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Preface

Brief Introduction to the Subject 

Circuit Theory and Networks is a gateway course to all engineering subjects; Electrical Engineering, 

Electronics and Communication Engineering, Computer Science and Engineering, Information 

Technology, and Instrumentation Engineering in particular. Almost all engineering systems use electric 

circuits as components. To understand the operation of these systems, the knowledge of Circuit Theory 

is very essential. Also, the subject of Circuit Theory provides the background for understanding the 

behaviour of many other electrical and electronic devices. The present book has been written keeping 

this in view and aims to provide requisite information of circuit theory and networks, starting from the 

fundamentals. It is an acceptable fact that students do not automatically acquire conceptual understanding; 

the concepts must be explained and the students given a chance to grapple with them. Our presentation, 

based on years of teaching this course, blends conceptual understanding with analytical skills.

Objective

This book has been written as per the syllabus of Circuit Theory and Networks (EE 301) of the West 

Bengal University of Technology (WBUT). Although there are several books on Circuit Theory, there 

is hardly any book meeting the entire syllabi of WBUT. This text works well in our self-paced course, 

where students can rely on it as their primary learning resource. Nonetheless, completeness and clarity 

are equally advantageous when the book is used in a more traditional classroom setting. Cognizance of 

the present standard of the students and the diffi culties of the teachers have been given due thought. The 

conceptual examples and practice problems and a variety of conceptual and multiple-choice questions at 

the end of each chapter give students a chance to check and enhance their conceptual understanding.

Scope

This book is mainly written for the third-semester students under WBUT. However, as this course 

mitigates a defi nite percentage in every competitive examination of engineering professionals, namely, 

IES, UPSC, GATE, etc., we have written this book to help students see that a relatively small number 

of basic concepts are applied to a wide variety of situations. 



xii Preface

Salient Features

 � Chapter organization and terminology in agreement with syllabus structure: EE-301 for EEE/EE/

PE/ICE undergraduate engineering students, Sem. 3; EC 301 for ECE undergraduate engineering 

students, Sem. 3; EE (EI) 301 for AEIE undergraduate engineering students, Sem. 3; and BME 

(EC) 301 for BME undergraduate engineering students, Sem. 3

 � Detailed coverage of different types of systems and networks

 � Every theorem has been explained in the following sequence:

Statement > Proof > Points to be Noted

 � Varied pedagogy including MCQs, Solved Examples, Exercises, Short-Answer-Type Questions, 

and Solved Exercises to explain involved concepts:

 � Illustrations: 700

 � MCQs: 400

 � Exercises: 150

 � Solved Exercises: 90

 � Short-Answer-Type Questions: 105

 � Solved Examples: 180

 � Use the APP to

 � Study Important topics on-the-go

 � Revise Quick pointers to ace the examination

 � Test Questions with answers that test concepts learnt

Organization 

This book has a total of ten chapters. Chapter 1 provides information about the basic characteristics of 

different types of systems. Chapter 2 deals with the basic circuit theory concepts, laws and techniques 

for circuit analysis. Chapter 3 introduces the new topic on magnetically coupled circuits. It deals with 

different models in coupled circuits and analysis of the same. Chapter 4 discusses the application of 

graph-theory concepts in circuit analysis. In this chapter, the application of a mathematical tool like 

graph theory has been presented with the help of a large number of practical examples. Chapter 5 

is devoted to various network theorems necessary for simplifi ed analysis of electrical problems. This 

chapter is very important for examination purposes as several questions from this chapter are asked 

in exams. 

 Chapter 6 introduces a new method of circuit analysis—Laplace Transform method. Starting from 

the very fundamental concept of Laplace transform, its applications in various complicated circuit 

problems have been discussed in detail in this chapter. Chapter 7 deals with the concepts of the two-

port network which has vast applications in many fi elds like transmission lines, fi lters and attenuators. 

Chapter 8 is divided into two parts. Part I presents the fundamentals of Fourier series and its applications 

for circuit analysis. Part II discusses Fourier transforms and their applications. Chapter 9 is devoted 

to operational amplifi ers and active fi lters. Chapter 10 talks about analysis of various resonances and 

their combinations in detail.
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CHAPTER

1
Introduction to Different

Types of Systems

1.1 INTRODUCTION

An electrical network is one of the many important physical systems. In order to understand the

basic characteristics of an electric network, we must first know the different concepts of systems.

In this chapter, the different types of systems have been discussed.

1.2 CONCEPTS OF SIGNALS AND SYSTEMS

1.2.1 Signals

A signal is defined as a function of one or more variables, which provides information on the nature

of a physical phenomenon.

When the function depends on a single variable, the signal is said to be one-dimensional, for

example, a speech signal whose amplitude varies with time, depending on the spoken word and who

speaks it.

When the function depends on two or more variables, the signal is said to be multidimensional, for

example, an image (2-D signal).

1.2.2 Systems

A system is an entity that takes an input signal and produces an output signal. It is a combination and

interconnection of several components to perform a desired task.

The system responds to one or more input quantities, called input signals or excitation, to produce

one or more output quantities, called output signals or response.



1.2 Circuit Theory and Networks

Figure 1.1 Block diagram representation of a system

1.3 DIFFERENT TYPES OF SYSTEMS

1. Continuous and Discrete Time Systems

2. Fixed and Time-varying Systems

3. Linear and Non-linear Systems

4. Lumped and Distributed Systems

5. Instantaneous and Dynamic Systems

6. Active and Passive Systems

7. Causal and Non-causal Systems

8. Stable and Unstable Systems

9. Invertible and Non-invertible Systems

1.3.1 Continuous and Discrete Time Systems

Signals are represented mathematically as functions of one or more independent variables. We

classify signals as being either continuous-time (functions of a real-valued variable) or discrete-time

(functions of an integer-valued variable).

In other words, a continuous-time signal has a value defined for each point in time and a discrete-

time signal is defined only at discrete points in time.

To signify the difference, we (usually) use round parenthesis around the argument for continuous

time signals, e.g., x(t) and square brackets for discrete-time signals, e.g., x[n]. We will also use the

notation xn for discrete-time signals.

Figure 1.2(a) Continuous-time signal Figure 1.2(b) Discrete-time signal
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A continuous-time system is a system which accepts only continuous-time signal to produce

continuous-time internal and output signals. On the other hand, a discrete-time system is a system

that transforms discrete-time input(s) into discrete-time output(s).

The examples given below are common in our daily life.

Continuous-time systems
(i) Atmospheric pressure as a function of altitude

(ii) Electric circuits composed of resistors, inductors, capacitors driven by continuous-time sources.

Discrete-time systems
(i) Weekly stock market index

(ii) Balance in a bank account from month to month.

The sequence of values of the discrete-time signal shown in Fig. 1.2(b) defined at discrete points

in time are called samples and the spacing between them is called the sample spacing. For equal

sample spacing, the sequence of values are expressed as a function of the signed integer n as x[n],

where n is termed as a sequence of samples or sequence, in short.

1.3.2 Time-Invariant (Fixed) and Time-Varying Systems

A system is time-invariant or fixed if the behaviour and characteristics of the system do not change

with time. Otherwise, the system is time-varying.

Mathematically, if the input x(t) gives the output y(t), then the system is time-invariant if the input

x(t � T) gives the output y(t � T) for any delay T. Hence, a time-shift of the input gives the same

time-shift of the output.

Figure 1.3 Time-invariant system

Whether a system is time-invariant or time-varying can be seen in the differential equation (or

difference equation) describing it. Time-invariant systems are modeled with constant coefficient

equations. A constant coefficient differential (or difference) equation means that the parameters of

the system are not changing over time and an input now will give the same result as the input later.
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Example 1.1  A continuous system is modeled by the equation y(t) = tx(t) + 4 , and a discrete-

time system is modeled by y[n] = x2[n]. Are these systems time-invariant?

Solution For continuous-time system:

For input x(t) = x1(t), output y1(t) = tx1(t) + 4 (i)

For input x(t) = x1(t � T), output, y2(t) = tx1(t � T) + 4 (ii)

From the condition of time-invariance, the output should be,

y1(t � T) = (t � T)x1(t � T) + 4 (iii)

From Eqs (ii) and (iii), y2(t) ¹ y1(t � T)

Hence, the system is not time-invariant.

For discrete-time system:

For input x1[n], output y1[n] = x1
2[n]

For input x1[n � n0], output = x1
2[n � n0]

From the condition of time-invariance, the shifted output y1[n � n0] = x1
2[n � n0]

Hence, the system is time-invariant.

1.3.3 Linear and Non-Linear Systems

A system, in continuous-time or discrete-time, is said to be linear, if it obeys the properties of

superposition, i.e., additivity and homogeneity (or scaling), while a system is non-linear if it does

not obey at least any one of these properties.

The superposition principle says that the output to a linear combination of input signals is the same

linear combination of the corresponding output signals. Mathematically, the linearity condition is

based on two properties.

1. Additivity If the input signals x1(t) and x2(t) correspond to the output signals y1(t) and y2(t),

respectively, then the input signal {x1(t) + x2(t)} should correspond to the output signal {y1(t) +

y2(t)}.

2. Homogeneity If the input signal x1(t) corresponds to the output signal y1(t), then the input

signal a1x1(t) should correspond to the output signal a1y1(t) for any constants a1.

Combining these two properties, the condition for a linear system can be written as, if the input

signals x1(t) and x2(t) correspond to the output signals y1(t) and y2(t), respectively, then the input

signal a1x1(t) + a2x2(t) should correspond to the output signal a1y1(t) + a2y2(t) for any constants a1

and a2.

Example 1.2 Check whether the systems with the input-output relationship given below are linear.

(a) y(t) = mx(t) + c, (b) y(t) = tx(t)

Solution (a) For an input x1(t), output, y1(t) = mx1(t) + c

For an input x2(t), output, y2(t) = mx2(t) + c

For an input {x1(t) + x2(t)}, output, y3(t) = m{x1(t) + x2(t)} + c (i)

From the condition of linearity, the output should be

{y1(t) + y2(t)} = m{x1(t) + x2(t)} + 2c (ii)

From Eqs (i) and (ii), we conclude that the system is non-linear.

(b) For an input x1(t), output, y1(t) = tx1(t)
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For an input x2(t), output, y2(t) = tx2(t)

For an input {k1x1(t) + k2x2(t)}, output, y3(t) = t{k1x1(t) + k2x2(t)} (i)

where, k1 and k2 are any arbitrary constants.

From the condition of linearity, the output should be

{k1y1(t) + k2y2(t)} = k1tx1(t) + k2tx2(t) = t{k1x1(t) + k2x2(t)} (ii)

From Eqs (i) and (ii), we conclude that the system is linear.

1.3.4 Lumped and Distributed Systems

All physical systems contain distributed parameters because of the physical size of the system

components. For example, the resistance of a resistor is distributed throughout its volume.

However, if the size of the system components is very small with respect to the wavelength of the

highest frequency present in the signals associated with it, then the system components behave as if

it all were occurring at a point. This system is said to be lumped-parameter system.

Distributed parameter systems are modeled as given below.

1. By partial differential equations if they are continuous-time systems

2. By partial difference equations if they are discrete-time systems.

Lumped parameter systems are modeled with ordinary differential or difference equations.

Example 1.3 Consider an electric power system of frequency 50 Hz. The wavelength of the

signal is obtained as,

nl = C Þ l = 
53 10

50

C

n

´
=  = 6000 km

Thus, the electrical system inside a room can be treated as a lumped-parameter

system, but will be treated as distributed system for a long-distance transmission

line.

1.3.5 Instantaneous (Static or Memoryless) and Dynamic Systems

An instantaneous or static or memoryless system is a system where the output at any specific time

depends on the input at that time only. On the other hand, a dynamic system is one whose output

depends on the past or future values of the input in addition to the present time.

A static system has no memory. Physically, it contains no energy-storage elements, whereas a

dynamic system has one or more energy-storage element(s).

Example 1.4  An electrical circuit containing resistance R has the v�i relationship as, v(t) = Ri(t),

and so the system is static. But an electrical circuit containing capacitor C has the

v�i relationship as, v(t) = 
0

1
( )ò

t

i t dt
C

, and so the system is dynamic system.



1.6 Circuit Theory and Networks

1.3.6 Active and Passive Systems

A system having no source of energy is known as a passive system, for example, electric circuits

containing resistance, capacitance, inductance, diodes, etc.

A system having source of energy together with other passive elements is known as an active

system, for example, electric circuits containing voltage source or current source or op-amp, etc.

1.3.7 Causal and Non-causal Systems

A system is said to be causal if the output of the system depends only on the input at the present time

and/or in the past, but not the future value of the input. Thus, a causal system is nonanticipative,

i.e., output cannot come before the input.

On the other hand, the output of a non-causal system depends on the future values of the input.

Example 1.5 The moving-average system described by

y[n] = 
1

3
{x[n] + x[n � 1] + x[n � 2]}

is causal, but the moving-average system described by

y[n] = 
1

3
{x[n + 1] + x[n] + x[n � 1]}

is non-causal, since the output depends on the future value of the input x[n + 1].

It is obvious that the idea of future inputs does not have any physical meaning if we take time as

our independent variable and for that reason all real-time systems are causal. However, for the case

of image processing, the independent variable may be the pixels to the left and right (the �future�) of

the current position on the image, and thus, we can have a non-causal system.

Figure 1.4(a) Causal systems Figure 1.4(b) Non-causal systems
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1.3.8 Stable and Unstable Systems

A stable system is one where the output does not diverge as long as the input does not diverge. A

bounded input produces a bounded output. For this reason, this type of system is known as bounded

input-bounded output (BIBO) stable system.

Mathematically, a stable system must have the following property:

If x(t) be the input and y(t) be the output, then the output must satisfy the condition.

| y(t) | £ My < µ; for all t

whenever the input satisfy the condition

| x(t) | £ Mx < µ; for all t

where, Mx and My both represent a set of finite positive numbers.

If these conditions are not met, i.e., the output of the system grows without limit (diverges) from

a bounded input, then the system is unstable.

1.3.9 Invertible and Non-invertible Systems

A system is referred to as an invertible system if

(i) distinct inputs lead to distinct output, and

(ii) the input can be recovered from the output.

Figure. 1.5 Invertible system

The property of invariability is important in the design of communication systems. When a

transmitted signal propagates through a communication channel, it becomes distorted due to the

physical characteristics of the channel. An equalizer is connected in cascade with the channel in the

receiver to compensate this distortion. By designing the equalizer to be inverse of the channel, the

transmitted signal is restored.

1.4 DIFFERENT TYPES OF SIGNALS

Signals can be classified into different categories, as given below.

1. Continuous-time and discrete-time signals

2. Periodic and non-periodic signals

3. Odd and even signals

1.4.1 Continuous-time and Discrete-time Signals

Signals are represented mathematically as function of one or more independent variables. We classify

signals as being either continuous-time (functions of a real-valued variable) or discrete-time (func-

tions of an integer-valued variable).

In other words, a continuous-time signal has a value defined for each point in time and a discrete-

time signal is defined only at discrete points in time.
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To signify the difference, we (usually ) use round parenthesis around the argument for continuous

time signals, e.g., x(t) and square brackets for discrete-time signals, e.g., x[n]. We will also use the

notation xn for discrete-time signals.

The sequences of values of the discrete-time signal shown in Fig. 1.6(b) defined at discrete points

in time are called samples, and the spacing between them is called the sample spacing. For equal

sample spacing, the sequences of values are expressed as a function of the signed integer n as x[n],

where n is termed as a sequence of samples or sequence, in short.

1.4.2 Periodic and Non-Periodic Signals

A signal f(t) is said to be periodic if

f(t) = f(t ± nT) (1.1)

where n is a positive integer and 'T ' is the period. Thus, a periodic signal repeats itself every T

seconds. Some periodic signals are shown in Fig. 1.7.

t0 T 2T 3T 4T  T 2T

V

v(t )

(a) (b)

Figure 1.7 Periodic signals

A signal not satisfying the above condition of Eq. (1.1) is called a non-periodic signal. Examples of

some non-periodic signals are e¢, t, etc.

1.4.3 Odd and Even Signals

A signal f(t) is said to be odd if

f(t) = �f(�t) (1.2)

time (t)

x (t )

Figure 1.6(a) Continuous-time signal

X [n]

X [ 4]

X [ 2] X [1] 

X [3]

X [2]

X [ 3]
X [ 1]

0 1 2 3

 1

 2

 3

 4

X [0]

time 
[ n ]

Figure 1.6(b) Discrete-time signal
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Some examples of odd signals are sine functions, triangular functions and square function, as shown

in Fig. 1.8.

0 T/4

T/2

T
t

− T/2− T

v (t )

− V

V

ω t

f (t )

0

Figure 1.8 Odd signals

A signal f(t) is said to be even if

f(t) = f(�t) (1.3)

Some examples of even signals are shown in Fig. 1.5.

t0 T/2− T/2

f (t )
f (t )

V

−V

ωt0

Figure 1.9 Even signals

Decomposition of a Signal into Odd and Even Components For any function f(t), let the

odd component be denoted by f0(t) and the even component by fe(t), so that,

f(t) = f0(t) + fe(t) (1.4)

\ f(�t) = f0(�t) + fe(�t) = f0(t) + fe(t) (1.5)

[By Eq. (1.2 and (1.3)]

By addition and subtraction of Eqs (1.4) and (1.5), we get,

fe(t) = [ ]
1

( ) ( )
2

f t f t+ - (1.6)

f0(t) = [ ]
1

( ) ( )
2

f t f t- - (1.7)

By these two equations, we can decompose a signal into its odd and even components.

Example 1.6 Decompose the following signal into its odd and even components.

Solution To find the even and odd components we need the folded signal, i.e., f(�t), as shown in

Fig. 1.10(b).

By point-by-point addition and subtraction, we get the even and odd components as shown in Fig.

1.10 (c) and Fig. 1.10 (d).
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10

f (t )

1

t −1 

f ( t )
1

t0

Figure 1.10(a) Signal of Fig. 1.10(b) Folded Signal of

Ex. 1.1 Fig. 1.10(a)

t

f
e
(t )

f
0
(t )

1/2

1/2

 1/2
0 1 1

t0

 1

1

Figure 1.10(c) Even component Figure 1.10(d) Odd component of signal

of signal of Fig. 1.10(a) of signal of Fig. 1.10(a)

1.5 SOME STANDARD SIGNALS

There are some standard signals which can be generated easily in the laboratory. Some of these

standard signals are discussed below.

 t

f (t ) f (t )

 t

Figure 1.11(a) sin wt Figure 1.11(b) cos wt

Sinusoidal Signal A sinusoid is a signal that has the form of a sine or cosine function.

We consider a sinusoidal voltage, v(t) = Vm sin wt

where Vm is the amplitude,

wt is the argument of the sinusoid,

w is the angular frequency of the sinusoid in rad/s = 2pf = 
2

T

p
,

and T is the time period of the sinusoid.

As the sinusoid is periodic, it repeats itself; such that

v(t) = v(t + T) = Vm sin 
2

sin ( ) sinm mt V t V t
p

w w p w
w

æ ö
+ = + =ç ÷è ø
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A shifted sinusoid can be written as, v(t) = Vm sin (wt + f)

where f is the phase of the sinusoid.

Thus, we see that, �sin wt = sin (wt ± 180°)

�cos wt = cos (wt ± 180°)

±cos wt = sin (wt ± 90°)

m sin wt = cos(wt ± 90°)

Exponential Signal An exponential signal is a function of

time defined as

f(t) = 0, t < 0

Ke�at, t ³ 0

where K and a are some real constants. The reciprocal of a has the dimension of time and is known

as time constant, 
1

a
t
æ ö
=ç ÷è ø

. This is the time to reach 63.2% of the total change from the initial to final

value.

Square Wave Signal A square wave is a type of waveform where the signal has only two levels.

The signal switches between these levels at regular intervals and the switch is instant.

An ideal square wave signal is shown in  the Fig. 1.13

time
T 2 T 3 T0

V

- V

f ( t )

Figure 1.13 Square Wave Signal

Thus, square wave is a special kind of non-sinusoidal periodic signal with a time period T.

Square waves are universally encountered in digital switching circuits and are naturally generated by

binary logic devices.

Saw Tooth Wave

The saw-tooth wave is a kind of non-sinusoidal waveform. Since the wave has some resemblance to

the teeth on the blade of a saw, it is named so.

In general, a saw-tooth wave rises upward and then drops sharply. However, a saw-tooth wave

may also ramp downward and then rise sharply. This type of wave is known as a reverse saw-tooth

wave or inverse saw-tooth wave.

Figure 1.12 Exponential signal

t0

f (t )   Ke
at  

K

0.37 K

  1/aτ
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A typical saw-tooth wave is shown in Fig. 1.14

f ( t )

1

T 2T 3T 4T t0

Figure 1.14 Saw-tooth Wave

Saw-tooth signal is used in many applications, such as in PMW modulator or oscilloscope sweep

circuitry.

1.6 SINGULARITY SIGNALS

(a) Step signal,

(b) Ramp signal, and

(c) Impulse signal,

K

Ku(t )

0

1

u(t )

t

t

0

Figure  1.15 (a) Unit step; (b) Step function of magnitude K

1

u (t − T )

t0 T a b0

K

Figure  1.15 (c) Shifted unit step function; (d) Gate function

1.6.1 Step Signal

This function is also known as Heaviside unit function. It is defined as given below,

f(t) = u(t) = 1 for t > 0

= 0 for t < 0
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and is undefined at t = 0.

A step function of magnitude K is defined as

f(t) = Ku(t) = K for t > 0

= 0 for t < 0

and in undefined at t = 0.

A shifted or delayed unit step function is defined as

f(t) = u(t � T) = 1 for t > T

= 0 for t < T

and is undefined at t = T.

Another function, called gate function, can be obtained from step function as follows.

Therefore, g(t) = Ku(t � a) � Ku(t � b)

1.6.2 Ramp Signal

A unit ramp function is defined as

f(t) = r(t) = t for t ³ 0

= 0 for t < 0

A ramp function of any slope K is defined as

f(t) = Kr(t) = Kt for t ³ 0

= 0 for t < 0

A shifted unit ramp function is defined as

f(t) = r(t � T) = t for t ³ T

= 0 for t < T

1.6.3 Impulse Signal

This function is also known as Dirac Delta function, denoted by d(t). This is a function of a real

variable t, such that the function is zero everywhere except at the instant t = 0. Physically, it is a very

sharp pulse of infinitesimally small width and very large magnitude, the area under the curve being

unity.

t

r (t )

0

1

1    

t

Kr (t )

0

K

1   

tT

r (t − T )

0

1

1

Figure 1.16 (a) Unit ramp function; (b) Ramp function; (c) Shifted unit ramp function
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Consider a gate function as shown in Fig. 1.15.

The function is compressed along the time-axis and stretched a long the y-axis, keeping the area

under the pulse as unity. As a ® 0, the value of 
1

a
 ® µ and the resulting function is known as

impulse.

It is defined as d(t) = 0 for t ¹ 0

and ( ) 1t dtd

¥

-¥

=ò

Also, d(t) = 
1

Lim [ ( ) ( )] [ ( )]
a

d
u t u t a u t

a dt®
- - =

SOLVED PROBLEMS

1.1 Check whether the system defined by,

y t x ta f a f= sin

is time-invariant.

Solution: For input x(t) = x1(t), output y t x t1 1a f a f= sin �(i)

For input x(t) = x1(t � T), output, y t x t T2 1a f a f= -sin �(ii)

From the condition of time-invariance, the output should be,

y t T x t T1 1- = -a f a fsin �(iii)

From equations (ii) and (iii), y2(t) = y1(t � T )

Hence, the system is time-invariant.

1.2 Consider a system S with input x[n] and output y[n] related by,

y[n] = x[n]{g[n] + g[n � 1]}

(a) If g[n] = 1, for all n, show that S is time-invariant.

(b) If g[n] = n, show that S is not time-invariant.

(c) If g[n] = 1 + (�1)n, show that S is time-invariant.

Solution:

(a) If g[n] = 1, for all n, then y n x n x n= + =1 1 2k p
For input x[n] = x1[n], output y n x n1 12= �(i)

For input x[n] = x1[n � n0], output, y n x n n2 1 02= - �(ii)

From the condition of time-invariance, the output should be,

0 t

δ(t )

∞

aa /2 a /3

3/a

2/a

1/a

0 t

f (t )

Figure 1.17 (a) Generation of impulse function

from gate function; (b) Impulse signal
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y n n x n n1 0 1 02- = - �(iii)

From equations (ii) and (iii), y2[n] = y1[n � n0]

Hence, the system is time-invariant.

(b) If g[n] = n, then y n x n n n n x n= + - = -1 2 1k p a f
For input x[n] = x1[n], output y n n x n1 12 1= -a f �(i)

For input x[n] = x1[n � n0], output, y n n x n n2 1 02 1= - -a f �(ii)

From the condition of time-invariance, the output should be,

y n n n n x n n1 0 0 1 02 1- = - - -b gn s �(iii)

From equations (ii) and (iii), y2[n] ¹ y1[n � n0]

Hence, the system is not time-invariant.

(c) If g[n] = 1+ (�1)n , then y n x n x n
n n= + - + + - =-

1 1 1 1 2
1a f a fo t

This relation is same as that of part (a). Hence the system is time-invariant.

1.3 Consider the system S whose input and output are related by,

y(t) = x2(t)

Check whether S is linear.

Solution: For an input x1(t), output, y1(t) = x1
2(t)

For an input x2(t), output, y2(t) = x2
2(t)

For an input {k1x1(t) + k2x2(t)}, output, y3(t) = k x t k x t1 1 2 2

2a f a f+ �(i)

where, k1 and k2 are any arbitrary constants.

From the condition of linearity, the output should be

{k1y1(t) + k2y2(t)} = k1x1
2(t) + k2x2

2(t) �(ii)

From equations (i) and (ii), we conclude that the system is not linear.

1.4 Consider the following discrete-time system with input-output relationships as given,

y[n] = Re{x[n]}

Check whether the system is linear.

Solution: Let, the input be, x n r n js n1 = +

Therefore, the output is, y n x n r n js n r n1 1= = + =Re Rel q l q
Now we consider scaling of the input x1[n] by a complex number, say, a jb+a f , i.e. the input is,

x n a jb x n a jb r n js n ar n bs n j br n as n2 1= + = + + = - + +a f a fl q l q l q
Corresponding output is,

y n x n ar n bs n j br n as n ar n bs n2 2= = - + + = -Re Rel q l q l q
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But the scaled output for linear system is,

a jb y n ar n jbr n+ = +a f 1

As he two outputs are not same, the system is not linear.

1.5 Consider a discrete-time system whose output y[n] is the average of the three most recent values of

the input signal, x[n], given as,

y n x n x n x n= + - + -1
3

1 2l q
Show that the system is BIBO stable.

Solution: Let us assume that, x n Mx< < ¥  for all n,

\ y n x n x n x n

x n x n x n

M M M

M

x x x

x

= + - + -

£ + - + -

£ + +

£

1
3

1 2

1
3

1 2

1
3

n s

Hence, the absolute value of the output signal y[n] is always less than the maximum absolute value

of the input signal x[n] for all n; which shows that the system is stable.

1.6 Determine whether the following continuous-time systems are stable:

(a) y t tx ta f a f= (b) y t x t ta f a f= sin100p

Solution: Here, let the input be bounded.

(a) y t tx ta f a f=

As t ® ¥, y(t) ® ¥ [since x(t) is multiplied by t]

Hence, the system is an unstable system.

(b) y t x t ta f a f= sin100p

Here x(t) is multiplied by sin100pt . We know that the value of sine varies between �1 and 1.

Hence y(t) is bounded as long as x(t) is bounded. Hence the system is stable.

1.7 Determine whether the following continuous-time systems are causal or non-causal:

(a) y t x t ta f a f a f= +cos 1 (b) y t x ta f a f= 2

(c) y t x ta f a f= - (d)
dy t

dt
y t x t

a f a f a f+ + =10 5

(e) y t x t dt
t

a f a f=
-¥

z
Solution:

(a) y t x t ta f a f a f= +cos 1
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Here, y(t) depends on the present input x(t). A cosine function can be evaluated at (t + 1).

Therefore, the system is causal.

(b) y t x ta f a f= 2

Here, if t = 5, then y x5 10a f a f=
Thus, the output y(t) depends on the future input. Therefore, the system is non-causal.

(c) y t x ta f a f= -

Here, if t = -3 , then y x- =3 3a f a f
Thus, the output y(t) depends on the future input. Therefore, the system is non-causal.

(d)
dy t

dt
y t x t

a f a f a f+ + =10 5

Here, y(t) depends upon the present value of x(t). Therefore, the system is causal.

(e) y t x t dt
t

a f a f=
-¥

z
Here, y(t) depends upon the present and the past values of x(t), but not on the future value.

Therefore, the system is causal.

1.8 Determine whether the following systems are invertible:

(a) y t x ta f a f= 10 (b) y t x ta f a f=
2

(c) y t x t na f a f= - (d) y t x ta f a f= 2

Solution:

(a) y t x ta f a f= 10
For this system, the inverse system will be,

w t y ta f a f=
1

10

System Inverse System
x( )t y t t( ) =10 x( )

w t t( ) = y( ) = x(t)
1
10

Therefore, the system is an invertible system.

(b) y t x ta f a f=
2

The inverse system would be,

w t y t x t x ta f a f a f a f= = = ±2

Here, two outputs are possible: = x(t) or � x(t). This implies that there is no unique output for

unique input. Therefore, the system is a non-invertible system.

(c) y t x t na f a f= -
Here, the output is the delayed input, by �n� samples. Clearly, the system is invertible. These

can be another system for which the output is the advanced input by �n� samples. The inverse

system is,

w t y t na f a f= +
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(d) y t x ta f a f= 2

Here, the input is compressed by a factor 2. Hence, there can be

another system which will expand the input by the same factor.

Hence the system is invertible. The inverse system is,

w t y
ta f = F

H
I
K2

1.9 Determine whether the following systems are static or dynamic:

(a) y t e x ta f a f
= (b) y t

d
dt

x ta f a f=

Solution:

(a) y t e x ta f a f
=

Here, the output depends on present input only. Hence the system is a static system.

(b) y t
d
dt

x ta f a f=

Here, the output depends on differentiation of the input. Calculation of differentiation depends

on the present as well as past values. Therefore, the system is a dynamic system.

MULTIPLE-CHOICE QUESTIONS

1.1 The output y(t) and the input x(t) of a system are related by the equation y(t) = mx(t) + c, where m

and c are constants. The system is

(a) linear

(b) non-linear

(c) may be linear or non-linear depending on y(t) and x(t)

(d) none of the above

1.2 If the impulse response is realizable by delaying it appropriately and is bounded for bounded excita-

tion, then the system is said to be

(a) causal and stable (b) causal but not stable

(c) non-causal but stable (d) non-causal, not stable

1.3 In a linear circuit, when the ac input is doubled, the ac output becomes

(a) one fourth (b) half (c) two times (d) four times

1.4 A circuit having an e.m.f. source or any energy source is

(a) active circuit (b) passive circuit (c) unilateral circuit (d) bilateral circuit

1.5 A network is said to be linear if and only if

(a) a response is proportional to the excitation function

(b) the principle of superposition applies

(c) the principle of homogeneity applies

(d) both the principles (b) and (c).

1.6 Consider the following data.

1. Input applied for t < t0 2. Input

applied for t ³ t0

Figure 1.17

1

0

–1

x t( )

t

Figure 1.18
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3. State of the network at t = t0 4. State of the network at t < t0
Among these, those needed for determining the response of a linear network for t > t0 would include

(a) 1, 3 and 4 (b) 2, 3 and 4 (c) 2 and 3 (d) 2 and 4.

1.7 An excitation is applied to a system at t = T and its response is zero for �¥ < t < T. Such a system

is

(a) non-causal system (b) stable system (c) causal system (d) unstable system.

1.8 The elements which are not capable of delivering energy by its own are known as

(a) unilateral elements (b) non-linear elements

(c) passive elements (d) active elements.

1.9 The v�i characteristic of an element is shown in the given

figure. The element is

(a) non-linear, active, non-bilateral

(b) linear, active, non-bilateral

(c) non-linear, passive, non-bilateral

(d) non-linear, active, bilateral

1.10 What is the input-output relation of the causal moving-average system (discrete time)?

(a) y n x n x n x n= + - + -1
3

1 2l q (b) y n x n x n x n= - + + +1
3

1 1l q

(c) y n x n x n x n= + +
1
3

2 1 2b g b g{ }/
(d) y n x n x n x n= + + + +1

3
1 2l q

1.11 Which one of the following is a linear system?

(a) y t u ta f a f= 2 (b) y t u ta f a f= +2 5 (c) y t u ta f a f= 2
2 (d) y t u ta f a f= +2 52

1.12 A function f ( . ) is linear under the conditions (s)

(a) f x x f x f x1 2 1 2
+ = +b g b g b g only.

(b) f kx kf xa f a f=  only.

(c) f x x f x f x1 2 1 2
+ = +b g b g b g and f kx kf xa f a f= .

(d) f x x f x f x1 2 1 2
+ = +b g b g b g or f kx kf xa f a f= .

1.13 The v-i characteristic of a resistor is i v= 2 2 . The resistor is

(a) linear, passive, bilateral (b) non-linear, passive, bilateral

(c) non-linear, active, bilateral (d) non-linear, active, unilateral

1.14 The system y t tx ta f a f= + 4  is

(a) non-linear, time-varying and unstable. (b) linear, time-varying and unstable.

(c) non-linear, time-invariant and unstable. (d) non-linear, time-varying and stable.

1.15 The following is true

(a) A finite signal is always bounded.

(b) A bonded signal always possesses finite energy.

(c) A bounded signal is always zero outside the interval [-t0, t0] for some t0.

(d) A bounded signal is always finite.

1.16 The function x(t) is shown in the figure. Even and odd parts of a unit-step function u(t) are respec-

tively,

(a)
1

2
, 
1

2
x ta f (b) -

1

2
, 
1

2
x ta f
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(c)
1

2
, -

1

2
x ta f (d) -

1

2
, -

1

2
x ta f

1.17 The input and output of a continuous time system are respectively denoted by x(t) and y(t). Which

of the following description corresponds to a causal system?

(a) y t x t x ta f a f a f= - + -2 4 (b) y t t x ta f a f a f= - +4 1

(c) y t t x ta f a f a f= + -4 1 (d) y t t x ta f a f a f= + +5 5

1.18 The impulse response h(t) of a linear time-invariant continuous time system is described by

h t t u t t u ta f a f a f b g a f= + -exp expa b , where, u(t) denotes the unit step function, and a and b are real

constants. The system is stable if

(a) a is positive and b is positive (b) a is negative and b is negative

(c) a is positive and b is negative (d) a is negative and b is positive

1.19 Which of the following represent a stable system?

1. Impulse response of the system decreases exponentially.

2. Area within the impulse response if finite.

3. Eigen values of the system are positive and real.

4. Roots of the characteristic equation of the system are real and negative.

Select the correct answer using the codes given below.

(a) 1 and 4 (b) 1 and 3 (c) 2, 3 and 4 (d) 1, 2 and 4

EXERCISES

1.1 A discrete-time system is modeled by,

y[n] = x2[n]

Is this system time-invariant?

1.2 Consider the systems S whose input and output are related by,

(a) y(t) = t x(t)

(b) y(t) = x(t) x(t � 1)

(c) y(t) = x2(t)

(d) y = mx + c

Check whether S is linear.

1.3 Consider the following discrete-time systems with input-output relationships as given

(a) y[n] = 2x[n] + 3

(b) y[n] = n x[n]

Check whether the systems are linear.

SHORT-ANSWER TYPE QUESTIONS

1.1 What is a system? What are the different types of systems? Give their definitions.

1.2 Define the following and give examples of each.

(a) Continuous and discrete system.

(b) Time-invariant and time-varying system.

(c) Lumped and distributed system.
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(d) Instantaneous (Static or Memoryless) and dynamic system.

(e) Causal and non-causal system.

(f) Active and passive system.

1.5 (a) What are the conditions for a system to be a linear system?

(b) Give the conditions for a BIBO stability of a system.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

1.1 (b) 1.2 (a) 1.3 (c) 1.4 (a) 1.5 (d) 1.6 (c) 1.7 (c)

1.8 (c) 1.9 (b) 1.10 (a) 1.11 (a) 1.12 (c) 1.13 (b) 1.14 (a)

1.15 (b) 1.16 (a) 1.17 (a) 1.18 (d) 1.19 (b)





CHAPTER

2
Introduction to

Circuit-Theory Concepts

2.1 INTRODUCTION

The fundamental theory on which many branches of electrical engineering, such as electric power,

electric machines, control, electronics, computers, communications and instrumentation are built is

the electric circuit theory. Thus, it is essential to have a proper grounding with electric circuit theory

as the base. An electric circuit is the interconnection of electrical elements.

2.2 SOME BASIC TERMINOLOGIES OF ELECTRIC CIRCUITS

2.2.1 Concept of Electric Charge

The most basic quantity in an electric circuit is the electric charge q. Electric charge is a fundamental

conserved property of some subatomic particles, which determines their electromagnetic interaction.

Electrically charged matter is influenced by, and produces, electromagnetic fields.

It is known that an atom consists of a positively charged nucleus surrounded by negatively

charged electrons. In a neutral atom, the total charge of the nucleus is equal to the total charge of the

electrons. When electrons are removed from a substance, the substance becomes positively charged

and if excess electrons are given to a substance, it becomes negatively charged.

The SI unit of charge is Coulomb (C). The charge of an electron is 1.602 ´ 10�19C. Thus, one

Coulomb charge is defined as the charge possessed by 
1

1602 10 19. ´
F
H

I
K-

electrons.

\ 1 Coulomb charge = charge of 6.24 ´ 1018 electrons
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The total electric charge of an isolated system remains constant regardless of changes within the

system itself. This is known as the law of conservation of charge. The law of conservation of charge

states that charge can neither be created nor destroyed.

The electric charge of a macroscopic object is the sum of the electric charges of its constituent

particles. Often, the net electric charge is zero, because it is favourable for the number of electrons

in every atom to equal the number of protons (or, more generally, for the number of anions, or

negatively charged atoms, in every molecule to equal the number of cations, or positively charged

atoms). When the net electric charge is non-zero and motionless, the phenomenon is known as static

electricity. Even when the net charge is zero, it can be distributed non-uniformly due to an external

electric field, or due to molecular motion; in such cases the material is said to be polarised. The

charge due to the polarisation is known as bound charge, while the excess charge brought from

outside is called free charge. The motion of charged particles (e.g., of electrons in metals) in a

particular direction is said to constitute an electric current

2.2.2 Conductors, Insulators and Semiconductors

In some materials, there is a large number of free electrons or loosely bound valence-band electrons

present. These electrons are easily knocked out of their orbit and easily constitute a large current.

Such materials are known as conductors. Almost all metals and some liquids are good conductors.

In some materials, no free electrons are available; the valence-band electrons are tightly bound to

the nucleus. Such materials are known as insulators. Examples of some insulators include glass,

mica, plastics, etc.

In between the limits of these two major categories is a third general class of materials called

semiconductors; where there are no such free electrons present, but free electrons can easily be

created by adding some impurities. Examples of some insulators include germanium, silicon, etc. For

example, germanium, a semiconductor, has approximately one trillion times (1 × 1012) the conductiv-

ity of glass, an insulator, but has only about one thirty-millionth (3 × 10� 8) part of the conductivity of

copper, a conductor.

2.2.3 Concept of Electric Current

The phenomenon of transferring electric charge from one point in a circuit to another is described by

the term electric current. Electric current is defined as the rate of flow of electric charges or

electrons through a cross-sectional area. By convention, the electric current flows in the opposite

direction to the electrons.

If Q amount of charges flow through an area in time t, then the current is given as,

I
Q

t
= (2.1)

or in differential form,

i
dq

dt
= (2.2)

and the charge transferred between time t0 and t is given by

q idt
t

t

= z
0

(2.3)
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As Q is expressed in Coulomb, the unit of electric current is Coulomb per second and it is given the

name Ampere (A). Thus,

1 A current = flow of 6.24 ´ 1018 electrons per second through an area

2.2.4 Current Density

Current density at any point is a vector whose magnitude is the electric current per unit cross-

sectional area and whose direction is normal to the cross-sectional are, i.e., 
r
J

I

A
n= $ . Its unit is

Ampere per square meter (A/m2).

2.2.5 Concept of Electric Potential and Potential Difference

To move an electron in a conductor in a particular direction, or to create a current, requires some

work or energy. This work is done by the potential or the potential difference. This is also known as

voltage difference or voltage (with reference to a selected point such as earth). The unit of potential

is volt.

The potential of a point is 1Volt if 1Joule work is done in bringing 1Coulomb charge from infinity

to that point.

The voltage Vab between two points a and b is the energy (or work) w required to move a unit

positive charge from a to b. [Unit of voltage is volt (V).]

V
dw
dqab = (2.4)

The potential difference between two points is 1Volt if 1Joule work is done to displace 1 Coulomb

charge from one point to the other.

2.2.6 Drift Velocity

Electric current is the number of coulombs of charge which pass a point in the circuit per unit time.

Because of its definition, it is often confused with the quantity drift velocity. Drift velocity refers to

the average distance traveled by a charge carrier per unit time. Like the velocity of any object, the

drift velocity of an electron is the distance to time ratio. The path of a typical electron through a wire

could be described as a rather chaotic, zigzag path characterised by collisions with fixed atoms. Each

collision results in a change in direction of the electron.

A high current results from
many charge carries passing
through a given cross section
of wine on a circuit

Figure 2.1 (a) Typical path of an electron Figure 2.1(b) Current is constituted by flow of

many charge carriers through a

cross section
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The net effect of these collisions results in slow drifting of the electrons with a constant average drift

velocity. The drift velocity is defined as the vector average velocity of the charge carriers moving

under the influence of electric field.

Mathematically, if n number of charge carriers (electrons) with charge Q each passes through an

area A with drift velocity v, then the current is given by, I nQvA= .

2.2.7 Concept of Electromotive Force (EMF)

The phenomenon of electric current depends on the presence of free electrons. If a material is having

a large number of free electrons, these electrons will always move in random directions as shown in

Fig. 2.1 (a). If an external effort is applied to the material, it is possible to drift all the electrons in a

definite direction as shown in Fig. 2.1 (b). Such an external factor is known as electromotive force

(emf). In other words, the voltage or potential of an electrical energy source is known as emf.

When we say something as electrical energy source, we mean that the energy is converted from

non-electrical form (such as, mechanical, chemical, tidal, etc) into electrical form. Please note that

emf is not a force, but it is the energy or work done.

2.2.8 Electric Circuits and Networks

Any combination and interconnection of network elements like resistor or inductor or capacitor or

electrical energy sources are known as �networks�. However, a closed energised network is known

as �circuit�. A network need not contain an energy source; but a circuit must contain an energy

source. Therefore, it can be stated that all circuits are networks, but all networks are not circuits.

V2

V1

R1

R5

R5

R4

R2 R3

R7

a b

ec

f
g

d
I

+
–

+
–

Figure 2.2 Circuit illustrating terminologies

2.2.9 Loop and Mesh

A loop or mesh denote a closed path obtained by starting at a node and returning back to the same

node through a set of connected circuit elements without passing through any intermediate node

more than once. However, the difference between mesh and loop is that a mesh does not contain any

other loop within it, i.e., mesh is the smallest loop. In Fig. 2.2, some loops are a-b-e-d-c-a, a-b-e-g-

f-c-a, c-d-e-b-g-f-c, etc; and some meshes are: a-b-e-d-c-a, c-d-e-g-f-c, g-e-b-g (through R7) and g-

e-b-g (through I).
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2.2.10 Node and Branch

A node is a point in a circuit where two or more circuit elements join. A node is said to be an

essential node if it joins three or more elements.  Examples of nodes for Fig. 2.2 are a, b, c, d, e, f

and g and examples of some essential node of Fig. 2.2 are b, c, e and g.

A branch is a path that connects two nodes. Those paths that connect essential nodes without

passing through an essential node are known as essential branches. Examples of branches of Fig. 2.2

are: V1, R1, R2, R3, V2, R4, R5, R6, R7 and I and some essential branches of Fig. 2.2 are c-a-b, c-d-

e, c-f-g, b-e, e-g, b-g (through R7), and b-g (through I).

2.3 DIFFERENT NOTATIONS

C Capacitance Farad, F

E Voltage source Volt, V

e Instantaneous value of E Volt, V

G Conductance Siemens, S

I Current Ampere, A

i Instantaneous current Ampere, A

k Coefficient Unit less

L Inductance Henry, H

M Mutual inductance Henry, H

N Number of turns Unit less

P Power Watt, W

Q Charge Coulomb, C

q Instantaneous charge Coulomb, C

R Resistance Ohm, W
t Time constant Second

t Instantaneous time Second

V Voltage drop Volt, V

v Instantaneous V Volt, V

W Energy Joule, J

f Magnetic flux Weber, Wb

Y Magnetic linkage Weber, Wb

j Instantaneous Y Weber, Wb

2.4  BASIC CIRCUIT ELEMENTS

(i)Active and Passive Elements Electric Circuits consist of two basic types of elements.

These are the active elements and the passive elements.

An active element is capable of generating electrical energy. (In electrical engineering, generating

or producing electrical energy actually refers to conversion of electrical energy from a non-electrical

form to electrical form. Similarly, energy loss would mean that electrical energy is converted to a

non-useful form of energy and not actually lost. Principle of Conservation of Mass and Energy).
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Examples of active elements are voltage source (such as a battery or generator) and current

source. Most sources are independent of other circuit variables, but some elements are dependent

(modeling elements such as transistors and operational amplifiers would require dependent sources).

Active elements may be ideal voltage sources or current sources. In such cases, the particular

generated voltage (or current) would be independent of the connected circuit.

A passive element is one which does not generate electricity but either consumes it or stores it.

Resistors, Inductors and Capacitors are simple passive elements. Diodes, transistors etc. are also

passive elements.

Passive elements may either be linear or non-linear. Linear elements obey a straight-line law. For

example, a linear resistor has a linear voltage vs current relationship which passes through the origin

(V = R.I). A linear inductor has a linear flux vs current relationship which passes through the origin

(f = k I) and a linear capacitor has a linear charge vs voltage relationship which passes through the

origin (q = CV). [R, k and C are constants].

Resistors, inductors and capacitors may be linear or non-linear, while diodes and transistors are

always nonlinear.

(ii) Linear Element A circuit/network element is linear if the relation between current and

voltage involves a constant coefficient.

Examples Voltage-current relationship of resistor, inductor and capacitor (both with zero initial

conditions) are linear ( )1
, ,

di
v ri v L v idt

dt c
= = = ò  Hence, the elements are linear.

Diode and transistors are non-linear devices having non-linear characteristics.

(iii) Bilateral System In a bilateral system, the same relationship between current and voltage

exists for current flowing in either direction. On the other hand, a unilateral system has different

current-voltage relationships for the two possible directions of current, as in diode.

2.5 PASSIVE CIRCUIT ELEMENTS

2.5.1 Electrical Resistance

Electrical resistance is a measure of the degree to which an object opposes an electric current

through it.

The SI unit of electrical resistance is ohm (W). Its reciprocal quantity is electrical conductance

measured in Siemens. Electrical resistance shares some conceptual parallels with the mechanical

notion of friction.

The resistance of an object determines the amount of current through the object for a given

voltage across the object.

I = 
V

R
(2.5)

where, R is the resistance of the object, measured in ohm equivalent to J.s/C2
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V is the voltage across the object, measured in volt

I is the current through the object, measured in ampere

For a wide variety of materials and conditions, the electrical resistance does not depend on the

amount of current through or the amount of voltage across the object, meaning that the resistance R

is constant.

Resistance of a Conductor

DC Resistance As long as the current density is totally uniform in the conductor, the DC

resistance R of a conductor of regular cross section can be computed as

R = r
l

A
(2.6)

where, l is the length of the conductor, measured in meter,

A is the cross-sectional area, measured in square meter,

r (Greek: rho) is the electrical resistivity (also called specific electrical resistance) of the

material, measured in ohm metre. Resistivity is a measure of the material�s ability to oppose

the flow of electric current.

For practical reasons, almost any connections to a real conductor will almost certainly mean the

current density is not totally uniform. However, this formula still provides a good approximation for

long thin conductors such as wires.

AC Resistance If a wire conducts high-frequency alternating current then the effective cross-

sectional area of the wire is reduced. This is because of the skin effect.

This formula applies to isolated conductors. In a conductor close to others, the actual resistance is

higher because of the proximity effect.

Resistor A resistor is a two-terminal electrical or electronic component that resists an electric

current by producing a voltage drop between its terminals in accordance with Ohm�s law:

R = 
V

I
(2.7)

The electrical resistance is equal to the voltage drop across the resistor

divided by the current through the resistor. Resistors are used as part

of electrical networks and electronic circuits.

Energy in a Resistor Instantaneous power absorbed in the resis-

tor,

p = vi = iR ´ i = i2 R (in Watt) (2.8)

Therefore, the energy converted into heat energy is given by,

W = 2

0 0

=ò ò
t t

pdt i Rdt  = i2Rt (in Joule) (2.9)

Series and Parallel Arrangements of Resistors Resistors in a parallel configuration each have

the same potential difference (voltage). To find their total equivalent resistance (Req):

eq 1 2

1 1 1 1

nR R R R
= + +¼+ (2.10)

Figure 2.3 Resistor symbols
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The parallel, property can be represented in equations by two

vertical lines �| |� (as in geometry) to simplify equations. For

two resistors,

Req = R1 | | R2 = 1 2

1 2+
R R

R R
(2.11)

The current through resistors in series stays the same, but

the voltage across each resistor can be different. The sum of

the potential differences (voltage) is equal to the total voltage.

To find their total resistance:

Req = R1 + R2 + � + Rn (2.12)

Figure 2.5 Series arrangement of resistors

A resistor network that is a combination of parallel and series

can sometimes be broken up into smaller parts. For instance,

Req = (R1 | | R2) + R3 = 1 2

1 2+
R R

R R
 + R3 (2.13)

Current Division by Parallel Resistances When a total

current IP is passed through parallel connected resistances R1

and R2, the voltage VP which appears across the parallel circuit

is:

VP = IPRP = IPR1R2/(R1 + R2)

The currents I1 and I2 which pass through the respective resis-

tances R1 and R2 are:

I1 = VP/R1 = IPRP/R1 = IPR2/(R1 + R2)

I2 = VP/R2 = IPRP /R2 = IPR1/(R1 + R2)

In general terms, for resistances R1, R2, R3, �, Rn (with conductances G1, G2, G3, �, Gn)

connected in parallel:

VP = IPRP = IP/GP = IP/(G1 + G2 + G3 + ...)

In = VP/Rn = VPGn = IPGn/GP = IPGn/(G1 + G2 + G3 + ...)

where Gn = 1/Rn and In is the current through nth resistance Rn

Note that the highest current passes through the highest conductance (with the lowest resistance).

2.5.2 Capacitance

Capacitance is a measure of the amount of electric charge stored (or separated) for a given electric

potential. The most common form of charge storage device is a two-plate capacitor. If the charges

on the plates are +Q and �Q, and V gives the voltage difference between the plates, then the

capacitance is given by

Figure 2.4 Parallel arrangement

of resistors

Figure 2.6 Series-parallel ar-

rangement of resistors
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C = 
O

V
(2.14)

The SI unit of capacitance is Farad; 1 Farad = 1 Coulomb per volt.

The capacitance of the majority of capacitors used in electronic circuits is several orders of

magnitude smaller than the farad. The most common units of capacitance in use today are milli-farad

(mF), microfarad (mF), the nano-farad (nF) and the pico-farad (pF)

The capacitance can be calculated if the geometry of the conductors and the dielectric properties

of the insulator between the conductors are known. For example, the capacitance of a parallel-plate

capacitor constructed of two parallel plates of area A separated by a distance d is approximately equal

to the following:

C = e
A

d
(2.15)

where

C is the capacitance in farad, F

e is the permittivity of the insulator used (or e0 for a vacuum)

A is the area of each plate, measured in square meter

d is the separation between the plates, measured in meter

The equation is a good approximation if d is small compared to the other dimensions of the plates.

Capacitor A capacitor is an electrical device that can store energy in the electric field between a

pair of closely-spaced conductors. When current is applied to the capacitor, electric charges of equal

magnitude, but opposite polarity, build up on each conductor.

Capacitors are used in electrical circuits as energy-storage devices. They can also be used to

differentiate between high-frequency and low-frequency signals and this makes them useful in

electronic filters.

Capacitors are occasionally referred to as condensers. This is now considered an antiquated term.

Properties of Capacitance The relation between charge and voltage in a capacitor is written as,

Q = CV (2.16)

The current, i = = +
dQ dV dC

C V
dt dt dt

In most physical cases, the capacitance is constant with time.

\ i = C
dW

dt
(2.17)

\ dV = 
1
idt

C

Taking integration on both sides,

0

ò
cv

dV  = 
0

1
t

idt
C ò

or vc(t) = 
0

1
( )ò

t

i t dt
C

 + vc(0)
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where, vc(0) is the initial voltage across the capacitor. For zero initial voltage,

vc = 
0

1
t

idt
C ò (2.18)

From equation (2.17), it is clear that for an abrupt change of voltage across the capacitor, the current

becomes infinite. Also, from equation (2.18), it is observed that for a finite change of current in zero

time the integral must be zero.

Therefore, the voltage acorss a capacitor cannot change instantaneously.

Explanation of Initial Voltage vc(0) It is possible that this capacitor might have been used in

some other circuit earlier, where it absorbed some energy and then it was disconnected. Because of

its non-dissipative nature, the energy was stored within the capacitor. Now, as this capacitor is

connected to a circuit, it gets some path to release its stored energy. Here, this stored energy is

represented by the initial voltage vc (0).

Energy Stored in Capacitors The energy (measured in Joule) stored in a capacitor is equal to

the work done to charge it. Consider a capacitance C, holding a charge +q on one plate and �q on the

other. Moving a small element of charge dq from one plate to the other against the potential

difference V = q/C requires the work dW.

dW = 
q

C
dq (2.19)

where, W is the work measured in Joule

q is the charge measured in Coulomb

C is the capacitance, measured in Farad

We can find the energy stored in a capacitance by integrating this equation. Starting with an

uncharged capacitance (q = 0) and moving charge from one plate to the other until the plates have

charge +Q and �Q requires the work W.

Wcharging = 
2

2
stored

0

1 1

2 2
= = =ò

Q
q Q
dq CV W

C C
(2.20)

Combining this with the Eq. (2.15) for the capacitance of a flat-plate capacitor, we get

Wstored = 2 21 1

2 2
e= A

CV V
d

(2.21)

where W is the energy measured in Joule,

C is the capacitance, measured in Farad,

V is the voltage measured in Volt.

Series or Parallel Arrangements of Capacitors Capacitors

in a parallel configuration each have the same potential differ-

ence (voltage). Their total capacitance (Ceq) is given by

Ceq = C1 + C2 + � + Cn

The reason for putting capacitors in parallel is to increase the

total amount of charge stored. In other words, increasing the

capacitance also increases the amount of energy that can be

stored. Its expression is

Figure 2.7 Parallel arrangement

of capacitors
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Estored = 
1

2
CV 2 (2.22)

Figure 2.8 Series arrangement of capacitors

The current through capacitors in series stays the same, but the voltage across each capacitor can

be different. The sum of the potential differences (voltage) is equal to the total voltage. Their total

capacitance is given by

eq 1 2

1 1 1 1

nC C C C
= + +¼+ (2.23)

In parallel, the effective area of the combined capacitor has increased, increasing the overall

capacitance. In series, the distance between the plates has effectively been increased, reducing the

overall capacitance.

Voltage Division by Capacitances

In series connection When a total voltage ES is applied to series connected capacitances C1 and

C2, the charge QS which accumulates in the series circuit is:

QS = iS dt = ESCS = ESC1C2/(C1 + C2)

The voltages V1 and V2 which appear across the respective capacitances C1 and C2 are

V1 = iS dt/C1 = ESCS/C1 = ESC2/(C1 + C2)

V2 = iS dt/C2 = ESCS/C2 = ESC1/(C1 + C2)

In general terms, for capacitances C1, C2, C3, � connected in series

QS = iS dt = ESCS = ES/(1/CS) = ES/(1/C1 + 1/C2 + 1/C3 + �)

Vn = iS dt/Cn = ESCS/Cn = ES/Cn(1/CS) = ES/Cn(1/C1 + 1/C2 + 1/C3 + �)

Note that the highest voltage appears across the lowest capacitance.

In parallel connection When a voltage EP is applied to parallel connected capacitances C1 and C2,

the charge QP which accumulates in the parallel circuit is

QP = iPdt = EPCP = EP(C1 + C2)

The charges Q1 and Q2 which accumulate in the respective capacitances C1 and C2 are:

Q1 = i1dt = EPC1 = QPC1/CP = QPC1/(C1 + C2)

Q2 = i2dt = EPC2 = QPC2/CP = QPC2/(C1 + C2)

In general terms, for capacitances C1, C2, C3, � connected in parallel:

QP = iPdt = EPCP = EP(C1 + C2 + C3 + �)

Qn = indt = EPCn = QPCn/CP = QPCn/(C1 + C2 + C3 + �)

Note that the highest charge accumulates in the highest capacitance.
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2.5.3 Inductance

Inductance is the property by virtue of which a circuit opposes the changes in the value of a time-

varying current flowing through it. Inductance causes opposition only to varying currents and does

not cause any opposition to steady or direct current.

An electric current i flowing around a circuit produces a magnetic field and hence a magnetic flux

F  through the circuit. The ratio of the magnetic flux to the current is called the inductance, or more

accurately self-inductance of the circuit. It is customary to use the symbol L for inductance,

possibly in honour of the physicist Heinrich Lenz. The quantitative definition of the inductance is,

therefore,

L = 
i

f
(2.24)

It follows that the SI unit for inductance is Webbers per ampere. In honour of Joseph Henry, the unit

of inductance has been given the name Henry (H): 1 H = 1 Wb/A.

In the above definition, the magnetic flux j is that caused by the current flowing through the

circuit concerned. There may, however, be contributions from other circuits. Consider, for example,

two circuits C1, C2, carrying the currents i1, i2. The magnetic fluxes F1 and F2 in C1 and C2,

respectively, are given by

F1 = L11i1 + L12i2,

F2 = L21i1 + L22i2

According to the above definition, L11 an L22 are the self-inductances of C1 and C2, respectively. It

can be shown (see below) that the other two coefficients are equal: L12 = L21 = M, where M is called

the mutual inductance of the pair of circuits.

Inductor An inductor is a passive electrical device employed in electrical circuits for its property

of inductance.

Properties of Inductance The equation relating inductance and flux linkages can be rearranged

as follows.

l = Li (2.25)

Taking the time derivative of both sides of the equation yields

d

dt

l
 = L

di dL
i

dt dt
+

In most physical cases, the inductance is constant with time and so

d

dt

l
 = L

di

dt

By Faraday�s Law of Induction,we have

d

dt

l
 = �E = v

where E is the Electromotive force (emf) and v is the induced voltage. Note that the emf is opposite

to the induced voltage. Thus
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v = L
di

dt
(2.26)

or i(t) = 
0

1
( ) (0)

t

v t dt i
L

+ò

where i(0) is the initial current. When initial current is zero,

i(t) = 
0

1
( )

t

v t dt
L ò (2.27)

These equations together state that, for a steady applied voltage v, the current changes in a linear

manner, at a rate proportional to the applied voltage, but inversely proportional to the inductance.

Conversely, if the current through the inductor is changing at a constant rate, the induced voltage is

constant.

From equation (2.26), it is clear that for an abrupt change in current, the voltage across the

inductor becomes infinite. Also, from equation (2.27), it is observed that for a finite change in voltage

in zero time the integral must be zero.

Therefore, the current through an inductor cannot change instantaneously.

Explanation of Initial Current i(0) It is possible that this inductor might have been used in

some other circuit earlier, where it absorbed some energy and then it was disconnected. Because of

its non-dissipative nature, the energy was stored within the inductor core. Now, as this inductor is

connected to a circuit, it gets some path to release its stored energy. Here, this stored energy is

represented by the initial current i(0).

Series and Parallel Arrangement of Inductors Inductors

in a parallel configuration each have the same potential differ-

ence (voltage). To find their total equivalent inductance (Leq):

eq 1 2

1 1 1 1

nL L L L
= + +¼+ (2.28)

The current through inductors in series stays the same, but

the voltage across each inductor can be different. The sum of

the potential differences (voltage) is equal to the total voltage.

To find their total inductance:

Figure 2.10 Series arrangement of inductors

Leq = L1 + L2 + � + Ln (2.29)

These simple relationships hold true only when there is no mutual coupling of magnetic fields

between individual inductors.

Figure 2.9 Parallel arrangement of

inductors
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2.6 TYPES OF ELECTRICAL ENERGY SOURCES

Energy source is defined as the device that generates electrical energy. They are classified according

to the current voltage characteristics. The classification is given below.

Independent Voltage Source An ideal voltage source has the following features.

(i) It is a voltage generator whose output voltage remains absolutely constant whatever be the

value of the output current.

(ii) It has zero internal resistance so that voltage drop in the source is zero.

(iii) The power drawn by the source is zero.

Figure 2.11 Independent voltage sources and their characteristics

In practical, the voltage does not remain constant, but falls slightly. This is taken care of by

connecting a small resistance (r) in series with the ideal source. In this case, the terminal voltage will

be,

v1(t) = v(t) � ir

i.e., it will decrease with increase in current i.

An ideal voltage source is not practically possible. No voltage source can maintain its terminal

voltage constant even when its terminals are short-circuited. The terminal voltage of a practical

voltage source decreases as the load current increases. The v-i characteristics of an ideal and

practical voltage source are shown in Fig. 2.14. A dc or ac generator or batteries are some examples

of independent voltage sources. A lead-acid battery and a dry-cell are some examples of constant
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voltage source which can produce constant terminal voltage within a specified range of output

current.

Independent Current Source An ideal current source has the following features.

(i) It produces a constant current irrespective of the value of the voltage across it.

(ii) It has infinity resistance.

(iii) It is capable of supplying infinity power.

Figure 2.12 Independent current sources and their characteristics

In practice, the output current does not remain constant but decreases with increase in voltage.

So, a practical current source is represented by an ideal current source in parallel with a high

resistance (R) and the output current becomes,

i1(t) = i(t) � 
( )v t

R

Similar to voltage sources, an ideal current source is not practically possible. No current source

can maintain constant current even when its terminals are open-circuited. The output current of a

practical current source decreases as the output voltage increases. The v-i characteristics of an ideal

and practical current source are shown in Fig. 2.15. A solar cell, which can produce constant current

within a specified range of output voltage, is an example of independent current source. A natural

lightning can be considered to be an ideal current source. When a natural lightning strikes the top of

a conductor, the resistance to the ground path is ideally zero. But, when the lightning strikes a non-

conducting element (like the top of a tree) a large voltage is developed across the element which is

flashed out immediately.

Dependent Sources In dependent sources (also referred as controlled sources), the source

voltage or current is not fixed, but is dependent on a voltage or current at some other location in the

circuit. Thus, there are four types of dependent sources.

(a) Voltage Controlled Voltage Source (VCVS)

(b) Current Controlled Voltage Source (CCVS)

(c) Voltage Controlled Current Source (VCCS)

(d) Current Controlled Current Source (CCCS)

Figure 2.13 Symbols of dependent sources
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Dependent sources are unilateral, because for a voltage controlled voltage source, say, v2 = kv1,

the output voltage v2 is controlled by the input voltage v1, but the output current i2 has no influence

on the input v1.

Application in electronic systems that uses either the transistors or vacuum tubes needs dependent

sources.

2.7 FUNDAMENTAL LAWS

The fundamental laws that govern electric circuits are the Ohm�s law and Kirchhoff�s laws.

2.7.1 Ohm�s Law

Ohm�s law states that the voltage v(t) across a resistor R is directly proportional to the current i(t)

flowing through it.

v(t) µ  i(t)

or v (t) = R × i(t)

Definition of Ohm�s Law

Physical states (temperature, material, etc.) of a conductor remaining constant, the current flowing

through a conductor is directly proportional to the potential difference across the two ends of the

conductor.

This general statement of Ohm�s law can be extended to cover inductances and capacitors as well

under alternating current conditions and transient conditions. This is then known as the Generalized

Ohm�s Law This may be stated as

v(t) = Z(p) × i(t) , where p = d/dt = differential operator

Z(p) is known as the impedance function of the circuit, and the above equation is the differential

equation governing the behaviour of the circuit.

For a resistor, Z(p) = R

For an inductor Z(p) = L p

For a capacitor, Z(p) = 
1

Cp

In the particular case of alternating current, p = jw,  so that the equation governing circuit behaviour

may be written as

V = Z(jw) . I, and

For a resistor, Z(jw )) = R

For an inductor, Z(jw ) = jwL

For a capacitor, Z(jw ) = 
1

j Cw

Figure 2.14(a) An Electric

                 Circuit

Figure 2.14(b) Circuit Showing

                          Impedance functin
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2.7.2 Kirchhoff�s Current Law (KCL)

Kirchhoff�s current law is based on the principle of conservation of charge. This requires that the

algebraic sum of the charges within a system cannot change. Thus, the total rate of change of charge

must add up to zero. Rate of change of charge is current.

Figure 2.15 Illustration of KCL

This gives us our basic Kirchhoff�s current law as the algebraic sum of the currents meeting at a

point is zero,. i.e., at a node, å In = 0, where In are the currents in the branches meeting at the node.

This is also sometimes stated as the sum of the currents entering a node is equal to the sum of the

currents leaving the node.

The theorem is applicable not only to a node, but to a closed system.

i1 + i2 � i3 + i4 � i5 = 0. Also for the closed boundary, ia � ib + ic � id � ie = 0.

2.7.3 Kirchhoff�s Voltage Law (KVL)

Kirchhoff�s voltage law is based on the principle of conservation of energy. This requires that the

total work done in taking a unit positive charge around a closed path and ending up at the original

point is zero.

This gives us our basic Kirchhoff�s voltage

law as the algebraic sum of the potential

differences taken round a closed loop is zero.

i. e., around a loop, S Vn = 0, where Vn are the

voltages across the branches in the loop.

va + vb + vc + vd � ve = 0

This is also sometimes stated as the sum of the

emfs taken around a closed loop is equal to the

sum of the voltage drops around the loop.

Although all circuits could be solved using

only Ohm�s law and Kirchhoff�s laws, the cal-

culations would be tedious. Various network theorems have been formulated to simplify these

calculations.

Figure 2.16 Illustration of KVL
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l Sign Conventions for applying Kirchhoff�s Laws

1. When tracing through a voltage source from positive to negative terminal, the voltage

should be given a positive sign.

2. When tracing through a voltage source from negative to positive terminal, the voltage

should be given a negative sign.

3. When tracing through a resistance in the direction of current flow, the voltage should be

given a positive sign.

4. When tracing through a resistance in a direction opposite to the direction of current flow,

the voltage should be given a negative sign.

2.8 SOURCE TRANSFORMATION

Transformation of several voltage (or current) sources into a single voltage (or current) source and a

voltage source into a current source or vice-versa is known as source transformation. This makes

circuit analysis easier.

There are some rules of source transformation.

Rule (1) Several voltage sources {V1(t), V2(t), �, Vn(t)} connected in series will be replaced by a

single voltage source of value V = V1(t) + V2(t) + �+ Vn(t). Similarly, a number of current sources

{I1(t), I2(t), �, In(t)} connected in parallel is replaced by a single current source of value I(t) = I1(t)

+ I2(t) + �+ In(t).

Figure 2.17 Source transformation technique: Rule (1)

Rule (2) A number of voltage sources V1(t), V2(t), �, Vn(t) in parallel will result in a single

voltage source, V(t) = V1(t) = V2(t) = � =Vn(t).

Therefore, voltage sources should not be connected in parallel unless they have identical poten-

tial, as paralleling of sources with non-similar potential waveforms will result in heavy current, which

may damage the equipment.

Similarly, a number of current sources I1(t), I2(t), �, In(t) in series will result in a single current

source of value I(t) = I1(t) = I2(t) = �= In(t) and thus, current sources cannot be connected in series

if they are not identical.
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Figure 2.18 Source transformation technique: Rule (2)

Rule (3) As far as the computations in the remainder of the network are concerned, a resistor in

parallel with an ideal voltage source and a resistor in series with an ideal current source may be

ignored.

Figure 2.19 Source transformation technique: Rule (3)

Rule (4) A voltage source V(t) in series with a resistor R can be converted into a current source

I(t) in parallel with the same resistor R, where, I(t) = 
( )V t

R
.

Similarly, a voltage source V(t) in series with a capacitor C may be converted into a current

source I(t) in parallel with C, where, I(t) = 
( )dV t

C
dt

; and a voltage source V(t) in series with an

inductor L may be converted into a current source I(t) in parallel with L, where, I(t) = 
1

( )V t dt
L ò

Figure 2.20  Source transformation technique: Rule (4)



2.20 Circuit Theory and Networks

2.9 NETWORK ANALYSIS TECHNIQUES

Network analysis is the determination of the response output of a network when the input excitation

is given. There are two techniques of network analysis.

1. Nodal Analysis

2. Loop or Mesh Analysis

Nodal Analysis It is based on Kirchhoff�s current law (KCL). In this method, the unknown

variables are the node voltages. It is generally used when the circuit contains several current sources.

Steps

l If there is N number of nodes in a network, all nodes are labeled. One node is treated as datum

or reference node (zero potential) and the other node voltages are treated as unknowns to be

determined with respect to this reference.

l KCL is written at each node in terms of node voltages.

n KCL is applied at N � 1 of the N nodes of the circuit using assumed current directions, as

necessary. This will create N � 1 linearly independent equations, known as node equa-

tions.

n In a circuit with independent voltage sources, if two nodes of interest are separated by a

voltage source instead of a resistor or current source, then the concept of supernode is

used that creates constraint equations.

n The current is computed based on voltage difference between two nodes. The current in

any branch is obtained via ohm�s law as,

i = mm m mV V V

R R

-
= , for D.C.

l = mm m mV V V

Z Z

-
= , for A.C.

where, Vm > Vn and current flows from node m to n.

l Solution of the N � 1 simultaneous equations (by Gaussian elimination or matrix method) gives

the unknown node voltages.

For the network shown in Figure 2.21, apply Kirchhoff�s current law and write the node equations.

Example 2.1 Let node voltages are E1, E2 and E3 at nodes 1, 2 and 3 respectively.

At node 1,

I1 = I3 + I4

I1 = 1 1 2

1 2

( )E E E

R R

-
+

I1 = 2
1

1 2 2

1 1 E
E

R R R
æ ö+ -ç ÷è ø

(i)

At node-2,

I4 = I5 + I6

Figure 2.21 Network explaining node analysis

technique
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2 31 2 2

2 4 3

( )( ) --
= +

E EE E E

R R R
31

2
2 2 3 4 4

1 1 1
0

EE
E

R R R R R
æ ö= - + + + -ç ÷è ø

(ii)

At node-3,

I6 = I7 + I8 � I2

2 3 3 3
2

4 5 6

( )E E E E
I

R R R

-
= + -

2
2 3

4 4 5 6

1 1 1E
I E

R R R R
æ ö= - + + +ç ÷è ø

(iii)

Given the other values, solution of Equations (i), (ii), and (iii) gives the values of E1, E2 and E3.

Concept of Supernode This concept is used when a circuit contains voltage sources. A

supernode is formed by enclosing a dependent or independent voltage source connected between two

non-reference nodes and any elements connected in parallel with it. This concept is necessary for

nodal analysis with voltage source, because the current through a voltage source is unknown. We

consider the following two cases.

Case 1 When a voltage source is connected between the reference node and a non-reference node:

In this case, the voltage of the non-reference node is taken equal to the voltage of the voltage source.

For the circuit shown in Fig. 2.22(a),

V1 = 5 V (i)

Case 2 When a voltage source is connected between two non-reference nodes:

In this case, a supernode is considered enclosing the non-reference nodes. Both KCL and KVL is

written for the supernode.

Figure 2.22(a) Circuit with supernode Figure 2.22(b) KVL with supernode

For this example, nodes 2 and 3 are forming the supernode.

By KCL at the supernode, i1 = i2 + i3

or 31 2 2 00

5 10 20

VV V V -- -
= + (ii)

To apply KVL to the supernode, the circuit is drawn as shown in Fig. 2.22(b). By KVL,

10 + V3 � V2 = 0 (iii)

Solving equations (i), (ii) and (iii), the node voltages are obtained, V1 = 5 V, V2 = 4.2857 V, V3 =

�5.7143 V.
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Properties of Supernode
(i) It provides the constraint equations.

(ii) Both KCL and KVL are written for supernode.

(iii) A supernode does not have any voltage of its own.

Loop or Mesh Analysis It is based on Kirchhoff�s voltage law (KVL). In this method, the

unknown variables are the loop currents. It is generally used when the circuit contains several voltage

sources.

Steps

l If there is �N � number of loops/meshes in a network, all loops are labeled.

l KVL is written at each loop/mesh in terms of loop/mesh currents. Loop currents are those

currents flowing in a loop; they are used to define branch currents.

n For N independent loops, total N equations are written using KVL around each loop. These

equations are known as loop/mesh equations.

n The concept of supermesh is used in case a circuit contains current source that provides

the constraint equations.

l Solution of the N simultaneous equations gives the required loop/mesh currents.

Write the mesh equations for the circuit shown in Figure 2.23.

Example 2.2 Two meshes are labeled as mesh-1 and mesh-2.

Applying KVL for mesh-1,

Vs = R1I1 + R2(I1 � I2) (i)

By constraint equation,

 I2 = � Is (ii)

Solving the equations, we get I1 and I2.

Concept of Supermesh This concept is used when

a circuit contains current sources. A supermesh is formed

by excluding the branch containing a dependent or inde-

pendent current source connected in common to two

meshes and any elements connected in series with it.

This concept is necessary for loop analysis with current

source, because the voltage drop across a current source

is unknown. We consider the following two cases.

Case-1 When a current source is in one mesh:

In this case, the mesh current is taken equal to the

current of the current source. For example, for the

circuit shown in Fig. 2.24,

i2 = �10 A

Case-2 When a current source is connected between

two meshes:

In this case, a supermesh is considered excluding

the branch with the current source and any elements

connected in series with it. Both KCL and KVL is

Figure 2.23 Circuit explaining loop

analysis technique

Figure 2.24 Current source in one mesh
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written for the supermesh. For example,

consider the circuit shown in Fig. 2.25.

Supermesh is formed by excluding the

branch with 3A current source.

By KVL for the supermesh,

2(i1 � i2) + 4(i3 � i2) + 8i3 = 6 (i)

By KCL at any one node of the omitted

branch (say, X),

i1 = 3 + i3 (ii)

Also by KVL for second mesh,

2i2 + 4(i2 � i3) + 2(i2 � i1) = 0 (iii)

Solving equations (i), (ii) and (iii), the

mesh currents are obtained, i1 = 3.437A,

i2 = 1.1052A, i3 = 0.4737A.

Properties of Supermesh

(i) It provides the constraint equations.

(ii) Both KCL and KVL are written for supermesh.

(iii) A supermesh does not have any current of its own.

Comparison of Loop and Node Analysis In any network having N nodes and B branches,

there are 2B unknowns, i.e., B�branch currents and B�branch voltages. These unknowns can be

determined either by loop analysis or nodal analysis.

The choice of the method depends on two factors given below.

1. Nature of the network The mesh-method is generally used for circuits having many series-

connected elements, voltage sources, or supermeshes. On the other hand, nodal analysis is more

suitable for circuits having many parallel-connected elements, current sources, or supernodes.

The main factor for selecting any one method is the minimum number of equations. If a circuit is

having fewer nodes than meshes, then nodal analysis is used, while if a circuit with fewer meshes

than nodes, then loop method is used.

2. Requirement of the problem If node voltages are required, nodal analysis is used. If branch/

mesh currents are required, loop analysis is used.

However, there are some particular circuits, where only one method can be applied. For example,

in analyzing transistor circuits, mesh method is the only possible method; while for op-amp circuits

and for non-planar networks, node method is the only possible method.

2.10 DUALITY

Duality is a transformation in which currents and voltages are interchanged. Two phenomena are said

to be dual if they are described by equations of the same mathematical form.

There are a number of similarities and analogies between the two circuit analysis techniques based

on loop-current method and node voltage method. The principal quantities and concepts involved in

Figure 2.25 Current source connected between two

meswhes
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these two methods based on KVL and KCL are dual of each other with voltage variables substituted

by current variables, independent loop by independent node-pair, etc.

This similarity is termed as �principle of duality�.

Some dual relations are:

v = Ri i = Gv

v = 
di

L
dt

i = 
dv

C
dt

v = 
1

idt
C ò i = 

1
vdt

L ò

Thus, the circuit elements (R, L, C) have some dual relationship. Duality also appears as relation

between two networks. For example, an RLC series circuit with voltage excitation is dual of an RLC

parallel circuit with current excitation.

 Figure 26(a) Series RLC Circuit Figure 2.26(b) Parallel RLC Circuit

For series circuit, 
1di

v Ri L idt
dt C

= + + ò

For parallel circuit, 
1dv

i Gv C vdt
dt L

= + + ò

Dual Quantities and Concepts

Sl No. Quantity/Concept Dual

1 Current Voltage

2 Resistance Conductance

3 Inductance Capacitance

4 Impedance Admittance

5 Reactance Susceptance

6 Branch current Branch voltage

7 Mesh or Loop Node or Node-pair

8 Mesh Current or Loop Current Node Voltage or Node-pair Voltage

9 Link Tree Branch

10 Link Current Tree Branch Voltage

11 Tree Branch Current Link Voltage

12 Tie-set Cut-set

13 Short-circuit Open-circuit

14 Parallel Paths Series Paths



Introduction to Circuit-Theory Concepts 2.25

Construction of Dual of a Network
1. A dot is placed inside each independent loop of the given network. These dots correspond to

the non-reference nodes of the dual network.

2. A dot is placed outside the network. This dot corresponds to the datum node.

3. All internal dots are connected by dashed lines crossing the common branches and placing the

elements which are duals of the elements the original network.

4. All internal dots are connected to the external dot by dashed lines crossing all external

branches and placing dual elements of the external branch.

Conventions for Reference Polarities of Voltage Source and Reference Directions

of Current Source

(i) A clockwise current in a loop corresponds to a positive polarity (with respect to reference

node) at the dual independent node.

(ii) A voltage rise in the direction of a clockwise loop current corresponds to a current flowing

towards the dual independent nodes.

Finally, the dual construction can be checked by writing mesh equations and node equations of

two networks.

Example 2.3 Draw the dual of the network shown in

figure.

Solution Following the steps, dual network is

drawn.

Therefore, the dual network becomes

as shown in Fig. 2.27.

By KVL to the original network,

I1(3 + 4) � I2(4) = 100 Figure 2.27 Circuit of example

Figure 2.28 Figure explaining drawing dual of network of Fig. 2.27
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�I1(4) + I2(4 + 5 + 6) � 5I3 = 0

I3 = 5

The dual equations will be,

V1(3 + 4) � V2(4) = 100

�V1I(4) + V2(4 + 5 + 6) � 5V3 = 0

V3 = 5

These equations satisfy the dual net-

work.

2.11 STAR-DELTA CONVERSION TECHNIQUE

The Y-D transform, also written Y-delta, Wye-delta, Kennelly�s delta-star transformation, star-

mesh transformation, T-P or T-pi transform, is a mathematical technique to simplify the analysis

of an electrical network. The name derives from the shapes of the circuit diagrams, which look

respectively like the letter Y and the Greek capital letter D.

Figure 2.30 (a) Star connection (b) Delta connection

The transformation is used to establish equivalence for networks with three terminals. For equiva-

lence, the impedance between any pair of terminals must be the same for both networks.

For the star connection, the impedance between terminals 1 and 2 is Z1+ Z2.

For delta connection, the the impedance between terminals 1 and 2 is

12 23 31
12 23 31

12 23 31

( )
| | ( )

Z Z Z
Z Z Z

Z Z Z

+
+ =

+ +

As the impedance between terminals 1 and 2 should be same, therefore,

12 23 31
1 2

12 23 31

( )Z Z Z
Z Z

Z Z Z

+
+ =

+ +
(i)

Similarly, for terminals 2 and 3 we get,

23 31 12
2 3

23 31 12

( )Z Z Z
Z Z

Z Z Z

+
+ =

+ +
(ii)

Figure 2.29 Dual of network of Fig. 2.26
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31 12 23
3 1

31 12 23

( )Z Z Z
Z Z

Z Z Z

+
+ =

+ +
(iii)

Delta to Star Conversion

In this case, Z1, Z2, and Z3 are to be written in terms of Z12, Z23, and Z31.

By (i) � (ii) + (iii), we get 12 31
1

12 23 31

Z Z
Z

Z Z Z
=

+ +
(iv)

Similarly we get, 23 12
2

12 23 31

Z Z
Z

Z Z Z
=

+ +
(v)

and 31 23
3

12 23 31

Z Z
Z

Z Z Z
=

+ +
(vi)

Star to Delta Conversion

In this case, Z12, Z23, and Z31 are to be written in terms of Z1, Z2, and Z3.

Let Z = Z1Z2 + Z2Z3 + Z3Z1. Then from Eq. (iv) to Eq. (vi), we get

2 2 2
12 23 31 12 23 31 12 23 31 12 23 31

2 2 2
12 23 3112 23 31 12 23 31 12 23 31( ) ( ) ( )

= + + =
+ ++ + + + + +

Z Z Z Z Z Z Z Z Z Z Z Z
Z

Z Z ZZ Z Z Z Z Z Z Z Z

(vii)

From Eq. (vii) and Eq. (iv), we get Z = Z12Z3 Þ Z12 = 
3

Z

Z

Therefore, 1 2 2 3 3 1 1 2
12 1 2

3 3

Z Z Z Z Z Z Z Z
Z Z Z

Z Z

+ +
= = + +

Similarly, 1 2 2 3 3 1 2 3
23 2 3

1 1

Z Z Z Z Z Z Z Z
Z Z Z

Z Z

+ +
= = + +

and 1 2 2 3 3 1 3 1
31 3 1

2 2

Z Z Z Z Z Z Z Z
Z Z Z

Z Z

+ +
= = + +

SOLVED PROBLEMS

2.1 Find the values of V, Vab and the power delivered by the 5V

source. All values of resistances are in ohm.

Solution

Current,
2 1

A
60 30

i = =
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By KVL,

20i + 2 + 5 + v + 70i = 0

1
7 90 7 90 10 V

30
v i= - - = - - ´ = -

\ 20 30 50 10abv i v i i= + + = -

1
50 10 8.33 V

30
= ´ - = -

Power drawn by the 5V source = � (Power taken source) =

�5 ´ 1

30
= �0.166 W

2.2 Find the equivalent resistance between the terminals A and B of the circuit shown below.

Solution Converting star into delta,

1 2
12 1 2

3

15
8 9.875

8

r r
r r r

r

æ ö
= + + = + = Wç ÷è ø

2 3
23 2 3

1

40
13 26.33

3

r r
r r r

r

æ ö
= + + = + = Wç ÷è ø

3 1
31 3 1

2

24
11 15.8

5

r r
r r r

r

æ ö
= + + = + = Wç ÷è ø
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Combining the parallel connections of 5 W and 15.8 W and 4 W and 26.33 W, we have the reduced

circuit.

Again, converting the delta made of 6 W, 4 W and 9.875 W into equivalent star,

12 31
1

1 2 3

r r
r

r r r
=

+ +

6 4
1.2075

19.875

´
= = W

2

4 9.875
1.987

19.875
r

´
= = W

3

6 9.875
2.981

19.875
r

´
= = W

So, the given circuit becomes as shown in figure.

\
6.779 5.459

1.2075 4.23
6.779 5.459ABR

´
= + = W

+
Ans.

2.3 Find the equivalent resistance between

(i) A and B,

(ii) B and C,

(iii) C and A, and

(iv) A and N of the circuit shown.

Solution Converting the star into delta,

1 2
12 1 2

3

5 4
4 5 12.33

6

r r
r r r

r

´æ ö
= + + = + + = Wç ÷è ø

2 3
23 2 3

1

5 6
5 6 18.5

4

r r
r r r

r

´æ ö
= + + = + + = Wç ÷è ø

3 1
31 3 1

2

6 4
6 4 14.8

5

r r
r r r

r

´æ ö
= + + = + + = Wç ÷è ø
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The circuit becomes, as shown in below figure.

(i) Equivalent resistance between A and B,

3.73 (10.06 5.52)
3.035

3.70 10.06 5.52AB
R

´ +
= = W

+ +
. Ans.

(ii)
10.06 (3.73 5.52)

4.82
10.06 3.73 5.52BCR

´ +
= = W

+ +
Ans.

(iii)
5.52 (10.06 3.73)

3.94
6.52 10.06 3.73CAR

´ +
= = W

+ +
Ans.

(iv) Converting the delta into equivalent star,

1

5 6
0.83

5 6 25
r

´
= = W

+ +

2

25 6
4.167

5 6 25
r

´
= = W

+ +

3

25 5
3.472

5 6 25
r

´
= = W

+ +

The circuit becomes:

\
4 6.288

2.4448
4 6.288ANR

´
= = W

+
Ans.
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2.4 Find the current through the galvanometer using delta-star conversion.

Solution Converting the delta consisting of 20 W,

30 W and 50 W, we get,

1

20 30
6

20 30 50
r

´
= = W

+ +

2

20 50
10

20 30 50
r

´
= = W

+ +

3

30 50
15

20 30 50
r

´
= = W

+ +

\ RAC = 16 W

Main current 
8

0.5 A
16

i = =

Now, to calculate potential difference between the points B and D ;

VXC = 10 ´ 0.5 = 5 V

\ VBD = (10 ´ 0.25 � 5 ´ 0.25) = 1.25 V

\ Currant through the galvanometer, (50 (W)

1.25
0.025 A

50Gi = = Ans.

2.5 Twelve similar conductors each of R resistance form a cubical frame. Find the resistance across two

opposite corners of the cube.
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Solution The configuration is shown in the figure.

The current distribution is shown.

So, the total voltage drop between two opposite corners A and B for a total current of I is,

5
. . .
3 6 3 6AB

I I I
V R R R R I= + + = ´

Equivalent resistance, 
5

6
AB

AC

V
R R

I
= = Ans.

2.6 A regular hexagon is formed from 6 wires of R ohm each. The corners are joined to the centre by six

more wires of 2R ohms each. Calculate the resistance of the hexagon between any two nodes

diametrically opposite.

Solution The hexagon can be redrawn as shown.
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The hexagon is symmetrical about XX ¢
Equivalent resistance of the second quadrant,

1

28
(2 | | / 2 ) || 4

27
R R R R R R= + =

So, the figure is modified as,

\ 1 1 1 1 1

28
( || ) ( || )

27ABR R R R R R R= + = = Ans.

2.7 Find the input resistance of the infinite section resistive network shown below.

Solution Let the equivalent resistance be Rin.

The network can be terminated at A¢ B¢ instead of AB.

in' [ ( ) || ( )]
A B

R R R R¢ = +

By assumption,

2
in in

in
in in

2 +
= + =

+ +
R R R R R

R R
R R R R

Þ 2 2
in in in2+ = +RR R RR R

Þ 2 2
in in 0R RR R- - =

Þ
2 2

in

4
[1 5]

2 2

R R R R
R

± +
= = ±

Taking positive sign, in

5 1

2
R R

æ ö+
= ç ÷è ø

2.8 In the network shown, calculate the power input to each of

the following elements when it is connected across A and B.

(a) a resistance RAB of 59 W.

(b) a voltage source of �160 V.

Solution

(a) Converting the two deltas into star,

1

18 6
3

18 12 6
r

´
= = W

+ +
, 2

6 12
2

36
r

´
= = W ,

3

18 12
6

36
r

´
= = W

and 1 1 1
1 2 3

14 7 28 14
2 , 8 , 4

49 49
r r r

´ ´
= = W = = W = W

R1 R1

R1 R1

A B
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\ eq

69 20
3 2 20.5

69 20
R

´æ ö= + + = Wç ÷è ø+

Main current, 
2100

102.41 A
20.5

i = =

Current in 59W resistor, 59

20
102.41 23.01 A

89
i = ´ =

Power input, 2 2
59( ) 59 (23 01) 59 31248 189 W 31 kWi

P i= ´ = × ´ = × = Ans.

(b)

By KVL,

1 215 10 2260 0i i- + =

and 2 130 10 160 0- - =i i

Solving, 1 206.285 Ai = -

2 63.43 Ai = -

\ Power input, 1 2160 ( ) 160 ( 206 285 63 43) 17.37 kW
i

P v i i i= ´ = - ´ - = - ´ - × + × =

2.9 The two-dimensional network of the figure consists

of an infinite number of square meshes, each side of

which has a resistance of R. Find the effective resis-

tance between two adjacent nodes such as X and Y.

Solution Let the current flowing into the circuit at

node X be I. Since the infinite network is symmetrical

about X, the current I in going from X to infinity, is

divided equally along the branches XQ, XT, XP and

XY.
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The current I then returns from infinity and is taken from the network at node Y.

Again, by symmetry, the currents flowing along RY, XY, SY and TY are each I/4.

Hence, the total current flowing along XY is 
4 4 2

I I I
+ = . So, the voltage between X and Y,

2XY

I
V R= ´

So, the effective resistance between X and Y, 
2

XY
XY

V R
R

I
= = Ans.

2.10 Use loop current analysis to find currents in all branches of the

network of figure. Also, find the power delivered by 5A current

source. All resistances are in ohm.

Solution By KVL,

1 2 2 4 1 35 10 5( ) 15( ) 50i i i i i i+ + - + - =

or, 1 2 3 420 15 15 5 50i i i i+ - - = (i)

and, 4 2 4 4 35( ) 30 10 20( ) 0i i i i i- + + + - =

or, 2 3 45 20 35 30i i i- - + = - (ii)

By constraint equations,

2 1( ) 5i i- = (iii)

and 3 10i = (iv)

From Equation (i) and Equation (ii),

2 2 420( 5) 15 15 10 5 50i i i- + - ´ - =

or, 2 4 2 435 5 300 7 60i i i i- = Þ - =

and, 2 4 2 45 35 170 7 34i i i i- + = Þ - + =

Solving 4 6.02083 Ai =

2 4.4583 Ai = , i2 = 9.4583 A

and 3 10i A=

Power delivered by 5A current source = 110.83 5 554.16 Wv i´ = ´ =

[To calculate the voltage across the 5A current source, v, writing KVL for Mesh (1),

1 1 35 15( ) 50i v i i+ + - = 1 350 20 15 200 20 4.4583v i iÞ = - + = - ´  = 110.83 V]

2.11 For the circuit, find the voltage Vx using nodal analysis.

+
–100 W

40 W

Vx

+

–
50 W

25 ly
0.2 Vx

ly

0.6 A
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Solution

By KCL at node (1),

1 20.6 25 0
50 40

x
y y

V v v
I I

-
- + + - + = (i)

By KCL at node (2),

2 0.2
x

v V= (ii)

and other constraint equation,

1and
100

x
y x

V
I v V= = (iii)

From Equation (i), 1 20 6 25 0
100 50 100 40

x x xV V V v v-
- × + + - + =

Þ 120 2 4 50 5 5 0.2 0
x x x x x

V V V V V- + + - + - ´ =

Þ 120
3 V

40xV = = -
-

Ans.

2.12 Use nodal analysis to find the voltages VA, VB and Vx in the circuit, in which I1 = 0.4 A.

Solution By KCL at node (A),

0.4 0.03 0
100 20

A A B
x

V V V
V

-
- + + + = (i)

By KCL at node (B),

0
20 40 40

B CB A B V VV V V --
+ + = (ii)

Constraint equations,

40
B

y

V
I = (iii)
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and 80
C yV I= (iv)

and ( )
A B x

V V V- = (v)

From Equation (i),

0.4 0.03 0.03 0
100 20 20

A A B
A B

V V V
V V- + + - + - =

Þ (9 8 ) 40
A B

V V- = (vi)

From Equation (ii),

[by Eq. (iii) and Eq. (iv)]=
A B

V V

Thus, solving Equation (vi) 40 V
A B

V V= =

\ ( ) 0
x A B

V V V= - = Ans.

2.13 For the circuit, use loop analysis to find I1 and the power absorbed by the 500 W resistor.

Solution Converting the dependent current source into

dependent voltage source,

By KVL,

1 1 1

50
800 200 50 0.083 A

600
I I I- = Þ = = Ans.

Power absorbed by the 500 resistor

2
2
1

50
500

600
I R

æ ö
= = ´ç ÷è ø

500
3.47 W

144
= = Ans.

2.14 Determine the currents in all the branches of the network.
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Solution By KVL, for Mesh (1)

1 2 1 2 15 10 10( ) 5 5I I I I I+ + - + =

Þ 1 120 5 0.25 AI I= Þ =

By KVL for Mesh (2),

2 1 2 15 10 5 ( ) 10 0I I I I+ - + - ´ =

2 115 15 10 (3.75 10) 6.25I I= - = - = -

\ 2 0.416 AI = - Ans.

2.15 Obtain the current I in the network shown.

Solution By KVL for the second mesh

3 5 4 0R RV I V- + + + =

or, 2 5 4 0RV I- + + = (i)

Also, 2 ( 2),RV I= ´ -  putting this in Equation (i),

2 2( 2) 5 4 0I I- ´ - + + =

Þ 4 8 5 4 0I I- + + + =

Þ 12 AI = - Ans.

2.16 The current and voltage profile of an element vs. time has been shown in figure. Determine the

element and find its value.

Current (A)

Time (ms)

1 A

50 5

5

0

Voltage (V)

Time (ms)

Solution Here, the voltage is not proportional to the current; therefore, the element is not a resis-

tance.

Also, at t = 5ms, i ¹ 0, but the voltage suddenly drops to zero value, i.e., the element acts as short

circuit. As the voltage across a capacitor cannot change instantaneously, the element is not a

capacitor.

Now, the current is zero at t = 0 and the voltage is zero at t = 5ms. Therefore, we conclude that the

element is an inductor.
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From the figure,
di

dt
A s=

´
=

-

1

5 10
200

3
/ and v = 5 V.

Q v L
di

dt
L

v

di
dt

mH Ans= Þ = = =5

200
25 .

2.17 The voltage across a capacitor of value C = 1 mF is shown

in the figure. Find the current waveform.

Solution Here, the voltage can be expressed as,

 v t t

t t

t t

t

b g = £
= £ £
= - £ £
= ³

0 0

10 0 1

20 10 1 2

0 2

10

0

–10

1 2

i t( ) (mA)

t s( )

Current waveform of the capacitor

Since, i t C
dv t

dt
b g

b g
= , we have the current given as,

i t t

t

t

t

b g = <
= < <
= - < <
= >

-

-

0 0

10 0 1

10 1 2

0 2

2

2

This means that the current waveform consists of two sharp positive and negative pulses of magni-

tude 10 mA as shown in the figure.

2.18 For the circuit shown in the figure,

(a) Determine the KVL equations

(b) Find the two loop currents I1 and I2

(c) Find the power supplied by the source and the power dissipated in each resistor

2 W 3 W
– 2j W

j2 W

– 5j W

10 0° V–
+
– 1 W

v t( ) (V)

t s( )

10

0 1 2
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Solution

(a) KVL Equations:

2 2 10

2 4 3 0
1 2

1 2

I j I

j I j I
Ans

- =
- + - =

U
V
Wand b g

.

(b) Solving for the currents,

I

j

j

j

j j

j

j
Ans1

10 2

0 4 3

2 2

2 4 3

40 30

12 6
3 73 10 3=

-

-

-

- -

=
-

-
= Ð - °

a f

a f

. . A .

and I
j

j

j j

j

j
Ans2

2 10

2 0

2 2

2 4 3

20

12 6
1 49 116 56=

-

-

- -

=
-

= Ð °

a f

. . A .

(c) Power supplied by the source,

P VI Anss = = ´ - ° =1 1 10 3 73 10 3 36 7cos . cos . .f a f Watt .

Power dissipated in resistors,

P I W

P I W

P I W

Ans

2 1

2

3 2

2

1 2

2

2 27 78

3 6 67

1 2 22

W

W

W

= ´ =

= ´ =

= ´ =

U

V
||

W
|
|

.

.

.

.

2.19 For the circuit shown below, determine the voltage �v� using nodal analysis.

+
–

8 W 2 W

12 W 6 W 10 A100 V

+

–

v

Solution

+
–

8 W 2 W

12 W 6 W 10 A100 V

+

–

v

1 2
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Let the node voltages be V1 and V2. Here, V2 = v

By KCL,

V V V V
V v1 1 1 2

1

100

8 12 2
0 17 12 300

-
+ +

-
= Þ - = �(i)

and

V V V
V v2 1 2

12 6
10 0 3 4 60

-
+ - = Þ - + = �(ii)

Solving Eq (i) and (ii), we get,

v Ans=
-

-

-

= =

17 300

3 60

17 12

3 4

1920

32
60 Volt .

2.20 Determine the voltage v in the network in the Figure using nodal analysis.

+
–

2 W 2 W

12 W 6 W 10 A100 V

+

–

v

Solution Converting the current source into equivalent voltage source, we get the following circuit.

2 W

+
–

12 W

6 W

100 V

I1 I2
60 V

+

–

v
+
–

2 W

By KVL,

14 12 100

12 20 60
1 2

1 2

I I

I I

- =

- + = -
Solving for I2,

I2

14 100

12 60

14 12

12 20

840 1200

280 144

360

136
2 64=

- -

-

-

= - +
-

= = . A

\ v I Ans= + =6 60 75882b g . Volt .
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2.21 Determine the voltage V using source transformation and simplification in the figure.

Solution By KVL,

–  +

6 W

6 A

4 W

3 W

3 W +

–

V

8 V

i1

i2
i3

and 

4 6 8 3 0
32
7

9 36 8 0
28
9

1 1 1

2 2

i i i

i i

+ + + = Þ = -

+ - = Þ = -

b g A

A

Thus, the voltage is,

V i i Ans= + + + = - +
F
H

I
K + - +

F
H

I
K =4 6 6 6 4

32
7

6 6
28
9

6 23 051 2b g b g . Volt .

2.22 Convert the current sources into the equivalent voltage source given in the figure and hence find the

voltage V0.

Solution Converting the current sources into voltage sources, we get the following circuit.

\ i = - = -20
6

10
3

A
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+ –

2 W V0

2 W

2 W

10 V

10 V

i
+
–

\ V i

Ans

0 2 10 2
10
3

10

10
3

3 33

= + = ´ - +
F
H

I
K

= = . .Volt

2.23 In the network shown, determine the voltage Vb which result in a zero current through the (2 + j3) W
impedance in a branch.

5 W 2 W 4 W

6 W30 V j 5 Vb

j 3

Solution When the 30 V source is acting alone, let the current through the branch 2 3+ jb gW  be

I1.

5 W 2 W

4 W6 W30 V j 5

j 3

I1
30 V j 5

I1

2 W5 W

2.4 W

j 3

Impedance,

Z
j j

j

j

j
= +

´ +
+

=
+
+

F
HG

I
KJ5

5 4 4 3

4 4 8

7 62

4 4 8

.

. .

b g
W

\ I
Z

j

j
= =

+

+

30 30 4 4 8

7 62

.b g

\ I I
j

j

j

j

j

j

j

j
A1

5

4 4 8

30 4 4 8

7 62

5

4 4 8

150

7 62
= ´

+
=

+
+

´
+

F
HG

I
KJ =

+.

.

.

b g
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When the Vb source is acting alone, let the current

through the branch 2 3+ jb g W  be I2.

Impedance,

Z
j

j

j

j
= +

´ +
+

=
+
+

F
HG

I
KJ4

6 4 5 55

10 5 55

69 55

105 55

. .

. . . .

b g
W

\ I
V

Z

V j

j
b b

'
. .

= =
+

+

105 55

69 55

b g

\ I I
j

V j

j j

V

j

b b
2

6

105 55

105 55

69 55

6

105 55

6

69 55
= ´

+
=

+
+

´
+

F
HG

I
KJ =

+
'

. .

. .

. .

b g
A

Current through the branch 2 3+ jb gW  will be zero, if

I I1 2=

Þ
j

j

V

j
b150

7 62

6

69 55+
=

+

Þ V j Ansb = + = Ð °25 25 35 35 45a f Volt Volt. .

2.24 Determine the current through the impedance (2 + j3)W in the circuit shown in figure, where,

V Vb = Ð°20 a f .

5 W 2 W 4 W

6 W30 V j 5 Vb

j 3

Solution When the 30 V source is acting alone, let the current through the branch (2 + j3)W be I1.

5 W 2 W

4 W6 W30 V j 5

j 3

I1

5 W 2 W j 3

j 530 V

I1
2.4 W

Impedance,

Z
j j

j

j

j
= +

´ +
+

=
+
+

F
HG

I
KJ5

5 4 4 3

4 4 8

7 62

4 4 8

.

. .

b g
W

\ I
Z

j

j
= =

+

+

30 30 4 4 8

7 62

.b g

5 W

2 W 4 W

6 Wj 5 Vb

j 3

I2
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\ I I
j

j

j

j

j

j

j

j
j1

5

4 4 8

30 4 4 8

7 62

5

4 4 8

150

7 62
2 4 6 44 2 38 0 27= ´

+
=

+

+
´

+

F
H

I
K = +

= Ð °= +
.

.

.
. . . .

a f
a f A

When 20V (Vb) source is acting alone, let the current

through the branch (2 + j3)W be I2.

Impedance,

Z
j

j

j

j
= +

´ +

+
=

+

+

F
HG

I
KJ4

6 4 5 55

105 55

69 55

105 55

. .

. . . .

b g
W

\ I
V

Z

j

j
b'

. .
= =

+
+

20 105 55

69 55

b g

\ I I
j

j

j j j

j A

2
6

10 5 5 5

20 10 5 5 5

69 55
6

10 5 5 5
120

69 55
136 38 56

1 06 0 85

= ¢ ´
+

=
+

+
´

+

F
H

I
K = +

= Ð- °

= -
. .

. .

. .
. .

. .

a f

a f

Total current through the branch (2 + j3)W is,

I I I j j j Ans= - = + - - = + = Ð °1 2 2 38 0 27 106 0 85 132 112 173 40 31b g a f a f a f. . . . . . . . .

2.25 Write the loop equations of the circuit and find the voltage Vx.

+
–

+
–

2 W

5 W 2 W

10 W
j5 W

–j2 W

– 2 Wj

10 0° (V)–

5–30° (V)

Vx+ –

10 W

Solution By KVL for the three meshes, we get,

+
–

+
–

2 W

5 W 2 W

10 W
j5 W

–j2 W

– 2 Wj

10 0° (V)–

5–30° (V)

Vx+ –

10 W

I1 I2

I3

5 W

2 W 4 W

6 Wj 5 Vb

j 3

I2
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7 3 5 5 101 2 3+ - - =j I j I Ib g �(i)

- + + - - = - +j I j I j I j5 12 3 5 2 2 4 33 2 51 2 3b g b g b g. . �(ii)

- - - + - =5 2 2 17 2 01 2 3I j I j Ib g b g �(iii)

Solving for I3 from equations (i), (ii) and (iii), we get,

I

j j

j j j

j

j j

j j j

j j

3

7 3 5 10

5 12 3 4 33 2 5

5 2 2 0

7 3 5 5

5 12 3 2 2

5 2 2 17 2

0 435 19415=

+ -
- + - +

- - -

+ - -
- + - -
- - - -

= Ð- °

a f
a f a f
a f

a f
a f a f
a f a f

a f

. .

. . A

Therefore, the required voltage is,

V I Ansx = ´ = ´ Ð - ° = Ð - °10 10 0 435 194 15 4 35 194 153 . . . . .Va f
2.26 For the network shown, find the value of the voltage V which results in the output voltage V0 = 5

Volt.

+
–

2 W

3 W

5 W

5 W
V0

– 2j W

j5 W
– 2j W

V

Solution For V0 = 5V, current in 2 2- jb g W  branch is,

+
–

2 W

3 W

5 W

5 W
V0

– 2j W

j5 W
– 2j W

V

I5

I4

I3

I2

I1 x

I
j5

5

2 2
=

-

Also, I4

5

5
1= = A
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\ I I I
j

j

j3 4 5 1
5

2 2

7 2

2 2
= + = +

-
F
HG

I
KJ =

-
-

F
HG

I
KJb g A

Voltage at node x is,

V I j
j

j
j

j

jx = + ´ = +
-
-

F
HG

I
KJ ´ =

+

-
F
HG

I
KJ5 5 5

7 2

2 2
5

20 25

2 23

\ I
V j

j
x

2 3

20
3

25
3

2 2
= =

+

-

F

H
GG

I

K
JJ

\ I I I
j

j

j

j

j

j1 2 3

20
3

25
3

2 2

7 2

2 2

13 67 6 33

2 2
= + =

+

-

F

H
GG

I

K
JJ +

-
-

F
HG

I
KJ =

+
-

F
HG

I
KJb g

. .

Now, by KVL for the left mesh, we get,

V V I j
j

j

j

j
j

j

j

Ans

x= + - =
+
-

F
H

I
K +

+
-

F
H

I
K ´ -

=
+
-

= Ð °
Ð - °

= Ð °

1 5 2
20 25

2 2

13 67 6 33

2 2
5 2

101 29 33

2 2

10517 1619
2 83 45

3718 6119

a f a f

a f

. .

.

. .
.

. . .V

2.27 (a) Determine the voltages of node �m� and �n� with respect to the reference in the circuit shown.

(b) Find the current �I� using node voltage method.

+
–

+
–

2 W4 W5 W

j2 W – 2j W 50 90° (V)–50 0° (V)– I

m n

Solution

(a) By KCL at node (m), we get,

V V

j

V Vm m m n-
+ +

-
=

50

5 2 4
0

Þ 10 9 5 200+ - =j V j V jm nb g (i)

By KCL at node (n), we get,

V V V

j

V jn m n n-
+
-

+
-

=
4 2

50

2
0

Þ j V j Vm n1 2 3 100+ - =b g (ii)
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Solving for Vm and Vn from equations (i) and (ii), we get,

V

j j

j

j j

j j

j

j
Ans

V

j j

j

j j

j j

j

j
Ans

m

n

=

-
-

+ -
-

=
-
- = Ð- °

=

+

+ -
-

=
+

- = Ð °

200 5

100 2 3

10 9 5

1 2 3

600 900

42 12
24 76 40 36

10 9 200

1 100

10 9 5

1 2 3

1200 900

42 12
34 34 52 81

a f

a f
a f

a f

a f

a f
a f

a f

. . .

. . .

V

V

(b) Therefore, the required current is,

I
V

j
Ansm

= =
Ð- °

Ð °
= Ð- °

2
24 76 40 36

2 90
12 38 130 36

. .
. . Aa f .

2.28 Use Node voltage method to find V in the circuit.

40 W

+
–

j20 W

50 W

– 30j W

6 30°–120 –15°–

V

Solution Converting the voltage source into current source, we get the circuit shown below.

40 W

j20 W

50 W

– 30j W

6 30°–2.68 –41.56°–

V

By KCL,

V
j

V
j

V
40 20 30 50

2 68 4156 6 30
+

+ - + = Ð- °- Ð °. .

Þ V j j j0 022 26 56 0 033 0 02 2 1 78 5196 3. . . . . .Ð ° + + = - - -

Þ V
j

j j

j

j
=

- -

+ + +
=
- -

+
3196 4 78

0 02 0 01 0 033 0 02

3196 4 78

0 04 0 043

. .

. . . .

. .

. .

Þ V Ans= - Ð °97 62 8 94. . Volt .
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2.29 Using source transformation and simplification, determine the voltage between the points P and Q

shown in the figure.

+
–

8 W 6 W

2 W 4 W

2 A

P Q

10 V

Solution By KCL,

At Node-1,
V V

VP P

P

-
+ + = Þ =

10

2 8
2 0 4 8. V

At Node-2,
V V

V
Q Q

Q

-
+ - = Þ =

10

4 6
2 0 10 8. V

Therefore, the voltage between the points P and Q is,

V V Ans
P Q- - -d i b g= = Volt4 8 10 8 6. . .

2.30 Find the voltage across the resistor R = 2W in the

figure.

Solution Since the 2W resistor is in parallel with the

10 V voltage source, it may be ignored. Also, converting

the current source into equivalent voltage source, we

get the simplified circuit as shown in the figure.

\  Ai =
-

= -10

6

5

3

2 W

+
–

2 W 2 W10 V 10 A

R = 2 W

10 V
+
–

+
–

2 W

20 AR = 2 W

i

2 W

Voltage across R = 2W resistor, is, V i Ans= ´ = - ´ = - = -2
5

3
2

10

3
3 33. Volt .

2.31 Find the current through the 5 W resistor in the figure

using mesh analysis.

Solution

By KVL for the first mesh,

15 10 5 50 3 2 101 2 3 1 2 3i i i i i i- - = Þ - - = (i)

2 W

+
–

2 W 2 W10 V 10 A

R = 2 W

+
–

2 W

1 W

3 W

5 W

10 W

50 V

2 A
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+
–

2 W

1 W

3 W

5 W

10 W

50 V

2 A

i1

i2

i3

By KVL for the supermesh,

2 5 10 0 15 12 6 02 3 3 1 2 1 1 2 3i i i i i i i i i+ + - + - = Þ - + + =b g b g (ii)

Also, the constraint equation is that, i i i i2 3 2 32 2- = Þ = +b g b g
Putting this value of i2 in equations (i) and (ii), we get,

3 3 141 3i i- =

- + = -15 18 241 3i i

Solving these two equations,

i i1 220
46

3
1533= = =A and A A.

\ Current through the 5 W resistor is,

i i i Ans= - = =1 3

14

3
4 67b g . A .

2.32 Use mesh analysis to find the current ix

20 W 25 W

10 W 5 W 5 A1.5 ix2 A

ix

Solution We convert the 5 A current source into its equivalent voltage source.

20 W 25 W

10 W 25 A1.5 ix2 A

ix

i2 i3i1

5 W

+
–

From the first loop, we get, i1 2= A

BY KVL for the supermesh as shown by the dotted line, we get,

20 30 25 10 02 3 2 1i i i i+ + + ´ - =b g
Putting the value of i1,

20 30 25 10 2 0 6 6 1 02 3 2 2 3i i i i i+ + + ´ - = Þ + + =b g (i)
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Also by KCL we get, the following constraint equations.

i i i i i i
x x
= - = - Þ = -1 2 2 22 2b g b g b g

and

15 15 15 2 2 0 53 2 3 2. . . .i i i i i i i i i
x x x x x

= - Þ = + = + - = +b g b g b g b g
Putting the values of i2 and i3 in equation (i), we get,

6 6 1 02 3i i+ + =

Þ 6 2 6 2 0 5 1´ - + ´ + = -i i
x xb g b g.

Þ i Ans
x
= =

25

3
8 33. A .

2.33 Calculate the effective resistance between the points A and B in the circuit shown in figure

2 W

2 W

2 W

2 W

3 W

6 W 6 W

5 W

5 W

4 W

A

B3 W

Solution The 2W, 2W and 3W resistances are in series and 4W, 2W and 5W resistances are also in

series. The reduced circuit is shown in the figure.

2 W

7 W

3 W

6 W 6 W

5 W

11 W

A

B

r1 r2

r3

Converting the delta consisting of the resistances of 6W, 6W and 3W into equivalent star the circuit

is reduced as shown in the figure.

r

r

r

1

2

3

6 3

6 3 6
12

6 3

6 3 6
12

6 6

6 3 6
2 4

= ´
+ +

=

= ´
+ +

=

= ´
+ +

=

.

.

.

W

W

W

3.2 W

7.4 W 12.2 W7 W

A

B
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The equivalent resistance between terminals A and B is given as,

R AnsAB = + ´
+

L
NM

O
QP
= + = ´

+
=7 3 2

7 4 12 2

7 4 12 2
7 32 4 6061

7 7 8061

7 7 8061
3 69.

. .

. .
. .

.

.
. W .

2.34 Find the currents i1, i2 and i3 and powers delivered by the sources of the network shown in the

figure.

+ – + –
6 W

4 V

A
B

C

D

E

F
12 V

4 W

i3

i2

i1

12 W 4 W

Solution We consider the four meshes and the mesh currents as shown in the figure below.

+ – + –
6 W

4 V

A
B

C

D

E

F
12 V

4 W

i3

i2i1

12 W 4 W

i4

By KVL for the meshes, we get,

18 12 0 3 2
3

2

12 12 12 12 12 12 12
3

2
12 18 12 2

1 4 1 4 4 1

1 4 1 4 1 1 1

i i i i i i

i i i i i i i A

- = Þ = Þ =

- + = Þ = - = F
H

I
K - = - Þ =

\ i A4 3=

4 16 4

4 4 1
2 2

3 3

i i A

i i A

= Þ =

= Þ =

Therefore, the required currents are,

i A i A i A1 2 32 4 1= = =; ;

Power delivered by 12V source = ´ + = ´ =12 12 7 844 2i i Ansb g W .

Power delivered by 4V source = ´ + = ´ =4 4 5 202 3i i Ansb g W .

2.35 Determine the current through 10W resistance in the network shown in the figure by using star-delta

conversion.
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4 W

+ –

24 W 13 W

17 W

30 W

30 W

10 W

12 W

12 W8 W

180 V

Solution The resistances 8W and 4W are in series and resistances 13W and 17W are also in series.

The reduced circuit is shown in Figure (i).

+ –

24 W

30 W

30 W

10 W

12 W

12 W

180 V

12 W
30 W

Figure (i)

There are two deltas in the circuit, one consisting of the resistances 12W each and the other

consisting of the resistances 30W each. We convert the deltas into their equivalent star and the

reduced circuit is shown in Figure (ii).

24 W

4 W 10 W

10 W10 W

10 W

4 W

4 W

+ –

180 V

Figure (ii)

Equivalent resistances in star are,

R

R

= ´
+ +

=

= ´
+ +

=

12 12

12 12 12
4

30 30

30 30 30
10

W

W'

From Fig (ii), further modified circuit is shown in Figure (iii).
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24 W

+ –

10 W

38 W

4 W
I10 W

180 V

Figure (iii)

Therefore, the current through the 10W resistance is the current through the 24W resistance branch

in Figure (iii). This is given as,

Total current,

I =
+ ´

+
+

=180

4
38 24

38 24
10

6 27. A

\ I I

Ans

10

38
38 24

6 27
38

38 24
3 8426

W = ´
+

= ´
+

=

.

. .A

2.36 Find the equivalent p network for the circuit shown in the figure.

R R

RR

R R

Solution We convert the outer star into its equivalent delta with each resistance equal to

R R R
R R

R
R'= + +

´
= 3 . The reduced circuit is shown in Figure (i).

3 R

3 R 3 RR

RR

Figure (i)
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Now, we convert the inner star into its equivalent delta with each resistance equal to

R R R
R R

R
R"= + +

´
= 3 . The reduced circuit is shown in Figure (ii).

3 R

3 R 3 R
R

3 R

3 R 3 R

Combining all the parallel resistances the equivalent p network is shown in Figure (iii).

1.5 R 1.5 R

1.5 R

2.37 The element of a 500 watt electric iron is designed for use on a 200 volt supply. What value of

resistance is needed to be connected in series in order that the iron can be operated from 240 volt

supply?

Solution Since the iron is rated for 500 W, 200 V, the resistance of the iron coil is,

R = =200

500
80

2

W

When an external resistance Rx is connected in series with the iron, the total resistance in the circuit

is R R R
T x
= +b g. If this is connected to a 240 V supply, the power equation becomes,

P
V

R R
R Ans

T x

x
= Þ =

+
Þ =

2 2

500
240

80
35 2. W .

2.38 Find the value of the constant �K� in the circuit shown in the figure, such that the power dissipated

in 2W resistor does not exceed 50 W.

4 W

+
–

2 W 8 W

I

KI
+ –

6 A 16 V

Solution Here, the 8W resistance in parallel with the 16V source can be ignored. Converting the

dependent voltage source into its equivalent current source, we get the following circuit.
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4 W

+
–

2 W

I

KI
+ –

6 A 16 VI1

By KVL for the right mesh, we get,

4 16 2 6 0
4

61 1 1I KI I I
KI

- + + ´ - = Þ = -F
H

I
Kb g

Also, I I
KI KI

I
K

= - = -
-F

H
I
K = -

Þ =
+

6 6
4

6

40

6

40

61b g

Now, the power dissipated in 2W resistance is 50 W.

\ P I2
2 2W = ´

50
40

6
2

2

=
+

F
H

I
K ´

K

Þ 40

6
5

+
=

K

Þ K Ans= 2 .

2.39 Use nodal analysis to determine v1 and power being supplied by the dependent current source in the

circuit shown in the figure.

+
–

20 W 30 W

50 W

5 A v1 0.4 v1 0.01 v1

+

–

Solution We first label the circuit as shown in the figure below.

+
–

20 W 30 W

50 W

5 A v1 0.4 v1 0.01 v1

+

–

v1
v2 v3

By KCL at node 1,

v v v v

v v v

1 3 1 2

1 2 3

50 20
5

7 5 2 500

-
+

-
=

- - = (i)
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By KCL at node 3,

v v v v
v

v v v

3 1 3 2
1

1 2 3

50 30
0 01

9 10 16 0

-
+

-
=

+ - =

.

(ii)

Also, by constraint equation,

v v2 10 4= .

Putting this value in (i) and (ii), we get,

7 5 0 4 2 500 5 2 5001 1 3 1 3v v v v v- - = Þ - =.b g (iii)

9 10 0 4 16 0 13 161 1 3 1 3v v v v v+ - = Þ =.b g (iv)

From (iii), putting the value of v3, we get,

 5 2
13

16
500

500 16

54
1481481 1 1v v v Ans- F

H
I
K = Þ = ´ = . V .

\ v v3 1

13

16

13

16
148148 120 37= ´ = ´ =. . V

\ Power supplied by the dependent current source is,

P v v Ans= ´ = ´ ´ =3 10 01 120 37 0 01 148148 178 32. . . . . W .

2.40 Calculate the node voltages in the circuit shown in the figure.

10 kW 30 kW

20 kW

12 mA
0.8 I

V1 V2

I

Solution By KCL for the two nodes, we get,

At node 1,

V
I

V V1

3

3 1 2

310 10
08 12 10

20 10
0

´
- + ´ +

-

´
=-.

Þ 3 16 10 2401 2
3V V I- = ´ - (i)

At node 2,

- ´ +
-

´
+

´
= - + =-12 10

20 10 30 10
0 3 5 7203 2 1

3

2

3 1 2

V V V
V V (ii)

Also, I
V

= -
´

2

330 10

Putting this in (i), we get,

3 16 10
30 10

240
8

15
2401 2

3 2

3 2V V
V

V- = ´ -
´

F
HG

I
KJ

- = - -
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Þ - + =45 7 36001 2V V (iii)

Solving (i) and (iii), we get,

V Ans

V Ans

1

2

720 5

3600 7

3 5

45 7

12960
204

63 53

3 720

45 3600

3 5

45 7

21600
204

105 88

=
-

-

= - = -

=

-

-

-

-

= - =

. .

. .

V

V

2.41 Draw a circuit and its dual if the mesh equations of the circuit are given as,

 

8 2 4 5

14 6 3

4 6 15 6

1 2 3

2 3

1 2 3

i i i

i i

i i i

- - =

- =

- - + =

Solution The circuit satisfying the mesh equations is shown in the figure below.

+
–

+
–

+
–

2 W 6 W

5 W

6 V

3 V
i2

i1
5 V

i1
2i1

i3

4 W 6 W

2 W

The dual equations will be

8 2 4 5

14 6 3

4 6 15 6

1 2 3

2 3

1 2 3

v v v

v v

v v v

- - =
- =

- - + =

Here, v1, v2, and v3 are the node voltages. In the dual circuit, resistances will be replaced by conduc-

tances and voltage sources by the current sources.

Following the procedure mentioned in Art. 2.10, we construct the dual circuit as shown below.
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+
–

+
–

+
–

+ –

5 A

3 A

6 A

6 V

3 V5 V

4 W

2 W

5 W

6 W

1/6 W

6 W2 W

1/6 W1/2 W

1/2 W
v1

2v1

2i1

v2

v3

i1

1/5 W

1/4 W

Therefore, the dual circuit is shown below.

1/2 W

1/6 W1/2 W

1/5 W

1/6 W

v
1

v
2

2v
2

v
3

6 A3 A

1/4 W

5 A

2.42 Draw the dual of the circuit shown in the figure.

(a)

+

–

L
2

R
3

R
2

R
1

L
1

vg

i
0

C
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(b) 2 W

+

–

2 W
1 W

3 H
1 F

10 V
1 W

2 F

1 H

Solution

(a) The dual network is drawn as shown below.

+

–

L
2

R
3

R
2

R
1

L
1

vg

i
0

C
1

2

2

3

The final dual circuit becomes as shown below.

+

–

C L
1 1
=

L C=

1

2

3

G
2

G
1

G
3

C L
2 2
= v i

0 0
=i vg g=

G R
1 1
= mho

G R
2 2
= mho

G R
3 3
= mho

(b) The dual network is drawn as shown below.

2 W

+

–

2 W
1 W

3 H
1 F

10 V
1 W

2 F

1 H

1
2

3 4
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The final dual network is shown below.

1

2
W

1

2
W

2 H

1 H
3 F

10 A 1 W

1 W
1 F

MULTIPLE-CHOICE QUESTIONS

2.1 Find the odd one from the following elements.

(a) Inductor (b) Capacitor (c) Resistor (d) Transistor

2.2 Kirchhoff�s laws are valid for

(a) linear circuits only. (b) passive time-invariant circuits.

(c) non-linear circuits only. (d) both linear and non-linear circuits.

2.3 Kirchhoff�s laws are applicable to

(a) d.c. circuits.

(b) circuits with sinusoidal excitation only.

(c) circuits with d.c. and sinusoidal excitation only

(d) circuits with any excitation.

2.4 Kirchhoff�s law fails in case of

(a) linear networks. (b) non-linear networks.

(c) dual networks. (d) distributed parameter networks.

2.5 KCL is a consequence of law of conservation of

(a) energy (b) charge (c) flux (d) all of the above.

2.6 A component that opposes the change in circuit current is

(a) resistance (b) capacitance (c) inductance (d) conductance.

2.7 A component that opposes the change in circuit voltage is

(a) resistance (b) capacitance (c) inductance (d) conductance

2.8 For a d.c. voltage, an inductor

(a) is virtually a short-circuit. (b) is an open-circuit.

(c) depends on polarity. (d) depends on voltage value.

2.9 A network N ¢ is a dual of a network N if

(a) both of them have same mesh equations.

(b) both of them have same node equations.

(c) mesh equations of one of them are node equations of the other.

(d) none of the above.

2.10 A connected planar network has 4 nodes and 5 elements. The number of meshes in its dual network

is

(a) 4 (b) 3 (c) 2 (d) 1.
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2.11 Two networks can be dual when

(a) their nodal equations are the same.

(b) the loop equations of one network are the nodal equations of the other.

(c) their loop equations are the same.

(d) none of these.

2.12 The internal impedance of an ideal current source is

(a) zero (b) infinite (c) both (a) and (b) (d) none of these.

2.13 The internal impedance of an ideal voltage source is

(a) zero (b) infinite (c) both (a) and (b) (d) none of these.

2.14 The internal impedance of a dependent voltage source is

(a) zero (b) infinity (c) fraction of ohm (d) any unknown value.

2.15 An ideal voltage source will charge an ideal capacitor

(a) in infinite time (b) exponentially (c) instantaneously (d) none of the above.

2.16 A practical current source is usually represented by

(a) a resistance in series with an ideal current source.

(b) a resistance in parallel with an ideal current source.

(c) a resistance in series with an ideal voltage source.

(d) none of the above.

2.17 Energy stored in a capacitor is

(a) 21

4
CV (b) 21

2
CV (c)

0

1

2
C

¥

ò (d) 0

2.18 The node method of circuit analysis is based on

(a) KVL and Ohm�s law (b) KCL and KVL

(c) KCL, KVL and Ohm�s law (d) KCL and Ohm�s law

2.19 The loop method of circuit analysis is based on

(a) KVL and Ohm�s law. (b) KCL and KVL.

(c) KCL, KVL and Ohm�s law. (d) KCL and Ohm�s law.

2.20 Two wires A and B of the same material and length L and 2L have radius r and 2r, respectively. The

ratio of their specific resistance will be

(a) 1 : 1 (b) 1 : 2 (b) 1 : 4 (d) 1 : 8

2.21 There are two wires A and B. A is 20 times longer than B and has half the cross-section of that of B.

If the resistance of B is 1 W, the resistance of A will be

(a) 40 W (b)
1

40
 W (c) 20 W (d) 10 W

2.22 The resistance between the opposite faces of 1 m cube is found to be 1 W. If its length is increased

to 2 m, with its volume remaining the same, then its resistance between the opposite faces along its

length is

(a) 2 W (b) 4 W (c) 1 W (d) 8 W

(e)
1

2
  W

2.23 A wire of length l and of circular cross-section of radius r has a resistance R ohm. Another wire of

same material and cross-sectional radius 2r will have the same resistance R if the length is

(a) 2l (b) l/2 (c) 4l (d) l2
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2.24 Two resistances of equal value, when connected in parallel give an equivalent resistance of R. If

these resistances are connected in series, the equivalent resistance will be

(a) R (b) 4R (c) 2R (d)
2

R

2.25 A series arrangement of �n� identical resistances is changed into a parallel arrangement. The new

total resistance will become times the original resistance.

(a)
1

n
(b)

2

1

n
(c)

3

1

n
(d)

4

1

n

2.26 If a two-terminal network element in a circuit has voltage and current variables that follow the

associated reference directions and its power is negative, which of the following is true?

(a) The element is supplying energy to the rest of the circuit.

(b) The element is receiving energy from the rest of the circuit.

(c) Either (a) or (b) could be true.

2.27 If an ideal voltage source and an ideal current source are connected in parallel, what are the proper-

ties of the combination?

(a) The same as a voltage source.

(b) The same as a current source.

(c) Different from either a voltage source or a current source.

2.28 If an ideal voltage source and an ideal current source are connected in series, what are the properties

of the combination?

(a) The same as a voltage source.

(b) The same as a current source.

(c) Different from either a voltage source or a current source.

2.29 When ideal voltage sources are connected in series, which of the following is true?

(a) The voltages add, independent of whether the individual sources are constant valued or have

outputs that are functions of time.

(b) The connection violates KVL; thus it is not permitted.

(c) Neither is true.

2.30 When ideal arbitrary voltage sources are connected in parallel, which of the following is true?

(a) The voltages add, independent of whether the individual sources are constant valued or have

outputs that are functions of time.

(b) The connection violates KVL; thus it is not permitted.

(c) Neither is true.

2.31 When ideal arbitrary current sources are connected in series, which of the following is true?

(a) The currents add, independent of whether the individual sources are constant valued or have

outputs that are functions of time.

(b) The connection violates KCL; thus it is not permitted.

(c) Neither is true.

2.32 When ideal current sources are connected in parallel, which of the following is true?

(a) The currents add, independent of whether the individual sources are constant valued or have

outputs that are functions of time.

(b) The connection violates KCL; thus it is not permitted.

(c) Neither is true.
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2.33 In a network containing only independent current sources and resistors, if the values of all resistors

are doubled, the values of the node voltages

(a) are doubled. (b) remain the same.

(c) are halved. (d) change in some other way.

2.34 In a network containing only independent current sources and resistors, if the values of all the

current sources are doubled, the values of the node voltages

(a) are doubled. (b) remain the same.

(c) are halved. (d) change in some other way.

2.35 In a network containing only independent voltage sources and resistors, if the values of all the

voltage sources are doubled, the values of the mesh currents

(a) are doubled. (b) remain the same.

(c) are halved. (d) change in some other way.

2.36 In a network containing only independent voltage sources and resistors, if the values of all the

resistors are doubled, the values of the mesh currents

(a) are doubled. (b) remain the same.

(c) are halved. (d) change in some other way

2.37 If the same constant value of current is added to all the independent current sources in a network,

the node voltages

(a) will all have a constant value added. (b) will remain the same.

(c) will all have a constant value subtracted. (d) will change in some other way.

2.38 If the same constant value of voltage is added to each of the independent voltage sources in an

arbitrary network containing only resistors are independent voltage sources, the mesh currents

(a) will all have a constant value added. (b) will remain the same.

(c) will all have a constant value subtracted. (d) will change in some other way.

2.39 Two resistors R1 and R2 give combined resistance of 4.5 W when in series and 1 W when in parallel,

the resistances are

(a) 2 W and 2.5 W (b) 1 W and 3.5 W (c) 1.5 W and 3.5 W (d) 4 W and 0.5 W.

2.40 When all the resistances in the circuit are of 1W each, the equivalent resistance across the points A

and B will be

(a) 1 W (b) 0.5 W (c) 2 W (d) 1.5 W.

2.41 Energy expanded or heat generated in joules when a current of I flows through a conductor R for t

second is given by
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(a) 2I Rt (b) IRt (c) 2IR t (d) 2IRt

2.42 A 2 W resistance having a current of 2A will dissipate the power of

(a) 2 W (b) 4 W (c) 8 W (d) 8 J

2.43 The ratio of resistances of a 100 W, 220 V lamp to that of a 100 W, 110 V lamp will be, at the

respective voltages

(a) 4 (b)  2 (c)
1

2
(d)

1

4
2.44 For the circuit shown in figure, the value of current I is

(a) 10 A (b) 15 A

(c) 20 A (d) 25 A

2.45. The current in the 1 W resistor is

(a) 5 A (b) 10 A

(c) 15 A (d) zero.

2.46 The current in a 5 W resistor branch in a linear network is 5 A. If this branch is replaced by a resistor

of 10 W, the current in this branch will be

(a) 5 A (b) 10 A

(c) less than 4 A (d) none of these.

2.47 The potential of the point A in the given network is

(a) 6 V

(b) 7 V

(c) 8 V

(d) none of these.

2.48 The current through 30 W branch in the given circuit is

(a) 2.5 A (b) 2.25 A (c) 2 A (d) 10 A

2.49 The current through 8 W branch is

(a) 1 A

(b) 0.5 A

(c) 1.5 A

(d) none of these.
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2.50 If the current in the 7 W resistor branch is 0.5 A as

shown in the figure and now if the source is connected

in series with 7 W branch and the terminals AB are

shorted, the current in the 5 W resistor is

(a) 1 A (b) 0.5 A

(c) 9.75 A (d) none of these.

2.51 The voltage across 5 A source in the given circuit is

(a) 25 V (b) 15 V (c) 17.5 V (d) 20 V.

2.52 In the circuit shown in figure, current I flows through the

resistance R. If a battery of e.m.f. 2 V and internal resistance

of 1 W is connected between the terminals A and A¢ with

positive terminal connected to A¢, the current through R would

be

(a) 2 A (b) 1.66 A

(c) 1 A (d) 1.5 A.

2.53 The circuit shown in the figure is linear and time-invari-

ant. The sources are ideal. The voltage across the

1 W resistor and the current through it will be

(a) �5 V and �5 A (b) 1 V and 1 A

(c) 1 1 and 6 A (d) 5 V and 5 A.

2.54 The number of 2 mF, 400 V capacitors needed to obtain

a capacitance value of 1.5 mF rated for 1600 V is

(a) 12 (b) 8 (c) 6 (d) 4.

2.55 The value of the current I flowing in the 1 W resistor in the circuit, shown in figure will be

(a) 10 A (b) 6 A (c) 5 A (d) zero.

2.56 In the circuit shown in figure, the current I through RL is

(a) 2 A (b) zero (c) �2 A (d) �6 A.
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2.57 A voltage source with an internal resistance RS, supplies power to a load RL. The power delivered to

the load varies with RL as

(a) (b)

(c) (d)

2.58 A simple equivalent circuit of the 2-terminal network shown in the figure is

(a) (b)

(c) (d)
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2.59 Two condensers of 20 mF and 40 mF capacitances are connected in series across a 90 V supply. After

charging, they are removed from the supply and are connected in parallel with positive terminals

connected together and similarly the negative terminals. Then the voltage across them will be

(a) 90 V (b) 60 V (c) 40 V (d) 20 V.

2.60 The current read by the ammeter A in the a.c. circuit shown in the given figure is

(a) 9 A (b) 5 A (c) 3 A (d) 1 A

2.61 In the circuit shown in the given figure, current I is

(a)
2

5
-  A (b)

24

5
 A

(c)
18

5
 A (d)

2

5
 A

2.62 For the circuit shown in the given figure, the voltage VAB is

(a) 6 V (b) 10 V

(c) 25 V (d) 40 V

2.63 The equivalent resistance between the terminal points X and Y in the circuit shown is

(a) 15 W (b) 45 W (c) 55 W (d) 30 W
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2.64 In the circuit shown in the figure, if I = 2, then the value of the battery voltage V will be

(a) 5 V (b) 3 V (c) 2 V (d) 1 V

2.65 The effective resistance between the terminals A and B in the circuit shown in the figure is

(a) R (b) R � 1 (c) R/2 (d)
6

11
R

2.66 The current in the given circuit with a dependent source is

(a) 10 A (b) 12 A (c) 14 A (d) 16 A

2.67 The value of the resistance R shown in the given figure is

(a) 3.5 W (b) 2.5 W (c) 1 W (d) 4.5 W .
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2.68 For the circuit shown in the given figure, when the volt-

age E is 10 V, the current i is 1 A. If the applied voltage

across terminal C�D is 100 V, the short circuit current

flowing through the terminal A�B will be

(a) 0.1 A (b) 1 A

(c) 10 A (d) 100 A.

2.69 For the circuit shown in the given figure, the cur-

rent I is given by

(a) 3 A (b) 2 A

(c) 1 A (d) zero.

2.70 The value of V in the circuit shown in the given

figure is

1 W

1 W 1 W3 A

+   –

V

3 V

(a) 1 V (b) 2 V (c) 3 V (d) 4 V

2.71 For the circuit given in figure, the power delivered by the 2

volt source is given by

(a) 4 W (b) 2 W

(c) �2 W (d) �4 W

2.72 The current through 120 W resistor in the circuit shown in the

figure is

(a) 1 A (b) 2 A (c) 3 A (d) 4 A

2.73 The voltage across 5 A current source in the circuit shown in the figure is

(a) 25 V (b) 15 V

(c) 17.5 V (d) 20 V

+

–
5 W

5 W

5 A5 V
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2.74 The current ix in the network is

(a) 1A (b)
1

2
A

(c)
1

3
A (d)

4

5
A

2.75 The equivalent circuit of the capacitor shown is

VO =
Q

C
0

C
+–

2.76 If a network has seven nodes and five independent loops, the number of branches in the network is

(a) 7 (b) 5 (c) 11 (d) 12

2.77 An electric circuit with 10 branches and 7 nodes will have

(a) 3 loop equations (b) 4 loop equations

(c) 7 loop equations (d) 10 loop equations.

2.78 A circuit having an emf source or any energy source is a/an

(a) active circuit (b) passive circuit

(c) unilateral circuit (d) bilateral circuit

2.79 If there are b branches and n nodes, the number of KVL equations required will be

(a) b (b) b � n (c) n � 1 (d) b � n + 1

2.80 If the number of branches is �B�, the number of nodes is �N� and the number of dependent loops is

�L�, then the number of independent node equations will be

(a) N + L � 1 (b) B � 1 (c) B � N (d) N � 1

2.81 A network has 10 nodes and 17 branches in all. The number of different node pair voltages would be

(a) 7 (b) 9 (c) 10 (d) 45

2.82 The elements which are not capable of delivering energy by their own are known as

(a) unilateral elements (b) non-linear elements

(c) passive elements (d) active elements

2.83 Four resistors of equal value when connected in series across a supply dissipate 25W. If the same

resistors are now connected in parallel across the same supply, what is the power dissipated?

(a) 75W (b) 100W (c) 200W (d) 400W.

C VO

C

C

VO

C

(a) (b)

(c) (d)

6 W

9 W3 V

+

–

ix

12 A



2.72 Circuit Theory and Networks

2.84 What is the voltage V in the circuit shown in the figure?

2 W

3 W

8 W 10 W5 W 20 A

5 A

+

–

V

(a) 185V (b) 115V (c) 85V (d) 55V

2.85 A part of an electrical network has the configuration shown in the figure. The voltage drops across

the resistances are 20V, 30V and 65V with respective polarities shown in the figure. Which one of

the following gives the correct value of the resistance R
3
?

6 W

+

–

20 V

+

–

30 V10 W

10 A
+ –65 V

I3

I2

R3
I1

(a) 13W (b) 5W (c) 65W (d) 63/17 W

2.86 What is the current I in the circuit given in the figure?

2 W

3 W

3 W

3 W

3 W

1 W

6 V

I

(a) 0 (b) 1A (c) 2A (d) 3A

2.87 In the circuit given when R is infinite, V = 4Volt and when R = 0, the current through R is 4A. If R

= 3W, what is the current through it?

Sources
and

resistors

+

–

RV

(a) 4 A (b) 3A (c) 2 A (d) 1 A
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2.88 For the circuit given, what is the current delivered by the battery?

I = 2 1 2

9

+

–

(a) 3.0A (b) 2.0A (c) 1.0A (d) 0.0A

2.89 The circuit shown in the figure is in steady state with the switch open. At t = 0, the switch is closed.

What is the current through the 1W resistor, i(0+)?

5 W

1 W

12 V

L1

L2

C

t = 0

(a) 0 (b) 1.33A (c) 1.66A (d) 2 A

2.90 A 2-terminal network is one of the R-L-C elements. The element is connected to an ac supply. The

current through the element is I. When a capacitor is inserted in series between the source and the

element, then current through the element becomes 2I. The element

(a) is a resistor (b) is an inductor

(c) is a capacitor (d) cannot be a single element

2.91 For the circuit shown in the figure, if the current I = 3A and 1.5A for RL = 0

and 2W respectively, then what is the value of I for RL = 1W?

(a) 0.5A (b) 1.0A

(c) 2.0A (d) 3.0A

2.92 What is the value of current I in the circuit shown in the figure?

+
–

2 W

+
–

1 W 1 W6 V 30 V

2 W

I

(a) 1A (b) �3A (c) �6 A (d) 9 A

2.93 In the circuit shown, current through R is

R

RL

I

V

+

–
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10 W

5 W

5 W 10 W

R (= 10 W)

5 I

10 V

I

(a) 0 (b) 0.5A (c) 2.5A (d) 3.33A

2.94 Referring to the circuit shown in figure, the current in the 18W resistor is

22 W

14 W

9 W

5 W

11 W13 W

18 W
44 V

(a) 2 A (b) 1.5A (c) 1 A (d) 0.5A

2.95

6 W9.6 V 6 W

3 W6 W
A

B

An ideal ammeter is connected between terminals A and B of the network shown above. The current

through the ammeter is

(a) 0.8A (b) 1.6A (c) 0 A (d) 3.2A

2.96 For the network shown in the figure, the current in the 2W resistor would be

2 W10 W

10 W

5 A 25 A

(a) 5A (b) 20A (c) 25A (d) 30A

2.97

A C

D

B

+

–

V4

+

–

V5

+

V6

V2 = 2 Volt

V1 = 1 Volt
+ –

V3

+ –

–

–

+
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The branch voltages are marked with proper polarity for the network shown in the figure. The value

of V
5
 is

(a) 3V (b) 2V (c) 1V (d) 0V

2.98

+
–

20 W

10 W

5 W

100 V

5 A

I1

The current I1 through the 5W resistor in the network shown in the figure, is

(a) 8.58A (b) 7.54A (c) 11.66A (d) 15A

2.99 A lamp rated at 10 watts, 50 volts is proposed to be used in a 110 Volt system. The wattage and

resistance of the resistor to be connected in series with the lamp should be

(a) 15 watts, 350 ohms (b) 10 watts, 250 ohms

(c) 12 watts, 300 ohms (d) 15 watts, 250 ohms

2.100 The figure shows the waveform of the current passing through an

inductor of resistance 1W and inductance 2H. The energy absorbed

by the inductor in the first four seconds is

(a) 144 J (b) 98 J

(c) 132 J (d) 168 J

2.101 A segment of a circuit is shown in the figure. VR = 5V, VC = 4sin2t. The

voltage VL is given by

5 W

2 A

2 x

1 F

Q

S

P R

+

–

+

–

+ –

1 A

VL
VC

iC

VR

(a) 3 8 2- cos t (b) 32 2sin t (c) 16 2sin t (d) 16 2cos t

2.102 In the circuit of the figure, the magnitudes of VL and VC are twice that of VR. The inductance of the

coil is

5 W

VR

VL

VCC

L

5 0°–
+
–

(a) 2.14 mH (b) 5.30 H (c) 3.18 mH (d) 1.32H

6 A

2 s 4 s0
t
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2.103 In the figure, the value of the source voltage is

+
–

10 W 6 W

6 W1 A

2 AP

Q

(a) 12V (b) 24V (c) 30V (d) 44V

2.104 In figure, Ra, Rb and Rc are 20W, 10W and 10W respectively. The resistances R1, R2 and R
3
 in W of

an equivalent star-connection are

c b

a

Rb Rc

Ra

R1

R3 R2

a

c
b

(a) 2.5, 5, 5 (b) 5, 2.5, 5 (c) 5, 5, 2.5 (d) 2.5, 5, 2.5

2.105 In figure, the value of resistance R in W is

100 V

10 W

10 W

2 A

R
+
–

(a) 10 (b) 20 (c) 30 (d) 40

2.106 In the figure given, the value of R is

100 V 10 W10 W

8 A R

+
–

(a) 2.5W (b) 5.0W (c) 7.5W (d) 10.0W

2.107 In the circuit shown in the figure, the current source I = 1A, voltage source V = 5V, R1 = R2 = R
3
 =

1W, L1 = L2 = L
3
 = 1H, C1 = C2 = 1F. The current (in A) through R

3
 and the voltage source V

respectively will be
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+
–

R1 R2

R3

L3

L2

L1

C2

C1

I

V

(a) 1, 4 (b) 5, 1 (c) 5, 2 (d) 5, 4

2.108 A 3V dc supply with an internal resistance of 2W supplies a passive non-linear resistance character-

ized by the relation VNL = I2
NL. The power dissipated in the non-linear resistance is

(a) 1.0W (b) 1.5W (c) 2.5W (d) 3.0W

2.109 Assuming ideal elements in the circuit shown below, the voltage Vab will be

+
–

2 W

1 A 5 V

a

b

i

Vab

(a) �3V (b) 0V (c) 3V (d) 5V

2.110 In the circuit shown in the figure, the value of the current i will be given by

+
–

+
–

4Vab

1 W5 V 1 W

1 W 3 Wa bVab
+ –

i

(a) 0.31A (b) 1.25A (c) 1.75A (d) 2.5A

2.111 The minimum number of equations required to analyze the circuit shown in the figure is

R

R

R

RC

CC

(a) 3 (b) 4 (c) 6 (d) 7

2.112 Twelve 1W resistances are used as edges to form a cube. The resistance between two diagonally

opposite corners of the cube is

(a)
5

6
W (b) 1W (c)

6

5
W (d)

3

2
W

2.113 A two-terminal black box contains one of the R, L, C elements. The black box is connected to a 220
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volt ac supply. The current through the source is I. When a capacitance of 0.1F is inserted in series

between the source and the box, then current through the source is 2I. The element is

(a) a resistance (b) an inductance

(c) a capacitance of 0.5F (d) not readily identifiable from the given data

EXERCISES

2.1 Find RAB in the network shown below. All resistance values are in ohms.

10 20 5

25

305

10

155

2

A

B

[23.52W]

2.2 Use loop current analysis to find the current in each battery in the network shown. All resistance

values are in ohms.
20 60

25 50

40 V60 V120 V

40

+

–

+

–

+

–

[0.793 A, 0.408 A, 0.295 A]

2.3 Find the current through 2W resistance in the network shown below. Use loop current method.

60 2

1
10 V

20 V

103

+

– +–

[� 0.841A]

2.4 Convert the circuits shown in figure to a single voltage source in series with a single resistor.

+
–

4 W

+
–

8 W

15 V

10 V

4 W

12 A 6 W

8 A

V R= =
L
NM

O
QP

5
3

8

3
Volt, W V = 104 Volt, R = 10 W
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2.5 Convert the circuit shown in the figure to a single current source in parallel in with a single resistor.

5 W

18 V 10 V

6 W

+
–

+
–

[I = 1A, R = 2.73W]

2.6 Determine the voltage V in the circuit, using the source transformation technique and/ or any other

method.

5 W

3 W

8 W

2 W

10 W

+

–

V20 A

5 A

[V = 56.25V]

2.7 Find the current flowing through 5W resistor using source transformation technique.

11

27
A

L
NM

O
QP

3 W 1 W

1 W3 W 2 A 5 W5 V
+
–

2.8 Reduce the network shown in Figure (a) to a form shown in the Figure (b) using successive source

transformations.

+
–

+
–

+
–

2 W

2 W

1 W3 W

1 A

3 V6 V

4 V

b

a

I R

a

b

[I = 2.14A, R = 1.75W]
Figure (a)

Figure (b)
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2.9 For the circuit of the figure, apply source transformation and then find V1 and V2 by nodal analysis.

2 A 20 W

5 W

10 W

2 W
4 A

+

–

+

–

0.5 V1

V2V1
+

–
20 V

+

–
40 V

+ –

[V1 = 40 V, V2 = 15V]

2.10 In the circuit shown in figure if I1 = 2 A, determine RL and the power delivered in it.

12 A RL
3I1

I1

3 W 6 W

[2W; 18W]

2.11 Find the node voltages Va, Vb and Vc using nodal analysis.

+ –
2 W

2 W

3 W

1 W 5 W

VbVa Vc

4 A
2 V

i

2i

[4.3V; 3.9V; 3.3V]

2.12 Use mesh analysis to find the current ix in the circuit shown in the figure.

2 A 5 A5 W

25 W20 W

10 W 1.5 ix

ix

[8.33A]

2.13 Use mesh analysis to find the current ix in the circuit shown in the figure.

100 V

8 A

8 W 2 W

4 W 3 W 5 W

10 W

ix

+
–

[2.79A]
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2.14 Determine the value of V2, such that the current through (3 + j4)W impedance is zero.

4 W 4 W3 W

j3 W

j4 W

– 5j W20 V V2

[80.43Ð119.55° (V)]

2.15 Find the current ix in the circuit shown in the figure.

i1

ix

5 kW 20 kW

3 i14 mA

[0.571mA]

2.16 Find the current i1 in the circuit shown in the figure.

+ –

+
–

20 V 2 v2

10 W 40 W
90 V

v2+ –i1

[�1 A]

2.17 Find the equivalent resistance between the terminals A and B for the circuit shown in figure.

80 W10 W 40 W

30 W 20 W100 W

Req

[60W]

2.18 Using mesh analysis, find the current ix in the circuit shown in the figure.

100 V

8 A

8 W

2 W

4 W 3 W 5 W

10 Wix

+
–

[2.79A]
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2.19 For the circuit shown in the figure, find the currents iA, iB, and iC.

5.6 A 2 A9 W18 W

iA iB iC

0.1 Vx

–

+

Vx

[3A, �5.4A, 6A]

2.20 Use nodal analysis to find the voltage Vxy in the circuit shown in the figure below.

2 W10 W

30 W

12 W
40 W

6 W0.55 V 3 V1V1

+

–

X

Y

+
–

[�0.257V]

2.21 Determine Va and Vb in the circuit shown in the figure.

+
–

j6 W j5 W

j4 W– 6j W – 4j W10 0° (V)–

Va Vb3 W

[5.17Ð�75° V;1.33V]

2.22 Construct the dual of the networks shown below.

(a)

+
–

v t( )

R L

C

(b)

6 W
+
–

5 W

4 W

3 W

5 A

100 V

(c)

+
–

3 W2 A 20 V

5 W

0.2 F

4 H

(d)

10 W

3 F

4 H50 mA
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(e)

+
–

20 W

5 H

3 A10 V 2 F

(f)

+
–

2 W

6 V 2 H 10 mF

t = 0

2.23 Draw a circuit and its dual if the mesh equations of the circuit are

(a) 8 2 4 6 7 5 3 4 5 9 51 2 3 2 3 1 2 3i i i i i i i i- - = - = - - - + =; ;

(b) 4 4 6 5 6 5 8 21 2 3 1 2 3 1 2 3i i i i i i i i i- - = - - + - = - - + =; ;

2.24 Draw a circuit and its dual if the node equations of the circuit are

(a) 4 4 6 5 6 5 8 21 2 3 1 2 3 2 3v v v v v v v v- - = - - + - = - + =; ;

(b) 4 5 3 3 2 61 2 3 2 3 1 2 3v v v v v v v v- - = - = - - - + =; ;

(c) 6 2 5 2 8 3 4 3 9 01 2 3 1 2 3 1 2 3v v v v v v v v v- - = - + - = - - - + =; ;

SHORT-ANSWER TYPE QUESTIONS

2.1 Define the following terms:

(a) Electric charge

(b) Electric current

(c) Current density

(d) Electric potential and potential difference

(e) Drift Velocity

(f) EMF

2.2 Why should the current in different cross-sections of a cable be constant even though the cross-

sectional area is different at different places? Is current a scalar or vector quantity?

2.3 Define an electrical network. �All circuits are networks, but all networks are not circuits.�Justify this

statement.

2.4 Explain linearity conditions of elements in detail.

2.5 Differentiate between unilateral and bilateral elements. Give examples.

2.6 (a) State the basic assumptions for circuit analysis.

(b) Briefly mention the different source transformation techniques.

(c) Discuss the properties of an ideal current source and ideal voltage source.

(d) Explain how a voltage source can be converted into an equivalent current source and vice-

versa.

2.7 Explain the properties of basic elements R, L and C in networks.

2.8 What is electrical resistance? Explain the factors that affect the resistance.

2.9 Define capacitance. Derive an expression of the energy stored in a capacitor.

2.10 Define self-inductance of a coil. Derive an expression of the energy stored in an inductor.

2.11 (a) Explain why a capacitor is considered as a linear circuit element.

(b) Explain why an inductor is considered as a linear circuit element.
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2.12 Explain why

(a) the current through an inductor cannot change instantaneously

(b) the voltage across a capacitor cannot change instantaneously

2.13 Discuss the characteristics of ideal and practical sources (voltage and current). What is loading of

sources? Explain.

Or,

Draw the V-I characteristics for voltage and current source for ideal and actual cases.

Or,

Draw the symbol and characteristics of ideal and practical voltage and current sources.

2.14 Give one practical example each of an ideal voltage source and an ideal current source.

2.15 Explain voltage source to current source transformation. Define V-shift in the source transformation.

2.16 Establish the conditions for equivalence of practical voltage and current sources.

2.17 Give a brief introduction to the dependent (controlled) sources.

2.18 (a) State Kirchhoff�s voltage and current laws.

(b) Give a brief comparison of the loop method and node method of circuit analysis.

(c) Comment briefly on the choice between loop and nodal methods of analysing a network.

2.19 Explain �duality� in electrical engineering. How can you draw the dual of a network?

2.20 State the steps followed in finding the dual of a network.

2.21 Elaborate the statement: �A voltage impulse causes a current to be established in an inductance in

zero time.� What is the value of this current? Is it a violation of the fact that current in an inductance

cannot change instantaneously?

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

2.1 (d) 2.2 (d) 2.3 (d) 2.4 (d) 2.5 (b) 2.6 (c) 2.7 (b)

2.8 (a) 2.9 (c) 2.10 (b) 2.11 (b) 2.12 (b) 2.13 (a) 2.14 (d)

2.15 (c) 2.16 (b) 2.17 (b) 2.18 (d) 2.19 (a) 2.20 (a) 2.21 (a)

2.22 (b) 2.23 (c) 2.24 (b) 2.25 (b) 2.26 (a) 2.27 (a) 2.28 (a)

2.29 (a) 2.30 (b) 2.31 (b) 2.32 (a) 2.33 (a) 2.34 (a) 2.35 (a)

2.36 (c) 2.37 (d) 2.38 (d) 2.39 (c) 2.40 (b) 2.41 (a) 2.42 (c)

2.43 (a) 2.44 (d) 2.45 (d) 2.46 (c) 2.47 (c) 2.48 (c) 2.49 (b)

2.50 (b) 2.51 (c) 2.52 (d) 2.53 (d) 2.54 (a) 2.55 (c) 2.56 (c)

2.57 (c) 2.58 (a) 2.59 (c) 2.60 (b) 2.61 (b) 2.62 (a) 2.63 (d)

2.64 (c) 2.65 (c) 2.66 (b) 2.67 (a) 2.68 (c) 2.69 (c) 2.70 (c)

2.71 (b) 2.72 (c) 2.73 (b) 2.74 (a) 2.75 (a) 2.76 (c) 2.77 (b)

2.78 (a) 2.79 (d) 2.80 (d) 2.81 (d) 2.82 (c) 2.83 (d) 2.84 (d)

2.85 (b) 2.86 (b) 2.87 (d) 2.88 (d) 2.89 (a) 2.90 (b) 2.91 (c)

2.92 (c) 2.93 (a) 2.94 (c) 2.95 (a) 2.96 (c) 2.97 (d) 2.98 (a)

2.99 (c) 2.100 (a) 2.101 (b) 2.102 (c) 2.103 (c) 2.104 (a) 2.105 (b)

2.106 (c) 2.107 (d) 2.108 (a) 2.109 (a) 2.110 (b) 2.111 (b) 2.112 (a)

2.113 (b)



CHAPTER

3
Magnetically

Coupled Circuits

3.1 INTRODUCTION

The circuits we have considered so far may be termed as conductively coupled in the sense that one

coil affects the adjacent coils by current conduction. But when two or more coils are very close to

each other, then the current in one coil will affect the e.m.f. induced in other coils and these coils are

said to be mutually coupled or magnetically coupled coils.

In this chapter, we will first discuss the concepts of magnetic coupling and dot conventions

required to write KVL equations with correct polarities. Then we will learn the theoretical aspects of

transformers and tuned circuits.

3.2 SELF-INDUCTANCE

Consider a coil consisting of N turns and carrying current I in the counterclockwise direction, as

shown in Fig. 3.1. If the current is steady, then the magnetic flux through the loop will remain

constant. However, suppose the current I changes with time, then according to Faraday�s law, an

induced e.m.f will arise to oppose the change. The induced current will flow clockwise if 0
dI

dt
< ,

and counterclockwise if 0
dI

dt
> . The property of the loop in

which its own magnetic field opposes any change in current is

called �self-inductance�, and the e.m.f generated is called the

self-induced e.m.f or back e.m.f, which we denote as eL. All

current-carrying loops exhibit this property. In particular, an

inductor is a circuit element which has a large self-inductance.

Mathematically, the self-induced e.m.f can be written as
Figure 3.1 Magnetic flux through

the current loop

I
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.
B

L

d d
N N B dA

dt dt

f
e = - = - òò

rr

and is related to the self-inductance L by,

L

dI
L

dt
e = -

The two expressions can be combined to yield

BN
L

I

f
=

Physically, the inductance L is a measure of an inductor�s �resistance� to the change of current; the

larger the value of L, the lower the rate of change of current.

Example 3.1 Self-inductance of a solenoid:

Compute the self-inductance of a solenoid with turns N, length l, and radius

R with a current I flowing through each turn, as shown in Fig. 3.2.

Solution: Ignoring edge effects and applying Ampere�s law, the magnetic

field inside a solenoid is given by,

0

0

NI
B k nIk

l

m
m= =

) )v

where, 
N

n
l

= is the number of turns per unit length. The magnetic flux through each turn is,

( )2 2

0 0
.BA nI R nI Rf m p m p= = =

Thus, the self-inductance is,

2 2
0

N
L n R l

I

f
m p= =

We see that L depends only on the geometrical factors (n, R and l) and is independent of the

current I.

3.3 COUPLED INDUCTOR

When the magnetic flux produced by an inductor links another inductor, these inductors are said to

be coupled. Coupling is often undesired but in many cases, this coupling is intentional and is the basis

of the transformer. When inductors are coupled, there exists a mutual inductance that relates the

current in one inductor to the flux linkage in the other inductor. Thus, there are three inductances

defined for coupled inductors:

Figure 3.2 Solenoid

I
I

I
N turns

Z

R
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L11 � the self inductance of inductor 1

L22 � the self inductance of inductor 2

L12 = L21 � the mutual inductance associated with both inductors

When either side of the transformer is a tuned circuit, the amount of mutual inductance between

the two windings determines the shape of the frequency response curve. Although no boundaries are

defined, this is often referred to as loose-, critical-, and over-coupling. When two tuned circuits are

loosely coupled through mutual inductance, the bandwidth will be narrow. As the amount of mutual

inductance increases, the bandwidth continues to grow. When the mutual inductance is increased

beyond a critical point, the peak in the response curve begins to drop, and the center frequency will

be attenuated more strongly than its direct sidebands. This is known as over-coupling.

3.4 MUTUAL INDUCTANCE

Mutual inductance is the ability of one inductor to induce an e.m.f. across another inductor placed

very close to it.

When two coils are placed very close to each other, the magnetic flux caused by current in one

coil links with the other coil and induces some voltage in the second coil. This phenomenon is known

as mutual inductance.

Suppose two coils are placed near each other, as shown in Fig. 3.3.

COil 2

Coil 1

I
1

B
1

N
1

N
2


21

Figure 3.3 Changing current in coil 1 produces changing magnetic flux in coil 2

The first coil has N1 turns and carries a current I1 which gives rise to a magnetic field 1B
r

. Since

the two coils are close to each other, some of the magnetic field lines through coil 1 will also pass

through coil 2. Let f21 denote the magnetic flux through one turn of coil 2 due to I1. Now, by varying

I1 with time, there will be an induced e.m.f. associated with the changing magnetic flux in the second

coil:

21
21 2 1 2

coil 2

.
d d

N B dA
dt dt

f
e = = òò

rr
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The time rate of change of magnetic flux f21 in coil 2 is proportional to the time rate of change of the

current in coil 1and thus the voltage can be written as,

21 21 1 1

21 2 2 21
1

d d dI dI
N N M

dt dI dt dt

f f
e = = ´ =

where
1

212
21

I

N
M

φ
=  is called the mutual inductance.

The mutual inductance M21 depends only on the geometrical properties of the two coils such as the

number of turns and the radii of the two coils.

In a similar manner, suppose instead there is a current I2 in the second coil and it is varying with time

[Fig. (b)]. Then the induced e.m.f. in coil 1 becomes

21
21 2 1 2

coil 2

.
d d

N B dA
dt dt

f
e = = òò

rr

and a voltage is induced in coil 1.

COil 2

Coil 1

I
2

B
2

N
2

N
1


12

Figure 3.4 Changing current in coil 2 produces changing magnetic flux in coil 1

This changing flux in coil 1 is proportional to the changing current in coil 2,

21 21 1 1

21 2 2 21
1

d d dI dI
N N M

dt dI dt dt

f f
e = = ´ =

where 1 12
12

2

N
M

I

f
=  is another mutual inductance.

Using the reciprocity theorem which combines Ampere�s law and the Biot-Savart law, it can be

shown that the two mutual inductances are.

M12 º M21 º M
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3.5 MUTUAL INDUCTANCE BETWEEN TWO COUPLED INDUCTORS

Let, L1, L2 � two inductors placed very close to each other.

v2(t) � open circuit voltage induced in L2 by a current i1(t) in L1

v1(t) � open circuit voltage induced in L1 by a current i2(t) in L2

So, when only i1(t) is flowing, the magnetic flux emerging from L1 is given as,

f1 = f11(Linking with L1) + f12(Linking with L2)

\ 1 1 1 1

1 1 1 1

1

d d di di
v N N L

dt di dt dt

f f
= = =

where, 1

1 1

1

d
L N

di

f
= f

and 12 12 1 1

2 2 2 21
1

d d di di
v N N M

dt di dt dt

f f
= = =

where, 12
21 2 2 1

1

Mutual Inductance of coil  with respect to coil 
d

M N L L
di

f
= =

Now, when only i2(t) is flowing, the magnetic flux emerging from L2 is given as,

( ) ( )2 21 1 22 2Linking with Linking with L Lf f f= +

\ 2 2 2 2
2 2 2 2

2

d d di di
v N N L

dt di dt dt

f f
= = =

where, 2
2 2

2

d
L N

di

f
=

and 21 21 2 2
1 1 1 12

2

d d di di
v N N M

dt di dt dt

f f
= = =

where, 21
12 1 1 2

2

Mutual Inductance of coil  with respect to coil 
d

M N L L
di

f
= =
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3.6 DOT CONVENTION

Mutual inductance is a positive quantity; but the sign of e.m.f. induced by it depends on the direction

of winding of the coils.

In circuit analysis, the dot convention is a convention used to denote the voltage polarity of the

mutual inductance of two components. Two conventions are:

1. If a current enters the dotted terminal of one coil, then the polarity of the e.m.f. induced in the

second coil will be positive at the dotted terminal of the second coil.

2. If a current leaves the dotted terminal of one coil, then the polarity of the e.m.f. induced in the

second coil will be negative at the dotted terminal of the second coil.

Following these conventions, we find the four possible combinations:

Combination (1):

⫹

v
2
(t ) = M 

di1(t )

M

I
1

dt
⫺

⫹

⫺

Combination (2):

⫹

v
2
(t ) = ⫺M 

di1(t )

M

I
1

dt⫺

⫹

⫺

Combination (3):

⫹
M

I
1

⫺

⫹

⫺

v
2
(t ) = ⫺M 

di1(t )

dt

Combination (4):

⫹

v
2
(t ) = M 

di1(t )

M

I
1

dt
⫺

⫹

⫺

If we assume the current flowing in both the coils, then we have the following combinations:

Combination (1):

⫹

v
2
(t )v

1
(t )

M

I
1

I
2

⫺

⫹

⫺

( )
( ) ( )

( )
( ) ( )

1 2
1 1

2 1

2 2

di t di t
v t L M

dt dt

di t di t
v t L M

dt dt

= +

= +
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Combination (2):

⫹

v
2
(t ) v

1
(t ) 

M

I
1

I
2

⫺

⫹

⫺

( )
( ) ( )

( )
( ) ( )

1 2
1 1

2 1

2 2

di t di t
v t L M

dt dt

di t di t
v t L M

dt dt

= -

= -

Combination (3):

⫹

v
2
(t ) v

1
(t ) 

M

I
1

I
2

⫺

⫹

⫺

( )
( ) ( )

( )
( ) ( )

1 2
1 1

2 1

2 2

di t di t
v t L M

dt dt

di t di t
v t L M

dt dt

= -

= -

Combination (4):

⫹

v
2
(t ) v

1
(t ) 

M

I
1

I
2

⫺

⫹

⫺

( )
( ) ( )

( )
( ) ( )

1 2
1 1

2 1

2 2

di t di t
v t L M

dt dt

di t di t
v t L M

dt dt

= +

= +

Also, for series connection of inductors, as shown,

L
1

L
2

M

ii

L
1

L
2

M

ii

Figure 3.5 (a) Total inductance = (L1 + L2 + 2M) (b)Total inductance = (L1 + L2 � 2M)

3.7 COEFFICIENT OF COUPLING

Coefficient of coupling between two coupled coils is defined as the ratio of the flux linking to the

other coil to the total flux.

\ 21 12

1 2

k
f f

f f
= =

k attains a maximum value of unity when 21 1 12 2andf f f f= = .

Now, the mutual inductance between two coils is,

M = 1 12 2 21

2 1

N N

I I

f f
=

\ M2 = 1 12 2 21

2 1

N N

I I

f f
´
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=
1 1 2 2 21 12

2 1 1 2

N k N
k

I I

f f f f

f f

ì ü
´ = =í ý

î þ
Q

= 
2 1 1 2 2

1 2

N N
k

I I

f fæ ö æ ö
´ç ÷ ç ÷è ø è ø

= k2 L1 L2

where, L1 and L2 are the self-inductances of the coils.

\
1 2

M
k

L L
=

3.7.1 Determination of Co-efficient of Coupling from Energy
Calculations in Coupled Circuits

To find the energy stored in the coupled circuit, we consider two cases:

⫹

v
2
(t ) v

1
(t ) 

M

I
1

I
2

⫺

⫹

⫺

Case (1): We assume i2 = 0 and let i1 increase from 0 to I1

\ Power in L1, ( ) ( ) ( ) 1

1 1 1 1 1

di
p t v t i t L i

dt
= = .

Figure 3.6 Coupled Circuit

\ Energy stored in the circuit,

Case (2): We assume i1 = 0 and let i2 increase from 0 to I2.

\ Power in L2, ( ) ( ) ( ) 2
2 2 2 2 2

di
p t v t i t L i

dt
= =

and Power in L1, ( ) ( ) ( ) 2
1 1 1 12 1

di
p t v t i t M I

dt
= =

\ Energy stored in the circuit, ( ) ( )
2 2

1

2
2 1 2 2 2 2 12 1 2 2 2 12 1 2

0

1

2

t I

t

w p p dt L i di M I di L I M I I= + = + = +ò ò

From case (1) and case (2), total energy stored in the coupled circuit when both i1 and i2 have

reached constant values of I1 and I2 is,

( ) 2 2
1 2 1 1 2 2 12 1 2

1 1

2 2
W w w L I L I M I I= + = + + (A)

Now, if we reverse the order in which the current reach their final values (i.e. first i2 increases

from 0 to I2 with i1 = 0 and then i1 reaches from 0 to I1 with i2 = I2), then the total energy will be,
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2 2
1 1 2 2 21 1 2

1 1

2 2
W L I L I M I I= + + (B)

From (A) and (B), we get,

12 21M M M= =

\ Total Energy, 
2 2

1 1 2 2 1 2

1 1

2 2
W L I L I MI I= + +

and for any instantaneous values,

( ) ( ) ( ) ( ) ( )2 2
1 1 2 2 1 2

1 1

2 2
w t L i t L i t Mi t i t= + +

If the dotted terminals are in opposite sides, then

2 2
1 1 2 2 1 2

1 1

2 2
W L I L I MI I= + -

In general,

2 2
1 1 2 2 1 2

1 1

2 2
W L I L I MI I= + ±

To find the limiting value of M:

Energy stored cannot be negative.

\
2 2

1 1 2 2 1 2

1 1
0

2 2
L I L I MI I+ - ³

Þ ( )2 2
1 1 2 2 1 2 1 2 1 2 1 2 1 2

1
2 0

2
L I L I L L I I L L I I MI I+ - + - ³

Þ ( ) ( )
2

1 1 2 2 1 2 1 2 1 2

1
0

2
L I L I L L I I MI I- + - ³

Þ ( ) ( )
2

1 1 2 2 1 2 1 2

1
0

2
L I L I L L M I I- + - ³

The squared term is never negative.

\ 1 2 0L L M- ³ Þ 1 2M L L£

Therefore, the maximum possible value of the mutual inductance is the geometric mean of the

self-inductances of the two coils.

The degree to which the mutual inductance approaches its maximum value is given by co-efficient

of coupling (k), defined as,



3.10 Circuit Theory and Networks

1 2

M
k

L L
=

So, 1 20 1 or, 0k M L L£ £ £ £

NB:

(i) For k = 1, the coils are called perfectly coupled coils.

(ii) For k £ 0.5, the coils are called loosely coupled coils.

(iii) For k ³ 0.5, the coils are called tightly coupled coils.

3.8 INDUCTIVE COUPLING

When two coils are connected in series or parallel, mutual inductance exists between them. Depend-

ing upon the type of connection, the voltage equation will be different.

3.8.1 Series Coupling

When two coils of self-inductances L1 and L2 are connected in series, two types of connection are

possible:

1. Series Aiding Connection

In this connection, the two coils are connected in series such a way that their induced e.m.f.�s are of

same polarities.

L
1

L
2

M

ii

 
L

1
L

2

M

ii

L
1

L
2

M

v(t )

ii

(a) (b) (c)

Figure 3.7 Series Aiding Connections

Here, total inductance = (L1 + L2 + 2M)

Derivation:

By KVL,

( ) ( )1 2 1 22 2
di di di di

v t L L M L L M
dt dt dt dt

= + + = + +

\ ( )eq 1 2
2L L L M= + +

2. Series Opposing Connection

In this connection, the two coils are connected in series such a way that their induced e.m.f.�s are of

opposite polarities.
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L
1

L
2

M

ii

L
1

L
2

M

ii

Figure 3.8 Series Opposing Connections

Here, total inductance = (L1 + L2 � 2M)

3.8.2 Parallel Coupling

When two coils of self-inductances L1 and L2 are connected in parallel, two types of connection are

possible:

1. Parallel Aiding Connection

In this connection, the two coils are connected in parallel such a way that their induced e.m.f.�s are

of same polarities.

M

L
1

L
2

M

L
1

L
2

Figure 3.9 Parallel Aiding Connections

Here, total inductance 
2

1 2

1 2 2

L L M

L L M

-
=
+ -

Derivation

By KVL,

( )

( )

1 2
1

1 2
2and

di di
L M v t
dt dt

di di
M L v t
dt dt

+ =

+ =

In sinusoidally steady state,

1 1 2

1 2 2and

j L I Mj I V

j MI j L I V

w w

w w

+ =
+ =

Solving for I1 and I2, we get,

I1 = 
( )

( )
22

2 2
1 1 2

2

V j M

j L M VV j L

j L j M M L L

j M j L

w

ww

w w w

w w

-
=

-

M

L
1

i
1

i
2

L
2
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and I2 = 
( )

( )

1

1

2 2
1 1 2

2

j L V

j L M Vj M V

j L j M M L L

j M j L

w

ww

w w w

w w

-
=

-

\ Total current, I ( )
( )

( )
1 2

1 2 2 2
1 2

2j L L M V
I I

M L L

w

w

+ -
= + =

-

\ Input Impedance, Z
( )

( )

2 2 2
1 2

1 2

1 2 1 22 2

M L L L L MV
j

I j L L M L L M

w
w

w

- é ù-
= = = ê ú

+ - + -ê úë û

Thus, the equivalent inductance is, 
2

1 2
eq

1 2 2

L L M
L

L L M

-
=

+ -

2. Parallel Opposing Connection

In this connection, the two coils are connected in parallel such a way that their induced e.m.f.�s are

of opposite polarities.

M

L
1

L
2

M

L
1

L
2

Figure 3.10 Parallel Opposing Connections

Here, total inductance 
2

1 2

1 2 2

L L M

L L M

-
=
+ +

It can be derived in the same way as done for parallel opposing connection.

3.9 LINEAR TRANSFORMER

A transformer is a four-terminal device comprising of two (or more) magnetically coupled coils. It is

composed of two coils:

� a primary coil of resistance R1 and self-inductance L1

� a secondary coil of resistance R2 and self-inductance L2

A transformer is said to be linear if the coils are wound on a magnetically linear material for which

the magnetic permeability is a constant. Some of linear materials are air, plastic, Bakelite, wood, etc.

Circuit representation of a linear transformer is shown in Fig. 3.11.
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R
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V
1
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L
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I
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L
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2

Z
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⫹
⫺

I
2

Figure 3.11 Circuit Representation of Linear Transformer

Calculation of Input and Reflected Impedances

By KVL for the two meshes,

V1 ( )1 1 1 2R j L I j MIw w= + - (i)

0 ( )1 2 2 2Lj MI R j L Z Iw w= - + + + (ii)

From (ii), 1

2
2 2 L

j MI
I

R j L Z

w

w
=

+ +

Putting this value in (i),

( ) ( )
2 2

1 1

1 1 1 1 1 1 1

2 2 2 2L L

j M j MI M I
V R j L I R j L I

R j L Z R j L Z

w w w
w w

w w

´
= + - = + +

+ + + +

\ Input Impedance, ( )
2 2

1

1 1

1 2 2
in

L

V M
Z R j L

I R j L Z

w
w

w
= = + +

+ +

Here, (R1 + jwL1) = Impedance of Primary Winding

and, 
2 2

2 2
R

L

M
Z

R j L Z

w

w
=

+ +

where,

ZR = Impedance due to coupling between primary and secondary, known as Reflected Impedance

NB: The input impedance and reflected impedance value do not change with the position of dots on

the winding, as the same result is obtained by replacing M by �M.

3.10 DETERMINATION OF EQUIVALENT T AND p CIRCUIT OF
LINEAR TRANSFORMER
(Conductively EQuivalent Circuit of a Magnetically Coupled Circuit)

A linear transformer can be replaced by an equivalent T or p network. A linear transformer with a

source in the primary and a load in the secondary is shown in Fig. 3.10. If we separate the
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resistances from the transformer, there remains only a pair of mutually coupled inductors, as shown

in Fig. 3.12.

V
1

V
2

⫹

⫺

M

L
1

I
1

L
2

⫹
⫺

I
2

Figure 3.12 Circuit Representation of Linear Transformer without resistances

By KVL for the two meshes,

1 2 1 2
1 1 2 2and

di di di di
v L M v M L

dt dt dt dt
= + = +

or,

V1 = ( ) ( )1 1 2 1 1 1 2j L I j MI j L M I j M I Iw w w w+ = - + +

and

V2 = ( ) ( )1 2 2 2 1 2 2j MI j L I j M I I j L M Iw w w w+ = + + -

Equivalent T Circuit

The above two equations can be written as,

V1 = ( ) ( )1 1 2 1 1 1 2j L I j MI j L M I j M I Iw w w w+ = - + +

and

V2 = ( ) ( )1 2 2 2 1 2 2j MI j L I j M I I j L M Iw w w w+ = + + -

Therefore, the equivalent T network for the linear transformer is shown in Fig. 3.13.

I
1 L

2
⫺ML

1
⫺M

M

I
2

Figure 3.13 Equivalent T network of Linear Transformer

Note that, if the dots of any one of the windings are placed in opposite end of the coil, the mutual

term becomes negative and the equivalent circuit can be obtained by replacing M by �M. In that case,

the three inductances are: L1 + M, � M, and L2 + M.

Equivalent p Circuit

I
1 L

B

L
A

L
C

⫺

⫹

I
2

v
2

⫺

⫹

v
1

Figure 3.14 Equivalent p network of Linear Transformer
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Using the concept of T-p conversion or, star-delta conversion, we get the equivalent p circuit of

a linear transformer as follows.

The three inductances of the equivalent p circuit are:

( ) ( ) ( )( )

( )

2
1 2 1 2 1 2

2 2
A

L M M M L M L M L M L L M
L

L M L M

- + - + - - -
= =

- -

Similarly,
2 2

1 2 1 2

1

andB C

L L M L L M
L L

M L M

- -
= =

-

Here also, if any one dot changes its location on the winding, the sign of M will change and in that

case, the three inductances will be:

2 2 2
1 2 1 2 1 2

2 1

, andA B C

L L M L L M L L M
L L L

L M M L M

- - -
= = - =

+ +

3.11 IDEAL TRANSFORMER

A transformer is said to be ideal; if it has the following properties:

1. Primary and secondary coils are lossless (i.e. R1 = R2 = 0).

2. Primary and secondary coils have very large reactances compared to any connected imped-

ance (i.e. L1, L2, M �® ¥)

3. Coupling between primary and secondary coils is perfect, i.e. k = 1 or the leakage flux is zero.

An ideal transformer is a useful approximation of a very tightly coupled transformer (k »1) in

which both the primary and secondary inductive reactances are extremely large compared to the load

impedance.

Calculation of Input Impedance for Ideal Transformer

The circuit symbol of an ideal transformer is shown in Fig. 3.15.

⫹

⫺

I
1

V
1

⫹

⫺

V
2

M

L
1

L
2

I
2

Figure 3.15 Circuit Symbol of Ideal Transformer

By KVL,

V1 = 1 1 2j L I j MIw w- (i)

0 = ( )1 2 2Lj MI j L Z Iw w- + + (ii)

From (ii), 2 1

2 L

j M
I I

j L Z

w

w
=

+
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Putting this in (i), we get,

V1 = 
1 1 2 1 1 1

2 L

j M
j L I j MI j L I j M I

j L Z

w
w w w w

w
- = -

+

= 

2 2 2
1 2 1

1

2

L

L

L L j L Z M
I

j L Z

w w w

w

æ ö- + +
ç ÷+è ø

= 

2 2
1 2 1 1 2

1 1 2
2

1,L

L

L L j L Z L L
I k M L L

j L Z

w w w

w

æ ö- + + é ù= \ =ç ÷ ë û+è ø
Q

= 
1

1

2

L

L

j L Z
I

j L Z

w

w

æ ö
ç ÷+è ø

\ Input Impedance,

Zin = [ ]1 1 1

2
1 2 2

; for ideal transformerL L
L

L

V j L Z j L Z
L Z

I j L Z j L

w w

w w
= » >>

+
Q

= 

2

21 1

2 2
L L

L N
Z Z L N

L N

æ ö æ ö é ù= µç ÷ ç ÷ ë ûè ø è ø
Q

Þ
2

1

2
2

L
in L

N Z
Z Z

N n

æ ö
= =ç ÷è ø

where, 2

1

N
n

N
=  is the turns ratio. Thus, the load impedance is approximately transferred as the

square of turns ratio. This input impedance is also known as the reflected impedance as the load

impedance is reflected to the primary side.

This property of an ideal transformer to transform a given impedance into another impedance is

used in impedance matching, which is very useful in different applications involving maximum power

transfer.

Calculation of Voltage and Current Transformation Ratio for Ideal Transformer

From (ii), 2
1 2

Lj L Z
I I

j M

w

w

+
=

Putting this in (i), we get,

V1 = 
2

1 1 2 1 2 2
Lj L Z

j L I j MI j L I j MI
j M

w
w w w w

w

æ ö+
- = -ç ÷è ø
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= 
2 2 2

1 2 1

2
LL L j L Z M

I
j M

w w w

w

æ ö- + +
ç ÷è ø

= 
2 2

1 2 1 1 2
2 1 21,LL L j L Z L L

I k M L L
j M

w w w

w

æ ö- + + é ù= \ =ç ÷ ë ûè ø
Q

= 1

2L

L
Z I

M

æ ö
ç ÷è ø

= 
1

2

1 2

L

L
Z I

L L

æ ö
ç ÷
è ø

V1 = 1

2
2

L

L
I Z

L

= 
1

2
2

L
V

L

\ Voltage Transformation Ratio, 2 2 2

1 1 1

V L N
n

V L N
= = =

where, n is the turns ratio. Depending upon the value of the turns ratio, three types of transformer

are obtained:

Case (I): n > 1

In this case, the secondary voltage is greater than the primary voltage and the transformer is termed

as step-up transformer.

Case (II): n < 1

In this case, the secondary voltage is less than the primary voltage and the transformer is termed as

step-down transformer.

Case (III): n = 1

In this case, the secondary voltage is equal to the primary voltage and the transformer is termed as

isolation transformer.

Also,

I1 = [ ]2 2
2 2 2 ; for ideal transformerL

L

j L Z j L
I I L Z

j M j M

w w

w w

+
» >>Q

= 2

2

1 2

L
I

L L
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= 2
2

1

L
I

L

\ Current Transformation Ratio, 2 1 1

1 2 2

1I L N

I L N n
= = =

where, n is the turns ratio. Thus, the ratio of the primary current to the secondary current is the

turns ratio. It must be noted that if any one dot changes its location on the winding, the current ratio

will become the negative of the turns ratio.

3.12 TUNED COUPLED CIRCUITS

When a capacitor is introduced in the primary and/or in the secondary circuit of a transformer, the

circuit becomes selective and the transformer is termed as a tuned coupled circuit or a tuned

transformer.

Tuned circuits are used for amplification of signals in the radio frequency (RF) range, such as in

broadcasting receivers.

Tuned circuits are of two types:

1. Single Tuned Circuit, and

2. Double Tuned Circuit

1. Single Tuned Coupled Circuit

In this circuit, a capacitor is introduced only in the secondary so that only the secondary is tuned.

The circuit is shown in Fig. 3.16.

R
P

V
1

M

L
p

I
1

L
s

R
s

C
s

⫹
⫺

I
2

Figure 3.16 Single Tuned Coupled Circuit

Let,

Rp � Total resistance in the primary = (internal resistance of the source + resistance of primary

coil

Rs � Total resistance in the secondary

Lp, Ls � Leakage inductance of primary and secondary, respectively

Cs � Variable capacitor for tuning, connected across the secondary

M � Mutual inductance between primary and secondary

V1 � Source voltage

V0 � Output voltage
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By KVL for the two meshes,

V1 = (Rp + jwLp) I1 � jwMI2

0 = �jwMI1 + 2s s
s

j
R j L I

C
w

w

æ ö
+ -ç ÷è ø

Solving for I2,

( )

( )
( )

1

1
2

2 2

0

1

1

p p

p p
p s s

s

s s
s

R j L V

V j Mj M
I

R j L j M
R R j L M

C

j M R j L
C

w

ww

w w
w w

w

w w
w

+

-
= =

é ùæ ö+ - + - +ê úç ÷è øë ûì üæ öï ï- + -í ýç ÷è øï ïî þ

Therefore, the output voltage is,

1

2
0

2 21

s

s

p s s
s

V M
CI

V
j C

R R j L M
C

w
w w

w

= =
é ùæ ö
+ - +ê úç ÷è øë û

\ Voltage Amplification,

0

1 2 21

s

p s s
s

M
V C

A
V

R R j L M
C

w w
w

= =
é ùæ ö
+ - +ê úç ÷è øë û


r


V
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V
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V
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Figure 3.17 Frequency Response of Single Tuned Circuit

This shows that the output voltage depends upon M. Fig. 3.17 shows the variation of the output

voltage against w.

For a constant value of M, tuning is obtained by varying Cs. For resonance,

wrLs = 
1

r sCw
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Þ wr = 
1

s sL C

At this resonant frequency, the output voltage (or amplification) is given as,

1

02 22 2
ors s

res res
p s r p s r

V MM
C C

A V
R R M R R Mw w
= =

+ +
or

For maximum output voltage at resonance,

0
or 0res res

d V d A

dM dM

æ ö
=ç ÷è ø

Þ
( )

2 2
1 1

2 22 2 2

2

0

r

s s

p s r
p s r

V M V
C C

R R M R R M

w

w w

- =
+ +

Þ M = 
p s

r

R R

w

Under this condition, the coefficient of coupling is,

1 2

1p s

C

p s r p s

R RM
k

L L L L Q Qw
= = =

where, Q1 and Q2 are the quality factors of uncoupled primary and secondary circuits, respectively.

Here, kC is known as the critical coefficient of coupling.

Substituting the value of M, the maximum output voltage is,

1 1

0 ,max 22

s

res
C pr s p s

LV V
V

k LC R Rw
= =

Fig. 3.18 shows the variation of the output voltage against w for different values of k.


r



V
0

V
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Figure 3.18 Frequency Response of Single Tuned Circuit for Different Values of k
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Now, the secondary impedance reflected to the primary side in the form of coupled impedance is,

2 2 2 2

or at resonance
1 s

s s
c

M M

R
R j L

C

w w

w
w

æ ö
+ -ç ÷è ø

At resonance, the total primary resistance becomes,

2 2

1 p
s

M
R R

R

wæ ö
= +ç ÷è ø

\ Effective quality factor of the primary is,

1

2 2 2 2
1

1

r p r p

e

p
s p s

L L Q
Q

R M M
R

R R R

w w

w w
= = =

æ ö æ ö
+ +ç ÷ ç ÷è ø è ø

\ Bandwidth of the primary is,

2 2

1

p sr
r

e p s

M R R
BW

Q Q R R

ww
w
æ ö+

= = ç ÷
è ø

2. Double Tuned Coupled Circuit

In a double tuned circuit, both the primary and secondary of the coupled coils are tuned using

variable capacitors. The circuit is shown in Fig. 19.
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Figure 19 Double Tuned Coupled Circuit

Let,

Rp � Total resistance in the primary = (internal resistance of the source + resistance of primary

coil

Rs � Total resistance in the secondary

Lp, Ls � Leakage inductance of primary and secondary, respectively

Cs � Variable capacitor for tuning, connected across the secondary

M � Mutual inductance between primary and secondary

V1 � Source voltage

V0 � Output voltage

By KVL for the two meshes,

1 1 2p p
p

j
V R j L I j MI

C
w w

w

æ ö
= + - -ç ÷
è ø
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1 20 s s
s

j
j MI R j L I

C
w w

w

æ ö
= - + + -ç ÷è ø

Solving for I2,
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2 2

0

p p
p
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Therefore, the output voltage is,
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\ Voltage Amplification,

0

1 2 2
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C C
w w w

w w

= =
é ùæ ö æ ö

+ - + - +ê úç ÷ ç ÷è øè øê úë û

At resonant frequency,

w = wr and
1 1

p p s sL C L C
=

At this resonant frequency, the output voltage (or amplification) is given as,

1

02 22 2
ors s

res res
p s r p s r

V MM
C C

A V
R R M R R Mw w
= =

+ +

For maximum output voltage at resonance,

0
0res res

d V d A
or

dM dM

æ ö
=ç ÷

è ø
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Þ
( )

2 2
1 1

2 22 2 2

2

0

r

s s

p s r
p s r

V M V
C C

R R M R R M

w

w w

- =
+ +

Þ
p s

r

R R
M

w
=

Under this condition, the coefficient of coupling is,

1 2

1p s

C

p s r p s

R RM
k

L L L L Q Qw
= = =

where, Q1 and Q2 are the quality factors of uncoupled primary and secondary circuits, respectively.

Here, kC is known as the critical coefficient of coupling.

Substituting the value of M, the maximum output voltage is,

1 1

0 ,max 22

s

res
C pr s p s

LV V
V

k LC R Rw
= =

At resonance, the total resistance referred to primary is,

2 2

1 p
s

M
R R

R

wæ ö
= +ç ÷è ø

The coupled impedance is the maximum at resonance. It becomes inductive below resonance and

capacitive above resonance.

\ Effective quality factor of the primary is,

2 2
1

r p r p

e

p
s

L L
Q

R M
R

R

w w

w
= =

æ ö
+ç ÷è ø

\ Bandwidth of the primary is,

2 2

1

p sr
r

e p s

M R R
BW

Q Q R R

ww
w
æ ö+

= = ç ÷
è ø

All these results are similar to those for a single-tuned circuit with k £ kC. The variation of the

output voltage against w is shown in Fig. 3.20.
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r


V
0

V
0
(peak)


1

V
0

k⬍k
critical

Double tuned

Single tuned

BW


2




r

Figure 3.21 Frequency Response of Double Figure 3.21 Frequency Response of Double

Tuned Circuit Tuned Circuit for Different Values of k

The variation of the secondary current or output voltage for different values of coefficient of

coupling (k) is shown in Fig. 3.21.

v When Coefficient of Coupling is small (k <<)

ü The effect of coupled impedance is negligible.

ü The variation of V0 (or I2) is similar to that for the series resonant curve of the primary

circuit.

ü The secondary current is small and the variation with frequency has a peaky nature than

the resonance curve of the secondary circuit.

v When Coefficient of Coupling is increased gradually

ü The effect of coupled impedance increases.

ü The total impedance of the primary circuit is increased.

ü The magnitude of the primary current is reduced and the curve of the primary circuit

becomes broader.

ü The secondary current-peak becomes higher and the curve of the secondary current

becomes broader.

v When k = kC
ü In this condition, the resistance which the secondary circuit couples into the primary at

resonance is equal to the primary resistance.

ü The secondary current will be maximum.

ü The curve of the secondary current will be broader and flat-topped.

ü The curve of the primary current will have two peaks.

v When k > kC
ü The double peaks of the primary current become more prominent; peaks being separated

from each other.

ü The magnitude of the primary current at peaks becomes smaller as the value of k is

increased.

ü The curve of the secondary current will also have two peaks.



Magnetically Coupled Circuit 3.25

1. Find the effective value of the inductance for the following connections:

(a)

5 H

2 H

ii

10 H

  (b)

2 H

1 H

ii

4 H

(c)

2 H

1H 1H

3 H

5 H

2 H

ii

Sol:

(a) This is a series aiding connection. The effective inductance is,

\ ( )1 2
2 5 10 2 2 19eqL L L M H Ans= + + = + + ´ =

(b) This is a series opposing connection. The effective inductance is,

\ ( )1 2
2 2 4 2 1 4eqL L L M H Ans= + - = + - ´ =

(c) Since the coils are magnetically coupled in series aiding or they assist each other, therefore,

Effective inductance for coil 1 is: ( ) ( )1eff 1 12 13 2 1 2 5L L M M H= + + = + + =

Effective inductance for coil 2 is: ( ) ( )2eff 2 12 23 3 1 1 5L L M M H= + + = + + =

Effective inductance for coil 3 is: ( ) ( )3eff 3 13 23 5 2 1 8L L M M H= + + = + + =
Total effective inductance is,

( ) ( )eff 1eff 2eff 34ff 1 2 3 12 23 132 18L L L L L L L M M M H Ans= + + = + + + + + + =

2. For the circuit shown in the figure, if 1 20.4 , 2.5 , 0.6,L H L H k= = =  and

( )0

1 2
4 20cos 500 20 mA,i i t= = - evaluate the following quantities at t = 0:

⫹

⫺

I
1

v
1
(t ) v

2
(t )

M

I
2

⫹

⫺

(a) i2
(b) v1 and

(c) the total energy stored in the system.

Sol: Here, ( ) ( )1 220cos 500 20 mA, and 5cos 500 20 mA,i t i t= - ° = - °

(a) At t = 0, ( )2 5cos 20 4.7 mAi Ans= - ° =

(b) Mutual inductance, ( )( )1 2 0.6 0.4 2.5 0.6 HM k L L= = =

Now,
( ) 1 2

1 1

( ) ( )

0.4 [20cos (500 20 )] 0.6 [5cos(500 20 )]

0.4 20 500 sin (500 20 ) 0.6 5 500sin(500 20 )

( 4000 1500)sin (500 20 )

5500sin(500 20 )

di t di t
v t L M

dt dt

d d
t t

dt dt

t t

t

t

= +

= - ° + - °

= - ´ ´ - ° - ´ ´ - °
= - - - °
= - - °



3.26 Circuit Theory and Networks

At t = 0, 1(0) 5500sin( 20 ) 1.881v V Ans= - - ° =

(c) At t = 0, 1 20cos( 20 ) 18.8 mAi = - ° =
\ Total energy stored in the system,

2 2 2 2
1 1 2 2 1 2

1 1 1 1
(0.4) (18.8) (2.5) (4.7) 0.6 18.8 4.7 ìJ

2 2 2 2
W L I L I MI I= + + = ´ + ´ + ´ ´

151.32 ìJ Ans=

3⍀

i
s

M

0.4 H 2.5 H

x

y

⫹

⫺

M = 1 H

2 HV
1

3 H

x

y

3. (a) If is = 2 cos 10t (A). find the total energy stored in the passive network at t = 0 for

k = 0.6 and terminals x and y left open-circuited,

(b) Determine the amount of energy stored after 0.5 s, when the primary side of the

circuit shown in figure is connected to a dc source of 15V and the secondary is

short-circuited. Given: L1 = 2H, L2 = 3H and M = 1H.

Sol:

(a) When x and y are open-circuited:

⫹

⫺

M = 1.4 H

2 H
I
1

I
2

V
1

1.5H

x

y

The current in the second coil I2 = 0.

The energy stored is,

2 2
1 1

1 1
0.4 2 0.8 J

2 2
W L I Ans= = ´ ´ =

(b) When x and y are short-circuited:

Applying KVL for the two meshes,

For mesh1: 1 2
1 1

di di
V L M

dt dt
= -

For mesh 2: 1 2 2 1

2
2

0
di di di diM

M L
dt dt dt L dt

= - + Þ =

Substituting this in first equation,

2
1 1 1 2 1 1

1 1 eq
2 2

di di L L M di diM
V L M L

dt L dt L dt dt

æ ö-
= - = =ç ÷

è ø

where,

2 2
1 2

eq
2

2 3 1 5
1.67

3 3

L L M
L

L

- ´ -
= = = =

or,
115 1.67

di

dt
=

or,
1 9

di

dt
=

Þ i1 = 9t
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At t = 0.5 s, i1 = 9t = 9 ´ 0.5 = 4.5 A

Thus, the total energy stored in the system,

2 2
eq 1

1 1 5
(4.5) 16.875 J

2 2 3
W L I Ans= = ´ ´ =

4. In the circuit shown in the figure, L1 = 1 H, L2 = 2 H, M = 1.2 H. Find an expression for

the energy stored t second after the switch is closed.

M

10 V

i
1

i
2

L
2

L
1

Sol: Applying KVL for the two loops, we get,

1 2
1

1 2
2

10

0

di di
L M
dt dt

di di
M L

dt dt

- =

- + =

Taking Laplace transform,

( ) ( )

( ) ( )

1 1 2

1 2 2

10

0

sL I s sMI s
s

sMI s sL I s

- =

- + =

Solving for I1(s) and I2(s),

( )
( )

( )
( )

2 2
1 2 2

1 1 2

2

1

2 2 2
1 1 2

2

10

0 10

10

0 10

sM
s

sL L
I s

sL sM s L L M

sM sL

sL
s

sM M
I s

sL sM s L L M

sM sL

-

= =
- -

-

= =
- -

-

Taking inverse Laplace transform,

( )

( )

2
1 2 2

1 2

2 2 2
1 2

10 10 2
35.71

1 2 1.2

10 10 1.2
21.43

1 2 1.2

L
i t t t t

L L M

M
i t t t t

L L M

æ ö ´æ ö= = =ç ÷ç ÷ è ø- ´ -è ø

æ ö ´æ ö= = =ç ÷ç ÷ è ø- ´ -è ø
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Therefore, at any time t, the energy stored is given as,

( ) ( )
2 22 2 2

1 1 2 2

1 1 1 1
1 35.71 2 21.43 178.57 J

2 2 2 2
E L i L i t t t Ans= - = ´ ´ - ´ ´ =

5. Find the voltage v(t) across 1.5 W resistance in the network shown in the figure when

a 10V source is switched on. The primary and secondary self inductances are L1 = L2

= 1 H and M = 0.5 H.

M

10 V R
2
 = 1.5⍀

i
1

i
2

L
2

L
1

Sol: Applying KVL for the two loops,

Applying KVL for the two loops, we get,

1 2
1

1 2
2 2 2

10

0

di di
L M

dt dt

di di
M L R i

dt dt

- =

- + + =

Taking Laplace transform,

( ) ( )

1 1 2 1 2

1 2 2 2 1 2

10 10
( ) ( ) ( ) 0.5 ( )

( ) ( ) 0 0.5 ( ) 1.5 ( ) 0

sL I s sMI s sI s sI s
s s

sMI s sL R I s sI s s I s

- = Þ - =

- + + = Þ - + + =

Solving for I2(s),

( )
( ) ( )2 2 2

10

20
0.5 0 5 5 10 1 13

( )
0.5 2 3 21.5 0.25 0.75 1.5

0.5 1.5

s
s

s
I s

s s s s s ss s s s s

s s

- æ ö= = = = = -ç ÷è ø- + ++ - +
- +

Taking inverse Laplace transform,

2
2

10
( ) (1 )

3

ti t e-= -

Therefore, the voltage across the 1.5 W resistance is,

( ) ( ) ( )2 2
2 2

10
( ) ( ) 1.5 1 5 1

3

t tv t R i t e e V Ans- -= ´ = ´ - = -

6. Determine the voltage V0 in the circuit.

Sol:

For coil 1, by KVL,
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4  

I
1

I
2

10  V
0

 

 

6 90 (V)

j8
 

j 1 

j5
  

 

1 1 24 8 1 6I j I j I j+ + =

or ( ) 1 24 8 1 6j I j I j+ + = (i)

For coil 2, by KVL,

2 2 110 5 1 0I j I j I+ + =

or ( )1 21 10 5 0j I j I+ + = (ii)

Solving (i) and (ii),

( )

( )

( )

2

4 8 6

1 0 6

100 14 8 1

1 10 5

j j

j
I

jj j

j j

+

= =
++

+

Therefore, the voltage V0 is,

0 2

60
10 0.6 90 ( )

100 1
V I V Ans

j
= = = Ð - °

+

7. Write the loop equations for the circuit shown in the figure.

V(t )
⫹

⫺

R

L
2

L
1

L
3

CI
3

I
2

I
1

Sol:

We apply dot conventions for the circuit. By KVL for the three meshes, we get,

For mesh 1,

( ) ( ) ( )3
1 1 1 1 2 12 2 3 13

dId d
R I L I I M I I M V t

dt dt dt
+ - + - + = (i)

For mesh 2,

( ) ( ) ( ) ( )1 2 1 21 2 1 2 2 3 12 2 3

d d d d
L I I M I I L I I M I I

dt dt dt dt
- - - + - - -

3 3
23 13 0

dI dI
M M

dt dt
+ - = (ii)
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For mesh 3,

( ) ( )3 3
3 2 3 2 23 32 3 2

dI dId d
L L I I M M I I

dt dt dt dt
+ + - - - -

  ( ) ( )31 1 2 21 1 2 3

0

1
0

t
d d

M I I M I I I dt
dt dt C

+ - + - + =ò (iii)

8. For the circuit shown in figure, determine the phasor currents I1 and I2.

12 60 (V)

5 j2 

j3  

 j 4  j6  I
1

I
2

 

 

Sol:

By KVL for mesh 1,

( )1 2 212 60 5 2 6 6 3I j j j I j I- Ð ° + + + - +

or, ( )1 25 8 3 12 60I j j I+ - = Ð ° (i)

For mesh 2,

( )2 1 16 4 6 3 0I j j j I j I- - + =

or, 1 23 2 0j I j I- + = (ii)

Solving (i) and (ii),

( )
( )

( )

( )
( )

0

1

2

12 60 3

0 2 24 150 24 150 24 150
1.966 25

10 16 9 7 10 12.206 1255 8 3

3 2

5 8 12 60

3 0 36 150 36 150 36 150
2.949 25

10 16 9 7 10 12.206 1255 8 3

3 2

j

j
I A

j jj j

j j
Ans

j

j
I A

j jj j

j j

üÐ -
ï

Ð ° Ð ° Ð ° ï= = = = = Ð ° ï- + - + Ð °+ - ï
- ïï

ý
+ Ð ° ï

ï
- Ð ° Ð ° Ð ° ï= = = = = Ð °

- + - + Ð ° ï+ -

ï
- ïþ

9. Determine the coupling co-efficient and the energy stored in the coupled circuits at t =

1.5 s.

 

 20cos 2t (V)

4  

2  2 H

1 H1/8 F

1 H
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Sol: In phasor domain, the reactances become:

1

8
F Þ 4

12
8

j
j

-
= - W

´

2 H Þ j2 ´ 2 j4 W

1 H Þ j2 ´ 1 = j2 W

\ Coefficient of coupling, 

1 2

1
0.707

2 1

M
k Ans

L L
= = =

´

By KVL for the two meshes,

For mesh 1,

( )1 24 4 4 2 20 0I j j j I- + - = Ð °

or, 1 24 2 20I j I- = (i)

For mesh 2,

( )2 12 2 2 0I j j I+ - =

or, ( )1 22 2 2 0j I j I- + + = (ii)

Solving (i) and (ii),

( )

( )

( )
( )

( )

( )

1

2

20 2

0 2 2 40 1
3.922 11.31

4 2 12 8

2 2 2

4 20

2 0 40
2.773 56.31

4 2 12 8

2 2 2

j

j j
I A

j j

j j

j j
I A

j j

j j

-

+ +
= = = Ð °

- +
- +

-
= = = Ð °

- +
- +

\ In time domain, the current are,

( ) ( ) ( ) ( )1 23.922cos 2 11.31 and 2.773cos 2 56.31i t A i t A= + ° = + °

At t = 1.5 s, 2t = 3 rad = 171.89°

\ i1 = ( ) ( )3.922cos 171.89 11.31 3.916 andA° + ° = -

\ i2 = ( )2.773cos 171.89 56.31 1.845 ( )A° + ° = -

 

 20cos 2t (V)

4  
 j4  

j4  

j2  

j2  2  
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\ Energy stored in the coupled circuit,

W = ( ) ( ) ( ) ( )
2 22 2

1 1 2 2 1 2

1 1 1 1
2 3.916 1 1.848 1 3.916 1.848

2 2 2 2
L i L i Mi i+ + = ´ ´ - + ´ ´ - + ´ - ´ -

= 24.29 J Ans

10. For a linear transformer shown in figure, with Z1 = (60 � j100) W, Z2 = (30 + j40) W,

and ZL = (80 + j60) W,; find the input impedance and the current I1.

50 60 (V)

I
1

Z
1

Z
2

Z
L

j20  
 

 

j 5 

j 40 

Sol:

Input impedance,

( )

( )

2 2
1

1
1 2

2

20
40

5
60 100 20

40 30 40 80 60

60.09 80.11

100.14 53.1

in
L

V M
Z Z j

I j Z Z

j j
j j j

j

Ans

w
= = + +

+ +

= - + +
+ + + +

= -

= Ð- ° W

\Current,  I1 = 1 50 60
0.5 113.1 ( )

100.14 53.1in

V
A Ans

Z

Ð °
= = Ð °

Ð - °

11. Find the input impedance of the circuit; and current from the voltage source.

Sol:

10 0⬚(V) j8⍀

4⍀

6⍀
⫹

⫺ j 4⍀

j 3⍀
⫺j 6⍀

j 10⍀

Input impedance,

( )

2
1

1

3
4 8

6 4 6 10

31 80

6 8

8.579 58.05

in

V
Z j

I j j j

j

j

Ans

= = + +
+ - +

- +
=

+

= Ð ° W

\ Current,   I1 = ( )1 10 0
1.165 58.05

8.579 58.05in

V
A Ans

Z

Ð °
= = Ð - °

Ð °

12. Determine the T-equivalent and p-equivalent circuits of the linear transformer shown

in figure.

Sol:

Here, L1 = 10 H, L2 = 4 H, M = 2 H

Inductances of the T-equivalent circuit are:
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2 H

10 H
4 H

I
1

I
2

1

2

10 2 8

4 2 2

2

a

b

c

L L M H

L L M H Ans

L M H

= - = - = ü
ï= - = - = ý
ï= = þ

L
a 
= 8 H L

b 
= 2H

L
c 
= 2 H

L
B
 = 18 H

L
A 
= 18 H L

C 
= 4.5 H

T-equivalent circuit of Linear Transformer p-equivalent circuit of Linear Transformer

Inductances of the p-equivalent circuit are:

2 2
1 2

2

2 2
1 2

2 2
1 2

1

10 4 2
18

4 2

10 4 2
18

2

10 4 2
4.5

10 2

A

B

C

L L M
L H

L M

L L M
L H Ans

M

L L M
L H

L M

ü- ´ -
= = = ï

- - ï
ï

- ´ - ï= = = ý
ï
ï- ´ -

= = = ï
- - ïþ

13. Determine the currents I1 and I2 in the circuit shown in the figure using T-equivalent

circuit for the linear transformer.

6 90⬚(V) j8⍀I
1

I
2

4⍀

10⍀⫹

⫺

j 1⍀

j 5⍀

Sol:

Using the T-equivalent circuit for the linear transformer, the inductances are:

1

2

8 1 9

5 1 6

1

a

b

c

L L M H

L L M H

L M H

= + = + =

= + = + =

= - = -

(NB: Negative inductance in design is implemented by a capacitive reactance.)
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j1 

j8 j5 

j9 j6 

 j1 

I
1 I

1
I

2I
2

T-equivalent network of Linear Transformer

Now inserting the T-equivalent circuit in the original circuit, the modified circuit involving no mutual

coupling is shown below.

6 90 (V) 10 

4 j9 j6 

 j 1 
 

 

I
1

I
2

By KVL,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

6 4 9 1 1 4 8 1 6

0 1 10 6 1 1 10 5 0

j I j j I j j I j I j

I j I j j j I j I

= + - + - Þ + + - =

= - + + - Þ - + + =

Solving for I1 and I2, we get,

( )

( )

( )

( )

( )

( )

( )

( )

1

2

6 1

0 10 5 30 60 1 2
30 0.67 27.14

100 1 100 14 8 1

1 10 5

4 8 6

1 0 6
0.06 90

100 14 8 1

1 10 5

j j

j j j
I A

j jj j

j j
Ans

j j

j
I A

jj j

j j

ü-

ï+ æ ö- + - + ï= = = = Ð °ç ÷ ï+ è + ø+ -
ï

- + ïï
ý

+ ï
ï- - ï= = = Ð - °

++ - ï
ï

- + ïþ
[NB: See solved problem no.4.]

14. For the ideal transformer shown in the figure, determine the average power dissipated

in the 10 kW resistor.

100  

10k V
2

I
2

I
1

 

 

V
1

 

 

50 V (rms)

1 : 10

 

 

Sol:

Here, the turns ratio, n = 10, load impedance, ZL = kW

\ Input Impedance, 
3

in 2 2

10 10
100

10

LZZ
n

´
= = = W
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\ Primary current, 1

50
0.25 A

100 100
I = =

+

\ Secondary current, 
1

2

0.25
0.025 A

10

I
I

n
= = =

\ Average Power dissipated in 10 kW resistor is,

( )
2 23 3

2 100 10 0.025 100 10 6.25 WP I Ans= ´ ´ = ´ ´ =

15. Obtain the dotted equivalent circuit for the coupled circuit shown in the figure and use

it to find the voltage across the capacitor of ��j10 W reactance.

 

 

 

 

j2 

10 0  (V) 10 90 (V)

j 5 

 j 10 

5 

j5 

5 

Sol:

By dot convention, if we assume that the current is entering into the top of the left coil and place a

dot at this terminal, then the flux direction for this current will be upward. Now, by Lenz�s law, the

flux at the right coil must be upward directed to oppose the first flux. In that case, the current will

leave the winding by the top terminal, where, another dot is placed. Thus, the dotted equivalent

circuit will be as shown in figure below.

  

  

5 5 

j2 

j 5 

10 0 (V) 10 90 (V)

j 5 

I
1

I
2

 j 10 

By KVL for the two meshes, we get,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 2 1 2

1 2 1 1 2

5 5 10 10 2 10 5 5 8 6

10 5 5 10 2 10 8 5 5 10

I j j I j j I j I j I j

I j I j j j I j j I j I j

+ - - - - = Þ - + =

- + + - - = Þ + - =

Solving for I1 and I2, we get,

( )

( )

( )

1

10 8

10 5 5 130 50

64 505 5 8

8 5 5

j

j j j
I

jj j

j j

- -
= =

--
-
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( )

( )

( )

2

5 5 10

8 100 50 30

64 505 5 8

8 5 5

j

j j j
I

jj j

j j

-

-
= =

--
-

\ ( )1 2

80 20
1.015 23.96 ( )

64 50

j
I I A

j

-
- = = Ð °

-

\ Voltage across the capacitor is,

( )1 2

80 20
10 10 10.15 66.04 ( )

64 50
c

j
V j I I j V Ans

j

æ ö-
= - ´ - = - ´ = Ð - °ç ÷è - ø

16. Find V2 in the circuit given in the figure such that I1 = 0.

 

 

 

 

2 2 

j4  

j2 

I
1

V
1

V
2

I
2

j3  

Sol: By KVL for the two meshes, we get,

( ) 1 2 12 4 2 5j I j I V+ + = = (i)

( )1 22 1 3j I j I V+ + = (ii)

Solving for I1,

( )

( )

( )

( )2 2
1

5 2

1 3 5 15 2

6 102 4 2

2 1 3

j

V j j V
I

jj j

j j

+ + -
= =

- ++
+

For the condition, I1 = 0,

\ ( ) ( )2 25 15 2 0 7.9 18.43j V V V Ans+ - = Þ = Ð - °

17. In the circuit of the figure, calculate the current I2 for which I1 will be zero. Also,

calculate the value of V2 for this condition. Assume: X1 = X2 = 15 W Xm = 100.

 

 

 

 

3 5 X
m

I
1

X
1 X

2
100 0  (V) V

2

I
2
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Sol: By KVL for the two meshes, we get,

( ) 1 23 15 10 100j I j I+ + = (i)

( )1 2 210 5 15j I j I V+ + = (ii)

Solving for I1,

( )

( )

( )

( )2 2
1

100 10

5 15 500 10 1500

110 1503 15 10

10 5 15

j

V j j V
I

jj j

j j

+ - -
= =

- ++
+

For the condition, I1 = 0,

( )2500 10 1500 0j V- - =

Þ ( ) ( )2 150 50 158.11 18.43V j V Ans= - = Ð - °

With this value of V2, solving equations (i) and (ii) for I2, we get,

( )

( )

( )

( )

2

2

3 15 100

150 50 700 400
4.33 156 ( )

110 1503 15 10

10 5 15

j

V j j
I A Ans

jj j

j j

+
- -

= = = Ð - °
- ++

+

18. Find the conductively equivalent circuit for the network shown in the figure.

 

 

4 j1 

j4 

j4 

j 2 
 j3 

V

j2 2 

2 

Sol: Here, using the T-equivalent circuit for the linear transformer, the inductances are:

1

2

4 2 6

2 2 4

2

a

b

c

L L M H

L L M H

L M H

= + = + =

= + = + =

= - = -

Therefore, the conductively equivalent circuit is shown in the figure below.

 

 

4 j1 

V

j6 j4 

j4 

2 

2 

 j2 

 j3 
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Simplifying, the conductively equivalent circuit is shown in the figure below.

⫹

⫺

4⍀ j4⍀ j4⍀

⫺j 2⍀

j4⍀

2⍀

2⍀

19. Three similar coils are wound on a long common core in such a way that the voltage of

mutual inductance between each set of coils is positive. The self-inductance of each coil

is 0.2 H. The effective inductance of first two in series is 0.6 H and all of them in series

is 1 H. When the terminals of first two coils are interchanged the effective inductance

of three coils in series becomes 0.5 H. Determine co-efficient of coupling between each

set of coils.

Sol:

Here, self-inductance of each coil, L = 0.2H,

Let the mutual inductance between first and second coil is M1, between second and third coil is

M2 and between third and first coil is M3.

Effective inductance of first coil, eff1 1 3L L M M= + +

Effective inductance of second coil, eff 2 1 2L L M M= + +

Effective inductance of first coil, eff 3 2 3L L M M= + +
Therefore, effective inductance of first two in series is,

eff1 eff 2 1 3 1 2 1 2 32 2L L L M M L M M L M M M+ = + + + + + = + + +

From the given value,

1 2 32 2 0.6L M M M+ + + =

or, ( )1 2 32 0.6 2 0.2 0.2M M M+ + = - ´ = (i)

When all the three coils are connected in series, the effective inductance becomes,

( )eff1 eff 2 eff 3 1 2 33 2L L L L M M M+ + = + + +

From the given value,

( )1 2 33 2 1L M M M+ + + =

or,
( )

1 2 3

1 3 0.2
0.2

2
M M M

- ´
+ + = = (ii)

After interchanging the terminals of the first two coils, the effective inductances are as given below.

Effective inductance of first coil, eff1 1 3L L M M= - +¢

Effective inductance of second coil, eff 2 1 2L L M M= - -¢

Effective inductance of first coil, eff 3 2 3L L M M= - +¢
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After interchanging the effective inductance of three coils in series is,

eff1 eff 2 eff 3 1 2 33 2 2 2L L L L M M M+ + = - - +¢ ¢ ¢

From the given value,

1 2 33 2 2 2 0.5L M M M- - + =

or, 1 2 3

3 0.2 0.5
0.05

2
M M M

´ -
+ - = = (iii)

Solving equations (i), (ii), and (iii), we get,

( ) ( ) ( )

( )
1

0.2 1 1

0.2 1 1

0.05 1 1 0.2 2 1 0.25 1 0.15 0
0

2 1 1 2 2 1 2 1 0 2

1 1 1

1 1 1

M
- ´ - + ´ + ´

= = = =
´ - + ´ + ´ -

-

( ) ( )

( )
2

2 0.2 1

1 0.2 1

1 0.05 1 0.2 0.25 1 0.15 0.2 0 0.25
0.125

2 1 1 2 2 1 2 1 0 2

1 1 1

1 1 1

M
- ´ - + ´ + ´ -

= = = =
´ - + ´ + ´ -

-

( ) ( )

( )
3

2 1 0.2

1 1 0.2

1 1 0.05 0.2 0.15 1 0.15 0.2 0 0.15
0.075

2 1 1 2 2 1 2 1 0 2

1 1 1

1 1 1

M
´ - + ´ + ´ -

= = = =
´ - + ´ + ´ -

-

Thus, the coefficients of coupling are as given below.

1 1
1

2 2
2

3 3
3

0
0

0.2

0.125
0.625

0.2

0.075
0.375

0.2

M M
k

LL L

M M
k Ans

LL L

M M
k

LL L

ü
= = = = ï´ ï

ï
= = = = ý

´ ï
ï

= = = = ï
ï´ þ
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20. The combined inductance of two coils connected in series is 0.6H and 0.1H depending

on the relative directions of the currents in the coils. If one of the coils when isolated

has a self inductance of 0.2H, calculate mutual inductance and coefficient of coupling.

Sol: The combined inductance of two coils connected in series, depending on the relative directions

of the currents in the coils, is given. It is known that the combined inductance in series aiding

condition is more than that in series opposing condition. If the self-inductances are L1 and L2 and

mutual inductance M, then,

1 2 2 0.6L L M+ + = (i)

and, 1 2 2 0.1L L M+ - = (ii)

Also, it is given that L1 = 0.2H. Putting this value in (i) and (ii),

\ 2 2 0.4L M+ = (iii)

2 2 0.1L M- = - (iv)

Solving (iii) and (iv), we get,

2 0.15 ; 0.125L H M H Ans= =

\ Coefficient of coupling is, 

1 2

0.125
0.721

0.2 0.15

M
k Ans

L L
= = =

´

21. Show that the equivalent inductance of the circuit shown in the

figure as seen from the terminals a and b is 

2

eq 1
2

M
L L

L

æ ö
= -ç ÷è ø

irrespective of the polarity of the coils.

Sol: Two cases may appear depending upon the polarity of the coils:

Case (1): Both currents entering the dotted terminals

a

L
1 L

2
I

2
I

1

M

bIn this case, by KVL for the two meshes, we get,

1 2
1

dI dI
L M V

dt dt
+ = (i)

2 1 2 1
2

2

0
dI dI dI dIM

L M
dt dt dt L dt

+ = Þ = - (ii)

Substituting the value of 
2dI

dt
 in (i), we get,

1 1
1

2

dI dIM
L M V

dt L dt

æ ö
+ - =ç ÷è ø

2
1

1
2

dIM
L V

L dt

é ù
- =ê ú

ë û
(iii)

a

L
1 L

2

M

b
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Thus the effective inductance with respect to the terminals a and b is,

2

eff 1
2

M
L L

L

é ù
= -ê ú
ë û

Case (2): One current entering the dot and other current leaving the dot

a

L
1 L

2
I

2
I

1

M

b

In this case, by KVL for the two meshes, we get,

1 2
1

dI dI
L M V

dt dt
- = (i)

2 1 2 1
2

2

0
dI dI dI dIM

L M
dt dt dt L dt
- = Þ = (ii)

Substituting the value of 
2dI

dt
 in (iv), we get,

1 1
1

2

dI dIM
L M V

dt L dt

æ ö
- =ç ÷è ø

2
1

1
2

dIM
L V

L dt

é ù
- =ê ú

ë û
(iii)

Thus the effective inductance with respect to the terminals a and b is,

2

eff 1
2

M
L L

L

é ù
= -ê ú
ë û

So, for the given circuit, the effective inductance with respect to the terminals a and b is,

2

eff 1
2

M
L L

L

é ù
= -ê ú
ë û

irrespective of the polarity of the coils.

22. For the coupled circuit, find the ratio of output voltage to the source voltage.

 
 

 
 

V
1 
  10 V,


 
  50 rad/s V

2

I
1 

I
2 

10H

10  5 H

100H 400  

Sol: By KVL for the meshes, we get,

( ) ( )1 2 1 210 50 10 50 5 10 10 500 250 10j I j I j I j I+ ´ - ´ = Þ + - = (i)

and, ( ) ( )1 2 1 250 5 400 50 100 0 250 400 5000 0j I j I j I j I- ´ + + ´ = Þ - + + = (ii)
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Solving for I2 from (i) and (ii), we get,

( )

( )

( )

2 6

10 500 10

250 0 2500 2500 90

2433500 25000010 500 250 2.446 10 174.13

250 400 5000

j

j j
I

jj j

j j

+
- Ð °

= = =
- ++ - ´ Ð °

- +

      ( )31.022 10 84.13 A-= ´ Ð - °

\ ( )2 2400 0.409 84.13V I V= ´ = Ð - °
\ Ratio of the output voltage to the source voltage is,

32

1

0.409 84.13
40.9 10 84.13

10 0

V
Ans

V

-Ð - °
= = ´ Ð - °

Ð °

23. The figure shows a network with mutual coupling. (a) Find the current in the 10 ohm

resistance. Assume that inductors have negligible resistance. (b) If the direction of

winding of one of the coil is reversed, find the current in the 10 ohm resistance.

⫹

⫺

X
m
=2.5⍀

j 5⍀ j10⍀

10 ⍀10 V 

4⍀

Sol:

(a) We consider the two loop currents as I1 and I2 as shown in figure below.

Applying KVL for the two meshes, we get,

( ) ( )1 24 5 4 2.5 10j I j I+ - + = (i)

( ) ( )1 24 2.5 14 10 0j I j I- + + + = (ii)

⫹

⫺

X
m
=2.5⍀

j 5⍀ j10⍀

10 ⍀

I
2

I
1

10 V 

4⍀

Solving (i) and (ii), we get the current through the 10 ohm resistance as,

( )

( )

( ) ( )

( ) ( )

( )

( ) ( ) ( )
( )2 2

4 5 10

4 2.5 0 10 4 2.5
0.523 60.4

4 5 4 2.5 4 5 4 5 4 2.5

4 2.5 4 5

j

j j
I A Ans

j j j j j

j j

+
- + +

= = = Ð - °
+ - + + + - +

- + +
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(b) If the direction of winding of one of the coil is reversed, the sign of mutual inductance will be

positive. Here, the KVL equations will become,

( ) ( )1 24 5 4 2.5 10j I j I+ - - = (iii)

( ) ( )1 24 2.5 14 10 0j I j I- - + + = (iv)

Solving (iii) and (iv), we get the current through the 10 ohm resistance as,

( )

( )

( ) ( )

( ) ( )

( )

( ) ( ) ( )
( )2 2

4 5 10

4 2.5 0 10 4 2.5
0.362 123.65

4 5 4 2.5 4 5 4 5 4 2.5

4 2.5 4 5

j

j j
I A Ans

j j j j j

j j

+
- - +

= = = Ð - °
+ - - + + - -

- - +

24. Find the current flowing through the capacitor in the network shown in the figure.

Take k = 1. Also find reactive power in loop 3.

 

  

 

50 20 (V)

100 0  (V) (1) (2)

(3)

j2 

j7 

j3 

j4 

 j5 

j8 2 

5 

Sol: The mutual reactances are written as,

12

13

23

1 2 3 2.45

1 2 4 2.83

1 3 4 3.46

M

M

M

w

w

w

= ´ ´ = W

= ´ ´ = W

= ´ ´ = W

For the three loops, by applying KVL we get,

 

  

 

50 20 (V)

100 0  (V) (1) (2)

(3)

j2 

j7 

j3 

j4 

 j5 

j8 2 

5 

I
1 I

2

I
3
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( ) ( ) ( )1 2 32 10 2.45 2.83 100 0j I j I j I+ + - + - = Ð ° (i)

( )1 2 32.45 5 10 3.46 50 20j I j I j I- + + + = Ð ° (ii)

( )1 2 32.83 3.46 1 0j I j I j I- + + - = (iii)

Solving (i), (ii) and (iii), for I3 we get,

( )

( )

( )

( )

( )3

2 10 2.45 100 0

2.45 5 10 50 20

2.83 3.46 0
6.13 49.44

2 10 2.45 2.83

2.45 5 10 3.46

2.83 3.46 1

j j

j j

j j
I A Ans

j j j

j j j

j j j

+ - Ð °

- + Ð °

-
= = Ð °

+ - -

- +
- -

Reactive power in loop 3 is,

( ) ( )2 2
3 4 5 6.13 1 37.58 VARQ I= ´ - = ´ - = - = 37.58 VAR (capacitive)

25. Find the current I1 in the network shown in the figure.

  

4  

j3  

I
1

I
2

I
3

(1+ j1) 

(3+ j9) 

100 0  (V)

(4+ j2) (6+ j8) 

 j4  

 5  

Sol:

Considering the dots as marked, we write the KVL equations as,

( ) 1 25 1 3 0j I j I+ - = (i)

( )1 2 33 7 11 4 100 0I j I j I- + + - = Ð ° (ii)

( )2 34 11 8 0j I j I- + + = (iii)

Solving (i), (ii) and (iii) for I1,

( )

( )

( )

( )

( )

( )

0

1

0 3 0

100 0 7 11 4

0 4 11 8 2400 3300
4.27 28

133 9465 1 3 0

3 7 11 4

0 4 11 8

j

j j

j j j
I A Ans

jj j

j j j

j j

-

Ð + -

- + - +
= = = Ð °

- ++ -

- + -

- +
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26. Draw the dotted equivalent circuit for the circuit shown in the figure and find the

equivalent inductive reactance.

j5⍀

j3⍀j2⍀

j6⍀ j7⍀j5⍀

Sol:

The dotted equivalent circuit is shown below.

j 2 

j 5 

j 6 

j 7 

j 5 

j 3 

\ Equivalent inductive reactance,

( )5 6 7 2 3 5 2 3 5 18LX j j j j j j j j j j Ans= + + - - + - - + = W

27. Determine the resonance frequency and the Q-factor of the circuit shown in the figure.

⫹

⫺
V

1
L

1 L
2

R C M

Data: R = 10 W, C = 3mF, L1 = 40 mH, L2 = 10 mH and M = 10 mH.

Sol: Applying KVL for the two loops,

⫹

⫺
V

1
L

1
I
1

I
2

L
2

R C M

1 1 2 1

1
I R j L j MI V

j C
w w

w

æ ö
+ + - =ç ÷è ø (i)

1 2 2 0j MI j L Iw w- + = (ii)

From (ii), we get, 2 1
2

M
I I

L

æ ö
= ç ÷è ø

. Substituting this value in (i), we get,

1 1 1 1
2

1 M
I R j L j M I V

j C L
w w

w

æ öæ ö
+ + - =ç ÷ ç ÷è ø è ø
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Þ
2 2

1
1 1

1 2 2

1 1V M M
R j L j R j L

I j C L C L
w w w w

w w

æ ö
= + + - = + - -ç ÷è ø

For resonance to occur, the input impedance must be resistive, i.e.

2

0 1 0
0 2

1
0

M
L

C L
w w

w

æ ö
- - =ç ÷è ø

Þ
2

0 1
2 0

1M
L

L C
w

w

æ ö
- =ç ÷è ø

Þ
( )

2
0 2 2

1 2
1

2

1 1L
Ans

CM L L M
C L

L

w = =
æ ö -
-ç ÷è ø

Substituting the values of the components, the resonance frequency is,

( ) ( )

3
2

0 6 22
3 3 3

1 2

1 10 10 1
3333.33 rad/s

3 10 40 10 10 10 10 10

L

C L L M
w

-

-
- - -

´
= = =

é ù´- ´ ´ ´ - ´ê úë û

or,
0

0

3333.33
530.52Hz

2 2
f Ans

w

p p

= = =

28. Given the following two sets of values of different quantities in the circuit of the

figure. At two different instants of time. Find the values of vpq at these instants.

i

e

R

M

v

P

10 H

Q

⫺

⫹

1 1 1

2 2 2

, 20 , 1 , 20

, 10 , 0.3 , 14

t t e V i i A v v V

t t e V i i A v v V

= = = = = =
= = = = = =

Sol: At t = t1, the KVL equations are,

1 120 10 1 and 20
di di

R M
dt dt

= + ´ =

Þ
20 20

10

R

M

-
= (i)
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At t = t2, the KVL equations are,

2 210 10 0.3 and 14
di di

R M
dt dt

= + ´ =

Þ
14 10 0.3

10

R

M

-
= (ii)

Solving (i) and (ii), we get, 10 , 20R M H= W =

\ 1 220 14
1; 0.7

di di

dt M dt M
= = = =

At t = t1, 
1

pq 10 20 10V
di

v Ans
dt

= - + =

At t = t2, 
2

pq 10 14 7 V
di

v Ans
dt

= - + =

29. Find the value of C required in the circuit shown in the figure if the voltage across ZL

is to be independent of the value of ZL.

C
Z

L

b

aM = 3 H

L
1 
= 4 H

L
2 
= 4 H

 

 
100sin400t

Sol: We first find the Thevenin�s equivalent circuit across the terminals a and Thevenin equivalent

voltage with terminals a-b open-circuited is obtained as,

Th

1
50 sin 400

2
V V t= ´ =

(Q two inductors of same value are connected, the voltage division

rule is applied.) To find the Thevenin�s equivalent impedance, we have

the circuit as shown in figure below.

2
1 2

Th
1 2

2

2

4 4 3

4 4 2 3

400 3.5
400

1400
400

L L M j
Z j

L L M C

j
j

C

j
j

C

j
j

C

w

w

w

w

æ ö-
= -ç ÷+ -è ø

æ ö´ -
= -ç ÷+ - ´è ø

æ ö= ´ -ç ÷è ø´

æ ö= -ç ÷è ø´

C

b

aM = 3 H

L
1 
= 4 H

L
2 
= 4 H

Z
Th
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\ Current through the load impedance,

50 sin 400

1400
400

Th
L

Th L
L

V t
I

jZ Z
j Z

C

= =
+ æ ö

- +ç ÷è ø´

\ Voltage across the load impedance,

50 sin 400

1400
400

L
L L L

L

t Z
V I Z

j
j Z

C

´
= ´ =

æ ö
- +ç ÷è ø´

This current will be independent of ZL, if

1
1400 0 1.7857 ìF

400 1400 400

j
j C Ans

C
- = Þ = =

´ ´

30. For the double tuned circuit shown in figure, both the

primary and the secondary are tuned to the same fre-

quency of 
510

2p
 Hz. By varying the coupling coefficient

k, the maximum output voltage across the coupling ca-

pacitor is 50 V. Determine the supply voltage. Given:

Ls = 10 mH.

Sol: Here, w = 105 rad/s

From the condition for maximum output voltage, we get,

0.5 2 1p sM R Rw = = ´ = W

Also, for the resonant frequency, 5 61
10 10 10 1s

s

L
C

w

w

-= = ´ ´ = W

By KVL,

0.5I1 � j1I2 = V1

�j1I1 + 2I2 = 0

Solving for I2,

1

1
2

0.5

1 0
0.5

0.5 1 1 1

1 2

V

j jV
I j V

j

j

-
= = =

- +
-

or, |I2| = 0.5 V1

Output voltage is, 2 1
0 1

0.5
50 100 Volt

1s

I V
V V Ans

Cw
= Þ = Þ =

⫹

⫺
V

1
L

p
I
1

I
2

L
S

0.5⍀ 2⍀

⫹

⫺

C
p

C
S

V
0

M



=

= + ±

( )

( )

= + +

= + -

-
=

+ -

-
=

+ +

® ¥
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1. Find the effective value of the inductance for the following connections:

(a) 

2 H

0.5 H 0.5 H

4 H 8 H
1 H

ii

(b) 

1H

2H

5H 20H

10H

50H

(c) 

1H

2H

5H 20H

10H

50H

[12 H; 96 mH; 72 mH]

2. If is = 2 cos 10t (A), find the total energy stored in the passive

network at t = 0 for k = 0.6 and terminals x and y is short-

circuited. [0.512 J]

3. Calculate the phasor currents I1 and I2.

 

 
12 0  (V)

I
2

I
1

 j4  
j3  

j5  j6  12  

[13.01Ð�49.39° (A); 2.91 Ð14.04° (A)]

4. Determine the coupling coefficient. Calculate the energy stored in the coupled circuits at time

t = 1s if, v = 60 cos (4t + 30°) (V).

v 5 H 4 H 1/16 F

10  

 

 

2.5 H

[0.56; 20.73 J]

5. Find the T and p equivalent of the linear transformer shown in figure below.

40 mH

30 mH 60 mH

I
1

I
2

3  

i
s

x

y

0.4 H 2.5 H

M
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6. Find the conductively equivalent circuit for the network shown in figure.

 

 
j3  j5  

 j4  j2  j6  

V Z

7. A coil of 800 mH is magnetically coupled to another coil of 200 mH. The coefficient of

coupling between two coils is 0.05. Calculate the effective inductance if two coils are

connected in:

(i) series aiding, (ii) series opposing, (iii) parallel aiding, and (iv) parallel opposing.

[1040 mH, 960 mH, 166.25 mH, 153.46 mH]

8. Two coils each with a series connection of L = 300 mH and C = 1000 pF are magnetically

coupled with M = 60 mH. An emf of 10Volt at 
1

2
 MHz is injected into the circuit. Determine:

(i) current in other circuit if its terminals are shorted.

(ii) the coefficient of coupling. [49.18 Ð90° mA; 0.2]

9. For the coupled circuit, find the input impedance at terminals a and b. [(3 + j36.33) W]

 j8  

3 
a

b

j4 

j3 
j5 

10. In the coupled circuit, find the voltage across the 5 W resistor.

(a)  K = 0.8

j5⍀ j10⍀

⫺j4⍀

3⍀ 5⍀
⫹

⫺
50 0⬚(V)

(b) j2  

j5  j10  

 j 2  

3  5  
 

 
100 0 (V)

[43.05Ð�24.94° (V); 30.7Ð�100.6° (V)]

11. For the given magnetically coupled circuit, obtain the conductively coupled circuit.

3 
 

 
500 0  (V)

j5  j10  

j6  

5 

 j4  

[�j1 W; (5 + j4)W; (3 + j2)W]

12. For the coupled circuit, find the ratio which will result zero current I1.

 

 

 

 
j 8  V

1 V
2

j2  

5 2 j 2 

[(1 � j1)]
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13. In the coupled circuit shown in the figure, find V2 for which I1 = 0. What voltage appears at

8 W inductive reactance under this condition?

 

 

 

 
j 8 V

1 V
2

j2 

5 2 j 2 

[141.42Ð�45° (V)]

14. If M = 0.2H and vs = 12 cos 10t V in the circuit of figure, find i1 and i2.

0.5 H

M

i
1

1 H

25 mF
5  

 

 
v

s

i
2

( )

( )

5.068cos 10 52.54

2.719 cos 10 100.89

t

t

é ù+ °

ê ú
- °ê úë û

15. Find the currents I1, I2 and I3 in the circuit shown in figure.

10 30 5 

16 0 (V)

j4 
 j4 

j 6 

j 20 

j 2 j 12  

j 15 
 

 I
1

I
2

I
3

[1.47Ð�21.4° (A); 0.077Ð�134.85° (A); 0.077Ð�110.41° (A)]

16. Calculate the power absorbed by the 4W resistor in the circuit shown in figure.

 
36 30  V

2  

4  

j3  

j1 

 j4  5  

I
1

I
2

j6  

 

[3.67 Watt]

17. Write the loop equations for the network shown in figure.

⫹

⫺
V

R
4

R
1

R
2

R
3

L
1

L
2

L
3

C
1

C
2
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1. What is meant by self and mutual inductances? Explain. Also give their units.

or,

Explain what is meant by self inductance and mutual inductance. Define the units in which

each is measured.

2. Define �self inductance� and �mutual inductance�. Derive an expression for the mutual induc-

tance between two magnetically coupled coils having self inductances L1 and L2, respectively.

3. Obtain an expression for the mutual inductance of two co-axial solenoids of wires closely

wound one upon the other.

4. Explain the concept of mutual inductance. Define coefficient of coupling and derive the

expression between self inductances of two coils, mutual inductance between them and the

coefficient of coupling.

or,

Prove that the coefficient of mutual inductance M between two coils of self inductances L1

and L2 is given by 
1 2

M
L L

.

5. Explain the dot convention used in magnetically coupled circuits (mutual inductances) with the

help of suitable examples.

6. Two coils are magnetically coupled to each other. Show that the maximum possible value of

the mutual inductance is the geometric mean of the self-inductances of the two coils. What is

the energy stored in the systems?

7. Two coils of self inductances L1 and L2 are placed side by side so that the mutual inductance

between them is M. If they are connected in series addition derive the expression for the net

inductance of the coils.

8. Two coils of self inductances L1 and L2 are mutually coupled. Derive the expression for the

net inductance of the coils if they are connected in:

(a) series aiding;

(b) series opposing;

(c) parallel aiding;

(d) parallel opposing.

9. What is a linear transformer? Derive then expressions for input impedance and the reflected

impedance from the secondary to the primary circuit of a linear transformer.

10. What are the properties of an ideal transformer? Obtain the input impedance of an ideal

transformer. How can the turns ratio of a transformer be adjusted for maximum power

transfer to the load? What is �impedance matching�?

11. Determine the voltage and current transformation ratio of an ideal transformer.

12. What is a tuned circuit? For a single tuned circuit, determine the maximum value of the output

voltage and the effective bandwidth and Q factor.

13. For the mutually coupled circuit shown in Figure., show that the secondary current and

voltage E2 will have its largest value if the following relationship holds true:



3.54 Circuit Theory and Networks

2
1 2 2

2 1

1 R
L L L

C R
w w

w

æ ö
= + »ç ÷è ø

Hence prove that the maximum value of E2 is obtained when 1 2M R Rw = .

14. An inductively coupled doubly tuned circuit has both circuits tuned to the same frequency

with the same Q. Define and determine the value of the critical coupling and obtain the

bandwidth for this critical coupling.



CHAPTER

4
Network Topology

(Graph Theory)

4.1 INTRODUCTION

The word topology refers to the science of place. In mathematics, topology is a branch of geometry

in which figures are considered perfectly elastic.

Network Topology refers to the properties that relate to the geometry of the network (circuit).

These properties remain unchanged even if the circuit is bent into any other shape provided that no

parts are cut and no new connections are made.

In electrical engineering, solution of network analysis problems involves finding the current through

and voltage across different circuit elements. Different laws (like, Ohm�s law, Kirchhoff�s laws, etc.)

have been postulated for simplifying the solution method. However, it is sometimes found that the

algebraic equations written by different laws are not independent. On the other hand, the equations

formed by network topology method are all independent.

Network topology method has many other merits and can be listed as follows.

1. The graph theory or network topology deals with those properties of networks which do not

change with the change in the shape of the networks.

2. All the equations (KCL and KVL) formed by graph theory concept are independent equations.

3. The graph theory concept eases the solution method for solving networks with a large number

of nodes and branches.

In this chapter, we will discuss the fundamentals of graph theory (network topology) and their

applications for solving network analysis problems.

4.2 GRAPH OF A NETWORK

A linear graph (or simply a graph) is defined as a collection of points called nodes, and line segment

called branches, the nodes being joined together by the branches.
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Figure 4.1(a) Circuit Figure 4.1(b) Graph of the Circuit

While drawing graph of a given network, the following rules are to be noted.

(i) All passive elements between the nodes are represented by lines.

(ii) The independent current sources and voltage sources are represented by their internal imped-

ances (i.e., current sources by open circuit and voltage sources by short circuit) if they are

accompanied by passive element, viz., a shunt admittance in a current source and a series

impedance in a voltage source.

(iii) If the sources are not accompanied by passive elements, an arbitrary impedance (say resis-

tance R) or admittance is assumed to accompany the sources and finally, we find the results

by letting the impedance R ® 0 or R ® µ as the case may be for the current or voltage

sources.

4.3 TERMINOLOGY

In order to discuss the more involved methods of circuit analysis, we must define a few basic terms

necessary for a clear, concise description of important circuit features.

Figure 4.2 Circuit illustrating terminologies

(a) Node A node is a point in a circuit where two or more circuit elements join.

Example a, b, c, d, e, f and g

(b) Essential Node A node that joins three or more elements.

Example b, c, e and g
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(c) Branch A branch is a path that connects two nodes.

Example v1, R1, R2, R3, v2, R4, R5, R6, R7 and I

(d) Essential branch Those paths that connect essential nodes without passing through an

essential node.

Example c�a�b, c�d�e, c�f�g, b�e, e�g, b�g (through R7), and b�g (through I )

(e) Loop A loop is a complete path, i.e., it starts at a selected node, traces a set of connected

basic circuit elements and returns to the original starting node without passing through any

intermediate node more than once.

Example a b e d c a, a b e g f c a, c d e b g f c, etc.

(f) Mesh A mesh is a special type of loop, i.e., it does not contain any other loops within it.

Example a b e d c a, c d e g f c, g e b g (through R7) and g e b g (through I )

(g) Oriented Graph A graph whose branches are oriented is called a directed or oriented graph.

(h) Rank of Graph The rank of a graph is (n�1) where n is the number of nodes or vertices of

the graph.

(i) Planar and Non-planar Graph A graph is planar if it can be drawn in a plane such that no

two branches intersect at a point which is not a node.

Figure 4.3(a) Planar graph Figure 4.3(b) Non-planar graph

( j) Subgraph A subgraph is a subset of the branches and nodes

of a graph. The subgraph is said to be proper if it consists of

strictly less than all the branches and nodes of the graph.

(k) Path A path is a particular sub graph where only two

branches are incident at every node except the internal nodes

(i.e., starting and finishing nodes). At the internal nodes, only

one branch is incident.

In the example in the Fig. 4.3 (c), branches 2, 3, and 4, together

with all the four nodes, constitute a path. A graph is connected if

there exists a path between any pair of vertices. Otherwise, the

graph is disconnected.

4.4 CONCEPT OF TREE

For a given connected graph of a network, a connected subgraph is known as a tree of the graph if

the subgraph has all the nodes of the graph without containing any loop.

Figure 4.3(c)
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Twigs The branches of tree are called twigs or tree-branches. The number of branches or twigs,

in any selected tree is always one less than the number of nodes, i.e.,

Twigs = (n � 1), where n is the number of nodes of the graph.

For this case, twigs = (4 � 1) = 3 twigs. These are shown by solid lines in Fig. 4.4 (b).

Links and Co-tree If a graph for a network is known and a particular tree is specified, the

remaining branches are referred to as the links. The collection of links is called a co-tree. So, co-

tree is the complement of a tree. These are shown by dotted lines in Fig. 4.4(b).

Figure 4.4(a) Circuit Figure 4.4(b) Trees and links of circuit of Fig. 4.4(a)

The branches of a co-tree may or may not be connected, whereas the branches of a tree are

always connected.

To summarize,

Number of nodes in a graph = n

Number of independent voltages = n �1

Number of tree-branches = n � 1

Number of links = L = (Total number of branches) � (Number of tree-branches)

= b � (n � 1) = b � n + 1

Total number of branches = b = L + (n � 1)

Properties of a Tree
1. In a tree, there exists one and only one path between any pairs of nodes.

2. Every connected graph has at least one tree.

3. A tree contains all the nodes of the graph.

4. There is no closed path in a tree and hence, tree is circuitless.

5. The rank of a tree is (n � 1).

4.5 INCIDENCE MATRIX [Aa]

The incidence matrix symbolically describes a network. It also facilitates the testing and identification

of the independent variables. Incidence matrix is a matrix which represents a graph uniquely.

For a given graph with n nodes and b branches, the complete incidence matrix Aa is a rectangular

matrix of order n ´ b, whose elements have the following values.

Number of columns in [Aa] = Number of branches = b
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Number of rows in [Aa] = Number of nodes = n

Aij = 1, if branch j is associated with node i and oriented away from node i.

= �1, if branch j is associated with node i and oriented towards node i.

= 0, if branch j is not associated with node i.

This matrix tells us which branches are incident at which nodes and what are the orientations relative

to the nodes.

Example

Figure 4.5(a) Network Figure 4.5(b) Graph of network

Incidence matrix Aa

Branches

1 2 3 4 5 6

a �1 0 0 +1 0 0 Reduced

Nodes b 0 �1 0 �1 +1 0 Incidence

c 0 0 �1 0 �1 +1 Matrix A

Reference Node d +1 +1 +1 0 0 �1

4.5.1 Incidence Matrix and KCL

For the graph, shown in Fig. 4.6, Kirchhoff�s current law for the branch currents (i1, i2, �, i6) gives

the equations,

i1 + i2 + i6 = 0

� i1 + i3 � i5 = 0

� i2 � i3 + i4 = 0

� i4 + i5 � i6 = 0

In matrix form, these equations can be represented as,

1

2

3

4

5

6

1 1 0 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

0 0 0 1 1 1

b

b

b

b

b

b

i

i

i

i

i

i

é ù
ê úé ù ê úê ú ê ú- -ê ú ê úê ú- - ê úê ú ê ú- -ê úë û ê ú
ê úë û

 = 0

or 0a bA I =

where, Aa is the complete incidence matrix of the graph.

üï
ý
ïþ

Figure 4.6 Graph illustrating

incidence matrix and

KLC
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Reduced Incidence Matrix [A] The matrix obtained from Aa by eliminating one of the rows is

called Reduced Incidence Matrix. In other words, suppression of the datum node (reference node)

from the incidence matrix results in reduced incidence matrix.

For the graph shown in Fig. 4.6, reduced incidence matrix is given as,

A = 

1 1 0 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

é ù
ê ú- -ê ú
ê ú- -ë û

4.5.2 Incidence Matrix and KVL

For the graph shown in Fig. 4.6, the branch voltages (vb1, vb2, �vb6) can be represented in terms of

the node voltages (vn1, vn2, vn3, vn4) as,

vb1 = (vn1 � vn2), vb2 = (vn1 � vn3), vb3 = (vn2 � vn3), vb4 = (vn3 � vn4),

vb5 = (�vn1 + vn4), vb6 = (vn1 � vn4),

Thus, the Kirchhoff�s voltage law in matrix form can be written as,

1

2

3

4

1

2

3

4

5

6

1 1 0 0

1 0 1 0

0 1 1 0

0 0 1 1

0 1 0 1

1 0 0 1

b

n
b

n b

bn

bn

b

v

V
v

V v

vV

vV

v

- é ùé ù
ê úê ú é ù- ê úê ú ê ú
ê úê ú- ê ú

= ê úê ú ê ú- ê úê ú ê ú
ê úê ú ê ú-

ë û ê úê ú
-ê ú ê úë û ë û

or T

a n b
A V V=

4.5.3 Properties of Complete Incidence Matrix

(i) The sum of the entries in any column is zero.

(ii) The determinant of the incidence matrix of a closed loop is zero.

(iii) The rank of incidence matrix of a connected graph is (n�1).

4.6 NUMBER OF POSSIBLE TREES OF A GRAPH

The number of possible trees of a graph, = det {[A] ´ [A]T}

where, A is the reduced incidence matrix obtained by eliminating any one row of the complete

incidence matrix Aa, and [A]T is the transpose of the matrix [A].

Example For the graph shown in Fig. 4.6, the complete incidence matrix is,
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1 1 0 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

0 0 0 1 1 1

aA

é ù
ê ú- -ê ú=
ê ú- -
ê ú

- -ê úë û
So, reduced incidence matrix is,

1 1 0 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

A

é ù
ê ú= - -ê ú
ê ú- -ë û

Thus, the number of possible trees of the graph of Fig. 4.6

= det

1 1 0

1 0 1
1 1 0 0 0 1

0 1 1
1 0 1 0 1 0

0 0 1
0 1 1 1 0 0

0 1 0

1 0 0

ì ü-é ù
ï ïê ú-ï ïê úé ùï ïê ú-ï ïê ú- - ê úí ýê ú ê úï ïê ú- -ë û ê úï ï-

ê úï ï
ê úï ïë ûî þ

 = 

3 1 1

1 3 1 16

1 1 3

- -
- - =
- -

4.7 TIE-SET MATRIX AND LOOP CURRENTS

Tie-Set A tie-set is a set of branches contained in a loop such that each loop contains one link or

chord and the remainder are tree branches.

Consider the graph and the tree as shown. This selected tree will result in three fundamental

loops as we connect each link, in turn to the tree.

FL 1

1

2 3

FL 2

2

5
4

FL 3

3

4 6

Figure 4.7(a) Graph Figure 4.7(b) Tree of the graph

Figure 4.7(c) Loop-1 Figure 4.7(d) Loop-2 Figure 4.7(e) Loop-3
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Fundamental Loop 1 (FL1): Connecting link 1 to the tree.

Fundamental Loop 2 (FL2): Connecting link 5 to the tree.

Fundamental Loop 3 (FL3): Connecting link 6 to the tree.

These sets of branches (1, 2, 3), (2, 4, 5) and (3, 4, 6) form three tie-sets.

4.7.1 Tie-Set Matrix or Loop Incidence Matrix or Circuit Matrix (Ba)

For a given graph having n nodes and b branches, tie-set matrix is a rectangular matrix with b

columns and as many rows as there are loops. Its elements have the following values:

Bij = 1, if branch j is in loop i and their orientations coincide (i.e., loop current and

branch current flow in the same direction);

= �1, if branch j is in loop i and their orientations do not coincide;

= 0, if branch j is not in loop i.

Example For the graph shown in Fig. 4.8(a) and tree selected in Fig. 4.8(b), the tie-set matrix

is written as follows. The entries in the Tie-set schedule are given as +1 or �1 if the

branch current is in the same direction as the link current or not. If the branch

current does not depend on the link current, then entry is zero.

i 6
i5i4 2

3
1

d

j6

j4 j5b
a c4 5

2

1 3

a
b

c

6

d

Figure 4.8(a) Graph Figure 4.8(b) Formation of loops

Branch no. (i)

Links ( j ) 1 2 3 4 5 6

4 1 �1 0 1 0 0

5 0 1 �1 0 1 0

6 0 0 1 0 0 1

4.7.2 Tie-Set Matrix and KVL

For the graph shown in Fig. 4.7(a) and three loops shown in Fig. 4.7(c), (d) and (e), three

fundamental mesh KVL equations can be written as follows.

For Fundamental Loop 1 (FL1): vb1 � vb3 + vb2 = 0

For Fundamental Loop 2 (FL2): vb2 + vb4 + vb5 = 0

For Fundamental Loop 3 (FL3): vb3 + vb6 + vb4 = 0
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These equations in matrix form is written as,

1 1 1 0 0 0

0 1 0 1 1 0

0 0 1 1 0 1

-é ù
ê ú
ê ú
ê úë û

1

2

3

4

5

6

b

b

b

b

b

b

v

v

v

v

v

v

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

 = 0

or 0a bB V =

4.7.3 Tie-Set Matrix and KCL

For the graph shown in Fig. 4.7(a) and three loops shown in Fig. 4.7(c), (d) and (e), the branch

currents (ib1, ib2, �, ib6) can be represented in terms of the loop currents (IL1, IL2, IL3) as,

ib1 = IL1, ib2 = (IL1 + IL2), ib3 = (�IL1 + IL3), ib4 = (IL2 + IL3), ib5 = IL2, ib6 = IL3

In matrix form, these equations can be written as,

1

2

1

3

2
4

3
5

6

1 0 0

1 1 0

1 0 1

0 1 1

0 1 0

0 0 1

b

b
L

b
L

b
L

b

b

i

i
I

i
I

i
I

i

i

é ù é ù
ê ú ê ú
ê ú ê ú é ù
ê ú ê ú- ê ú=ê ú ê ú ê ú
ê ú ê ú ê úë ûê ú ê ú
ê ú ê ú

ê úê ú ë ûë û

or T

b a L
I B I=

4.8 CUT-SET MATRIX AND NODE-PAIR POTENTIAL

Cut-Set A cut-set is a minimum set of elements that when cut, or removed, separates the graph

into two groups of nodes. A cut-set is a minimum set of branches of a connected graph, such that

the removal of these branches from the graph reduces the rank of the graph by one.

In other words, for a given connected graph (G), a set of branches (C) is defined as a cut-set if

and only if:

(i) the removal of all the branches of C results in an unconnected graph.

(ii) the removal of all but one of the branches of C leaves the graph still connected.

Example Consider the graph shown in Fig. 4.9(a). The rank of the graph is 3.

The removal of branches 1 and 3 reduces the graph into two connected subgraphs

as shown in Fig. 4.9(b).
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The rank of the graph of Fig. 4.9(a) = (4 � 1) = 3

The rank of the graph of Fig. 4.9(b) = Addition of the ranks of the subgraphs =

(1 + 1) = 2

So, branches [1, 3] may be a cut-set.

Also, removal of the branches 1, 3 and 5 reduces the graph into two connected

subgraphs as shown in Fig. 4.9(c) and the rank becomes 2. So, [1, 3, 5] may also

be a cut-set.

As cut-set is the minimum set of branches and [1, 3] is a subset of [1, 3, 5], so [1,

3] is the cut-set, [1, 3, 5] is not a cut-set.

4.8.1 Fundamental Cut-Set

A fundamental cut-set (FCS) is a cut-set that cuts or contains one and only one tree branch.

Therefore, for a given tree, the number of fundamental cut-sets will be equal to the number of twigs.

4.8.2 Procedure for Finding the Fundamental Cut-sets

1. First, select a tree of the given graph.

2. Focus on a tree branch (bk).

3. Check whether removing this tree branch (bk) from

the tree disconnects the tree into two separate parts.

4. All the links which go from one part of this discon-

nected tree to the other, together with the tree

branch (bk) forms a fundamental cut-set.

Following this procedure, the fundamental cut-sets for

the graph of Fig. 4.10 will be

f-cut-set � 1: [1, 2, 6];

f-cut-set � 2: [2, 3, 5, 6];

f-cut-set � 3: [4, 5, 6]

4.8.3 Properties of Cut-Set

1. A cut-set divides the set of nodes into two subsets.

2. Each fundamental cut-set contains one tree-branch, the remaining elements being links.

3. Each branch of the cut-set has one of its terminals incident at a node in one subset and its

other terminal at a node in the other subset.

Figure 4.9(a) Graph Figure 4.9(b) Subgraphs with

removal of 1 and 3

Figure 4.9(c) Subgraphs with re-

moval of 1, 3 and 5

Figure 4.10 Graph illustrating

fundamental cut-set
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4. A cut-set is oriented by selecting an orientation from one of the two parts to the other.

Generally, the direction of cut-set is chosen same as the direction of the tree branch.

4.8.4 Cut-Set Matrix (QC)

For a given graph, a cut-set matrix (QC) is defined as a rectangular matrix whose rows correspond to

cut-sets and columns correspond to the branches of the graph. Its elements have the following values:

Qij = 1, if branch j is in the cut-set i and the orientations coincide.

= �1, if branch j is in the cut-set i and the orientations do not coincide.

= 0, if branch j is not in the cut-set i.

Example For the graph shown in Fig. 4.10, fundamental cut-sets have been identified as

follows.

f-cut-set � 1: [1, 2, 6];

f-cut-set � 2: [2, 3, 5, 6];

f-cut-set � 3: [4, 5, 6]

So, the cut-set matrix is written as,

Branch no:

f-cut-sets 1 2 3 4 5 6

1 1 1 0 0 0 1

2 0 1 1 0 1 1

3 0 0 0 1 �1 �1

4.8.5 Cut-Set Matrix and KVL

By cut-set schedule, the branch voltages can be expressed in terms of the tree-branch voltages.

A cut-set consists of one and only one branch of the tree together with any links which must be

cut to divide the network into two parts. A set of fundamental cut-sets includes those cut-sets which

are obtained by applying cut-set division for each of the branches of the network tree.

Consider the following graph.

1 2

34

5 7
6

8FCS-1

FCS-4

FCS-3

FCS-2

5

6

7

8

a

b

c

d

a

d

c

b

Figure 4.11(a) Graph Figure 4.11(b) Tree

Applying cut-sets at nodes a, b, c, d, which are the fundamental cut-sets (FCS), we can write the

cut-set schedule as follows.
1 2 3 4 5 6 7 8

FCS-1 ® a �1 0 0 1 1 0 0 0

FCS-2 ® b 1 �1 0 0 0 1 0 0

FCS-3 ® c 0 1 1 0 0 0 1 0

FCS-4 ® d 0 0 �1 �1 0 0 0 1
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The tree-branch voltages are [vt5, vt6, vt7, vt8] and the branch voltages are [Vb1, Vb2, � Vb8] and the

relationship between tree-branch voltages and branch voltages are:

Vb1 = �vt5 + vt6 Vb5 = vt5

Vb2 = �vt6 + vt7 Vb6 = vt6

Vb3 = vt7 � vt8 Vb7 = vt7

Vb4 = vt5 � vt8 Vb8 = vt8

The above equations can be related by using the cut-set schedule as:

1

2

3 5

4 6

5 7

6 8

7

8

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

b

b

b t

b t

b t

b t

b

b

V

V

V v

V v

V v

V v

V

V

-é ù é ù
ê ú ê ú-ê ú ê ú
ê ú ê ú- é ù
ê ú ê ú ê ú-ê ú ê ú ê ú=ê ú ê ú ê ú
ê ú ê ú ê ú

ê úê ú ê ú ë û
ê ú ê ú
ê ú ê ú
ê ú ê úë ûë û

or T
b c tV Q V=

4.8.6 Cut-Set Matrix and KCL

For the graph of Fig. 4.11, writing Kirchhoff�s current laws for the nodes, the branch currents can

be expressed as,

Node a: �ib1 + ib4 + ib5 = 0

Node b: ib1 � ib2 + ib6 = 0

Node c: ib2 + ib3 + ib7 = 0

Node d: �ib3 � ib4 + ib8 = 0

In matrix form, they can be written as,

1

2

3

4

5

6

7

8

1 0 0 1 1 0 0 0

1 1 0 0 0 1 0 0
0

0 1 1 0 0 0 1 0

0 0 1 1 0 0 0 1

b

b

b

b

b

b

b

b

i

i

i

i

i

i

i

i

é ù
ê ú
ê ú
ê ú-é ù
ê úê ú- ê úê ú =ê úê ú
ê úê ú

- -ê ú ê úë û
ê ú
ê ú
ê úë û

or 0c bQ I =
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There is a cut-set matrix for a given tree. If a graph contains more than one tree, there will be as

many numbers of cut-set matrices as the number of tree of the graph.

To summarize, KVL and KCL equations in three matrix forms are given below.

Matrix KCL KVL

Incidence Matrix (Aa) Aa ´ Ib = 0 Vb = Aa 
T

  ´ Vn

Tie-Set Matrix (Ba) Ib = Ba 
T

  ´ IL Ba ´ Vb = 0

Cut-Set Matrix (QC) QC ´ Ib = 0 Vb = QC 
T

  ´ Vt

4.9 FORMULATION OF NETWORK EQUILIBRIUM EQUATIONS

The network equilibrium equations are a set of equations that completely and uniquely determine the

state of a network at any instant of time. These equations are written in terms of suitably chosen

current variables or voltage variables.

These equations will be unique if the number of independent variables be equal to the number of

independent equations.

Number of Independent Variables or Equations = b � (n � 1); for loop method of analysis

= (n � 1); for node method of analysis.

The equations for a network can be formed in either of the two methods as given below.

1. Through a set of voltage law equations in which the currents are the independent variables

(Loop-Basis Method);

2. Through a set of current law equations in which the node-pair voltages are the independent

variables (Node-Basis Method).

4.9.1 Formulation of Network Equations on Loop Basis

Steps

1. Draw the directed graph of the network selecting the direction of assumed current flow to

coincide for current sources.

2. Select a tree of the graph.

3. Place all voltage sources in the tree and all current sources in the co-tree.

4. Place all control-voltage branches for voltage-controlled dependent sources in the tree and all

control-current branches for current-controlled dependent sources in the co-tree, if possible.

5. Add one link to the tree, creating a fundamental loop, and write a KVL equation for this

fundamental loop (FL). Repeat for each additional link until L (= b � n + 1) mesh equations are

obtained in the form Ba ´ Vb = 0.

6. The current sources in the cotree, if present, will provide the constraint equations.

7. The KCL equations are obtained by representing the branch currents in terms of loop currents

in the form Ib = Ba 
T ´ IL.

8. For each branch, the relationship between the voltage and current is obtained from Ohm�s law

(V = RI ).

9. Finally, the equilibrium equations are obtained in terms of loop currents by suitable substitution

of the equations obtained in Steps 5 to 8.
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4.9.2 Formulation of Network Equations on Node Basis

Steps

1. Draw a directed graph of the circuit under considerations, selecting the directions of assumed

current flow to coincide for current sources.

2. Select the tree of the graph so that current sources are in the co-tree and the voltage sources

are within the tree, if possible. Also, if possible, select the tree so that at least two branches

of the tree are incident at the reference node.

3. Identify (n � 1) fundamental cut-sets (FCS) and draw the FCS lines.

4. Write the (n � 1) FCS KCL equations in the form Aa ´ Ib = 0 or QC ´ Ib = 0.

5. Obtain each of the branch currents in terms of node voltages in the form Vb = Aa 
T  × Vn or,

Vb = QC 
T × Vt.

6. For each branch, the relationship between the voltage and current is obtained from Ohm�s law

(V = RI).

7. Substitute the equations of step 6 into the KVL equations of step 5 and finally into the KCL

equations of step 4, thus obtaining the (n � 1) independent node voltage equations.

4.9.3 Generalized Equations in Matrix Forms for Circuits Having Sources

A general branch consisting of a voltage source Vs and a

current source Is is shown in Fig. 4.12.

Here, the branch current is (Ib + Is) and the branch

voltage is (Vb + Vs).

Without sources, the KCL and KVL equations are:

Aa ´ Ib = 0 (4.1)

Ib = Ba 
T ´ IL KCL (4.2)

QC ´ Ib = 0 (4.3)

and Vb = Aa 
T ´ Vn (4.4)

Ba ´ Vb = 0 KVL (4.5)

Vb = QC 
T ´ Vt (4.6)

With the sources, the KCL and KVL equations are modified as,

Aa Ib + Aa Is = 0 (4.7)

Ib + Is = Ba 
T IL (4.8)

Qc Ib + Qc Is = 0 (4.9)

and Vb + Vs = Aa 
T Vn (4.10)

Ba Vb + Ba Vs = 0 (4.11)

Vb + Vs = Qc 
T Vt (4.12)

The branch voltage-current relations for the passive network elements are written in matrix form as,

Vb = Zb Ib (4.13)

and Ib = Yb Vb (4.14)

where, Zb is the branch impedance matrix and Yb is the branch admittance matrix, both of the order

b ´ b. On the basis of these equations the general equations can be written in terms of three matrices

as follows.

ü
ï
ý
ïþ
ü
ï
ý
ïþ

Figure 4.12

–

Vs
Ib

Is

Zb+



Network Topology (Graph Theory) 4.15

Node Equations From equation (4.7),

Aa Is = � Aa Ib = � Aa Yb Vb = � Aa Yb (Aa 
T Vn � Vs) {by equation (4.10)}

or Aa Yb Aa
T Vn = Aa Yb Vs � Aa Is = Aa [Yb Vs � Is�]

or [ ]-n a b s sYV A Y V I=

where, Y is called the nodal admittance matrix of the order of (n � 1) ´ (n � 1). The above equation

represents a set of (n � 1) number of equations, known as node equations.

In case of node analysis, one node is taken as the datum node and potential of that node is zero.

Consequently, the complete incident matrix becomes reduced incidence matrix. Thus, the node

equations become

- = [  ]n b s sY  V A Y V I

where, Y = AYb AT is called the nodal admittance matrix of the order of (n � 1) ´ (n � 1). The above

equation represents a set of (n � 1) number of equations, known as node equations.

Mesh Equations From equation (4.11),

Ba Vs = � Ba Vb = � Ba Zb Ib = � Ba Zb (Ba 
T IL � Is) {by equation (4.8)}

or Ba Zb Ba 
T IL = Ba [Zb Is � Vs]

or [ ]-L a b s sZL B Z I V=

where, Z is the loop-impedance matrix of the order of (b � n + 1) ´ (b � n + 1). The above equation

represents a set of (b � n + 1) number of equations, known as mesh or loop equations.

Cut-set Equations From equation (4.8),

Qc Is = � Qc Ib = �Qc Yb Vb = �Qc Yb (Qc  
 TVt � Vs) {by equation (4.12)}

or Qc Yb Qc 
T Vt = Qc [Yb Vs � Is]

or [ ]-c t c b s sY V Q Y V I=

where, Yc is the cut-set admittance matrix of the order of (n � 1) ´ (n � 1) and the set of (n � 1)

equations represented by the above equation is known as cut-set equations.

4.10 SOLUTION OF EQUILIBRIUM EQUATIONS

There are two methods of solving equilibrium equations given as follows.

(i) Elimination method: by eliminating variables until an equation with a single variable is achieved,

and then by the method of substitution.

(ii) Determinant method: by the method known as Cramer�s rule.
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SOLVED PROBLEMS

4.1 Draw the graph of the network shown in the figure.

Solution The graph of the network is shown below.

4.2 From the figure, make the graph and find one tree. How many mesh currents are required for solving

the network? Find the number of possible trees.

Solution The graph of the network is shown below. One tree of the graph is shown.

Graph of the network Tree of the graph
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The complete incidence matrix is obtained as,

Nodes Branches

1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 �1 0

2 �1 1 1 0 0 0 0 0 0 0

Aa = 3 0 �1 �1 1 1 0 0 0 0 0

4 0 0 0 0 �1 1 1 0 0 0

5 0 0 0 0 0 �1 0 0 0 1

6 0 0 0 0 0 0 �1 1 0 0

7 0 0 0 �1 0 0 0 �1 1 �1

Reduced incidence matrix becomes,

Nodes Branches

1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 �1 0

2 �1 1 1 0 0 0 0 0 0 0

A = 3 0 �1 �1 1 1 0 0 0 0 0

4 0 0 0 0 �1 1 1 0 0 0

5 0 0 0 0 0 �1 0 0 0 1

6 0 0 0 0 0 0 �1 1 0 0

Hence the number of possible trees is,

n = det 

1 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 0 1 0

ì -é ù
ï ê ú-ï ê ú
ï ê ú- -é ù
ï ê úê ú-ï ê úê ú
ï ê úê ú- - -ï ê úê úí - -ê úê úï

ê úê úï - -ê úê ú
- ê úê úë û

ê ú-ê ú
ê úê úë ûî

ü
ï
ï
ï
ï
ï
ïï
ý
ï
ï

ï ï
ï ï
ï ï
ï ï
ï ïþ

= det 

2 1 0 0 0 0

1 3 2 0 0 0

0 2 4 0 0 0

0 0 1 3 1 1

0 0 0 1 2 0

0 0 0 1 0 2

-é ù
ê ú- -ê ú
ê ú-
ê ú

- - -ê ú
ê ú-
ê ú

-ê úë û

Þ n =12 Ans.
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4.3 Branch current and loop current relations are expressed in matrix form as,

1

2

3 1

4 2

5 3

6 4

7

8

1 0 0 1

0 1 0 1

0 1 1 0

0 1 1 0

1 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

i

i

i I

i I

i I

i I

i

i

-é ù é ù
ê ú ê ú-ê ú ê ú
ê ú ê ú é ù
ê ú ê ú ê ú
ê ú ê ú ê ú=ê ú ê ú ê ú-
ê ú ê ú ê ú

- ê úê ú ê ú ë û
ê ú ê ú-ê ú ê ú
ê ú ê úë ûë û

Draw the oriented graph.

Solution We know that, [ ] [ ] [ ]T
b a LI B I= . So, the tie-set matrix, here, is,

Loop or Branches

Link 1 2 3 4 5 6 7 8

Currents

1 1 0 0 0 1 0 �1 0

Ba = 2 0 1 1 1 �1 0 0 0

3 0 0 1 1 0 �1 0 0

4 �1 �1 0 0 0 0 0 1

So, the graph consists of four loops and eight branches. Loop 1 consists of branch 1, 5 and 7. The

orientations are given following the sign +1 or �1. Following the procedure, the complete oriented

graph is shown below.
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4.4 The fundamental cut-set matrix is given as,

Twigs Links

1 2 3 4 5 6 7

1 0 0 0 �1 0 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 0 1 0

Draw the oriented graph of the network.

Solution The graph has seven branches and four fundamental cut-sets:

Cut-set-1: [1, 5]

Cut-set-2: [2, 5, 7]

Cut-set-3: [3, 6, 7]

Cut-set-4: [4, 6]

So, the oriented graph is as shown in figure.

4.5 (a) For the network of the figure, draw the graph and write a tie-set schedule. Using the tie-set

schedule obtain the loop equations and find the currents in all branches.

(b) For the network of (a), write a cut-set schedule, obtain nodal equations and find branch

currents.



4.20 Circuit Theory and Networks

Solution The graph and one tree are shown in figure.

The tie-set matrix,

1 0 1 0 0 1

0 1 0 1 0 1

0 0 1 1 1 0

aB

-é ù
ê ú= ê ú
ê ú- -ë û

Branch impedance matrix is,

0.5 0 0 0 0 0

0 0.5 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0.2 0

0 0 0 0 0 1

bZ

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê úë û

Thus,

0.5 0 0 0 0 0

0 0.5 0 0 0 0
1 0 1 0 0 1 0.5 0 1 0 0 1

0 0 1 0 0 0
0 1 0 1 0 1 0 0.5 0 1 0 1

0 0 0 1 0 0
0 0 1 1 1 0 0 0 1 1 0.2 0

0 0 0 0 0.2 0

0 0 0 0 0 1

é ù
ê ú
ê ú- -é ù é ùê úê ú ê ú= =é ùé ù ê úë ûë û ê ú ê úê úê ú ê ú- - - -ë û ë ûê ú
ê ú
ê úë û

a bB Z

\

1 0 0

0 1 0
0.5 0 1 0 0 1

1 0 1
0 0.5 0 1 0 1

0 1 1
0 0 1 1 0.2 0

0 0 1

1 1 0

é ù
ê ú
ê ú-é ù ê ú-ê ú=é ùé ùé ù ê úë ûë ûë û ê ú -ê úê ú- -ë û ê ú
ê ú
-ê úë û

T

a b aB Z B  

2.5 1 1

1 2.5 1

1 1 2.2

- -é ù
ê ú= - -ê ú
ê ú- -ë û
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Now,

9

0
1 0 1 0 0 1 9

0
0 1 0 1 0 1 0

0
0 0 1 1 1 0 0

0

0

a sB V

-é ù
ê ú
ê ú-é ù é ùê úê ú ê ú- = - =é ùé ù ê úë ûë û ê ú ê úê úê ú ê ú- -ë û ë ûê ú
ê ú
ê úë û

So, the loop equations are,

1

2

3

2.5 1 1 9

1 2.5 1 0

1 1 2.2 0

i

i

i

- - é ùé ù é ù
ê úê ú ê ú- - ´ =ê úê ú ê ú
ê úê ú ê ú- -ë û ë ûë û

Solving three equations,

1 2 38.9 A, 6.33 A, 6.92 Ai i i= = = Ans.

4.6 The figure shows a d.c. network. (a) Draw a graph of the network. Which elements are not included

in the graph and why? (b) Write a loop incidence matrix and use it to obtain loop equations. (c) Find

branch currents.

2 W

2 W 2 W 2 W2 A

2 W

+

–

5 V

Solution

(a) The graph is shown below.

The 2 W resistor in parallel with voltage source and the 2 A current source have not been

included in the graph. This is because of the reason that passive elements in parallel with a

voltage source are not included in graph and the current source in parallel with a passive

element is open-circuited while drawing graph.
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(b) The tie-set matrix for the tree chosen is,

1 0 0 1 1

0 1 1 0 1
aB

-é ù
= ê ú- -ë û

Branch impedance matrix is,

2 0 0 0 0

0 2 0 0 0

0 0 0 0 0

0 0 0 2 0

0 0 0 0 2

bZ

é ù
ê ú
ê ú
ê ú=
ê ú
ê ú
ê úë û

T
a b aB Z B = 

2 0 0 0 0 1 0

0 2 0 0 0 0 1
1 0 0 1 1

0 0 0 0 0 0 1
0 1 1 0 1

0 0 0 2 0 1 0

0 0 0 0 2 1 1

é ù é ù
ê ú ê ú
ê ú ê ú-é ù ê ú ê ú-ê ú- - ê ú ê úë û -ê ú ê ú
ê ú ê ú-ë û ë û

= 

1 0

0 1
2 0 0 2 2

0 1
0 2 0 0 2

1 0

1 1

é ù
ê ú
ê ú-é ù ê ú-ê ú- ê úë û -ê ú
ê ú-ë û

= 
6 2

2 4

-é ù
ê ú-ë û

Now,

2 0

0 0
2 0 0 2 2 1 0 0 1 1 4 0 4

0 5
0 2 0 0 2 0 1 1 0 1 0 5 5

0 0

0 0

a b s a sB Z I B V

é ù é ù
ê ú ê ú
ê ú ê ú- -é ù é ù é ù é ù é ùê ú ê ú- = - - = - =ê ú ê ú ê ú ê ú ê ú- - - -ê ú ê úë û ë û ë û ë û ë û
ê ú ê ú
ê ú ê úë û ë û

So, the loop equations are,

1

2

6 2 4

2 4 5

i

i

- é ùé ù é ù
=ê úê ú ê ú- -ë û ë ûë û

Solving these equations, 
1 20.3 A, 1.1 Ai i= = - Ans.

(c) Putting these values, the branch voltages are

1 1 2 2 3 4 1 52 0.6 V, 2 2.2 V, 5 V, 2 4 3.4 V, 2.8 VV i V i V V i V= ´ = = ´ = - = - = - ´ + = =  Ans.
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Thus, the branch currents are

3.4 2.8 5 0.6 2.2
1.7 A, 1.4 A, 2.5 A, 0.3 A, 1.1A

2 2 2 2 2AB AD AC DB DCI I I I I= = = = = = = = = =

So, the current supplied by the battery = (1.7 + 1.4 + 2.5 � 2) = 4.6 A Ans.

4.7 For the network shown in the figure, draw the oriented graph and obtain the tie-set matrix. Use this

matrix to calculate i.

Solution The oriented graph and any one tree are shown.

I1

I3

I2

(3)

(6)

3(1)

(2)

(5)

2

(4)

1

4

3

(6)

(3)

(4)

(2)

(5)

(1) 2

1

4

The tie-set matrix is given as,

1 1 0 0 1 0

0 1 1 1 0 0

0 0 0 1 1 1

aB

é ù
ê ú= - -ê ú
ê ú-ë û

The branch impedance matrix,

1 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 3 0

0 0 0 0 0 1

bZ

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê úë û
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\

1 0 0 0 0 0

0 2 0 0 0 0
1 1 0 0 1 0 1 2 0 0 3 0

0 0 2 0 0 0
0 1 1 1 0 0 0 2 2 1 0 0

0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 1 3 1

0 0 0 0 3 0

0 0 0 0 0 1

a bB Z

é ù
ê ú
ê úé ù é ùê úê ú ê ú= - - = - -ê úê ú ê úê úê ú ê ú- -ë û ë ûê ú
ê ú
ê úë û

\

1 0 0

1 1 0
1 2 0 0 3 0 6 2 3

0 1 0
0 2 2 1 0 0 2 5 1

0 1 1
0 0 0 1 3 1 3 1 5

1 0 1

0 0 1

T
a b aB Z B

é ù
ê ú-ê ú - -é ù é ùê úê ú ê ú= - - = - -ê úê ú ê ú-ê úê ú ê ú- - -ë û ë ûê ú-
ê ú
ê úë û

Now,

2

0
1 1 0 0 1 0 2 2

1
0 1 1 1 0 0 1 1

0
0 0 0 1 1 1 0 0

0

0

a sB V

-é ù
ê ú
ê ú -é ù é ù é ùê ú-ê ú ê ú ê ú- = - - - = - - =ê úê ú ê ú ê úê úê ú ê ú ê ú-ë û ë û ë ûê ú
ê ú
ê úë û

So, the loop equations become,

1

2

3

6 2 3 2

2 5 1 1

3 1 5 0

I

I

I

- - é ùé ù é ù
ê úê ú ê ú- - =ê úê ú ê ú
ê úê ú ê ú- -ë û ë ûë û

Solving for I1,

1

2 2 3

1 5 1

0 1 5
0.91A

6 2 3

2 5 1

3 1 5

- -
-

-
= =

- -
- -
- -

I

\ 1 0.91 A=i
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4.8 The circuit of the figure contains a voltage controlled voltage source. For this circuit, draw the

oriented graph. By selecting a proper tree obtain the tie-set matrix and hence calculate the voltage,

Vx.

Solution Since the controlled voltage source is not accompanied by any passive element, we will

consider a resistance R1 in series with the controlled voltage source, and finally let R1 ® 0.

+–

5 W5 W

5 W 4 W

1 V

5 W

Vx

+

Vx

–

R1

(2) (4)

(3)
(1) (5)

(6)

i1 i2

i3

1
2

3

4

I

The graph of the network is shown with one tree.

The tie-set matrix is,

1 1 1 0 0 0

0 0 1 1 1 0

0 1 0 1 0 1

aB

-é ù
ê ú= -ê ú
ê ú-ë û

The branch impedance matrix,

1

5 0 0 0 0 0

0 5 0 0 0 0

0 0 5 0 0 0

0 0 0 5 0 0

0 0 0 0 4 0

0 0 0 0 0

bZ

R

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê úë û
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\

1

1

5 0 0 0 0 0

0 5 0 0 0 0
1 1 1 0 0 0 5 5 5 0 0 0

0 0 5 0 0 0
0 0 1 1 1 0 0 0 5 5 4 0

0 0 0 5 0 0
0 1 0 1 0 1 0 5 0 5 0

0 0 0 0 4 0

0 0 0 0 0

a bB Z

R

R

é ù
ê ú
ê ú- -é ùé ù ê ú ê úê ú= - = -ê ú ê úê ú ê ú ê úê ú- -ë û ë ûê ú
ê ú
ê úë û

\

( )1 1

1 0 0

1 0 1
5 5 5 0 0 0 15 5 5

1 1 0
0 0 5 5 4 0 5 14 5

0 1 1
0 5 0 5 0 5 5 10

0 1 0

0 0 1

T
a b aB Z B

R R

é ù
ê ú-ê ú é ù- - -é ù
ê ú- ê úê ú= - = - -ê ú ê úê ú -ê ú ê úê ú- - - +ë û ë ûê ú
ê ú
ê úë û

Now,

0

0
1 1 1 0 0 0 1 1

1
0 0 1 1 1 0 1 1

0
0 1 0 1 0 1

0

a s

x x

x

B V

V V

V

é ù
ê ú
ê ú- -é ù é ùé ù ê ú- ê ú ê úê ú- = - - = - - =ê ú ê ú ê úê ú ê ú ê ú ê úê ú- -ë û ë û ë ûê ú
ê ú
-ê úë û

So, the loop equations become,

( )

1

2

1 3

15 5 5 1

5 14 5 1

5 5 10 x

I

I

R I V

é ù- - -é ù é ù
ê ú ê ú ê ú- - =ê ú ê ú ê ú
ê ú ê ú ê ú- - + ë û ë ûë û

With R1 ® 0 and Vx = 4I2, the equations reduce to,

1

2

3

15 5 5 1

5 14 5 1

5 9 10 0

I

I

I

- - -é ùé ù é ù
ê úê ú ê ú- - =ê úê ú ê ú
ê úê ú ê ú- -ë û ë ûë û

Solving for I2,

2

15 1 5

5 1 5

5 0 10 1
A

1915 5 5

5 14 5

5 9 10

I

- -
- -
-

= =
- -

- -
- -
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\ 2

1 4
4 4 V

19 19
= ´ = ´ =xV I Ans.

4.9 Determine the current i1 in the circuit using nodal analysis method and graph theory concepts.

4 A

i1

5 W 2 W 4 W19 V

1.5 i130 V 25 V

Solution By source transformation technique, we convert the 19 V and 25 V voltage sources into

current sources.

Since the 30 V voltage source, the 4 A current source, and controlled current source are not accom-

panied by the passive elements, we consider three resistors R1, R2 and R3 and finally let,

R1 ® 0, R2 ® µ, and R3 ® µ.

The graph of the network is shown.
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The complete incidence matrix is,

1 1 0 0 0 0

0 1 1 1 0 0

0 0 1 1 1 1

1 0 0 0 1 1

aA

-é ù
ê ú
ê ú=
ê ú- -
ê ú

- -ê úë û
Reduced Incidence matrix is,

1 1 0 0 0 0

0 1 1 1 0 0

0 0 1 1 1 1

A

-é ù
ê ú= ê ú
ê ú- -ë û

Branch admittance matrix is,

1

2

3

0 0 0 0 0

1
0 0 0 0 0

5
0 0 0 0 0

1
0 0 0 0 0

2
0 0 0 0 0

1
0 0 0 0 0

4

é ù
ê ú
ê ú
ê ú
ê ú
= ê ú

ê ú
ê ú
ê ú
ê ú
ê úë û

b

G

G
Y

G

where, G1 = 
1

1

R
, G2 = 

2

1

R
, G3 = 

3

1

R

\ AYb = 

1

2

3

0 0 0 0 0

1
0 0 0 0 0

5
1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 1

0 0 0 0 0
0 0 1 1 1 1 2

0 0 0 0 0

1
0 0 0 0 0

4

é ù
ê ú
ê ú
ê ú-é ù ê úê ú ê úê ú ê ú- -ë û ê ú
ê ú
ê ú
ê úë û

G

G

G

= 

1

2

3

1
0 0 0 0

5

1 1
0 0 0

5 2
1 1

0 0 1
2 4

é ù-ê ú
ê ú
ê ú
ê ú
ê ú- -
ê úë û

G

G

G

\ AYbA
T = 

1

2

3

1 0 01
0 0 0 0 1 1 05

0 1 11 1
0 0 0

5 2 0 1 1
1 1 0 0 10 0 1
2 4 0 0 1

é ùé ù- ê ú-ê ú ê úê ú -ê úê ú ê ú-ê ú ê úê ú- - ê úê úë û ê úë û

G

G

G
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= 

1

1

3

1 1
0

5 5

1 1 1 1

5 5 2 2

1 1 1
0

2 2 4

é ùæ ö+ -ç ÷ê úè ø
ê ú

æ öê ú- + + -ç ÷è øê ú
ê úæ öê ú- + +ç ÷è øê úë û

G

G

G

{ }

1

1

30

0
1 1 0 0 0 0

4
0 1 1 1 0 0 0We made

9.5
0 0 1 1 1 1

1.5

6.25

b s s s s

G

AY V AI AI V

i

-é ù
ê ú
ê ú-é ù ê úê ú- = - = - =ê úê ú -ê úê ú- -ë û ê ú-
ê ú
ê úë û

Q

Now,

1

1

30

5.5

(15.75 1.5 )

-é ù
ê ú= - -ê ú
ê ú-ë û

G

i

Thus, node equations are,

1

1 1

2 2

3 1

3

1 1
0

5 5
30

1 7 1
5.5

5 10 2
1.5 15.75

1 3
0

2 4

é ùæ ö+ -ç ÷ê úè ø
ê ú é ù é ù

æ öê ú ê ú ê ú- + - =ç ÷è øê ú ê ú ê ú
-ê úê úê ú ë ûë ûæ öê ú- +ç ÷è øê úë û

G

V G

G V

V i

G

With R1 ® 0, G1 ® µ, R2 ® µ, G2 ® 0, R3 ® µ, G3 ® 0 the equations become:

1 1 2 1

1 1
30

5 5
G V V G

æ ö+ - =ç ÷è ø

1 2 2 3

1 7 1
5.5

5 10 2
V G V V

æ ö- + + - =ç ÷è ø

2 3 1

1 3
(1.5 15.75)

2 4
V V i- + = -

or

1 30=V (i)

1 2 3 2 3

1 7 1
5.5 7 5 115

5 10 2
V V V V V- + - = Þ - = (ii)

2 1
2 3 2 3

1 3
1.5 15.75 16 15 495

2 4 5

V V
V V V V

é ù-æ ö- + = - Þ - =ê úç ÷è øë û
(iii)
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Solving equations (i), (ii), and (iii), we get,

2 330 V, 65 VV V= - =

Hence, the current, 2 1
1

30 30
12 A

5 5

V V
i

- - -æ ö= = = -ç ÷è ø
Ans.

4.10 Write the complete incidence matrix for the graph shown in the figure.

1
2

4

7
3

6 5

Solution We first label the nodes as shown in the figure.

1
2

4

7
3

6 5

A

B

D

C

E

The complete incidence matrix is given as,

1 2 3 4 5 6 7

A �1 1 0 1 0 0 0

B 1 0 0 0 0 �1 1

Aa = C 0 �1 �1 0 �1 0 0

D 0 0 1 �1 0 0 �1

E 0 0 0 0 1 1 0

4.11 Write down the incidence matrix and cutset matrices for the network shown.

5 W

4 W

4 W 4 W

5 W

5 W

10 V
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Solution The graph and a suitable tree for the network are shown in the figure.

1 2 3

4 5

6

A

B
D

C

C3

C2
C1

The complete incidence matrix is given as,

1 2 3 4 5 6

A �1 �1 1 0 0 0

Aa = B 1 0 0 1 0 1

C 0 1 0 �1 1 0

D 0 0 �1 0 �1 �1

The fundamental cutsets are identified as,

f-cutset-1: [1, 4, 6]

f-cutset-2: [3, 5, 6]

f-cutset-3: [1, 2, 3]

The fundamental cutset matrix is given as,

1 2 3 4 5 6

C1 �1 0 0 1 0 1

Q = C2 0 0 �1 0 �1 �1

C3 �1 �1 1 0 0 0

4.12 For the network shown in the figure, give fundamental cutset matrix and hence find KCL equations.

1 A 2 c

1 c

2 c 1 c

Solution The graph and one tree are shown for the network.

The fundamental cutsets are identified as

f-cutset-1: [1, 2]

f-cutset-2: [2, 3, 4]
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A B

C

(2)

(1)
(4)

(3)

The fundamental cutset matrix is given as,

1 2 3 4

Qa = C1 1 1 0 0

C2 0 �1 1 1

The KCL equations in terms of the cutset matrix is given as,

[Q][Yb][QT][Vt] = � [Q][IS]

Here,

Q Y Qb
T =

-
L
N
M

O
Q
P

L

N

M
M
M
M

O

Q

P
P
P
P

-
L

N

M
M
M
M

O

Q

P
P
P
P

=
-

L
N
M

O
Q
P

-
L

N

M
M
M
M

O

Q

P
P
P
P

=
-

-
L
N
M

O
Q
P

1 1 0 0

0 1 1 1

2 0 0 0

0 1 0 0

0 0 2 0

0 0 0 1

1 0

1 1

0 1

0 1

2 1 0 0

0 1 2 1

1 0

1 1

0 1

0 1

3 1

1 4

- = -
-

L
N
M

O
Q
P

-L

N

M
M
M
M

O

Q

P
P
P
P
=

L
N
M

O
Q
PQ I S

1 1 0 0

0 1 1 1

1

0

0

0

1

0

Thus, the KCL equations are

3 1

1 4

1

0

1

3

-
-

L
N
M

O
Q
P
L
N
M

O
Q
P =

L
N
M

O
Q
P

V

V
Ans

t

t

.

4.13 For the network shown in the figure, draw the oriented

graph, select a suitable tree and obtain the fundamental

cutset matrix. Determine the node equations and find v.

Solution The oriented graph of the network is shown

in the figure. Since we have to find v, we take branch (2)

in the twig and a possible tree is selected. +
–2 V

2 v

2 W

2 W

2 W 2 W

+

–

v
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The fundamental cutsets are identified as

A B

(1)

(2)
(3)

(4)
C2

C1C

f-cutset-1: [1, 2, 3];

f-cutset-2: [3, 4];

The fundamental cutset matrix is given as,

1 2 3 4

Qa = C1 �1 1 1 0

C2 0 0 �1 1

The node equations are given as,

[Q][Yb][QT][Vt] = [Q] ´ {[Yb][VS] � [IS]}

Here,

Q Y Qb
T =

-
-

L

N
M

O

Q
P

L

N

M
M
M
M

O

Q

P
P
P
P

-

-

L

N

M
M
M
M

O

Q

P
P
P
P

=
-

-
L

N
M

O

Q
P

1 1 1 0

0 0 1 1

1 2 0 0 0

0 1 2 0 0

0 0 1 2 0

0 0 0 1 2

1 0

1 0

1 1

0 1

3 2 1 2

1 2 1

/

/

/

/

/ /

/

Q Y V I

v

v
b s S´ - =

-
L
NM

O
QP

L

N

M
M
M
M

O

Q

P
P
P
P

L

N

M
M
M
M

O

Q

P
P
P
P
-

L

N

M
M
M
M

O

Q

P
P
P
P

R

S
||

T
|
|

U

V
||

W
|
|

=
-

L
NM

O
QP

n s
1 1 0 0

0 1 1 1

1 2 0 0 0

0 1 2 0 0

0 0 1 2 0

0 0 0 1 2

2

0

0

0

0

0

0

2

1

2

/

/

/

/

Thus, the KCL equations are

3 2 1 2

1 2 1

1

2

2

4

/ /

/

-
-

L
NM

O
QP
L
NM

O
QP
=

-
L
NM

O
QP

V

V v

t

t

Here, V vt2 = . Putting this in the KCL equations and solving we get,

v V Ans= 4

9
.

4.14 For the resistive network, write a cutset schedule and equilibrium equations on voltage basis. Hence

obtain values of branch voltages and branch currents.
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+
–

5 W 10 W

2 W

10 W

5 W 5 W

910 V

Solution The graph of the network is shown in the figure. A suitable tree is shown.

2 3

5
4

1

6

2 3

5
4

1

6

C1

C2

C3

The fundamental cutsets are identified as,

f-cutset-1: [1, 2, 6];

f-cutset-2: [3, 5, 6];

f-cutset-3: [1, 4, 5]

The fundamental cutset matrix is given as,

1 2 3 4 5 6

C1 �1 1 0 0 0 1

Q = C2 0 0 1 0 �1 1

C3 1 0 0 1 �1 0

The node equations are given as,

[Q][Yb][Q
T][Vt] = [Q] ´ {[Yb][VS] � [IS]} = [Q] [Yb][VS]    {since IS = 0 here}

Here,

Q Y Qb
T =

-
-
-

L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

-

- -

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

1 1 0 0 0 1

0 0 1 0 1 1

1 0 0 1 1 0

1 5 0 0 0 0 0

0 1 5 0 0 0 0

0 0 1 10 0 0 0

0 0 0 1 10 0 0

0 0 0 0 1 5 0

0 0 0 0 0 1 2

1 0 1

1 0 0

0 1 0

0 0 1

0 1 1

1 1 0

/

/

/

/

/

/
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=
-L

N

M
M
M

O

Q

P
P
P

0 9 0 5 0 2

0 5 0 8 0 2

0 5 0 2 0 3

. . .

. . .

. . .

Q Y Vb s =
-

-
-

L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

-L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

=
L

N

M
M
M

O

Q

P
P
P

1 1 0 0 0 1

0 0 1 0 1 1

1 0 0 1 1 0

1 5 0 0 0 0 0

0 1 5 0 0 0 0

0 0 1 10 0 0 0

0 0 0 1 10 0 0

0 0 0 0 1 5 0

0 0 0 0 0 1 2

910

0

0

0

0

0

182

0

0

/

/

/

/

/

/

Thus, the KCL equations are

=
-L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M

O

Q

P
P
P
=

L

N

M
M
M

O

Q

P
P
P

0 9 05 0 2

05 08 0 2

05 0 2 0 3

182

0

0

2

3

4

. . .

. . .

. . .

V

V

V

t

t

t

Solving by Cramer�s rule, we get the tree-branch voltages as,

V V V Anst t t2 3 4143 14 3 300= = - = -V V V; . ; .

4.15 Using topological method, obtain node equations and node voltages in s domain for the network

shown in the figure, when

L L H C F G G V t u t i t tg g1 2 5 3 4 1 41 1 1 2 2= = = = = = =, , , ,W b g b g b g b gand d

where, u(t) is unit step function and d (t ) is the unit impulse function.

+
–

L2 G4C5
Vg1( )t ig4 ( )t

3

1 2

L1 L2

L1

Solution The graph of the network is shown in the figure.

(1)

(3)

(4)
(2) (5)

1 2

3
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The incidence matrix is given as,

1 2 3 4 5

1 �1 1 1 0 0

Aa = 2 0 0 �1 1 1

3 1 �1 0 �1 �1

Reduced incidence matrix is,

A =
-

-
L
N
M

O
Q
P

1 1 1 0 0

0 0 1 1 1

Branch admittance matrix is,

Y

s

s

s

b =

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0

0 0 0 0 1

/

/

\ A Y

s

s

s

s s

s s
b =

-
-

L

N
M

O

Q
P

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

=
-

-
L

N
M

O

Q
P

1 1 1 0 0

0 0 1 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0

0 0 0 0 1

1 1 1 0 0

0 0 1 1

/

/
/ /

/

\ AY A
s s

s s

s s

s s s
b

T =
-

-
L

N
M

O

Q
P

-

-

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

=
+ -

- + +
L

N
M

O

Q
P

1 1 1 0 0

0 0 1 1

1 0

1 0

1 1

0 1

0 1

2 1 1

1 1 1

/ /

/

/ /

/ /

b g
b g

Now,

AY V A I
s s

s s

s

s
b s s- =

-
-

L
NM

O
QP

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

-
-

-
L
NM

O
QP

-

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

=
L
N
M

O
Q
P

1 1 1 0 0

0 0 1 1

2

0

0

0

0

1 1 1 0 0

0 0 1 1 1

0

0

0

0

2

2

2

2

2/ /

/

/

/

Thus, node equations are,

2 1 1

1 1 1

2

2

1

2

2/ /

/ /

/s s

s s s

V

V

s+ -
- + +

L

N
M

O

Q
P
L
NM

O
QP

=
L
N
M

O
Q
P

b g
b g
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Solving by Cramer�s rule, we get the voltages as,

V
s s

s s s s
1

2

2

2 2 1

1 2 1
=

+ +

+ + +

d i
b g d i

and V
s s

s s s s
2

3 2

2

2 1

1 2 1
=

+ +

+ + +

d i
b g d i

4.16 Determine the currents in all branches of the network shown in the figure using node analysis

method. Use graph theory method.

2 W
+
–

1 W

1 W 2 W

2 V1 A

Solution Here, the 1W resistance in parallel with the 2V voltage source can be ignored. Also, there

is no passive element in parallel with 1A current source. We assume a resistance R in parallel with

1A current source and finally let R ® ¥.  Therefore, the graph of the network is shown in the figure.

2 V1 A
+
–

2 W

2 W

1 W
1 2

R

1 2

(2)
(3)

(1)

(4)

3

The complete incidence matrix is,

Aa = -
- - -

L

N

M
M
M

O

Q

P
P
P

1 1 0 0

1 0 1 1

0 1 1 1

Reduced incidence matrix is,

A =
-
L
N
M

O
Q
P

1 1 0 0

1 0 1 1

Branch admittance matrix is,

Y
R

b =

L

N

M
M
M
M

O

Q

P
P
P
P

1 0 0 0

0 1 0 0

0 0 1 2 0

0 0 0 1 2

/

/

/

\ A Y
R R

b =
-
L

N
M

O

Q
P

L

N

M
M
M
M

O

Q

P
P
P
P

=
-
L

N
M

O

Q
P

1 1 0 0

1 0 1 1

1 0 0 0

0 1 0 0

0 0 1 2 0

0 0 0 1 2

1 1 0 0

1 0 1 2 1 2

/

/

/

/

/ /
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\ AY A
R R

b
T =

-
L

N
M

O

Q
P

-L

N

M
M
M
M

O

Q

P
P
P
P

=
+ -
-

L

N
M

O

Q
P

1 1 0 0

1 0 1 2 1 2

1 1

1 0

0 1

0 1

1 1 1

1 2

/

/ /

/b g

Now,

AY V A I
R

b s s- =
-
L

N
M

O

Q
P

L

N

M
M
M
M

O

Q

P
P
P
P

-
-
L

N
M

O

Q
P
-
L

N

M
M
M
M

O

Q

P
P
P
P

=
L

N
M
O

Q
P -

-L

N
M

O

Q
P =

L

N
M
O

Q
P

1 1 0 0

1 0 1 2 1 2

0

0

0

2

1 1 0 0

1 0 1 1

0

1

0

0

0

1

1

0

1

1

/

/ /

Thus, node equations are,

1 1 1

1 2

1

1

1

2

+ -
-

L
N
M

O
Q
P
L
NM

O
QP

=
L
NM

O
QP

/R V

V

b g

With R ® ¥, the equations become

V V

V V
1 2

1 2

1

2 1

- =
- + =

Solving equations, we get,

V V1 23 2= =V V,

Hence, the currents in different branches are shown in the figure.

2 W
+
–

1 W

1 W 2 W

2 V1 A

V1 V2

1 A
0 A

2 A
1 A

2 A

4.17 Consider the network shown in the figure using loop method of analysis, determine currents in all

the branches, indicating their directions. Use graph theory method.

+
–

+
–

+
–

2 W1 W

1 W

4 V 3 V

3 i2

i2
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Solution

+
–

+
–

+
–

2 W1 W

1 W

4 V 3 V

3 i2

i2

i2i1

The graph of the network is shown below. Also, the tree is selected as shown.

1

3

2 1

3

2

For the selected tree, the tie-set matrix is given as,

Ba =
-L

N
M

O
Q
P

1 0 1

0 1 1

The branch impedance matrix is,

Zb =
L

N

M
M
M

O

Q

P
P
P

1 0 0

0 2 0

0 0 1

\ B Za b =
-L

N
M

O
Q
P
L

N

M
M
M

O

Q

P
P
P
=

-L
N
M

O
Q
P

1 0 1

0 1 1

1 0 0

0 2 0

0 0 1

1 0 1

0 2 1

\ B Z Ba b a

T =
-L

N
M

O
Q
P

-

L

N

M
M
M

O

Q

P
P
P
=

-
-

L
N
M

O
Q
P

1 0 1

0 2 1

1 0

0 1

1 1

2 1

1 3

Now,

- = -
-L

N
M

O
Q
P

-

-

L

N

M
M
M

O

Q

P
P
P
=

-
- +

L
N
M

O
Q
PB V

i

i

i
a s

1 0 1

0 1 1

4

3

3

4 3

3 3
2

2

2
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So, the loop equations become,

2 1

1 3

4 3

3 3

1

2

2

2

-
-

L
N
M

O
Q
P
L
N
M

O
Q
P =

-
- +

L
N
M

O
Q
P

i

i

i

i
+
–

+
–

2 W

+
–

3 A 1 A

3 V4 V

1 W 4 A

3 i2

1 W

These equations reduce to,

2 4 3 2

3 3 3 3
1 2 2 1 2

1 2 2 1

i i i i i

i i i i A

- = - Þ + =
- + = - + Þ =

\ i A2 1= -
Thus, the branch currents are shown with their directions.

4.18 For the circuit shown in the figure construct a tree in which 10W and 20W are in tree branches. Using

node analysis, solve for V1 and V2.

+
–

+
–

5 W 10 W 20 W

2 A

50 W 20 V80 V

+ – + –V1 V2

Solution Here, we have on e current source without parallel resistance and one voltage source

without series resistance. Therefore, we connect a parallel resistance R1 in parallel with the 2A

current source and a series resistance R2 in series with the 20V voltage source. Finally, we will let

R1 ® ¥ and R2 ® 0.

+
–

5 W

+
–

10 W 20 W

50 W

20 V

80 V

R1

V1 V2

A B C

+ – + –

R2

2 A

Now, we construct the graph of the network as shown below. A tree, in which 10 W and 20 W are in

tree branches, is selected.
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(2) (3)

(4)
(5)

(1)

(6)

VA VC

VB

(2) (3)

(4)
(5)

(1)

(6)

VA VC

VB

The complete incidence matrix is,

A
a
=

-
-

- - -
-

L

N

M
M
M
M

O

Q

P
P
P
P

1 1 0 0 0 1

0 1 1 1 0 0

0 0 1 0 1 1

1 0 0 1 1 0

Reduced incidence matrix is,

A =
-

-
- - -

L

N

M
M
M

O

Q

P
P
P

1 1 0 0 0 1

0 1 1 1 0 0

0 0 1 0 1 1

Branch admittance matrix is,

Y

R

R

b =

L

N

M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P

0 2 0 0 0 0 0

0 01 0 0 0 0

0 0 0 05 0 0 0

0 0 0 0 02 0 0

0 0 0 0
1

0

0 0 0 0 0
1

2

1

.

.

.

.

\

2

1

1

2 1

0.2 0 0 0 0 0

0 0.1 0 0 0 0

0 0 0.05 0 0 0
1 1 0 0 0 1

0 0 0 0.02 0 0
0 1 1 1 0 0

1
0 0 1 0 1 1 0 0 0 0 0

1
0 0 0 0 0

1
0.2 0.1 0 0 0

0 0.1 0.05 0.02 0 0

1 1
0 0 0.05 0

bAY

R

R

R

R R

é ù
ê ú
ê ú
ê ú-é ù ê úê ú ê ú= -ê ú ê ú

ê ú- - - ê úë û
ê ú
ê ú
ê ú
ë û

é ù-ê ú
ê ú

= -ê ú
ê ú

- - -ê ú
ë û
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\ AY A
R

R R

b
T =

-

-

- - -

L

N

M
M
M
M

O

Q

P
P
P
P

-
-

-

-
-

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

0 2 0 1 0 0 0
1

0 0 1 0 05 0 02 0 0

0 0 0 05 0
1 1

1 0 0

1 1 0

0 1 1

0 1 0

0 0 1

1 0 1

1

2 1

. .

. . .

.

=

+F
H

I
K - -

- -

- - + +F
H

I
K

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

0 3
1

0 1
1

0 1 0 17 0 05

1
0 05 0 05

1 1

1 1

1 2 1

. .

. . .

. .

R R

R R R

Now,

AY V A I
R

R R

b s s- =

-

-

- - -

L

N

M
M
M
M

O

Q

P
P
P
P

-

-

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

0 2 0 1 0 0 0
1

0 0 1 0 05 0 02 0 0

0 0 0 05 0
1 1

80

0

0

0

20

0

1

2 1

. .

. . .

.

 -
-

-
- - -

L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

1 1 0 0 0 1

0 1 1 1 0 0

0 0 1 0 1 1

0

0

0

0

0

2

=

+
F
HG

I
KJ

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

14

0

20
2

2R

Thus, node equations are,

0 3
1

01
1

01 017 0 05

1
0 05 0 05

1 1

14

0

20
2

1 1

1 2 1 2

. .

. . .

. .

+
F
HG

I
KJ

- -

- -

- - + +
F
HG

I
KJ

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

L

N

M
M
M

O

Q

P
P
P
=

+
F
HG

I
KJ

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

R R

R R R

V

V

V
R

A

B

C

With R1 ® ¥, the equations become

0 3 01 14

01 017 0 05 0

0 05 0 05
1 20

2
2 2

. .

. . .

. .

V V

V V V

V
R

V
R

A B

A B C

B C

- =
- + - =

- + +F
HG

I
KJ

= +F
HG

I
KJ
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Solving equations, we get,

V
R R

R

R R R

R R R
A =

-
-

+
F
HG

I
KJ

- +
F
HG

I
KJ

-
- -

- +
F
HG

I
KJ

=
+ - + +

+ - - +

14 01 0

0 017 0 05

20
2 0 05 0 05

1

0 3 01 0

01 017 0 05

0 0 05 0 05
1

14 017 0 05 1 0 0025 0 005 20 2

0 3 017 0 05 1 0 0025 0 01 0 05 1

2 2

2

2 2 2

2 2 2

.

. .

. .

. .

. . .

. .

. . . .

. . . . . .

b g b g

b g b g

With R2 = 0,

VA = =2 48

0 041
60 49

.

.
. V

Similarly, with R2 = 0, we get,

V

V
B

C

=
=

4147

20

. V

V

\

and

V V V Ans

V V V Ans

A B

B C

1

2

60 49 4147 19 02

41420 2147

= - = - =
= - = =
b g b g
b g b g

. . . . .

. . . .

V

V

4.19 In the following circuit, determine the voltages V2 and V3 using cutset analysis. Select the circuit

elements (1), (2) and (3) in the tree.

2 c

2 c

1 c

1 c

(5)

(3)

(6)(2)

(4)

(1)

8 V V3

V2

+

–

+ –
1 A

Solution The graph and tree are shown in the figure. Hence,

there is no series impedance with voltage source and parallel

admittance with current source. We consider two resistances

R1 and R2 in series with the voltage source and in parallel with

the current source, respectively. Finally, we will let R1 ® 0,

R2 ® µ.

Three fundamental cutsets are:

f-cutset-1: [1, 4, 5, 6];

f-cutset-2: [2, 4, 6];

f-cutset-3: [3, 5, 6]

(2)

(6)

(4)

(1)

C3

(3)

C2

C1

(5)
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The fundamental cutset matrix is given as,

1 2 3 4 5 6

C1 1 0 0 �1 �1 1

Q = C2 0 1 0 1 0 �1

C3 0 0 1 0 1 1

The node equations are given as,

[Q][Yb][Q
T][Vt] = [Q] ´ {[Yb][VS] � [IS]}

Here,

Q Y Q

R

R

R R R R

R

b
T =

- -
-

L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

-
-

-

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

=
+ + - + - +
- + -

1 0 0 1 1 1

0 1 0 1 0 1

0 0 1 0 1 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 1

1 0 1

0 1 0

0 0 1

1 1 0

1 0 1

1 1 1

4 1 1 2 1 2 1

2 1 3

1

2

1 2 2 2

2

/

/

/ / / /

/

b g b g b g
b g +

- + +

L

N

M
M
M

O

Q

P
P
P

1 1

2 1 1 3 1

2 2

2 2 2

/ /

/ / /

R R

R R R

b g
b g b g

Q Y V

R

R

R

b s =
- -

-
L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

-L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

=
-L

N

M
M
M

O

Q

P
P
P

1 0 0 1 1 1

0 1 0 1 0 1

0 0 1 0 1 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 1

8

0

0

0

0

0

8

0

0

1

2

1

/

/

/

- = -
- -

-
L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

=
-L

N

M
M
M

O

Q

P
P
P

Q I s

1 0 0 1 1 1

0 1 0 1 0 1

0 0 1 0 1 1

0

0

0

0

0

1

1

1

1

Thus, the KCL equations are

=
+ + + +

+ +
+ +

L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M

O

Q

P
P
P
=

- +L

N
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P
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4 1 1 2 1 2 1

2 1 3 1 1

2 1 1 3 1

8 1

1

1

1 2 2 2

2 2 2

2 2 2

1
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3

1/ / � / � /
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R R R
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V
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When R1 ® 0, R2 ® µ, the equations reduce to the form as given below.

Vt1 8=- volts

- - =
- + =

2 3 1

2 3 1
1 2

1 3

V V

V V
t t

t t

Solving the last two equations, V Vt t2 35 5= = -volts volts;

Therefore,

V V Ans

V V Ans
t

t

2 2

3 3

5

5

= =
= - =

.

.

4.20 For the network shown in the figure, write the tie-set matrix and determine the loop currents and

branch currents.

5 W

5 W

10 W 5 W

10 W

5 W

10 V

Solution The graph and a suitable tree for the network are shown in the figure.

The tie-set matrix is given as,

Ba =
-

-
-

L

N

M
M
M

O

Q

P
P
P

1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

A

(1) (2)

(3)

(4) (6)

(5)

C

DB

The branch impedance matrix is given as,

Zb =

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

5 0 0 0 0 0

0 10 0 0 0 0

0 0 5 0 0 0

0 0 0 10 0 0

0 0 0 0 5 0

0 0 0 0 0 5

\ B Z
a b =

-
-

-

L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

=
-

-
-

L

N

M
M
M

O

Q

P
P
P

1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

5 0 0 0 0 0

0 10 0 0 0 0

0 0 5 0 0 0

0 0 0 10 0 0

0 0 0 0 5 0

0 0 0 0 0 5

5 0 0 10 5 0

0 10 0 0 5 5

0 0 5 10 0 5
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\ B Z B
a b a

T =
-

-
-

L

N

M
M
M

O

Q
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P
P -

-
-

L

N

M
M
M
M
M
M
M
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O

Q

P
P
P
P
P
P
P
P

=
- -

- -
- -

L

N

M
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P
P
P

5 0 0 10 5 0

0 10 0 0 5 5

0 0 5 10 0 5

1 0 0

0 1 0

0 0 1
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1 1 0

0 1 1

20 5 10

5 20 5

10 5 15
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-
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L
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P
P
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B V
a s

1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

10

0

0

0

0

0

10

0

0

Thus, the loop equations are given as,

20 5 10

5 20 5

10 5 15

10

0

0

1

2

3

- -
- -
- -

L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M

O

Q

P
P
P
=

L

N

M
M
M

O

Q

P
P
P

I

I

I

Solving by Cramer�s rule, we get the loop currents as,

I1

10 5 10

0 20 5

0 5 15

20 5 10

5 20 5

10 5 15

2750

2625
1 047=

- -
-

-
- -

- -
- -

= = . A

I2

20 10 10

5 0 5

10 0 15

20 5 10

5 20 5

10 5 15

1250

2625
0 476=

-
- -
-

- -
- -
- -

= = . A

I3

20 5 10

5 20 0

10 5 0

20 5 10

5 20 5

10 5 15

2250

2625
0 857=

-
-
- -

- -
- -
- -

= = . A
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Also, the branch currents are given as, I B Ib a

T
L=

\

I

I

I

I

I

I

I

I

I

b

b

b

b

b

b
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\ = - =
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\ = - + =
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|

W
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I

I

I

Ans

b

b

b

4

5

6

1047 0857 019

1047 0 476 0571

0 476 0857 0 381

. . .

. . .

. . .

.

b g
b g
b g

A

A

A

MULTIPLE-CHOICE QUESTIONS

4.1 The number of links for a graph having n nodes and b branches are

(a) b � n + 1 (b) n � b + 1 (c) b + n � 1 (d) b + n

4.2 The tree branches of a graph are called

(a) chords (b)  links (c) twigs (d) co-tree

4.3 The tie-set matrix gives the relation between

(a) branch currents and link currents. (b) branch voltages and link currents.

(c) branch currents and link voltages. (d) none of these.

4.4 The graph of a network has six branches with three tree branches. The minimum number of equations

required for the solution of the network is

(a) 2 (b) 3 (c) 4 (d) 5

4.5 For a connected planar graph of v vertices and e edges, the number of meshes is

(a) (e � v + 1) (b) (e + v + 1) (c)  (e + v �1)

4.6 The number of chords of a tree of a connected graph G of v vertices and e edges is

(a) (v � 1) (b) (e � v + 1) (c) (e � v � 1)

4.7 The table meant for the oriented graph represents

Link or Loop Current ¬ Branch ®
1 2 3

i1 +1 � 1 0

i2 0 +1 +1

(a) tie-set matrix (b) cut-set matrix (c) incidence matrix (d) none of the above.
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4.8 The reduced incidence matrix of a circuit is given by

1 2 3 4 5 6

1 1 1 1 0 0

0 1 0 0 1 1

0 0 1 0 1 0

i

a

A b

c

- - -é ù
ê ú= -ê ú
ê úë û

The set of branches forming a tree are

(a) 1, 2 and 3 (b) 2, 3 and 5 (c) 1, 2 and 4 (d) 1, 2 and 6.

4.9 Relative to a given fixed tree of a network

1. link currents form an independent set.

2. branch currents form an independent set.

3. link voltages form an independent set.

4. branch voltages form an independent set.

Of these statements

(a) 1, 2, 3 and 4 are correct. (b) 1, 2 and 3 are correct.

(c) 2, 3 and 4 are correct (d) 1, 3 and 4 are correct

4.10 For a given network the incidence matrix is given as

1 2 3 4 5 6 7

1 0 0 1 0 1 1

1 1 1 0 0 0 0

0 1 0 1 1 0 0

-é ù
ê ú- -ê ú
ê ú-ë û

The series branches in the graph are

(a) 3 and 4 (b) 6 and 7 (c) 2 and 3 (d) none of the above.

4.11 For a given network the incidence matrix is given as

1 2 3 4 5 6 7

1 0 0 1 0 1 1

1 1 1 0 0 0 0

0 1 0 1 1 0 0

-é ù
ê ú- -ê ú
ê ú-ë û

The parallel branches in the graph are

(a) 1 and 2 (b) 2 and 3 (c) 6 and 7 (d) none of the above.

4.12 For a given network the incidence matrix is given as

1 2 3 4 5 6

1 0 0 1 1 0

0 1 0 1 1 1

0 0 1 0 0 1

-é ù
ê ú- -ê ú
ê úë û

The series branches in the graph are

(a) 3 and 4 (b) 3 and 5 (c) 3 and 6 (d) none of the above.
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4.13 For a given network the incidence matrix is given as

1 2 3 4 5 6

1 0 0 1 1 0

0 1 0 1 1 1

0 0 1 0 0 1

-é ù
ê ú- -ê ú
ê úë û

The parallel branches in the graph are

(a) 3 and 5 (b) 4 and 5 (c) 3 and 6 (d) none of the above.

4.14 Which one of the following represents the total number of trees in the graph given in the figure?

(a) 4 (b) 5 (c) 6 (d) 8

4.15 In the graph and the tree shown in the given figure, the fundamental cut-set for the branch 2 is

(a) 2, 1, 5 (b) 2, 6, 7, 8 (c) 2, 1, 3, 4, 5 (d) 2, 3, 4

4.16 In the graph shown in the figure, one possible tree is formed by the branches 4, 5, 6, 7. Then one

possible fundamental cut set is

(a) 1, 2, 3, 8 (b) 1, 2, 5, 6 (c) 1, 5, 6, 8 (d) 1, 2, 3, 7, 8

4.17 Which one of the following statements is correct?

A tree in a network is a connected graph containing

(a) all the nodes only

(b) all the branches only
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(c) all the branches and nodes

(d) all the nodes but no close path

4.18 1 2 3 4 5 6

1 1 1 1 0 0

0 1 0 0 1 1

0 0 1 0 1 0

A =
- - -

-
L

N

M
M
M

O

Q

P
P
P

For the reduced incidence matrix given, which is the set of branches forming a tree?

(a) 1, 2, 3 (b) 2, 4, 6 (c) 2, 3, 5 (d) 1, 4, 6

4.19 The number of chords in the graph of the given circuit will be

+
–

(a) 3 (b) 4 (c) 5 (d) 6

4.20 Consider the network graph shown in the figure. Which one of the following is NOT a �tree� of this

graph?

(a) (b)

(c) (d)

4.21 In the following graph, the number of trees (P) and the number of cut-sets (Q) are

(1)

(2) (3)

(4)

(a) P = 2, Q = 2 (b) P = 2, Q = 6 (c) P = 4, Q = 6 (d) P = 4, Q = 10
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EXERCISES

4.1 For the network shown in the figure, draw the graph and a possible tree. Show the links and write the

tie-set matrix. Write the equations of the branch currents in terms of loop currents.

2 W 3 W

6 W1 W5 W

4 W

4.2 Find out the currents through and voltage across all branches of the network shown in the figure

with the help of its tie-set schedule.

2 W

6 W

4 W6 W

2 W

4 W

8 V

6 V12 V

4.3 Find a tree from the graph of the network shown in the figure. Make the tie-set matrix and write the

equations containing branch currents and loop currents. All the values are in ohms.

A

B C
9

6

2
3

1

7 8

4

D

5

4.4 Draw the graph of the circuit shown in the figure and select a suitable tree to write tie-set matrix.

Then find the three loop currents.

1 W 1 W

1 W 2 W 2 W5 V

+

–

i i i1 2 33 1 05= = =A A A, , .

4.5 For the given network of the figure, draw the graph and a tree. Write the cutsets and the cutset

matrix of the tree. Write the equations of link branch voltages in terms of tree branch voltages.
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A

E F

B CD

4.6 For the given network of the figure, draw the graph and a tree. Write the cutsets and the cutset

matrix of the tree. Write the equations of link branch voltages in terms of tree branch voltages. All

the values are in ohms.

A

B C
3

2

1
1

1

3 3

2

2

4.7 The linear oriented graph is given in the figure Considering a tree, mark all the fundamental cutsets

and form the cutset matrix.

9

1
3

2

4

6

5

7

8

4.8 For the network shown, determine

+
–

15 W

100 V

8 W

V
x

+ –

4 W
Vx

14

(a) tie-set matrix,

(b) loop impedance matrix, and

(c) loop currents.

[7A, 4A]
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4.9 Select the (i) fundamental loops, and (ii) fundamental cutsets corresponding to a tree of the network

graph which is shown by solid lines in the figure. Hence write the KCL and KVL equations for the

network in matrix form.

1 2

65

7

4
3

4.10 Draw the graph of the network. Select a tree with tree branches of elements (1) and (2) and write the

equilibrium equation taking tree branch voltages as variables.

4 W

5 W
2 W

3 W

2 A

(2)

(3)

(1)

(4)

4.11 The incidence matrix of a network graph is given below. Draw the oriented graph.

A =
-

- -
-

L

N

M
M
M
M

O

Q

P
P
P
P

1 0 0 0 1 0 0 1

0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 1

0 0 0 1 0 0 1 0

SHORT-ANSWER TYPE QUESTIONS

4.1 Give the topological description of networks.

4.2 (a) Define the following terms:

(i) Graph of a network (iv) Planar and non-planar graph

(ii) Oriented graph (v) Subgraph

(iii) Rank of graph (vi) Path

(b) State the advantages offered by the graph theory as applied to electric circuit problems.

4.3 What is meant by graph? How does a graph help in circuit analysis?

4.4 (a) Define a tree of a graph of a network. Mention some basic properties of a �Tree�. How can you

calculate the number of possible trees of a given graph?

(b) Define the followings

(i) Twigs. (ii) Cotree (iii) Links or chords
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4.5 Show that the number of links for a graph having n nodes and b branches is b � n + 1.

4.6 Show that for a network graph with P separate parts, n nodes and b branches, the number of chords

C is given as, C = b � n + P.

4.7 Explain with illustrative examples the meaning of the following terms:

(a) Incidence matrix

(b) Tie-set matrix

(c) Cut-set matrix

4.8 (a) Explain what is meant by incidence matrix of a graph and indicate how the values of the inci-

dence matrix elements are obtained.

(b) List the properties of an incidence matrix.

(c) How can you determine the number of possible trees of a graph with this matrix?

4.9 Show that the determinant of the complete incidence matrix of a closed loop is zero.

4.10 (a) Explain the term �tie-set� and �tie-set matrix� of a network with an illustrative example.

(b) Show that the matrix equation,

I B Ib
T

L=
where, B is the tie-set matrix and Ib and IL represent branch current and loop current matrix

respectively.

(c) Write the tie-set schedule and formulate the equilibrium equation on loop current basis.

4.11 (a) Define cut-set in a network graph. How can you find out a fundamental cut-set? Mention some

properties of a cut-set.

(b) Define cut-set matrix with an illustrative example and show that the matrix equation QIb = 0 ,

where Q is the cut-set matrix and Ib represents the branch current matrix of the graph.

(c) Briefly discuss the relation between branch voltage matrix and node voltage matrix in terms of

cut-sets.

4.12 Prove that in a linear graph, every cut-set has an even number of branches in common with every

loop.

4.13 (a) Write notes on network equilibrium equation.

(b) Establish that the independent loop equations of a network can be formulated from the tie-set

matrix of its graph, with an illustrative example.

(c) Establish the formulation of node equations of a network from the cut-set matrix.

4.14 Using the topological properties of a network graph, describe the step-by-step procedure of analysing

a network by node voltage method.

4.15 Using the topological properties of a network graph, describe the step-by-step procedure of analysing

a network by loop current method.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

4.1 (a) 4.2 (c) 4.3 (a) 4.4 (b) 4.5 (a) 4.6 (b) 4.7 (a)

4.8 (a) 4.9 (b) 4.10 (d) 4.11 (c) 4.12 (c) 4.13 (b) 4.14 (d)

4.15 (b) 4.16 (d) 4.17 (d) 4.18 (a) 4.19 (a) 4.20 (b) 4.21 (c)



CHAPTER

5
Network Theorems

5.1 INTRODUCTION

A theorem is a relatively simple rule used to solve a problem, derived from a more intensive analysis

using fundamental rules of mathematics. At least hypothetically, any problem in mathematics can be

solved just by using the simple rules of arithmetic, but human beings are not as consistent or as fast

as a digital computer. We need some shortcut methods in order to avoid procedural errors.

In electric network analysis, the fundamental rules are Ohm�s Law and Kirchhoff�s Laws. While

these humble laws may be applied to analyse any circuit configuration, for complex circuits, it is

sometimes necessary to simplify the network to find current or voltage in a particular branch without

solving the entire circuit. For this purpose, there are some �shortcut� methods of analysis, known as

Network Theorem. As with any theorem of geometry or algebra, the network theorems are also

derived from fundamental rules.

5.2 NETWORK THEOREMS

In this chapter, we will discuss the following network theorems:

1. Substitution Theorem

2. Superposition Theorem

3. Reciprocity Theorem

4. Thevenin�s Theorem

5. Norton�s Theorem

6. Maximum Power Transfer Theorem

7. Millman�s Theorem

5.2.1 Superposition Theorem

Statement This theorem states that in a linear bilateral network, the current at any point (or

voltage between any two points) due to the simultaneous action of a number of independent sources
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in the network is equal to the summation of the component currents (or voltages). A component

current (or voltage) is defined as that due to one source acting alone in the network with all the

remaining sources removed.

Proof

Figure 5.1 Proof of Superposition Theorem

Using KVL for the above network, as shown in Fig. 5.1(a)

1 1 1 3 2 3( )E I Z Z I Z= + +

2 1 3 2 2 3( )E I Z I Z Z= + +

Solving above two equations,

2 3 3
1 1 2

1 2 2 3 3 1 1 2 2 3 3 1

Z Z Z
I E E

Z Z Z Z Z Z Z Z Z Z Z Z

+
= -

+ + + +

I
Z

Z Z Z Z Z Z
E

Z Z

Z Z Z Z Z Z
E2

3

1 2 2 3 3 1

1
1 3

1 2 2 3 3 1

2=
-

+ +
+

+

+ +

Making E2 inoperative then the circuit diagram becomes as shown in Fig. 5.1(b)

Then the KVL equations are,

1 1 1 3 2 3( )E I Z Z I Z¢ ¢= + +

1 3 2 2 30 ( )I Z I Z Z¢ ¢= + +
Solving above two equations,

2 3
1 1

1 2 2 3 3 1

Z Z
I E

Z Z Z Z Z Z

+
¢=

+ +

3
2 1

1 2 2 3 3 1

Z
I E

Z Z Z Z Z Z

-
¢ =

+ +

Making E1 inoperative then the circuit diagram becomes as shown in Fig. 5.1(c)

Then the KVL equations are,

1 1 3 2 30 ( )I Z Z I Z¢¢ ¢¢= + +

2 1 3 2 2 3( )E I Z I Z Z¢¢ ¢¢= + +

Solving above two equations,

3
1 2

1 2 2 3 3 1

Z
I E

Z Z Z Z Z Z

-
¢¢=

+ +
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2 3
2 2

1 2 2 3 3 1

Z Z
I E

Z Z Z Z Z Z

+
¢¢ =

+ +

So, 1 1 1I I I¢ ¢¢= + , 2 2 2I I I¢ ¢¢= + (Proved)

If an excitation e1(t) alone gives a response r1(t), and an excitation e2(t) alone gives a response r2(t),

then, by superposition theorem, the excitation e1(t) and the excitation e2(t) together would give a

response r(t) = r1(t) + r2(t).

The superposition theorem can even be stated in a more general manner, where the superposition

occurs with scaling.

Thus an excitation of k1 e1(t) and an excitation of k2 e2(t) occurring together would give a

response of k1 r1(t) + k2 r2(t).

Steps to Apply Superposition Theorem

1. Only one source is considered to act alone. The other sources are replaced by their internal

impedances, i.e., ideal independent voltage sources are short-circuited and ideal independent

current sources are open-circuited. All dependent sources will act normally.

2. Using any suitable network analysis technique, the current through or the voltage across the

desired element is found out due to the source under consideration.

3. The above steps are repeated considering all the independent sources one by one.

4. The total response (current or voltage) is obtained by taking the algebraic sum of all the

responses.

Points to be noted

(i) This theorem is valid for all types of linear circuits having time-varying or time-invariant

elements.

(ii) This theorem is used to find the current or voltage in a branch when the circuit has a large

number of independent sources.

(iii) This theorem is not valid for power relationship.

(iv) This theorem is not applicable to circuits containing only dependent sources. With dependent

sources, superposition can be used only when the controlling functions are external to the

network containing sources, so that the controls are unchanged when the sources act at a

time.

(v) This theorem is not applicable for circuits with non-linear elements.

(vi) This theorem is not useful for circuit with only one independent source.

5.2.2 Thevenin�s Theorem

Statement A linear active bilateral network can be replaced at any two of its terminals, by an

equivalent voltage source (Thevenin�s Voltage source), Voc, in series with an equivalent Impedance

(Thevenin�s impedance), Zth.

Here, Voc is the open circuit voltage between the two terminals under the action of all sources and

initial conditions, and Zth is the impedance obtained across the terminals with all sources removed by

their internal impedance and initial conditions reduced to zero.

Proof We consider a linear active circuit of Fig. 5.2(a). An external current source is applied

through the terminals a�b where we have access to the circuit.
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Figure 5.2 Illustration of Thevenin�s Theorem

(a) A current-driven circuit (b) Thevenin�s Equivalent Circuit

Figure 5.3

We have to prove that the v�i relation at terminals a�b of Fig. 5.3(a) is identical with that of the

Thevenin�s Equivalent circuit of Fig. 5.3(b).

For simplicity, we assume that the circuit contains two independent voltage sources Vs1 and Vs2

and two independent current sources Is1 and Is2.

Considering the contribution due to each independent source including the external one, the voltage

at a�b, V, is, by Superposition theorem,

V = K0 I + K1 Vs1 + K2 Vs2 + K3 Is1 + K4 Is2

where, K0, K1, K2, K3, K4 are constants.

or V = K0 I + P0 (5.1)

where, P0 = K1 Vs1 + K2 Vs2 + K3 Is1 + K4 Is2 = Total Contribution due to internal independent

sources

To evaluate the constants K0 and P0 of equation (5.1), two conditions are to be noted.

(i) When the terminals a and b are open-circuited

I = 0, and V = Voc = Vth

From equation (5.1), Vth = Voc = P0 Þ th 0=V P

(ii) When all the internal sources are turned off

P0 = 0 and the equivalent impedance is Zth.

From equation (5.1), V = K0I

or 0 th= =V
K Z

I
 Þ 0 th=K Z

Thus, substituting the values of K0 and P0, the v�i relation becomes,

th th= +V Z I V

This represents the v�i relationship of Fig. 5.5(b). So, Thevenin�s theorem is proved.
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Points to be noted

(i) This theorem is very useful for replacement of a large portion of a network with a small

equivalent circuit. This is useful for calculating the load resistance in impedance-matching

problems.

(ii) This theorem is applicable to any linear, bilateral, active network.

(iii) To apply this theorem, the load branch should not be magnetically coupled to any other branch

in the circuit and the load should not contain any dependent source.

(iv) This theorem is inapplicable to non-linear and unilateral networks.

(v) This theorem is inapplicable for active load.

5.2.3 Norton�s Theorem

Statement A linear active bilateral network can be replaced at any two of its terminals, by an

equivalent current source (Norton�s current source), Isc, in parallel with an equivalent admittance

(Norton�s admittance), YN.

Figure 5.4 Illustration of Norton�s Theorem

Here, Isc is the short circuit current flowing from one terminal to the other under the action of all

sources and initial conditions, and YN is the admittance obtained across the terminals with all sources

removed by their internal impedance and initial conditions reduced to zero.

Proof We consider a linear active circuit of Fig. 5.5(a). An external voltage source is applied

through the terminals a�b where we have access to the circuit.

Figure 5.5 (a) A Voltage-driven Circuit (b) Norton�s Equivalent Circuit

We have to prove that the v�i relation at terminals a-b of Fig. 5.5(a) is identical with that of the

Norton�s Equivalent circuit of Fig. 5.5(b).

For simplicity, we assume that the circuit contains two independent voltage sources Vs1 and Vs2

and two independent current sources Is1 and Is2.
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Considering the contribution due to each independent source including the external one, the current

entering at a, I, is, by Superposition theorem,

I = K0 V + K1 Vs1 + K2 Vs2 + K3 Is1Is1 + K4 Is2

where, K0, K1, K2, K3, K4 are constants.

or I = K0 V + P0 (5.2)

where, P0 = K1 Vs1 + K2 Vs2 + K3 Is1 + K4 Is2

= Total contribution due to internal independent sources

To evaluate the constants K0 and P0 of equation (5.2), two conditions are:

(iii) When the terminals a and b are short-circuited

V = 0, and I = �Isc = IN

From equation (5.2), �Isc = P0 Þ sc 0= -I P

(iv) When all the internal sources are turned off

P0 = 0 and the equivalent admittance is YN.

From equation (5.2), I = K0V

or 0 N

I
K Y

V
= = Þ 0 NK Y=

Thus, substituting the values of K0 and P0, the v�i relation becomes,

�N NI VY I=

This represents the v�i relationship of Fig. 5.5(b). So, Norton�s theorem is proved.

Points to be noted

(i) This theorem is very useful for replacement of a large portion of a network with a small

equivalent circuit. This is useful for calculating the load resistance in impedance-matching

problems.

(ii) This theorem is applicable to any linear, bilateral, active network.

(iii) To apply this theorem, the load branch should not be magnetically coupled to any other branch

in the circuit and the load should not contain any dependent source.

(iv) This theorem is inapplicable to non-linear and unilateral networks.

(v) This theorem is inapplicable for active load.

Steps for Determination of Thevenin�s/Norton�s Equivalent Circuit

1. The portion of the network across which the Thevenin�s or Norton�s equivalent circuit is to

be found out is removed from the network.

2. (a) The open circuit voltage (Voc or Vth) is calculated keeping all the sources at their normal

values.

(b) The short circuit current (Isc or IN) flowing from one terminal to the other is calculated

keeping all the sources at their normal values.

3. Calculation of Zth or YN .

Case I. When circuit contains only independent sources, the following points are to be noted.

All voltage sources are short-circuited.

All current sources are open-circuited.
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Equivalent impedance or admittance is calculated looking back to the circuit with respect to

the two terminals.

Case II. When circuit contains both dependent and independent sources,the following points

are to be noted.

Open circuit voltage (Voc) is calculated with all sources alive.

Short circuit current (Isc) is calculated with all sources alive.

Thevenin�s impedance is obtained as, Zth = oc

sc

1
=

N

V

I Y

Case III. When circuit contains only dependent sources the following points are to be noted.

In this case, Voc = 0.

We connect a test voltage (or current) source at the terminals a and b and the current

flowing through a�b (voltage drop between the terminals a�b) is calculated.

Thevenin�s impedance is obtained as, Zth = test

test

1
=

N

V

I Y

4. Finally, Thevenin�s equivalent circuit is obtained by placing Voc in series with Zth and Norton�s

equivalent is obtained by placing Isc in parallel with YN.

5.2.4 Maximum Power Transfer Theorem

Statement Maximum power is absorbed by one network from another connected to it at two

terminals, when the impedance of one is the complex conjugate of the other.

This means that for maximum active power to be delivered to the load, load impedance must

correspond to the conjugate of the source impedance (or in the case of direct quantities, be equal to

the source impedance).

The statement and proof of this theorem are discussed for four different cases:

Case I : Purely Resistive Circuit with Variable Load Resistance

Case II : Load Impedance with Variable Resistance and Variable Reactance

Case III : Load Impedance with Variable Resistance and Fixed Reactance

Case IV : Load Impedance with Fixed Ratio, i.e., with Variable Magnitude but Fixed

Angle

Case I. Purely Resistive Circuit with Variable Load Resistance.

In this case, the statement of this theorem is given as, maximum power will be delivered from a

source to a load when the load resistance is equal to the source resistance.

Proof Let V be the voltage source, RS the internal

resistance of the source and RL the load resistance.

\ current,

\ power delivered to the load is,

P I R
V R

R R
L

L

S L

= =

+

2
2

2b g
(5.3)

Figure 5.6(a) Purely resistive circuit with

varible load resistance

RS

RLV
+
–
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For maximum power,

¶
¶

=P

RL

0

Þ V
R R R R R

R R

L S L S L

S L

2

4

2
0

+ - +

+

L

N
M
M

O

Q
P
P

=
b g b g

b g

\ R RS L=
i.e., the load resistance is equal to the source resistance.

Putting R RL S=  in Eq. (5.3), the maximum power transferred will be P
V

R

V

RL L
max

( / )= =
2 2

4

2
 and

thus, the efficiency will be 50%. This case arises in a purely dc circuit.

Case II. Load Impedance with Variable Resistance and Variable Reactance.

In this case, the statement of the theorem is given as, maximum power will be delivered from a

source to a load when the load impedance is the complex conjugate of the source impedance.

Proof Let V be the voltage source, (RS + jXS) the internal impedance of the source and (RL + jXL)

the load impedance.

\ current, I
V

Z Z

V

R R j X XS L S L S L

=
+

=
+ + +b g b g

(5.4)

Power delivered to the load is,

P I R
V R

R R X X
L

L

S L S L

= =

+ + +

2
2

2 2b g b g
(5.5)

where, Z R j XS S S= +  , Z R j XL L L= +

V

( + )R jXss

( + )R jXL L
+

–

Figure 5.6(b) Load Impedance with Variable Resistance and Variable Reactance

For maximum power, 
¶

¶
P

X L

must be zero.

Now,
¶
¶

=
- +

+ + +
=

P

X

V R X X

R R X XL

L L S

L S L S

2
0

2

2 2
2

b g ( )

( ) ( )

From which, X XL S+ = 0  or X XL S= -

i.e., the reactance of the load impedance is of opposite sign to the reactance of the source impedance.

Putting X XL S= -  in equation (5.5) P
V R

R R

L

L S

=
+

2

2( )
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For maximum power,
¶
¶

=
+ - +

+
=

P

R

V R R V R R R

R RL

L S L L S

L S

2 2 2

4

2
0

( ) ( )

( )

or, V R R V RL S L
2 22 0( )+ - =    or  R RL S=

The maximum power transferred will be  P
V
R

V

RL L
max

( / )
= =

2 2

4

2
 and thus, the efficiency will be 50%.

Case III. Load Impedance with Variable Resistance and Fixed Reactance.

Maximum power transfer in this case takes place under certain conditions as obtained below.

Here, the current,

I
V

Z Z

V

R R j X XS L S L S L

=
+

=
+ + +b g b g

(5.6)

Power delivered to the load is,

P I R
V R

R R X X
L

L

S L S L

= =

+ + +

2
2

2 2b g b g
(5.7)

V

( + )R jXss

RL
+

–
jXL

Figure 5.6(c) Load Impedance with Variable Resistance and Fixed Reactance

where, Z R j XS S S= +  , Z R j XL L L= +

For maximum power,

¶
¶

=P

RL

0

V
R R X X R R R

R R X X

S L S L L S L

S L S L

2

2 2

2 2
2

2
0

+ + + - +

+ + +

L

N

M
M
M
M

O

Q

P
P
P
P

=
b g b g

b g b g

( )

Þ R R X XL S S L
2 2 2

= + +b g

Þ R R X XL S S L= + +2 2
b g

Case (a) If the source impedance is purely resistive, i.e., XS = 0, the condition for maximum

power transfer becomes,

R R XL S L= +2 2

Case (b) If the load impedance is purely resistive, i.e., XL = 0, the condition for maximum power

transfer becomes,

R R X ZL S S S= + =
2 2
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i.e., the load resistance is equal to the source impedance.

Case IV. Load Impedance with Fixed Ratio, i.e., with Variable Magnitude but Fixed Angle.

In this case, the statement of the theorem is given as, maximum power is delivered from a source

to a load when the magnitude of the load impedance is equal to the magnitude of the source

impedance.

Proof Let the angle of the load impedance be, f.

\ Z Z j ZL L L= +cos sinf f

\ Power delivered to the load is,

P
V Z

R Z X Z

L

S L S L

=

+ + +

2

2 2

cos

cos sin

f

f fc h c h

For maximum power transfer,

dP

d ZL

= 0

Þ d

d Z

V Z

R Z X ZL

L

S L S L

2

2 2
0

cos

cos sin

f

f f+ + +

L

N

M
M

O

Q

P
P

=

c h c h
Simplifying we get,

Z R X ZL S S S

2 2 2 2
= + =

\ Z ZL S=

This case arises in a transformer where the turns ratio is varied for maximum power transfer.

Points to be noted

(i) It is to be noted that when maximum power is being transferred, only half the applied voltage

is available to the load and the other half drops across the source. Also, under these condi-

tions, half the power supplied is wasted as dissipation in the source.

Thus, the useful maximum power will be less than the theoretical maximum power derived

and will depend on the voltage required to be maintained at the load.

(ii) For circuits having a resistive load being supplied from a source with only an internal

resistance (the case for d.c.), the maximum power will be transferred to the load when the

load resistance is equal to the source resistance.

Concept of Internal Resistance of Voltage and Current Sources A voltage source is

any device or system that produces an electromotive force between its terminals. An example of a

primary source is a common battery. Similarly, a current source is an electrical or electronic device

that delivers electric current. Examples of current sources are a large voltage source in series with a

large resistor (however, this type of current source has very poor efficiency), an active current

source involving transistors, high voltage current source like Van de Graff generator, etc. A current

source is the dual of a voltage source.
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In circuit theory, an ideal voltage source is a circuit element where the voltage across it is

independent of the current through it. It only exists in mathematical models of circuits. The internal

resistance of an ideal voltage source is zero; it is able to supply any amount of current. The current

through an ideal voltage source is completely determined by the external circuit. When connected to

an open circuit, there is zero current and thus zero power. When connected to a load resistance, the

current through the source approaches infinity as the load resistance approaches zero (a short

circuit). Thus, an ideal voltage source can supply unlimited power.

Similarly, an independent current source with zero current is identical to an ideal open circuit.

For this reason, the internal resistance of an ideal current source is infinite. The voltage across an

ideal current source is completely determined by the circuit it is connected to. When connected to a

short circuit, there is zero voltage and thus zero power delivered. When connected to a load

resistance, the voltage across the source approaches infinity as the load resistance approaches infinity

(an open circuit). Thus, an ideal current source can supply unlimited power forever and so represents

an unlimited source of energy. Connecting an ideal open circuit to an ideal non-zero current source is

not valid in circuit analysis as the circuit equation would be paradoxical, e.g., 3 = 0.

However, no real voltage source is ideal; all have a non-zero effective internal resistance, and none

can supply unlimited current. The internal resistance of a real voltage source is effectively modeled

in linear circuit analysis by combining a non-zero resistance in series with an ideal voltage source.

Similarly, no real current source is ideal (no unlimited energy sources exist) and all have a finite

internal resistance (none can supply unlimited voltage). The internal resistance of a physical current

source is effectively modeled in circuit analysis by combining a non-zero resistance in parallel with

an ideal current source.

5.2.5 Millman�s Theorem

Consider a number of admittances Y1, Y2, Y3 �Yp� Yq,�Yn are connected together at a common

point S. If the voltages of the free ends of the admittances with respect to a common reference N are

known to be V1N , V2N , V3N �VpN�VqN ,�VnN , then Millman�s theorem gives the voltage of the

common point S with respect to the reference N, as follows.

Applying Kirchhoff�s Current law at node S,

1

0, ( )
n

p p p pN sN
p

I I Y V V
=

= = -å

or
1

( ) 0
n

p pN sN
p

Y V V
=

- =å

or
1 1

n n

p pN sN p
p p

Y V V Y
= =

=å å

Þ 1

1

n

p pN
p

sN n

p
p

Y V

V

Y

=

=

=
å

å

An extension of the Millman�s theorem is the equivalent generator theorem.

Figure 5.7 Illustration of Millman�s Theorem
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Statement
(I) This theorem states that if several ideal voltage sources (V1, V2, �) in series with impedances

(Z1, Z2,�) are connected in parallel , then the circuit may be replaced by a single ideal voltage

source (V) in series with an impedance (Z) such that

1

1 1

1
and

n

i i
i

n n

i i
i i

VY

V Z

Y Y

=

= =

= =
å

å å

Figure 5.8 Voltage Source Equivalent using Millman�s Theorem

(II) If several ideal current sources (I1, I2,�) in parallel with impedances (Z1, Z2�) are connected

in series, they may be replaced by a single ideal current source (I) in parallel with an

impedance (Z) such that

1

1

/

1/

n

i i
i

n

i
i

I Y

I

Y

=

=

=
å

å
and,

1

1

1/
n

i
i

Y

Y
=

=
å

or,
1

n

i
i

Z Z
=

= å

Figure 5.9 Current Source Equivalent using Millman�s Theorem

Proof

(I) Using Superposition theorem, the short circuit current through A�B considering only one

source acting alone and replacing other sources by their internal impedances, (i.e., short

circuit for ideal voltage sources),

1 1 1scI V Y=
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2 2 2scI V Y=

scn n nI V Y=
Total short circuit current through A�B, Isc = (Isc1 + Isc2 + � + Isc n)

= V1 Y1 + V2 Y2 + � + Vn Yn

1

n

i i
i

VY
=

= å (5.8)

Impedance looking back from A�B with all the sources removed,

1 2

1

1 1

...

=

= =
+ + +

å
n

n
i

i

Z
Y Y Y

Y

(5.9)

Thus, by Thevenin�s theorem, the equivalent voltage is,

1

sc

1

=

=

= × =
å

å

n

i i
i

n

i
i

VY

V I Z

Y

(5.10)

Form equations (5.8), (5.9) and (5.10), Millman�s Theorem is proved.

(II) Using Superposition theorem, the short circuit current through A�B considering only one

source acting alone and replacing other sources by their internal impedances, (i.e., open circuit

for ideal current sources),

1 1 2 2
sc1 sc2 sc

1 1 1

; ;

= = =

= = ¼ =
å å å

n n
nn n n

i i i
i i i

I ZI Z I Z
I I I

Z Z Z

Total short circuit current, Isc = I = (Isc1 + Isc2 + �+ Isc n )

1

1

n

i i
i

n

i
i

I Z

I

Z

=

=

=
å

å
(5.11)

Impedance looking back from A�B with all the sources removed,

1

n

i
i

Z Z
=

= å (5.12)

From equation (5.11) and (5.12), Millman�s theorem is proved.

Points to be noted

(i) This theorem provides the equivalent circuits which are either Thevenin or Norton equivalent

circuits.

(ii) This theorem is applicable only to independent voltage sources with their internal series

impedances connected directly in parallel or independent current sources with their internal

series admittances connected directly in series.
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(iii) This theorem is not applicable to circuits where impedances or dependent sources are present

between the independent sources.

(iv) This theorem is not useful for circuits with less than two independent sources.

SOLVED PROBLEMS

Superposition Theorem

5.1

Find the current I in the circuit shown in the figure. using superposition theorem.

Solution

(i) Voltage Source acting alone (ii) Current Source acting alone

For Figure (i) 
1
A

3
¢ = -I

For Figure (ii) 
1 1

1 A
1 2 3

¢¢ = ´ =
+

I

By superposition, 
1 1

( ) 0
3 3

I I I¢ ¢¢= + = - + = Ans.

5.2

Calculate the voltage V across the resistor R by using superposition theorem.

Solution
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(i) Circuit with current source acting alone (ii) Circuit with voltage source

acting alone

For Figure (i), 
1

j
V

j
¢ =

+

For Figure (ii),current through the resistor 
1

1
I

j
¢¢ =

+

\ 1
1

1
V I

j
¢¢ ¢¢= ´ =

+
So, by superposition theorem

1
( ) 1V

1 1

j
V V V

j j
¢ ¢¢= + = + =

+ +

5.3

Use superposition theorem on the circuit shown in figure to find I.

Solution

(i) Voltage source acting alone (ii) Current source acting alone

For Fig. (i), by KVL, 5 2 2 10 with 2xi vx i v i¢ ¢ ¢ ¢ ¢- + = = -
Þ 7 4 10i i¢ ¢+ =

Þ 10/11Ai¢ =
For Fig (ii), by KCL at node (x)

2
2

= + ¢¢ = -
¢¢

+ ¢¢i i
v

ix
x (i)
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But loop analysis in the left loop gives,

5 3 0xi v¢¢ ¢¢+ =

or
3

5 xi v¢¢ ¢¢= -

From (i), 
3

2
2 5
x

x

v
v

¢¢
¢¢= - -

Þ 20

11xv¢¢ = -

\ ( )3 20 12
A

5 11 11
i¢¢ = - ´ - =

So, by superposition theorem total current

I = 
10 12 2

( ) A
11 11 11

i i
æ ö¢ ¢¢- = - = -ç ÷è ø

5.4 Determine the current in the capacitor branch by superposition theorem.

Solution When the voltage source is acting alone:

Here, the current in the capacitor branch is,

4 0 2
0 A

(3 4) (3 4) 3

Ð °¢ = = Ð °
+ + -

I
j j

(i) When voltage source acting alone (ii) When current source acting alone
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When the current source is acting alone:

Here, the current in the capacitor branch is,

( )
(3 4) 4

2 90 1 A
3(3 4) 3 4

+ æ ö¢¢ = Ð ° ´ = - +ç ÷è ø+ + -
j

I j
j j

\ Total current when both the sources are acting simultaneously, is

2 4 2
( ) 1 1 1.2 123.7 A

3 3 3

æ ö æ ö¢ ¢¢= + = - + = - + = Ð °ç ÷ ç ÷è ø è øI I I j j Ans.

5.5 Find the current i0 using superposition theorem.

(a)

(b)

(c)

Solution

(a) When voltage source is acting alone

The current in this case is, 0

5 1
1 A

4 2 2
i j

j

æ ö¢ = = +ç ÷è ø-

(i) Voltage source acting alone (ii) Current source acting alone
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When current source is acting alone

In this case, the current is, 0

4 8 14
2 0 A

4 2 5 5
i j

j

æ ö¢¢ = Ð ° ´ = +ç ÷è ø-

\ By superposition theorem, total current is,

( )0 0 0

8 1 4
1 2.9 26.56 A

5 2 5
i i i j

æ ö æ ö¢ ¢¢= + = + + + = Ð °ç ÷ ç ÷è ø è ø Ans.

(b) When dc source is acting alone

Equivalent impedance, Z
j

j

j

j
=

´
+

+F
HG

I
KJ

=
+
+

4 4

4 4
2

2 6

1

\ main current, I
Z

j

j

j

j
= =

+
+

=
+

+
8 8 1

2 6

4 1

1 3

b g b g

+
–

2 W4 W

j4 W 8 V

i 0¢
¢

(a)

2 W4 W

j4 W

i 0¢¢

+
–

10 cos 4 (V)t

(b)

(i) dc source acting alone (ii) ac source acting alone

\ the current, ¢ = ´ + =
+
+ ´ + = -F

H
I
Ki I

j

j

j j
j0

4
4 4

4 1

1 3
4

4 4
2
5

6
5

a f
A

When ac source is acting alone

Equivalent impedance, Z
j

j

j

j
= +

´
+

F
HG

I
KJ

=
+
+

4
4 2

2 4

4 6

1 2

\ main current, I
Z

j

j

j

j
=

Ð °
= Ð °

+
+ =

+
+

10 0
10 0

1 2

4 6

10 20

4 6

a f

\ the current, ¢¢ = ´ + =
+
+ ´ + = -F

H
I
Ki I

j

j

j j
j0

2
2 4

10 1 2

4 6
1

1 2
10
13

15
13

a f
A

\ by superposition theorem, total current is,

i i i j Ans0 0 0
2
5

10
13

6
5

15
13

2 63 63 58= + ¢¢ = +F
H

I
K - +F

H
I
K = Ð- °b g . . .A

(c) When the voltage source is acting alone

Equivalent impedance,

4(8 2) 28 22
6

8 2 4

j j j
Z

j j

- +
= + =

+ +
\ main current,

10 30 (4 )

28 22

j
I

j

Ð ° +
=

+
(i) Voltage source acting alone
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(8.66 5) (4 )

28 22

j j

j

+ +
=

+

\ The current, 0

8 2 8.66 5
0.14 8.16 A

8 2 56 44

j j
i I

j j

- +¢ = ´ = = Ð - °
+ +

When current source is acting alone

Since
4 6 12

6 4 3 2

j j
Z

j j

´
= =

+ +

\ The current, 0 2 0
8 2

Z
i

j Z
¢¢ = Ð ° ´

- +

12
0.73 47.49 A

12 11

j

j
= = Ð °

+
\ By superposition theorem, total current is,

( ) ( )0 0 0( ) 0.14 8.16 0.73 47.49 0.631 0.518 0.81 39.38 Ai i i j¢ ¢¢= + = Ð- ° + Ð ° = + = Ð ° Ans.

5.6 Find v0 using Superposition Theorem.

+

–
~

0.2 F30 sin 5 (V)t

8 W

+

–

v0 1 H 20 cos 10 (A)t

Solution When voltage source is acting alone:

Here, 1 and 5 1 5
5 0.2C L

j
X j X j j

-
= = - W = ´ ´ = W

´
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By KCL,

0 0 0
0

30 30
0 4.631 81.12 (V)

8 1 5 8(0.125 0.8)

v v v
v

j j j

¢ ¢ ¢-
¢- + + = Þ = = Ð - °

- +

When current source is acting alone,

0.5 and 10 1 10
10 0.2C L

j
X j X j j

-
= = - W = ´ ´ = W

´
By KCL,

0 0

1 1 1 2
2 1.051 86.24 (V)

8 10 0.5 0.125 1.9
v v

j j j

æ ö¢¢ ¢¢= + + Þ = = Ð- °ç ÷- +è ø

By superposition theorem, when all sources are acting simultaneously, the voltage is,

0 0 0( ) 4.631sin (5 81.12 ) 1.051cos (10 86.24 ) (V)¢ ¢¢= + = - ° + - °v v v t t Ans.

5.7 Find i0 and i from the circuit of the figure using superposition theorem.

+

–

+

–

5 W1 W

1 A 2 i
0

ii
0

6 V

Solution When 6V source is acting alone

The circuit is shown.

+

–

+

–

5 W1 W

2 i
0

i¢i
0

¢

6 V
+

–

5 W1 W

1 A 2 i
0

¢¢

i¢¢i
0

¢¢

(i) 6 V source acting along (ii) 1A source acting alone

Here, ¢ = ¢i i0

By KVL, ¢ + ¢ = Þ ¢ = ¢ = = =6 2 6
6

8

3

4
0 750i i i i A . A

When 1 A source is acting alone

(i) Voltage source acting alone (ii) Current soure acting alone
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By KCL, we get,

1 10 0= ¢¢ - ¢¢ Þ ¢¢ = + ¢¢i i i i

By KVL for the supermesh,

1 5 2 00 0´ ¢¢ + ¢¢ + ¢¢ =i i i

or 3 5 00¢¢+ ¢¢ =i i

or 3 5 1 00 0¢¢ + + ¢¢ =i ib g

or ¢¢ = - = -i0
5
4

125. A

\ ¢¢ = - = -i 1 125 0 25. . A

By superposition theorem, the total currents when both the sources are acting simultaneously, is

given as,

i i i

i i i
Ans

= ¢¢ + ¢¢ = - =
= ¢¢+ ¢¢ = - = -

U
V
|

W|
b g b g
b g b g

0 75 0 25 05

0 75 125 050 0 0

. . .

. . .
.

A

A

5.8 Using superposition theorem, calculate the current through the 2 3+ jb gW impedance branch of the

circuit shown in the figure below.

+

–

5 W

+

–
6 W

2 W 4 W

j5 W 20 V30 V

j3 W

Solution Case I. 30 V source is acting alone

+

–

5 W

6 W

2 W 4 W

j5 W30 V

j3 W

I¢
i¢

Impedance, Z
j j

j j
j= +

+ ´
+ +

= +5
4 4 3 5

4 4 3 5
6 32 2 6

.

.
. .

b g
b g W

\ ¢ = =
+

= -I
Z j

j
30 30

6 32 2 6
4 06 167

. .
. .b gA

¢ = ¢ ´
+ +

= +i I
j

j j
j

5

4 4 3 5
2 39 0 27

.
. .b gA
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Case II. 20 V source is acting alone

+

–

5 W

6 W

2 W 4 W

j5 W

j3 W

I¢¢
i¢¢

20 V

Impedance, Z
j

j
j= +

+ ´
+ +

= +4
4 5 55 6

4 5 55 6
7 31 141

. .

. .
. .

b g
b g W

\ ¢¢ = =
+

= -I
Z j

20 20

7 31 141
2 64 0509

. .
. .b gA

¢¢ = - ¢¢ ´
+ +

= - -i I
j

j
6

4 5 55 6
1064 0848

. .
. .b gA

By superposition theorem, total current flowing through the 2 3+ jb g  impedance is,

i i i j j j A Ans= ¢ + ¢¢ = + - - = + = Ðb g b g b g b g2 39 0 27 1064 0848 1325 1117 1733 4014. . . . . . . . .o A

5.9 Using Superposition theorem, find VAB.

–

+ –

6 W

4 W 2 W

2 A 2 V

A B

4 V

+

Solution We consider three cases:

Case I. 2 V source is acting alone

The circuit is shown below.

+ –

6 W

4 W 2 WA B

I¢ 2 V

For this circuit, the current in the loop is obtained as,

¢ = =I
2

12

1

6
A

\ voltage between A and B is, ¢ = ¢ ´ = ´ =V IAB 6
1

6
6 1V
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Case II. 4 V source is acting alone

The circuit is shown below.

+–

6 W

4 W 2 WA B

I¢

4 V

In this circuit, the loop current is obtained as,

¢¢ = =I
4

12

1

3
A

\ voltage between A and B is, ¢¢ = - ¢¢ ´ = - ´ = -V IAB 6
1

3
6 2 V

Case III. 2 A source is acting alone

The circuit is shown below.

4 W 2 W

6 W

2 A

A B

We convert the current source into its equivalent voltage source as shown in the figure.

+–

6 W

4 W 2 WA B

I¢¢8 V

The loop current is,

¢¢¢ = =I
8

12

2

3
A

\ voltage between A and B is, ¢¢¢ = - ¢¢¢ ´ = - ´ = -V IAB 6
2

3
6 4V

\ voltage between A and B when all the sources are acting simultaneously is given by superposition

theorem as,

V V V VAB AB AB AB= ¢ + ¢¢ + ¢¢¢ = - - = -1 2 4 5b g V

5.10 Find the current i in the circuit shown in the figure using superposition theorem.
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– +

+ –

3 W2 W

2 A

8 A

10 V

4i

i

Solution We consider the three cases:

Case I. When the 10 V source is acting alone

The circuit is shown in the figure below.

By KVL for the loop, we get,

- ¢ + ¢ - + ¢ =4 3 10 2 0i i i

Þ ¢ =i 10A

+–

2 W

+ –

3 W

10 V

4i¢

i¢

Case II. When the 2 A source is acting alone

The circuit is shown in the figure below.

+ –

2 W 3 W

4i

i¢¢

2 A

We convert the dependent voltage source into its equivalent dependent current source as shown in

the figure.
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2 W 3 W2i¢¢

i¢¢

2 A

The total current 2 2+ ¢¢ib g  is divided into two paths, resistors 2W and 3W.

\ By current divider rule, current through the 3W resistor is,

¢¢ =
+

F
H

I
K ´ + ¢¢i i

2

2 3
2 2b g

Þ ¢¢ =i 4 A

Case III. When the 8 A source is acting alone

The circuit is shown in the figure below.

+ –

3 W2 W 8 A

4i¢¢ ¢

I

i¢¢ ¢

By KVL for the loop, we get,

- ¢¢¢ + - + =4 3 8 2 0i I Ib g

where ¢¢¢ = - = ¢¢¢ +i I or I i8 8b g b g,

Þ - ¢¢¢ + + + =4 3 2 8 0i i i" " 'b g
Þ ¢¢¢ = -i 16A

\ current when all the sources are acting simultaneously is given by the superposition theorem as,

i i i i Ans= ¢ + ¢¢ + ¢¢¢ = + - = -b g b g10 4 16 2A .

5.11 Using superposition theorem, determine V1, the voltage across the 3 ohm resistor in the figure.

+

–

+

–

V1

2 W

3 W

+

–

4i

i
8 A

2 A
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Solution Case I. When the 8 A current source is acting alone

By KVL for the supermesh, 3 2 4 0
1

21 1¢ + - ¢ = Þ = ¢i i i i i

By KCL at node x, i i i i i1 8
1

2
8 16= + ¢ Þ ¢ = + ¢ Þ ¢ = -b g A

\ V i1 3 3 16 48¢ = ¢ = ´ - = -b g Volt

+

–

V ¢1

2 W

3 W

+

–

4i

i
8 A

i1

x

+

–

2 W

V1¢¢4i¢¢ 3 W

i¢¢
i2

+

–

2 A

2 A

Case II. When the 2 A current source is acting alone

By KVL, 3 2 2 4 0 5 6 4 02 2 2i i i i i+ + - ¢¢ = Þ + - ¢¢ =b g

Now, ¢¢ = +i i2 2b g

\ 5 6 4 2 0 22 2 2i i i+ - + = Þ =b g A

\ ¢¢ = + = + =i i2 2 2 2 4b g b g A

\ ¢¢= ¢¢ = ´ =V i1 3 3 4 12 Volt

Case III. When the 10 V voltage source is acting alone

By KVL, 3 10 2 4 0 10¢¢¢ - + ¢¢¢ - ¢¢¢ = Þ ¢¢¢ =i i i i A

\ ¢¢¢ = ´ =V1 10 3 30 Volt

When all the sources are acting simultaneously, by superposition theorem the voltage is given as,

V V V V Ans1 1 1 1 48 12 30 6= ¢ + ¢¢ + ¢¢¢ = - + + = -( ) ( ) .Volt

5.12 For the network shown in the figure, calculate current throughout the impedance 3 4+ jb gohm using

superposition theorem.

+

–

+

–
10 90° V– 10 0° V–

5 W j5 W

j4 W

3 W

+

–

V ¢
1

¢¢

2 W

3 W

+

–

4i ¢¢¢

i ¢¢¢

+

–
10 V
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+

–
10 90° V–

5 W j5 W

j4 W

3 W

I¢

Solution When 10Ð90° V is acting alone

+

–
10 0° V–

5 W j5 W

j4 W

3 W

I¢¢

Main current, I
j j

j j

j j

j
= Ð

+
+
+ +

=
+

- +
10 90

5
3 4 5

3 4 5

10 3 9

5 60

o

b g
b g

\ ¢ = ´
+

=
´

- +
= -
- +

I I
j

j

j j

j j

5

3 9

10 5

5 60

10

1 12

When 10Ð0° V is acting alone

Main current, I

j
j

j

j

j
= Ð

+
+
+ +

=
+

- +
10 0

5
3 4 5

3 4 5

10 8 4

5 60

o

b g
b g

\ ¢¢ = ´
+

= ´
- +

=
- +

I I
j j j

5

8 4

10 5

5 60

10

1 12

When both the sources are acting simultaneously, by superposition theorem, the total current flow-

ing through the impedance 3 4+ jb g  is,

I I I
j j

Ans= ¢ + ¢¢ = -
- +

+
- +

=b g 10

1 12

10

1 12
0A .

5.13 Using superposition theorem, determine the current in the 4W resistor in the network shown in the

figure.

20 0° V–
+

–

4 W 2 W

j2 W – 2 Wj5 W 100 0° V–9
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Solution Case I. When the 20Ð0°A source is acting alone

The circuit is shown in the figure below.

20 0° V–

4 W 2 W

j2 W – 2 Wj5 W

I
1

Reducing the parallel combination, the simplified circuit is shown in the figure below.

Z
j

j
j1

5 2

5 2
1857 68 2 0 69 172=

´
+

= Ð = +. . . .o b gW

Z
j

j
j2

2 2

2 2
1 1 1414 45=

´ -
-

= - = Ð -
b g

b gW W. o

4 W

20 0° A–

I
1

Z
1

Z
2

By current division rule, the current through the 4W resistor is,

I
Z

Z Z j j

j

1
1

1 2

0
0

20 0
4

20 0
1857 68 2

0 69 172 4 1 1

6 48 61 314 566

= Ð ´
+ +

= Ð ´ Ð
+ + + -

= Ð = +

o

o

. .

. .

. . .b gA

Case II. When 100Ð90° V source is acting alone

Here, the current source is open-circuited. Combining the parallel connection of 5W and j2W, the

simplified circuit is shown in the figure below.

Z
1

I
2 +

–
100 0° V–9– 2j W

I

4 W 2 W

By KVL for the two loops, we get,

(4 + 0.69 + j1.72 � j2) I j I j I j I2 22 0 4 69 0 28 2 0+ = Þ - + =. .b g (i)

and,

j I j I j2 2 2 100 90 1002 + - = Ð =b g o (ii)
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Solving (i) and (ii), we get,

I

j

j j

j

j j

j
A j2

0 2

100 2 2

4 69 0 28 2

2 2 2

200

12 83 9 93
12 33 37 75 9 75 7 55=

-

-
-

=
- +

= Ð = +
b g

b g
b g

b g b g
. . . .

. . . .o A

By superposition theorem, when both the sources are acting simultaneously, the current through the

4W resistor is,

I I I j j j= - = + - + = - - = Ð -1 2 314 566 9 75 7 55 6 61 19 689 16367. . . . . . . .b g b g b g A

The direction of the current is from right to left. Ans.

5.14 Find I in the figure using superposition theorem.

+–

+

–

1 W

V
x

3 W

5V
x

2 A

I

4 V

2 W

+

–

Solution When the 4 V voltage source is acting alone

The circuit is shown.

+ –

+

–

V¢x

3 W

5V ¢x

I¢

4 V

2 W

+

–

Here, by KVL,

- + ¢ + ¢ - ¢ =4 3 5 0I V Vx x

or, 3 4 2 4 2¢ + ´ - ¢ = ¢ = - ¢I I V Ixb g Q

or, ¢ = - = -I A
4

5
08. A

When the 2 A current source is acting alone

The circuit is shown.

By KCL,

2
2

5

3

12

5
2 4=

¢¢
+

¢¢- ¢¢
Þ ¢¢= - = -

V V V
Vx x x

x . V

+

–

1 W

V¢¢x

3 W

5V¢¢x

2 A

I¢¢

2 W

+

–
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\ ¢¢ =
¢¢- ¢¢

=
- - ´ -FH

I
K
= =I

V Vx x5

3

12

5
5

12

5

3

16

5
32. A

When both the sources are acting simultaneously, the current by superposition theorem is given as,

I I I Ans= ¢ + ¢¢ = - + =b g b g08 32 2 4. . . .A

Thevenin�s and Norton�s Theorems

5.15

Draw the Thevenin�s equivalent of the circuit in figure and find the load current, i. All values are in

ohm.

Solution Open circuiting the terminals,

By KVL for two meshes,

1 23 10i i- =

and 1 24 5i i- + = -

Solving, 1 5/11i = and 2 5/11i = -

\ oc 2

10 45
(5 2 ) 5 V

11 11

æ ö= + = - =ç ÷è øV i

Equivalent resistance, th

5
2

103
5/3 2 11

´
= = W

+
R

So, the load current is, oc

th

45/11 45
1.40625A

2 10/11 2 32

V
i

R
= = = =

+ +
Ans.
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5.16

Find I in the given figure, using Thevenin�s theorem.

Solution Removing the 2 W resistor,

By KVL for the supermesh,

0 0 010 3 0cv v v- - + + =

Þ 0 010 2cv v= -
But, due to open-circuit, 1A source will circulate through

1 W resistor.

\ 0 1 1 1V= ´ =v

\ 0 (10 2) 8 V= - =cV

Let�s short circuit the terminals x-y,

By KVL,

0 010 3 0v v- - + =

or 0 5v =
But, by KCL at node (a),

0
sc1

1
= -

v
I

sc 0(1 ) 4 A (e.g. current is flowing from to )= - = -I v y x

\ oc
th

sc

8
2

4
= = = W
V

R
I

So, the current through 2 W resistor, 
8

2 A
2 2

I = =
+

Ans.

5.17

By the iterative use of Thevenin�s theorem, reduce the circuit shown in figure to a single emf acting

in series with a single resistor. Hence, calculate the current in the 10 W resistor connected across XY.
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Solution Consider the section of the network to the left of A�B. By use of Thevenin�s theorem,

this portion is reduced to the form of Fig. (ii).

\ th

1000 100 1000

1000 100 11

´
= = W

+
R

\ th

100 1000 1000
V

1100 11

´
= =V

(i)

Applying Thevenin�s Theorem to the section left of CD of Fig. (ii),

\
(2100/11) 10 2100

(2100/11) 10 221thR
´

= = W
+

\
(1000/11) 10 1000

V
(2100/11) 10 221thV

´
= =

+

100 W 100 W 1000 W

10 W100 W10 W

C

DB

A

1000

11
W

1000

11
V

(ii)

Applying Thevenin�s Theorem to the section left of EF of Fig. (iii),

\ th

(24200/221) 100 24200

(24200/221) 100 463

´
= = W

+
R

\ Vth V=
´
+ =

( / )

( / )

1000 221 100

2100 221 200
1000
463

(iii)
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Section left to XY is put as in Fig. (iv).

\ th

24200 487200
1000

463 463
= + = WR

\ Vth V=
1000

463

Hence, the current in 10 W resistor is,

I =
+

=
( / )

( / )
.

1000 463

487200 463 10
0 002 A Ans.

5.18

In the Operational-amplifier circuit shown in figure, find I, in the R = 4 kW resistor, using Thevenin�s

theorem.

Solution Open-circuiting the 4 kW resistor,

Here, 2 3 00,e e V= =

1 01 1

3 3 3

12
0

2 10 4 10 8 10

e Ve e--
+ + =

´ ´ ´

Þ 1 07 (48 2 )e V= + (i)

01

3 3

00
0

8 10 12 10

Ve --
+ =

´ ´

Þ 0 1

3

2
V e= - (ii)

From equation (i) and equation (ii),

Þ 1 oc4.8V= =e e

Now, we connect a 1 A current source at the place of 4 kW resistor.

By KCL at node (1),

1 01 1

3 3 3
1

2 10 4 10 8 10

e Ve e-
+ + =

´ ´ ´

Þ 1 07 8000 2e V= +

(iv)
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By KCL at node (2),

0 1

3

2
V e= -

Þ ( )1 1

3
7 8000 2

2
e e= + -

Þ 1 800 V=e

\ 1
th 800

1
= = W
e

R

\
3

4.8 4.8
1mA

4000 800 4.8 10
i = = =

+ ´
Ans.

5.19

Find Thevenin�s equivalent about AB for the circuit shown

in figure.

Solution Open-circuiting The 4 W resistor, by KCL,

oc
oc

10
4 4(10 )

2

-
= = -s

V
v V

Þ oc 10 V=V

Short-circuiting the terminals AB, by KCL,

1 1
1

10
4 4(10 )

2 4 s

V V
v V

-
+ = = -

1

180
9.47 V

19
= =V

\ sc

9.47
2.368 A

4
= =I

\ th
th

sc

4.22= = W
V

R
I

Ans.
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5.20 In the network, determine the steady current in the 8 W inductor using Thevenin�s theorem.

Solution With a�b open-circuited,

100 0
( 8) 200 0 V

4 8aV j
j j

Ð °= - = Ð °
-

100 60
( 6) 300 60 V

4 6bV j
j j

Ð °= - = Ð °
-

\ th ( ) 200 0 300 60 (50 259.81) V= - = Ð °- Ð °= -a bV V V j

\ th

( 4)( 8) ( 4)( 6)
20

4 8 4 6

- -
= + = W

- -
j j j j

Z j
j j j j

\ Current in the 8 W inductor, 
th

th

(50 259.81)
9.45 169.1 A

20 8

-
= = = Ð- °

+ +L

V j
i

Z Z j j
Ans.

5.21 Obtain Thevenin�s equivalent circuit with respect to terminals A�B in the networks shown below.

(a)

(b)
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(c)

(d)

(e)

Solution

(a) With A�B open, the current is,

I = 
10 0 150 90

15
5 5 15 5 10

j
j j j

Ð ° Ð °´ =
- + +

Thevenin voltage,

Vth = ( 5)ABV I j= ´ -

= 
150 90

(5 90 )
5 10j

Ð ° ´ Ð- °
+

= 67.08 63.4 VÐ- ° Ans.

Thevenin impedance,

th

5 (5 15)
7.07 81.86

5 5 15

- ´ +
= = = Ð- °W

- + +AB

j j
Z Z

j j
Ans.

Thus, the Thevenin�s equivalent circuit is shown in the figure.
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(b) Here, Thevenin voltage,

Vth = 
20 90

(3 4)
5 10 3 4

j
j j

Ð ° ´ -
+ + -

= 
120(3 4)

8 6

j j

j

-
+

Vth = 
50 36.87

10 0 (V)
5 36.87

Ð ° = Ð °
Ð °

Thevenin impedance,

Zth = 
(5 10) (3 4)

(5 10) (3 4)

j j

j j

+ ´ -
+ + -

= 
11.8 63.43 5 53.13

10 36.87

Ð ° ´ Ð- °
Ð °

= 5.59 26.56 ( )Ð- W
Thus, the Thevenin�s equivalent circuit is shown in the figure. Ans.

(c)

Here, with A�B open, equivalent impedance,

5 (13 6) 160 55
10 12.98 23.37 ( )

5 (13 6) 13 1

j j j
Z

j j j

- ´ + -
= + = W = Ð- ° W

- + + +

\ Main current, 100 0 100 0
7.7 23.37 (A)

12.98 23.37
I

Z

Ð ° Ð °= = = Ð °
Ð- °

\ Thevenin voltage,

th

5
(8 6)

5 5 8 6

-æ ö= ´ ´ +ç ÷- + + +è ø
j

V I j
j j

( )
5

7.7 23.37 8 6 29.553 34.16 (V)
13 1

j
j

j

-æ ö= Ð ° ´ ´ + = Ð- °ç ÷+è ø
Ans.

\ Thevenin impedance, th

10 ( 5)
5 | | (8 6) 5.33 0.5 ( )

10 5

´ -é ù= + + = Ð - ° Wê ú-ë û

j
Z j

j
Ans.

(d) The circuit is redrawn as shown considering two capacitors in parallel.

Q eq 1 2

1 1 1
( ) F

4 4 2

æ ö= + = + =ç ÷è øC C C
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Thevenin voltage is given as,

th 2

(1 2/ )2
( )

(1 2/ 1 / 2)4

+
= ´

+ + ++
ss

V s
s ss

2

4
(V)

( 4) ( 2)

s

s s
=

+ +

\ Thevenin impedance, th ( ) (1 2/ ) | | (1 /2) 1= + + = WZ s s s Ans.

(e) To find Vth

With A�B open, current of the dependent source can flow through the capacitor only.

\ 10 0
0.09995 5.7 (A)

100 10
I

j

Ð °= = Ð - °
+

\ Thevenin voltage,

 th ( 10) {5 ( 5)} 35 35 0.09995 5.7 3.48 84.3 (V)ABV V I j I j j I j= = ´ - ´ - = = ´ Ð- ° = Ð ° Ans.

To find IN

Converting the dependent current source into voltage source, by KVL,

10 0 (100 10) 10 Nj I j IÐ ° = + -

and ( 25 ) 10 ( 10 5)Nj I j I I j j- - = - + -

Solving for IN, 0.6 31 (A)NI = Ð ° Ans.

\ Thevenin impedance, 
th

th

3.48 84.3
5.8 53.3 ( )

0.6 31

Ð °= = = Ð ° W
Ð °N

V
Z

I
Ans.
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5.22 Find V0 using Thevenin�s theorem.

Solution To find Vth

Removing the 2 W resistor and open circuiting the terminals and then converting the dependent

current source into dependent voltage source, we redraw the circuit as follows.

By KVL for the two loops, (here i0 = I1)

1 2(4 4) 4 12j I j I- + = -

1 22 ( 6) 0j I j I- + - =
Solving for I2,

2

(4 4) 12

2 0 24 3
0.6 53.13 (A)

24 24 8 4 3(4 4) 4

2 6

j

j j j
I

j jj j

j j

- -
- -

= = = = Ð °
- - - +-

- -

Therefore, Thevenin voltage is, th 2

24
( 8) 4.8 36.87 (V)

4 3
= ´ - = = Ð - °

+
V I j

j
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To find IN

Removing the 2 W resistor and short circuiting the terminals and then converting the dependent

current source into dependent voltage source, we redraw the circuit as follows.

By KVL for the two loops,

1 2(4 4) 4 12j I j I- + = -

1 22 ( 2) 0j I j I- + - =
Solving for I2,

2

(4 4) 12

2 0 24 3
1.341 63.435 (A)

8 8 8 2(4 4) 4

2 2

N

j

j j j
I I

j jj j

j j

- -
- -

= = = = = Ð °
- - - +-

- -

Therefore, Thevenin impedance is, 
th

th

4.8 36.87
3.58 100.3 ( )

1.341 63.435

Ð- °
= = = Ð- ° W

Ð °N

V
Z

I

Thus, Thevenin�s equivalent circuit becomes as shown.

Thus, the required voltage,

th
0

th

4.8 36.87
2 2 1.27 32 (V)

2 3.58 100.3 2

Ð- °æ ö æ ö= ´ = ´ = Ð °ç ÷ç ÷+ Ð- ° +è øè ø
V

v
Z

Ans.

5.23

Obtain the Norton�s equivalent circuit with respect to the terminals AB for the network shown in

figure.
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Solution Removing the sources,

\ eq

5 15 75
3.75

5 15 20

´
= = = W

+
Z

Short-circuiting AB,

sc

10 20
3.33 A

5 15
= + =I

So, Norton�s equivalent circuit is shown.

5.24 For the one port shown in figure determine the Norton�s equivalent at the

terminals AB, if the v�i characteristic is given by, 16v = 80 � 2i.

Solution v�i characteristic is given as,

16 80 2 1
5 40

V i
v i= - Þ + =

Thus, short circuit current,

sc 40 A=I  (where v = 0)

and open-circuit voltage,

oc 5 V=V  (whare i = 0)

\ oc

sc

5 1

40 8
= = = Wn

V
R

I

Norton�s equivalent circuit is shown accordingly.
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5.25

Find both Thevenin�s and Norton�s equivalent circuit for the network shown in figure. All values

are in ohm.

Solution Removing the sources,

Þ th

2 5
1

3 3

æ ö= = + = Wç ÷è øNR R

Short-circuiting the terminals,

By superposition theorem, when 5 V source is acting alone,

5
7 A

5/7
I = =

\ 1 4.5 AI =

\ 2 2I A=

\ 1 A
scI ¢ =

and when 2 A source is acting alone,

\ sc

2/3 4
2 A

2/ 3 1 5
¢¢ = ´ =

+
I
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\ sc sc sc

4 9
Total ( ) 1 A

5 5

æ ö¢ ¢¢= + = + =ç ÷è øI I I

\
th sc th

9 5
3 V

5 3
= ´ = ´ =V I R

The circuits are shown accordingly.

5.26 Replace the circuit in the figure with the Thevenin�s equivalent circuit across A and B.

+
–

4 ix

1 W5 W

20 V 30 A
+
–

ix

Solution By KVL for the left-hand side loop,

1 10
10

10 103 0

4

3´ ´ + = ´ -I
V

(i)

In the right-hand side loop, the dependent current source current will circulate in the resistor. By

KVL,

V I I0
3 430 10 75 225 10= ´ ´ - = - ´b g (ii)

Substituting the value of I from (ii) in (i), we get,

1 10
225 10 10

10 103 0

4

0

4

3´ ´ -
´

F
HG

I
KJ
+ = ´ -V V

Þ - ´ + ´ = ´- - -4 44 10 1 10 10 104
0

4
0

3. V V

Þ V0

3

4

10 10

344 10
29= - ´

´
= -

-

-.
V

Now, short circuiting the terminals A and B, we get by KVL to left-hand side loop,

+

–

1 kW

30 kW

I

10 mV

A

B

V
0

= 0

75I
Isc
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1 10 0 10 10 1 103 3 5´ ´ + = ´ Þ = ´- -I I A

Also, from right-hand side loop on short circuit,

I Isc = - = - ´ ´ = - ´- -75 75 1 10 75 105 5 A

Thus, Thevenin equivalent impedance is given as,

Z
V

I
Th

oc

sc

= = -
- ´

=-
29

75 10
38 67

5
. kW

Thevenin�s equivalent circuit is shown in the figure.

5.27 Find the Thevenin�s equivalent between terminals a and b of the circuit shown in the figure.

+

–

+

–

1 kW

50 kW

+

–

3 V

a

b

V
x

40I
0

2V
x

I
0

Solution By KVL for the right-hand side mesh,

V V I Ioc x= = - ´ = -40 50 20000 0b g (i)

From the left-hand side loop,

I
V Vx oc

0

3 2

1000

3 2

1000
=

-
=

-
(ii)

From (i) and (ii), we get,

V
V

Voc
oc

oc= -
-F

HG
I
KJ Þ =2000

3 2

1000
2 V

To determine the Thevenin�s impedance, we short circuit the terminals a and b.

+

–

1 kW

50 W3 V

a

b

I
sc

40I
0

I
0

Here,

I Isc = - = - ´ F
H

I
K = -40 40

3

1000
0120 . A

\ R
V

ITh
oc

sc

= = =2

012
16 67

.
. W

Thevenin�s equivalent circuit is shown in the figure.

16.67 W

+

–
2 V

a

b

38.67 kW

+

–
–29 V

A

B
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5.28 In the network shown in the figure, the switch is closed at time t = 0. Assuming all the initial currents

and voltages as zero, find the current through the inductor L2 by the use of Norton�s theorem.

R
1

= 2 W L
1

= 1 H R
2

= 2 W L
2

= 1 H

3 V C = 2 F

t = 0

Solution The network for t > 0 in Laplace domain is shown in the figure below.

2 s 2 s

3

s
1

s

The equivalent network reduces to one as shown below.

3

s
1

s

s + 2

s + 2

A

B

To find the current in L2, we have to find Thevenin�s equivalent circuit across the terminals A and B.

The impedance between terminals A and B is given as,

Z Z
s

s

s
s

s

s s

s

s
Th AB= =

+ ´

+ +
=

+

+ +
=

+

+

2
1

2
1

2

2 1

2

1
2 2

b g b g b g

b g

Short circuit current flowing from A to B is given as,

I
s

s s s
sc = +

=
+

3

2

3

2

/

b g

Therefore, the Norton�s equivalent circuit is shown in the figure below.

Hence the current,

I
s s

s

s s

s
s

s s s s

L =
+

´
+

+
´

+

+
+ +

=
+ + +

3

2

2

1

1

2

1
2

3

2 2 2

2

2

2

b g

b g

b g b g

b g
b g

b gd i

A

B

( + 2)
( + 1)
s
s 2

3

( + 2)s s s + 2

IL
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By partial fraction expansion,

I
s s s s

k

s

k

s

k

s j

k

s jL =
+ + +

= +
+

+
+ +

+
+ -

3

2 2 2 2 1 1 1 12

1 2 3 3

b gd i
*

Where,

k
s s s

s

1 2

0

3

2 2 2

3

4
=

+ + +
=

=
b gd i

k
s s s

s

2 2

2

3

2 2

3

4
=

+ +
= -

= -
d i

k
s s s j

j

s j

3

1 1

3

2 1 1

3

4
=

+ + -
=

= - -
b gb g

k j3
3

4
* = -

\ I
s s

j

s j

j

s j s s s
L = -

+
+

+ +
-

+ -
= -

+
-

+ +

3 4 3 4

2

3 4

1 1

3 4

1 1

3 4 3 4

2

3 2

1 1
2

/ / / / / / /

b g

Taking inverse Laplace transform, we get the required current as,

i t e e t Anst tb g = - -- -3

4

3

4

3

2
2 sin .

5.29 The following circuit has a dependent current source and an independent voltage source. Find the

Thevenin equivalent network of the circuit across the terminals a and b.

+ –

v
1

100
v
120 W

a

b

100 V

Solution

+ –

v
1

100
v
120 W

+

–

100 V

+ –

Isc20 W

100 V

v
1

= 0
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With open circuit, v voc1 = . By KCL,

- +
+

= Þ - + + = Þ = -
v v

v v voc oc
oc oc oc100

100

20
0 500 5 0 125 Volt

With short-circuit, v1 = 0 and the dependent current source is open,

so that, I sc = -5 A

Thus, Thevenin impedance, R
v

ITh
oc

sc

= = -
-

=125

5
25 W

So, the Thevenin�s equivalent circuit is shown in the figure below.

5.30 In the network of figure, the switch K is closed at time t = 0, a steady state having previously existed.

Obtain the current in the resistor R using Thevenin�s theorem.

R
1

L
1

R
2

L
2

100 V 10 W10 W RR
3

10 W 10 W 1 H 1 H

K

Solution When the switch K is opened, under steady state condition, two inductors behave as

short circuits. Therefore, the initial currents flowing through the inductors can be found out by

writing the KVL equations for the circuit at t = 0�.

10 W I
2

10 W10 W

10 WI
1

100 V

(a) Circuit at t = 0�

By KVL for the two meshes,

30 10 100

10 20 0
1 2

1 2

I I

I I

- =
- + =

Solving, I A I A1 24 2= =,

Hence, the transform network for t > 0 is shown in Fig (b).

+ – + –

10 W

L I
1 1

= 4 V

10 W

10 W s s
L I
2 2

= 2 V

100

s
ZL

a

b

 (b) Transform network for t > 0

+
–

25 W

125 V

a

b



5.48 Circuit Theory and Networks

Thevenin equivalent impedance with respect to the terminals a and b is given as,

Z
s

s

s

s
Th =

+ ´
+ +

=
+

+

10 10

10 10

10 10

20

b g b g

b g

To find the open circuit voltage across the terminals a and b, we have the current flowing in the left

mesh,

I s
s

s

s

s s
b g

b g
= +

+ +
= +

+
100 4

10 10

4 100

20

/

\ V s I s
s

s s

s s

s s
OC b g b g

b g b g
= ´ + =

+
+

´ + =
+ +

+
10 2

4 100

20
10 2

2 80 1000

20

2

Therefore, the Thevenin�s equivalent circuit is shown in Fig. (c).

+
–

10 W

a

b

s

10( + 10)
( + 20)
s

s
ZTH =

2 + 80 + 1000

( + 20)

s s

s s

2
VOC =

(c) Thevenin's equivalent circuit

Hence, the current through the resistor R = 10 W is given as,

I s
V s

Z R

s s

s s
s

s
s

s s

s s s
L

OC

Th

b g
b g

b g
b g

b g
b g

b gb g
=

+
=

+ +

+
+

+
+ +

L

N
M
M

O

Q
P
P

= + +
+ +

2 80 1000

20
10 10

20
10

2 80 1000

10 30

2 2

By partial fraction expansion, let,

I s
s s

s s s

K

s

K

s

K

sL ( )
( ) ( )

=
2 80 1000

10 30 10 30

2
1 2 3+ +

+ +
= +

+
+

+

\ K s
s s

s s s
s

1

2

0

2 80 1000

10 30

10

3
= + +

+ +
L

N
M

O

Q
P =

=
b gb g

\ K s
s s

s s s
s

2

2

10

10
2 80 1000

10 30
2= + + +

+ +
L

N
M

O

Q
P = -

= -

b g
b gb g

\ K s
s s

s s s
s

3

2

30

30
2 80 1000

10 30

2

3
= + + +

+ +
L

N
M

O

Q
P =

= -

b g
b gb g

I s
s sL ( )

/ /= -
+

+
+

10 3

3

2

10

2 3

30
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Taking inverse Laplace transform, we get,

i t e e e e AnsL
t t t tb g = - + = - +- - - -10

3
2

2

3
333 2 0 6710 30 10 30. . .

5.31 For the network shown in the figure, show that the Thevenin equivalent at the terminals a-b is

represented by,

V
V

a b ab Z
b

Th Th= + + - = -1

2
1

3

2
b g and

+

–

+

–

+ –

1 W

V
1

1 W

1 W

aV
1

I
1

bI
1

a

b

Solution When the terminals a-b are open-circuited no current will flow through the right side 1 W
resistor. By KVL for the left mesh,

2
2

11 1 1 1
1I aV V I

V
a+ = Þ = -b g

\ V I aV bI
V

a aV b
V

a
V

a a b abTh = ´ + + = ´ - + + + - = - + + -1 1
2

1
2

1
2

1 21 1 1
1

1
1 1b g b g b g

\ V
V

a b abTh = + + -1

2
1a f a fProved

To find the Thevenin impedance we have to find the short-circuit current flowing through the

terminals a-b.

By KVL for the two meshes, we get,

+

–

+

–

+ –

1 W

V
1

1 W

1 W

aV
1

I
1

bI
1

a

b

ISC

2 11 1I I V aSC- = -b g (i)

and, 1 1 1 21 1 1 1 1´ - - + ´ = Þ - + + =I I bI I aV b I I aVSC SC SCb g b g (ii)
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Solving (i) and (ii), we get,

I

V a

b aV

b

aV V a b ab

b

V a b ab

bSC =

-
- +

-
- +

=
+ - + -

- -
=

+ + -
-

2 1

1

2 1

1 2

2 1

4 1

1

3

1

1 1 1 1

b g

b g

b g

b g b g

Therefore, the Thevenin impedance is,

Z
V

I

V
a b ab

V a b ab

b

b
Th

Th

SC

= =
+ + -

+ + -
-

=
-

1

1

2
1

1

3

3

2

b g

b g
b gProved

5.32 Find the Thevenin equivalent circuit for the network shown in figure at terminals A-B.

I = 5 0° A–3

50 W 50 W

100 W

j50 W j50 W

A

B

Solution When the terminals A and B are open-circuited, the current flowing through the right

branch (50 + j50) W is,

I
j

j j

j

j

j

j

= Ð ´
+

+ + + +

= Ð ´
+
+

F
HG

I
KJ

= Ð ´
+
+

F
HG

I
KJ

5 30
50 50

100 50 50 50 50

5 30
50 50

200 100

5 30
1

4 2

o

o

o

Therefore, Thevenin voltage is,

V I j
j

j
jTh = ´ + = Ð ´

+
+

F
HG

I
KJ
´ + = Ð50 50 5 30

1

4 2
50 50 1118 9343b g b go o. . V

Thevenin impedance is given as,

Z j j

j j

j j

Th = + +

=
+ ´ +
+ + +

= Ð

150 50 50 50

150 50 50 50

150 50 50 50

50 3687

b g b g
b g b g
b g b g

. oW
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50 W 50 W

100 W

j50 W j50 W

A

B

ZTh

Thus, Thevenin equivalent circuit is shown in the figure below.

+

–
111.8–93.43° V VTh

50–36.87° V

a

b

5.33 Find Thevenin�s equivalent circuit across the terminals A and B for the network shown in the figure.

+

–
5 W

10 W

A

B

i
0

2i
012 V

Solution The circuit has both dependent and independent sources. We find VTh and ISC and then

taking the ratio we get ZTh.

To find VTh: By KVL for the supermesh shown,

+

–
5 W

10 W

A

B

i
0

2i
012 V VTH

+

–

(a)

10 12 00i VTh+ - =

Þ V iTh = -12 10 0 (i)

By KCL at node A,

- - + =i i
VTh

0 02
5

0

Þ V iTh = 15 0 (ii)
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From (i) and (ii) we get,

V AnsTh = 7 2. .V

+

–

10 W

A

B

i
0

2i
012 V ISC

(b)

To find ISC When the terminals A and B are shorted, no current flows through the 5 W resistance.

The circuit is shown in Fig. (c).

+

–
7.2 V

A

B

2 W

(c)

By KVL for the supermesh,

10 12 120 0i i= Þ = . A

By KCL at node A,

I i AnsSC = =3 3 60 . .A

Therefore, the Thevenin impedance is given as,

Z
V

I
AnsTh

Th

SC

= = =7 2

36
2

.

.
.W

5.34 Find Thevenin�s equivalent circuit for the network shown in the figure.

10 W

v
020 W

+

–

0.5v
0

Solution This circuit does not have any independent source; it has only a dependent current

source. Therefore, the Thevenin equivalent voltage will be zero.

\ V AnsTh = 0 .

To find Thevenin equivalent impedance, we connect a test current source of value I. Let the voltage

across this test source be V.
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By KCL at node x,

V v
v I

-
- - =0

010
05 0.

Þ V I v= +10 6 0 (i)

10 W

v
020 W

+

–

0.5v
0

I
V

+

–

x

(a)

Also, v v I v I0 0 020 05 10 20= ´ + = +.b g

Þ v I0
20

9
= - (ii)

Putting the value of v0 in (i) from (ii),

V I I I= + ´ -F
H

I
K = -10 6

20

9

10

3

\ Z
V
I

AnsTh = = - = -10
3

3 33. .W

The Thevenin equivalent circuit is shown in Fig. (b).

Maximum Power Transfer Theorem

5.35 In the network shown, the power dissipated in R when E1, E2

or E3 acting alone is

(a) 20 W, 80 W, and 5 W respectively.

(b) 30 W, 270 W, and 120 W respectively.

Calculate the maximum power that R can dissipate due to

the simultaneous action of all the sources. Calculate both for

(a) and (b).

What will be the minimum power dissipated in R when all the sources are acting simultaneously?

Solution Current for E1 at R, 1
1

P
i

R
= ±

Current for E2 at R, i2 = ± 2P

R

Current for E3 at R, i3 = ± 3P

R

\ Total current flow for simultaneous action of all the three sources is,

31 2
1 2 3

PP P
i i i i

R R R
= ± ± ± = ± ± ±

3.33 W

A

B

(b)
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\

2

31 22 2
1 2 3Power, [ ]

PP P
P i R R P P P

R R R

é ù
= = ± ± ± = ± ± ±ê ú

ê úë û
l For maximum power,

Pmax = 2
1 2 3[ ]P P P+ +

(a) Pmax = 2 2[ 20 80 5 ] [2 5 4 5 5 ] 49 5 245 W+ + = + + = ´ = Ans.

(b) Pmax = 2 2[ 30 270 120] [4 5 3 5] 1080 W+ + = - = Ans.

l For minimum power,

(a) Pmin = 2 2[ 20 80 5 ] [4 5 3 5 ] 5 W- + - = - = Ans.

(b) Pmin = 2 2[ 30 270 120] [ 30 3 30 2 3] 0 W- + - = - + - = Ans.

5.36 Find the value of R in the circuit of the figure such that maximum power transfer takes place. What

is the amount of this power?

(a)

(b)

(c)

Solution

(a) Removing the résistance R,

\ 1 23 2 4i i- =

and 1 22 8 0i i- + =

Solving, 2

2
A

5
i =

\ 2 oc1 6´ + =i V

Þ oc

2 32
6 V

5 5

æ ö= + =ç ÷è øV
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Also, to find the Rth,

( ) [ ]th

17
1

1 2 2 1735 | | 1 5 | |1
1 2 3 17 20

1
3

´é ù´ æ ö= + = + = = Wç ÷ê ú è ø+ë û +
R

\ For maximum power transfer, th

17
0.85

20
= = = WR R Ans.

\ Maximum power 
2

oc
max 12 W

4
= =
V

P
R

Ans.

(b) In the network, 2 W resistor is connected in parallel with an ideal voltage source of 5 V; hence

this resistance can be removed without affecting the current flows in the other branches.

Converting the voltage source into current source,

( )5 11
2 A A

3 3
+ =

For maximum power transfer, 
7

4
R = W

Maximum Power, 

2

max

11

4
1.08 W

4 7/4
P

æ ö
è ø

= =
´

Ans.
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(c) To find Rth

th

10 5
2 5.33

10 5

´
= + = W

+
R Ans.

To find Voc

24
1.6 A

15
= - = -i

\ oc 5 10 8 10 2 V= + = - + =V i

\ max

4
0.188 W

4 5.33
= =

´
P Ans.

5.37 In the network shown, find the value of ZL to which

the maximum power can be delivered. Hence, find the

value of the maximum power.

Solution With respect to terminals A and B, the Thevenin voltage is,

th

35 0 45 0
2.236 26.56 (V)

3(3 3) 3 3 3 18 9
3

3 3 3

æ öÐ ° Ð °= ´ = = Ð - °ç ÷- + - +è ø+
- +

j
V

j j j j j

j j

and Thevenin impedance,

( )

th

3 3
3 3

3 3
3 53.12 (1.8 2.4)

3 3
3 3

3 3

´æ ö+ ´ -ç ÷+è ø
= = Ð- ° W = - W

´
+ -

+

j
j

j
Z j

j
j

j

For maximum power transfer, th
* (1.8 2.4)= = + W

LZ Z j Ans.

\ Current, 
2.236 26.56

0.621 26.56 A
1.8 2

I
Ð - °= = Ð - °

´

The value of the maximum power is, 
2 2

th
max

( ) (2.236)
0.694 W

4 4 1.8
= = =

´
V

P
R

Ans.

5.38 A loudspeaker is connected across terminals A and B of the network. What should its impedance be

to obtain maximum power dissipation in it?
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(a)

(b)

Solution

(a) Equivalent impedance with respect to the terminals A and B is,

th

(3 4)( 5)
7.9 18.43 (7.5 2.5)

3 4 5

+ -
= = Ð - °W = - W

+ -
j j

Z j
j j

For maximum power transfer, th
* (7.5 2.4)= = + W

LZ Z j Ans.

(b) Equivalent impedance with respect to the terminals A and B is,

th

(10 8) 5 40 50 40 52 60 78
4 6 | | 10 | |10

10 8 5 10 13

+ - + + + + -é ù æ ö= + + = ç ÷ê ú+ + +è øë û

j j j j j
Z j

j j j

6.14 30 (5.316 3.07)j= Ð ° W = + W

For maximum power transfer, th
* 6.14 30 (5.316 3.07)= = Ð - ° W = - W

LZ Z j

5.39 Two inductors each of 1 W reactance and negligible resistance are connected in series across a 2 V

a. c. source. Find the value of resistance which should be connected across one of the inductors for

maximum power dissipation. Also, find the maximum power.

Solution Here, 
1 1 2

1
1 1

R j j R
Z j

R j R j

´ - +
= + =

+ +

\ Current 
2 0 ( 1)2 0

1 2

R j
I

Z j R

Ð ° ´ +Ð °= =
- +

\ Current through the resistance, 
1 2

1 1 2R

j j
I I

R j j R
= ´ =

+ - +

\ Power, 2

2

4
| |

1 4

R
P I R

R
= =

+
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For maximum power, 
2

2 2

(1 4 ) 4 4 8
0 0

(1 4 )

R R RdP

dR R

+ ´ - ´
= Þ =

+

Þ 0.5R = W Ans.

\ Maximum Power, max 2

4 0.4
1W

1 4 (0.5)
P

´
= =

+ ´
Ans.

5.40

In the network shown, calculate the maximum power that may be dissipated in the external resistor R.

Solution Transforming the current source into

voltage source,

By KVL,

1 1 16 4 40 2 0i i i+ - - =

Þ 1 5 Ai =

\ oc 16 30 V= =e i

For maximum power, R = Req

Shorting the terminals a�b and solving by loop method,

sc 5 A=I

\ th

30
6

5
= = WR

\
2

max

(30) 900
37.5 W

4 6 24
= = =

´
P

5.41 Find the Thevenin�s equivalent between the points a and b for the circuit given in the figure. What

should be the value of impedance connected between a and b for maximum power to be transferred

from the sources? Obtain the amount of the maximum power.

2 W

(3 + 5)j W
+

–
100 V

j6 W
a

b

Solution Here the current I is,

I
j j

j=
+ +

=
+

= -100

2 3 5

100

5 5
10 10b g A
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\ V I j j jTh = ´ + = - ´ +3 5 10 10 3 5b g b g b g

= +
= Ð
80 20

82 46 14

j

Ans

b g
. .o Volt

\ Z j
j

j
j AnsTh = +

´ +
+ +

= +6
2 3 5

2 3 5
16 6 4

b g
b g. . .W

Thevenin�s equivalent circuit is shown.

+
–

82.46–14° V VTh

(1.6 + j6.4) W

a

b

For maximum power transfer, the impedance should be complex conjugate of Thevenin impedance.

\ Z j AnsL = -16 6 4. . .b g W

Amount of the maximum power is, P
V

R
AnsTh

max

.

.
. .= =

´
=

2 2

4

82 46

4 16
1062 5

b g
Watt

5.42 In the network in the figure, two voltage sources act on the load impedance connected to the

terminal A and B. If the load is variable in both reactance and resistance, for what load, ZL will receive

maximum power? What is the value of maximum power?

+

–

+

–

5 W 3 Wj5 W – 4j W

ZL50 0° (V)– 25–90° (V)

A

B

Solution

Here, V V j1 250 0 50 25 90 25= Ð = = Ð =o oV and V;

Current in the circuit, I
j

j j

j

j
=

-
+ + -

=
-
+

50 25

5 5 3 4

50 25

8 1
A

Thevenin voltage,

V I j
j

j
j

j

j

j Ans

Th = - ´ + = -
-
+

F
HG

I
KJ ´ + =

-
+

= Ð -
= -

50 5 5 50
50 25

8 1
5 5

25 75

8 1

9 8 78 7

1923 9 615

b g b g

b g
. .

. . .

o

Volt

+
–

a

b

VTh

ZTh
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Thevenin impedance, Z
j j

j j

j

j
j AnsTh =

+ ´ -
+ + -

=
-
+

= -
5 5 3 4

5 5 3 4

35 5

8 1
4 23 1154

b g b g

b g b g
b g. . .W

Thus, the Thevenin�s equivalent circuit is shown.

For maximum power transfer to the load, Z Z j AnsL m= = +* . . .4 23 1154b g W

The value of the maximum power is, P
V

R
AnsTh

max

.

.
. .= =

´
=

2 2

4

98

4 4 23
5676Watt

5.43 A network has two output terminals. The open circuit voltage at these terminals is 260 V. The current

flowing through the terminals is 20 A when the terminals are short circuited. Also, the current is 13

A when a coil of 11 ohm reactance and negligible resistance is connected across the terminals. Find

the impedance components of the equivalent circuit feeding the terminals. What value of load

impedance will give maximum power transfer and what is the value of this power?

Solution Here, V ITh SC= =260 20V A;

Let the Thevenin impedance across the terminals is, Z R j X= +b g

\ Z
V

I
Th

SC

= = =260

20
13 W

\ R X2 2 169+ = (i)

When 11 ohm reactance is connected across the terminals, the current is 13A.

\ 260

11
13 11

260

13
20

R j X
R j X

+ +
= Þ + + = =

b g
b g

\ R X2 2
11 400+ + =b g (ii)

Solving (i) and (ii), we get,

R X= =12 5W W

Therefore, Thevenin impedance, Z j AnsTh = +12 5b gW .

For maximum power transfer, Z Z j AnsL Th= = -* .12 5b gW

Value of maximum power, P
V

R
AnsTh

max . .= =
´

=
2 2

4

260

4 12
1408 33

b g
W

5.44 What should be the value of ZL for maximum power to be delivered in the circuit shown in the figure?

+
–

+
–

5 cos( + 30°)wt 2 cos wt

3 + 2j 4 – 3j

ZL

Solution In this circuit, when the voltage sources are replaced by their internal impedances; i.e.,

when they are short-circuited, the equivalent Thevenin impedance with respect to the load terminals

is given by,



Network Theorems 5.61

Z j j
j j

j j

j

j
j

j

Th = + - =
+ ´ -
+ + -

=
-
-

= +F
H

I
K

= +
= Ð

3 2 4 3
3 2 4 3

3 2 4 3

18 1

7 1

127

50

11

50

2 54 0 22

2 55 4 95

b g b g
b g b g
b g b g

b g
b g

W

W
W

. .

. . o

For maximum power to be delivered, the load impedance should be complex conjugate of the Thevenin

impedance, so that,

Z Z j AnsL Th= = - = Ð -* . . . . .2 54 0 22 2 55 4 95b g b gW Wo

Reciprocity Theorem

5.45 Verify the Reciprocity Theorem for the network shown in the figure using current source and a

voltmeter. All the values are in ohm.

Solution Using a current source and a voltmeter,

Let, e1, e2 be node voltages, v1 be the voltmeter reading.

By KCL,

At node (1) Þ 1 2 13 2 0e e i- - = (i)

At node (2) Þ 1 2 16 13 3 0e e v- + - = (ii)

At node (3) 1 29 5v e= (iii)

From (ii) Þ 1 1 1

9
6 13 3 0

5
e v v- + ´ - =

Þ ( )1 1

117
6 3 0

5
e v- + - =

Þ 1 1 1 1

102 17
6

5 5
e v e v+ Þ =

From (i) Þ 1 1

17 9
3 2

5 5
v v i´ - =

Þ 1

1

21

5

i

v

æ ö æ ö= ç ÷ç ÷ è øè ø
(A)
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Interchanging the positions of the current source and the voltmeter,

Now, let v2 be the voltmeter reading

By KCL,

At node (1) Þ 2 23v e= (iv)

At node (2) Þ 2 2 36 13 3 0v e e- + - =

Þ 2 2 36 13 3 3 0v v e- + ´ - =

Þ 3 211e v= (v)

At node (3) Þ 3 2 3 25 5 4 20 0e e e i- + - =

Þ 2 3 2 2 2 220 9 5 9 11 5 3 84i e e v v v= - = ´ - ´ =

Þ 2

2

21

5

i

v

æ ö æ ö= ç ÷ç ÷ è øè ø
(B)

From equations (A) and (B), Reciprocity theorem is proved.

5.46 Solve the network shown in Figure (a) and hence find the current in the 2 W resistor in Figure (b)

when an emf of 36 V is added in the branch BD as shown in Figure 7(b). All values are in ohm.

]

(a) (b)

Solution

l Solve by any method of network analysis.

l We consider the 36 V source acting alone.

When 72 V sourer is acting alone, by network analysis,

The current in 2 W resistor = 6 A and in 18 W resistor = 1 A
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(a) (b)

By Reciprocity theorem,

72 36
0 5 A

1
I

I
= Þ = × [Here, I = Current in 2 W resistor when

36 V source is acting alone]

\ Current in 2W resistor for simultaneous action of two sources

(6 0.5) 5.5 AI = - =
5.47 An e.m.f. source E, having negligible internal impedance is con-

nected in series with an impedance Z1 to the input terminals 1�2

of a linear, bilateral four terminal network. It produces a current

I2 in impedance ZL connected across the output terminals 3�4.

The emf source is now transferred so as to act, in series with Z2,

between terminal 3�4. Z1 is disconnected and the input terminals

1�2 are short circuited. The short-circuited current traversing

terminals 1�2 is then I1. Prove that the impedance looking into

terminals 1�2 under the first condition is,

1 2
12

1 2

Z I
Z

I I
=

-

Solution Let the impedance looking into terminals 1�2 be Z12.

Thus the network becomes:

\
1 12

E
I

Z Z
=

+

\ Voltage across 1�2, 12
12

1 12

E Z
V

Z Z

´
=

+

So, the circuit becomes as shown.

The given network is linear and bilateral and according to the reciprocity theorem, if the source E is

put across terminals 1�2, the response current flowing through Z2 will be I1 as shown.

Now, if a voltage equal to V12 is applied instead of E, the current flowing through Z2 will be,
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1 1 12 12
12 1

1 12 1 12

I I E Z Z
V I

E E Z Z Z Z

´
´ = ´ = ´

+ +
But, this current is equal to I2.

\ 12
2 1

1 12

Z
I I

Z Z
=

+

Þ 1 2
12

1 2

Z I
Z

I I

æ ö= ç ÷-è ø
(Proved)

5.48 Verify the reciprocity theorem for the ladder network shown in figure.

Solution Let, the three loop currents be I1, I2, and I3. By KVL for the three loops,

1 2(20 10) 10 200 45j I j I+ - = Ð °

1 2 310 20 10 0j I I j I- + + =

2 310 (10 10) 0j I j I+ - =
Solving for I3,

3

(20 10) 10 200 45

10 20 0

0 10 0 200 45 100

(20 10)(200 200 100) 10( 100 100)(20 10) 10 0

10 20 10

0 10 (10 10)

j j

j

j
I

j j j jj j

j j

j j

+ - Ð °
-

Ð ° ´
= =

+ - + - ++ -
-

-

= 2.169 57.53 (A)Ð °
Now by interchanging the positions

of the voltage source and the re-

sponse current, we get,

By KVL,

1 2(20 10) 10 0j I j I+ - =
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1 2 310 20 10 0j I I j I- + + =

2 310 (10 10) 200 45j I j I+ - = Ð °
Solving for I1,

1

0 10 0

0 20 0

200 45 10 0
2.169 57.53 (A)

(20 10) 10 0

10 20 10

0 10 (10 10)

j

j
I

j j

j j

j j

-

Ð °
= = Ð °

+ -
-

-

Since the currents in both the cases are the same, reciprocity theorem is verified.

5.49 In this circuit, find voltage V. Interchange the current source and resulting voltage V and show that

the reciprocity theorem is verified.

Solution Here, the current 2

5 5
5 90 4.64 111.8 (A)

5 5 2 2

j
I

j j

+
= Ð ° ´ = Ð °

+ + -

\ The voltage, 2 4.64 111.8 ( 2) 9.28 21.8 (V)CV I Z j= ´ = Ð ° ´ - = Ð °
Now, interchanging the positions of the current source and the finding the resulting voltage, we get,

I1 = 
2

5 90
2 5 2 5

j

j j

-
Ð ° ´

- + + +

= 1.31 23.2 (A)Ð- °
\ The voltage,

V = 1.31 23.2 (5 5)jÐ- ° ´ +

= 1.31 23.2 7.075 45Ð- ° ´ Ð °

= 9.28 21.8 (V)Ð °
As V is same as obtained before interchanging

the position of the current source, reciprocity

theorem is verified.
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5.50 In the given circuit of the figure, find the reading of the voltmeter V. Interchange the current source

and voltmeter and verify the reciprocity theorem.

1 W1 W

j1 W W
1
j

1 0° (A)–

V

Solution Here, the current I
j

j j2 1 0
1 1

1 1 1 1
0707 45= Ð ´

+
+ + -

= Ðo o. Ab g

\ the voltage, V I ZC= ´ = Ð ´ = Ð2 0 707 45 1 0 707 45. .o ob g b gV

1 W1 W

j1 W W
1
j

1 0° (A)–

V

I1 I2

1 W1 W

j1 W W
1
j

1 0° (A)–

I1 I2

V

Now, interchanging the positions of the current source and the finding the resulting voltage, we get,

I
j j1 1 0
1

1 1 1 1
05 0= Ð ´

- + +
= Ðo o. Ab g

\ the voltage, V j= Ð ´ + = Ð - ´ Ð = Ð05 0 1 1 05 232 2 45 0 707 45. . . .o o o ob g b gV

As �V� is same as obtained before interchanging the position of the current source, reciprocity

theorem is verified.

Millman�s Theorem

5.51 Find the load current using Millman�s theorem. All

values are in ohm.

Solution Here, E1 =1 V, E2 = 2 V, E3 = 3 V

Z1 = 1 J, Z2 = 2 J, Z3 = 3 J

\ Y1 = 1 J, Y2 = 0.5 J, Y3 = 
1

3
 J

By Millman�s theorem, the equivalent circuit is

shown.

\

3

1

3

1

1
1 1 2 0.5 3

3 183 V
1 11 11

1 0.5
3 6

=

=

´ + ´ + ´
= = = =

+ +

å

å

i i
i

i
i

E Y

E

Y
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and
3

1

1 6

11
i

i

Z

Y
=

= = W
å

\

18
18 911 A

10 6 116 58
10

11

E
I

Z
= = = =

+ +
Ans.

5.52 Obtain the potential of node F with respect to node G in the circuit of the figure. All values are in

ohm.

Solution By Millman�s theorem, equivalent voltage is,

V

E Y

Y

i i
i

i
i

= = ´ - ´ + ´ - ´ + ´
+ + + +

==

=

å

å

1

5

1

5

1 1 2 1 2 3 1 3 4 1 4 5 1 5

1 1 2 1 3 1 4 1 5

60

137

/ / / /

/ / / /
V

Equivalent impedance, Z

Yi
i

= =
+ + + +

=

=
å

1 1

1 1 2 1 3 1 4 1 5

60

137

1

5 / / / /
W

Therefore, the current through the 6W resistance is,

I
V

Z
=

+
=

+
=

6

60 137

60 137 6

60

882

/

/
A

Hence, the voltage between the points F and G is,

V IFG = ´ = ´ =6 6
60

882

60

147
Volt

5.53 In the network, two voltage

sources act on the load imped-

ance connected to terminals a, b.

If the load is variable in both re-

actance and resistance, what load

ZL will receive the maximum

power? What is the value of the

maximum power? Use Millman�s

theorem.
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Solution 1 1 1
1

1 1
50 0 50 V; (5 5) ; (0.1 0.1)

(5 5)
= Ð ° = = + W = = = -

+
JV Z j Y j

Z j

2 2 2
2

1 1
25 90 25 V; (3 4) ; (0.12 0.16)

(3 4)
= Ð ° = = - W = = = +

-
JV j Z j Y j

Z j

\ Millman voltage source,

1 1 2 2

1 2

50(0.1 0.1) 25(0.12 0.16)
9.807 78.65 (V)

(0.1 0.1) (0.12 0.16)m

V Y V Y j j j
V

Y Y j j

+ - + +
= = = Ð- °

+ - + +

\ Millman impedance,

1 2

1 1
4.385 15.25 (4.23 1.15)

0.22 0.06mZ j
Y Y j

= = = Ð- ° = - W
+ -

For maximum power transfer to the load, * (4.23 1.15)L mZ Z j= = + W Ans.

\ Maximum power, 
2 2

max

(9.807)
5.68 W

4 4 4.23
= = =

´
m

L

V
P

R
Ans.

5.54 Calculate the load current I in the circuit in the figure by Millman�s theorem.

+
–

15 W

+
–

+
–

5 W2 W2 W

2 V 3 V 5 V

I

Solution By Millman�s theorem, equivalent voltage,

V
EY

Y
= =

+ +

+ +
= =å

å

2

2

3

2

5

5
1

2

1

2

1

5

35

12
2 91667. Volt

and equivalent impedance,

Z
Y

= =
+ +

= =
å

1 1

1

2

1

2

1

5

10

12
0833. W

Therefore the current through the load resistance,

I
V

Z
Ans=

+
=

+
=

15

2 91667

0833 15
0184

.

.
. .A

5.55 Use Millman�s theorem to obtain an equivalent current source for the circuit shown in the figure.

Also obtain the equivalent voltage source.
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4–30° V

+
–

15 W10 W
20 W

j20 W
j30 W

j20 W
100 0° mA– 20 0° mA–

Solution We convert the voltage source into equivalent current source as,

I
V

Z j
= = Ð

+
= Ð -4 30

20 30
01108 26 3

o

o. . Ab g

The modified circuit is shown in figure.

15 W10 W
20 W

j20 W
j30 W

j20 W
100 0° mA– 20 0° mA–

1
1
0
.8

–
2
6
.3
°
m
A

–

Total equivalent current source is,

I j Ans= Ð + Ð - - Ð = - = Ð -100 0 1108 26 3 20 0 89 33 491 10193 288o o o o. . . . . . .b g b gmA

Total equivalent impedance is obtained as,

1 1

10 20

1

20 30

1

15 20
0 059 0 095

Z j j j
j=

+
+

+
+

+
= -. .b g

Þ Z j Ans= +4 73 7 57. . .b g W

Equivalent voltage source is obtained as,

V j Ans= Ð - ´ ´ + = Ð-10193 288 10 4 73 7 57 0 9 29 23. . . . . . .o ob g b gV

5.56 A symmetrical 440V, 3-phase system supplies a star-connected load. The branch impedances are

Z Z ZR Y B= Ð = Ð = Ð10 30 12 45 15 40o o oW W W, , . Assuming the neutral of the supply to be

earthed, calculate the voltage to earth of the star point. Assume the phase sequence RYB.

Solution Here, line voltages are, V V

V
RY YB

BR

= Ð ° = Ð - °
= Ð + °
400 0 400 120

400 120

; ;

\ Phase voltages are

V

V

V

R

Y

B

= Ð - = Ð -

= Ð - - = Ð -
= Ð + - = Ð

400

3
30 254 30

254 120 30 254 150

254 120 30 254 90

o o

o o o

o o o

V

V

V

;

;
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Phase admittances are,

 

Y
Z

Y
Z

Y
Z

R
R

Y
Y

B
B

= =
Ð

= Ð -

= =
Ð

= Ð -

= =
Ð

= Ð -

1 1

10 30
01 30

1 1

12 45
0 0833 45

1 1

15 40
0 0667 40

o

o

o

o

o

o

.

.

.

S

S

S

b g

b g

b g

By Millman�s theorem, the voltage of the load star point with respect to earth is,

V
V Y V Y V Y

Y Y Y

V Ans

N N
R R Y Y B B

R Y B
¢ =

+ +
+ +

= Ð - ´ Ð - + Ð - ´ Ð - + Ð ´ Ð -
Ð - + Ð - + Ð -

= Ð -

254 30 01 30 254 150 0 0833 45 254 90 0 0667 40

01 30 0 0833 45 0 0667 40

1859 119

o o o o o o

o o o

o

. . .

. . .

. . .b g

MULTIPLE-CHOICE QUESTIONS

5.1 Millman�s theorem yields

(a) equivalent voltage source. (b) equivalent voltage or current source.

(c) equivalent resistance. (d) equivalent impedance.

5.2 The superposition theorem is applicable to

(a) current only. (b) voltage only.

(c) both current and voltage. (d)current, voltage and power.

5.3 Superposition theorem is not applicable for

(a) voltage calculations. (b) bilateral elements

(c) power calculations. (d) passive elements.

5.4 Thevenin�s theorem can be applied to calculate the current in

(a) any load. (b) a passive load only.

(c) a linear load only. (d) a bilateral load only.

5.5 Norton�s equivalent circuit consists of

(a) voltage source in parallel with impedance.

(b) voltage source in series with impedance.

(c) current source in parallel with impedance.

(d) current source in series with impedance.

5.6 The superposition theorem is applicable to

(a) linear responses only. (b) linear and non-linear responses.

(c) linear, non-linear and time-variant responses.

5.7 When a source is delivering maximum power to a load, the efficiency of the circuit

(a) is always 50%. (b) depends on the circuit parameters.

(c) is always 75%. (d) none of these.
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5.8 Maximum power transfer occurs at a

(a) 100% efficiency. (b) 50% efficiency.

(c) 25% efficiency. (d) 75% efficiency.

5.9 Which of the following statements is true?

(a) A Norton�s equivalent is a series circuit.

(b) A Thevenin�s equivalent circuit is a parallel circuit.

(c) R-L circuit is dual pair.

(d) L-C circuit is a dual pair.

5.10 For a linear network containing generators and impedances, the ratio of the voltage to the current

produced in other loop is the same as the ratio of voltage and current obtained if the position of the

voltage source and the ammeter measuring the current are interchanged. This network theorem is

known as

(a) Millman�s theorem. (b) Norton�s theorem.

(c) Tellegen�s theorem. (d) Reciprocity theorem.

5.11 Under conditions of maximum power transfer from an ac source to a variable load

(a) the load impedance must also be inductive, if the generator impedance is inductive.

(b) the sum of the source and load impedance is zero.

(c) the sum of the source reactance and load reactance is zero.

(d) the load impedance has the same phase angle as the generator impedance.

5.12 Consider the following statements

The transfer impedances and admittances of a network remain constant when the position of excita-

tion and response are interchanged if the network

1. is linear

2. consists of bilateral elements

3. has high impedance or admittance as the case may be.

4. is resonant.

Out of above these statements

(a) 1 and 2 are correct. (b) 1, 3 and 4 are correct.

(c) 2 and 4 are correct. (d) 1, 2, 3 and 4 are correct.

5.13 In a linear network, the ratio of voltage excitation to current response is unaltered when the position

of excitation and response are interchanged. This assumption stems from the

(a) principle of duality. (b) reciprocity theorem.

(c) principle of superposition. (d) equivalence theorem.

5.14 If all the elements in a particular network are linear, then the superposition theorem hold when the

excitation is

(a) dc only (b) ac only (c) either ac or dc (d) an impulse.

5.15 An a.c source of voltage Es and an internal impedance of Zs =(Rs + jXs) is connected to a load of

impedanceZL = (RL + jXL). Consider the following conditions in this regard

1. XL = Xs, if only XL is varied.

2. XL = Xs, if only XS is varied.

3. 2 2( )L S S LR R X X= + + , if only RL is varied.

4. | | | |L SZ Z=  if the magnitude of ZL is varied, keeping the phase angle fixed.
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Among these conditions, those which are to be satisfied for maximum power transfer from the source

to the load would include

(a) 2 and 3 (b) 1 and 3 (c) 1, 2 and 4 (d) 2, 3 and 4

5.16 Reciprocity theorem is applicable to a network

1. which contains R, L and C as elements.

2. which is initially relaxed system.

3. which has both independent and dependent sources.

Tick out the correct combination from the combination given above

(a) 1 and 2 (b) 1 and 3 (c) 2 and 3 (d) 1, 2 and 3.

5.17 Reciprocity theorem is applicable to

(a) circuits with one independent source

(b) circuits with only one independent source and no dependent source

(c) circuits with any number of independent sources

(d) circuits with any number of sources.

5.18 Substitution theorem is applicable for a network which has

1. unique solution.

2. one or two non-linear elements.

3. one non-linear or time-varying element.

Choose the correct combination from the combination given above

(a) 1 and 2 (b) 1 and 3 (c) 2 and 3 (d) 1, 2 and 3.

5.19 Substitution theorem applies to

(a) linear networks. (b) non-linear networks.

(c) linear time-invariant networks. (d) any networks.

5.20 Which of the following theorems is applicable for both linear and non-linear circuits?

(a) Superposition (b) Thevenin (c) Norton (d) none of these.

5.21 A network is composed of two sub-networks N1 and N2 as shown in the given figure.

If the sub-network N1 contains only linear, bilateral,

time-invariant elements, then it can be replaced by its

Thevenin equivalent even if the sub-network N2

contains

(a) a two-terminal element which is non-linear

(b) a non-linear inductance mutually coupled to an element in N1

(c) an element which is linear, but mutually coupled to some element in N1

(d) a dependent source the value of which depends upon the voltage or current in some element in

N1.

5.22 A certain network consists of two ideal identical voltage sources and a large number of ideal resistors.

The power consumed in one of the resistors is 4W when either of the two sources is active and the

other is replaced by a short-circuit. The power consumed by the same resistor when both the

sources are active would be

(a) zero or 16 W (b) 4 W or 8 W (c) zero or 8 W (d) 8 W or 16 W.

5.23 If a network has all linear elements except for a few non-linear ones, then superposition theorem

(a) cannot hold at all.

(b) always holds.

(c) may hold on careful selection of element values, source waveform and response.

(d) holds in case of direct current excitations.
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5.24 The maximum power that can be dissipated in the load in the circuit shown in figure is

(a) 3 W (b) 6 W (c) 6.75 W (d) 13.5 W

5.25 If Rg in the circuit shown in figure is variable between 20 W
and 80 W, then the maximum power transferred to the load RL

will be

(a) 15 W (b) 13.33 W

(c) 6.67 W (d) 2.4 W

5.26 Thevenin impedance across the terminals AB of the given

network is

(a)
10

3
 W (b)

20

9
 W (c)

13

4
 W (d)

11

5
 W

5.27 The V�I relation for the network shown in the given box is V = 4I � 9.

If now a resistor R = 2 W is connected across it, then the value of I will be

(a) �4.5 A (b) �1.5 A (c) 1.5 A (d) 4.5 A

5.28 In the network shown in the figure, the effective resistance faced by the voltage source is
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(a) 4 W (b) 3 W (c) 2 W (d) 1 W

5.29 For the network shown in the figure, if Vs = V1 and V = 0, then I = �5 A and if Vs = 0 then I = 
1

2
A.

The values of ISC and R1 of the Norton�s equivalent across AB would be respectively

(a) �5 A and 2 W (b) 10 A and 0.5 W (c) 5 A and 2 W (d) 2.5 A and 5 W
5.30 In the network shown in the given figure, the Thevenin source and the impedance across terminals

A�B will be respectively

(a) 15 V and 13.33 W (b) 50 V and 15 W (c) 115 V and 20 W (d) 100 V and 25 W
5.31 Which one of the following combination of open-circuit voltage and Thevenin�s equivalent resis-

tance represents the Thevenin�s equivalent of the circuit shown in the given figure?

(a) 1 V, 10 W (b) 1 V, 1 kW (c) 1 mV, 1 kW (d) 1 mV, 10 W
5.32 For the circuit shown in the given figure, the current through R, when VA = 0 and VB = 15 V is

I ampere. Now, if both VA and VA are increased by 15 V, then the current through R will be

(a) I ampere (b)
2

I
 ampere (c) 3I ampere (d)

3

I
 ampere
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5.33 Thevenin�s equivalent circuit of the network shown in the given figure, between terminals T1 and T2

is

(a) (b)

(c) (d)

5.34 The Thevenin equivalent of the network shown in Figure (a) is 10 V in series with a resistance of 2

W. If now, resistance of 3 W is connected across AB in Figure (b), the Thevenin equivalent of the

modified network across AB will be

(a) (b)

(a) 10 V in series with 1.2 W resistance (b) 6 V in series with 1.2 W resistance

(c) 10 V in series with 5 W resistance (d) 6 V in series with 5 W resistance

5.35 A d.c. current source is connected as shown in Figure below.

The Thevenin�s equivalent of the network at terminals a�b will be

(a)
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(b)

(c)

(d) is NOT feasible

5.36 Which one of the following impedance values of load will cause maximum power to be transferred to

the load for the network shown in the given figure?

(a) (2 + j2) (b) (2 � j2) (c) � j2 (d) 2

5.37 The Thevenin�s equivalent resistance Rth for the given network is

(a) 1 W (b) 2 W (c) 4 W (d) infinity

5.38 The Norton�s equivalent of circuit shown in Figure (a) is drawn in the circuit shown in Figure (b).

The values of ISC and Req in Figure (b) are respectively
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(a)
5

2
 A and 2 W (b)

2

5
 A and 1 W (c)

4

5
 A and 

12

5
 W (d)

2

5
 A and 2 W

5.39 For the circuit shown in the figure, the current flowing through 1W resistor is adjusted to zero by

varying the value of R. What is the value of R?

(a) 2W (b) 3W (c) 4W (d) 6W
5.40 What is the Thevenin�s equivalent between A and B for the circuit shown in the figure?

1 W 1 W

1 W

B

A

4 V 8 A

(a) 12V, 3 2/ W (b) 4V, 3 2/ W (c) 16 3/ V, 2 3/ W (d) 16 3/ V, 3W
5.41 If Thevenin�s equivalent resistance of the circuit shown in the figure seen from the open terminals is

2W, then the value of �R� will be

2 W
+

–

2 W

1 A5 V

R

(a) 4W (b) 2W (c) 1W (d) zero

5.42 L
1

L
2

C
2

C
1

R
1

RL

IL

R
2

+

–

240 V,
50 Hz

+

–
RL

I¢L

Vth

Zth

Figure I Figure II

Thevenin�s equivalent of the network shown in Figure-I would correspond to the network shown in

Figure-II, if one or more of the following conditions are met:

1. ¢ =I IL L

2. The equivalence is valid only if the frequency of Vth is maintained at 50Hz

3. ¢ =I IL L2 , if the voltage Vth is doubled.

The correct set of conditions would include

(a) 1, 2 and 3 (b) 1 and 2

(c) 2 and 3 (d) 1 and 3

5.43 Thevenin�s theorem is not applicable for circuits with

(a) passive load (b) active load

(c) bilateral load (d) none of these
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5.44 In the figure, Z1 = 10Ð�60°, Z2 = 10Ð60°, Z3 = 50Ð53.13°. Thevenin impedance seen from X-Y is

+

–

Z
1

100 0°–

Z
3

Z
2

X

Y

(a) 56Ð45° (b) 60Ð30° (c) 70Ð30° (d) 34.4Ð65°

5.45 Two ac sources feed a common variable resistive load as shown in the figure. Under the maximum

power transfer condition, the power absorbed by the load resistance RL is

+

–

+

–

6 W

RL
90 0°–11 –0 0°

6 W j8 W j8 W

(a) 2200W (b) 1250W (c) 1000W (d) 625W
5.46 In the figure, the value of R is

2 W +

–

+

–

1 W14 W

10 A 5 A

100 V 40 V

R W

(a) 10 W (b) 18 W (c) 24 W (d) 12 W
5.47 In the given figure, the Thevenin�s equivalent pair (volt-

age, impedance), as seen at the terminals P-Q, is given by

(a) (2V, 5W) (b) (2V, 7.5 W)
(c) (4V, 5W) (d) (4V, 7.5W)

5.48 In the figure, the current source is 1Ð0° A, R = 1W, the

impedances are ZC = �jW, and ZL = 2jW. The Thevenin

equivalent looking into the circuit across X-Y is

X

Y

10 W

10 W

20 W 4 V
Unknown

network
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(a) 2 Ð0V, 1 2+ jb g W (b) 2Ð45°V, 1 2- jb g W

(c) 2Ð45°V, 1+ jb gW (d) 2 Ð45°V, 1+ jb gW
5.49 A source of angular frequency 1 rad/s has a source impedance consisting of 1W resistance in series

with 1H inductance. The load that will obtain the maximum power transfer is

(a) 1W resistance

(b) 1W resistance in parallel with 1H inductance

(c) 1W resistance in series with 1F capacitor

(d) 1W resistance in parallel with 1F capacitor

EXERCISES

Reciprocity Theorem

5.1 In the network shown in figure below, verify the Reciprocity Theorem using a voltage source and an

ammeter. What are the methods of verifying the Reciprocity Theorem? All values are in ohm.

5.2 Find the current in the 6 W resistor and the source current in Figure (a). Hence, determine the current

in the 3 W resistor when an emf of 72 V is added in series with the 6 W resistor as shown in

Figure (b). [ 0.5 A, 6 A]

(a) (b)

5.3 In this circuit, find the voltage V. Interchange the current source and resulting voltage V and show

that the reciprocity theorem is verified. [9.28Ð21.8° (V)]
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5.4 Two sets of measurements are made on a linear passive resistive network in Figure (a) and (b). Find

the current through the 2W resistor. [2 A]

(a) (b)

Millman�s Theorem

5.5 Find the load current using Millman�s theorem. All values are in ohm. [1.176 A]

5.6 Using Millman�s theorem, find the current in the load impedance, ZL =(2 + j4) W
[1.06Ð�58.46° (A)]

5.7 Determine the current through the branch AB using Millman�s theorem.
36

A
67

é ù
ê úë û
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Thevenin�s and Norton�s Theorems

5.8 Determine the Thevenin equivalent circuit with respect to the terminals A and B for the circuit shown

in the figure and hence the current flowing through 10 W resistor. [0.75 A]

5.9 Find the Thevenin equivalent circuit for the following networks

(i)

(ii)

(iii)

[(i) 0; � 0.33 W (ii) 8 V; 10 kW (iii) 25 V; 350 W]

5.10 Determine the current in the branch AB for the circuit shown in figure by using Thevenin�s theorem.

[1.818 A]
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5.11 Find Norton�s equivalent at terminals a�b. [0 A; 10.64 W]

5.12 Use Thevenin�s theorem to find the current supplied by the battery.

[RTh = 33.34 W; VTh = 10 V; i = 0.3A]

50 W50 W

10 W 10 W

30 W10 V
+

–

10 W

5.13 Find the Thevenin equivalent circuit with respect to the terminals A and B.

(a) 50 W

v
1

200 W100 W 0.1 v
1

A

B

+ –

(b)
4 W

10 i
x

+

–

1 W

2 W

i
x

A

B

(c)
5 W

3 W

A

B

+

–

– 4j W

20 0° ( )–9 V

j10 W
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(d)

5 W

5 30°(A)–

5 W

j5 W j5 W

A

B

10 W

[(a) VTh = 0; RTh = 10.64W; (b) VTh = 0; RTh = 1W;

(c) VTh = 10Ð0° (V); ZTh = 5.59Ð� 26.6° (W);
(d) VTh = 11.18Ð93.44° (V); ZTh = 5Ð36.87° (W)]

5.14 Compute I0 using Norton�s theorem.

I0

2 W

1
4
F

1
2
F

+ –

5 cos 2 (V)t

4 H

I t0 0542 2 77 47= -. cos . od i b gA

Maximum Power Transfer Theorem

5.15 Determine the value of the resistor RL that will draw maximum power from the rest of the circuit. What

is the maximum power? [4.22 W, 2.901 W]

5.16 The circuit operates in the sinusoidal steady state with w = 1000 rad/s and 1 0 A(rms)sI = Ð ° . Find

the value of the load impedance for maximum average power transfer. Also, find the average power

absorbed by the load under this condition. [ (1500 + j1000) W; 83.33 W]
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5.17 Determine ZL so that the maximum power is absorbed by it. [40Ð0° V; (8 � j20) W, 50 W]

5.18 Determine the value of R such that the 6W resistor consumes the maximum power. [R = �18 W]

5.19 Find the value of the resistance R for maximum power to be transferred to it. Also, find the maximum

power.

(a)

60 W30 W

40 W60 W

60 V 100 V

50 V
R

(b)

+

–

1 W

1 W

2 W

10 V R

(c)

+
–

+
–

40 W20 W

i1

10 i1

R

50 V

[(a) 44 W, 0.568W; (b) 4.5 W, 1.39W; (c) 16W]
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Superposition Theorem

5.20 Apply superposition theorem to the circuit to find i3. [�0.75 A]

5.21 Find the current i0 using superposition theorem. [�0.4706 A]

5.22 Use superposition theorem to find the voltage Vx. [12.5V]

20 W

0.1 Vx

Vx

4 W10 V 2 A
+
–

5.23 Determine the voltage vx in the circuit using superposition theorem. [�38.5V]

+
–

vx
+
–

0.1 vx

4 W2 W

50 V 100 V

+ –

5.24 Use superposition theorem to find the voltage vx. 5 2 56 500 39 8+ -. sin .t od i b gV

vx
+
–

2 mF

1 W5 W

20 sin 50 (V)t 6 V

+

–

+
–
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5.25 Find the current through the capacitor using superposition theorem. [4.86Ð80.8° (A)]

5 W

10 0° (V)–
+
–

+
–

2 –0 0° (V) – 5j W

j1 W

5.26 Find the current ix by the superposition theorem. [5A]

+
–

4 ix

1 W5 W

20 V 30 A
+
–

ix

5.27 Find v0 using superposition theorem.

+
–

+
–

v0 4 W

1 W

5 V

2 sin 5 (A)t

10 cos 2 (V)t

+ –2 H

0.1 F

v t t0 1 2 498 2 30 79 2 328 5 10= - + - + +. cos . . sino oc h c h V

SHORT-ANSWER TYPE QUESTIONS

5.1 State and explain substitution theorem.

5.2 State and explain superposition theorem. Give a proof for a general n-mesh network indicating the

conditions under which it is applicable.

5.3 State reciprocity theorem as applied to a network and give a proof of the same for a general network.

Mention two networks where this theorem is not applicable.

5.4 State Thevenin�s theorem and give a proof of the same. Mention one example of a network where

this network is not applicable.

5.5 (a) State Norton�s theorem as applied to a network and give a proof of the same.

(b) What is �Dual Network�? Mention the procedure for drawing the dual of a given network.

5.6 State and prove maximum power transfer theorem.

or

In the circuit, the source emf ES, resistance RS and reactance jXS

are fixed but both the load resistance RL and reactance jXL are

variable. Show that maximum power is consumed in the load when

XL = �XS and RL = RS.
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Prove that the load impedance which absorbs the maximum power from a source is the conjugate of

the impedance of the source.

5.7 State and prove the following theorem

(a) Tellegen�s theorem.

(b) Millman�s theorem.

(c) Compensation theorem.

5.8 State and explain clearly Thevenin�s theorem as applied in ac circuits.

5.9 State and explain Thevenin�s theorem, specify the types of network to which it is applicable. Also,

state the theorem which is the dual of the above theorem.

5.10 State maximum power transfer theorem for all the various kinds of networks and loads.

5.11 State maximum power transfer theorem. Derive conditions for maximum power transfer for a resistive

network and resistive load.

5.12 Prove the condition for maximum power transfer for an ac circuit.

5.13 A source with internal impedance RS + jXS delivers power to a variable load impedance RL + j0. Show

that the condition for maximum power in the load is R R XL S S
2 2 2= + .

5.14 State maximum power transfer theorem and verify that only 50% of the total power supplied by the

source can be transferred to load.

Or,

State and explain maximum power transfer theorem. Derive the expression for efficiency for maximum

power transfer.

5.15 Derive the condition for maximum power transfer for

(a) Load impedance with variable resistance and variable reactance

(b) Load impedance with variable resistance and fixed reactance

5.16 State and clearly prove, with the help of a suitable example, the maximum power transfer theorem as

applicable to RLC circuits excited from the sinusoidal energy source. Hence explain clearly the

concept and its significance in impedance matching.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

5.1 (b) 5.2 (c) 5.3 (c) 5.4 (a) 5.5 (c) 5.6 (a) 5.7 (a)

5.8 (b) 5.9 (d) 5.10 (d) 5.11 (c) 5.12 (a) 5.13 (b) 5.14 (c)

5.15 (d) 5.16 (a) 5.17 (b) 5.18 (b) 5.19 (d) 5.20 (d) 5.21 (a)

5.22 (a) 5.23 (a) 5.24 (a) 5.25 (c) 5.26 (d) 5.27 (b) 5.28 (d)

5.29 (c) 5.30 (c) 5.31 (b) 5.32 (a) 5.33 (a) 5.34 (b) 5.35 (d)

5.36 (d) 5.37 (b) 5.38 (d) 5.39 (b) 5.40 (c) 5.41 (c) 5.42 (a)

5.43 (b) 5.44 (a) 5.45 (d) 5.46 (d) 5.47 (a) 5.48 (d) 5.49 (c)





CHAPTER

6
Laplace Transform

and its Applications

6.1 INTRODUCTION

Classical methods of solving differential equations become quite cumbersome when used for net-

works involving higher order differential equations. In such cases, Laplace Transform method is

used.

The classical methods consist of three steps:

(i) determination of complementary function,

(ii) determination of particular integral, and

(iii) determination of arbitrary constants.

But, these methods become difficult for the equations containing derivatives; and transform

methods prove to be superior.

The Laplace transform is an integral that transforms a time function into a new function of a

complex variable. The term Laplace comes from the name of the French mathematician Pierre Simon

Laplace (1749�1827). The transformation method is a very effective tool for solving integro-differential

equations.

Laplace transformation is also a very powerful tool for network analysis. Any linear circuit

consisting of linear circuit elements can be solved by the knowledge of Laplace transformation.

In this chapter, we will first discuss the basics of Laplace transformation and then apply this

transform method to study the transient behaviour of electric circuits.

6.2 ADVANTAGES OF LAPLACE TRANSFORM METHOD

Laplace transforms methods offer the following advantages over the classical methods.

1. It gives complete solution.
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2. Initial conditions are automatically considered in the transformed equations.

3. Much less time is involved in solving differential equations.

4. It gives systematic and routine solutions for differential equations.

6.3 DEFINITION OF LAPLACE TRANSFORM

Let f (t) be a function of time which is zero for t < 0 and which is arbitrarily defined for t > 0,

subject to some mild conditions. Then the Laplace Transform of the function f (t), denoted by F (s)

is defined as,

0 _

[ ( )] ( ) ( )
¥

-= = òL
stf t F s f t e dt

Thus, the operator L[ ] transforms f(t), which is in time domain, into F(s), which is in the complex

frequency domain, or simply the s-domain, where,

s = Complex frequency (unit is in Hz) = (s + jw)

where, s = Real part of s = neper frequency and w = Imaginary part of s = radian frequency.

NB: The lower limit of the integration should be 0� instead of 0+ or simple 0. If f (t) is continuous

at t = 0, then the value of f (0) is well-defined. But, if f (t) is not continuous at t = 0, then the

meaning of f(0) becomes ambiguous. To consider the effect of �instantaneous energy transfer� we

must use 0� as the lower limit to include the impulses at t = 0. The use of 0 will exclude the existence

of any impulses at the origin.

So, we use 0� as the lower limit.

6.4 BASIC THEOREMS OF LAPLACE TRANSFORM

1. Linearity Theorem If Laplace transform of the functions f1(t) and f2(t) are F1(s) and F2(s)

respectively, then Laplace transform of the functions [K1 f1(t) + K2 f2(t)] will be [K1 F1(s) + K2 F2(s)].

L[K1 f1(t) + K2 f2(t)] = [K1 F1(s) + K2 F2(s)]

where, K1 and K2 are constants.

2. Scaling Theorem If Laplace transform of f (t) is F(s), then

L[f(Kt)] = ( )1 s
F

K K
, where K is a constant and K > 0.

3. Time Differentiation Theorem If Laplace transform of f (t) is F(s), then,

( )
( ) (0 )

df t
sF s f

dt -
é ù = -ê úë û

L

4. Frequency Differentiation Theorem If Laplace transform of f (t) is F(s), then,

( )
[ ( )]

dF s
L tf t

ds
= -
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5. Time Integration Theorem If Laplace transform of f (t) is F(s), then,

0

( )
( )

t F s
f t dt

s

é ù
=ê ú

ë û
òL

In general, for nth order integration,

1 2

1 2
0 0 0

( )
... ( ) ...

ntt t

n n

F s
f t dt dt dt

s

é ù
=ê ú

ë û
ò ò òL

6. Shifting Theorem The shifting may be done with respect to time or frequency.

(a) Time Shifting Theorem

If Laplace transform of f (t) is F (s), then

[ ( )] ( )±± =L
asf t a e F s

(b) Frequency Shifting Theorem

If Laplace transform of f(t) is F(s), then

[ ( )] ( )= ±m
L

ate f t F s a

7. Initial Value Theorem If the Laplace Transform of f (t) is F (s) and the first derivative of f (t)

is Laplace transformable, then, the initial value of f (t) is,

0
(0 ) Lt ( ) Lt [ ( )]

t s
f f t sF s+

® ®¥
= =

Proof
0

( )
( )

-

¥
-é ùé ù = ê úê úë û ë û

òL
stdf td

f t e dt
dt dt

or
0

( )
( ) (0 )

-

¥
-

-
é ù- = ê úë û

ò stdf t
sF s f e dt

dt
[by time differentiation theorem]

Taking limit s ® ¥,

0

( )
Lt [ ( ) (0 )] Lt

-

¥
-

-
®¥ ®¥

é ù- = ê úë û
ò st

s s

df t
sF s f e dt

dt

or
0

0

0 0

( ) ( )
Lt [ ( )] (0 ) Lt st

s s

df t df t
sF s f e dt e dt

dt dt

+

+
-

¥
-

-
®¥ ®¥

é ù
- = +ê ú

ê úë û
ò ò

or
0

0

0

( )
Lt [ ( )] (0 ) Lt
s s

df t
sF s f e dt

dt

+

-

-
®¥ ®¥

é ù
- = ê ú

ê úë û
ò [as s is not a function of time t]

or
0

0

Lt [ ( )] (0 ) Lt ( ) (0 ) (0 )
s s

sF s f df t f f

+

-

+
- -

®¥ ®¥
- = = -ò

or (0 ) Lt [ ( )]
s

f sF s+

®¥
=
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8. Final Value Theorem If a function f (t) and its derivatives are Laplace transformable, then the

final value of f (t) is,

0
( ) Lt ( ) Lt [ ( )]

t s
f f t sF s

®¥ ®
¥ = =

Proof
0

( )
( )

-

¥
-é ùé ù = ê úê úë û ë û

òL
stdf td

f t e dt
dt dt

or
0

( )
( ) (0 ) stdf t

sF s f e dt
dt

-

¥
-

-
é ù- = ê úë û

ò [by time differentiation theorem]

Taking limit s ® 0,

[ ]
0 0 0 0 0

( ) ( ) ( )
Lt ( ) (0 ) Lt Lt

- - -

¥ ¥
-

-
® ® ®¥

é ù é ù æ ö- = = = ç ÷ê ú ê ú è øë û ë û
ò ò ò

t
st

s s t

df t df t df t
sF s f e dt dt dt

dt dt dt

or [ ] [ ]
0

Lt ( ) (0 ) Lt ( ) (0 )
s t

sF s f f t f- -
® ®¥

- = -

or [ ] [ ]
0

Lt ( ) (0 ) Lt ( ) (0 )
s t

sF s f f t f- -
® ®¥

- = -

or [ ] [ ]
0

Lt ( ) Lt ( )
t s

f t sF s
®¥ ®

=

This theorem is only applicable if the value of the function f (t) is finite as t becomes infinity, i.e.,

F (s) has all poles lying in the left half of s-plane or at most one simple pole at the origin.

6.5 LAPLACE TRANSFORM OF SOME BASIC FUNCTIONS

1. Exponential Function

( ) atf t e=
By definition of Laplace transform,

( )
( )

0 0 0

1 1
( ) [ ( )] 0

( ) ( ) ( )

¥¥ ¥ -
- -

- - -

é ù æ ö= = × = = = - =ç ÷ê ú- - -è øë û
ò ò

a s t
at st a s t e

F s L f t e e dt e dt
a s a s s a

Similarly, for ( ) atf t e-= , 
1

( )F s
s a

=
+

2. Unit Step Function or, Heaviside Unit Function

( ) ( ) 1f t u t= =  for t > 0

= 0 for t < 0

and is undefined for t = 0. Figure 6.1(a) Unit step function
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0 0 0

( ) [ ( )] ( ) 1

1 1
0

¥¥ ¥ -
- -

- - -

é ù
= = × = × = ê ú-ë û

= - =
-

ò ò
st

st st e
F s L f t u t e dt e dt

s

s s

Also, the Laplace transform of step function of magnitude K is

[ ( )]
K

L Ku t
s

=

Similarly, the Laplace transform of the shifted unit step function u (t � T) is,

[ ( )]
-

- =L

sTe
u t T

s
{by differentiation theorem}

Another function, called gate function can be obtained from step function as follows.

Figure 6.2 Gate function

Therefore, g(t) ( ) ( )Ku t a Ku t b= - - -  and, [ ( )] ( )as bsK
L g t e e

s
- -= -

3. The Sine Function

f (t) = 
1

sin [ ]
2

j t j tt e e
j

w ww -= -

F(s) = 
0

1
[ ( )] [ ]

2
j t j t stL f t e e e dt

j
w w

¥
- -

-

é ù= - ×ê úë û
ò ( ) ( )

0

1
[ ]

2
j s t j s te e dt

j
w w

¥
- - +

-
= -ò

2 2

1 1 1

2 j s j s j s

w
w w w

é ù= - =ê ú- + +ë û
4. The Cosine Function

f (t) = 
1

cos [ ]
2

j t j tt e ew ww -= +

F(s) = 
0

1
[ ( )] [ ]

2
j t j t stL f t e e e dt

j
w w

¥
- -

-

é ù= - ×ê úë û
ò

( ) ( )

2 2
0

1 1 1 1
[ ]

2 2
j s t j s t s

e e dt
s j s j s

w w

w w w

¥
- - +

-

é ù= + = + =ê ú- + +ë û
ò

Figure 6.1(b) Shifted unit step

function
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5. The Hyperbolic Sine Function

f (t) = 
1

sinh [ ]
2

at atat e e-= -

F(s) = 
0

1
[ ( )] [ ]

2
at at stL f t e e e dt

j

¥
- -

-

é ù= - ×ê úë û
ò

( ) ( )

2 2
0

1 1 1 1
[ ]

2 2
a s t a s t a

e e dt
s a s a s a

¥
- - +

-

é ù= - = - =ê ú- + -ë û
ò

6. The Hyperbolic Cosine Function

f (t) = 
1

cosh [ ]
2

at atat e e-= +

F(s) = 
0

1
[ ( )] [ ]

2
at at stL f t e e e dt

¥
- -

-

é ù= + ×ê úë ûò

( ) ( )

2 2
0

1 1 1 1
[ ]

2 2
a s t a s t a

e e dt
s a s a s a

¥
- - +

-

é ù= + = + =ê ú- + -ë û
ò

7. The Damped Sinusoidal Function

f (t) = 
( ) ( )1 1

sin [ ] [ ]
2 2

at at j t j t a j t a j te t e e e e e
j j

w w w ww- - - - - - +ì ü ì ü× = × - = -í ý í ý
î þ î þ

F(s) = ( ) ( )

0

1
[ ( )] [ ]

2
a j t a j t stL f t e e e dt

j
w w

¥
- - - + -

-

é ù= - ×ê úë û
ò

= ( ) ( )

0

1
[ ]

2
s a j t s a j te e dt

j
w w

¥
- + - - + +

-
- ×ò

= 
2 2

1 1 1

2 {( ) } {( ) } ( )j s a j s a j s a

w
w w w

é ù- =ê ú+ - + + + +ë û
8. The Damped Cosine Function

f (t) = { } { }( ) ( )1 1
cos [ ] [ ]

2 2
at at j t j t a j t a j te t e e e e ew w w ww- - - - - - +× = × + = +

F(s) = ( ) ( )

0

1
[ ( )] [ ]

2
a j t a j t stL f t e e e dtw w

¥
- - - + -

-

é ù= + ×ê úë ûò

= ( ) ( )

0

1
[ ]

2
s a j t s a j te e dtw w

¥
- + - - + +

-
+ ×ò

= 
2 2

( )1 1 1

2 {( ) } {( ) } ( )

s a

s a j s a j s aw w w

+é ù+ =ê ú+ - + + + +ë û
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9. The Ramp Function

( ) nf t t=

0

( ) [ ( )] [ ]n n stF s L f t L t t e dt
¥

-

-
= = = ×ò

Integrating by parts, let,

u = tn and dv = e�st dt

then 1ndu nt -= and
st

st e
v e dt

s

-
-= = -ò

Now, F(s) = ( 1)
0 0

0 0 0

[ ( )] | [ ]
n

st n stt n
f t udv uv vdu e t e dt

s s

¥ ¥ ¥
¥ - ¥ - -
- -

- - -
= = - = - +ò ò òL

= ( 1) ( 1) ( 2)( 1)
[ ] [ ]n st n nnn n n

t e dt L t L t
s s s s

- - - --
× = = ×ò

= 0( 1) ( 2) 2 1
...... [ ] [ ( )]

n

n nn n
L t L u t

s s s s s s

- - Ð× × × =

= 
1

1
n n

n n

ss s +
Ð Ð× =

For n =1, 
2

1
[ ]t

s
=L

For n =2, 2

3

2
[ ]t

s

Ð=L

10. Impulse Function or Dirac Delta Function [d (t)]

It is a function of a real variable t, such that the function is zero

everywhere except at the instant t = 0. Physically, it is a very

sharp pulse of infinitesimally small width and very large magni-

tude, the area under the curve being unity.

Consider a gate function as shown in Fig. 6.4.

The function is compressed along the time-axis and stretched

along the y-axis, keeping area under the pulse unity. As a ® 0,

the value of 
1

a
®¥  and the resulting function is known as impulse.

It is defined as, d (t) = 0 for t ¹ 0

and ( ) 1t dtd
¥

-¥
=ò

Also, d (t) = 
0

1
Lim [ ( ) ( )]
a

u t u t a
a®

- -

The Laplace transform of the impulse function is obtained as,

L [d (t)] [ ]{ }0

1
Lim ( ) ( )
a

L u t u t a
a®

= - -

Figure 6.4 Generation of impulse

function from gate

function

Figure 6.3 Ramp function



6.8 Circuit Theory and Networks

0

1 1
Lim

as

a

e

a s s

-

®

é ù
= -ê ú

ë û

0

1
Lim

as

a

e

as

-

®

-
=

0
Lim [by L�Hospital�s rule]

as

a

se

s

-

®
=

= 1

6.6 LAPLACE TRANSFORM TABLE

Table 6.1 Standard Laplace Transforms

Sl. No. Functions [ f(t)] Laplace Transform [F(s)]

in Time(t) Domain in Frequency(s) Domain

Definition If f (t) is Laplace transformable then L[ f (t)] = F(s) =
0

( )
St

f t dte
¥

-

-
ò

1 U(t) (unit step function)
1

s

2 U(t � T ) (unit step function shifted/delayed by T )
sTe

s

-

3 d (t) (unit impulse) 1

4 eat (exponential function)
1

s a-

5 e�at (exponential function)
1

s a+

6 sin w t (sine function)
2 2s

w

w+

7 cos wt (cosine function)
2 2

s

s w+

8 t n (n = 1, 2, 3, ��) (ramp function)
1

!
n

n

s +

9 t (unit ramp function)
2

1

s

10 e�at sin wt (damped sine function)
2 2( )s a

w

w+ +

(Contd)
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11 e�at cos wt (damped cosine function)
2 2

( )

( )

s a

s a w

+
+ +

12 e�at t n (damped ramp function)
1

!

( )n

n

s a ++

13 ( )
d
f t

dt
 (Differentiation theorem) ( ) (0 )sF s f- -

14
0

( )
t

f t dtò  (Integration theorem)
( ) (0 )F s f

s s

-+

15 sinh wt (hyperbolic sine function)
2 2s

w

w-

16 cosh wt (hyperbolic cosine function)
2 2

s

s w-

17 e�at sinh wt (damped hyperbolic sine function)
2 2( )s a

w

w+ -

18 e�at cosh wt (damped hyperbolic cosine function)
2 2

( )

( )

s a

s a w

+
+ -

19 Initial value theorem
0

Lt ( ) Lt ( )
t s

f t sF s
® ®¥

=

20 Final value theorem
0

Lt ( ) Lt ( )
t s

f t sF s
®¥ ®

=

21 Shifting theorem ( )f t a± ( )ase F s±

6.6.1 Other Important Laplace Transforms

1 d (t) 1

2 d (t � a) e� as

3 d (t � a) g(t) e�as g(a)

Note: g(a) NOT G(a)

4 2

2
sin 1

1

nz tn
ne tww

w z
z

- -
-

2

2 2
( 1)

2

n

n ns s

w
z

zw w
<

+ +

5 2

2
1 sin ( 1 ),

1

nt

n

e
z t

zw

w q
z

-
- - +

-

2

2 2
( 1)

( 2 )

n

n ns s s

w
z

zw w
<

+ +

where q = cos�1 z

(Contd)
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6.7 LAPLACE TRANSFORM OF PERIODIC FUNCTIONS

If f(t) is periodic with time period T (> 0), so that f(t + T) = f(t), then the Laplace transform of the

function is equal to 1

1 Tse-
æ ö
ç ÷-è ø

 times the Laplace transform of the first cycle.

\
1

1
[ ( )] ( ) ( )

1 Ts
f t F s F s

e-
é ù= = ê ú-ë û

L

Proof

Let f(t) be the periodic function, and

T be the time period,

Let f1(t), f2(t), � , fn(t) be the functions representing the first, second, �, nth cycle, respectively

\ f (t) = f1(t) + f2(t) + � + fn(t) + �

= f1(t) + f1(t � T) + f1(t � 2T) + �

Taking Laplace transform,

L[ f(t)] = F(s) = 1 1 1[ ( )] [ ( )] [ ( 2 )] ...L f t L f t T L f t T+ - + - +

= 2
1 1 1( ) ( ) ( )Ts TsF s e F s e F s- -+ + +¼

= 2 3
1( )[1 ]Ts Ts TsF s e e e- - -+ + + +¼

Therefore, 1

1
( ) ( )

1 Ts
F s F s

e-
é ù= ê ú-ë û

Example 6.1  Find the Laplace transform of the square wave.

Figure 6.5(a) Square wave of Example 6.1

Solution The first cycle is shown below.

It can be written as,

f1(t) = u(t) � 2u(t � T) + u(t � 2T)
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Taking Laplace transform of the first cycle,

F1(s) = 
2

21 2 1
(1 )

Ts Ts
Tse e

e
s s s s

- -
-- + = -

By the theory of time periodicity, the Laplace

transform of the square wave is given as,

F (s) = 2

2

1 1
(1 )

1

Ts

Ts
e

s e

-
-- ´

-

(Since time period of the square wave is

2T)

= 
11 1

tanh
21

Ts

Ts

e Ts

s se

-

-

æ ö- æ ö= ç ÷ç ÷ è ø+è ø

6.8 SINGULARITY FUNCTIONS AND WAVEFORM SYNTHESIS

In order to synthesise any signal, there are some standard singularity functions which can be realised

in the laboratory. Other signals can be written in terms of these singularity functions. Those

singularity functions are

1. Step Function,

2. Ramp Function,

3. Impulse Function, and

4. Unit Doublet Function.

1. Step Function This function is also known as Heaviside

unit function. It is defined as given below.

f t u t for t

for t

( ) ( )= = >
= <

1 0

0 0

and is undefined at t = 0.

A step function of magnitude K is defined as,

f t Ku t K for t

for t

( ) ( )= = >
= <

0

0 0

and is undefined at t = 0.

A shifted or delayed unit step function is defined

as,

f t u t T for t T

for t T

( ) ( )= - = >
= <

1

0

and is undefined at t = T.

Figure 6.5(b) First cycle of the

square wave of

Example 5.1

Figure 6.6(a) Unit Step Function

u t( )

1

0 t

Ku t( )

K

0 t

Figure 6.6(b) Step function of magnitude K
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The Laplace transform of a unit step function is given as,

F s L f t u t e dt e dt
e

s

s s

st s t
st

( ) ( ) ( ). .= = = =
-

L
NM

O
QP

= -
-

=

- -
-

-

¥

-

¥

-

¥

zz 1

0
1 1

00 0

Also, the Laplace transform of step function of magnitude K

is L Ku t
K

s
[ ( )] =

Similarly, the Laplace transform of the shifted unit step function u (t � T) is,

L u t T
e

s

sT

( )- =
-

{by differentiation theorem}

Another function, called gate function can be obtained from step function as follows.

Therefore, g(t) = - - -Ku t a Ku t b( ) ( )

L g t
K

s
e eas bs( ) = -- -d i

0

K

a b

g t( )

Figure 6.7 Gate Function

2. Ramp Function A unit ramp function is defined as,

f t r t t for t

for t

b g b g= = ³
= <

0

0 0

A ramp function of any slope K is defined as,

f t Kr t Kt for t

for t

b g b g= = ³
= <

0

0 0

A shifted unit ramp function is defined as,

f t r t T t for t T

for t T

b g b g= - = ³
= <0

The Laplace transform of a unit ramp function is,

L r t r t e dt te dts t s tb g = =- -

-

¥

-

¥

zz ( ).
00

Integrating by parts, let,

u = t and dv = e� s tdt

then du = dt and v e dt
e

s
st

st

= = --
-

z

u t( –T)

1

0 tT

Figure 6.6(c) Shifted Unit

Step Function

r(t)

0

1
1

t

Figure 6.8(a) Unit Ramp Function

Kr t( )

0

K
1

t

Figure 6.8(b) Ramp Function
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Now, L r t udv uv vdu
t

s
e

s
e dt

s
e dt

s

st st

st

( ) |= = - = -L
NM

O
QP

+

=

=

-

¥

-
¥

-

¥
-

-

¥
-

-

¥

-

-

¥

z z z

z
0

0

0 0 0

0

2

1

1

1

d i

Similarly, Laplace transform of a ramp of slope K is,

L Kr t
K

s
( ) =

2

and Laplace transform of a shifted ramp function is,

L Kr t T
Ke

s

Ts

( )- =
-

2

3. Impulse Function This function is also known as Dirac Delta function, denoted by d (t).

This is a function of a real variable t, such that the function is zero everywhere except at the instant

t = 0. Physically, it is a very sharp pulse of infinitesimally small width and very large magnitude, the

area under the curve being unity.

Consider a gate function as shown in Fig. 6.9.

f t( )

0
t

3/a

2/a

1/a

a/3 a/2 a

Figure 6.9 Generation of impulse function from gate function

The function is compressed along the time-axis and stretched along the y-axis, keeping area under

the pulse unity. As a ® 0, the value of 
1

a
®¥  and the resulting function is known as impulse.

It is defined as,

d t for tb g = ¹0 0

and d ( )t dt =
-¥

¥

z 1

Also, d t
a
u t u t a

a
a f = - -Lim

0

1
( ) ( )

r t( –T)

0

1
1

t

Figure 6.8(c) Shifted Unit

Ramp Function
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The Laplace transform of the impulse function is obtained as,

L t L
a

u t u t a

a s

e

s

e

as
se

s
by L Hospital s rule

a o

a o

as

a o

as

a o

a s

d b g = - -RST
UVW

= -
L
NM

O
QP

= -

=

=

-

-

-

Lim

Lim

Lim

Lim

1

1 1

1

1

( ) ( )

[ ' ' ]

4. Unit Doublet Function The derivative of unit impulse function with respect to time at any

instant of time is known as unit doublet function. It is defined as,

d

dt
t T t T for t

and for t T

d d- = - = ¹

= + ¥ - ¥ =
b g b g 0 0

The name of the function is given as doublet because it can be obtained from the function shown

in Fig.6.10 (a) with a ® 0.

f t( )
1
a2

1
a2

–

–a

a t

f t( )

t

–•

•

Figure 6.10(a) Generation of Unit Doublet Figure 6.10(b) Unit Doublet Function

Function with a ® 0

The Laplace transform of a unit doublet function is obtained as,

L t T L
d
dt

t T sL t T se Ts¢ - = -L
NM

O
QP
= - = -d d da f a f a f

6.9 INVERSE LAPLACE TRANSFORM

Let, F(s) have the general form of

( )
( )

( )

N s
F s

D s
=



Laplace Transform and its Applications 6.15

where, N(s) is the numerator polynomial and D(s) is the denominator polynomial. The roots of N(s) =

0 are called the zeros of F(s) while the roots of D(s) = 0 are the poles of F(s).

For example, for the function 
1

( )
( 2) ( 3)

s
F s

s s s

-
=

- -
, the zero is at s = 1 and the poles are at s =

0, 2 and 3.

We use Partial Fraction Expansion to break F(s) down into simple terms. Thus, there are two

steps to find inverse Laplace transform as given below.

I. Decomposition of F(s) into simple terms using Partial Fraction Expansion.

II. Evaluation of the inverse of each term comparing with the standard forms of Laplace trans-

forms.

We consider the following three cases given below.

I. Simple Poles

Let F(s) = 
1 2 3

( )

( ) ( ) ( ) ( )n

N s

s p s p s p s p+ + + ¼ +

where, s = �p1, �p2 �p3, �, �pn are the simple poles, and pi ¹ pj for all i ¹ j (i.e. poles are distinct)

Assuming that the degree of N(s) is less than the degree of D(s),

31 2

1 2 3

( ) n

n

k kk k
F s

s p s p s p s p
= + + +¼+

+ + + +
(1)

where, expansion co-efficients k1, k2, k3, �, kn are known as the residues of F(s). These can be

found out by Residue method explained below.

Multiplying both sides of Eq. (1), by (s + p1),

1 3 11 2
1 1

2 3

( ) ( )( )
( ) ( ) n

n

s p k s p ks p k
s p F s k

s p s p s p

+ ++
+ = + + +¼+

+ + +
Putting

11 1 1( ) ( )|s ps p s p F s k= -= - Þ + =

In general, ( ) ( )|
ii i s pk s p F s =-= + . This is known as Heaviside�s Theorem.

Once, the values of ki are known, the inverse Laplace is obtained as,

31 2
1 2 3( ) ( ) ( )np t p tp t p t

nf t k e k e k e k e u t- -- -= + + +¼+

Example 6.2  Find the inverse Laplace transform of the function,

2 1
( )

( 1) ( 2) ( 3)

s
F s

s s s

+
=

+ + +
.

Solution Let F (s) = 31 22 1

( 1) ( 2) ( 3) 1 2 3

kk ks

s s s s s s

+
= + +

+ + + + + +

\ k1 = 1

1

2 1 1
( 1) ( )|

( 2) ( 3) 2s

s

s
s F s

s s=-
=-

+
+ = = -

+ +
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\ k2 = 2

2

2 1
( 2) ( )| 3

( 1) ( 3)s

s

s
s F s

s s=-
=-

+
+ = =

+ +

\ k3 = 3

3

2 1 5
( 3) ( )|

( 1) ( 2) 2s

s

s
s F s

s s=-
=-

+
+ = = -

+ +

\ F(s) = 
1 3 5

2( 1) 2 2( 3)s s s
- + -

+ + +

Thus, the inverse Laplace transform is given as,

f (t) = 2 �31 5
3

2 2
t t te e e- -- + -

II. Repeated Poles

Suppose, F(s) has n repeated poles at s = � p.

\ F(s) = 
1 2 2 1

11 2 2
( )

( )( ) ( ) ( ) ( )

n nn

n n n

k kk k k
F s

s ps p s p s p s p

- -
- -+ + +¼+ + +

++ + + +

where, F1(s) is the remaining part of F(s) that does not have a pole at s = �p.

We find,

\ kn = ( ) ( )|n
s ps p F s = -+

To find kn � 1, kn � 2,�, kn � m, the procedure is,

kn�1 = [( ) ( )]n

s p

d
s p F s

ds =-
+

kn�1 = 
2

2

1
[( ) ( )]

2!
n

s p

d
s p F s

ds =-
+

In general, 
1

[( ) ( )]
!

m
n

n m m
s p

d
k s p F s

m ds
-

=-
= + , where, m = 1, 2, �, (n � 1).

Once, the values of k1, k2, �, kn are known, the inverse Laplace is obtained as,

f(t) = 3 2 1
1 2 1( ) ( )

3! ( 1)!
npt pt pt n ptk k

k e k te t e t e u t f t
n

- - - - -æ ö+ + +¼+ +ç ÷-è ø

Example 6.3  Find the inverse Laplace transform of the function F(s) = 
2

12

( 2) ( 4)s s+ +
.

Solution Let 31 2

2 2

12
( )

2 4( 2) ( 4) ( 2)

kk k
F s

s ss s s
= = + +

+ ++ + +
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By residue method,

k1 = 2
2

2

12
( 2) ( )| 6

( 4)s
s

s F s
s=-

=-
+ = =

+

\ k2 = 
( )

2
2

2

12
[( + 2) ( )]| 3

4
s

s

d d
s F s

ds ds s
=-

=-

é ù
= = -ê ú+ë û

k3 = 4 2

4

12
( 4) ( )| 3

( 2)
s

s

s F s
s

=-
=-

+ = =
+

Thus, F(s) = 
2

6 3 3

2 4( 2) s ss
- +

+ ++

Taking inverse Laplace transform, 4 2 2( ) 3 3 6t t tf t e e te- - -= - +

III. Complex Poles

Since N(s) and D(s) always have real co-efficients and as the complex roots of polynomials with real

co-efficients occur in conjugate form, F(s) may have the general form,

1 2 1 2
1 12

( ) ( ) ( )
A s A k k

F s F s F s
s j s js as b a b a b

+
= + = + +

+ - + ++ +
where, F1(s) is the remaining part of F(s) that does not have this pair of complex poles.

Let 2 2 2 2 2 2( ) ( 2 ) ( )s as b s s sa a b a b+ + = + + + = + +

\
2

1, 2 ( )
2 4

a a
s j j ba b= - ± = - ± -

Thus, the coefficients are,

1

*
1 1 2 1 1( ) ( )| and Complex conjugate ofs sk s s F s k k k== - = =

Example 6.4  Find the inverse Laplace transform of the function 
2

2 1
( )

( 1) ( 2 5)

s
F s

s s s

+
=

+ + +
.

Solution Let F(s) = 1 2

2

2 1

1 1 2 1 2( 1) ( 2 5)

k ks A

s s j s js s s

+
= + +

+ + - + ++ + +

\ A = 1 2
1

2 1 1
( 1) ( )|

42 5
s

s

s
s F s

s s
=-

=-

++ = = -
+ +

k1 = 

( )
( 1 2)

1 2

2 1 1 1
( 1 2) ( )|

( 1) ( 1 2) 8 2s j

s j

s
s j F s j

s s j= - +
= - +

+ æ ö+ - = = -ç ÷è ø+ + +
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\ k2 = *
1

1 1

8 2
k j

æ ö= +ç ÷è ø

\ F(s) = 

1 1 1 1
1 1 8 2 8 2
4 1 1 2 1 2

j j

s s j s j

- +æ ö- + +ç ÷+ + - + +è ø

Taking inverse Laplace transform,

f(t) = 21 1
[ cos 2 ] sin 2 sin sin 2

4 2
t t t t te e t e t e t e t- - - - -- - + = - +

6.10 APPLICATIONS OF LAPLACE TRANSFORM

1. Solving Integro-Differential Equations and Simultaneous Differential Equations

2. Transient Analysis of Electrical Circuits.

6.10.1 Solving Integro Differential Equations and Simultaneous Differential
Equations

An integro-differential equation is an integral equation in which various derivatives of the unknown

function can also be present. Using the Laplace transform of integrals and derivatives, an integro-

differential equation can be solved.

Similarly, it is easier with the Laplace transform method to solve simultaneous differential equa-

tions by transforming both equations and then solving the two equations in the s-domain and finally

obtaining the inverse to get the solution in the time domain.

Example 6.5  (Integro-Differential Equation) Solve the equation for the response i(t), given that

0

2 5 ( )
t

di
i idt u t

dt
+ + =ò  and i(0) = 0.

Solution Let L[i(t)] = I(s).

\ ( ) (0) ( ) 0 ( )
di

sI s i sI s sI s
dt
é ù = - = - =ê úë û

L

Taking Laplace transform on both sides of the given equation,

sI(s) + 2I(s) + 
( ) 1

5
I s

s s
=

or
2 2 2

1 1 2
( )

22 5 ( 1) (2)
I s

s s s
= =

+ + + +
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Taking inverse Laplace transform, we get

1
( ) sin 2 ( ), 0

2
ti t e t A t-= >

Example 6.6  (Integro-Differential Equation) Solve the initial value problem for y(t) when

2

2
( ) 3 sin 2 and (0) 1, (0) 2

d y
y t t y y

dt
+ = = ¢ = - .

Solution  Let L[y(t)] = Y(s).

\
2

2 2

2
( ) (0) (0) ( ) 2

d y
s Y s sy y s Y s s

dt

é ù
= - - ¢ = - +ê ú

ë û
L

or Y(s) = 
2 2

2

1 4

s

s s
-

+ +

Taking inverse Laplace transform, we get, ( ) (cos sin 2 )y t t t= -

Example 6.7  (Simultaneous Differential Equations) Find the solution of the system:

6 3 8 tdx
x y e

dt
- + =  and 2 4 tdy

x y e
dt

- - =  with initial conditions x(0) = �1, y(0) = 0.

Solution Taking Laplace transform,

9
( 6) 3

1

s
s X Y

s

- +
- + =

-
(i)

4
2 ( 1)

1
X s Y

s
- + - =

-
(ii)

Solving for X and Y,

X = 
7 2 1

( 1) ( 4) 1 4

s

s s s s

- +
= - +

- - - -

Y = 
2 /3 2/32

( 1) ( 4) 1 4s s s s

-
= +

- - - -

Taking inverse Laplace transform,

x(t) = 4 42 2
2 and ( )

3 3
t t t te e y t e e- + = - +

Example 6.8  (Simultaneous Differential Equations) Solve for x(t) and y(t), given that x(0) = 4,

y(0) = 3 and

4 10 and 0
dydx

x y x y
dt dt

+ + = - - =
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Solution  Following the same procedures, as in Ex (6.7), we get,

X = 
2 2

2 2

4 2 10 3 10
and

( 3) ( 3)

s s s s
Y

s s s s

+ + + +
=

+ +
Taking inverse Laplace transform, we get the desired results.

6.11 APPLICATION OF LAPLACE TRANSFORM METHOD TO CIRCUIT
ANALYSIS

We now apply the mathematical tool for the analysis of electric circuits.

6.11.1 Transform Impedance of Network Elements

Element Time Domain s-Domain

1. Resistor (R) v(t) = Ri(t) V(s) = RI(s)

2. Inductor (L) v(t) = L
( )di t

dt
V(s) = L[sI(s) � i(0�)]

i(t) = 
1

( )
t

v t dt
L

-¥
ò I(s) = 

( ) (0 )1 V s i

L s s

-é ù+ê úë û

3. Capacitor (C) i(t) = C
( )dv t

dt
I(s) = sCV(s) � Cv(0�)

v(t) = 
1

( )
t

i t dt
C

-¥
ò V(s) = 

(0 )( ) vI s

Cs s
-+
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6.12 TRANSIENT ANALYSIS OF ELECTRIC CIRCUITS USING LAPLACE
TRANSFORM

In electrical engineering, a transient response or natural response is the electrical response of a

system to a change from equilibrium.

The condition prevailing in an electric circuit between two steady-state conditions is known as the

transient state; it lasts for a very short time. The currents and voltages during the transient state are

called transients.

In general, transient phenomena occur whenever

(i) a circuit is suddenly connected or disconnected to/from the supply,

(ii) there is a sudden change in the applied voltage from one finite value to another,

(iii) a circuit is short-circuited.

A simple example would be the output of a 5 volt DC power supply when it is turned on: the transient

response is from the time the switch is turned on and the output is a steady 5 volt. At this point the

power supply reaches its steady-state response of a constant 5 volt.

The transient response is not necessarily tied to �on/off� events but to any event that affects the

equilibrium of the system. If in an RC circuit the resistor or capacitor is replaced with a variable

resistor or variable capacitor (or both) then the transient response is the response to a change in the

resistor or capacitor.

The transient currents are not caused by any part of the supply voltage, but are entirely associated

with the changes in the stored energy in capacitor and inductors. As there is no energy stored in

resistors, there are no transients in purely resistive circuits.

Although transients last for a very short time, their study is very important because.

(i) They indicate what dangerous rises in voltage or current may happen in individual sections of

a circuit.

(ii) They indicate how signals are distored in waveform or amplitude as they pass through

amplifiers, filters, or other circuit elements.

We consider the transient analysis for the following circuits subject to step input, impulse input and

sinusoidal input:

1. RL Series Circuit,

2. RC Series Circuit,

3. RLC Series Circuit, and

4. RLC Parallel Circuit.

6.12.1 RL Series Circuit

1. RL Series Circuit with Step Input We consider an RL series circuit as shown in the figure.

Figure 6.11 R-L series circuit
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If the switch is closed at time t = 0, the voltage across the RL combination would be v(t) which

is a step of magnitude V [or Vu(t)] and not a constant as is the supply voltage V.

v(t) = 0, for t £ 0

= V, for t ³ 0

Thus the differential equation governing the behaviour of the circuit would be

( )
( ) ( )

di t
Ri t Vu t

dt
+ =L

Taking Laplace transform, we get

( ) [ ( ) (0 )]
V

RI s sI s i
s

+ - - =L

or,

( )
(0 ) (0 )1 1

( )

V
i iVLI s

R R s R RR s s ss s
L L LL

- -æ ö= + = - +
ç ÷+ + +ç ÷+ è ø

Taking inverse Laplace transform,

( ) 1 (0 ) 1

R R R
t t t

L L LV V
i t e i e e

R R

æ ö æ ö æ ö- - -ç ÷ ç ÷ ç ÷è ø è ø è ø
æ ö æ ö

= - + - = -è ø è ø  with i(0�) = 0.

The transient part of the current response, [ ( ) ]
R
t

L
tr s

V
i i t i e

R

-
= - = -

From the current equation at 
L

t
R

t= = , 1(1 ) 0.63 0.63 s

V V
i e i

R R
-= - = =

When the switch is first closed, the voltage across the inductor will immediately jump to battery

voltage (acting as though it were an open-circuit) and decay down to zero over time (eventually

acting as though it were a short-circuit). Voltage across the inductor is determined by calculating

how much voltage is being dropped across R, given the current through the inductor, and subtracting

that voltage value from the battery. When the switch is first closed, the current is zero, then it

increases over time until it is equal to the battery voltage divided by the series resistance. This

behavior is precisely opposite that of the series resistor-capacitor circuit, where current started at a

maximum and capacitor voltage at zero.

The steady state part of the current response, s

V
i

R
=

The variation of the current is shown in Figure 6.12.

The quantity 
L

R
t =  is known as the Time-constant of the circuit and it is defined as follows.
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Definitions of Time-constant (t)
1. It is the time taken for the current to reach 63% of its final value. Thus, it is a measure of the

rapidity with which the steady state is reached.

Also, at t = 5t, i = 0.993is; the transient is therefore, said to be practically disappeared in five

time constants.

2. The tangent to the equation ( )1
R
t

LV
i e

R

-
= -  at t = 0, intersects the straight line, 

V
i

R
=  at

L
t

R
t= = . Thus, time-constant is the time in which steady state would be reached if the

current increases at the initial rate.

Physically, time-constant represents the speed of the response of a circuit. A low value of time-

constant represents a fast response and a high value of time-constant represents a sluggish response.

Calculations of the Voltage Across Elements

Voltage across the resistor, ( )( ) 1
R
t

L
RV Ri t V e

-
= = -

Voltage across the inductor, ( )( )
1

R R
t t

L L
L

di t d V
V L L e Ve

dt dt R

- -é ù
= = - =ê úë û

2. RL Series Circuit with Impulse Input By KVL, the mesh equation becomes,

( )
( ) ( )

di t
Ri t L V t

dt
d+ =

Taking Laplace transform,

( ) ( )RI s sLI s V+ =  with (0 ) 0i - =

Figure 6.12 Variation of current with time RL series circuit with step input
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or
1

( )
/

V
I s

L s R L
æ ö= ç ÷+è ø

Taking inverse Laplace transform,

( )
R
t

LV
i t e

L

-
=

Here, the plot of the current is shown in Figure 6.13.

Figure 6.13 Variation of voltages with time in RL series circuit with impulse input

Voltage across the resistor, ( )
R
t

L
R

VR
V Ri t e

L

-
= =

Voltage across the inductor, 
( ) R R

t t
L L

L

di t d V VR
V L L e e

dt dt L L

- -æ ö
= = = -ç ÷è ø

3. RL Series Circuit with Sinusoidal Input Here, the input voltage is given as, ( ) sinv t V tw=
By KVL,

( )
( ) sin

di t
Ri t L V t

dt
w+ = , with i(0�) = 0

or
2 2

( )[ ]
V

I s R sL
s

w

w
+ =

+

or I(s) = 

( ) ( )2 2

1

( ) ( ) ( )

V
VL

LR R
s s s j s j s

L L

w
w

w w w

ì ü
ï ï

= í ý
ï ï+ + + - +
î þ
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= 31 2 AA AV

L s j s j R
s

L

w
w w

é ù+ +ê ú- + +ê úë û

where, A1 = 
1

( )
2 ( )

( ) ( )
s j

L
s j

j R j LR
s j s j s

L
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w
w w

w w
=

ì ü
ï ïï ï- =í ý +æ öï ï+ - +è øï ïî þ

A2 = 

( ) ( )
1

( )
2

( ) ( )
s j

L
s j

j R j LR
s j s j s

L w

w
w w

w w
=-

ì ü
ï ï

+ = -í ý -ï ï+ - +
î þ

and A3 = ( )
( )

2

2 2 2

1

( )
( ) ( )

R
s

L

R L
s

L R R L
s j s j s

L
ww w

=-

ì ü
ï ï

+ =í ý
+ï ï+ - +

î þ

\ I(s) = 

( )
2

2 2 22 ( ) ( ) 2 ( ) ( )
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V L L L

L j R j L s j j R j L s j R
R L s

L

w
w w w w w w
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- +ê ú+ - - +ê ú+ +
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Taking inverse Laplace transform,

i(t) = 
2

2 2 22 ( ) 2 ( )

R
tj t j t LV Le Le L e

L j R j L j R j L R L

w ww
w w w w w

--é ù
ê ú- +ê ú+ - +ë û

= 
2 2 22

R
tj t j t LV e e e

V L
j R j L R j L R L

w w

w
w w w

--é ù
- +ê ú+ - +ë û

Let, ( ) jR j L Ze qw+ =  and ( ) jR j L Ze qw -- =  so that, 2 2 2( )Z R Lw= +  and 1tan
L

R

w
q - æ ö= ç ÷è ø

Putting these values,

i(t) = 
22

R
tj t j t L

j j

V e e e
V L

j Ze Ze Z

w w

q q
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--

-
é ù

- +ê ú
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= 

( ) ( )

22

j t j t R
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L
e eV V L

e
Z j Z

w q w q
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or, finally, the current is,

2
( ) sin ( )

R
t

LV V L
i t t e

Z Z

w
w q

-
= - +

From this result, it is clear that the current in RL series circuit lags behind the voltage by an angle,

1tan
L

R

w
q - æ ö= ç ÷è ø . If the resistance R = 0, then 90q = °  as is the case for a perfect inductor.

6.12.2 RC Series Circuit

1. RC Series Circuit with Step Input We consider an RC series circuit as shown

in Figure 6.14.

By KVL, 
0

1
( ) ( ) ( )

t

Ri t i t dt Vu t
C

+ =ò

Taking Laplace transform,

(0 )( )1
( )

qI s V
RI s

C s s s

-é ù+ + =ê úë û

or
(0 )1

( )
qV

I s R
Cs s Cs

-é ù+ = -ê úë û

or

(0 ) (0 )
1

( )
( 1/ ) ( 1/ )

q q
V V

C CI s
s R Cs R s RC

- -
- -

= =
+ +

Taking inverse Laplace transform,

i(t) = 
(0 ) t

RC
qV

e
R RC

--é ù-ê úë û
; for t ³ 0

= 
t

RCV
e

R

-
; if q (0�) = 0

The steady state part of the current response, is = 0

The transient part of the current response, itr = [i(t) � is] = 
t

RCV
e

R

-

From the current equation at t = t = RC, 1 0.37
V V

i e
R R

-= =

When the switch is first closed, the voltage across the capacitor (which was fully discharged) is

zero volt; thus, it first behaves as though it were a short-circuit. Over time, the capacitor voltage will

rise to equal battery voltage, ending in a condition where the capacitor behaves as an open-circuit.

Current through the circuit is determined by the difference in voltage between the battery and the

capacitor, divided by the resistance. As the capacitor voltage approaches the battery voltage (V), the

current approaches zero. Once the capacitor voltage has reached V, the current will be exactly zero.

Figure 6.14 RC series circuit
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The variation of current in the circuit is shown in Figure 6.15.

Figure 6.15 Variation of current with time in RC series circuit with step input

The quantity t = RC is known as the Time-constant of the circuit and it is defined as follows.

Definitions of Time-constant (t)
1. It is the time in which the current decays to 37% of its initial value.

Also, at t = 5t, i = 0.07
V

R
; the transient is therefore, said to be practically disappeared in five

time constants.

2. The tangent to the equation i = 
t

RCV
e

R

-
 at t = 0, intersects the time axis at t = t = RC.

Thus, time-constant is the time in which the current would reach the steady state zero value if the

current decays at the initial rate.

Physically, time-constant represents the speed of the response of a circuit. A low value of time-

constant represents a fast response and a high value of time-constant represents a sluggish response.

Calculations of the Voltage Across Elements

Voltage across the resistor, ( )
t

RC
RV Ri t Ve

-
= =

Voltage across the capacitor, 
0 0

1 1
( ) 1

t tt t
RC RC

C

V
V i t dt e dt V e

C C R

- -æ ö
= = = -ç ÷

è ø
ò ò

2. RC Series Circuit with Impulse Input With zero initial condition, q(0�) = 0, KVL equation

becomes,

0

1
( ) ( ) ( )

t

Ri t i t dt V t
C

d+ =ò

( )
( )

I s
RI s V

Cs
+ =
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or,

1

( ) 1
1 1 1

V V s V RCI s
R R

R s s
Cs RC RC

é ù
ê úæ ö= = = -ê úç ÷+ + +ç ÷ ê úè ø ë û

Taking inverse Laplace transform,

1
( ) ( )

t

RCV
i t t e

R RC
d

-é ù
= -ê úë û

; for t ³ 0

Voltage across the resistor, 
1

( ) ( )
t

RC
RV Ri t V t e

RC
d

-é ù
= = -ê úë û

Voltage across the capacitor, { ( ) }
t

RC
C R

V
V V t V e

RC
d

-

= - =

These variations of the voltages are shown in Figure 6.16.

Figure 6.16 Variation of voltages with time in RC series circuit with impulse input

3. RC Series Circuit with Sinusoidal Input Here, the input voltage is given as, v(t) = V sinwt

By KVL,

0

1
( ) ( ) sin

t

Ri t i t dt V t
C

w+ =ò , with q(0�) = 0
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2 2

1
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V
I s R

Cs s

w

w
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or I(s) = 

( )
2 2 1( ) (1 )
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V Cs V s

Rs sRC
s j s j s
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w w

w w w

ì ü
ï ï

= í ý
+ + ï ï+ - +

î þ

= 
31 2

1

AA AV

L s j s j
s

RC

w
w w

é ù
+ +ê ú- + +ê úë û
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where, A1 = 
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2 21
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1 1
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Taking inverse Laplace transform,

i(t) = 
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Let, 
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Putting these values,
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or, finally, the current is,

2
( ) sin ( )

t

RCV V
i t t e

Z CZ
w q

w

-

= + -

From this result, it is clear that the current in RC series circuit leads the voltage by an angle,

1 1
tan

RC
q

w
- æ ö= ç ÷è ø . If the resistance R = 0, then q = 90° as is the case for a perfect capacitor.

6.12.3 RLC Series Circuit

1. RLC Series Circuit with Step Input With zero initial conditions, the Kirchhoff�s voltage

law equation becomes,

Ri(t) + 
0

( ) 1
( ) ( )

tdi t
L i t dt Vu t

dt C
+ =ò

or RI(s) + 
1

( ) ( )
V

sLI s I s
Cs s

+ =

or I(s) = 
2 1

V

L
R

s s
L LC

+ +
(6.1)

The roots of the denominator polynomial of equation are,

s2 + 
1R

s
L LC

+  = 0

or s1 = 
2

2

1

2 4

R R

L LCL
- + - and, s2 = 

2

2

1

2 4

R R

L LCL
- - -

Let w0 = 
1

LC
and 0 2

R

L
xw =  i.e. Damping Ratio

2

R C

L
x = =

Then, s1 = 2
0 0 1xw w x- + - and s2 = 2

0 0 1xw w x- - -

So, I(s) = 
1 2 1 2( ) ( )

V
A BL

s s s s s s s s
= +

- - - -

\ A = 

1

1
21 2 1 2

0

( )
( ) ( ) ( ) 2 1

s s

V V
VL Ls s

s s s s s s Lw x
=

- = =
- - - -

and, therefore B = 

2

2
21 2 2 1

0

( )
( ) ( ) ( ) 2 1

s s

V V
VL Ls s

s s s s s s Lw x
=

- = = -
- - - -

Figure 6.17 RLC series circuit
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Putting these values of A and B, we get,

I(s) = 
2 1 2

0

1 1

2 1

V

s s s sLw x

é ù-ê ú- -ë û-

Taking inverse Laplace transform,

i(t) = 
2 2

0 001 2
( 1) ( 1)

2 2
0 0

[ ] [ ]
2 1 2 1

t tts t s tV V
e e e e e

L L

w x w xxw

w x w x

- - --- = -
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Depending upon the values of R, L and C, three cases may appear:

(a)
1

2

R

L LC
>  (Overdamped condition)

(b)
1

2

R

L LC
<  (Underdamped condition)

(c)
1

2

R

L LC
=  (Critically Damped condition)

A.Overdamped Condition The condition is, 
1

2

R

L LC
>  or, x > 1 or Q < 

1

2

0
0

1
Since, Quality Factor, and

L
Q

R LC

w
w

æ ö= =ç ÷è ø
Under this condition, the current becomes,

2 2
0 00 0( 1) ( 1) 2

0
2 2

0 0

( ) [ ] sinh ( 1)
2 1 1

t tt tV V
i t e e e e t

L L

w x w xxw xw w x
w x w x

- - -- -= - = -
- -

The graphical plot for the current is shown in Figure 6.18.

Underdamped condition

Overdamped condition
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Figure 6.18 Current response in RLC series circuit for three different damping conditions
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B.Critically Damped Condition The condition is, 
1

2

R

L LC
=  or, x = 1 or Q = 

1

2

From equation (6.1),

2 2 2
0 0 0

1
( )

2 ( )

V
VLI s
Ls s sw w w

æ ö= = ç ÷+ + +è ø

Taking inverse Laplace transform,

0( ) tV
i t te

L
w-=

The graphical plot for the current is shown in Figure 6.13.

C. Underdamped Condition The condition is, 
1

2

R

L LC
<  or, x < 1 or Q > 

1

2

So, the current becomes,

i(t) = 
2 2

0 00
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0 2
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2
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sin ( 1 )
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L

xw w x
w x

-= -
-

So, the circuit is oscillatory. When R = 0, x = 0, the oscillations are undamped or sustained. The

frequency of the undamped oscillation (w0) is known as undamped natural frequency.

2. RLC Series Circuit with Impulse Input With zero initial conditions, the Kirchhoff�s

voltage law equation becomes,

0

( ) 1
( ) ( ) ( )

tdi t
Ri t L i t dt V t

dt C
d+ + =ò
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1

( ) ( ) ( )RI s sLI s I s V
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+ + =

or I(s) = 
2 1

V
s

L

R
s s

L LC

æ ö
è ø

+ +
(6.2)
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The roots of the denominator polynomial of equation are,

2 1
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Putting these values of A and B, we get,
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Taking inverse Laplace transform,
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Three cases are considered:

(A)
1

2

R

L LC
>  (Overdamped condition)

(B)
1

2

R

L LC
<  (Underdamped condition)

(C)
1

2

R

L LC
=  (Critically Damped condition)

A.Overdamped Condition Here, x > 1

The current becomes,

i(t) = 
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-

B.Critically Damped Condition The condition is, x = 1

From equation (6.2),
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Taking inverse Laplace transform,

i(t) = 0
0[1 ] tV
t e

L
ww --
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C. Underdamped Condition The condition is, x < 1

So, the current becomes,

2
00 ( 1)2

0
2

0

( ) [( 1) {
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ttV
i t e e
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3. RLC Series Circuit with Sinusoidal Input Sinusoidal voltage v(t) = Vm sin (wt + q) is

applied to a series RLC circuit at time t = 0. We want to find the complete solution for the current i(t)

using Laplace transform method.

v (t ) = Vm sin (w t + q )

By KVL,

( ) 1
( ) ( ) sin ( )

t

m

di t
Ri t L i t dt V t

dt C
w q

-¥
+ + = +ò

Taking Laplace transform with zero initial

conditions,
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( sin cos )1
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s
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q w q

w

+é ù+ + =ê úë û +

or I(s) = 
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1
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L LC

q w q
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+
æ ö+ + +è ø

= 
1 2

( sin cos )

( ) ( ) ( ) ( )
mV s s

L s j s j s s s s

q w q

w w

+
+ + - -

where, s1, s2 are the roots of the quadratic equation:

2 1
0

R
s s

L LC
æ ö+ + =ç ÷è ø

Figure 6.19 RLC series circuit

with sinusoidal input

v(t)
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Thus, s1 = 
2
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So, by residue method, multiplying by (s � s1) and putting s = s1,

K1 = 1 1 2 2
2

1 1 1 2 2 2 2 1

( sin cos ) ( sin cos )
and

( ) ( ) ( ) ( ) ( ) ( )

s s s s
K

s j s j s s s j s j s s

q w q q w q

w w w w

+ +
=

+ - - + - -

Similarly, multiplying by (s + jw) and putting s = � jw,
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Hence the current response becomes,
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1 2 3 4[ ] [ ]m s t s t j t j t

tr ss

V V
K e K e K e K e I I

L L
w w-+ + + = +

Thus, the transient part of the total current is,

1 21 1 2 2

2 2
2 2 2 2
2 22 2

( sin cos ) ( sin cos )

4 4
( ) ( )

m s t s t
tr

V s s s s
I e e

L R R
s s

LC LCL L

q w q q w q

w w

é ù
ê ú+ +ê ú= -
ê ú

+ - + -ê ú
ê úë û

The steady-state part of the total current is obtained as follows.

Iss = 
1 2 1 22 ( ) ( ) ( ) ( )

j j t j j t
mV e e e e

L s j s j s j s j

q w q ww w
w w w w

- -é ù
+ê ú+ + - -ë û

= 
( ) ( )

1 2 1 22 ( ) ( ) ( ) ( )

j t j t
mV e e

L s j s j s j s j

w q w qw

w w w w

- + +é ù
+ê ú+ + - -ê úë û

= ( ) 2
1 2 1 22 2 2 2

1 2

[ ( )]
2 ( ) ( )

m j tV
e s s j s j s

L s s

w qw
w w w

w w
- + - - -

+ +

= 2
1 2 1 22 2 2 2

1 1

[( ) 2 cos( ) ( ) 2 sin ( )]
2 ( ) ( )

mV s s t s s t
L s s

w
w w q w w w q

w w
- + - + +

+ +

= 2

2 2 2 2
1 2

1 1
cos ( ) sin ( )

( ) ( )

mV R
t t

L LC Ls s

w w
w w q w q

w w

é ùæ ö æ ö- + - - +ç ÷ ç ÷ê úè ø è ø+ + ë û
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or Iss = 

2

2 2 2 2
1 2

1
sin ( ) cos ( )

( ) ( )

m

R
t t

L LCV

L s s

w
w q w w q

w

w w

é ùæ ö+ - - +ê úè øë û
+ +

= 
1

2 2 2 2
1 2

1
1

sin tan
( ) ( )

m

LV Ct
L Rs s

ww ww q
w w

-

ì üæ ö-ï ïç ÷+ -í ýè ø+ + ï ï
î þ

2
2 1

R L
L C

w
w

w
æ ö´ + -ç ÷è ø

or,
1

2
2

1

sin tan

1

m
ss

LV CI t
R

R L
C

w
ww q

w
w

-

ì üæ öï ï-
í ýç ÷= + - è øï ïî þæ ö+ -è ø

This gives the steady-state current of the series RLC circuit to a sinusoidal voltage.

6.12.4 RLC Parallel Circuit

1. RLC Parallel Circuit with Step Current Input With zero initial conditions, the Kirchhoff�s

current law equation becomes,

0

( ) ( ) 1
( ) ( )

tv t dv t
C v t dt Iu t

R dt L
+ + =ò

or
( ) 1

( ) ( )
V s I

sCV s V s
R sL s

+ + =

or V(s) = 
2

/

1 1

I C

s s
RC LC

+ +
(6.3)

The roots of the denominator polynomial of equation are,

2 1 1
0s s

RC LC
+ + =

or s1 = 
2 2

1 1 1

2 4RC LCR C
- + - and, s2 = 

2 2

1 1 1

2 4RC LCR C
- - -

Let w0 = 
1

LC
and 0

1

2RC
xw =  i.e. 

1
Damping Ratio

2

L

R C
x = =

Figure 6.20 RLC parallel circuit
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Then, s1 = 2
0 0 1xw w x- + - and s2 = 2

0 0 1xw w x- - -

So, V(s) = 
1 2 1 2

/

( ) ( )

I C A B

s s s s s s s s
= +

- - - -

\ A = 
1

1
21 2 1 2

0

/ /
( )

( ) ( ) ( ) 2 1s s

I C I C I
s s

s s s s s s Cw x=
- = =

- - - -

and, therefore, B = 

2

2
22 2 2 1

0

/ /
( )

( ) ( ) ( ) 2 1s s

I C I C I
s s

s s s s s s Cw x=

- = = -
- - - -

Putting these values of A and B, we get,

V(s) = 
2 1 2

0

1 1

2 1

I

s s s sCw x

é ù-ê ú- -ë û-

Taking inverse Laplace transform,

v(t) = 
2 2

0 001 2
( 1) ( 1)

2 2
0 0

[ ] [ ]
2 1 2 1

t tts t s tI I
e e e e e

C C

w x w xxw

w x w x

- - --- = -
- -

Depending upon the values of R, L and C, three cases may appear:

(a)
1 1

2RC LC
>  (Overdamped condition)

(b)
1 1

2RC LC
<  (Underdamped condition)

(c)
1 1

2RC LC
=  (Critically Damped condition)

A. Overdamped Condition The condition is, 
1 1

2RC LC
>  or, x > 1 or 

1

2
Q <

0
0

1 1
Since, Quality Factor, andQ

RC LC
w

w
æ ö= =ç ÷è ø

Under this condition, the current becomes,

( )
2 2

0 00 0
( 1) ( 1) 2

0
2 2

0 0

( ) [ ] sinh 1
2 1 1

t tt tI I
v t e e e e t

C C

w x w xxw xw w x
w x w x

- - -- -= - = -
- -
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The graphical plot for the voltage is shown in Figure 6.21.

Underdamped condition

Overdamped condition

Critically damped condition

0 1 2 3 4 5 6 7 8 9 10

0.6

0.5

0.4

0.3

0.2

0.1

0

–0.1

A
m

p
li
tu

d
e

Time (sec)

Figure 6.21 Voltage response in RLC parallel circuit for three different damping conditions

B. Critically Damped Condition The condition is, 
1 1

2RC LC
=  or, x = 1 or 

1

2
Q =

From equation (6.3),

V(s) = 
2 22

00 0

/ 1

( )2

I C I

C ss s ww w

æ ö= ç ÷+è ø+ +
Taking inverse Laplace transform,

v(t) = 0tI
te

C
w-

The graphical plot for the voltage is shown in Fig. 6.21.

C. Underdamped Condition The condition is, 
1 1

2RC LC
<  or, x < 1 or 

1

2
Q >

So, the voltage becomes,

v(t) = 
2 2

0 00
( 1) ( 1)

2
0

[ ]
2 1

t ttI
e e e

C

w x w xxw

w x

- - -- -
-

= 

2 2
0 0

0

( 1 ) ( 1 )

2
0

21

j t j t
t e eI

e
jC

w x w x
xw

w x

- - -
-

é ù-ê ú
ê úë û-

= 0 2
0

2
0

sin ( 1 )
1

tI
e t

C

xw w x
w x

- -
-
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Similarly we can find out the impulse response and sinusoidal response of a parallel RLC circuit

using Laplace transform method as for the series RLC circuit.

6.12.5 Response with Pulse Input Voltage

1. RC Series Circuit If a voltage pulse of width as shown in Fig. 6.22 is applied to an RC series

circuit, then by KVL,

1
( ) ( ) ( )Ri t i t dt v t

C
+ =ò

Taking Laplace transform with zero initial condition,

1
( ) ( )

sTV Ve
RI s I s

Cs s s

-
+ = -

or I(s) = 
1

1/

sTeV

R s RC

--
+

Taking inverse Laplace transform,

i(t) = / ( ) /[ ]t RC t T RCV
e e

R
- - --

Hence the voltage across the resistance is given as,

vR(t) = / ( ) /( ) [ ]t RC t T RCRi t V e e- - -= -
and the voltage across the capacitor is given as,

vc(t) = / ( ) /( ) [ ]t RC t T RC
RV v t V e e- - -- = +

To plot the two voltages with varying time, we have the following observations:

(i) At t = 0, all the voltage appears across the resistance R and thus,

vR = V and vC = 0

Figure 6.23 Voltage response of RC series circuit with pulse input

Figure 6.22 Pulse voltage
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(ii) As the time increases, the voltage vC grows and the voltage vR decays exponentially, with

time-constant t = RC.

(iii) At t = T, voltage across the network drops abruptly to zero from V. Again this entire drop is

instantaneously felt across the resistance R.

(iv) For time t > T, total voltage across the circuit is zero. So, at any instant of time t, vR(t) + vc(t) =

0 and both vR and vC asymptotically approach zero.

Case (1) If Time-constant (t = RC) << Pulse-width (T) The voltage across the resistance vR

will consist of two trigger pulses one positive and the other negative, of height V at the points where

the voltage across the network changes abruptly (i.e., t = 0 and T).

In this case, the voltage across capacitor attains the steady state very quickly, i.e. vc = V.

\ C
R

dv dV
v Ri RC RC

dt dt
= = »  or, R

dV
v RC

dt
=

Thus, the voltage vR is the differentiation of the input voltage and hence the circuit acts as a

Differentiator.

Figure 6.24 Voltage response of RC series circuit (RC << T) with pulse input

Case (2) If Time-constant (t = RC) >> Pulse-width (T) In this case, the voltage across the

capacitor varies with time almost linearly and the value is far from the steady state value V; i.e. vR = V.

Figure 6.25 Voltage response of RC series circuit (RC >> T) with pulse input
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\
0 0 0

1 1 1
t t t

R
C

v
v idt dt Vdt

C C R RC
= = »ò ò ò  or, 

0

1
t

Cv Vdt
RC

\ » ò

Thus, the voltage vC is the integration of the input voltage and hence the circuit acts as an Integrator.

2. RL Series Circuit If a similar pulse voltage is applied to an RL series circuit, then the KVL

equation will be,

( ) ( )
di

Ri t L v t
dt

+ =

Taking Laplace transform with zero initial condition,

( ) ( )
sTV Ve

RI s sLI s
s s

-
+ = -

or I(s) = 
1

( / ) ( / )

sTV e

L s s R L s s R L

-é ù
-ê ú+ +ë û

Taking inverse Laplace transform,

i(t) = ( ) ( )( )
1 ( ) 1 ( )

R R
t t T

L LV
e u t e u t T

R

- - -é ù
- - - -ê úë û

The variation of the two voltages is shown in Figure 6.26.

Figure 6.26 Voltage response of RL series circuit with pulse input

Case (1) If Time-constant (t = L/R) << Pulse-width (T) In this case, the voltage across

resistor attains the steady state very quickly, i.e. vR = V.

\ R
L

vdi d d V L dV
v L L L

dt dt R dt R R dt

æ ö æ ö= = = »ç ÷ç ÷ è øè ø
or, L

L dV
v

R dt
=
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Figure 6.27 Voltage response of RL series circuit ( L / R << T ) with pulse input

Thus, the voltage vL is the differentiation of the input voltage and hence the circuit acts as a

Differentiator.

Case (2) If Time-constant (t = L/R) >> Pulse-width (T) In this case, the voltage across the

resistor varies with time almost linearly and the value is far from the steady state value V; i.e. vL = V.

0s 2s 4s 6s 8s 10s 12s 14s 16s 18s 20s
–0.2V

0V

0.2V

0.4V

0.6V

0.8V

1.0V

Voltages

voltage across R

Time

voltage across L

Figure 6.28 Voltage response of RL series circuit ( L / R >> T ) with pulse input

\
0 0

1
t t

R L

R
v Ri R v dt Vdt

L L
= = »ò ò  or, 

0

t

R

R
v Vdt

L
\ » ò

Thus, the voltage vR is the integration of the input voltage and hence the circuit acts as an Integrator.
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6.13 STEPS FOR CIRCUIT ANALYSIS USING LAPLACE TRANSFORM
METHOD

1. All circuit elements are transformed from time-domain to Laplace domain with initial condi-

tions.

2. Excitation function is transformed into Laplace domain.

3. The circuit is solved using different circuit analysis techniques, such as, mesh analysis, node

analysis, etc.

4. Time domain solution is obtained by taking inverse Laplace transform of the solution.

6.14 CONCEPT OF CONVOLUTION THEOREM

6.14.1 Convolution Integral

If h(t) is the impulse response of a linear network, then the response of the same network y(t)

subject to any arbitrary input w(t) is given by the convolution integral as,

( ) ( ) ( ) ( ) ( )y t h w t d w h t dt t t t t t
¥ ¥

-¥ -¥
= - = -ò ò

Thus, if the impulse response of any linear time-invariant system is known, we can obtain the zero-

state response of the system to any other type of input.

6.14.2 Convolution Theorem

If f1(t) and f2(t) are two functions of time which are zero for t < 0, and if their Laplace transforms

are F1(s) and F2(s), respectively, then the convolution theorem states that the Laplace transform of

the convolution of f1(t) and f2(t) is given by the product F1(s) F2(s).

Mathematically, if the convolution of f1(t) and f2(t) is written as,

1 2 1 2 1 2 2 1
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t t

f t f t f f t d f t f d f t f tt t t t t t* = - = - = *ò ò

where, t is a dummy variable for time t, then the convolution theorem is written as,

1 2 1 2[ ( ) ( )] ( ) ( )L f t f t F s F s* =
Proof By the definition of convolution,

1 2 1 2 1 2
0 0 0

[ ( ) ( )] ( ) ( ) ( ) ( )
t t

stL f t f t L f f t d f t f d e dtt t t t t t
¥

-é ù é ù
* = - = -ê ú ê ú

ë û ë û
ò ò ò (i)

Also, by the definition of a shifted unit step function, using dummy variable,

( ) 1; for

0; for

u t t

t

t t
t

- = £
= >

\ 1 2 1 2
0 0

( ) ( ) ( ) ( ) ( )
t

f t f d f t u t f dt t t t t t t
¥

- = - -ò ò
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Putting this in (i), we get,

1 2 1 2
0 0

[ ( ) ( )] ( ) ( ) ( ) stL f t f t f t u t f d e dtt t t t
¥ ¥

-é ù
* = - -ê ú

ë û
ò ò (ii)

Now, let (t � t ) = x \ dt = dx,

t 0 µ
x �t µ

From equation (ii), we get,

1 2[ ( ) ( )]L f t f t* = ( )
1 2

0

( ) ( ) ( ) s xf x u x f d e dxt

t

t t
¥ ¥

- +

-

é ù
ê ú
ë û
ò ò

= 1 2
0

( ) ( ) ( )sx sf x u x e dx f e dt

t

t t
¥ ¥

- -

-
ò ò

= { }1 2
0 0

( ) ( ) ( ) 0 for 0sx sf x e dx f e d u x xtt t
¥ ¥

- - = <ò ò Q

[ ]1 2 1 2[ ( ) ( )] ( ) ( )L f t f t F s F s\ * =

Thus, the convolution in time domain becomes multiplication in the frequency domain, and vise-

versa.

6.14.3 Application of Convolution Theorem

The convolution theorem is used to find the response of a linear system to any arbitrary excitation if

the impulse response of the system is known.

We know that the transfer function is defined as the ratio of response transform to excitation

transform with zero initial conditions. Thus,

all initialconditions reduced to zero

Laplace transform of Response
Transfer Function

Laplace transform of Excitation
=

or H(s) = 
0

( )

( )
IC

Y s

W s =

Thus, ( ) ( ) ( )Y s H s W s=

Here, W(s) = L[w(t)], is the input Laplace transform and Y(s) = L[y(t)], is the output Laplace

transform.

Now, if the input is an impulse function, then w(t) = d (t) or W(s) = 1

\ Y(s) = H(s)W(s) = H(s)

Taking inverse Laplace transform,

y(t) = h(t)
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Thus, h(t) is the impulse response of the system. If this impulse response of the system is known,

we can find out the response of the system due to any arbitrary input w(t) from the following

relation:

Y(s) = H(s)W(s)

or
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
t t

y t h t w t h w t d h t w dt t t t t t= * = - = -ò ò

Example 6.9  Find the convolution integral when 1 2( ) and ( )atf t e f t t-= = .

Solution Here, the convolution integral is given as,

1 2( ) ( )f t f t* = ( )

0 0

t t
a t at ae d e e d

t tt t t t- - -=ò ò

= 
0

1

t
a a

at e e
e d

a a

t tt
t- é ù

- ×ê úë ûò

= 
2

0

t
a a

at e e
e

a a

t tt t- é ù
-ê úë û

= 
2 2

1at at
at te e

e
a a a

- é ù
- +ê ú

ë û

= 
2

1
[ 1 ]atat e

a

-- + Ans.

SOLVED PROBLEMS

6.1 (a) Find the initial value of the function whose Laplace Transform is,

V(s) = 
2 2

( )sin cos

( )

s a b
A

s a b

q q+ +
×

+ +
Check the result by solving it for v(t).

(b) Find the final value of the function whose Laplace Transform is, I(s) = 
6

( 3)

s

s s

+
+

Solution

(a) By initial value theorem,

V(0+) = lim ( )
s

sV s
®¥

= 
2 2

( ) sin cos
lim

( )s

s a b
SA

s a b

q q

®¥

+ +
+ +
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= 2 2

1 sin cos

lim

1
s

a b

s s
A

a b

s s

q q

®¥

æ ö+ +è ø

æ ö æ ö+ +è ø è ø

= A sin q Ans.

In order to check this result, we find v(t) and then put t = 0.

v(t) = 1

2 2

( ) sin cos

( )

s a b
L A

s a b

q q- é ù+ +
ê ú

+ +ë û

= 1

2 2 2 2

( ) sin cos

( ) ( )

s a b
AL

s a b s a b

q q- é ù+
+ê ú

+ + + +ë û

= [sin cos cos sin ]at atA e bt e btq q- -+

= sin ( )atAe bt q- +

At t = 0, 0(0 ) sin (0 ) sinv Ae Aq q+ = + =  [Checked]

(b) By final value theorem,

0 0 0

6 6
( ) lim ( ) lim lim 2

( 3) ( 3)s s s

s s
I sI s s

s s s® ® ®

+ +
¥ = = = =

+ +
Ans.

For checking it, 1 1 36 2 1
( ) 2

( 3) 3
ts

i t L L e
s s s s

- - -+é ù é ù= = - = -ê ú ê ú+ +ë û ë û

At t = µ, ( ) 2 2 [Checked]i e-¥¥ = - =
6.2 (a) Obtain the Laplace Transform of square wave

of unit amplitude and periodic time 2T, as shown.

(b) Find the Laplace Transform of the following

function:

Solution

(a) The equation of the square wave is,

( ) ( ) ( ) ( ) ( 2 ) ( 2 ) ( 3 )f t u t u t T u t T u t T u t T u t T= - - - - + - + - - - - ¼

( ) 2 ( ) 2 ( 2 ) 2 ( 3 ) ...u t u t T u t T u t T= - - + - - - +
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Taking Laplace transform,

F(s) = 
2 31 2 2 2Ts Ts Tse e e

s s s s

- - -
- + - +¼

= 2 31
[1 2 (1 )]Ts Ts Ts Tse e e e

s
- - - -- - + - +¼

= 
1 2 1

1 sum of G.P. series
1 1

Ts

Ts Ts

e

s e e

-

- -

é ù ì ü- =ê ú í ý+ -ë û î þ
Q

= 
11

1

Ts

Ts

e

s e

-

-

é ù-
ê ú
+ë û

F(s) = 
1

tanh
2

Ts

s

æ ö
ç ÷è ø Ans.

(b) The equation can be written as,

f (t) = 2r(t) � 4r ( )1 2 ( 1)
2

t r t- + -

Taking Laplace transform,

F (s) = 

1

2
/2 � /2 2

2 2 2 2 2

1 4 2 2 2
2 [1 2 ] [1 2 ]

s s
s s se e

e e e
s s s s s

- -
- -- + = - + = -

6.3 A sinusoidal voltage 25 sin 10t is applied at time t = 0

to a circuit as shown in the figure. Find the current

i(t), by Laplace transform method. R = 5W and L = 1H.

Solution By KVL, 
2

10
( ) ( ) 25

100
RI s sLI s

s
+ =

+

with zero initial condition.

I(s) = 
2

250 250

( 5) ( 10) ( 10)( 5) ( 100) s s j s js s
=

+ + -+ +

= 
31 2250

5 10 10

AA A

s s j s j

é ù
+ +ê ú+ + -ë û

A1 = 
2

5

1 1
( 5)

125( 5) ( 100)
s

s
s s =-

+ =
+ +

where, A2 = 
10

1 1 1
( 10)

( 5) ( 10) ( 10) 20(5 10) 100(2 )
s j

s j
s s j s j j j j=-

+ = - = -
+ + - - +

A3 = 
10

1 1
( 10)

( 5) ( 10) ( 10) 100( 2 )
s j

s j
s s j s j j=

- =
+ + - - +
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Substituting these,

I(s) = 
31 2250

5 10 10

AA A

s s j s j

é ù
+ +ê ú+ + -ë û

Taking inverse Laplace transform,

i(t) = 5 10 10
1 2 3250[ ]t j t j tA e A e A e- -+ +

= 5 10 101 1
2 250

100(2 ) 100( 2 )
t j t j te e e

j j
- -ì ü+ - +í ý+ - +î þ

= 
10 10

5 (2 ) ( 2 )5
2

2 5 5

j t j t
t j e j e

e
-

- ì ü- - -ï ï- -í ý
ï ïî þ

= 5 10 10 10 101
2 {2 2 }

2
t j t j t j t j te e je e je- - -- - + +

or i(t) = 52 2 cos10 sin 10 ( )te t t A- - +
6.4 The circuit of the figure is initially in the steady state. The switch S is closed at t = 0.

(a) Find Vc(t)

(b) Determine the final value of Vc(t) and verify it from the final value theorem of Laplace Transform.

Solution At steady-state before closing the switch, the ca-

pacitor becomes open-circuited. So, the circuit becomes as

shown above.

2
(0 ) V

3
v + =

For t > 0, by KVL,

1 1 2 1 2( ) 2
V V

RI R I I RI RI
s s

+ - = Þ - = (i)

and 2 2 1 1 2

1 2 1 2
( )

3 3

V V
I R I I RI R I

Cs s Cs s

æ ö+ - = - Þ - + + = -ç ÷è ø (ii)

Solving equations (i) and (ii),

I2 = 
2

2 /
4

2 /3 3
3 22 2 ( 1/ )

( 1/ )

R V s
VR VR

R V s V Css s
s RCsR R R R Cs R

R R Cs

- +- - æ ö= = - ç ÷+è ø- + -
- +
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\ VC (s) = 2

1 2 2 1
2

3 3 (2 ) 3 3 2

V V V V
I

Cs s s RCs s s RCs

é ù´ + = - + = -ê ú+ +ë û

= 
1

2 6 2/

V V

s s RC

æ ö+ ç ÷+è ø
Taking inverse Laplace transform,

vC (s) = 2 / (Volt), 0
2 6

t RCV V
e t-+ > Ans.

Thus, the final value of the voltage,

vC (¥) = lim ( )
2C

t

V
v t

®¥
= Ans.

By final value theorem,

vC (¥) = 
0 0

lim ( ) lim
2 ( 2/ ) 2C

s s

V Vs V
SV s

s RC® ®

æ ö= + =ç ÷+è ø
(Proved)

6.5 In the network shown in the figure, the switch S is closed and a steady state is attained. At t = 0, the

switch is opened. Determine the current through the inductor for t > 0.

Solution When the switch S is closed and the steady-state exists, the current through the inductor

is,

i(0�) = 
5

2.5

V

R
=  = 2 A

The voltage across the capacitor, VC (t) = 0 as it is shorted.

For t > 0, the switch is opened. By KVL,

0

1
0

t
di

L idt
dt C

+ =ò

Taking Laplace transform,

( )
[ ( ) (0 )] 0

I s
L sI s i

Cs
- - + =

or
1

( ) (0 )I s sL Li
Cs

é ù+ = -ê úë û
Putting the values,

2 4
( ) 2

10

s
I s

s
=

+
Taking inverse Laplace transform,

( ) 2cos100 ( ); 0i t t A t= ³ Ans.
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6.6 The circuit shown in the figure is initially in the steady state with

the switch S open. At t = 0, the switch S is closed. Obtain the

current through the inductor for t > 0. Take R1 = R2 = R4 =1W and

R3 = 2W and L = 1H.

Solution When the switch S is open and steady state exists, the

current through the inductor is,

2
3 1 2 3 1 2

1
(0 ) 1 A

( )/
i

R R R R R R
- = =

+ + +

After S is closed, for t > 0, by KVL,

2i1 � i2 � i3 = 1

� i1 + 2i2 + 2di

dt
 � i3 = 0

� i1 � i2 + 4i3 = 0

Taking Laplace transform,

2I1(s) � I2(s) � I3(s) = 
1

s

�I1(s) + I2(s)[s + 2] � I3(s) = i2(0�) = 1

�I1(s) � I2(s) + 4I3(s) = 0

By Cramer�s Rule,

I2(s) = 

2 1/ 1

1 1 1
5 1

1 0 4 6 6
62 1 1
71 ( 2) 1

1 1 4

s

s
s

s

-
- -
-

= +
- - +

- + -
- -

Taking inverse Laplace transform,

i2(t) = 6 /75 1
( ); 0

6 6
te A t-+ > Ans.

6.7 A series R-L-C circuit with R = 3W, L = 1H and C = 0.5 F is excited with a unit step voltage. Obtain

an expression for the current, using Laplace transform. Assume that the circuit is relaxed initially.

Solution By KVL,

(0 )1 1
( ) ( ) (0 ) ( )

Q
RI s sLI s Li I s

sC sC s

-
+ - - + + =

Since the circuit is initially relaxed,

\ (0 ) 0 and (0 ) 0i Q- = - =
Putting the values,

2 1
( ) 3I s s

s s

é ù+ + =ê úë û
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or I(s) = 1 2

2

1 1

( 1) ( 2) 1 23 2

A A

s s s ss s
= = +

+ + + ++ +

where, 1 2

1 2

1 1
1 and 1

2 1
s s

A A
s s=- =-

= = = = -
+ +

\ 1 1
( )

1 2
I s

s s
= -

+ +
Taking inverse Laplace transform,

i(t) = e� t + e�2t (A)

= 3 /22 sinh (A)
2

t t
e

æ ö
ç ÷è ø Ans.

6.8 The switch S in the figure is opened at t = 0. Determine the voltage v(t), for t > 0. What is the nature

of the response?

(a)

(b)

Solution

(a) By KVL,

0

( ) 1
(0 )

tv t dv
i vdt C I

R L dt
+ - + + =ò

Taking Laplace transform,

1 1
( )

I
V s sC

R sL s

é ù+ + =ê úë û
Putting the values,

2 2
( ) 2

2

s
V s

s s

é ù+ + =ê úë û

or
2 2

4 4
( )

4 4 ( 2)
V s

s s s
= =

+ + +
Taking inverse Laplace transform,

2( ) 4 ( ), 0tv t te V t-= > Ans.

The response is critically damped (Q x = 1) Ans.
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(b) Proceeding in the same way as Prob. 6.8(a),

2 22

( 3 /2)1 2
( )

1 31 3

2 2

V s
s s

s

= = ´
+ + æ öæ ö+ + ç ÷è ø è ø

Þ /22 3
( ) sin (V); 0

23

tv t e t t- æ ö
= >ç ÷è ø

Ans.

The response is under-damped (Q x < 1) Ans.

6.9 In the R-C series circuit of figure, the capacitor has an initial charge

of 2.5 mC. At t = 0, the switch is closed and a constant voltage

source of V = 100 V is applied. Use the Laplace transform method

to find the current i(t) in the circuit.

Solution By KVL, after the switch is closed,

0

1
( ) (0 ) ( )

t

Ri t Q i t dt V
C

é ù
+ - + =ê ú

ë û
ò

Taking Laplace transform,

3

6 6

2.5 10( ) 100
10 ( )

50 10 50 10

I s
I s

ss s

-

- -
´

+ - =
´ ´

or
3

15
( )

2 10
I s

s
=

+ ´

Taking inverse Laplace transform,

32 10( ) 15 (A); 0ti t e t- ´= > Ans.

6.10 In the R-L circuit as shown, the switch is in position-1 long enough

to establish steady state condition and at t = 0 it is switched to

position-2. Find the resulting current, i(t).

Solution When the switch is in position 1, steady-state exists

and the initial current through the inductor is,

50
(0 ) 2 A

25
i - = =

After the switch is moved to position 2, the KVL gives, in Laplace

transform,

100
25 ( ) 0.01 ( ) 0.01 2I s sI s

s
+ - ´ =

or
4

1 210 2 2
( )

( 2500) 2500 2500 2500

A A
I s

s s s s s s
= - = + -

+ + + +

where,

4 4

1 2

0 2500

10 10
4 and 4

( 2500)
s s

A A
s s

= =-

= = = = -
+
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\ 4 4 2 4 6
( )

2500 2500 2500
I s

s s s s s
= - - = -

+ + +

Taking inverse Laplace transform,

2500( ) 4 6 (A); 0ti t e t-= - > Ans.

6.11 In the series RLC circuit as shown, there is no initial charge on the capacitor. If the switch is closed

at t = 0, determine the resulting current at i(t).

Solution By KVL, for t > 0,

0

1
[ (0 ) 0]

t
di

Ri L idt V i
dt C

+ + = - =ò Q

Taking Laplace transform,

( )
( ) ( )

I s V
RI s sLI s

Cs s
+ + =

Putting the values,

( ) 50
2 ( ) ( ) 2

I s
I s sI s

s s
+ + =

or
2 2

50 50 50
( )

( 1 ) ( 1 )2 ( 1) 1
I s

s j s js s s s
= = =

+ + + -+ + + +
By Partial Fraction Expansion,

25 25
( )

1 1

j j
I s

s j s j
= -

+ + + -
Taking inverse Laplace transform,

( 1 ) ( 1 )( ) 25 [ ] 50 sin (A); 0j t j t ti t j e e e t t- - - + -= - = > Ans.

6.12 In the two-mesh network shown in the figure, there is no initial charge on the capacitor. Find the

loop currents i1(t) and i2(t) which result when the switch is closed at t = 0.

Solution Writing two mesh equations,

1 1 2

0

1
10 ( ) ( ) 10 ( ) 50

0.2

t

i t i t dt i t
-

+ + =ò

and 50i2(t) + 10i1(t) = 50



Laplace Transform and its Applications 6.55

Taking Laplace transform,

1
1 2 1 2

( ) 50 5 50
10 ( ) 10 ( ) ( ) 10 10 ( )

0.2

I s
I s I s I s I s

s s s s

é ù+ + = Þ + + =ê úë û

and 1 2

50
10 ( ) 50 ( )I s I s

s
+ =

Solving, 1 2

5 1 1
( ) and ( )

0.625 0.625
I s I s

s s s
= = -

+ +
Taking inverse Laplace transform,

0.625 0.625
1 2( ) 5 (A) and ( ) 1 (A), 0t ti t e i t e t- -= = - >

6.13 Find using Final value theorem, the steady state value of I2(t) in the circuit shown in figure below.

Switch S is closed at t = 0. The inductor is initially de-energized.

Solution Circuit for t > 0 is,

By KVL, in Laplace transform,

1 3

24
( )[2 2 0.5 ] [2 0.5 ] ( )I s s s I s

s
+ + - + =

or 1 3

48
( )[ 8] [ 4] ( )I s s s I s

s
+ - + = (i)

and 1 3( )[2 0.5 ] [4 0.5 ] ( ) 0I s s s I s- + + + =

or 1 3( )[ 4] [ 8] ( ) 0I s s s I s- + + + = (ii)

Solving equations (i) and (ii),

1

48/ ( 4)

0 8 6( 8)
( )

( 8)8 ( 4)

( 4) 8

s s

s s
I s

s ss s

s s

- +
+ +

= =
++ - +

- + +

and

3

8 48/

( 4) 0 6( 4)
( )

( 6)8 ( 4)

( 4) 8

s s

s s
I s

s ss s

s s

+
- + +

= =
++ - +

- + +
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\ 2 1 3

6( 8) 6( 4) 24
( ) ( ) ( )

( 6) ( 6) ( 6)

s s
I s I s I s

s s s s s s

+ +
= - = - =

+ + +

\ 2 2
0 0

24
Final value of the current, ( ) lim ( ) lim 4 A

6s s
i sI s

s® ®
¥ = = =

+
Ans.

6.14 In a series LC circuit, the supply voltage being v = Vm cos (t), find i(t) with zero initial conditions.

Assume L = 1H, C = 1F.

Solution By KVL, for t > 0,

2

1
( )

1

m
sV

I s sL
Cs s

é ù+ =ê úë û +

or I(s) = 
2 2

2 2
2 ( ) ( ) ( ) ( )1 ( 1)

( 1)

m
m m

sV s s
V V

s j s j s j s js
s s

s

é ù é ù
= =ê ú ê ú+ - + -æ ö + ë ûë û+ +è ø

= 
2

2 2( ) ( )
m

s
V

s j s j

é ù
ê ú

+ -ë û

= 
* *

1 1 2 2

2 2 ( ) ( )( ) ( )
m

K K K K
V

s j s js j s j

é ù
+ + +ê ú- +- +ë û

2
1

1
( ) ( )

4s jK I s s j == ´ - =

where,
2 2

2
2 4

( ) 2 2( )1
( ) ( )

(2 1)! 4( )s j

s j s s s j jd
K s j I s

ds s j=

+ - ´ +
= - = = -

- +

\ K1
* = *

2

1
; and

4 4

j
K =

Thus I(s) = 
2 2

1 1

4 ( ) ( )( ) ( )

m
V j j

s j s js j s j

é ù
+ - +ê ú- +- +ë û

Taking inverse Laplace transform,

i(t) = �[ ] [ cos sin ] (A); 0
4 4
m mjt jt jt jtV V

te te je je t t t t-+ - + = + > Ans.

6.15 The series RC circuit of figure has a sinusoidal voltage source,

v = 180 sin (2000t + f) (V) and an initial charge on the capacitor

Q0 = 1.25 mC with polarity as shown. Determine the current if

the switch is closed at a time corresponding to f = 90o. What is

the current at time t = 0?

Solution By KVL, for t > 0,

3

6
0

1
40 ( ) 1.25 10 ( ) 180 cos 2000

25 10

t

i t i t dt t-
-

é ù
+ ´ + =ê ú

´ ë û
ò
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Taking Laplace transform,

3 4

6 2 6

1.25 10 4 10 180
40 ( ) ( )

25 10 4 10

s
I s I s

ss s

-

-
´ ´

+ + =
´ + ´

Þ
2

2 6 3 3

4.5 1.25
( )

( 4 10 ) ( 10 ) 10

s
I s

s s s
= -

+ ´ + +

Applying Heaviside expansion formula to find the first term on the right hand side, we have,

P (s) = 4.5s2,

Q (s) = s3 ´ 103 s2 + 4 ´ 106 s + 4 ´ 109,

Q¢ (s) = 3s2 + 2 ´ 103 s + 4 ´ 106,

a1 = 3 3 3
2 312 10 ; 2 10 and 10j a j a- ´ = ´ = -

Then, i(t) = 
3 3 3 3

3 3 3
2 10 2 10 10 10

3 3 3

( 2 10 ) ( 2 10 ) ( 10 )
1.25

( 2 10 ) ( 2 10 ) ( 10 )

j t j t t tP j P j P
e e e e

Q j Q j Q

- ´ ´ - -- ´ ´ -
+ + -

¢ - ´ ¢ ´ ¢ -

= 
3 3 32 10 2 10 10(1.8 0.9) (1.8 0.9) 0.35j t j t tj e j e e- ´ ´ -- + + -

= 
3101.8 sin 2000 3.6 cos 2000 0.35 tt t e-- + -

= 
3104.02 sin (2000 116.6 ) 0.35 (A); 0tt e t-+ ° - >

6.16 In the RL circuit of Figure, the source is 100 sin (500 )v t f= + .

Determine the resulting current if the switch is closed at a time

corresponding to f = 0.

Solution By KVL,

( ) ( ) (0 ) ( )RI s sLI s Li V s+ - - =

or
2 4

100 500
5 ( ) 0.01 ( ) [ (0 )] 0

25 10
I s sI s i

s

´
+ = - =

+ ´
Q

or
6

2 4

5 10
( )

( 25 10 ) ( 500)
I s

s s

´
=

+ ´ +

By Partial Fraction Expansion,

I(s) = 
1 1 10

5 5
500 500 500

j j

s j s j s

- + - -æ ö æ ö+ +ç ÷ ç ÷+ - +è ø è ø

Taking inverse Laplace transform,

i(t) = 50010 sin 500 10 cos 500 10 tt t e-- +

= 50014.14 sin (500 45 ) 10 (A); 0tt e t-- ° + >
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6.17 Determine the Laplace transform of the following periodic waveform.

f( )t

1

p 2p 3p 4p

t(second)

0

Solution Let, for the first half sine wave, the transform is F1(s).

Now, f1(t) = sin tu(t) + sin(t � p) u(t � p)
Taking Laplace transform,

F1(s) = 
2 2 2

11

1 1 1

ss ee

s s s

pp -- +
+ =

+ + +

By the theory of periodicity of Laplace transform, the Laplace transform of the full periodic wave-

form will be,

F(s) = 1 2

11 1
( ) [ for the waveform given]

1 1 1

s

Ts s

e
F s T

e s e

p

p
p

-

- -

+
´ = ´ =

- + -
Q

= 
2

1 1

1 1

s

s

e

e s

p

p

-

-

æ ö+
ç ÷- +è ø

= 
2

1
coth

21

s

s

pæ ö
ç ÷è ø+

Ans.

6.18 Determine the Laplace transform of the sawtooth waveform as shown below.

Solution For the first cycle,

f1(t) = 
1 1

( ) ( ) ( )r t u t T r t T
T T

- - - -

Taking Laplace transform,

F1(s) = 
2 2 2

1 1 1 1 1 1
[1 (1 ) ]Ts Ts Tse e Ts e

T s Ts s Ts

- - -- - = - +

By Scalling Theorem (the theory of periodicity), Laplace transform of the given periodic function is,

F(s) = 1 2

1 1 1
( ) [1 (1 ) ]

1 1

Ts

Ts Ts
F s Ts e

e Ts e

-
- -´ = - + ´

- -

= 
2

1

(1 )

Ts

Ts

e

Ts s e

-

--
-

Ans.
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6.19 Find the Laplace transform of the waveform shown in figure.

Solution Here, ( )1

2 4 2
( ) ( ) ( )

2

a
v t r t r t r t a

a a a
= - - + -

Taking Laplace transform,

V1(s) = 
/2

2 2 2

2 1 4 2as ase e

a a as s s

- -
- +

= /2

2

2
(1 2 )as ase e

as

- -- +

= /2 2

2

2
(1 )ase

as

--

By Scalling Theorem (the theory of periodicity), Laplace transform of the given periodic function is,

V(s) = /2 2
1 2

1 2 1
( ) (1 )

1 1

as

Ts as
V s e

e as e

-
- -´ = - ´

- -

= 
/2

2 /2

12

1

as

as

e

as e

-

-

æ ö-
ç ÷+è ø

= 
2

2
tanh

4

as

as

æ ö
ç ÷è ø Ans.

6.20 The unit step response of a network is given by (1 � e�bt) . Determine the unit impulse response h(t)

of this network.

Solution Here, the input is, 
1

( ) ( ) ( )w t u t W s
s

= Þ =

and the output is 
1 1

( ) (1 ) ( )
( )

bt b
y t e Y s

s s b s s b
-= - Þ = - =

+ +
By convolution theorem,

( ) ( ) ( )Y s H s W s=

Þ 1
( )

( )

b
H s

s s b s
=

+

Þ ( )
( )

b
H s

s b
=

+
Taking inverse Laplace transform, the impulse response is,

( ) bth t be-= Ans.
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6.21 The unit impulse response of current of a circuit having R =1 ohm and C = 1 F in series is given by

[ ( ) exp( ) ( )]t t u td - - . Find the current expression when the circuit is driven by the voltage given as,

[1 exp( 2 )] ( )t u t- - .

Solution Here, the impulse response is, 
1

( ) [ ( ) exp( ) ( )] ( ) 1
1 1

s
h t t t u t H s

s s
d= - - Þ = - =

+ +
.

The input is, 
1 1 2

( ) [1 exp( 2 )] ( ) ( )
2 ( 2)

w t t u t W s
s s s s

= - - Þ = - =
+ +

By convolution theorem, the output is given by,

2 2 2 2
( ) ( ) ( )

1 ( 2) ( 1) ( 2) 1 2

s
Y s H s W s

s s s s s s s
= = ´ = = -

+ + + + + +

Taking inverse Laplace transform,

2( ) (2 2 )t ty t e e- -= - Ans.

6.22 The response of a network to an impulse is 0.32 2.1( ) 0.18( )t th t e e- -= - . Find the response of the

network to a step function using convolution theorem.

Solution By convolution theorem,

Y(s) = 
1 1 1

( ) ( ) 0.18
0.32 2.1

H s W s
s s s

é ù= - ´ê ú+ +ë û

= 
0.32

( 0.32) ( 2.1)s s s+ +

= 31 2

0.32 2.1

AA A

s s s
+ +

+ +

\ A1 = 
0

0.32
0.477

( 0.32) ( 2.1)
s

s s =
=

+ +

\ A2 = 
0.32

0.32
0.562

( 2.1)
s

s s =-
= -

+

\ A3 = 
2.1

0.32
0.0856

( 0.32)
s

s s =-
=

+

Putting these values,

Y(s) = 
0.477 0.562 0.0856

0.32 2.1s s s
- +

+ +
Taking inverse Laplace transform,

y(t) = 0.32 2.10.477 0.562 0.0856t te e- -- + Ans.
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6.23 Find the initial and final value of the functions given as,

(a) F s
s

s s
b g b g

=
+

+ +

4 1

4 62
(b) F s

s

s s s s
b g

d i
=

-

+ + +

5 1600

18 90 800

3

3 2

Solution

(a) By initial value theorem, the initial value of the functions is given as,

f sF s s
s

s s

s

s s

Ans
s s s

0
4 1

4 6

4
4

1
4 6

4
2

2

+ = = ´
+

+ +

L
N
MM

O
Q
PP
=

+

+ +

L

N

M
M
M

O

Q

P
P
P
=

®¥ ®¥ ®¥
b g b g

b g
Lim Lim Lim .

By final value theorem, the final value of the function is given as,

f sF s s
s

s s
Ans

s s
¥ = = ´

+

+ +

L

N
M
M

O

Q
P
P
=

® ®
b g b g b g

Lim Lim
0 0 2

4 1

4 6
0 .

(b) By initial value theorem, the initial value of the functions is given as,

f sF s s
s

s s s s

s

s s s

s

s s s

Ans

s s

s

s

0
5 1600

18 90 800

5 1600

18 90 800

5
1600

1
18 90 800

5

3

3 2

3

3 2

3

2 3

+ = = ´
-

+ + +

L

N
M
M

O

Q
P
P

=
-

+ + +

L

N
M
M

O

Q
P
P

=
-

+ + +

L

N

M
M
M

O

Q

P
P
P

=

® ¥ ®¥

®¥

® ¥

b g a f
c h

c h

Lim Lim

Lim

Lim

.

By final value theorem, the final value of the function is given as,

f sF s s
s

s s s s

s

s s s

Ans

s s

s

¥ = = ´
-

+ + +

L

N
M
M

O

Q
P
P

=
-

+ + +

L

N
M
M

O

Q
P
P

= - = -

® ®

®

a f a f
c h

c h

Lim Lim

Lim

0 0

3

3 2

0

3

3 2

5 1600

18 90 800

5 1600

18 90 800

1600
800

2 .
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6.24 Express the function in terms of the standard signals and find its Laplace transform.

f t( )

1

2 30 1
t

Solution The function can be written as the summation of some ramp functions as given below.

f t r t r t r t r tb g b g b g b g b g= - - - - + -1 2 3

\ F s
s

e

s

e

s

e

s

s s s

b g = - - +
- - -1

2 2

2

2

3

2

6.25 Find the current i(t) flowing through the circuit if the circuit is initially relaxed. Find the voltage

across the capacitor vc (t) also. What is the value of the steady state current?

5 W

1
2
F V tc( )10 V

Solution By KVL,

5
1

2

10
5 2 10+F

H
I
K Þ + =

s
I s

s
I s s

/
b g b g b g=

\ I s
s s

b g = 10

5 2

2

2 5+
=

+ /

Taking inverse Laplace transform, the current in the circuit,

i t e Anstb g b g= -2 2 5/ .A

Voltage across the capacitor is,

V s I s

s
s s s s s sC b g b g b g= ´ = ´

+
=

+
= -

+
F
HG

I
KJ

1

1

2

2 2

2 5

4

2 5
10

1 1

2 5/ / /

Taking inverse Laplace transform,

V t e AnsC
tb g b g= - -10 1 2 5/ .V

From the current expression, as t ® µ, i(t) ® 0. So, the steady state value of the current is,

Iss = 0 Ans.

6.26 The series RL circuit shown in the figure is excited by a dc voltage of 50 V. Assume the initial current

flowing through the inductor to be 5 A and find the current i(t) for t > o. Use Laplace transform

method.
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Switch
5 W

1 Hi( )t50 V

Solution Applying KVL for the loop, we get,

Ri t L
di t

dt
b g b g

+ = 50

Taking Laplace transform,

RI s L sI s i
s

I s sI s
s

s I s
s

I s
s s s s s s

a f a f b g

a f a f

b g a f

a f b g b g b g

+ - - =

Þ + = +

Þ + = +

Þ =
+

+
+

= - +
L
NM

O
QP
+

+

0
50

5
50

5

5
50

5

50

5

5

5
50

1 1
5

5

5

Taking inverse Laplace transform, we get,

i t e e e t Anst t tb g d i d i b g= - + = - >- - -50 1 5 50 45 05 5 5 A .

6.27 Find the current i (t) for the circuit shown in the figure, if the voltage source is v t e u ttb g b g= -5 2  and

vC 0 0- =b g .

Switch
1 W

1 Fi( )tv t( )

Solution Applying KVL for the loop,

Ri t
C

i t dt v t e u t
t

t( ) ( ) ( )+ = =z -1
5

0

2 b g

Taking Laplace transform,

RI s
C

I s

s

q

s s
( )

( ) ( )
+ +

-L
NM

O
QP
=

+
1 0 5

2

I s
s s

( ) 1
1 5

2
+L

NM
O
QP
=

+
(since vC 0 0- =b g )
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I s
s

s s s s
( ) =

+ +
=

+
-

+
5

1 2

10

2

5

1b g b g
Taking inverse Laplace transform,

i t e et t( ) = -- -10 52 ; for t ³ 0 Ans.

6.28 Determine the current i (t) in a series RLC circuit consisting of R = 5W, L = 1H and C = ¼ F when the

source voltage is given as: (a) ramp voltage 12r (t � 2) and (b) step voltage 3u (t � 3). Assume that

the circuit is initially relaxed.

Solution Applying KVL for the series RLC circuit we get,

Ri t L
di t

dt C
i t dt v t

i t
di t

dt
i t dt v t

b g
b g

b g b g

b g
b g

b g b g

+ + =

Þ + + =

z

z

1

5
1

1 4/

(a) When v t r tb g b g= -12 2

5
1

1 4
i t

di t

dt
i t dt v tb g b g b g b g+ + =z/

Taking Laplace transform,

5
4 12

2

2+ +F
H

I
K = -s
s
I s

s
e sb g

Þ I s
e

s s s
e

s s s
e

s s s

s
s sb g

d i b g b g
=

+ +
=

+ +

L

N
M
M

O

Q
P
P
= -

+
+

+
L
NM

O
QP

-
- -12

5 4
12

1

1 4
12

1 4 1 3

1

1 12

4

2

2

2 2 / / /

= 
3 4

1 4

2 2 2e

s

e

s

e

s

s s s- - -
-

+
+

+

Taking inverse Laplace transform, we, get,

i t u t e e Ans
t tb g b g b g b g= - - +- - - -

3 2 4
2 4 2

.

(b) When v t u tb g b g= -3 3

 5
1

1 4
i t

di t

dt
i t dt v tb g b g b g b g+ + =z/

Taking Laplace transform,

5
4 3 3+ +F

H
I
K = -s
s
I s

s
e sb g

Þ I s
e

s s
e

s s
e

s s

s
s sb g

d i b g b g
=

+ +
=

+ +

L

N
M
M

O

Q
P
P
=

+
-

+
L
NM

O
QP

-
- -3

5 4
3

1

1 4
3

1 3

4

1 3

1

2

2

2 2 / /

= 
e

s

e

s

s s- -

+
-

+

2 2

4 1
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Taking inverse Laplace transform, we, get,

i t e e Ans
t tb g b g b g= +- - - -3 4 3

.

6.29 For the RC parallel circuit shown in the figure, determine the volt-

age across the capacitor using Laplace transform method. Assume

the capacitor to be initially relaxed.

Solution Applying KCL at the upper node,

v t

R
C
dv t

dt
i t

b g b g b g+ = = 10

Taking Laplace transform and putting the values of R and C,

V s
sV s

s

b g b g
5

10+ =

Þ V s

s s
s

s
b g =

+F
H

I
K

= -
+

L

N

M
M
M

O

Q

P
P
P

10

1

5

50
1 1

1

5

Taking inverse Laplace transform, we get,

v t e Anstb g d i b g= - -50 1 5/ .V

6.30 The circuit was in steady state with the switch in position 1. Find the current i(t) for t > 0 if the

switch is moved from position 1 to 2 at t = 0.

1 2

10 V 50 V

10 W

0.5 H

Solution When the switch is in position 1, steady-state exists and the initial current through the

inductor is,

i A( )0
10

10
1- = =

After the switch is moved to position 2, the KVL gives, in Laplace transform,

10 05 05 1
50

I s sI s
s

( ) . ( ) .+ - ´ =

or, I s
s s s s s s

( ) =
+

+
+

= -
+

L
NM

O
QP
+

+
100

20

1

20
5

1 1

20

1

20b g
Taking inverse Laplace transform,

i t e A t Anst( ) ( ); ; .= - >-5 4 020

10 A 5 W 1 F
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6.31 (a) In the circuit shown in the figure, The switch S has been thrown to position 1 for a long period

of time. Find the complete expression for the current after throwing the switch S to 2 which

removes R1 from the circuit.

R1

+

–

R2

1

2
LV

t = 0
S

(b) If the values of V, R1, R2 and L be 10V, 1 ohm, 2 ohms and 1H respectively, calculate

(i) steady state current

(ii) the energy stored in the inductance at steady state period

(iii) time constant of the circuit for both the positions of the switch S

Also calculate the voltage across the resistor R2 and inductor L, at 0.05 second after the switch S has

been thrown to position 2.

Solution

(a) For t < 0, as the circuit was in steady state with the switch in position 1, the circuit becomes as

shown below.

\ i
V

R R
0

1 2

- =
+b g

For t > 0, the circuit becomes as shown.

R1 R2

+

–

V
i(0–)

Circuit fort < 0

i(t)

R2

Circuit fort > 0

+

–

V L

By KVL,

R I s sLI s Li
V

s2 0b g b g b g+ - - =

Þ R sL I s
V

s

V L

R R2
1 2

+ = +
+b g

Þ I s
V

R s s R L

V

R R s R L
b g b g b g=

+

L

N
M
M

O

Q
P
P
+

+ +

F
HG

I
KJ2 2 1 2 2

1 1

/ /

Taking inverse Laplace transform,

i t
V

R
e

V

R R
e t Ans

R L t R L tb g e j b gb g b g= - +
+

>- -

2 1 2

1 02 2/ /
, .A
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(b) V = 10 V, R1 = 1 ohm, R2 = 2 ohm and L = 1H

(i) Steady state current, I
V

R
Ansss = = =

2

10

2
5 A .

(ii) Energy stored in the inductance at steady state period,

W L I Ans= = ´ ´ =1

2

1

2
1 5 12 52 2 . .watts

(iii) Time constant of the circuit for switch in position 1 is,

t 1
1 2

1
1 2

0 33= + = + =L
R R

Ans. .s

Time constant of the circuit for switch in position 2 is,

t 2
2

1
2

0 5= = =L
R

Ans. .s

For t = 0.05, voltage across the resistor,

V i R e e AnsR
t t

t
2 2

2 2

0 05

5 1
20

3
2 7= ´ = - +L

NM
O
QP

´ =- -

=
d i

.

.V

and voltage across the inductor, V AnsL = - =10 7 3b g V .

6.32 The circuit given in figure is initially at steady state with the switch �K� open. If the switch is closed

at time t = 0, find the voltage �VC(t)� across the capacitor.

1 kW

1 kW

1 kW

1 F (t)m Vc

K

6 V

Solution At steady-state before closing the switch, the capacitor becomes open-circuited. So, the

circuit becomes as shown above.

v( )0
2
3

6 4- = ´ = V

1 kW

+
–

6 V

1 kW

1 kW

v(0+)
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For t > 0, by KVL,

1 10 1 10
6

2000 1000
63

1
3

1 2 1 2´ ´ + ´ ´ - = Þ - =I I I
s

I I
s

b g (i)

and
10

1 10
4

1000 1000
10 46

2
3

2 1 1

6

2s
I I I

s
I

s
I

s
+ ´ ´ - = - Þ - + +

F
HG

I
KJ = -b g (ii)

Solving equations (i) and (ii),

I

s

s

Cs

s2

6

2000 6

1000 4

2000 1000

1000 1000 10

2

1000

1

2000
=

- -
-

- +

= -
+

F
HG

I
KJ

/

/

/d i

\ V s I
s s s s sc ( ) = ´ + = -

+
+2

610 4 2000

2000

4

b g

= 
3 1

2000s s
+

+

Taking inverse Laplace transform,

v t e Volt t Ansc
t( ) ( ), .= + >-3 02000

6.33 In the circuit in the figure, the steady state exists when the switch S is in position a for a consider-

able period of time. Find the current response after throwing the switch from position a to b. What

will be the steady state value of the current?

20 V

10 W

100 Fm

a

b

1 H

Solution When the switch is in position a, steady-state exists and the initial

current through the inductor is,

i ( )0
20

10
2- = = A

After the switch is moved to position b, the KVL gives, in Laplace transform,

1

100 10
1 1 2 0

6´
+ - ´ =- s

I s sI s( ) ( )

or, I s

s
s

s

s
( ) =

+
=

+
2

10

2

10
4 2 4d i

10 W

20 V



Laplace Transform and its Applications 6.69

Taking inverse Laplace transform,

i t t A t Ans( ) cos ( ); ; .= >2 100 0

� The steady state current will oscillate sinusoidally following the relation

i t t( ) cos= 2 100  with peak magnitude of 2 A and frequency of 100 rad/s

or 16.9 Hz.

6.34 A dc voltage applied to a coil of inductance L and resistance R is suddenly

changed from V1 to V2.

(a) Find an expression for current in the circuit.

(b) If R = 10W, L = 1H, V1 = 100V, and V2 = 200V, find current at t = 0.5 s.

(c) If R = 10W, L = 1H, V1 = 200V, and V2 = 100V, find current at t = 0.5 s.

Solution Here, initial current in the circuit, i
V

R
0 1- =b g

(a) After changing the voltage, the KVL equations is,

Ri t L
di t

dt
V u tb g b g b g+ = 2

Taking Laplace transform,

RI s L sI s i
V

s
b g b g b g+ - - =0 2

Þ I s R sL
V

s

V L

R
b g + = +2 1

Þ I s
V

s R sL

V L

R R sL

V L

s s R L

V R

s R L
a f b g b g=

+
+ +

F
H

I
K = +

+ +
F
H

I
K

2 1 2 11 /

/

/

/

Taking inverse Laplace transform,

i t
V

R
e

V

R
e

V

R

V

R

V

R
e Ans

R L t R L t R L tb g b g b g b g= - + = + -F
HG

I
KJ

- - -2 1 2 1 21
/ / /

.

(b) If R = 10W, L = 1H, V1 = 100V, and V2 = 200V, we get the current at t = 0.5 s as,

i t e e Ansb g b g= + -F
H

I
K = - =- ´ -200

10

100

10

200

10
20 10 19 93

10 1 0 5 5/ .
. .A

(c) If R = 10W, L = 1H, V1 = 200V, and V2 = 100V, we get the current at t = 0.5s as,

i t e e Ansb g b g= + -F
H

I
K = + =- ´ -100

10

200

10

100

10
10 10 10 07

10 1 0 5 5/ .
. .A

6.35 A 50mF capacitor and 20000W resistor are connected in series across a 100V battery at t = 0. At t =

0.5 s, the battery voltage is suddenly increased to 150V. Find the charge on capacitor at t = 0.75s.

Solution When the circuit is connected to 100V supply, the equation of voltage across the capacitor

is,

v E e e eC
t RC t t= - = - = -- - ´ ´ --

1 100 1 100 120000 50 10 6/ /d i e j d i

+
–

10

s

4

i
s

2 Volt
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At t = 0.5s, the voltage across the capacitor is, v eC = - =-100 1 39 3470 5. .d i V

\ At t = 0.5 s, charge on the capacitor is, q Cv CC= = ´ ´ = ´- -50 10 39 347 1967 35 106 6. .

This charge is the initial charge q0 when the battery voltage is suddenly increased to 150V.

When the circuit is connected to 150V, the KVL equation becomes,

Ri t
C

i t dt Vu t
t

b g b g b g+ =z1

0

Taking Laplace transform,

RI s
C

I s

s

q

s

V

s
b g b g

+ +
L

N
M

O

Q
P =

1 0

Þ I s

V

R

q

RC

s
RC

b g =
-

+

0

1

Taking inverse Laplace transform,

i t
V

R

q

RC
e t RC( ) /= -L

NM
O
QP

-0

Therefore, the voltage across the capacitor,

V
C

i t dt
C

V

R

q

RC
e dt V e

q

RC
eC

t t
t RC t RC t RC= = -F

HG
I
KJ = - +z z - - -1 1

1
0

0

0

0( ) / / /d i

Substituting the values, the voltage across the capacitor at t = 0.75s i.e., 0.25 second after changing

the battery voltage,

V V e
q

RC
e e eC

t RC t RC= - + = - +
´

=- - -
-

-1 150 1
1967 35 10

1
63820 0 25

6
0 25/ / . ..

.d i d i V

\ charge on the capacitor is, q Cv C AnsC= = ´ ´ = ´- -50 10 6382 319 106 3. . .

6.36 For the circuit shown in the figure, find an expression for the current supplied by the source. How

much time will it take for the current to reach 25mA? Assume the circuit to be initially relaxed.

700 W
500 W

i1

i2
10 V

100 Fm

Solution Applying KVL for the two meshes, we get,

500 500 10

500 1200
1

100 10
0

1 2

1 2 6 2

0

i i

i i i dt
t

- =

- + +
´

=- z
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Taking Laplace transform,

500 500
10

500 1200
10

0

1 2

1

4

2

I s I s
s

I s
s

I s

b g b g

b g b g

- =

- + +
F
HG

I
KJ =

Solving for I1(s), we get,

I s

s

s

s

s

s s s s s
1

4

4

4 4 4

10 500

0 1200
10

500 500

500 1200
10

24 200

700 10

24

700 10

200

700 10
b g

d i d i
=

-

+
F
HG

I
KJ

-

- +
F
HG

I
KJ

= +
+

=
+

+
+

/

=
+

F
HG

I
KJ + +

F
HG

I
KJ
= F

H
I
K + +

F
H

I
K

24

700

1

100 7

2

7

1

100 7

1

50

1 1

70

1

100 7s s s s s/ / /b g
Taking inverse Laplace transform,

i t e At
1

100 71

50

1

70
b g b g= + - /

For the current to be 25 mA, we get,

25 10
1

50

1

70
0 07353 100 7´ = + Þ =- -e tt / .  second Ans.

6.37 The figure shows a parallel RLC circuit fed from a dc current source through a switch. The circuit

elements are R = 400W, L = 25 mH, C = 25 nF. The source current is 24 mA. The switch which has

been in closed position for a long time is opened at t = 0.

I S R L C v t( )

(a) What is the initial value of current iL (i.e., at t = 0)?

(b) What is the initial value of voltage across L at t = 0?

(c) What is the expression for current through inductance, capacitance and resistance?

(d) What is the final value of iL?

(e) What happens to iL(t) if R is increased from 400 to 625 W? Assume that initial energy is zero.

Solution Applying KCL for the node, we get,

v t

R L
vdt C

dv

dt
I

t( ) + + =z1

0



6.72 Circuit Theory and Networks

Taking Laplace transform,

V s
R sL

sC
I

s
( )

1 1+ +L
NM

O
QP
=

Þ V s
I

C s
s

RC LC

b g =
+ +F

H
I
K

2 1

Substituting the values,

V s

s
s s s

s s s s

a f
d i

c h c h

=
´

´ +
´ ´

+
´ ´ ´

F
HG

I
KJ
=

´
+ + ´

= ´
+ ´ + ´

=
+ ´

-
+ ´

-

-
- - -

24 10

25 10
400 25 10

1

25 10 25 10

24 10

25 10 16 10

24 10

25 2 10 8 10

16

2 10

16

8 10

3

9 2
9 3 9

6

2 5 8

6

4 4 4 4

Taking inverse Laplace transform,

v t e et t( ) ( )= -- ´ - ´16 162 10 8 104 4

V

Also, the current through the inductor,

I s
V s

sL

V s

s s s s

s s s

s s s

L a f a f a f
c h c h

c h c h

c h c h

= =
´

=
´

´ ´ + ´ + ´

= ´
+ ´ + ´

= -
+ ´

+
+ ´

- -25 10

24 10

25 10 25 2 10 8 10

384 10

2 10 8 10

24
1000

32

1000 2 10

8

1000 8 10

3

6

3 4 4

5

4 4

4 4

Taking inverse Laplace transform,

i t e eL
t tb g b g= - +- ´ - ´24 32 82 10 8 104 4

mA

(a) At t = 0, we get, i AnsL 0 0b g = .

(b) At t = 0, we get, v 0 0b g =
(c) Current through inductance

i t e eL
t tb g b g= - +- ´ - ´24 32 82 10 8 104 4

mA  Ans.

Current through capacitance,

i t C
dv t

dt

d

dt
e e e e AnsC

t t t tb g b g b g= = ´ - = -- - ´ - ´ - ´ - ´25 10 16 16 32 89 2 10 8 10 8 10 2 104 4 4 4

mA .
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Current through resistance,

i t
v t

R
e e e e AnsR

t t t tb g b g b g= = ´ - = -- ´ - ´ - ´ - ´1

400
16 16

1

25
162 10 8 10 2 10 8 104 4 4 4

A .

(d) At t = ¥, the final value of iL is, i e e AnsL ¥ = - + =-¥ -¥b g b g24 32 8 24 mA .

(e) Putting the value of resistance R = 625W in the expression of iL, we get,

I s
V s

sL

I

sLC s
s

RC LC

s s
s

s s s

L b g b g

d i

= =
+ +F

H
I
K

=
´

´ ´ ´ ´ +
´ ´

+
´ ´ ´

F
HG

I
KJ

=
´

+ ´ + ´

-

- -
- - -

2

3

3 9 2

9 3 9

5

2 3 8

1

24 10

25 10 25 10
625 25 10

1

25 10 25 10

384 10

64 10 16 10

Taking inverse Laplace transform and simplifying, we get,

i t e t AnsL
tb g d i b g= ´ ´- ´106 67 10 14 4 109 32 10 33

. sin . .A

Here, with R = 400 W, the circuit was in overdamped condition. As the value of resistance is

increased to 625 W, the circuit becomes underdamped.

6.38 In the network of the figure, the switch S has been closed for a long time. The switch is suddenly

opened at t = 0 and reclosed at t = 20ms. Find expression for voltage V0 for t £ 20 ms and t > 20 ms.

+
–

120 V

1000 W

3000 W

2000 W

V0

0.001 Fm

S

Solution With the switch closed, the initial voltage across the capacitor is,

vC 0
120

1000 2000
2000 80- =

+
´ =b g V

+
–

1000 W

2000 W120 V vC(0–)
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After the switch is opened, the transformed circuit is shown in the figure below.

1000 W

+
–

+
–

3000 W

2000 W

1
10–8 s

80
s

120
s

X V S0( )

Applying KCL at node X, we get,

V s
s V V

s

s

X
X

Xb g -
+ +

-
=

-

120

4000 2000

80

1

10

0

8

Þ V s
s sX

1

4000

1

2000
18

120

4000
80 100

0 03
80 1008 8 8+ +L

NM
O
QP
= + ´ = + ´- - -.

Þ V
s s s

X =
+

+
´

+-

-

-
0 03

0 00075 10

80 100

0 00075 108

8

8

.

. .d i

= -
+ ´

+
+ ´

40 40

0 075 10

80

0 075 106 6s s s. .
 = +

+ ´
40 40

0 075 106s s .

Taking inverse Laplace transform,

V t eX
tb g = + - ´40 40 0 075 106.

Therefore, the desired voltage is,

V t V t
V t

eX
X t

0
0 075 10

120

4000
3000 100 10

6b g b g b g
= +

-
´ = + - ´.  for 0 £ t £ 20 ms Ans.

At t = 20 ms, the voltage of node X is,

V eX = + =- ´ ´ ´ -
40 40 48 9250 075 10 20 106 6. . V

When the switch is reclosed at t = 20 ms, the voltage across

the capacitor will be 48.925 V. After reclosing the switch,

the transformed circuit is shown in the figure below.

Now let the voltage of node X be VX�. Applying KCL at

node X, we get,

¢ -
+

¢
+

¢ -
=

-

V s
s V s V s

s

s

X X Xa f a f a f120

1000 2000

48 925

1

10

0

8

.

1000 W

+
–

+
–

2000 W

1
10–8 s

48.925
s

120
s

X V S0( )

V¢x
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Þ ¢ + +L
NM

O
QP
= + ´- -V s s

sX a f 1
1000

1
2000

10
120
1000

48 925 108 8.

Þ ¢ + = + ´- -V s s
sX a f 0 0015 10

012
48 925 108 8.

.
.

Þ ¢ =
+

+ ´
+

=
+ ´

+
+ ´

-

-

-V s
s s s

s s s

X a f
c h

c h

012

0 0015 10

48 925 10

0 0015 10

012

015 10

48 925

015 10

8

8

8

6 6

.

.

.

.

.

.

.

.

Þ ¢ = -
+ ´

V s
s s

X a f 80 31075

015 106

.

.

Taking inverse Laplace transform, we get,

¢ = - - ´V t eX
tb g 80 31075 015 106

. .

In this case, the output voltage V0 is equal to VX�(t). Since time t is to be counted from the instant the

switch is reclosed, t is replaced by  t - ´ -20 10 6d i .

\ V t e
t

0

0 15 10 20 10
80 31075

6 6

b g d i= - - ´ - ´ -

.
.

 for t > 20 ms Ans.

6.39 In the circuit of the figure the switch S is closed at t = 0 and opened again at t = p second. Prior to

closing the switch at t = 0, vC = 10V while L and C2 do not have any stored energy. Find the voltages

vC1
 and vC2

at t = p second. C C L1 2 1 2= = =F H;

Solution After closing the switch, applying KVL in the circuit,

we get,

L
di t

dt C
i t dt

C
i t dt

t tb g b g b g+ + =
-¥ -¥
z z1 1

0
1 2

Since initial voltage across C1 is 10V, we get,

2
10

0sI s
I s

s s

I s

s
b g b g b g

+ - + =

Þ I s s
s s

b g 2 2 10+L
NM

O
QP
=

Þ I s
s

b g =
+
5

12

Taking inverse Laplace transform, we get,

i t tb g = 5sin

\ v t
C

tdt csot AnsC1
10

1
5 10 5 0

1 0

0b g = - + = - + - =z sin .
p

p

v
c1

+

–

+

–

v
c2

C1 C2

S
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\ v t
C

t dt csot AnsC2

1
5 5 10

2 0

0b g = = - =z sin .
p

p V

6.40 The network shown in the figure is in steady state with S1 closed and S2 open. At t = t1, S1 is opened

and S2 is closed. Find current through capacitor for t ³ t1.

2 W 2 H

3 H

S1 S2

1 Fm10 V

Solution When switch S1 is closed and S2 is opened, the initial current through the 3 H inductor is,

i 0
10

2
5- = =b g A . Initial voltage across the capacitor is zero.

When switch S1 is opened and S2 is closed, the current through the capacitor is given by the KVL

equation as,

3
1

1 10
0

6
0

di t

dt
i t dt

tb g b g+
´

=- z
Taking Laplace transform,

3 3 5
1

10
0

6
sI s

I s

s
b g b g

- ´ + =-

Þ I s
s

s

s

s

b g =
+

=
+

15

3 10

5

10

3

2 6
2

6

Taking inverse Laplace transform we get,

i t t tb g b g=
F

H
G

I

K
J

L

N
M
M

O

Q
P
P
=5

10

3
5 577 35

6

cos cos .

Since the switch is closed at t = t1, the time will be shifted by t t- 1b g  so that the current through the

capacitor is given as,

i t t t t t Ansb g b g= - ³5 577 35 1 1cos . .for

6.41 The switch in figure has been in position A for a long time. At t = 0 it is moved to B and at t = 1

second, it is moved to A again. Find voltage across capacitor after a further lapse of 1 millisecond.

10 V 1500 W

500 ¥ 103 W B

A

1 Fm vc
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Solution As the switch is in position A for a long time, initial charge across the capacitor is zero.

When the switch is moved to position B, the current in the circuit is obtained from the KVL

equation as,

I s
s s

b g 500 10
1

1 10

103

6
´ +

´

F
HG

I
KJ
=-

Þ I s
s s

b g b g
=

´ +
=

´ +
F
HG

I
KJ

10

500 10 2

1

5 10

1

23 4

Taking inverse Laplace transform,

i t e tb g b g=
´

-1

5 104

2 A

Therefore, voltage across the capacitor is,

v t i t e eC
t tb g d i b g d i d i b g= - ´ = - ´

´
= -- -10 500 10 10 500 10

1

5 10
10 13 3

4

2 2 V

Therefore, voltage across the capacitor at t = 1second is,

v t eC b g d i b g= - =-10 1 8 652 . V

At t = 1second, the switch is moved to position A, so that the KVL equation becomes,

1

1 10
1500 0

6
0´

+ =- z i t dt i t
t

b g b g

Taking Laplace transform,

I s
s s

b g 1500
1

1 10

8 65
6

+
´

L
NM

O
QP
=-

.
 since initial voltage across the capacitor is 8.65 V.

Þ I s
s

b g = +
F
H

I
K

8 65

1500

1

666 67

.

.

Taking inverse Laplace transform,

i t e tb g b g= -8 65

1500
666 67. . A

Hence, the voltage across the capacitor is,

v t i t e eC
t tb g b g= = ´ =- -1500 1500

8 65

1500
8 65666 67 666 67.
.. .

At t = 1ms, the voltage is, v e AnsC = =- ´ ´-8 65 4 44666 67 10 3. . .. V

6.42 Determine the Laplace transform of f t
e

t

t

b g = - -2 2
.

Solution

f t
e

t t
e

te
e

te
t

t t t t
t

t

t

t

t
b g d i d i=

-
= - = - = + + + + + + -

F
HG

I
KJ

-
-2 2 2

1
2

1
2

1
2 3 4 5

1
2 3 4 5

! ! ! !
...  (Expanding et)
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\ f t
te

t
t t t t

t
b g = + + + + +

F
HG

I
KJ

2

2 3 4 5

2 3 4 5

! ! ! !
...

= 2
1

2

1

3

1

4

1

5
2 3 4e te t e t e t et t t t t- - - - -+ + + + +F

H
I
K! ! ! !

...

Taking Laplace transform of each term, we get,

F s
s s s s

b g
b g b g b g

=
+

+
+

+
+

+
+

+
L

N
M
M

O

Q
P
P

2
1

1

1

2

1

1

1

3

2

1

1

4

3

1
2 3 4!

!

!

!

!

!
...

=
+

+ F
H

I
K +

F

H
GG

I

K
JJ +

F
H

I
K +

F

H
GG

I

K
JJ +

F
H

I
K +

F

H
GG

I

K
JJ +

L

N
M
M

O

Q
P
P

2
1

1

1

2

1

1

1

3

1

1

1

4

1

1
2 3 4s s s s

Ans
b g b g b g

... .

6.43 Express the following functions in terms of singularity functions and find their Laplace transform:

(a)

p0
t

Vm

f t( ) (b)

0
t

K

f t( )

1

(c)

0

t

K

f t( )

1 2

Kt 2 K t)(2 – 2

(d)

0 1 2 3 4 5 6

1

f t( )

t

e– /2t

Solution

(a) Here, the signal can be expressed in terms of step signal as,

f t V t u t V t
T

u t
T

V t u t V t u t

m m

m m

b g b g
b g b g b g

= + -F
H

I
K -F

H
I
K

= + - -

sin sin

sin sin

w w

w w p p

2 2

Taking Laplace transform of individual terms, we get the Laplace trans-

form of the functions as,

F s
V

s

V e

s

V

s
e Ansm m

s
m sb g d i=

+
+

+
=

+
+

-
-

2 2 21 1 1
1

p
p .

p0
t

Vm

f t( )
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(b) Here, the signal starts with a straight line of slope K passing through

origin and then comes to zero at t = 1.Hence the signal can be expressed

in terms of ramp and step signals as,

f t Kr t Kr t Ku t Ansb g b g b g b g= - - - -1 1 .

Taking Laplace transform of individual terms, we get the Laplace trans-

form of the functions as,

F s
K

s

Ke

s

Ke

s

K

s
s e Ans

s s
sb g b g= - - = - +

- -
-

2 2 2
1 1 .

(c) The function can be written as,

f t Kt u t Kt u t K t u t K t u t

Kt u t K t t u t K t u t

Kt u t K t u t K t u t

b g b g b g b g b g b g b g
b g b g b g b g b g
b g b g b g b g b g

= - - + - - - - -

= - - - - - - -

= - - - - - -

2 2 2 2

2 2 2 2

2 2

1 2 1 2 2

2 1 2 2

4 1 1 2 2

0

t

K

f t( )

1 2

Kt 2 K t)(2 – 2

Taking Laplace transform of individual terms, we get the Laplace transform of the functions as,

F s K
s

e

s

e

s
K
s

se e Ans
s s

s sb g = - -
L
NM

O
QP

= - -
- -

- -2 4 2 2
1 2

3 2

2

3 3

2 .

(d)

0 1 2 3 4 5 6

1

f t( )

t

e– /2t

The function can be written as,

f t e u t u t e u t u t e u t u t

e u t u t u t u t u t u t

t t t

t

b g b g b g b g b g b g b g
b g b g b g b g b g b g

= - - -

-

- - + - - - + - - - +

= - - + - - - + - - - +

/ / /

/

...

...

2 2 2

2

1 2 3 4 5

1 2 3 4 5

0
t

K

f t( )

1
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Taking Laplace transform of individual terms, we get the Laplace transform of the functions as,

F s
s

e

s

e

s

e

s

s
e e e

s e
Ans

s s s

s s s

s

b g
b g b g b g

b g b g b g

b g

=
+

-
+

+
+

-
+

+

=
+

F
HG

I
KJ

- + - +

=
+

F
HG

I
KJ +

F

H
G

I

K
J

- + - + - +

- + - + - +

- +

1

1 2 1 2 1 2 1 2

1

1 2
1

1

1 2

1

1

1 2 2 1 2 3 1 2

1 2 2 1 2 3 1 2

1 2

/ / / /
...

/
...

/
.

/ / /

/ / /

/

6.44 A pulse voltage of width a and magnitude 10 V is applied at time t = 0 to a series RL circuit

consisting of a resistance R = 4 W and an inductor L = 2 H. Find the current i(t). Assume zero current

through the inductor L before application of the voltage pulse.

Solution The pulse voltage can be written as,.

v t u t u t ab g b g b g= - -10 10

Applying KVL for the RL series circuit with the pulse voltage,

Ri t L
di t

dt
v tb g b g b g+ =

Taking Laplace transform,

RI s L sI s i V sb g b g b g b g+ - - =0

With zero initial current, substituting the values we get,

4 2
10

1I s sI s
s

e asb g b g d i+ = - -

Þ I s
s

e

s

e

s s
e

s s

as
as

asb g d i
b g d i= -

+
F
HG

I
KJ =

-

+
= - -

+
L
NM

O
QP

- -
-10 1

2 4

5 1

2

5

2
1

1 1

2

= -
+

- +
+

L
NM

O
QP

- -5

2

1 1

2 2s s

e

s

e

s

as as

Taking inverse Laplace transform,

i t e u t e u t a Anst t ab g d i b g e j b gb g= - - - -L
NM

O
QP

- - -5

2
1 12 2

.

6.45 A voltage pulse of width b and magnitude 10 V is applied at time t to a series RC circuit consisting

of a resistor R = 1 W and a capacitor C = 
1

4
F. Find the current i(t). Assume zero charge across the

capacitor C before application of the voltage pulse.

Solution The pulse voltage can be written as,.

v t u t u t bb g b g b g= - -10 10

Applying KVL for the RC series circuit with the pulse voltage,

Ri t
C

i t dt v t
t

b g b g b g+ =
-¥
z1
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Taking Laplace transform,

RI s
C

I s

s

v

s
V sb g b g b g b g+ +

-L

N
M

O

Q
P =

1 0

With zero initial voltage, substituting the values we get,

4
1 4

10
1I s

I s

s s
e bsb g b g d i+ = - -

/

Þ I s
e

s

e

s s

e

s

bs
bs

bs

b g d i
= -

+
F
HG

I
KJ =

-

+
=

+
-

+
L
NM

O
QP

- - -
10

1

4

10 1

4

10

4

10

4

Taking inverse Laplace transform,

i t e u t e u t b Anst t bb g b g b gb g= - -- - -10 4 4
.

6.46 Find the response current of a series RL circuit consisting of a resistor R = 3 W and an inductor L =

1 H when each of the following driving force voltage is applied:

(a) unit ramp voltage r t - 2b g,
(b) unit impulse voltage d t - 2b g ,

(c) unit step voltage u t - 2b g ,

(d) unit doublet voltage ¢ -d t 2b g , and

(e) pulse of width a and magnitude 1 V beginning at time t = 2 seconds.

Solution

(a) Unit ramp voltage r t - 2b g
Applying KVL to RL series circuit,

Ri L
di

dt
v t r t+ = = -b g b g2

Taking Laplace transform,

R sL I s
s

e

I s
e

s sL R

s

s

+ =

=
+

-

-

b g b g

b g
b g

1
2

2

2

2

Substituting the values,

I s
e

s s
e

K

s

K

s

K

s

s
sb g b g

=
+

= + +
+

L
NM

O
QP

-
-

2

2

2 1

2

2 3

3 3

\ K
s

s

1

0

1

3

1

3
=

+
=

=

\ K
d

ds s ss
s

2

0
2

0

1

3

1

3

1

9
=

+
L
NM

O
QP

= -
+

= -
= =

b g
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\ K
s s

3 2
3

1 1

9
= =

=-

\ I s e
s s s

sb g = + - +
+

L
NM

O
QP

-2
2

1 3 1 9 1 9

3

/ / /

Taking inverse Laplace transform,

i t u t r t e u t Ans
tb g b g b g b gb g= - - + - + -- -1

9
2

1

3
2

1

9
2

3 2
.

(b) Unit impulse voltage d t - 2b g:
In this case,

Ri L
di

dt
v t t+ = = -b g b gd 2

Taking Laplace transform,

R sL I s e

I s
e

sL R

e

s

s

s s

+ =

=
+

=
+

-

- -

a f a f
a f a f a f

2

2 2

3

Taking inverse Laplace transform,

i t e u t Ans
tb g b gb g= -- -3 2

2 .

(c) Unit step voltage u t - 2b g
In this case,

Ri L
di

dt
v t u t+ = = -b g b g2

Taking Laplace transform,

R sL I s
e

s

I s
e

sL R

e

s s
e

s s

s

s s
s

+ =

=
+

=
+

= -
+

L
NM

O
QP

-

- -
-

a f a f

a f
a f a f a f

2

2 2
2

3

1
3

1 1

3

Taking inverse Laplace transform,

i t u t e u t Ans
tb g b g b gb g= - - -- -1

3
2

1

3
2

3 2
.

(d) Unit doublet voltage ¢ -d t 2b g :

In this case,

Ri L
di

dt
v t t+ = = ¢ -b g b gd 2

Taking Laplace transform,

R sL I s se

I s
e

sL R

se

s
e

s

s

s s
s

+ =

=
+

=
+

= -
+

L
NM

O
QP

-

- -
-

a f a f

a f
b g b g b g

2

2 2
2

3
1

3

3
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Taking inverse Laplace transform,

i t t u t e u t Ans
tb g b g b g b gb g= - - - -- -d 2 2 3 2

3 2
.

(e) Pulse of width a and magnitude 1V beginning at time t = 2 seconds

In this case,

Ri L
di

dt
v t u t u t a+ = = + - - -b g b g b g2 2

Taking Laplace transform,

R sL I s
s
e

s
es a s+ = -- - +b g b g b g1 12 2

I s
e e

s sL R
e e

s s
e e

s a s
s a s s a sb g b g b g

b g b g b g= -
+

= -
+

= -
- - +

- - + - - +
2 2

2 2 2 21

3

1

3

= - -
+

+
+

L

N
M
M

O

Q
P
P

- - + - - +
1

3 3 3

2 2 2 2
e

s

e

s

e

s

e

s

s a s s a sb g b g

Taking inverse Laplace transform,

i t u t u t a e u t e u t a Ans
t t ab g b g b g b g b gb g b g= - - - - - - + - -- - - - -1

3
2 2 2 2

3 2 3 2
.

6.47 Find the response current of a series RC circuit consisting of a resistor R = 2 W and a capacitor C =

1

4
F when each of the following driving force voltage is applied:

(a) ramp voltage 2 3r t -b g ,

(b) impulse voltage 2 3d t -b g,
(c) step voltage 2 3u t -b g, and

(d) doublet voltage 2 3¢ -d tb g.
Solution

(a) ramp voltage 2 3r t -b g :

Applying KVL to RC series circuit,

Ri
C

idt v t r t
t

+ = = -
-¥
z1

2 3b g b g

Taking Laplace transform,

R
Cs

I s
s
e

I s
e

s R
Cs

e

s
s

e

s s
e

s s

s

s s s
s

+F
H

I
K =

=
+F

H
I
K

=
+F

H
I
K

=
+

= -
+

L
NM

O
QP

-

- - -
-

1 2

2

1

2

2
4 2

1

2

1 1

2

2

3

3

2

3

2

3
3

b g

b g
b g
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Taking inverse Laplace transform,

i t u t e u t Ans
tb g b g b gb g= - - -- -1

2
3

1

2
3

2 3
.

(b) Impulse voltage 2 3d t -b g
In this case,

Ri
C

idt v t t
t

+ = = -
-¥
z1

2 3b g b gd

Taking Laplace transform,

R
Cs

I s e

I s
e

R
Cs

e

s

se

s
e

s

s

s s s
s

+F
H

I
K =

=
+F

H
I
K

=
+F

H
I
K

=
+

= - +
L
NM

O
QP

-

- - -
-

1
2

2

1

2

2
4 2

1
2
2

3

3 3 3
3

a f

a f a f

Taking inverse Laplace transform,

i t t u t e u t Ans
tb g b g b g b gb g= - - - -- -d 3 3 2 3

2 3
.

(c) Step voltage 2 3u t -b g
In this case,

Ri
C

idt v t u t
t

+ = = -
-¥
z1

2 3b g b g

Taking Laplace transform,

R
Cs

I s e
s

I s
e

s R
Cs

e

s
s

e

s

s

s s s

+F
H

I
K =

=
+F

H
I
K

=
+F

H
I
K

=
+

-

- - -

1
2

1

2

1

2

2
4 2

3

3 3 3

a f

a f
b g

Taking inverse Laplace transform,

i t e u t Ans
tb g b gb g= -- -2 3

3 .

(d) Doublet voltage 2 3¢ -d tb g
In this case,

Ri
C

idt v t t
t

+ = = ¢ -
-¥
z1

2 3b g b gd

Taking Laplace transform,

R
Cs

I s se

I s
se

R
Cs

se

s

s e

s
e s

s

s

s s s
s

+F
H

I
K =

=
+F

H
I
K

=
+F

H
I
K

=
+

= - + +
L
NM

O
QP

-

- - -
-

1
2

2

1

2

2
4 2

2
4
2

3

3 3 2 3
3

a f

a f a f
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Taking inverse Laplace transform,

i t t t e u t t Ans
tb g b g b g b gb g= ¢ - - - + - ³- -d d3 2 3 4 3 3

2 3
.

6.48 Find the response current of a series RLC circuit consisting of a resistor R = 2W, an inductor L = 1 H

and a capacitor C = 
1

4
F when each of the following driving force voltage is applied:

(a) ramp voltage 12 2r t -b g ,
(b) step voltage 3 3u t -b g,
(c) impulse voltage 3 1d t -b g, and

(d) doublet voltage 2 3¢ -d tb g.
Solution Applying KVL for the series RLC circuit we get,

Ri t L
di t

dt C
i t dt v t

i t
di t

dt
i t dt v t

a f a f a f a f

a f a f a f a f

+ + =

Þ + + =

z

z

1

5
1

1 4/

(a) Ramp voltage 12 2r t -b g
When v t r tb g b g= -12 2

5
1

1 4
i t

di t

dt
i t dt v tb g b g b g b g+ + =z/

Taking Laplace transform,

5
4 12

2

2+ +F
H

I
K = -s
s
I s

s
e sb g

Þ I s
e

s s s
e

s s s
e

s s s

e
s

e
s

e
s

s
s s

s s s

a f
c h b g b g

=
+ +

=
+ +

L

N
M

O

Q
P = - + + +

L
NM

O
QP

= - + + +

-
- -

- - -

12

5 4
12

1

1 4
12

1 4 1 3
1

1 12
4

3 4
1 4

2

2

2 2

2 2 2

/ / /

Taking inverse Laplace transform, we, get,

i t u t e e t Ans
t tb g b g b g b g= - - + ³- - - -

3 2 4 2
2 4 2

.

(b) Step voltage 3 3u t -b g
When v t u tb g b g= -3 3

5
1

1 4
i t

di t

dt
i t dt v tb g b g b g b g+ + =z/

Taking Laplace transform,

5
4 3 3+ +F

H
I
K = -s
s
I s

s
e sb g
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Þ I s
e

s s
e

s s
e

s s

e
s

e
s

s
s s

s s

a f
c h b g b g=

+ +
=

+ +
L
N
M

O
Q
P = + - +

L
NM

O
QP

= + - +

-
- -

- -

3

5 4
3

1

1 4
3

1 3
4

1 3
1

4 1

2

2

2 2

2 2

/ /

Taking inverse Laplace transform, we, get,

i t e e t Ans
t tb g b g b g= + ³- - - -3 4 3

3 .

(c) Impulse voltage 3 1d t -b g
When v t tb g b g= -3 1d

5
1

1 4
i t

di t

dt
i t dt v tb g b g b g b g+ + =z/

Taking Laplace transform,

5
4

3+ +F
H

I
K = -s
s
I s e sb g

Þ I s
se

s s
e

s

s s
e

K

s

K

s

s
s sb g

d i b g b g=
+ +

=
+ +

L

N
M
M

O

Q
P
P
=

+
+

+
L
NM

O
QP

-
- -3

5 4
3

1 4
3

1 42

1 2

\ K
s

s
s

1
14

1

3
=

+
L
NM

O
QP

= -
=-

\ K
s

s
s

2
41

4

3
=

+
L
NM

O
QP

=
=-

\ I s e
s s

e

s

e

s
s

s s

b g =
-

+
+

+

L

N

M
M
M

O

Q

P
P
P
=

+
-

+
-

- -
3

1

3
1

4

3
4

4

4 1

Taking inverse Laplace transform, we, get,

i t e e t Ans
t tb g b g b g= - ³- - - -

4 1
4 1 1

.

(d) Doublet voltage 2 3¢ -d tb g
When v t tb g b g= ¢ -2 3d

5
1

1 4
i t

di t

dt
i t dt v tb g b g b g b g+ + =z/

Taking Laplace transform,

5
4

2 3+ +F
H

I
K = -s
s
I s se sb g
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Þ I s
s e

s s
e

s

s s

s
sb g

d i
=

+ +
= -

+
+ +

L

N
M

O

Q
P

-
-2

5 4
2

10 8

5 4

2 3

2

3

2

Let,
10 8

5 4 1 42

1 2s

s s

K

s

K

s

+
+ +

=
+

+
+

\ K
s

s
s

1
1

10 8

4

2

3
= +

+
L
NM

O
QP

= -
=-

\ K
s

s
s

2
4

10 8

1

32

3
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+
L
NM

O
QP

=
=-

\ I s e e
s s

e
e

s

e

s
s s s

s s

b g = -
-

+
+

+

L

N

M
M
M

O

Q

P
P
P
= +

+
-

+
- - -

- -
2

2

3
1

32

3
4

2
2

3 1

32

3 4
3 3 3

3 3

Taking inverse Laplace transform, we, get,

i t t e e t Ans
t tb g b g b g b g= - + - ³- - - -

2 3
2

3

32

3
3

3 4 3d .

6.49 A voltage pulse of magnitude 6 V and duration 3 seconds to 6 seconds is applied to a series RL

circuit consisting of R = 6 W and L = 2 H. Obtain the current i(t). Also, calculate the voltage across

L and R.

Solution Applying KVL for the series RL circuit,

Ri L
di

dt
v t u t u t+ = = - - -b g b g b g6 3 6

Taking Laplace transform,

R sL I s
s
e es s+ = -- -b g b g 6 3 6

Þ I s
s

e e

R sL s

e e

s s

e e

s
e e

s s

s s s s s s
s sb g = -

+
L
NM

O
QP

= -
+

L
NM

O
QP

= -
+

L
NM

O
QP

= - -
+

L
NM

O
QP

- - - - - -
- -6 6

6 2

3

3

1 1

3

3 6 3 6 3 6
3 6

Taking inverse Laplace transform,

i t e u t e u t Ans
t tb g e j b g e j b gb g b g= - - - - -- - - -

1 3 1 6
3 3 3 6

.

Voltage across inductor,

v L
di

dt
e u t e u t

e u t e u t Ans

L
t t

t t

= = - - - - - - -L
NM

O
QP

= - - -

- - - -

- - - -

2 3 3 3 6

6 3 6 6

3 3 3 6

3 3 3 6

b g{ } b g b g{ } b g
b g b g

b g b g

b g b g .

Voltage across resistor,

v Ri i e u t e u t AnsR
t t= = = - - - - -- - - -

6 6 1 3 1 6
3 3 3 6b g b ge j b g e j b g .
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6.50 Voltage having waveform of truncated ramp as shown in the figure is applied to an RL series circuit

consisting of a resistor R = 3 W and inductor L = 1 H. The rise time t0 = 2ms. Find the current i(t).

v t( )

t0 t0

1

Solution The applied voltage can be synthesised in terms of two ramp functions as,

v t
t
r t

t
r t tb g b g b g= - -1 1

0 0
0

Applying KVL for the series RL circuit,

Ri L
di

dt
v t

t
r t

t
r t t+ = = - -b g b g b g1 1

0 0
0

Taking Laplace transform,

R sL I s
t s s

e t s+ = -L
NM

O
QP

-b g b g 1 1 1

0
2 2

0

Þ I s
t s s

e
R sL t

e
s s

t s t sb g d i b g
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NM
O
QP +
F
H

I
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+
- -1 1 1 1 1

1
1
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2 2
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2

0 0
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3 32
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O
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Taking inverse Laplace transform,

i t
t

r t e u t
t

r t t e u t t Anst t tb g b g b g b g b gb g= - + +L
NM

O
QP

- - + - +L
NM

O
QP

-- - -1 1

9

1

3

1

9

1 1

9

1

3

1

90

3

0
0

3
0

0 .

where, t0 = 2 ms.
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6.51 The figure shows a staircase voltage waveform. Assuming that the staircase is not repeated, express

its equation in terms of step functions. If this voltage is applied to a series RL circuit with R = 2 ohms

and L = 1 H, find an expression for the resulting current i (t); i(0+) = 0.

5

4

3

2

1

0 2 4 6 8 10 12

V
o
lt
a
g
e
in
v
o
lt

Time in secondt

Solution Here, the applied voltage is a combination of several shifted step functions and can be

written as,

v t u t u t u t u t u t u tb g b g b g b g b g b g b g= - + - + - + - + - - -2 4 6 8 10 5 12

Taking Laplace transform,

V s
s
e e e e e es s s s s sb g = + + + + -- - - - - -1

52 4 6 8 10 12  

If this voltage is applied to RL series circuit, applying KVL we get,

Ri t L
di t

dt
v tb g b g b g+ =

Taking Laplace transform,

R sL I s V s
s
e e e e e es s s s s s+ = = + + + + -- - - - - -b g b g b g 1

52 4 6 8 10 12

Þ I s
s s

e e e e e es s s s s sb g b g=
+

+ + + + -- - - - - -1

2
52 4 6 8 10 12

= 1
2

1 1

2
52 4 6 8 10 12

s s
e e e e e es s s s s s-

+
L
NM

O
QP

+ + + + -- - - - - -

Taking inverse Laplace transform,

i t e u t e u t e u t
t t ta f a f a f b gb g b g b g= - - + - - + - - +- - - - - -1

2
1 2

1

2
1 4

1

2
1 6

1

2
2 2 2 4 2 6

1 8
2 8- -- -

e u t
tb g a f + - - - - -- - - -1

2
1 10

5

2
1 122 10 2 12

e u t e u t Anst ta f b ga f b g .
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MULTIPLE-CHOICE QUESTIONS

6.1 The condition for over-damped response of an RLC series circuit is

(a)
2

2

1

4

R

LCL
= (b)

2

2

1

4

R

LCL
> (c)

2

2

1

4

R

LCL
< (d)

2

2

1

4

R

LCL
£

6.2 Transient current in an RLC circuit is oscillatory when

(a) 2
L

R
C

= (b) 2
L

R
C

> (c) 2
L

R
C

< (d) R = 0.

6.3 Laplace transform analysis gives

(a) time domain response only (b) frequency domain response only

(c) both (a) and (b) (d) None of these.

6.4 A function f(t) is shifted by a then it is correctly represented as

(a) f(t � a)u(t) (b) f(t)u(t � a) (c) f(t � a)u(t � a) (d) f(t � a)(t � a)

6.5 Laplace transform of a delayed unit impulse function ds(t) = d (t � 1) is

(a) unity. (b) zero. (c) e�s. (d) s.

6.6 The condition for under damped response of an RLC series circuit is

(a)
2

2

1

4

R

LCL
= (b)

2

2

1

4

R

LCL
> (c)

2

2

1

4

R

LCL
< (d)

2

2

1

4

R

LCL
£

6.7 The value of the impulse function d (t) at t = 0 is

(a) 0 (b) µ (c) 1 (d) indeterminate

6.8 The value of the ramp function at t = + ¥ is

(a) infinity (b) unity (c) zero (d) indeterminate

6.9 The value of the ramp function at t = �¥ is

(a) 0 (b) ¥ (c) �¥ (d) 1

6.10 The value of the impulse function d (t) for t > 0 is

(a) zero (b) unity

(c) k, where k is a constant (d) infinity.

6.11 The free response of RL and RC series networks having a time constant t is of the form

(a)
t

A Be t
-

+ (b)

t

Ae t
-

(c)
t t

Ae Bet t
- -

+ (d) ( )
t

A Bt e t
-

+
6.12 In the complex frequency s = s + jw, w has the units of rad/s and s has the units of

(a) Hz (b) neper/s (c) rad/s (d) rad

6.13 Time constant of a series RC circuit is

(a) C/R (b) R/C (c) RC (d) 1/RC

6.14 Time constant of a series RL circuit is

(a) L/R (b) R/L (c) LR (d) 1/LR

6.15 A coil with a certain number of turns has a specified time constant. If the number of turns is doubled,

its time constant would

(a) remain unaffected (b) become doubled (c) become four-fold (d) get halved.

6.16 An RLC series circuit has R = 1W, L = 1 H and C = 1F. Damping ratio of the circuit will be

(a) more than unity (b) unity  (c) 0.5 (d) zero
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6.17 A step function voltage is applied to an RLC series circuit having R = 2W, L = 1H and C = 1F. The

transient current response of the circuit would be

(a) over-damped

(b) critically damped

(c) under damped

(d) over, under or critically damped depending upon magnitude of the step voltage.

6.18 For an RC circuit comprising a capacitor C = 2 mF in series with a resistance R = 1 MW period 6

seconds will be equal to

(a) one time constant (b) two time constants

(c) three time constants (d) four time constants

6.19 A series RL circuit with R = 100 ohm; L = 50H, is supplied to a d.c. source of 100V. The time taken

for the current to rise 70% of its steady state value is

(a) 0.3s (b) 0.6s

(c) 2.4s (d) 70% of time required to reach steady state.

6.20 If f(t) and its first derivative are Laplace transformable then the initial value of f(t) is given by

(a)
0 0

Lt ( ) Lt ( )
t s

f t sF s
® ®

= (b)
0

( )
Lt ( ) Lt

t s

F s
f t

s® ®¥

=

(c)
0 0

( )
Lt ( ) Lt

t s

F s
f t

s® ®
= (d)

0
Lt ( ) Lt ( )

t s
f t sF s

® ®¥

=

6.21 If f(t) and its first derivative are Laplace transformable then the final value of f(t) is given by

(a)
0

Lt ( ) Lt ( )
t s

f t sF s
®¥ ®

= (b)
( )

Lt ( ) Lt
t s

F s
f t

s®¥ ®¥

=

(c)
0

( )
Lt ( ) Lt

t s

F s
f t

s®¥ ®
= (d) Lt ( ) Lim ( )

st
f t sF s

®¥®¥

=

6.22 At t = 0+ with zero initial condition which of the following will act as short circuit?

(a) Inductor (b) Capacitor (c) Resistor (d) None of these

6.23 At t = 0+ with zero initial condition which of the following will act as open circuit?

(a) Inductor (b) Capacitor (c) Resistor (d) None of these

6.24 A capacitor at time t = 0+ with zero initial charge acts as a

(a) short circuit (b) open circuit (c) current source (d) voltage source.

6.25 A series RC circuit is suddenly connected to a dc voltage of V volt. The current in the series circuit

just after the switch is closed is equal to

(a) zero (b)
V

RC
 (c)

VC

R
(d)

V

R

6.26 A series LC circuit is suddenly connected to a dc voltage of V volt. The current in the series circuit

just after the switch is closed is equal to

(a)
V

L
(b)

V

C
 (c) zero (d)

V

LC

6.27 The steady state current in the RC series circuit, on the application of step voltage of magnitude E

will be

(a) zero (b)
E

R
(c) /t CRE

e
R

- (d) tE
e

RC
-
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6.28 A 10 W resistor, a 1H inductor and 1F capacitor are connected in parallel. The combination is driven

by a unit step current. Under steady state conditions, the source current flows through

(a) resistor (b) inductor (c) capacitor only (d) All of three elements.

6.29 When a unit impulse voltage is applied to an inductor of 1H, the energy supplied by the source is

(a) ¥ (b) 1 Joule (c)
1

2
 Joule (d) 0.

6.30 Which of the following conditions are necessary for validity of Initial Value Theorem:

0
Lim ( ) Lim ( )
s t

sF s f t
®¥ ®

= ?

(a) f (t) and its derivative f ¢(t)must have Laplace transform.

(b) If the Laplace transform of f (t) is F(s), then Lim sF(s) must exist.

(c) Only f (t) must have Laplace transform.

(d) (a) and (b) both.

6.31 Inverse Laplace transform of 
1

s a-
 is

(a) sin at (b) cos at  (c) eat (d) e� at

6.32 The impulse response of an RL circuit is a

(a) rising exponential function. (b) decaying exponential function.

(c) step function. (d) parabolic function.

6.33. Laplace transform of the output response of a linear system is the system transfer function when the

input is

(a) a step signal. (b) a ramp signal. (c) an impulse signal. (d) a sinusoidal signal.

6.34 An initially relaxed RC series network with R = 2MW and C = 1mF is switched on to a 10V step input.

The voltage across the capacitor after 2 seconds will be

(a) zero (b) 3.68 V (c) 6.32 V (d) 10 V

6.35 For V(s) = 
( 2)

( 1)

s

s s

+

+
, the initial and final values of v(t) will be respectively

(a) 1 and 1 (b) 2 and 2 (c) 2 and 1 (d) 1 and 2.

6.36 The Laplace transform of the function i(t) is: I(s) 
2

10 4

( 1) ( 4 5)

s

s s s s

+
+ + +

. Its final value will be

(a) 4/5 (b) 5/4  (c) 4  (d) 5

6.37 An initially relaxed 100 mH inductor is switched �ON� at t = 1 second to an ideal 2A dc current

source. The voltage across the inductor would be

(a) zero (b) 0.2d (t) V (c) 0.2d (t � 1) V (d) 0.2tu (t � 1) V

6.38 If the unit step response of a network is (1 � e�a t ), then its unit impulse response will be

(a)
te aa -

(b) /1 te a

a
- (c) /1 te a

a
- (d) (1 � a) e�at

6.39 The response of an initially relaxed system to a unit ramp excitation is (1 + e�t). Its step response will

be

(a) 21

2
tt e-- (b) 1 � e�t  (c) �e�t (d) t.



Laplace Transform and its Applications 6.93

6.40 A series circuit containing R, L and C is excited by a step voltage input. The voltage across the

capacitance exhibits oscillations. Damping coefficient (ratio) of this circuit is given by

(a)
2

R

LC
x = (b)

R

LC
x = (c)

2 /

R

C L
x = (d)

2 /

R

L C
x =

6.41 Consider the following statements:

A unit impulse d (t) is mathematically defined as

1. d (t) = 0, t ¹ 0 2. ( )
0

1t dtd
¥

+

=ò 3. ( ) 1t dtd
¥

-¥
=ò

Of these statements

(a) 1, 2 and 3 are correct. (b) 1 and 2 are correct.

(c) 2 and 3 are correct. (d) 1 and 3 are correct.

6.42. With symbols having their usual meanings, the Laplace transform of u(t � a) is

(a)
1

s
(b)

1

s a-
(c)

ase

s

-
(d)

ase

s

6.43 Two coils having equal resistances but different inductances are connected in series. The time

constant of the series combination is the

(a) sum of the time constants of the individual coils.

(b) average of the time constants of the individual coils.

(c) geometric mean of the time constants of the individual coils.

(d) product of the time constants of the individual coils.

6.44 If the step response of an initially relaxed circuit is known then the ramp response can be obtained by

(a) integrating the step response. (b) differentiating the step response.

(c) integrating the step response twice. (d) differentiating the step response twice.

6.45 If a capacitor is energized by a symmetrical square wave current source, then the steady state

voltage across the capacitor will be a

(a) square wave (b) triangular wave (c) step function (d) impulse function.

6.46 A square wave is fed to an RC circuit, then

(a) voltage across R is square and across C is not square.

(b) voltage across C is not square and across R is not square.

(c) voltage across both R and C is square.

(d) voltage across both R and C is not square.

6.47 A step voltage is applied to an under-damped series RLC circuit with variable R. Which of the

following statements correctly describe the behaviour of the circuit?

1. If R is increased, the steady state voltage across C will be reduced

2. If R is increased, the frequency of transient oscillation across C will be reduced.

3. If R is reduced, the transient oscillation will die down faster.

4. If R is reduced to zero, the peak amplitude of the voltage across C will be double the input step

voltage.

Select the correct answer using the codes given below.

Codes: (a) 1 and 2 (b) 2 and 3 (c) 2 and 4 (d) 1, 3 and 4.

6.48 The number of turns of a coil having a time constant T is doubled. Then the new time constant will

be

(i ) T (b) 2T (c) 4T (d) T/2
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6.49 The response of a network is of the form kest,where s = s + jw, then s is known as

(a) radian frequency (b) neper frequency

(c) complex frequency (d) None of these.

6.50 In Laplace transform the variable �s� equals (s + jw). Which of the following represent the true nature

of s ?

1. s has a damping effect.

2. s is responsible for convergence of integral 
0

( ) stf t e dt
¥

-ò .

3. s has a value less than zero.

Select the correct answer using the coeds given below.

Codes: (a) 1, 2 and 3 (b) 1 and 2 (c) 2 and 3 (d) 1 and 3.

6.51 Laplace transform of tne�at is

(a)
1( )n

n

s a +-
(b)

1

!

( )n

n

s a +
+

 (c)
!

( )n

n

s a-
(d)

1

!

( )n

n

s a +-

6.52
2 2( )

s

s w+
 is the Laplace transform of

(a) sin w t (b) cos w t (c) cosh w t (d) sinh w t

6.53 Consider the following statements regarding an RC differentiating network.

1. For an applied rectangular pulse, the output is spiky in nature for RC << pulse duration.

2. The output is a ramp for rectangular input pulse.

3. The output has zero average for all inputs.

Of these statements:

(a) 1, 2 and 3 are correct. (b) 1 and 2 are correct.

(c) 2 and 3 are correct (d) 1 and 3 are correct.

6.54 The Laplace transform method enables one to find the response in

(a) the transient state only.

(b) the steady state only.

(c) both transient and steady states.

(d) the transient state provided sinusoidal forcing functions do not exist.

6.55 The convolution of a function f (t) with the unit impulse function d (t) is

(a) d (t) (b) f (t)d (t) (c) f (t) (d) f (t )d (t)

6.56 The d.c. gain of a system represented by the transfer function 
25

( 2)( 3)s s+ +
 is

(a) 25 (b) 25/6 (c) 5 (d) 10

6.57 Consider the following statements

The impulse response of a linear network can be used to determine the

1. step response. 2. response of the sinusoidal input.

3. elements of the network uniquely. 4. interconnection of network elements.

6. Which of these statements are correct?

(a) 1 and 2 (b) 2 and 3 (c) 3 and 4 (d) 1 and 4.

6.58 Double integration of a unit step function would lead to

(a) an impulse (b) a parabola (c) a ramp (d) zero.
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6.59 Which of the following integrals represents the convolution of two functions f1(t) and f2(t)?

(a) 1 2

0

( ) ( )
t

f t f t dt t-ò (b) 1 2

0

( ) ( )
t

f t f dt t t-ò

(c) 1 2

0

( ) ( )
t

f t f t dtt-ò (d) 1 2

0

( ) ( )
t

f t f dtt t-ò

6.60 If 
( 1)1

( )
( )

s
F s

s s k

+
=

+
 and f(t) as t ®¥ is 

1

2
, then the value of k is

(a)
1

2
(b) 1 (c) 2 (d) ¥

6.61 The transient response of the initially relaxed network shown in the figure is

(a) /( ) t RCV
i t e

R
-= (b) ( ) /t RCV

i t e
R

=

(c) /( ) (1 )t RCV
i t e

R
-= - (d) /( ) (1 )t RCV

i t e
R

-= +

6.62 A first order linear system is initially relaxed. For a unit step signal u(t), the response is

3
1( ) (1 )tv t e-

= -  for t > 0. If a signal 3u(t) + d (t) is applied to the same initially relaxed system, the

response will be

(a) 3(3 6 ) ( )te u t-- (b) 3(3 3 ) ( )te u t-- (c) 3 ( )u t (d) 3(3 3 ) ( )te u t-
+

6.63 A unit impulse input to a linear network has a response R(t) and a unit step input to the same

network has response S(t). The response R(t)

(a) equals 
( )dS t

dt
(b) equals the integral of S(t)

(c) is the reciprocal of S(t) (d) has no relation with S(t)

6.64 The response of an initially relaxed linear circuit to a signal VS is 
2 ( )te u t-

. If the signal is changed

to 2 S
S

dV
V

dt

æ ö
+ç ÷è ø

, the response would be

(a) �4e�2t u(t) (b) � 3e�2t u(t) (c) 4e�2t u(t) (d) 5e�2t u(t)



6.96 Circuit Theory and Networks

6.65 The impulse response of a circuit is given by 
1

( ) ( )
R
t

Lh t e u t
L

-
= . Its step response is given as

(a) 1 ( )
R
t

Le u t
-æ ö

-ç ÷è ø
(b)

1
1 ( )

R
t

Le u t
R

-æ ö
-ç ÷è ø

(c) 1 ( )
R
t

LL
e u t

R

-æ ö
-ç ÷è ø

(d) None of these.

6.66 The time constant of the network shown in the figure is

(a) CR (b) 2CR

(c)
4

CR
(d)

2

CR

6.67 Non-linear system cannot be analyzed by Laplace trans-

form because

(a) it has no zero initial conditions.

(b) superposition law cannot be applied.

(c) non-linearity is generally not well defined.

(d) All of the above.

6.68 In the circuit shown in figure, the response i(t) is

(a) exp
V t

R RC

æ ö-ç ÷è ø (b) ( )
V

t
R

d

(c)
1

( ) exp
V t

t
R RC RC

d
é ùæ ö

- -ç ÷ê úè øë û
(d) ( ) exp

V t
t

R RC
d

é ùæ ö
- -ç ÷ê úè øë û

6.69 A voltage 2( ) 6 tv t e-=  is applied at t = 0 to a series RL circuit with L = 1H. If 2 3( ) 6[ ]t ti t e e- -
= - ,

then R will have a value of

(a)
2

3
 W (b) 1 W (c) 3 W (d)

1

3
W

6.70 The Laplace transform of the signal described in figure is

(a) e�as/s (b) e�bs/s2 (c) (e�as + e�bs)/s (d) (e�as � e�bs)/s
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6.71 If a pulse voltage v(t) of 4V magnitude and 2 second duration is ap-

plied to a pure inductor of 1H, with zero initial current, the current (in

A) drawn at t = 3 second, will be

(a) zero (b) 2

(c) 4 (d) 8.

6.72 At certain current, the energy stored in an iron-cored coil is 1000J and

its copper loss is 2000W. The time constant (in second) of the coil is

(a) 0.25 (b) 0.5

(c) 1.0 (d) 2.0.

6.73 Consider the voltage waveform shown in the given figure.

The equation for v(t) is

(a) ( 1) ( 2) ( 3)u t u t u t- + - + - (b) ( 1) 2 ( 2) 3 ( 3)u t u t u t- + - + -

(c) ( ) ( 1) ( 2) ( 4)u t u t u t u t+ - + - + - (d) ( 1) ( 2) ( 3) 3 ( 4)u t u t u t u t- + - + - - -

6.74 For the circuit given in the figure V0 = 2 V and inductor is initially relaxed. The switch S is closed at

t = 0. The value of v at t = 0+ is

(a) 3 V (b) 2 V (c) 0.5 V (d) 0.25 V

6.75 In the circuit shown in the given figure, S is open for a long time and steady state is reached. S is

closed at t = 0. The current I at t = 0+ is

(a) 4 A (b) 3 A (c) 2 A (d) 2 A



6.98 Circuit Theory and Networks

6.76 The circuit shown in the given figure is in steady state with switch S open. The switch is closed at

t = 0. The values of VC (0+) and VC (¥) will be respectively

(a) 2 V, 0 V (b) 0 V, 2 V (c) 2 V, 2 V (d) 0 V, 0 V

6.77 In the circuit shown, the switch is opened at t = 0. Prior to that switch was closed, i(t) at t = 0+ is

(a)
2

3
 A (b)

3

2
 A (c)

1

3
 A (d) 1 A.

6.78 Given the Laplace transform 
0

[ ( )] ( )stv t e v t dt
¥

-= òL , the inverse transform v(t) is

(a) ( )
j

st

j

e V s ds
s

s

+ ¥

- ¥
ò (b)

1
( )

2

j
st

j

e V s ds
j

s

s
p

+ ¥

- ¥
ò

(c)
0

1
( )

2
ste V s ds

jp

¥

ò (d)
1

( )
2

j
st

j

e V s ds
j

s

s
p

+ ¥
-

- ¥
ò

6.79 In the circuit shown in the given figure, switch S is closed at t = 0. After some time when the current

in the inductor was 6A, the rate of change of current through it was 4 A/s. The value of the inductor

is

(a) indeterminate (b) 1.5 H (c) 1.0 H (d) 0.5 H
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6.80 A circuit consisting of a 1W resistor and a 2F capacitor in series is excited from a voltage source with

the voltage expressed as 3e�t, as shown in the given figure. If the i(0�) and vc(0�) are both zero, then

the values of i(0+) and i(¥) will be respectively

(a) 3 A and 1.5 A (b) 1.5 A and zero (c) 3 A and zero (d) 1.5 A and 3 A

6.81 The time constant associated with the capacitor charging in the circuit shown in the given figure is

(a) 6 ms (b) 10 ms (c) 15 ms (d) 25 ms

6.82 In the network shown in the figure, the switch S is closed and a steady state is attained. If the switch

is opened at t = 0, then the current i(t) through the inductor will be

(a) cos 50t A (b) 2 A (c) 2 cos100t A (d) 2 sin 50t A

6.83 In the network shown, the switch is opened at t = 0. Prior to that, the network was in the steady

state. Vs(t) at t = 0+ is

(a) 0 (b) 5 V (c) 10 V (d) 15 V
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6.84 The steady state in the circuit, shown in the given figure is reached with S open. S is closed at t =

0. The current I at t = 0+ is

(a) 1 A (b) 2 A (c) 3 A (d) 4 A

6.85 For the circuit shown in the given figure, the current through L and the voltage across C2 are

respectively

(a) zero and RI (b) I and zero (c) Zero and zero (d) I and RI

6.86 In the circuit shown in the given figure, the switch is closed at t = 0. The current through the

capacitor will decrease exponentially with a time constant

(a) 0.5 s (b) 1 s (c) 2 s (d) 10 s

6.87 The Laplace transformation of f (t) is F(s). Given 
2 2

( )F s
s

w

w
=

+

, the final value of f (t) is

(a) infinity (b) zero (c) one (d) None of the above

6.88 The v�i characteristics as seen from the terminal-pair (A, B) of the network of Figure (a) is shown in

Figure (b). If an inductance of value 6 mH is connected across the terminal-pair (A, B), the time

constant of the system will be

(a) 3 ms (b) 12 s

(c) 32 s (d) unknown, unless the actual network is specified.
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6.89 In the circuit shown in figure, it is desired to have a constant direct

current i(t) through the ideal inductor L. The nature of the voltage source

v(t) must be

(a) constant voltage (b) linearly increasing voltage

(c) an ideal impulse (d) exponentially increasing voltage.

6.90 The value of the integral 5 ( 5)te t dtd
¥

-¥
-ò  is

(a) 1 (b) (e5 � 1) (c) e25 (d) zero.

6.91 An inductor at t = 0+ with initial current I0 acts as

(a) voltage source (b) current source (c) open-circuit (d) short-circuit

6.92 A capacitor at t = 0+ with initial charge Q0 acts as

(a) voltage source (b) current source (c) open-circuit (d) short-circuit

6.93 Consider the following statements

1. Current through an inductor cannot change abruptly.

2. Voltage across the capacitor cannot change abruptly.

3. Initial value of a function f(t) is 
0

Lim ( )
s

sF s
®

4. Final value of a function f(t) is Lim ( )
s

sF s
®¥

Of these statements

(a) 3 and 4 are correct (b) 1 and 4 are correct

(c) 1 and 2 are correct (d) 2 and 3 are correct.

6.94 An inductor with inductance L and initial current I0 is shown as

The correct admittance diagram for it is

(a) (b)

(c) (d)
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6.95 An inductor with inductance L and initial current I0 is shown as

The correct impedance diagram for it is

(a) (b)

(c) (d)

6.96 A capacitor with capacitance C and initial voltage vc(t) is shown here

The correct admittance diagram for this circuit is

(a) (b)

(c) (d)

6.97
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Laplace transform of f (t) shown in the given figure is

(a)
1 2 3

( ) s sF s e e
s s s

- -= - + (b) 2 31 2 3 2
( ) s s sF s e e e

s s s s
- - -= - + -

(c) 2 31 2 2
( )

s
s se

F s e e
s s s s

-
- -

= - + - (d)
1 2 3

( ) s sF s e e
s s s

- -= + -

6.98 The time constant of the circuit shown in the given figure is

(a) R C (b) R C (c) R C (d) R C

6.99 Consider the following functions for the rectangular voltage pulse shown in the given figure

(a) ( ) ( ) ( )v t u t a u t b= - - - (b) ( ) ( ) ( )v t u b t u a t= - - -

(c) ( ) ( ). ( )v t u b t u t a= - - (d) ( ) ( ). ( )v t u a t u t b= - -

6.100 If F s
s

F s
s

1 2 2

1

3

2

4
b g b g=

+
=

+

, ; what is the Laplace transform of the product F1(s) F2(s)?

(a) f t e t ttb g = + -
-1

5
3 2 2cos sin (b) f t e t ttb g = + -

-1

13
2 3 2 2 23 sin cos

(c) f t e t ttb g = + -
-1

7
2 2 22 sin cos (d) f t e t ttb g = + -

-1

11
2 22 sin sin

6.101 The impulse response of a linear network is given by e t-2 . Which one of the following gives its unit

step response?

(a) 1 2
-

-e t (b) e et t- -- 2 (c)
1

2
1 2
-

-e td i (d)
1

2
2e et t- -

-d i
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6.102 The network shown in the figure given above reaches a steady state with the switch K in position a.

At t = 0, the switch is moved from a to b by a make-before-break mechanism. Assume the initial

current in 2 H inductor as zero. What is the current in 1H inductor at t = 0 + and t = ¥, respectively?

2 W

5 V 2 H
1 H

1
2
W

a b
K

(a) 1 A and 0 A (b) 2.5 A and 0 A

(c) 1 A and 2.5 A (d) 2.5 A and 2.5 A

6.103 If F s
s

s s
b g b g

=
+

+ +

2 1

2 52
, then what are the values of f (0+) and f (¥) respectively?

(a) 0, 2 (b) 2, 0 (c) 0, 1 (d) 2/5, 0

6.104 In the circuit shown in the figure, the switch S is closed at t = 0. Which one of the following gives

the expression for the voltage across the inductance as a function of time?

1 W

1 H1 V

S

(a) e t- /2 (b)
1

2

- -e td i
(c) 1- -e td i (d) e t-

6.105 For the circuit shown in figure, the initial capacitor voltage is 2 V and I is a unit step function. Then,

what is the expression for v (t) for t > 0?

1 W

1 W

0.25 F
v t( )

I

(a) 2 + -e t (b) 2 2
-

-e t (c) 1 2+ -e t (d) 1 2
-

-e t

6.106 In the circuit shown in the figure, steady state is reached with switch S open. Switch S is then closed

at t = 0. What is the value of voltage V under steady state (when t = ¥)?
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5 W

5 W10 W V

+

–

S

5 A

(a) 50 V (b) 12.5 V (c) 25 V (d) 0V

6.107 If f1 (t) and f2(t) have the widths (duration) T1 and T2 respectively, then what is the width (duration)

of f t f t1 2b g b g*  where * denotes convolution)?

(a) The larger of T1 and T2 (b) The smaller of T1 and T2

(c) T T1 2- (d) T T1 2+
6.108 The Laplace transform of v(t) shown in the figure is

(a)
1

1
1

2

2

s
e

s
es s

- -
- -d i (b)

1
1

1
2

2

s
e

s
es s

- -d i

(c)
1

1
1

2

2

s
e

s
es s+ +- -d i (d)

1
1

1
2

2

s
e

s
es s+ +d i

6.109 If f (t) and F (s) form the Laplace transform pair, then what is the Laplace transform of f t t( / )0 ?

(a) t F t s0 0b g (b)
1

0
0t

F t sb g (c) t F
t

s0
0

1F
HG

I
KJ (d)

1 1

0 0t
F

t
s

F
HG

I
KJ

6.110 The switch in the circuit is closed at t = 0. The current through the battery at t = 0 + and t = ¥ is,

respectively

1 W

10 V 1 F1 H

(a) 10 A and 10 A (b) 0 A and 10 A

(c) 10 A and 0 A (d) 0 A and 0 A

6.111 The Laplace transform of the voltage across the capacitor of 0.5 F is

V s
s

s s s
b g =

+
+ + +

1

13 2

Then the value of the current through the capacitor at t = 0 + is given by

(a) 0 A (b) 0.5 A (c) 1.0 A (d) 1 .5 A

6.112 If u (t) and d (t) are the step function and the impulse function respectively at t = 0, then the Laplace

transform of the function f t u t tb g b g b g= -1 d  is equal to

(a) 1 (b)
1

s
(c) 0 (d)

1

1s +

v t( )

1

0 1 2
t



6.106 Circuit Theory and Networks

6.113 The step response of a system is C t e e et t tb g = - + -- - -1 5 10 62 3 . The impulse response of the

system is

(a) 5 20 182 3e e et t t- - -- + (b) 5 20 182 3e e et t t+ + -

(b) 5 20 182 3e e et t t- - -+ + (d) 5 20 182 3e e et t t- -+ +

6.114 The Laplace transform of e tta acos  is

(a)
s

s

+

+ +

a

a a

b g
b g2 2

(b)
s

s

-

- +

a

a a

b g
b g2 2

(c)
s

s

+

- +

a

a a

b g
b g2 2

(d)
s

s

-

+ +

a

a a

b g
b g2 2

6.115 For the circuit shown in the figure, the initial inductor current is 2A. The value of i(t) for t > 0 is

(a) 05 0 75. .-
-e t (b) 1- -e t (c) 05 0 25. .-

-e t (d) 05 0 75. .+ -e t

6.116 Consider a system described by the transfer function G s
s

s s
b g =

+
+ +
2 3

2 52
. It is subjected to an input

f t u tb g b g= 10 . The initial and final values of the response are given by

(a) 0, 2 3/ (b) 1, 4 (c) 0, 6 (d) 0, 4

6.117 The impulse response of a linear time invariant system is given by

h t e u ttb g b g= -2

The unit step response is given by

(a) y t e u ttb g d i b g= - -2 1 (b) y t e u ttb g d i b g= --2 1

(c) y t e u ttb g d i b g= - -2 1 2 (d) y t e u ttb g d i b g= - -2 2 2

6.118 In the given circuit, if the inductor is initially relaxed, then the current in the

circuit will be

(a) zero (b)
L

R
td b g

(c)
1

L
e

Rt

L
-

(d)
1

1
L

e
R t

L-
F
HG

I
KJ

-

6.119 For the circuit shown in figure, the switch �K� was closed for a long time till steady state conditions

reached. At time t = 0, the switch �K� is opened, then the current through inductor will be

2 W

10 V 1 Fm1 H

K

(a) 5 10cos t (b) 5 100cos t (c) 5 1000cos t (d) 5 10000cos t

u t( )

+

–

1

2
2

d( )t

+

R

L
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6.120 The response of a system to a unit ramp input is 
1

2

1

8

1

8
4t u t e t

- + -b g . Which one of the following

is the unit impulse response of the system?

(a) 1 4
-

-e t (b) 2 1 4- -e td i (c) e t-4 (d) 2 4e t-

6.121 The Laplace transform of current in an RLC series circuit with R = 2 W, L = 1 H and C = 
1

2
F is

I s
s s

b g =
+ +

1

2 22
. The voltage across the inductor �L� will be

(a) e tu tt- sin b g (b) e tu tt- cos b g

(c) e t t u tt-
+sin cosb g b g (d) e t t u tt- -cos sinb g b g

6.122 For the network shown in the figure, the initial position of switch �S� is �1�. After reaching steady-

state, if the position of the switch is changed over to �2�, the current �i� for t ³ 0 will be equal to

R

2R L1

2
V i

(a)
V

R

Rt

L2
exp -

F
H

I
K (b)

V

R

Rt

L
exp -

F
H

I
K

2

(c)
V

R

Rt

L
exp -

F
H

I
K

3
(d)

V

R

Rt

L2

3
exp -

F
H

I
K

6.123 The correct value of the current i(t) at any instant when K is switched

on at t = 0 in the network shown in the given figure is

(a)
E

R

E

R
e

R L t+ /b g (b)
E

R

E

R
e

R L t
-

/b g

(c)
E

R

E

R
e

R L t+ - /b g (d)
E

R

E

R
e

R L t
-

- /b g

6.124 In the circuit shown in figure, the switch S is closed at t = 0. The voltage across the inductance at t

= 0 +, is

+
–

3 W

4 W
4 W

4 F

10 V 4 V

S

(a) 2V (b) 4V (c) �6 V (d) 8V

E

K R

L

i t( )
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6.125 Consider the function, F s
s s s

b g
d i

=
+ +
5

3 22
 where F (s) is the Laplace transform of the function f (t).

The initial value of f (t) is equal to

(a) 5 (b)
5

2
(c)

5

3
(d) 0

6.126 In the figure, the capacitor initially has a charge of 10 coulombs. The current in the circuit one

second after the switch S is closed will be

+
–

100 V 0.5 F

2 WS +

–

(a) 14.7 A (b) 18.5 A (c) 40.0 A (d) 50.0 A

6.127 In the figure given, the initial capacitor voltage is zero. The switch is closed at t = 0. The final steady-

state voltage across the capacitor is

10 Fm

10 W

20 V

T = 0

10 W

(a) 20 V (b) 10 V (c) 5V (d) 0V

6.128 The circuit shown in the figure is in steady state, when the switch is closed at t = 0. Assuming that

the inductance is ideal, the current through the inductor at t = 0 + equals

10 W

10 V 10 mH t = 0

(a) 0 A (b) 0.5 A (c) 1 A (d) 2 A

6.129 If, at t = 0 +, the voltage across the coil is 120 V, the value of resistance R is

R

20 W1

2

120 V

S

40 W

10 H

(a) 0 W (b) 20 W (c) 40 W (d) 60 W
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6.130 For the value obtained in Q. 129, the time taken for 95% of the stored energy to be dissipated is close

to

(a) 0.10 second (b) 0.15 second (c) 0.50 second (d) 1.0 second

6.131 An ideal capacitor is charged to a voltage V0 and connected at t = 0 across an ideal inductor L. (The

circuit now consists of a capacitor and inductor alone). If we let w 0
1=
LC

, the voltage across the

capacitor at time t > 0 is given by

(a) V0 (b) V t0 0cos wb g (c) V t0 0sin wb g (d) V e tt
0 0

0-w wcosb g
6.132 In the circuit shown in the figure, switch SW1 is initially CLOSED and SW2 is OPEN. The inductor L

carries a current of 10 A and the capacitor is charged to 10V with polarities as indicated. SW2 is

initially CLOSED at t = 0� and SW1 is OPENED at t = 0. The current through C and the voltage across

L at t = 0+ is

SW2 R210 W

R110 W

S
W
1

10 A

L C
10 V

+

(a) 55 A, 4.5 V (b) 5.5 A, 45 V (c) 45 A, 5.5 V (d) 5.5 A, 5.5 V

6.133 The time constant for the given circuit will be

3 W

3 W

3 A1 F1 F

1 F

(a)
1

9
s (b)

1

4
s (c) 4 s (d) 9 s

6.134 The Laplace transform of i(t) is given by

I s
s s

b g b g
=

+
2

1

As t ® ¥, the value of i (t) tends to

(a) 0 (b) 1 (c) 2 (d) ¥

6.135 In what range should Re (s) remain so that the Laplace transform of the function e
a t+ +2 5b g exits?

(a) Re (s) > a + 2 (b) Re (s) > a + 7

(c) Re (s) < 2 (d) Re (s) > a + 5

6.136 A square pulse of 3 V amplitude is applied to C-R circuit shown in the figure. The capacitor is

initially uncharged. The output voltage V0 at time t = 2 seconds is
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Vi

3 V

2 second t

Vi V0

+

–

– 2j W0.1 Fm

1 KW

+

–

(a) (b)

(a) 3V (b) �3 V (c) 4V (d) �4 V

EXERCISES

6.1 (a) Find the initial values of the functions:

(i) f t e tu tatb g b g= - cosw (ii) F s
s

s s
b g b g

=
+

+ +

2 1

2 52

[(i) 1, (ii) 2]

(b) Find the final value of the functions:

(ii) F s
s s

b g
b g

=

+

7

3
2

(ii) F s
s

s s
b g b g b g

=
-

+ +

1

1 2

( ) , ( )i ii
7

9
0

L
NM

O
QP

6.2 Obtain the Laplace transform of the following functions:

f t( )

V

0

–V

1 2 t

0
t

A

f t( )

T

(i) (ii)

( ) ( )i F s
A

Ts
e seTs Tsb g = - -

L
NM

- -

2
1  (ii) F s

A

Ts
e TeTs Tsb g = - -

O
QP

- -

2
1( )

6.3 In the network shown, the switch is closed and a steady state is reached in the network. At time t =

0, the switch is opened. Find an expression for the current through the inductor i2(t).

10 W

i (t)2

100 V 100 Fm1 H

[10 cos 100t (A)]
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6.4 Find for the circuit shown, the current through C using Laplace transform.  The switch is closed at

t = 0 and the initial charge in the capacitor, i.e., at t = 0 is zero.

2 W

100 Fm10 V

5 5000e t- Ab g

6.5 The circuit of a figure was initially in the steady state with the switch S in position a. At t = 0, the

switch goes from a to b. Find an expression for the voltage v0(t)  for t > 0. Take the initial current in

the inductor L2 to be zero. v t e
t

0

3

2
1

2
( ) ( )=

L
N
M

O
Q
P

-
V

L1 = 2 H

R1 = 2 W
R2 = 1 W L2 = 1 H VO

+

–

2 V

a b

6.6 In the circuit of the figure, the applied voltage is v(t) = 10sin(10t + p/6), R = 1 W, C = 1 F. Using

Laplace Transformation, find complete solution for current i(t). Switch K is closed at time t = 0.

Assume zero charge across the capacitor before switching.

5 100
( ) (1 10 3) cos (10 54 8 )(A)

101 101

ti t e t-é ù¢= - + -ê úë û
o

1 F
+
–

V K

1 2

i t( )

1 W

6.7 A series RLC circuit, with R = 5 W, L = 0.1 H and C = 500 µF, has a sinusoidal voltage source, v =

1000 sin 250t. Find the resulting current if the switch is closed at t = 0.

i t e t t t At o( ) ( . cos . sin ) . sin( . )( )= + + --25 542 139 189 139 565 250 736

6.8 The two-mesh network shown in the figure contains a sinusoidal

voltage source, v t= +100 200sin( )( )f V . The switch is closed at an

instant when the voltage is increasing at its maximum rate. Find the

resulting mesh currents, with directions as shown in the figure.

[ ( ) . . sin( . ) ( ) . . sin( . )]i t t i t e te t t
1

100
2

100301 8 96 200 634 1505 4 48 200 634= + - = + -
- -o o

+

–
V

i1

10 W 10 W

50 mH
1 2

i2
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6.9 Find i2(t) for t > 0; assume the all initial conditions to be zero.

100 V

1

2

10 W

10 W 10 W

1 H 1 H

i t2( )

i t e e tt t
2

30 1010

3

5

3
5( ) = + - >L

NM
O
QP

- - for 0

6.10 In the network shown,

(a) determine Va(t), using Laplace transform method if k1 3= - .

(b) determine i2(t), using Laplace transform method if k1 3= .

+
–

+ –

v t u t1( ) = 5 ( )

1 W 1 W

1 W

1 W

i1

i t
2
( )

k i1 1Va
1H

1F

[ ( ) ( ) ( . cos . . sin . )

( ) ( ) . . ( )]

.

. .

a v t e t t

b i t e e

a
t

t t

= - -
= - + -

-

- -
4 15 025 05 025

5 163375 13375

0 75

2
0 707 0 707 A

6.11 The network shown in the figure, has reached steady state when the switch S moves from a to b.

(i) Determine initial values for iL(t) and Vc(t) with switch in position b.

(ii) Determine Vc(t) for t > 0. Sketch Vc(t) as a function of time.

(iii) Determine damping ratio, undamped and damped natural frequencies.

10 V

1 H

5 V
1 F

1 W

i tL( )

V tc( )

+

–

b

a

S

 ( ) , ; ( ) cos sin/ /i A V ii5 5 15 10
3

2

20

3

3

2
2 2

-

F
HG

I
KJ
-

F
HG

I
KJ

L
N
M
M

O
Q
P
P

- -e t e t Vt t b g

6.12 Find the source current after the switch is closed at t = 0. Take initial current to be zero.

 3 25
-

-e td i b gA
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100 W

100 V 4 H50 W

t = 0

6.13 Find an expression for the current in the inductor at time t after the switch is closed. What is the final

value of the current and how long will it take for the inductor current to reach 95% of its final value?

100 W
+
–

50 W

100 V

4 H

iLt = 0

2 1 2 0 3650 6
-

-e At / ; , .d i b g A second

6.14 In the circuit, find the initial and final values of currents i1 and i2 when the switch is closed at t = 0.

Use initial value and final value theorems. [ . , ; . ,i i i i1 1 2 20 714 10 0 714 0b g b g b g b g= ¥ = = ¥ =A A A A]

+
–

150 V 30 mH

15 W

6 W

t = 0

i1
i2

6.15 In the network shown in figure, the switch is closed at t = 0, prior to which the circuit is in zero state.

Using Thevenin�s theorem, transform the circuit to the left of points A and B into Thevenin equiva-

lent in frequency domain and find the current in 30 W resistance. Convert the expression for current

in time domain. [01818 0 265 0 0831314 4186. . .. .
- +- -e et t (A)]

+
–

20 W 30 W

10 W 1 H 2 HA

t = 0

10 V

B

6.16 The network shown in figure is in steady state with switch S1 and S2 open. At t = t1, S1 is opened

and S2 is closed. Find the current through the capacitor for t ³ t1.
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+
–

1 Fm

2 W 2 H

S1

10 V

S2
3 H

[ ( ) cos { . } ]i i t t t t= for5 0577 103
1 1´ - ³b g

6.17 An RC series circuit has R = 2 W, C = 0.25 F. Find the current response if the driving voltage is: (a)

step voltage 2 3u t -b g , (b) ramp voltage 2 3r t -b g .

( ) ; ( )a be u t u t e u t
t t- - - -

- - - -
L
NM

O
QP

2 3 2 3
3

1

2
3

1

2
3b g b gb g b g b g

6.18 Show that the Laplace transform of the square wave is, F s
s e as

( )
( )

=

+
-

1

1

f t( )

1

0 a 2a 3a 4a t (second)

6.19 Determine the current response of a series RL circuit with R = 6 W and L = 3H for each of the

following driving voltages:

(a) a step voltage 2 2u t -b g
(b) a ramp voltage 2 3r t -b g
Assume that the circuit is initially relaxed.

( ) ; ( )a b
1

3
1 2

2

3
2 3

1

4
3

1

4
2 2 2 3 3

- - - - - +L
NM

O
QP

L
NM

O
QP

- - - - -
e u t r t u t e

t t u tb g b g b ge j b g b g b g

6.20 A series RL circuit has a resistor R = 4 W and an inductor L = 2 H. A pulse of magnitude 10 V and

duration 5 ms is applied to the circuit at t = 3 ms. Find i(t). Assume that the circuit was initially

relaxed.

      
5

2
0 003 0 008

5

2
0 003 0 008

2 0 003 2 0 008
u t u t e u t e u t

t t
- - - - - - -

L
NM

O
QP

- - - -

. . . .
. .b g b g b g b gb g b g

6.21 A voltage pulse of 20 V magnitude and 10 ms duration is applied to an RC circuit. Determine the

current. Assume that the circuit was initially relaxed. Take R = 10 W and C = 10 mF.

 2 1010 10 10 54 4 5

e e u tt t- - - -- - -

-L
NM

O
QP

-L
NM

O
QP

d i d i
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6.22 A unit doublet voltage ¢ -d t 5b g  is applied at t = 0 to a series RLC circuit consisting of a resistor R

= 4 W, L = 1H and C = 
1

3
F. Determine i(t). Assume that the circuit was initially relaxed.

d t e u t e u t
t t

- + - - -
L
NM

O
QP

- - - -

5
1

2
5

9

2
5

5 3 5b g b g b gb g b g

6.23 Figure shows a staircase voltage waveform. Assuming that the staircase is not repeated, express its

equation in terms of step functions. If this voltage is applied to a series RL circuit with R = 4 ohms

and L = 2 H, find an expression for the resulting current i (t); i (0+) = 0.

4

3

2

1

0 2 4 6 8 10

V
o
lt
a
g
e
in
v
o
lt

Time in secondt

i t e u t e u t e u t e u t

e u t

t t t t

t

a f b g b g b g b g

b g

b g b g b g b g

b g

= - - + - - + - - + - -

- - -

L

N

M
M
M

O

Q

P
P
P

- - - - - - - -

- -

1 2 1 4 1 6 1 8

4 1 10

2 2 2 4 2 6 2 8

2 10

6.24 Find the current i(t) in a series RLC circuit comprising resistor R = 4 W, inductor L = 1 henry and

capacitor C = 1

3
Farad when each of the following driving voltage is applied:

(c) ramp voltage 9 2r t -b g,

(d) step voltage 4 3u t -b g, and

(e) impulse voltage 2 1d t -b g.

( ) ; ( ) ; )a e e u t b e e u t c e u

t e u t

t t t t t

t

3
9
2

3
2

2 2 3 3

1 1

2 3 2 3 3 3 3 1

1

- -
L
NM

O
QP

- - -

- - -

L

N

M
M
M

O

Q

P
P
P

- - - - - - - - - -

- -

b g b g b g b g b g

b g

b g b g

b g b g

6.25 Verify that the convolution between two functions f t u t and f t t u t1 22 3b g b g b g b g b g= = -exp  is

2

3
1 3 0- - >exp ;t tb g  where u (t) is the unit step function.
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6.26 Find the response of the network shown in figure when the input

voltage is: (a) unit impulse, and (b) v t ei
tb g = -2 .

( ) ; ( )a be e et t t- - -- 2d i

SHORT-ANSWER TYPE QUESTIONS

6.1 (a) What do you understand by Complex Frequency? Give its physical significance.

(b) Define Laplace transform of a function f (t). What are the advantages of Laplace transform?

or

Explain clearly the advantages of Laplace transform method over classical method of solving differ-

ential equation with constant co-efficient describing electrical network.

(c) State and deduce initial-value and final value theorems.

(d) Write notes on: Application of Laplace transform to network analysis.

6.2 Define unit-step, unit ramp and unit impulse functions and derive their Laplace transform from first

principles.

6.3 (a) Find the current i(t) if unit step voltage is applied to an RL circuit.

or

Derive an expression for the current response in an R�L series circuit excited with constant

voltage source.

(b) Define the term �time-constant� of a circuit. What is the physical significance of time-constant of

a circuit? Find its value for R�L series circuit.

6.4 (a) Derive an expression for the decay current in an RC circuit excited by a unit step voltage. What

is the time-constant of the circuit?

Also, determine the nature of the voltage response across the capacitor.

(b) Under what conditions an RC series circuit will act as (i) a Differentiator? (ii) an Integrator?

6.5 (a) Explain the terms critical resistance, damping ratio and frequency as applied to the study of RLC

series circuit. How they help in simplifying the analysis of the circuit?

(b) Derive an expression for the current i(t) flowing through an RLC series circuit. Explain with

suitable sketches the variation of current with time under three conditions:

(I) Under damped,

(II) Critically damped,

(III) Over damped.

6.6 What do you understand by the impulse response of a network? Briefly explain its importance in

network analysis.

6.7 What do you understand by transient and steady state parts of response? How can they be identi-

fied in a general solution?

or

Discuss the natural and steady state response of an electrical circuit with illustrative examples.

or

Write notes on: (a) Transient and steady state response (b) Free and forced response.

6.8 State and prove Convolution Theorem. What is the necessity of convolution theorem in circuit

analysis?

V t0( )

R = 1 W

C = 1FV ti( )
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6.9 What is Laplace transformation? Give reasons for its wide use in the electric circuit analysis.

6.10 Discuss the advantages of analysing the circuits using frequency domain rather than the time

domain. How can the initial conditions of a circuit is incorporated using Laplace transform?

6.11 Explain why the lower limit of the Laplace transform integral f t e dtst( ) -

-

¥

z
L
N
M

O
Q
P

0

 is taken as 0� instead of

0+.

6.12 What is the Laplace transform of a function which is nonzero for t < 0?

6.13 Does every signal f (t), such f (t) = 0 for t < 0, have a Laplace transform?

6.14 Define unit-step, unit ramp and unit impulse functions and derive their Laplace transform from first

principles.

6.15 Define and sketch ramp, unit step and unit impulse functions.

6.16 Derive from the first principle the Laplace transform of a unit step function. Hence or otherwise,

determine the Laplace transform of unit ramp function and unit impulse function.

6.17 Explain gate function. Obtain the equation of a gate function starting at origin and of duration T.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

6.1 (b) 6.2 (c) 6.3 (a) 6.4 (c) 6.5 (c) 6.6 (c) 6.7 (c)

6.8 (a) 6.9 (a) 6.10 (a) 6.11 (a) 6.12 (b) 6.13 (c) 6.14 (a)

6.15 (b) 6.16 (c) 6.17 (b) 6.18 (c) 6.19 (b) 6.20 (d) 6.21 (a)

6.22 (b) 6.23 (a) 6.24 (a) 6.25 (d) 6.26 (c) 6.27 (a) 6.28 (b)

6.29 (c) 6.30 (d) 6.31 (c) 6.32 (b) 6.33 (c) 6.34 (c) 6.35 (d)

6.36 (a) 6.37 (a) 6.38 (a) 6.39 (c) 6.40 (d) 6.41 (d) 6.42 (d)

6.43 (b) 6.44 (a) 6.45 (b) 6.46 (d) 6.47 (c) 6.48 (b) 6.49 (b)

6.50 (b) 6.51 (b) 6.52 (b) 6.53 (d) 6.54 (c) 6.55 (c) 6.56 (b)

6.57 (a) 6.58 (b) 6.59 (b) 6.60 (c) 6.61 (a) 562 (c) 6.63 (a)

6.64 (b) 6.65 (b) 6.66 (a) 6.67 (a) 6.68 (c) 6.69 (c) 6.70 (d)

6.71 (d) 6.72 (b) 6.73 (d) 6.74 (b) 6.75 (a) 6.76 (b) 6.77 (d)

6.78 (b) 6.79 (d) 6.80 (c) 6.81 (a) 6.82 (c) 6.83 (b) 6.84 (b)

6.85 (d) 6.86 (b) 6.87 (d) 6.88 (a) 6.89 (c) 6.90 (c) 6.91 (b)

6.92 (a) 6.93 (c) 6.94 (a) 6.95 (c) 6.96 (a) 6.97 (b) 6.98 (c)

6.99 (a) 6.100 (b) 6.101 (c) 6.102 (b) 6.103 (b) 6.104 (d) 6.105 (c)

6.106 (b) 6.107 (d) 6.108 (a) 6.109 (a) 6.110 (a) 6.111 (a) 6.112 (c)

6.113 (a) 6.114 (b) 6.115 (d) 6.116 (c) 6.117 (a) 6.118 (c) 6.119 (c)

6.120 (d) 6.121 (d) 6.122 (d) 6.123 (d) 6.124 (b) 6.125 (d) 6.126 (a)

6.127 (b) 6.128 (c) 6.129 (a) 6.130 (c) 6.131 (b) 6.132 (d) 6.133 (c)

6.134 (c) 6.135 (a) 6.136 (b)





CHAPTER

7
Two-port Network

7.1 INTRODUCTION

A port is a pair of nodes across which a device can be connected. The voltage is measured across

the pair of nodes and the current going into one node is the same as the current coming out of the

other node in the pair. These pairs are entry (or exit) points of the network.

So, a network with two input terminals and two output terminals is called a four-terminal network

or a two-port network.

It is convenient to develop special methods for the systematic treatment of networks. In the case

of a single-port linear active network, we obtained the Thevenin�s equivalent circuit and the Norton�s

equivalent circuit. When a linear passive network is considered, it is convenient to study its behaviour

relative to a pair of designated nodes.

In a two-port network, there are two voltage

variables and two current variables. According

to the choice of input and output port, these

voltage and current variables can be arranged in

different equations, giving rise to different port

parameters.

In this chapter, we will discuss the behaviours of two-port networks.

7.2 RELATIONSHIPS OF TWO-PORT VARIABLES

In order to describe the relationships among the port voltages and currents of an n-port network, �n�

number of linear equations is required. However, the choice of two independent and two dependent

variables is dependent on the particular application.

Figure 7.1 Block diagram of a two-port network
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For n-port network, the number of voltage and current variables is 2n. The number of ways in

which these 2n variables can be arranged in two groups of n each is 
2

2 2

( )

n n

n n n

! !=
! ´ ! !

. So, there will be

2

2

( )

n

n

!
!

 types of port parameters.

For a two-port network (n = 2), there are six types of parameters as mentioned below:�

1. Open-Circuit Impedance Parameters (z-parameters),

2. Short-Circuit Admittance Parameters (y-parameters),

3. Transmission or Chain Parameters (T- parameters or ABCD � parameters),

4. Inverse Transmission Parameters (T ¢-parameters),

5. Hybrid Parameters (h-parameters), and

6. Inverse Hybrid Parameters (g-parameters).

Note: Inverse parameters (T ¢ and g) are not included in WBUT syllabus.

7.2.1 Open-Circuit Impedance Parameters (z-parameters)

The impedance parameters represent the relation between the voltages and the currents in the two-

port network.

The impedance parameter matrix may be written as,

1 11 12 1

2 21 22 2

V z z I

V z z I

é ù é ù é ù
=ê ú ê ú ê ú

ë û ë û ë û
or

V z I z I

V z I z I

1 11 1 12 2

2 21 1 22 2

= +
= +

In this matrix equation, it is easily seen without even expanding the individual equations, that

z11 = 

2

1

1 0I

V

I
=

 = Driving Point Impedance at Port-1.

z12 = 

1

1

2 0I

V

I
=

 = Transfer Impedance

z21 = 

2

2

1 0I

V

I
=

 = Transfer Impedance

z22 = 

1

2

2 0I

V

I
=

 = Driving Point Impedance at Port-2

It can be seen that the z-parameters correspond to the driving point and transfer impedances at each

port with the other port having zero current (i.e. open circuit). Thus these parameters are also referred

to as the open circuit parameters.

7.2.2 Short-Circuit Admittance Parameters (y-parameters)

The admittance parameters represent the relation between the currents and the voltages in the two-

port network.
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The admittance parameter matrix may be written as

1 11 12 1

2 21 22 2

I y y V

I y y V

é ù é ù é ù
=ê ú ê ú ê ú

ë û ë û ë û
or

I y V y V

I y V y V

1 11 1 12 2

2 21 1 22 2

= +
= +

The parameters y11, y12, y21, y22 can be defined in a similar manner, with either V1 or V2 on short

circuit.

y11 = 

2

1

1 0V

I

V
=

 = Driving Point Admittance at Port-1

y12 = 

1

1

2 0V

I

V
=

 = Transfer Admittance

y21 = 

2

2

1 0V

I

V
=

 = Transfer Admittance

y22 = 

1

2

2 0V

I

V
=

 = Driving Point Admittance at Port-2

It can be seen that the y-parameters correspond to the driving point and transfer admittances at each

port with the other port having zero voltage (i.e., short circuit). Thus these parameters are also

referred to as the short circuit parameters.

7.2.3 Transmission Line Parameters (ABCD-parameters)

The ABCD parameters represent the relation between the input quantities and the output quantities in

the two-port network. They are thus voltage-current pairs.

However, as the quantities are defined as an input-output relation, the output current is marked as

going out rather than as coming into the port.

Figure 7.2 Two-port current and voltage variables for calculation of transmission line parameters

The transmission parameter matrix may be written as

1 2

1 2

V VA B

I IC D

é ù é ùé ù
=ê ú ê úê ú -ë ûë û ë û

or
V AV BI

I CV DI

1 2 2

1 2 2

= -
= -

The parameters A, B, C, D can be defined in a similar manner with either port 2 on short circuit or

port 2 on open circuit.

A = 

2

1

2 0I

V

V
=

 = Open Circuit Reverse Voltage Gain
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B = 

2

1

2 0V

V

I
=

-  = Short Circuit Transfer Impedance

C = 

2

1

2 0I

I

V
=

 = Open Circuit Transfer Admittance

D = 

2

1

2 0V

I

I
=

-  = Short Circuit Reverse Current Gain

These parameters are known as transmission parameters as in a transmission line, the currents enter at

one end and leaves at the other end, and we need to know a relation between the sending end

quantities and the receiving end quantities.

7.2.4 Hybrid Parameters (h-parameters)

The hybrid parameters represent a mixed or hybrid relation between the voltages and the currents in

the two-port network.

The hybrid parameter matrix may be written as

1 11 12 1

2 21 22 2

V h h I

I h h V

é ù é ù é ù
=ê ú ê ú ê ú

ë û ë û ë û
or

V h I h V

I h I h V

1 11 1 12 2

2 21 1 22 2

= +
= +

The h-parameters can be defined in a similar manner and are commonly used in some electronic

circuit analysis.

h11 = 

2

1

1 0V

V

I
=

 = Short Circuit Impedance at Port-1

h12 = 

1

1

2 0I

V

V
=

 = Open Circuit Reverse Voltage Gain

h21 = 

2

2

1 0V

I

I
=

 = Short Circuit Current Gain

h22 = 

1

2

2 0I

I

V
=

 = Open Circuit Output Admittance

As the h-parameters are dimensionally mixed, they are also named mixed parameters. Transistor

circuit models are generally represented by these parameters as the input impedance (h11) and the

short-circuit current gain (h21) can be easily measured by making the output short-circuited.

7.3 CONDITIONS FOR RECIPROCITY AND SYMMETRY

A network is said to be reciprocal if the ratio of the response transform to the excitation transform is

invariant to an interchange of the positions of the excitation and response of the network.
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A two-port network will be reciprocal if the interchange of an ideal voltage source at one port with

an ideal current source at the other port does not alter the ammeter reading.

A two-port network is said to be symmetrical if the input and output ports can be interchanged

without altering the port voltages and currents.

1. Conditions in terms of z-parameters

Condition for Reciprocity We short circuit port

2 � 2¢ and apply a voltage source Vs at port 1 � 1¢.
Therefore, V1 = Vs, V2 = 0, I2 = � I2¢
Writing the equations of z-parameters,

Vs = 11 1 12 2z I z I ¢-

0 = 21 1 22 2z I z I ¢-
Solving these two equations for I2¢,

21
2

11 22 12 21
s

z
I V

z z z z
¢ =

-
(7.1)

Now, interchanging the positions of response and

excitations, i.e., shorting port 1 � 1¢ and applying Vs

at port 2 � 2¢; V1 = 0, V2 = Vs, I1 = I1¢
Writing the equations of z-parameters,

0 = 11 1 12 2z I z I¢- +

Vs = 21 1 22 2z I z I¢- +
Solving these two equations for I1¢,

12
1

11 22 12 21
s

z
I V

z z z z
¢=

-
(7.2)

For the two-port network to be reciprocal, from Eq. (7.1) and Eq. (7.2), we have the condition as,

12 21z = z

Condition for Symmetry

Applying a voltage Vs at port 1 � 1¢ with port 2 � 2¢ open, we have the equation,

2

11 1 12 11 1 11
1 0

0 s
s

I

V
V z I z z I z

I
=

= - × = Þ = (7.3)

Now, applying a voltage Vs at port 2 � 2¢ with port 1 � 1¢ open, we have the equation,

1

21 22 2 22 2 22
2 0

0 s
s

I

V
V z z I z I z

I
=

= × + = Þ = (7.4)

For the network to be symmetrical, the voltages and currents should be same. From Eq. (7.3) and

Eq. (7.4), we have the condition for symmetry as,

11 22z = z

Fig. 7.3(a) Reciprocal network

Fig. 7.3(b) Reciprocal network
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2. Conditions in terms of y-parameters

Condition for Reciprocity

From Fig. 7.3(a), writing the y-parameter equations,

1 11 2
21

2 21

s

ss

I y V I
y

VI y V

= ¢
Þ - =

¢- =
(7.5)

From Fig. 7.3(b), writing the y-parameter equations,

1 12 1
12

2 22

s

ss

I y V I
y

VI y V

¢- = ¢
Þ - =

=
(7.6)

From the principle of reciprocity, the condition for reciprocity is,

12 21y = y

Condition for Symmetry

As already stated, a two-port network is said to be symmetric if the ports can be interchanged without

changing the port voltages and currents and thus the condition of symmetry becomes,

11 22y = y

3. Conditions in terms of ABCD-parameters

Condition for Reciprocity

From Fig. 7.3(a), writing the ABCD-parameter equations,

2 2 2

1 2 2

0 ( ) 1

0 ( )

s

s

V A B I BI I

V BI C D I DI

¢ ¢= × - - = ¢
Þ =

¢ ¢= × - - =
(7.7)

From Fig. 7.3(b), writing the ABCD-parameter equations,

2 1

1 2

0 s

ss

AV BI I AD BC

V BI CV DI

= - ¢ -
Þ =

¢- = -
(7.8)

From the principle of reciprocity, the condition for reciprocity is, 
( )1 AD BC

B B

-
=

� )(AD BC = 1

Condition for Symmetry

From Eq. (7.7), 1 2
sVI DI D
B

¢= = (7.9)

From Eq. (7.8), 1
2

1s
s s s

I CV AD BC A
I V CV V

D D B B

¢ ì ü+ -æ ö= = + =í ýè øî þ
(7.10)

From Eq. (7.9) and Eq. (7.10), we have the condition for symmetry as,

A = D
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4. Conditions in terms of h-parameters

Condition for Reciprocity

From Fig. 7.3(a), writing the h-parameter equations,

11 1 12 11 1 2 21

112 21 1 22 21 1

0

0

s

s

V h I h h I I h

V hI h I h h I

= + × = ¢
Þ = -

¢- = + × =
(7.11)

From Fig. 7.3(b), writing the h-parameter equations,

11 1 12 1 12

112 21 1 22

0 s

ss

h I h V I h

V hI h I h V

¢= - + ¢
Þ =

¢= - +
(7.12 )

From the principle of reciprocity, the condition for reciprocity is,

�12 21h = h

From Eq. (7.11), 1
11

sV
I

h
= (7.13)

From Eq. (7.12), 12 11 22 12 21
2 21 22

11 11
s s s

h h h h h
I h V h V V

h h

-æ ö= - + =ç ÷è ø
(7.14)

From Eq. (7.13) and Eq. (7.14), we have the condition for symmetry as,

11 22 12 21( ) 1h h h h- =

Table 7.1 Conditions of Reciprocity and Symmetry in terms of different Two-Port Parameters

Parameter Condition of Reciprocity Condition of Symmetry

z z12 = z21 z11 = z22

y y12 = y21 y11 = y22

T (ABCD) (AD � BC ) = 1 A = D

h h12 = �h21 (h11h22 � h12h21) = 1

7.4 INTERRELATIONSHIPS BETWEEN TWO-PORT PARAMETERS

Each type of two-port parameter has its own utility and is suited for certain specific applications.

However, it is sometime necessary to convert one set of parameters to another. It is possible through

simple mathematical manipulations to convert one set to any of the remaining sets. It is discussed

below.

1. z-parameters in Terms of Other Parameters
(a) In terms of y-parameters

The z-parameter equations are,

V1 = 11 1 12 2z I z I+ (7.15)
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V2 = 21 1 22 2z I z I+
The y-parameter equations are,

I1 = 11 1 12 2y V y V+ (7.16)

I2 = 21 1 22 2y V y V+

From Eq. (7.16), 2 21
2 1

22 22

I y
V V

y y
= - ; substituting this in first equation,

I1 = 2 21
11 1 12 1

22 22

I y
y V y V

y y

æ ö+ -ç ÷è ø
or

22 12
1 1 2

y y
V I I

y y
= -

D D (7.17)

where, Dy = (y11y22 � y12y21)

Substituting this value in second equation of Eq. 7.16

I2 = 
22 12

21 1 2 22 2

y y
y I I y V

y y

æ ö- +ç ÷D Dè ø or, V2 = 
21 11

1 2

y y
I I

y y
- +
D D (7.18)

Comparing Eqs (7.15), (7.17) and (7.18), we get,

22 12 21 11
11 12 21 22; ; ;

Ä Ä Ä Ä

y y y y
z z z z

y y y y
= = - = - =

(b) In terms of transmission parameters

The Transmission parameter equations are,

1 2 2

1 2 2

V AV BI

I CV DI

= -
= -

(7.19)

From second equation of Eq. (7.19),

V2 = 1 2

1 D
I I

C C
æ ö æ ö+ç ÷ ç ÷è ø è ø  (7.20)

From first equation of Eq. (7.19),

V1 = ( ) ( )1 2 2

1 D
A I I BI

C C

é ù+ -ê úë û
 = 1 2

AD BCA
I I

C C

-æ öæ ö +ç ÷ ç ÷è ø è ø
(7.21)

Comparing Eq. (7.20) and (7.21) with Eq. (7.15), we get,

11 12 21 22

Ä 1
; ; ;

AD BCA T D
z z z z

C C C C C

-
= = = = =

(c) In terms of hybrid parameters

The hybrid parameter equations are,

1 11 1 12 2V h I h V= +

2 21 1 22 2I h I h V= + (7.22)

From second equation, V2 = 21
1 2

22 22

1h
I I

h h

æ ö æ ö- +ç ÷ ç ÷è ø è ø
(7.23)

From first equation, 21 11 22 12 21 12
1 11 1 12 1 2 1 2

22 22 22 22

1h h h h h h
V h I h I I I I

h h h h

é ù -æ ö æ ö æ ö æ ö= + - + = +ê úç ÷ ç ÷ ç ÷ ç ÷è ø è ø è ø è øë û
(7.24)
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Comparing Eqs (7.23) and (7.24) with Eq. (7.15), we get,

11 22 12 21 12 21
11 12 21 22

22 22 22 22 22

Ä 1
; ; ;

h h h h h hh
z z z z

h h h h h

-
= = = = - =

Similarly, the inter-relation of the other parameter in terms of the remaining parameters is obtained by

writing the remaining parameter equations in the same format as those of the other parameter; and

comparing the co-efficients of the two sets of equations, a relation is obtained.

A summary of the relationships between impedance z-parameters, admittance y-parameters, hybrid

h-parameters, and transmission ABCD-parameters is shown in Table where Dz = (z11z22 � z12z21), Dh =

(h11h22 � h12h21), DT = (AD � BC), DT¢ = (A¢D¢ � B¢C¢), and Dg = (g11g22 � g12g21).

Table 7.2 Interrelationships between Two-Port Parameters

[z] [y] [ABCD] [A¢ B¢ C¢D¢] [h] [g]

[z]
11 12

21 22

z z

z z

22 12

21 11

y y

y y

y y

y y

-
D D
-
D D

1

A T

C C

D

C C

D 1D

C C

T A

C C

¢
¢ ¢

D ¢ ¢
¢ ¢

12

22 22

21

22 22

1

hh

h h

h

h h

D

-

12

11 11

21

11 11

1 g

g g

g g

h g

-

D

[y]

22 12

21 11

z z

z z

z z

z z

-
D D

-
D D

11 12

21 22

y y

y y 1

D T

B B

A

B B

D-

-

1A

B B

T D

B B

¢ -
¢ ¢
D ¢ ¢-

¢ ¢

12

11 11

21

11 11

1 h

h h

h h

h h

-

D

12

22 22

21

22 22

1

gg

g g

g

g g

D

-

[ABCD]

11

21 21

22

21 21

1

z z

z z

z

z z

D 22

21 21

11

21 21

1y

y y

yy

y y

- -

D- -

A B

C D

D B

T T

C A

T T

¢ ¢
D ¢ D ¢

¢ ¢
D ¢ D ¢

11

21 21

22

21 21

1

hh

h h

h

h h

D- -

- -

22

21 21

11

21 21

1 g

g g

g g

g g

-

D

[A¢B¢C¢D¢]

22

12 12

11

12 12

1

z z

z z

z

z z

D 11

12 12

22

12 12

1y

y y

yy

y y

- -

D- -

D B

T T

C A

T T

D D

D D

A B

C D

¢ ¢
¢ ¢

11

22 12

22

12 12

1 h

h h

h h

h h

D

22

12 12

11

12 12

1

gg

g g

g

g g

D- -

- -

[h]

12

22 22

21

22 22

1

zz

z z

z

z z

D

-

12

11 11

21

11 11

1 y

y y

y y

y y

-

D 1

B T

D D

C

D D

D

-

1B

A A

T D

A B

¢
¢ ¢
D ¢ ¢-

¢ ¢

11 12

21 22

h h

h h

22 12

211 11

g g

g g

g g

g g

-
D D

-
D D

[g]

12

11 11

21

11 11

1 z

z z

z z

z z

-

D

12

22 22

21

22 22

1

yy

y y

y

y y

D

- -
1

C T

A A

B

A A

D- 1C

D D

T B

D D

¢ -
¢ ¢

D ¢ ¢
¢ ¢

22 12

21 11

h h

h h

h h

h h

-
D D

-
D D

11 12

21 22

g g

g g
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7.5 INTERCONNECTION OF TWO-PORT NETWORKS

In certain applications, it becomes necessary to connect the two-port networks together.

The common connections are (a) series, (b) parallel and (c) cascade.

(a) Series Connection of Two-port Networks

As in the case of elements, a series connection is defined when the currents in the series elements are

equal and the voltages add up to give the resultant voltage.

In the case of two-port networks, this property must be applied individually to each of the ports. Thus,

if we consider 2 networks r and s connected in series

At port 1,

Ir1 = Is1 = I1, and Vr1 + Vs1 = V1

Similarly, at port 2,

Ir2 = Is2 = I2 and Vr2 + Vs2 = V2

The two networks, r and s can be connected in the following manner to be in series with each other.

Figure 7.4 Series connection of two-port networks

Under these conditions,

1 1 1 11 11 1 12 12 2( ) ( ) ( )r s r s r sV V V z z I z z I= + = + + +

2 2 2 21 21 1 22 22 2( ) ( ) ( )r s r s r sV V V z z I z z I= + = + + +

It is seen that, the resultant impedance parameter matrix for the series combination is the addition

of the two individual impedance matrices.

[Z] = [Zr] + [Zs]

Note: In the interconnection of series networks, there is a strong requirement of isolation, since the

ground node of upper network form the non-ground node of the lower network. For the port

properties to be valid, the voltages Va and Vb must be identically zero for the two networks r and s to

be connected in series. If Va and Vb are not zero, then by connecting the two ports there will be a

circulating current and port property of the individual networks r and s will be violated.

(b) Parallel Connection of Two-port Networks

As in the case of elements, a parallel connection is defined when the voltages in the parallel elements

are equal and the currents add up to give the resultant current.
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In the case of two-port networks, this property must be applied individually to each of the ports.

Thus, if we consider 2 networks r and s connected in parallel,

At port 1,

Ir1 + Is1 = I1, and Vr1 = Vs1 = V1

Similarly, at port 2,

Ir2 + Is2 = I2 and Vr1 = Vs1 = V1

The two networks, r and s can be connected in

following manner to be in parallel with each other.

Under these conditions,

1 1 1 11 11 1 12 12 2( ) ( ) ( )r s r s r sI I I y y V y y V= + = + + +

2 2 2 21 21 1 22 22 2( ) ( ) ( )r s r s r sI I I y y V y y V= + = + + +

It is seen that, the resultant admittance parameter

matrix for the parallel combination is the addition of

the two individual admittance matrices.

[Y] = [Yr] + [Ys]

Figure 7.6(a) Vb = 0 Figure 7.6(b) Va = 0

Note: As in series connection, parallel connection is also possible under the condition that Va = Vb =

0; otherwise they cannot be connected in parallel as that will violate the port properties.

(c) Cascade Connection of Two-port Networks

A cascade connection is defined when the output of one network becomes the input to the next

network.

Figure 7.7 Cascade connection of two-port network

It can be easily seen that Ir2 = Is1 and Vr2 = Vs1.

Therefore it can easily be seen that the ABCD parameters are the most suitable to be used for this

connection.

1 21 2

1 21 2

,
s s s sr r r r

s s s sr r r r

V A B VV A B V

I C D II C D I

é ù é ù é ùé ù é ù é ù
= =ê ú ê ú ê úê ú ê ú ê ú

ë û ë û ë û ë û ë û ë û

Figure 7.5 Parallel connection of two-port

networks
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1 21 1 2

1 21 1 2

s s s sr r r r r r r r

s s s sr r r r r r r r

V A B VV V A B V A B A B

I C D II I C D I C D C D

é ù é ù é ùé ù é ù é ù é ù é ù é ù
= = = =ê ú ê ú ê úê ú ê ú ê ú ê ú ê ú ê ú

ë û ë û ë û ë û ë û ë ûë û ë û ë û

= 
2

2

s sr r

s sr r

A BA B V

C DC D I

é ùé ù é ù
ê úê ú ê ú

ë û ë ûë û
Thus it is seen that the overall ABCD matrix is the product of the two individual ABCD matrices.

This is a very useful property in practice, especially when analyzing transmission lines.

s sr r

s sr r

A BA BA B

C DC DC D

é ùé ùé ù
= ê úê úê ú

ë û ë û ë û

7.6 TWO-PORT NETWORK FUNCTIONS

Two-port network functions are broadly divided into two groups:

1. Transfer function, and

2. Driving point functions.

7.6.1 Transfer Function

It is defined as the ratio of an output transform to an input transform, with  zero initial condition and

with no internal energy sources ecxcept the controlled sources.

For a two-port network, having the variables I1(s), I2(s), V1(s) and V2(s), the transfer function can

take the following four forms:

Voltage Transfer Function 1 2
12 21

2 1

( ) ( )
( ) ; ( )

( ) ( )

V s V s
G s G s

V s V s
= =

Current Transfer Function 1 2
12 21

2 1

( ) ( )
( ) ; ( )

( ) ( )

I s I s
s s

I s I s
a a= =

Transfer Impedance Function 1 2
12 21

2 1

( ) ( )
( ) ; ( )

( ) ( )

V s V s
Z s Z s

V s V s
= =

Transfer Admittance Function 1 2
12 21

2 1

( ) ( )
( ) ; ( )

( ) ( )

I s I s
Y s Y s

I s I s
= =

Note: (i) For a one-port network, Z(s) = 1/Y(s); but for a two-port network, in general Z12 ¹ 1/Y12;

G12 ¹ 1/a12;
(ii) Z and Y functions will becomes z and y parameters under the conditions of open-circuits

or short-circuits, respectively.

7.6.2 Driving Point Function

It takes two forms:

Driving Point Impedance [Z(s)] For a two-port newtork in zero state with no internal energy

sourceds, the driving point impedance s the ratio of transform voltage at any port to the transform

current at the same port.
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1 2
11 22

1 2

( ) ( )
( ) ; ( )

( ) ( )

V s V s
Z s Z s

I s I s
= =

Driving Point Admittance [Y(s)] For a two-port network in zero state with no internal energy

sources, the driving point admittance is the ratio of transform current at any port to the transform

voltage at the same port

1 2
11 22

1 2

( ) ( )
( ) ; ( )

( ) ( )

I s I s
Y s Y s

V s V s
= =

Note: (i) Driving point impedance and admittance functions together are known as immittance

function.
(2) Z and Y functions will becomes z and y parameters under the conditions of open circuits

or short circuits,

SOLVED PROBLEMS

7.1 Find the Z and Y parameter for the networks shown in figure.

(a) (b)

(c) (d)

Solution

(a) By KVL, 1 2 1( )a c cZ Z I Z I V+ + =

and 1 2 2( )c b cZ I Z Z I V+ + =
Thus, the Z-parameters are:

11 12 21 22( ), , ( )a c c b cz Z Z z z Z z Z Z= + = = = +
(b) By KCL,

I1 = 1 2
1 2

1 1V V
V V

Z Z Z

-
= -

and I2 = 2 1
1 2

1 1V V
V V

Z Z Z

-
= - +

Thus, the y-parameters are,

y11 = 22 12 21

1 1
y y y

Z Z
= = = -

Since, 11 22 12 21 0y y y y yD = - = , the z-parameters do not exist for this network.
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(c) By KVL,

V1 = 1 2
2 1 1 2 2 1 2

1 1 1 1
or, and

I I
V V I I V I I

Y Y Y Y Y

+ æ ö æ ö æ ö æ ö= = + = +ç ÷ ç ÷ ç ÷ ç ÷è ø è ø è ø è ø

Thus, the z-parameters are,

z11 = 22 12 21

1
z z z

Y
= = =

Since, 11 22 12 21 0z z z z zD = - = , the y-parameters do not exist for this network.

(d) By KCL,

1 1 1 2 1 2

2 2 2 1 1 2

( ) ( )

( ) ( )
a c a c c

b c c b c

I Y V V V Y V Y Y V Y

I Y V V V Y V Y V Y Y

= + - = + -
= + - = - + +

Thus, the y-parameters are:

11 12 21 22; ;a c c b cy Y Y y y Y y Y Y= + = = - = +
7.2 Obtain the z-parameters for the circuit shown in figure.

(a)

(b)

Solution

(a) The given circuit can be considered as the cascade connection of the following two networks:

(a) (b)

From Prob. 7.1(a), 11 11 22 22

12 21 12 21

3

2
a b a b

a a b b

z z z z

z z z z

= = = = W
= = = = W

So, the transmission parameters are,

\ Aa = Ab = 11

21

3

2

z

z
=
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\ Ba = Bb = 
21

9 4 5

2 2

z

z

-D = = W

\ Ca = Cb = 
21

1 1

2z
= J

\ Da = Db = 22

21

3

2

z

z
=

So, the transmission parameters of the resulting network are:

T = 
3/2 5/2 3/2 5/2 7/2 15/2

1/2 3/2 1/2 3/2 3/2 7/2
a bT T

é ù é ù é ù
´ = =ê ú ê ú ê ú

ë û ë û ë û
So, the z-parameters are:

11

12

21

22

7

3
2

3
1 2

3
7

3

A
z

C
T

z
C

z
C
D

z
C

ü= = W ï
ïD= = Wïï
ý
ï= = W
ï
ï= = W ïþ

(b) By KVL,

V1 = 2I1 + 4I3

V2 = I1 + I2 � I3

and 2(I1 � I3) + I1 + I2 � I3 � 4I3 = 0

Eliminating I3 from above equations,

V1 = 1 2

26 4

7 7
I I+

V2 = 1 2

4 6

7 7
I I+

Thus, the z-parameters are:

[z] = 
26/7 4/7

4/7 6/7

é ù
Wê ú

ë û
7.3 For the network shown, find z and y-parameters.
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Solution From the figure, we can write the KVL equations,

V1 = I3 (i)

V2 = 2I2 � 4I1 � 2I3 (ii)

and, 2I1 � 2I3 + 2I2 � 4I1 � 2I3 � I3 = 0 Þ I3 = 2 1

2
( )

5
I I-

From (i), 1 1 2 1 2

2 2
0.4 0.4

5 5
V I I I I= - + = - +

From (ii), 2 2 1 2 1 1 2

4 4
2 4 3.2 1.2

5 5
V I I I I I I= - - + = - +

\ [z] = 
0.4 0.4

3.2 1.2

-é ù
Wê ú-ë û

Dz = ( 0.4 1.2) 0(0.4) ( 3.2) 0.8- ´ - ´ - =

\ [y] = 

0.4
1.2/0.8 1.5 0.50.8

0.4 4 0.5
3.2/0.8

0.8

é ù- -ê ú é ù
=ê ú ê ú-ë ûê ú-

ë û

J J

7.4 Find the y-parameters for the 2-port networks shown.

(a)

(b)

(c)
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Solution

(a) We consider two cases to find out the y-parameters.

Case (I) Making port- 2 shorted and applying a voltage of V1 at port- 1

By KVL,

17I1 + 20I2 = V1

and 12I1 + 20I2 = 0

I1 = 

2

1

1
1 11

1 0

20

0 20
0.2 0.2

17 20

12 20

V

V

I
V y

V =

= Þ = = J

Solving,

I2 = 

2

1

2
1 21

1 0

17

12 0
0.12 0.12

17 20

12 20

V

V

I
V y

V =

= - Þ = = - J

Case (II) Making port-1 shorted and applying a voltage of V2 at port- 2

By KVL,

17I1 + 20I2 = �0.2V2

and 12I1 + 20I2 = V2

I1 = 

1

2

2 1
2 12

2 0

0.2 20

20
0.24 0.24

17 20

12 20

V

V

V I
V y

V =

-

= - Þ = = - J
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Solving,

I2 = 

1

2

2 2
2 22

2 0

17 0.2

12
0.194 0.194

17 20

12 20

V

V

V I
V y

V =

-

= Þ = = J

Thus, [ y] = 
0.2 0.24

0.12 0.194

-é ù
ê ú-ë û

J

(b) We consider two cases.

Case (I) V1 = 0

Case (II) V2 = 0

By KCL,

1

1

2

2

2 2
1 12 2 0 12

2 2
2 22 2 0 22

1 11 1 0 1 11

1
2 21 1 0 21

0 1
|

4 12 6

5
|

3 12 12
1 1 1

|
12 12 6

1
|

12 12

V

V

V

V

V V
I y V y

V V
I y V y

I y V V y

V
I y V y

=

=

=

=

ü-æ ö= = + Þ = ïç ÷è ø ï
ï= = + Þ = ï
ý

æ ö ï= = + Þ =ç ÷è ø ï
ï

= = - Þ = - ï
þ

J

J

J

J

(c) For V1 = 0, the circuit becomes as shown.

\ 2 22 2 2 2 22(1 2) 3 3I y V V V y= = + = Þ = J

Also, 1
2 12 1

1

I
V y- = Þ = - J
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For V2 = 0, the circuit becomes as shown.

\ 2
13

1

I
V- = (i)

3
1 1 1 33 2

1

I
V V V I+ = Þ = - (ii)

I1 = I3 + I4 (iii)

and V1 = 4

1

I
(iv)

From (i) to (iv),

1 1 3 1 1 1 112 1I V I V V V y= + = - = - Þ = - J

From (i), y21 = �3 J

Thus, the y-parameters are:

[y] = 
1 1

3 3

- -é ù
ê ú-ë û

J

From the interrelationship, we get the z-parameters as:

[z] = 
1 0

( )
1 1/3

-é ù
Wê ú-ë û

7.5 Measurements were made on a two-port network shown in the figure.

(i) With port-2 open, a voltage of 100Ð0° volt is applied to port-1, resulted in, I1 = 10Ð0° amp and

V2 = 25Ð0° volt.

(ii) With port-1 open, a voltage of 100Ð0° volt is applied to port-2, resulted in, I2 = 20Ð0° amp and

V1 = 50Ð0° volt.

(a) Write the loop equations for the network and also find the driving point and transfer impedance.

(b) What will be the voltage across a 10 W resistor connected across port-2 if a 100Ð0° volt source

is connected across port-1.

Solution

(a) From the given data, we get the z-parameters as:

z11 = 

2

1

1 0

100 0
10

10 0
I

V

I
=

Ð °= = W
Ð °

z21 = 

2

2

1 0

25 0
2.5

10 0
I

V

I
=

Ð °= = W
Ð °

z12 = 

1

1

2 0

50 0
2.5

20 0
I

V

I
=

Ð °= = W
Ð °
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z22 = 

1

2

2 0

100 0
5

20 0
I

V

I
=

Ð °= = W
Ð °

So, the loop equations are:

1 1 2

2 1 2

10 2.5

2.5 5

V I I

V I I

= + ü
ý= + þ

(b) Here, 1 2 2 2100 0 and 10LV V I R I= Ð ° = - = -
Putting these values in loop equations,

100 = 10I1 + 2.5I2 Þ I1 = 10 � 0.25I2

and �10I2 = 2.5I1 + 5I2

or, 2 2 210 2.5(10 0.25 ) 5I I I- = - +

or, 2 215 25 0.625I I- = -

or, I2 = 
25

14.375

-
 = �1.74 A

\ Voltage across the resistor = �I2RL = 17.4 V

7.6 (a) The following equations give the voltages V1 and V2 at the two ports of a two port network,

V1 = 5I1+2I2 , V2 = 2I1+I2 ;

A load resistance of 3 W is connected across port-2. Calculate the input impedance.

(b) The z-parameters of a two port network are z11 = 5 W, z22 = 2 W, z12 = z21 = 3 W. Load resistance

of 4 W is connected across the output port. Calculate the input impedance.

Solution

(a) From the given equations,

V1 = 5I1 + 2I2 (i)

V2 = 2I1 + I2 (ii)

At the output, V2 = � I2RL = �3I2

Putting this value in (ii),

�3I2 = 2I1 + I2 Þ I2 = �I1/2

Putting in (i), V1 = 5I1 + 1

2

I-æ ö
ç ÷è ø

 = 4I1

\ Input impedance, Zin = 1

1

4
V

I
= W

(b) [Same as Prob. (a)] Zin = 1

1

V

I
 = 3.5W

7.7 Determine the h-parameter with the following data:

(i) with the output terminals short circuited, V1 = 25 V, I1 = 1 A, I2 = 2 A

(ii) with the input terminals open circuited, V1 = 10 V, V2 = 50 V, I2 = 2 A

Solution The h-parameter equations are,

V1 = h11I1 + h12V2

I2 = h21I1 + h22V2
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(a) With output short-circuited, V2 = 0, given: V1 = 25 V, I1 = 1 A and I2 = 2 A.

11
11 21

21

25 1
25 , and 2

and 2 1

h
h h

h

\ = ´ ü Þ = W =ý= ´ þ
(b) With input open-circuited, I1 = 0, given: V1 = 10 V, V2 = 50 V and I2 = 2 A.

12
12 23

22

10 50 1 1
0.2 and = 0.04

and 2 50 5 25

h
h h

h

\ = ´ ü Þ = = =ý= ´ þ
J J

Thus, the h-parameters are:

[h] = 
1

25 0.2

2 0.04 -

Wé ù
ê úWë û

7.8 The y-parameters for a two-port network N are given as,

[y11 = 4 J, y22 = 5 J, y12 = y21 = 4 J]

If a resistor of 1 ohm is connected across port-1 of N, then

find out the output impedance.

Solution Output impedance is given as,

Zout = 11 22 12 21

11 L

z z z z

z Z

-
+

Here, y11 = 1 1 1
12 21 224 , 4 , 5y y y- - -W = = W = W

\ z11 = 22 5 5

20 16 4

y

y
= = W

D -

z12 = 12
21

4
1

4

y
z

y
= - = - = - W

D

and z22 = 11 4
1

4

y

y
= = W

D

Putting these values,

Zout = 11 22 12 21

11

5
1 ( 1) ( 1) 1 1

54
5/4 1 9L

z z z z

z Z

´ - - ´ - + ´-
= = W

+ +

7.9 (a) The h-parameters of a two-port network are h11 =

100 W, h12 = 0.0025, h21 = 20 and h22 = 1 mJ. Find

V2/V1.

(b) The h-parameters of a two-port network are h11 =

1 W, h12 = �h21 = 2, h22 = 1 J. The power absorbed

by a load resistance of 1 W connected across

port-2 is 100 W. The network is excited by a

voltage source of generated voltage Vs and internal resistance 2 W. Calculate the value of Vs.

Solution

(a) The h-parameter equations are:

V1 = 100I1 + 0.0025V2 (i)
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I2 = 20I1 + 0.001V2 (ii)

By KVL at the output mesh, V2 = �2000I2 (iii)

V1 = 2 2 2
2 2 2

0.001
100 0.0025 5 0.005 0.0025

20 2000

I V V
V V V

-é ù æ ö+ = - - +ç ÷ê ú è øë û
From (i),

or 2

1

200
V

V
= -

(b) The h-parameter equations are:

V1 = I1 + 2V2 (i)

I2 = �2I1 + V2 (ii)

Since the load resistance of 1 W is connected across port-2,

\
2
2

1

V
= 100 Þ V2 = 10 V

By KVL, V2 = 2 2 2 10 ALI R I I- = - Þ = -
and 2I1 + V1 = Vs (iii)

From (ii), putting the values of I2 and V2,

�10 = 1 12 10 10 AI I- + Þ =
From (iii),

Vs = 1 1 22 10 20 2 {by (i)}V I V´ + = + +
= 20 + 10 + 2 ´ 10

or, Vs = 50 V

7.10 The z-parameters for a network N are:

2 1

2 5

é ù
ê ú
ë û

The terminal connections for the network are shown in the

adjacent figure. Calculate the voltage ratio V2/Vs, current

ratio �I2/I1 and input resistance V1/I1.

Solution The z-parameter equations are:

V1 = 2I1 + I2 (i)

V2 = 2I1 + 5I2 (ii)

By KVL at the input and output circuits,

I1 + V1 = Vs Þ 3I1 + I2 = Vs (iii) {by (i)}

and 5I2 + V2 = 0 Þ 2I1 + 10I2 = 0 (iv) {by(ii)}

Solving (iii) and (iv),

1 2

1 3

0 10 2 010 2
and

28 283 1 3 1

2 10 2 10

s s

s s

V V

I V I V= = = = -
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\ 2

1

1

5

I

I
- =

Now, 2 1 2

20 10 10
(2 5 )

28 28 28s s
V I I V V

æ ö= + = - =ç ÷è ø

\ 2 5

14s

V

V
=

Again,

V1 = (2I1 + I2) = 
20 2 18

28 28 28s s
V V

æ ö- =ç ÷è ø

\ 1

1

9

14

V

I
= W

7.11 For the two-port network in figure, terminated in a 1 W

resistance, show that,  2 21

1 221

V z

I z
=

+
 and 1 11

1 221

V z z

I z

+ D
=

+

Solution The z-parameter equations are:

V1 = z11I1 + z12I2 (i)

V2 = z21I1 + z22I2 (ii)

By KVL at the output, 2 2 2 21V I I V= - ´ Þ = -

V2 = 21 1 22 2 21 1 22 2( )z I z I z I z V+ = + -

From (ii), or, 2 22 21 1(1 )V z z I+ = (iii)

or 2 21

1 221

V z

I z
=

+
(Proved)

From (i),

V1 = { }2 22
11 12 2

21

(1 )
( ) by (iii)

V z
z z V

z

+é ù + -ê úë û

= 11 11 22 12 21
2

21

z z z z z
V

z

+ -é ù
ê úë û

= 
11

2
21

z z
V

z

+ Dé ù
ê úë û

\ 1 1 2 11 21 11

1 2 1 21 22 221 1

V V V z z z z z

I V I z z z

+ D + D
= ´ = ´ =

+ +
(Proved)

7.12 Calculate the T-parameters for the block A and B separately and then using these results, calculate

the T-parameters of the whole circuit shown in the figure. Prove any formula used.
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(a)

(b)

Solution

(a) We consider the given network as a cascade connection of two networks as shown.

For Block A:

Opening the port-2,

By KCL,

1 2 1

1 1 1

2 3 3
V V I

æ ö+ - =ç ÷è ø

and 1 2

1 1
0

3 3
V s V

æ ö- + + =ç ÷è ø

Solving for V1 and V2,

V1 = 1 1
2

2 (1 3 ) 2
and

(1 5 ) (1 5 )

I s I
V

s s

+
=

+ +

2

2

1

2 0

1

2 0

(1 3 )

(1 5 )
and

2

a

I

a

I

V
A s

V

I s
C

V

=

=

ü
\ = = + ï

ï
ý

+ ï= = ï
þ

Short-circuiting port-2,

\ I1 = 1 1
1

5

2 3 6

V V
V+ =

and V1 = 

2

1
2

2 0

3 3
a

V

V
I B

I
=

- Þ = - = W

and Da = 

2

1 1

2 10

5 3 5

6 2
V

I V

I V
=

- = ´ =
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For Block B:

Opening the port-2,

By KCL,

1 2 1

1 1

5 5
s V V I

æ ö+ - =ç ÷è ø

and 1 2

1 1 1
0

5 5 4
V V

æ ö- + + =ç ÷è ø

Solving for V1 and V2,

V1 = 1 1
2

9 4
and

(1 9 ) (1 9 )

I I
V

s s
=

+ +

2

2

1

2 0

1

2 0

9

4

(1 9 )
and

4

b

I

b

I

V
A

V

I s
C

V

=

=

ü
\ = = ï

ï
ý

+ ï= = ï
þ

Short-circuiting port-2,

\ I1 = 1

1

5
s V

æ ö+ç ÷è ø

and V1 = 

2

1
2

2 0

5 5b

V

V
I B

I
=

- Þ = - = W

and D
b

= 

2

1

2 0

(5 1)
V

I
s

I
=

- = +

Since the two networks are connected in cascade, the overall transmission parameter matrix is

obtained as,

[T] = 

9/4 5(3 1) 3

[ ] [ ] 1 95 1
(5 1)5/2

42

a b

s

T T ss
s

é ù+é ù
ê úê ú´ = ´ +æ ö+æ ö ê úê ú +ç ÷è ø ê úè øê úë û ë û

 = 
(13.5 3) (30 8)

(11.25 1.75) (25 5)

s s

s s

+ +é ù
ê ú+ +ë û

(b) [Same as Prob. (a)]

Here, [Ta] = 
1 1 3/2 1

and [ ]
1/2 3/2 3/2 1

bT
é ù é ù

=ê ú ê ú
ë û ë û

\ [T] = 
3 2

[ ] [ ]
3 2

a bT T
é ù

´ = ê ú
ë û
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7.13 Two identical sections of the network shown in the figure are con-

nected in parallel. Obtain the y-parameters of the resulting network and

verify by direct calculation.

Solution For the circuit, 1 1
11 12 213 , 2y y y- -= W = = - W  and

1
22 3y -= W

The y-parameters for the combination will be,

1
11 11 11

1
12 21 12 12

1
22 22 22

( ) 6

( ) 4

( ) 6

y y y

y y y y

y y y

-

-

-

ü¢ ¢¢= + = W
ï¢ ¢¢= = + = - W ý
ï¢ ¢¢= + = W þ

To find the y-parameters by direct calculation, we consider the resulting network as shown.

For the entire network, 1 1 1
11 12 21 224 2 6 ; 4 ; 4 2 6y y y y- - -= + = W = = - W = + = W (Proved)

7.14 Two networks have general ABCD parameters as shown below:

Parameter Network-1 Network-2

A 1.50 5/3

B 11W 4W
C 0.25 siemens 1 siemens

D 2.5 3.0

If the two networks are connected with their inputs and outputs in parallel, obtain the admittance

matrix of the resulting network.

Solution For network-1:

y11 = 12.5 5

11 22

D

B
-= = W

y12 = 11.5 2.5 11 0.25 1

11 11

AD BC

B
-- ´ - ´

- = - = - W

y21 = 11 1

11B
-- = - W

y22 = 11.5 3

11 22

A

B
-= = W
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For network-2:

y11 = 13

4

D

B
-= W

y12 = 11

4

AD BC

B
--

- = - W

y21 = 11 1

4B
-- = - W

y22 = 15 5

3 4 12

A

B
-= = W

´

So, the admittance matrix of the resulting network is:

[y] = 1
5/22 1/11 3/4 1/4 43/44 15/44

1/11 3/22 1/4 5/12 15/44 73/132

-- - -é ù é ù é ù
+ = Wê ú ê ú ê ú- - -ë û ë û ë û

7.15 Two identical sections of figure are connected in series. Ob-

tain the z-parameters of the resulting network and verify by

direct calculation. All values are in ohm.

Solution The z-parameters of each section:

z11 = 12 21 223 , 1 , 3z z zW = = W = W
So, the z-parameters of the combined series network are:

z11 = 12 21 22(3 3) 6 , (1 1) 2 , (3 3) 6z z z+ = W = = + = W = + = W
To find the z-parameters by direct calculation, we consider the resulting network as shown.

For the resulting network,

2 2

1 1

1 2
11 21

1 10 0

2 1
22 12

2 20 0

6 2

6 2

I I

I I

V V
z z

I I

V V
z z

I I

= =

= =

ü
= = W = = Wï

ï
ý
ï= = W = = W
ïþ
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7.16 (a) Find out the z- and h-parameters for the circuit shown in Fig. (a). All values are in ohm.

(b) Hence, obtain the hybrid parameters for the two-port network of Fig. (b).

(a) (b)

Solution

(a) For Fig. (a), the z-parameters are:

z11 = 

2 1

1 2
12 21 11

1 20 0

4 , 2 , 4
I I

V V
z z z

I I
= =

= W = = W = = W

\
11

12

12
12

22

21
21

22

1
22

12

16 4
3

4

2
0.5

4

2
0.5

4

1 1
0.25

4

z
h

z

z
h

z

z
h

z

h
z

-

- üD= = = W ï
ï
ï= = =
ï
ý
ï= - = - = -
ï
ï

= = = W ï
þ

(b) The connection is series-parallel connection. For this connection, the overall h-parameters will

be the sum of individual h-parameters.

\
11

12

21

1
22

(3 3) 6

(0.5 0.5) 1

( 0.5 0.5) 1

(0.25 0.25) 0.5

h

h

h

h -

= + = W ü
ï= + = ï
ý= - - = - ï
ï= + = W þ

7.17 (a)  Find the equivalent p-network for the T-network shown in the Fig. (a).

(b)  Find the equivalent T -network for the p-network shown in the Fig. (b).

(a) (b)
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Solution

(a) Let the equivalent p-network have YC as the series admittance and YA and YB as the shunt

admittances at port-1 and port-2, respectively.

Now, the z-parameters are given as:

z11 = 12 21 22( ) 7 , 5 , ( ) 7.5A C C B CZ Z z z Z z Z Z+ = W = = = W = + = W

\ Dz = 2(7 7.5 5 5) 27.5´ - ´ = W

\ y11 = 22 7.5

27.5

z

z
=

D
J

y12 = y21 = 
5

27.5
Cz

z
- = -
D

J

y22 = 11 7

27.5

z

z
=

D
J

\ YA = 11 12

2.5 1
( )

27.5 11
y y+ = = J

\ YB = 22 12

2
( )

27.5
y y+ = J

and YC = 21

5 2

27.5 11
y- = = J

Thus, the impedances of the equivalent p-networks are:

1
11 ,

1
13.75 ,

1
5.5

A
A

B
B

C
C

Z
Y

Z
Y

Z
Y

ü= = W ï
ï
ï= = W ý
ï
ï= = W ïþ

(b)

p-network Equivalent T-network

The y-parameters,

y11 = 12 21 221.2 , 1 , and 1.5y y y= = - =J J J

\ Dy = (1.2 1.5 1) 0.8´ - =

Equivalent p-network
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\ z11 = 22 12 11
12 21 22

1.5 1 1.2
, ,

0.8 0.8 0.8

y y y
z z z

y y y
= W = = - = W = = W

D D D

\ 11 12

22 12

12

0.5
( ) 0.625

0.8

0.2
( ) 0.25

0.8

1
1.25

0.8

A

B

C

Z z z

Z z z

Z z

ü= - = = Wï
ïï

= - = = W ý
ï
ï= = = W ïþ

7.18 The z-parameter of a 2-port network are:

 z11 = 10 W, z22 = 20 W, z12 = z21 = 5 W.

Find the ABCD-parameters. Also find the equivalent T-network.

Solution

From the inter-relationship, we get the ABCD parameters as:

A = 11

21

10
2

5

z

z
= =

B = 11 22 12 21

21

10 20 5 5
35

5

z Z Z Z

z

- ´ - ´
= = W

C = 
21

1 1
0.2

5z
= = J

D = 22

21

20
4

5

z

z
= =

To find the equivalent T-network, we have the relations,

and

11

12 21

22

( ) 10

5 5 , 15 , 5

( ) 20

A C

C A B C

B C

z Z Z

z z Z Z Z Z

z Z Z

= + = W ü
ï= = = W Þ = W = W = Wý
ï= + = Wþ

7.19 Z-parameters of the two-port network N in figure. are, z11 = 4s, z12 = z21 = 3s, z22 = 9s.

(a) Replace N by its T-equivalent.

(b) Use part (a) to find the input current I1 for Vs = cos1000t.

Equivalent T-network
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Solution

(a) The z-parameters are: 
4 3

[ ] ( )
3 9

s s
z

s s

é ù
= Wê ú

ë û

Since the network is reciprocal, its T-equivalent exists. Its

elements are:

ZA = 11 12 22 21( ) , ( ) 6 ,Bz z s Z z z s- = = - =

and ZC = 21 12 3z z s= =

So, the equivalent circuit is shown in figure.

(b) We repeatedly combine the series and parallel elements of above figure, with resistors in kW and

s in Krad/s to find the input impedance, Zin in kW.

\ Zin = 
1

(6 12) (3 6)
(3 4)

(6 12) (3 6)
s

V s s
s s

I s s

+ +
= + = +

+ + +

or Zin(j) = (3 4) 5 36.9 kj + = Ð ° W
So, the current,

i(t) = 
in

( ) 1
cos (1000 36.9 ) (mA)

( ) 5
s
v t

t
Z j

= - °

7.20 The z-parameters of a two-port network N are given by, z11 = ( 2s + 1/s ), z12 = z21 = 2s, z22 = ( 2s + 4).

(a) Find the T-equivalent of N.

(b) The network N is connected to a source and a load as shown in figure. Replace N by its

T-equivalent and then find I1, I2, V1, and V2.

Equivalent T-network
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Solution

(a) To find the equivalent T-network, we have the relations,

and

11

12 21

22

1
( ) 2

1
2 , 4 , 2

( ) (2 4)

A C

C A B C

B C

z Z Z s
s

z z Z s Z Z Z s
s

z Z Z s

üæ ö= + = + Wç ÷ ïè ø ï
ý= = = W Þ = W = W = Wï
ï= + = + W þ

Equivalent T-network

(b) The equivalent circuit is shown below.

By KVL, I1(3 + j) + I2( j2) = 12Ð0°

I1( j2) + I2(5 + j3) = 0

I1 = 

12 0 2 12 0 2 90

0 (5 3) 0 5.831 30.96
3.29 10.22 (A)

16 14(3 ) 2

2 (5 3)

j

j

jj j

j j

Ð ° Ð ° Ð °
+ Ð °

= = Ð- °
++

+

Solving,

and I2 = 

(3 ) 12 0

2 0
1.13 131.19 (A)

(3 ) 2

2 (5 3)

j

j

j j

j j

+ Ð °

= Ð- °
+

+

\ V1 = 112 0 3 12 3.29 3 10.22 2.28 1.75 2.88 37.504 (V)I jÐ °- ´ = - ´ Ð- °= + = Ð °

and V2 = 2 (1 ) 1.13(1 ) 131.186 1.59 93.81I j j- + = - + Ð- ° = Ð °
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So, the currents and voltages are:

1

2

1

2

( ) 3.29 cos ( 10.2 ) (A)

( ) 1.13 cos ( 131.2 ) (A)

( ) 2.88 cos ( 37.5 ) (A)

( ) 1.6 cos ( 93.8 ) (A)

i t t

i t t

v t t

v t t

= - ° ü
ï= - ° ï
ý= + ° ï
ï= + ° þ

7.21 For the bridge-TRC network, find the y-parameters and its equivalent p-network.

Solution The given network is the parallel combination of the two networks:

(a) Network (b) Network

For network (a), the y-parameters are: [ya] = 
/2 /2

/2 /2

s s

s s

-é ù
ê ú-ë û

J

For network (b), the z-parameters are: [zb] = 
(1 2/ ) 2/

2/ (1/2 2/ )

s s

s s

+é ù
Wê ú+ë û

\ y11b = 22

2

(1/2 2/ ) 4

6(1 2/ ) (1/2 2/ ) 4/

b

b

z s s

z ss s s

+ +
= =

D ++ + -

\ y12b = 
12

21

2/ 4

( 6)/2 6
b

b
b

z s
y

z s s s
= - = =

D + +

\ y22b = 
11 ( 2)/2 2( 2)

( 6)/2 6
b

b

z s s

z s s s

+ +
= =

D + +

For network (b), the y-parameters are: [yb] = 

4 4

6 6

2( 2)4

6 6

s

s s

s

s s

+é ù
ê ú+ +
ê ú

+ê ú
ê ú+ +ë û
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Thus, the overall y-parameters are:

[y] = 

4 4

/2 /2 6 6
[ ] [ ]

/2 /2 2( 2)4

6 6

a b

s

s s s s
y y

s s s

s s

+é ù
ê ú- + +é ù ê ú+ = +ê ú- +ê úë û
ê ú+ +ë û

= 

2 2

2 2

8 8 6 8

2( 6) 2( 6)

6 8 10 8

2( 6) 2( 6)

s s s s

s s

s s s s

s s

é ù+ + + +
-ê ú+ +ê ú

ê ú+ + + +
-ê ú+ +ê úë û

Equivalent p network can be found out from the relations:

Ya = 11 12 22 12( ) ; ( )
( 6) b

s
y y Y y y

s
+ = = +

+

= 
2

12 21

6 82
;

( 6) 2( 6)c

s ss
Y y y

s s

+ +
= - = - =

+ +
7.22 For the notch-filter network, determine the y-parameters.

Solution The given network is the parallel combination of the two networks:

(a) Network (b) Network

For network (a), z11a = 12 21 22

1 2 1 21 1
1 ; 1; 1

2 2 2 2a a a

s s
z z z

s s s s

+ +æ ö æ ö+ = = = = + =ç ÷ ç ÷è ø è ø

\ Dza = 
2

1 4

4

s

s

+

\ y11a = 
22 12

12 21

2 (1 2 )
;

(1 4 )
a a

a a
a a

z zs s
y y

z s z

+
= = = -

D + D

= 
2

11
22

2 (1 2 )4
;

(1 4 ) (1 4 )
a

a
a

z s ss
y

s z s

+
- = =

+ D +
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For network (b), z11b = 12 21 22

1 2 1 21
(1/ 2) ; ; (1/ 2)b b b

s s
s z z z s

s s s

+ +
+ = = = = + =

\ Dzb = 
4( 1)s

s

+

\ y11b = 
22 12 11

12 21 22

(1 2 ) (1 2 )1
; ;

4( 1) 4( 1) 4( 1)
b b b

b b b
b b b

z z zs s
y y y

z s z s z s

+ +
= = = - = - = =

D + D + D +

Thus, the overall y-parameters are,

y11 = y22 = (y11a + y11b) = 
22 (1 2 ) (1 2 ) (1 2 ) (8 12 1)

1 4 4 4 4( 1) (4 1)

s s s s s s

s s s s

+ + + + +
+ =

+ + + +

and y12 = y21 = (y12a + y12b) = 
3 22 16 16 4 14 1

1 4 4( 1) 4(4 1) ( 1)

s s ss

s s s s

+ + +
- - = -

+ + + +

7.23 A network has two input terminals a, b and two output terminals c, d. The input impedance with

c-d open-circuited is (250 + j100) ohm and with c-d short-circuited is (400 + j300) ohm. The impedance

across c-d with a-b open-circuited is 200 ohm. Determine the equivalent T-network parameters.

Solution For c-d Terminals opened,

( ) (250 100)A BZ Z j+ = + (i)

But, for c-d terminals shorted,

(400 300)B C
A

B C

Z Z
Z j

Z Z
+ = +

+ (ii)

Again, with a-b terminals opened,

(ZB + ZC) = 200 (iii)

From (ii) and (i), we get,

150 200B C
B

B C

Z Z
Z j

Z Z
- = +

+

or 2 200(150 200)B C B B CZ Z Z Z Z j- - = + {by (iii)

or 2 4 2200( 150 200) 10 (1 2)BZ j j= - - = -

(100 200)

(150 300)

(100 200)

B

A

C

Z j

Z j

and Z j

\ = - Wü
ï\ = + W ý
ï= + Wþ

7.24 Find the driving point impedance at the terminals 1-1¢ of the ladder network shown in figure.

(a)
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(b)

Solution

(a) The driving point impedance at 1-1¢ is

4 2

11 2

3 11

1 2
1

s s
Z s

s ss

s
s

+ +
= + =

++
+

(b) The driving point impedance at 1-1¢ is,

6 5 4 3 2

11 5 4 3 2

3 8 11 11 6 11
( 1)

1 2 5 4 3
1

( 1)
1

1
( 1)

s s s s s s
Z s

s s s s ss

s

s

s
s

+ + + + + +
= + + =

+ + + ++
+ +

+
+ +

7.25 For the Notch-filter (Twin-T) network, determine:

(a) y-parameters,

(b) the voltage ratio transfer function V2/V1 when no-

load impedance is present, and

(c) the value of the frequency at which the output volt-

age is zero.

Solution

(a) The given network is the parallel combination of the

two networks:

(a) Network (b) Network

For network (a),

11 12 21 22

2 21 1
; ;

2 2 2 2 2a a a a

RCs RCsR R R
z z z z

Cs Cs Cs Cs

+ +æ ö æ ö= + = = = = + =ç ÷ ç ÷è ø è ø

\
2 2

1
a

RCs
z

C s

+
D =
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\ 22
11

(2 )
;

2 (1 )
a

a
a

z RCs RCs
y

z R RCs

+
= =
D +

2 2 2
12

12 21 ;
2 (1 )

a
a a

a

z R C s
y y

z R RCs
= = - = -

D +

11
22

1
1

2

(1 )
a

a
a

Cs Cs
z

y
z RCs

æ ö+è ø
= =
D +

For network (b),

11 12 21 22

1 2 1 21 1 1
; ; 2

2 2 2 2b b b b

RCs RCs
z R z z z

Cs Cs Cs s Cs

+ +æ ö æ ö= + = = = = + =ç ÷ ç ÷è ø è ø

\
2 2

1
b

RCs
z

C s

+
D =

\ 22
11

(1 2 )
;

2 ( 1)
b

b
b

z RCs
y

z R RCs

+
= =
D +

12
12 21

1
;

2 ( 1)
b

b b
b

z
y y

z R RCs
= = - = -

D +

11
22

(1 2 )

2 ( 1)
b

b
b

z RCs
y

z R RCs

+
= =
D +

Thus, the overall y-parameters are,

y11 = 
2 2 2

22 11 11

(2 ) (1 2 ) ( 4 1)
( )

2 (1 ) 2 ( 1) 2 ( 1)a b

RCs RCs RCs R C s RCs
y y y

R RCs R RCs R RCs

+ + + +
= + = + =

+ + +

and y12 = 
2 2 22 2 2

21 12 12

11
( )

2 (1 ) 2 ( 1) 2 ( 1)a b

R C sR C s
y y y

R RCs R RCs R RCs

+
= + = - - = -

+ + +

(b) Now,
1 11 1 12 2

2 21 1 22 2

I y V y V

I y V y V

= +
= +

When no-load impedance is present, I2 = 0,

\
2 2 2 2 2 2

2 21

2 2 2 2 2 2
1 22

1 2 ( 1) 1

2 ( 1) ( 4 1) ( 4 1)

V y R C s R RCs R C s

V y R RCs R C s RCs R C s RCs

+ + += - = ´ =
+ + + + +

(c) For V2 = 0 Þ 1 + R2C2s2 = 0

Putting s = jw, 1 � w2R2C2 = 0

\ w = 
1

RC

Thus, the notch frequency is given by, fN = 
1

2 RCp

7.26 Find the open circuit impedance parameters for the two-port network shown in the figure below.

10 W5 W

1

1¢

2

2¢

10 mH
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Solution For this p-network, the y-parameters are given as,

y
s s

y y
s s

y
s s

11

12 21

22

1
5

1
0 01

0 2
100

1
0 01

100

1
10

1
0 01

01
100

= +F
H

I
K = +F

H
I
K

= = - = -

= +F
H

I
K = +F

H
I
K

.
. ;

.
;

.
.

\ Dy y y y y
s s s

= - = +F
H

I
K ´ +F

H
I
K - -FH

I
K11 22 12 21

2

0 2
100

01
100 100b g . .

= + + F
H

I
K - -FH

I
K0 02

30 100 100
2 2

.
s s s

= +F
H

I
K0 02

30
.

s

Thus, the z-parameters are,

z
y

y
s
s

s
s

s
s

z z
y

y
s

s s s

z
y

y
s
s

s
s

s
s

Ans

11
22

12 21
12

22
11

01 100
0 02 30

01 100
0 02 30

5 5000
1500

100
0 02 30

100
0 02 30

5000
1500

0 2 100
0 02 30

0 2 100
0 02 30

10 5000
1500

= = +
+ = +

+ = +
+

= = - = - -
+ = + = +

= = +
+ = +

+ = +
+

U

V

|
|
|

W

|
|
|

D W

D W

D W

. /
. /

.
.

/
. / .

. /

. /
.
.

.

7.27 Find the open-circuit impedance parameters of the circuit given in the figure. Also, find the h-

parameters of the circuit.

j10 W

5 W

1

1¢

2

2¢

j15 W

I1 I2

Solution By KVL,

(j10 + 5) I1 + 5I2 = V1 (i)

and 5I1 + (j15 + 5)I2 = V2 (ii)

Thus, the z-parameters are:

z j z z Z j Ans11 12 21 225 10 5 5 15= + = = = +a f a fW W W .

The hybrid parameter matrix may be written as

V

I

h h

h h

I

V

1

2

11 12

21 22

1

2

L
N
M

O
Q
P

L
N
M

O
Q
P
L
N
M

O
Q
P=
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From Eq (ii), we get,

I2 = �
5

5 15 1+ j
I  + 

V

j
2

5 15+

= - +
1

1 3 1j
I  + 

1
5 15 2+ j

V (iii)

Putting this value of I2 in Eq (i), we get,

(5 + j10) I1 + 5 - + + +
L
NM

O
QP

5
5 15 5 151

2

j
I

V

j
= V1

Þ V1 = 
5 10 5 15 25

5 15

5
5 151 2

+ ´ + -
+

+ +
j j

j
I

j
V

a f a f
a f

= 
30 25

1 3 1

+
+

j

j
I  + 

1
1 3+ j

(iv)

Comparing Eq (iii) and (iv) with the standard equations of h-parameters, we get,

h
j

j
h

j
h

j
h

j11 12 21 22

30 25

1 3
1

1 3
1

1 3
1

5 15
=

+
+ = + = - + = +W; ; ; J Ans.

7.28 Determine the z-parameters for the network shown in the figure.

5 W

20 W

1

1¢

2

2¢

10 W

I1 I2

V2V1

+

–

+

–

Solution We consider two situations:

(a) When I1 = 0, i. e. port-1 is open-circuited: In this case no current will flow through the 5W
resistor.

5 W

20 W

1

1¢

2

2¢

10 W

I1= 0 I2

V2V1

+

–

+

–

Figure(a) When I1 = 0

By KVL in the right mesh, we get,

10 20 02 2 2I I V+ - =

\ z
V

I
I

22
2

2 01

30= =
=

W
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From Fig. (a), we get,

V1 = 20I2

\ z
V

I
I

12
1

2 01

20= =
=

W

(b) When I2 = 0, i.e., port-2 is open-circuited: In this case no current will flow through the 10 W
resistor.

By KVL in the left mesh, we get,

5 20 01 1 1I I V+ - =

\ z
V

I
I

11
1

1 02

25= =
=

W

5 W

20 W

1

1¢

2

2¢

10 W

I1 I2 = 0

V2V1

+

–

+

–

Figure (b) When I2 = 0

From Fig. (b), we get,

V2 = 20I1

\ z
V

I
I

21
2

1 02

20= =
=

W

Therefore, the z-parameters of the network are:

z Ans=
L
NM

O
QP

25 20

20 30
Wa f .

7.29 Find the y-parameters for the network shown in the figure.

10 W20 W

50 W

Solution We consider two situations:

When V1 = 0, i.e., port-1 is short-circuited

In this case, no current will flow through the 20 W resistor. The modified circuit is shown in Fig. (a).

By KCL at node 2,

V V
I2 2
2

0

10

0

50

-
+

-
=

\ y
I

V
V

22
2

2 01

1
10

1
50

012= = + =
=

. J Ans.

5 W

20 W

1

1¢

2

2¢

10 W

I1 I2 = 0

V2V1

+

–

+

–
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10 W

50 W

V1 = 0

I1 I2

V2

2

Figure(a) When V1 = 0

Also, from Fig. 7.5 (a) we get,

I
V

1
20

50
=

-

\ y
I

V
V

12
1

2 01

1
50

0 02= = =
=

. J Ans.

When V2 = 0, i.e., port-2 is short-circuited

In this case, no current will flow through the 10 W resistor. The modified circuit is shown in Fig. (b).

By KCL at node 1,

V V
I1 1
1

0

20

0

50

-
+

-
=

\ y
I

V
V

11
1

1 02

1
20

1
50

0 07= = + =
=

. J Ans.

V2 = 0

50 WI1 I21

20 WV1

Figure(b) When V2 = 0

Also, from Fig. 7.5 (b) we get,

I
V

2
10

50
=

-

\ y
I

V
V

21
2

1 02

1
50

0 02= = =
=

. J Ans.

Therefore, the y-parameters of the network are

y =
L
NM

O
QP

0 07 0 02

0 02 012

. .

. .
J Ans.
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7.30 For the network shown in the figure, determine the ABCD parameters.

2 W2 W

1

1¢

2

2¢

V1 V2

I2I1 1 W 2 W 1 W

+

–

+

–

Solution The ABCD-parameter equations are,

V AV BI

I CV DI

1 2 2

1 2 2

= -

= -

For the network shown in the figure. we convert the delta consisting of the resistances of 2 W each

into its equivalent star so that the circuit becomes as shown in Fig. (a) and Fig. (b).

r r r1 2 3
2 2

2 2 2
2
3

= = = ´
+ + = W

1

1¢

2

2¢

V1 V2

I2I1 1 W 1 W

+

–

+

–

2
3
W

2
3
W

2
3
W

1

1¢

2

2¢

V1 V2

I2I1 1.67 W

+

–

+

–

1.67 W

1.67 W

(a) Modified network (b)

To find the ABCD parameters, we consider two situations:

When V2 = 0, i.e., port-2 is short-circuited

As shown in Fig. (c), by KVL we get,

1.67I1 + 0.67(I1 + I2) = V1

or, 2.33I1 + 0.67I2 = V1

and, 0.67(I1 + I2) + 1.67I2 = 0

or, I I I1 2 2
2 33
0 67

3 5= - = -.
.

.

\ D = - =
=

I

I
V

1

2 02

3 5.

1

1¢

2

2¢

V1
V2 = 0

I2I1 1.67 W

+

–

1.67 W

1.67 W

(c)
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Putting this value in the first equations, we get,

2 33 3 5 0 67 7 52 2 1
1

2 02

. . . .´ - + = Þ = - =
=

a fI I V B
V

I
V

W

When I2 = 0, i. e. port-2 is open-circuited

Here, no current will flow through the right side 1.67 W resistance. By KVL, we get,

V1 = (1.67 + 0.67)I1 = 2.33I1

and, V2 = 0.67I1

\ C
I

V
I

= = =
=

1

2
2 0

1
0 67

15
.

.  J

\ A
V

V

I

I
I

= = =
=

1

2 0

1

1
2

2 33

0 67
3 5

.

.
.

1

1¢

2

2¢

V1
V2

I2 = 0I1 1.67 W

+

–

1.67 W

1.67 W

(d)

Therefore, the ABCD parameters of the network are

A = 3.5; B = 7.5W; C = 15J; and D = 3.5 Ans.

7.31 Find the hybrid parameters for the network shown in the figure.

10 W

5 W

1

1¢

2

2¢

15 W

I1 I2 = 0

Solution By KVL,

15I1 + 5I2 = V1 (i)

5I1 + 20I2 = V2 (ii)

Thus, the z-parameters are

z j z z Z j Ans11 12 21 225 10 5 5 15= + = = = +a f a fW W W .

The hybrid parameter equations are,

V h I h V

I h I h V

1 11 1 12 2

2 21 1 22 2

= +

= +
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From Eq (ii), we get,

I I
V

2 1
25

20 20
= - +

= - +1
4

1
201 2I V (iii)

Putting this value of I2 in Eq (i), we get,

15 5
1
4 201 1

2
1I I

V
V+ - +L

NM
O
QP

=

Þ V I V1 1 2
55
4

1
4

= + (iv)

Comparing Eq (iii) and (iv) with the standard equations of h-parameters, we get,

h h h h11 12 21 22
55
4

1
4

1
4

1
20

= = = - =W; ; ; J Ans.

7.32 Find the y parameters for the following network:

10 W 5 W

V2V1

+

–

+

–

40 W

20 W

Solution This two-port network can be considered as the parallel connection of two two-port

networks as shown below.

10 W 5 W

V2V1

+

–

+

–

40 W

20 W

V1

+

–

(a)

V2

+

–

(b)

For network (a), the z-parameters are:

z z z z za a a a11 12 21 22
250 40 45 50 45 40 650= = = = \ = ´ - =W W W D; ; ; c h

Thus, the y-parameters are

y
z

z

y y
z

z

y
z

z

a
a

a a

a
a

11
22

12 21
12

22
11

45
650

9
130

40
650

4
65

50
650

1
13

= = =

= = - = - = -

= = =

D

D

D

mho

mho

mho
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For network (b), the y-parameters are

y y y yb b b b11 22 12 21
1
20

1
20

= = = = -mho mho;

We know that for parallel connection of two two-port networks the overall y-parameters are the

summation of individual y-parameters. Thus,

y y y

y y y y

y y y

Ans

a b

a b

a b

11 11 11

12 21 12 12

22 22 22

9
130

1
20

0119

4
65

1
20

0111

1
13

1
20

0127

= + = +F
H

I
K =

= = + = - -F
H

I
K = -

= + = +F
H

I
K =

U

V

|
|
|

W

|
|
|

b g

b g

b g

.

.

.

.

mho

mho

mho

7.33 Obtain the ABCD parameters for the network shown in the figure.

10 W 20 W 50 W

50 W 20 W 10 WInput Output

Solution This two-port network can be considered as the cascade connection of two two-port

networks as shown below.

50 W

20 W10 W

20 W 10 W

50 W

Network (a) Network (b)

For Network (a), as this is a T-network, the z-parameters are given as,

z z z z z z z z11 12 22 11 22 12 21
260 50 70 60 70 50 1700= = = \ = - = ´ - =W W W D; ; ; b g c h

\ A
z

za = = =11

21

60
50

6
5

B
z

za = = =D W
21

1700
50

34

C
za

= =1 1
5021

mho D
z

za = = =22

21

70
50

7
5

For Network (b), as this is a p-network, the y-parameters are given as,

y y y y11 12 21 22
1
50

1
20

7
100

1
50

1
50

1
10

3
25

= +F
H

I
K = = = - = +F

H
I
K =mho mho mho; ;

\ Dy y y y y= - = ´ - -FH
I
K =11 22 12 21

2
7
100

3
25

1
50

1
125

b g



7.46 Circuit Theory and Networks

\ A
y

y
B

yb b= - = - - = = - = - - =22

21 21

3 25
1 50

6
1 1

1 50
50

/
/ /

W

C
y

y
D

y

yb b= - = - - = = - = - - =
D
21

11

21

1 125
1 50

2
5

7 100
1 50

7
2

/
/

/
/

mho

For the entire network, the ABCD parameters are given as,

A B

C D

A B

C D

A B

C D
Ans

a a

a a

b b

b b

L
NM

O
QP
=
L

N
M

O

Q
P ´

L

N
M

O

Q
P =

L
NM

O
QP
´
L
NM

O
QP
=
L
NM

O
QP

6 5 34

1 50 7 5

6 50

2 5 7 5

20 8 179

0 68 5 9

/

/ / / /

.

. .
.

7.34 Calculate the ABCD parameters of the network shown in the figure below.

30 W

j20 Wj20 W

1

1¢

2

2¢

Solution For this T-circuit, the z-parameters are given as,

z z j

z z

11 22

12 21

30 20

30

= = +

= =

a fW

W

\ Dz z z z z j j j j= - = + - = + = - +11 22 12 21

2 230 20 30 60 20 20 400 1200b g b g a f a f

 

\ = =
+

+
= +F
H

I
K

\ = =
+

= - +F
H

I
K

\ = =

\ = =
+

= +F
H

I
K

U

V

|
|
|
||

W

|
|
|
|
|

A
z

z

j

j j
j

B
z

z

j j
j

C
z

mho

D
z

z

j
j

Ans

11

21

12

22

12

30 20

60 20 20
1

2
3

60 20 20

30
40
3

40

1 1
30

30 20

30
1

2
3

D

D W

a f

a f

.

7.35 Determine the hybrid parameters for the network in the figure shown below.

V1 V2

I2I1

r1 r3

r2

Solution For this p-network, the y-parameters are given as,

y
r r

r r

r r
y y

r
y

r r

r r

r r11
1 2

1 2

1 2
12 21

2
22

2 3

2 3

2 3

1 1 1 1 1= +F
H

I
K =

+F
H

I
K = = - = +F

HG
I
KJ =

+F
HG

I
KJ; ;
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By inter-relationship, the h-parameters are obtained as,

h
y

r r

r r11
11

1 2

1 2

1= = +
F
H

I
K

h
y

y

r

r r

r r

r

r r12
12

11

2

1 2

1 2

1

1 2

1

= - = -
-

+F
H

I
K

= +

h
y

y

r

r r

r r

r

r r21
21

11

2

1 2

1 2

1

1 2

1

= =
-

+F
HG

I
KJ

= - +

h
y

y

r r r r r r

r r r

r r

r r

r r r r r r

r r r
22

11

1 2 2 3 1 3

1 2
2

3

1 2

1 2

1 2 2 3 1 3

2 1 2

= =
+ + -R

S
|

T|

U
V
|

W|
´ +
F
H

I
K =

+ + -
+

D b g b g b g b g
b g

7.36 Find the hybrid parameters of the circuit given in the figure.

V1 V2

I2I1

3 W1 W

2 W

Solution For this p-network, the y-parameters are given as,

y y y y11 12 21 22
1
1

1
2

3
2

1
2

1
2

1
3

5
6

= +F
H

I
K = = = - = +F

H
I
K =; ;

\ Dy y y y y= = =11 22 12 21

2
3
2

5
6

1
2

1- ´ - -FH
I
K

By inter-relationship, the h-parameters are obtained as,

h
y11
11

1 2
3

= = W h
y

y12
12

11

1 2
3 2

1
3

= - = - - =/
/

h
y

y21
21

11

1
2

3 2
1
3

= =
-

= -
/

h
y

y22
11

1
3
2

3
2

= = ´ =
D

 J

7.37 For the network shown in the figure, determine the z and y

parameters.

Solution By KVL for the three meshes, we get,

V1 = 10I1 + 3I2 + 2(I1 + I2) Þ 12I1 + 5I2 = V1 (i)

V2 = 2(I2 � 2V3) + 2(I1 + I2) Þ 2I1 + 4I2 � 4V3 = V2 (ii)

V3 = 2(I1 + I2) (iii)

+ –

2 W

10 W 2 W

2V3

3I2

I2

V2V3
V1

+

–

+

–

I1
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From (ii) and (iii),

V2 = 2I1 + 4I2 � 4(2I1 + 2I2) Þ V2 = � 6I1 � 4I2 (iv)

From (i) and (iv), we get,

z Ans=
- -
L
NM

O
QP

12 5

6 4
Wa f .

\ y z= =
- -
L
NM

O
QP

-1 2 9 5 18

1 3 2 3

/ /

/ /
 (J) Ans.

7.38 The h-parameters of a two-port network shown in figure are h h11 121000 0 003= =W, . ,  h21 100= ,

and h22
650 10= ´ - mho. Find V2 and z-parameters of the network if V V

s
= Ð-10 02 o a f .

+
–

500 W

Vs

I1 I2

V2
2000 W

+

–

Solution The h-parameter equations are,

V1 = h11I1 + h12V2 = 1000I1 + 0.003V2 (i)

I2 = h21I1 + h22V2 = 100I1 + 50 ´ 10�6V2 (ii)

By KVL for the two meshes,

V1 = Vs � 500I1 (iii)

V2 = � 200I2 (iv)

From (i) and (iii),

Vs � 500I1 = 1000I1 + 0.003V2

or, 10�2 � 1500I1 = 0.003V2 (v)

From (ii) and (iv),

- = + ´ -V
I V2
1

6
22000

100 50 10

or, I V1
6

25 5 10= - ´ -. (vi)

From (v) and (i),

0 003 10 1500 5 5 102
2 6

2. .V V= + - ´- -c h
Þ V V Ans2 1905= - . .

The z-parameters are calculated as follows.

z
h

h
z

h

h
z

h

h

z
h

Ans

11
22

12
12

22
21

21

22

6

22
22

3

500 60 2 10

1
20 10

= = - = = = - = - ´

= = ´

D W W W

W .
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7.39 For the two-port network shown in the figure, find the z-parameters.

1 W 1 W 1 W

2 W

+ –

2 W

+

–

V2

+

–

V1

I1 I2
2V1

Solution We consider two cases:

When I2 = 0 Here, as the output port is open-circuited, no current will flow through the 1W resistor

connected at port 2. The modified circuit is shown in Fig (a).

1 W 1 W 1 W

2 W

+ –

2 W

+

–

V2

+

–

V1

I1 I2= 0
2V1

(I1 – )I
I

(a)

By KVL for the middle mesh, we get,

I + 2V1 + 2I � 2 ´ (I1 � I) = 0

Þ I I V= -F
H

I
K

2
5

2
51 1 (i)

By KVL for the left mesh, we get,

V1 = I1 + 2 ´ (I1 � I) = 3I1 � 2I

= 3I1 � 2 ´ 
2
5

2
51 1I V-F

H
I
K {by equation (i)}

or, V1 = 11I1

\ z
V

I
I

11
1

1 02

11= =
=

W

Also, by KVL for the right mesh, we get,

V I I V I V I I I2 1 1 1 1 1 1 12 2
2
5

2
5

4
5

4
5

4
5

4
5

11 8= = ´ -F
H

I
K = - = - ´ ´ = -

\ z
V

I
I

21
2

1 02

8= = -
=

W
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When I1 = 0 Here, as the output port is open-circuited, no current will flow through the 1W resistor

connected at port 1. The modified circuit is shown in Fig (b).

1 W 1 W

2 W

+ –

2 W

+

–

V2

+

–

V1

I1= 0 I2
2V1

(I2 – )I
I

(b)

By KVL for the middle mesh, we get,

I � 2V1 + 2I � 2 ´ (I2 � I) = 0

Þ I = 
2
5

2
52 1I V+F

H
I
K (ii)

By KVL for the left mesh, we get,

V I I V I V1 2 1 2 12 2
2
5

2
5

4
5

4
5

= = ´ +F
H

I
K = +

Þ V I1 24=

\ z
V

I
I

12
1

2
1

4= =
=

W

Also, by KVL for the right mesh, we get,

V I I I I I

I I V by equation ii

I V I I I

2 2 2 2

2 2 1

2 1 2 2 2

2 3 2

3 2
2
5

2
5

11
5

4
5

11
5

4
5

4

= + ´ - = -

= - ´ +F
H

I
K

= - = - ´ = -

b g

l q( )

\ z
V

I
I

22
2

2 01

1= = -
=

W

Therefore, the z-parameters of the network are,

z Ans=
- -
L
NM

O
QP

11 4

8 1
Wa f .

7.40 Find the z and y parameters of the network shown in the

figure.

Solution We convert the dependent current source into

its equivalent voltage source as shown in the figure

below.

1 W 10 W

0.9 I1

I2

V2V1

+

–

+

–

I1
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1 W 10 W
9 I1

I2

V2V1

+

–

+

–

I1 +–

1 W

By KVL for the two meshes, we get,

I1 + 1 ´ (I1 + I2) = V1 Þ V1 = 2I1 + I2 (i)

and, 10I2 + 9I1 + 1 ´ (I1 + I2) = V2 Þ V2 = 10I1 + 11I2 (ii)

From (i) and (ii), we get the z-parameters as,

z Ans=
L
NM

O
QP

2 1

10 11
Wa f .

Therefore, the y-parameters are,

y z= =
L
NM

O
QP

=
-

-
L
NM

O
QP

-
-

1
1

2 1

10 11

11 12 1 12

10 12 2 12

/ /

/ /
J Ans.

7.41 The network shown in the figure contains both dependent current source and dependent voltage

source. For this circuit, determine the y and z parameters.

1 W
2 V1 I2

V2V1

I1

1 W

+–

2 W2 V2

Solution We first find out the y parameters. To find the y parameters, we consider two situations:

When V1 = 0 Here, port 1 is shorted and hence, the dependent voltage source is zero, i.e., short-

circuited. The 1 W resistance in port 1 becomes redundant. The circuit is shown in Fig (a).

1 W

V1= 0

I1 A I2

V22 WI2 –
V2
2

2V2

(a)

By KCL at node (A), we get,

� I1 � 2V2 � I
V

2
2

2
-F

H
I
K  = 0 Þ I1 + I2 = �

3

2
2V

(i)
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By KVL for the outer loop, we get,

V I
V

I
V

2 2
2

2
21

2 2
= ´ -F

H
I
K = -

Þ 3
2 2 2V I=

\ y
I

V
V

22
2

2 01

3
2

= =
=

J

Substituting the value of I2 in (i), we get,

I V V1 2 2
3
2

3
2

+ = -

Þ I V1 23= -

\ y
I

V
V

12
1

2 01

3= = -
=

J

When V2 = 0 Here, port 2 is shorted and hence, the dependent current source is zero, i.e., open-

circuited. The 2 W resistance in port 2 becomes redundant. The circuit is shown in Fig (b).

1 W

V2= 0

I1 I2

V1
+–

1 W ( )I + I1 2

2V1

(b)

By KVL for the left loop, we get,

V1 = (I1 + I2) (ii)

By KVL for the outer loop, we get,

2 0 31 2 1 2 1V I V I V+ + = Þ = -

\ y
I

V
V

21
2

1 02

3= = -
=

J

From (ii),

V I V I V1 1 1 1 13 4= - Þ =

\ y
I

V
V

11
1

1 02

4= =
=

J

Therefore, the y parameters of the netwrok is given as,

y =
-

-
L

N
M
M

O

Q
P
P

4 3

3
3
2

Ans.
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Hence, the z parameters are given as,

z y Ans= =
-

-
L

N
M
M

O

Q
P
P

=
- -

- -

L

N

M
M
M

O

Q

P
P
P

-
-

1

1
4 3

3
3
2

1
2

1

1
4
3

Wa f .

7.42 The model of a transistor in CE mode is shown in the figure. Determine the h parameters of the

model.

re

+
–

rbI1

V1 V2mbcV2

acb 1I
re

rd

I2

Solution The equations of h parameters are,

V h I h V

I h I h V

1 11 1 12 2

2 21 1 22 2

= +

= +

To find h parameters, we consider two cases:

When I1 = 0 Here, the dependent current source is open-circuited. The modified circuit is shown in

Fig (a).
re

+
–

rbI1= 0

V1 V2mbcV2

re

rd

I2

(a)

\ V Vbc1 2= m

Þ h
V

V
I

bc12
1

2 01

= =
=

m

Also, V I r re d2 2= +b g

Þ h
I

V r r
I e d

22
2

2 01

1= = +
=

J

When V2 = 0 Here, the dependent voltage source is short-circuited. The modified circuit is shown

in Fig (b).
rerbI1

V1 V2

abc 2I

I2

(b)
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\ V I r rb e1 1= +b g

Þ h
V

I
r r

V
b e11

1

1 02

= = +
=

b gW

Also, I Icb2 1= a

Þ h
I

I
V

cb21
2

1 02

= =
=

a

Therefore, the h parameters for the transistor model is given as,

h
r r

r r

Ans
b e bc

cb
e d

=
+

+

L

N

M
M

O

Q

P
P

b g m

a
1 .

7.43 Find the hybrid parameters for the network of the figure (which represents a transistor).

I2

V2V1

+

–

+

–

I1

R1

R3

R1

aI1

Solution Case (I): When V2 = 0

The circuit is modified as shown in the figure.

I2

V2 = 0V1

+

–

I1

R1

R3

R1

aI1

x y

By KCL at node x,

V

R

V

R
I I V

R R

R R
Ix x

x
2 3

1 1
2 3

2 3
11+ + = Þ = - +a ab g

By KVL,

V I R V I R
R R

R R
Ix1 1 1 1 1

2 3

2 3
11= + = + - +

F
HG

I
KJab g
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\ h
V

I
R

R R

R R
Ans

V
11

1

1 0
1

2 3

2 3
2

1
= = +

-
+

L
NM

O
QP=

aa f
.

By KCL at node y,

0
1

3
2 1 2 1

2 3

2 3
1 1

2 3

2 3

-
= + Þ = - - -

+
F
HG

I
KJ

= -
+
+

F
HG

I
KJ

V

R
I I I I

R R

R R
I I

R R

R R
x

a a a

a

b g

\ h
I

I

R R

R R
V

21
2

1

2 3

2 3
2

= -
+
+

F
HG

I
KJ

=0

=
a

 Ans.

Case (II): When I1 = 0

Here, the dependent current source is to be opened (since I1 = 0).

The circuit is modified as shown in the figure.

V1

+

–

I1= 0 I2

V2

+

–

R1 R3

R2

\ V2 = I2(R2 + R3)

and V1 = I2R2

\ h
V

V

R

R R
I

12
1

2 0

2

2 3
1

= =
+

=

Ans.

and h
I

V R R
I

22
2

2 0 2 3
1

1= =
+

=

Ans.

Therefore, the hybrid parameters are

h R
R R

R R
h

R

R R
h

R R

R R
h

R R11 1
2 3

2 3
12

2

2 3
21

2 3

2 3
22

2 3

1 1= +
-

+
L

N
M
M

O

Q
P
P

=
+

= -
+
+

F
HG

I
KJ

=
+

a ab g
; ; ; Ans.

7.44 Determine the y and z parameters for the network shown in the figure.

1 W
2 V1

V2V1 1 W

+ –

2 W2 V2

+

–

+

–

Solution We convert the dependent current source into equivalent dependent voltage source. The

modified network is shown in the figure.
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1 W
2 V1

V2

+ –

2 WV1

1 W

2 V2

+

–

+

–

+
–

I1 I2

I3

By KVL for three meshes, we get,

V1 = 1 ´ (I1 � I3) + 2V2 Þ I3 = I1 + 2V2 � V1 (i)

and 1 ´ I3 � 2V1 + 2(I2 + I3) � 2V2 + 1 ´ (I3 � I1) = 0 Þ 2V1 + 2V2 = � I1 + 2I2 + 4I3 (ii)

and, V2 = 2 ´ (I2 + I3) (iii)

Substituting the value of I3 from (i) into (ii) and (iii), we get,

2V1 + 2V2 = � I1 + 2I2 + 4(I1 + 2V2 � V1) Þ 6V1 � 6V2 = 3I1 + 2I2 (iv)

and, V2 = 2(I2 + I1 + 2V2 � V1) Þ 2V1 � 3V2 = 2I1 + 2I2 (v)

By (iv) � (v), we get,

I1 = 4V1 � 3V2 (vi)

Also, from (v) and (vi), we get,

2V1 � 3V2 = 2 (4V1 � 3V2) + 2I2

Þ I2 = � 3V1 + 
3

2
V2 (vii)

From (vi) and (vii), we get,

y =
-

-
L

N
M
M

O

Q
P
P

4 3

3
3

2

mhob g Ans.

\ z y= =
-

-
L

N
M
M

O

Q
P
P

=
- -

- -

L

N

M
M
M

O

Q

P
P
P

-
-

1

1
4 3

3
3

2

1

2
1

1
4

3

Wb g Ans.

7.45 Find the h-parameters for the two-port network shown in the figure.

3 W
0.5V1

V21 WV1

4 W

3 I2

+

–

+

–

+
–

I1 I2

Solution To find h parameters, we consider two cases:

When I1 = 0 Here, no current will flow through the 3 W resistance.
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By KVL at the left mesh, we get,

V V I1 1 24 05 3= ´ +.b g
= +2 31 2V I

Þ V I1 23= -
Also, by KCL at Node (X), we get,

I
V

V V V2
2

1 2 11
05 05= + = +. .

= + ´ -V I2 205 3. b g
Þ 2.5I2 = V2

 \ h
I

V
I

22
2

2 01

1

2 5
0 4= = =

=
.

. J

\ V I
V

V1 2
2

23 3
2 5

12= - = - ´ F
HG

I
KJ
= -

.
.

\ h
V

V
I

12
1

2 01

12= = -
=

.

When V2 = 0 Here, the port 2 is short circuited. The 1W resistance becomes redundant. The

modified circuit is shown in Fig (b).

3 W
0.5V1

V1

4 W

3 I2

+

–

+
–

I1 I2

V2 = 0

(b)

\ I V2 105= .

= ´ + + +
= +
05 3 4 4 3

35 35
1 1 2 2

1 2

.

. .

I I I I

I I

Þ 2 5 352 1. .I I= -

\ h
I

I
V

21
2

1 02

35

2 5
14= = - = -

=

.

.
.

Also,

V I I I I I I I I

I
1 1 1 2 2 1 2 1 1

1

3 4 4 3 7 7 7 7 14

2 8

= + + + = + = + ´ -
= -

.

.

b g

\ h
V

I
V

11
1

1 02

2 8= = -
=

. W

3 W
0.5V1

V21 WV1

4 W

3 I2

+

–

+

–

+
–

I1 = 0 I2X
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Therefore, the h parameters of the network are given as,

h =
- -
-
L

N
M

O

Q
P

2 8 12

14 0 4

. .

. .
Ans.

MULTIPLE-CHOICE QUESTIONS

7.1 Which one of the following pairs is correctly matched?

(a) Symmetrical two-port network: AD � BC = 1

(b) Reciprocal two-port network: z11 = z22.

(c) Inverse hybrid parameters: A, B, C, D

(d) Hybrid parameters: (V1, I2) = f (I1, V2)

7.2 What is the condition for reciprocity in terms of h-parameters?

(a) h11 = h22 (b) h12h21 = h11h22 (c) h12 + h21 = 0 (d) h12 = h21

7.3 For a reciprocal network, the two-port ABCD parameters are related as follows

(a) AD � BC = 1 (b) AD � BC = 0 (c) AC � BD = 0 (d) AC � BD = 1

7.4 For a symmetrical two port network

(a) z11 = z22 (b) z12 = z21 (c) 2
11 22 12 0z z z- = (d) z11 = z22 and z12 = z21

7.5 For a two port network to be reciprocal, it is necessary that

(a) z11 = z22 and y12 = y21 (b) z11 = z22 and AD � BC = 0.

(c) h21 = �h12 and AD � BC = 0 (d) y12 = y21 and h21 = �h12

7.6 A two port network is symmetrical if

(a) 11 22 12 21 1z z z z- = (b) AD � BC = 1 (c) h11h22 � h12h21 = 1(d) y11y22 � y12y21 = 1

7.7 A two port network is reciprocal if and only if

(a) z11 = z22 (b) BC � AD = �1 (c) y12 = �y21 (d) h12 = h21

7.8 In terms of ABCD parameters, a two port network is symmetrical if and only if:

(a) A = B (b) B = C (c) C = D (d) D = A

7.9 The condition for reciprocity of a two port network having different parameters are:

1. h12 = �h21 2. g12 = �g21 3. A = D

Choose the correct combination.

(a) 1 and 2 (b) 1 and 3 (c) 2 and 3 (d) 1, 2 and 3.

7.10 Two two-port networks with transmission parameters A1, B1, C1, D1 and A2, B2, C2, D2 respectively

are cascaded. The transmission parameter matrix of the cascaded network will be

(a)
1 1 2 2

1 1 2 2

A B A B

C D C D

é ù é ù
+ê ú ê ú

ë û ë û
(b)

1 1 2 2

1 1 2 2

A B A B

C D C D

é ù é ù
ê ú ê ú
ë û ë û

(c)
1 2 1 2

1 2 1 2

A A B B

C C D D

é ù
ê ú
ë û

(d)
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( ) ( )

( ) ( )

A A C C A A B D

C A D C C C D D

+ -é ù
ê ú- +ë û

7.11 Consider the following statements.

For a bilateral network,

1. A = D 2. z12 = z21 3. h12 = �h21

Of these statements.

(a) 1, 2 and 3 are correct (b) 1 and 2 are correct

(c) 1 and 3 are correct (d) 2 and 3 are correct.
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7.12 In a two port network containing linear bilateral passive circuit elements, which one of the following

conditions for z parameters would hold?

(a) z11 = z22 (b) z12z21 = z11z22 (c) z11z12 = z22z21 (d) z12 = z21

7.13 The relation AD � BC = 1, where A, B, C and D are the elements of a transmission matrix of a network,

is valid for

(a) any type of network. (b) passive but not reciprocal network.

(c) passive and reciprocal network. (d) both active and passive network.

7.14 When a number of 2-port networks are connected in cascade, the individual:

(a) Zoc matrices are added. (b) Ysc matrices are added.

(c) chain matrices are multiplied. (d) H-matrices are multiplied.

7.15 The h parameters h11 and h22 are related to z and y parameters as

(a) h11 = z11 and 22
22

1
h

z
= (b) h11 = z11 and h22 = y22

(c) 11
22

z
h

z

D=  and 22
22

1
h

z
= (d) h11 = 

11

1

y
 and h22 = y22

7.16 Two two-port networks a and b having A B C D parameters as

Aa = 4 = Da Ab = 3 = Db Ba = 5, Ca = 3 and Bb = 4, Cb = 2

are connected in cascade in the order of a, b. The equivalent A parameters of the combination is

(a) 17 (b) 22 (c) 24 (d) 31.

7.17 With the usual notation, a two-port resistive network satisfies the condition 
3 4

2 3
A D B C= = =

The z11 of the network is

(a)
5

3
(b)

4

3
(c)

2

3
(d)

1

3

7.18 The reciprocal of a network function is

(a) an immittance function, if the original function is an immittance function.

(b) a transfer function, if the original function is a transfer function.

(c) never an immittance function.

(d) never a transfer function.

7.19 A two-port network is defined by the relations 1 1 2 2 1 22 , 2 3I V V I V V= + = + . Then z12 is

(a) �2 W (b) �1 W (c)
1

2
- W (d)

1

4
- W

7.20 Consider the following statements

1. Transfer impedance is the reciprocal of transfer admittance.

2. One can derive transfer impedance of a network if its driving-point impedance and admittance

are known.

3. Driving-point impedance is the ratio of the Laplace transform of voltage and current functions at

the input.

Of these statements:

(a) 1, 2 and 3 are correct (b) 1 and 2 are correct

(c) 2 and 3 are correct (d) 3 alone is correct.



7.60 Circuit Theory and Networks

7.21 Consider the following statements

1. The two-port network shown below does NOT have an impedance matrix representation.

2. The two-port network shown below does NOT have an admittance matrix representation.

3. A two-port network is said to be reciprocal if it satisfies z12 = z21 or an equivalent relationship.

Of these statements:

(a) 1 and 2 are correct (b) 1 and 3 are correct

(c) 1 and 3 are correct (d) None is correct.

7.22 If two two-port networks are connected in series, and if the port current requirement is satisfied,

which of the following is true?

(a) The z-parameter matrices add (b) The y-parameter matrices add.

(c) The ABCD-parameter matrices add. (d) None of these.

7.23 If two two-port networks are connected in parallel, and if the port current requirement is satisfied,

which of the following is true?

(a) The z-parameter matrices add (b) The y-parameter matrices add.

(c) The ABCD-parameter matrices add (d) None of these.

7.24 If two two-port networks are connected in cascade, and if the port current requirement is satisfied,

which of the following is true?

(a) The z-parameter matrices add (b) The y-parameter matrices add.

(c) The ABCD-parameter matrices add (d) None of these.

7.25 The z11 and z22 parameters of the given network are

(a) 8 W, 7.75 W
(b) 13 W, 9 W
(c) 12 W, 8.5 W
(d) None of the above.

7.26 For the network shown, the parameters h11 and h21 are

(a) 5 W and �2/3 W (b) 3.4 W and �2/5 W
(c) 3.4 W and �3/5 W (d) None of the above.

7.27 The maximum value of the transmission parameter A for a pas-

sive, reciprocal, linear two-port network is

(a) 1 (b) 2

(c) 3 (d) none of the above.
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7.28. The unique feature of ABCD parameters as compared to x, y and h parameters is

(a) none (b) short-circuit functions

(c) open-circuit functions (d) reverse transverse functions

7.29. The driving point impedance of the infinite ladder network shown in the given figure is

(given R1 = 2 W and R2 = 1.5 W)

(a) 3 W (b) 3.5 W (c)
3

3.5
W (d)

3
ln 1

3.5

æ ö+ Wç ÷è ø
7.30 A 2-port network is described by the relations:

V V I

I V I
1 2 2

1 2 2

2 05

2

= +
= +

.

What is the value of the h22 parameter of the network?

(a) 1 mho (b) 2 W (c) � 2 mho (d) 4W
7.31 What are the suitable values for Z1 and Z2, to make the input impedance, Zin, of the network equal to

R?

Z1

Z2

R

RZin

(a) R and R (b) 2R and R (c) 3R and 2R (d) 4R and 4R

7.32

V2V1

I1 I2

mbc 2V

rb re

re

rd

+
–

acb 2I

Which one of the following gives the h-parameter matrix for the network shown in the figure?

(a)

1

r r

r r
e d

bc

cb b e

+
+

L

N
M
M

O

Q
P
P

m

a
(b)

r r

r r

b e cb

bc
e d

+

+

L

N
M
M

O

Q
P
P

a

m
1

(c)

r r

r r

b e bc

cb
e d

+

+

L

N
M
M

O

Q
P
P

m

a
1 (d)

m abc cb

b e
e d

r r
r r

+
+

L

N
M
M

O

Q
P
P

1
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7.33 In a two-port network, the output short-circuit current was measured while the source voltage at the

input was 1 V; the value of the output current would provide the parameter

(a) B (b) y12 (c) h21 (d) y21

7.34 The y-parameter �y21� of the network shown in the figure

+–

4 W

V1

6 W

6 W V2
14I1

I2I1

+

–

+

–

(a) is 2 mho (b) is 6 mho (c) is 3 mho (d) does not exist

7.35 The phasor current through the inductance in the circuit shown is

(a)
10

2
45

F
HG

I
KJ

Ð - o (b)
10

2
45

F
HG

I
KJ

Ð o

(c) 5 45Ð o (d) 5 45Ð - o

7.36 For the two-port network, the parameter y21 will be

Y3

Y1 Y2

1

1¢

V1 g Vm 1

2

2¢

(a) Y Y2 3+ (b) g Ym - 3 (c) Y gm3 - (d) g Y Ym + +2 3

7.37 For the given two-port network, z21 will be

1 W 2 W V2V1

2 W 2 W
1

1

2

2

(a) 2/5 W (b) 3/5 W (c) 1/5 W (d) 4/5 W

7.38 The h-parameters for a two-port network are defined by 
E

I

h h

h h

I

E

1

2

11 12

21 22

1

2

L

N
M

O

Q
P =

L

N
M

O

Q
P
L

N
M

O

Q
P . For the two-port

network shown in the figure, the value of h12 is

given by

(a) 0.125 (b) 0.167

(c) 0.625 (d) 0.25

2 Wi t= 10cos 2

4 W E2E1

2 W 2 W

2 W

4 W I2I1
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7.39 The z matrix of a two-port network as given by 
09 02

02 06

. .

. .

L

N
M

O

Q
P . The element y22 of the corresponding y

matrix of the same network is given by

(a) 1.2 (b) 0.4 (c) �0.4 (d) 1.8

7.40 For the two-port network shown in the figure, the z-matrix is given by

(a)
Z Z Z

Z Z Z

1 1 2

1 2 2

+
+

L

N
M

O

Q
P (b)

Z Z

Z Z Z

1 1

1 2 2+
L

N
M

O

Q
P

(c)
Z Z

Z Z Z

1 2

2 1 2+
L

N
M

O

Q
P (d)

Z Z

Z Z Z

1 1

1 1 2+
L

N
M

O

Q
P

7.41 The parameters of the circuit shown in the figure are Ri = 1 M W, R0 = 10 W, A = 106 V/V. If Vi = 1 mV,

then output voltage, input impedance and output impedance respectively are

Ri R0

Vi AVi
+
–

+

–

(a) 1 V, ¥, 10 W (b) 1 V, 0, 10 W (c) 1 V, 0, ¥ (d) 10 V, ¥, 10 W
7.42 The parameter type and the matrix representation of the relevant two port parameters that describe

the circuit shown are
I1

V2

+

–

V1

+

–

I2

(a) z parameters, 
0 0

0 0

L

N
M

O

Q
P (b) h parameters, 

1 0

0 1

L

N
M

O

Q
P

(c) h parameters, 
0 0

0 0

L

N
M

O

Q
P (d) z parameters, 

1 0

0 1

L

N
M

O

Q
P

7.43 The impedance parameters z11 and z12 of the two-port network in the figure are

5 W

5 W 4 W

10 W

3 W

Z1

Z2

i2i1

v1 v2
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(a) z11 = 2.75 W and z12 = 0.25 W
(b) z11 = 3 W and z12 = 0.5 W
(c) z11 = 3 W and z12 = 0.25 W
(d) z11 = 2.25 W and z12 = 0.5 W

7.44 For the lattice circuit shown in the figure, Za = j2 W and Zb = 2 W. The values of the open circuit

impedance parameters z
z z

z z
=
L

N
M

O

Q
P

11 12

21 22

 are

1

2 4

3Zb

Zb

Za
Za

(a)
1 1

1 1

- +
+ +

L

N
M

O

Q
P

j j

j j
(b)

1 1

1 1

- +
- + -
L

N
M

O

Q
P

j j

j j

(c)
1 1

1 1

+ +
- -

L

N
M

O

Q
P

j j

j j
(d)

1 1

1 1

- - +
- - -
L

N
M

O

Q
P

j j

j j

7.45 The ABCD parameters of an ideal n : 1 transformer shown in the figure are 
n

X

0

0

L

N
M

O

Q
P . The value of X

will be

(a) n (b)
1

n

(c) n2 (d)
1
2n

7.46 The h-parameters of the circuit shown in the figure are

(a)
01 01

01 0 3

. .

. .-
L

N
M

O

Q
P (b)

10 1

1 0 05

-L

N
M

O

Q
P

.

(c)
30 20

20 20

L

N
M

O

Q
P (d)

10 1

1 0 05-
L

N
M

O

Q
P

.

7.47 In the two-port network shown in the figure below, z12 and z21 are, respectively,

bI1
r0re

I1 I2

V1 V2

I2I1

n : 1

20 WV1

10 W
I1 I2
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(a) re and br0 (b) 0 and �br0 (c) 0 and br0 (d) re and �br0

7.48 A two-port network is represented by ABCD parameters given by

V

I

A B

C D

V

I

1

1

2

2

L

N
M

O

Q
P =

L

N
M

O

Q
P -
L

N
M

O

Q
P

If port-2 is terminated by RL, then the input impedance seen at port-1 given by

(a)
A BR

C DR
L

L

+
+

(b)
AR C

BR D
L

L

+
+

(c)
DR A

BR C
L

L

+
+

(d)
B AR

D CR
L

L

+
+

EXERCISES

7.1 Current I1 and I2 entering at ports 1 and 2 respectively of a two-port network are given by the

following equations:

I1 = 0.5V1 � 0.2V2

I2 = �0.2V1 + V2

where V1 and V2 are the voltages at ports 1 and 2 respectively. Find the y, z and ABCD parameters

for the network. Also find its equivalent p-network.

[y11 = 0.5 J; y12 = �0.2 J; y21 = �0.2 J; y22 = 1 J;

z11 = 2.174 W; z12 = z21 = �0.435 W; z22 = 1.086 W;

A = 5, B = 5 W, C  = 2.3 J, D = 2.5; Y1 = 0.3 J; Y2 = 0.2 J; Y3 = 0.8 J]

7.2 Determine the z-and y-parameters of the networks shown in figure.

(a)

1

/120 110
120 160

( ; ( )3
160 80 /110

4

j j
j j

z y
j j j j

-
ì ü-é ù- -é ùï ïê ú= W) = Wí ýê ú ê ú- - -ë ûï ïë ûî þ

(b)
(30 40) 40

(
40 (30 80)

j j
z

j j

ì ü+é ùï ï= W)í ýê ú+ï ïë ûî þ

(c)

(1 25) 1

(1
1 1

5

z

ì ü+é ù
ï ïê ú= W)í ýæ öê ú+ç ÷ï ïè øê úë ûî þ
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7.3 Obtain the z-parameters for the circuit shown in figure and hence draw the z-parameter equivalent

circuit.

14 2

5 5
(

2 6

5 5

z

ì üé ù
ï ïê úï ï= W)í ýê ú
ï ïê ú
ï ïë ûî þ

7.4 Find the open-circuit and short-circuit impedances of the network shown in figure.

31 19

44 44
; -parameters do not exist

19 23

44 44

y z

é ùé ù-ê úê ú
=ê úê ú

ê úê ú-ê úë ûë û

7.5 Find the z-parameters for the 2-port networks shown in figure containing a controlled source.

2 1

( )1 3

2 2

z

ì ü- -é ùï ïê ú= Wí ýê úï ïë ûî þ

7.6 A 2-port network made up of passive linear resistors is fed at port 1 by an ideal voltage source of V

volt. It is loaded at port 2 by a resistor R.

(i) With V = 10 volt and R = 6 W currents at ports 1 and 2 were 1.44 A and 0.2 A respectively.

(ii) With V = 15 volt and R = 8 W current at port 2 was 0.25 A.

Determine the p-equivalent circuit of the 2-port network. {YA = 0.2;  YB = 0.3; YC = 0.5 (mho)}

7.7 Calculate the T-parameters for the block A and B separately and then using these results calculate

the T-parameters of the whole circuit shown in figure. Prove any formula used.

{ 3

2

1 5
; ;
2 2

7/2 15/2

3/2 7/2

a b a b

a b a b

A A D D

C C B B

T

= = = =

= = = =

üé ùï= ýê ú
ïë ûþ
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7.8 Find out the z-parameters of the two-port network shown in the figure.

6 2
( )

2 6
z

ì üé ùï ï= Wí ýê ú
ï ïë ûî þ

7.9 Find the z-parameters for the lattice network shown in the figure.

11 22 12 21

2

2

; ;
2 2

2( )1

2 2

b a b a

a b b

a b b a b

Z Z Z Z
z z z z

Z Z Z
z

Z Z Z Z Z

ì + -æ ö æ ö
= = = =í ç ÷ ç ÷è ø è øî

üé ù+ ï= ê úý+ ïë ûþ
7.10 Current I1 and I2 entering at port-1 and port-2 respectively of a two port network are given by the

following equations: I1=0.5V1-0.2V2, I2=-0.2V1+V2, where V1 and V2 are the voltages at port-1 and

port-2 respectively. Find the y, z and ABCD parameters for the network. Also find the equivalent p-

network.

1
0.5 0.2 2.174 0.435

( ); ( ),
0.2 1 0.435 1.087

5 5
; 0.3 , 0.8 , 0.2

2.3 2.5
a b c

y Z

T Y Y Y

-ì -é ù é ùï = W = Wí ê ú ê ú-ï ë û ë ûî
üWé ù ï= = = = ýê ú
ïë û þ

J J J
J

7.11 Two identical sections of the circuit shown in the figure are connected in series. Obtain the z-

parameters of the combination and verify by direct calculation. 11 22 12 21[ 6 ; 4 ]z z z z= = W = = W
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7.12 Test results for a two-port network are

(a) port 2 open-circuited, I V V V1 1 20 01 0 14 45 2 3 26 4= Ð = Ð = Ð -. , . , . .o o oA Vb g b g b g

(b) port 1 open-circuited, I V V V2 1 20 01 0 1 90 15 531= Ð = Ð - = Ð -. , , . .o o oA Vb g b g b g
The source frequency in both the tests was 1000 Hz. Find z-parameters.

140 45 100 90

230 26 4 150 531

Ð Ð -
Ð - Ð -

L

N
M

O

Q
P

L

N
M
M

O

Q
P
P

o o

o o. .
Wb g

7.13 Find the z-parameters for the network shown in the figure.

4 W

V29 WV1

+

–

+

–

I1 I2

9 W

6 W

10 3

3 6

L

N
M

O

Q
P

L

N
M

O

Q
PWb g

7.14 For the network shown in the figure, find the y-parameters and also the equivalent T-network.

8 W

1 W 4 W

2 W V2V1

+

–

+

–

62 112 30 112

30 112 38 112
8 13 32 13 30 13

/ /

/ /
, / , / , /

-
-
L

N
M

O

Q
P = = =

L

N
M

O

Q
PZ Z Za b cW W W

7.15 Find the h-parameters for the network shown in the figure.

8 W

V1 16 W 16 W

+

–

V2

+

–

8 W

I1 I2

h h h h11 12 21 22
32

3

1

3

1

3

1

12
= = = - =L

NM
O
QP

W; ; ; mho
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7.16 The h-parameters of a two-port network are

h h h h11 12
4

21 22
635 2 6 10 0 98 0 3 10= = ´ = - = ´- -W; . ; . ; . mho

The input terminals are connected to 0.001V sinusoidal source and a 104 ohm resistance is connected

across the output port. Find the output voltage. [0.26 V]

7.17 Find the y and z-parameters for the network shown in the figure.

1 W

V2V1

+

–

+

–

I1 I2

2 W

1 W

W
1
2

13 7 2 7

2 7 3 7

3 5 2 5

2 5 13 5

/ /

/ /
;

/ /

/ /

L
NM

O
QP

- -
-
L
NM

O
QP

L

N
M

O

Q
PWa f a fmho

7.18 Find the y-parameters for the network shown in the figure.

5 W

V2V1

I1 I2

20 W

+ –

0.4I2

0.2I2

0 2 0 24

0 333 0 4833

. .

. .

-
-
L
NM

O
QP

L

N
M

O

Q
PJ

7.19 Find the transmission parameters of the network shown in the figure.

5 W

V2V1

I1 I2

4 W

+ –

0.3 V1

+

–

+

–

V2
10

55

26

50

13
7

20
1

L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M

O

Q

P
P
P

7.20 Determine the T-parameters for the network shown in the figure using the concept of interconnection

of two two-port networks.

1 H 1 H 1 H

1 F1 F

1 2

1¢ 2¢

1 3 3 4

2 1 3

2 4 3 5

3 2 4

+ + + +
+ + +

L

N
M

O

Q
P

s s s s s

s s s s
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7.21 Determine the y parameters of the overall network, considering two networks connected in parallel.

1 W

1 W 1 W

1 W V2V1

+

–

+

–

y y y y11 22 12 21
5

3

4

3
= = = = -L

NM
O
QP

J J;

7.22 The z-parameters of a two-port network are

z z z z11 22 12 2150 30 20= = = =W W W; ;

Calculate the y-parameters and ABCD parameters of the network.

y y y y

A B C D
11 22 12 210 0273 0 0454 0 01818

2 5 55 0 05 15

= = = = -
= = = =

L
NM

O
QP

. ; . ; . ;

. ; ; . ; .

mho mho mho

mhoW

7.23 For the symmetrical two-port network, calculate the z-parameters and ABCD parameters.

40 W

V2V1

+

–

+

–

40 W

20 W

1

1¢

2

2¢

I1 I2

z z z z A D B C11 22 12 2160 20 3 160 0 05= = = = = = = =W W W; ; ; ; . ;mho

SHORT-ANSWER TYPE QUESTIONS

7.1 (a) Consider a linear passive two-port network and explain what are meant by (i) open-circuit imped-

ance parameters and (ii) short-circuit admittance parameters.

(b) What are the open-circuit impedance parameters of a two-port network? How can the transmis-

sion parameters be obtained from open-circuit impedance parameters?

(c) Establish, for two-port networks, the relationship between the transmission parameters and the

open-circuit parameters.

(d) Define z- and y-parameters of a typical four terminal network. Determine the relationship be-

tween the z and y parameters.

(e) Express h-parameters in terms of z-parameters for a two-port network.

(f) Derive expressions for the y-parameters in terms of ABCD parameters of a two-port network.

7.2 (a) What do you understand by a reciprocal network? What is a symmetrical network?

(b) Write technical note on derivation of short-circuit admittance parameter y12 of a symmetrical and

reciprocal two-port lattice network.
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(c) How will you find the p-equivalent of a given network when its y-parameters are known?

7.3 (a) Explain what are meant by the transmission (ABCD) parameters of a two-port network. Derive

the conditions necessary to be satisfied for the network to be (i) reciprocal and (ii) symmetrical.

Or,

Prove that for a reciprocal two-port network,

DT = (AD � BC) = 1

(b) Prove that for a symmetrical two-port network,

Dh = (h11h22 � h12h21) = 1

7.4 (a) Two two-port networks are connected in parallel. Prove that the overall y-parameters are the sum

of corresponding individual y-parameters.

(b) Two two-port networks are connected in cascade. Prove that the overall transmission parameter

matrix is the product of individual transmission parameter matrices.

(c) Two two-port networks are connected in series. Prove that the overall z-parameters are the sum

of corresponding individual z-parameters.

7.5 What are transmission parameters? Where are they most effectively used? Establish, for two-port

networks, the relationship between the transmission parameters and the open circuit impedance

parameters.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

7.1 (d) 7.2 (c) 7.3 (a) 7.4 (a) 7.5 (d) 7.6 (c) 7.7 (b)

7.8 (d) 7.9 (a) 7.10 (b) 7.11 (d) 7.12 (d) 7.13 (c) 7.14 (c)

7.15 (c) 7.16 (b) 7.17 (b) 7.18 (a) 7.19 (d) 7.20 (d) 7.21 (b)

7.22 (a) 7.23 (b) 7.24 (d) 7.25 (a) 7.26 (b) 7.27 (d) 7.28 (d)

7.29 (a) 7.30 (c) 7.31 (a) 7.32 (c) 7.33 (d) 7.34 (d) 7.35 (a)

7.36 (b) 7.37 (a) 7.38 (d) 7.39 (d) 7.40 (d) 7.41 (a) 7.42 (c)

7.43 (a) 7.44 (d) 7.45 (b) 7.46 (d) 7.47 (b) 7.48 (d)





CHAPTER

8
Fourier Series and
Fourier Transform

PART I: FOURIER SERIES

8.1 INTRODUCTION

In 1807, the French mathematician Joseph Fourier (1768�1830) submitted a paper to the Academy of

Sciences in Paris. In it he presented a mathematical description of problems involving heat conduc-

tion. Although the paper was at first rejected, it contained ideas that would develop into an important

area of mathematics named in honour, Fourier analysis. One surprising ramification of Fourier�s

work was that many familiar functions can be expanded in infinite series and integrals involving

trigonometric functions. The idea today is important in modeling many phenomena in physics and

engineering.

In this chapter, in the first part, we will discuss the basic concepts of Fourier series. Then we will

apply this concept to find the steady-state response of an electric circuit subject to a periodic

excitation. A function of time f (t) is said to be periodic if f t f t nT( ) ( )= ± ; where, n is a positive

integer and �T � is the period. Thus, a periodic function repeats itself every T second.

–2T –T 0 T 2T 3T 4T

V

v t( )

t

(a) (b)

Figure 8.1 Periodic functions
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In the second part of this chapter, we will learn about another transform method, namely Fourier

transform, which is used to find the steady-state response of a network to aperiodic excitation.

8.2 DEFINITION OF FOURIER SERIES

French mathematician J.B.J. Fourier first studied the periodic function in 1822 and published his

theorem which states that,

�Any arbitrary periodic function can be represented by an infinite series of sinusoids of harmoni-

cally related frequencies.� This infinite series is known as Fourier series.

Thus, if f (t) is a periodic function, then the Fourier series is,

f (t) = 0 1 2cos cos 2 cosna a t a t a n tw w w+ + +¼+ +¼

1 2sin sin 2 sinnb t b t b n tw w w+ + +¼+ +¼

= 0
1

( cos sin )n n
n

a a n t b n tw w
¥

=

+ +å

where, w is the fundamental frequency = 
2

T

p

nw is the nth harmonic of fundamental frequency

a0, an, bn are the Fourier Co-efficients

8.3 DIRICHLET�S CONDITIONS

The conditions, under which a periodic function f (t) can be expanded in a convergent Fourier series,

are known as Dirichlet�s conditions.

These are as follows:

(i) f (t) is a single valued function.

(ii) f (t) has a finite number of discontinuities in each period, T.

(iii) f (t) has a finite number of maxima and minima in each period, T.

(iv) The integral, 
0

| ( )|
T

f t dtò  exists and is finite or in other way, 2

0

[ ( )]
T

f t dt < ¥ò .

Note: If f (t) is current or voltage, 2

0

[ ( )]
T

f t dtò  represents energy which would be supplied by the

source in one cycle. That means the energy in the waveform for each cycle must be finite. All

physical waveforms would, of course, satisfy this criterion.

Therefore, in practical engineering problems, it is not necessary to check whether a function

satisfies Dirichlet condition.

8.4 FOURIER ANALYSIS

This involves two operations:

1. The evaluation of the co-efficient a0, an and bn.
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2. Truncation of the infinite series after a finite number of terms so that f (t) is represented within

allowable error (-Done later).

8.4.1 Evaluation of Fourier Coefficients

f (t) = 0
1

( cos sin )n n
n

a a n t b n tw w
¥

=
+ +å (8.1)

From (8.1),

0 0
10 0 0

( ) ( cos sin )
T T T

n n
n

f t dt a dt a n t b n t dt a Tw w
¥

=
= + + =åò ò ò

0 0

0 0

sin 0 for all ; and cos 0 for all ;
t T t T

t t

m tdt m n tdt nw w
+ +ì üï ï= =í ý

ï ïî þ
ò òQ

0 0

1
( )

T
a f t dt

T
\ = ò

This shows hat a0 is the average value of f(t) over a period; therefore, called dc value of the signal.

Now from equation (8.1),

0
10 0 0

( ) cos cos ( cos cos cos sin )
T T T

n n
n

f t k tdt a k tdt a k t n t b k t n t dtw w w w w w
¥

=
= + +åò ò ò

= 0 0
2k
T

a+ +

0 0

0 0

sin sin 0 for and cos cos 0 for
t T t T

t t

n t m tdt m n n t m tdt n mw w w w
+ +ìï = ¹ = ¹í

ïî
ò òQ

for
2

T
n m= = }for

2

T
n m= =

\
0

2
( ) cos

T

ka f t k tdt
T

w= ò

Again from equation (8.1),

0

( )sin
T

f t k tdtwò = 0
10 0

sin ( sin cos sin sin )
T T

n n
n

a k tdt a k t n t b k t n t dtw w w w w
¥

=
+ +åò ò

= 0 0
2k
T

b+ +

\ bk = 
0

2
( ) sin

T

f t k tdt
T

wò
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Example 8.1  For the periodic waveform shown in the figure, find the Fourier series expansion.

Figure 8.2 Periodic waveform of Example (8.1)

Solution Here, v(t) = V, for 0 < t < T/2

= 0, for T/2 < t < T

a0 = 
/2

0 0

1 1
( )

2

TT
V

v t dt Vdt
T T

= =ò ò

an = 
/2

0 0

2 2 2
( ) cos cos 0

TT

v t n tdt V n dt
T T T

p
w æ ö= =è øò ò

and, bn = 
0

2
( ) sin

T

v t n tdt
T

wò = 
/2

0

2 2
sin

T

V n dt
T T

pæ ö
è øò

= (1 cos ); 1, 2, 3,
V

n n
n

p
p

- = ± ± ± ¼

= 0; for even n

= 
V

np
; for odd n

So, the Fourier series of the square wave is given as,

v(t) = 
1 2 2 2

sin sin 3 sin 5
2 3 5

V t t tw w w
p p p

é ù+ + + +¼ê úë û

Exponential Form of Fourier Series We have the trigonometric Fourier series,

f(t) = 0
1

( cos sin )n n
n

a a n t b n tw w
¥

=
+ +å

We know that, sin
2

jn t jn te e
n t

j

w w

w
--

=  and cos
2

jn t jn te e
n t

w w

w
-+

=

Thus,

f (t) = 0
1

( ) ( )

2 2

jn t jn t jn t jn t

n n
n

e e e e
a a b

j

w w w w- -¥

=

é ù+ -
+ +ê ú

ë û
å

= 0
1

1

2
jn t jn tn n

n n
n

b b
a a e a e

j j
w w

¥
-

=

é ùæ ö æ ö+ + + -ç ÷ ç ÷ê úè ø è øë û
å

= 0
1 2 2

jn t jn tn n n n

n

a jb a jb
a e ew w

¥
-

=

é ù- +æ ö æ ö+ +ç ÷ ç ÷ê úè ø è øë û
å
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Let, C0 = a0, Cn = *and (or )
2 2

n n n n
n n

a jb a jb
C C-

- +æ ö æ ö=ç ÷ ç ÷è ø è ø

Thus the series becomes,

f(t) = 0
1

[ ]jn t jn t
n n

n

C C e C ew w
¥

-
-

=
+ +å

or 0( ) jn t
n

n

f t C C e w
¥

=-¥
= + å  This is the exponential form of the Fourier series.

Now, Cn = 
0 0

1 2 2
( ) cos ( ) sin

2 2

T T
n na jb

f t n tdt j f t n tdt
T T

w w
é ù-

= -ê ú
ë û

ò ò

= 
0

1
( ) (cos sin )

T

f t n t j n t dt
T

w w-ò

Thus, 
0

1
( )

T
jn t

nC f t e dt
T

w-= ò  This equation is valid for both positive, negative and zero values of n.

Example 8.2  For the square wave shown in Example 8.1, find the exponential Fourier series.

Solution f (t) = v(t) = V, for 0 < t < T/2

= 0, for T/2 < t < T

So, Cn = 
/2

0 0

1 1
( )

TT
jn t jn tf t e dt Ve dt

T T
w w- -=ò ò

For n = 0, C0 = 
/2

0

1

2

T
V

Vdt
T

=ò

For n ¹ 0 Cn =  
/2

/2

0

1 1
[ 1] [ 1]

2

T
jn t jn T jnjVV

Ve dt e e
T T jn n

w w p

w p
- - -= - = -

-ò

(since wT = 2p)

or Cn = 0 for even n

= 
jV

np
-  for odd n

Thus, the exponential Fourier series becomes,

v(t) = 5 3...
5 3 2

j t j t j t j tjV jV jV jVV
e e e ew w w w

p p p p
-+ + + + -

3 5 ... for odd
3 5

j t j tjV jV
e e nw w

p p
- -- - -
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Amplitude and Phase Spectrum From the trigonometric Fourier series,

f (t) = 0
1

( cos sin )n n
n

a a n t b n tw w
¥

=
+ +å

= 0
1

cos ( )n n
n

A A n tw f
¥

=
+ -å

where, A0 = a0, An = 2 2 1; tan n
n n n

n

b
a b

a
f - æ ö+ = ç ÷è ø

Also, for exponential form, Cn is complex and we may write it as,

Cn = | | nj
nC e f  and |Cn| = 2 21

2 2
n

n n

A
a b+ =  and fn = 1tan n

n

b

a
- æ ö

ç ÷è ø
The quantities An and fn are called the amplitude and the phase of the nth harmonic, respectively.

l Variation of An with n (or nw) is known as the amplitude spectrum or Frequency � spectrum.

l Variation of fn with n (or nw) is known as the phase- spectrum of the signal.

As both An and fn occurs at discrete values of the frequency, i.e., n = 1, 2, 3, etc. these spectra are

called Line spectra.

Since |Cn | = 
2
nA ; there is a scale factor of ½ for the amplitude spectrum for exponential form for

the Fourier series compared to the trigonometric form for all lines except the one for n = 0. Also, in

the case of exponential form spectral lines are drawn for both for positive and negative values of n.

Example 8.3  For the square wave shown in Example 8.1, draw the amplitude and phase spectra.

Solution From the results of Example 8.1, we have,

v(t) = 
1 2 2 2

sin sin 3 sin 5
2 3 5

V t t tw w w
p p p

é ù+ + + +¼ê úë û

Magnitudes: V0 = 
2

V Ð0°; V1 = 
2

90
V

p
Ð ° ; V2 = 0; V3 = 

2
90

3

V

p
Ð °  [since the cosine

components are all zero, the phase angle will be 1 1tan tan ( ) 90
0
nb- -æ ö = ¥ = °ç ÷è ø

]

So, the line spectra become,

(a) Amplitude Spectrum (b) Phase Spectrum

Figure 8.3 Amplitude and phase spectra of Example 8.3
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Significance for Line Spectra: The amplitude- spectrum renders valuable information as to where to

truncate the infinite series and yet maintain a good approximation to the original waveform.

Effective Value of a Periodic Function The effective (or R.M.S.) value of a periodic

function f (t) is defined as,

Feff (Frms) = 

2

2
0

10 0

1 1
[ ( )] cos ( )

T T

n n
n

f t dt A A n t dt
T T

w f
¥

=

é ù
= + -ê ú

ë û
åò ò

= 2 2
0

1

1

2n
n

T
A T A

T

¥

=

é ù
+ê ú

ê úë û
å

2

2
0

1

( )
2

n
eff rms

n

A
F F A

¥

=

æ ö
= + ç ÷è ø

å

This shows that the effective value of a periodic function is the square root of the effective values of

the harmonic components and the square of the d. c. value.

Waveform Symmetry There are few methods by which the evaluation of Fourier co-efficients

is simplified by symmetry consideration.

These methods reduce the amount of labour involved in finding out the co-efficients.

Now, a0 = 
/20

0 /2 0

1 1
( ) ( ) ( )

TT

T

f t dt f t dt f t dt
T T -

é ù
= +ê ú

ê úë û
ò ò ò

Putting t = �x in the first integrand and t = x in the second integrand, we get

/2

0
0

1
[ ( ) ( )]

T

a f x f x dx
T

é ù
= + -ê ú

ë û
ò

 Now, an = 
/2 0

0 0 /2

2 2
( ) cos ( ) cos ( ) cos

TT

T

f t n tdt f t n tdt f t n tdt
T T

w w w
-

é ù
= +ê ú

ê úë û
ò ò ò

= 1 2
2

[ ]I I
T

+

Since the variable t in I1 and I2 integrals is dummy variable, let x = t in I1 and x = � t in I2.

\ an = 
/2 /2

0 0

2
( ) cos ( ) cos ( )

T T

f x n xdx f x n x dx
T

w w
é ù

- - -ê ú
ë û
ò ò

Thus,
/2

0

2
[ ( ) ( )]cos

T

na f x f x n xdx
T

w= + -ò
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Similarly,
/2

0

2
[ ( ) ( )] sin

T

nb f x f x n xdx
T

w= - -ò

Following symmetries are considered:

1. Odd or Rotation Symmetry,

2. Even or Mirror Symmetry,

3. Half-Wave or, Alternation Symmetry, and

4. Quarter-Wave Symmetry.

1. Odd Symmetry

A function f (x) is said to be odd if,

f (x) = � f (�x)

Figure 8.4 Odd function

Hence, for odd functions a0 = 0 and an = 0 and 
/2

0

1
( ) sin

T

nb f x n x dx
T

w= ò

Thus, the Fourier series expansion of an odd function contains only the sine terms, the constant and

the cosine terms being zero.

2. Even Symmetry

A function f (x) is said to be even, if

f (x) = f (�x)

\ a0 = 
/2

0

2
( )

T

f x dx
T ò

\ an = 
/2

0

4
( ) cos

T

f x n xdx
T

wò

and bn = 0

Thus, the Fourier series expansion of an even periodic function contains only the cosine terms plus a

constant, all sine terms being zero.

3. Half �Wave or Alternation Symmetry

A periodic function f (t) is said to have half wave symmetry if it satisfies the condition,

f (t) = � f (t ± T/2), where T � time period of the function

Figure 8.5 Even function
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\ a0 = 
/20

1 2
/2 0

1 1
( ) ( ) [ ]

T

T

f t dt f t dt I I
T T-

é ù
+ = +ê ú

ê úë û
ò ò

For I1, let x = (t + T/2); so, f (t) = f (x � T/2) = � f (x) and dt = dx

\ I1 = 
/2 /20

/2 0 0

( ) ( ) ( )
T T

T

f t dt f x dx f x dx
-

= - = -ò ò ò

\ a0 = 
/2 /2 /2 /2

0 0 0 0

1 1
( ) ( ) ( ) ( ) 0

T T T T

f x dx f t dt f x dx f x dx
T T

é ù é ù
- + = = - =ê ú ê ú

ë û ë û
ò ò ò ò

\ an = 
/2 /20

1 2
/2 /2 0

2 2 2
( ) cos ( )cos ( ) cos [ ]

T T

T T

f t n tdt f t n tdt f t n tdt I I
T T T

w w w
- -

é ù é ù
= + = +ê ú ê ú

ê ú ê úë û ë û
ò ò ò

Again putting x = (t + T/2) and following the same procedure,

I1 = 
/2 /20

/2 0 0

( ) cos ( ) cos ( /2) ( )cos( )
T T

T

f t n tdt f x n x T dx f x n x n dxw w w p
-

= - - = - -ò ò ò

= 
/2 /2

0 0

( )cos cos ( )cos cos
T T

f x n n xdx f t n n tdtp w p w- = -ò ò

an = 
/2

0

2
(1 cos ) ( ) cos

T

n f t n tdt
T

p w- ò

= 0; for even n, and

= 
/2

0

4
( ) cos

T

f t n tdt
T

wò , for odd n.

Similarly, bn = 0, for even n; and

= 
/2

0

4
( )sin

T

f t n tdt
T

wò , for odd n.

Thus, the Fourier series expansion of a periodic function having half-wave symmetry contains only

odd harmonics, the constant term being zero.

4. Quarter�Wave Symmetry

The symmetry may be regarded as a combination of first three kinds of symmetry provided that the

origin is properly chosen.

/2 0

0 /2

x T

t T-
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For Figure 8.6(a), the wave has alternation and odd symmetry; thus the Fourier series consists of

odd sine terms only.

\ a0 = 0, an = 0 and bn = 
/4

0

8
( ) sin

T

f t n t dt
T

wò , n being odd only.

For Figure 8.6(b), the origin, having chosen one quarter cycle away, as in Figure 8.6(a), the wave

has alternation and even symmetry; thus the Fourier series consists of odd cosine terms only.

\ a0 = 0; bn = 0; and an = 
/4

0

8
( ) cos

T

f t n tdt
T

wò , n being odd only.

Note:

(i) The sum or product of two or more even functions is an even function, and with the addition

of a constant, the even nature of the function is still preserved.

(ii) The sum of two or more odd functions is an odd function, but the addition of a constant

removes the odd nature of the function. The product of two odd functions is an even

function.

8.4.2 Truncating Fourier Series

When a periodic function is represented by a Fourier series, the series is truncated after a finite

number of terms.

So, the periodic function is approximated by a trigonometric series of (2N + 1) terms as,

SN (t) = 0
1

( cos sin )
N

n n
n

a a n t b n tw w
=

+ +å (8.2)

such that the co-efficients a0, an and bn are chosen to give the least mean square error.

The truncation error is,

eN (t) = f (t) � SN (t) (8.3)

So, the mean square error/figure of merit/the cost criterion for optimal minimal error is,

EN = 2 2

0

1
( ) [ ( )]

T

N Ne t e t dt
T

= ò (8.4)

where, EN is a function of a0 , an and bn, but not of t.

Example 8.4  Show that the mean square error is a minimum if the co- efficients in the approxi-

mated trigonometric series SN (t) are the Fourier co- efficients.

Figure 8.6(b) Cos w t: combination of half-wave

and even symmetry

Figure 8.6(a) Sin w t: combination of half-wave

and odd symmtery
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Solution In order to make �EN� minimum, the necessary conditions are,

N

n

E

a

¶
¶

= 0, for n = 0, 1, 2, � (8.5a)

and N

n

E

b

¶
¶

= 0, for n = 0, 1, 2, � (8.5b)

These two equations give (2N + 1) equations from which (N + 1) number of an for

n = 1, 2, �, N and N number of bn for n = 1, 2, �, N can be determined.

From Equations 8.4 and 8.5

0 0

( )2 2
( ) [ ( ) ( )] cos 0

T T
N N

N N
n n

E e t
e t dt f t S t n tdt

a T a T
w

¶ ¶
= = - =

¶ ¶ò ò

or
0

( ) cos
T

f t n tdtwò = 
0

( )cos
T

NS t n tdtwò

= 0
10

( cos sin ) cos
T N

n n
n

a a n t b n t n tdtw w w
=

é ù
+ +ê ú

ê úë û
åò

= 2

0

cos
T

na n tdtwò  = 
2n
T

a

or an = 
0

2
( ) cos

T

f t n tdt
T

wò  (n = 0, 1, 2, �, N )

Similarly, from equation 8.5(b), we get,

\ bn = 
0

2
( ) sin

T

f t n tdt
T

wò  (n = 0, 1, 2, �, N )

Therefore, it is proved that a Fourier series with a finite number of terms represents the best

approximation for a given periodic function by any trigonometric series with the same number of

terms.

However, there is no analytical method for the evaluation of estimation of error due to truncation

of infinite series; i.e., we can not predict the number of minimum terms to be retained in the series

within a prescribed accuracy. The minimisation of error is done by trial and error method, using

more terms until specifications are met.

Example 8.5  If f (t) is approximated by 
2

8
sin tw

p
, i.e., the first term in the Fourier Series, find

the mean square error.

Figure 8.7 Waveform of Example 8.5
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Solution Truncation Error, 
2

8
( ) sinNe f t tw

p
= -

Mean Square Error, EN = eN
2 = 

2/4
2

2
0 0

1 4 8
( ) ( ) sin

TT

Ne t dt f t t dt
T T

w
p

é ù= -ê úë û
ò ò

(from symmetry consideration)

= 

2/4

2
0

4 4 8
sin

T
t

t dt
T T

w
p

é ù-ê úë û
ò

= 0.0047

8.5 STEADY- STATE RESPONSE OF NETWORK TO PERIODIC SIGNALS

The voltage (periodic) is,

v(t) = 0
1

cos ( )n n
n

A A n tw f
¥

=
+ -å

We want to find out the steady state current, i(t). Phasors corresponding to terms in right hand side

are,

V0 = 0
0 and njj

n nA e A e f-=V

Let, Z (jw) = Impedance phasor of the network at any frequency w.

So, the current phasors are,

I0 = 
0

00 0
0| |

( 0) ( 0)

j
jA e

I e
j Z j

= =
V

Z

In = 0 | |
( ) ( )

n

n

j
jn

n

A e
I e

j Z j

f
a

w w

-
-= =

V

Z

By superposition principle, the net current phasor is,

i(t) = I0 + I1 + I2 + �

So, transforming from frequency domain to time domain,

i(t) = 0
1

| |cos ( )n n
n

I I n tw a
¥

=
+ -å

8.5.1 Average Power Calculation

v(t) = 0
1

cos ( )n n
n

V V n tw f
¥

=
+ -å

i(t) = 0
1

cos ( )n n
n

I I n tw a
¥

=
+ -å

Here, V0 = DC voltage component

Vn = the amplitude of the nth harmonic voltage

 fn = the phase angle of the nth harmonic voltage
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 I0 = DC current component

 In = the amplitude of the nth harmonic current

 an = the phase angle of the nth harmonic current

Instantaneous power,

P(t) = v(t) i(t)

Average power,

Pav = 0 0
1 10 0

1 1
( ) ( ) cos ( ) cos ( )

T T

n n n n
n n

v t i t V V n t I I n t dt
T T

w f w a
¥ ¥

= =

é ùæ ö æ ö
= + - + -ê úç ÷ ç ÷è ø è øê úë û

å åò ò

or Pav = 0 0
1 0

cos ( ) cos ( )
T

n n n n
n

V I V I n t n t dtw f w a
¥

=
+ - -å ò

or Pav = 0 0
1

cos ( )
2
n n

n n
n

V I
V I f a

¥

=
+ -å

8.5.2 Steady State Current in Series Circuits

It is known that when a sinusoidal voltage is applied to a single phase series circuit, the resulting

current will also be a sinusoidal. But if an alternating voltage containing various harmonics is applied

to such a circuit, each harmonic voltage will produce a component current independent of the others

and the resulting current will be the phasor sum of all the harmonic currents. The wave-shape of the

current may altogether be different from the wave-shape of the applied voltage.

We consider the following four series circuits:

1. Purely Resistive Circuit We consider a voltage as given below be applied to a pure resistor R.

v V t V t V tm m m= + + +1 2 32 3sin sin sin ...w w w

Since the impedance offered by different harmonics is constant and equal to R, the resulting

current will be as given.

i
v

R

V

R
t

V

R
t

V

R
tm m m= = + + +1 2 32 3sin sin sin ...w w w

Therefore, the waveform of the current and voltage will be the same and the percentage harmonics

in the current wave is the same as that in the voltage wave.

2. Purely Inductive Circuit We consider a voltage as given below be applied to a pure inductor L.

v V t V t V tm m m= + + +1 2 32 3sin sin sin ...w w w

The inductance reactances for different harmonics are as given.

X L

L

L

L =
=
=

w
w
w

;

;

;

for fundamental

for second harmonic

for third harmonic,and soon.

2

3

Hence, the current waveform is obtained by the principle of superposition considering the different

harmonic components.
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\ i
V

L
t

V

L
t

V

L
tm m m= - + - + - +1 0 2 0 3 090

2
2 90

3
3 90

w
w

w
w

w
wsin sin sin ...d i d i d i

From v and i, it is seen that the percentage harmonics in the current wave is less than that in the

voltage wave. For nth harmonic, the percentage harmonic in the current wave is 
1

n
-times than in the

voltage wave.

Respective RMS values of the voltage and current are given as,

V V V V

I
V

L
C

V

L

V

L
V

V V

RMS m m m

RMS
m m m

m
m m

= + + +

= F
HG

I
KJ + F

HG
I
KJ + F

HG
I
KJ + = + + +

1

2

1

2 2 3

1

2 4 9

1
2

2
2

3
2

1

2

2

2

3

2

1
2 2

2
3

2

...

... ...
w

w
w w

From the above discussion, we conclude that, when a complex voltage wave is applied to a pure

inductor, the current wave has lesser harmonics than the applied voltage wave and thus, the current

waveform will be smoother than the voltage wave.

3. Purely Capacitive Circuit We consider a voltage as given below be applied to a pure

capacitor C.

v V t V t V tm m m= + + +1 2 32 3sin sin sin ...w w w

The capacitance reactances for different harmonics are as given.

X
C

C

C

C =

=

=

1

1

2
1

3

w

w

w

;

;

;

for fundamental

for second harmonic

for third harmonic,and soon.

Hence, the current waveform is obtained by the principle of superposition considering the different

harmonic components.

\ i V C t V C t V C tm m m= + + + + + +1
0

2
0

3
090 2 2 90 3 3 90w w w w w wb g d i b g d i b g d isin sin sin ....

From v and i, it is seen that the percentage harmonics in the current wave is more than that in the

voltage wave. For nth harmonic, the percentage harmonic in the current wave is n times than in the

voltage wave.

Respective RMS values of the voltage and current are given as,

V V V V

I V C V C V C V V V

RMS m m m

RMS m m m m m m

= + + +

= + + + = + + +

1

2
1

2
2 3

1

2
4 9

1
2

2
2

3
2

1

2

2

2

3

2

1
2

2
2

3
2

...

... ...w w wb g b g b g

From the above discussion, we conclude that, when a complex voltage wave is applied to a pure

capacitor, the current wave has more harmonics than the applied voltage wave and thus, the current
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waveform will be more distorted than the voltage wave.

4. General RLC Series Circuit We consider a voltage as given below be applied to a general

RLC series circuit.

v V t V t V tm m m= + + +1 2 32 3sin sin sin ...w w w

The impedance for different harmonics are as given.

Z R L
C

Z R L
C

Z R L
C

1
2

2

2
2

2

3
2

2

1

2
1

2

3
1

3

= + -F
H

I
K

= + -F
H

I
K

= + -F
H

I
K

w
w

w
w

w
w

;

;

;

for fundamental

for second harmonic

for third harmonic, and so on.

Hence, the current waveform is obtained by the principle of superposition considering the different

harmonic components.

\ i
V

Z
t

V

Z
t

V

Z
tm m m= - + - + - +1

1
1

2

2
2

3

3
32 3sin sin sin ....w f w f w fb g b g b g

where, f w
wn R

n L
n C

= -F
H

I
K

L
NM

O
QP

-tan 1 1 1
.

8.5.3 Steps for Application of Fourier Series to Circuit Analysis

1. Fourier series of the given periodic excitation function is obtained.

2. The circuit elements are transformed from time domain to frequency domain (i.e., R ® R, L

® jwnL, C ® 
1

j nCw
 for nth harmonic).

3. The Fourier series of the DC and AC components of the response are calculated.

4. Using Superposition, the Fourier series of the response is obtained by summing up the

individual DC and AC response components.

8.5.4 Power Spectrum

It is the distribution of the average power over the different frequency components.

Let, Pn be the average power for the nth harmonic component.

Note: Pn is always positive so that only a magnitude spectrum is possible.

Another form of line spectrum for power is also possible [Fig. 8.8(b)]; obtained by assuming half of

Pn to the positive frequency nw and half to the negative frequency.
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Figure 8.8(a) Power Spectrum for positive w Figure 8.8(b) Power Spectrum for both positive

and negative w

PART II: FOURIER TRANSFORM

8.6 INTRODUCTION

The Fourier series representation of a period function describes the function in the frequency domain

in terms of amplitude and phase spectra. The Fourier transform extends this frequency domain

description to functions that are not periodic.

Fourier transform is a powerful tool in the study of power spectra, correlation functions, noise

and other advanced problems.

8.7 DEFINITION OF FOURIER TRANSFORM

The Fourier Transform or the Fourier integral of a function f (t) is denoted by F ( jw) and is defined

by,

F ( jw) = F [ f (t)] = ( ) j tf t e dtw
¥

-

-¥
ò (8.6)

and the inverse Fourier transform is defined by,

f (t) = F  �1[F ( jw)] = 21
( ) ( 2 )

2
j t j fF j e d F j f e dfw pw w p

p

¥ ¥

-¥ -¥
=ò ò (8.7)

Equations 8.6 and 8.7 form the Fourier transform pair.

Explanation Consider the exponential Fourier Series,

f (t) = jn t
nC e w

¥

-¥
å (8.8)
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where, Cn = 
/2

/2

1
( )

T
jn t

T

f t e dt
T

w-

-
ò (8.9)

If the period T becomes infinite, the function does not repeat itself and becomes aperiodic or non-

periodic.

So, the interval between adjacent harmonic frequencies is,

Dw = (n + 1) � nw = w = 
2

T

p

or
1

T
= 

2 2T

w w

p
D= (8.10)

As T ® ¥, Dw ® dw and the frequency goes from a discrete variable over to a continuous variable.

1

2

d

T

w

p
® and nw ® w (8.11)

From 8.7 and 8.11,

( ) j t
nC T f t e dtw

¥
-

-¥
® ò . This is the Fourier Transform of f (t) i.e., F ( jw).

( ) [ ( )] ( ) j tF j F f t f t e dtww
¥

-

-¥
= = ò

So, from equation (8.8),

 f (t) = 
1

( ) jn t
nC T e

T
w

¥

-¥

æ ö
è øå (8.12)

As T ® ¥, CnT ® F ( jw), nw ® w and 
1

2

d

T

w

p
®  and ®å ò  (summation approaches integration).

Thus, from (8.12),

1
( ) ( )

2
j tf t f j e dww w

p

¥

-¥
= ò

Spectra Let, F( jw) = |F( jw) |e jf (w)

The variation of |F( jw) | with w is referred to as the amplitude spectrum.

The variation of f (w) with w is referred to as the phase�spectrum.

Since F( jw) is a continuous function, the corresponding amplitude and phase spectra are continuous

spectra.

8.8 CONVERGENCE OF FOURIER TRANSFORM

When f (t) is a single-valued function and is different from zero over an infinite interval of time, the

behavior of f (t) as t ® ± ¥ determines the convergence of the Fourier transform.
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The Fourier transform will exist, if

| ( )|f t dt
¥

-¥
< ¥ò

8.9 FOURIER TRANSFORM OF SOME FUNCTIONS

1. f(t) = Ae�at u(t), a > 0 Fourier transform will exist, if a > 0

\ F ( jw) = 
( )

0 0

[ ( )] ( )
( )

a j t
j t at j t e A

f t f t e dt A e e dt A
a j a j

w
w w

w w

¥¥ ¥ - +
- - -

-¥
= = = =

- + +ò òF

Amplitude, |F ( jw)| = 
2 2

A

a w+

Phase, f ( jw) = 1tan
a

w- æ ö- è ø

2. f(t) = Ke�a|t|, for all values of t

F ( jw) = 
0

( ) ( )

0

[ ] w w w
¥ ¥

-- - - - +

-¥ -¥
= = +ò ò òj t a j t a j te dt Ke dt Ke dt| |

F
a ta t

Ke Ke

= 
2 2

2K K Ka

a j a j aw w w
+ =

- + +
Thus the Fourier transform of the double exponential function has zero phase for all values of w

and the magnitude spectrum is shown in Fig. 8.9.

0

K

f t( )

Time, t

(a) Double exponential function

0 w

2K
a

| ( )F jw

(b) Fourier transform

Figure 8.9 Double exponential function and its Fourier transform

NB: There are some important functions which do not have Fourier transforms in a strict sense;

because they do not satisfy the Dirichlet�s condition, i.e., f t dt( )
-¥

¥

z  in infinite (such as, the step
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function and sinusoidal function). However, the Fourier transform of these functions are evaluated by

approximating these functions in time domain as the limiting value of another function which

possesses Fourier transform.

3. Fourier transform of some constant, K; for all values of t Here, we can approximate the

constant as,

 f t Lt Ke
a

a t( ) = -
0

\ F K Lt Ke e dt Lt
Ka

aa

a t j t

a
= =

+
- -

-¥

¥

z0 0 2 2

2w

w

\ F K for= ¹0 0; w

= ¥ =; for w 0

[by L Hospital�s rule, i.e., differentiating both numerator and denominator with respect  to �a�]

Thus, F [K] is an impulse function at w = 0. The strength (amplitude) of the impulse function is

obtained as,

F K d
Ka

a
d Kw

w
w p=

+
=

-¥

¥

-¥

¥

zz 2
2

2 2

\ F K K= 2p d wa f

Hence, Fourier transform of a constant K is an impulse of magnitude 2pK as shown in Fig. 8.10.

K

f t( )

0 Time, t 0 w

| ( )|F jw

2 ( )p d wK

(b) Magnitude spectrum of constant K(a) Constant K

Figure 8.10 Constant K and its magnitude

4. Unit impulse function or Dirac Delta Function, d (t) Some problems involve the concept of

an impulse, which may be intuitively thought of as a force of very large magnitude impacting just for

an instant.

\ F d d w( ) ( )t t e dtj t= -

-¥

¥

z
We use shifting property of impulse function as explained below.

The product of any arbitrary function f (t) with unit impulse function d (t) provides the function

f (t) to exist only at t = 0.
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Mathematically,

f t t dt f t
t

b g b gd ( )
-¥

¥

=z =
0

This shifting property can also be applied at any instant of time, say t = t0, so that we can write,

f t t t dt f t f t
t t

b g b g b gd ( )- = =
-¥

¥

=z 0 0
0

Using this property, we have the Fourier transform of unit impulse function as,

\ F d d w( ) ( )t t e dt ej t= = =-

-¥

¥

z 0 1

Thus, Fourier transform of an impulse function is unity as shown in Fig. 8.11.

0 Time, t

f t( )

d( )t

0 Time, t

1

| ( )|F jw

(b) Fourier transform of impulse function(a) Impulse function

Figure 8.11 Impulse function and its Fourier transform

5. Fourier transform of Signum Function, Sgn(t)

A signum function is defined as,

Sgn(t) = +1 for t > 0

= 0 for t = 0

= �1 for t < 0

 \ Sgn t dt( )
-¥

¥

z  is infinite, direct evaluation of Fourier transform

is not possible.

Therefore, the given function has to be expressed as limiting case of some other function and then

the Fourier Transform is computed. Let, the Sgn(t) be multiplied by e a t-   and a ® 0.

F Sgn t Lim e Sgn t e dt Lim e dt e dt
a

a t j t

a

a j t a j t
( ) ( )= = - +

L
N
M

O
Q
P- -

-¥

¥
- - +

¥

-¥
z zz0 0

0

0
w w wa f a f

= -
-

+
+

L
NM

O
QPa

Lim
a j a j0

1 1

w w

or, F Sgn t
j

( ) = 2
w

Figure 8.12 shows the magnitude and phase spectrum of the Signum function.

Figure 8.12(a) Sgn (t)

–1

+1

0
Time, t

f t( )
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2
jw

| ( )|F jw

0 w

–F j( )w

w

p

2

p

2
–

(b) Magnitude spectrum of sgn( )t (c) Phase spectrum of sgn( )t

Figure 8.12 Signum function and its magnitude spectrum

6. Fourier transform of Unit Step Function, u(t)

u(t) = 1    for t > 0

= 0    for t < 0

Since u t dt( )
-¥

¥

z  is infinite, direct evaluation of Fourier transform is imposable.

Let, u t Sgn t( ) ( )= +1

2

1

2

\ F F Fu t Sgn t
j

( ) ( ) ( )= L
NM

O
QP
+ L

NM
O
QP
= ´ + ´1

2

1

2
2

1

2

1

2

2
p d w

w

or, F u t
j

a f a f= +pd w
w
1

Thus, the amplitude of unit step function u(t) in frequency domain will be a combination of

rectangular hyperbola and impulse function (of strength p at w = 0) as shown in Fig. 8.13.

1
jw

| ( )|F jw

0 w

p

Figure 8.13 Magnitude spectrum of unit step function

8.10 PROPERTIES OF FOURIER TRANSFORMS

1. Linearity

If a, b, Î C, then

{ ( ) ( )} { ( )} { ( )} ( ) ( )F f t g t F f t F g t F Ga b a b a w b w+ = + = +
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provided the Fourier transforms of f (t) and g (t) exist.

2. Scaling

If F{f(t)} = F(w) and c Î R, then

1
{ ( )}

| |
F cf t F

c c

wæ ö= è ø

3. Time shifting

If 0{ ( )} ( ) andF f t F t Rw= Î , then

0
0{ ( )} ( )j tF f t t e Fw w-- =

4. Frequency shifting

If { ( )} ( ) andF f t F Rw w= Î , then

0
0( ) { ( )}jF F e f tww w- =

5. Symmetry

If { ( )} ( )F f t F w= , then

{ ( )} 2 ( )F F t fp w= -
6. Modulation

If 0{ ( )} ( ) andF f t F Rw w= Î , then

0 0 0
1

{ ( ) cos ( )} [ ( ) ( )]
2

F f t t F Fw w w w w= + + -

0 0 0
1

{ ( )sin( )} [ ( ) ( )]
2

F f t t F Fw w w w w= + - -

7. Differentiation in time

Let n Î N and suppose that f (n) is piecewise continuous. Assume that 
( )Lim ( ) 0k

x
f t

®¥
= , then

( ){ ( )} ( ) ( )n nF f t j Fw w=
In particular

{ ( )} ( )F f t j Fw w¢ =
and

2{ ( )} ( )F f t Fw w² = -
8. Frequency differentiation

Let n Î N and suppose that f is piecewise continuous. Then

( ){ ( )} ( )n n nF t f t j F w=
In particular

{ ( )} ( )F tf t jF w= ¢
and

2{ ( )} ( )F t f t F w= - ²
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These properties can be tabulated as follows (Table 8.1).

Table 8.1 Properties of Fourier Transforms

Sl No. Time Domain 
1

( ) ( )
2

j tf t F j e dtww
p

¥

-¥

= ò Frequency Domain ( ) ( ) j tF j f t e dtww

¥
-

-¥

= ò

1 f (t) real F ( jw) = F* (� jw)

2 f(t) even, f(t) = f(� t) F ( jw) = F(� jw), F( jw) is real

3 f (t) odd, f (t) = � f (� t) F (  jw) = �F (� jw), F( jw) is imaginary, 

4 y (t) = tn f (t) Y ( jw) = 
( )

( )n
d F j

j
d

w

w

²
²

5 y(t) = f (at) F ( jw) = 
1

, 0
j

F a
a a

wæ ö >ç ÷è ø

6 0( ) ( )y t f t t= - 0( ) ( )j tY j e F jww w-=

7 y(t) = 
( )n

n

d f t

dt
Y( jw) = ( jw)n F( jw)

8 y(t) = ( )f t dt
¥

-¥
ò Y( jw) = 

( )F j

j

w

w

9 y(t) = 0( ) j tf t e w
Y( jw) = F [ j(w � w0)]

Example 8.6 Show that when f (t) is an even function of t, its Fourier transform F ( jw) is a

function of w and is real; while when f(t) is an odd function of t, its Fourier

transform F ( jw) is an odd function of w and is imaginary.

Solution From the definition,

F ( jw) = ( ) ( )(cos sin )j tf t e dt f t t j t dtw w w
¥ ¥

-

-¥ -¥
= -ò ò

= ( )cos ( ) sin ( ) ( )f t tdt j f t tdt P jQw w w w
¥ ¥

-¥ -¥
- = +ò ò

where, P(w) = ( ) cos Even function of , i.e., ( ) ( )f t tdt P Pw w w w
¥

-¥
= = -ò

and Q(w) = ( ) sin Odd function of , i.e., ( ) ( )f t tdt Q Qw w w w
¥

-¥
= = - -ò

Now, F ( jw) = ( )| ( )| jF j e f ww

|F ( jw)| = 2 2( ) ( ) Even function ofP Qw w w+ =
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and F ( jw) = 1 ( )
tan Odd function of

( )

Q

P

w
w

w
- é ù =ê úë û

l When f(t) is an even function

f(t) cos w t is an even function

f(t) sin w t is odd function.

\  P(w) = 
0

2 ( ) cosf t tdtw
¥

ò

 Q(w) = 0

so, F( jw) = P(w) = Even and Real (Proved)

l When f(t) is an odd function

f(t) cos wt is an odd function

f(t) sin wt is an even function

\ P(w) = 0

and \Q(w) = 
0

2 ( ) sinf t tdtw
¥

- ò

so, F( jw) = jQ(w) = Odd and Imaginary (Proved)

8.11 ENERGY DENSITY AND PARSEVAL�S THEOREM

This theorem states that the energy content (W ) of a waveform (periodic or non-periodic) over the

whole frequency band is,

W = 2 21
( ) | ( )|

2
f t dt F j dw w

p

¥ ¥

-¥ -¥
=ò ò

Proof: We have,

W = 2 ( ) ( ) [ ( ) ]f t dt f t f t dt
¥ ¥

-¥ -¥
= ×ò ò

= 
1

( ) ( )
2

j tf t F j e dt dtww
p

¥ ¥

-¥ -¥

é ù
ê ú
ê úë û

ò ò

= 
1

( ) ( )
2

j tF j f t e dt dtww
p

¥ ¥

-¥ -¥

é ù
ê ú
ê úë û

ò ò

= 
1

( ) ( )
2

F j F j dw w w
p

¥

-¥
× -ò

= 21
| ( )|

2
F j dw w

p

¥

-¥
ò

or W = 2 21
( ) | ( )|

2
f t dt F j dw w

p

¥ ¥

-¥ -¥
=ò ò Proved
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Note

(i) Since |F( jw)| is an even function of w,

W = 2 2

0

1
( ) | ( )|f t dt F j dw w

p

¥ ¥

-¥
=ò ò

(ii) Since w = 2p f, where f is the frequency,

W = 
22 2

0

( ) | ( 2 )| 2 ( 2 )f t dt F j f df F j f dfp p
¥ ¥ ¥

-¥ -¥
= =ò ò ò

The quantity 2| ( 2 )|F j f dfp  is the energy in an infinitesimal band of frequency df. It represents

the energy density in the frequency domain and has unit of Joule/Hertz.

Total energy content within the frequency band f1 and f2 is,

Wb = 
2

1

22 ( 2 )|
f

f

F j f dfpò

For the integration range �¥ to + ¥, the total energy is,

 Wb = 
2 2

1 1

2 2| ( 2 )| | ( 2 )|
f f

f f

F j f df F j f dfp p
-

-
+ò ò

(iii) If f (t) is the voltage across a 1 W resistance or current through the same resistance, then Wb is

known as 1 W energy.

Example 8.7  The current in a 10 W resistor is 2( ) 10 ( ) ( ).ti t e u t A-=  What is the energy associated

with the frequency band 0 £ w £ 2 rad/s?

Solution Here, f(t) = i(t) = 10e�2tu(t)

\ F( jw) = 10

2 jw+

So, the energy associated with the given frequency band is,

W = 

2
2 2 3

2 1

2
0 0 0

10 10 100 10 1
| ( )| tan

2 24

d
F j d

w w
w w

p p pw

-é ùæ ö= = ç ÷ê úè ø+ ë û
ò ò

= 
310

8

p

p

é ù
ê úë û

= 125 Joule Ans.
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8.12 COMPARISON BETWEEN FOURIER TRANSFORM AND LAPLACE

TRANSFORM

The defining equations are,

F(s) = 
0

( ) and ( ) ( )st j tf t e dt F j f t e dtw
w

¥ ¥
- -

-¥
=ò ò

Following are some differences and similarities:

1. Laplace Transform is one-sided in the interval 0 < t < ¥ and Fourier Transform is double-sided

in the interval �¥ < t < ¥. Thus, Laplace Transform is applicable for positive time function,

f(t), t > 0; while Fourier Transform is applicable for functions defined for all times.

2. Laplace Transform includes the initial conditions and is applicable for transient analysis; while

Fourier Transform is only applicable for steady-state analysis.

3. For functions f (t) = 0 for t < 0 and 
0

| ( )|f t dt
¥

< ¥ò , the two transforms are related as,

( ) ( )|s jF j F s
w

w == . Thus, Laplace Transform is associated with entire s-plane, while, Fourier

Transform is restricted to the imaginary ( jw) axis.

4. Laplace Transform is applicable to a wider range of functions than the Fourier Transform. On

the other hand, Fourier Transforms exist for signals that are not physically realizable and have

no Laplace Transform.

8.13 STEPS FOR APPLICATION OF FOURIER TRANSFORM TO CIRCUIT

ANALYSIS

By Fourier Transform, we can find the response of a circuit due to non-periodic functions. The

general procedure is described below.

1. Fourier Transform of the given excitation function is obtained.

2. Fourier Transform of the circuit elements is obtained 
1

i.e., , , .R R L j L C
j C

w
w

æ ö® ® ®ç ÷è ø

3. The transfer function in Fourier Transform Domain is defined as, 
( )

( )
( )

Y j
H j

X j

w
w

w
=  or

( ) ( ) ( )Y j H j X jw w w= × ; where, Y( jw) is the response transform and X( jw) is the excitation

transform.

4. Taking the inverse Fourier Transform of the product ( ) ( )H j X jw w× , we get the response y(t).
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SOLVED PROBLEMS

8.1 Determine the Fourier series for the square waveform shown below and plot the magnitude and the

phase spectra.

Solution The waveform, f (t) = V; 0 < t < T/4

= �V; T/4 < t < 3T/4

= V; 3T/4 < t < T

Obviously, the given function is an even function.

\ bn = 0

Now, a0 = ( )
/2 /4 /2

0 0 /4

2 2 2
0

T T T

T

f t dt Vdt Vdt
T T T

= = - =ò ò ò

an = 
/2

0

4
( )cos

T

f t n tdt
T

wò

= 
/4 /2

0 /4

4
cos cos

T T

T

V n tdt V n tdt
T

w w

é ù
-ê ú

ê úë û
ò ò

= 
4

sin sin sin
4 2 4

V n T n T n T

n T

w w w

w

é ùæ ö æ ö æ ö- +ç ÷ ç ÷ ç ÷ê úè ø è ø è øë û

= 
4

2sin
2 2

V n

n

p

p

é ùæ ö/ ç ÷ê úè ø/ ë û
[ 2 ]Tw p=Q

= 
4 4

sin
2

V n V

n n

p

p p
= ; for n = 1, 5, 9,���

= 
4V

np
- ; for n = 3, 7, 11,���

= 0; for n = 2, 4, 6,���

So, f(t) = 
4 1 1 1 1

cos cos 3 cos 5 cos 7 cos 9
3 5 7 9

V
t t t t tw w w w w

p

æ ö- + - + ¼¼¼ç ÷è ø Ans.
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Magnitude Spectra

Phase Spectra

8.2 Find the Fourier series of the function whose periodic waveform is shown in the below figure and

plot its frequency spectra.

Solution The function is even

\ 0nb =

\
/2 /4

0

0 0

2 2 2
( )

4 2

T T
V T V

a f t dt Vdt
T T T

= = = ´ =ò ò

\
/2

0

4
( )cos

T

na f t n tdt
T

w= ò

/4

0

4
( )cos

T
V

f t n tdt
T

w= ò

/4

0

4 sin
T

V n t

T n

w

w

é ùæ ö= ê úç ÷è øê úë û
[ ]2Tw p=Q
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4
sin

4

V n T

n T

w

w

é ùæ ö= ç ÷ê úè øë û

4 2
.sin

2 2

V n V

n n

p

p p
= = ; n = 1, 5, 9 �

= 
2V

np
- ; n = 3, 7, 11, �

\ 2 1 1 1
( ) cos cos3 cos5 cos 7 ...

2 3 5 7

V V
f t t t t tw w w w

p

æ ö= + - + - +ç ÷è ø Ans.

Line Spectra

8.3 Find the Fourier series for the train of pulses shown in the below figure and draw the amplitude and

the phase spectra.

Solution Here, v(t) = V; for 0 < t < T/2

= 0;  for 
2

T
t T< <

\
/2

0

0 0

1 1
( )

2

TT
V

a V t dt Vdt
T T

= = =ò ò
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and an

/2

0 0

2 2
( ) cos cos

TT

V t n tdt V n tdt
T T

w w= =ò ò

2
sin 0

2

V n T

n T

w

w

é ùæ ö= =ç ÷ê úè øë û
 [ 2 ]Tw p=Q

and
/ 2

0 0

2 2
( ) sin sin

T T

n

V
b V t n tdt n tdt

T T
w w= =ò ò

2
1 cos (1 cos )

2

V n T V
n

n T n

w
p

w p

é ùæ ö= - = -ç ÷ê úè øë û
, [ 2 ]Tw p=Q

2V

np
= , for n odd.

= 0, for n even.

\ 1 2 2 2
( ) sin sin 3 sin 5 ...

2 3 5
V t V n t t tw w w

p p p

é ù= + + + +ê úë û
Amplitude Spectra

Phase Spectra

8.4 For the periodic function shown in the adjacent figure

determine the exponential form of Fourier series and show

the line spectra. Also find its trigonometric form.

Solution The function is defined as,

f (t) = V, 0 < t < p, [T = 2p]

= �V, p < t < 2p

Since the function is odd, the co-efficients nC  will be purely

imaginary.
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\
2

0

1
( )

2
jn t

nC f t e dt
p

w

p

-= ò

2

0

1

2
jn t jn tVe dt V e dt

p p

w w

p
p

- -é ù
= -ê ú

ë û
ò ò ; for n ¹ 0

2

0

1 1

2 2
jn t jn tV V

e e
jn jn

p p

w w

p
p w p w

- -é ù é ù= -ê ú ê ú- -ë û ë û

2(1 ) ( )
2 2

jn jn jnV V
e e e

j n j n
wp w p wp

p w p w
- -= - + - (Q T = 2p, \ w = 1)

2(1 ) ( )
2 2

jn jn jnV V
e e e

j n j n
p p p

p p

- -= - + -

Now, cos sin ( 1)jn ne n j np
p p

- = - = -

and 2 cos2 sin2 1j ne n j np
p p

- = - =

\ 2
[1 ( 1) ]

2
n

n

V
C

j np
= - - ; n ¹ 0

2V

jnp
= ; for n odd;

= 0; for n even.

2
n

V
C

jnp- = -

For n = 0, 
2 2

0

0 0

1 1
( ) 0

2 2
C f t dt Vdt Vdt

p p p

p
p p

é ù
= = - =ê ú

ë û
ò ò ò

\ Exponential form of Fourier series is,

1

2 1
( ) jn t

n

V
f t e

j n
w

p

¥

-
= å ; n odd only

 3 5 72 1 1 1
...

3 5 7
j t j t j t j tV
e e e e

j
w w w w

p

é ù= + + + +ê úë û
Ans.

To find Trigonometric form,

a0 = 0,

2 2
( ) 0n n n

V V
a C C

jn jnp p
-= + = - =

2 2 4
( )n n n

V V V
b j C C j

jn jn np p p
-

é ù= - = + =ê úë û
for n odd.

\ 4 1 1
( ) sin sin 3 sin 5 ...

3 5

V
f t t t tw w w

p

é ù= + + +ê úë û
Ans.
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Amplitude Spectra

Phase Spectra

8.5 The waveform shown in the following figure is used as �sweep� in radar and television circuits. Find

the Fourier series and plot the line spectra.

Solution The function, ( )
V

V t t
T

= ; 0 < t < T

\
0

1
T

jn t
n

V
C te dt

T T
w-= ò ; n ¹ 0

2
0

T
jn t jn tV te e

jn jnT

w w

w w

-é ù
= +ê ú-ë û

ò

( )
2 2

0

T
jn T jn TV Te e

jnT jn

w w

w w

- -
é ù
ê ú= -ê ú-
ê úë û

22 2

2 2 2

( 1)

2

j nj n eV T e

j nT n

pp

p w

--é ù-
= +ê ú-ë û

[Q wT = 2p]
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2 2

2 2 2 22 4 4

j n j njV V V
e e

n n n

p p

p p p

- -= + -

Since, 2 (cos2 sin 2 ) 1j ne n j np
p p

- = - =

\
2n

jV
C

np
= ; for n ¹ 0

For n = 0, 0 2
0

2

T
V V

C tdt
T

= =ò

\ Exponential form,

3 2 2 3( ) .... ...
6 4 2 2 2 4 6

j t j t j t j t j t j tjV jV jV jV jV jVV
v t e e e e e ew w w w w w

p p p p p p

- - -= - - - + + + + +

To convert into Trigonometric form

Here,
2n

jV
C

np
= , 

2n

jV
C

np- = -

\ a0 = C0 = 
2

V
, ( ) 0n n na C C-= + =

and ( )n n n

V
b j C C

np-= - = -

\ 1 1
( ) sin sin 2 sin 3 ...

2 2 3

V V
V t t t tw w w

p

é ù= - + + +ê úë û
Ans.

Line Spectra
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8.6 Find the trigonometric Fourier series for the waveform shown in figure and sketch the spectra.

Solution Here, ( )
V

f t tw
p

= ; for 0 < wt < p and

= 0; for p < w t < 2p

Þ 0 4

V
a =

Þ
0

1
cos ( )n

V
a t n td t

p

w w w
p p

= ò

2 2

2V

n p
= - ; for n odd.

= 0 ; for n even.

Þ
0

1
sin ( )n

V
b t n td t

p

w w w
p p

= ò

= 
V

np
- ; for n even.

= 
V

np
; for n odd.

\
2

2 1 1 1 1
( ) cos cos3 cos5 ... sin sin 2 sin 3 ...

4 9 25 2 3

V V V
f t t t t t t tw w w w w w

pp

é ù é ù= - + + + + - + -ê ú ê úë û ë û

Ans.

Line Spectra

The even harmonic amplitudes are given directly by bn

coefficients, since there are no even cosine terms.

But, the odd harmonic amplitudes are given by computa-

tion

C
a b

n
n n

=

2 2

2

+

\ C
V V

1 2

2 2
1
2

2
=

p p
F
H

I
K + F

H
I
K  = 

( .0 377)

2

V
 = 0.1885 V

C V C V3 50 054= = (0.032)( . ) ,

and C2 = 
V
4p

, C4 = - V
8p

 = �0.0397 V

= � 0.08 V
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8.7 Find the Fourier series expansion of the rectified sine waveforms shown in the followig figure.

0 p 2p 3p 4p

f t( )

A

wt

Solution Here, f (t) = A sin wt; for 0 < w t < p

= � A sin wt; for p < w t < 2p

Since, f (t) = f (�t) Þ The function is even.

\ bn = 0

\
/2

0

4
( )cos ( )

T

na f t n td t
T

w w= ò

0

4
sin cos ( )

2
A t n td t

p

w w w
p

= ò

0

2sin cos ( )
A

t n td t
p

w w w
p

= ò

[ ]
0

sin( 1) sin( 1) ( )
A

n t n t d t
p

w w w
p

= + - -ò

0

cos( 1) cos( 1)
;

1 1

n t n tA

n n

p
w w

p

- + -é ù= +ê ú+ -ë û
 for n ¹ 1

For odd n; 
1 1 1 1

; 1
1 1 1 1n

A
a n

n n n np

é ùæ ö æ ö= - + + - ¹ê úç ÷ ç ÷+ + - -è ø è øë û
= 0

For even n; 
2 2

1 1n

A
a

n np

é ùæ ö æ ö-= +ê úç ÷ ç ÷+ -è ø è øë û

2

2 2 2 2 4

( 1)( 1) ( 1)

n nA A

n n np p

/ /- - -é ù= = -ê ú+ + -ë û

For n = 1, 

/2

1

0

4
( )cos ( )

T

a f t td t
T

w w= ò

0

4
sin cos ( )

2
A t td t

p

w w w
p

= ò

0

sin 2 ( )
A

td t
p

w w
p

= ò
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0[cos 2 ]
2

A
t p

w
p

= -

[cos 2 1] 0
2

A
p

p
= - - =

Also,

/2

0

0 0

2 2
( ) sin ( )

2

T

a f t dt A td t
T

p

w w
p

= =ò ò

0

2
[cos ]

A A
t p

w
p p

= - =

So, the Fourier series is,

2
2,4,6

2 4 cos 2 4 1 1 1
( ) cos2 cos4 cos6 ...

3 15 35( 1)n

A A n t A A
f t t t t

n

a
w

w w w
p p p p=

æ ö= - = - + + +ç ÷è ø-
å

Ans.

Spectra

8.8 Determine the Fourier series of voltage response obtained at the output of a half-wave rectifier

shown in the figure. Plot the discrete spectrum of the waveform.

–0.4 –0.2 –0.1 0 0.1 0.2 0.4

V t( )

Vm

t

Solution Here, time period T = 0.4 second;

f = 
1

2.5 Hz;
T

=

w = 
2 2

5 rad s
0.4T

p p
p= =

The function, v(t) = cos 5 ; 0 0.1mV t tp £ £
= 0; 0.1 £ t £ 0.3

= cos 5 ; 0.3 0.4mV t tp £ £
If the period extending from t = �0.1 to t = 0.3 is taken, it will result in fewer equations and hence,

fewer integrals.

\ ( ) cos5mv t V tp= ; 0.1 0.1t- £ £
= 0; 0.1 £ t £ 0.3
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\
0.3 0.1 0.3

0

0.1 0.1 0.1

1 1
( ) cos5 (0)

0.4 0.4
m

m

V
a v t dt V dt dtp

p- -

é ù
= = + =ê ú

ë û
ò ò ò

\
0.3

0.1

2
cos5

0.4n ma V ntdtp
-

= ò ; n ¹ 1

0.1

0.1

5 cos5 cos5mV t ntdtp p
-

= ò

[ ]
0.1

0.1

1
5 cos5 (1 ) cos5 (1 )

2mV n t n t dtp p
-

= + + -ò

2

2 cos( /2)

1

mV n

n

p

p
=

-
; n ¹ 1

For, a =1, 
0.1

2
1

0.1

5 cos 5
2
m

m

V
a V tdtp

-
= =ò

Similarly, bn = 0 for any value of n, and the Fourier series thus contains no sine terms.

\
2 2 2

( ) cos5 cos10 cos20 cos30 ...
2 3 15 35

m m m m mV V V V V
v t t t t tp p p p

p p p p
= + + - + -

Spectra

8.9 Find the trigonometric Fourier series for the half-wave rectified sine-wave shown in the following

figure. and sketch the spectrum.

0 p 2p 3p 4p

wt

V

f t( )

Solution Here, the wave is, f (t) = V sin wt; 0 < w t < p

= 0 ; p < w t < 2p

\ a0 = 
0

1
sin ( )

2

V
V t d t

p

w w
p p

=ò
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\
0

1
sin cos ( )na V t n td t

p

w w w
p

= ò ; n ¹ 1

[ ]
0

sin(1 ) sin(1 )
2

V
n t n t d t

p

w w w
p

= + + -ò

0

cos(1 ) cos(1 )

2 1 1

n t n tV

n n

p
w w

p

- + -é ù= -ê ú+ -ë û

2
(1 cos )

(1 )

V
n

n
p

p
= +

-
; n ¹ 1

= 0; for n odd

2

2

(1 )

V

np
=

-
; for n even.

For n = 1, 1

0

1
sin cos ( ) 0a V t td t

p

w w w
p

= =ò

Similarly, bn = 
0

1
sin sin ( )V t n td t

p

w w w
p
ò ; n ¹ 1

= 0

For n =1, 2
1

0

1
sin ( )

2

V
b V td t

p

w w
p

= =ò

So the series is,

2 2 2
( ) sin cos 2 cos 4 cos 6 ...

2 3 15 35

V V V
f t t t t tw w w w

p p

æ ö= + - + + +ç ÷è ø

8.10 State and prove Parseval�s theorem useful in computing the effective value of a given periodic

function, f (t).

Or,

A periodic function f (q) with period 2p is expressed in Fourier series as follows:

0

1

( ) ( cos sin )
2 n n

n

a
f a n b nq q q

¥

=
= + +å
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Prove that,

2

02 2 2

1

1 1
[ ( )] ( )

2 2 2 n n
n

a
f d a b

p

p

q q
p

¥

=-

æ ö
= + +ç ÷è ø åò

Solution

0

1

( ) ( cos sin )
2 n n

n

a
f a n b nq q q

¥

=
= + +å

Since, cos sin cos sin 0n n d n d n d
p p p

p p p

q q q q q q q

- - -
= = =ò ò ò

\  0

2

2 22 2 2

1 1

1 1
[ ( )] cos sin

2 2 2 n n
n n

a
f d a n b d

p p

p p

q q q q q
p p

¥ ¥

= =- -

é ùæ öê ú= + +ç ÷ê úè øë û
å åò ò

0

2 2 2
2 2

1 1

1 1 1
2cos 2sin

2 2 2 2 2 2
n n

n n

a a b
d n d n d

p p pa a

p p p

q q q q q
p p p= =- - -

æ ö
= + +ç ÷è ø å åò ò ò

0

2 2 2

1 1

1 1 1
.2 . (1 cos2 ) . . (1 cos2 )

2 2 2 2 2
n n

n n

a a b
n d n d

p pa a

p p

p q q q q
p p p= =- -

æ ö
= + + + -ç ÷è ø å åò ò

{ } { }
2

2 20

1

1 sin 2 sin 2

2 4 2 2n n
n

a n n
a b

n n

a p pq q
q q

p p p=

é ùæ ö
= + + + -ç ÷ ê úè ø - -ë û

å

2

0 2 2

1

1
[ (2 ) (2 )]

2 4 n n
n

a
a b

a

p p
p =

æ ö
= + +ç ÷è ø å

\  [ ] 0

2

2 2 2

1

1 1
( ) ( )

2 2 2 n n
n

a
f d a b

p

p

q q
p

¥

=-

æ ö
= + +ç ÷è ø åò [Proved]

Note: For statement and proof of this theorem consult the text earlier.

8.11 Resolve the waveform of the adjacent figure into even and odd

components and plot the two components.

Solution Let, f0(t) and fe(t) be respectively the odd and even parts

of f (t)

\ 0( ) ( ) ( )ef t f t f t= + (i)

\ 0 0( ) ( ) ( ) ( ) ( )e ef t f t f t f t f t- = - + - = - (ii)

Solving (i) and (ii); 
1

( ) [ ( ) ( )]
2ef t f t f t= + -

and 0

1
( ) [ ( ) ( )]

2
f t f t f t= - -
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For the given waveform,

f(t) = 1; 0 < t < 1 \  fe(t) = 
2

t

and f(�t) = (t � 1); 0 < t < 1 and f0(t) = (1 � t/2)

Thus, the components are

8.12 If v(t) = 10 + 6 cos (t + 45°) + 1.8 cos(2t � 10°) volt and i(t) = 3 + 1.4 cos(t + 20°) + 0.5 cos 2t mA,

calculate the average power in Watt. Determine also the effective voltage and effective current.

Solution Average Power = 3 31 1 2 2
1 2 3cos cos cos

2 2 2
M MM M M M V IV I V I

f f f+ +

6 1.4 1.8 0.5
10 3 cos(45 20 ) cos10

2 2

´ ´
= ´ + °- ° + °

= 34.25 W

Effective Voltage = 
2 2

2 6 (1.8)
10 12.58 V

2

+
+ =

Effective current = 2 2 21
3 (1.4 0.5 ) 3.178 A

2
+ + =

8.13 Determine the effective voltage, effective current, and average power supplied to a passive network

if the supplied voltage is,

( ) 100 50cos (10 30 ) 25cos (30 60 )v t t t= + + ° + + ° V

and the resulting current is,

( ) 2cos (10 75 ) 3cos (30 78 )i t t t= + ° + + ° A.

Solution Same as Prob. 8.12.
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8.14 (a) Find the trigonometric Fourier series of the triangular waveform shown in the following figure.

(b) If this voltage is approximated by

2

8
sin

V
tw

p
, find the mean-square error.

(c) If this voltage waveform is applied to the network in the below

figure, then find the current i(t) and draw the magnitude and

phase spectra of i(t). Take w0 = 1 radian/second for the wave-

form.

Solution

(a) The wave is an odd function and is having half wave symmetry.

\ an = 0 and a0 = 0

Now,
4

( )
V

V t t
T

= ; 0 /4t T< <

4
2

V
t V

T
= - + ; 

3
/4

4

T
T t< <

\
/4

0

8
( )sin

T

nb f t n t dt
T

w= ò ; n is odd only.

/4

0

8 4
sin

T
V

t n t dt
T T

w= ò

/ 4

2
0

32 cos cos
T

V t n t n t
dt

n nT

w w

w w

-é ù= +ê úë ûò

/4

0

16 sin
cos

4 2

T
V T n n t

n T n

p w

p w

é ù
= - +ê ú

ê úë û

16
0 sin

4 2 2

T T n

n T n

p

p p

é ù= - ´ +ê úë û

2 2

8
sin

2

V n

n

p

p
= {Q wT = 2p}
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\
2 2

8
n

V
b

n p
= , n = 1, 5, 9, �

= �
2 2

8V

n p
, n = 3, 7, 11, �

Hence,

2 2 2 2

8 1 1 1
( ) sin sin3 sin5 sin7 ...

3 5 7

V
V t t t t tw w w w

p

æ ö= - + - +ç ÷è ø
Ans.

(b) The error is, 
2

8
( ) ( ) sin

V
t v t te w

p
= -

The main square error is,

2

0

1
( )

T

NE t dt
T

e= ò

Since, the wave is having half�wave symmetry,

\
/4

2

0

4
( )

T

NE t dt
T

e= ò

Now,
4

( )
V

v t t
T

= ; for 0 < t < T/4

\
2/4

2

2
0

4 4 8
sin 0.0047 V

T

N

V V
E t t dt

T T
w

p

é ù= - =ê úë û
ò Ans.

(c) Here,

( ) ( )
( )

( ) 1 /
i iV n V n

i n
Z n j n

q q
q

q
= =

-

1

2

( )
tan (1/ )

1

q -= Ð
+
inV n

n
n

\ 1

2 22

8
( ) sin[ tan (1/ )]

1

n V
i n nt n

nn
q

p

-= ´ +
+

 ; for n = 1, 5, 9, �

1

2 2

8
sin[ tan (1/ )]

1

V
nt n

n np

-= +
+

and 1

2 2

8
sin[ tan (1/ )]

1

V
nt n

n n
p

p

-= + +
+

; for n = 3, 7, 11, ...

\ 1 22

8 8
sin( 45 ) 0.707 sin( 45 )

2

V V
i t t

pp
= + ° = + °
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\ 3 2 22

8 8
sin (3 180 18 44 ) 0.949 sin(3 198 44 )

33 10

V V
i t t

pp

= + ° + × ° = + × °

\ 5 2 22

8 8
sin(5 11 31 ) 0.98 sin(5 11 31 )

55 26

V V
i t t

pp

= + × ° = + × °

\
2

8
( ) [0.707sin( 45 ) 0.105sin(3 198.44 ) 0.039sin(5 11.31 ) ....}

V
i t t t t

p
= + ° + + ° + + ° + Ans.

8.15 A series RL circuit with R = 10 ohm and L = 5 H contains a current

i(t) = 10 sin 1000 t + 5 sin 3000t + 3 sin 5000t A

Find the effective voltage and the average power.

Solution Here, w = 1000 rad/s and it contains three harmonics:

For fundamental harmonic

1 110 , 1000 5 5000LR X Lw= W = = ´ = W

\ 1 1 (10 5000) 5000 89.88Z R j L jw= + = + = Ð °

For third harmonic

3 310 , 3 15000LR X Lw= W = = W

\ 3 (10 15000) 15000 003 89.96Z j= + = × Ð °

For fifth harmonic

R5 510 , 5 25000LX Lw= W = = W

\ 5 (10 25000) 25000 001 89.977Z j= + = × Ð °

\ 1 3 5( ) 10 | | sin(1000 89.88 ) 5 | | sin(3000 89.96 ) 3 | | sin(5000 89.977 )v t Z t Z t Z t= - ° + - ° + - °

5000 01sin(1000 89 88 ) 75000 015sin(3000 89 96 )t t= × - × ° + × - × °

75000 003sin(5000 89 977 )t+ × - × °

\
1

2 2 2 21
Effective Voltage, [(5000 01) (75000 015) (75000 003) ]

2
V = × + × + ×

48 291 10 volt= × ´

82 91 kV= × Ans.

Average power

1 1 2 3 3
1 2 3cos cos cos

2 2 2
m m mL m m m

av

V I V I V I
P f f f= + +

5000 01 10 75000 015 5 75000 003 3
cos89 88 cos89 96 cos89 977

2 2 2

× ´ × ´ × ´
= × ° + × ° + × °

691 6595 Watt= × Ans.
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8.16 A periodic current source, i(t) = 10 + 6 cos (100t + 45°) + 3 cos (200t � 10°) + 2.1 cos (300t + 35°) is

the input to a parallel RC circuit with R = 0.5 ohm and C = 0.02 F. Calculate the steady-state response

v(t) of the circuit.

Solution {same as Prob. 8.15}

1 2 30 35 45 ; 0 22 63.43 ; 0 158 71.56Z Z Z= × Ð- ° = × Ð- ° = × Ð- ° Ans.

\ ( ) 5 2 121 cos100 0 671 cos(200 73 43 ) 0 332 cos(300 36 56 )v t t t t= + × + × - × ° + × - × °
8.17 The square wave source, v(t) shown in figure excites a series RL circuit with R = 2 ohm and L = 2 H.

Determine the current response i(t), taking w = 1 radian/second and V = 
4

p
 volt.

Solution [same as Prob 8.14]

Here, from Prob 8.1

( )4 1 1 1
( ) cos cos3 cos5 cos7 ...

3 5 7

V
v t t t t tw w w w

p
= - + - +

Here, volt
4

V
p=

\ 1 1
( ) cos cos3 cos5

3 5
v t t t tw w w= - + -¼

1
( )

2 2
Y jn

j n
=

+

Þ 1 10 353 45 ; 1 0Y V= × Ð- ° = Ð °

3 3

1
0 158 71.565 ; 180

3
Y V= × Ð - ° = Ð- °

5 5

1
0 098 78.69 ; 0

5
Y V= × Ð - ° = Ð °

\ 1 1 1 0 353 45I V Y= = × Ð- °

\ 3 3 3 0 0527 108.435I V Y= = × Ð °

and 5 5 5 0 0196 78.69I V Y= = × Ð- °

( ) 0 353cos( 45 ) 0 0527cos(3 251 6 ) 0 0196cos(5 78 69 ) ...i t t t t= × - ° + × - × ° + × - × ° + Ans.

8.18 Determine the Fourier series of repetitive waveform of figure up to 5th harmonic, when time of

repetition, T = 20 ms.

Calculate the fundamental frequency current in the circuit of the figure, where R = 10 ohm and L =

0.0318H with voltage transform of the waveform.
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Solution The wave is having half wave symmetry.

an = bn = 0 ; for n even ; and

For n odd,

/ 2

0

4
( )sin

T

na f t n t dt
T

w= ò

/ 2

0

4
( )sin

T

nb f t n t dt
T

w= ò

and a0 = 0

Now, v(t) = 
200

; 0
2

T
t t

T
£ £

\
/

0

4 200
cos

T t

na t n t dt
T T

w= ò

= 
2

800 sin sint nwt n t
dt

n nT

w
w w

é ù-ê úë ûò

= 

/ 2

2 2 2
0

800 sin cos

2

T
T n n t

nT n

p w

w w

é ù
´ +ê ú

ê úë û

= [ ]2 2 2

800
cos 1n

n T
p

w
-

= 
2 2

800
( 2)

4n p
-

= 
2 2

400

n p
-

2

0

4 200 200
sin

T

nb t n tdt
T T n

w
p

= =ò

\
2 2 2

400 1 1 200 1 1
( ) (cos cos3 cos5 ....) (sin sin 3 sin 5 ...)

3 53 5
v t t t t t t tw w w w w w

pp
= - + + + + + + +
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The fundamental frequency voltage is

( )
2

2 2

200 400 400
sin cos 1

2fV t t
p

w w
p p p

æ ö= - = +ç ÷è ø
Ans.

Impedance, ( ) 10 (0 0318)Z R j L jw w= + = + ×
Current due to fundamental frequency,

( )2

400
sin cos

2(10 0 0318 )

f

f

V
I t t

Z j

p
w w

p w
= = -

+ ×

or ( )
2

1

2 2 2

400 1 0.0318
1 tan

2 10(10) (0 0318 )
fI

p w

p w

-= + ´ Ð
+ ×

Here,
3

2 2
100

20 10T

p p
w p-= = =

´
 rad/s

Patting this value,

\ 5 33 44.9fI = × Ð- °

\ (rms)

5 33
A 3 76 A

2
fI

×= = ×

8.19 An RLC series circuit with R = 25 ohm, L = 1 H, and C = 10 microfarad is energized with a voltage

source,

V(t) = 15 sin 100t + 10 sin 200t + 5 sin 300t (V)

Find the expression for the current i(t). Determine the effective value of the current, and the

average power consumed by the circuit.

Solution [Same as Prob. 8.16]

( )1

1
900 3 88 4Z R j L

C
w

w
= + - = × Ð + × °

( )2

1
2 301.04 85.2

2
Z R j L

C
w

w
= + - = Ð °

( )3

1
3 41 62 53 1

3
Z R j L

C
w

w
= + - = × Ð × °

\
1 2 3

15 10 5
( ) sin100 sin 200 sin 300i t t t t

Z Z Z
= + +

0 0167 sin(100 88 4 ) 0 0332 sin(200 85 2 ) 0 12sin(300 53 1 ) ...t t t= × + × ° + × + × ° + × + × ° +
Ans.

\
1

2 2 2 2
rms 1 2 3

1
[ ]

2
I I I I= + +

1
2 2 2 21

[(0 0167) (0 0332) (0 12) ]
2

= × + × + ×

0 088 A 88 mA= × = Ans.
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\
15 0 0167 10 0 0332 5 0 12

cos88 4 cos85 2 cos53 1 0.197 W
2 2 2avP

´ × ´ × ´ ×
= × ° + × ° + × ° =

Ans.

8.20 Determine the expression for current in an impedance of R = 10 ohm, L = 0.0318 H with applied emf,

( ) 200sin 314 40sin (942 30 ) 10e t t t= + + ° +  V

Also, calculate the rms value of voltage and current as well as the power factor of the circuit.

Solution [Same as Prob. 8.19]

1

200sin 314
14 14sin 314 44.95

10 314 0 0318

t
i t

j
= = × Ð - °

+ ´ ×

2

40sin (942 30 )
1 28sin (942 30 ) 71 54

10 942 0 0318

t
i t

j

+ °
= = × + ° Ð - × °

+ ´ ×

0

10
1

10
i = =

( ) 14 14sin (314 44 95 ) 1 28sin (942 41.54 )i t t t= × - × ° + × - °

\
2 2

1 22
rms 0 2

V V
V V

+
= +

2 2
2 200 40

10 144 568
2

+
= + = ×  V Ans.

\
2 2
1 22

rms 0 2

I I
I I

+
= +

2 2
2 14 14 1 28

1 10.089 A
2

× + ×
= + = Ans.

\
Average Power

Power factor
Apparent Power

=

1 1 2 2
0 0 1 2

rms rms

cos cos
2 2

V I V I
V I

V I

f f+ +
=

´

200 14 14 40 1 28
10 1 cos 44 95 cos 71 54

2 2
144 568 10 089

´ × ´ ×
´ + × ° + × °

=
× ´ ×

= 0.69 Ans.

8.21 In a two-element series network, voltage v(t) is applied, which is given by,

( ) 50 50sin 5000 30sin10000 20sin 20000v t t t t= + + + (V)

The resulting current is given as,

( ) 11.2sin (5000 63.4 ) 10.6sin (10000 45 ) 8.97sin (20000 26.6 )i t t t t= + ° + + ° + + °  (A)

Determine the network elements and the power dissipated in the circuit.
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Solution Power dissipated,

av

50 11 2 30 10 6 8 97 20
50 0 cos63 4 cos 45 cos26 6 318 W

2 2 2
P

´ × ´ × × ´
= ´ + × ° + ° + × ° = Ans.

In the expression of current i(t), the d.c. term is missing though it is present in the applied voltage,

v(t). Hence, in the series network, there must be a capacitor which blocks d.c. components. Again

from the expression of i(t), we see that the current is leading by an angle less than 90°. Hence, the

conclusion is the presence of a resistive element in series with the capacitor (RC).

Now,
2 2 2

eff

11 2 10 6 8 97
12 6 A

2
I

× + × + ×
= = ×

\ 2
av eff 2

318
2

(12 6)
P I R R= Þ = = W

×
Ans.

( )1 1
Again, 10,000 rad/s, 45 tanw f

w

-= = ° =at
CR

Þ 1 1
50 ìF

20,000
C

Rw
= = = Ans.

8.22 Calculate the impedance consisting of R and L and the power factor of a circuit whose expression for

voltage and current are,

( ) 250sin 314 50sin(942 30 )v t t t= + + °  (V)

( ) 17.7sin (314 45 ) 1.583sin (942 41.6 )i t t t= - ° + - °  (A)

Solution The fundamental frequency current,

1

250sin 314
17 7 sin(314 45 )

t
I t

R j Lw
= = × - °

+
(i)

The third harmonic current,

3

50sin(942 30 )
1 583sin(942 41 6 )

3

t
I t

R j Lw

+ °
= = × - × °

+
(ii)

Equating the magnitudes of (i),

2 2 2

250
17.7

R Lw

=
+

Þ 2 2 2 199.495R Lw+ = (iii)

Equating the angles of (i)

1314 tan 314 45
L

t t
R

w-- = - °

Þ 1tan 45 1
L L

L R
R R

w w
w

- = °Þ = Þ =

Putting in (iii), 
2( ) 99 747 9 987L L Rw wÞ = × Þ = × =
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\ 9 987
0 0318

314
L

×= = ×

\ 9 987R = × W

0 0318HL = × Ans.

Power factor = 

3 31 1
1 3

2 22 2
3 31 1

cos cosAverage Power 2 2
Apparent Power

2 2 2 2

V IV I

V IV I

f f+
=

+ ´ +

2 0 2 2

250 17 7 50 1 583
cos45 cos71 6

2 2

250 50 17 7 1 583

2 2

´ × ´ ×
° + × °

=
+ × + ×

´

= 0.69 Ans.

8.23 A square wave has a value 10 from - p
2

 to 
p
2

, zero from 
p
2

 to 
3

2

p
, 10 from 

3

2

p
 to 

5

2

p
 and so on.

Find the Fourier series expansion of the wave.

Solution For the square wave given, time period is 2p. The Fourier coefficients are evaluated as,

a f d d0

2

2

2

2
1

2

1

2
10 5= = =

- -
z z

p
q q

p
q

p

p

p

p

b g
/

/

/

/

\

a f nd n d
n

n
n

n

a a a a

n = = = = F
H

I
K

= = = - =

- -
-z z1 1

10
10 20

2

20
0

20

3
0

2

2

2

2

2

2

1 2 3 4

p
q q

p
q q

p
q

p
p

p p

p

p

p

p

p

pb gcos cos sin sin

; ; ;

/

/

/

/

/

/

b f nd n d
n

nn = = = - =
- -

-z z
1 1

10
10

0

2

2

2

2

2

2

p
q q

p
q q

p
q

p

p

p

p

p

p

b gsin sin cos

Therefore, the Fourier series is given as,

v Ans= + - + -5
20 20

3
3

20

5
5

p
q

p
q

p
qcos cos cos ... .

8.24 In a linear circuit consisting of R = 9W and L = 8 mH, a current,

i t t= + + + +5 100 1000 45 100 3000 600 0sin sind i d i A is flowing. Find the equation of applied voltage.

Solution Here, R = 9W and L = 8mH, i t t= + + + +5 100 1000 45 100 3000 600 0sin sind i d iA
For DC component

Current, I0 = 5A, Z0 = R = 9W
\ V I R0 0 5 9 45= ´ = ´ = V
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For first harmonic component

Current, I1
0100 45= Ð A

Impedance, Z R j L j j1
3 09 2 1000 8 10 9 8 12 04 4163= + = + ´ ´ ´ = + = Ð-w p b g b g. . W

\ V I Z1 1 1
0 0 0100 45 12 04 4163 1204 86 63= = Ð ´ Ð = Ð. . . Va f

For third harmonic component

Current, I3
0100 60= Ð A

Impedance, Z R j L j j31
3 03 9 2 3 1000 8 10 9 24 2563 69 44= + = + ´ ´ ´ ´ = + = Ð-w p b g b g. . W

\ V I Z3 3 3
0 0 0100 60 2563 69 44 2563 129 44= = Ð ´ Ð = Ð. . . Vb g

\ applied voltage is given as,

v t t Ans= + + + +45 1204 1000 86 63 2563 3000 129 440 0sin . sin .d i d i b gV .

8.25 Calculate the impedance consisting of R and L and the power factor of a circuit whose expression for

voltage and current are,

v t t t( ) sin sin( )= + +250 314 50 942 300 (V)

i t t t( ) . sin( ) . sin( . )= - + -17 7 314 45 1583 942 4160 0 (A)

Solution The fundamental frequency current,

I
t

R j L
t1

0250 314
17 7 314 45= + = × -sin

sin( )
w

�(i)

The third harmonic current,

I
t

R j L
t3

0
050 942 30

3
1 583 942 41 6= +

+ = × - ×sin( )
sin( )

w
�(ii)

Equating the magnitudes of (i),

Þ

250
17 7

199 495

2 2 2

2 2 2

R L

R L

+
=

+ =
w

w

.

. �(iii)

Equating the angles of (i)

314 314 451 0t
L

R
t- = --tan

w

 Þ tan- = Þ = Þ =1 045 1
w w

w
L

R
L

R
L R

Putting in (iii), Þ = × Þ = × =( )w wL L R2 99 747 9 987

\ L = × = ×9 987

314
0 0318

\ R = ×9 987 W
L = ×0 0318 H Ans.
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Power factor = 
Average Power

Apparent Power
=

+

+ ´ +

V I V I

V V I I

1 1
1

3 3
3

1
2

3
2

1
2

3
2

2 2

2 2 2 2

cos cosf f

=
´ × + ´ × ×

+ ´ × + ×

=

250 17 7
2

45
50 1 583

2
71 6

250 50
2

17 7 1 583
2

0 69

0 0

2 0 2 2

cos cos

. .Ans

Fourier Transform

8.26 Determine the Fourier transform of one cycle of sine wave, f (t) = A sin w0 t.

Solution ( ) ( ) j tF j f t e dtww
¥

-

-¥
= ò

0

0

sin
T

j tA te dt Iww -= =ò  (say)

0 0

0 000

cos cos
( )

T T
j t j tt t

A e j e dtw ww w
w

w w
- -

é ùæ öê ú= - -ç ÷è øê úë û
ò

0 0
0 0 0

1
( cos 1) cos

T
j t j tj

A e T te dtw ww
w w

w w
- -

é ùì üï ï= - - -ê úí ý
ï ïê úî þë û
ò

0 0

0 0 0 000

sin sin1
( 1) ( )

T
T

j t j t j tt tj
A e e j e dtw w ww ww

w
w w w w

- - -
é ùé ùì üæ ö æ öê úê ú= + - - -í ýç ÷ ç ÷ê úè ø è øê úî þê úë ûë û

ò

or, 0 0
0 0 0 0

( 1) 0 sin [ cos cos 1
T

j t j tjA A
e j t e dt Tw www

w w p
w w w

- -é ù
= + + + = = -ê ú

ë û
ò Q ]

2

2
0 0

( 1)j tA
e Iw w

w w

-= + +

or,
2

02
0

1 ( 1)j TI A e ww
w

w

-é ù
- = +ê ú

ë û

Þ 0

2 2
0

( 1)j TA
I e ww

w w

-= +
-

Ans.
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8.27 Find the Fourier transform of the single pulse shown in the figure.

Draw the continuous magnitude and phase spectra.

Solution Here, f(t) = A ; �a £ t £ 0;

= �A ; 0 £ t £ a

= 0 ; for all other values of t

\ ( ) ( ) j tF j f t e dtww
¥

-

-¥
= ò

0

0

a
j t j t

a

Ae dt Ae dtw w- -

-
= + -ò ò

0

0

a
j t j t

a

je je
A

w w

w w

- -

-

é ù
ê ú= -
ê úë û

[1 1]j a j ajA
e ew w

w
+ -= - - +

Þ 2
( ) (1 cos )

A
F j j aw w

w
= - Ans.

8.28 Find the Fourier transform of the single triangular pulse

shown in the adjacent figure and draw the continuous

spectra.

Solution The wave is, f (t) = 0

2
1V t

a

é ù-ê úë û

i.e., 0

2
( ) 1 ; for 0f t V t t

a

é ù= - >ê úë û

and 0

2
( ) 1 ; for 0f t V t t

a

é ù= + <ê úë û

\ 0

2
( ) ( ) 1 | |j t j tF j f t e dt V t e dt

a
w ww

¥ ¥
- -

-¥ -¥

é ù= = -ê úë ûò ò

2 2
0

0

2 2

2
| |

a a

j t j t

a a

V
V e dt t e dt

a
w w- -

- -

= -ò ò

0 2
0 02

02
2

2
a

a
j t j t j t

a
a

V V
e te dt te dt

j a
w w w

w

- -

-
-

é ùì ü
ê úï ï= - - +í ýê ú- ï ïê úî þë û

ò ò
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0 2
0 0 02 2

0
2

2 2
( )

a
a a

j j j t j t

a

V V V
e e te dt te dt

j a a

w w
w w

w

- + - -

-

= - + -
- ò ò

0 22 22 2
0 0 0

00
2 2

2 2 2

2

aa aa a
j j j t j t j t j t

a a

V V Ve e te e te e
dt dt

j a j j a j j

w w w w w w

w w w w w

- - - - -

- -

é ùé ùæ ö
- ê úê úç ÷= + - - -ê úê ú- - - -è ø ë ûê úë û

ò ò

( ) 2 2
0

2
0 0 0

2 2
0

2

2 2 2
sin 0 0

2 2 2 2

a
j al j alj t j t

a

V V Va a e e a e e

j a j

w ww ww
w w ww w

+ -- -

-

é ùé ùì ü ì üê úê ú= + + + - - +í ý í ýê ú- -ê úî þ î þë ûë û

( ) ( )0 0 0 0 0/ 2 / 22 2
2 2

2 2 2
sin 1 ( 1)

2

a a
j j j a j aV V V V Va

e e e e
j ja a

w w w ww
w w ww w

+ + - -= - + - + - -

( )
/ 2 / 2

0 0 0 / 2 / 2

2

2 2 2
sin (1 1)

2 2

j a j a
j a j aV V Va e e

e e
j a

w w
w ww

w w w

- +
+ -æ ö-= + + - - +ç ÷è ø

( ) ( )0 0 0 / 2 / 2

2

2 2 2
sin sin (2 )

2 2
j a j aV V Va a

e e
a

w ww w
w w w

-= - + - -

/ 2 / 2
0

2

4
1 2

2

j a j aV e e

a

w w

w

+ -é ùæ ö-
= -ê úç ÷è øê úë û

( )0

2

4
1 cos

2

V a

a

w

w

é ù= -ê úë û

( )0 2

2

4
2sin

4

V a

a

w

w
= ´

\ ( )0 2

2

8
( ) sin

4

V a
F j

a

w
w

w
=

Bringing it into standard form,

2

0

2

sin
4

( )
2

4

a

V a
F j

a

w

w

w

æ ö
è ø

=
æ ö
è ø

Ans.
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Its continuous amplitude spectrum is shown. The first zero occurs when, 
4

i.e.
4

a

a

w p
p w= = .

Spectra

0

2

V a

0
0

w

˙F j( )w ˙

8.29 Find the Fourier transform of the existing voltage,

v(t) = V0e
�t, t ³ 0

= 0, t £ 0

and sketch approximately its amplitude and phase spectrum.

Solution 
0(1 ) (1 )

0 0( ) ( ) [ ]
(1 )

j t t j t j t j tV
F j f t e dt V e dt V e dt e

j
w w w ww

w

¥ ¥ ¥
- - - - + - + ¥

-¥
-¥ -¥ -¥

= = = =
+ò ò ò

0

1

V

jw
=

+

The amplitude and phase are 0 1

2
( ) and ( ) tan ( )

1

V
F j jw f w w

w

-= = -
+

Spectra
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8.30 In the figure, Vi(t) = 10 sgn(t) volt. Using the Fourier transform method,

find Vc(t) and sketch Vc(t) versus time, t. Given: R = 5 ohm, C = 1F.

Solution vi(t) = 10 sgn(t)

2 20
( ) 10iV j

j j
w

w w
= ´ =

( )
( )

( )
i

e c

V j
V j X

z j

w
w

w
= ´

Transfer function of the circuit

( ) 1/ 1
( )

( ) 1/ 1
c

i

V j j C
H j

V j R j C j RC

w w
w

w w w
= = =

+ +

where, Vc ( jw) is the Fourier transform of Vc(t)

\
( ) 20 20

( ) ( ) ( )
( ) (1 ) (1 5)
i

c i C

V j
V j H j V j X

Z j j j RC j j

w
w w w

w w w w w
= ´ = ´ = =

+ +

20 100 2 1
10 20

1 ( 5) (1/5)j j j jw w w w
æ ö= - = -ç ÷+ +è ø

Taking inverse Laplace transform,

/5( ) 10sgn( ) 20 ( ) Vt
Cv t t e u t-= -

To plot this curve, we follow the following steps:

l From �¥ < t < 0, vi(t) = �10V, vC(t) = �10V;

l At t = 0, vi(t) jumps from �10V to 10V and thus, vC(t) approaches its final value of 10V

exponentially with time-constant of 5 second.

8.31 Find the response voltage in the network shown in the below figure. Use Fourier transform method.
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Solution By KCL, 
2 2

1 2 2

( ) ( ) 1
( ) ( ) ( )

1 1 2
1/

2

v t v t
i t v t j v t

j

w

w

= + = +

Given: 1( ) 2 ( )ti t e u t-=
Taking Fourier transform,

1 2 2

1
( ) ( ) ( )

2
I j V j j V jw w w w= +

or 2

2 1
( ) 1

1 2
V j j

j
w w

w
é ù= +ê ú+ ë û

2

4 1 1
( ) 4

(1 )(2 ) 1 2
V j

j j j j
w

w w w w

é ù= = -ê ú+ + + +ë û

Taking inverse Fourier transform,

2
2 ( ) (4 4 ) ( )t tv t e e u t- -= - Ans.

8.32 Find the Fourier transform of the sine pulse shown in the

adjacent figure and sketch the amplitude and phase

spectra.

This voltage is applied to a series RL circuit with R = 1 ohm

and L = 1.0H. Determine the amplitude and phase

spectra for the resulting current, i(t).

Solution [from Prob. 8.23] 
2 2 2

1 (1 cos ) sin
( )

1 1 1

je A A
V j A j

wp wp wp
w

w w w

-é ù+ +
Þ = = -ê ú

- - -ë û

\
( )2 2

2 2 2

cos(1 cos ) sin 2(1 cos ) 2
( ) 2

1 1 1
V j A A A

wp
wp wp wp

w
w w w

+ + +
= = =

- - -

\ [ ] ( )1 1sin
( ) Angle of ( ) tan tan tan

1 cos 2 2
j V j

wp wp wp
f w w

wp
- -- - -æ ö= = =ç ÷è ø+

The amplitude and phase spectra are shown.

The current in the RL series circuit,

2 2 2 1

( ) ( )( )
( )

tan

V j jV j
I j

R j L L
R L

R

w f ww
w

w w
w

-
= =

+ + Ð

2 1

| ( )| ( )

1 tan

V j jw f w

w w-

Ð
=

+ Ð

t (second)
0 p

V(t)

A
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1

2 2

cos / 2 1
2 tan

21 1
A

wp wp
w

w w

-= Ð- -
- +

| ( )| ( )I j jw q w= Ð

\
( )

2 2

cos
12

| ( )| 2
1 1

I j A

wp

w
w w

=
- +

and 1( ) tan
2

j
wp

q w w-= - -
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8.33 The current in a 10 ohm resistor is, i(t) = 10 e�2tu(t) A. Calculate the total energy W dissipated in the

resistor during the time interval t = 0 to ¥. What is the energy W1 associated with the frequency

band 0 £ w £ 2 rad/s?

Solution The instantaneous power, 2 4( ) ( ). 10 100 ; 0tp t i t R e t-= = ´ >
Total energy dissipated

[ ]
4

4

0 0

1000
( ) 1000 1000 0 1 250 Joule

4 4

t
t e

W p t dt e dt

¥¥ ¥ -
-

-¥

é ù
= = = = - - =ê ú-ë û
ò ò Ans.

The Fourier transform of i(t) is,

10
( )

2
I j

j
w

w
=

+

The Energy associated,

2
2

1

0

10
( )W I j dw w

p
= ò  

2

1

1
1 Energy is, ( )W F j dw w

p

¥

W
-¥

ì üï ïW =í ý
ï ïî þ

òQ

2

2
0

10 100

4
dw

p w
=

+ò

2
1

0

1000 1
tan

2 2

w
p

-é ù= ê úë û

1 1500
[tan (1) tan (0)]

p
- -= -

500
125 Joule

4

p
p

= ´ = Ans.

8.34 A voltage, v(t) = 100e�25t u(t) volt is applied to the input of an ideal low-pass filter having a cut-off

frequency of 25 rad/s. Calculate the percentage of the total energy transmitted through the filter.

Solution Fourier transform of v(t)

100
( )

25
V j

j
w

w
=

+

\
4

2

2

10
( )

625
V jw

w
=

+
Total 1 W energy available at the filter input is,

4

1 2
0

1 10

625
i

d
W

w
p w

¥

W =
+ò

4

2
0

10

625

d
d

w
w

p w

¥
=

+ò
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4
1

0

10 1
tan

25 25

w
p

¥
-é ù= ê úë û

410 1
200 Joule

25 2

p

p
= ´ ´ = Ans.

The 1 W energy available at the filter output is,

25
2

01

0

1
( )W V j dw w

pW = ò

25254 4
1

2
00

10 10 1
tan

25 25625

dw w

p pw

-é ù= = ´ê úë û+ò

410 1
100 Joule

25 4

p

p
= ´ ´ =

\ Percentage of the input energy appearing at the output,

01

1

100
100 100% 50%

200i

W

W
W

W
´ = ´ =

8.35 A voltage, v(t) = 4e�3t u(t) volt is applied to the input of an ideal band-pass filter having a pass-band

defined by 1 < f < 2 Hz. Calculate the total 1 W energy available at the output of the filter.

Solution Let the output voltage is v0(t). The energy in v0(t) will be equal to the energy of that part

of v(t), having frequency components in the intervals, 1 < f < 2 and �2 < f < �1.

Fourier transform of input,

( )33 4
( ) 4 ( ) 4 ( )

3
j tt j tV j e u t e dt e u t dt

j
www

w

¥ ¥
- +- -

-¥ -¥
= = =

+ò ò

So, the total 1 W energy in the input signal is,

2 6
1

0

8
( ) 16 Joule

3
tW v t dt e dt

¥ ¥
-

W
-¥

= = =ò ò

or, 1
1 2 2

00 0

16 16 16 1 16 1 8
tan Joule

3 3 3 2 39 9
i

d d
W

w w w p

p p p pw w

¥¥ ¥
-

W
é ù= = = = ´ ´ =ê úë û+ +ò ò

Total energy in the output is,

22 2
1

0 2 2
44 0 4

1 16 16 16 1
tan

2 2 3 39 9

d d
W

pp p

pp p

w w w
p p pw w

-- -
-

-- -

é ù= = = ê úë û+ +ò ò

1 116 1 4 2
tan tan

3 3 3

p p
p

- -é ùæ ö æ ö= ´ ´ -ç ÷ ç ÷ê úè ø è øë û

= 0.358 Joule
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8.36. The voltage, Vi(t) = 5e�5t u(t) volt is applied to the input of the RC

circuit shown in figure. Determine the percentage of the 1 W �energy

that is transmitted to the output.

Solution Here, the cut-off frequency,

4 6

1 1
10 rad/s

10 10 10
c RC

w -= = =
´ ´

Fourier transform of vi(t)

5
( )

5iV j
j

w
w

=
+

\
2

2

25
( )

25
iV jw

w
=

+

Total 1 W energy available at the filter input is,

1 2
0

1 25

25
i

d
W d

w
w

p w

¥

W =
+ò

2
0

25

25

d
d

w
w

p w

¥
=

+ò

1

0

25 1
tan

5 5

w
p

¥
-é ù= ê úë û

25 1
2.5 Joule

5 2

p
p

= ´ ´ = Ans.

The 1 W energy available at the filter output is,

10
2

01

0

1
( )iW V j dw w

pW = ò

1010
1

2
00

25 25 1
tan

5 525

dw w
p pw

-é ù= = ´ê úë û+ò

25 1
1.107 1.762 Joule

5p
= ´ ´ =

\ Percentage of the input energy appearing at the output,

01

1

1.762
100 100% 70.48%

2.5i

W

W
W

W
´ = ´ = Ans.

8.37 (a) For the pulse shown in figure prove that,

sin
2( )

2

F j V

wd

w d
wd

=
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(b) Draw the frequency spectra of this waveform and explain how you would use this result to

estimate the bandwidth required for the transmission of such a signal.

(c) Calculate the percentage of energy associated with this pulse that lies in the dominant portion

of the amplitude spectrum.

Solution

(a) The pulse is, ( ) , /2 /2f t V td d= - < <
So, the Fourier transform,

/2 /2

( ) ( )
j j

j t j t e e
F j f t e dt Ve dt V

j

wd wd
w ww

w

¥ ¥ -
- -

-¥ -¥

-= = =ò ò

sin
2

2V

wd

w

æ ö
è ø

=

sin
2

2
2

2

V

wd

d

wd

æ ö
è ø

= ´
æ ö
è ø

\
sin

2
( )

2

F j V

wd

w d
wd

æ ö
è ø

=
æ ö
è ø

The plot of 
sin x

x
 versus x ( )here,

2
x

wd=  is shown in the below figure.
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(b) The function goes through zero when 
2

x
wd=  is an integral multiple of p. The function is unity

at x = 0. This form is called sampling function, and it occurs frequently in modern communica-

tion theory.

From the figure, we see that the major portion of the amplitude spectrum of the rectangular

pulse spreads over the frequency range from 
2 2

to
p p
d d

- . If the pulse is carried through a

transmission system, the bandwidth (BW) of the system must accommodate the major portion of

the amplitude spectrum for reasonable fidelity in transmission; i.e. the cut-off frequency of the

system must be at least,
2

C

p
w

d
= .

Thus, 
2

2 BWC

p
w d p

d
é ù´ = =ê úë û

\ Product of the bandwidth and pulse width is a constant.

(c) We know that the dominant portion of the amplitude spectrum lies in the frequency range

2
0

p
w

d
£ £ . The Fourier transform of the rectangular voltage pulse is,

sin
2

( )

2

V j V

wd

w d
wd

æ ö
è ø

=
æ ö
è ø

The portion of the total 1 W energy associated with v(t) that lies in the dominant portion of the

amplitude spectrum is,

2
2 /

2 2
1 2

0

sin
21

2

W V d
p d

wd

d w
p wd

W

æ ö
è ø

¢ =
æ ö
è ø

ò

{ }
2 2

2
0

2 sin
, ,

2 2

V x
dx let x dx d

x

p
d wd d

w
p

= = \ =ò

{ }
2

2

0 0

2 1 sin 2
sin

V x
x dx

x x

p p
d

p

é ù
= - +ê ú

ê úë û
ò

2

0

2 sin 2
0

V x
dx

x

p
d

p

é ù
= +ê ú

ë û
ò

2

0

4 sin 2

2

V x
dx

x

p
d

p
= ò
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2

0

2 sin 1
, 2 ,

2

V
d Let x dx d

p
d q

q q q
p q

é ù= = \ =ê úë ûò

22
1.418

V d

p
= ´

[The value of the integral as found from the table of sine integrals is 1.418]

\
2

1

2
1.418

V
W

d

p
W¢ = ´

Total 1W energy for v(t) is,

2 2
1

0

W V d V
d

d dW = =ò

Hence the percentage of total energy contained in the dominant portion of the amplitude spec-

trum is,

1

1

2 1.418
100 100 90.2%

W

W p
W

W

¢ ´
´ = ´ = Ans.

8.38 (a) Find the Fourier transform of the function,

f t Ae t

t

t
ab g = ³

= <

-
for 

for 

0

0 0

(b) Use the above transform to find

the output voltage V0 in the figure.

Solution

(a) Fourier transform of the function is,

I j f t e dt Ae e dt A e dt A
e

a
j

j t
t
a j t a

j t a
j t

w
w

w w
w

w

a f a f= = = =
- +F
H

I
K

-

-¥

¥
- -

¥ - +F
H

I
K

-¥

¥ - +F
H

I
K

¥

z z z
0

1
1

0

1

= +
Aa
j a1 w

Ans.

(b) By KCL,I j
V j V j

j

V j
j

( )
( ) ( )

( )w
w w

w

w
w

= + =
+L

NM
O
QP

0 0
03 1

1 3

3

Here, I j
j

w
w

b g = +
1

1
 (From result of (a) with A = 1 and a = 1)

or,
1

1

1 3

30+ =
+L

NM
O
QPj

V j
j

w
w

w
( )

\ V j
j j j j0

3

1 1 3

3
2

1
3

3
2

1
( )

( )( )
w

w w w w
=

+ +
=

+
-

+

L

N
M
M

O

Q
P
P

3 W 1 F

+

–

V t0( )i t e u t( ) = ( ) A)
–t
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Taking inverse Fourier transform

V t e e Ans
t

t
0

33

2

3

2
( ) = -- - .

MULTIPLE-CHOICE QUESTIONS

8.1 A current consists of a fundamental component of amplitude I1, and a third harmonic of amplitude I3.

The rms value of current will be

(a) 1 3( )/ 2I I+ (b) 1 3( )/2 2I I+ (c) 2 2
1 3I I+ (d) 2 2

1 3( )/2I I+

8.2 The Fourier series expansion of a periodic function with half wave symmetry contains only

(a) sine terms (b) cosine terms (c) odd harmonics (d) even harmonics

8.3 A periodic function f (t) is said to have a quarter wave symmetry, if it possesses

(a) even symmetry at an interval of quarter of a wave.

(b) even symmetry and half wave symmetry only

(c) even or odd symmetry without the half wave symmetry

(d) even or odd symmetry with the half wave symmetry.

8.4 If f(t) is a periodic waveform with even symmetry, then its Fourier series expansion does not contain

(a) sine terms (b) cosine terms (c) odd harmonics (d) even harmonics

8.5 Periodic signal that obeys Dirichlet�s condition can be represented by

(a) Fourier series (b) Fourier transform

(c) Inverse Fourier transform (d) None of these

8.6 Which of the following conditions is true for even function?

(i) f(t) = � f (t ± T/2) (b) f(t) = � f(� t) (c) f(t) = f(�t) (d) f(t) = f(T )

8.7 Which of the following conditions is true for odd function?

(a) f(t) = � f(t ± T/2) (b) f (t) = � f (�t) (c) f (t) = f (�t) (d) f (t) = f (T )

8.8 A periodic function f (t) having a time period T, repeats itself after half time period T /2. The Fourier

series of f (t) would contain.

(a) cosine terms only (b) sine terms only

(c) odd harmonic terms only (d) even harmonic terms only

8.9 Which of the following statements is true for a delayed step function u(t � T)?

(a) It has an infinite Fourier series (b) It has no Fourier series

(c) It has a finite Fourier series (d) Its Laplace transform is 1/s.

8.10 Which one of the following is the correct Fourier transform of the unit step signal u(t)?

(a) pd (w) (b)
1

jw
(c)

1
( )

j
pd w

w
+ (d)

1
2 ( )

j
pd w

w
+

8.11 If f (t) = � f (�t) and f (t) satisfy the Dirichlet�s conditions, then f (t) can be expanded in a Fourier series

containing

(a) only sine terms (b) only cosine terms

(c) cosine terms and a constant term (d) sine terms and a constant term.

8.12 Fourier transform F ( jw) of an arbitrary signal has the property:

(a) F( jw) = F(� jw) (b) F( jw) = �F (�jw) (c) F( jw) = F * (�jw) (d) F( jw) = �F * (�jw)

8.13 The Fourier series expansion of an odd periodic function contains
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(a) cosine terms (b) constant terms only (c) sine terms.

8.14 For the expansion of f (w t) in Fourier series a0 + a1 cos w t + � + an cos nw t + �+ b1 sin w t + �

+ ba sin nw t if f(w t) = f(�w t) then:

(a) an = 0 (b) bn = 0 for all n

(c) a0 = 0 (d) an = 0 for all n except n = 0.

8.15 Two complex waves will have the same waveform if

(a) they contain the same harmonics.

(b) harmonics are similarly spaced with respect to the fundamental.

(c) the ratio of corresponding harmonics to their respective fundamentals is the same.

(d) all of the above.

8.16 The complex wave is symmetrical when

(a) it contains only even harmonics.

(b) it contains only odd harmonics.

(c) it contains both odd and even harmonics.

(d) phase difference between even harmonics and fundamental is either 
3

or
2 2

p p
.

8.17 An even waveform when expressed in exponential Fourier series will contain:

(a) only imaginary coefficient (b) only real coefficient

(c) both (a) and (b) (d) None of these.

8.18 The current waveform in a pure resistor of 10 W is shown

in the given figure. Power dissipated in the resistor is

(a) 7.29 W (b) 52.4 W

(c) 135 W (d) 270 W.

8.19 The inverse Fourier transform of

( ) exp ( ) ( )F j j t f t dtw w
¥

-¥
= -ò  is:

(a) ( ) exp( ) ( )f t j t F j dw w w
¥

-¥
= +ò (b)

1
( ) exp( ) ( )

2
f t j t F j dw w w

p

¥

-¥
= +ò

(c)
1

( ) exp( ) ( )
2

f t j t F j dw w w
p

¥

-¥
= - +ò (d)

1
( ) exp( ) ( )

2
f t j t F j dw w w

p

¥

-¥
= - -ò

8.20 Fourier transform of the gate function as shown in the figure is

f t for tb g = - £ £
=

1
2 2

0

t t

otherwise

(where t is the width of the gate function)

The value of F(w) is

(i)
t wt

wt

sinb g
(ii)

t wt

wt

sin 2

2

b g

(iii)

t
wt

wt

sin
2

2

F
H

I
K

F
H

I
K

(iv)
t

wt

wt2

2

2

sin
F
H

I
K

F
H

I
K

0

1

f t( )

– /2t t/2 t
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8.21 The Fourier transform of Signum function is given by

(i) j fp (ii)
1

j fp
(iii)

1

j f
f

p
pd+ b g (iv) j f fp pd+ b g

8.22 The Fourier transform of unit impulse function d (t) would be

(i)
1

2 2+wd i
(ii) 2 2+wd i (iii) 1 (iv)

1

2

8.23 A ramp function

(i) has Laplace transform but not Fourier transform

(ii) has Fourier transform but not Laplace transform

(iii) have both Laplace and Fourier transform

(iv) none of these

8.24 x(t) is a real valued function of a real variable with period T. Its trigonometric Fourier Series expan-

sion contains no terms of frequency w p= 2
2k

T
b g

; k = 1, 2, �Also, no sine terms are present.

Then x(t) satisfies the equation

(i) x t x t Tb g b g= - - (ii) x t x T t x tb g b g b g= - = - -

(iii) x t x T t x t Tb g b g e j= - = - -
2

(iv) x t x t T x t Tb g b g e j= - = -
2

8.25 An input voltage v t t tb g d i d i= + + +10 2 10 10 5 2 100 0cos cos V is applied to a series combination

of resistance R = 1W and an inductance L = 1H. The resulting steady-state current i(t) in ampere is

(i) 10 55 10 2 10 20 0 1cos cos tant t+ + + + -d i d i

(ii) 10 55 10
3

2
2 550 0cos cost t+ + +d i d i

(iii) 10 35 10 2 10 20 0 1cos cos tant t- + + - -d i d i

(iv) 10 35 10
3

2
2 350 0cos cost t- + -d i d i

8.26 Choose the function f (t), -¥ < t < ¥, for which a Fourier series cannot be defined.

(i) 3 25sin tb g (ii) 4 20 3 2 710cos sint t+ +b g b g
(iii) exp sin- t tc h b g25 (iv) 1
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EXERCISES

Fourier Series

8.1 Find the Fourier series expansion for the following functions and sketch the frequency spectrum.

(a)

(b)

(c)

2 2
1

2 1
(a) ( ) sin (b) ( ) cos cos3 ..

2 4 3n

A A T T
Ans. f t n t f t t t

n
w w w

p p

¥

=

é é ù= + = - + +ê ê úë ûë
å

2
1

1 1 2 1
(c) ( ) sin cos 2

2 4 1n

f t t n t
n

w w
p p

¥

=

ù
= + - ú- û

å

8.2 A periodic waveform as shown in the below figure feeds an RL load with R = 10 ohm and L =
1

2p
H.

Calculate the power at the fundamental frequency supplied to the load.

8.3 A waveform of the shape shown in the below figure (i) is applied to the network shown in the below

figure (ii). Calculate the power dissipated in a 20 W resistor. Take w = 1 rad/s. [1.17 W]
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(i) (ii)

8.4 A series RLC circuit with R = 5 W, L = 5 mH, C = 50 mF has an applied voltage

v(t) = 150 sin 1000 t + 100 sin 2000 t + 75 sin 3000 t (V )

Determine the effective current and average power. [16.58 A; 1374 W]

8.5 Find the Fourier series expansion for the waveforms shown in the figure.

(a)

p 3p

2p 4p

p

-p

0

v

x

(b)

x

V

f x( )

3p2pp0–p

(a) v x x x x= - + + + +L
NM

O
QP2

1

2
2

1

3
3

1

4
4sin sin sin sin ...

(b) v
V V

x
V

x
V

x= + + + +
2

4 4

3
3

4

5
5

2 2 2
p p p

cos cos cos ...
b g b g

8.6 A triangular wave increases linearly from 0 to Vm during the interval 0 to p. The wave has zero value

during the interval p to 2p  and this cycle is repeated. Find the Fourier series representation of the

wave.

v
V V

x x
V

x x x xm m m= - + +F
H

I
K + - + - +F

H
I
K

L
NM

O
QP4

2 1

25
5

1

2
2

1

3
3

1

4
4

2
p p

cos cos ... sin sin sin sin ...

8.7 A wave has a constant value Im during the interval - p
2

 to 
p

2
 and � Im during the interval 

p

2
  to 

3

2

p
.

This cycle is repeated in the next intervals. Find the Fourier series for the wave.

i
I

com= - + - +F
H

I
K

L
NM

O
QP

4 1

3
3

1

5
5

1

7
7

p
q q q qcos cos cos ...
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8.8 (a) Find the trigonometric Fourier series for the voltage wave

shown in the figure.

(b) If this voltage is applied to a capacitor of 1 F, find the

current.

Fourier Transform

8.9 Find the Fourier transform of the following functions:

 (i) f(t) = e�at u(t), a > 0.

 (ii) | |( )
a tf t e-= , for all values of t.

 (iii) f(t) = 1

(iv) Unit impulse function, d (t).

(v) Signum function, sgn(t).

(vi) Unit step function, u(t).

8.10 Determine the output voltage response across the capacitor to a current source excitation

( ) ( )ti t e u t-= , as shown in the below figure.

[v(t) = e� t � e� 2t (V)]

8.11 Determine the response of the network shown in the below figure when a voltage having the

waveform shown in figure is applied to it., by using Fourier transform method.

(i) (ii)

8.12 The current source in the Figure is i t e tb g = -4  for t ³ 0. Find the voltage V0 using Fourier transform

method.

v t e e Vt tb g b g= -- -8 8 2

1 W 0.5 F

+

–

V t0( )i t( )

0 0.5 1.0 1.5 t(second)

1.0

v t( )
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8.13 The voltage source in the figure is an exponentially decaying pulse,

v t t

e tt

b g = <
= ³-

0

0

for   0

for a

Find the output voltage V0.

V
RC

e
RC

RC
e t

t
RC t

0
1

1 1
=

-
F
H

I
K -

-
³L

NM
O
QP

- -

a

a

a
a for 0.

8.14 A cosine pulse v V tm= cos  is zero for all time except - £ £p p

2 2
t  . Find the Fourier transform of the

pulse and sketch the continuous amplitude spectrum and phase spectrum.

2

1 22

Vm

-
F
H

I
K

L
NM

O
QPw

w
p

cos

8.15 Find the Fourier transform of the triangular pulse shown in the figure.

0

t

1.0

f t( )

Dt

D
D

D

t

t

t2

4

4

2

2

sin
w

w

F
H

I
K

F
H

I
K

L

N

M
M
M
M

O

Q

P
P
P
P

SHORT-ANSWER TYPE QUESTIONS

8.1 (a) What are the conditions which a periodic function must satisfy to have its Fourier series

expansion?

(b) Write the trigonometric form of the Fourier series for a function f(t) and explain, by deriving

necessary relations, how the values of various co-efficients are obtained.

or

What do you understand by Fourier series? Outline the general procedure of determining

Fourier series of periodic waveform.

(c) Give the exponential form of Fourier series for a periodic function.

8.2 Derive an expression for the effective value of a non-sinusoidal periodic waveform

or

Discuss the method of computing the effective value of a non-sinusoidal periodic waveform.

8.3 (a) Explain clearly the significance of the following terms used in determining Fourier series of a

given waveform:

(i) Odd symmetry or Rotation symmetry,

(ii) Even symmetry or Mirror symmetry,

(iii) Half-wave symmetry or Alternation symmetry,

(iv) Quarter-wave symmetry.

(b) Show that the Fourier series expansion of a periodic function with odd (rotation) symmetry

contains only the sine terms.

+

–

C

+

–

V0Rv t( )
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(c) Show that the Fourier series expansion of a periodic function with even (mirror) symmetry

contains only the cosine terms plus a constant.

(d) Show that the Fourier series expansion of a periodic function with half-wave symmetry contains

only the odd harmonics.

8.4 Discuss in brief the following:

(i) Fourier series and its applications to network analysis,

(ii) Method of analyzing the complex waveform by Fourier series,

(iii) Frequency and phase spectra of periodic waveform.

(iv) Truncating Fourier series.

(v) Gibb�s phenomenon.

8.5 (a) Give the definitions of a Fourier transform pair and illustrate its use in network analysis with one

example.

(b) Explain clearly the difference between Fourier transform and Laplace transform and discuss

briefly their importance in analyzing electrical network.

or

Define Fourier�s transform. How does Fourier transform differ from (i) Fourier integral and (ii)

Laplace transform?

(c) Write a brief note on the use of Fourier transform and Fourier integrals in the analysis of circuits

excited by ideal sources of non-sinusoidal waveforms.

(d) Discuss the important properties of Fourier transforms.

8.6 When do we use Fourier transform?

Discuss that Fourier integral is the limit of Fourier series, as time period T of a repetitive wave

approaches infinity as the limit.

or

How would you obtain Fourier integral from Fourier series?

8.7 Find the amplitude-frequency distribution of a single non-repetitive voltage pulse of duration one

microsecond and explain how its frequency-bandwidth is estimated.

or

Consider a periodic voltage pulse waveform of period T (second) and width T0 (second). Find an

expression for the frequency-spectra of this waveform and explain how you would use this result to

estimate the bandwidth required for the transmission of such a signal.

8.8 State and prove Parseval�s theorem for a periodic function.

8.9 Show that when f (t) is an even function of t, its Fourier transform F( jw) is an even function of w and

is real; while when f (t) is an odd function of t, its Fourier transform F( jw) is an odd function of w and

is imaginary.

8.10 Explain why:

(i) When a complex voltage wave is applied to a pure capacitor, the current wave has more harmon-

ics than the applied voltage wave.

(ii) When a complex voltage wave is applied to a pure inductor, the current wave has lesser harmon-

ics than the applied voltage wave.

(iii) If a voltage wave containing a dc component is applied to a series RC circuit, the current wave

does not contain the corresponding dc component.

8.11 Explain briefly the interrelation between Fourier series, Fourier transforms and Laplace transforms.
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ANSWERS TO MULTIPLE-CHOICE QUESTIONS

8.1 (d) 8.2 (c) 8.3 (d) 8.4 (a) 8.5 (a) 8.6 (c) 8.7 (b)

8.8 (c) 8.9 (c) 8.10 (c) 8.11 (a) 8.12 (c) 8.13 (c) 8.14 (b)

8.15 (d) 8.16 (b) 8.17 (b) 8.18 (d) 8.19 (b) 8.20 (c) 8.21 (b)

8.22 (c) 8.23 (a) 8.24 (d) 8.25 (c) 8.26 (c)



CHAPTER

9
Filter Circuits

9.1 INTRODUCTION

Passive filters are built from passive components; resistors, capacitors, and inductors. Active filters

also use resistors and capacitors, but the inductors are replaced by active devices capable of

producing power gain. These devices can range from single transistor to integrated circuit (IC)�

controlled sources such as the operational amplifier (op amp), and more exotic devices, such as the

operational transconductance amplifier (OTA), the generalized impedance converter (GIC), and the

frequency-dependent negative resistor (FDNR).

In this chapter, active filters with op-amp have been discussed.

9.1.1 Operational Amplifier (Op-Amp)

An operational amplifier is a direct- coupled high gain, differential-input amplifier.

With the addition of suitable external feedback components, an op-amp can be used for a variety

of application, such as ac and dc signal amplification, active filters, oscilators, comparators, regula-

tors, and others.

9.1.2 Operational Amplifier Terminals

Figure 9.1 Operational amplifier
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Op-amp has five basic terminals�

(i) Two for input signals, V1 and V2 � differential input terminals.

(ii) One for output signal, V0 single-ended output.

(iii) Two for power supply, +V and �V. (Maximum V = ± 18 V)

Note The power supply has three terminals: positive, negative and power supply common. The

common terminal may or may not be wired to earth ground via the third wire of line cord. However,

it has become standard practice to show power common as a ground symbol.

Use of the term �ground� on the ground symbol is a convention which indicates that all voltage

measurements are with respect to �ground�.

9.1.3 Op-Amp Characteristics

Ideal Characteristics

(i) An infinite voltage gain

(ii) An infinite bandwidth

(iii) An infinite input impedance

(iv) Zero output impedance

(v) Perfect balance, i.e., the output is zero when equal voltages are present at the two input

terminals; and

(vi) The characteristics do not change with temperature

Practical (Actual) Characteristics

(i) The gain at low- frequency is finite and very high (of the order of 103 to 106). The gain is

constant upto a few hundred kHz and then decreases monotonically with the increase in

frequency.

(ii) The bandwidth is finite and very high.

(iii) The input impedance lies in the range of 150 kW to a few hundred M W.

(iv) The output impedance of a practical op-amp lies between 0.75 to 100 W.

(v) Perfect balance is not achieved with practical op-amps.

9.2 FILTER

An electric filter is a four-terminal frequency-selective network designed generally with reactive

elements to transmit freely a specified band of frequency and block or attenuate signals of frequency

outside this band.

l The band of frequency transmitted through the filter is called the Pass-band.

l The band of frequency which is severely attenuated by the filter is called the attenuated on

stop-band.

9.3 CLASSIFICATION OF FILTERS

This must be remembered that there is no simple hierarchical classification of filters. Filters may be

classified on different bases which overlap each other in many respects.
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Depending upon the type of techniques used in signal processing, filters are classified as:

(i) Analog Filters, and

(ii) Digital Filters.

Analog filters are designed to process analog signals using analog techniques, while digital filters

process analog signals using digital techniques.

Depending on the type of elements used in their construction, filters are classified as:

(i) Active Filters, and

(ii) Passive Filters.

A passive filter is built with passive components such as resistors, capacitors and inductors.

Active filters, on the other hand, make use of transistors or op-amps (providing voltage amplification,

and signal isolation or buffering) in addition to resistors and capacitors.

Depending upon the type of elements used, the operating frequency range of the filter will be

different and accordingly the filters are classified as:

(i) Low Pass Filters,

(ii) High Pass Filters,

(iii) Bans Pass Filters,

(iv) Band Stop Filters, and

(v) All Pass Filters.

1. Low-Pass Filter It is a circuit that has a constant output (or gain) from zero to a cut-off

frequency, fc and attenuation of all frequencies above fc.

(a) (b)

Figure 9.2 Low-pass filter characteristics: (a) Actual (b) Ideal

2. High-Pass Filter It is a circuit that attenuates all signals of frequency below the cut-off

frequency and has a constant output (or gain) above this frequency.
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3. Band�Pass Filter It is a circuit that passes a band of frequencies and attenuates all frequen-

cies outside the band.

Pass-bandStop-band Stop-band

1

0.707

0 fLC fUC Frequency

V

V
0

i

4. Band-Rejection/Elimination Filter or Band Stop Filter or Notch Filter It rejects a

specified Band of frequencies while passing all other frequencies outside the band.

Pass-bandStop-band

1

0.707

0 fLC fUC Frequency

V

V
0

i

Pass-band

fC

5. All�Pass Filter It passes all frequencies equally well, i.e., output and input voltages are equal in

magnitude for all frequency; with the phase�shift between the two a function of frequency.

This filter is also known as a phase-shift filter, time-delay filter, or simply the delay equalizer.
One major application of an all-pass filter is the simulation of a lossless transmission line. The
magnitude of the output voltage is the same as the input voltage but the output voltage is shifted in
phase with respect to the input voltage.

Figure 9.3 High pass filter characteristics (a) Actual (b) Ideal

Figure 9.4 Band pass filter characteristics

Figure 9.5 Band reject filter characteristics
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The highest frequency up to which the input and output amplitudes remain equal is dependent on
the unity-gain bandwidth of the op-amp. At this frequency, however, the phase-shift between the
input and output is maximum.

9.4 ADVANTAGES OF ACTIVE FILTERS OVER PASSIVE FILTERS

1. Less Cost Active filters are very much inexpensive than passive filters due to the variety of
cheaper op-amp and the absence of costly inductors.

2. Gain and Frequency Adjustment Flexibility Since the op-amp is capable of providing a
gain (which may also be variable), the input signal is not attenuated as it is in a passive filter.
In addition, the active filter is easier to tune or adjust.

3. No Loading Problem Active filters provide an excellent isolation between the individual
stages due to the high input impedence (ranging from a few kW to a several thousand MW)
and low output impedance (ranging from less than 1 W to a few hundred W). So, the active
filter does not cause loading of the source or load.

4. Size and Weight Active filters are small in size and less bulky (due to the absence of bulky
�L�) and are rugged.

5. Non-floating Input and Output Active filters generally have single ended inputs and out-
puts which do not �float� with respect to the system power supply or common. This property
is different from that of the passive filters.

9.5 APPLICATION OF ACTIVE FILTERS

Application of active filters is given below. They are used
(i) in the field of communication and signal processing
(ii) in almost all sophisticated electronic systems, such as radio, television, telephone, radar, space

satellites, biomedical equipments, and so on.

9.6 LOW-PASS ACTIVE FILTER

The circuit of Figure 9.7 is a commonly used low-pass active filter.
The filtering is done by the RC network, and the op-amp is used as a unity-gain amplifier. The

resistor Rf (= R) is included for DC offset.
[At DC, the capacitive reactance is infinite and the dc resistive path to ground for both terminals
should be equal.]
Here, all the voltages Vi, Vx, Vy, Vo are measured with respect to ground.
Since the input impedance of the op-amp is infinite, no current will flow into the input terminals.

Figure 9.6 All pass filters characteristics
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Vy = 0

1 + f

V

R R
 ´ R1 (9.1)

According to the voltage divider � rule, the voltage across the capacitor,

Vx = c

c

X

R X+
Vi ; Xc = 

1

j Cw
 = 

1

2j f Cp

= 
1/ 2

1

2

j f C

R
j f C

p

p
+

Vi

= 
1 2+

iV

j f RCp
(9.2)

Since the op-amp gain is infinite,

\ Vx = Vy

or, 0 1

1 f

V R

R R+
 = 

1 2+
iV

j f RCp

Þ 0

i

V

V
 = 

1(1 / )

1 2

fR R

j fRCp

+
+

or, 0

1 ( / )
F

cL
i c

V A
A

V j f f
= =

+

where, AF = 
1

1
fR

R

æ ö
+ç ÷è ø

 = pass-band gain of the filter.

f = frequency of the input signal.

fc = 
1

2 RCp
 = cut-off frequency of the filter.

AcL = Closed- loop gain of the filter as a function of frequency.

The gain magnitude,

| AcL | = 0

i

V

V
 = 

21 ( / )

F

c

A

f f+
 = 

2 2 21

FA

R Cw+

Figure 9.7 First order low-pass active filter circuit
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and phase angle (in degree),

f = � 1tan
c

f

f
- æ ö
ç ÷è ø

 = � 1tan ( )RCw
-

9.6.1 Operation of the Filter

The operation of the low-pass filter can be verified from the gain magnitude equation as follows:

1. At very low frequencies , i.e., f << fc,

| |CL FA A@

2. At f = fC, | |
2

F
CL

A
A =  = 0.707 AF = �3dB AF , f = � 45°

3. At f > fC , | AcL | < AF

Thus, the filter has a constant gain of AF from 0 Hz to the cut �off frequency fc. At fc, the gain is

0.707AF and after fc , it decreases at a constant rate with an increase in frequency.

Figure 9.8 shows that the actual response deviates from the straight dashed-line approximation at

the vicinity of �fc�.

Frequency

0

1.0

G
a

in

fc

0.707

Figure 9.8 Low pass filter characteristics

At w = 0.1 wC, | | 1(0 dB)CLA @

At w = 10 wC, | | 0.1( 20 dB)CLA @ -
The table below gives the magnitude and phase angle for different values of w between 0.1wc and

10wc.
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w AcL Phase-angle (degree)

0.1wc 1.0 �6

0.25wc 0.97 �14

0.5wc 0.89 �27

wc 0.707 �45

2wc 0.445 �63

4wc 0.25 �76

10wc 0.1 �84

9.6.2 Filter Design

A low-pass active filter can be designed by implementing the following steps:-

1. A value of the cut-off frequency wc (or, fc) is chosen.

2. A value of the capacitance C is selected; usually the value is between 0.001 and 0.1mF. Mylar

or tantalum capacitors are recommended for better performance.

3. The value of the resistance R is calculated from the relation,

R(in W) = 
1

CCw
 = 

1

2 Cf Cp

fc = cut-off frequency in hertz

wc = cut-off frequency radian/second

C = in farad

4. Finally, the values of R1 and Rf are selected depending on the desired pass band gain by using

the relation AF = 
1

1
fR

R

æ ö
+ç ÷è ø

.

9.6.3 Frequency Scaling

Once a filter is designed, there may be a need to change its cut-off frequency. The procedure used to

convert an original cut-off frequency fc to a new cut-off frequency fc¢ is called �frequency- scaling�.

It is accomplished as follows:-

To change a cut-off frequency, multiply R or C, but not both by the ratio

cold

new

Old Cut-off Frequency,

New Cut-off Frequnecy,

æ ö
ç ÷è øc

f

f

Example 9.1 (a) Design a low-pass active filter at a cut-off frequency of 1kHz with a pass band

gain of 2. Using the frequency scaling technique, convert this filter to a low-

pass filter of cut-off frequency 1.6 kHz.

(b) Plot the frequency response of this low-pass active filter.

Solution (a) Here, fc = 1 kHz, AF = 2; Let, C = 0.01 mF.

3 6

1 1
15.9 k

2 2 10 0.01 10-
= = = W

´ ´ ´c

R
f Cp p

Q AF = 2 = 
1

1
fR

R

æ ö
+ç ÷è ø

Þ Rf = R1 = 10 kW
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So, the complete circuit is shown in Fig. 9.9(a).

To change the cut-off frequency from 1 kHz to 1.6 kHz, we multiply the

15.9 kW resistor by

Original Cut-off frequency 1
0.625

New Cut-off frequency 1.6
= =

Q New resistor, R = 15.9 ´ 0.625 = 9.94 kW
(b) To plot the frequency�response, the data are obtained from the equation,

0

2in 1 ( / )
=

+
F

c

V A

V f f

Frequency (Hz) Gain Gain (in dB)

10 2 6.02

100 1.99 5.98

200 1.96 5.85

700 1.64 4.29

1,000 1.41 3.01

3,000 0.63 �3.98

7,000 0.28 �10.97

10,000 0.20 �14.02

30,000 0.07 �23.53

100,000 0.02 �33.98

Frequency (Hz)

1000

0

1.414

2.0

G
a

in

Figure 9.9(b) Filter characteristics of Example 9.1

Figure 9.9(a) Circuit of Example 9.1



9.10 Circuit Theory and Networks

9.7 HIGH-PASS ACTIVE FILTER

The circuit is shown in Fig. 9.10.

The filtering is done by the CR network and the op-amp is connected as a unity � gain follower. The

feedback resistor, Rf is included to minimize dc off-set.

Here,

Vy =V0
1

1 f

R

R R+
(9.3)

Figure 9.10 First order high pass active filter circuit

Voltage across the resistor R,

Vx = i
c

R
V

R X+
 = 

1 i

R
V

R
j Cw

+
 = 

1 i

j RC
V

j RC

w

w+
(9.4)

Since op-amp gain is infinite,

Vx = Vy

Þ 0 1

1f

V R

R R+
 = 

1 i

j RC
V

j RC

w

w+

Þ 0

i

V

V
 = 

1

1

fR R

R

+æ ö
ç ÷è ø 1

j RC

j RC

w

w

æ ö
ç ÷+è ø

 = 
2

1 2F

j f RC
A

j f RC

p

p
´

+

)

)

é ù= ê ú+ë û
0

( /

1 ( /
c

F
i c

V j f f
A

V j f f

where, AF = (1 + Rf /R1) = Pass-band Gain of the filter,

f = frequency of the input signal (Hz),

fc = 
1

2 RCp
 cut-off frequency of the filter (Hz).

The gain- magnitude,

0

i

V

V
 = 

2

( / )

1 ( / )

F c

c

A f f

f f+
 = 

2 2 21
F

RC
A

R C

w

w

×
+

and phase-angle (in degree), f = 90° � tan�1 ( f/fc) = 90° � tan�1 (wRC )
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9.7.1 Operation of the Filter

The operation of the high-pass filter can be verified from the gain�magnitude equation as follows:

1. At very low frequencies, i.e., f < fc, 
0

i

V

V
 < AF

1.0

0.707

0

fc Frequency

G
a

in

Figure 9.11 High pass filter characteristics

2. At f = fc, 
0

i

V

V
 = 

2

FA
 = 0.707 AF = �3 dB, f = 45°

3. At f >> fc, 
0

i

V

V
 @ AF

9.7.2 Filter Design

A high-pass active filter can be designed by implementing the following steps:

1. A value of the cut-off frequency, wc (or fc) is chosen.

2. A value of the capacitance C, usually between 0.001 and 0.1 µF, is selected.

3. The value of the resistance R is calculated using the relation,

R = 
1

cCw
 = 

1

2 cf Cp

4. Finally, the values of R1 and Rf are selected depending on the desired pass-band gain, using,

the relation, AF = 
1

1
fR

R

æ ö
+ç ÷è ø

.

Example 9.2 (a) Design a high-pass active filter of cut-off frequency 1 kHz with a pass-band

gain of 2.

(b) Plot the frequency response of the filter.
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Solution (a) Here, fc = 1kHz, AF = 2

Let, C = 0.01 mF.

\ R = 
1

2 cf Cp
 = 

3 6

1

2 10 0.01 10p
-´ ´ ´

 = 15.9 kW

\ AF = 2 =  
1

1
fR

R

æ ö
+ç ÷è ø

 Þ Rf = R1 = 10 kW

So, the complete circuit is shown in Fig. 9.12(a).

Figure 9.12(a) Circuit of Example (9.2)

(b) The data for the frequency response plot can be obtained by substituting the

input frequency ( f ) values from 100 Hz to 100 kHz in the equation.

0

i

V

V
 = 

2

( / )

1 ( )/+
F c

c

A f f

f f

2.0

1.414

0

1000 Frequency (Hz)

G
a

in

Figure 9.12(b) Filter characteristics of Example (9.2)
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Frequency (Hz) Gain Gain (in dB)

100 0.20 �14.02

200 0.39 �9.13

400 0.74 �2.58

700 1.15 1.19

1,000 1.41 3.01

3,000 1.90 5.56

7,000 1.98 5.93

10,000 1.99 5.98

30,000 2 6.02

100,000 2 6.02

9.8 BAND-PASS ACTIVE FILTER

A band-pass filter has a pass-band between two cut-off frequencies fce (lower cut-off frequency) and

fcu (upper cut-off frequency) such that fcu > fcl. Any input frequency outside this pass-band is

attenuated.

9.8.1 Bandwidth (BW)

The range of frequency between fCL and fCU is called the bandwidth.

BW ( )= -CU CLf f

The bandwidth is not exactly centered on the resonant frequency ( fr).

If fCU and fCL are known, the resonant frequency can be found from,

fr = CL CUf f×

If �fr� and BW are known, cut-off frequencies are found from,

( ) ( )
2

2BW BW

2 2

æ ö
= - -ç ÷è øcl rf f

( BW)= +cu clf f

Figure 9.13 Band pass filter characteristics
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9.8.2 Quality Factor (Q)

It is defined as the ratio of resonant frequency to bandwidth, i.e., Q = 
BW

rf

Q is a measure of the selectivity. Higher the value of Q, the more selective is the filter, i.e., narrower

is the bandwidth.

Example 9.3 A band-pass voice filter has lower and upper cut-off frequencies of 300 and

3000 Hz, respectively. Find (a) Bandwidth, (b) The resonant frequency, (c) The

quality factor.

Solution (a) BW = ( fCU � fCL ) = (3000 � 300) = 2700 Hz Ans.

(b) fr = CL CUf f  = 300 3000´  = 950 Hz Ans.

(c) Q = 
BW

rf  = 
950

2700
 = 0.35 Ans.

[Note fr is below the centre frequency 
300 3000

2

+
 = 1650 Hz]

Example 9.4 A band-pass filter has a resonant frequency of 950 Hz and a bandwidth of 2700 Hz.

Find its lower and upper cut-off frequencies.

Solution fCL = 

2
2BW BW

2 2

æ öæ ö æ ö+ -ç ÷ç ÷ ç ÷è ø è øç ÷è ø
rf

= 

2
22700 3700

(950) (1650 1350)
2 2

æ öæ ö æ ö+ - = -ç ÷ç ÷ ç ÷è ø è øç ÷è ø

= 300 Hz Ans.

\ fcu = (300 + 2700) = 3000 Hz

9.8.3 Types of Band-Pass Filters

1. Wide Band-Pass Filter wide-band filter has a bandwidth that is two or more times the

resonant frequency; i.e., Q £ 0.5.

It is made by cascading a low-pass and a high-pass filter circuit.

2. Narrow Band-Pass Filter A narrow band filter has a quality factor, Q > 0.5.

It is made by using a single op-amp and multiple feed back circuits.

Wide Band-Pass Active Filter In general, a wide-band filter (Q £ 0.5) is made by cascading

a low-and a high-pass filter, provided the cut-off frequency of the low-pass section is greater than

that for the high-pass section.
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Characteristics
(i) The cut-off frequency of low-pass filter should be 10 or more times the cut-off frequency of

the high-pass filter.

(ii) Each section should have the same pass band gain.

(iii) The lower cut-off frequency, fcl, will be determined only by the high-pass filter.

(iv) The higher cut-off frequency, fcu, will be determined only by the low-pass filter.

(v) Gain will be maximum at the resonant frequency, fr, and equal to the pass-band gain of either

filter.

Figure 9.14(a) Wide band-pass active filter circuit

Frequency Response

Figure 9.14(b) Frequency response of wide band-pass active filter circuit

Here, 
1 1

1

2CLf R Cp
= , 

2 2

1

2CUf R Cp
=

The voltage gain magnitude of the band�pass filter is equal to the product of the voltage gain

magnitudes of the high-pass and the low-pass filters.

0

2 2

( / )

[1 ( / ) ] [1 ( / ) ]
\ =

+ × +
FL FH CL

i
CL CU

V A A f f

V f f f f
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Where, AFL, AFH = Pass-band gain of low-pass and high-pass filter;

f = frequency of input signal (Hz);

fcl = lower cut-off frequency (Hz);

fcu = higher cut-off frequency (Hz);

At the centre frequency, ( )r CL CUf f f= , the Gain is, 0 CU
FL FH

i CL CU

V f
K A A

V f f
= =

+

At CLf f= , 0

2 2 2

( / )

[1 ( / ) ][1 ( / ) ] (2)[1 ( / ) ]

FL FH CL CL FL FH

i
CL CL CL CU CL CU

V A A f f A A

V f f f f f f
= =

+ + +

0

2 22

FL FH CU

i
CL CU

V A A f

V f f
=

+

At CUf f= , 0

2 2 2

( )/

(2)[1 ( / ) ] 2

FL FH CU CL FL FH CU

i
CL CL CL CU

V A A f f A A f

V f f f f
= =

+ +

At CL CUf f f= = , 0

2 2
Gain,

2

CUFL FH

i
CL CU

V fA A

V f f

é ù
ê ú=
ê ú+ë û

Þ 0

2
FL FH

i

V A A

V
=

Narrow Band-pass Active Filter In general, a narrow band-pass filter is made by using

multiple feedback circuit with a single op-amp.

Figure 9.15 Multiple feedback narrow BP active filter

Compared to all other filters, it has some unique features, as given below.

(i) It has two feedback paths, hence the name �multiple feedback filter�.

(ii) The op-amp is used in the inverting mode.

(iii) Its centre frequency can be changed without changing the gain or bandwidth.
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Performance Equations

Writing KCL at (1)

1 1 0 1 1

1 2

( ) 0
0

1/ 1/
i

r

V V V V V V

R sC sC R

- - -
+ + + =

or (V1 � Vi) Rr + (V1 � V0) sRrRC1 + V1sRRrC2 + V1R = 0

or 0 1
1

1 2( )
i r r

r r

V R V sRR C
V

R R sRR C C

+
=

+ + +
(9.5)

Again, writing KCL at (2),

0 1

2

0 0
0

1/f

V V

R sC

- -
+ =

or V0 = �V1 sRf C2

=  0 1
2

1 2( )
i r r

f
r r

V R V sRR C
sR C

R R sRR C C

+é ù- ê ú+ + +ë û
{by the value of V1 from (9.5)}

or V0 [R + Rr + sRRr(C1 + C2) + s2RRrRf C1C2] = �VisRrRf C2

\ 20

2
1 2 1 2( )

= -
+ + + +

r f

i r f r r

sR R CV

V s RR R C C sRR C C R R

So, the gain,

0 1

2 1 2

1 2 1 2

( / )

i r

f r f

V s RC

V C C R R
s s

R C C RR R C C

= -
æ ö+ +

+ +ç ÷è ø

The general transfer function is of the form,

0

2 2
2 2

(BW)

(BW)

r

F

i r r
r

s
QV s A

V s s
s s

Q

w

w w
w

æ ö
ç ÷è ø

= - = -
æ ö + ++ +ç ÷è ø

, where, AF = Gain

So, here, 1 2

1 2

1
BW

2

æ ö+
= ´ç ÷è øf

C C

R C C p

(in Hz) { }2 fw p=Q

With matched capacitor, i.e., C1 = C2 = C

1
BW

fR Cp
= Þ f

r

Q
R

f Cp
=

Also,
1

1 1
(BW) = =FA RC RC | with C1 = C2 = C
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\ 1

( ) 2
= = Þ =

F r F r F

Q Q
R R

BW CA CA f CAw p

BW = 
1

2 FRCAp
 Hz

Similarly, 2

2

r
r

r f

R R

RR R C
w

+
= | with C1=C2=C

or, 4p2fr
2 ´ RRr Rf C2 = R + Rr

or 2 2 24
2 2r r f r

r F r F

Q Q
f R R C R

f CA f CA
p

p p
´ ´ = + [Putting the value of Rf ]

or 2
2r r f r F

r

Q
f QR R C R A

f C
p

p
= +

or 2
2r r r F

r r

Q Q
Qf R C R A

f C f C
p

p p
´ ´ = + [Putting the value of Rf ]

or 22
2r F

r

Q
R Q A

f Cp

é ù- =ë û

\
2 22 (2 ) 2

F
r

r F F

AQ
R R

f C Q A Q Ap

æ ö
= = ç ÷- -è ø

Also,
2

2
f F

F
r

R frCAQ
A

R f C Q

p

p
= ´ =

\ AF = 
2

fR

R
. So, the gain is a maximum of 1 at fr if Rf = 2R

However, the gain must satisfy the condition, AF < 2Q2.

So, the narrow-band-pass active filter is designed for specific values of resonant frequency fr and Q

(or, fr and BW) by using the relations.

2 r F

Q
R

f CAp
= , f

r

Q
R

f Cp
= ,

22 (2 )
r

r F

Q
R

f C Q Ap
=

-
,

2

f

F

R
A

R
= (9.6)

Z

1 0.1591
BW (Hz) (H )

2
= = =r

F F

f

Q RCA A RCp
(9.7)

and
1 1 0.1125 1

1 1
2 2

r
F r F r

R R
f

A R RC A RRC

æ ö æ ö= + = +ç ÷ ç ÷è ø è ø
(9.8)

Note: The resonant frequency can be changed to a frequency fr¢ without changing the gain or BW,

by, changing Rr to a new value rR ¢  = so that, 

2

r
r r

r

f
R R

f

æ ö¢ = ç ÷¢è ø
.
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Example 9.5 (a) Design a wide band-pass filter with fCL = 200 Hz and fCU = 1kHz, and a pass-

band gain = 4.

(b) Draw the frequency response plot of this filter.

(c) Calculate the value of Q for the filter.

Solution (a) To design the low-pass section:

fc = 1 kHz

Let, C2 = 0.01 mF, R2 = 
2

1
15.9 k

2 cf Cp
= W

To design the high-pass section:

fc = 200 Hz

Let, C1 = 0.05 mF, R1 = 
1

1

2 cf Cp
 = 15.9 kW

Since the band-pass gain is 4, the gain of both HP and LP sections could be set

equal to 2.

\ 2 1 1
¢ ¢¢æ ö æ ö

= + = +ç ÷ ç ÷¢ ¢¢è ø è ø
f fR R

R R
Þ 10 kf fR R R R¢ ¢¢ ¢ ¢¢= = = = W

(b) The frequency response will be as shown below.

Frequency (Hz)

G
a
in

Figure 9.16 Frequency response of Example (9.5)

(c) Resonant frequency, 200 1000 447.2 Hzrf = ´ =

So, the quality factor, 
447.2

0.56
BW (1000 200)

= = =
-

rfQ
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Example 9.6 (a) Design a narrow band-pass filter with resonant frequency fr = 1 kHz, Q = 3,

and AF = 10.

(b) Change the resonant frequency to 1.5 kHz, keeping AF and the bandwidth

constant.

Solution (a) Let, C1 = C2 = 0.01 mF

3 8

3
95.5 k

10 10
f

r

Q
R

f Cp p
-= = = W

´ ´
;

 
3 8

3
4.77 k

2 2 10 10 10r F

Q
R

f CAp p
-= = = W

´ ´ ´

2

4.77 10
5.97 k

(2 9 10)2 (2 )
r

r F

Q
R

f C Q Ap

´
= = = W

´ --

(b) To change the resonant frequency, the resistance value will be,

3 1
5.97 10 3.98 k

1.5
R

æ ö¢ = ´ ´ = Wç ÷è ø

The frequency response is shown below.

G
a
in

Frequency

Figure 9.17 Frequency response of Example (9.6)

Example 9.7 A band-pass filter has the component values, R = 21.12 kW, Rf = 42.42 kW, Rr =

3.03 kW and C1 = C2 = 0.015 mF. Find the resonant frequency and the bandwidth.

Solution Here, since Rf = 2R, so, AF = 1.

\
3 6

0.1125 1 0.1125 21.21
1 1 1000 Hz

3.0321.21 10 0.015 10
r

F r

R
f

RC A R -
æ ö= + = + @ç ÷è ø ´ ´ ´
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3 6

0.1591 0.1591
BW 500 Hz

1 21.21 10 0.015 10-
= = @

´ ´ ´ ´FA RC

9.9 BAND-REJECT (NOTCH) ACTIVE FILTER

1. It may be obtained by the parallel connection of a high-pass section with a low-pass section.

The cut-off frequency of the high-pass section must be greater than that of the low-pass

section.

The outputs of HP and LP sections are fed to an adder whose output voltage V0 will have

the notch filter characteristics.

Figure 9.18(b) Frequency response of band reject

filter

Figure 9.18(a) Block diagram of BR filter

The circuit of the BR filter is shown in Fig. 9.19.

Obviously, the gain of the adder is set at unity; and thus,

0 0
0 4 2 3 4

2 3

V V
V R R R R

R R

¢ ¢¢æ ö
= + Þ = =ç ÷è ø

and 2 3 4OMR R R R=

So, 0

( / ) 1

1 ( / ) 1 ( / )
CH

FH FL
CH CL

j f f
V A A

j f f j f f

é ù é ù= +ê ú ê ú+ +ë û ë û

If AFL = AFH = A, then at the center frequency, r CL CHf f f= , the Gain is 
2

= ×
+

CL

CL CH

f
K A

f f
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–

+

–

+

–

+

R ¢1 R ¢f

V ¢¢0

V ¢0

R ¢

C ¢

R

Vx

Vi

R1 Vy Rf

C R2 R4

R3

ROM

RL

V0

Figure 9.19 Band reject active filter circuit using parallel connection of high pass and low pass filters

2. Band-reject filter may also be obtained by using the multiple-feedback band-pass filter circuit

with an adder. That is, the notch filter is made by a circuit that subtracts the output of a band

pass filter from the original signal.

Figure 9.20 Band reject active filter circuit using multiple feedback band pass filter with an adder

So, 0

i

V

V

¢
= 1

2 1 2

1 2 1 2

( / )
( )

r

f r f

s RC
T s

C C R R
s s

R C C RR R C C

- =
æ ö+ +

+ +ç ÷è ø
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Now, writing KCL at (1),

0 0 0i

f

V V V

R R R

¢
+ + =
¢ ¢ ¢¢

Þ V0 = 01
f

VV
R

R R

¢¢æ ö¢- +ç ÷¢¢ ¢è ø

= 
( )1é ù¢- +ê ú¢¢ ¢ë û

f i

T s
R V

R R

At notch frequency, the output is zero (ideally).

So, T(s) = R

R

¢- ¢¢
But, at wn (or fn), T(s) = �AF (AF = gain of the BP section)

With C1 = C2, Gain for BP section, AF = 
2

fR

R

2

f

F

R R
A

R R

¢\ = = ¢¢

So, the design equations are all those of BP section and this one.

Example 9.8 Design a notch filter having a resonant frequency,  fr = 400 Hz and Q = 10. Make

the resonant frequency gain, AF = 2.

Solution Here, fr = 400 Hz, Q =10, AF = 2

Let, C = 0.1 mF

\
6

10
19.89 k

2 2 400 0.1 10 2F

Q
R

frCAp p -= = = W
´ ´ ´ ´

Ans.

\
6

10
79.58 k

400 0.1 10
f

Q
R

f rCp p -= = = W
´ ´ ´

\
3

2

19.89 2 10
202

200 22

F
r

F

RA
R

Q A

´ ´
= = = W

--

Let, R¢ = 1 kW (arbitrary) = fR¢

R² = 
F

R

A

¢
 = 500 W Ans.

9.9.1 Applications of Notch Filters

Notch filter is used where unwanted frequencies are to be attenuated while permitting the other signal

frequencies to pass through.



9.24 Circuit Theory and Networks

For examples, 50 Hz, 60 Hz, or 400 Hz frequencies from power lines, ripple from a full-wave

rectifiers, etc.

Example 9.9 Design an active notch filter to eliminate 120 Hz hum (noise). Take the bandwidth,

BW = 12 Hz.

Solution Hare, fr = 120 Hz, BW = 12Hz, Q = 
120

10
12

=

The gain of the filter in the pass-band will be maximum of 1,

AF = 1.

Let , C1 = C2 = 0.1 mF

R = 
6

10
132.66 k

2 120 0.1 10 1- = W
´ ´ ´ ´p

Rf = 2R = 265.32 kW

Rr = 200 1

R

-  = 663.3 kW

Now, let R¢ = fR¢  = 1 kW (arbitrary)

So, R² =  
F

R

A

¢
 = 1 kW

Thus the filter will pass all frequencies from (0 � 114) Hz and 126 Hz onwards.

9.10 FILTER APPROXIMATION

In the earlier sections, we saw several examples of amplitude response curves for various filter types.

These always included an �ideal� curve with a rectangular shape, indicating that the boundary

between the pass-band and the stop-band was abrupt and that the roll-off slope was infinitely steep.

This type of response would be ideal because it would allow us to completely separate signals at

different frequencies from one another. Unfortunately, such an amplitude response curve is not

physically realizable. We will have to settle for the best approximation that will still meet our

requirements for a given application. Deciding on the best approximation involves making a compro-

mise between various properties of the filter�s transfer function, such as, filter order, ultimate roll-off

rate, attenuation rate near the cut-off frequency, transient response, ripples, etc.

If we can define our filter requirements in terms of these parameters, we will be able to design an

acceptable filter using standard design methods.

9.10.1 Butterworth Filters

The first and probably best-known filter approximation is the Butterworth or maximally-flat response.

It exhibits a nearly flat pass-band with no ripple. The roll-off is smooth and monotonic, with a low-

pass or high-pass roll-off rate of 20 dB/decade (6 dB/octave) for every pole. Thus, a 5th-order
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Butterworth low-pass filter would have an attenuation rate of 100 dB for every factor of ten increase

in frequency beyond the cutoff frequency.

The general equation for a Butterworth filter�s amplitude response is,

2

0

1
( )

1

n
H w

w

w

=
æ ö+ ç ÷è ø

(9.9)

where n is the order of the filter, and can be any positive whole number (1, 2, 3,�), and w0 is the

-3 dB frequency of the filter.

Figure 9.21 shows the amplitude response curves for Butterworth low-pass filters of various

orders.

Figure 9.21 Amplitude response curves for butterworth low-pass filters of different orders

The coefficients for the denominators of Butterworth filters of various orders are shown in table.

Table shows the denominators factored in terms of second-order polynomials. Again, all of the

coefficients correspond to a corner frequency of 1 radian/s

Table 9.1 Butterworth Polynomials

Denominator coefficients for polynomials of the form 1 2
1 2 1 0...n n n

n ns a s a s a s a- -
- -+ + + + +

n a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

1 1

2 1 1.414

3 1 2.000 2.000

4 1 2.613 3.414 2.613

5 1 3.236 5.236 5.236 3.236

6 1 3.864 7.464 9.142 7.464 3.864

7 1 4.494 10.098 14.592 14.592 10.098 4.494

8 1 5.126 13.137 21.846 25.688 21.846 13.137 5.126

9 1 5.759 16.582 31.163 41.986 41.986 31.163 16.582 5.759

10 1 6.392 20.432 42.802 64.882 74.233 64.882 42.802 20.432 6.392
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Butterworth Quadratic Factors

n

1 (s + 1)

2 (s2 + 1.4142s + 1)

3 (s + 1)(s2 + s + 1)

4 (s2 + 0.7654s + 1)(s2 + 1.8478s + 1)

5 (s + 1)(s2 + 0.6180s + 1)(s2 + 1.6180s + 1)

6 (s2 + 0.5176s + 1)(s2 + 1.4142s + 1)(s2 + 1.9319)

7 (s + 1)(s2 + 0.4450s + 1)(s2 + 1.2470s + 1)(s2 + 1.8019s + 1)

8 (s2 + 0.3902s + 1)(s2 + 1.1111s + 1)(s2 + 1.6629s + 1)(s2 + 1.9616s + 1)

9 (s + 1)(s2 + 0.3479s + 1)(s2 + 1.0000s + 1)(s2 + 1.5321s + 1)(s2 + 1.8794s + 1)

10 (s2 + 0.3129s + 1)(s2 + 0.9080s + 1)(s2 + 1.4142s + 1)(s2 + 1.7820s + 1)(s2 + 1.9754s + 1)

9.10.2 Second Order Low-pass Active Filter

The circuit is shown in Figure 9.22.

Figure 9.22 Second order low-pass active filter

Here, 0
1

1
y

f

V
V R

R R
=

+
 and Vx = Vy

Writing KCL at node V ¢,

0 0
1/

i xV V V V V V

R sC R

¢ ¢ ¢- - -
+ + =

or 0( ) ( ) ( ) 0i xV V V V sRC V V¢ ¢ ¢- + - + - =

or 0( 1) (2 ) ( )x iV sRC V sRC V V¢- + + + - = (9.10)

Writing KCL at node x,

0
1/

x xV V V

R sC

¢-
+ =

or 0(1 ) ( 1) (0) 0xsRC V V V¢+ + - + = (9.11)



Filter Circuits 9.27

Writing KCL at node y,

0

1

0x x

f

V V V

R R

-
+ =

or 1 1 0( ) (0) ( ) 0f xR R V V R V¢+ + + - = (9.12)

Solving for V0 from equations (9.10), (9.11), and (9.12), we get,

1

2 2
1 1

0
12

2 2
1

1 1

1 (2 )

(1 ) 1 0 ( ) 1
( ) 0 0

( )1 (2 ) 1
3

(1 ) 1 0

( ) 0

i

f

f

i
f

f

sRC V

sRC R R

R R R R C
V V

R RsRC sRC
s sRC sRC

R R CsRC

R R R

- +
+ - +

´+
= =

+æ ö- + -
+ - +ç ÷è ø+ -

+ -

or,
2 2

0

2
2

( )

( ) 3 1i

K
V s R C
V s K

s s
RC RC

=
-æ ö æ ö+ +ç ÷ è øè ø

(9.13)

where, 
1

1

fR R
K

R

+
=  = DC gain of the amplifier.

Substituting s = jw, the transfer function is,

0

2 2 2

( )
( )

( ) 1 (3 )i

V j K
H j

V j j K RC R C

w

w
w w w

= =
+ - -

The magnitude of the transfer function is,

2
2 2

2

| ( )|

1 [3 ]
c c

K
H j

K

w

w w

w w

=
é ùæ ö æ ö- + -ê úç ÷ ç ÷è ø è øê úë û

; where, 
1

c RC
w =

In the above equation, when w ® 0, | ( )|H j Kw = . Thus, the low frequency gain of the filter is K

and when w ® ¥, | ( )|H jw  = 0, i.e., high frequency gain is zero.

From the Table of the Butterworth Filter, the transfer function for second order (n = 2) filter is,

2

2 2 2
( )

1.414
1.414 1

c

c c

c c

KK
T s

s ss s

w

w w

w w

= =
+ +æ ö æ ö+ +ç ÷ ç ÷è ø è ø

(9.14)

where, wc is the cut-off frequency. Comparing equations (9.13) and (9.14), we get,

1 1
or,

2c cfRC RC
w

p
= = and, (3 1.414) 1.586K = - =
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The frequency response of a second order low-pass

active filter is shown in Figure 9.23. It is noted that the

filter has very sharp roll-off response.

Filter Design
1. Choose a value of the cut-off frequency, wc (or

fc).

2. Select a convenient value for the capacitors C,

between 100 pF and 0.1 mF.

3. Calculate the value of the resistors R from the

relation,

1

2 c

R
f Cp

=

4. For minimization of dc offset, the feedback resistor is calculated from the relation, Rf =

K (2R) = 3.172R.

5. Calculate the value of the resistor R1 for the value of the gain K = 1.586 from the relation,

1

1

fR R
K

R

+
= , i.e., 1 0.586

fR
R = .

Example 9.10 Design a second-order low-pass filter with a gain of 11 and cut-off frequency of

20 kHz.

Solution Let us arbitrarily select C = 200 pF.

For a cut-off frequency of 20 kHz, we need R = 
3 12

1 1

2 2 20 10 200 10cf Cp p
-=

´ ´ ´ ´
= 39.789 kW
If we select a standard resistor of 39 kW for R, then the cut-off frequency is about

20.4 kHz.

The dc gain for this filter cannot be anything other than K where K = 1.586.

Thus, for a dc gain of 1.586, K = 1 + Rf /R1 = 1.586.

This in turn implies that Rf = 0.586 R1.

Imposing the dc bias-current balance condition, we obtain

0.586 R1 = 1.586 (2 R) = 123.708 kW.

Consequently, R1 = 211.11 kW and Rf = 123.708 kW.

Let us select a standard value of 130 kW for Rf. Then R1 should be about 221.8 kW.

We need another amplifying stage to obtain the needed gain of 11. The gain of this

stage should be 11/K = 6.936. We have chosen to use non-inverting amplifier for

this stage. The output amplifier resistors are calculated as,

6.936 = 21
A

R

R

æ ö+ç ÷è ø
 and for RA = 100 kW., R2 = 593.6 kW.

Thus, the final circuit for the second order low-pass active filter becomes as shown

in Fig. 9.24.

Figure 9.23 Frequency response of the

second order low-pass filter

G
a
in

Frequency
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9.10.3 Second Order High Pass Active Filter

The circuit is shown in Figure 9.25.

Figure 9.24 Circuit of Example (9.10)

Here, 0
1

1
y

f

V
V R

R R
=

+
 and Vx = Vy

Writing KCL at node V ¢,

0 0
1/ 1/

i xV V V V V V

sC R sC

¢ ¢ ¢- - -
+ + = (9.15)

Writing KCL at node x,

0
1/
x xV V V

sC R

¢-
+ = (9.16)

Figure 9.25 Second order high-pass filter
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Writing KCL at node y,

0

1

0x x

f

V V V

R R

-
+ = (9.17)

Solving for V0 from equations (9.15), (9.16), and (9.17), we get,

or,
2

0

2
2

( )

( ) 3 1i

V s Ks

V s K
s s

RC RC

=
-æ ö æ ö+ +ç ÷ è øè ø

(9.18)

where, K = 
1

1

fR R

R

+
 = DC gain of the amplifier.

Note The transfer function of the high-pass filter can also be obtained from the transfer function of

the low-pass filter by the transformation c

c LP HP

s

s

w

w

æ ö æ ö®ç ÷ ç ÷è ø è ø

Substituting s = jw, the transfer function is,

2 2 2
0

2 2 2

( )
( )

( ) 1 (3 )i

V j KR C
H j

V j j K RC R C

w w
w

w w w

= = -
+ - -

The magnitude of the transfer function is,

2

2
2 2

2

| ( ) |

1 [3 ]

c

c c

K

H j

K

w

w

w

w w

w w

æ ö
ç ÷è ø

=
é ùæ ö æ ö- + -ê úç ÷ ç ÷è ø è øê úë û

; where, 
1

c RC
w =

In the above equation, when w ® 0, | ( )|H jw  = 0. Thus, the low frequency gain of the filter is zero.

When w ® ¥, | ( )|H jw  = K, i.e., high frequency gain is K.

Here, again, comparing with Butterworth Transfer function, we get,

1 1
or,

2c cfRC RC
w

p
= =

(3 1.414) 1.586K = - =



Filter Circuits 9.31

The frequency response of a second order low-pass

active filter is shown below. It is noted that the filter

has very sharp roll-off response.

The design procedure for high-pass will be same as

low-pass.

The frequency response will be a maximally flat one,

i.e., having a very sharp roll-off response.

Example 9.11 A second-order high-pass filter is given

in Figure 9.27. Determine its cut-off

frequency and high frequency gain.

Sketch its gain vs. frequency response.

39 kW
39 kW

1 nF 1 nF

100 kW 58.7 kW

100 kW

220 kW

V0( )s

Vin ( )s

–

+

–

+

220 kW

Figure 9.27 Circuit of Example (9.11)

Solution In the second-order filter on the left side of the figure, the gain K

=
58.7

1
100

æ ö+ç ÷è ø = 1.587.

Since it is very close to 1.586, we can assume that the filter is maximally flat and its

transfer function is as given for Butterworth filters. From the given values of R and

C, the cut-off frequency is,

3 9

1 1
25,641

39 10 1 10
c RC

w -= = =
´ ´ ´

 rad/s

The cut-off frequency in Hz, fc = 
25,641

2p
 = 4081 Hz

The gain of the non-inverting amplifier, A = 
220

1
220

æ ö+ç ÷è ø  = 2

Hence, the overall gain of the high-pass filter is,

AH = 1.587 ´ 2 = 3.174 or approximately 10 dB.

The gain vs. frequency will be as shown in Figure 9.26.

Figure 9.26 Gain vs. frequency plot of a

second-order high-pass filter

Frequency

G
a
in
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9.10.4 Second Order Band-Pass Active Filter

It can be built by the cascade connection of a second order high-pass and a second order low-pass

filter.

Figure 9.28 Second-order band-pass active filter circuit

Lower cut-off frequency, 1

1

H HR C
w =

Upper cut-off frequency, 2

1

L LR C
w =

Voltage gains, 1
f

H

R
K

R

¢é ù
= +ê ú¢ë û

 and 1
f

L

R
K

R

¢¢é ù
= +ê ú¢¢ë û

For maximally flat response (or, Butterworth) filter, KH = KL = 1.586.

\ 0.586
f fR R

R R

¢ ¢¢
= =
¢ ¢¢

The overall transfer function is the product of the transfer function of the high-pass and low-pass

filters.

\ 1

2 2

1 1 2 2

( )

1 (3 ) 1 (3 )

H
L

H L

s
K

K
H s

s s s s
K K

w

w w w w

æ ö
ç ÷è ø

= ´
æ ö æ ö æ ö æ ö+ + - + + -ç ÷ ç ÷ ç ÷ ç ÷è ø è ø è ø è ø

Substituting the values of KH and KL, magnitude of the gain is,

2

1

4 4

2 1

2.5154

| ( )|

1 1

H j

w

w

w

w w

w w

æ ö
ç ÷è ø

=
æ ö æ ö+ +ç ÷ ç ÷è ø è ø

Note In the pass-band, the gain is 2.5154.

The frequency response is more flat near the cut-off frequencies.
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G
a
in

w1 w2 Frequency

Figure 9.29 Frequency response of second order band-pass filter

9.10.5 Second Order Band-Reject Active Filter

It can be built by the summation of a second order high-pass and a second order low-pass filter.

The cut-off frequency of LPF, 1

1

L LR C
w =  and the cut-off frequency of HPF, 2

1

H HR C
w = .

The magnitude of the overall transfer function is the sum of the transfer function of the high-pass

and low-pass filters,

2

22

4 41

2 1

1
| ( ) | 1

2

1 1

H
L

K
R K

H j
R

w

w

w

w w

w w

é ù
æ öê úç ÷ê úè øé ù= + +ê úê úë û ê úæ ö æ ö+ +ê úç ÷ ç ÷è ø è øê úë û

where, 1
f

H

R
K

R

¢æ ö
= +ç ÷¢è ø

 and, 1
f

L

R
K

R

¢¢æ ö
= +ç ÷¢¢è ø

 and for Butterworth filters, KH = KL = 1.586.

The roll-off frequency response will be very smooth as shown.

Figure 9.30 Second-order band-reject active filter circuit
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9.11 ALL-PASS ACTIVE FILTER

This filter passes all frequency component of the input signal without attenuation and provides some

phase shifts between the input and output signals.

The circuit of an active all-pass active filter with lagging output is shown in Figure 9.32.

Frequency

G
a
in

Figure 9.31 Frequency response of second order band-reject filter

Figure 9.32 Circuit of an all-pass active filter with lagging output

For the circuit, by KCL at node x,

0 0

1 1

0
2

x i x i
x

V V V V V V
V

R R

- - +
+ = Þ = (9.19)

By KCL at node y,

0
1/ 1

y i y i
y

V V V V
V

R j C j RCw w

-
+ = Þ =

+
(9.20)

Also, from Op-Amp property,

Vx = Vy

Þ 0

2 1
i iV V V

j RCw

+æ ö æ ö=ç ÷ ç ÷+è ø è ø
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Þ 0( )(1 ) 2i iV V j RC Vw+ + =
Þ 0 (1 ) [2 (1 )] (1 )i iV j RC V j RC V j RCw w w+ = - + = -

0 1

1i

V j RC

V j RC

w

w

-
\ =

+

Thus, the amplitude of the gain,

0
out in1 i.e., | | | |= =

i

V
V V

V
 throughout the entire frequency range

Also, the phase shift between the input and the output voltages is,

f = �2 tan�1 (wRC ) i.e., phase-shift is a function of frequency

Figure 9.33 Characteristics of all-pass filter

By interchanging the positions of R and C in the circuit, the output can be made leading the input.

MULTIPLE-CHOICE QUESTIONS

9.1 The two input terminals of an op-amp are labeled as

(a) high and low (b) positive and negative

(c) inverting and non-inverting (d) differential and non-differential

9.2 Consider the following statements for an ideal op-amp.

1. The differential voltage across the input terminals is zero.

2. The current into the input terminals is zero.

3. The current from the output terminals is zero.

4. The input resistance is zero.

5. The output resistance is zero.

Of these statements, those which are not true are

(a) 1 and 5 (b) 3 and 4 (c) 2 and 4 (d) 1 and 4

9.3 In a series resonant circuit, to obtain a low-pass characteristic, across which element should the

output voltage be taken?

(a) Resistor (b) Inductor (c) Capacitor

9.4 In a series resonant circuit, to obtain a high-pass characteristic, across which element should the

output voltage be taken?

(a) Resistor (b) Inductor (c) Capacitor
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9.5 In a series resonant circuit, to obtain a band-pass characteristic, across which element should the

output voltage be taken?

(a) Resistor (b) Inductor (c) Capacitor

9.6 A high-pass filter circuit is basically

(a) a differentiating circuit with low time constant.

(b) a differentiating circuit with large time constant.

(c) an integrating circuit with low time constant.

(d) an integrating circuit with large time constant.

9.7 The transfer function of an electrical low-pass RC network is

(a)
1

RCs

RCs+
(b)

1

1 RCs+
(c)

1

RC

RCs+
(d)

1

s

RCs+
9.8 For a high-pass RC circuit, when subjected to a unit step input voltage, the voltage across the

capacitor will be

(a) /1 t RCe-- (b) /t RCe- (c) /t RCe (d) 1

9.9 In the magnitude plot of a low-pass filter, at what frequency does the peak of the magnitude charac-

teristic occur?

(a) At resonant frequency (b) Below resonant frequency

(c) Above resonant frequency (d) At any frequency.

9.10 In the magnitude plot of a high-pass filter, at what frequency does the peak of the magnitude

characteristic occur?

(a) At resonant frequency (b) Below resonant frequency

(c) Above resonant frequency (d) At any frequency.

9.11 In the magnitude plot of a band-pass filter, at what frequency does the peak of the magnitude

characteristic occur?

(a) At resonant frequency (b) Below resonant frequency

(c) Above resonant frequency (d) At any frequency.

9.12 If a filter is de-normalized to a higher frequency, which of the following occurs?

(a) Inductors increase in value while capacitors decrease.

(b) Inductors decrease in value while capacitors increase.

(c) Inductors and capacitors increase in value.

(d) Inductors and capacitors decrease in value.

9.13 The transfer function 2

2
1

( ) 10

( ) 10 100

V s s

V s s s
=

+ +
 is for an active

(a) low pass filter (b) band pass filter (c) high pass filter (d) all pass filter.

9.14 The transfer function 
2

2
( )

s
T s

s as b
=

+ +
 belongs to an active

(a) low pass filter (b) high pass filter (c) band pass filter (d) band reject filter.

9.15 The voltage-ratio transfer function of an active filter is given by 
2

2

2
1

( )

( )

V s s

V s s s

d

a d

+
=

+ +
. The circuit in

question is a

(a) low pass filter (b) high pass filter (c) band pass filter (d) band reject filter.
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9.16

R

R

C

R

C

+

–

The transfer function of a second order LP filter shown in the figure is

(a)
1

3 12 2 2R C s RCs+ +
(b)

RCs

R C s RCs2 2 2 3 1+ +

(c)
R C s

R C s RCs

2 2 2

2 2 2

1

3 1

+
+ +

(d)
R C s

R C s RCs

2 2 2

2 2 2 3 1+ +
9.17 An ideal filter should have

(a) zero attenuation in the pass band

(b) infinite attenuation in the pass band

(c) zero attenuation in the attenuation band

(d) none of these.

9.18 An RLC series circuit can act as

(a) band-pass filter (b) band-stop filter

(c) low-pass filter (d) both (a) and (b).

9.19 If R1 = R2 = RA and R3 = R4 = RB, the circuit acts as a/an

+

–V
i

R3

R4

R1

V0

C

R2

(a) all pass filter (b) band pass filter

(c) high pass filter (d) low pass filter

9.20 The output of the filter in 9.19 is given to the circuit shown in the figure.

R
A

2

Vin V0C
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The gain vs frequency characteristic of the output (v0) will be

w0

G
a
in

(a)

w0

G
a
in

(b)

w0

G
a
in

(c)

w0

G
a
in

(d)

9.21 In active filter circuits, inductances are avoided mainly because they

(a) are always associated with some resistance

(b) are bulky and unstable for miniaturisation

(c) are non-linear in nature

(d) saturate quickly

9.22 The magnitude response of a normalized Butterworth low-pass filter is

(a) linear starting with values of unity at zero frequency and 0.707 at the cut-off frequency

(b) non-linear all through but with values of unity at zero frequency and 0.707 at the cut-off frequency

(c) linear up to the cut-off frequency and non-linear thereafter

(d) non-linear up to the cut-off frequency and linear thereafter

EXERCISES

9.1 Design a second order low pass active filter having a cut-off frequency of 5 kHz.

[C = 0.03 mF; R = 1 kW; R1 = 10 kW; R2 = 5.86 kW]

9.2 Design a second order band pass active filter that has a centre frequency of 1 kHz and a bandwidth

of 100 Hz. Take the centre frequency gain to be 2.

[C1 = C2 = 0.02 mF; R1 = 40 kW; R3 = 160 kW; R2 = 400 W]

9.3 Design a second order high pass Butterworth filter with a cut-off frequency of 200 Hz.

[C = 0.053 mF; R = 1.5 kW; R1 = 10 kW; R2 = 5.86 kW]

9.4 Design a second order band pass active filter with a centre frequency gain A0 = 50. Given: f0 =

160 Hz and Q = 10. [assuming C1 = C2 = 0.1 mF; R1 = 2 kW; R3 = 200 kW; R2 = 667 W]
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SHORT-ANSWER TYPE QUESTIONS

9.1 (a) What is an operational-amplifier? State the characteristics of an op-amp.

(b) What is filter? Classify them.

(c) Discuss the advantages of an active filter over a passive filter.

9.2 (a) Briefly discuss the operating principle of an active low-pass filter and derive its gain-frequency

characteristics. Explain the design procedure of a low-pass active filter.

(b) Briefly discuss the operating principle of an active high-pass filter and derive its gain-frequency

characteristics. Explain the design procedure of a high-pass active filter.

9.3 (a) Define the following terms with reference to a band-pass active filter: -

(i) Bandwidth,

(ii) Cut-off frequency,

(iii) Quality factor.

(b) What are the different types of band-pass filters? Give the salient features and performance

equations for the following filters: -

(i) Wide Band-Pass Active Filter,

(ii) Narrow Band-Pass Active Filter.

9.4 Define Notch-frequency. Explain the operational characteristics of an active Notch filter. Where are

these filters used?

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

9.1 (c) 9.2 (b) 9.3 (c) 9.4 (b) 9.5 (a) 9.6 (a) 9.7 (b)

9.8 (a) 9.9 (b) 9.10 (c) 9.11 (a) 9.12 (d) 9.13 (c) 9.14 (b)

9.15 (c) 9.16 (a) 9.17 (a) 9.18 (a) 9.19 (c) 9.20 (d) 9.21 (b)

9.22 (b)





CHAPTER

10
Resonance

10.1 INTRODUCTION

Any system having at least a pair of complex conjugate poles has a natural frequency of oscillation.

If the frequency of the system driving force coincides with the natural frequency of oscillation, the

system resonates and the system response becomes maximum. This phenomenon is known as

�resonance� and the frequency at which this phenomenon occurs is known as �resonant frequency�.

In electrical systems, resonance occurs when the system contains at least one inductor and one

capacitor. In this system, the phenomenon of cancellation of reactances when inductor and capacitor

are in series or cancellation of susceptances when they are in parallel, is termed as resonance. The

circuit under resonance is purely resistive in nature and is termed as �resonant circuit� or �tuned

circuit�.

In this chapter, we consider electrical resonance in details. Electrical resonance is broadly classi-

fied into tow categories:

(a) Series Resonance, and

(b) Parallel Resonance.

10.2 SERIES RESONANCE OR VOLTAGE RESONANCE

R

V
S

L

i

C

Figure 10.1 Series RLC Resonant Circuit
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The basic series-resonant circuit is shown in Fig. 10.1. We want to observe how the steady state

amplitude and the phase angle of the current vary with the frequency of the sinusoidal voltage source.

As the frequency of the source changes, the maximum amplitude of the source voltage (Vm) is held

constant.

Impedance due to capacitor: ;C

j
Z

Cw
= -  clearly, as w ® 0, ZC ® ¥ and i ® 0.

Impedance due to inductor: Z
L
 = jwL clearly, as w ® ¥, Z

L
 ® ¥  and i ® 0.

Therefore, circuits containing inductors and capacitors have responses that are frequency depen-

dent. We analyze in the following steps.

i. Current Response

Here, the supply voltage, tVv ms ωsin=  and the current is, i = I
m
 sin (wt + f). The phasor

equivalents of v
s
 and i are V and I, respectively.

Using phasors,
1

V V V
I

jZ R j L R j LC
C

w ww
w

= = =
æ ö+ - + -ç ÷è ø

(10.1)

Thus, the current magnitude, 
2

2 1

mV
I

R L
C

w
w

=
æ ö+ -ç ÷è ø

(10.2)

From this equation, we have the following observations:

· |I| ® 0 as w ® 0; and

· |I| ® 0 as w ® ¥.

This indicates that there must be a maximum value of the current |I| for some particular value of

w. This occurs when the denominator is a minimum. i.e., when

1 1
L

C LC
w w

w
= Þ = (10.3)

Thus, resonance occurs when the magnitudes of the inductive and capacitive reactances are equal.

This frequency is termed as the resonant frequency, w0 of the series RLC circuit.

0

1

LC
w\ =

From equation (10.1), the phase angle of the current is given by,

1

1

tan

L
C

R

w
wf -

æ ö-ç ÷
= - ç ÷

ç ÷
è ø

(10.4)
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From equation (10.4), it is clear that the phase angle for the current also depends on frequency.

We have two observations:

· As w ® 0, f ® 1 1
tan

RCw
- æ ö

ç ÷è ø
 and in this case the current leads the voltage with the phase

relationship being like that of an RC circuit.

· As w ® ¥, f ® 1tan
L

R

w- æ ö- ç ÷è ø
 and in this case the current lags the voltage with the phase

relationship being like that of an RL circuit.

· At  w = w0, f = 0, and in this case the current and the voltage are in phase, the circuit

behaving like a purely resistive circuit.

The current response and phasor diagrams are shown in Fig. 10.2.

I
m

I
max

=V
m
/R

B = R /L = v
2
 v

1
I
max

/
1.414

v
1
v

0
v

2
v

Figure 10.2 Frequency Response of a Series � Resonant Circuit

Phasor Diagrams The current and voltage phasor diagrams for an RLC series circuit are shown in

Fig. 10.3.

V
L

V
R

V
C

V

I

0

I
0

V V
R
 RI

V
C

V
L

V
L

V
RV

C

0

V

I

(a) (b) (c)

Figure 10.3 Phasor Diagrams (a) f <  f0 (b) f = f0 (c) f > f0

At resonant frequency, the inductive and capacitive reactances are equal so that the current and

voltage are in phase. For any frequency lower than the resonant frequency, the inductive reactance is

less than the capacitive reactance and hence, the circuit behaves as a capacitive circuit. Similarly, for

any frequency higher than the resonant frequency, the inductive reactance is greater than the

capacitive reactance and hence, the circuit behaves as an inductive circuit.

ii. Bandwidth

We define the half-power bandwidth of the RLC circuit as the range of frequencies (or the width of

the frequency band) for which the power dissipated in R is greater than or equal to half the maximum

power.
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We know that the average power is,

2
where

2

mI
P I R I= = (10.5)

Maximum power will be, P
max

 = I 2

m
 R

Thus, the half-power points occur when

max or
2 2

mP I
P I= =

At resonance, the circuit is purely resistive, so that

m
m

V
I

R
= (10.6)

Therefore, at half-power points,

2 2

m mI V
I

R
= = (10.7)

From equation (10.2) and (10.7), we get,

2
2

21

m mV V

R
R L

C
w

w

=
æ ö+ -ç ÷è ø

To solve for the frequencies, squaring both sides and equating the denominators,

2
2 21

2R L R
C

w
w

æ ö+ - =ç ÷è ø

Þ
2

21
L R

C
w

w

æ ö- =ç ÷è ø

Þ
1

L R
C

w
w

æ ö- = ±ç ÷è ø

Therefore,

2
1

2 2

R R

L L LC
w

æ ö= ± ± +ç ÷è ø

We see that, mathematically, there are 4 possible values of w. Taking the positive roots, the half-

power frequencies are:

2

1

1

2 2

R R

L L LC
w

æ ö= - + +ç ÷è ø
(10.8)

2

2

1

2 2

R R

L L LC
w

æ ö= + +ç ÷è ø (10.9)
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By definition, the Bandwidth (BW) is given by,

2 1

R
BW

L
w w= - = (10.10)

Also, from equations (10.8) and (10.9), we get

2
1 2 0 0 1 2

1

LC
w w w w w w= = Þ = (10.11)

Thus, the resonant frequency is the geometric mean of the half-power frequencies.

iii. Quality Factor or Circuit Magnification Factor (Q)

It is defined as, 2
Maximum Energy Stored

Q
Energy Dissipated per cycle

p=

Maximum Energy stored = Electromagnetic energy in inductor or Electrostatic energy in capacitor

= 
2 2

max max

1 1
or

2 2
LI CV

Therefore,

Q = 

2
max

2

max

1

222
1

2

LI
fL L

R RI
R

f

p w
p = =

æ ö ´è ø

or, Q = 
1 1L L

R RC R C

w

w
= = (10.12)

Thus, Q is inversely proportional to R. Hence, for series RLC circuit, a high value of quality factor

implies low losses and a low value of Q implies high losses.

Also, quality factor for a circuit is defined as, 0

2 1

Q
Bandwidth

Resonant Frequency w

w w
= =

-
 and the

selectivity of the circuit is defined as the reciprocal of quality factor, i.e.

0

1 BW
Selectivity

Q w
= =

Therefore, a circuit will be highly selective if it has a high value of Q. For series RLC circuit, a

high value of quality factor implies a narrow resonant peak and a low value of Q implies broad

resonant peak. The variations of magnitude and phase angle of current in RLC series circuit for

different values of Quality factor (Q) are shown in Fig. 10.4.

i. Voltage Across Elements

Voltage across Resistance

Since V = RI and at resonance V
R
 = V

m
,

Therefore, mV
I

R
= (10.13)
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Figure 10.4 Variation of Magnitude and Phase Angle of Current in RLC Series Circuit for Different

Values of Q

Voltage across Inductance

We know, V
L
 = IZ

L
 = jwLI, using equation (10.2), we get,

2
2 1

m
L

LV
V L I

R L
C

w
w

w
w

= =
æ ö+ -ç ÷è ø

At resonance, (i.e. 0
0

1
L

C
w

w
= ), 0 m

L m

LV
V QV

R

w
= = (10.14)

To find the frequency at which inductor voltage will be maximum, we have,

0L

d
V

dw
é ù =ë û

Þ
2

2

0

1

mLVd

d
R L

C

w

w
w

w

é ù
=ê ú

ê úæ ö+ -ç ÷ê úè øë û

Þ
2 2

1

2

L

C R
LC

w =

-

Thus,
2 2

1 1

2

2

Lf
C R

LC
p

æ ö æ ö= ç ÷ ç ÷è ø
ç ÷-
è ø

(10.15)
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Voltage across Capacitance

We know, C

I
V

j Cw
= ; using equation (10.2), we get,

2
2

1

1

m
C

I V
V

C C
R L

C

w w
w

w

= =
æ ö+ -ç ÷è ø

At resonance, (i.e. 0
0

1
L

C
w

w
= ),

0

m
C m

V
V QV

RCw
= = (10.16)

To find the frequency at which capacitor voltage will be maximum, we have,

0C

d
V

dw
é ù =ë û

Þ
2

2

1
0

1

mVd

d C
R L

C

w w
w

w

é ù
=ê ú

ê úæ ö+ -ç ÷ê úè øë û

Þ
2

2

1

2
C

R

LC L
w = -

Thus
2

2

1 1

2 2
C

R
f

LC Lp

æ öæ ö= -ç ÷ ç ÷è ø è ø
(10.17)

From equations (10.14) and (10.16) we see that both VL and VC may be very large at resonance

and they will add to zero (voltage across L and C are 180° out of phase). At resonant condition, the

voltage across the inductor and capacitor are equal in magnitude and opposite in sign, thus canceling

each other so that the entire voltage appears across the resistance. For this reason, the resonance in

series RLC circuit is known as voltage resonance. Also, at resonant condition, from equations

(10.14) and (10.16) we get,

C L
C L m

m m

V V
V V QV Q

V V
= = Þ = =

Thus, quality factor for series circuit is also defined as the ratio of voltage across the inductor or

capacitor at resonance to the supply voltage. For this reason, Q is also known as circuit magnifica-

tion factor (here, voltage magnification).

From equations (10.15) and (10.17), it is observed that fL > fC. The variations of voltage across

resistor, capacitor and inductor are shown in Fig. 10.5.
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However, from equations (10.15) and (10.17), it is observed that if R is very small (or Q is very

large), both fL and fC approach f0. For circuits with Q ³ 10, the maximum voltages across R, L and

C will practically occur at resonant frequency f0.

Voltage across capacitor

Voltage across inductor

Voltage across resistor

V
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1 v
C

v
0

v
L

Figure 10.5 Variation of Voltage Across Resistor, Capacitor and Inductor with Frequency

Variation of Impedance with Frequency

The variations of the impedances with frequency are shown in Fig. 10.6.
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Figure 10.6 Variations of Impedances with Frequency

Here, R�wL�
1

Cw

1
Z R j L

C
w

w

æ ö= + -ç ÷è ø

i Impedance at Frequencies near Resonant Frequency

We introduce a new term, fractional frequency deviation or fractional detuning, d, defined as,

( )0

0 0

1
w w w

d d
w w

-
= Þ = +

Thus, the impedance of the RLC series circuit at any frequency is given by,

z = 
1 1

1
L

R j L R j
C R RC

w
w

w w

é ùæ ö æ ö+ - = + -ç ÷ ç ÷ê úè ø è øë û

= 
0 0

0 0

1
1

L
R j

R RC

w ww

w w w

é ùæ ö
+ -ê úç ÷è øê úë û
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At frequencies near the resonant frequency, d <<. \ (2 + d) » 2 and (1 + d) » 1.

\ Impedance near resonant frequency,

( )1 2Z R j Qd= +

Note: (i) At w = w2 (half-power frequency) 2Qd = 1; Z = Z = R(1 + j)

 (ii) At w = w1 (half-power frequency) 2Qd = �1; Z = Z = R(1 � j)

Example 10.1 A series RLC circuit consists of a resistance of 1 kW, an inductance of 10mH and a

capacitance of 100 mF. For a supply voltage of 100 V, determine the followings:

(a) resonant frequency,

(b) maximum current in the circuit,

(c) Q factor of the circuit, and

(d) Half-power frequencies.

Sol:

Here, R = 1kW, L = 10 mH and C = 100 mF, V = 100 V

(a) Resonant frequency,

0
3 6

1 1
159.15 Hz

2 2 10 10 100 10
f Ans

LCp p - -
= = =

´ ´ ´
(b) Maximum current in the circuit,

0 3

100
0.1

1 10

V
I A Ans

R
= = =

´
(c) Q factor of the circuit,

3

3 6

1 1 10 10
0.01

1 10 100 10

L
Q Ans

R C

-

-

´
= = =

´ ´
(d) To find half-power frequencies, we have,

( )
3

2 1 3

1 10
7957.75

4 4 10 10

R
f f

Lp p -

´
- = = =

´ ´
(i)

ans 1 2 3 6

1 1
159154.94

2 2 10 10 100 10
f f

LCp p - -
= = =

´ ´ ´ ´

\ ( ) ( ) ( )
2 2

2 1 2 1 1 24 7957.75 4 159154.94 7997.65f f f f f f+ = - + = + ´ = (ii)

Adding equations (i) + (ii), f2 = 7977.7 Hz Ans

Subtracting equations (ii) � (i), f1 = 19.95 Hz Ans

Example 10.2 A coil of resistance 2.2 W and inductance 0.01 H is connected in series with a

capacitor across 220 V mains. Find the value of capacitance such that the maximum

current flows in the circuit at a frequency of 100 Hz. Also, find the current and

voltage across the capacitor.
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Sol:

Here, R = 2.2 W, L = 0.01 H and V = 220 V, f0 = 100 Hz

Q 0 2 2
0

1 1 1
250 ì F

2 2 100 0.012
f C Ans

LC f Lp pp
= Þ = = =

´ ´

Current through the capacitor is the current flowing through the circuit at resonance, i.e.

0

220
100 A

2.2
C

V
I I Ans

R
= = = =

Voltage across the capacitor,

( )0 6
100 636.6 90

2 2 100 250 10
C

j j
V I V Ans

fCp p -
= ´ = ´ = Ð °

´ ´ ´

Example 10.3 A series circuit is in resonance at 8 ´ 106 Hz and has a coil of 35 mH and 10 W
resistor. For an applied voltage of 100 V,

(a) Find the current at resonance,

(b) Find the value of the capacitance for resonance.

(c) Find the impedance at a frequency of 8.1 MHz and also the current at this frequency.

Sol:

Here, R = 10 W, L = 35 mH and V = 100 V, f0 8 ´ 106 Hz

(a) Current at resonance,

(b) Q 

( )
0 2 2

6 6
0

1 1 1
11.3 pF

2 2 2 8.1 10 35 10

f C Ans
LC f Lp p p -

= Þ = = =
´ ´ ´ ´

(c) To find impedance at 8.1 MHz (i.e. near resonant frequency), we have the expression as,

2
1

1
Z R jQ

d
d

d

é + ùæ ö= + ç ÷ê úè ø+ë û

Here,
6 6

0 2 8 10 35 10
176

10

L
Q

R

w p -´ ´ ´ ´
= = =

0

0

8.1 8
0.0125

8

f f

f
d

- -
= = =

\
2 2 0.0125

1 10 1 176 0.0125
1 1 0.0125

Z R jQ j
d

d
d

é + ù é + ùæ ö æ ö= + = + ´ ´ç ÷ ç ÷ê ú ê úè ø è ø+ +ë û ë û

  ( )10 43.71j Ans= + W

\ Current at this frequency is, 
( )

( )
100

2.23 77.11
10 43.71

V
I A Ans

Z j
= = = Ð - °

+
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10.3 PARALLEL RESONANCE OR CURRENT RESONANCE

OR ANTI-RESONANCE

The basic parallel-resonant circuit is shown in Fig.10.7. We want to observe how the steady state

amplitude and the phase angle of the voltage vary with the frequency of the sinusoidal current source.

As the frequency of the source changes, the maximum amplitude of the source current (Im) is held

constant.

L C v(t )

 

 

RI

Figure 10.7 Parallel RLC Resonant Circuit

In this circuit, the impedance is given by,

1

1 1
Z

j C
R j L

w
w

=
+ +

(10.18)

i. Voltage Response

Here, the supply current, is = Im sin wt and the voltage is, v = Vm sin (wt + f). The phasor

equivalents of is and v are I and V, respectively.

Using phasors,
2

2

1 1

mI
V IZ

C
LR

w
w

= =
æ ö+ -ç ÷è ø

(10.33)

From this equation, we have the following observations:

· V  ® 0 as w ® 0; and

· V  ® 0 as w ® ¥.

This indicates that there must be a maximum value of the voltage |V| for some particular value of

w. This occurs when the denominator is a minimum. i.e., when

1 1
L

C LC
w w

w
= Þ = (10.20)

Thus, resonance occurs when the magnitudes of the inductive and capacitive reactances are equal.

This frequency is termed as the resonant frequency, w0 of the parallel RLC circuit.

\ 0

1

LC
w\ =

From equation (10.19), the phase angle of the voltage is given by,

1 1
tan C R

L
f w

w
- æ öæ ö= -ç ÷ç ÷è øè ø

(10.21)
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From equation (10.21), it is clear that the phase angle for the voltage also depends on frequency.

We have two observations:

· As w ® 0, f ® 90° and in this case the current lags the voltage with the phase

relationship being like that of an RL circuit.

· As w ® ¥, f ® �90° and in this case the current leads the voltage with the phase

relationship being like that of an RC circuit.

· At ,0ωω =  f = 0, and in this case the current and the voltage are in phase, the circuit

behaving like a purely resistive circuit.

The voltage response and phasor diagrams are shown in Fig. 10.8 and 10.9.

V

I
m
R

0.7071I
m
R

B=R /L=v
2
 v

1

v
1
v

0
v

2
v

Figure 10.8 Frequency Response of a Parallel � Resonant Circuit

ii Phasor Diagrams

The voltage and current phasor diagrams for an RLC parallel circuit are shown in Fig. 10.9.

I
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I
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I

V

0

V
0

I   IR
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L

I
C

I
C

I
R

I
L

0

I

V

(a) (b) (c)

Figure 10.9 Phasor Diagrams (a) f < f0 (b) f = f0 (c) f > f0

i. Bandwidth

We define the half-power bandwidth of the RLC circuit as the range of frequencies (or the width of

the frequency band) for which the power dissipated in R is greater than or equal to half the maximum

power.

We know that the average power is,

2

where
2 2

m mV V I R
P V

R
= = = (22)

Maximum power will be, 

2

max
mV

P
R

=

Thus, the half-power points occur when

axm

2 2

mP V
P or V= =
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At resonance, the circuit is purely resistive, so that

Vm = ImR RIV mm = (10.23)

Therefore, at half-power points,

2 2

m mV I R
V = = (10.24)

From equations (10.19) and (10.24), we get,

2

2

21 1

m mI I R

C
LR

w
w

=
æ ö+ -ç ÷è ø

Solve for the frequencies, in similar way as for the series circuit, we get,

2

1

1 1 1

2 2RC RC LC
w

æ ö= - + +ç ÷è ø
(10.25)

2

2

1 1 1

2 2RC RC LC
w

æ ö= + +ç ÷è ø
(10.26)

By definition, the Bandwidth (BW) is given by,

2 1

1
BW

RC
w w= - = (10.27)

Also, from equations (10.25) and (10.26), we get

2
1 2 0 0 1 2

1

LC
w w w w w w= = Þ = (10.28)

Thus, the resonant frequency is the geometric mean of the half-power frequencies.

Quality Factor or Circuit Magnification Factor (Q)

Here,
0

0
2 1 0

1

1

R CLC
Q RC R

L L
RC

w
w

w w w
= = = = =

-
(10.29)

From (10.12) and (10.29), we see that,

series
parallel

1
Q

Q
= .

Therefore, for parallel RLC circuit, a high value of Q is achieved via a large value of R resulting

high losses. The variations of magnitude and phase angle of voltage in RLC parallel circuit for

different values of Quality factor (Q) are shown in Fig. 10.10.
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Figure 10.10 Variations of magnitude and phase angle of voltage in

RLC parallel circuit for different values of Q

iii. Current Through Elements

Current through Resistance

Since 
mV

I
R

=  and at resonance IR = Im, therefore,

Vm = ImR (10.30)

Current through Inductance

We know, 
m

L

V
I

Lw
= , using equation (10.19), we get,

2

2

1

1 1

m
L

V I
I

L L
C

LR

w w
w

w

= =
æ ö+ -ç ÷è ø

At resonance, (i.e. 0
0

1
L

C
w

w
= ),

0

m
L m

RI
I QI

Lw
= = (10.31)

Current through Capacitance

We know, IC = VjwC; using equation (10.19), we get,

2

2

1 1

m
C

I
I V C C

C
LR

w w

w
w

= =
æ ö+ -ç ÷è ø
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At resonance, (i.e. 0
0

1
L

C
w

w
= ),

|IC| = Imw0RC = QIm (10.32)

From equations (10.31) and (10.32) we see that both IL and IC may be very large at resonance and

they will add to zero (current through L and C are 180° out of phase) so that the entire current will

be flowing through the resistance. For this reason, the resonance in parallel RLC circuit is known as

current resonance. Also, at resonant condition, from equations (10.31) and (10.32) we get,

C L
C L m

m m

I I
I I QI Q

I I
= = Þ = =

Thus, quality factor for parallel circuit is also defined as the ratio of current through the inductor

or capacitor at resonance to the source current. For this reason, Q is also known as circuit

magnification factor (here, current magnification).

iv. Impedance at Frequencies near Resonant Frequency

The impedance of the RLC parallel circuit at any frequency is given by,

0
0

0 0

1

1 1

1

1

1

Z

j C
R j L

R

R
j RC

j L

R

R
j RC

L

R

R
j RC

L

w
w

w
w

w
w

ww
w

w w w

=
+ +

=
+ +

=
æ ö+ -ç ÷è ø

=
æ ö

+ -ç ÷è ø

1
1 1

1

2
1

1

R
Z

jQ

R

jQ

d
d

d
d

d

=
æ ö+ + -ç ÷è ø+

=
+æ ö+ ç ÷è ø+

At frequencies near the resonant frequency, d <<. \ (2 + d) » 2 and (1 | d) » 1.

\ Impedance near resonant frequency,

1 2

R
Z

jQ d
=

+
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Note: (i) At w = w2 (half-power frequency) 2Qd = 1; Z = 
1

R
Z

j
=

+

(ii) At w = w1 (half-power frequency) 2Qd = �1; Z = 
( )1

R
Z

j
=

-

10.4 RELATION BETWEEN DAMPING RATIO AND QUALITY FACTOR

The frequency response may be related to the natural response as discussed below.

From chapter 5, it was seen that the damping ratio is,

0 ;
2

1
;

2

R
for series RLC circuit

L

for parallel RLC circuit
RC

a xw= =

=

From equation (10.29),

Q = 0 0
0

2 1 2
RC

w w
w

w w a
= =

-

Þ 02 1

2 2Q

ww w
a

-
= = (10.33)

Also, from chapter 5, the damped frequency of oscillation is,

22 2
0 0 0 2

1
1 1

4
d

Q
w w x w a w= - = - = - (10.34)

From equation (10.34), it is seen that the damping co-efficient a is inversely proportional to the

quality factor, Q. Also, the transition from underdamped to overdamped response occurs when w0
2 =

a2 (i.e. at the critical damping condition). Thus, from equation (10.33), we see that the condition for

critical damping is,

1

2
Q =

Similarly, from equation (10.33),

When 2 2 1
,

2
Qa w> <  (overdamped)

and

When 2 2 1
,

2
Qa w< > (underdamped)
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10.5 A MORE REALISTIC PARALLEL RESONANT CIRCUIT

A more realistic parallel-resonant circuit is shown in Fig. 10.10. It is a more realistic model because

it accounts for the losses in the inductor through resistance RL and losses in the capacitor through

resistance RC.

a

b

 

 

V

R
L R

C

L
C

Figure 10.11 Real Parallel Resonant Circuit

Here,

( )1

2

1

L

C

Z R j L

Z R
j C

w

w

= +

æ ö
= +ç ÷è ø

Y  =
( )

2 22 2 2 2

11

1 1

CL

L C L C

j C j CRR j Lj C

R j L j CR R L C R

w www

w w w w

--
+ = +

+ + + +

 =

2 2

2 2 2 22 2 2 2 2 2 2 21 1

CL

L C C L

C RR C L
j

R L C R C R R L

w w w

w w w w

æ ö æ ö
+ + -ç ÷ ç ÷

+ + + +è ø è ø
(10.35)

For resonance to occur, the imaginary part of the admittance should be zero.

\
2 22 2 2 21 C L

C L

C R R L

w w

w w
=

+ +

Þ 2 22 2 2 2 2
L CR C L C L LR Cw w+ = +

Þ ( )2 22
C LLC R L R C Lw - = -

Þ
2

0 2

1 L

C

L CR

LC L CR
w

æ ö-
= ç ÷

-è ø

Thus, the resonant frewuency is given by,

2

0 2

1 1

2

L

C

L CR
f

LC L CRp

æ ö-
= ç ÷

-è ø
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We consider the following four conditions:

Case (1):  RC = 0

Here, the resonant frequency is,

2

0

1
1 LCR

LC L
w

æ ö
= -ç ÷

è ø
Under this condition, the total admittance becomes, from equation (10.34)

0 2 2 2
0

L

L

R
Y

R Lw
=

+

From resonant frequency, ( )
2

2 2 2 2
0 02

1 L
L

R L
R L

LC CL
w w= - Þ + =

Therefore, the admittance is, 0
LR

Y
L

C

= and the impedance under resonant condition becomes,

( ) ( )
2 2

2 2 02 2
0 0 2

1
1 1L L L

L L L

LL
Z R L R R Q

CR R R

w
w

æ ö
= = + = + = +ç ÷

è ø

This impedance is known as Dynamic Resistance of the parallel tuned circuit. It is seen that lower

the value of resistance RL, higher is the value of dynamic resistance of the parallel circuit.  The

current drawn from the supply at resonance is,

0
LCR

I V
L

=

This current is termed as the make-up current.

The current in the capacitor or inductor branch is called forced oscillatory current, given by,

I = Vw0C

This type of circuit is known as a rejector circuit, since its impedance approaches a maxima and,

therefore, the resultant current is a minima at (or near) resonant frequency.

Impedance near resonant frequency

It is obtained by the procedures as explained below.

Impedance at any frequency, w is,

( )( )
1

L

L
j

R j L
C

Z

R j L
C

w
w

w
w

+ -
=

æ ö+ -ç ÷è ø

  

( )

2

1

1
1 1

L
L

L
L

j L j
R

CR

j L
R

R LC

w
w

w

w

æ ö
+ -ç ÷è ø

=
é ùæ ö+ -ê úç ÷è øë û

a

b

C
V

1

2 L

R
L

Figure 10.12 Parallel Tuned Resonant

Circuit with Lossless Capacitor
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2

1

1
1 1

L

L

L

RL
j

CR L

L
j

R LC

w

w

w

æ ö
-ç ÷è ø

=
æ ö+ -ç ÷è ø

(10.36)

Now, ( )0 0

0 0 0

1 { }
L L

LL
Q Q

R R

w w ww w w
d d

w w w

-
= ´ = = + =

and,
( ) ( )

2
0

2 2 2 2 2
0

1 1 1 1
1

1 1LC LC

w

w w w d d
= ´ = ´ =

+ +

{As, for high values of Q (Q > 10), 
2

0 2
0

1 1
1

LC LC
w

w
= Þ =Q }

Substituting these values in (10.36),

( )

( )
( )

( )

2

2

2

2

1

1
1 1

1
1

2
1 1

1

1
1

2
1

1

L

L

L

L

L

RL
j

CR L
Z

L
j

R LC

j
Q R

Q

jQ

j
Q R

Q

jQ

w

w

w

d

d
d d

d

d

d
d

d

æ ö
-ç ÷è ø

=
æ ö+ -ç ÷è ø

é ù
-ê ú+ë û=

é ù+ê ú+ +
ê ú+ë û

é ù
-ê ú+ë û=

+é ù+ ê ú+ë û

Near resonant frequency, (2 + d) » 2 and (1 + d » 1)

\ Impedance near resonant frequency,

2

0

1

1 2

L

j
Q R

Q
Z

j Qd

é ù
-ê ú

ë û=
+

NB:

At resonant frequency, d = 0,

\ Impedance at resonance frequency, 2
0 1L

j
Z Q R

Q

é ù
= -ê ú

ë û
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(i) For large values of Q (i.e., Q > 10), at resonant frequency, the impedance is,

2
0 L

L

L
Z Q R

CR
» =

(ii) For large values of Q(i.e., Q > 10), for near resonant frequency, the impedance is,

2

0
1 2 1 2

dL RQ R
Z

j Q j Qd d
= =

+ +
 [as, Dynamic Resistance, d

L

L
R

CR
= ]

\ 0 1

1 2d

Z

R j Qd
=

+

Current in Parallel Tuned Circuit

Let,

Current delivered by the source = Is,

Current in the inductor branch = IL,

Current in the capacitor branch = IC,

\ Power delivered by the source, Ps = Is
2 Rd [Rd = Dynamic Resistance]

Power dissipated in the parallel circuit, P = I
L

2R
L

I
C

I
S

I
L

V

Figure 10.13 Phasor diagram for Parallel Tune Resonant Circuit with Lossless Capacitor

Now, Ps = P

Þ 2 2
s d L LI R I R= (10.37)

Þ 2 2 2

2

d
L s s d

L LL

R L L
I I I R

R CRCR

é ù
= = =ê ú

ë û
Q

Þ
1

L s
L

L
I I

R C
=

Thus, the parallel tuned circuit is a current amplifier.

Voltage across the capacitor, VC = IsRd

and current through the capacitor, IC = w0CVC

\
0

C C
s

d d

V I
I

R CRw
= =

From (10.37),

2 2
s d s LI R I R=
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Þ
2

2

s L

dL

I R

RI
=

Þ
2

2 2 22
0

C L

dd L

I R

RC R Iw
=

Þ
2

2 2 22
0 02

C L
d d

d LL

I R L
C R LC R

R CRI
w w

é ù
= ´ = =ê ú

ë û
Q

Þ
2 2

0

1
1 1C L L

L

I CR CR
LC LC

I LC L L
w

é ùæ ö æ ö
ê ú= = - = -ç ÷ ç ÷ê úè ø è øë û

    = 
2

1 1
1

L

L
Q

R CQ

é ù
- =ê ú

ë û
Q

\
2

1
1

C

L

I

I Q
= -

If RL is very large, the currents are not equal. However, for very low value of RL (for very high

value of Q, Q ³ 10), both the currents are equal. Higher the value of Q, higher will be IC and IL and

lower will be the source current, Is. As Q ® µ, both IC and IL tend to infinity and Is tends to zero.

Effect of Source Resistance over Bandwidth and Quality Factor

Bandwidth for the parallel tuned circuit is affected by the source resistance as explained below

a

b

C
V

1

2 L

R
L

R
S

a

b

C
I⫽V/R

s

L

R
L

R
S

a

b

CI⫽V/R
s

L

R
L

R
S

a

b

C

E

L

R
L

R
S

a

b

C

E

L
e

R
e

Figure 10.14 Simplification of Real Parallel Circuit to get Series Equivalent Circuit

By circuit reduction methods, the parallel tuned circuit is simplified as shown from Fig. 10.14 (i)

to Fig. 10.14 (v),

Ze = 
( )

( )
L s

L s

R j L R

R j L R

w

w

+

+ +
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= 
( )

L s s

L s

R R j LR

R j L R

w

w

+
+ +

= 
( ) ( ){ }
( ){ } ( ){ }

L s s L s

L s L s

R R j LR R R j L

R R j L R R j L

w w

w w

+ + -

+ + + -

= 
( ){ } ( ){ }

( )

2 2

2 2 2

L s L s s s L s s

L s

R R R R L R j LR R R LR

R R L

w w w

w

+ + + + -

+ +

= Re + jwLe

Therefore, the equivalent resistance is,

( )

( )

2 2

2 2 2

L s L s s
e

L s

R R R R L R
R

R R L

w

w

+ +
=

+ +

and the equivalent inductance is,

( )

2

2 2 2

s
e

L s

LR
L

R R Lw
=

+ +

Since the equivalent circuit is an RLC series circuit, the effective quality factor is,

Q = 
( ) 2 2 2 2 2 2 2 2

1 1

1

e s

e L L s L L L
L

s L s

L LR

R R R R L R R L R L
R

L LR Q R LR

w w

w w w

w w w

= = =
æ ö+ + + +

+ + ç ÷
è ø

L

L
Q

R

wæ ö
=ç ÷è ø

Q

= 
1 1

1 1 1
1 ddL d

ss s

Q

RRR R

RQ L R Q Q Rw

= =
æ ö æ ö ++ +ç ÷ ç ÷è ø è ø

2 2 2, L d
L

L L
as at resonance R L and R

C CR
w

æ ö
+ = =ç ÷è ø

Therefore,
1 1

L
e

d

L s s

L
R Q

Q
RL

CR R R

w

= =
æ ö æ ö

+ +ç ÷ ç ÷è ø è ø
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Therefore, the effective bandwidth will be,

( ) 0
0

1
1 d

e
e s

R
BW

Q Q R

w
w

æ ö
= = +ç ÷è ø

\ ( ) 0 01 1d

e
s L s

R L
BW

Q R Q CR R

w wæ ö é ù
= + = +ê úç ÷è ø ë û

Thus, the bandwidth of the circuit depends upon the circuit constants (RL, L and C) and the

source resistance (Rs). For a given resonant frequency, the circuit will be less selective and band-

width will be large if L is large and C is small. For more selectivity, the value of L should be reduced

and C increased; however, this may reduce the value of Rd, which is undesirable.

NB: If the source resistance is infinite (Rs ® ¥), then the bandwidth and quality factor of this

parallel tuned circuit is the same as those of the RLC series circuit.

To obtain maximum possible value of power delivered from the source to the load, we have,

Rs = Rd

and under this condition, the bandwidth becomes,

0

2
BW

Q
w=

Example 10.4 A coil of inductance 1 H and 10 W resistance is connected in parallel with 100 mF

capacitor. If the supply voltage is 200 V, find the resonant frequency and the

current at resonance.

Sol:

Here, RL = 10 W, L = 1 H, C = 100 mF, V = 200 V

Resonant frequency is,

2 2

0 2 6 2

1 1 1 1 10
15.84 Hz

2 2 1 100 10 1

LR
f Ans

LC Lp p -
= - = - =

´ ´
At resonance, the impedance of the circuit is,

0 6

1
1000

100 10 10L

L
Z

CR -
= = = W

´ ´

\ Current in the circuit at resonance is, 0
0

200
0.2 A

1000

V
I Ans

Z
= = =

L

C

R
C

a

b

V ⫹
⫺

Figure 10.15 Real Parallel Resonant Circuit with Lossless Inductor
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Case (2): R
L
 = 0:

Here, the resonant frequency is,

0 2

1

C

L

LC L CR
w

æ ö
= ç ÷

-è ø

Under this condition, the total admittance becomes, from equation (10.35)

2 2
0

0 2 22
01

C

C

C R
Y

C R

w

w
=

+

From resonant frequency,

( )
( )2 2 2 22

0 0 02

1
1 C

C

C R LC
C L CR

w w w= Þ + =
-

Therefore, the admittance is, 

2 2
0

0 2
0

C CC R CR
Y

LLC

w

w
= =  and the impedance under resonant condition

becomes,

0
C

L
Z

CR
=

This is the Dynamic Resistance of the parallel tuned circuit. Here also, lower the value of resistance

RC, higher is the value of dynamic resistance of the parallel circuit. The make-up current i.e., current

drawn from the supply at resonance is,

0
CCR

I V
L

=

and the forced oscillatory current, given by, 
0

V
I

Lw
=

This circuit is also a rejector circuit as the impedance approaches a maxima and the current a

minima.

Approaching in the way similar to case (1), we get the equivalent quality factor and bandwidth of

this resonating circuit as,

1 1
where,

1 1

e
Cd d

C
s s

Q
Q Q

CRR R
CR

R R

w
w

= = =
æ ö æ ö

+ +ç ÷ ç ÷è ø è ø

and        0 0

1 1
1 1

d

s C s

R L
BW

Q R Q CR R
w w

æ ö é ù
= + = +ê úç ÷è ø ë û
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Case (3): RL = RC = 0:

V C

R
S

L

Figure 10.16 Tuned Tank Circuit

Here, the resonant frequency is, 0

1

LC
w = . This circuit with L and C in parallel is termed as tuned

tank circuit. At resonance, with capacitive and inductive reactances equal to each other, the total

impedance increases to infinity, meaning that the tank circuit draws no current from the AC power

source. However, for this case, there will be some circulating current, given by,

I = ( )
1

ifC sI V C V C R
LC

w= = <<

Þ I = 
C

V
L

The quality factor and bandwidth of this circuit will be same as those of a simple parallel RLC circuit;

i.e.,

1
and .

s
s

s

R
Q CR BW

L R C
w

w
= = =

Case (4): L C

L
R = R =

C

Here, L C L C

L L
R R X X

C C

w

w
= = = =

Under this condition, the imaginary part of the admittance is,

( )( )

2 22 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

( )
1 C L

C L

C C L L

L C L C L C C L

C C L L

C L
IM Y

C R R L

X X

X R X R

R X X X X X R X

X R X R

w w

w w
= -

+ +

= -
+ +

+ - +
=

+ +
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( )( )

2 2 2 2

2 2 2 2
( ) 0L C L C L C L C

C C L L

X X X X X X X X
IM Y

X R X R

+ - +
= =

+ +

Thus, the resonance under this condition will occur at all frequencies.

Example 10.5 Find C which results in resonance in the circuit shown in Fig. 10.17 when w = 5000

rad/s.

Sol:

C

8⍀ 8⍀

j 6⍀

Figure 10.17 Circuit of Example 10.5

Let the capacitive reactance be XC.

2

2 2

88 61 1

8 6 8 100 64

8 8 6

100 10064 64

C

C C

C

C C

jXj
Y

j jX X

X
j

X X

--
= + = +

+ - +

æ ö æ ö
= + + -ç ÷ ç ÷

+ +è ø è ø

For resonance to occur, the imaginary part of the admittance should be zero.

\
2

6
0

10064

C

C

X

X

æ ö
- =ç ÷

+è ø

Þ
2

6

10064

C

C

X

X
=

+

Þ 2
6 100 384 0C CX X- + =

Þ 10.67 6CX or= W W

\
1

CX
Cw

=

\
1 1 1

18.75 ì F or 33.33 ì F
5000 10.67 5000 6C

C Ans
Xw

= = = =
´ ´
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10.6 COMPARISON OF SERIES AND PARALLEL RESONANCE

Particulars Series Resonance Parallel Resonance

Circuit Impedance at resonance Minimum Maximum

at resonance

Circuit Admittance at resonance Maximum Minimum

Current in the circuit at resonance Maximum Minimum

Circuit for f > f0 Inductive Capacitive

Circuit for f < f0 Capacitive Inductive

Amplification of Voltage Current

Q-factor
0

0

1 1
or or

R

L L

R RC C

w

w
0

0

or or
R C

RC R
L L

w
w

Power factor of the Unity Unity

circuit at resonance

Resonant frequency 0

1

LC
w = 0

1

LC
w =

Bandwidth
0fBW

Q
= 0fBW

Q
=

Half-power frequencies 0 1 2w w w= 0 1 2w w w=

10.7 UNIVERSAL RESONANCE CURVE

From the expressions of impedance near resonant frequency,

For series RLC circuit,

Z = ( )1 2R j Qd+

Y = 
( )

1

1 2R j Qd+

0

Y

Y
= 

1

1 2j Qd+
(10.38)

0

1
where, admittance at resonanceY

R

æ ö= =ç ÷è ø

D
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fe
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n
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S
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For parallel RLC circuit,

Z = 
1 2

R

j Qd+

or,
Z

R
 = 

1

1 2
u

j Qd+

or,
0

Z

Z
 = 

1

1 2j Qd+
(10.39)

( )0where, impedance at resonanceZ R= =

For parallel tuned circuit for high values of Q,

Z = 
1 2

dR

j Qd+

or,
0

Z

Z
 = 

1

1 2j Qd+
(10.40)

( )0where, Dynamic resistance impedance at resonancedZ R= = =

From (10.38), (10.39) and (10.40), it is seen that the variations of 
0 0

or
Y Z

Y Z
for high Q circuits

near resonant frequency are identical for series and parallel circuit, given as,

1

1 2
H H

j Q
f

d
= = Ð

+

where, ( )1

2 2

1
and tan 2

1 4
H Q

Q
f d

d

-= = -
+

The variation of magnitude and phase of this are shown in Fig.10.18. These curves are known as

universal resonance curve. It gives the magnitude and phase of the quantity by which the maximum

admittance or impedance of a series or parallel circuit is to be multiplied to obtain the associated

admittance or impedance near resonant frequency.

NB: At half-power points, 
1

2 1, 0.707 and 45
2

Q Hd f= ± \ = = = ± ° .

10.8 APPLICATONS OF RESONANCE

Resonance is a very valuable property of reactive AC circuits, employed in a variety of applications.

One use for resonance is to establish a condition of stable frequency in circuits designed to

produce AC signals. For example, when we tune a radio to a particular station, the LC circuits are set

at resonance for that particular carrier frequency. Usually, a parallel (tank) circuit is used for this
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purpose, with the capacitor and inductor directly connected together, exchanging energy between

each other. Just as a pendulum can be used to stabilize the frequency of a clock mechanism�s

oscillations, so can a tank circuit be used to stabilize the electrical frequency of an AC oscillator

circuit.

Another use for resonance is in applications where the effects of greatly increased or decreased

impedance at a particular frequency are desired. A resonant circuit can be used to �block� (present

high impedance toward) a frequency or range of frequencies, thus acting as a �filter� to strain certain

frequencies. In fact, these particular circuits are called filters, discussed in the preceding chapter.

A parallel resonant circuit can alco be used as load impedance in output circuits of RF amplifiers.

Due to high impedance, the gain of amplifier is maximum at resonant frequency.

Therefore, the applications of resonant effects can be summurized as follows:

1. Most common application of resonance is tuning i.e., as an oscillator circuit.

2. A series resonant circuit is used as voltage amplifier.

3. A parallel resonant circuit is used as current amplifier.

4. A resonant circuit is used as filters.

5. A realisitic parallel resonant circuit is used as current rejector.

6. A parallel resonant circuit is used as load impedance in output circuits of RF amplifiers.

7. A parallel resonant circuit can be used in induction heating.

In designing any mechanical systems or civil structure or electrical system, the effects of reso-

nance must be taken into consideration. Otherwise, the oscillations of the system in certain conditions

may be so large that the system may be damaged.

1

H

0 1⫺1 ⫺0.8⫺0.6⫺0.4⫺0.2

0.9

0.8

0.8

0.7

0.6

0.6

0.5

0.4

0.4

0.3

0.2
0.2

␦Q

⫺20

⫺40

⫺60

⫺80

⫺100

100

0 1 2 3 4 5⫺5 ⫺4 ⫺3 ⫺2 ⫺1

80

60

40

20

0

␦Q

Figure 10.18 Universal Resonance Curves
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SOLVED PROBLEMS

1. A series RLC circuit has the values: R = 10 W, L = 0.01 H, C = 100 µF. Calculate

resonant frequency, quality factor, bandwidth, and the half-power frequencies.

Sol:

Here, R = 10 W, L = 0.01 H, C = 100 µF.

\ Resonant frequency, 
6

1 1
159.15 Hz .

2 2 0.01 100 10
rf Ans

LCp p -
= = =

´ ´

\ Quality factor, 0
6

1 1 1 0.01
1 .

10 100 10

L L L
Q Ans

R R R CLC

w
-

= = ´ = = =
´

\ Bandwidth, 
10

1, 000 rad/s .
0.01

R
BW Ans

L
= = =

To find half-power frequencies, we have,

( )2 1 1000
R

L
w w- = =

and 6
1 2

1
10

LC
w w = =

( ) ( )
2 6 6 3

2 1 2 1 1 24 10 4 10 2.36 10w w w w w w+ = - + = + ´ = ´

Adding equations (i) + (ii), 3
2 1.618 10 rad/s .Answ = ´

Subtracting equations (ii) � (i), 3
1 0.618 10 rad/s .Answ = ´

2. A series RLC circuit has the values: R = 100 W, L = 0.02 H, C = 0.02 µF. Calculate

frequency of resonance. A variable frequency sinusoidal voltage of value 50V is applied

to the circuit. Find the frequency at which voltage across L and C is the maximum.

Also calculate voltage across L and C at frequency of resonance. Find the maximum

current in the circuit.

Sol:

Here, R = 100 W, L = 0.02 H, C = 0.02 mF.

\ Resonant frequency, 
6

1 1
7.957 kHz .

2 2 0.02 0.02 10
rf Ans

LCp p -
= = =

´ ´
The frequency at which voltage across C is the maximum is given by,

( )

2 2

2 6 2

1 1 1 1 100
7.937 kHz

2 22 0.02 0.02 10 2 0.02
C

R
f Ans

LC Lp p -

æ öæ öæ ö æ ö= - = - =ç ÷ç ÷ ç ÷ç ÷è ø è ø ç ÷è ø ´ ´è ø
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The frequency at which voltage across L is the maximum is given by,

f L = 
2 2

1 1

2

2

C R
LC

p

æ ö æ ö
ç ÷ ç ÷è ø

ç ÷-
è ø

= 

( )
26 2

6

1 1
7.977 kHz

2
0.02 10 100

0.02 0.02 10
2

Ans
p -

-

æ ö æ ö =ç ÷ ç ÷è ø
´ ´ç ÷

ç ÷´ ´ -
è ø

Voltage across the inductance or the capacitance at resonance is,

LV = 3
0 0

0.02
2 2 7.957 10 50 500 V

100C m m m

L L
V QV V f V Ans

R R
w p p= = = = ´ ´ ´ ´ ´ =

\ VL = 500 90 V AnsÐ °

\ VC = 500 90 V AnsÐ - °

The maximum current in the circuit is given by,

max
50

0.5 A
100

mV
I Ans

R
= = =

3. For a series RLC circuit with R = 2 W, L = 1 mH, C = 0.4 mF and a supply voltage v(t)

= 20 sin wt, find:

(a) The resonant frequency (w0);
(b) The half-power frequencies (w1 and w2);
(c) The quality factor and bandwidth; and
(d) The amplitude of the current at w0, w1 and w2.

Sol:

Here, R = 2 W, L = 0.001 H, C = 0.4 mF

(a) \ Resonant frequemcy, 
6

1 1
50 krad/s .

0.001 0.4 10
r Ans

LC
w

-
= = =

´ ´
(b) To find half-power frequencies, we have,

( )2 1 2000
R

L
w w- = = (i)

and 6
1 2

1
25 10

LC
w w = = ´

\ ( ) ( )
2 6 6 3

2 1 2 1 1 24 4 10 4 25 10 100 10w w w w w w+ = - + = ´ + ´ ´ = ´ (ii)

Adding equations (i) + (ii), w2 = 51 krad/s Ans

Subtracting equations (ii) � (i), w1 = 49 krad/s Ans
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(c) \Quality factor, 
0

6

1 1 1 0.001
25 .

2 0.4 10

L L L
Q Ans

R R R CLC

w
-

= = ´ = = =
´

\ Bandwidth, 
2

2 krad/s .
0.001

R
BW Ans

L
= = =

(b) The amplitudes of the currents are,

0

1 2

20
10 A .

2

10
7.071 A .

2 2

V
I Ans

R

I
I Ans

w w

w w w

=

= =

= = =

= = =

4. A series-connected circuit has R = 4 W and L = 25 mH. (a) Calculate the value of C

that will produce a quality factor of 50. (b) Find w1, w2 and BW. (c) Determine the

average power dissipated at w = w0, w1, w2. Take Vm = 100 V.

Sol:

Here, R = 4 W, L = 25 mH = 0.025 H, Q = 50, Vm  = 100 Volt
(a)

\ 0 1 1L L L
Q

R R R CLC

w
= = ´ =

\
2 2 2 2

0.025
0.625 ì F .

50 4

L
C Ans

Q R
= = =

´
(b)

w1 = 
2 2

6

1 4 4 1

2 2 2 0.025 2 0.025 0.025 0.625 10

R R

L L LC -
æ ö æ ö- + + = - + +ç ÷ ç ÷è ø è ø´ ´ ´ ´

= �80 + 8000

= 7920 rad/s Ans.

w2 = 
2 2

6

1 4 4 1

2 2 2 0.025 2 0.025 0.025 0.625 10

R R

L L LC -
æ ö æ ö- - + = - - +ç ÷ ç ÷è ø è ø´ ´ ´ ´

= �80 � 8000

= 8080 rad/s Ans.

(c) Average power dissipated at resonant frequency,

0

2

2
rms

av

100
2

1.250 kW .
2

V
P Ans

Rw w=

æ ö
è ø

= = =
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Average power dissipated at half-power frequencies,

0

1 2

av

av
1.25

0.625 kW .
2 2

P
P Ans

w w

w w w

=
= = = = =

5. A series RLC circuit with R = 10 W, 
100

314
L =  H, 

1

31, 400
C =  F is excited from a 10 V,

50 Hz (w = 314 rad/s) source. Determine the rms values of voltage across (i) resis-

tance, (ii) inductance, (iii) capacitance. Give explanation if any of the answer is more

than the source voltage.

Sol:

Here, w = 314 rad/s, R = 10 W, 
100 1

H
314 31, 400

L C= =  F, V = 10 V

\ 
100

314 100
314LX Lw= = ´ = W and

1 1
100

1
314

31, 400

CX
Cw

= = = W
´

Since, XL = XC, the circuit is under resonance.

At resonance, the current in the circuit, 0
10

1 A
10

V
I

R
= = =

(i) \ Voltage across resistance, 0 1 10 10 VRV I R Ans= ´ = ´ =
(ii) \ Voltage across inductance, 0 1 100 100 VLV I L Answ= ´ = ´ =

(iii) \ Voltage across capacitance, 0
1

1 100 100 VCV I Ans
Cw

= ´ = ´ =

At resonance, the voltage drops across the inductance and the capacitance will be equal in
magnitude but opposite in phase and thus will nullify each other so that the supply voltage will be
equal to the voltage drop across the resistance.

6. A 20 W resistor is connected in series with an inductor, a capacitor and an ammeter

across a 25 V variable frequency supply. When the frequency is 400 Hz, the current is

at its maximum value of 0.5 A and the potential difference across the capacitor is

150 V. Calculate:

i. The capacitance of the capacitor.

ii. The resistance and inductance of the inductor.

Sol:

Here, R = 20 W, Vm = 25 Volt, f = 400 Hz, I = 0.5 A, VC = 150 Volt
When the current is the maximum, the circuit is in resonance and hence total reactances

XL ~ XC = 0

i. The capacitane value is calculated as,

\
150

300
0.5

C
C

V
X

I
= = = W
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Þ
1 1

300 1.325 ì F .
2 400 300

C Ans
Cw p

= Þ = =
´ ´

ii. Q XL ~ XC = 0,

\ L CX X=

Þ 300Lw = W

Þ
300

0.119 H .
2 400

L Ans
p

= =
´

Also, at resonance, circuit resistance = circuit impedance

20⍀

r L

C

25V 

Inductor 

Let, r = resistance of the inductor

Then ( )
25

20 50 30 .
0.5

r r Ans+ = = Þ = W

7. Voltages across resistance, inductance and capacitance connected in series are 3 V, 4 V

and 5 V respectively. If supply voltage has 50 Hz frequency, what is the magnitude of

supply voltage? Find the resonant frequency of this series RLC circuit.

Sol:

Here, VR = 3 V; VL = 4 V; VC = 5 V, f = 50 Hz

Supply voltage is, ( ) ( )
2 22 23 5 4 10 3.162 VR C LV V V V Ans= + - = + - = =

Now, voltage drop across inductance is,
VL = wL ´ I (i)

Voltage drop across capacitance is,

1
CV I

Cw
= ´ (ii)

By (ii) ¸ (i), we get,

( )
22 3

2

1 1 5
2 50 123.37 10

4
C C

L L

V V

V LC VLC
w p

w
= = Þ = ´ = ´ ´ = ´

\ Resonant frequency is,

3
0

1 1 1
123.37 10 55.9 Hz

2 2
f Ans

LCp p
= = ´ =
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8. A resistor and capacitor are in series with a variable inductor. When the circuit is

connected to 200 V, 50 Hz supply, the maximum current obtained by varying the

inductance is 0.314 A. The voltage across the capacitor, when current in the circuit is

maximum, is 800 V. Find the values of the series circuit elements.

Sol:

Here, V = 200 V, VC = 800 V, I0 = 0.314 A
Resonance frequency, f0 = 50 Hz
The current in series resonant circuit is maximum at resonance. It is given as,

0
200

636.95
0.314

V V
I R

R I
= Þ = = = W

Also, at resonance the voltage across the capacitor is,

800
4

200
C

C

V
V QV Q

V
= Þ = = =

Now, 0 02L f L
Q

R R

w p
= =

or,
2 50

4 8.1 H
636.95

L
L

p ´ ´
= Þ =

Also,
0 0

1 1

2
Q

RC f RCw p
= =

or,
1

4 1.25 ì F
2 50 636.95

C
Cp

= Þ =
´ ´

Therefore, the series elements are: 636.95 8.1 H 1.25 ì FR L C Ans= W = =
9. A circuit is made up of a 10 W resistance, a 1 mF capacitance and a 1 H inductance all

connected in series. A voltage of 100 V at varying frequencies is applied to the circuit.

Find the frequency (frequencies) at which the circuit would consume only 10% of the

power it consumed at resonance.

Sol:

Here, R = 10 W, L = 1 H, and C = 1 mF, V = 100 V

At resonance the current in the circuit is, 0
100

10A
10

V
I

R
= = =

\ Power consumed at resonance = 2 2
0 10 10 1000 WI R´ = ´ =

Let f be the frequency at which the circuit would consume only 10% of the power it consumed at
resonance i.e. 100 W.

Under this condition, the circuit current is,

100 100
10 A

10
I

R
= = =
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\ Circuit impedance, 
100

10 10
10

V
Z

I
= = = W

\ Circuit reactance, ( ) ( )
22 2 210 10 10 30L CX X Z R- = - = - = W

\
1

2 30
2

fL
fC

p
p

æ ö
- =ç ÷è ø

Þ
6

1
2 1 30

2 1 10
f

f
p

p -

æ ö
- =ç ÷è ´ ø

Þ 2 2 64 60 10 0f fp p- - =

Þ
( )

2 2 6

2

60 60 4 4 10
161.56 Hz or 156.78 Hz

2 4
f Ans

p p p

p

± + ´ ´
= =

´
10. A coil under test is connected in series with a variable calibrated capacitor C and sine

wave generator giving a 10 V r.m.s. output at frequency of 1000 rad/s. By adjusting C,

the current in the circuit is found to be a maximum when C = 10.0 mF. Further, the

current falls down to 0.707 times the maximum value when C = 12.5 mF.

(a) Find the inductance of the coil and resistance of the coil.

(b) Find the Q of the coil at 1000 rad/s

(c) What is the maximum current in the circuit?

Sol:

Here, Vrms = 10 V, w = 1000 rad/s,
C = 10 mF for maximum current (Imax)

= 12.5 mF for current max

2
I

(a)
2

0 2 6 6
0

1 1 1
0.1 H .

10 10 10
L Ans

LC C
w

w
-

= Þ = = =
´ ´

(b) At half-power frequency,

1
L R

C
w

w

æ ö- =ç ÷è ø
; where, R is the resistance of the coil

\
6

1
1000 0.1 20

1000 12.5 10
R R

-
æ ö´ - = Þ = Wç ÷è ø´ ´

\ Quality factor of the coil, 0 1000 0.1
5 .

20

L
Q Ans

R

w ´
= = =
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(c) Maximum current in the circuit max
10

0.5 A .
20

V
I Ans

R
= = =

11. A parallel RLC circuit has the following values:

(a) R = 8 kW, L = 0.2 mH, C = 8 mF, V = 10 sin wt (V)

(b) R = 100 kW, L = 20 mH, C = 5 nF, V = 20 sin wt (V)

Calculate (i) w0; (ii) w1 and w2; (iii) Q and BW; (iv) power dissipated at w0, w1 and w2.

Sol:

a. Here, R  = 8 kW, L = 0.2 mH, C = 8 mF, V = 10 sin wt (V)

(i) \ 
5

0
3 6

1 1 10
25 krad/s .

40.2 10 8 10
Ans

LC
w

- -
= = = =

´ ´ ´

(ii)

2

1
1 1 1

2 2RC RC LC
w

æ ö= - + +ç ÷è ø

2

3 6 3 6 3 6

1 1 1

2 8 10 8 10 2 8 10 8 10 0.2 10 8 10- - - -
æ ö= - + +ç ÷è ø´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

1 24.992 krad/s .Answ =

(iii)  3 3 6
0 25 10 8 10 8 10 1600 .Q RC Answ -\ = = ´ ´ ´ ´ ´ =

( )
3

0
2 1

25 10
15.625 rad/s .

1600
BW Ans

Q

w
w w

´
\ = - = = =

(iv) At w = w0, 
1

8 kY Z R
R

= Þ = = W

( )
10 90

1.25 90 mA .
8000

V
I Ans

Z

Ð - °
= = = Ð - °

As the entire current flows through R at resonance, the average power dissipated at w = w0 is,

( ) ( )
22 3 3

0
1 1

1.25 10 8 10 6.25 mW .
2 2

P I R Ans-= = ´ ´ =

or,
2 2

3

10
6.25 mW .

2 2 8 10
mV

P Ans
R

= = =
´ ´

At w = w1 = w2, the power dissipated is,

2 2

3

10
3.125 mW .

4 4 8 10
mV

P Ans
R

= = =
´ ´
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b. Following the same procedures as in part a., we get,

(i) w0 = 100 krad/s;

(ii) w1 = 99 krad/s, w2 = 101 krad/s;

(iii) Q = 50, BW = 2 rad/s;

(iv) 1 mW
12. In the circuit shown in figure, find out the value of R such that the impedance of the

whole circuit should be independent of the frequency of the supply. If voltage = 200 V,

L = 0.16 H and C = 100 mF, calculate the power loss in the circuit.

⫹

⫺
C

R R

L

V

Sol:

Impedance of the inductive branch, ZL = (R + jwL)

Impedance of the capacitive branch, C

j
Z R

Cw

æ ö= -ç ÷è ø

\ Impedance of the whole circuit,

( )

( )

2 1

1
2

L C

L C

j L
R j L R R jR L

Z Z C C C
Z

jZ Z
R j LR j L R

CC

w w
w w

ww
ww

æ ö æ ö+ - + + -ç ÷ ç ÷è ø è ø
= = =

+ æ ö æ ö+ -+ + - ç ÷ç ÷ è øè ø

In this expression, the imaginary term of the numerator is R times the imaginary term of the

denominator. Thus, if the real term i.e., 2 L
R

C

æ ö+ç ÷è ø
is also R times the real term of the denominator

i.e. R ´ 2R, then the term consisting of w will vanish and the impedance will become independent of
frequency.

Thus, the condition is,

2 22 2
L L

R R R R R
C C

æ ö+ = ´ = Þ =ç ÷è ø

Putting the value of L and C, 
6

0.16
40

100 10
R Ans

-
= = W

´

Power loss in the circuit, 
2 2200

1000 W 1 kW
40

V
P Ans

R
= = = =
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13. For the circuit shown in figure draw the phasor diagram. Derive the condition for the

two branch currents IL and IC to be in quadrature.

⫹

⫺
C

R
L

R
C

L

V

Sol: For this resonant circuit, the phasor diagram is shown in figure.

I
C

I
L

I
S V

Phase angle of the inductive branch, 1tanL
L

L

R

w
f - æ ö

= ç ÷è ø

Phase angle of the capacitive branch, 1 1
tanC

CR C
f

w

- æ ö
= ç ÷è ø

For the two currents to be in quadrature, the condition is,

90L Cf f+ = °

Þ 1 1 1
tan tan 90

L C

L

R R C

w

w

- - æ öæ ö
+ = °ç ÷ ç ÷è ø è ø

Þ 1

1

tan 90
1

1

L C

L C

L

R R C

L

R R C

w

w

w

w

-

é ù+ê ú
ê ú = °
ê ú- ´ê úë û

Þ

1

tan 90
1

L C

L C

L

R R C

L

R R C

w

w
+

= ° = ¥
-

Þ 1 0
L C

L

R R C
- =

Þ L C

L
R R Ans

C
=
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14. A coil of 10 W resistance and 0.1 H inductance is connected in parallel with a capacitor

of 100 mF capacitance. Calculate the frequency at which the circuit will act as a non-

inductive resistance of R ohm. Find also the value of R.

Sol:

Here, RL = 10 W, L = 0.1 H, C = 100 mF
The frequency at which the circuit will be non-inductive is the resonant frequency, given by,

C

L

V

R
L⫹

⫺

f0

21 1

2
LR

LC Lp
= -

=  
( )

2

6 2

1 1 10

2 0.1 100 10 0.1Cp -
-

´ ´

= 47.8 Hz Ans.

At resonance, 
6

0.1
100 .

100 10 10L

L
R Ans

CR -
= = = W

´ ´
15. A parallel circuit has a fixed capacitor and variable inductor having constant quality

factor of 4. Find the value of inductance and capacitance for the circuit impedance of

1000 W at resonant frequency of 2.4 MHz. What is the bandwidth of the circuit?

Sol:

Here, Q = 4, Z0 = 1000 W, f0 = 2.4 MHz
Now, impedance at resonance, is given by,

( )
( )

02
0 22

1000
1 58.82

1 41
L L

Z
Z R Q R

Q
= + Þ = = = W

++

Also, impedance at resonance, is given by,

0 0 :
:

1000 58.82 58.82 10L
L

L L
Z Z R

CR C
= Þ = ´ = ´ = ´ (i)

The resonant frequency is given as,

2

0 2 2

1 1 1 1 1
1

2 2
LR

f
LC LCL Qp p

æ ö
= - = -ç ÷

è ø

\ 6 151 1 1
2.4 10 1 4.1227 10

2 16
LC

LCp

-´ = - Þ = ´ (ii)
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Putting the value of C from (i) into (ii), we get,

15
3

4.1227 10 15.57 ì H
58.82 10

L
L L Ans-æ ö = ´ Þ =ç ÷è ø´

Putting this value in (i), we get,
6

3 3

15.57 10
0.264 nF

58.82 10 58.82 10

L
C Ans

-´
= = =

´ ´

\ Bandwidth of the circuit, 
6

0 2.4 10
0.6 MHz

4

f
BW Ans

Q

´
= =

16. A coil resonates at 2 MHz when a 18 pF capacitor is shunted across it. When shunting

capacitor is 81 pF, the resonating frequency becomes 1 MHz. Find the distributed

capacitor of the coil and the self resonating frequency.

Sol:

Let the distributed capacitance of the coil be Cd (in pF).
Show when the coil is shunted with another capacitance of C, the total capacitance becomes,

(C + Cd).
When C = 18 pF, the resonating frequency is f0 = 2 MHz

( ) ( )

6 1 1
2 10

2 2 18d dL C C L Cp p
´ = =

+ +
(i)

When C = 81 pF, the resonating frequency is f0 = 1 MHz

( ) ( )

6 1 1
1 10

2 2 81d dL C C L Cp p
´ = =

+ +
(ii)

Dividing (i) by (ii), we get,

81
2 3 pF

18
d

d
d

C
C Ans

C

+
= Þ =

+

Putting the value of Cd in (ii), we get,

( )

6

12

1
1 10 0.3 mH

2 18 3 10
L

Lp -
´ = Þ =

+ ´

So, the self-resonating frequency of the coil is given as,

0
3 12

1 1
5.31 MHz

2 2 0.3 10 3 10d

f Ans
LCp p - -

= = =
´ ´ ´

17. A coil has an inductance of 610250 −

× H. Its reactance to resistance ratio is 170 at a

frequency of 106 Hz. It is connected in parallel with a variable capacitor. Find:

(i) value of the capacitor to produce resonance at 106 Hz.

(ii) impedance of the circuit at 106 Hz.

(iii) impedance of the circuit at 0.99 ´ 106 Hz.
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Sol:

Here, L = 250 ´ 10�6 H, f0 = 1 MHz
From the given condition,

6 6

1 MHZ

2 2 10 250 10
170 170 9.24

170 170
L

L
L Lf

X fLL
R

R R

pw p -

=

´ ´ ´
= Þ = Þ = = = W

(i) From the resonance frequency, we get,

f0 = 
2

2

1 1

2
LR

LC Lp
-

Þ f0
2 = 

2 2

2

1 1

2
LR

LC Lp

æ öæ ö -ç ÷ç ÷è ø è ø

Þ (2p)2 ´ (106)2 = 

( )

2

6 26

1 9.24

250 10 250 10C- -
-

´ ´ ´

Þ C = 101.32 pF Ans.

(ii) Impedance at resonance frequency is,

6

0 12

250 10
267.04 k

101.31 10 9.24L

L
Z Ans

CR

-

-

´
= = = W

´ ´
(iii) The frequency, 0.99 ´ 106 Hz is very near to the resonance frequency.

Impedance near resonance frequency for large value of Q (Q > 10) is given as,

0

1 2

Z
Z

j Qd
=

+

Here, 
6 6

0 2 10 250 10
170

9.24L

L
Q

R

w p -´ ´ ´
= = =

0

0

0.99 1
0.01

1

f f

f
d

- -
= = = -

\
( )

( )
3 3

0 267.04 10 267.04 10
75.35 73.61 k

1 2 1 2 170 0.01 1 3.4

Z
Z Ans

j Q j jd

´ ´
= = = = Ð ° W

+ + ´ ´ - -

18. Show that the high-Q coil resonant circuit can be approximated as shown in figure.

C

R

L

R L C

High-Q Coil Resonant Circuit Approximated Equivalent Circuit
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Sol:

For the approximated circuit, the resonant frequency is given as,

0
1

LC
w = (See section 10.3.)

For the high-Q resonant circuit, the resonant frequency is given as,

2

0
1

1
CR

LC L
w

æ ö
= -ç ÷è ø

(i) (See section 10.5)

Therefore, Q-factor of the inductance is,

    Q = 
2

0
2

1
1 1

L L CR L

R R LC L CR

w æ ö
= ´ - = -ç ÷è ø

Þ 2
2

1
L

Q
CR

= +

Þ
2

2

1

1

CR

L Q
=

+
Putting this value in (i), we get,

2

0 2

1 1 1
1 1

1

CR

LC L LC Q
w

æ öæ ö
= - = -ç ÷ç ÷è ø è + ø

For very high values of Q, the term 
2

1

1 Q

æ ö
ç ÷è + ø

 becomes negligible and we get the resonant

frequency as, ( )0
1 1

1 0
LC LC

w = - = which is the same as that for the approximated equivalent

circuit.
19. A parallel resonant circuit comprising a coil of 150 nH with Q of 20 in parallel with a

capacitor. What is the value of capacitor? Find also the resistance of the coil and the

circuit impedance at resonance. Take f0 = 1 MHz.

Sol:

Here, L = 150 nH, Q = 20, f0 = 106 Hz

Q 0 2 2 12 92
0

1 1 1
0.168 ì F .

2 4 10 150 104
f C Ans

LC f Lp pp
-

= Þ = = =
´ ´ ´

Q

6 9

0
2 10 150 10

47.1 mÙ .
20

L L
Q R Ans

R Q

w w p -´ ´ ´
= Þ = = =
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20. In a two-branch parallel circuit, calculate the resonant frequency w0

if R1 = 4 W and R2 = 6 W, C = 20 mF and L = 1 mH. If R1 is increased,

what is its maximum value for which there is a resonant frequency?

Sol:

Here, R1 = 4 W, L = 1 ´ 10�3 H, R2 = 6 W and C = 20 ´ 10�6 F

\  
2 3 6

2
0 2 9 3 6

1

1 1 10 20 10 36
4.537.4 rad/s .

20 10 10 20 10 16

L CR
Ans

LC CL CR
w

- -

- - -

æ ö æ ö- - ´ ´
= = =ç ÷ ç ÷è ø´ - ´ ´-è ø

When R1 is increased, resonant frequency will also increase. For 2
1

L
R

C
= , the resonance will occur

at w ® µ. Beyond this value of R1, the quantity within the square root will become imaginary and no
real frequency will give resonance.

\ Maximum value of R1 is obtained as,

3

1 6

1 10
7.071 .

20 10

L
R Ans

C

-

-

´
= = = W

´
21. A coil of inductance L and resistance R, in series with a capacitor is supplied at a

constant voltage from a variable frequency source. Find the values of that frequency,

in terms of R, L and w0 at which the circuit current would be half as much as at

resonance. Hence, or otherwise, determine the bandwidth and selectivity of the circuit.

Sol:

The current at resonance is,

0
V

I
R

=

and current at any other frequency is,

2
2 1

V
I

R L
C

w
w

=
æ ö+ -ç ÷è ø

For this problem,

0 0 2
2

I I
I

I
= Þ =

2
2 1

2

R L
C

R

w
w

æ ö+ -ç ÷è ø
=

Þ
2

2 21
4R L R

C
w

w

æ ö+ - =ç ÷è ø

C

R
1

L

R
2
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Þ 3 = 
22 2

2 2

1
1

L

R LC

w

w

æ ö-ç ÷è ø

Þ 3 = 

222 2
0

02 2

1
1

L

R LC

ww
w

w

æ ö é ù
- =ç ÷ ê ú

è ø ë û
Q

= 

22 22 2
0 0

2 2 2
0

1
L

R

w w w

w w

æ ö
- ´ç ÷

è ø

= 02

0

Q
ww

w w

æ ö
-ç ÷è ø

Þ = 
2

0

0

3

Q

ww

w w

æ ö
± - =ç ÷è ø

If the two frequencies are w2 and w1, (w2 > w0 > w1) then,

02

0 2

3

Q

ww

w w

æ ö
- =ç ÷è ø

and

Þ 0 1

1 0

3

Q

w w

w w

æ ö
- =ç ÷è ø

\

2
0 0

1

2
0 0

2

3 3 4

2
.

3 3 4
&

2

Q

Q
Ans

Q

Q

w w
w

w w
w

ü- + + ï=
ï
ý
ï+ +

= ï
þ

Alternately,
2

21
3L R

C
w

w

æ ö- =ç ÷è ø

Þ
1

3L R
C

w
w

æ ö- = ±ç ÷è ø

Therefore,

2
3 3 1

2 2

R R

L L LC
w

æ ö
= ± ± +ç ÷è ø
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Taking the positive roots of w,

2

1

2

2

3 3 1

2 2
.

3 3 1

2 2

R R

L L LC
Ans

R R

L L LC

w

w

üæ ö ï= - + +ç ÷ ïè ø ï
ý
ïæ ö
ï= + +ç ÷è ø ïþ

\ Bandwidth ( ) 0
2 1

3 3
.

R
BW Ans

Q L

w
w w= - = =

22. A series circuit consisting of a coil and a capacitor is excited by a sinusoidal voltage

source of E volt and variable frequency. The resonant frequency of the circuit is f0 and

quality factor of the circuit is Q. Calculate the frequency at which the ratio of capacitor

voltage to the source voltage is maximum and the maximum value of this ratio.

Sol:

Here, 0
1

2
f

LCp
=

0

0

1 1L L
Q

R RC R C

w

w
= = =

The current,
1

E
I

R j L
C

w
w

=
æ ö+ -ç ÷è ø

\ Capacitor voltage, VC = 
1 1

1 1

E E
I

j C j C
R j L j RC C L

C C

w w
w w w w

w w

é ù´ = =ê úæ ö æ öê ú+ - - -ç ÷ ç ÷è ø è øê úë û

= 
( )21

E

LC j RCw w- +

CV

E
= 

( )2

1

1 LC j RCw w- +

This ratio will be maximum when the denominator is minimum.

\ ( )
22 2 2 21 0

d
LC R C

d
w w

w

é ùæ ö- + =ê úè øë û

Þ ( )( )2 2 22 1 2 2 0LC LC R Cw w w- - + =

Þ 3 2 2 2 24 4 2 0LC L C R Cw w w- + + =

Þ 2 2 2 2 22 2L C LC R Cw = -
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\
2

0
1 1 1

1 and
2

R C L
Q

LC L R CLC
w w

æ ö æ ö
= - = =ç ÷ ç ÷è ø è ø

Q

Þ 0 2

1
1 .

2
Ans

Q
w w= -

Putting this value, the maximum value of the ratio is,

( )
22 2 2 2max

1

1

CV

E
LC R Cw w

=
- +

(i)

Now,

( )
2

2 222 2 2 2 2 2
2 2

1 1
1 1

2 2

R R
LC R C LC R C

LC LCL L
w w

é ùæ ö é ù
- + = - - + -ê ú ê úç ÷è øê ú ë ûë û

2 2 2 4 2

2
1 1

2 2

R C R C R C

L L L

æ ö
= - + + -ç ÷è ø

Þ ( )
2

22 2 2 2
2 4

1 1 1
1

2 2
LC R C

QQ Q
w w

æ ö
- + = + -ç ÷è ø

3 3

4 4

1 4 2 4 1

4 4

Q Q

Q Q

+ - -
= =

Thus, from (i),
2

3
max

2
.

4 1

CV Q
Ans

E Q
=

-

23. Impedances Z2 and Z3 in parallel are in series with impedance Z1

across a 100 V, 50 Hz A.C. supply.

( ) ( ) ( )1 2 36.25 1.25 , 5 0 , 5 CZ j Z j Z jX= + W = + W = - W

Determine the value of capacitance of XC such that the total cur-

rent of the circuit will be in phase with the total voltage. What is

then the circuit current and power?

Sol:

Here,

( )

( )

( )

1

2

3

6.25 1.25 ,

5 0 ,

5 C

Z j

Z j

Z jX

= + W

= + W

= - W

100 V, 50Hz

Z
1

Z
2

Z
3
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Total impedance,

( )
( )2 3

1
2 3

2

2 2

5 5
6.25 1.25

10

250 5 25
6.25 1.25

100 100

C
T

C

C C

C C

jXZ Z
Z Z j

Z Z jX

X X
j

X X

-
= + = + +

+ -

æ ö æ ö+
= + - -ç ÷ ç ÷

+ +è ø è ø

The total current will be in phase with the total voltage if the impedance is purely resistive.

\
2

25
1.25 0

100

C

C

X

X

æ ö
- =ç ÷

+è ø

Þ 2 20 100 0C CX X- + =

Þ ( )
2

10 0CX - =

Þ 10CX =

Þ
1

10
2 fCp

=

Þ
1

318 ì F .
2 50 10

C Ans
p

= =
´ ´

Putting XC = 10, impedance, 
250 500

6.25 10
200TZ
+

= + = W

\ Current, 
100

10 A .
10T

V
I Ans

Z
= = =

\ Power, 2 210 10 1 kW .P I R Ans= = ´ =

24. In series RLC circuit with variable capacitance, the current is at maximum value with

capacitance of 20 mF and the current reduces to 0.707 times maximum value with

capacitance of 30 mF. Find the values of R and L. What is the bandwidth of the circuit

if supply voltage is 20 sin (6.28 ´ 103) t volt?

Sol:

Here,
3

3 6.28 10
20, 6.28 10 ; 1000 Hz

2 2mV f
w

w
p p

´
= = ´ \ = = =

We know that the maximum at resonance. At this condition the value of C is, C = 20 mF.

\  
( ) ( )

0 2 26
0

1 1 1
1.2665 mH

2 20 10 2 10002
f L Ans

LC C fp pp -
= Þ = = =

´ ´ ´
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Here, with variable capacitance, L and f0 remains constant. At half power frequency, the current
becomes 0.707 times the current at resonance with C = 30 mF. At this condition, the resistance of the
circuit is equal to the reactance of the circuit.

\ ( ) 3
6

1
2 1000 1.2665 10 2.652

2 1000 30 10
L CR X X Ansp

p

-
-

é ù= - = ´ ´ ´ - = Wê ú´ ´ ´ë û

\ Bandwidth, 0
3

2.652
333.26 Hz

2 2 1.2665 10

f R
BW Ans

Q Lp p -
= = = =

´ ´
25. (a) Show that the sum of energy stored by the inductor and the capacitor connected in

series at resonance at any instant is constant and is given by LI 2.

(b) Show that the sum of energy stored by the inductor and the capacitor in parallel

RLC circuit at resonance at any instant is constant and is given by CV 2.

Sol:

(a) Let i and v be the instantaneous current through the inductor and the voltage across the
capacitor at any instant of time, t.
Let, i = Im cos wt

\ Energy stored in inductor, 22 21 1
cos

2 2L mW Li LI tw= =

\ Energy stored in capacitor,

2

2

0

2

2

0

22

0

2
2

2

2
2

0

1

2

1

2

1
cos

2

sin

2

1
sin

2

1
sin

2

C

t

t

m

t
m

m

m

q
W

C

idt
C

I tdt
C

I t

C

I
t

C

I L
t at resonance

LC

w

w

w

w
w

w w

=

é ù
= ê ú

ê úë û

é ù
= ê ú

ê úë û

é ùæ ö= ê úç ÷è øê úë û

= ´

æ ö
= =ç ÷è ø

ò

ò

Q

Total energy stored at resonance,

( ) [ ]2 22 2 21 1
cos sin Proved

2 2L C m mW W W LI t t LI LIw w= + = + = =

(b) Let, v = Vm cos wt
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\ Energy stored in Capacitor, 22 21 1
cos

2 2C mW Cv CV tw= =

\ Energy stored in Inductor,

2

2

0

2

2

0

22

0

2
2

2

2 2
0

1

2

1 1

2

1
cos

2

sin

2

1
sin

2

1 1
sin

2

L

t

t

m

t
m

m

m

W Li

L vdt
L

V tdt
L

V t

L

V
t

L

CV t at resonance
LC

w

w

w

w
w

w w

=

é ù
= ê ú

ê úë û

é ù
= ê ú

ê úë û

é ùæ ö= ê úç ÷è øê úë û

= ´

æ ö
= =ç ÷è ø

ò

ò

Q

Total energy stored at resonance,

( ) [ ]2 22 2 21 1
cos sin Proved

2 2C L m mW W W CV t t CV CVw w= + = + = =

26. Determine the resonant frequency, the source current and the input impedance for the

circuit shown in figure for each of the following cases:

Case I RL = 150 W RC = 100 W

3mF

R
L

0.24H

R
C

200V

Case II RL = 150 W RC = 0 W

Case III RL = 0 W RC = 0 W
Sol:

Case I: Here RL = 150 W, L = 0.24 H, RC = 100 W, and C = 3 mF
Resonant frequency,

22

0 2 2

2
6

6 2
6

1 1 1 1

2 2

0.241501 1 3 10
0.242 0.24 3 10 100

3 10

170 .

LL

C C

LRL CR C
f

LLC LCL CR R
C

Hz Ans

p p

p

-

-
-

æ ö-æ ö-
ç ÷= =ç ÷ ç ÷- -è ø è ø

æ ö-
´ç ÷=

ç ÷´ ´ -è ø´
=
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Reactances at this frequency,

2 170 0.24 256LX j jp= ´ ´ = W

6
312

2 170 3 10
C

j
X j

p -
= - = - W

´ ´ ´

\ ( )
200

0.34 0.582 A
150 256LI j

j
= = -

+

and ( )
200

0.186 0.582 A
100 312CI j

j
= = +

-

\ Total source current,

( ) ( ) ( )0.34 0.582 0.186 0.582 0.526 A .L CI I I j j Ans= + = - + + =

\ Input impedance 
200

380 .
0.526

Ans= = W

Case II: Here RL = 150 W, L = 0.24 H, RC = 0, and C = 3 mF
Resonant frequency,

2 6 2

0 6

1 1 1 1 3 10 150
1 1 159 Hz .

2 2 0.240.24 3 10
LCR

f Ans
LC Lp p

-

-

æ ö æ ö´
= - = = - =ç ÷ ç ÷è ø´ ´è ø

Reactances at this frequency,

2 159 0.24 240LX j jp= ´ ´ = W

6
334

2 159 3 10
C

j
X j

p -
= - = - W

´ ´ ´

\ ( )
200

0.374 0.598 A
150 240LI j

j
= = -

+

and
200

0.598 A
334CI j

j
= =

-

\ Total source current, ( ) ( )0.374 0.598 0.598 0.374A .L CI I I j j Ans= + = - + =

\ Input impedance 
200

535 .
0.374

Ans= = W

Case III: Here RL = 0, L = 0.24 H, RC = 0, and C = 3 mF
Resonant frequency,

0 6

1 1 1 1
188 Hz .

2 2 0.24 3 10
f Ans

LCp p -
= = = =

´ ´
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Reactances at this frequency,

2 188 0.24 283LX j jp= ´ ´ = W

6
283

2 188 3 10
C

j
X j

p -
= - = - W

´ ´ ´

\
200

0.706 A
283LI j

j
= = -

and
200

0.706 A
283CI j

j
= =

-

\ Total source current, ( ) 0 A .L CI I I Ans= + =

\ Input impedance 
200

.
0

Ans= = ¥

27. A voltage of v = 2000 sin wt + 400 sin 3 wt + 100 sin 5 wt is applied to a series circuit

having R = 10 W and C = 30 mF and a variable inductance. (i) Find the value of

inductance so as to give resonance at 3rd harmonic frequency. (ii) What are the r.m.s.

values of voltage and current with this inductance in circuit? Take w = 300 rad/s.

Sol:

Here, w = 300 rad/s, R = 10 W, C = 30 ´ 10�6 F
\ Resonant frequency w0 = 3 ´ w = 900 rad/s

(i) Q 
2 6

1 1
900 41.152 mH .

900 30 10
L Ans

LC -
= Þ = =

´ ´
(ii)

For 1st Harmonic  (w = 300 rad/s):

1 1

3
6

10 , 300 41.152 10 12.3456 111.11
300 30 10

L C

j
R X X j-

-

-
= W = ´ ´ = W = = - W

´ ´

\ ( ) ( ) ( )1 10 12.3456 11.11 10 98.77 99.27 95.78Z j j= + - = - W = Ð ° W

\ ( )1
1

2000 2000
20.15 95.78 A

99.27 95.78
I

Z
= = = Ð - °

Ð °

For 3rd Harmonic (w = 900 rad/s):

\ 
3 3

3
6

10 , 900 41.152 10 37.037 , 37.037
900 30 10

L C L

j
R X X j X-

-

-
= W = ´ ´ = W = = - W =

´ ´

\ ( )3 10 37.037 37.037 10Z j= + - = W

\ ( )3
3

400 400
40 0 A

10 0
I

Z
= = = Ð °

Ð °
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For 5th Harmonic (w = 1500 rad/s):

5 5

3
6

10 , 1500 41.152 10 61.728 , 22.22
1500 30 10

L C L

j
R X X j X-

-

-
= W = ´ ´ = W = = - W =

´ ´

\ ( ) ( ) ( )5 10 61.728 22.22 10 39.506 40.752 75.795Z j j= + - = + W = Ð ° W

\ ( )5
5

100 100
2.454 75.795 A

40.752 75.795
I

Z
= = = Ð - °

Ð °

\ RMS value of the current,

( ) ( )
( )

2 222 2 2
1 3 5

rms

20.15 40 2.454
31.72 A .

2 2

I I I
I Ans

+ ++ +
= = =

\ RMS value of the voltage,

( ) ( ) ( )
( )

2 2 22 2 2
1 3 5

rms

2000 400 100
1041.63 V .

2 2

V V V
V Ans

+ ++ +
= = =

SUMMARY

1. In an electrical system, the phenomenon of cancellation of reactances when inductor and
capacitor are in series or cancellation of susceptances when they are in parallel, is termed as
resonance.

2. In series resonance, the current at resonance is the maximum, whereas is case of parallel
resonance, the current at resonance is the minimum.

3. Quality factor for series resonant circuit is 0 L

R

w
 or 

0

1

RCw
 or 

1 L

R C
, whereas quality factor

for parallel circuit is 
0

R

Lw
 or w0RC or C

R
L

.

4. Series resonant circuit acts as a voltage amplifier whereas parallel resonant circuit acts as a
current amplifier.

5. Under resonant condition, all circuits act as resistive so that the power factor of the circuit is
unity.

6. Both for series and parallel resonant circuit, resonant frequency is 0
1

LC
w =  and bandwidth

is 0fBW
Q

= .

7. The concept resonant is useful in oscillator circuits, voltage amplifier, current amplifier, in RF
amplifier and other filter circuits.
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EXERCISES

1. A generator supplies a variable frequency voltage of constant amplitude 100 V(rms) to a series
RLC circuit where R = 5 W, L = 4 mH and C = 0.01 mF. The frequency is to be varied until
maximum current flows. Predict the maximum current, the frequency at which it occurs, and
the resulting voltage across the inductance and the capacitance.

             [20 A(rms); 7,958 Hz; 4 kV]

2. If the bandwidth of a resonant circuit is 10 kHz and the lower half power frequency is
120 kHz, find out the value of the upper half power frequency and the quality factor of the
circuit.

[130 kHz, 12.5]

3. A series RLC circuit consists of a 100 W resistor, an inductor of 0.318 H and a capacitor of
unknown value. When this circuit is energized by 230Ð0° V, 50Hz sinusoidal ac supply, the
current was found to be 2.3Ð0° A. Find (i) the value of capacitor in micro-farad (ii) the
voltage across the inductor (iii) the total power consumed.

[31.86 mF; 230Ð90° V (leading); 529 W]

4. For a series RLC circuit the inductor is variable. Source voltage is 200 2 sin 100 tp . Maxi-

mum current obtainable by varying the inductance is 0.314 A and the voltage across the
capacitor then is 300V. Find the circuit element values.

[900 W; 3.332 mF; 3.04 H]
5. It is desired to design a series resonant circuit with the following specifications.

12
0250 10 F, 600 kHz, 20 kHzC f BW-= ´ = =

Calculate Q0, R and L of the circuit. Also, calculate the current at 500 kHz as a fraction of the
current at resonance.

[30; 35.37 W; 0.28 mH; 0.09 Ir]

6. A 10 mH coil is connected in series with a loss free capacitor to a variable frequency source
of 20 V. The current in the circuit has the maximum value of 0.2 A at a frequency of
100 kHz. Calculate: (i) the value of capacitance (ii) the Q-factor of the  coil (iii) the half power
frequencies.

[253.3 pF, 62.83, 99.204 Kz, 100.796 Hz]

7. A series RLC circuit is excited from a constant voltage variable frequency source. The current

in the circuit becomes maximum at a frequency 
600

2p
 Hz and falls to half the maximum value

at 
400

2p
 Hz. If the resistance in the circuit is 3 W, find L and C.

[10.4 mH; 267.3 mF]
8. An RLC series circuit has R = 100 ohm, L = 500 mH and C = 40 mF. Calculate:

(i) The resonant frequency;
(ii) Lower half power frequency;
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(iii) Upper half power frequency;
(iv) Bandwidth;
(v) Q factor.
Also derive the expression for the above.

[223.6 rad/s; 22.5 rad/s; 222.5 rad/s; 200; 1.118]

9. Calculate the value of C which results in resonance for the circuit shown
in figure when frequency is 1000 Hz and find Q-factor for each branch.

[31.83 mF, 2 (for R-L), 1 (for R-C)]

10. A capacitor is connected in parallel with a coil having L = 5.52mH and R
= 10 W, to a 100 V, 50 Hz supply. Calculate the value of the capacitance
for which the current taken from the supply is in phase with the voltage.

[53.6 mF]

11. A parallel circuit has fixed C and variable L. Quality factor of the inductor
is Q = 4. Find the values of L and C for the circuit impedance of (100 + j0)
ohm at f = 2.4 MHz. What is the bandwidth at matched condition?

[1.557 mH, 2.648 nF, 1.2 MHz]

12. Find the resonant frequency for the circuit shown in figure.
[263 Hz]

5 V 2 V

10 mH 40 mF

13. For a practical tank circuit shown in figure the resonance occurs at 1 MHz. Assuming a high-
Q coil, find the quality factor of the high-Q coil at resonance frequency.

50pF

10⍀

L

[2000]

14. Calculate the impedance of the parallel tuned circuit, as shown in figure at a frequency of 500
kHz and for the bandwidth of operation equal to 20 kHz. The resistance of the coil is 5 W.

[3.13 kW]

15. A coil of resistance R and inductance L is shunted by a capacitor C.

Show that: (a) the resonant frequency is, 
2

0 2

1 R

LC L
w = - . (b) the

effective resistance is L
CR

. (c) the circulating current is C
V

L
.

C

4⍀

j 8⍀

5⍀

⫹

⫺
C

R

L

⫹

⫺ C

R

L

V
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16. For the parallel resonant circuit, prove that:

L

V

R
L

R
C X

C

(a) The resonant frequency is

2

2

1 L

C

LR
C

LLC R
C

-

-
.

(b) The impedance is independent of frequency if L C
LR R

C
= = .

17. What is the condition for resonance in the circuit shown in figure? For what value of L the
circuit will resonate at all frequencies?

⫹

⫺
1F

L

1⍀ 1⍀

1H

V
1

[w = 0; L = 0]

18. Find the resonant frequency for the circuits. Also, find the quality factor, Q. What will be the
impedances at resonance?

C

L

R

C

L R

(i) 02 2 2 2 2

1 1
, ,

1

R
RC

LC R C R C
w

w
-

+

(ii)
( )2 0

, ,
R R L

L CRL CR L w-
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QUESTIONS

1. (a) What is resonance in an ac circuit?
(b) Discuss the effects of resonance in electrical systems.

2. Discuss briefly the phenomenon of electrical resonance in simple RLC circuits. Derive an
expression for the condition for resonance in RLC circuits. Also, draw the phasor diagrams.

Or,

State and explain the condition of resonance in a series RLC circuit of an ac circuit. Draw the
phasor diagram.

3. Show that r l hw w w=  for a series RLC circuit, where

wr = the resonant frequency

wl = lower half power frequency

wh = upper half power frequency

of the circuit.
Or,

Show that the resonant frequency w0 of a series RLC circuit is the geometric mean of w1 and
w2, the lower and upper half power frequencies respectively.

4. (a) Define the terms Q factor and bandwidth.
(b) Derive expression for Q factor for RL and RC series circuit.
(c) Define the Q factor for the series resonant circuit and express it in terms of the circuit

parameters.
(d) What is the relationship between bandwidth and quality factor for a RLC circuit?

Or,

Show that: 2 1

0 0

1f f

f Q

-
= Or,   

Resonant frequency
Quality factor

Bandwidth
=

Where, f2 and f1 are half power frequencies, f0 is the resonant frequency and Q0 is the Q

factor at resonant frequency.

(e) Show that: (i) f1 f2 = f0
2 and (ii)  f1

2 + f2
2 ³ 2f0

2

where f0 is the resonance frequency and f1 , f2 are the half power frequencies of a series
resonant circuit

5. (a) Define Selectivity and half power frequency.
(b) Show that a circuit must have a large value of Q0 (Q factor at resonance frequency) to be

highly selective.
6. Prove that in a series resonant circuit, the voltage across capacitor and inductor is Q factor

times the supply voltage.
7. In a series RLC circuit, the voltage across L and C at resonance may exceed even the supply

voltage. Why?
8. Explain the effect of increase in L/C ratio on the following factors:

(a) resonant frequency, (b) Q, (c) bandwidth of an RLC series circuit.
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9. In an RLC series circuit, the source frequency is varied from zero to infinity. How do the
values of voltage across L and C change? Draw curve showing these variations. Derive
expression for maximum values of these voltages and the frequencies at which the maximum
values occur.

10. (a) Describe the phenomenon of resonance in parallel circuits and explain its Q factor.
(b) Prove that the Q factor of parallel resonant circuit is reciprocal of that for a series

resonant circuit.
(c) Find an expression for impedance at the antiresonance of a parallel tuned circuit and also

sketch the variation of the impedance of the same circuit with frequency.
11. (a) Compare the properties of series and parallel resonance.

(b) The series resonant circuit is often regarded as the acceptor circuit and the parallel
resonant as the rejector circuit. Explain.

(c) The series resonance is called voltage resonance and the parallel resonance the current
resonance- why?

12. At resonance, the current is maximum in series circuit and minimum in parallel circuit. Why?
13. For the circuit shown, draw the phasor diagram. Derive the condition for the two branch

currents, IL and IC to be in quadrature.

⫹
⫺

L

I
L

I
C

R
C

R
L

V

C

14. The shape of resonance curve depends on Q of the coil. Why?
15. Derive an expression for the resonant frequency of a parallel circuit consisting of inductance

L and resistance R in one branch and a capacitance C in the other.
16. A coil of resistance R and inductance L is shunted by a capacitor. Show that for rejector

(parallel) resonance, the effective resistance is 
L

CR
. Show also that the circulating current is

C
V

L
 so long as the resistance is small.

Or,
A resistive inductive coil is connected in parallel with a condenser and the combination is
connected with a sinusoidal emf. Derive the expression for current flowing through the two
branches and hence find the condition for obtaining the minimum input current and the value
of the maximum impedance of the circuit.

17. A series combination of a capacitance C and resistance RC is shunted by an inductive coil
having resistance RL and inductance L and the combination is connected to an ac source.
Derive the expression for the resonant frequency of the circuit. Also, show that the impedance
of the circuit will be independent of frequency (or, the circuit will be under resonant condition

at any frequency) if C L

L
R R

C
= = .
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18. (a) Show that the sum of energy stored by the inductor and the capacitor connected in series
at resonance at any instant is constant and is given by LI2.

(b) Show that the sum of the energy stored by the inductor and the capacitor in parallel RLC

circuit at any instant is constant at resonance frequency and is equal to CV2.





Circuit Theory & Networks (EE301)
Solution of 2011 WBUT Paper

GROUP–A

(Multiple-Choice Questions)

 1. Choose the correct alternatives for any ten of the following: 10 × 1 = 10

 (i) The internal impedance of an ideal current source is

 (a) zero (b) infi nite (c) both (a) and (b) (d) none of these

 (ii) In the fi gure given below, the value of the resistance R in ohms is

 (a) 10 (b) 20 (c) 30 (d) 40

 (iii) Time constant of the network shown below is

 (a) CR (b) 2CR (c) CR/4 (d) CR/2

 (iv) For a series RC circuit, when subjected to a unit step input voltage, the voltage across the 

capacitor will be

 (a) 1
t
RCe

-
-  (b) 

t
RCe

-
 (c) 

t
RCe  (d) 1
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 (v) In the fi gure given below, the value of the load Z which maximizes the power delivered to 

it is

 (a) 60 + j 40 (b) 60 – j40 (c) 60 (d) none of these

 (vi) If the unit step response of a network is (1 – e–at), the unit impulse response will be

 (a) ae
–at (b) 

1
t

e
a

a
-  (c) 

1 t
e

a

a

-  (d) (1 – a)e– at

 (vii) The resistances R1, R2 and R3 are respectively

                      

 (a) 1, 3/2 and 3 (b) 3, 3/2 and 6 (c) 9, 3 and 1 (d) 2, 1 and 9

 (viii) The z-matrix of a 2-port network is given by 
0.9 0.2

0.2 0.6

È ˘
Í ˙
Î ˚

. The element Y 22 of the correspond-

ing Y-matrix of the same network is given by

 (a) 1.2 (b) 0.4 (c) −0.4 (d) 1.8

 (ix) The transfer function of an electric low-pass RC network is

 (a) 
1

RCs

RCs+
 (b) 

1

1 RCs+
 (c) 

1

RC

RCs+
 (d) 

1

s

RCs+
 (x) How many branches can be connected to a node? 

 (a) 1 (b) 2 (c) 3 (d) any number

 (xi) When a number of 2-port networks are connected in cascade, the individual

 (a) ZOC matrices are added  (b) YSC matrices are added

 (c) chain matrices are multiplied (d) H matrices are multiplied



 Solution of 2011 WBUT Paper SQP.3

 (xii) The tie-set matrix gives the relation between

 (a) branch currents and link currents (b) branch voltages and link currents

 (c) branch currents and link voltages (d) none of these

Solutions

 (i) (b) infi nite (ii) (b) 20 (iii) (a) CR (iv) (a) 1
t
RCe

-
-

 (v) (b) 60 – j40 (vi) (a) ae
–at (vii) (a) 1, 3/2 and 3 (viii) (d) 1.8

 (ix) (b) 
1

1 RCs+
 (x) (d) any number (xi) (a) ZOC matrices are added

 (xii) (a) branch currents and link currents

GROUP–B

(Short-Answer-Type Questions)

Answer any three of the following questions. 3 × 5 = 15

 2. Convert the current sources into voltage sources (equivalent) and fi nd the voltage V0. 

  Solution: Converting the current sources into voltage sources, we get the following circuit.

 \ i = 
20 10

A
6 3

- = -

 \ V0 = 
10 10

2 10 2 10 3.33 Volt
3 3

i
Ê ˆ+ = ¥ - + = =Á ˜Ë ¯

 Ans.
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 3. For the network given below, determine the X-parameters.

  Solution:

  (NOTE: Since “X-parameters” do not exist, we fi nd Z-parameters.)

  We consider two cases:

  When I2 = 0: The modifi ed circuit is shown in Fig. (a).

Fig. (a)

  By KVL for the middle mesh, we get,

I + 3V1 + I – 2 × (I1 – I) = 0

 fi I = 1 1

1 3

2 4
I V

Ê ˆ-Á ˜Ë ¯
 (i)

  By KVL for the left mesh, we get,

V1 = 1 1 1 1

1 3
2 ( ) 2 2 {by Eq. (i)}

2 4
I I I I V

Ê ˆ¥ - = - -Á ˜Ë ¯

 or, V1 = –2I1

\ z11 = 

2

1

1 0

2

I

V

I
=

= - W

  Also, by KVL for the right mesh, we get,

V1 = 1 1 1 1 1

1 3 1 3
( 2 ) 2

2 4 2 4
I I V I I I

Ê ˆ= - = - - =Á ˜Ë ¯

\ z21 = 

2

2

1 0

2

I

V

I
=

= W
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  When I1 = 0: The modifi ed circuit is shown in Fig. (b).

Fig. (b)

  By KVL for the middle mesh, we get,

I – 3V1 + 2I – 1 × (I2 – I) = 0

 fi I = 
2 1

1 3

4 4
I V

Ê ˆ+Á ˜Ë ¯
 (ii)

  By KVL for the left mesh, we get,

V1 = 2 1 2 1

1 3 1 3
2 2

4 4 2 2
I I V I V

Ê ˆ= ¥ + = +Á ˜Ë ¯

 fi V1 = –I2

\ z12 = 

1

1

2 0

1

I

V

I
=

= - W

  Also, by KVL for the right mesh, we get,

V2 = 
2 2 2 1

2 2 2

1 3
1 ( ) {by Eq. (ii)}

4 4

3 3
( ) 1.5

4 4

I I I I V

I I I

Ê ˆ¥ - = - +Á ˜Ë ¯

= - ¥ - =

\ z22 = 

1

2

2 0

1.5

I

V

I
=

= W

  Therefore, the z-parameters of the network are,

  [z]=
2 1

( )
2 1.5

- -È ˘
WÍ ˙

Î ˚
Ans.

 4. In the circuit given below, the switch is initially in the position 1 until the steady state is reached. 

At t = 0, the switch is moved to the position 2. Find i(t), the loop current.



SQP.6 Circuit Theory and Networks

  Solution:

  When the switch is in the position 1, steady state exists and the initial voltage across the capaci-

tor is,

  v(0–) = 10 V

  After the switch is moved to the position 2, the KVL gives, in Laplace transform,

 or,  

6

1 10
( ) 20 ( ) 0

10 10

0.5
( )

5000

I s I s
ss

I s
s

- + ¥ + =
¥

=
+

  Taking inverse Laplace transform,

  i(t) = 0.5e
–5000t (A); t > 0  Ans.

 5. (a) Defi ne incidence matrix. 2

 (b) For the graph shown below, fi nd the complete incidence matrix. 3
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Solution:

 (a) Incidence Matrix: The incidence matrix symbolically describes a network. It also facilitates 

the testing and identifi cation of the independent variables. Incidence matrix is a matrix which 

represents a graph uniquely.

  For a given graph with ‘n’ nodes and ‘b’ branches, the complete incidence matrix Aa is a rect-

angular matrix of order n × b, whose elements have the following values:

  Number of columns in [A] = Number of branches = b

  Number of rows in [A] = Number of nodes = n

Aij = 1, if branch j is associated with node i and oriented away from node j.

   = –1, if branch j is associated with node i and oriented towards node j.

   = 0, if branch j is not associated with node i.

  Example:

                              Fig. (a) Network      Fig. (b) Graph of Network

  Incidence matrix A

Branches

1 2 3 4 5 6

a 1 0 0 −1 0 0    Reduced ¸
˝
˛

 incidence

     matrix AI

Nodes b 0 1 0 1 −1 0

c 0 0 1 0 1 −1

Reference node d −1 −1 −1 0 0 1

 (b) The given graph does not have any orientation. We assume the orientation as shown in the fi gure 

below.
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  For the graph shown in the fi gure, the complete incidence matrix can be written as,

1 1 1 0 0 0 1

2 0 1 1 1 0 0

3 0 0 0 1 1 1

4 1 0 1 0 1 0

a

a b c d e f

A

-È ˘
Í ˙- - -Í ˙=
Í ˙- -
Í ˙
Î ˚

 6. Find the Fourier transform for the following gate function:

  Solution: The pulse is, f(t) = 1,
2 2

T T
t- < <

  So, the Fourier transform is,

F(jw)
2 2

sin
2

( ) 1 2

sin
2

2
2

2

T Tj j

j t j t

T

e e
f t e dt e dt

j

T

T

T

w w

w w

w

w w

w

w

-• •
- -

-• -•

Ê ˆ
Á ˜Ë ¯-

= = = =

Ê ˆ
Á ˜Ë ¯

= ¥
Ê ˆ
Á ˜Ë ¯

Ú Ú

\ F(jw) = 

sin
2

2

T

T
T

w

w

Ê ˆ
Á ˜Ë ¯

Ê ˆ
Á ˜Ë ¯

Ans.

GROUP–C

(Long-Answer-Type Questions)

Answer any three questions. 3 × 15 = 45

 7. (a) Consider the network illustrated below, draw its graph, and determine.

 (i) Number of links

 (ii) Rank of the graph

 (iii) Total number of trees. 8



 Solution of 2011 WBUT Paper SQP.9

 (b) Determine the Fourier series expansion for the following waveform. 7

Solution:

 (a) The graph of the given graph is shown in the fi gure below. One tree has been shown in the 

fi gure.

 (i) Number of links: For the tree shown in the fi gure, the number of links is 3.

 (ii) Rank of the graph: Since the graph has four nodes (i.e. node A, B, C and D, n = 4; so, the 

rank of the graph is 

  (n – 1) = (4 – 1) = 3
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 (iii) Total number of trees: The number of possible trees of a graph, = det {[A]×[A]T}, where, 

A is the reduced incidence matrix. We fi nd A for the given graph.

  The complete incidence matrix is,

Aa = 

1 1 0 0 0 1

0 1 1 1 0 0

0 0 0 1 1 1

1 0 1 0 1 0

È ˘
Í ˙-Í ˙
Í ˙- -
Í ˙
- - -Î ˚

  Reduced incidence matrix is,

A = 

1 1 0 0 0 1

0 1 1 1 0 0

0 0 0 1 1 1

È ˘
Í ˙-Í ˙
Í ˙- -Î ˚

  Thus, the number of possible trees of the graph is,

1 0 0

1 1 0
1 1 0 0 0 1 3 1 1

0 1 0
det{[ ] [ ] } det 0 1 1 1 0 0 1 3 1 16

0 1 1
0 0 0 1 1 1 1 1 3

0 0 1

1 0 1

T
N A A

Ï ¸È ˘
Ô ÔÍ ˙-Ô ÔÍ ˙ - -È ˘Ô ÔÍ ˙Ô ÔÍ ˙= ¥ = - = - - =Í ˙Ì ˝Í ˙ -Í ˙Ô ÔÍ ˙- - - -Î ˚ Í ˙Ô Ô

Í ˙Ô Ô
-Í ˙Ô ÔÎ ˚Ó ˛

 (b) The wave is an odd function and has half-wave symmetry.

  \ an = 0 and a0 = 0 

  Now, 

V(t) = 
4

;t
T

0
4

T
t< <

   = 
4

2;t
T

- +
3

4 4

T T
t< <

\ bn = 

/4

0

8
( )sin ;

T

f t n tdt
T

wÚ n is odd only.

   = 

/4

0

8 4
sin

T

t n tdt
T T

wÚ

   = 

/4

2
0

32 cos cos
T

t n t n t
dt

n nT

w w

w w

-È ˘+Í ˙Î ˚Ú

   = 

/4

0

16 sin
cos

4 2

T
T n n t

n T n

p w

p w

È ˘
- +Í ˙

Í ˙Î ˚
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   = 
16

0 sin
4 2 2

T T n

n T n

p

p p

È ˘- ¥ +Í ˙Î ˚

   = 2 2

8
sin

2

n

n

p

p
 {∵ wT = 2p}

\ bn = 2 2

8

n p
, n = 1, 5, 9, …

   = 2 2

8

n p
- , n = 3, 7, 11, …

  Hence,

       2 2 2 2

8 1 1 1
( ) sin sin3 sin 5 sin 7 ...

3 5 7
V t t wt t tw w w w

p

Ê ˆ= - + - +Á ˜Ë ¯ Ans

 8. (a) State the fi nal-value theorem. 2

 (b) Find the expression for the current i(t) for a series R-C circuit, if the circuit is initially relaxed. 

3

 (c) In the circuit shown below, determine the current i(t) when the switch is changed from position 

1 to position 2 at t = 0. Find the steady-state current using fi nal-value theorem. 10

Solution:

 (a) Final-value Theorem: If a function f(t) and its derivatives are Laplace transformable then the 

fi nal value of f(t) is,

f(•) = 
0

( ) [ ( )]
t s
Lt f t Lt sF s
Æ • Æ

=

  This theorem is only applicable if the value of the function f(t) is fi nite as t becomes infi nity, i.e., 

F(s) has all poles lying in the left half of the s-plane or at most one simple pole at the origin.

 (b) Current for an Initially Relaxed Series R-C Circuit: We consider an RC series circuit as 

shown in fi gure. We assume the initial voltage (charge) across the capacitor to be zero.
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  By KVL,  
0

1
( ) ( ) ( )

t

Ri t i t dt Vu t
C

+ =Ú
  Taking Laplace transform,

    

( )
( )

I s V
RI s

Cs s
+ =

 or,   

1
( )

V
I s R

Cs s

È ˘+ =Í ˙Î ˚

 or,  I(s) = 
1

1 1

V V

R
s R s

Cs RC

=
Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

  Taking inverse Laplace transform, the current is given as,

i(t) = 
t
RC

V
e

R

-
; for t ≥ 0

 (c) 

  When the switch is in the position 1, steady state exists and the initial current through the induc-

tor is,

i(0–) = 
10

1 A
10

=

  After the switch is moved to the position 2, the KVL gives in Laplace transform,

       

50
10 ( ) 0.5 ( ) 0.5 1I s sI s

s
+ - ¥ =

 or, I(s) = 
100 1 1 1 1

5
( 20) 20 20 20s s s s s s

È ˘+ = - +Í ˙+ + + +Î ˚

  Taking inverse Laplace transform,

i(t) = 5 – 4e
–20t   (A); t > 0; Ans

  Now, the Laplace transform of the current has been obtained as,

I(s) = 
100

( 20)s s +
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  Hence, applying the fi nal-value theorem, the steady-state value of the current is obtained as,

i(•) = 
0 0

100
Lt ( ) Lt [ ( )] Lt 5

( 20)t s s
i t sI s s

s sÆ • Æ Æ

È ˘
= = =Í ˙+Î ˚

Ans.

 9. (a) Find the condition of reciprocity and symmetry for short-circuit parameters of a 2-port

network.  4 + 4

 (b) Find the transmission parameters for the circuit shown below: 7

Solution:

 (a) Condition of Reciprocity for Short-Circuit Parameters of a Two-Port Network: A network is 

said to be reciprocal if the ratio of the response transform to the excitation transform is invariant 

to an interchange of the positions of the excitation and response of the network.

 Fig. (a) Reciprocal network Fig. (b) Reciprocal network

  Firstly, we short circuit port 2–2¢ and apply a voltage source Vs at port 1–1¢, as Fig. (a). 

Hence,

  V1 = Vs, V2 = 0, I2 = –I2¢
  Writing the y-parameter equations,

   
1 11

2 21

s

s

I y V

I y V

=

- =¢
2

21

s

I
y

V

¢
- =  (1)

  Now, interchanging the positions of response and excitations, i.e., shorting port 1–1¢ and apply-

ing Vs at port 2 – 2¢, as shown in Fig. (b), we have,

  V1 = 0, V2 = Vs, I1 = I1¢
  From Fig. (b), writing the y-parameter equations,

   
1 12

2 22

s

s

I y V

I y V

- =¢

=
1

12

s

I
y

V

¢
- =  (2) 

  From the principle of reciprocity, from Eq. (1) and (2), the condition for reciprocity is obtained 

as,

12 21y y=
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  Condition of Symmetry for Short-Circuit Parameters of a Two-Port Network: A two-port 

network is said to be symmetric if the ports can be interchanged without changing the port 

voltages and currents.

  Applying a voltage Vs at port 1–1¢ with port 2–2¢ short-circuited, we have the equation,

  I1 = y11Vs – y11.0 = y11Vs

2

1
11

0s V

I
y

V
=

=  (3)

  Now, applying a voltage Vs at port 2–2¢ with port 1–1¢ short-circuited, we have the equation,

I2 = y12.0 + y22Vs = y22Vs

1

2
22

0s V

I
y

V
=

=  (4)

  For the network to be symmetrical, the voltages and currents should be same. From Eq. (3) and 

Eq. (4), we have the condition for symmetry as,

11 22y y=

 (b)

  This is a π-network, the y-parameters are given as,

y11 = 12 21 22

1 1 11 1 1 1 11
; ;

2 20 20 20 2 20 20
y y y

Ê ˆ Ê ˆ+ = = = - = + =Á ˜ Á ˜Ë ¯ Ë ¯
   

\ Dy = 

2 2

11 22 12 21

11 1 120 3
( )

20 20 400 10
y y y y

Ê ˆ Ê ˆ- = - - = =Á ˜ Á ˜Ë ¯ Ë ¯

\ A = 22

21 21

11
1 120 11 20

1 1
20 20

y
B

y y
- = - = = - = - = W

- -

C = 
11

21 21

3 11
10 206 11
1 1

20 20

yy
D

y y

D
- = - = = - = - =

--
 

  The ABCD parameters are given as,

    
11 20

6 11

A B

C D

È ˘ È ˘
=Í ˙ Í ˙

Î ˚ Î ˚
Ans.

 10. (a) Differentiate between the following: 4

 (i) Active fi lter and passive fi lter

 (ii) High-pass fi lter and low-pass fi lter
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 (b) The response of a network to an impulse is

  h(t) = 0.18(e–0.3t – e–2.1t).

  Find the response of the network to a step function using the convolution theorem. 6

 (c) The input to the circuit shown below is a rectifi ed sine wave as illustrated below. Determine 

expression of current in the 1 Ω resistance. Assume ω = 1 rad/s. 5

Solution:

 (a) (i) Differences between active and passive fi lters

Active Filters Passive Filters

1. Active fi lters are constructed with active devices,

such as, op-amp, transistors, along with resistors 

and capacitors; no inductor is used.

1. Passive fi lters are constructed with the passive 

components like inductors, capacitors, resistors, 

etc.

2. Due to the presence of active elements, active fi lters 

can produce power gain.

2. Due to the absence of any active element, passive 

fi lters cannot produce any power gain.

3. Active fi lters require dual power supply, i.e. one 

external power supply apart from the signal to be 

fi ltered.

3. Passive fi lters do not require any external power 

supply, they operate only on the signal input.

4. As no inductor is used, active fi lter circuit becomes 

compact, cheaper and less in weight even at low 

frequencies.

4. As inductors are used, a passive fi lter circuit 

becomes bulky and costly, especially for low fre-

quency because size of the inductor increases at 

lower frequency.

5. Active fi lters can have high input impedances, low 

output impedances. So, the active fi lter does not 

cause loading of the source or load. 

 Due to high input impedance, load is isolated from 

the frequency-determining network and so variation 

in load does not affect the characteristic of the fi lter. 

 On the other hand, due to low output impedance, 

active fi lter can drive low impedance load.

5. Passive fi lters have low input impedances and high 

output impedances.

 Due to low input impedance, the passive fi lter causes 

loading of the source. As the load is not isolated 

from the frequency-determining network, so varia-

tion in load may affect the characteristic of fi lter.

 Due to high output impedance, passive fi lter cannot 

drive the low impedance load.

6. Performance of active fi lters at high frequencies 

is limited by the gain-bandwidth product and slew 

rate of the amplifying elements (op-amp).

6. Since there is no restriction regarding bandwidth of 

op-amps, passive fi lter can work well at very high 

frequencies.

7. Active fi lters are easier to tune and design owing to 

easy adjustment of parameters like gain, pass-band, 

cut-off frequency, etc. 

7. Tuning and design of passive fi lters are diffi cult and 

time-consuming as compared to active fi lters.

8. Active fi lters are not suitable in applications requir-

ing high currents or voltages.

8. Passive fi lters can be used in applications involving 

larger current or voltage levels.
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 (ii) Differences between high-pass and low-pass fi lters

High Pass Filter Low Pass Filter

1. A low-pass fi lter passes low frequency signals, 

and rejects signals at frequencies above the cut-off 

frequency.

1. A high-pass fi lter passes low-frequency signals, 

and rejects signals at frequencies below the cut-off 

frequency.

2. It has ideally zero output below the cut-off fre-

quency

2. It has ideally zero output above the cut-off fre-

quency.

3. It has ideally infi nite pass band. 3. It has ideally infi nite stop band.

 (b) Here, impulse response is given as,

  h(t) = 0.18(e–0.3t – e–2.1t)

  Taking Laplace transform,

  H(s) = 
1 1

0.18
0.3 2.1s s

È ˘-Í ˙+ +Î ˚
  By convolution theorem,

  Y(s)  = H(s) W(s)

   

31 2

1 1 1
0.18

0.3 2.1

0.324

( 0.3)( 2.1)

0.32 2.1

s s s

s s s

AA A

s s s

È ˘= - ¥Í ˙+ +Î ˚

=
+ +

= + +
+ +

\ A1 = 

0

0.324
0.514

( 0.3)( 2.1)
s

s s =

=
+ +

\ A2 = 
0.3

0.324
0.6

( 2.1)
s

s s = -

= -
+

\ A3 = 
2.1

0.324
0.0857

( 0.3)
s

s s = -

=
+

  Putting these values,

Y(s) = 
0.514 0.6 0.0857

0.32 2.1s s s
- +

+ +

  Taking inverse Laplace transform,

  y(t) = 0.514 – 0.6e
–0.3t + 0.0857e

–2.1t
Ans.

 (c) Here,      vi(q) = sin q ; for 0 < q < p 

   = –sin q; for p < q < 2p 

  where, q = wt.

  Since, f(t) = f(–t) fi the function is even.
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 \ bn = 0

\ an = 

/2

0

4
( )cos ( )

T

f t n td t
T

w wÚ

   0

4
sin cos ( )

2
t n td t

p

w w w
p

= Ú

   0

1
2sin cos ( )t n td t

p

w w w
p

= Ú

   0

1
[sin( 1) sin( 1) ] ( )n t n t d t

p

w w w
p

= + - -Ú

   0

1 cos( 1) cos( 1)
; for 1

1 1

n t n t
n

n n

p
w w

p

- + -È ˘= + πÍ ˙+ -Î ˚

  For odd n;   
1 1 1 1 1

; 1
1 1 1 1

na n
n n n np

È ˘Ê ˆ Ê ˆ= - + + - πÍ ˙Á ˜ Á ˜Ë ¯ Ë ¯+ + - -Î ˚

    = 0

  For even n;   
1 2 2

1 1
na

n np

È ˘-Ê ˆ Ê ˆ= +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯+ -Î ˚

   
1 2n

p
=

2 2n- -
2

2 4

( 1)( 1) ( 1)n n np

È ˘-
= -Í ˙+ + -Î ˚

  For n = 1,   

/2

1

0

4
( )cos ( )

t

a f t td t
T

w w= Ú

   0

4
sin cos ( )

2
t td t

p

w w w
p

= Ú

   0

1
sin 2 ( )td t

p

w w
p

= Ú 0

1
[cos2 ]

2
t

p
w

p
= -

   

1
[cos2 1] 0

2
p

p
= - - =

  Also,    

/2

0 0

0 0

2 2 1 2
( ) sin ( ) [cos ]

2

T

a f t dt td t t
T

p
p

w w w
p p p

= = = - =Ú Ú

  So, the Fourier series of the input voltage is,

vi(t) = 
2

2,4,6

2 4 cos 2 4 1 1 1
cos cos2 cos3

3 15 35( 1)n

n t
t t t

n

a
w

w w w
p p p p=

Ê ˆ- = - + + +Á ˜Ë ¯-
Â  
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  The current through the 1 Ω resistance is obtained as,

i(t) = 
0 2 4

0 2 4

V V V

Z Z Z
+ + + 

  Here, 

2
11 1

( ) 1 1 tan ( 1 and 1F)
j j n

Z n C
n C n n n

w w
w

-+Ê ˆ Ê ˆ= - = - = – - = =Á ˜ Á ˜Ë ¯ Ë ¯
∵

\ 0 2

5
1 1 26.565

2 2

j
Z Z

Ê ˆ= = - = – - ∞Á ˜Ë ¯

4 6

17 37
1 10.036 1 9.462 ....

4 4 6 6

j j
Z Z

Ê ˆ Ê ˆ= - = – - ∞ = - = – - ∞Á ˜ Á ˜Ë ¯ Ë ¯

\
0 2 4 6

2 4 4 4
180 180 180 ....

3 15 35
V V V V

p p p p
= = – - ∞ = – - ∞ = – - ∞

  So, the current is,

i(t) = 
0 2 4

0 2 4

...
V V V

Z Z Z
+ + +

   = 
2 4 2 4 4

180 26.565 180 10.036
3 155 17

4 6
180 9.462 ...

35 37

p p p

p

+ ¥ – - ∞ - ∞ + ¥ – - ∞ - ∞

+ ¥ – - - ∞ + 

   = 
2 4

(0.2981 206.565 0.0647 190.036 0.0282 189.462 )
p p

+ – - ∞ + – - ∞ + – - ∞ + 

   = 
0.2981cos( 206.565 ) 0.0647cos( 190.036 )2 4

0.0282cos( 189.462 )

t t

tp p

- ∞ + - ∞È ˘
+ Í ˙+ - ∞ +Î ˚ 

11. (a) The circuit given below shows a low-pass second-order active fi lter. Analyze the circuit and fi nd 

the cut-off frequency. 8
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 (b) For the second-order high-pass fi lter shown below, fi nd the cut-off frequency and the high fre-

quency gain. 7

Solution:

 (a) The circuit is shown below.

  Here, 
0

1

1

y

f

V
V R

R R
=

+
 and Vx = Vy

  Writing KCL at node V¢,

   

0 0
1 /

i xV V V V V V

R sC R

- - -¢ ¢ ¢
+ + =

  or, 0 0( ) ( ) ( ) 0iV V V V sRC V V- + - + - =¢ ¢ ¢

  or, 0( 1) (2 ) ( )x iV sRC V sRC V V- + + + - =¢  (1)

  Writing KCL at node x,

   
0

1 /

x xV V V

R sC

- ¢
+ =

  or, 0(1 ) ( 1) (0) 0xsRC V V V+ + - + =¢  (2)
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  Writing KCL at node y,

   

0

1

0x x

f

V V V

R R

-
+ =

  or 1 1 0( ) (0) ( ) 0f xR R V V R V+ + + - =¢  (3)

  Solving for V0 from equations (1), (2), and (3), we get,

   

1

2 2
1 1

0
12

2 2
1

1 1

1 (2 )

(1 ) 1 0 ( ) 1

( ) 0 0

( )1 (2 ) 1
3

(1 ) 1 0

( ) 0

i

f

f

i

f

f

sRC V

sRC R R

R R R R C
V V

R RsRC sRC
s sRC sRC

R R CsRC

R R R

- +
+ - +

¥+
= =

+Ê ˆ- + -
+ - +Á ˜Ë ¯+ -

+ -

  or 

2 2
0

2

2

( ) /

( ) 3 1i

V s K R C

V s K
s s

RC RC

=
-Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

 (4)

  where K = 
1

1

fR R

R

+
 = D. C. gain of the amplifi er.

  Substituting s = jw, the transfer function is,

   

0

2 2 2

( )
( )

( ) 1 (3 )i

V j K
H j

V j j K RC R C

w
w

w w w
= =

+ - -

  The magnitude of the transfer function is,

   

[ ]
2

2 2

2

| ( )|

1 3
c c

K
H j

K

w

w w

w w

=
È ˘Ê ˆ Ê ˆ
Í ˙- + -Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

; where, 
1

c
RC

w =

  In the above equation, when w Æ 0, | ( )|w =H j K . Thus, the low-frequency gain of the 

fi lter is K and when w Æ •, | ( )| 0w =H j , i.e., high-frequency gain is zero.

  From the table of the Butterworth Filter, the transfer function for second-order (n = 2) fi lter 

is,

   

2

2 2 2
( )

1.414
1.414 1

c

c c

c c

KK
T s

s ss s

w

w w

w w

= =
+ +Ê ˆ Ê ˆ

+ +Á ˜ Á ˜Ë ¯ Ë ¯

 (5)

  where, wc is the cut-off frequency. Comparing equations (4) and (5), we get,

   

1 1
or,

2
c cf

RC RC
w

p
= =
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  Putting the value R = 10 kW and C = 0.1 mF,

   10 rad/s or, 1.59 Hzc cfw = =

 (b) The general circuit of a second-order active high-pass fi lter is shown in the fi gure below.

  Here, 0
1

1

y

f

V
V R

R R
=

+
 and Vx = Vy

  Writing KCL at node V¢,

   

0 0
1 1

i xV V V V V V

R
sC sC

- - -¢ ¢ ¢
+ + =

 (1)

  Writing KCL at node x,

              

0
1
x xV V V

R
sC

- ¢
+ =

 (2)

  Writing KCL at node y,

   

0

1

0x x

f

V V V

R R

-
+ =

 (3)

  Solving for V0 from equations (1), (2), and (3), we get,

 or,  

2
0

2

2

( )

( ) 3 1i

V s Ks

V s K
s s

RC RC

=
-Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

 (4)

  where, 
1

1

fR R
K

R

+
=  = dc gain of the amplifi er.

  Substituting s = jω, the transfer function is,

   

2 2 2
0

2 2 2

( )
( )

( ) 1 (3 )i

V j KR C
H j

V j j K RC R C

w w
w

w w w
= = -

+ - -
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  The magnitude of the transfer function is,

   

2

2
2 2

2

( )

1 [3 ]

c

c c

K

H j

K

w

w
w

w w

w w

Ê ˆ
Á ˜Ë ¯

=
È ˘Ê ˆ Ê ˆ
Í ˙- + -Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

; where, 
1

c
RC

w =

1 1
or,

2
c cf

RC RC
w

p
= =

  Thus, the cut-off frequency of the fi lter given as,

  Putting the values R = 39 kΩ and C = 1 nF, we have, 

fc = 3 9

1 1
4.08 kHz

2 2 39 10 1 10RCp p
-= =

¥ ¥ ¥ ¥

  In the above equation of transfer function, when ω → 0, |H(jw)| = 0. Thus, the low-frequency 

gain of the fi lter is zero. When ω → ∞, |H(jw)| = K, i.e., high frequency gain is K.

( )3 1.414 1.586K = - =
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GROUP–A

(Multiple-Choice Questions)

 1. Choose the correct alternatives for any ten of the following: 10 × 1 = 10

 (i) The internal impedance of an ideal voltage source should be

 (a) zero   (b) infi nite

 (c) greater than zero but less than infi nity (d) none of these

 (ii) The steady-state voltage VC in this given fi gure is

 (a) 10 V (b) 15 V (c) 5 V (d) none of these.

 (iii) What is the condition for reciprocity in terms of h parameters?

 (a) h11 = h22 (b) h21h12 = h11h12 (c) h12 and h21 = 0 (d) h12 = h21

 (iv) An ideal fi lter should have

 (a) zero attenuation in the pass band

 (b) zero attenuation in the attenuation band

 (c) infi nite attenuation in the pass band

 (d) none of these

 (v) The number of links of a graph having n nodes and b branches are

 (a) b – n + 1 (b) n – b + 1 (c) b + n – 1 (d) b + n
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 (vi) The equivalent resistance between x and y of the fi gure shown below is

 (a) 30 Ω (b) 50 Ω (c) 60 Ω (d) 10 Ω

 (vii) A periodic waveform having half-wave symmetry has no 

 (a) odd harmonics (b) even harmonics (c) cosine terms (d) sine terms

 (viii) Graphical representation of u(a – t) is

 (a)    (b) 

 (c)   (d) 

 (ix) A tie-set matrix has 3 rows and 7 branches. The number of twigs is

 (a) 3 (b) 5 (c) 2 (d) 4

 (x) Inverse Laplace of ( ) ( )
2

1
F s

s s
=

+
 is

 (a)  2 + e–2t (b)  1 + 2e
–t  (c)  2 + 2e

–t  (d)  2 – 2e
–t 

 (xi) Two networks can be dual when

 (a)  their nodal equations are same

 (b)  the loop equations of one network are the nodal equations of the other

 (c)  their loop equations are same

 (d)  none of these.

 (xii) The dc gain of a system having the transfer function 
12

( )
( 2)( 3)

H s
s s

=
+ +

 is

 (a) 2 (b) 1 (c) 12 (d) 3

 (e) 0

Solutions:

 (i) (a) zero (ii) (c) 5 V (iii) correct answer is h12 = –h21

 (iv) (a) zero attenuation in the pass band (v) (a) b – n + 1 (vi) (d) 10 Ω

 (vii) (b) even harmonics (viii) (c) (ix) (d) 4 (x) (d) 2 – 2e
–t

 (xi) (b) the loop equations of one network are the nodal equations of the other

 (xii) (a) 2
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GROUP–B

(Short-Answer-Type Questions)

Answer any three of the following questions.  3 × 5 = 15

 2. In the fi gure given below, the battery voltage is applied for a steady-state period. Obtain 

the q complete expression for the current for the current after closing the switch K. Assume

R1 = 1 Ω, R2 = 2 Ω, L = 1 H, E = 10 V.

  Solution:

  NB: The problem has some printing mistakes; however, we fi nd the current as required.

  For t < 0, as the circuit was in steady state with the switch in open position, the circuit becomes 

as shown below. The initial current is obtained as,

 \ i(0–) = 
1 2

10 10
3.33 A

1 2 3

E

R R
= = =

+ +

              Circuit for t < 0        Circuit for t > 0

  For t > 0, the circuit becomes as shown.

  By KVL,

  R1I(s) + sLI(s) – Li(0–) = 
E

s

 fi [R1 + sL]I(s) = 
1 2

E EL

s R R
+

+

 fi I(s) = 
1 11 1 2

1 1E E

R RR R R
s s s

L L

È ˘ Ê ˆ
Í ˙ Á ˜

+Í ˙ Á ˜+Ê ˆ Ê ˆÍ ˙ Á ˜+ +Ë ¯ Ë ¯Í ˙ Ë ¯Î ˚
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Taking inverse Laplace transform,

         i(t) = 
( ) ( )1 1 1 1

1 1

1 1 2

10 10
1 1

1 1 2

R R
t t t tL LE E

e e e e
R R R

Ê ˆ Ê ˆ- -Á ˜ Á ˜ - -Ë ¯ Ë ¯
Ê ˆ Ê ˆ

- + = - +Á ˜ Á ˜Ë ¯+ +Ë ¯

   = 
10 20

10(1 ) 10
3 3

t t t
e e e

- - -- + = -

   = 10 6.67 ( ), 0t
e A t

-- >  Ans.

 3. Find the Laplace transform of the triangular waveform shown in the fi gure.

  Solution: The equation of the given waveform can be written as,

  f(t) = 
2 4 2

( ) ( )
2

T
r t r t r t T

T T T

Ê ˆ- - + -Á ˜Ë ¯  F(s) = 
2

2 2 2

2 1 4 2

T
s

Ts
e e

T s Ts Ts

- -

- +

   = 
2

2 2
2 2

2 2
1 2 1

Ts Ts
Ts

e e e
Ts Ts

- --È ˘ È ˘- + = -Í ˙ Í ˙Î ˚ Î ˚

   

2

2
2

2
( ) 1

Ts

F s e
Ts

-È ˘\ = -Í ˙Î ˚

 4. Find the y-parameters for the following networks shown in the fi gure.

  Solution: Since this is a T-network, the z-parameters are easily obtained as,

  z11 = (10 + 40) = 50 W
  z12 = z21 = 40 W
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  z13 = (5 + 40) = 45 W

  Hence, the y-parameters are obtained as,

  y11 = 22

2

45 9

13050 45 40

z

z
= =

D ¥ -

  y12 = 12
21

40 4

650 65

z
y

z
= - = - = -

D

  y22 = 11

2

50 1

1350 45 40

z

z
= =

D ¥ -

 5. Defi ne incidence matrix of a graph and draw the orientation graph from the reduced incidence 

matrix.

  [A] = 

0 1 1 1 0

0 0 1 1 1

1 0 0 0 1

-È ˘
Í ˙- - -Í ˙
Í ˙-Î ˚

  Solution: 

 � Incidence Matrix: The incidence matrix symbolically describes a network. It also facilitates 

the testing and identifi cation of the independent variables. Incidence matrix is a matrix which 

represents a graph uniquely.

   For a given graph with n nodes and b branches, the complete incidence matrix Aa is a 

rectangular matrix of order n ¥ b, whose elements have the following values:

  Number of columns in [A] = Number of branches = b

  Number of rows in [A] = Number of nodes = n

   Aij = 1, if branch j is associated with node i and oriented away from node i.

    = –1, if branch j is associated with node i and oriented towards node i.

    = 0, if branch j is not associated with node i.

  Example

                 (a) Network (b) Graph of Network
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Branches

1 2 3 4 5 6

a 1 0 0 −1 0 0       Reduced 

\ incidence

      matrix AI

Nodes b 0 1 0 1 −1 0

c 0 0 1 0 1 −1

Reference node d −1 −1 −1 0 0 1

  Reduced incidence matrix [A]: The matrix obtained from Aa by eliminating one of the 

rows is called reduced incidence matrix. In other words, suppression of the datum node 

(reference node) from the incidence matrix results in the reduced incidence matrix.

   For the graph shown above, the reduced incidence matrix is given as,

   A = 

1 0 0 1 0 0

0 1 0 1 1 0

0 0 1 0 1 1

-È ˘
Í ˙-Í ˙
Í ˙-Î ˚

 � Solution to Numerical Problem: From the property that for complete incidence matrix, 

the summation of all entries in any column must 

be zero, the complete incidence matrix is obtained 

as,

   

1 2 3 4 5

0 1 1 1 0

0 0 1 1 1

1 0 0 0 1

1 1 0 0 0

a

A

B
A

C

D

-È ˘
Í ˙- - -Í ˙=
Í ˙-
Í ˙
Î ˚

    The graph is shown in the fi gure. 

 6. For the circuit shown in the fi gure, fi nd the value of the current i.

  Solution: By KVL for the meshes, we get,
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  1 × I1 + 1 × I1 = 5 fi I1 = 2.5 A

  3 × i + 1 × i = 4Vab fi  Vab

  Now, from the middle loop, we have,

 1 × I1 – 1 × i – Vab = 10 1.25 A
2

I
ifi = =

 \ i = 1.25 A Ans.

 7. Explain under what condition, an RC series circuit behaves as

 (i) Low-pass fi lter

 (ii) Integrator

  Solution: 

 (i) RC Series Circuit as Low-Pass Filter: If the RC series circuit is supplied with a frequency-

varying source then it will act as a low-pass fi lter if the output is taken as the voltage across 

the capacitor.

  The voltage across the capacitor is IXC = 1/wC. The voltage across the series combination 

is: 

2

2 1
IZ I R

Cw

Ê ˆ= + Á ˜Ë ¯

  So the gain is

   

out

2
in

2

1

1

CV IX Cg
V IZ

R
C

w

w

∫ = =
Ê ˆ+ Á ˜Ë ¯

  \ 

2

1

1 ( )
g

RCw
=

+

   Here, at low frequencies, capacitive re-

actance 
1

2
CX

j fCp

Ê ˆ
=Á ˜Ë ¯

 is very high and, 

therefore, the circuit can be considered an 

open circuit. Under these conditions, the input signal is equal to the output signal. At very 

high frequencies, the capacitive reactance 
1

2
CX

j fCp

Ê ˆ
=Á ˜Ë ¯

 is very low and, therefore, the 

output signal is very small as compared with the input signal. Thus, the circuit acts as a 

low-pass fi lter with the frequency characteristics as shown in the fi gure.

 (ii) RC Series Circuit as Integrator: We have an ac source with voltage vin(t), input to an RC 

series circuit. The output is the voltage across the capacitor. 

   We consider only high frequencies w >> 1/RC, so that the capacitor has insuffi cient time 

to charge up, its voltage is small. So the input voltage approximately equals the voltage 

across the resistor.
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2

2
in

1
V IZ I R

Cw

Ê ˆ= = + Á ˜Ë ¯

  But 
in

1
, soC V IR

R
w >> @

  For frequencies, 
in

1
, RV V

RC
w >> @

  \ in
out

1 1
C

V
V V idt dt

C C R
= = @Ú Ú

  \ 
out in

1
V V dt

RC
@ Ú

  Thus, the voltage vC is the integration of the input voltage and, hence, the RC series circuit acts 

as an integrator.

GROUP–C

(Long-Answer-Type Questions)

Answer any three questions.  3 × 15 = 45

 8. (a) Find the Z-parameter and ABCD parameter of the circuit given in the fi gure.

 (b) Express h-parameter in terms of Y-parameter of a two-port network.

 (c) What is the cascade connection between two 2-port networks? Explain with a diagram.

  7 + 4 + 4

Solution:

 (a) We consider two cases:

  Case (1): When I2 = 0

  By KVL, we get, 

  5I1 – j5I1 = 

2

1
1 11

1 0

(5 5)

I

V
V z j

I
=

fi = = - W

  \   V2 = 

2

2
1 21

1 0

( 5) 5

I

V
I j z j

I
=

¥ - fi == = - W
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  Case (2): When I1 = 0

  By KVL, we get, 

  I2 (1 + j2 – j5) + 3I2 = 

1

2
2 22

2 0

(4 3)

I

V
V z j

I
=

fi = = - W

 \                       V1 = 

1

1
2 2 12

2 0

( 5) 3 (3 5)

I

V
I j I z j

I
=

¥ - + fi == = - W

  By interrelationship, the ABCD parameters are obtained as,

  A = 
11

21

5 5
(1 1)

5

z j
j

z j

-
= = +

-

  B = 
21

(5 5) (4 3) (3 5) ( 5)
(4 6)

5

z j j j j
j

z j

D - ¥ - - - ¥ -
= = + W

-

  C = 
21

1 1
0.2

5
j

z j
= =

-

  D = 22

21

(4 3)
(0.6 0.8)

5

z j
j

z j

-
= = +

-

  Hence, the required parameters are:

  Z = 
(5 5) (3 5)

( )
5 (4 3)

j j

j j

- -È ˘
WÍ ˙- -Î ˚

 and T = 
( )1 1 (4 6)

0.2 (0.6 0.8)

j j

j j

È ˘+ + W
Í ˙+Î ˚

 Ans.

 (b) h-parameter in terms of y-parameters

  The h-parameter equations are

   
1 11 1 12 2

2 21 1 22 2

V h I h V

I h I h V

= +

= +
 (1)

  The y-parameter equations are:

   
1 11 1 12 2

2 21 1 22 2

I y V y V

I y V y V

= +

= +  (2)

  We have to express Eq. (2) in the form of Eq. (1).

  From the fi rst equation of Eq. (2), we get,

  V1 = 12
1 2

11 11

1 y
I V

y y

Ê ˆ Ê ˆ
+ -Á ˜ Á ˜Ë ¯ Ë ¯

 (3)
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  Replacing this in the second equation of Eq. (2), we have,

  I2 = 12 21
21 1 22 2 21 1 2 22 2 1 2

11 11 11 11

1 y y y
y V y V y I V y V I V

y y y y

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆD
+ = - + = +Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

 (4)

  (where, Dy, = y11 y22 – y12 y21) 

  Comparing Eq. (1), (3) and (4), we get,

  h11 = 12 21
12 21 22

11 11 11 11

1 y y y
h h h

y y y y

D
= - = =

 (c) Cascade Connection between Two 2-Port Networks: A cascade connection is defi ned when 

the output of one network becomes the input to the next network.

  It can be easily seen that Ir2 = Is1 and Vr2 = Vs1

  Therefore, it can easily be seen that the ABCD parameters are the most suitable to be used for 

this connection.

  1

1

r

r

V

I

È ˘
Í ˙
Î ˚

 = 1 22

1 22

,
s s s sr r r

s s s sr r r

V A B VA B V

I C D IC D I

È ˘ È ˘ È ˘È ˘ È ˘
=Í ˙ Í ˙ Í ˙Í ˙ Í ˙

Î ˚ Î ˚ Î ˚ Î ˚ Î ˚

  1

1

V

I

È ˘
Í ˙
Î ˚

 = 
1 21 2

1 21 2

s s s sr r r r r r r r

s s s sr r r r r r r r

V A B VV A B V A B A B

I C D II C D I C D C D

È ˘ È ˘ È ˘È ˘ È ˘ È ˘ È ˘ È ˘
= = =Í ˙ Í ˙ Í ˙Í ˙ Í ˙ Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚ Î ˚ Î ˚Î ˚ Î ˚ Î ˚

   = 
2

2

s sr r

s sr r

A BA B V

C DC D I

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙

Î ˚ Î ˚Î ˚

  Thus, it is seen that the overall ABCD matrix is the product of the two individual ABCD 

matrices. This is a very useful property in practice, especially when analyzing transmission 

lines.

  
A B

C D

È ˘
Í ˙
Î ˚

 = s sr r

s sr r

A BA B

C DC D

È ˘È ˘
Í ˙Í ˙

Î ˚ Î ˚
 9. (a)  Draw the circuit diagram of a fi rst-order high-pass fi lter and fi nd out the expression for the cut-

off frequency.

 (b) Draw and explain the characteristics of an ideal band-pass and an ideal band-stop fi lter.

 (c)  The circuit shown in the fi gure is a second-order low-pass fi lter. Analyze the circuit and fi nd 

the cut-off frequency.
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  5 + 5 + 5

Solution:

 (a) First-Order High-Pass Active Filter: The circuit is shown in the fi gure.

  The fi ltering is done by the CR network and the op-amp is connected as a unity-gain fol-

lower. The feedback resistor, Rf is included to minimize dc offset.

    Here,   Vy = 1
0

1 f

R
V

R R+

  Voltage across the resistor R,

  Vx = 
1 1

i i i

c

R R j RC
V V V

R X j RC
R

j C

w

w

w

= =
+ ++

 (2)

  Since op-amp gain is infi nite,

  Vx = Vy

  fi 0 1

1 1
i

f

V R j RC
V

R R j RC

w

w
=

+ +

  fi        
10

1

2

1 1 2

f

F

i

R RV j RC j fRC
A

V R j RC j fRC

w p

w p

+Ê ˆ Ê ˆ
= = ¥Á ˜ Á ˜+ +Ë ¯Ë ¯
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  where, AF = (1 + Rf /R1) = pass-band gain of the fi lter,

   f = frequency of the input signal (Hz),

   fc = 
1

2 RCp
 cut-off frequency of the fi lter (Hz).

  The gain magnitude,

   0

2 2 2 2

(2 )
.

1 (2 ) 1

F
F

i

V A fRC RC
A

V fRC R C

p w

p w
= =

+ +

  For this magnitude to be 
2

FA
 at f = fc, we have,

   
2

(2 )

2 1 (2 )

F cF

c

A fRCA

fRC

p

p
=

+

  or,   
1

2
cf

RCp
=

  This is the cut-off frequency of the high-pass fi lter.

 (b) Band–Pass Filter: It is a circuit that passes a band of frequencies and attenuates all fre-

quencies outside the band.

  The bandwidth of a band-pass fi lter is the difference between the upper and lower cut-off 

frequencies. Depending on the value of bandwidth, band-pass fi lters are of two types:

 1. Wide Band-Pass Filter: This is characterized by high bandwidth or low Q-factor, i.e., 

Q £ 0.5.

 2. Narrow Band-Pass Filters: This is characterized by small bandwidth or high

Q-factor, i.e., Q > 0.5.

  An ideal band-pass fi lter should have the following characteristics:

 1. It should have a completely fl at pass-band (e.g., with no gain attenuation throughout).

 2. It should completely attenuate all frequencies outside the pass-band.

 3. The transition out of the pass-band should be instantaneous in frequency.
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  In practice, no band-pass or band-stop fi lter is ideal. The fi lter does not attenuate all fre-

quencies outside the desired frequency range completely; in particular, there is a region just 

outside the intended pass-band where frequencies are attenuated, but not rejected. This is 

known as the fi lter roll-off, and it is usually expressed in dB of attenuation per octave or 

decade of frequency.

  Band Stop Filter: It rejects a specifi ed band of frequencies while passing all other frequen-

cies outside the band. If a band-stop fi lter has a narrow stop-band (i.e., high Q-factor)  then 

the fi lter is known as a notch fi lter.

  An ideal band-stop fi lter should have the following characteristics.

 1. It should have a completely fl at pass-band (e.g., with no gain attenuation throughout).

 2. It should completely attenuate all frequencies within the stop-band.

 3. The transition from pass-band to stop band should be instantaneous in frequency.

 (c) [WBUT 2011 Q.11 (a)]

 10. (a) Find the inverse Laplace transform of F(s).

  F(s) = 2

1

( 4 4)

s

s s s

+
+ +

 (b) The circuit in the fi gure was in steady state with the switch in position 1. Find current i(t) for 

t > 0 if the switch is moved from position 1 to 2 at t = 0.
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 (c) Determine the Laplace transform of the periodic square pulse train of amplitude as shown in 

the fi gure.

Solution:

 (a)  F(s) = 
2 2

1 1

( 4 4) ( 2)

s s

s s s s s

+ +
=

+ + +

 Let,  F(s) = 
2 2

1

( 2)( 2) ( 2)

s A B C

s ss s s

+
= + +

++ +
  By residue method,

  A = 
2

20

1 1 1 1
; ;

4 2( 2) ss

s s
B

ss =-=

+ +
= = =

+

  C = 
2

22

1 1 1

4
ss

d s

ds s s =-=-

+È ˘ = - = -Í ˙Î ˚

 \ F(s) = 
2 2

1 1 1 1

4 4( 2)( 2) 2( 2)

s

s ss s s

+
= + -

++ +

  Taking inverse Laplace transform,

  f(t) = 2 21 1 1
( )

4 4 2

t t
u t e te

- -È ˘- +Í ˙Î ˚
 Ans.

 (b) When the switch is in position 1, steady state exists and the initial current through the inductor 

is,

  i(0 –) = 
20

2 A
10

=

  After the switch is moved to position 2, the KVL gives, in Laplace transform,

  10I(s) + 0.4sI(s) – 0.4 × 2 = 
60

s
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 or, I(s) = 
150 2 1 1 2

6
( 25) 25 25 25s s s s s s

È ˘+ = - +Í ˙+ + + +Î ˚
  Taking inverse Laplace transform,

  i(t) = 6 – 4e
–25t   (A); t > 0; Ans.

 (c) The given waveform can be written as,

   

3
( ) ( ) ( ) ( 2 ) ...

2 2

T T
f t au t Au t Au t T Au t Au t T

Ê ˆ Ê ˆ= - - + - - - + - -Á ˜ Á ˜Ë ¯ Ë ¯

  Taking Laplace transform,

3
22 2

3
22 2

2

( ) ...

1 ...

1 1
since summation of an infinite GP series is

11

Ts Ts
Ts Ts

Ts Ts
Ts Ts

Ts

A A A A A
F s e e e e

s s s s s

A
e e e e

s

A

s CRe

- -- -

- -- -

-

= - + - + -

È ˘= - + - + -Í ˙Î ˚
È ˘ Ï ¸= =Í ˙ Ì ˝-Ó ˛Í ˙-Î ˚

Ans

2

1
( )

1
Ts

A
F s

s e
-

È ˘
\ = Í ˙

Í ˙-Î ˚

 11. (a) Find the Fourier expansion of the following waveform shown in the fi gure.

 (b) Determine the Fourier transform and sketch the amplitude and phase spectrums of the 

function

   
/( ) for 0

0 for 0

t a
f t Ve t

t

-= ≥
= £

 8 + 7

Solution:

 (a) The waveform has both the odd and half-wave symmetry.

 \ a0 = 0  an = 0

  Also, the waveform will contain only the odd harmonics.

 \ bn = 

/2

0

4
( )sin ;

T

f t n tdt n
T

wÚ  is odd only
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   = 
2

0

4
sin

T

V
t n tdt

T
w

p
Ú  = 

/2

0

4 cos cos
T

V t n t n t
dt

T n n

w w

p w w

-È ˘+Í ˙Î ˚Ú

   = 

/2

2 2

0

4 sin
cos

2 2

T
V T n T n t

T n n

w w

p w w

È ˘Ê ˆÍ ˙- +Á ˜Ë ¯Í ˙Î ˚

   = 
2

4 2 sin
cos ( 2 , 1)

2 2

V n
n T

n n

p p
p p w

p p

È ˘- + = \ =Í ˙Î ˚

   = 
2

cos ( sin 0, for all )
V

n n n
n

p p
p

- =

   = 
2

( cos 1 for all )
V

n n
n

p
p

= -

  Hence, the Fourier series of the given waveform is,

  V(t) = 
2 1 1 1

sin sin3 sin 5 sin 7 ...
3 5 7

V
t t t tw w w w

p

Ê ˆ+ + + +Á ˜Ë ¯
 Ans.

 (b) Fourier transform of the function is,

  F(jw) = 

1

0

( )
j tt

j t j t aaf t e dt Ve e dt V e dt
w

w w

Ê ˆ• • • - +Á ˜- Ë ¯- -

-• -•

= =Ú Ú Ú

   = 

1

0

1 1

j t
ae Va

V
j a

j
a

w

w
w

•
Ê ˆ- +Á ˜Ë ¯

=
+Ê ˆ- +Á ˜Ë ¯

  Ans.

  The amplitude and phase are |F(jw)| = 
1

2 2
and ( ) tan ( )

1

Va
j a

a
f w w

w

-= -
+
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 12. (a) What is the oriented graph of a network? Explain with a suitable example.

 (b) Develop at least three trees for your considered network. Mark the twigs and links.

 (c)  For the network in the fi gure, draw the oriented graph, develop the incidence matrix, choose a 

tree and considering the tree, develop the tie-set matrix.

Solution:

 (a) Oriented Graph: A graph whose branches are oriented, i.e. the branch current directions are 

shown by arrowheads, is called a directed or oriented graph.

  For example, for the circuit shown in the fi gure, the oriented graph is shown in the fi gure.

         

 (b) The three trees of the considered network are shown in the fi gure below. The solid lines represent 

the twigs and the dashed lines represent the links.
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 (c) The oriented graph of the network is shown below.

  The incidence matrix is obtained as,

  Aa = 

1 2 3 4 5 6

1 1 0 0 1 0

0 1 1 1 0 0

0 0 0 1 1 1

1 0 1 0 0 1

A

B

C

D

-È ˘
Í ˙-Í ˙
Í ˙- - -
Í ˙

-Î ˚
  A tree has been chosen as shown in the fi gure. This tree creates three loops as shown in the 

fi gure.

  The tie-set matrix is obtained as,

  Ba = 
1

2

3

1 2 3 4 5 6

1 1 1 0 0 0

0 0 1 1 0 1

0 1 0 1 1 0

L

L

L

È ˘
Í ˙-Í ˙
Í ˙- -Î ˚
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GROUP–A

(Multiple-Choice Questions)

 1. Choose the correct alternatives for any ten of the following: 10 × 1 = 10

 (i) Unit step function is the fi rst derivative of

 (a) ramp function   (b) impulse function

 (c) gate function   (d) parabolic function

 (ii) A practical current source is usually represented by

 (a) a resistance in series with an ideal current source

 (b) a resistance in parallel with an ideal current source
 (c) a resistance in parallel with an ideal voltage source
 (d) none of these

 (iii) A two-port network is defi ned by the relations I
1
 = 2V

1
 + V

2
 and I

2
 = 2V

1
 + 3V

2 
, then Z

12
 is

 (a) −2 ohm (b) −1 ohm (c) 
1

2
-  ohm (d) 

1

4
-  ohm

 (iv) The Z-matrix of a 2-port network is given by 
0.9 0.2

0.2 0.6

È ˘
Í ˙
Î ˚

. The element Y
22

 of the correspond-

ing Y-matrix of the same network is given by

 (a) 1.2 (b) 0.4 (c) −0.4 (d) 1.8

 (v) The Fourier series of the function f(x) = sin2x is

 (a) sin x + sin 2x (b) 1 – cos 2x  (c) sin 2x + cos 2x (d) 0.5 – 0.5 cos 2x

 (vi) A rectangular pulse of duration t and magnitude I has the Laplace transform

 (a) 
I

s
 (b) sTI

e
s

-Ê ˆ
Á ˜Ë ¯

 (c) sTI
e

s

Ê ˆ
Á ˜Ë ¯

 (d) (1 )sTI
e

s

-Ê ˆ -Á ˜Ë ¯

 (vii) The Laplace transform of a delayed unit impulse function d(t – 2) is

 (a) 1 (b) 0 (c) e–2s  (d) s
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 (viii) The convolution of f(t) and g(t) is

 (a) 

0

( ) ( )

t

f t g t dt t-Ú  (b) 
0

( ) ( )

t

f g t dt t t-Ú  (c) 
0

( ) ( )

t

f t g t dtt-Ú   (d) 
0

( ) ( )

t

f t g t dtt-Ú
 (ix) When applying the superposition theorem to any circuit,

 (a) the voltage source is shorted, the current source is opened

 (b) the voltage source is opened, the current source is shorted

 (c) both are opened

 (d) both are shorted

 (x) A high-pass fi lter circuit is basically

 (a) a differentiating circuit with low time constant

 (b) a differentiating circuit with large time constant

 (c) an integrating circuit with low time constant

 (d) an integrating circuit with large time constant

 (xi) The Thevenin’s equivalent with respect to the terminals A and B would be only a resistance 

R
th
 equal to

2i

4 W

8 W

i
A

B

+

–

 (a) 2.66 Ω (b) 3.2 Ω (c) 8 Ω (d) 12 Ω

Solution:
 (i) (a) ramp function (ii) (b) a resistance in parallel with an ideal current source

 (iii) (c) 
1

2
-  ohm (iv) (d) 1.8 (v) (d) 0.5–0.5cos2x

 (vi) (d) (1 )sTI
e

s

-Ê ˆ -Á ˜Ë ¯  (vii) (c) e–2s (viii) (b) 
0

( ) ( )

t

f g t dt t t-Ú
 (ix) (a) the voltage source is shorted, the current source is opened

 (x) (a) a differentiating circuit with low time constant (xi) (b) 3.2 Ω

GROUP–B

(Short-Answer-Type Questions)

Answer any three of the following questions. 3 × 5 = 15

 2. State and prove maximum power transfer theorem for ac network.

  Solution: Maximum Power Transfer Theorem (for ac network):

  Statement: Maximum active power will be delivered from a source to a load when the load 

impedance is the complex conjugate of the source impedance.

  Proof: Let V be the voltage source, (R
S
 + jX

S
) be the internal impedance of the source and

(R
L
 + jX

L
) be the load impedance.



 Solution of 2013 WBUT Paper SQP.3

 ∴ current, I = 
( ) ( )S L S L S L

V V

Z Z R R j X X
=

+ + + +
 (1)

  Power delivered to the load is,

  P = 
2

2

2 2( ) ( )

L
L

S L S L

V R
I R

R R X X
=

+ + +
 (2)

  where, Z
S
 = R

S
 + jX

S
, Z

L
 = R

L
 + jX

L

  For maximum power, 
L

P

X

∂
∂

 must be zero.

  Now, 

  
L

P

X

∂
∂

 = 
( )2

2
2 2

2 ( )
0

( ) ( )

L L S

L S L S

V R X X

R R X X

- +
=

È ˘+ + +Î ˚

  From which,  X
L
 + X

S
 = 0 or 

L SX X= -

  i.e. the reactance of the load impedance is of opposite sign to the reactance of the source imped-

ance.

  Putting X
L
 = –X

S
 in Eq. (2)  P = 

2

2( )

L

L S

V R

R R+

  For maximum power,  
L

P

R

∂
∂

 = 

2 2 2

4

( ) 2 ( )
0

( )

L S L L S

L S

V R R V R R R

R R

+ - +
=

+

  or,  V2(R
L
 + R

S
) – 2V2R

L
 = 0 or R

L
 = R

S

*L SZ Z\ =

 3. What is time constant of an R-L series circuit and what does it signify? Explain it graphically. 

 2 + 3

  Solution:

  Time Constant of an R-L Series Circuit: The quantity 
L

R
t =  in an R-L series circuit is known 

as the time-constant of the circuit and it is defi ned in three ways as follows.

  Defi nitions of time-constant (τ)

 1. It is the time taken for the current to reach 63% of its fi nal value. Thus, it is a measure of 

the rapidity with which the steady state is reached.

  Also, at t = 5t , i = 0.993i
s
; the transient is, therefore, said to be practically disappeared in 

fi ve time constants.

 2. The tangent to the equation 1

R
t

L
V

i e
R

-Ê ˆ
= -Á ˜

Ë ¯
 at t = 0, intersects the straight line, 

V
i

R
=  at 

L
t

R
t= = . Thus, time-constant is the time in which steady state would be reached if the 

current increases at the initial rate.

+

–

( + )R jXs s

V ( + )R jXL L

Load impedance with variable
resistance and variable reactance
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  Physically, time-constant represents the speed of the response of a circuit. A low value of 

time-constant represents a fast response and a high value of time-constant represents a sluggish 

response. Thus, unit of time constant is the unit of time, i.e. second.

  Graphical Representation of Time Constant

  The current in an R-L series circuit with a dc voltage of V is given as,

  i(t) = ( ) 1

R
t

LV
i t e

R

Ê ˆ-Á ˜Ë ¯
Ê ˆ

= Á - ˜
Á ˜Ë ¯

  From the current equation at 
L

t
R

t= = , 1(1 ) 0.63 0.63 s

V V
i e i

R R

-= - = =

  This is the time constant of the circuit as shown in the fi gure below.

Variation of current with time in R-L series circuit with step input

 4. Find the equivalent p-network for the T-network as shown in the fi gure.

1

1¢

2

2¢

2 W 2.5 W

5 W

  Solution: Let the equivalent p-network have Y
C
 as the series admittance and Y

A
 and Y

B
 as the 

shunt admittances at port-1 and port-2, respectively.

  Now, the z-parameters are given as

  z
11 

= (Z
A
 + Z

C
) = 7 W, z

12
 = z

21
 = Z

C
 = 5 W, z

22
 = (Z

B
 + Z

C
) = 7.5 W

 \ Dz = (7 × 7.5 – 5 × 5) = 27.5 W2

 \ y
11

 = 22 7.5

27.5

z

z
=

D
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  y
12

 = y
21

 = 
5

27.5

Cz

z
- = -

D
 

  y
22

 = 11 7

27.5

z

z
=

D
 

 \ Y
A
 = 11 12

2.5 1
( )

27.5 11
y y+ = =  

 \ Y
B
 = 22 12

2
( )

27.5
y y+ =  

 and Y
C
 = 21

5 2

27.5 11
y- = =  

  Thus, the impedances of the equivalent p-networks are

         

1
11 ,

1
13.75

1
5.5

A

A

B

B

C

C

Z
Y

Z
Y

Z
Y

¸
= = W Ô

Ô
ÔÔ= = W ˝
Ô
Ô

= = W Ô
Ǫ̂

 Ans.

  NB: This problem can also be solved by using the result of star-delta conversion technique.

  Z
A
 = 

2 5
2 5 11

2.5

¥
+ + = W

  Z
B
 = 

2.5 5
2.5 5 13.75

2

¥
+ + = W

  Z
C
 = 

2 2.5
2 2.5 5.5

5

¥
+ + = W

 5. Prove that the Laplace transform of a periodic function with period T
0
 is equal to 

0

1

1
T s

e
--

 times 

the Laplace transform of the fi rst cycle.

  Solution: Let, f(t) − be the periodic function,

    T
0
 − the time period,

  f
1
(t), f

2
(t), … , f

n
(t) − the functions representing the fi rst, second, …, nth cycle, respectively

 \ f(t) = f
1
(t) + f

2
(t) + ...+ f

n
(t) + ... = f

1
(t) + f

1
(t – T

0
) + f

1
(t – 2T

0
) + ...

  Taking Laplace transform,

  L[f(t)] = F(s) = L[f
1
(t)] + L[f

1
(t – T

0
)] + L[f

1
(t – 2T

0
)] + ...

   = F
1
(s) + e–T

0
s F

1
(s) + e–2T

0
s F

1
(s) + ...

   = 0 0 02 3
1( ) 1

T s T s T s
F s e e e

- - -Í ˙+ + + + +Î ˚ 

I1 I2

+

–

YA YB

YC

V2V1

+

–

I1 I2

+

–

V2V1

+

–

5.5 W

11 W 11.75 W

Equivalent p-network
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0
1

1
( ) ( )

1
T s

F s F s
e

-
È ˘= Í ˙-Î ˚

  Therefore, it is proved that the Laplace transform of a periodic function with period T
0
 is equal 

to 
0

1

1
T s

e
--

 times the Laplace transform of the fi rst cycle.

 6. Draw the oriented graph of a network with fundamental cut-set matrix given below:

Twigs Links

Q = 

1 2 3 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Ê
Á
Á
Á
Á
ÁÁË

5 6 7

1 0 0

1 0 1

0 1 1

0 1 0

ˆ
˜-
˜
˜
˜
˜̃
¯

  Solution: The graph has a total of seven branches out which four are tree branches (twigs) and 

the other three are links.

  It is obvious that the graph must have 5 nodes. Hence, the graph is shown below:

C1

1 4

2 35

7

6

C2 C3

C4

GROUP–C

(Long-Answer-Type Questions)

Answer any three questions. 3 × 15 = 45

 7. (a) What are ABCD parameters? Prove that DT = (AD – BC) = 1. 7

 (b) Find the z-parameter for the network shown in the fi gure below. Hence, fi nd the h-parameter 

for the same network. 8
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Solution:

 (a) ABCD Parameters: The ABCD parameters represent the relation between the input quantities 

and the output quantities in a two-port network. They are thus voltage-current pairs.

   

  The fi gure shows two-port current and voltage variables for calculation of transmission line 

parameters.

  However, as the quantities are defi ned as an input-output relation, the output current is marked 

as going out rather than as coming into the port.

  The transmission parameter matrix may be written as

   
1

1

V

I

È ˘
Í ˙
Î ˚

 = 2

2

VA B

IC D

È ˘È ˘
Í ˙Í ˙ -Î ˚ Î ˚

 or, 
1 2 2

1 2 2

V AV BI

I CV DI

= -

= -

  The parameters A, B, C, D can be defi ned in a similar manner with either Port 2 on short circuit 

or Port 2 on open circuit. 

    A = 

2

1

2 0I

V

V
=

 = Open circuit reverse voltage gain

    B = 

2

1

2 0V

V

I
=

-  = Short circuit transfer impedance

    C = 

2

1

2 0I

I

V
=

 = Open circuit transfer admittance

    D = 

2

1

2 0V

I

I
=

-  = Short circuit reverse current gain

 • To Prove AD – BC = 1  1 2

2¢1¢

V
s

+

–

I
1

I
2

I
2

¢

2

2¢

V
s

+

–I
1

¢

I
1

I
2

1

1¢

N   (a) Reciprocal network (b) Reciprocal network

  From Fig. (a), writing the ABCD-parameter equations,

     2 2

1 2 2

.0 ( )

.0 ( )

sV A B I BI

I C D I DI

= - - =¢ ¢

= - - =¢ ¢
 fi 

2 1

s

I

V B

¢
=  (1)
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  From Fig. (b), writing the ABCD-parameter equations,

     
2

1 2

0 s

s

AV BI

I CV DI

= -

- = -¢
 fi 1

s

I AD BC

V B

¢ -
=  (2)

  From the principle of reciprocity from Eq. (1) and (2), we get,

 

1
1

AD BC
AD BC

B B

-
= fi - =

 
1AD BC\ - =

 (b) We consider two cases:

  Case (1): When I
2
 = 0

  The circuit is modifi ed as shown in Fig. (a).

I1 4 W 2 W

V1 V210 W   0.1 2I

I23 W2 W

V1 V2           Fig. (a) Fig. (b)

  By KVL, we have,

   V
1
 = ( )

2

1
1 1 11

1 0

4 2 10 16 16

I

V
I I z

I
=

+ + = fi = = W

 \  V
2
 = 

2

2
1 21

1 0

10 10

I

V
I z

I
=

¥ fi = = W

  Case (2): When I
1
 = 0

  The circuit is modifi ed as shown in Fig. (b).

  By KVL, we have,

  V
2
 = 

1

2
2 2 2 2 22

2 0

3 10 ( 0.1 ) 14 14

I

V
I I I I z

I
=

+ ¥ + = fi = = W

 \ V
1
 = 

2

1
2 2 2 12

2 0

2 0.1 10 ( 0.1 ) 11.2

I

V
I I I z

I
=

¥ + ¥ + fi = = W

  Hence, the z-parameters are given as,

  [z] = 
16 11.2

( )
10 14

È ˘
WÍ ˙

Î ˚
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  By interrelationships, the h-parameters are obtained as,

  h
11

 = 
22

16 14 11.2 10
8

14

z

z

D ¥ - ¥
= = W

  h
12

 = 12

22

11.2
0.8

14

z

z
= =

  h
13

 = 21

22

10
0.714

14

z

z
- = - =

  h
22

 = 
22

1 1
0.0714 mho

14z
= =

 8. (a) State and explain Millman’s theorem. Calculate the load current I in the circuit in the fi gure by 

Millman’s theorem. 2 + 6

2 W

2 V

15 W

2 W 5 W

5 V

I

3 V
+
–

+
–

+
–

 (b) What is the power loss in the 10-ohm resistor? Use Thevenin’s theorem in the fi gure below: 7

I1 2 A R1 =
2 ohms

R2 =
4 ohms

R4 =
1 ohms

I2 5 A

R3 = 10 ohms R5 = 2 ohms

Solution:

 (a)

 ∑ Millman’s Theorem

 (I) This theorem states that if several ideal voltage sources (V
1
, V

2
, …) in series with imped-

ances (Z
1
, Z

2
,…) are connected in parallel then the circuit may be replaced by a single ideal 

voltage source (V) in series with an impedance (Z), where,

   
1

1

n

i i

i

n

i

i

V Y

V

Y

=

=

=
Â

Â
 and, 

1

1
n

i

i

Z

Y
=

=

Â
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 (II) If several ideal current sources (I
1
, I

2
,…) in parallel with impedances (Z

1
, Z

2
, …) are 

connected in series, then the circuit may be replaced by a single ideal current source 

(I) in parallel with an impedance (Z), where,

   1

1

1

n

i

ii

n

ii

I
Y

I

Y

=

=

=
Â

Â
 and, 

1

1

1
n

ii

Y

Y
=

=

Â
 or, 

1

n

i

i

Z Z
=

= Â

 ∑ Solution to Numerical Problem

  By Millman’s theorem,

   

2 3 5

352 2 5 2.91667 V
1 1 1 12

2 2 5

EY
V

Y

+ +
= = = =

+ +

Â
Â

   

1 1 10
0.833

1 1 1 12

2 2 5

Z
Y

= = = = W
+ +Â

 \  
2.91667

0.184 A
15 0.833 15

V
I

Z
= = =

+ +
 Ans.

 (b) We fi nd the Thevenin’s equivalent circuit with respect to terminals a and b where the 10 Ω 

resistance is connected.

  Thevenin equivalent resistance is obtained as,

  R
Th

 = 
2 4 7

1
2 4 3

¥
+ = W

+
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  Thevenin voltage (open circuit voltage) is obtained as follows.

  Changing the current source into voltage source by source trans-

formation, we simplify the circuit.

  No, by KVL, we get,

81 5 0
3OCV- + ¥ - =

 fi V
OC

 = 
7

V
3

+–

+

–

b a

5 A8/3 V

4/3

1 ohm

VOC

  So, the current through the 10 Ω resistance is given as,

  I = 

7
73 A

7 3710
3

OC

Th L

V

R R
= =

+ +

  So, the power loss in the 10 Ω resistance is,

  P = 

2

2 7
10 0.358 W

37
LI R

Ê ˆ= ¥ =Á ˜Ë ¯

 9. (a) What is a tree? Discuss with a suitable example. 2

 (b) A graph is shown in the fi gure below. Find the tie-set and cut-set matrices and obtain the KCL 

and KVL equation [bold lines indicate twigs and dotted lines the links]. 6

1 2 3

45

6 7

2

6

7

53
4

1

 (c) Explain odd symmetry and even symmetry of periodic waveforms. 4

 (d) Find the Fourier transform of f(t) = e–a|t|  3
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Solution:

 (a) Tree: For a given connected graph of a network, a connected subgraph is known as a tree of 

the graph if the subgraph has all the nodes of the graph without containing any loop.

  The branches of a tree are called twigs or tree branches. The number of branches or twigs, in 

any selected tree is always one less than the number of nodes, i.e.

  Twigs = (n – 1), where n is the number of nodes of the graph. 

  For this case, twigs = (4 – 1) = 3 twigs. These are shown by solid lines in Fig. (b).

 
R1

R2

R3

R4

R5
v1 is

1
2

3

+

–

4  
 (a) Circuit (b) Trees and links of circuit of Fig. (a)

  If a graph for a network is known and a particular tree is specifi ed, the remaining branches are 

referred to as the links. The collection of links is called a co-tree. So, co-tree is the complement 

of a tree. These are shown by dotted lines in Fig. ((b).

  The branches of a co-tree may or may not be connected, whereas the branches of a tree are 

always connected.

 (b) The graph has three loops.

  The tie-set matrix is given as,

  B
a
 = 

1

2

3

1 2 3 4 5 6 7

1 0 1 1 0 0 0

0 0 0 1 1 0 1

0 1 0 0 1 1 0

L

L

L

È ˘
Í ˙-Í ˙
Í ˙- -Î ˚
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  The graph has 4 fundamental cut-sets. The cut-set matrix is obtained as,

  Q = 

1

2

3

4

1 2 3 4 5 6 7

1 0 1 0 0 0 0

1 0 0 1 0 0 1

0 1 0 0 1 0 1

0 1 0 0 0 1 0

C

C

C

C

-È ˘
Í ˙- -Í ˙
Í ˙
Í ˙
Î ˚

  KCL is written in terms of cut-set matrix as,

  QI
b
 = 0

  

1

2
1 3

3
1 4 7

4

2 5 7
5

2 6
6

7

01 0 1 0 0 0 0

01 0 0 1 0 0 1
0

0 1 0 0 1 0 1 0

0 1 0 0 0 1 0 0

i

i
i i

i
i i i

i
i i i

i
i i

i

i

È ˘
Í ˙
Í ˙ - + = ¸-È ˘ Í ˙ ÔÍ ˙ - + - =- - Í ˙ ÔÍ ˙fi = fi ˝Í ˙Í ˙ + + = ÔÍ ˙Í ˙ ÔÍ ˙ + =Î ˚ ˛Í ˙
Í ˙
Î ˚

 Ans

  KVL is written in terms of tie-set matrix as,

  B
a
V

b
 = 0

  

1

2

1 3 43

4 4 5 7

5 2 5 6

6

7

01 0 1 1 0 0 0

0 0 0 1 1 0 1 0 0

0 1 0 0 1 1 0 0

b

b

b b bb

b b b b

b b b b

b

b

V

V

V V VV

V V V V

V V V V

V

V

È ˘
Í ˙
Í ˙
Í ˙ + + = ¸È ˘
Í ˙ ÔÍ ˙fi - = fi - + = ˝Í ˙Í ˙

ÔÍ ˙Í ˙- - - - =Î ˚ ˛Í ˙
Í ˙
Í ˙
Î ˚

 Ans

 (c) Odd Symmetry: A function f(x) is said to be odd if,

   f(x) = – f(–x)

  We know that the Fourier coeffi cients are given as,

   

0 2

0

0 0
2

1 1
( ) ( ) ( )

T
T

T

a f t dt f t dt f t dt
T T

-

È ˘
Í ˙= = +
Í ˙
Î ˚

Ú Ú Ú

   [ ]
2

0

2
( ) ( ) cos

T

na f x f x n xdx
T

w= + -Ú  and [ ]
2

0

2
( ) ( ) sin

T

nb f x f x n xdx
T

w= - -Ú

  Hence, for odd functions a
0
 = a

n
 = 0 and 

2

0

1
( )sin

T

nb f x n x
T

w= Ú .
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  Thus, the Fourier series expansion of an odd function contains only the sine terms, the constant 

and the cosine terms being zero.

  Even Symmetry A function f(x) is said to be even, if

   f(x) = f(–x)

  \ 
2

0

0

2
( )

T

a f x dx
T

= Ú

   

2

0

4
( )cos

T

na f x n xdx
T

w= Ú

  and b
n
 = 0

  Thus, the Fourier series expansion of an even periodic function contains only the cosine terms 

plus a constant, all sine terms being zero.

 (d) Fourier Transform of f (t) = e– a | t |, for all values of t

   F(jw) = 
a t a t j t

e e e dt
w

•
- - -

-•

È ˘ =Î ˚ ÚF

    = 

0
( ) ( )

0

a j t a j t
e dt e dt

w w

•
- - +

-•

+Ú Ú

    = 
1 1

a j a jw w
+

- +

    = 
2 2

2a

a w+
 Ans.

 10. (a) Defi ne Fourier transform. How does Fourier transform differ from Laplace transform? 5

 (b) What is impulse function? Find its Laplace transform. 3

 (c) For the square wave shown in the fi gure, fi nd the exponential Fourier series. 7

v t( )

V

0 T/2 T 3 /2T 2T
t

Solution:

 (a) Defi nition of Fourier Transform: The Fourier Transform or the Fourier integral of a function 

f(t) is denoted by F(jw) and is defi ned by,

  F(jω) = F [f(t)] = ( ) j t
f t e dt

w

•
-

-•
Ú   (i)

Even function
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  and the inverse Fourier transform is defi ned by,

  f(t) = F –1 [F(jω)] = 21
( ) ( 2 )

2

j t j f
F j e d F j f e df

w p
w w p

p

• •

-• -•

=Ú Ú  (ii)

  Equations (i) and (ii) form the Fourier transform pair.

  Difference between Laplace Transform and Fourier Transform: The defi ning equations 

are,

0

( ) ( ) and ( ) ( )st j t
F s f t e dt F j f t e dt

w
w

• •
- -

-•

= =Ú Ú

  The following are some differences and similarities:

 1. Laplace transform is one-sided in the interval 0 < t < • and Fourier transform is double-sided 

in the interval −• < t < •. Thus, Laplace transform is applicable for positive time functions, 

f(t), t > 0; while Fourier Transform is applicable for functions defi ned for all times.

 2. Laplace transform includes the initial conditions and is applicable for transient analysis; 

while Fourier transform is only applicable for steady-state analysis.

 3. For functions f(t) = 0 for t < 0 and 
0

( )f t dt

•

< •Ú , the two transforms are related as, 

( ) ( )
s j

F j F s
w

w
=

= . Thus, Laplace transform is associated with the entire s-plane, while, 

Fourier transform is restricted to the imaginary (jw) axis.

 4. Laplace transform is applicable to a wider range of functions than the Fourier transform. 

On the other hand, Fourier transforms exist for signals that are not physically realizable and 

have no Laplace transform.

 (b) Impulse Function: It is a function of a real variable t, such that the function is zero everywhere 

except at the instant t = 0. Physically, it is a very sharp pulse of infi nitesimally small width and 

very large magnitude, the area under the curve being unity.

  We consider a gate function as shown,
f t( )

3/a

2/a

1/a

0 a/3 a/2 a
t

  The function is compressed along the time-axis and stretched along the y-axis, keeping area 

under the pulse unity. As a → 0, the value of 
1

a
Æ •  and the resulting function is known as 

impulse.

  It is defi ned as,  δ(t) = 0 for t π 0
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   and       ( ) 1t dtd

•

-•

=Ú

 Also,  δ(t) = 
0

1
lim [ ( ) ( )]
a

u t u t a
aÆ

- -

  Laplace Transform of Impulse Function: The Laplace transform of the impulse function is 

obtained as,

  L[d (t)] = [ ]
0 0 0

1 1 1 1
lim ( ) ( ) lim lim

as as

a a a

e e
L u t u t a

a a s s as

- -

Æ Æ Æ

È ˘ -Ï ¸- - = - =Ì ˝ Í ˙
Ó ˛ Î ˚

   = 
0

lim [by L'Hospital's rule]
as

a

se

s

-

Æ

   = 1

 (c) [WBUT 2012 Q.10 (c)]

 11. (a) What are the advantages of active fi lter over passive fi lter? 4

 (b) Design a high-pass active fi lter of cut-off frequency 1 kHz with a pass-band gain of 2. 5

 (c) Draw the circuit diagram of a fi rst order low-pass fi lter and fi nd out the expression of the cut-off 

frequency. 6

Solution:

 (a) Advantages of Active Filter over Passive Filter

 1. Less Cost: Active fi lters are inexpensive as compared to passive fi lters, due to the variety 

of cheaper op-amp and the absence of costly inductors.

 2. Gain and Frequency Adjustment Flexibility: Since an op-amp is capable of providing a gain 

(which may also be variable), the input signal is not attenuated as it is in a passive fi lter. In 

addition, the active fi lter is easier to tune or adjust.

 3. No Loading Problem: Active fi lters provide an excellent isolation between the individual 

stages due to the high input impedance (ranging from a few kW to a several thousand MW) 

and low output impedance (ranging from less than 1 W to a few hundred W). So, the active 

fi lter does not cause loading of the source or load.

 4. Size and Weight: Active fi lters are small in size and less bulky (due to the absence of bulky 

‘L’) and are rugged.

 5. Non-fl oating Input and Output: Active fi lters generally have single-ended inputs and outputs 

which do not ‘fl oat’ with respect to the system power supply or common. This property is 

different from that of the passive fi lters.

 (b) Here,  f
c 
= 1 kHz, A

F
 = 2

 Let,  C = 0.01 µF 

  \ R = 
1

2 cf Cp
 = 3 6

1

2 10 0.01 10p
-¥ ¥ ¥

= 15.9 kW

 ∵  A
F
 = 2 = 1

1

1 10 kf
f

R
R R

R

Ê ˆ
+ fi = = WÁ ˜Ë ¯
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  So, the complete circuit is shown in the fi gure.

Vi

10 kW

15.9 kW

V0

+

–

10 kW

0.01 Fm

 (c) First-Order Low-Pass Active Filter: The circuit of the fi gure is a commonly used low-pass active 

fi lter.

  The fi ltering is done by the RC network, and the op-amp is used as a unity-gain amplifi er. The 

resistor R
f
 (= R) is included for dc offset.

  Here, all the voltages V
i
, V

x
, V

y
, V

o
 are measured with respect to ground.

  Since the input impedance of the op-amp is infi nite, no current will fl ow into the input termi-

nals.

   V
y
 = 

0
1

1 f

V
R

R R
¥

+
 (1)

  According to the voltage-divider rule, the voltage across the capacitor,

   V
x 

= 
c

i

c

X
V

R X+
;  

1 1

2
cX

j C j fCw p
= =

    = 
1/ 2

1

2

i

j fC
V

R
j fC

p

p
+

    = 
1 2

Vi

j fRCp+
 (2)
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  Since the op-amp gain is infi nite, 

 \  V
x
 = V

y

or   
0 1

1 1 2

i

f

V R V

R R j fRCp
=

+ =

fi   
10

1

1 2

f

i

R

RV

V j fRCp

Ê ˆ
+Á ˜Ë ¯

=
+

where, A
F
 = 

1

1
fR

R

Ê ˆ
+Á ˜Ë ¯

 = pass-band gain of the fi lter

   f = frequency of the input signal

   A
cL

 = closed-loop gain of the fi lter as a function of frequency

The gain magnitude,

   

0

2 2 2 2 2 2 21 1 4

F F
cL

i c c

V A A
A

V R C f R Cw p

= = =
+ +

For this magnitude to be 
2

FA
 at f = f

c
, we have,

   22 1 (2 )

F F

c

A A

f RCp

=
+

or       
1

2
cf

RCp
=

This is the cut-off frequency of the low-pass fi lter.
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