M

j ME

1 1
2

1 1
1

2 2
2

2 2
2

`

ω
ω

ω
ω

ω

ω

∆

∆
= =

+ − + − +cc ccmm mm
  

I I
R j L

C
R j L

C
M

j ME

1 1
r
2 2

,r

r
r

r
r

2 2

1 1
1

2 2
2

r
`

ω
ω

ω
ω

ω

ω
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+ − + − +
~ ~= cc ccmm mm

                                            
R R M

j ME

r
2 2

r

1 2 ω

ω
=

+

Let, V0  be the output voltage in secondary as shown in Fig. 5.61.

, V I j
C R j L

C
R j L

C
M

j ME j
C

Now 1
1 1

1

0 2
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1
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ω
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Using equation (5.177)
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V
0

Fig. 5.62 : Frequency response
of a double tuned circuit.

w

k = k
C

k > k
C

k < k
C

Equations (5.179) and (5.180) are similar to equations (5.167) and (5.168) of single tuned 

circuit, respectively. Hence, the condition for maximum output voltage and the expression for 

critical coupling, k
C
 will be the same as that of a single tuned circuit. Therefore, by an analysis 

similar to that of a single tuned circuit, we can obtain the following equations:

inductance at critical coupling, M
R R

Mutual C
r

1 2

ω

=    ..... (5.181)

k
L L

M
Critical coefficient of coupling, C

1 2

C=     ..... (5.182)

                       k
L L

R R1
or C

r 1 2

1 2

ω

=

      
k

Q Q

1or C

1 2

=

Secondary current at

critical coupling
I

R R

jE

2
2, C

1 2

=4        ..... (5.183)

      

2
V

C R R

EOutput voltage at

critical coupling
0, C

r 2 1 2ω

=4       ..... (5.184)

In double tuned circuits, it can be proved that the frequency response will exhibit a double 

hump when the coefficient of coupling is greater than critical coupling. The variation of output 

voltage V0  with angular frequency w for different values of k are shown in Fig. 5.62.

Parallel Fed Double Tuned Circuit

Let us connect a voltage source E  with internal 

resistance R
g
 to a parallel fed double tuned coupled coils 

as shown in Fig. 5.63. Here R
p
 and R

s
 are resistances of 

primary and secondary coil and L
p
 and L

s
 are inductances 

of primary and secondary coil.

The parallel fed double tuned circuit can be 

converted into an equivalent series fed double tuned 

circuit as shown below. Then the circuit can be analysed in a manner similar to that of a series fed 

double tuned circuit.

~
+

E

M

+

E

Fig. 5.63 : Parallel fed double tuned
coupled circuit.

E, Rg
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Fig. 5.64 : To find Thevenin’s equivalent of the exciting source in
parallel with capacitance.
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With reference to Fig. 5.64(b) by, voltage division rule, we can write,

V E
R j

C

j
C
1

1

th

g
1

1
#

ω

ω
=

−

−

R
C

V E
R

j
C

R C
E

1

1

Let, >>g
1

th
g

1

g 1

ω

ω

ω

−

j` #= = −

With reference to Fig. 5.64(c), we can write,

( )
Z

R j
C

R j
C

R j
C

R j
C

R j
C

R j
C

R
C

j
C

R

C

R

1

1

1

1

1

1

1
th

g
1

g
1

g
1

g
1

g
1

g
1

g
2

1

2

1

g
2

1
2

g

#

ω

ω

ω

ω

ω

ω

ω

ω ω
=

−

−

=

−

−

+

+

=

+

− +e e
e

o o
o

( )

( )

, R
C

Z
R

j
C

R

C

R

R C C

Let 1

1 1

>>g
1

th

g
2

1

g
2

1
2

g

g 1
2

1

ω

ω ω

ω ω

− +

j` = = −

Using Thevenin’s equivalent of the voltage source in parallel with capacitance, the parallel 

fed double tuned circuit of Fig. 5.63 can be drawn as shown in Fig. 5.65(a).

The circuit of Fig. 5.65(b) is similar to that of a series fed double tuned circuit. Therefore, 

the analysis will be similar to that of a series fed double tuned circuit.

Fig. 5.65 : Series fed equivalent of parallel fed double tuned circuit.
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5.9    Solved Problems in Coupled Circuits

EXAMPLE 5.15

A coil having an inductance of 100  mH is magnetically coupled to another coil having an inductance of 

900 mH. The coefficient of coupling between the coils is 0.45. Calculate the equivalent inductance if the two 

coils are connected in a) series aiding, b) series opposing, c) parallel aiding and d) parallel opposing.

SOLUTION

Given that,  L
1
  =  100 mH   ,   L

2
  =  900 mH    and   k  =  0.45

inductance,- 0.45 135M k L L mH100 900Mutual 1 2` #= = =

a)  Equivalent inductance in series aiding,       L
eq

 = L
1
 + L

2
 + 2M

                                      =  100 + 900 + (2 ´ 135)  =  1270 mH

b)  Equivalent inductance in series opposing,  L
eq

 = L
1
 + L

2
 - 2M

                                      =  100 + 900 – (2 ´ 135)  =  730 mH

c parallel L
L L M
L L M

2
Equivalent inductance in aiding,) eq

1 2

1 2
2

+ −

−
=

                                                                                
98.3219mH

100 900 2 135

100 900 135
2

#

#

=

+ −

−

=

a
a

k
k

d parallel oppos L
L L M
L L M

2
Equivalent inductance in ing,) eq

1 2

1 2
2

=
+ +

−

                                                                                . mH

100 900 2 135

100 900 135

56 5157

2

#

#

=

+ +

−

=

a
a

k
k

EXAMPLE 5.16

A primary coil having an inductance of 100 µH  is connected in series with a secondary coil having 

an inductance of240 µH and the total inductance of the combination is measured as 146 µH. Determine 

the coefficient of coupling.

SOLUTION

Given that,  L
1
  =  100 µH ,    L

2
  =  240 µH

Equivalent inductance in series  =  146 µH. 

Since the equivalent inductance in series is less than the sum of individual inductances, the series 

connection should be series opposing. 

In series opposing connection,

   L
eq

  =  L
1
 + L

2
 − 2M

         ∴  2M  =  L
1
 + L

2
 − L

eq

      
97 µM

L L L
H

2 2
100 240 1461 2 eq

` =

+ −

=
+ −

=

0.6261k
L L

M

100 240

97Coefficient of coupling,
1 2 #

= = =
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EXAMPLE 5.17

Two coils connected in series have an equivalent inductance of 0.8 H  when connected in aiding and 

an equivalent inductance of 0.4 H when connected in opposing. Determine the mutual inductance. Calculate 

the self-inductance of the coils by taking k  =  0.55.

SOLUTION

We know that,

2i L L L MEquivalent inductance n series aiding, eq 1 2= + +

, 2i oppos L L L MEquivalent inductance n series ing eq 1 2= + −

Given that,

 L
1
 + L

2
 + 2M  =  0.8      ..... (1)

 L
1
 + L

2
 − 2M  =  0.4      ..... (2)

Let us subtract equation (2) from (1).

L
1
 + L

2
 + 2M  =  0.8

L
1
 + L

2
 − 2M  =  0.4

   (–)     (–)     (+)          (–)

                         4M  =  0.4

  
.

0.1M H
4

0 4
` = =      ..... (3)

We know that,

M k L L1 2=      ⇒      M2 =  k2 L
1
L

2

.

. .
L

k L

M

L L0 55

0 1 0 0331
2 2

1

2

2
1

2

1

`

#

= = =
           ...... (4)

On substituting for M and L
2
 from equations (3) and (4) in equation (1), we get,

.
. 0.8L

L

0 0331
2 0 11

1

#+ + =_ i   

On multiplying the above equation by L
1
, we get,

L2
1
 + 0.0331 + 0.2L

1
  =  0.8L

1

L2
1
 + 0.2L

1
 − 0.8L

1
 + 0.0331  =  0

∴    L2
1
 − 0.6L

1
 + 0.0331  =  0     

The above equation is a quadratic function of L
1
. The roots of the quadratic equation will give the values of L

1
.

The roots of the quadratic equation are,

. . .
. .

L
2

0 6 0 6 4 0 0331

2

0 6 0 4771
1

2

! #
!

=

− − − −

=

a ak k

      =  0.53855     or     0.06145

∴  L
1
  =  0.53855 H    or   L

1
  =  0.06145 H
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From equation (1), we get,

L
2  

=  0.8 − L
1
 − 2M

When L
1
  =  0.53855 H  ,   L

2
  =  0.8 − 0.53855 − 2 × 0.1  =  0.06145 H

When L
1
  =  0.06145 H  ,   L

2
  =  0.8 − 0.06145 − 2 × 0.1  =  0.53855 H

RESULT

Mutual inductance, M = 0.1 H

Self-inductance of coil-1, L
1
 = 0.53855 H

Self-inductance of coil-2, L
2
 = 0.06145 H

EXAMPLE 5.18

Two coupled coils with self-inductances 0.9 H and 0.4 H have a coupling coefficient of 0.3. Find the 

mutual inductance and turns ratio. What will be the maximum possible value of mutual inductance ?

SOLUTION

Given that,  L
1
  =  0.9 H   ,   L

2
  =  0.4 H    and    k  =  0.3

inductance, 0.3 . . 0.18M k L L H0 9 0 4Mutual 1 2 #= = =

,We know that L
I

N
and L

I

N
1

1

1 1
2

2

2 2φ φ
= =

L

L

I

N

I

N

N

N

I

I

2

1

2

2 2

1

1 1

2 2

1 1

1

2
` #

φ

φ

φ

φ
= =

 

           N

N

I

I

2

1

1

2
#=

           N

N

N

N

2

1

2

1
#=

          
N

N

2

1

2

= e o

.

. 1.5
N

N

L

L

0 4
0 9Turns ratio,

2

1

2

1
` = = =

The maximum possible value of M is achieved when k  =  1.

1 . . 0.6k L L H0 9 0 4Maximumpossible value of M 1 2` # #= = =

RESULT

When k  =  0.3, Mutual inductance,  M  =  0.18 H

Maximum possible value of M  =  0.6 H

1.5
N

N
Turns ratio,

2

1 =

In coupled coils, (or in transformer) 

the flux will be same.

∴  φ
1
  =  φ

2

,In coupled coils
I

I

N

N

1

2

2

1=
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EXAMPLE 5.19

Two coils A and B of 1200 turns and 1500 turns, respectively, lie in a parallel plane, so that 40% of  

flux produced by coil-A links with coil-B. A current of 4 A in coil-A produces a flux of 0.5 × 10
-4 Wb while the 

same current in coil-B produces a flux of 0.8 × 10
-4

 Wb. Determine the coefficient of coupling between the coils.

SOLUTION

,A-inductance of coil-elf . 0.015L
I

N
H

4
1200 0 5 10S A

A

A A
4

# #φ
= = =

-

,B-inductance of coil-elf . 0.03L
I

N
H

4
1500 0 8 10S B

B

B B
4

# #φ
= = =

-

inductance between coil A andB, M
I

N
Mutual

B

B ABφ
=

Here 40% of flux produced by coil-A links coil-B.

40% 0.4
100

40

A

AB
`

φ

φ
= = =    ⇒   0.4AB Aφ φ=

. .
0.0075M

I

N
H

4

1500 0 4 0 5 10

A

B AB
4

`
# # #φ

= = =
-

. .

. 0.3536k
L L

M

0 015 0 03

0 0075Coefficient of coupling,
1 2 #

= = =
 

EXAMPLE 5.20

Consider two coils A and B consisting of 500 turns and 1500 turns, respectively. A current of 5 A in 

coil-A produces a flux of 0.6 × 10
-3 Wb and the flux linking coil-B is 0.3 × 10

-3
 Wb. Determine the inductance, 

coefficient of coupling and mutual inductance of the coils.

SOLUTION

,A-inductance of coil-elf . 0.06 60 10 60L
I

N
H H mH

5
500 0 6 10S 3

A
A

A A
3

# #
#

φ
= = = = =-

-

,B-inductance of coil-elf . 0. 10 0L
I

N
H H mH

5
1500 0 3 10 09 90 9S 3

B
B

B B
3

# #
#

φ
= = = = =-

-

BA− −

.

. 0.5k
Total flux

Flux linking coil and coil

0 6 10

0 3 10Coefficient of coupling,
3

3

#

#
= = =

-

-  

inductance,- 0.5 .M k L L mH60 90 36 7423Mutual A B` #= = =

EXAMPLE 5.21

Two magnetically coupled coils are connected in series and their total effective inductance is found to be 

4.4 mH.  When one coil is reversed in connection, the combined inductance drops to 1.6 mH. Here all the flux 

due to the first coil links the second coil but only 40% of the flux due to the second coil links with the first coil. 

Find the self-inductance of each coil and the mutual inductance between the coils.

SOLUTION

We know that,

, 2i L L L MEquivalent inductance n series aiding eq 1 2= + +

, 2i oppos L L L MEquivalent inductance n series ing eq 1 2= + −

(AU May’17 & Dec’16, 8 Marks)
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In series aiding connection, the equivalent inductance will be more than that in series opposing 

connection. Therefore, 4.4 mH  is the equivalent inductance in series aiding and 1.6 mH  is the equivalent 

inductance in series opposing.

           ∴  L
1
 + L

2
 + 2M  =  4.4      .....(1)

     L
1
 + L

2
 − 2M  =  1.6      .....(2)

Let us subtract equation (2) from (1).

L
1
 + L

2
 + 2M  =  4.4

L
1
 + L

2
 − 2M  =  1.6

   (–)     (–)     (+)          (–)

                         4M  =  2.8  

.
0.7M mH

4

2 8
` = =      .....(3)

Here all the flux produced by coil-1 links coil-2.

1kCoefficient of coupling between coils 1and 2, 1
1

12
`

φ

φ
= =

Here only 40% of the flux produced by coil-2 links coil-1.

.k2 1 0 4Coefficient of coupling between coils and , 2
2

21
`

φ

φ
= =

, . .Now coefficient of coupling k k k 1 0 4 0 41 2 #= = =

We know that, 

M k L L1 2=      ⇒   M
2
  =  k

2
 L1L2

.

. .
L

k L

M

L
L

0 4

0 7 1 225
2 2

1

2

2

1

2

1

` = = =
a k

 
.....(4)

On substituting for M and L
2
 from equations (3) and (4) in equation (1), we get,

.
. 4.4L

L

1 225
2 0 71

1

#+ + =a k         

On multiplying the above equation by L
1
, we get,

L2
1
 + 1.225 + 1.4L

1
  =  4.4L

1
    ⇒    L2

1
 + 1.4L

1
 − 4.4L

1
 + 1.225  =  0

∴   L2
1
 − 3L

1
 + 1.225  =  0     

The above equation is a quadratic function of L
1
. The roots of the quadratic equation will give the values of L

1
.

The roots of the quadratic equation are,

( ) ( ) . .L
2

3 3 4 1 225

2
3 2 0248

1

2
! # !

=

− − − −

=

      =  2.5124      or     0.4876

 ∴  L
1
  =  2.5124 mH    or   L

1
  =  0.4876 mH

From equation (1), we get,

L
2
  =  4.4 − L

1
 − 2M

When  L
1
  =  2.5124 mH  ,   L

2
  =  4.4 − 2.5124 − 2 × 0.7  =  0.4876 mH

When  L
1
  =  0.4876 mH  ,   L

2
  =  4.4 − 0.4876 − 2 × 0.7  =  2.5124 mH
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RESULT

Mutual inductance, M = 0.7 mH

Self-inductance of coil-1, L
1
 = 2.5124 mH

Self-inductance of coil-2, L
2
 = 0.4876 mH

EXAMPLE 5.22

Determine the effective inductance of the series-connected coupled coils shown in Figs 1, 2 and 3.

SOLUTION

a)  To find the equivalent inductance of series-connected coils in Fig. 1

Consider the series-connected coils shown in Fig. 1. There are two mutual couplings. Let us remove 

them one by one.

Let I  be the current through the series-connected coils as shown in Fig. 4.

The coupling between 3 H and 2 H coils is additive because the current I  enters at the dotted end 

in both the coils. Hence, the magnetic coupling is eliminated by adding the mutual inductance 2 H to the 

self-inductances as shown in Fig. 5.

The coupling between 4 H and 6 H coil of Fig. 5 is opposive, 

because the  current I  enters at the dotted end in one coil and leaves at the 

dotted end in the other coil. Hence, the magnetic coupling is eliminated by 

subtracting the mutual inductance 3 H  from the self-inductances as shown 

in Fig. 6.

Now, the series-connected inductances of Fig. 6 can be added to 

give an equivalent inductance as shown in Fig. 7.

b)  To find the equivalent inductance of series-connected coils in Fig. 2

In Fig. 2, there are two mutual couplings. Let us remove them one by one as shown below:

Let I  be the current through the series combination as shown in Fig. 8. Here both the couplings are 

opposive because the current enters at the dotted end in one coil and leaves at the dotted end in the other coil.

2H 3H

3H 2H 6H

Fig. 1.

3 H

1 H

8 H

4 H

10 H

6 H

Fig. 3.Fig. 2.

4 H

5 H

2 H

1 H 3 H

5H

I

4 3 = 1- H 6 3 = 3- H

Fig. 6.

I

L = 5 + 1 + 3 = 9eq H

Leq

Fig. 7.

3H

3 + 2 = 5H

I

2 + 2 = 4H 6H

Fig. 5.

ÞÞ

2H 3H

3H 2H 6H

Fig. 4.

I

Þ

4 H

5 H

2H

1 H 3 H

4 1 = 3- H

5 H

2H

3 1 = 2- H

3 HI

2 2 = 0- H

5 2 = 3- H L
  
 =

 3
+

0
+

3
 =

 6
e
q

H

Leq

Fig. 8 : Equivalent inductance of the series connected coils shown in Fig. 2.

I I

I

Þ Þ Þ
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Fig. 9 : Equivalent inductance of the series connected coils shown in Fig. 3.

5 1 = 4- H

3H

2 1 = 1- H

L = 4 + 3 + 1 = 8eq HLeq

II

Þ

c)  To find the equivalent inductance of series-connected coils in Fig. 3

In Fig. 3, there are three mutual couplings. Let us remove them one by one as shown below:

Let I  be the current through the series combination as shown in Fig. 9. Here all the couplings are 
opposive because the current enters at the dotted end in one coil and leaves at the dotted end in the other coil.

Alternate Method

Alternatively, the magnetic coupling in two series-connected coils can be represented by an additional 

inductance of value +2M or −2M in series with the coils.

When current enters (or leaves) at the dotted ends in both the coils, the flux is aiding and so it is 

represented by an additional inductance of +2M in series with the coils.

When current enters at the dotted end in one coil and leaves at the dotted end in other coil, the flux is 

opposing and so it is represented by an additional inductance of −2M in series with the coils.

The estimation of equivalent inductance of the series-connected coils by this method is illustrated 

diagrammatically here.

3 H

1 H

8 H

4 H

10 H

6H

I

1 H

8 3 = 5- H

4 H

6 H

10 3 = 7- H

5 H

7 4 = 3- H

6 4 = 2- H

1 H

I
I

Þ Þ

Þ

2H 3H

3H 2H 6H

Fig. 10 : Equivalent inductance of the series connected coils shown in Fig. 1.

I

2 = 4 2H H - -´ 2 3 = 6H´ H

3H 2H 6H
L = 9eq H

L = 3 + 2 + 6 6 + 4 = 9eq - H

Þ Þ

4H

5H

2H

1H 3H 3H

I

Fig. 11 : Equivalent inductance of the series connected coils shown in Fig. 2.

5H

4H

- 2

= 4

H

H-

´ 2 -

-

2 ´ 1

= 2

H

H

L = 6eq H

L = 4 + 3 + 5 2 4 = 6eq - H-

Þ Þ
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EXAMPLE 5.23

Determine the equivalent inductance of the series-parallel-connected coupled coils shown in Fig. 1.

SOLUTION

Let current through the parallel branches be Ia  and Ib  as shown in Fig. 2. 

The coupling between the series-connected coils 2 H and 3 H is additive because the current Ia  leaves 

at the dotted end in both the coils. Hence, the magnetic coupling can be eliminated by adding the mutual 

inductance to the self-inductances as shown in Fig. b. Then the series-connected inductances 4 H and 5 H are 

combined to form a single equivalent as shown in Fig. c.

The coupling between parallel-connected coils 2 H and 9 H is opposive because the current enters at 

the dotted end in one coil and leaves at the dotted end in the other coil. This parallel-connected coupled coil 

is combined to a single equivalent as shown in Fig. d.

,i L
L L M
L L M

2
The equivalent inductance nparallel opposing eq

1 2

1 2
2

=
+ +

−

3H

1H

8H

4H

10H

6H

I

L = 8eq H

L = 8 6 + 10 8 + 6 2 = 8eq - H- -

Fig. 12 : Equivalent inductance of the series connected coils shown in Fig. 3.

10H

-

-

2

=

H

H2

´ 1 6H

-

-

2

=

H

H8

´ 4

- - 62 =H H´ 38H

ÞÞ

3H

2H

2H

1H

2H

Fig. 1.

3H

2H

2H

1H

2H

2 + 2 = 4H

2H

1H

3 + 2 = 5H 2H
4 + 5

= 9H
1H

Leq

Fig. 2 : Equivalent inductance of the inductive network of Fig. 1.

Ia

Ib

Ia

Ib Ia
Ib

Þ Þ Þ

Ia Ia

L

=
17

13

eq =

´ -

+ + ´

=

2 9 1

2 9 2 1

13077

2

H H.

Fig. a. Fig. b. Fig. c. Fig. d.
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Alternate Method

Alternatively, we can estimate the looking back impedance 

(inductive reactance) from the two terminals of the inductive network 

by connecting a source of value E at the two terminals of the network. 

The looking back inductive reactance is the equivalent inductive 

reactance at the two terminals, which is given by the ratio of voltage 

to current at the two terminals. 

Let us connect a sinusoidal voltage source of value E  as 

shown in Fig. 3. Let I1  and I2  be the mesh currents. 

j L
I
ENow the equivalent inductive reactance, eq
1

ω =

Let us name the coils as coil-A, coil-B and coil-C as shown in Fig. 3. Now, I I1 2-  be the current through 

coil-A and I2  be the current through coil-B and coil-C. The current flowing in each coupled coil will induce an emf 

in the other coil. Therefore, in the circuit of Fig. 3, there will be four mutual induced emfs as explained below :

Emf-1 : The current I I1 2-  entering at the dotted end in coil-A will induce an emf j I I1 2ω −a k  in coil-B such that the dotted end 

  is positive.

Emf-2 : The current I2  entering at the undotted end in coil-B will induce an emf j I2w  in coil-A such that the undotted end 

  is positive.

Emf-3 : The current I2  entering at the undotted end in coil-B will induce an emf j I2 2w  in coil-C such that the undotted end 

  is positive.

Emf-4 : The current I2  entering at the undotted end in coil-C will induce an emf j I2 2w  in coil-B such that the undotted end 

  is positive.

The self- and mutual induced emfs in the coils are shown in Fig. 4. 

By KVL in mesh-1,

2 ( )j I I j I E1 2 2ω ω− = +

2j I j I E31 2` ω ω− =         

.....(1)

By KVL in mesh-2,

2 2 2 3 2 ( ) ( )j I j I j I j I j I j I I j I I2 2 2 2 2 1 2 1 2ω ω ω ω ω ω ω+ + + + = − + −

3 3 0j I j I11 2` ω ω+ =  .....(2)

I
1

2H Coil-A

Coil-B

3H

Coil-C

2H

1H

2H

~

+

E

+

E

E

I
2

I I
1 2
E

Fig. 3.

I
2

I
1

+

-

j3 I2w

+ -j2 I2w

I2
I1

j2w

~

+

-

+

-

E

I2

I I1 2-

Fig. 4.

+

-

+

-

-+

+-

jw

j ( I I )1 2w -

j2 I2w

j I2w

j2 I2w

I1

+

-

j2 (I I )1 2w -
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On arranging equations (1) and (2) in matrix form, we get,

j

j

j

j

I

I

E2

3

3

13 0
1

2

ω

ω

ω

ω−

−

=> > >H H H

Now, 13 0 13
E j

j
E j j E

0

3

13
1 #

ω

ω
ω ω∆ =

−
= − =

3
j

j

j

j
j j j

2

3

3

13
2 13

2
#

ω

ω

ω

ω
ω ω ω∆ =

−

−
= − −a k

                             =  –26w2 + 9w2  =  –17w2

I
j E

j
E

17

13

17
13

1
1

2
ω

ω

ω∆

∆
= =

−
=

I
E j

13

17

1

`
ω

=

,j L
I
E j L

j

13

17
Here, eq

1
eq`ω ω

ω
= =

     ⇒     1.3077L H H
13
17

eq = =

RESULT

1.3077L H H
13
17Equivalent inductance, eq = =

EXAMPLE 5.24

Determine the equivalent inductance of the inductive 

network with coupled coils shown in Fig. 1.

SOLUTION

Let us connect a sinusoidal voltage source of value, E  as 

shown in Fig. 2. Let, I1  and I2  be the mesh currents.

j L
I
ENow,Equivalent inductive reactance, eq
1

ω =

Let us name the coils as shown in Fig. 2. Now, I1  is the 

current through coil-A, I I1 2-  is the current through coil-B and I2  is 

the current through coils C and D.

The current flowing in each coupled coil will induce an emf 

in the other coil. Therefore, in the circuit of Fig. 2, there will be four 

mutual induced emfs as explained below:

Emf-1 : The current I1  entering at the undotted end in coil-A will induce an emf 

  j I2 1w in coil-C such that the undotted end is positive.

Emf-2 : The current I I1 2-  entering at the dotted end in coil-B will induce an emf 

  3j I I1 2ω −a k  in coil-D such that the dotted end is positive.

Emf-3 : The current I2  entering at the dotted end in coil-C will induce an emf 2j I2w  in coil-A such that the dotted end is positive.

Emf-4 : The current I2  entering at the dotted end in coil-D will induce an emf j I3 2w  in coil-B such that the dotted end is positive.

3H

8H

9H

6H

2H5H

Fig. 1.

~

+

E

Coil-A

5H

Coil-B

Coil-C

Coil-D

2H

8H

9H

3H
6H

Fig. 2.

I
1

I
1

I I
1 2
E

I
2

I
2

E
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The self- and mutual induced emfs in the coils are shown in Fig. 3. 

By KVL in mesh-1,

5 6 ( ) 3 2j I j I I j I j I E2 2 21 1ω ω ω ω+ − + = +

j I j I E11 51 2` ω ω− =         

.....(1)

By KVL in mesh-2,

8 9 3 ( ) 6 ( ) 3j I j I j I I j I I j I j I22 2 1 2 1 2 2 1ω ω ω ω ω ω+ + − = − + +

0j I j I5 171 2` ω ω− + =  .....(2)

On arranging equations (1) and (2) in matrix form we get,

5

j

j

j

j

I

I

E11 5

17 0

1

2

ω

ω

ω

ω−

−

=> > >H H H

, 17 17Now
E j

j
E j j E

0

5

17
01 #

ω

ω
ω ω∆ =

−
= − =

j

j

j

j
j j j

11

5

5

17
11 17 5

2
#

ω

ω

ω

ω
ω ω ω∆ =

−

−
= − −a k

                             =  –187w2 + 25w2  =  –162w2

I
j E

j
E

162

17

162
17

1
1

2
ω

ω

ω∆

∆
= =

−
=

I
E j

17

162

1

` ω=

, ,Here
I
E j L j L

j

17

162

1
eq eq`ω ω ω= =

     ⇒     L H
17
162

eq =

RESULT

9.5294L H H
17
162Equivalent inductance, eq = =
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EXAMPLE 5.25

Determine the equivalent impedance of the parallel-connected impedance 

with magnetic coupling shown in Fig. 1.

SOLUTION

Let us assume the current through parallel arms as IA  and IB  as shown in Fig. 

2. Now the current enters at the dotted end in both the coils. Hence, the connection 
is parallel aiding.

The magnetic coupling in parallel aiding can be represented as shown in Fig. 3.

Hence, the network of  Fig. 1 can be redrawn as shown in Fig. 4.

The equivalent impedance can be obtained by reducing the network of Fig. 4 to a single equivalent 

impedance as shown below:

Alternate Method

Let us connect a sinusoidal voltage source of value E  as 

shown in Fig. 6. Let, I1  and I2  be the mesh currents as shown in Fig. 6.

Z
I

ENow, Equivalent impedance, eq
1

=

Let us name the coils as coil-A and coil-B. Now the current 

through coil-A is I I1 2-  and the current through coil-B is .I2

2�

j5�

2�

j5�
j2�

Fig. 2.

I IA BC

IA IB

Fig. 3.

M
L
1 L

2

M

L M
1
- L M

2
-Þ

2�

Fig. 4.

j5 j2

= j3

E

�

2�

j5 j2

= j3

E

�

j2�

Zeq

2�

j5�

2�

j5�
j2�

Fig. 1.

2W 2W

Fig. 5 : Equivalent impedance of the network shown in Fig. 1.
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=
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Þ Þ
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The current I I1 2-  flowing in coil-A will induce an emf j I I2 1 2-a k in coil-B. Since I I1 2-  enters at the 

dotted end in coil-A, the sign of this emf will be positive at the dotted end in coil-B.

The current I2  flowing in coil-B will induce an emf j I2 2  in coil-A. Since I2  enters at the dotted end in 

coil-B, the sign of this induced emf will be positive at the dotted end in coil-A.

The self- and mutual induced emfs in the coils are shown in Fig. 7.

 

By KVL in mesh-1,

2( ) 5( )I I j I I j I E22 2 21 1− + − + =

( ) ( )j I j I E2 5 2 31 2` + + − − =       .....(1)

By KVL in mesh-2,

2 5 2( ) 5( ) 2 2( )I j I j I I j I I j I I I2 2 1 2 1 2 2 1 2+ + − = − + + −

( ) ( ) 0j I j I2 3 4 61 2` − − + + =       .....(2)

On arranging equations (1) and (2) in matrix form, we get,

j

j

j

j

I

I

E2 5

2 3

2 3

4 6 0

1

2

+

− −

− −

+

=> > >H H H

,Now
E j

j
E j j E

0

2 3

4 6
4 6 0 4 61 #∆ =

− −

+
= + − = +a ak k

17 20
j

j

j

j
j j j j

2 5

2 3

2 3

4 6
2 5 4 6 2 3

2
#∆ =

+

− −

− −

+
= + + − − − = − +a a ak k k

I
j

j E

17 20

4 6
1

1

∆

∆
= =

− +

+a k
     ⇒     

I
E

j

j

4 6

17 20

1

=
+

− +

.Z
I
E

j

j
j

4 6

17 20
1 3 5eq

1

` Ω= =
+

− +
= +

j2(I I )1 2E

~

+

E

+

E

E

I2

I2
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I1 j2I2

Fig. 7.
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EXAMPLE 5.26

 A transformer with a primary having Rp = 100 Ω and 

Lp = 0.1 H and a secondary having Rs = 40 Ω and L
s
 = 0.4 H 

is connected between source voltage of 200 V at 159.2 Hz 

and a load resistance of 500 Ω. Determine the load current if 

k = 0.1.

SOLUTION

The transformer connected between the source and load can be represented by the circuit shown in Fig. 1.

Let, IL  = Load current.

Primary inductive reactance,     X
p
 = 2pfL

p
 = 2 × p × 159.2 × 0.1 = 100.0283 Ω

                          ≈ 100 Ω

Secondary inductive reactance, X
s
 = 2pfL

s
 = 2 × p × 159.2 × 0.4 = 400.1132 Ω

                                          ≈ 400 Ω

inductance , 0.1 . . 0.02k L L H0 1 0 4Mutual M s p #= = =

Mutual reactance,  X
m

 = 2pfM = 2 × p × 159.2 × 0.02  =  20.0057 Ω ≈ 20 Ω

The frequency domain representation of the transformer connected between the source and load is shown 

in Fig. 2. Let I1  and I2  be the mesh currents. Now the current enters at the dotted end in one coil and leaves 

at the dotted end in the other coil, and so the fluxes are opposing. Also, the mesh currents are in the same 

orientation. Hence, it is group-1 coupled coil. The electrical equivalent of the circuit of Fig. 2 is shown in Fig. 3.

With reference to Fig. 3, the mesh basis matrix equation is,

j j

j

j

j j

I

I

100 80 20

20

20

20 380 40 500

200 0

0

1

2

o
++ +

−

−

+ + +

=> > >H H H
j

j

j

j

I

I

100 100

20

20

540 400

200

0
1

2

+

−

−

+

=> > >H H H
j

j

j

j
j j j

100 100

20

20

540 400
100 100 540 400 20Now,

2
#∆ =

+

−

−

+
= + + − −a a ak k k

            =  14400 + j94000

j

j
j j

100 100

20

200

0
0 20 200 40002 #∆ =

+

−
= − − =a k

, 0.0416 0.0064Load current I I
j

j
j A

14400 94000

4000
L 2

2

∆

∆
= = =

+
= +

     =  0.0421∠8.7
o

 A = 42.1 × 10–3∠8.7o
 A = 42.1∠8.7

o
 mA

200

159.2

V
Hz

40�

Rp

+

E

Ls

Fig. 1.
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IL
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Ð
0
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Ð
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EXAMPLE 5.27

Find the mutual reactance X
m

 in the coupled coils shown in Fig. 1, 

if the average power in 8 Ω resistance is 100 W.

SOLUTION

Let us assume two mesh currents I1  and I2  as shown in Fig. 2. 

Now the  current enters at the dotted end in one coil and leaves at the 

dotted end in the other coil. So the fluxes are opposing. Also, the mesh 

currents are in the same orientation. Hence, it is group-1 coupled coil. 

The electrical equivalent of the coupled circuit is shown in Fig. 3.

With reference to Fig. 3, the mesh basis matrix equation is,

j jX jX

jX

jX

jX j jX

I

I

5 5

12 8
100 0

0

mm

m

m

m m

1

2

o
++ − +

−

−

+ − +
=> > >H H H

j

jX

jX

j

I

I

5 5

8 12

100

0m

m 1

2

+

−

−

+
=> > >H H H

,Now
j

jX

jX

j
j j jX

5 5

8 12
5 5 8 12

m

m
m

2
#∆ =

+

−

−

+
= + + − −a a ak k k

           =  –20 + j100 + X2
m

  =  X2
m

 – 20 + j100

         
100 100

j

jX
jX j X

5 5 100

0
02

m
m m#∆ =

+

−
= − − =a k

I
X j

j X

20 100

100
Now, 2

2 m

m
2∆

∆
= =

− +     .....(1)

Given that,

           Power in 8 Ω resistance  =  100 W

8IHere, Power in 8 resistance 2

2

#Ω =

8 100I2
2

` # =

X j

j X

20 100

100
8 100m

2

m
2

#

− +

=

8 100

X

X

20 100

100

2
2

m

2

m

2

` #

− +

=

J

L

K
K
K b

N

P

O
O
Ol

    ⇒     100

X

X

20 100

80000

2
2

m

2

m

2

− +

=

b l

5W

+

-

Fig. 1.

~ j5W 8W

Xm

1
0
0

V
Ð
0

0

j12W

5W

+

-

Fig. 2.

~ j5W 8W

jXm

1
0
0

V
Ð

0
0

j12W

I2I1

+

-

~

1
0
0

V
Ð

0
0

8W

j5 jX- m

Fig. 3.

5W

jXm

j12 jXm-

I1

I2

Using equation (1)

(AU Dec’15, 16 Marks)
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100X
X

20
100

800002
2

m

2 m

2

` − + =b l     ⇒     400 40 10000 800X X X
m

4

m

2

m

2
+ − + =

40 800 10400 0X X X
m

4

m

2

m

2
` − − + =     ⇒     840 10400 0X X

m

4

m

2
− + =

Let,  X2
m

  =  X

Now,  X2 – 840X + 10400  =  0

The roots of the quadratic are,

.
X

2

840 840 4 10400

2

840 814 862

2

! #
!

=

− − − −

=

a ak k

     =  827.431    or    12.569

Let us take smaller value of X for realizability.

Now,  X2
m

  =  X

. .X X 12 569 3 5453m` Ω= = =

RESULT

Mutual reactance,  X
m

  =  3.5453 Ω

EXAMPLE 5.28

Determine the equivalent conductively coupled circuit for the 

magnetically coupled circuit as shown Fig. 1 and solve the mesh currents.

SOLUTION

Let us name the coupled coils as coil-A and coil-B as shown 

in Fig. 2. The current I1 entering at the dotted end in coil-A will induce 

an emf 6j I1 in coil-B such that the dotted end is positive. The current I2  

entering at the undotted end in coil-B will induce an emf 6j I2  in coil-A such 

that the undotted end is positive.

The self- and mutual induced emfs in the coupled coils are shown in Fig. 2.

By KVL in mesh-1,

5 3( ) [ 4( )]j I I I j I I j I50 61 1 2 1 2 2+ − + − − = +

+

-

~ 5W

j5W

Fig. 1.

I1 I2

j10W

5
0

V
Ð
0

0

3W

-j4W

j6W

Fig. 2.

+ -
j5 1I

Coil-A Coil-B

I1

+

-

+-
j6 1I

I I1 2-

- -j I I4 1 2( )

5 2I

+

-

+

-

~ I1 I2

+-j6 2I

+ -
j10 2I

I2

3 1 2( )I I-

+

-

j6W

50 V
= 50V
Ð0

0

(AU June’16, 8 Marks)
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5 3 3 4 4 6 50j I I I j I j I j I1 1 2 1 2 2+ − − + − =

( ) (3 ) 50j I j I3 21 2` + − + =         

.....(1)

By KVL in mesh-2,

10 5 4( ) 3( ) 6j I I j I I I I j I2 2 1 2 1 2 1+ = − − + − +

10 5 4 4 3 3 6 0j I I j I j I I I j I2 2 1 2 1 2 1+ + − − + − =

(3 ) ( ) 0j I j I2 8 61 2` − + + + =  .....(2)

Using equations (1) and (2) the conductively coupled 

equivalent circuit can be drawn as shown in Fig. 3.

On arranging equations (1) and (2) in matrix form we get,

( )

( )j

j

j

j

I

I

3

3 2

3 2

8 6

50

0
1

2

+

− +

− +

+

=> > >H H H

Now, 
( )

( )
(3 ) (8 6) (3 2) 13 14

j

j

j

j
j j j j

3

3 2

3 2

8 6
2

#∆ =
+

− +

− +

+
= + + − + = +

( )
50 (8 6) 0 300

j

j
j j

50

0

3 2

8 6
4001 #∆ =

− +

+
= + − = +

( )
0 [ ( ) ] 00

j

j
j j

3

3 2

50

0
3 2 50 150 12 #∆ =

+

− +
= − − + = +

       2 . . 2 . .I
j

j
j A A

13 14

400 300
5 7534 4 6575 6 1712 10 3o1

1
` +

∆

∆
= =

+

+
= − = −

           . . . .I
j

j
j A A

13 14

150 100
9 1781 2 1918 9 4432 13 4o2

2
+

∆

∆
= =

+

+
= − = −

EXAMPLE 5.29

Calculate the primary and secondary current in the coupled 

circuit shown in Fig. 1.

SOLUTION

The current Ip  entering at the dotted end in the primary coil 

will induce an emf j I10 p  in the secondary such that the dotted end 

is positive. The current Is  entering at the dotted end in the secondary 

coil will induce an emf 10j Is  in the primary such that the dotted end 

is positive. The self- and mutual induced emfs are shown in Fig. 2. 

Fig. 3.

+

-

~ I1
I2

50 V
= 50V
Ð0

0

8W

3W

3W

j1W j6W

j2W

Ip

~

2
2
0

V
Ð
0

0 +

-

j12W

6W 8W

j40W - Wj20

- Wj3

Is

j1
0
W

Fig. 1.
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By KVL in primary we get,

12 10 ( 3 ) 220I j I j I j I6 p p s p+ + + − =

(6 9) 10j I j I 220p s` + + =        .....(1)

By KVL in secondary we get,

10 40 8 ( 20 )j I j I I j I 0p s s s+ + + − =

10 (8 20) 0j I j Ip s` + + =       .....(2)

On arranging equations (1) and (2) in matrix form we get,

j

j

j

j

I

I

6 9

10

10

8 20

220

0

p

s

+

+

=> > >H H H

Alternatively, the mesh basis matrix equation can be 

obtained from the electrical equivalent of the coupled coils shown 

in Fig. 3. (Here it is group-II coupled coil)

With reference to Fig. 3, we can write,

( 10)

( 10)j j j

j

j

j j j

I

I

6 22 10 3

10 50 8 20

220 0

0

p

s

o
++ − −

− −

− −

− + + −

=> > >H H H
j

j

j

j

I

I

6 9

10

10

8 20

220

0

p

s

+

+

=> > >H H H

32 192
j

j

j

j
j j j j

6 9

10

10

8 20
6 9 8 20 10Now,

2
#∆ =

+

+
= + + − = − +a a ak k k

220 1760 4400
j

j
j j

220

0

10

8 20
8 20 0p #∆ =

+
= + − = +a k

10 220 2200
j

j
j j

6 9

10

220

0
0s #∆ =

+
= − = −

20.8108 12.6351 24.3462 31.3I
j

j
j A A

32 192

1760 4400
p

p o
+

∆

∆
= =

− +

+
= − = −

. 1. .3 .I
j

j
j A A

32 192

2200
11 1486 8581 11 024 170 5s

s o
+

∆

∆
= =

− +

−
= − + =

6Ip 8Is

~

2
2
0

V
Ð
0

0

+

-

j1
0
W

Fig. 2.
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+
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+

-
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+
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Ð
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EXAMPLE 5.30

A voltage of 115 V at a frequency of 10 kHz is applied to 

the primary of the coupled circuit shown in Fig. 1. Determine the 

total impedance referred to primary and the currents in primary and 

secondary.

SOLUTION

Given that,  f    =  10 kHz,   L
p
  =  200 µH,    C

p
  =  5 µF

                 M  =  75 µH,    L
s
  =  100 µH,    C

s
  =  0.1 µF

Primary inductive reactance   =  j2pf L
p
  =  j2p × 10 × 10

3
 × 200 × 10

−6
 

                  =  j12.5664 Ω

2 10 10 5
3.1831

j fC j
j

2
1

10

1Primary capacitive reactance
p

3 6
# # # #π π

Ω= = = −
-

Mutual reactance  = j2pf M  =  j2p × 10 × 10
3
 × 75 × 10

–6
  =  j4.7124 Ω

Secondary inductive reactance  =  j2pf L
s
  =  j2p × 10 × 10

3
 × 100 × 10

−6  =  j6.2832 Ω

.
.

j fC j
j

2
1

2 10 10 0 1 10

1 159 1549Secondary capacitive reactance
s

3 6
# # # #π π

Ω= = = −
-

The frequency domain equivalent of the coupled circuit is shown in Fig. 2. Let I and Ip s  be the primary 

and secondary currents as shown in Fig. 2. The electrical equivalent of the coupled circuit is shown in Fig. 3. 

(Here it is group-I coupled circuit).

With reference to Fig. 3, the mesh basis matrix equation can be obtained as shown below:

. . .

.

.

. . .

j j j

j

j

j j j

I

I

12 7 854 4 7124 3 1831

4 7124

4 7124

4 7124 1 5708 8 159 1549

115 0

0

p

s

o
++ + −

−

−

+ + −

=> > >H H H
.

.

.

.

j

j

j

j

I

I

12 9 3833

4 7124

4 7124

8 152 8717

115

0

p

s

+

−

−

−

=> > >H H H

,
.

.

.

.
. . .Now

j

j

j

j
j j j

12 9 3833

4 7124

4 7124

8 152 8717
12 9 3833 8 152 8717 4 7124

2
#∆ =

+

−

−

−
= + − − −a a ak k k

                   =  1552.6477 – j1759.394

.

.
115 .

j

j
j

115

0

4 7124

8 152 8717
8 152 8717 0p #∆ =

−

−
= − −a k

        =  920 – j17580.2455
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Fig. 1.
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.

.
. 115

j

j
j

12 9 3833

4 7124

115

0
0 4 7124s #∆ =

+

−
= − −a k

      =  j541.926

. .

.
5.8769 4.6634 7.5023 38.4I

j

j
j A A

1552 6477 1759 394

920 17580 2455
p

p o
+

∆

∆
= =

−

−
= − = −

. .

.
0.1732 0.1528 0.231 138.6I

j

j
j A A

1552 6477 1759 394

541 926
s

s o
+

∆

∆
= =

−
= − + =

I
115 0Total impedance referred to primary

p

o
+=

                                                          . .
15.3286 38.4

7 5023 38 4

115 0
o

o
o

+

+
+ Ω=

−
=

RESULT

7.5023 38.4I APrimary current, p
o

+= −

. 38.I Acurrent, 0 231 1 6Secondary s
o

+=

15.3286 38.4 ATotal impedance referred to primary
o

+=

EXAMPLE 5.31

In the coupled circuit shown in Fig. 1. Determine the voltage 

ratio ,
V

V

1

2  which will make the current I1  equal to zero.

SOLUTION

The given coupled coils are group-I coupled coils. The electrical 

equivalent of the coupled  coils is shown in Fig. 2.

With reference to Fig. 2, the mesh basis matrix equation is 

obtained as shown below :

j j

j

j

j j

I

I

V

V

5 6 2

2

2

2 2 2
1

2

1

2

+ +

−

−

+ +

=

−

> > >H H H
j

j

j

j

I

I

V

V

5 8

2

2

2 4
1

2

1

2

+

−

−

+

=

−

> > >H H H

IWe know that, 1
1

∆

∆
=

, 0, 0For I1 1∆= =

V

V

j

j
V j V j

2

2 4
2 4 21

1

2
1 2# #∆ =

−

−

+
= + − − −a a ak k k

                             2V j j V2 41 2= + −a k
Put, ∆

1
  =  0

V j j V2 4 2 01 2` + − =a k

                     2j V V j2 42 1− = − +a k

5�

+

E

Fig. 1.
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~

+

-

I1 I2

5W

1
0

V
Ð

9
0

0

2W

+

+ + + +

-- - -

- +

5 1I

j I2 2 j I8 1 j I2 1

2 2I

j I2 2

-

~

+

-

X = j8L1 W X = j2L2 W

Fig. 2.

j2
W

V 2

2 2.2361 26.6
V

V
j

j
j

2

2 4

1

2 o
` +=

+
= − = −

RESULT

2.2361 26.6
V

V
IThe ratio tomake as zero

1

2
1

o
+= −

EXAMPLE 5.32

For the coupled circuit shown in Fig. 1, find the value 

of V
2
 so that the current I

1
 = 0.

SOLUTION

The self- and mutual induced emfs for the given 

direction of mesh currents are shown in Fig. 2.

With reference to Fig. 2, the mesh basis matrix 

equation can be written as shown below:

By applying KVL in mesh-1,

5 8 2 10 90I j I j I o
1 1 2 ++ + =

(5 8) 2 10j I j I j1 2+ + =   .....(1)

By applying KVL in mesh-2,

2 2 2I j I j I V2 2 1 2+ + =

2 ( 2)j I j I V21 2 2+ + =   .....(2)

By arranging equations (1) and (2) in matrix form, we get,

j

j

j

j

I

I

j

V

5 8

2

2

2 2

101

2 2

+

+

+

+

== = =G G G

We know that, I1
1

∆

∆
=

0, 0For I1 1
∆= =

10
0

j

V

j

j

2

2 21
2

` ∆ =
+

=

10 (2 2) 0j j V j22# #+ − =

( )

.

V
j

j j
j V

V

2

10 2 2
10 10

14 1421 45o

2`
#

+

=
+

= +

=

(AU Dec’14, 10 Marks)
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EXAMPLE 5.33        

In the coupled circuit shown in Fig. 1, determine the voltage 

across 12 Ω resistor.

SOLUTION

The given coupled coils are group-1 coupled coils. The 

electrical equivalent of the coupled coils is shown in Fig. 2.

With reference to Fig. 2, the mesh basis matrix 

equation is obtained as shown below:

j j j

j

j

j j

I

I

4 2 3

3

3

3 3 12

12

0
1

2

− + +

−

−

+ +

=> > >H H H

j

j

j

j

I

I3

3

12 6

12

0
1

2−

−

+

=> > >H H H

Now, (12 6) ( 3) 3 12
j

j

j

j
j j j j

3

3

12 6
2

#∆ =
−

−

+
= + − − = +

0 ( )
j

j
j j

3

12

0
3 12 362 #∆ =

−
= − − =

       2. .I
j

j
j A

3 12

36
8235 0 70592

2
`

∆

∆
= =

+
= +

∴  Voltage across 12Ω resistor = ( . . )I j12 12 2 8235 0 70592# #= +

                                                                  33.882 8.4708 34.9248 14j Vo+= + =

EXAMPLE 5.34

In the coupled circuit shown in Fig. 1, determine the voltage 

across 10 Ω resistor.

SOLUTION

Given that,  k = 0.5  ,    X
L1

 = 8 Ω     and    X
L2

 = 8 Ω

0.5 4X k X X 8 8Mutual reactance, m L1 L2` # Ω= = =

Let us name the coupled coils as coil-A and coil-B as shown in Fig. 2. The current I1  entering at the 

undotted end in coil-A will induce an emf jX
m
I1  in coil-B such that the undotted end is positive.

The current I2  entering at the dotted end in coil-B will induce an emf jX
m
I2 in coil-A such that the dotted 

end is positive.

+

-

Fig. 1.
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- Wj4
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Fig. 1.
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The self- and mutual induced emfs in the coupled coils are shown in Fig. 2. 

Let, V0  be the voltage across the 10 Ω resistor as shown in Fig. 2.

,Now V I I10 100 2 2#= =

By KVL in mesh-1,

8 8( ) [ ( )] .j I I I j I I j I j4 4 86 6025 502 2 21 1 1+ − + − − = + +

(8 4) 8 86.6025 50j I I j1 2` + − = +       .....(1)

By KVL in mesh-2,

8 10 [ 4( )] 8( ) 4j I I j I I I I j I2 2 1 2 2 11+ = − − + − +

8 (18 4) 0I j I1 2` − + + =       .....(2)

On arranging equations (1) and (2) in matrix form, we get,

.j

j

I

I

j8 4

8

8

18 4

86 6025 50

0
1

2

+

−

−

+

=
+> > >H H H

Now, 
j

j
j j j

8 4

8

8

18 4
8 4 18 4 8 64 104

2
#∆ =

+

−

−

+
= + + − − = +a a ak k k

.
. 692.82 400

j j
j j

8 4

8

86 6025 50

0
0 8 86 6025 502 #∆ =

+

−

+
= − − + = +a ak k

.
5.7632 3.1152I

j

j
j A

64 104

692 82 400
2

2

∆

∆
= =

+

+
= −

10 10 . . 57.632 31.152 65.5126 28.4V I j j V V5 7632 3 11520 2
o

# += = − = − = −a k
RESULT

The voltage across 10 Ω resistance  =  65.5126∠−28.4
o

 V

EXAMPLE 5.35

In the coupled circuit shown in Fig. 1, determine the voltage across 

j5 Ω reactance.

SOLUTION

Let I1  and I2  be the mesh currents as shown in Fig. 2. Now 

I1  is the current through j6 reactance and I I1 2- is the current through 

the j5 Ω reactance.

~

+

-1
0
0

V
Ð

3
0

0

jX = j4m W

Fig. 2.

+- +-

j4 I2 j4 I1

Coil-A Coil-B

I1

I2

I1 I2

+

-

V0

+ -
j8 1I j I8 2

I I1 2-

8 1 2( )I I-

j I I4 1 2( )-

10 2I

+

-

+

-

+

-

+ -

-

100∠30
o
  =  100 cos 30

o
 + j100 sin 30

o
 

                =  86.6025 + j50

~

+

-1
2

V
Ð
3
0

0

4W j6W

j2W

j5W - Wj8

Fig. 1.



5. 95Chapter 5 - Resonance and Coupled Circuits

The I1  entering at the undotted end in j6 Ω reactance will 

induce an emf j I2 1  in the j5 Ω reactance such that the undotted 

end is positive.

The I I1 2-  entering at the dotted end in j5 Ω reactance will 

induce an emf j I I2 1 2-a k in j6 Ω reactance such that the dotted 

end is positive.

The self- and mutual induced emfs are shown in Fig. 3. 

Let V0  be the voltage across j5 Ω reactance. With reference to Fig. 3, by KVL, we can write,

V j I j I I2 50 1 1 2+ = −a k

5 2V j I j I j I50 1 2 1` = − −

          j I j I3 51 2= −

By KVL in mesh-1,

4 6 5( ) 2( ) 2 10.3923 6I j I j I I j I I j I j1 1 1 2 1 2 1+ + − = − + + +

( ) .j I j I j4 7 3 10 3923 61 2` + + − = +       .....(1)

By KVL in mesh-2,

2 ( 8 ) 5( )j I j I j I I1 2 1 2+ − = −

0j I j I3 31 2` − − =       .....(2)

On arranging equations (1) and (2) in matrix form, we get,

.j

j

j

j

I

I

j4 7

3

3

3

10 3923 6

0
1

2

+

−

−

−

=
+> > >H H H

 
Now,   

 
(4 7) ( 3) ( 3) 30 12

j

j

j

j
j j j j

4 7

3

3

3
2

#∆ =
+

−

−

−
= + − − − = −9 C

.
(10.3923 6) ( 3) 18 31.1769

j j

j
j j j

10 3923 6

0

3

3
01 #∆ =

+ −

−
= + − − = −

.
( 3) (10.3923 6) 18 31.1769

j

j

j
j j j

4 7

3

10 3923 6

0
02 #∆ =

+

−

+
= − − + = − +

~

+

-1
2

V
Ð

3
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0

4W j6W

j2W

j5W - Wj8

Fig. 2.
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Fig. 3.
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j2 I1
-

+V0

+

-

j ( I I )1 25 -

j I16

j I28

+

-

+ -
4I1

+ -
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12∠30
o
 = 12 cos 30

o
 + j12 sin 30

o

             = 10.3923 + j6
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.
. .I

j

j
j A

30 12

18 31 1769
0 8756 0 6891

1

∆

∆
= =

−

−
= −

.
0.8756 0.689I

j

j
j A

30 12

18 31 1769
2

2

∆

∆
= =

−

− +
= − +

Now,

3 5V j I j I0 1 2= −

      =  j3(0.8756 – j0.689) – j5(–0.8756 + j0.689)

      = 5.512 + j7.0048  =  8.9134∠51.8o
 V

Since −j8 Ω reactance is parallel to j5 Ω reactance, the voltage V0  is the same as the voltage across 

j8 Ω reactance.

V j I80 2` = −

           =  –j8 × (–0.8756 + j0.689)

           =  5.512 + j7.0048  =  8.9134∠51.8o
 V

RESULT

Voltage across j5 Ω reactance = 8.9134∠51.8
o

 V

5.10    Summary of Important Concepts

1. Resonance is a circuit condition at which an RLC circuit behaves as a purely resistive circuit.  

  Resonance in a series RLC circuit is called series resonance and in a parallel RLC circuit  

  is called parallel resonance.

2. Resonance in an RLC circuit can be achieved by varying the frequency of the exciting  

  sinusoidal source.

3. The frequency at which resonance occurs is called resonance frequency.

4. In a series RLC circuit, at resonance, the inductive reactance cancels the capacitive reactance  

  and so the total reactance is zero.

5. In a series RLC circuit, the angular resonant frequency, ,
LC

1
rω =  and the resonant frequency in 

  Hz is, .f
LC2

1
r

π

=

6. In a series RLC circuit, at resonance, the impedance is minimum and equal to R and so current is  

  maximum. 

7. For w < w
r
, a series RLC circuit behaves as a capacitive (RC) circuit and for w > w

r
, it behaves as 

  an inductive (RL) circuit.

8. Quality factor (Q-factor) is defined as the ratio of maximum energy stored to the energy  

  dissipated in one period.

9. In an RLC series circuit, the Q-factor at resonance is a measure of voltage magnification at  

  resonance.

10. In an RLC series circuit, when the inductor stores energy the capacitor discharges energy  

  and vice-versa.

11. At resonance, the sum of energy stored in the inductor and capacitor is maximum.
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12. In an RLC series circuit, for w < w
r
 , the energy stored in the capacitor is maximum 

  and for w > w
r 
, the energy stored in the inductor is maximum.

13.  The various expressions for Q-factor of an RLC series circuit are,

; ;Q
R

L
Q

CR
Q

R C
L1 1

r
r

r
r

r
ω

ω

= = =

, ; ,When Q
CR

When Q
R
L1

r r# $ω ω

ω

ω ω
ω

= =

14. In an RLC series circuit, bandwidth is defined as the range of frequencies over which  

  power is greater than or equal to 1/2 times the maximum power.

15. Alternatively, bandwidth is the range of frequencies over which current is greater than or  

  equal to 1 2  times the maximum current. 

16. Bandwidth is given by the difference between the cut-off frequencies.

17. The various equations for bandwidth, β of RLC series circuit are,

; ;/ /
L
R in

Q
in Bandwidth inrad s rad s Hz

2r

rβ β
ω

π

β
= = =

18. Half-power frequencies (or cut-off frequencies) are frequencies at which power is  

  1/2 times the maximum power .1 2or current is times the maximum current_ i

19. The various equations for half-power (or cut-off) frequencies of RLC series circuit are,

;/ /
L
R

L
R

LC
in

L
R

L
R

LC
inrad s rad s

2 2
1

2 2
12 2

hl
ω ω= − + + = + +a ak k

;/ /
Q Q

in
Q Q

inrad s rad s
2
1 1

4

1
2
1 1

4

1
r

r r
2 r

r r
2hl

ω ω ω ω= − + + = + +< <F F

;f in f inHz Hz
2 2h

h

l

l

π

ω

π

ω

= =

20. Resonant frequency is given by the geometric mean of two half-power frequencies.

r hl` ω ω ω=

21. In an RLC series circuit, at half-power frequencies, the absolute value of total reactance is  

  equal to resistance.

; ;L
C

R L
C

R L
C

R1 1 1
h

h
l

l
` !ω

ω

ω

ω

ω

ω

− = − = − = −

22. Selectivity is defined as the ratio of bandwidth and resonant frequency.

Selectivity
r

`
ω

β
=

23. Alternatively, selectivity is the inverse of quality factor (Q-factor).

Selectivity
Q
1

r
` =
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24. The RLC circuit is highly selective in selecting a particular frequency if the selectivity is  

  low, which in turn demands smaller bandwidth and large value of Q-factor.

25. In an RLC series circuit, the magnitude of voltage across inductor V
Lr

 and capacitor V
Cr

 at

  resonance is Q
r
 times supply voltage, V where Q

r
 is Q-factor at resonance.

∴  V
Lr

 = V
Cr

 = Q
r
V

26. In a parallel RLC circuit, at resonance, the inductive susceptance cancels the capacitive  

  susceptance and so the total susceptance is zero.   

27. In a parallel RLC circuit, at resonance, the admittance is minimum and equal to conductance  

  of the circuit and so the current is also minimum.

28. The current is maximum in series resonance and minimum in parallel resonance, and so  

  parallel resonance is also called anti-resonance.

29. In a parallel RLC circuit, the effective resistance of the circuit at resonance is called  

  dynamic resistance.

30. For w < w
r
, the parallel RLC circuit behaves as an inductive circuit and for w > w

r
, behaves as 

  a capacitive circuit.

31. The frequency of resonance and dynamic resistance for the popular four parallel combinations  

  of R, L and C are given below:

 Case i : R, L and C are in parallel.

;
LC

R R
2

1
r dynamicω

π

= =

 Case ii : A branch with R
1
 and L in series is parallel with another branch with R

2
 and C in series.

;
LC L CR

L CR
R

R X

R

R X

R
1 1

r

2
2
1
2

dynamic

1
2

Lr
2

1

2
2

Cr
2

2

ω =

−

−
=

+

+

+

, ;where X L X
C

1
Lr r Cr

r

ω

ω

= =

    ,Condition for resonance at all frequency is R R
C
L

1 2= =

 Case iii : A branch with R
1
 and L in series is parallel with C.

;
LC L

CR
R

R C
L1 1r

1
2

dynamic
1

ω = − =

 Case iv : A branch with R
2
 and C in series is parallel with L.

;
LC L CR

L R
R C
L1

r

2
2 dynamic

2

ω =

−

=

32. In an RLC parallel circuit excited by a current source, the Q-factor at resonance is a measure  

  of current magnification at resonance.
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33. In an RLC parallel circuit for w < w
r
, the energy stored in the inductor is maximum and for 

  w > w
r
, the energy stored in the capacitor is maximum.

34. The various expressions for Q-factor of RLC parallel circuit are,

; ;Q CR Q
L

R Q R
L
C

r r r
r

rω

ω

= = =

, ; ,When Q
L

R When Q CRr r# $ω ω

ω

ω ω ω= =

35. In an RLC parallel circuit excited by a voltage source, the power is minimum at resonance,  

  and when excited by a current source, the power is maximum at resonance.

36. In an RLC parallel circuit excited by a voltage source, bandwidth is defined as the  

  range of frequencies over which power is less than or equal to twice the minimum 

  power. Alternatively, bandwidth is the range of frequencies over which current is less  

  than or equal to 2  times the minimum current.

37. In an RLC parallel circuit excited by a current source, bandwidth is defined as the  

  range of frequencies over which power is greater than or equal to 1/2 times the maximum  

  power. Alternatively, bandwidth is the range of frequencies over which voltage is  

  greater than or equal to 1 2  times the maximum voltage.

38. The various equations for bandwidth, β of RLC parallel circuit when excited by either a 

  voltage or current source are,

; ;/ /
RC

in
Q

in Bandwidth inrad s rad s Hz
1

2r

rβ β
ω

π

β
= = =

39. The various equations for half-power (or cut-off) frequencies of an RLC parallel circuit are,

;/ /
RC RC LC

in
RC RC LC

inrad s rad s
2
1

2
1 1

2
1

2
1 12

h

2

lω ω= − + + = + +a ak k

;/ /
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Q Q
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1
2
1 1

4

1
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r r
2 h r

r r
2lω ω ω ω= − + + = + +< <F F

;f in f inHz Hz
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h
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l
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π

ω

π

ω
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40. In an RLC parallel circuit at half-power frequencies, the absolute value of total susceptance is  

  equal to conductance.

; ;C
L

R C
L R

C
L R

1 1 1 1 1
h

h
l

l

` !ω

ω

ω

ω

ω

ω

− = − = − = −

41. The connection between two or more coils via magnetic flux is called magnetic coupling.

42. The connection between two or more coils via electric current is called conductive coupling.

43. In magnetically coupled elements, the power/energy transfer occurs through magnetic flux.

44. In conductively coupled elements, the power/energy transfer occurs through current flow.

45. The induced emf in a coil due to change in flux in the same coil is called self-induced emf  

  and the direction of self-induced emf will oppose the current through the coil.
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46. The induced emf in a coil due to change in flux in a nearby coil is called mutual induced  

  emf and the direction of mutual induced emf depends on flux/current in the nearby coil.

47. The self-inductance L of a coil with N turns carrying a current of i amperes and developing 

  a flux of φ webers is given by,

  .L
N

i

φ
=

48. The coefficient of coupling k is defined as the fraction of the total flux produced by one coil  

  linking the other coil.

49. In coupled coils, when k = 1, the coils are said to be tightly coupled or closely coupled, and  

  when k = 0, the coils are said to be magnetically isolated, and when k is very low, the coils  

  are said to be loosely coupled.

50. The mutual inductance M between two coils with self-inductances L
1
 and L

2
 and coefficient of 

  coupling k is given by,

  .M k L L1 2=

51. In coupled coils, the maximum value of mutual inductance M is possible when coefficient  

  of coupling k is equal to one.

52. In coupled coils, if the fluxes produced by the two coils aid each other then the sign/polarity  

  of self- and mutual induced emfs will be the same.

53. In coupled coils, if the fluxes  produced by two coils oppose each other then the sign/polarity  

  of self- and mutual induced emfs will be opposite.

54. Dot rule : In coupled coils, current entering at the dotted terminal of one coil induces an emf in  

    the second coil, which is positive at the dotted terminal of the second coil.  

    [Conversely, current entering at the undotted terminal of one coil induces an  

    emf in the second coil, which is positive at the undotted terminal of the second coil].

55. Electrical equivalent of group-I coupled coils are given below:

M M

Lj LkIj Ik Lk IkLjIj

M

L Mj - L Mk -

M

LjIj Lk Ik

M

LjIj Lk Ik

Þ

Þ

Þ

Þ

+

- +

-

vm1 v1

Note :   In the electrical equivalent, the 

mesh currents’ orientation should be the 

same as that of the original circuit.
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M M

Ij Lj Lk Ik Lk IkIj Lj

-M

L + Mj L + Mk

M

Ij Lj Lk Ik

M

Ij Lj Lk Ik

Þ

Þ

Þ

Þ

56. Electrical equivalent of group-II coupled coils are given below:

57. In series connection of coupled coils, if the sign/polarity of self- and mutual induced emfs  

  are the same then the connection is called series aiding. The series aiding connection and  

  its equivalent are shown below:

58. In series connection of coupled coils, if the sign/polarity of the self-and mutual emfs are  

  opposite then the connection is called series opposing. The series opposing connection and  

  its equivalent are shown below:

59. In parallel connection of coupled coils, if the sign/polarity of self-and mutual induced  

  emfs are the same then the connection is called parallel aiding. The parallel aiding connection 

 and its equivalent are shown below:

60. In parallel connection of coupled coils, if the sign/polarity of self-and mutual induced  

  emfs are opposite then the connection is called parallel opposing. The parallel opposing  

  connection and its equivalent are shown below:

L1 L2

M

i i
Þ

L = L + L + 2Meq 1 2

L1 L2

M

i i
Þ

L = L + L 2Meq 1 2 -

Þ

M

L1 L2 L
L

eq
2

=

-

+ -

L M

L L M

1

1 2

2

2

Þ
M

L1 L2 L
L

eq
2

=

-

+ +

L M

L L M

1

1 2

2

2

Note :   In the electrical equivalent, 

the mesh currents’ orientation should 

be the same as that of original circuit.
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61. In a coupled coil, if a capacitor is added to the secondary coil in order to resonate the  

  secondary circuit then it is called a single tuned coupled coil.

62.  In a tuned coupled circuit, the critical coupling k
C
 is the value of coupling coefficient k at 

  which the output voltage is maximum.

63. The value of mutual inductance at critical coupling  k
C
 is called optimum mutual inductance M

opt
.

5.11    Short-answer Questions

Q5.1 What is resonance ?

Resonance is a circuit condition at which an RLC circuit behaves as a purely resistive circuit.

Q5.2 Write the expressions for resonant frequency and current at resonance of a RLC series circuit.

, /Angular resonant frequency
LC

in rad s
1

rω =

,frequency f
LC

inHz
2

1Resonant r
π

=

,at frequency I
R
VCurrent r =

Q5.3 Define the frequency response of RLC series circuit.

The variation of current with frequency is called frequency response,  

 which is shown in Fig. Q5.3.

Q5.4 Define quality factor.

Quality factor is defined as the ratio of maximum energy stored to the energy dissipated in one 

 period.

, 2Quality factor Q
Energy dissipated in one period

Maximumenergy stored
#π=

Q5.5 Write the expressions for quality factor of a series RLC circuit.

,Quality factor at resonance Q
R
L

r
rω

=

, ; ;Alternatively Q
CR

Q
R C

L Q1 1
r

r
r r

r

ω β
ω

= = =

, ,When Q
CR
1

r#ω ω

ω

=

, ,When Q
R
L

r$ω ω
ω

=

Q5.6   Determine the quality factor of a coil for the series resonant circuit consisting of R = 10 ohm,

L = 0.1H, and C = 10 microfarad.

   Quality factor at resonant, .
10Q

R C

L1

10

1

10 10

0 1
r 6

#

#

= = =
-

(AU May’15, 2 Marks)

I
r

I

w
r

w

Fig. Q5.3.

(AU June’14  & Dec’14, 2 Marks)

(AU June’14, 2 Marks)
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Q5.7 Define bandwidth of an RLC series circuit.

The bandwidth β of an RLC series circuit is defined as the range  

 of frequencies over which current is greater than or equal  

 to /1 2  times the maximum current.The bandwidth is shown 

 in Fig. Q5.7.

Q5.8 What are half-power frequencies ?

In RLC circuits, the frequencies at which power is half the  

 maximum/minimum power are called half-power frequencies.

Q5.9 Write the expression for half-power frequencies of an RLC series circuit.

L
R

L
R

LC
inHz

2
1

2 2
1Lower cut off frequency, f

2

l
π

− = − + +c m; E

L
R

L
R

LC
inHz

2
1

2 2
1Higher cut off frequency, f

2

h
π

− = + +c m; E

;
Q Q

f
Q Q2

1 1
4

1
2
1 1

4

1Alternatively, f f f
r r
2 2r

r
h r

r
l = − + + = + +; ;E E

Q5.10 Write the expression for impedance of an RLC series circuit at half-power frequencies.

At half-power frequencies in an RLC series circuit, the total reactance is equal to resistance.

 . ., ,i e at L
C

R1
hω ω ω

ω

= − =

     
,At Z R L

C
R R R R1 2 2h

2
2

2 2 2
` ω ω ω

ω
= = + − = + = =c m

,Alternatively Z R L
C

L
C

L
C

L
C

L
C

1 1 1

2 1 2 1

2
2 2 2

2

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

= + − = − + −

= − = −

c c c
c c

m m m
m m

Q5.11 Write the expression for bandwidth of an RLC series circuit.

, ,/ /Bandwidth
L
R in Alternatively

Q
inrad s rad s

r

rβ β
ω

= =

,Bandwidth in
L

R Alternatively Bandwidth in
Q
f

Hz Hz
2 r

r

π

= =

Q5.12 How is resonant frequency related to half-power frequencies in an RLC series/parallel circuit?

Resonant frequency is given by the geometric mean of the two half-power frequencies.

 . .,i e or f f fr rh hl lω ω ω= =

Q5.13 Define selectivity.

Selectivity is defined as the ratio of bandwidth and resonant frequency.

 
,Selectivity Alternatively Selectivity

Q
1

r rω

β
= =

I

b

ww
l w

r
w

h

I
r

1

2

0 707I Ir r= .

Fig. Q5.7.

(AU Dec’15, 2 Marks)
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Q5.14 Write the characteristics of series resonance.

 At resonance, impedance is minimum and equal to resistance, therefore current is maximum.

 Below resonant frequency, the circuit behaves as a capacitive circuit and above resonant 

  frequency, the circuit behaves as an inductive circuit.

 At resonance, the magnitude of voltage across inductance and capacitance will be Q times 

  the supply voltage but they are in-phase opposition.

Q5.15 An RLC series circuit has R = 10 Ω and X
C
 = 62.833 Ω. Find the value of L for resonance at 50 Hz.

At resonance,    X
L
 = X

C
  ,    ∴   X

L
 = 62.833 Ω

, 2 , . 0.2Since X fL L
f

X
H

2 2 50
62 833Inductance,L

L

#
π

π π

= = = =

Q5.16 Determine the quality factor of an RLC series circuit with R = 5 Ω, L = 0.01 H  and  C = 100 µF.

, .Quality factor at resonance Q
R C

L1
5
1

100 10

0 01 2
6r

#

= = =
-

Q5.17 The impedance and quality factor of an RLC  series circuit at w = 10
7
rad/s are 100 + j0 Ω  and 100 

respectively. Find the values of R, L and C.

Since the impedance is resistive, the circuit will be in resonance. Therefore,  w
r
 = 10

7
 rad/s.

At   w = w
r
 ,   Z = R  ,    ∴   Resistance, R = 100 Ω

We know that, Q
R

L
r

rω
=  

1L
Q R

mH
10

100 100Inductance,
7

r

r
`

#

ω

= = =

 

,We know that
LC

1
rω =      ⇒      

LC

12

r
ω =    

1 10 10 10 10C
L

F F pF1

10 1 10

1Capacitance,
r
2 7 2 3

11 12
`

# #

# #
ω

= = = = =
-

- -

^ h   

Q5.18 An RLC series circuit with R = 10 Ω, X
L
 = 20 Ω  and X

C
 = 20 Ω is excited by a sinusoidal source of 

voltage 200 V. What will be the voltage across inductance ?

Since X
L
 = X

C
, the circuit will be in resonance. At resonance, voltage across inductance is Q

r
 times 

 the supply voltage.

, 2Quality factor at resonance Q
R
L

R
X

10
20

r
r Lω

= = = =  

 ∴  Voltage across inductance = Q
r
V = 2 × 200 = 400 V

Q5.19 An RLC series circuit excited by a 10 V sinusoidal source resonates at a frequency of 50 Hz. If the 

bandwidth is 5 Hz, what will be the voltage across the capacitor ?

, 10Quality factor at resonance Q
f

5
50

r
r r

β
ω

β
= = = =

 ∴  Voltage across capacitor = Q
r
V = 10 × 10 = 100 V

Q5.20 What is anti-resonance ?

In an RLC parallel circuit, the current is minimum at resonance, whereas in series resonance, the  

 current is maximum. Therefore, parallel resonance is called anti-resonance.
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Q5.21 Write the expression for resonant frequency for the RLC network shown in 

Fig. Q5.21. What happens when R
1
 = R

2
 = R

 
  and  L = CR

2
 ?

LC L CR

L CR

2

1Resonant frequency, f
2
2

1
2

r
π

=

−

−

When,  R
1
 = R

2
 = R and L = CR

2
 the circuit will resonate at all frequencies.

Q5.22 Find the resonant  frequency in Hz of an RLC circuit with L = 100 mH and C = 0.1 mF. 

 , f
LC2

1Resonant frequency r
π

=

                                        
.

1591.5Hz

2 100 10 0 1 10

1

3 6
# # #π

= =
- -

Q5.23  A coil of resistance 2.2 Ω and an inductance 0.01 H is connected in series with a capacitor across 

220 V mains. Find the value of capacitance such that maximum current flows in the circuit at a  

frequency of 190 Hz. Also find the maximum current.

 Given that,  R = 2.2 Ω    ;     L = 0.01 H    and   supply voltage, V = 220 V

 The current will be maximum only at resonance. Therefore, the resonance frequency is 190 Hz.

  , f
LC2

1Resonant frequency r
π

=

  
4 .

7.0167 10C
f L

F1

4 190 0 01

1
2 2 2 2

5

r

`

# #

#
π π

= = =
-

 
 =  70.167 × 10-6 F = 70.167 µF

Current at resonance, 
.

100I
R

V A
2 2

220
r
= = =

     (Maximum current)

Q5.24 Draw the frequency response of an RLC parallel circuit.

The variation of current with frequency is called frequency response, which  

 is shown in Fig. Q5.24.

Q5.25 Write the expressions for quality factor of a parallel RLC circuit.

,Quality factor at resonance Q
L
R

r
rω

=

, ; ;Alternatively Q CR Q R
L
C Qr r r r

rω
β
ω

= = =

, ,When Q
L

R
r#ω ω

ω

=

, ,When Q CRr$ω ω ω=

Q5.26 Write the expressions for bandwidth of an RLC parallel circuit.

, ,/ /Bandwidth
RC

in Alternatively
Q

inrad s rad s
1

r

rβ β
ω

= =

,Bandwidth in
RC

Alternatively Bandwidth in
Q
f

Hz Hz
2
1

r

r

π

= =

Fig. Q5.21.

R
1

R
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L

C

(AU Dec’14, 2 Marks)

I

I
r

w
r

w

Fig. Q5.24.
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Q5.27 Write the expression for half-power frequencies of an RLC parallel circuit.

off frequency, f−

RC RC LC
inHz

2
1 1

2
1 1Lower cut

2

l
π

= − + +c m; E

off frequency, f−

RC RC LC
inHz

2
1 1

2
1 1Higher cut

2

h
π

= + +c m; E

, ;Alternatively f
Q Q

f
Q Q2

1 1
4

1
2
1 1

4

1f f
r r
2 2

r
r

h r
r

l = - + + = + +; ;E E

Q5.28 Write the expression for admittance of an RLC parallel circuit at half-power frequencies.

At half-power frequencies of an RLC parallel circuit, the total susceptance is equal to conductance.

 
. ., ,i e at C

L
G1

hω ω ω

ω

= − =

   ,At Y G C
L

G G G G1 2 22
2

2 2 2
h` ω ω ω

ω
= = + − = + = =c m

,Alternatively Y G C
L

C
L

C
L

1 1 12
2 2 2

ω
ω

ω
ω

ω
ω

= + − = − + −c c cm m m

C
L

C
L

2
1

2
1

2

ω

ω

ω

ω

= − = −e eo o
Q5.29 Write the characteristics of parallel resonance.

 At resonance, admittance is minimum and equal to conductance, therefore, current is minimum.

 Below resonant frequency, the circuit behaves as an inductive circuit and above resonant 

  frequency, the circuit behaves as a capacitive circuit.

 At resonance, the magnitude of current through inductance and capacitance will be Q times the 

      current supplied by the source but they are in-phase opposition.

Q5.30 What is dynamic resistance? Write the expression for dynamic resistance of an RL circuit parallel 

 with C.

The resistance of an RLC parallel circuit at resonance is called dynamic resistance.

For an RL circuit parallel with C, the dynamic resistance is given by,

R
RC

L
dynamic =

Q5.31 In Fig. Q5.31, the source voltage and current are in-phase. Find the value of C.

Since the source voltage and current are in-phase, the circuit will be  

 in resonance. 

Given that, e(t) = sin2t 

The standard form of sinusoidal voltage is,

 e(t) = E
m
sinwt

On comparing the above two equations of e(t), we get,

 w
r
 = 2 rad/s

e(t)

+

E

Fig. Q5.31.

C

2�

1H

e(t) = sin 2tV

~
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. 8.30,For theRLC circuit shown inFig Q
LC L

CR1 1
2

rω = −

LC L

CR1
1

2
2

r
` ω = −c m   ⇒    
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R

LC

12

2

2

r
ω + =     ⇒     LC

L
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+

0.0625 62.5 10 62.5C

L
L

R
F F mF

1

1 2
1

2

1

16

1
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`
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#

ω

=
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Q5.32 For the RLC circuit shown in Fig. Q5.32, find the resonant frequency.

10Z
j

j j

j
j j

4 1 1

4 1 1

Impedance,
ω

ω ω

ω
ω ω

= +

+ +

+

c
c c

m
m m

At resonance, the imaginary part of impedance should be zero.  

 Therefore, the numerator of the imaginary part should be zero.

Therefore, at w = w
r
,

0j
j j

4 1 1
r

r r
ω

ω ω
+ =c m    ⇒    4 0j

j
1

r
r

ω
ω

+ =     ⇒    4j
j
1

r
r

ω

ω

=−

 j
4
12 2

r` ω = −     ⇒    
4

12

r
ω− = −    ⇒    

4

1
r

ω =     ⇒    0.5 /rad s
2

1
r

ω = =

Q5.33 An RLC parallel circuit with G = 10 M ,  B
L
 = 20 M and B

C
 = 20 M draws a current of 5 A when 

excited by a sinusoidal source. Determine the current through inductance.

Since B
L
 = B

C
, the circuit will be in resonance. At resonance, the current through inductance will be Q

r

 times the current drawn from the source.

 
, 2Quality factor at resonance Q

L
R

G
B

10
20

r
r

L
`

ω

= = = =

               2 5 10Current through Q I Ainductance r #= = =

Q5.34 What are coupled circuits?

 The coupled circuits refer to circuits involving elements with magnetic coupling. If the flux produced 

by an element of a circuit links other elements of the same circuit or a nearby circuit then the 

elements are said to have magnetic coupling.

Q5.35 What are coupled coils?

 When two or more coils are linked by magnetic flux, the coils are called coupled coils (or coupled 

coils are group of two or more coils linked by magnetic flux).

Q5.36 Define self-inductance.

 When permeability is constant, the self-inductance of a coil is defined as the ratio of flux linkage 

and current. (The flux linkage is the product of flux and number of turns.)

   L
N

i
Self inductance,`

φ
=

Q5.37 Define mutual inductance.

 When permeability is constant, the mutual inductance between two coupled coils is defined as 

the ratio of flux linkage in one coil due to common flux and current through another coil. (The 

flux linkage in one coil due to common flux is the product of the flux linking both the coils and the 

number of turns of the coil.)

(AU May’15&’17, 2 Marks)

(AU May’17, 2 Marks)
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inductance,alMutu M

N
or M

N

i i
1

2

21

1

2 12
`

φ φ
= =

              where, φ
12

 = φ
21

 = Common flux.

             N
1
, N

2
    = Number of turns in coil 1 and 2.

                          i
1
, i

2          
 = Currents in coil 1 and 2.

Q5.38 Define coefficient of coupling.

 In coupled coils, the coefficient of coupling is defined as the fraction of the total flux produced by 

one coil linking another coil.

   Coefficient of coupling k or k,
1

12

2

21
`

φ

φ

φ

φ
= =

    where,  φ
12

 = Flux produced by coil-1 linking coil-2.

     φ
21

 = Flux produced by coil-2 linking coil-1.

     φ
1 

  = Flux produced by coil-1.

     φ
2
  = Flux produced by coil-2.

Q5.39 Write the expression which relates self- and mutual inductance.

 Mutual inductance between two coils linked by magnetic flux is given by,

   inductance,tualMu M k L L1 2=

    where, L
1
 = Self-inductance of coil-1.

     L
2
 = Self-inductance of coil-2.

     k   = Coefficient of coupling.

Q5.40 What is dot convention? Why it is required?

 The sign or polarity of mutual induced emf depends on the winding sense (or coil orientation) 
and current through the coil. The winding sense is decided by the manufacturer and to inform the 
user about the winding sense, a dot is placed at one end/terminal of each coil. When current enters 
at the dotted end in one coil, the mutual induced emf in the other coil is positive at the dotted end. 
Hence, the dot convention is required to predict the sign of mutual induced emf.

Q5.41 State dot rule for coupled coils.

 The dot rule states that in coupled coils, current entering at the dotted terminal of one coil induces 

an emf in the second coil which is positive at the dotted terminal of the second coil.

 Conversely, current entering at the undotted terminal of one coil induces an emf in the second 

coil which is positive at the undotted terminal of the second coil.

Q5.42 Draw the electrical equivalent of the coupled coils 

shown in Figs. Q5.42.1 and Q5.42.2.

 The electrical equivalent of the coupled coils of 

Figs Q5.42.1 and Q5.42.2 is shown in Figs Q5.42.3 

and Q5.42.4, respectively.

M

Fig. Q5.42.1.

M

Fig. Q5.42.2.

I
1 L

1
L
2

I
2

I
1

L
1 L

2 I
2

M

Fig. Q5.42.3.

EM

Fig. Q5.42.4.

I
1

I
2

I
1 I

2

L + M
1

L M
1
E L M

2
E

L + M
2

(AU June’16 & Dec’15, 2 Marks)
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Leq

-2 H´ 2

4H 5H 6H

-2 H´ 3 -2 H´ 1

1H
5H4H

2H

6H

3H

I

Þ Þ

Q5.43 Write the expression for the equivalent inductance of two coupled coils connected in series.

  In series aiding, equivalent inductance, L
eq

 = L
1
 + L

2
 + 2M.

  In series opposing, equivalent reactance, L
eq

 = L
1
 + L

2
 − 2M.

Q5.44 Write the expression for the equivalent inductance of two coupled coils connected in parallel.

,In parallel aiding equivalent L
L L M
L L M

2
inductance,

2

eq
1 2

1 2
=

+ −

−

In parallel equivalent L
L L M
L L M

2
opposing, inductance,

2

eq
1 2

1 2
=

+ +

−

Q5.45 Determine the equivalent inductance of the circuit shown in Fig. Q5.45, if the coefficient  

   of coupling(k) between the two coils is 0.6.

Mutual inductance, 0.6 23.6296M k L L mH33 471 2 # #= = =

Equivalent inductance, L
eq

 = L
1
 + L

2
 + 2M

                                              
 
= 33 + 47 + 2 × 23.6296  = 127.2592 mH

Q5.46 Determine the equivalent inductance of the series-

connected inductances shown in Fig. Q5.46.

 The equivalent inductance of series-connected inductances 

can be determined as shown below :

 

 Equivalent inductance, L
eq

 = 4 + 5 + 6 − 2 × 1 − 2 × 3 − 2 × 2 = 3H

Q5.47 What is tuned coupled circuit?

 In a coupled circuit, when capacitors are added to the primary and secondary of coupled coils to 

resonate the coils to achieve maximum power transfer condition, the coupled circuit is called a 

tuned coupled circuit.

Q5.48 Why and where are tuned coupled circuits employed?

 Tuned coupled circuits are mainly used to transfer energy from a weak source to a load or employed 

for maximum power transfer from one circuit to another. This is possible only when both the coils 

work at resonance condition.

Q5.49 What is a single tuned circuit?

 In a coupled circuit, when a capacitor is added to the secondary coil to resonate the secondary, 

the coupled circuit is called a single tuned coupled circuit.

(AU Dec’14, 2 Marks)
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Q5.50 Draw the frequency response of a single tuned 

coupled circuit.

The frequency response of a single tuned  

 coupled circuit for various value of k is  

 shown in Fig. Q5.50.

Here, V0  is the output voltage. 

Q5.51 Define critical coefficient of coupling and critical mutual inductance.

 In tuned coupled circuits, the critical coefficient of coupling is defined as the value of coupling 

coefficient when the output voltage at resonance is maximum.

 In tuned coupled circuits, the optimum or critical mutual inductance is defined as the value of 

mutual inductance when the output voltage at resonance is maximum.

Q5.52 Write the expression for k
C
 and M

C
.

  
Critical coefficient of coupling k

L L

M
or

L L
R R

or
Q Q

1 1, C

1 2

C

r 1 2

1 2

1 2
ω

=

  inductance-tualCriticalmu M k L L or
R R

, C 1 2
r

1 2

ω

=

5.12    Exercises

I. Fill in the Blanks With Appropriate Words

1. The  ________  is the circuit condition at which the circuit behaves as a resistive circuit.

2. In a series RLC circuit, when w > w
r
, the total reactance is  ________  and when w < w

r
, the total reactance 

 is   ________ .

3. In an RLC series circuit,   ________  is maximum and  ________  is minimum at resonance.

4. When w < w
r
, the current  ________  and when w > w

r
, the current  ________  in an RLC series circuit.

5. In an RLC parallel circuit,  ________  and  ________  are minimum at resonance.

6. In a series RLC circuit, when w < w
r
, the energy stored in the inductor is  ________  than the energy 

 stored in the capacitor.

7. The  ________  is the ratio of energy stored and energy dissipated.

8. Resonant frequency is given by the  ________  of the two half-power frequencies.

9. The  ________  is the range of frequencies over which power is greater than or equal to 1/2 times the  

 maximum power.

10. The impedance of an RLC series circuit at half-power frequency is  ________ .

11. The admittance of an RLC parallel circuit at half-power frequency is  ________ .

12. When excited by a voltage source, a series RLC circuit magnifies  ________  and a parallel RLC circuit  

 magnifies  ________  at resonance.

13. At resonance in a series RLC circuit, the  ________  across inductance and capacitance is  ________   

 times supply voltage.

V
0

w

k = k
C

k > k
C

k < k
C

w
r

Fig. Q5.50 : |V | Vs for different values of k.0 w
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14. At resonance in a parallel RLC circuit, the  ________  in inductance and capacitance is  ________   

 times the current drawn from the source.

15. The  ________  is the ratio of bandwidth and resonant frequency.

16. In a series RLC circuit,  ________  across inductance will be maximum at a frequency  ________  than  

 resonant frequency.

17. The coils linked by magnetic flux are called  ________ .

18. The  ________  emf is the emf induced due to change in flux in the same coil.

19. The  ________  emf is the emf induced due to change in flux in a nearby coil.

20. When all the flux produced by one coil links another coil then the coils are said to be  ________ coupled.

21. In coupled coils, when the value of  ________  is very low, the coils are said to be  ________  coupled.

22. In coupled coils, the self-inductances of  two coils are 20 mH and 5 mH. The maximum possible value 

 of mutual inductance is  ________ .

23. The equivalent inductance of series aiding connection is  ________  than equivalent inductance of series  

 opposing connection.

24. The equivalent inductance of parallel opposing connection is  ________  than equivalent inductance of  

 parallel aiding connection.

25. In  ________  tuned coupled circuit, a capacitor is added in the secondary circuit.

26. In  ________  tuned coupled circuit, capacitors are added to both the primary and secondary.

27. In  ________  tuned circuit, the primary and secondary are tuned to different frequencies.

28. In tuned circuits  ________  is varied to maximise the output voltage.

29. At critical coupling, the output voltage is  ________ .

30. When M = M
C 

, the output  ________  is maximum.

31. The frequency response of  ________  tuned circuit exhibits  ________  when k > k
C
.

ANSWERS

 1. resonance 11. ( )G or B B2 2 C L-   21. k, loosely

 2. inductive, capacitive 12. voltage, current 22. 10 mH

 3. current, impedance 13. voltage, Q
r
 23. greater 

 4. leads, lags 14. current, Q
r
 24. lesser

 5. current, admittance 15. Selectivity 25. single

 6. less  16. voltage, greater  26. double

 7. quality factor 17. coupled coils 27. stagger

 8. geometric mean 18. self-induced 28.    coefficient of coupling

 9. bandwidth  19. mutual induced 29. maximum

 10. ( )R or X X2 2 L C-  20. tightly or closely 30. voltage

     31. double, double hump
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II. State Whether the Following Statements are True or False

1. At resonance, the total reactance of a circuit is zero.

2. In an RLC series circuit, the impedance is minimum at resonance but in an RLC parallel circuit, the 

 impedance is maximum at resonance.

3. In an RLC parallel circuit, the current leads when w < w
r
 and lags when w > w

r
.

4. At resonance, the current is in-phase opposition with voltage.

5. At resonance, the energy stored in the inductor and capacitor will be equal.

6. In a series RLC circuit, when w > w
r
, the inductor stores more energy than the capacitor.

7. The Q
r
 of an RLC series circuit will be high if the inductance is very large and the capacitance is low.

8. The Q
r
 of an RLC parallel circuit will be low if the capacitance is very large and the inductance is low.

9. The frequency response of an RLC circuit is symmetric with respect to resonant frequency.

10. In an RLC series circuit, at half-power frequencies the total reactance is equal to resistance.

11. In an RLC parallel circuit, at half-power frequencies the total susceptance is equal to conductance.

12. At resonance in a series RLC circuit, the voltages across inductance and capacitance are equal in  

 magnitude.

13. At resonance in a parallel RLC circuit, the currents through inductance and capacitance are equal in  

 magnitude.

14. In a series RLC circuit, the voltage across capacitance will be maximum at a frequency greater than 

  resonant frequency.

15. Selectivity is directly proportional to quality factor.

16. In magnetically coupled elements, power transfer occurs through flux.

17. In conductively coupled elements, power transfer occurs through flow of current.

18. Self-induced emf is proportional to the rate of change of current in a nearby coil.

19. Mutual induced emf is proportional to the rate of change of current in the same coil.

20. Between two coils with inductances L
1
 and L

2
, the maximum possible value of mutual inductance is .L L1 2

21. In two coils placed nearby, if the flux produced by one does not link the other then they are said to be  

 magnetically isolated.

22. In coupled coils, the sign of self- and mutual induced emf will be the same if the fluxes are opposing.

23. In coupled coils, current entering at the dotted end in a coil will induce an emf in another coil which  

 is positive at undotted end.

24. In coupled coils, when current enters or leaves at the dotted ends in both the coils, the sign of self- 

 and mutual induced emf are the same.

25. In coupled coils, when current enters at the dotted end in one coil and leaves at the dotted end in another  

 coil, sign of self and mutual induced emf are opposite.

26. Tuned circuits work at resonance condition.

27. In double tuned circuits, the primary and secondary are tuned to different frequencies.

28. In tuned circuits, k is varied to maximise output voltage.

29. In single tuned circuit, the output voltage is maximum at a frequency lesser than resonant frequency.

30. The frequency response of single tuned circuit exhibit double hump.
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ANSWERS

 1. True  7. True 13. True 19. False 25. True 

 2. True  8.  False 14.  False 20. True  26. True

 3. False  9.  False 15.  False 21. True  27. False

 4.  False 10.  True 16. True 22. False 28. True

 5.  True 11.  True 17. True 23. False 29. True

 6.  True 12.  True 18. False 24. True 30. False

III.  Choose the Right Answer for the Following Questions

 1. A coil with inductance 1 mH and resistance 10 Ω is connected in series with a condenser and 

  excited by a sinusoidal source of frequency 10,000 rad/s. What is the value of capacitance of  

  the condenser for resonance?

  a) 0.1 µF b) 1 µF c) 10 µF d) 100 µF

 2. An RLC series circuit consists of R = 16 Ω, L = 13 mH and C = 41 mF. The resonance frequency is,

  a) 207 Hz b) 218 Hz c) 436 Hz d) 1370 Hz

 3. An RLC series circuit with R = 0.4 Ω, L = 0.25 mH and C = 40 mF is excited by a sinusoidal source 

  of voltage 6 V. The value of current at resonance and quality factor respectively are,

  a) 15 A, 6.25 b) 6.25 A, 15 c) 1.5 A, 2.5 d) 5 A, 0.625

 4. An RLC series circuit has a Q-factor of 5 and resonates at a frequency of 1000 Hz. The cut-

  off frequencies are,

  a) 965 Hz, 1085 Hz b) 925 Hz, 1082 Hz c) 950 Hz, 1054 Hz d) 905 Hz, 1105 Hz

 5. The cut-off frequencies of an RLC series circuit are 1810 Hz and 2210 Hz. The resonance 

  frequency is,

  a) 200 Hz b) 400 Hz c) 2000 Hz d) 2010 Hz

 6. The current through an RLC series circuit at resonance is 5 A when excited by a 200 V 

  sinusoidal source. The total reactance at half-power frequencies is, 

  a) 20 Ω b) 40 Ω c) 60 Ω d) 80 Ω

 7. An RLC circuit has a Q-factor of 4 at resonance. The selectivity is,

  a) 0.25 b) 2 c) 4 d) 8

 8. An RLC series circuit with R = 5 Ω, L = 2 mH and C = 4 mF is excited by a 120 V sinusoidal 

 source. The voltage across inductance at resonance is,

  a) 432 V b) 537 V c) 657 V d) 777 V
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 9. An RLC parallel circuit consists of R = 5 Ω, L = 0.9mH and C = 3300 mF. The resonance angular 

  frequency and dynamic resistance respectively are,

  a) 580 rad/s, 5 Ω b) 290 rad/s, 5 Ω c) 92 rad/s, 5 Ω d) 580 rad/s, 0.2 Ω

 10. A coil with 95 mH inductance and 0.2 Ω resistance is connected in parallel with a condensor to 

  make the power factor unity when excited from a 115 V, 60 Hz ac supply. What is the value of 

  the capacitance of the condensor?

  a) 96 mF b) 37 mF c) 74 mF d) 1276 mF

 11. For the RLC parallel circuit shown in Fig. 11, the expression for 

  angular frequency of resonance is, 

  
) )a

LC L CR

L CR
b

LC L CR

L CR1 1

2
2
1
2

2
2
1
2

-

-

-

-

  

) )c
LC L CR

L CR
d

LC L CR

L CR1 1

2
2
1
2

1
2
2
2

-

-

-

-f p
 12. For the RLC parallel circuit shown in Fig. 12, the condition for 

  resonance at all frequency is,

  
) )a R

C
L b R

L
C= =

  
) )c R

L
C d R

C
L= =

 13. For the RLC circuit shown in Fig. 13, the expression for resonance 

  angular frequency and dynamic resistance respectively are,

  
) ; ) 1 ;a

LC L
CR

R C
L b

LC L
CR

R C
L1 1 11

2

1

1
2

1
- -

  
) ; ) 1 ;c

LC CR

L
L

R C
d

LC CR

L
L

R C1 1 1

1
2

1

1
2

1- -

 14. For the RLC circuit shown in Fig. 14, the expression for resonant  

  angular frequency and dynamic resistance respectively are,

  
) ; ) ;a

LC L CR

L
R C
L b

LC L CR

L
R C
L1 1

2
2

2 2
2

2- -

  
) ; ) ;c

LC L
CR

L
R C

d
LC L

CR
L

R C1 1 1 12
2

2 2
2

2- -

 15. An RLC parallel circuit with R = 8 Ω, L = 1 mH and C = 250 mF is excited by a sinusoidal source 

  of 12 V. The value of current at resonance and quality factor respectively are,

  a) 4 A, 1 b) 20 A, 2 c) 1.5 A, 4 d) 0.67 A, 8

Fig. 11.
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 16. An RLC parallel circuit has a Q-factor of 3 and resonates at a frequency of 200 Hz. The cut-off 

  frequencies are,

  a) 169 Hz, 236 Hz b) 169 Hz, 231 Hz c) 164 Hz, 236 Hz d) 164 Hz, 231 Hz

 17. The  cut-off    frequencies  of  a n RLC  parallel  circuit are  543 Hz   and   663 Hz. The   resonance   frequency    is,

  a) 1206 Hz b) 663 Hz c) 603 Hz d) 600 Hz

 18. The current through an RLC parallel circuit at resonance is 12 A when excited by 120 V sinusoidal 

  source. The total susceptance at half-power frequencies is,

  ) 10 ) 0.1 ) 20 ) 0.2a b c dM M M M

 19. An RLC parallel circuit with R = 20 Ω, L = 2 mH and C = 20 mF is excited by a 60 A sinusoidal 

  current source. The current through inductance at resonance is,

  a) 30 A b) 60 A c) 120 A d) 240 A

 20. For the circuit shown in Fig. 20, the angular frequency 

  of resonance and dynamic resistance respectively are,

  a) 3500 rad/s ,    0.02 Ω b)   3200 rad/s ,   50 Ω

  c) 3391 rad/s ,    50 Ω  d)   4375 rad/s ,   0.02 Ω

 21. The self-inductance of a coil with 500 turns carrying a current of 2 A and developing a flux of 

  0.25 × 10–2
 Wb is,

  a) 2.5 H b) 0.625 H  c) 6.25 mH  d) 25 mH

 22. The coefficient of coupling k between two coils with self-inductances L
1
 and L

2
 and with mutual 

  inductance M between them is given by,

  )a k
M
L L1 2=  )b k

M
L L1 2

=
+

 )c k
L L

M

1 2

=

+

 )d k
L L

M

1 2

=

 23. The mutual inductance between two coils having self-inductances of 40 µH and 90 µH 

  when 40% of flux produced by coils link each other is given by,

  a) 24 µH b) 52 µH  c) 150 µH  d) 325 µH 

 24. The mutual inductance between two coils with inductances 0.2 H and 0.8 H when all the flux 

  produced by coils link each other is,

  a) 1 H b) 0.6 H c) 0.4 H d) 0.3 H

 25. The equivalent inductance of two series-connected coils with self-inductances L
1
 and L

2
 and 

  mutual inductance M is given by,

  )a L L M1 2 !  )b L L M22 !+  )c M L L1 2!_ i ) 2d M L L1 2!_ i

Fig. 20.
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 26. The equivalent inductance of two parallel-connected coils with self-inductances L
1
 and L

2
 

  and mutual inductance M is given by, 

  )a
L L M
L L M2

1 2

1 2 !

+
+

 )b
L L M

L L M2
2

1 2

1 2 !

+

+
 )c

L L M
L L M2

1 2

1 2

!+
+

 )d
L L M
L L M

2

2

1 2

1 2

!+

−

 27. The two possible equivalent inductances of two series-connected coils with self-inductances  

  0.07 H and 0.09 H and mutual inductance 0.01 H are,

  a) 0.17 H, 0.15 H 

  b) 0.18 H, 0.14 H 

  c) 0.18 H, 0.04 H 

  d) 0.0032 H, 0.0004 H

 28. The two possible equivalent inductances of two parallel-connected coils with self-inductances 

  0.06 H and 0.03 H and mutual inductance 0.02 H are,

  a) 0.011 H, 0.028 H 

  b) 0.022 H, 0.014 H 

  c) 0.017 H, 0.044 H 

  d) 0.034 H, 0.022 H 

 29. Which one of the given coupled coils represents a natural transformer?

  a)    b)  c)  d)

  

 30. In the given coupled coils with mutual induced emf, identify the one that does not satisfy dot rule?

  a)    b)  c)  d)

  

 31. In the coupled coil shown in Fig. 31, the mutual induced emf in coils 1 and 2 respectively are,

  ) ,a j I j I2 32 1  

  ) ,b j I j I6 72 1  

  ) , 7c j I j I13 1 2  

  ) ,d j I j I2 22 1

i
1 i

2
i
1 i

2
i
1

i
2 i

1 i
2

M

+

_ +

_

I1 I2

jX Im 2 jX Im 1

M

+

_

+

_

I1 I2

jX Im 1jX Im 2

M

+

_

+

_

jX Im 2 jX Im 1

I1 I2

M

+

_

+

_

jX Im 2 jX Im 1

I1 I2

Fig. 31.
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 32. The equivalent inductance of the series-connected coupled coils shown in Fig. 32 is,

  a) 1.5 H 

  b) 2.7 H 

  c) 3.5 H 

  d) 4.7 H  

 33. The equivalent inductance of the parallel-connected coupled coils shown in Fig. 33 is,

  a) 0.5 H 

  b) 0.25 H 

  c) 1.33 H 

  d) 0.75 H  

 34. In tuned coupled circuit, the critical value of mutual inductance M
C
 is given by,

  )a
R R

r

1 2

w
 )b

R R

r

1 2

w
 )c

R R
r

1 2

w
 )d

R R

r

1 2

w
 

 

 35. In tuned coupled circuit, the critical coefficient of coupling k
C
 is given by,

  )a
Q Q

1

1 2

 )b
Q

Q

2

1  )c
Q

Q

1

2  )d
Q Q
1

1 2

ANSWERS

 1. c  8. b 15. c 22. d  29. a

 2.  b  9. a 16. a 23.  a 30. c 

 3.  a  10. c 17. d 24. c 31. d  

 4. d 11. b 18. b 25. b 32. c 

 5. c 12. d 19. c  26. d 33. d

 6. b  13. a  20. c 27. b 34. b  

 7. a  14. b  21. b 28. a 35. a  

IV. Unsolved Problems

E5.1 An RLC series circuit consists of R = 50 Ω, L = 0.16 H and C = 4 µF. Calculate the resonant 

frequency, quality factor, bandwidth and half-power frequencies.

E5.2 An RLC series circuit is to be designed to produce a magnification of 5 at resonance. At higher cut-

off frequency 1105 rad/s the impedance of the circuit is 21.2132 Ω. Find the value of R, L and C.

E5.3 An RC series circuit with R = 50 Ω and C = 20 µF is connected parallel to an inductance. The 

parallel combination is excited by a source of 10 V, 1 kHz. Determine the value of inductance if no 

reactive current is taken from the supply.

Fig. 33.

2H

4H 4H 4H 4H

2H

Fig. 32.
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0.2H

0.3H
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0
.6
H
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E5.4 For the RLC circuit shown in Fig. E5.4, determine the frequency at which the circuit 

resonates. Also find the quality factor, voltage across inductance and capacitance at resonance.

E5.5 For the RLC circuit shown in Fig. E5.5, determine the impedance a) at resonance frequency,  

b) at a frequency 50 Hz below resonance frequency, c) at a frequency 50 Hz above resonance 

frequency. 

E5.6 Determine the value of R
L
 for resonance in the network shown in Fig. E5.6. 

Also calculate the dynamic resistance.

E5.7 The parameters of an RLC parallel  circuit excited by a current source are, 

R = 20 Ω, L = 5 mH and C = 10 µF. Calculate the resonant frequency, quality 

factor, bandwidth and cut-off frequencies.

E5.8 Determine the value of R
L
 for resonance in the network shown in Fig. E5.8. 

E5.9 For the RLC network shown in Fig. E5.9, determine the two possible values of inductance for the 

network to resonate at 5000 rad/s.

E5.10 A coil of inductance 25 mH and resistance 20 Ω is connected parallel to a capacitor, and this parallel 

combination is connected to a 200 V, 40 Hz supply. Determine the value of  capacitance if no reactive 

current is taken from the supply.

E5.11 Two coupled coils have a coefficient of coupling of 0.65. If the self-inductances of the coils are  

0.02 H and 0.08 H, calculate the equivalent inductance if the two coils are connected in a) series aiding,

b) series opposing, c) parallel aiding and d) parallel opposing.

E5.12 Two coupled coils connected in series have an equivalent inductance of 0.725 H when connected 

in aiding and an equivalent inductance of 0.425 H when connected in opposing. Determine the 

self- and mutual inductances by taking k = 0.42. 

E5.13 Two coils A and B of 1000 turns and 1600 turns respectively lie in parallel plane, so that 55% of 

flux produced by coil-A links with coil-B. A current of 2 A in coil-A produce a flux of 0.3 × 10
-4

 

Wb while the same current in coil-B produce a flux of 0.6 × 10
-4

 Wb. Determine the coefficient of 

coupling between the coils.

j8�

Fig. E5.6.

5�

E �j4

RL

j10�

Fig. E5.8.

12�

E �j50

RL

L

Fig. E5.9.

5�
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1�

+ E

10�

Fig. E5.4.

0.1H 25mF

20V

5�

Fig. E5.5.

0.2H 10mF

+ E

V

~ ~



5. 119Chapter 5 - Resonance and Coupled Circuits

E5.14 Determine the effective inductance of the series-connected coupled coils shown in Fig. E5.14.1,

Fig. E5.14.2 and Fig. E5.14.3.

E5.15 Determine the equivalent inductance of the series-parallel-connected coupled coils shown in  

Fig. E5.15.1, Fig. E5.15.2 and Fig. E5.15.3.

E5.16 Determine the equivalent impedance of the network with coupled coils shown in Fig. E5.16.1,  

Fig. E5.16.2 and Fig. E5.16.3.

E5.17 A transformer with a primary having R
p
 = 3 Ω and L

p
 = 0.2 H and a secondary having R

s
 = 12 Ω 

and L
s
 = 0.4 H is connected between source voltage of 220 V at 50 Hz and a load of 600 Ω. Determine 

the load current if k = 0.5.

E5.18 Determine the mesh currents in the coupled circuit shown in Fig. E5.18.

0.4H

0.1H

0.3H

0.7H 0.8H

0.5H

0.2H

Fig. E5.15.1.

3H

4H

0.5H

1H

2H

0
.7
5
H

2.5H

Fig. E5.15.2.
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1H 1H
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4H

4H

2H

Fig. E5.15.3.
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E5.19 A 10 Ω load consumes 250 W power when connected to a source of 220 V, 50 Hz through a transformer 

with primary impedance of 2 + j10 Ω and a secondary impedance of 4 + j20 Ω. Determine the 

mutual-inductance and coefficient of coupling of the transformer.

E5.20 In the coupled circuit shown in Fig. E5.20, determine the active and reactive power delivered to the  

load Z L . 

E5.21 In the circuit shown in Fig. E5.21, determine the voltage across j6 Ω reactance.

E5.22 Determine the mesh currents I 1  and I 2  in the circuit shown in Fig. E5.22.

E5.23 In the single tuned coupled circuit of Fig. E5.23, determine the value of C for resonance at 1200 

rad/s. Calculate the critical value of mutual inductance and coefficient of coupling. Also determine 

the output voltage V 0,C  at critical coupling.

- Wj4

A

B

2Wj5W2W

+

-

~

2
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V
Ð
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E5.24 The double tuned circuit shown in Fig. E5.24 is tuned to a 

frequency of 750 rad/s. Calculate the self-inductance of the 

two coils, critical value of mutual inductance and coefficient of 

coupling. Also calculate the output voltage at critical coupling if 

E 10 0 V.
o

= +  

E5.25 A double tuned circuit is tuned to a frequency of 2000 rad/s. 

What should be the supply voltage at critical coupling to 

get an output voltage of 12 V.  The circuit parameters are : Q
1
 = 1.5, R

1
 = 4 Ω , Q

2
 = 2.5 and 

R
2
 = 60 Ω. Also determine M

C
 and k

C
.

ANSWERS

E5.1 w
r
  = 1250 rad/s  ; f

r
 = 198.9437 Hz  ;    Q

r
 = 4 ;   β = 312.5 rad/s     

  Bandwidth in Hz = 49.7359 Hz  ;  f
h
 = 225.3599 Hz  ;    f

l
 = 175.6239 Hz

E5.2 R = 15 Ω   ;     L = 75 mH   ; C = 13.334 µF

E5.3 L = 51.3 mH

E5.4 w
r
 = 632.4555 rad/s   ;    f

r
 = 100.6584 Hz  ;    Q

r
 = 6.3246   

  126.4911 90V VoLr +=  ; 126.4911 90V VoCr += −

E5.5 5Zr Ω=  ; 175.9686 88.4Z
o

1 + Ω= −  ;  106.453 87.3Z
o

2 + Ω=

E5.6 R
L
 = 4.2388 Ω   ;     R

dynamic
 = 5.7566 Ω

E5.7 f
r
 = 711.7626 Hz   ;     Q

r
 = 0.8944   ;    β = 5000 rad/s 

  Bandwidth in Hz = 795.7747 Hz ;      f
h
 = 1213.3319 Hz  ;    f

l
 = 417.5329 Hz

E5.8 R
L
 = 20.7147 Ω        

E5.9 L = 2.4839 mH   or  16.1 µH          

E5.10     C = 56.898 µF

E5.11 i)  0.152 H                        ii)  0.048 H                     iii)  0.01925 H               iv)  6.0789 × 10
–3

 H

E5.12 M = 0.075 H                     ;     L
1
 = 0.5128 H          ;    L

2
 = 0.0622 H

E5.13 k = 0.4919

70�

+

E

~

20�

M

Fig. E5.24.
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E
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L
2
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E5.14 i)   L
eq

 = 5 H                    ii)    L
eq

 = 2.94 H            iii)    L
eq

 = 26.6 H

E5.15 i)   L
eq

 = 0.5667 H           ii)    L
eq

 = 6.8125 H        iii)    L
eq

 = 5.3333 H

E5.16 i)   1.8884 + j1.6813 Ω    ii)    4 + j0.5 Ω                iii)    10.7692 + j3.8462 Ω

E5.17 IL= 0.2503∠−6
o

 A  

E5.18 I1  = 12.7852∠−74.3
o

 A    ;    I2  = 2.0672∠119.7
o

 A

E5.19 X
m

 = 5.2458 Ω         ;    M = 0.0167 H            ;    k = 0.3709 

E5.20 P = 47.4022 W          ;    Q = 71.1033 VAR

E5.21 VAB  = 9.2183∠39.3
o
 V

E5.22 I1  = 15.2387∠8
o

 A            ; I2  = 5.3332∠−26.4
o

 A 

E5.23 C = 3.4722 µF           ; M
C
 = 0.0272 H      ;    k

C
 = 0.272   ;    V0,C  = 18.3942∠30

o
 V

E5.24 L
1
 = 0.1778 H           ; L

2
 = 0.0539 H           ;    M

C
 = 0.0499 H    ;   

  k
C
 = 0.5097         ; V0,C  = 5.3992∠0

o
 V

E5.25 E = 2.4762 V          ; M
C
 = 7.746 mH         ;    k

C
 = 0.5164



USING CALCULATOR IN COMPLEX MODE

1.  Addition/Subtraction/Multiplication/Division of Complex Numbers ,Let A j4 21 = − +

         A j3 52 = +

 Choose complex mode in claculator and enter the complex numbers as shown below:

 For addition (–4 + 2 i) + (3 + 5 i)

 For subtraction  (–4 + 2 i) – (3 + 5 i)

 For multiplication (–4 + 2 i) × (3 + 5 i)

 For division (–4 + 2 i) ÷ (3 + 5 i) 

 To perform the operation press  = .

 To view the real and imaginary part of  the result press .ReSHIFT Im*

2.  Polar to Rectangular Conversion ,Let A 5 30
o

1 += −         

 Method-1 : Choose complex mode in calculator and enter the complex number as shown below:

   ( ) SHIFT a bi5 30+ +−

  To perform the conversion press  = .

  To view the real and imaginary part press .ReSHIFT Im*

 Method-2 : Choose complex mode in calculator and enter the complex number as shown below:

   5 × cos 30 + 5i × sin 30   or    5 cos 30 + 5i sin 30

  To perform the conversion press  = .

  To view the real and imaginary part press .ReSHIFT Im*

 Method-3 : Choose normal computation mode in calculator and enter the complex number  

  as shown below:

   ( , )ReSHIFT c 5 30-

  To perform the conversion press  = .

  To view the real part press .ALPHA E

  To view the imaginary part press .ALPHA F

Appendix-1
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3.  Rectangular to Polar Conversion , 5Let A j21 = +         

 Method-1 : Choose complex mode in calculator and enter the complex number as shown below:

   ( ) SHIFT ri2 5 +θ+

  To perform the conversion press  = .

  To view the absolute value and argument press .ReSHIFT Im*

 Method-2 : Choose complex mode in calculator.

  i) To calculate the absolute value enter the complex number as shown below:

   ( )SHIFT Abs i2 5+

  To view the absolute value press  =  .

  ii) To calculate the argument enter the complex number as shown below:

   ( )argSHIFT i2 5+

  To view the argument press  =  .

 Method-3 : Choose normal computation mode in calculator and enter the complex number  

  as shown below:

   (2, )SHIFT Pol 5

  To perform the conversion press  = .

  To view the absolute value press .ALPHA E

  To view the argument press .ALPHA F

 Note : The calculator treats the real and imaginary part as separate numbers, hence enclose the real 

 and imaginary part of  a complex number by parenthesis.



Appendix                                                   A. 3

IMPORTANT MATHEMATICAL FORMULAE

Trigonometric Identities              ,tan
cos

sin
cot

tan

1
θ

θ

θ
θ

θ
= =          ( 90 )cos sin! "θ θ=

%  ,sec
cos

cosec
sin

1 1
θ

θ
θ

θ
= =          ( 90 )sin cos! !θ θ=

%              
( 90 )tan cot!θ θ= −

%
      1, 1sin cos tan sec

2 2 2 2
θ θ θ θ+ = + =           1 cot cosec

2 2
θ θ+ =           ( 180 )cos cos!θ θ= −

%      
( )sin sin cos cos sinA B A B A B! !=

        
( 180 )sin sin!θ θ=−

%          ( )cos cos cos sin sinA B A B A B! "=         ( 180 )tan tan!θ θ=
%           

2 ( ) ( )sin sin cos cosA B A B A B= − − +

        
2 2sin sin cosθ θ θ=

         
2 ( ) ( )sin cos sin sinA B A B A B= + + −

        
2cos cos sin

2 2
θ θ θ= −

         
2 ( ) ( )cos cos cos cosA B A B A B= + + −

        
cos

cos

2

1 22
θ

θ
=

+
                      

2sin sin sin cosA B
A B A B

2 2
+ =

+ −
         

sin
cos

2

1 22
θ

θ
=

−
          

2sin sin cos sinA B
A B A B

2 2
− =

+ −
        

2tan
tan

tan

1

2
2

θ
θ

θ
=

−

          
2cos cos cos cosA B

A B A B

2 2
+ =

+ −
       

2cos cos sin sinA B
A B A B

2 2
− = −

+ −        
cos sine jj

!θ θ=
! i                      

Complex Variables

A complex number, Z  may be represented as,

( )cos sinZ x jy r re r jj
+θ θ θ= + = = = +

i

where,  x  = Re Z^ h = r cosθ;         y  = Im Z^ h =  r sinθ

                             ;r Z x y2 2
= = +       tan

x

y1
θ =

-

                             
, ; 1j

j
j j1 1 2

= − =− =−

               

,sin cos
j

e e e e
2 2

j j j j

θ θ=
−

=
+

i i i i- -
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The conjugate of  the complex number, Z x jy= + , may be represented as,

( )cos sinZ x jy r re r jj
+ θ θ θ= − = − = = −

) i-

The following relations hold good for a complex number,  Z x jy= + .

Z x jy re r e r
2

j j
2 +

θ
= + = = =

i
i

( ) ,Z x jy r e r n where n is an integer
n n n jn n

+ θ= + = =
i

( ) , 0,1,2, ........ 1Z x jy r e r
n n

k for k n2/ / / / /n n n j n n1 1 1 1
+

θ π
= + = = + = −

i a k
( ) ( 2 ) ,n Z n re n r n e n r j k where k is an integer.j j

, , , , , θ π= = + = + +
i i

' : cos sinDemovier s theorem e e n j nj n jn
θ θ= = +

i i^ h

Let, Z1  
and Z2  be two complex numbers defined as,  

Z x jy r r e j
1 1 1 1 11

1
+θ= + = =

i

Z x jy r r e j
2 2 2 1 2 2

2
+θ= + = =

i

Now, Z Z1 2=  
 only if  x

1
= x

2
   and   y

1
= y

2
.

( ) ( )Z Z x x j y y1 2 1 2 1 2! != + +

( ) ( ) ( )Z Z x x y y j x y x y or Z Z r r e r r( )j
1 1 2 1 2 1 2 2 1 1 2 1 2 1 2 1 22

1 2
+ θ θ= − + + = = +

i i+

( )

( )

( )

( )

Z

Z
x jy

x jy

x jy

x jy

x y

x x y y
j

x y

x y x y

2

1

2 2

1 1

2 2

2 2

2
2

2
2

1 2 1 2

2 2
2

2 1 1 2

2

#=
+

+

−

−
=

+

+
+

−

+

( )or
Z

Z
r
r e

r
r( )j

2

1

2

1

2

1
1 2

1 2
+ θ θ= = −

i i-

Derivatives and Integrals

Let,  U = U(x),   V = V(x),    and    a = constant.

dx

d
aU a

dx

dU
=^ h

dx

d
UV U

dX

dV
V
dx

dU
= +^ h

dx

d

V

U

V

V
dx

dU
U
dx

dV

2
=

−

9 C

a dx ax c= +#      

UV U V V dU or U dV U V V dU= − = −; E# ### ##
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LAPLACE  TRANSFORM

The Laplace transform is used to transform a time domain function to complex frequency 

domain called s-domain.

In order to transform a time domain function f(t) to s-domain multiply the function 

by e-st and then integrate from 0 to ∞. The transformed function is represented as F(s). Here 

s = s + jw, and it is called complex frequency.  This transformation was first proposed by Laplace 

(in the year 1780) and later adopted for circuit analysis for solving differential equations.  

Hence this transformation is called Laplace transform and the transformation is denoted by 

the script letter L.

i.e.,  Symbolically the  Laplace transform of  f(t) is denoted as,

   F(s) = L [f(t)]

 Mathematically the Laplace transform of  f(t) is defined as,

  ( ) ( )F s f t e dt

t

t

0

st
=

3

=

=

-#

Definition of Laplace Transform

Let  f(t) be a function of  t defined for all positive values of  t, now the Laplace transform 

of  f(t) denoted by  L[f(t)]  or  F(s) is defined as,

       L{f(t)} = F(s) =  ( )f t e dt

t

t

0

st

3

=

=

-#

Definition of Inverse Laplace Transform

The s-domain function can be transformed to time domain by inverse Laplace transform.

 The inverse Laplace transform of  F(s) is defined as,

   L-1 [F(s)] = f(t) =  ( )
j

F s e ds
2

1

s j

s j

st

π
v ~

v ~

= -

= +

#

Here the path of  integration is a straight line parallel to the jw-axis, such that all the 

poles of  F(s) lie to the left of  this line.
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Table - A3.1 :  Laplace Transform Pairs

Sl.No. f(t) F(s)

 1. Unit impulse, δ(t) 1

 2. Unit step, u(t) 1/s

 3.  t 1/s2 

 4. 
(n 1)!
t n 1,2,3 ...
n 1

-
=

-

^ h  1/sn 

 5. e −at 
s a

1

+
 

 6. tn    (n = 1, 2, 3 ... ) !

s

n
n 1+

 

 7. t e −at 

( )s a

1
2

+

 

 8. 
( ) !

( , , ...)
n

t e n
1

1 1 2 3n at1

−

=

- -  
( )s a

1
n

+

  

 9. tn e −at
      

(n = 1, 2, 3 ... ) 
( )

!

s a

n
n 1

+
+

   

 

 10.  sin wt  
s2 2

ω

ω

+
 

 11. cos wt s

s
2 2

ω+
 

 12.  sinh wt s2 2
ω

ω

+
 

 13. cosh wt s

s
2 2

ω−
  

 14. e −at sin wt 
s a

2 2
ω

ω

+ +^ h   

 15. e −at cos wt 
( )s a

s a
2 2

ω+ +

+
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Table - A3.2 :  Properties of Laplace Transform

Note : L{f(t)} = F(s);   L{f
1
(t)} = F

1
(s);  L{f

2
(t)} = F

2
(s)

Property Time domain signal s-domain signal

Amplitude scaling A f(t) A F(s)

Linearity a
1
f

1
(t) ± a

2 
f

2
(t) a

1 
F

1
(s) ± a

2
 F

2
(s)

Time differentiation ( )
dt

d
f t  s F(s) − f (0) 

 

, , .....

( )

where n

dt

d
f t

1 2 3

n

n

=

 ( )
( )

s F s s
dt

d f t

K

n

1

n n K

K 1

K

t

1

0

-
=

-

-

-

=

^ h

/  

Time integration ( )f t dt#  
( )

( )

s

F s

s

f t dt
t 0

+
=

; E#

 

, , .....

..... ( ) ( )

where n

f t dt

1 2 3

n

=

##  
( )

..... ( ) ( )
s

F s

s
f t dt

1

K

n

t
1

0
n n K

K

1
+

=
=

- +
; E/ ##

Frequency shifting ( )e f t
at!  ( )F s a"

Time shifting ( )f t ! α  ( )e F s
s!a

Frequency  ( )t f t  
( )

ds

dF s
-

differentiation 

, , .....

( )

where n

t f t

1 2 3

n

=

 

( )
ds

d
F s1

n

n

n

-^ h

Frequency integration  ( )
t
f t

1
 ( )F s ds

s

3

#

Time scaling f(at)                                   
a

F
a

s1 a k

Periodicity f(t + nT) ( )
e

f t e dt
1

1
T

0

sT

sT

- -

-#

Initial value theorem ( ) (0)Lt f t f
t 0

=
"

 ( )Lt s F s
s"3

Final value theorem ( ) ( )Lt f t f
t

3=
"3

 ( )Lt s F s
s 0"
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CRAMER’S RULE

I.  Cramer’s Rule for Mesh Basis Equation

The mesh basis matrix equation for resistive circuit is,

  

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

I

I

I

I

E

E
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Em m m

m

m

m

mm m mm
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21

31

1

12

22

32

2

13

23

33

3

1

2

3

1

2

3
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22

33

h h h

g

g

g

h

g

h h h

=

R

T

S
S
S
S
S
S

R

T

S
S
S
S
S
S

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

V

X

W
W
W
W
W
W

V

X

W
W
W
W
W
W

The kth mesh current I
k
 by Cramer’s rule is,

  
I E

1

j

m

1

k jk jj
∆

∆=

=

/

     where,  m  =  Number of  meshes in the circuit. 

 ∆
jk 

= Cofactor of  R
jk

.

 E
jj
 = Sum of  voltage sources in mesh-j.

 ∆ = Determinant of  resistance matrix.

For circuit with three meshes, the mesh currents by Cramer’s rule are,

 
I E E E11 22 331

11 21 31

∆

∆

∆

∆

∆

∆
= + +

 
I E E E11 22 332

12 22 32

∆

∆

∆

∆

∆

∆
= + +

 
I E E E11 22 333

13 23 33

∆

∆

∆

∆

∆

∆
= + +

The mesh currents for a circuit with three meshes using short-cut procedure for Cramer’s rule are, I1
1

∆

∆
= I2

2

∆

∆
=

 I3
3

∆

∆
=             

, ; ; ;where

R

R

R

R

R

R

R

R

R

E

E

E

R

R

R

R

R

R

R

R

R

E

E

E

R

R

R

R

R

R

R

R

R

E

E

E

13 13 11

21

31

13

23

333

23 1

3

23 2

11

22

11

21

12

22

32 33

11

22

3

12

22

32 33

11

22

33

3

11

21

31

12

22

32 331

∆ ∆ ∆ ∆= = = =
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II.  Cramer’s Rule for Node Basis Equation

The node basis matrix equation for resistive circuit is,

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

V

V

V

V

I

I

I

I

22

32

n2

11

21

31

n1

12 13

23

33

n3

1n

2n

3n

nn

1

2

3

n

11

22

33

nn

h h h

g

g

g

g

h h h

=

R

T

S
S
S
S
S
S

R

T

S
S
S
S
S
S

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

V

X

W
W
W
W
W
W

V

X

W
W
W
W
W
W

The kth node voltage V
k
 by Cramer’s rule is,

 
V I

1

j 1

n

k jk jj
∆

∆=

=
l

l/

where, n = Number of  independent nodes in a circuit

 jk∆l  = Cofactor of  G
jk

 I
jj
 = Sum of  current sources connected to node-j

 ∆l = Determinant of  conductance matrix

For circuit with three nodes excluding the reference node, the node voltages by Cramer’s rule are,

V I I I1
11

11
21

22
31

33
∆

∆

∆

∆

∆

∆
= + +

l

l

l

l

l

l

V I I I2
12

11
22

22
32

33
∆

∆

∆

∆

∆

∆
= + +

l

l

l

l

l

l

V I I I3
13

11
23

22
33

33
∆

∆

∆

∆

∆

∆
= + +

l

l

l

l

l

l

The node voltages of  a circuit with three nodes excluding the reference using short-cut procedure  

for Cramer’s rule are, V1
1

∆

∆
=

l

l

 V2
2

∆

∆
=

l

l

 V3
3

∆

∆
=

l

l

, ; ;where

G

G

G

G

G

G

G

G

G

I

I

I

G

G

G

G

G

G

13 13

3

23 1

3

23

11

21

12

22

32 33

11

22

3

12

22

32 331

∆ ∆= =l l     
               ;
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I

G

G

G

G

G

G

G

G

G

I

I

I
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21

31

13

23

33

2

11

22

11

22

33

3

11

21

31
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EQUIVALENT OF SERIES/PARALLEL CONNECTED PARAMETERS
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STAR-DELTA TRANSFORMATION

Star to Delta Transformation
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R
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3
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3 1
31 1= + +
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SUMMARY OF THEOREMS

     S.No   Theorem   Definition

 1. Superposition theorem The superposition theorem states that the 

   response in a circuit with multiple sources is  

   given by algebraic sum of responses due to  

   individual sources acting alone.

 2. Thevenin’s theorem Thevenin’s theorem states that a circuit with 

   two terminals can be replaced by an equivalent  

   circuit, consisting of a voltage source in series  

   with a resistance (or impedance). 

 3. Norton’s theorem Norton’s theorem states that a circuit with two 

   terminals can be replaced by an equivalent  

   circuit, consisting of a current source in parallel  

   with a resistance (or impedance). 

 4. Reciprocity theorem The reciprocity theorem states that, in a linear, 

   bilateral, single source circuit, the ratio of   

   excitation to response is constant when the  

   position of  excitation and response are  

   interchanged.

            Nature of  Source and Variable Element Maximum Power Transfer Theorem

 DC source with internal resistance connected Maximum power is transferred from  source

 to a variable resistive load.  to load, when the load resistance is equal  

    to source resistance.

 AC source with internal resistance connected Maximum power is transferred from source 

 to a variable resistive load. to load, when the load resistance is equal  

    to source resistance.

 AC source with internal impedance connected Maximum power is transferred from source  

 to a variable resistive load. to load, when the load resistance is equal to  

    magnitude of  source impedance.

 AC source with internal impedance connected Maximum power is transferred from source  

 to a load with variable resistance and variable to load, when the load impedance is equal to  

 reactance.  complex conjugate of  source impedance.

 AC source with internal impedance connected Maximum power is transferred from source 

 to a load with variable resistance and fixed to load when load  resistance  is  equal  to  

 reactance.   absolute value of  the rest of  the impedence  

    of  the circuit.

 AC source with internal impedance connected Maximum power is transferred from source 

` to a load with fixed resistance and variable  to load when load reactance is equal to   

 reactance.   conjugate of  source reactance.
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INITIAL AND FINAL CONDITIONS IN RLC CIRCUITS EXCITED BY DC SUPPLY

Element      Initial condition Final condition

        t = 0+  t = ∞ 
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R,L,C PARAMETERS AND V- I RELATIONS IN VARIOUS DOMAINS

 S.No. Parameter Time domain s-domain Frequency

          domain 

 1. Resistance, R 

 2. Inductance, L

 3. Inductance, L

  with initial current

 4. Capacitance, C

 5. Capacitance, C

  with initial voltage
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CHOICE OF REFERENCE PHASOR Phase Reference Line voltages Phasor diagram
 sequence phasor
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I.  Three/Four wire star-connected balanced load

Line Voltages

0 ; 120 ; 240V V V V V V
o o o

RY L YB L BR L+ + += = − = −

Phase Voltages

(0 30 ) 30

( 120 30 ) 150

( 240 30 ) 270

V
V

V

V
V

V

V
V

V

3

3

3

o o o

o o o

o o o

R
L

Y
L

B
L

+ +

+ +

+ +

= − = −

= − − = −

= − − = −

Phase Currents

( 30 ) ( 30 )

( 150 ) ( 150 )

( 270 ) ( 270 )

I
Z

V

Z
V

Z
V I

I
Z

V
Z

V
Z
V I

I
Z

V
Z

V
Z
V I

30

150

270

o
o o

o
o o

o
o o

R

R

Y

Y

Y

B

B

B

R

+

+
+ +

+

+
+ +

+

+
+ +

φ
φ φ

φ
φ φ

φ
φ φ

= = − = − − = − −

= = − = − − = − −

= = − = − − = − −

Line Currents

( 30 ) ; ( 150 ) ; ( 270 )I I I I I Io o o
R L Y L B L+ + +φ φ φ= − − = − − = − −

Power

3 cos cosP V I or P V I3 L Lφ φ= =
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V
YB

N

V
Y

V
B

V
R

R
R

Y

B

V
RY

Fig. A.11.1 : Three-wire star-connected balanced
load with conventional polarity of voltages and

direction of currents for RYB sequence.
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Fig. A.11.2 : Four-wire star-connected balanced
load with conventional polarity of voltages and

direction of currents for RYB sequencce.
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II.  Delta-connected balanced load

Line Voltages

 0 ; 120 ; 240V V V V V V
o o o

RY L YB L BR L+ + += = − = −

Phase Voltages

0 ; 120 ; 240V V V V V V
o o o

RY YB BR+ + += = − = −

Phase Currents

I
Z

V

Z

V

Z

V
I

0
o

RY

RY

RY

+

+
+ +

φ
φ φ= = = − = −

( ) ( )I
Z

V
Z

V
Z
V I120 120 120

o
o o

YB

YB

YB

+

+
+ +

φ
φ φ= = − = − − = − −

( 240 ) ( 240 )I
Z

V
Z

V
Z
V I240o o o

BR

BR

BR

+

+
+ +

φ
φ φ= = − = − − = − −

Line Currents

( 30 ) ( 30 )I I I3 o
L

o
R + +φ φ= − − = − −

( 120 30 ) ( 150 )I I I3 o o
L

o
Y + +φ φ= − − − = − −

( 240 30 ) ( 270 )I I I3 o o
L

o
B + +φ φ= − − − = − −

Power

3 cos cosP V I or P V I3 L Lφ φ= =

V
L
= Magnitude of  

        line voltage.

V = V
L
= Magnitude of

                phase voltage.

I = 
Z

V = Magnitude of

                phase current.

I
L
 = 3 I = Magnitude of

                      line current.

In delta connection the line 

and phase voltages are same.

Z Z
RY

= Ðf

R

Y

B

Z Z
BR

= Ðf

Z Z
YB

= Ðf

I
Y

I
B

I
R

V
BR

V
YB

R

Y

B

V
RY

V
YB

V
RY

V
BR

I
RY

I
BRI

YB

Fig. A.11.3 : Delta-connected balanced load with conventional polarity of
voltages and direction of currents for RYB sequence.
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III.  Three-wire star-connected unbalanced load

 Line Voltages

0 ; 120 ; 240V V V V V V
o o o

RY L YB L BR L+ + += = − = −

Line Currents

I I I

I I I I

I I I

R R

Y Y

B B

1

2 1

2

R

Y

B

+

+

+

γ

γ

γ

= =

= − =

= − =

Phase Currents

γ

γ

γ

I I

I I

I I

R R R

Y Y Y

B B B

+

+

+

=

=

=

Phase Voltages

V I Z VR R R R R+δ= =

V I Z VYY Y Y Y+δ= =

V I Z VB B BB B +δ= =

Power

phase load phase load phase load
- - -

P
Power consumed

by R

Power consumed

by Y

Power consumed

by B
= + +

    
cos cos cosV I V I V IR R Y Y B B1 2 3φ φ φ= + +

  

     = V
R

I
R
 cosφ

1
 + V

Y
I

Y
 cosφ

2
 + V

B
I

B
 cosφ

3
        

V
L
= Magnitude of  

        line voltage.

The mesh currents I and I1 2  are solved 

by mesh analysis, and the line currents 

are estimated from mesh currents

In star connected 

load the line and 

phase currents are 

same

, , andI I I
R Y B

 are magnitude

of  line and phase currents and 

γ
R

, γ
Y
 and γ

B
 are phase angle

of  line and phase currents with

respect to reference phasor

V
R
, V

Y
 and V

B
 are magnitude

of  phase voltages and 

 δ
R
, δ

Y
 and δ

B
 are phase angle

of  phase voltages with respect

to reference phasor

φ
1
 = Phase difference between V and IRR

φ
2
 = Phase difference between V and IYY

φ
3
 =Phase difference between V and IBB

Y

I
R

I
B

I
Y

I
B

I
Y

I
R

V
BR

V
R

R
R

Y

B

V
RY

Fig. A.11.4 : Three-wire star-connected unbalanced
load with conventional polarity of voltages
and direction of currents for RYB sequence.
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Fig. A.11.5 : Mesh analysis to
solve line currents.
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I
R

I
B

I
R

V
BR

V
YB

R
R

Y

V
RY

Fig. A.11.6 : Four-wire star-connected unbalanced load with conventional
polarity of voltages and direction of currents.
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V.  Four wire star-connected unbalanced load

 Line Voltages

0 ; 120 ; 240V V V V V V
o o o

RY L YB L BR L+ + += = − = −

Phase Voltages

( )

( )

( )

V
V

V

V
V

V

V
V

V

3
0 30 30

3
120 30 150

3
240 30 270

o o o

o o o

o o o

R
L

Y
L

B
L

+ +

+ +

+ +

= − = −

= − − = −

= − − = −

Phase Currents

=( 30 ) ( 30 )I
Z

V

Z
V

Z
V I30o o o

R

R R R R

R R R
R

+

+
+ +

φ
φ φ= = − = − − − −

= ( 150 ) ( 150 )I
Z

V
Z

V
Z
V I150o o o

Y

Y

Y

Y Y Y

Y Y Y
+

+
+ +

φ
φ φ= = − − − − −=

( 270 ) ( 270 )I
Z

V
Z

V
Z
V I270o o o

BB

B

B

B B B

B B
+

+
+ +

φ
φ φ= = − = − − = − −

Line Currents

( 30 ) ; ( 150 ) ; ( 270 )I I I I I Io o o
R R R Y Y Y B B B+ + +φ φ φ= − − = − − = − −

Power

phase loadphase load phase load
-- -

P
Power consumed

by R

Power consumed

by Y

Power consumed

by B
= + +

    cos cos cosV I V I V IR R Y Y B B1 2 3φ φ φ= + +   

     = VI
R
 cosφ

1
 + VI

Y
 cosφ

2
 + VI

B
 cosφ

3
  

      

V
L
 = Magnitude of

         line voltage.

In star connection the 

line and phase currents 

are same.

Since load neutral is connected 

to source neutral ,  phase 

voltages will be balanced even 

though load is unbalanced.

V = 
V

3

L  = Magnitude of

                     phase current.

I
R
, I

Y
 and I

B
 are magnitude 

of  R-phase, Y-phase and 

B-phase currents respectively.

/V V V V V3R Y B L= = = =

φ
1
 = Phase difference between V and IRR

φ
2
 = Phase difference between V and IYY

φ
3
 =Phase difference between V and IBB
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III.  Delta-connected unbalanced load

Line Voltages

0 ; 120 ; 240V V V V V V
o o o

RY L YB L BR L+ + += = − = −

Phase Voltages

; ;V V V V V V0 120 240
o o o

RY YB BR+ + += = − = −

Phase Currents

γI
Z

V
IRY

RY

RY RY

RY
+= =

γI
Z

V
IYB

YB

YB YB

YB
+= =

γI
Z

V
IBR

BR

BR BR

BR
+= =

Line Currents

; ;I I I I I I I I IR RY BR Y YB RY B BR YB= − = − = −

Power

       
phase load phase load phase load

- - -

P
Power consumed

by R

Power consumed

by Y

Power consumed

by B
= + +

cos cos cosV I V I V IRY RY YB YB BR BR1 2 3φ φ φ= + +   

 = V
L
I

RY
 cosφ

1
 + V

L
I

YB
 cosφ

2
 + V

L
I

BR
 cosφ

3
   V V V V VRY YB BR L

= = = =

 φ
  
= Phase difference between RV and IRY Y

 φ
2
 = Phase difference between V and IYB YB

 φ
3
 = Phase difference between V and IBR RB

V = V
L
 = Magnitude of

                 phase voltage.

I
RY

, I
YB

 and I
BR

 are magnitude

of  phase currents and 

γ
RY

, γ
YB

 and γ
BR

 are phase angle

of  phase currents.

V
L
 = Magnitude of

         line voltage.

In delta connection the line 

and phase voltages are same.
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I
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I
R

V
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V
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V
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V
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V
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V
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I
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Fig. A.11.7 : Three-phase delta-connected unbalanced load with conventional
polarity of voltages and direction of currents for RYB sequence.
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Reading of  wattmeter   pf

Equal Unity

If  one wattmeter is zero 0.5

If  one wattmeter is negative < 0.5

 Both are positive  > 0.5

VRY

VBY

R

B

Y

CC

PC

PC

CC
P2

P1

IB

IR

3-phase
load

Fig. a : Wattmeters in lines R and B.
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+

P V I cos

P V I cos

1 RY R= Ð - Ð

= Ð - Ð

V I

V I

RY R

BY B BY B

e j

e j2
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IY

VYB

CC

PC
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P1

P2

VRB

3-phase
load

Fig. b : Wattmeters in lines R and Y.
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Y
P V I cos

P V I cos

1 R R= Ð - Ð

= Ð - Ð

B RB R

YB Y YB Y

V I

V I

e j

e j2

TWO WATTMETER METHOD OF POWER MEASUREMENT

Power, P = P
1
 + P

2      

, tan
P P
P P

Power factor angle 31

1 2

2 1φ =
+
−- c m    

, cos cos tan
P P

P P
Power factor 3

1

1 2

2 1φ =
+
−- c m; E   

Appendix-12

IB

VYR
P1

VBR

3-phase
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Fig. c : Wattmeters in lines Y and B.
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Fig. A.12 : Possible connections of two wattmeters for measurement of three-phase power.
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IMPORTANT EQUATIONS OF SERIES RESONANCE

1.   Angular resonant frequency, 
LC

1
rω =  in rad/s

2. Resonant frequency, f
LC2

1
r

π

=  in Hz 

3. Q-factor at resonance, Q
R

L
r

rω
=    ;    ;Q

CR
Q

R C
L1 1

r
r

r
ω

= =

  

 Note :  ,When Q
CR
1

r#ω ω

ω

=      ; ,When Q
R
L

r$ω ω
ω

=               

4. Bandwidth, /
L

R
in rad sβ =  ;  /

Q
in rad s

r

rβ
ω

=

         Bandwidth in Hz
2π

β
=                

5. Half-power (or cut-off) frequencies

;/ /
L
R

L
R

LC
in

L
R

L
R

LC
inrad s rad s

2 2
1

2 2
12 2

hl
ω ω= − + + = + +a ak k

;/ /
Q Q

in
Q Q

inrad s rad s
2
1 1

4

1
2
1 1

4

1
r

r r

2 r

r r

2hl
ω ω ω ω= − + + = + +; ;E E

;f in f inHz Hz
2 2h

h

l

l

π

ω

π

ω

= =

6. Total reactance at half-power frequencies

; ;L
C

R L
C

R L
C

R
1 1 1

h
h

l
l

!ω

ω

ω

ω

ω

ω

− = − = − = −

7. Selectivity

Selectivity
rω

β
=          ;        Selectivity

Q
1

r

=
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M

M

M

M

-M

Ij Lj Lk Ik Lk IkIj Lj

L + Mj L + Mk

Ij Lj Lk Ik Ij Lj Lk Ik

Þ

Þ

Þ

Þ

Note :   In electrical equivalent the 

mesh currents orientation should be 

same as that of  original circuit.

M M

M

M M

Lj LkIj Ik Lk IkLj
Ij

L Mj - L Mk -

LjIj Lk Ik Lj
Ij Lk Ik

Þ

Þ

Þ

Þ

Note :   In electrical equivalent the 

mesh currents orientation should be 

same as that of  original circuit.

ELECTRICAL EQUIVALENT OF COUPLED COILS

Electrical equivalent of group-I coupled coils

Electrical equivalent of group-II coupled coils
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EQUIVALENT OF SERIES AND PARALLEL CONNECTED COUPLED COILS

Connection        Circuit                             Equivalent 

                                  circuit

Series Aiding

Series Opposing 

 Parallel Aiding

Parallel Opposing 
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B.E/ B.Tech. DEGREE EXANMINATION, MAY/ JUNE 2014

Second Semester

Electrical and Electronics Engineering

EE 6201 – CIRCUIT THEORY

(Regulation 2013)

Time:  3 hours  Maximum: 100 marks

Answer all questions

PART A – (10 × 2 = 20 marks)

1. Find the equivalent resistance of the circuit shown in Fig 1.

Chapter 2, SA - Q2.6 [ Page No - 2.146 ]      

2.  Define RMS voltage.

Chapter 4, Section - 4.2.2 [ Page No - 4.6 ]

3.  What is reciprocity theorem?

Chapter 2, Section - 2.6.4 [ Page No - 2.126 ]

4.  Why do you short circuit the voltage source and open the current source when you find  
   Thevenin’s resistance of a network?

Usually Thevenin’s resistance is obtained by network reduction technique. When this 

technique is applied the circuit should be converted to a network by deactivating or killing  

all the sources. An ideal voltage source is deactivated, when it is short circuited and ideal 

current source is deactivated, when it is open circuited.

5.  Define quality factor in the resonant circuit.

Chapter 5, SA - Q5.4 [ Page No - 5.102 ]

6.  Determine the quality factor of a coil for the series resonant circuit consisting of R = 10 ohm,  

  L = 0.1H, and C = 10 microfarad.

Chapter 5, SA - Q5.6 [ Page No - 5.102 ]

7.  Distinguish between natural and forced response.

Chapter 3, SA - Q3.3 [ Page No - 3.97 ]

8.  What is the time constant for RL and RC circuit?

Chapter 3, SA - Q3.6 & 3.10 [ Page No - 3.97 & 3.98 ]

1.2 �

2
�

2
�

2 �

1 �

R
T

Fig. 1



      Anna University Question PapersQ. 2

9.  Write the effect of power factor in energy consumption billing.

Energy = Power × Time = VI cos f × Time = VI × Power factor × Time

From the above relation it is clear that energy is directly proportional to power factor. 

Therefore, a high power factor will result in large energy consumption and higher value of 

billing.

Note: The power factor is defined as ratio of active power and apparent power. The 

apparent power is the power supplied to consumer and active power is the power utilized 

by the consumer. If power factor is 0.8, then the consumer utilize only 80% of power and 

return back 20% to source. The power returned to the source increase the energy loss in 

transmission and so electricity boards insist for maintaining higher power factor at consumer 

end. In ideal case, the power factor should be unity so that the entire transmitted power is 

consumed which result is low transmission losses.

10.  Distinguish between unbalanced source and unbalanced load.

Chapter 4, SA - Q4.25 [ Page No - 4.144 ]

PART B - (5 × 16 = 80 marks)

11.  (a)  (i)  Find the current I and voltage across 30W of the circuit shown in Fig. 11(a)(i)                
      (8)

Chapter 1, SA - Q1.25 [ Page No - 1.144 ] 

  (ii)  Determine the current in all the resistors of the circuit shown in Fig.11(a) (ii)               (8)

          Chapter 1, Examplr - 1.11 [ Page No - 1.40 ]

(OR)

50A 2� 1� 5 �

Fig. 11(a) (ii).

+

E

A

B

I
2

I
1

I
3

+

E

2�8�

30�

100V40V

Fig. 11(a) (i).

C

E

I



Q. 3Anna University Question Papers

 (b)  (i)  Determine the current through each resistor in the circuit shown in Fig 11.(b) (i)  

      (6)

Chapter 1, SA - Q1.26 [ Page No - 1.144 ]

  (ii)  When a dc voltage is applied to a capacitor, voltage across its terminals is found  

    to build up in accordance with v
c
 = 50(1 – e-100t). After 0.01 S the current flow is 

    equal to 2 mA.

  (i)  Find the value of capacitance in farad.

  (ii)  How much energy stored in the electric field? (10)

Chapter 3, Example 3.22 [ Page No - 3.79 ]

12. (a)  (i)  Determine the current in the 5W resistor in the network shown in the Fig.12(a)(i) 

     (8)

Chapter 2, Example 2.33 [ Page No - 2.81 ]

  (ii)  Find out the current in the each branch of the circuit shown in Fig.12(a)(ii)   (8)

Chapter 1, Example 1.28 [ Page No - 1.71 ]

(OR)

2�

2A

10�

5�

50V

Fig. 12(a) (i).
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E

1�

Fig. 12(a) (ii).

5A 10�
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10 V

+

E

3�
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4�

Fig. 11(b) (i).
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I
1

V
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      Anna University Question PapersQ. 4

 (b)  (i)  Determine the current in each mesh of the circuit shown in Fig.12 (b) (i)   (8)

Chapter 1, Example 1.29 [ Page No - 1.72 ]

  (ii)  Determine the voltages at each node of the circuit shown in Fig.12 (b) (ii)   (8)

Chapter 1, Example 1.54 [ Page No - 1.118 ]

13.  (a)  For the circuit shown in the Fig. 13 (a), determine the impedance at resonant frequency,  

   10 Hz above resonant frequency, and 10Hz below resonant frequency.  (16)

Chapter 5, Example 5.1 [ Page No - 5.11 ]

(OR) 

 (b)  Explain that how to derive Q factor of parallel resonance.  (16)

Chapter 5, Section 5.3.3 [ Page No - 5.26 ]

14.  (a)  A series RL circuit with R  = 30W and L = 15H has a 
   constant voltage V = 60v applied at t = 0 as shown in  

   Fig. 14(a). Determine the current i,the voltage across  

   resistor and the voltage across the inductor.    

   (16)

Chapter 3, Example 3.2 [ Page No - 3.48 ]
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Fig. 12(b) (ii).
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(OR)

 (b)  The circuit shown in the Fig. 14(b) consist of resistance, inductance and capacitance in 

  series with 100V DC when the switch is closed at t = 0. Find the current transient    (16)

Chapter 3, Example 3.25 [ Page No - 3.84 ]

Note : For the given values of R,L and C the response will be damped oscillatory 

                               same as that of Example 3.25

15.  (a)  (i)  A symmetrical three-phase; three wire 440V supply to a star connected load.  

    The impedance in each branch are Z
R
 = 2 + j3W,  Z

Y
 = 1 - j2W,  and Z

B
 = 3 + j4W. 

    Find its equivalent delta connected load.  (8)

Chapter 4, Example 4.37 [ Page No - 4.113 ]

  (ii)  A three phase, balanced delta-connected load of 4 + j8W,  is connected across 
    a 400V, 3f balanced supply. Determine the phase currents and line currents. 

    (Phase sequence is RYB).  (8)

Chapter 4, Example 4.38 [ Page No - 4.114 ]

(OR)

 (b)  (i)  A symmetrical three-phase, three wire 400V, supply is connected to a delta-connected  

    load. Impedance in each branch are Z
RY

 = 10∠300 W,  Z
YB

 = 10∠450 W  and 

    Z
BR

 = 2.5∠600 W. Find its equivalent star-connected load.  (8)

Chapter 4, Example 4.36 [ Page No - 4.113 ]

  (ii)  A balanced star connected load having an impedance  15 + j20W per phase is 

    connected to 3f, 440V, 50Hz. Find the line current and power absorbed by the 

    load.  (8)

Chapter 4, Example 4.23 [ Page No - 4.94 ]

Fig. 14(b).
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B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014

Second Semester

Electronics and Communication Engineering

EE 6201 – CIRCUIT THEORY

(Regulation 2013)

Time:  3 hours  Maximum: 100 marks

Answer all questions

PART A - (10 × 2 = 20 Marks)

1. An electrical appliance consumes 1.2 kWh in 30 minutes at 120 V. What is the current drawn  

  by the appliance?

   Chapter 1, SA - Q1.17 [ Page No - 1.142 ]

2. Calculate the equivalent resistance between the terminals ''a'' and ''b'', in Fig. 1.

Chapter 2, SA - Q2.4 [ Page No - 2.145 ]

 3.  Calculate the value of I
N
 for the circuit shown in Fig. 2.

Chapter 2, SA - Q2.33 [ Page No - 2.153 ]

 4.  State maximum power transfer theorem for DC networks.

Chapter 2, Section - 2.63, case (i) [ Page No - 2.100 ]

 5.  Calculate the total inductance of the circuit, if the coefficient of   
      coupling (k) between the two coils is 0.6, as shown in Fig.3.

Chapter  5, SA - Q5.45 [ Page No - 5.109 ]

 6. Define quality factor of a series resonant circuit.

Chapter  5, SA - Q5.4 [ Page No - 5.102 ]

10�

10�

10�5�

a b

Fig. 1

47 mH33 mH

k

Fig. 3

20�

100�
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+

E

Fig. 2
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L

I
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 7.   A coil of resistance 2.2 W and an inductance 0.01 H is connected in series with a capacitor 

  across 220 V mains. Find the value of capacitance such that maximum current flows in the  
  circuit at a frequency of 190 Hz. Also find the maximum current.

Chapter 5, SA - Q5.23 [ Page No - 5.105 ]

 8.  A 50 mF capacitor is discharged through a 100 kW resistor. If the capacitor is initially charged 

  to 400 V, determine the initial energy.

Chapter 3, SA - Q3.23 [ Page No - 3.100 ]

 9. Write the equations for the phasor difference between the potentials of the delta connected  

  networks.

Chapter 4, SA - Q4.26 [ Page No - 4.144 ]

10. Three coils, each having a resistance of 20 W and an inductive reactance of 15 W are connected 

  in star to a 400 V, 3-phase, and 50 Hz supply. Calculate (a) the line current, (b) power factor,  

  and (c) power supplied

Chapter 4, SA - Q4.29 [ Page No - 4.145 ]

PART B – (5 × 16 = 80 marks)

11. (a) (i) Using node analysis, find the node voltages and the currents through all the resistors  
   for the circuit shown in Fig. 4.     (12)

 

Chapter 1, Example 1.55 [ Page No - 1.120 ]

 (ii) Find the equivalent resistance between the terminals 'a' and 'b' for the network shown 

  in Fig. 5.                     (4)

Chapter 2, Example 2.3 [ Page No - 2.33 ]
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(OR)

  (b) For the circuit shown in Fig. 6, find the (i) currents in different branches, (ii) current  
   supplied by the battery, (iii) potential difference between terminals A and B.             (16)

Chapter 1, Example 1.14 [ Page No - 1.52 ]

12. (a) Find the current I, through the 20 W resistor shown in Fig. 7 using Thevenin's theorem.

(16)

Chapter 2, Example 2.21 [ Page No - 2.59 ]

(OR)

 (b) Find the current through 5W resistor using superposition theorem, in the circuit shown 

  in Fig. 8.                   (16)

Chapter 2, Example 2.41 [ Page No - 2.92 ]
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 13. (a) Impedance Z
1
and Z

2
are parallel and this combination is in series with an impedance 

   Z
3
,connected to a 100 V, 50 Hz ac supply. 5 jXZ

C1
= Ω− ,  5 0Z j

2
Ω= + , 

   6.25 1.25Z j
3

Ω= + . Determine the value of capacitance such that the total current 

   of the circuit will be in phase with the total voltage. Find the circuit current and 

   power.                   (16)

Chapter 4, Example 4.19  [ Page No - 4.58 ]

(OR)

 (b) The switch in the circuit shown in Fig. 9, is moved from position 1 to 2 at  t = 0.  

  Find the expression for voltage across resistance and capacitor, energy in the capacitor  

  for t > 0.                          (16)

Chapter 3, Example 3.14 [ Page No - 3.66 ]

 14. (a) (i) For a magnetically coupled circuit, derive the expression for mutual inductance(M) in 

   terms of L
1
 and L

2
.                    (6)

Chapter 5, Section 5.5.2 [ Page No - 5.44 ]

 14. (a) (ii) For the coupled circuit shown in Fig. 10, find the value of V
2
 so that the current I

1
 = 0.

(10)

Chapter 5, Example 5.32 [ Page No - 5.92 ]

(OR)

 14. (b) With neat illustration describe the parallel resonant circuit and the equivalent parallel 

   network for a series RL combination. Also derive the unity power factor  f
p
.         (16)

Chapter 5, Section 5.3 and Example 5.12 [ Page No - 5.16 and 5.39 ]
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Fig. 9.
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Note : 1. Explain any one parallel RLC circuit and derive its resonance frequency 

            [Refer Section 8.3.1,  Page No -  8.17]

    2. The unity power factor frequency, f
p
 is resonance frerquency of parallel 

             RLC circuit.

15. (a) Show that three phase power can be measured by two wattmeters. Draw the phasor  

  diagrams. Derive an expression for power factor interms of wattmeter readings.  (16)

Chapter 4, Section 4.25 [ Page No - 4.85 ]

(OR)

 (b) (i) A 400 V(line-to-line) is applied to three star-connected identical impedances each  

  consisting of a 4 W resistance in series with 3 W inductive reactance. Find (1) line 

  current and (2) total power supplied.                  (8)

Chapter 4, Example 4.23 [ Page No - 4.94 ]

15. (b) (ii) Three star-connected impedances 20 37.7Z j per phase
1

Ω= + are in parallel with 

  three delta-connected impedance 20 37.7Z j per phase
2

Ω= + . The line voltage is 

  398 volts. Find the line current, power factor, power and reactive volt-ampere taken  

  by the combination.                    (8)

 Chapter 4, Example 4.39 [ Page No - 4.115 ]
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B.E/ B.Tech DEGREE EXANMINATION, APRIL/ MAY 2015

Second Semester

Electronics and Communication Engineering

EE 6201 – CIRCUIT THEORY

(Regulation 2013)

Time:  3 hours  Maximum: 100 marks

Answer all questions

PART A – (10 × 2 = 20 marks)

1.  Write briefly about resistance in a circuit.

Chapter 1, Section - 1.5.1 [ Page No - 1.26 ]

2.  Obtain the current in each branch of the network shown below using Kirchhoff’s Current Law.

Chapter 1, SA - Q1.22 [ Page No - 1.142 ]

3.  State maximum power transfer theorem.

Chapter 2, SA - Q2.39 [ Page No - 2.155 ]

4.  Write briefly about network reduction technique.

Chapter 2, Section - 2.1 [ Page No - 2.1 ]

5.  Define mutual inductance.

Chapter 5, SA - Q5.37 [ Page No - 5.107 ]

6.  Write the dot rule.

Chapter 5, Section 5.6.1 [ Page No - 5.49 ]

7.  Define the frequency response of series RLC circuit.

Chapter 5, SA - Q5.3 [ Page No - 5.102 ]

8.  Find the frequency response V
2 
/V

1
 for the two-port circuit shown below.

            Not in Regulation 2017

9.  Write the distortion power factor equation of the three phase circuits.

Chapter 4, SA - Q4.27 [ Page No - 4.145 ]
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0
W

V
1

+ +

-

V
2

5KW

-

1mF



      Anna University Question PapersQ. 12

10. Distinguish between unbalanced source and unbalanced load.

Chapter 4, SA - Q4.25 [ Page No - 4.144 ]

PART B – (10 × 16 = 80 marks)

11. (a) Use branch currents in the network shown below to find the current supplied by the 60 V  
  source. Solve the circuit by the mesh current method    (16)

Chapter 1, Example 1.15 [ Page No - 1.54 ]

(OR)

 (b)  Solve the network given below by the node voltage method. (16)

Chapter 1, Example 1.56 [ Page No - 1.22 ]

12.  (a)  (i) Compute the current in the 23 W  resistor of the following figure shown below by 
   applying the superposition principle.     (8)

Chapter 2, Example 2.38 [ Page No - 2.88 ]

  (ii)  Derive the equation for transient response of RC and RL circuit for DC input.  (8)

Chapter 3, Section 3.3.2 & 3.4.2 [ Page No - 3.11 & 3.21 ]
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(OR)

 (b)  Obtain the Thevenin and Norton equivalent circuits for the active network shown  

  below.  (16)

Chapter 2, Example 2.19 [ Page No - 2.57 ]

13.  (a) With neat illustration and necessary derivations, explain the linear transformer. (16)

Chapter 5, Section 5.6.1 [ Page No - 5.49 ]

(OR)

 (b) Derive the mutual inductance and the coupling coefficient of the transformer with  
  necessary illustration.  (16)

Chapter 5, Section 5.5.2, 5.5.3 [ Page No - 5.44, 5.46 ]

14. (a) Explain in detail with neat illustrations the High pass and Low pass networks and  

  derive the network parameters.    (16)

Refer [ Page No - Q.14 ]

(OR)

 (b) Explain the characterization of two port networks in terms of Z, Y and h parameters.

      (16)

Not in Regulation 2017

15.  (a)  Discuss in detail the three phase 3-wire circuits with star connected balanced loads.          (16)

Chapter 4, Section 4.21 [ Page No - 4.63 ] 

(OR)

 (b) Explain in detail the phasor diagram of the voltage of the voltage and currents of a  

  three phase unbalanced circuits.  (16)

Chapter 4, Section 4.24.2 [ Page No - 4.81 ]

Note: Explain theory from section 4.24.2 and draw phasor diagram shown in Fig.4.

           of  Example 4.29.
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+
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14.(a)    Explain in the detail with neat illustrations the High pass and Low pass network and derive the network 

parameters.

SOLUTION

The low pass and high pass filters are best examples of two port network. A low pass filter will pass 

all low frequency signals less than a cut-off frequency. A high pass filter will pass all high frequency signals 

greater than a cut-off frequency.

The low pass and high pass filters can be designed using LC network and popular configurations 

of such filters are constant-K, T-type and P-type filters shown in Figs.1 and 2. Here the product  Z Z
1 2

  is a 

constant  independent of frequency and so such filters are called constant-K filters.

Low pass Filter

For a low pass filter,

Z j L and Z
j C

1
1 2ω

ω

= =

Z Z j L
j C C

L1
1 2

` #ω

ω

= =

Here, 
C

L
 is a constant independent of frequency.

Let, 
C

L
K

2
=

K
C

L
` =

Here, K is also called design impedance or load impedance of the low pass filter.

The cut-off frequency, f
c
 of low pass filter is given by,

f

LC

1

c

π

=

Fig.1: Constant-K
T-type filter
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High pass Filter

For a high pass filter,

Z
j C

and Z j L
1

1 2
ω

ω= =

Z Z
j C

j L
C

L1
1 2

` #
ω

ω= =

Here, 
C

L
 is a constant independent of frequency.

Let, 
C

L
K

2
=

K
C

L
` =

Here, K is also called design impedance or load impedance of the high pass filter.

The cut-off frequency, f
c
 of the high pass filter is given by,

f

LC4

1

c

π

=

Z - Parameters of T-type filter

Consider the T-type filter shown in Fig. 7. The equations defining  

Z- parameters are,

V Z I Z I1 11 1 12 2= +    .....(1)

V Z I Z I2 21 1 22 2= +    .....(2)

Let us connect a voltage source to port-1 and open circuit port-2 as 

shown in Fig.8.

Now, I 02 =

Therefore,when I 02 = , from equations (1) and (2) we get,

;Z
I

V
Z

I

V
11

1

1

21

1

2
= =

Fig.5: Constant-K
T-type high pass filter
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From Fig.9,  by Ohm’s law,

V
Z

Z I
2

1

1

2 1= +f p    .....(3)

Z
I

V Z
Z

2
11

1

1 1

2` = = +

From Fig.9,  by voltage division rule,

V V
Z

Z

Z

2

2 1

1

2

2
#=

+

Z
Z I

Z
Z

Z

2

2

1

2 1

1

2

2
#= +

+

f p

Z
I

V
Z11

1

1

2` = =

The T-type filter is symmetrical.

Z Z
Z

Z
2

22 11

1

2` = = +

The T-type filter is reciprocal.

Z Z Z12 21 2` = =

The Z- parameter matrix of constant-K, T-type filter is, 

Z

Z

Z

Z

Z
Z

Z

Z

Z
Z

Z
2

2

11

21

12

12

1

2

2

2

1

2

= =

+

+

R

T

S
S
S
S
S

R

T

S
S
S
S
SS

V

X

W
W
W
W
W

V

X

W
W
W
W
WW

The Z- parameter matrix of constant-K, T-type low pass filter is, 

Z
Z

Z

Z

Z
Z

j L

j C

j C

j C

j L

j C
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ω

ω
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=
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+

=
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SS
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The Z- parameter matrix of constant-K, T-type high pass filter is, 
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1

2¢1¢

2

Z
1

2

Z
2

Z
1

2

+

-

V
1

+

-

V
2 O.C

I2I1

Fig.9.

Z
1

2

Z
2

+

-

V
1

+

-

V
2

I1

Using equation (3)



Q. 17Anna University Question Papers

B.E/ B.Tech DEGREE EXANMINATION, NOVEMBER/DECEMBER 2015

Second Semester

Electronics and Communication Engineering

EE 6201 – CIRCUIT THEORY

(Regulation 2013)

Time:  3 hours  Maximum: 100 marks

Answer all questions

PART A – (10 × 2 = 20 marks)

1.  State Kirchoff's Current law.

Chapter 1, Section 1.4.2 [ Page No - 1.25 ]

2. Find the equivalent resistance of the circuit shown in Fig. 1.

Chapter 2, SA - Q2.7 [ Page No - 2.146 ]

3. List the applications of Thevenin's theorem.

Chapter 2, SA - Q2.30 [ Page No - 2.153 ]

4. Two resistors of 4W and 6W are connected in parallel. If the total 

 current is 30 A. Find the current through each resistor shown in Fig. 2.

Chapter 2, SA - Q2.1 [ Page No - 2.144 ]

5. Define selectivity.

Chapter 5, SA - Q5.13 [ Page No - 5.103 ]

6. What is co-efficient of coupling?

Chapter 5, SA - Q5.38 [ Page No - 5.108 ]

7. Distinguish steady state and transient state.

Chapter 3, SA - Q3.7 [ Page No - 3.97 ]

8. What is time constant for RL and RC circuit?

Chapter 3, SA - Q3.6 & Q3.10 [ Page No - 3.97 & 3.98 ]

9. What are the advantages of three phase system?

Chapter 4, Section 4.18 [ Page No - 4.59 ]

10. When a 3-phase supply system is called balanced supply system?

Chapter 4, SA - Q4.22 [ Page No - 4.144 ]

                                  PART B – (10 × 16 = 80 marks)

11.  (a)  (i) Determine the magnitude and direction of the current in  

   the 2 V battery in the circuit shown in Fig. 3.        (8)

   Chapter 1, Example 1.4 [ Page No - 1.34 ] 
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Fig. 1

1 �

4.27 �

B

4 �

Fig. 2
6 �

30 A

Fig. 3

2 �
+E

+ E

+ E

4 V

2 V

3 V

3 �
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20 V

2 � 4 �

8 � 10 �

Fig. 7

+E

+

E

5 V

A

B

 (ii) Determine the power dissipation in the 4W resistor of the given circuit shown in 

   Fig. 4.   (8)

   

   Chapter 1, Example 1.21 [ Page No - 1.60 ]

(OR) (b)  Using node analysis, find the voltage V
x
 for the circuit shown in Fig 5. (16)

   

   Chapter 1, Example 1.62 [ Page No - 1.133 ]

12.  (a)   Find the Thevenin's equivalent of the network shown in Fig. 6. (16)

   

   Chapter  2, Example 2.22 [ Page No - 2.61 ]

(OR) (b)  Determine the value of resistance that may be connected across A and B so that 

   maximum power is transferred from the circuit to the resistance. Also, estimate the  

   maximum power transferred to the resistance shown in Fig. 7. (16)

   Chapter 2, Example 2.48 [ Page No - 2.109 ]
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13. (a)  For the circuit shown in Fig. 8, determine the frequency at which the circuit resonates.  

   Also find the quality factor, voltage across inductance and voltage across capacitance  
   at resonance. (16)

   

  

   Chapter 5, Example 5.3 [ Page No - 5.13 ]

(OR)

 (b)  Find the mutual reactance X
m
 in the coupled coils shown in Fig. 9. (16)

   

  

   Chapter 5, Example 5.27 [ Page No - 5.86]

14. (a)  In the RL circuit shown in Fig. 10, the switch is closed to position-1 at t = 0. After  

   t = 100 ms, the switch is changed to position-2. Find i(t) and sketch the transient. 

    (16)

   Chapter 3, Example 3.5 [ Page No - 3.52 ]

(OR)

 (b) (i) Determine the driving point impedance of the network shown in Fig. 11.  (8)

   

   Not in Regulation 2017
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  (ii) Determine the h-parameters of the two port network shown in Fig. 12. (8)

   

   Not in Regulation 2017

15. (a)  Show that three phase power can be measured by two wattmeters. Draw the phasor  

   diagrams. Derive an expression for power factor interms of wattmeter readings. 

    (16)

   Chapter 4, Section 4.25 [ Page No - 4.85 ]

   (OR)

 (b) (i) Three equal impedancces, each of 8 + j 10W are connected in star. This is further 

   connected to a 440 V, 50 Hz, three phase supply. Calculate the active and reactive  

   power and line and phase currents.   (8)

   Chapter 4, Example 4.23 [ Page No - 4.94 ]

  (ii) Two wattmeter connected to measure the input to a balanced, three phase circuit  

   indicate 2000 W and 500 W respectively. Find the power factor of the circuit.

   (1)   When both readings are positive and

   (2)   When the later is obtained after reversing the connections to the current coil  

           of one instrument.    (8)

            Chapter 4, Example 4.41 [ Page No - 4.117 ]
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B.E/ B.Tech DEGREE EXANMINATION, MAY/JUNE 2016

Second Semester

Electronics and Communication Engineering

EE 6201 – CIRCUIT THEORY

(Regulation 2013)

Time:  3 hours  Maximum: 100 marks

Answer all questions

PART A – (10 × 2 = 20 marks)

1.  The resistance of two wires is 25 W when connected in series and 6 W when connected in 

 parallel. Calculate the resistance of each wire.

   Chapter 2, SA - Q2.13 [ Page No - 2.148 ]

2. Distinguish between mesh and loop of a circuit.

   Chapter 1, SA - Q1.30 [ Page No - 1.145 ]

3. State reciprocity theorem.

   Chapter 2, Section - 2.6.4 [ Page No - 2.126 ]

4. What is the condition for the maximum power transfer in DC and AC circuits?

   Chapter 2, Table 2.3 [ Page No - 2.105 ]

5. Define co-efficient of coupling.

   Chapter 5, SA - Q5.38 [ Page No - 5.108 ]

6. In a series RLC circuit, if the value of L and C are 100 mH and 0.1 mF, find the resonance 
 frequency in Hz.

   Chapter 5, SA - Q5.22 [ Page No - 5.105 ]

7. In a series RLC circuit, L = 2 H and C = 5 mF. Determine the value of R to give critical damping.

   Chapter 3, SA - Q3.19 [ Page No - 3.99 ]

8. Define time constant of RL circuit.

   Chapter 3, SA - Q3.6 [ Page No - 3.97 ]

9. A 3 phase 400 V is given to balanced star connected load of impedance 8 + 6j W. Calculate 

 line current.

   Chapter 4, SA - Q4.28 [ Page No - 4.145 ]

10. List out the advantages of three phase system over single phase system.

   Chapter 4, Section 4.18 [ Page No - 4.59 ]
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PART B – (5 × 16 = 80 marks)

11.  (a)  (i) Determine the current I
L
 in the circuit shown in Fig. 11 (a) (i). (8)

   Chapter 1, Example 1.17 [ Page No - 1.56 ]

   (ii) Calculate the voltage across A and B in the circcuit shown in Fig. 11 (a) (ii).    (8) 

   

   Chapter 1, SA-Q1.23 [ Page No - 1.143 ]

(OR)

 (b) (i) Three loads A, B, C are connected in parallel to a 240 V source. Load A takes  

   9.6 kW, load B takes 60 A, and load C has a resistance of 4.8 W. Calculate R
A
 and 

   R
B
, the total current, total power and equivalent resistance.       (8)

   Chapter 1, SA-Q2.11 [ Page No - 2.147 ] 

  (ii) For the circuit shown in Fig. 11 (b) (ii), determine the total current and power factor.

  (8)

   Chapter 4, Example 4.5 [ Page No - 4.41 ]

12. (a)  Find the voltage across 5 W resistor for the circuit shown in Fig. 12 (a) using source 

   transformation technique and verify the results using mesh analysis. (16) 
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   Chapter 1, Example 1.25 [ Page No -1.65 ]

(OR)

 (b)  Obtain the Nortan's model and find the maximum power that can be transferred to  
   the 100 W load resistance, in the circuit shown in Fig. 12(b). (16)

   

   Chapter 2, Example 2.49 [ Page No - 2.110 ]

13. (a)  Determine the resonant frequency, bandwidth and quality factor of the coil for the  

   series resonant circuit considering R = 10 W, L = 0.1 H and C = 10 mF. Derive the 

   formula used for bandwidth.  (16)

   Chapter 5, Section 5.2.4 and Example 5.5 [ Page No - 5.6, 5.15 ]

(OR)

 (b) (i) Derive the expression for equivalent inductance of the parallel resonant circuit as  

   shown in Fig. 13 (b) (i).   (8)

   Chapter 5, Section 5.7 [ Page No - 5.59 ]

  (ii) Write the mesh equations and obtain the conductively 

   coupled equivalent circuit for the magnetically  

   coupled circuit shown in Fig. 13 (b)  (ii).         (8)    

   Chapter 5, Example 5.28 and Section 5.6.3 [ Page No - 5.87, 5.52 ]
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14. (a)  A sinusoidal voltage of 10 sin 100 is connected in series with a switch and R = 10 W

   & L = 0.1 H. If the switch is closed at t = 0, determine the transient current i(t).(16)

   Chapter 3, Example 3.8 [ Page No - 3.57 ]

(OR)

 (b)  In the circuit shown in Fig. 14(b). Determine the transient current after switch is  

   closed at time t = 0, given that an initial charge of 100 mC is stored in the capacitor. 

   Derive the necessary equations. (16)

   Chapter 3, Example 3.12 [ Page No - 3.64 ]

15. (a)  Obtain the readings of two wattmeters connected to a three phase, 3 wire, 120 V  

   system feeding a balanced D connected load with a load impedance of 12∠ 30o W. 

   Assume RYB phase sequence. Determine the phase power and compare the total  

   power to the sum of wattmeter readings. (16)

   Chapter 4, Example 4.23 [ Page No - 4.94 ]

(OR)

 (b) (i) If W
1
 & W

2 
are the readings of two wattmeters which measures power in the three 

   phase balanced system and if W
1
/W

2 
= a, show that the power factor of the circuit 

   is given by    (8)

                                       cos
a a

a

1

1
22

φ =
− +

+

   Chapter 4, Example 4.54 [ Page No - 4.132 ]

  (ii) A symmetrical, three phase, three wire 440 V ABC system feeds a balanced  

   Y-connected load with Z
A 

= Z
B
 = Z

C
 = 10∠ 30o W obtain the line currents.         (8)

   Chapter 4, Example 4.23 [ Page No - 4.94]

t = 0

15W

50 V
i(t) 200 Fm

Fig. 14(b)
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Time:  3 hours  Maximum: 100 marks

Answer all questions

PART A – (10 × 2 = 20 marks)

1.  What are the limitations of Ohm's law?

  Chapter 1, SA - Q1.10  [ Page No - 1.140 ]

2. The equivalent resistance of four resistors joined is parallel is 30 ohms. The current flowing  
 through them are 0.5, 0.4, 0.6 and 0.1 A. Find the value of each resistor.

  Chapter 2, SA - Q2.5  [ Page No - 2.145 ]

3. Determine the value of current I
o
 of the given figure. 3

  Chapter 2, SA - Q2.1 [ Page No - 2.144 ]

4. State reciprocity theorem.

  Chapter 2, Section 2.6.4 [ Page No - 2.126 ]

5. Draw the frequency response characteristics of parallel resonant circuit.

  Chapter 5, Section 5.3.2 [ Page No - 5.25 ]

6. Determine the equivalent inductance of the circuit comprising two inductors in series opposing  

 mode.

  Chapter 5, Section 5.7 [ Page No - 5.58 ]

7. Determine the Laplace transform of unit step function u(t) and sinusoidal function sin (wt).

  Chapter 3, Table 3.1 [ Page No - 3.5 ]

8. A RLC series circuit has R = 10 ohms and L = 2H. What value of capacitance will make the  

 circuit critically damped? 

  Chapter 3, SA - Q3.20  [ Page No - 3.99 ]

9. What is a phase sequence of 3 phase system?

  Chapter 4, SA - Q4.21  [ Page No - 4.144 ]

10. List any two advantages of three phase system over single-phase system.

  Chapter 4, Section 4.18  [ Page No - 4.59 ]
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PART B – (5 × 16 = 80 marks)

11.  (a)  (i) Calculate the node voltages of given circuit in fig. 11(a) (i).                               (8)

   Chapter 1, Example 1.42 [ Page No - 1.99 ]

  (ii) Determine current I
o
 for the given circuit in Fig. 11(a) (ii) when v

s
 = 12 V.        (8)

   

   Chapter 1, Example 1.37 [ Page No - 1.85 ]

(OR)

 (b) (i) Using mesh analysis for the given fig. 11(b) (i), find the current I
2
 and drop across 

   1W resistor. (12)

   

   Chapter 1, Example 1.30 [ Page No - 1.75 ]

  (ii) Find the equivalent capacitance  

   C between terminals A and B  

   of fig. 11(b) (ii).                 (4)

   Chapter 2, Example 2.11 [ Page No - 2.44 ]
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12. (a) (i) Obtain the equivalent resistance R
ab

 of the circuit given in fig 12 (a) (i) and calculate 
   the total current i.    (8)

   Chapter 2, Example 2.7 [ Page No - 2.39 ]

  (ii) Find the value of R
L
 in fig. 12(a)(ii) for maximum power to R

L
 and calculate the 

   maximum power.          (8)

   Chapter 2, Example 2.46 [ Page No - 2.107 ]

(OR)

 (b)  Apply superposition theorem to determine current i through 3W resistor for the 

   given circuit in fig. 12(b). (16)

   Chapter 2, Example 2.40 [ Page No - 2.90 ]

13. (a)  For the series resonant circuit of Fig. 13(a),

   find I, V
R
, V

L
 and V

C
 at resonance. Also,if 

   resonant frequency is 5000Hz, determine  

   bandwidth Q factor, half power frequencies,  

   and power dissipated in the circuit at  

   resonance and at the half power frequencies.  

   Derive the expression for resonant frequency.

                                                                (16)

   Chapter 5, Example 5.2 [ Page No - 5.12 ]
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(OR)

 (b) (i) Obtain the conductively coupled  

   equivalent circuit for the given circuit  

   in Fig. 13(b)(i) and find the voltage drop  
   across 12 W resistor.                        (8)

   Chapter 5, Example 5.33 [ Page No - 5.93 ]

  (ii) The number of turns in two coupled coils are 500 turns and 1500 turns respectively.  

   When 5 A current flows in coil 1, the total flux in this coil is 0.6 × 10-3 wb and the 

   flux linking in second coil is 0.3 × 10-3 wb. Determine L
1
, L

2
, M and K.            (8)

   Chapter 5, Example 5.20 [ Page No - 5.75 ]

14. (a)  A series RL circuit with R = 50 W and L = 30 H has a  

   constant voltage V = 50 volts applied at t = 0 as shown in  

   fig.14 (a). Determine the current i, voltage across inductor. 
   Derive the necessary expression and plot the respective  

   curves.                                                                      (16)

   Chapter 3, Example 3.2 [ Page No - 3.48 ]

(OR)

 (b) (i) Determine the impedance (Z) parameter of the given two port network in Fig. 14(b)(i)

(8)

   Not in Regulation 2017

  (ii) Find the hybrid (h) parameter of the two port network in Fig. 14(b)(ii).             (8)

   Not in Regulation 2017

15. (a) (i) For the D-D system shown in Fig. 15(a)(i), find the phase angle q
2
 and q

3
 for 

   the specified phase sequence. Also, find the phase current and line current in each  
   phase of the load.    (8)
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   Chapter  4, Example 4.52 [ Page No - 4.129 ]

  (ii) A 3 phase 400V supply is given to balanced star connected load of impedance  

   (8 + 6j) ohms in each branch. Determine line current, power factor and total power.

 (8)

   Chapter 4, Example 4.23 [ Page No - 4.94 ]

(OR)

 (b)  The two wattmeter produces wattemeter readings P
1
 = 1560W and P

2
 = 2100W 

   when connected to a delta connected load. If the line voltage is 220 V, calculate (i)  

   the per phase average power (ii) total reactive power, (iii) power factor and (iv) the  

   phase impedance. Is the impedance inductive or capacitive? Justify.                (16)

   Chapter 4, Example 4.46 [ Page No - 4.122 ]
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B.E/ B.Tech DEGREE EXANMINATION, APRIL/MAY 2017

Second Semester

Electronics and Communication Engineering

EE 6201 – CIRCUIT THEORY

(Regulation 2013)

Time:  3 hours  Maximum: 100 marks

Answer all questions

PART A – (10 × 2 = 20 marks)

1.  Find 'R' in the circuit shown below.

  

  Chapter 2, SA - Q2.8  [ Page No - 2.146 ]

2. Determine the current i(t) for the given circuit

  Chapter 4, SA - Q4.3 [ Page No - 4.140 ]

3. A star connected load of 5W each is to be cconverted in to an equivalent delta connected 

 load. Find the resistance be used.

  Chapter 2, SA - Q2.20  [ Page No - 2.150 ]

4. A load is connected to a network of the terminals to which load is connected, R
th
 = 10 ohms 

 and V
th
 = 40 V. Calculate the maximum power supplied to the load.

  Chapter 2, SA - Q2.40  [ Page No - 2.155 ]

5. Define self inductance and mutual inductance of a coil.

  Chapter 5, SA - Q5.36, Q5.37 [ Page No - 5.107 ]

6. Given the circuit, what is the equivalent inductance of the system shown below.

  

  Chapter 5, Section 5.7 [ Page No - 5.57 ]

7. Define time constant for RL circuit. Draw the transient current characteristics

  Chapter 3, SA - Q3.6 & Section 3.3.2  [ Page No - 3.97, 3.15 ]

8. When a two port network is said to be reciprocal

  Not in Regulation 2017

9. Draw the phasor diagram of line currentts and line voltages of a balanced delta connected load.

  Chapter 4, Section 4.21.3 [ Page No - 4.69, 4.71 ]

10. Distinguish between unbalanced supply and unbalanced load.

  Chapter 4, SA - Q4.25 [ Page No - 4.144 ]
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PART B – (5 × 16 = 80 marks)

11.  (a)  (i) Determine the potential difference between points A and B given in fig. 11(a)(i)(8)

  

   Chapter 1, SA - Q1.23  [ Page No - 1.143 ] 

  (ii) Using Mesh analysis,find the current I
o
n the circuit shown fig. 11(a)(ii).            (8)

   Chapter 1, Example 1.33 [ Page No - 1.79 ]

(OR) (b) (i) Determine v
x
 and i

x
 in the given fig 11 (b) (i).    (10)

  

   Chapter 1, Example 1.40 [ Page No - 1.89 ]  

  (ii) Write the mesh equation and nodal equation for the network in fig. 11(b) (ii) by  
   inspection method.   (6)

   Chapter 1, Example 1.48 [ Page No - 1.108 ]
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12. (a) (i) Apply source transformation technique to determine current i
o 
in fig. 12(a)(i). (8)

   Chapter 2, Example 2.15 [ Page No - 2.48 ]

  (ii) Find the power delivered by the 20V source using superposition theorem.        (8)

   Chapter 2, Example 2.34 [ Page No - 2.82 ]

(OR)

 (b)  Apply Norton theorem to determine current I
o 
for the given circuit in Fig. 12(b).(16)

   Chapter 2, Example 2.57 [ Page No - 2.121 ]

13. (a) (i) Derive the expression for resonant frequency and bandwidth for a series RLC  

   resonant circuit.   (8)

   Chapter 5, Section 5.1, 5.2.4 [ Page No - 5.1, 5.6 ]

  (ii) In the parallel RLC circuit of Fig. 13(a)(ii), let R = 8kW, L = 0.2 mH and C = 8 mF. 

   Calculate w
0
, Q, half power frequencies and BW.    (8)

   Chapter 5, Example 5.8 [ Page No - 5.36 ]
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(OR)

 (b) (i) Find the voltage drop across 12W resistor for the given circuit in Fig. 13(b)(i). Also, 

   draw the conductively coupled equivalent circuit.                                               (8)

   Chapter 5, Example 5.33 [ Page No - 5.93 ]

  (ii) The number of turns in two coupled coils are 500 turns and 1500 turns respectively.  

   When 5 A current flows in coil, the total flux in this coil is 0.6 × 10-3 wb and the 

   flux linking in second coil is 0.3 × 10-3 wb. Determine L
1
, L

2
M and K.                (8)

   Chapter 5, Example 5.20 [ Page No - 5.75 ]

14. (a)  A series RL circuit with R = 10W and L = 0.1H is supplied by an input voltage 

   v(t) 10 sin 100t Volts applied at t = 0 as shown in fig. 14(a). Determine the  
   current i, voltage across inductor. Derive the necessary expression and plot the  

   respective curves.                                                                                               (16)

   Chapter 3, Example 3.8 [ Page No - 3.57 ]

(OR)

 (b)  Determine the impedance (Z) parameter and draw the T-equivalent circuit for the  

   given two port network in Fig. 14 (b). Also, derive the transmission line (ABCD)  

   parameters from Z parameter.                                                                            (16)

  

   Not in Regulation 2017
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15. (a) (i) A balanced D-connected load having an impedance 20 - j15W is connected to a 

   D-connected, positive sequence supply V
ab

 = 330∠0o V. Calculate the phase currents 

   of the load and the line currents.                                                                          (8)

                       Chapter 4, Example 4.31 [ Page No - 4.105 ]

  (ii) The input power to a 3f load is 10kw at 0.8 pf. Two wattmeters are connected to 

   measure power, find the individual readings of the wattmeters.                          (8)

                      Chapter 4, Example 4.42 [ Page No - 4.118 ]

(OR)

 (b)  For the unbalanced circuit in Fig. 15(b), determine the line currents and voltage  

   across each load impedance. Draw the phasor diagram.                                   (16)

                      Chapter 4, Example 4.29 [ Page No - 4.102 ]
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AC circuit 4.1

AC source  1.9, 4.1

Active elements 1.4, 1.9

Active power 4.20

Additivity 2.143

Admittance 4.32

Admittance angle 4.33

Admittance triangle 4.33

Alternating

- current 4.1

- voltage 4.1

Alternating current source 1.9

Ampere 1.6

Angular frequency 4.4, 4.133

Anti-resonance 5.16

Apparent power 4.19, 4.31

Average power 1.19, 4.19

 - value 4.6

B

Balanced emf 4.60

 - load 4.72

 - system 4.60, 4.66

Bandwidth 5.6, 5.7

Bilateral element 1.8

Branch 1.10

C

Calorie 1.6

Capacitance 1.1, 2.11, 2.12, 4.10

Capacitive reactance 4.28, 4.14
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Chord 1.21

Circuit theory 1.1
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Complex power 4.19
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Conductive coupling 5.43
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Critical damping 3.31

Critically damped response 3.34

Critical resistance 3.32

Current 1.1, 1.6

Current controlled current source 1.137, 1.2

Current controlled voltage source 1.137, 1.2

Current division rule 1.28, 2.26, 2.27

Current magnification 5.26

Current source 1.17, 4.1

- ideal 1.17

- practical 1.17

Current variables 1.23

Cycle 4.4

  

D

Damped oscillatory response 3.33

Damping ratio 3.32

DC circuit 1.9

DC source 1.9

Delta connection 1.14

Dependent source 1.4, 1.10

Derived parameters 1.3

Direct current source 1.9

Dot rule 5.49

Double tuned coupled circuit 5.63

Double tuned coupled coil 5.63

Dynamic resistance 5.16

 

E

Effective value 4.6
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I. 2 Circuit Theory

Electric circuit 1.1

Electrical energy 1.1

Energy 1.5, 1.19, 4.21

Energy stored in

 - capacitance 4.11

 - inductance 4.10

Exponential voltage 3.4

 

F

Farad 4.10

Final condition (value) 3.9, 3.14

Final voltage 3.10

Flux 4.8

Forced response 3.2

Form factor 4.7

Frequency 4.1, 4.4

Fundamental parameter 1.9

G

Graph 1.20

H

Half-power frequencies 5.6

Higher cut-off frequency 5.6, 5.29

Homogeneity 7.1

Henry 4.9

Hertz 4.4, 4.9

I

Ideal

 - capacitor 1.1

 - current source 1.17

 - inductor 1.1

 - resistor 1.1

 - voltage source 1.17

Impedance 4.29, 4.35

Impedance angle 4.30

Impedance triangle 4.30

Impulse voltage 3.3

Independent current variables 1.24

Independent source 1.10

Independent voltage variables 1.24

Inductance 4.8, 4.9

Inductive reactance 4.13

 - in s-domain 4.13

Initial condition (value) 3.9, 3.14

Initial current 3.10

In-phase 4.16

Internal impedance 4.2

Internal resistance 1.17

Inverse parameter 1.3

J

Joule 1.5

K

Kirchoff ’s current law 1.25

Kirchoff ’s voltage law 1.25

L

Lagging 3.16

Law of conservation of energy 1.4

Laws of magnetic induction 4.9

Leading 3.16

Lenz's law 5.49

Linear 2.76

 - circuit 1.8

 - element 1.8

 - network 1.8

Linear transformer 5.49

Line current 4.61

 - voltage 4.61

Lines 4.60

Link 1.21, 1.22

Loads 1.4

Load set reference 1.23

Looking back impedance 2.31

Looking back resistance 2.29, 2.50

Lower cut-off frequency 5.6, 5.29

M

Magnetic coupling 5.43

Maximum power transfer theorem 2.100, 2.101, 2.102, 2.104

Mesh 1.41

 - analysis 1.41

 - current 1.41

Millman's theorem 2.6, 2.137

Mutual-conductance 1.93

Mutual induced emf  5.43

Mutual inductance 5.44

Mutual-resistance 1.43
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N

Natural frequency of oscillation 3.22

Natural response 3.2

Natural transformer 5.49

Negative charge 1.6

Network 1.9

Network topology 1.20

Network variables 1.23

Neutral 4.60

Neutral displacement voltage 4.82

 - shift voltage 4.83

Node 1.10, 1.91

Node analysis 1.91

Node voltage 1.92

Normal phase sequence 4.61

Norton's current source 2.51

Norton's resistance 2.51

Norton's theorem 2.51

O

Ohm's law 1.24

 - of ac circuits 4.35

Open circuit 1.15

Optimum mutual inductance 5.65

Orientation 1.23

Oriented graph 1.20

Over damped response 3.35

P

Parabolic voltage 3.4

Parallel aiding 5.57

Parallel connection 1.12

Parallel fed double tuned circuit 5.68

Parallel opposing 5.57

Parallel resonance 5.16

Parameters 1.3

Particular solution 3.2

Passive 

 - circuit 1.4

 - element 1.4, 1.9

 - network 1.4

Path 1.20

Peak factor 4.7

Phase 4.15

Phase angle 4.15

Phase current 4.61

 - difference 4.16

 - sequence 4.61

 - voltage 4.61

Phasor 4.17

Phasor diagram 4.18

Planar circuits 1.41

Positive charge 1.6

Potential difference 1.7

Power 1.4, 1.6, 1.19, 4.19

Power factor 4.21

Power factor angle 4.31

Power triangle 4.20

Practical

 - current source 1.18, 4.2

 - voltage source 1.18, 4.3

Primary winding 5.43, 5.62

Principal node 1.10, 1.92

Principle of superposition 2.76

p-connection 1.14

Q

Quality factor 5.3, 5.26

R

Ramp voltage 3.4

Rated current 2.6

Rated voltage 2.3

RBY sequence 4.61

Reactive power 4.20

Reciprocal network 2.126

Reciprocity theorem 2.126

Reference 1.23 

Reference node 1.92

 - phasor 4.73

Rejector circuit 5.29

Resistance 1.1, 1.26

Resistivity 1.26

Resonance 5.1

Resonant frequency 5.1, 5.16

Reversed phase sequence 4.61

Rms value 4.6

Rotating vector 4.17

RYB sequence 4.61
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S

Secondary winding 5.43, 5.62

Selectivity 5.11

Selector circuit 5.29

Self-conductance 1.93

Self induced emf 5.43

Self inductance 5.44

Self-resistance 1.43

Series aiding 5.57

Series connection 1.12

Series fed double tuned circuit 5.68

Series opposing 5.57

Series resonance 5.1

Short circuit 1.15

Single loop circuit 1.31

Single node pair circuit 1.31

Single tuned coupled circuit 5.63

Single tuned coupled coil 5.63

Sinor 4.17

Sinusoidal current 4.7

Sinusoidal source 1.9, 4.1

Sinusoidal voltage 3.4, 4.3

Source-free response 3.2

Source impedance 4.2, 4.3

Source resistance 1.18

Source transformation 1.18, 4.3

Stagger tuned circuit 5.63

Star connection 1.14

Steady state analysis 1.8

Step response

 - RL circuit 3.11

 - RC circuit 3.21

 - RLC circuit 3.29

Step voltage 3.3

Subgraph 1.21

Supermesh 1.67

Supernode 1.110

Superposition theorem 2.76

Susceptance 4.32

T

T-connection 1.14

Thevenin's resistance 2.50

Thevenin's theorem 2.50

Thevenin's voltage source 2.50

Three phase 4.59

Three phase alternators 4.59

Time constant 3.15, 3.24

Time period 4.1, 4.4

Topology 1.20

Total response 2.77

Transient analysis 1.8, 3.1

Transient period 1.8, 3.1

Transient response 3.1

Transient state 3.1

Tree 1.21

Tuning circuit 5.10

Twig 1.22

U

Unbalanced load 4.72

Undamped response 3.32

Under damped response 3.33

Unilateral element 1.8

Unit 1.19

V

Vector 4.17

Volt 1.7

Voltage 1.1, 1.7

Voltage controlled current source 1.2, 1.137

Voltage controlled voltage source 1.2, 1.137

Voltage division rule 1.27, 2.25, 2.26

Voltage magnification 5.3

Voltage source 1.17, 4.1

 - ideal 4.1

 - practical 4.1

Voltage variables 1.23

W

Watt  1.6

Waveform 4.4

Weber-turns 4.9

Winding sense 5.48

X

Y

 

Z 

Zero value source 2.51
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